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1hese papers were prepared as partt of the wetdvities of the Georgle
Center for the Study of Learning and ‘feaching Mathematics, under
Crant No. PES 7418491, National Science Foundatinn. The opinions
mpressed herein do not necessarily reflect the positien or policy
of the National Science Foundation.

This publication tras prepared pursuant to a contract vith the National
Institute of Education, U.S3. Department of Health, Education and Welfrre.
gontractors undertaking such projects eader Government spongsorship

are encouraged to expresas freely their judgment in profesainnal

and technical matters. Points of view or opinions o not, therefore,
necessarily represent official National Institute of Education positien
or poliey-
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MATHEMATICS EDUCATION REPORTS

The Mathematics Fducation Reports gseries pakes avallable recent
annlysea apd syntheses of reseatrch and development =fforts in mathematics
education, We aras pleased to make available ag part of this series the
Papers from the Worikshop on Number and Fieasuranent Concepts bponsored
by the Georgia Cemter feor the Study of Learning and Teaching Mathematics,

Othex Mathenatics Education Keports make available informarion
concerning mathematics education documents analyzed at the ERIC
Information Analysis Center fu: Scienca, Mathematics, and Environmental
Education. These Teports fall into three broad categories. Research
reviews summarize and analyze recent research i spevific areas of
mathematics educstion, Resource guldes identify and analyze naterials
and references for ume by mathenatics teachers at all levels. Special
bibliographies announce the availability of documents and review the
literature In selected interest areas of mathematics education, Reporta
ia each of these categories may also be targeted for specific sub=
pPopulations of the mathematics educatien community,

Priorities for the development of future Mathematics Education Repores
are established by the advisory board of the Center, in cooperation with
the National Councll of Teachers of Mathematics, the Bpecial Lnterest
Group for Research in Mathematics Education, and other professional
greups in mathematies education, Individual comments en past Reports and
suggestions for future Reporte are always welcomed by the ZRIC/SMEAC Center,

Jon L. Higgins
Agsociate Director
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and Overview

a4 Cuenter {or the Study of learnlng and Teaching Mathematies
{(GCSLTM) was atarted July 1, 1375, through a founding grant from the
Matlonal Scicnee Foundatlop. Various activities preceded the founding
of the GCSLTM. The most signlficant was a conference held at Columbia
University in Octeber of 1970 op Piagetian Cognitive-Development and
This conference was directed by the late Myron
kopf and jointly szponsored by the National Council of Teachers of
Mattematics and the Department of Mathamatical Edi ion, Teachers
Collepe, Columbia University with a grant from the National Science
Foundation. Following the October 1970 Conference, Professor Rosskopf
spent the winter and spring quarters of 1971 as a visiting professor of
Matliematics Education at the Uriversity of Georgla. During thczoe twoe
quarters, the editorial work was accomplished on the proceedings of the
October conference and a Letter of Intent was filed in February of 1971
with the National Science Foundatiou to create a Center for Mathematiecal
Eduecation Research and Innovation. Professor Rosskopf’s illness and

unt imely death made it impossible for him to develop the ideas contained
in that Letter.

The Guoorg

F. Ros:

Af ter mush discussion among faculty in the Department of Mathematics
Fducation at the University of Georgia, it was clear that a center devoted
to the study of mathematics education ought to attack a broader range of
problems than was stated in the Letter of Intent. As a result of these
dis fons, three arcas of study were identifled as being of primary
interest in the initial year of the Georgia Center for the Study of
Learning and Teaching Mathematics--Teaching Strategies, Concept Develop-
ment, and Problem Solving. Thomas J. Cooney assumed directorship of the
ing Stratcgies Project, Loslie P. Steffe the Concept Development
Projeet, and Larry L. Hatfield the Problem Solving Project.

The GESLTM is intended to be a long-term operation with the broad
goal of improving mathematics education in elementary and secondary schools.
To be effective, It w felt that the Center would have to include
mathematics educators with interests commensurate with those of the
praject areas. Alternative organizational patterns were available--—
resident scholars, institutional consortia, or individual consortia.
The latter organizational pattern was chosen because it was felt maximum
participation would be then possible. In order to operatiomilize a
concept of a consortia of individuals, five research workshops were held
iuring the spring of 1975 at the University of Georgia. These workshops
were (ordered by dates held) Teaching Strategies, Number and Measurement
Concepts, Space and Geometry Concepts, Models for Learning Mathematies,

vii
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and Problem Solving. Papers vere commissioned for each workshop., It
was necessary Lo commlssion pepers for two reasons. First, current
analyses and syntheses of the knowledge in the particular areas chosen
for investigation were nceded. Second, catalyats for further research
and development activities weare needed--major problems had to be
identified in the project areas on which work was needed.

Twelve working groups have emerged from these workshops, turee in
Teaching Strategles, five in Concept Development, and four in Problem
Solving. The three working groups in Teaching Strategles are: Differential
Effects of Varying Teaching Strategies, John Dossey, Coordinator;
Development of Protocol Materlals to Depict Moves and Strategiles, Kenneth
Retzer, Coordinator; and Investigation of Certaln Teacher Behavior That
May Be Assoclated with Effective Teaching, Thomas J. Cooney, Coordinator.
The five working groups in Concept Development are: Measurement Concepts,
Thomas Romberg, Coordinator; Rational Number Concepts, Thomas Kieren,
Coordinator; Cardinal and Ordinal Number Concepts, Leslie P. Steffe,
Coordinator; Space and Geometry Concepts, Richard Lesh, Coordinater; and
Models for Learning Mathematics, William Geeslin, Coordinator. The
four working groups in Problem Solviug are: Instruction in the Use of
Key Organlzera (Single Heurlsties), Frank Lester, Coordinator; Instruction
Organized to use Heuristics 1in Conbinations, Phillip Smith, Coordinator;
Instruction in Problem Solving Strategles, Douglas Grouws, Coordinator;
and Task Variables for Problem Solving Research, Gerald Kulm, Coordinator.
The twelve working groups are working as units gomewhat independently
of one another. As research and development emerges from working groups,
it i3 envisioned that some working groups will merge naturally.

The publication program of the Center is of central importance to
Center activities. Research and development monogriphs and achool mono=
graphs will be issued. when appropriate, by each working group. The
schoal monographs will be written in nontechnical language and are to be
aimed at teacher educators and school personnel. Reports of gingle
studies may be also published as technical reports.

All of the above plans and aspirations would not be possible if it
were not for the existence of professional mathematics educators with
the expertise in and commitment to research and development in mathematics
educerion. The professional commitment of marhematics educators to the
betterment of mathematics education in the schools has been vastly under-—
estimated. TIn fact, the basic premise on which the GCSLTM is predicated
is that there are a slgnificant number of professional mathematics
educators with a great deal of individual commitment to creative scholar-
ghip. There is no actempt on the part of the Center to buy this scholar-
ship-=oaly to stimulate it and provide a setting in which it can flourish.
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Thez Center ndministracion wishes to thank the individuals who wrote
the excellent paperd for the workshops, the partleipants who made the work
shops possible, aud the National Science Foundation for asupporting
finuneially the first year of Center operation. Various individuals have
provided valuable assistance in preparing the papers given at the workshaf
fer publication. Mr. David Bradbard provided technical aeditorship; Mrs.
Julie Wetherbee, Mrs. Elizsbeth Platt, Mrs. Kay Abney, and Mrs. Cheryl
Hirstein, proved to be abl. typiats; and Mr, Qlobert Petty drafted the
figures. Mrs. Julie Wetherbee also provided expertise in the daily
operation of the Center during its first year. One can only feel grateful
for the existence of such capable and hardworking people.

Thomag J. Cooney Leslie P. Steffe Larry L. Hatfield

Director Director Uirector

Teaching Strategies Concept Deselopment Froblem Solving
and

Director, GCSLTM
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The Use of Models in Marhematics Education
Alan R. Oshorne, Edicor

The Ohio State University

The word "model™ sipnifies an important concept in mathematics
educacion. It Is impractiecal, even impossible, to achieve the romantic
ideal of a complete and total description of all of the factors affectin
the teaching and learning of mathematics. Researchers and practitioners
alike must settle for describing a corner of the reality that is the
t2aching and learning of mathematica. Since models are used out of
neceagity, it behooves us fto consider carefully the nature of a model,
how it 1s constructed, the pitfalls and payoffs associated with the
use of models, as well as what a model orientation can do for the field
of mathematics education.

A model serves a variety of purposea in mithematics education.
First, a mudel is a predictive device. Describing a portion of what
happens when learning or teaching takes place, it should predict out=
comes of that learning or teaching. Second, a model is a thought-
stimulating mechanism serving to suggest critical components of the
context of learning and teaching. Third, a model facilitates communica-~
tion among researchers and, more importantly, between researchers and
practitioners,

The predictive purpose of a model is at the essence of the nature
of a model. This purpose reflects the influences of the more mature
gelences on the field of education. The intent is to identify those
esgential variables, parameters, and conditions in the enviropment that
produce comfortable and efficient learning in mathematics., For some
researchers, identification of salient variables provides an end in
itself and is sufficient reward for the creative efforts spawned by their
curlosity. But the control that this predictive capability brings with
the application of the model justifies our attempts at research in
mathematics education. If the application of a model yields easier,
more efficient, and happier learning by children and more comfortable,
rewarding teaching in the schools, then research efforts are perceived
as worthwhile by educational policy makers., Thus, within the predictive
capability of a model, we find that more is at stake than the goal of
one researcher talking to another researcher. At the heart of an orien-
tation to models is the desire to specifv functional control over
learning and teaching.
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The second purpose of a model orientation is in terme of stlmulating
questions concerning learning and teachlng processes. The traditional
purpose of regearch via the seientific method has been described in terms
of refining and extending our conception of reality. By asking more pre=
cise questions, by belng sure not to overlook eritieel factors in the
lerrning process, and gencraliy attending to the comprehensiveness of the
model, the predictive eapability of the model can be extended. But a
model does more than stimulate questions within the model; it also
suggests reconstructing our conception of reality. Implicit within the
selection of one model of learning er teaching is the question of whether
that model is the most appropriate or the best prediction of realiey. The
shifting of & paradigm or model has frequently had a salutory effect in
both the physical and life sciences. Such shifts or reconstructions of
reality have often stimulated new and insightful questions revealing
different operant processes that improve the predictive capability within
the particular fleld of sclence.

The third purpose of using a model is to improve the comnunication
within the field of science. A carefully deseribed model is interpretable
to both the researcher and to the practitioner. An adequate description
of a model ylelds a rationale for an experiment. This rationale ylelds
the specificacion of the variables, the definition of methodology, an
indication of the appropriate measures to be taken and a delimitation o
many of the significant constraints. Im short, it establishes the base
necesgary for communicatiry the essentiala of the experiment. This base
for communication is missing within a Jaissez-faire open description of
research. Thus a researcher can perceive more readily what the
experiment or svaluation was about and can adduce more precisely how the
findings fit with his own. The ability to conduct meaningful worthwhile
replications is Increased. The odds for conducting coordinated comple~-
menting research studies are improved. One of the real needs in mathe-
matics education, as well as education more generally, is to design
experlmental programs that add up to something. Unfortunately, most
bits of research appear as separate and discrete entities unto themselves.
A model for learning and teaching should provide a matrix into which
expariments would fit. Research should build to a more complete and
comprehensive picture of what happens when an individual leatrner copes
with mathem:tics. The eoordination of research cannot happen without
adequate conmunication of experimental results notr without fitting the
experiments into a larger plan for research. A model provides a major
vehicle for accomplishing this.

=™

Most of the applications of research results or findings are not by
gcientists. Rather practitioners and agencies make use of the work of
scientists. Moat practitioners in education want principles, rules, or
maxims for application. An adequate model does provide the setting from
which maxims or principles are generated. The model serves as a communi-=
cation device encapsulating the control features within the model.

We have made several errors in the past in conceiving of models in mathe—

matics education. We have had a rather vacuous fixation on the idea of
model. Educators have been prone to connect boxes and circles with

il
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linas and ¢ s tter some laboels over the network, and eall this
apparition a model. Having just enough familiarity with the benefits
of using models | many vducators have said, in effect,

TTOWE,

n scicncoe

"Now we are befng scientific: isn't that wondeiful." Tgnering the hard
work that poes into building a wodel, the careful chought needed to
identify the eritieal variables and to describe and control the environment
of expurimentation, and the sheer artistry of building a comprehe e
model , suech people are simply indolging in sell aggrandizement.

To be included within such vacuous fixations is the building of
models hased upon scatements so weak that their truth cannot be questioned
but which have lictle prediceive power  Thus, to say that learning 1=
a product of the leamner, the cuvriculum, the teacher, and society is to
say tittle in the nse of o model,  Of eourse this [g a valid observation.
This does not provi the researcher or the practitioner with an appreciable
amount of control over learning or very much insight into that learning.

Another catepory of error made in the name of models in mathematics
sarch and statistical designs with the
rning in mathematics are mere concerned
e, whether o use nonparametric

ions of th order than what is being
learned or taught about mathematics. Such desiyns and research nodels
are not direcred ko the learning. of methematic rather they are tools

of regsearch in themitics learning in the same sense that a thermometer
is a tool for a chemist or a differential eqation is a tool for a
pliyaicist. The design of the research problem should not be confused
with the idea of a model in the learning or teaching of mathemati
Mathemaeivs educarors must be familiar with these tools if they are to
be rescarchors orF copsumoer arch.

cducatios is the confusion of res
mode] . Thos, some students of le
with nicerd of blocking, cell
tistics or not, and other qu

is

I

s of rese
Some profe snals in mathematics education have rejected the
statistical approach to research and adopted a morve clinieal approach.

Far some, this is a mature recognition of the complexity of human
learning. The researcher recognizes that there are several levels of
reality in the study of the learning of mathematies, each having the
putential for revealing aspects about a model of mathematics learning.
Most significant problems in mathematics education require study on
several levels and with many different tools before one can say with
certainty that a particular model provides adequate explanation and
predictive power. But for other researchers, the rejection of the
approach has led to usage of the clinical approach to

ustify haphazard research methodology and the statement of isolated

ated ohservations as "truth" or "reality." Researchers operating
within thiz latter framework who do not respect and recognize the

power (and limitacicns) of staristical toels are anti-intellectuals.

They reject an entire category of neaded and useful studies of mathematics
learning.
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The papers included In this volume exemplify many di £ferent means
of ushg nodels to stinslate questions, to reastruee our peEception
of the realdty of how leamers deal with mathepaties, what shoud go
f{nto an adequate research model, and how teachers might use a model.
The problems of building and usihg a podel axe attacked om seweral
different £ronts. i

The paper by (harles Smock addresses the rask of how to dncorporate
deve lopment al peychology into our Perceptions o £ whar is Beppening in
the mind of the child. Smock mikes the critdcal pelnt that we should
pot confuse the child's construction of realdity vith our perceptdons
and concept lons of what the child 1z manipulating and thizking, He
fssues avaming that all who are bui ldirrg models of hunan thought
processes must be awatre of this confusiom.

The problens that Doyal Nelson reports are fascipating e xamples of
gomez of the principles espoused by Smock. In eacth problen, the childd is
ficed with more informatior: thal 1is mecessary to sOlve the problem.
These ddstriceing elemeniis rep Téesent wise thar the child nust structure
in some way to get to the mer of the problen, In exanireing this aspect
of problem solving, Nelson' s research grouw reports che differential
effectg of this chiotic world of excra informagion in terms of che
matuarley of learners-

Hatry Beilin and Larry Hattin each deal with the maEhemst{cs £hat
provides the goals for instryction. [Each approaches the tuilding ofa
model For leaxning £Tom the vantage point of the natuTe of what 1s 1o
te Jeapmed. Each suggests the nature of mathematics must be a aslgrificant
facror in the design of any porver ful md=l., Bellin discusses different
paycholugies of learning in builddng 2 model in tems of the natures of
mathematies. Martin analy=2es the use of mathematles to mode X children”s
thoughe. Each indicates that 4 researcher's philospply of mathentics
{s evident in the conception of a model for leaming mathenaXics.

ponald Saard conseructs 2 bodel for leamding machematics ghat looks
simllar to what 1s oy the tradic ional means o f constructing a podel im
the physlical sciencess. TFitsg, some agsumpt lons conceMing the learning
peo ces S or problem solving are st ated. Then these are restated in terms
of functions that approximate the assumptions, Thus, a atru<tuyred spade
{s constructed that 1s hypothesized to reprasent leariing. “The task of
the model builder represented lere i3 Fitting a perception of Learming
and leaming processess to a mithenatical descripcion. The imp ortant
nexct step s verifydng the "fdt.'” Are che functional equstions predictive
of leaxner behavior?

Herbert Glpsbuxg' s paper 1s a cait ion to model builders, Frequently
resstar chexs base their comclusioris on hov chil dten perfom on cescs
Maray o f these are paper and pencil reses that are at best sympronatic
of the thEnking of the chfld in dealing wich the maghenatics,  Thus,
Girashurg' s paper indicates a med to exanine carefylly wahat children' =
performance means. His paper suggests that cogitive clinical incerviews

13
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are one of the most significant neans of coping with this problem in
building an adequate model of learning of mathematics.

The final paper copes with a significant problem for the reseaxchér
who indulges in constructing models. This problem is interpreting a
complicated model for the pracyitioner: We know enough about the
learning of mathenmatics o state that any nontrivial model is complex.
Les Steffe attempts to capture several major principles {n a Plagetdan-
oriented model for the practitioner.

These seven papers demonstrate several different facets of the
problems agsociated with constyucting and using models of mathematics
learning, None attempt to describe the Instructional er teacher compoTent
of leatning to any marked degree, nor does any paper attempt to tighely
specify sociological and/ov envirommental influences on lesmdng. But
each does capture a corner of the reality that is learning nathemtics.

1f the field of mathematics education 1s to acquire the mapurity of
a science and an art, it must aftend to constructing models of learning
and tesfing them in a reasonable scientific fashion. Replication and
fitting pleces of research topether is a necessary condition to attain
this maturity. Replicatdion and eoordination of research is made
possible through careful and judicious use of models.
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A Constructivist Model for Ins;ttuc:[:iml
Charles D. Smock

University of Georgia

Science 1s mot just a collection of laws, a catalogue of
unrelated facts. It 48 a creation of the human mind, with its
freely invented ideas and concepts . . . - The only justification
for our mental structures is whether and in what vay our theorles
form . . , a link with the world of sense impression.

(Einstein)

The fruitfulmess of mathematics education research on problems and
{ssues posed by Piaget depends on the collaboration of individuals in
geveral disciplines. Certainly, many problems of concern to mathematlics
educators are common to those of developmental peychologists--but many
are not. At the same time, the identification of paychological 1ssues
critical to the mathematics education researcher will determine the degree
of progress to be expected from the current work in mathematics education.
These weetings provide a forum that will help isolate the common problems
of interest in the two disciplines.

The influence of Plaget's work is so pervasive that one hardly knows
where to begin. But, vhy not at the beginning? That is, Piaget's primary
concern has been epistemology in the study of the nature of knowledge and
knowledge acquisirion. If we wish to understand Piaget’s theory of cognil-

tive development, and to conduct empirical investigations relevant to the
implications of that theory, consideration of his epistemological foundations -

l‘l‘his paper is a specially prepared versiom of a paper entitled
Constructiviam and Principles for Instruction (Smock, 1974).

Z’Ihis report is based on activities supported by the Mathemagenic
Aetivities Program-Follow Through, under grant No. QEG-0-8=522478-4617 (287)
Department of HEW, U, 8. Office of Education. The opinions expressed herein
however, do not necessarily reflect the position or poldey of the U. 5. o
OFfice of Education, and no official endorsement by the U. 5. O0ffice of
Fduecation should be inferred.




Q

ERIC

Aruitoxt provided by Eic:

8

is esseutial. Essential, first because that foundation influences his
theore.ical constructions relevant to development of concepts of space,
time, causality, et cetera. Essential, second because the setting of
observational conditions to test that theory must meet certain method-
ological imperatives 1f the findings are to provide relevant information
and not merely ''noise."

We need also to begin with Plaget's own writing and research findings.
ITI doing s0, we must go beyond a surface eritical analysis (e.g., beyond
ghvious" weakness in design or number of subjects) to the structuring and
organization of the research as examples of his eplstemology and theory in
action. I am not proposing that we not be criticai—-rather that we need
to be sure that we do not engage in criticisms that represent the aseimi-
lative tendencies of the critic rather than contradictions inheérent in
the theory itzelf.

Everybody "knows'" what is wrong with education; in fact, the definitions
of the problems by profeasionals are the same definitions of "everyman."

In most cases, the solutlons proffered by professionals are not only the
traditional ones but cften more trivial than those of the "amateur.” Few
have the courage to face two fundamental questions involved: (a) what is
the purpose of the institution of public education, and (b) vwhat is the
nature of knowledge and knowledge acquisition? Fallure to deal with

the first leads to tinkering with trivial elements of a complex socletal
institution that should be a mechanism for guiding change (whether of the
child or society) while unwillingness to confront the second produces, at
best, temporary excitement about "innovations," There is hope, however;

a few scholars are beginning to view the school as an important element in
cul tural chaﬁga (Sarason, 1971; Smock, Graham, Silverman, & Huberty, 1975).
This paper; 1 thE, reflects an appropriate interpretation of the impli-
cations of one's view of the nature of knowledge acquisition for instruction
of young children in mathematies.

Currently, the names Piaget and/or laboratory, especially mathematics
laboratorv, are sure to attract Interest. While "laboratorias™ are gaining
in fad appeal, meaning for such an instructional technique has remained
loozely and ambiguously defined. Teachers who attempt to use such a
teaching stracegy typically have been forced to rely on a set of "rule of
thumb'' slogans such as: 'concrete understanding before abstract;"
"intuitive uﬂderataﬁding before formalization;' "activities, then plctures,
then symbols;" "discovery rather than reception methods;" et cetera.
Unfortunately, such slogans refer to distinct instructional variables
which often specify contradictory approaches to teaching if thelr range
of appropriateness is noc qualified and coordinated by at "least an
embryonlc theory of instruction.

Educators appear to have little interest in theory construction despite
the current interest in "model" building. Theory, too often, iz used to
justify instructional blases and the "laboratory” and/or "open=-classroom"
is considered only an inatructional device, whereas theory construction
is neceassary to clarify the roles that different classroom structures have
in educational research and practice. Also, a classroom laboratory should
provide a context for research on problems relevant to speciflc aspects
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of the instructioral process (variation of teaching strategies and techniques)
ar.d for discovering those psychological conditions eritical for development
of thinking in children.

However, in my opinion, Chesterton's remark is guite appropriate:
"It is not that they can't see the solution--they can't see the problem.”
We have yet to Ldentify the fundamental dimensions of educational and
{nstructional problems facing the teacher. Key psychological principles
for mathematics instruccion and construction of a theory of instruction
can be realized only after this first atep has been achieved. A body of
knowledge now exists in developmental-cognitive paycholeogy that should
have considerable utility for contributing to more refined theories of,
and strategies for, instruction (i.e., for creating better school learning
environments) . An apprsach to the lmmediate task i=z to search for
suggestions from developmental paychology that pose relevant problems for
developing theories of instruction. T

There is no paucity of choices of psychological "models" available
from which to start the search. Berlyne, Bandura, Bruner, Scandura,
Skinner, Suppes and, of course, Piaget have each proposed a set of ideas
relevant to a theory of Inseruction requiring theoretical and empirical
gtudy. The selection of any one model brings with it many hidden pre-—
suppositions and is determined in no 1ittle part by one’s own preconceived
notlons regarding human development, learning, and education. As a group,
these models represent a virtual wonderland of exciting ideas. Each of
us can understand Alice's dilemma better as w= explore their fantasies
(Suppes, 1972). -

A theory of instruction must begin with an adequate theory of cognitive
developuent and lear lag. Mo longer can we accept that statement as
Wohvious'-—and go about the business of generating a multitude of methods
based ~u unorganized intuitive rules based on inadequate knowledge of
the process of cognitive development in children. All educators need to
return io the beginning and ask, not “heow do we teach?', but rather "how

sl

do ct.ildrec learn?

Medern des elopmental psychology provides a nece3sary, but not sufficient,
body of wnowlenge for identifying some of the fundamental issues, comstraints,
and facts assoclated with the process of generating a theory of leamning
and instruction. But, to imply and act as if psychology had become relevant.
to mathematics learning only AP (i.e., after Piuger) misses a fundamental
point about the relation of the science of psychology to the science of
education. It distorts the history of both. Piaget's theory of cognitive
development should not be abandoned without clear underscanding of why.

The histarical pattern in education and psychology seems to be oné of
enthusiast ic adherence to a relatively novel theory--with disappointment
and rejection following close behind. The absence of serious controversial
igsues underlying much of the current research in cognitive development
increases my concern that much of what is valuable in Plaget's theory may
be lost.
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Natural Genetic Fpistemology and Cognitive Development

Many psycholagists, including myself, consider Pilaget's clarificarion
of the necessary bases of theory construction as important as his copgnitive
developmental theory per se. Implicitly and explicitly, Piaget was greatly
influenced by advances in theoretical physics (Bridgman, 1927/1961) during
the 1920"s and 30's. The fundamental aspectz of relativity theory that
cannot be ignored in psycholegical theorizing are that a) conceptual
judgments are always relative to the position of the observer and that
b) alysis of knowledge acquisition requires a description of its
operational basis (i.e., the mental operations of the individual associated
with the construction and maintenance of comsistent patterns (structure)
of his continually transforming relations with his physical and social
environments). Thus, Piaget 1s unlque in that his emphasis on a construc-
tivist theory of knowledge (Piaget, 1968, 1971a) is inddissoluble from
his interpretation of operationism. "Reality" is constructed, not imminent
in mind, man ox stimulus, and applies to the child and; contrary to some

The form of epistemology typical of Anmerican psychologists (cf. Mischel,
1971) has been nalve realism, That orientation has heen quite useful. Our
epistemological preconceptions, whatever they may be, are part of our
theoretical picture of the child. Kessen (1966) states the issue clearly:
"The child who is confronted by a stable reality that can be described
adequately in the language of contemporary physiecs, 1s a child very different
from the one who is seen facing phenomenal disorder from which he must
construct a coherent view of reality" (pp. 58-59).

Analysis of cognitive learning and development 1ls always "bilazed' by
the fact of a context of preconceived ideas of reality (i.e., Vestern
culture) and a particular set of concepts or theory and selected observa-
tlons. Plasget's approach to the analysis of the development of childrer's
conception of space provides us with an excellent example (Piaget & Iphelder,
1956). The specification of a conception of space toward which the child
will most likely develop, i.e., that conception held by most adults, iz the
critical first step. Observations and interpretations of the child's
behavior are organized around the specifications inherent in that "endpoint”
of development. This Ls not an example of bad science or of inappropriate
procedures but rather illustrates that conclusions about the child's
cognitive structure are often more a functlon of the construction of reality
imposed on him by the zsclentists vather than of the reliability and
generality of "objective' observations. Whether we are engaged in
ingstructional practice, research, or theory bullding, there is, for each
of us, # set of guiding propositions that constitutes a theory of learning
and development. These "fantasies” or "freely invented ideas and concepts"
provide a particular coherent view of the developing child and of the
presumed determinants of learning.
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Piaget's conmstructivistic epistemology, and his biological background,
predisposed him toward an operational and structural analysis of the
knowledge acquisition process (Piaget, 1967, 1968, 1970a, 1970b, 1971a).
The essentials of his position require omly brief review here. Knowledge
ig defined as invarlance under transformation (a most familiar concept to
nathematicians). The construction of invariances ia organism-environment
relations takes place through the operation of two complementary biological
adaptation processes, both of which are under the control of the intermal
self-regulating mechanism of equilibration.

One of the two processes (assimilation) concerns the application of
zognitive operational systems (structures) to the organization of sensory
data. New data or events are incorporated into existing atructures through
both on—going physical and mental activity. Such eveuts and the products
of new experience can be incorporated into the cognitive structure only
to the extent that they are consistent with existing functional structures.
Accommodation is the complementary process whereby adaptation oceurs by
integration of existing structures with functional structures and/or by
dif ferentiation of new structures under confrontarion with new experience.

Activiries such as play, practical or symbolic, represent asgsimilative
activity; vhereas memory, ln the sense of invoking past experience, and
imitation are accommodative since only prier formed structures are trans-
formed for a new use or application. Assimilation is an active constructive
process by which the data from experience are transformed and integrated
with an already generalized cogmitive structure. Accommodative activity,
on the other hand, is the process whereby modified existing structures or
novel structures are brought to bear on newly assimilated seunsory data.

Too often instructional theory and practice have emphasized assimilation
(i.e., "play") or accommodation (d.e., imitation) activity and neglected
the role of equilibration of these complementary processes for cognitive
learning. However, generalization of Piaget's ideas to instructienal
theory and practice is not simple and straightforward. The special
meanings attributed to "logic," the role of equilibration mechanism in
constructing experiential data, and the distinction between operative
and figurative thought are critdcal to such an enoesavor.

Operational Structures and "Logic”

Piaget recently (1970b) elaborated his position that all human beings
possess the same biological structures and functions that, in "exchange"
with the common features of the natural world, generate mental {operational)
structures and functions characteristic of each stage of developments
Logical thought, in the piagetian sense, 1s universal and of fundamental
importance to an understanding of development and learning. But, whereas
Chomsky maintains the human mind is "programmed" at birth with cognitive
structures (i.e., mental representation of a universal grammar), Plaget
accounts for the wniversality and stability of structures across cultures
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(Goodnow, 1962; Goodnow & Bethon, 1966; Greenfield, 1966; Maccoby & Modiamo,
1966; Piaget, 1967} in terms of the self-regulation mechanism of equilibra-
tion. Thus Piaget (1971b) proposes that the mind at any point in develop-
ment is the unfinished product of continual self-construction. Logiecal
processes are generative and not fixed. Structures are not preformed,

but are self-regulatory, transformational systems with the functional
factors in that construction being the processes of assimilation and
accommodation.

Intelligence, the basis of knowledge acquisition, has two aspects:
adaptation with the complementary process of assimilation-accomodation
under the self-regulatory mechanism of equilibration and organization
consisting of sets of mental operations that form the basis for maintaining
invariance under transformation (l.e., knowledge). It follews from these
considerations that there is an inherent logic to development. Operational
systems conzist of elements and laws of combination of those elements
that form a "legical" closed sy ;tem. These mental structures are observable
in the actions of the organism in its environment. They are describable
in terms of formal or logicc-mathematical structures. Genetic psychological
analyses of these structures are a necessary prerequisite to an understanding
of thought processes since there is "no structure without genesis, no
genesis without structure,”

«ring the sensori-motor period of development, action structures
of te.e individual are revealed in "practical™ groups, i.e., the coordinated
a.llone of the individual (Foeman, 1973). During the przoperational
period, the child constructs representations called figurative structures
wvhich do not have the operational property of reversibility. Pilaget was
able to ideatify operational structures with mathematical system properties
in children between ages five and seven. The discovery of a resemblance
between the structure of the mental action system (reasoning or thought)
and mathematical structures (i.e., mathematical groups and lattices) had
a profound effect on Piaget's thinking. Thought, it would appear, has
the same or similar properties as mathematical group structures and both
are soverned by the same internal logle.-

The basic structuralistic approach of Piaget involves finding or

creating logico-mathemacical systems that describe the thought processes
of an individual., Mathematical group and Jattice theory are algebraic

3?1332; never 1as tried to find a mathematical "logical model” to "fit"
the observed facts ¢f behavier; rather the mathematical aspect of Plaget's
theory is unique in that he assumes, somewhat reminescent of Boole's "laws
of thought,” an identity between the inherent logic of thought processes
and certain mathematical systems that have become formalized and "exter-
nalized" through inductive reasoning.

‘s
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systems (Flavell, 1963, Piaget, 1957a, 1957b) which might well describe
operational thought. Piaget found it necessary to generate a "orouping'
model with additional properties (i.e., both group and lattice properties)
to describe the concrete operational structures. Most importantly, the
properties of these psychological groupings are not derived from the pro-
perties of things, but from patterns in relation to things. Thus, the
elements of psychological groups are themselves transformations that
characterize the individual's operations as he acts upon sense data.

The revelations emerging from relativity theory require a construc-
tivistic position with respect to the nature of knowledge. Understanding
of knowledge acquisition requires a description and characterization of
the mental operational aystems applied to the data of experience. Flaget's
emphasis on structural analysis thus 1s in terma of three traditions in
modern intellectual thought: (a) the epistemological implications emerging
from relativity theory; (b) the blologists’ emphasis on development as the
formation, differentiation and hierarchical integration of functional
action structures; and (c) the mathematicians emphasis on formalized systems
that permit description of these strustures. The task of the developmental
peychologist is to describe the nature of action structures of the child
at each point in development and, as much as possible, to formalize those
descriptions in terms of logico-mathematical terms.

The classical "conservation” tasks, if administered appropriately,
form one basis for generating observation of coordinated actions that
appear to reflect such mental operational structures. The avallable
evidence appears to support the hypothesis that guch oparational (mental)
structures "exist" both in terma of replicability of hypothesized develop-
mental trends and in appropriately designed training studies (cf. Beilin,
1971b). At the same time, nelther psychological nor educational researchers
have yet devoted sufficlent attemtion to the problems of the validity (i.e.,
internal consistency) of the grouping structures (Clarey, 1971; Green, Foxd,
& Flamer, 1971) nor to the role of such structures in learning (Berlyne,
1965; Bruce, 1971; Inhelder & Sinclair, 1969), beyond these few studies.

Only recently have educators, eapeclally mathematics educators, become
interested in Plaget's views of fundamental logico-mathematical relatioms,
auch as his ideas about the logical properties of number and space. Beilin
(19714) points out that philosophers of science generally have emphasized
the desirability of isolating philosophical and loglecal 1ssues from
psvchological matters., Paychologists, nathematieians, and logicians
generally have maintained this position with respect to Plaget. However,

a significant part of his psyehological theory has mathematical and logical
content which cannot be ignored by either psychological (Alonzo, 1970,
Leskow & Smock, 1970) or mathematics—learning researchers. Mathematics
education researchers rightly should be directed to the analysis of the
logical and mathematical validity of Pilaget's system and to the correspon-
dence between the characteristics of the peycho-logic systems and those
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logic structures derived from purely mathematical analysis. Recent work
from Steffa's laboratory (e.g., Johnson, D., 1975; Johnson M., 1975; Kidder,
1976) vepresents an excellent beginning in this direction.

Role of Experience and Equilibration

Experience is not the only critical factor in development according
to Piaget. HErEly being exposed to particular exvironmental situations
ig conducive neither to cognitive activity nmor to developmental change.
Children may or may not make discoveries in the course of play. Watching a
laboratory experiment or conducting one may or may not help a child acquire
a particular concept. Equilibtstinn is the central factor in structural
change whether that refers to '"stage" or to concept learning. Equilibra-
tion is the process of the adaptational structure "controlling" itself
(intrinsic regulation), balancing assimilatory and accommodatory processes,
compensating for external and internal disturbances (internal or extermal
to a particular structure), and making possible the development of more
complex, hierarchically integrated operational structures. Rhythms,
regulations, and operations are the three essential procedures of the
gelf-regulation and self-conservation of structures. Anyone is free to
gee in this the "'real" composition of structures, or to Invert the order
by considering the operative mechanisms as the source of origin. In any case,
it is necessary to distinguish two levels of regulation. Ome level of the
regulation remains internal to the already formed or nearly completed
gtructure and, thus, constitutes a state leading to equildibrium. On the
other level, such regulation participates in building up and integrating
new structures.

Disequilibrium occurs as the child assimilates data from immediate
experience into existing mwental structures. As cognitive atructures
change to accommodate to the new expariential data, equilibrium is restored.
The equilibration process is one of auto-regulation -- both of the trans-
formations of data based on existing cognitive structures and of changes
through accommodation. Thus, the child must be exposed to situations that
are likely to "engage" the functional structures. He muat be involved in a
personal striving to understand or "accept" the task as a "problem,"

A basic questian fo instruﬁtinﬂsl theary snd prscti i What are

of Eha prnblgm task by the child? The source of "intereat" that prcmctes
striving for problem solution is contingent on assiml’ ‘tive-accommodative
activity, but the specifics remain unclarified in Piaget's theory (cf.
Mischel, 1971). Within a structuralist framework -— if a structure exists,
it must funetlon -= multiple cognitive structures provide a dimemsion of
openness that make probable continual sources of disequilibrium from
interaction of the internal operational and/er figurative structures
activated, as well as by exchanges involving novel experience. Deapite
lack of specifications, Plaget is quite explicit on his general position:
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It is oot necessary for us to have recourse to separate factors of
motivation in order to explain learning; not because they don't
intervene. . . but because they are Included from the start in

the concept of assimilacien. . .te say that the subject is interested
in a certain result or object thus means that he assimilates it or
anticipates an assimilation and to say that he needs it means that

he possesses schemas requiring its utilization, (Plaget, 1959, p. 86)

provide excellent situations for promoting cognitive change. Unfortunately,
too little empirical investigation has been oriented to questions of the
natural environmental determinants of curiosity of children at various
stages of development and with different experiential backgrounds. What

do children recognize as problematic? What kinds of incongruities are
sufficlent to motivate change in conceptsz and/or beliefs?

Cognitive conflict, or the awarenessz of a momentary disequilibrium,
generates a need to establish equilibrium between the existing schemas
and/or novel information. This condition is the motivationfor cognitive
activities., Both application of an exilsting schema, and the elaboration of
new ones in the course of development, stem simply from the overriding
need to make "sense" of present problems by fitting them coherently into
schemas "learned" in the course of sclving prior problems.

The notien that disturbances introduced into the child's systems
of prior achemas lead to the adoption of a strategy for information
processing is the fundamental difference between the equilibration and
associationistic theorlies of learning (Piaget, 1957b). For associationis~
tic theories of learning, "what is learned" depends on what is gilven from
the outside (copy theory), nd the motive that facilitates learning is an
inner state of some sort or other. Equilibration theory holds that learning
is subservient to development; what 15 learned depends on what the learner
can take from the given by means of the cognitive structures avallable to
him. Further, cognitive disequilibrium is the functional need that motivates
learning. Questionsz or felt lacunae arising from attempts to apply schemas
to a "given" situation are disequilibrium. The child will take interest
in what generates cognitive conflict or in what iz concelved as an anomaly.
If the task demands are so novel as to be unassimilable or so obvious as to
require no mental work, the child will not be motivated.

After the period of sensori-motor development, equilibration becomes
a process of compensating for "virtual" rather than actual disturbances.
At the operational level, intrusions "can be imagined and anticipated by
the subject in the form of the direct operations of the system——the
compensatory activities also will consist of imagining and anticipating

E
Translation by E. von Glaserfeld
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the transformations to an inverse sense" (Piagst, 1957b, p. 93).* Further,
there need be no external intrusions in order for the equilibration process
to be activated. For example, the acquisition of comservation concepts is,
in Piaget's view, "not supported by anything from the point of view of
possible measurement or perception —- it is enforced by logical structuring
much more than by experlence' (Piaget, 1957b, p- 103).*# It is the in-
ternal factors of coherence =- the deductive activity of the subject him—
self that is primary. Equilibration i1s a response to internal conflict
between conceptual schemas rather than a direct response to the chardacter
of environmental structure factors.

Operative and Figurative Thought

A considerable amount of confusion concerning Piagetian theory and its
implication for both research and instructional practice derives from a
failure to consider the figurative and operative aspect of intellectual
functioning. In general psychological terms, the distinction is between
the selection, storage and retrieval versus the coordination and trans-
formation of information (Inhelder, Bovet, & Sinclair, 1967). More speci-
fically, the development of any sequence of psychological stages, a la Fiaget,
consists of an interactive process of equilibrating functional structures
of the organism with sensory event-structures of the perceived environment.
Piaget (1970a) analyzes "experience' into the two components: "physical”
and "logico-mathematical." This distinction between a physical and logico-
mathematical expericnece 1s essential to the underastanding of the growth of
knowledge. Knowledge based on physical experience alone is knowledge of
static states of affairs; 1f a child reasons incorrectly inm a physical
experience, it is easy to demonstrate that he is wrong. While knowledge
emerging from logico-mathematical experience is knowledge of tranaformation
of states and quite another matter. If a child reasons incorrectly in a
logico=-mathematical experience it is difficult, if not impossible, to
demonstrate convincingly, or even to get the child to accept verbal explana-
tion of the "correct" answer. For exz.ple, if a child fails to align the
two endpoints when comparing length of sticks, it is easy to correct the
migtake. If, however, he fails to display transitive reasoning in a task,
one or two examples are not likely to "teach" him the concept .

Physical experiences provide for the construction of the invariants
relevant to the properties of states of objects (figurative processes)
through exchange with objects involving sensory mechanisms. For example,
one may touch something and it is hard, cold, hot, soft, supple, et cetera.

*
Translation by E. von Glaserfeld
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Or one may see something -~ an object is red, a diamond cutting glass, the
shape of a banana, et cetera, The course of logico-mathematical experience
is assumed to be abstractions (operative knowledge) from coordination of
actions vis=a-vis representations of 'objects,” or transformations of the
"grares" associated with series of discrete physical experiences. The
eritieal difference is that logico-mathematical knowledge demands that a
pait (or set) of physical objects not be defined by the temporal-spatial
(perceptual) similarities, but rather by invariant relations among or
between objects.

o
t

Figurative and operational processes represent two types of functional
structures necessary to account for knowledge acquisition. Figurations
are defined as those action schemata that apprehend, extract and/or repro=
duce aspects of the prior structured or organized physical and social
environment. Such action schemata include components of perception,
apeech, imagery, and memory. Figurations and associated acts are based on
physieal, as contrasted to logico=-mathematical, experience and consititute
the "empirical™ world. Empirical truth is no more than the "representation
of past experience in memory."

Operations do not derive from abstractions from objects and specific
events; rather, operational knovledge is derived by abstractions from
coordinated actions relevant to those events. Thus, operations are those
action Schemata that construct "logical” transformations of "states.”

Such "logical" systems of transformstions operate either upon representations
of events, or on the cognitive system's own logical operations, i.e.,
reflexive operations.

Figurative and operative structures are two parallel streams with
their genetic or developmental origins in the same source (Plaget, 1967,
1968, 1970a, 1970b; Piaget & Inhelder, 1971) -- the sensori-motor structures.
Logical (operational) structures are not immediately generated by the
figurative schemata alone (i.e., not from perception, memory, et cetera).
Reciprocally, figurative structures do not derive from operative schemas
but from the representations of past states of events derived from phyaical
experience. Most importantly, figurative structures do not derive from each
other, but have unique bases in sensori-motor schema. Imagery, for example,
15 & derivative of deferred sensori-motor imitation (Piaget, 1951, 1952;
Piaget & Inhelder, 1971) and not perception.

The postulation of these quite different levels of functional struc-
tures is one of the cornerstones of Piaget's theory of knowledge acquisi-
tion and cognitive development (cf. Furth, 1969). The gource and function
of each structure is theoretically distinct. Operative structures derive
from abstraction from coordinated actions. Figurative structures derive
from sensori-motor and perceptual activity. Operative structures produce
"loglcal" transformations (conservation of invariants) whereas figurative
structures reproduce sensory perceptual conmsequences of externalized ox
“anvironmental” configurations. The variant operative structures of the
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intuitive, the concrete, and the formal levels form the discontinuous
sequence of stages of cognitive development, Figurative structures are
static and depend directly upon the data of experience (sensory—percaptual
consequences of stimulation). Plaget makes the fundamental assumption
that all knowledge acquisition activity is constructive, but the construe-
tion of figurative representations is quite a distinct process from the
constructive activity at the operative level.

Logieally, there are three possible relations between the figurative
and operational structures (Lange¥, 1969). First, they may be unrelated.
I1f so, as mentally segregated functional structures, they do not set limits
on the functioning and development of each other. Second, psychological
phenomena might be reduced to one of the types of structures, Langer (1969)
suggests that subjective idealists try to reduce psychological phenomena
to assimilatory operations. There are many theorists who try to reduce
all mental phenomena to accommodatory figurations and the naive realists
propose that all knowledge is figurative (e.g., perception is knowledge)
(Gamer, 1962; Michotte, 1963). Third, Piaget proposes there is a partial
communication between figurative and operative structures within the
constraints of the assimilation and accommodacion processes. The relations
and the potential from of interaction of the components of adaptatiom
and organization discussed above are schematically presented in Figure 1.

Langer (1969) has examined the organizational and developmental
(i.e., transitional) impact of accommodatory figurations on assimilatory
operations (B, Figure 1). This is equivalent to agking how does the
child mentally extract and/or represent empirical information about
physical and social objects and the consequences of that empirical acti~
vity for the construction of loglcal concepts. Imitation of an observed
event, comparison of one's predictions with the percelved outcome of a
physical manipulation, comparison of an observation or appearance (i.e.,
immediate experience) with the way things have been constructed and exter-
palized, represent different modes of introducing internal conflict and
cognitive-structural change. Generally, Langer's findings are confirmatory,
but not definitive with respect to the Plagetian hypotheses. In any case,
if the development of each type of functional structure has implications
for, but not direct causal effects upon, the structure and development of
the other, current paradigms for the study of learning mathematical con-—
cepts will require considerable modification. The work of the Geneva
group mentioned earlier, concerning for example, memory (A, Figure 1) and
Langer's (1969) analysis of the impact of accommodatory figurations (i.e.,
imitation, ete.) on assimilatory operations represent beginnings in this
direction.

Analysis of learning, in the context of Piagetian theory, poses require-

ments for more detailed empirical analysis than has been generally recog-
aized. On the one hand, researchers attempting to ;gsimilg;g,?iagez to
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Figure 1. Relations of two invariant processes of adaptation and two
typee of cognitive structures,

thelr own concetual structures concentrate on experimental procedures
whereby the subject is required only to remember event contingencies or
aimilar figurative structures (e.g., response-reward associations or ta"
follows "b", follews "¢'"; Bruner, Rose, & Greenfield, 1966). Such procedures
certainly produce change in "behavior" (e.g., Bever, Mehler, & Epstein, 1968;
Gelman, 1969; Mehler & Bruner, 1967), however, failure on transfer tasks

and a lack of persistence of task solution over time indicate that a
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figurative process underlies the change in performance. On the other hand,
the accommodators (i.e., those more favorable toward Plaget's theory) often
fail to generate experimental paradigms that adequately differentiate
between the figurative and operational knowledge (Wallach & Sprott, 1964)

or assume that "external disparity" (apperance vs. ''reality’) 1s sufficient
to establish disequilibrium or conflict between logieal necessity derived
from the operational structures and perceptual pregnance (cf. Bruner, 1966).
Situations designed to establish disparity between tie child's predictive
judgment of the outcome of a transformation and his observation of the actual
outcome may, in fact, generate little or no cognirive cenflict. A most
parsimonious explanation of many "negative" findings in training studies

is that sucn disparity belongs to the experimenter's "reality” and is
external to the child’s own logical operational system.

Implicaticna for Learning and Instruction

In some form or other, the goals of American educators have always
been stated in terms of "optimizing” the intellectual, social, or
alternative aspects of development of individual children. Whatever such
goals imply, the educational and instructional processes must be based upon
an understanding of the nature of psychological development of children.
Whether we want to produce individuals who will strive to mailntain the status
quo, individuals who desire and accept change, people content to be techno-
logists, or problem solvers, it is necessary to understand the basie pro-
cesses of child development and the conditions that permit "quality control
of the product.”

The issue 1s important because science can only yield "what is" and
not what "eought to be.," We are fortunate, in one sense, that the scilences
of psychology and pedagogy are young and imperfect. The proposed models
and methods for educating young children are no leas imperfect and are
influenced as strongly by current social thought and individual philoso-
phical biasez as by an understanding of the laws of paychological develop-
ment. Such a state of affairs, while producing wasted efforts, spurious
elaims, and more rediscoveries than discoveries, may hopefully provide
time for the development of articulated sets of societal goals for
education.

The best that can be hoped for, under the current conditions of our
knowledge, is development of preliminary "models" for instruction. Such
models can provide, at least, a ~-hematic set of principles and guidelines
for conatructing a learning environment consistent with the admittedly
inadequate theories and knowledge of psychological growth. However, we
should try not to violate recent advances in theory and known laws of
child development.

Piaget, until recently (1971b), declined to generalize his theory
o specifics for educational practice. His theory of knowledge aegquisl-
tion has contributed to clarification and integration of a set of
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propositions about psychological development, many of which have a long
history in child psychology and education. If we accept his theory of
cognitive development, several deductions concerning the construction of
“optimum" environments can be generated. A modest attempt in this direc~
tion has been made at the University of Georgla for the Follow Through Fro-
gram (Smock, 1969), Though the basic propositions of the model are not
inconsiatent with Piaget's thinking about knowledge acquisition, the inter-
pretation is that of the modeler. It is influenced, therefore, by numerous
sources of bilas, misunderstanding, and distortions that are inevitable under
conditions where abstract theoretical concepts are not represented in
unequivocal abstract or logico-mathematiecal terms.

We start with the general proposition that the child is uot 2
passive recipient of stimulation, nor cam external reinforcemcnt be con-
sidered a primary factor in learning and behavioral change. Furtker, the
introduction of "mediation responses” (verbal or otherwise) is not able to
account for the complexities of observed changes in behaviorsl organization
during the course of psychological growth during childhood. Many paycho-
logical theorists have adopted, in one foru or another, the idea that
human organisms actively respond to their environment and that the pattera-
ing of these responses reflecis a 'plan” or "set of cognitive operations,”
Tn other worda, the child "interprets" environment input, and the interpre-
tations are controlled by his capabilities for generating rule systems for
coordinating and transforming the input to '

match" a scheme, plan, or a
mental operational structure. Analysis of the “ryle systems" characterizing
cognitive development, thinking, and learning, requires specifications of

the properties of, and antecedent conditions for, selection and structuring
of the consequences of environmental events (mental representation/figurative
knowledge) and of the mental actlons (operative knowledge) necessary for
coordination and transformation of those representations. The study of the
development of rule systems defined as such is coincident with the systematic
investigation of the "inherent logic" of development of operative and flgura=-
tive thought processes. -

Intelligence, first of all, is considersd no more, and no leas, than
biclogical adaptation. Adaptation at any level of complexity reflects
"{ntelligent" activity. "Knowledge" consists of two types of functional
structures (figurative and operative) that give rise to invariants in
organism-environment relations. These invariants are derived from abstrac-
tions from objects (physical experience) in the first case, ard from coordi~
nated actions (logico-mathematical experiences) in the second. Intelligence,
then, refers to both types of cognitive learning and is defined in terms of
functicns (i.e., thinking or reasoning) rather than content (i.e., words,
verbal responaes, agsoclations, et cetera). Analyais of conditiona for
cognitive learning and development must begin with the identification of
eomponents of behavioral organization (structure) that reflect particular
coordinated action-modes of the child as he is confronted with changing
intrinsic (maturation and prior cognitive acquisitions) and extrinsic
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(physical and socio-linguistic) factor

Cognitive structures or systems of coordinated {mental) actions
proceed through invariant stages of structural change with ontogenetic
development. The successive differentation and hierarchical integ=ation
of these cognitive structures permit the individual to cope with increas-
ingly complex social and physical "realities.'" The process of cognitive
development involves the changing characteristics of transformational fuié
aystems (virtual and/or cognitive operations) characterizing the child's
mode of adaptation. Neither the maturational structure of the organism
ner the "teaching” structure of the environment is the sole source of
reorganization; rather, 1t is the structure of the interaction {exchange
avents) between the EhilL and the EF?;EiVEﬂ environment that provide the
basis for intellectual development.

Optimal condicions fnf structural organization and reorganization
require: (a) an optimal degree of discrepancy between perceived environ-
mental/demand structures (i.e,, perceptual activity, images, memories)
and cognitive operational structures; and (b) social=learning conditions
that demand "spontaneous’ or 'constructive' activity by the child.

Several implications for the construction of theoretically appropriate
learning environments are implied in these general principles. First,
atructural change dependa upon experience but not in a way that tradi-
tional learning theorists conceive of experience or learning interpreted
as pairing of specific objects and responses, direct instructions, model=
ing, et cetera. Rather, the functional genetic view holds that the
cognitive capacities determine the effectiveness of training. For example,

abllity to solve class inclusion problems implies that the child already
has the requisite single and multiple classification operational system
for classes (i.e., combination, raversibility, et cetera) in addition

to appropriate information selection, storuge, and rstrievel abilities.
At the same time, while experience is necessary for developmental pro-
gress, and appropriate enrichment of the environment can accelerate such
development, experience cannot change the sequence, structuring, or
emergence of action modes in the process of developmental change. In
other words, organization of experience is not provided solely by the
environment nor solely by the structures intrinsic to the child.

Second, the structure of the learning environment must be considered
relative to two frames of reference: in terms of the operational syatems
controlling the child's interpretation of "environmental" events and the
content to be learned. Operational systems are expressed hehavimrally
in the couordinated actions of the child confronted with changes in his
physical and social werld., For example, the mental operations of
associativity or reversibility are inferred from the manner in which
the chilld attempta to solve problems involving regular environmental
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contingencles or causality understanding of spatial relatlons, arithnetie
and the other substant.iv. aress (auch as science or mathematics). Each
must te analyzed in terms of their own logical sequence and commonallties
with other content areas. Content concepts in the physical sciences,
languages, and mathematics, for example, may have an inherent sequence
and atrucrturz. Thus, certain concepts may be necessary precursoras to
subsequent underatandlng of higher order concepts. Optimal educational
conditions rcouire, then, thorough understanding of the paychological-
cognitive capacities of the child as well as the sequential structuring
of concepts within a particular curriculum area.

Third, the striving for equilibration between assimilatory and
ieenmmodatory processes under both intrinsic and/or extrinsic pressurec
underlies the adaptive process. Optimal conditions for structural reor-
ganization, learning in the broad sense, require disequilibration. This
concition 1s met when there 1s an appropriate "mismatch" between the
cognitive capacities ol the child and the conceptual demand level cof the
learning task. Too little or too much "pressure" may result im over-
asaimilation or over-accommodation respectively, and not promote cignitive=
developrental change.

Fourth, acilitation of learning requires analysis of two levels of
cognitive functioning -- figurative and operative processes. The firat
i3 moct emphasized by those theorists, particularly behaviorists,
recommending a direct tultion approach to instruction. The operational
theory of intellectual development does not deny the value of "provoked"
learning (i.e., through imitation, algorithms). Rather, such learnings
are conaidered limited because of lack of generaliration or transfer to
new aituations and because the basic intellectual processes concerned with

While there is some doubt that much acceleration of structural reor-
garization iz possible through environmental enrichment, early childhood
education should provide opportunities for utiliization of relevant cog=-
nitive operational structures. OCzaneraliration of conceptual learning
acroas content areas rather than the building of specific knowledge and
gkills (e.g., a large vocabulary) should be emphasized since the latter
cannot directly accelerate operational system changa and may, in faect,
retard development of these "deeper' competence structures.

In any case, the nature and variety of the child's "axchanges" with
the environment need to be considered in educational planning. The nature
of the incteraction refers to the relative emphasis on ontogenesis (self-

structure of the learning environment. The functional grnetic position
can best be summarized in the old adage -- "you can lead a horse to water,
but you can't make him drink - unless you feed him sazlt.” Thus, the task
of the teacher is to engineer an educational environment consisting of

provide appropriate "salt" for each child. Sequentially structured
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curricula should be designed i~ provide an optimal degree of structure and
conceptnal level to permit an appropriate balance of assimilatory and
accommodatory activity.

The variety of interaction or enrichment refers to the types of
structured curriculum content relevant to the child's physical, social,
and symbolic experiences. The interlocking nature of substantive curri-
sulum arcas makes it possible to provide a variety of experiences relazvant
to acquiaition of the cognitive "producta' that provide representatrion
of the enviromment, such as memories, vocabulary, or symbels and, at the
same time, to facilitate thke development of coordinated rule systems
asasociated with cognitive operational development. For example, analysis
of the visual environment (attention or observational gkills) as well as
cognitive operational structures (e.g., conservation of area) can be
emphasized in sclence, social studies, mathematics and art.

The eagineering of an educational or "learning envircnment" based
on the preceding conaideration necessarily involves the development of
specifications of: (a) the child's cognitive developmental level; (b) the
physical structures, including curriculum materials: and (¢) the social
or interpersonal structures. The crganization of these "elements" should
be such that equilibration, between different cognitive systems and/or
between intrimsic functlonal structures and “"snyironmental'' structures,
is achieved. Thus, sequentially structures sets of curriculum materials
and of social interaction situations are necessary to provide the "sressure”
necessary for learning and adaptation. A variety of specific learning
environments needs to be available to maximize the probability of each
child's finding activities that attract or "trap" him into interacting
with the physical and social environment at both the behavioral and
symbolic levels of lraguage and mathematics in creative and sponuanedus
ways be it through srt, role playing ot music. Finally, the phyaical
and social environments should be arranged so that considerable freedom
of movement, within the structure of a varlety of contents, is possibla,
i.e., "a modified cpen-structure classroom.'" A careful balance between
relatively high and low structured learning situations and between group
and individual learning activities should be maintained.

The Mathemagenic Activities Frogram, a model developed in the
context af enriching the aducational environmente of economlcally deprived
children,? is based on three explicit pringiples derived from the consi-
derat ions discussed above. Specifically, the MAP principles of change --

éHgthemagenic Activities Program: A Model for Early Childhcod Educa=-
tion, presared by C D. Smock (A preliminary atatement of the coneeptual
basis fo- the Mathemagenic Activities Program for the Follow Through Pro-
gram appearad in Terninal Report (1970)).

32

O

ERIC

Aruitoxt provided by Eic:



25

whether the target ior change ias the individual organism {child) or a
complex social system (e.g., Local Education Authority)=--are based on

the above agsumptilors concerning the role of experience 1. learning and
development, First, the source of motivation to change 1s provided by

a discrepancy (disequilibration) between different conceptual =ystems
(ideas) and/or between previously acquired conceptual systcme & id environ-
mental task demands. Thus, an appropriate mismatch (M) is necessary to
generate exploratory activities and iwmsure the individual has the pre=
requisite conceptual basis for learnlng higher order concepts.

Second, since coordinated actions {practical and mental) are the
basea for knowledge acquisition, the .eaTtning enviromment must be
atructured s6 that specific task dewands include appropriate practical,

perceptual, and mental activiey (22

Third, vhe learning envirormen: must inclide provisions for personal
self=regulacory (P) constructions. Knowledge gequisition involves con-
struction of invarlants from propert.es of objects (physical enperience)
and from the child's actions on objects (logico-mathematical axperiences).
Optimal conditions for facilitating new "constructions” (concept learning)
involve a balance between tasks that are highly structured (in which the
child merely "roples” or imitates the correct scolution) and tasks that
permit the child to generalize and discover new applications of his
concepts. Practically, self-regulation implies a varlety of task options
available to the child; the number of options may well vary with tha
nature of the task and many other factors, WAP proposes, however, that
options-=in terms of level of task difficulty, mode of learning, and
choice of activity--are neceasary ingredients of developmental change,
whether the target be a child, a teacher, or an educational system.

The implied educational model requires significant changes in the
teachers’ role definition and teaching strategies and tactics. The need
for sensitivity to the child's capabilities, and the structuring of learning
gsituations that promote self-regulated, "constructive' knowledge acquisition,
together with thorough acqnaintance with available technological aids,
require an "educational engineer” in the best sense of that term.
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Problem Solving im a Model for Rarly Mathemarles Learning

Doyal Helson

University of Alberta

A number of mathematics programe for young children have been developed
in recent years which are modelled after various theories or hypotheses
about how children learn. The Montessorl program (Orem, 1971), based on
a "prepared environment" around which mathematical experiments are
arranged, is probably the best known. More roeently there is the highly
structured DISTAR Progeam of Englemann and Carnine (Englemann, 196%) which
leans heavily on a task analysis of mathematical skills provided by Gagné
(1972) and his hierarchical notion of how experlences should be arranged.
Kamii (1971) is attempting to arrange an entire program of preschool educa-
tion around the processes of development found in Piaget's work. A good
deal of rescarch is being donc to evaluate these and other developing )
programs {Suydam, 1974). However, another alternative which has been
widely discussed but which has not been adequately investigated is what
might be called the problem solving approach.

It would appear that mathematics instruction in the early years should
be aimed primarily at helping children solve problems agsoclated with
situations and e ents which occur in thelr lives from day to day. Such
problem selving situations for young children could not be the usual kind fou
in mathematics programs where the solver is expected to find some mathe-
matical expreseion to fit reality. The system of symbols available to
young children is too incomplete to process problems of any consequence
this way. However, it should be possible to get children involved in
solving problems which require the use of a variety of mathematical pro-
cesses but which require the use of no gymbols at all, There is evidence
that such processes are available te young children and it might be assumad
that their application to problems in the real world could provide a
sound basls for mathematical abatraction.

The purpese of mathematics instruction at say ages three to eipght
could be best served when the child gains new control over, and a deeper
understanding of, some aspects of reality and can in turn transform or
reorganize it in ways that more nearly suit his own ends. Such centrol
wouid be manifested when he lea.ns to share a number of toys or candies
fairly and equitably; when he can draw a map to show how tou move from one
point to another on & plane; when he can arrange a row of markers in a
straight line; when he can construct a series of towers each higher than
the one before, and so on.

34



Q

ERIC

Aruitoxt provided by Eic:

32

It might be assumed that any progress toward abstraction and mathe-
matical understanding would require that the child have wide experience
in dealing with problems of this kind. It wculd appear in any case that
the ehild comes in cuntact at a very early age with a surprising number
of processes which are, and which continue to be, of importance mathe-
matieally. If one can imagine a e¢hild playing with a set of discrete
objects he will, depending on the nature of the objects, separate them,
combine them, pile them, group them, partition them, compare them, order
them, classify them, label them, and the like. When considering the
spatial aspects of a three dimensional solid, for example, he may represent
it, project it, dismantle it, turn it, bounce it, copy it, and so on.
Many such processes find expression in mathematical symbols in the course
of the child's early school experience and later mathematical experience
would certainly require it. But is there any guarantee that the child
‘has a good grasp of an idea or process as it applies to realicy before
he is required to represent it symbolically?

In the present situation, it is doubtful that this question could be
ansvered in the affirmative. 1In the first place, the way most mathematics
progrems are organized for early grades it is necessary for the teacher
to introduce the symbols of mathematice whether the child fully underatands
what the symbols mean or not. Second, 1f the teacher wanted to arrange
experiences to guarantee basic understarding before symbols are introduced,
there is not enough specific research evidence upon which to base a
comprehensive program of such experience.

To illustrate some of the difficulties associated with establishing
a problem solving program for the purposes outlined, consider a single
example. Suppose one wished to arrange a series of experiences to
guarantee that a young child understood measurement division before he
was required to do exercises ipvolving the division algorithm. In its
simpleat manifestatien ene would expect that there would be a set of
objects and directions given to the child to find the number of equivalent
subsets each with a apecific number of objects, Presumably the objects
would be movable, would fit nicely in the child’'s preceptual field, and
would all be the same. What would the child's response be if the number
of objecis in the subsets was a factor of the number iIn the original set?
How would vhe child respond if there was a romainder? What if the objects
were not all in the same elass? How would tha child Lehave if the objects
were to be grouped in another locatlon? Would the way the directions are
given make a difference? Can very young children cope with the problem?
Do they behave differently in the fare of distracting elements of the
problem than do older children? How real doés one make the problem?
What kind of variables influence the child's probler solving behavior in
this situation and how should they be controlled? If one wanted to gen—
eralize division te include partitioning, the questions posed above (and
posaibly some others) would have to be asked again. Answers to such
questions would have to be available on all aspects of a mathematics
program 1f one were to include problem solving in a model for mathematics
learning. It is important tisat attempts be made to seek these answers.
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Certaln features are characteristic of any model for mathematics
learning. Assumptions have to be made, for example, about how children
in a particular age range learn mathematics; mathematical content has to
be specified; attention must be piven to the physical and social aituations
in which the content is to be learned; and finally, some eppirical infor-
mation must be avallable to permit interpretation of any variation in
behavior exhibited by children in the learning sitvation.

1f problem sclving is to be included in a model for early mathe-
matics learning, a number of steps must first be taken. First, criteria
nead to be established which will serve as guidelines in designing the
problems., The works of Plaget, Brunmer, Dienes and others would of course,
provide initial guidance in designing such guidelines, Once the criteria
were eatablished, their potential as guidelines for ecreating good problem
situations would have to be tested. Such tests should suggest vays of
refiniug the criteria to make them increasingly effective. Since little
is known about how children at various ages behave when presented with
such problems some procedure would have to be developed to collect such
behavioral information. The bzhavioral data should serve as a meand of
making further refinements to the criteria. The research model for
studying probem solving behavisr of young children is shown below.

A Model for Studying Problem Solving Behavior

In Early Childhood

The purpose of this paper is to describe the progress that has been
made so far on the research model.* The preliminary Tesearch does not

o , 10 I ) » S
Assumptions about Criteria for the " Design and
How Children Learn o Creation of "Good" Development of
Mathematics Problem Situation ’ Sample Problem
) _ Situations
1v
Protocols for |
Use with
VII v _Problem Situationa
Coordinated Analysis of Behaviors of
Analysis | Behaviors in Children (Age 3=8)
acrosa All ¥ Individual " |in Problems
Sample Problems Problems

Figure 1. The main features of the research model.

*The project designed to do this is being supported by Canada Council,
a federal research agency which supports basic resaarch ip soclal sciefice

and the humanities: Directnr, Doyal Nelson; Co-Investigator, Daiyo Sawada.
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address itself directly to the matter of including problem solving in
sdel for mathematics learning. It is, however, an example of the kind

of research that needs to be conducted before adequate modele for learn-
ing can be designed.

The Assumptions

Although certain assumptions, both about the role of problem solving
in mathematies learning and about mathematics learning in general,
are implicit in the opening discussion, the primary assumptions on which
the project is based are as follows:

1. Significant problem solving situations can be devised for young
children and their solution does not depend on a complex knowledge of
mathematical symbols or expressions. -

2. Mathematical abstraction and understanding is based largely on
solving problems involving real objects and events.

3, Action is the single most important aspect of such problem
solving situations.

4. Observable behavior of young children in problem situations can
reveal important information about their mathematical understanding.

5. Interpretation of such behavior ean provide some guidance in
designing problem solving experiences for the promotion of deeper and
clearer understanding of various aspects of mathematics on the part of
the child.

6. Children learn in the presence of "aoise" or distracting elements.
Such "noise" should appear in the problem situations.

The Criteria

Some years agoe, a colleague, Dr. Joan Kirkpatrick, and the investi-
gators set about to construct a model which could be used to create
Ygood" problems for young children. We wanted to be rcasonably sure
that if the criteria stated in the model were adhered to, that the
resulting problem or problem situation would stimulate problem solving
activity on the part of the child. The criteria which finally emerged
are as follows:

1. The problem should be of significance mathematically. It is
for the potential of the situation as a vehiele for the development of
mathematical ideas that a particular problem situation or family of
gituations is chosen above all others.

3, The situation in which the problem occurs should involve real
objects or obvious simulations of real objects. The main consideration
here is that it be comprehensible to the child and easily related to his

)
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3. The problem situation should capture the interest of the child
either because of the nature of the materials, the situation itself, the
changes the child can impose on the materials, or because of some combina-
tion of these factors.

4. The problem should require the child to make moves or transfor-
mations or modifications with or in the materials, It is difficult to
overemphasize the role of action in early childhood learning. Most of
the mathematical models we are interested in at this level are what might
be called "action models.”

5. If possible, problems shoul. .e chosen which effer opportunities
for different levels of solution. If the child can move immediately from
the problem situation te an expression of its mathematical structure it
is not a problem.

6. Whatever situation is chosen as the vehicle for the problems,
it should be possible to create other situations which have the same
mathematical structure. That is, the same problem should have many
physical embodiments. It may not be possible for a child to generalize
a molution to a certain structure of problem until the problem has come
up in a varlety of situations. Abstraction and understanding is probably
facilitated when the child sees more than one physical situation embodying
a particular mathematical idea or process. ' i

7. The child should be convinced that the problem can be solved
and should be able to show when he thinks he has a solutien for it.
if the child is somehow required to react with or transform materials
used in problem situations, it is usually easy to determine whether the
problem meets the criteria or not.

The model is still crude, but its application has been reasonably
effective in providing direction for the creation of productive problem
situations to study the behavior of young children. It is necessary at
this point to introduce the following three definitions:

i

a. ptqplemﬁgitugtign - all aspects of apparatus designed according
to the criteria listed above;

b. problem - the apparatus and the accompanying verbal statement or
demonstration designed to stimulate some reaction on the part of
the child; and

c. equivalent problem solving situation - a gituation involving
the same general mathematical process or idea as another but not
designed necessarily to stimulate the same problem solving
behavior on the part of the child.




O

ERIC

Aruitoxt provided by Eic:

36

Creating the Problem Situations and the Problems

{t was decided to limit their number to six but to develop, for each of
these six, one equivalent situation. The general mathematical areas
involved were:

In applying the criteria to the creation of sample problem situations
f

1. division - measurement and partitive, no remainder.

ystems ~ two dimensional and three

3. sequences - alternating with two or more elements.

4. reflections on a plane.

5. factors = prime and composite numbers.

6. geometric representation - three dimensional in two dimensions.

Appendix A contalns a complete descriptior of the division problems and
their protocols. Appendix B contains a brief description of all the
other problems.

Sampling Procedures and Recording Behavior

The purpose from this point on was to determine 1f the problems
would stimulate interpretable behavior on the part of young children.
The age range of particular interest was three years to eight years.
In that range many of the proceases of mathematics are encountered for
the first time and at the upper end of the range many mathematical
gituations and processes are being represented in mathematical symbols.
Interview protocols were devised to permit a child to present any kind
of response to a problem from the purely physical to the purely symbolic.

For the preliminary work, a sample of fifteen children from each
age level three to eight was selected. Children were volunteered by
their parents and came from an area served by five schools in the vieinity
of the University of Alberta. It is recognized that voluntary samples
may show specific kinds of blas, but this shortcoming was not conaidered
to be serious in a preliminary survey where very little is known about
the behaviors that might occur. In any case it would be very difficult,
if not impossible, to obtain a truly representative sample of children
as young as three years of age. No biographical data exXcept age was
collected in any systematic manner.

The laboratory was set up with a videotape recorder, two cameras,
and a monitor. The child came into the room with his parent. An
interviewer sat at a table at which a problem situation was displayed. )
The child was asked to sit in a chair beside the interviewer and the problem
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the two video cameras (and sometimes a super 8 movie camera) were trained
on him and recorded whatever he did. Split-image capability permitted
two opposing views to be recorded at the same time. Counting the parent,
laboratory assistants, techniclans, and interviewers, there were usually
about eight adults in the room. As soon as one problem was completed,
assistants removed the apparatus and presented another set. Six separate
roblem situations were presented to each child according to a strict
schedule. The schedule provided that ten children at each age level did
each problem and that five of these did the equivalent as. well. The
decizion as to which would be the problem and which the equivalent was
made randomly before the data-gathering began.

b=l

To begin with there was , fear that the child might refuse to
react because of the rather overwhelming laboratory setup. Most children
however, were apparently not influenced by this. In fact, all children
but one completed all six problems. That one, a three year old, did

a single problem and would not go on. Tt was appraent that it was not the
laboratory situation that upset him but rather an unpleasant experience

on the way to the laboratory.

Protocols were followed closely unless a child either failed to make
any response or continued to make responses that were unproductive. The
interviewer in these cases was permitted to intervene. Children took
from twenty minutes to one hour to do the six problems. (It should be
noted that all available children will come back in the summer of 1975
after one year and do six more problems. This longitudinal aspect

should provide a check on the validity of interpretations.)

Analysis of Behaviors

There are & number of steps which must be taken in analyzing taped
In the flrst place, some decision has to be made about which
iors are significant enough to be included in the analysis. Second,
,,,,, cient time must be spent viewing sequences to be sure that all
ficant behaviors are considered. Third, a coding system has to be
ised which will convert the data into a form which can be readily
lyzed. Finally, adequate reliability checks must be devised so0 t

hat

s reasonably sure that all significant behaviors have been
dered.

Although coding has been completed, analysis of the coded data has
not proceeded far enough to permit a complete report. In crder to
illustrate the general form of analysis and to indicate the directions
these analyses might take, preliminary work has been done on those problema
involving measurement and partitive division. A report of these resulting
analyses is included in this paper.
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Results for Cargo Groups and Animal Groups - Measurement and Parcitive

Division (see Appendix A for details of the problem situations and the
corresponding interview procotol)

These problems were designed to find how children would behave in
problems involving measurement and partitive division. In the cargo
groups, the child was involved in finding the number of groups of three
cars in fifteen (measurement division). Then he was involved in finding
how many cars would be at each of three houses if the fifteen cars were
distributed among the houses so that there were the same number at each
house (partitive division). The cars were all from a single =et of
small plastic models which represented a varlety of makes in a variety
of colors.

It was agsumed that the older children might merely count the cars
and then divide the number by three to get the result. They might on
the other hand group the available cars in threes for the measurement
gituation or in three equal groups for the partitive situation. It was
expected that younger children would have no systematic means of attacking
the problem.

In the animal groups, the child was asked to tell how many cages would
have to be built so that there would be five animals in each cage. The
child was given an assortment of twenty plastic animals. The partitive
question asked the child how many animals would be in each of three
cages if each cage were to have the same number of animalas. Again he
had available an assortment of plastic animals, but there were eighteen
animals this time. Animals were selected so that a classification of
them based on what kind belong together in a cage would not give the
golution. The most incongruous was a single lion which some children might
be reluctant to intreduce into a cage with other animals. This problem,
too, could have been solved with minimal physical movement of the animals.

Certain distracting elements were built into each of the problems.
In the cargo groups, for example, the ferry was to hold three cars, but
there was obviously room for four. Also when the child unloaded the
cars there was nothing to suggeast that each load should be kept separately.
When the cars were to be parked by the houses, they could be driven
down the road. But to park them the child would have to move chem up on
the "grass." The animal group cages would preserve the groups so they
could be counted, but the animals were so chosen that no system of
classification would serve to help in the solution. In addition, the
design of the cages was such that cage building would be highly attractive
to most children.
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Cargo Groups (see Appendix A)

Measurogent division, Ten children at each age level from three to
eight years did this problem. From the information, it was possible
to determine the kind of general procedure each child used in response
to the problem. The observed procedures were arranged in seven cate-
gories as follows:

I. The child listens to the problem, looks at the apparatus, and
glves the correct solution without manipulation.

II. The child makes groups of three cars, counts the groups, and
gives a correct solution.

111. The child places cars on the ferry and makes one or more trips
but gives the correct solution before all the cars are moved across the
river.

IV. The child places cars on the ferry three at a time, makes
five crossings, and gives the correct solution.

V. The child places cars on the ferry, three at a time, makes
five crossings, but glves an incorrect solution.

VI. The child places cars on the ferry but not three at a time,
gers all cars across the river, and gives an incorrect soclution.

VII. The child either does not attempt the task or abandons it

0Of course, these categories might have been collasped into two
classes--one for correct solutions and the other for incorrect sclutions.
Table 1 shows the distribution of responses in the scven categories
according to age and sex of the child.

The response categories were listed in order from what was judged
to be the highest level of solution observed to the lowest. The distri-
bution of subjects among the response categories indicates a relation
between the level of the solution and the age. The striking thing,
however, was the great variety of procedures observed to be used in a
single age group. The six-year-olds, for example, ranged from being
highly manipulative on the task to very low. One six-year-old appesared
to have only minimal comprehension of the problem while another displayed
almost complete control. The others were spread between these two levels.
While the eipght-year-olds all gave the correct response, half of them got
involved in manipulating the cars across the river to arrive at the solution
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Table 1

Responses at Varlous Ages

Incorrect Solution Correct Solution
(N = 35) (N = 25)
F
8 M F F F
M F M F F
7 M M M
M M M
M M F M
M
6 MM F
@ M M M F F M
o
= ~ .
P -
a 5 M FF
2 M FF
M FF F
M M F
4 MM M F
M M F
M M F F
3 | M F
M F M F
ViI VI v v I11 11 I

Note. F = Females and M = Males.

The most common response categories were those labeled IV and V.
In each of these categorizs the children moved the cars across three at
4 time. However, some of them could answer how many trips they took and
some could not. Those who could not were put in category V. There were
almost three times more responses in this category than were in category
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&
1V. Children in both categories used a perfectly valid way of deter-
mining the result, but by far the majority of them failed to remember the
number of trips they had taken. The problem was structured so that there
would not be any record of the number of trips unless the child made a
deliberate attempt to group cars as the ferry was unloaded, to keep some
mental count, or to use some other means of keeping track of the number

of trips. The method of actually moving the cars across the river three
at a time peaked at age five and was less for children either older or
younger. The three- and four-year-olds apparently had trouble remembering
the rules. There was some indication that boys tended to bring their own
reality into the situation more often than girls. However, this type of
behavior did not appear to be related to the ckild's ability to give a
correct response to the problem.

Although analysis of verbal responses was not sentral to this study,
it would appear thet there is something to be gained from such an analysis.
About half the participants made no verbal response at all except when
they gave a solution. One response which peraisted across the age range
had to do with a clarification of the rules. There were questions such
as, "Do I do 1t?" "How many cars on the ferry?" "Three and one more?"
and the 1ike. The younger children often wanted to make thelr own rules.
For example, there was room on the ferry for four cars, and many of them
wanted to put four on instead of three. They would also make rules
about what cars should be parked together and how the cars should be
loaded and unloaded. Another kind of rule making was in the form, "The

yellow car wants to go back." and “This car has to back up."

It was assumed that some of the boys, at least, would make the sounds
that go with the movement of cars and ferries. &Six boys in the sample
did, indeed, make such sounds; they were in the three-, four-, and five-
year age range. It was also assumed that counting would be a very coummon
verbal behavior across the age range. There may have been some covert
counting, and no doubt there was, but only four children counted so it
could be observed and three of them were eight-year-olds. The other was
a slx-year-old, Some of them may have had trouble making groups of three
cars because they could not recognize such a grovo. Children who made
errors on the firat load were corrected, but many of them continued to
make errors in the number of cars they put on the ferry.

The interesting thing is that the procedure of moving the cars across
the river three at a time in a more or less systematlec way was observed
in children as young as age three but still persisted in the behavior
of eight-vear-olda.

The procedure described in category 1If was used by only two children.
These children started to move the cars across but apparently realized
that they could use a more efficient procedure; they made groups of
three cars and gave the number of trips it would take without further
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manipulation. It would appear that most children, once having undercaken
the moving across, did not want to abandon the procedure until it Was
completed.

At every age level at least one child responded to the reality of the
situation in a greater messure than the problem seemed to demand. This
behavior was manifested in the child making chugging noises for the ferry,
roaring noises to accompany the cars' movement, driving the cars onto
and off tue ferry, turning the ferry around for docking, and the like.
Such behavier was most common among the three-, four-, and five-year=
olds. The most common verbal behavior among the younger children appeared
to be description of the actions being carried out. As they loaded the
ferry and moved it back and forth across the river, they would provide
a verbal monitoring of what they were doing. The purpose did not seem
to be to communicate with the experimenter but appeared to be merely a
verbal equivalent of the actions as they occurred. The behavior persisted
through age 8ix but was absent in’the seven- and eight- year-olds. One
seven-year-old, however, summed up as follows, "Well, you see what you do.
You take three, and you pet another three and another three until you get
to the end and that's how you find how many you got." This child did not
move the cars across on the ferry; he just gave the ansver and a verbal
explanation of his procedure.

Three three-year-olds made comments about the apparatus. They seemed
to be more interested in the features of the cars and layout than in the
problem. Two three-year—olds and a four-year-old wanted to talk about
something entirely unrelated to the sityation. A three-year-old girl
had trouble with her knee socks which kept falling down and a boy was
attracted by a name tag that had been put on his shirt when he entered
the room. The four-year-old had just had a birthday and wanted to talk
about that. 1In the carge group measurement problem, the most important
obgervation seems to be that the process of grouping by threes is avall-
able to at least some children in every age range. Over half of the
children in the sample actively loaded the ferry and took the cars acroBe.
0f those who used this proceduyre, the great majority failed to remember
what the problem was about and could not give a correct solution. In
designing instruction, it would seem to be important at some stage at
jeast to arrange for problem situations which would preserve the integrity
of groups once a grouping is made. (See discusaion under animal groups.)

Partitive division. As scon as the ehildren completed the measurement
division task, the partitive division problem was glven. They wetc asked
to park all the cars they had just brought across the river around che
three houses so that each house would have the same number of cars. The
ohserved procedures were arranged inte six categories:

&9
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1. The child places five cars at a time at each house or makes groups
of five cars.

11. The child distributes cars systematically one at a time among the
houses uncil there are five at each house.

III. The child uses a partly systematic procedure to distribute the cars
and arrives at a correct solution.

IV. The child uses a partly systematic procedure to distribute the cars

but does not arrive at a correct solution.

V. The child uses an apparent random system of distribution and does
not achieve a correct solutiom.

VI. The child either does not atcempt the task or abandons it part way
through.

These categories are arranged in an order from what is judged teo be
the highest to the lowest ievel of solution. The six categories might be
collapsed into two--one for correct solurions (I, I1, III) and the other
for incorrect sclutlons (1V, V, VI). Table 2 is a distribution of responses
in the six categories according Lo age and sex of the child.

Although the partitioning process is often considered to be complicated
and to require more systematic treatment than measuring out equal groups,
there was more success in this problem than in the previous ome. Eleven
children who could not do the measuring problem could do this one. only
two who were successful in the measurement problem could not do this one.
One reason may be that the children were more familiar with the apparatus.

A more reasonable explanation seems to be that the child had a record of
the groups of cars in front of him once he had moved the cars to the
houses. Adjustments could then be made and the feedback used to make the
regult fit the guestion that was asked.

The very systematic approach to the particioning process first showed
up in the four-year age Broup and was used increasingly among older
children. Eight-year-olds may have been able to deduce that if it took
five trips to get the cars across the river in groups of three, then
there would be five cars at each of the three houses. §till, seven of
the ten eight-year-olds actually distributed the cars around the houses
in a systematic manner, as in dealing cards, and gave the answer only
after the distribution had been made, Regardless of the skill in parti-
tioning, there were fev children who seemed to see a relation between a
mathematical expression of division and the process they were carrying
oub.

e
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Table 2

Responses at Various Ages

No Sclution Solution
(N = 26) (N = 34)
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Over half the children in the sample made no verbal response
while they were solving the problem and only responded to give thelr
solution or when questioned about it. The younger children, aged three
to six, tended to ask guestions to clarify the problem more than they
did in the measurement problem. One of the difficulties with thesa
younger people was that once they had parked ome car by each house, they
could not see why more cars should be parked there. Closely agasociated
with this concern were questions about how the cars could be parked at
the houses. Some children at every age level tried to matech the color of
a car with the color of the house. For the younger children, this was
distracting enough to prevent some of them from solving the problem,
Although older children were often distracted by color matching, they
could at the same time give their attention to the number of cars at the
houses and come to a correct golution. Again, there was very little
evidence of overt counting and if it did occur, it was in older children.

In summary, it might be observed that though the partitioning process
may in most circumstances have more inherent difficulties than the measuring
process in division, there were more solutions for this problem than for
the measurement one. The very young children had trouble making sense
out of the situatien, probably because of the large number of cars that
were to be parked and the small number of houses and also because the
color of some cars matched the color of some houses. Once these distrac—
tiong could be overcome this seemed to be the easier problem to solve.

Animal Groups (see Appendix A)

Measurement division. After they had completed the cargo groups,
five of Ehe ten children at each age level were given the animal groups
problem (see Appendix A for details). 1In the measurement situation,
they were given animals and asked how many cages would be needed 1f there
were five animals in each cage. Although this problem when completed
would preserve the integrity of the groups and permit the child to check
his response, the choice of animals was such that it would be necessary
to put animals together in a cage which would never be together in reality.
A further distraction involved the building of the cages which those
children seeking a physical solution would have te do.

The response categorles for this problem situation vere as follows:

I. The child gives a correct selution by making groups of five or by
making no physical contact with the material.

1I. The child makes one or more cages, puts five animals in each, and
continues building cages until there are enough and all animals are in
cages, then gives the correct solution.

o
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1I1. The child makes two or more cages, stops bullding cages and
distributes animals among those capes and gets an incorrect solution.

IV. The task is abandoned or not attempted.

Table 3

Responses at Various Ages

Incorrect ) Athfaéﬁr o
Solution Solution
(v = 13) (N =17)
8 M F
M F F
- M
/ M
M F M
M
£ 6 M )
3 M F F
Eal _ . . _ ) B
=1
A .
2]
& > F
= ) M F F
, M F
4 M M F
M
3 M F M F
v 111 11 1
Response Categories
Note. F = Females and M = Males. -
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Only five children out of twenty-seven who attempted the problem
appeared to be able to ignore the reality in this situation and to arrive
at a solution. Threa three-year-clds did not attempt the task. By far
the ma‘ority of the children were either completely engaged in classifying
the animals, making them stand upright, finding ways of gectting them into
cages, Iin building cages, or in some combination of these behaviors. Except
among the three-year-olds, there were children in every age range who could
overcome such distractions and solve the problem.

One question which might be asked is this: Were the children who
were successful on the measurement part of the cargo groups problem also
guccessful on this one? It was found that seven children who failed to
get the measurement part of the cargo groups problem were successful in
doing the measurement problem with the animals. Only one child who was
able to do the cargo groups problem failed to get the one with the animal
groups.

Only five children in the entire sample were able to ignore the
reality aspects of the problem in seeking a solution and three of these
were eight-year-olds. All of the others felt compeiled to put animals
in a cage only if they were of the same kind, or to make animals stand
upright, or to remove a panel in the cage for the animal to enter, and
the like. This inability to ignore how things should be in reality
appeared to be an important source of difficulty at every age level
except seven and eight. GSome children would have all the animals in the
cages, for example, except the lion and would hold it trying to decide
what to do with it. Others would get soc involved in getting the animals
to stand that they seemed to forget what the problem was. Undoubtedly
some vounger ones did not know how to make a group of five. There was a
high incidence .f questions about the problem or comments about the
apparatus. Children were apparently trying to get information about how
to handle the incongruities.

In this problem, once the animals were placed in the cages, all they
had to do was count the cages. In the cargo groups problem, they finished
the process and did not have anything to count. This {undamental difference
in the nature of the two problems appeared to make this one easier to do.

It would appear that a very careful analysis of problems is necessary if
they are to become an integral part of an instruectional program.

Partitive division. As soon as the measurement part of the problem
was completed, the child was provided with three cages, eighteen animals,
and asked how many animals would be in each cage if each would hold the

game number.

The response categories are as follows:
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1. The child places six animals La each cage or partitions animals
among the cages and gives the correct solution.

II. The child places two or more animals in each cage to begin with,
then partitions the remainder one by ene and glves a solutiou.

III. The child places animals in cages in unequal groups, then evens
them out and glves a correct solution.

IV. The child places animals in cages, tries to aven them out but can't
glve a correct solution.

mw

V. Task abandoned or not attempted.
Table 4 shows how the responses were distributed.

There were two children vhe could not do the measuyrement part of this
problem who were successful in this part. Only ome child did the measure-
meént but not this part. All the others missed them both or got them both.
All of the seven- and eight-year-olds could do both parts. There was a
decrease in the frequency of questions or comments about the problem or
about the apparatus and an increase in observable counting behavior.

It should be noted that this was the last of four quite distinct
problems concernlng division for the thirty children. This problem supplied
a good deal of feedback [n that the cages kept the groups distinct and
the child could keep a check on what was happening. There were a number
af children who responded to the reallty of the situation more than they
needed to in order to solve the problem. Indeed, four out of the five
elght-year-olds put the animals in cages according to class, made sure
animals stood up, arranged the animals in groups, adjusted fallen animals,
and the like. This type of behavior was observed to be prevalent at all
levels except at age three. The three—year-olds either found the problem
incomprehensible or did not attempt it.

This behavior contrasted sharply with that observed for the partitive
problem with the cargo groups. For that problem, only one of the eight-
year—olds out of the ten showed evidence of responding strongly to the
reality of the situation. The others of this level and age, seven In all,
just distributed the cars among the houses without apparent regard for
type or arrangement or any other physical aspect. Attempts to drive the
cars to houses, to group cars of the same celor, to match car and house
colors, etc., did pceur, however, among the three—, four-, five-, and
six-year-olds.

(9] ]
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Table &

No Solution Carrect Solution
N = 12) (N = 18)
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study behaviors assoclated
with measurement and partitive division contained a variety of distrac=
tors to whish children at all age levels in the sample responded.
Children in the seven— and eight-year-old sample were, in general, able
to cope with the distractions and to solve the problems. However, the
younger children were often so distracted by the reality in the situa-
tion that their ability to handle the problem was impaired. A much
claser nonltoring of the reality aspects of problems will have to be
achieved before a proper assessment of the instructiomal value of such
probiems can be made. It may be that problems hawve to be designed which
provide a rarge of distracting elements. In any case, mastery of the
process wuuld apparently involve the child in coping with varying amounts
of "nnlse” in the form of such distractions.

2. The partitioning process appears, on analysis, to be more
complicated than the measuring process in division, However, the question
ked in the measurement situation seems to be a very difficult one if
the integrity of the equal groups is not maintaiped in the process of
solution. Thus, children vho moved the cars across on the ferry failed
often to be able to remember how many trips they had taken-—if indeed
they gave any thought to the question at all. On the other hand,
children had no difficelty with the animais in the cages because the
grouping of five animals was maintained throughout and provided a continual
check. The process requires that to answer the question the child must
remember the number of groups. Here again the design of problems has to
be brought into question., Any attempt to establish instructional procedures
based on the problems would have to take into account the kind and
amount of information, in the form of feedback, provided toe the child.

It would appear to be important to maintain control of the feedback
dimension and to comsider its influence on the ability of the child te
handle problems in a particular domain. Some very limited examination

of the other problems in the investigation would seem to lend some

support to this view. In the reflected shapes, for example, the shadows
can be made to change constantly and thus provide the child with immediate
und constant information about his success, Children obviously use this
information to guide them to solutions to problems in a very unfamiliar
setting.

v
]

3. It was assumed that the seven- and eight-year-olds, at
least, would respond to the simple division problems as set up in
the protocols with very minimal reference to or contact with the
objects and materials in the problems. Rather surprisingly, there was
a great deal of dependence on manipulation of the objects among chil-
dren of all ages in the sample. Even though they might have been able
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to respond by just locking at the apparatus, they seemed te want to
verify by making the physical moves implied in the statement of the
problem by the interviewer. The materials themseivesm may have been
attractive enought to magnify this tendency.

4. Protocols which the interviewer was required to follow when
interacting with the child and in setting up tue problem made it impossi-
ble to check the influence this factor had on the behavior of the child.
It would seem that direetions such as, "'Build enough cages so that there
will he five animals in each and so that all the animals are in res. ",
would stimulate a different set of responses than, "How many cages would
be needed 1f there were five of these animals in a cage?”. In any case,
the presentation of the problem to the child would appear to be an impor-
tant determinant of subsequent problem solving behavier, If it vere
possible to monitor such presentationz, it may be possible to show that
thé use uf =ymbn11t snlutian% as gppa;ed to purgly physical ones could

ach situation, the cargo and animal groups, the partitive
+ came aFtEf the measurement one. Children more often asked
itive problem than about the measurement problem,
FhiJ may h1VE heLn bscau ¢ the partitive situacion, if done systematically,
would require more moves and more controel than the measurement one. It
seems a8 likely, however, that the requirements of the first problem
interfered with the child's understanding of the requirements of the
ond. In many cases the child would ask what aspects of the new
roblem were the szams as the former one. The confusion might have come
juse of two apparently diff t but obviously related problems using
the same apparatus. The type and variety of problems involving identical
or nearly identical apparatus and their interactions might have to be
considered in instructional programs which contain a large proportion of
aroblem soalving activities,

The criteria on which the development of these problems and problem
tuations were based included reference to 'multiple emboediment” in the
nse that the same mathesmaclical idea should appear in more than one
embodiment (Dienes, 1960). The question which has not been considered
in the criteria is concerned with the use of a single problem situation
volve a variety thematical ideas. Judging from the questions
the children asked, use of a =ingle situation in this way may be an
additional source of noise and, therefore, an dimportant factor in
problem solving behavior.

zslon

From the foregoing summary it is elear that a number of refinements
must be made on the model used to develop problems and the model used to
study the pro-lem solving behavior of children from age three to age eight.

08



52

The analysis of the data from only one set of related problems has been
considered at any length. As analyses for the other problems are completed,
it seems reasonable to assume that other guidelines will develop for

the inclusion of problem solving in a model for mathematics learning in

the range of ages from three to eight. Before this is accomplished,
however, work will have to precede this that will eliminate some of the
erudities of the present investigation and lead to refinements in the

model used for studying problem solving behavior.

The most crucial factors to ineorporate in the criteria for good
problems or in some other part of the model appear to be the followlng:

1. A control over distracting aspects of the problem. For learning
to take place the child would have to "cut through' a variety of dis-
tracting elements. Indeed, mastery of the problem and the processes
involved would probably demand it. Thus, one would want to develop,
for pxample, a serles of problems ip division in which the child could
be provided with distractions of various kinds and amounts and to make
a systematic study of these distractions and their influence on problem
solving behavior.

2. A method of monitoring feedback. Some problems supply intrin~
sically, continual and lmmediate feedback. In others, if there 1s any
feudback at all, the child may have to go through a serles of involved
processes and may actually lose contact with the problem he started to

(2]
solve. Some method has to be devised to vary the feedback dimension and
to maintain a measure of control ever it.

3. Form of presenting problems to children. The nature of the
apparatus and the verbal communication with the child needs to be
carefully monitored to give some assurauce that a e¢hild, in making a
response, is actually responding to the problenm the investigator has in
mind., There should be an effort made to determine which pronlem type
will stipulate the child to make a more symbolic form of response and
which form stimulates a more physical one. Some young children, for
example, in the ferrying, were more involved in getting cars on and off
the ferry and in guiding the ferry than in determining the number of
trips; they did not even consider that problem. Others would probably
have said 1t will take five trips but were interested primarily in tie
ferrying process so deferred their answver until the action had been
conpleted.

4, Use of a particular apparatus for a variety of problems. The
possible difficulty here can perhaps be expressed in many ways. In
setting up the problems, it was assumed that a particular plece of
apparatus was as effective a vehicle for one kird of preblem as another.
The evidence, meager as it is at this point, s that such may not be the
case, There appears to be some possibility, whether advantageous or not,
that using an apparatus for one problem may cause some wncontrolled
interactions. This needs to be more carefully accounted for.

5Y

O

ERIC

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

53

Up to this point, only limited analysis has been completed. Indi-
eations are that the model for studying problem solving behaviors is
sufficlently productive to warrant further refinement. Fortunately,
the information seems to point the way to what general areas need to
be improved. Any research on problem solving, whether in this
model or not, should take into account the general areas which have
been discussed hera.
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The apparatus is placed on a table in front of the child who is
standing or seated. The model is referred to and the child is shown the
river, the islands, the ferry boat, the parking lots, and the houses.
There are fifteen plastic cars in the parking lot on one gide of the
river and three houses placed on the other side of the river. The child
is first shown how the ferry can cross the river and is asked to choose
a car, put it on the ferry, take it off the ferry, and park it in the
parking lot on that side. Assistance is given the child with these moves
if necessary. When they are completed, the car is returned to the first
parking lot.

The child is then told that all the cars are to be taken across the
river and parked in the second parking lot. He iz advised that the
ferry accommodates exactly three cars each trip and the following guestion
is asked: "If the ferry boat can take only three cars each trip, how
pany trips must the ferry take to get all the cars acrosa?" 1f the child
does not appear to be interacting at any level, then after a peried of
about Fifteen seconds ask: 'Would you like me to repeat the auestion?”
and repeat as necesary. If the child still appears to be stymied and
unable to give a response, suggest that he can load the cars on the fe-ry
and take them across 1f he wants to. If the child loads other than

GJ
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"Hiow many cars were you supposed to put

on the ferry?" and givg 12 answer as necessary. Provide this information
only once. 1If he p icts in putting other than three cars on the ferry,
further help is ricted to a reminder of the original question., When
the child indicates that he has finished the operation he is asked: 'How
many trips did the ferry beat take?" If all the cars are not on the
second parking lot, they are now assembled there.

three cars on the fer

The child is asked then to park all tha cars beside the three houses
so that theve are the same number of cars at each house. If the parti~
tioning operation offers some difficulty, he is reminded of the original
problem. When the child has parked all the cars, he 1s asked: 'Does
each house have the same number of cars? "How many cars at each house?"
Be sure to ask the questions in the same order for all children.

Animal Groups

able in front of the child so that he
has an overview o = ed between the child and the
board: one containing 26 pusts and 17 =lats for fence building and
another containing an assortment of 20 toy animals. The child is shown
how the posts fit into the holes, which were d rned to accommodate
them, on the board. He is also shown how a slat fits between two posts
to make a fence. The child is asked to bulld two more fences, like the
one he was shown, anywhere on the board. When the fhil has complated

= he {s asked to build a closed corral (cage, pen) to keep some
unimalq in. Tf he has any difficulty constructing this cage, he is given
assistance,

The board is placad onm a lov
Y it. Two bowxes are pla

"
J\l’?
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The child iz then presented with the box of animals which Includes
] , » an elephant,
woose, horse, and a lion. The child is asked: cage holds five
animals how many cages will we need?”’ If the child does not appear to
be interacting at any level after an interval of approximately fif-

teen seconds ask, "Would you like me to repeat the question?” and repeat
as necessary. If the child still appears to be stymied and unable to
make a response suggest that he build the cages and put the animals in
them. If the child puts other than five animals in each cage ask, "How
many animals were supposed to go in each cage?" and give the answer as
necessary. 1If he still persists in putting other than five animals per
cage he is shown a set of flve. Further help is limited to a reminder
of the originmal question. When he indicates that he has finished the
task, the child iz asked, "Are there the same number in each cage?"
"How many cages are there?”

The animals are collected, twoe camels are removed, and the
remainder (18) are placed in the box. One of the cages is dismantled
so only three cages remain. The child is teld that rhe remaining cages
are for the animals in the box. Ask the symbolic questions first., He
is asked to put all the animals in the cages so that there are the same
number of animals in each cage. If the child has difficulty with this
operation or appears to have forgotten the problem, he is reminded of
the original question. When the child appears to have completed the
task to his satisfaction he is asked, "Are there the same number in each
cage?"' "How many animals are there in each cage?" The order in asking
these questions should be the same for all children.

&y
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Coordinated Referenc

Parking Lot Gri

on the simulated parking lot, the child is required to park cars as
indicated on a slip of paper. There is an ordered pair shown on the
slip. The first number indicates how many spaces to the right; the
second how many up. A warm-up exercise is provided. The object is to
determine how a child coordinates moves in two dimensions.
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A theatre with three stages is presented to the child. Each stage
is a different color., Sesis on each stage are labeled with letters for
rows and numerals for seats in the row. The child is given a ticket with
a letier and a numeral written on it, The color of the ink used to write
the letter and the numeral indicates the floor. He is then given a
wooden man and asked to place the man in the correct seat. The object
is tu determine how the child coordinates moves in three dimerslons.

)
ce



O

ERIC

Aruitoxt provided by Eic:
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as the carousel is
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Q

ERIC

Aruitoxt provided by Eic:

e
[>]

Sequences

=h sequences are displayed has twelve divisions.
objects placed in divisions can be viewed. The
t the child can only see one division at a time.
ayveral of the divisions from the front in order
1. The sequence set in the carousel is as

camel, red airplane, cam::, red airplane, camel,
red airplane, elephant, red airplane, elephant.
objects he 1is required to preddiect what will

E these predictions iz assumed to give some

ige of the sequence. He is permitted to go

the objects are placed in the carousel and then is
sked to make his own sequence.
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Linear Sequence

A box with three rovs of 14 compartments is presented. Each com~
partment has a snug-fitting cover. The covers on the row nearest the
child are all off. Those on the other two rows are left on. In the
middle row the compartments each have a small coiorad block in them in
this order: orange, brown, orange, brown, orange, brown, ete. The
back row has colored blocks but ip this order: oramge, orange, brown,
blue, orange, orange, brown, blue, etc.

The child is shown what is in the first three compartments of each
row in turn z-d then asked to predict what is in the successive compart—
ments. A prriiction must be made pefore the cover is removed. The final
problem is for the child o place objects in the row closest to him in
gome ordar. Thr cover: are placed on the compartments and the child
asked to _Tedict that is dn each.
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The board shown has rubber bumpers along its edges. A shooter ejects
a steel ball which can be bounced off the bumpers. An obiect (in this
cage, a plastic bear) 1s placed on the board and the child asked to knock
it over by shooting the steel ball. Then some blozks representing houses
are placed between the object and the shooter. The ehild is instructed
to bounce the ball off one side and knock over the object. Finally the
ocbject is placed behind the houses so that two bounces are necessary.
The way the child aims and makes corrections in polnting the shooter is
the behavior most closely monitored.
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The board has thirteen vertical grooves into which small blocks
will fic. Twelve blocks are arranged in four grooves: three in the
first, one in the second, sixz in the third, and two in the fourth.

The child is asked whether the blocks can be arranged so there will be
the same number of blocks in each pile. The number of blocks and the

number of rows occupied by blocks are varied. The main object is to
determine whether children see any connection between the number of
blocks and the way they can be arranged in the grooves.
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Factor Board

Rectangular areas are indicated on the board in different colors.
Rectangles made up of a number of squares divisible by two are in yellow,
divisible by three in blue, divisible by four in red. The child is given
a number of blocks and asked to find a colored space that they will just
fit. He 1s glven two more blocks and asked to find another which the
whole set will fit. The object iz to Find whether the child sees any
relation between the number of blocks he has and the factors of that

number. It is expected that 1f he could see such a relationship his
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Geometrical Representation

Squares, trilangles, and pentagons are fitted with alternating strips
of Velero so that various geometric shapes can be easily constructed an
dismantled. The child is shown a cube and how it can be dismantled. H
is asked to reconstruct the dismantled cube. In the maim problem he is
shown the cube dismantled with the pieces joined in varlous ways and asked
whether it can be folded to make a "box" without ¢ g
ship of any of the pileces. Similar tasks are required for the tetrahedrom.
Finally, the child is shown a : hed i fd 1
out flat and then to reconstruct it. Particular note is made of the
predictions the child makes and the kind of moves he uses to recomstruct
a shape. :

=M

[
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Projected Shapes

A set of wire networks 1s available for the child. A screen is
provided so that the shadows of the shapes can be projected on it. In
one corner of the scrveen & diagram of a shadow is shown. The child has
to choose the particuisr wire shape and turn it so as to make a copy of
the diagram. The choices made by the child and the moves he makes to
copy the diagram with the shadow are of special interest in this problem.
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Linguistic, Logical and Cognitive Models for

e . 1
Learning Mathematical Concepts

Harry Bellin

City University of New York/Graduate Schocl

The conduct of research in mathematics learning is dependent both
upon the nature of mathematics and the nature of the learner. Canslder-

ing that mathematics is a complex discipline that encompasses many subject
matters, its properties are not likely to be subsumed by a single concep=
tual category or by one conceptual system. It follows that no gingle

model for research 1s iikely to be adequate, and the purpose of this

paper is to show that a variety of models are required to reflect adequate-
ly the varied functions of mathematics. Knowing the nature of mathematics

is not in itself sufficlent, however, to define the scope and focus of
mathematics learning. What is needed additionally is a specification of
those features of thinking and learning that are required irrespective of the
nature of the subject matter. Some features are constrained by the nature

of mathematics, but others are independent of it.

The Nature Of Mathematics

It might be said that mathematics is a theory (or a set of theories)
about the nature of reality. The classical empiricists, in partieular,
have maintained that ideas of reality derive primarily, if not solely,
from experience. Such mathematical notions, for example, as "infinite
structure” are said by them to be too ambiguous to be true or even use-
ful {f they do not in fact make reference to the real world (Benacerraf
& Putnam, 1964). 1If the physical world is the source of such mathemati-
cal concepts (as "infinite structure"), one should be able to look to
physics for such legitimacy. Hilbert, as is well known, argued that
physics could offer no such security since the evidence from physics for

lI am indebted to Professor Walter Prenowitz for a number of insights

into mathematics that are reflected in various ways in this paper.

zﬂuf dizcuszsion is not directly concerned with curriculum or instruec-
tional processes; these encompass more than rthe lssues which we traat.
The limitations imposed here are motivated by theoretical and pragmatic
justifications.
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an infinite and continuous universe has been progressively eroded by
argumenta for finiteness and discontinuity. Hilbert held that if mathe-
matics were not to be reduced to reliance on dubious physical assumptions,
then its own asaumptions had to be independent of knowledge of the physi-
cal world. This view led Russell in turn (in the second edition of Prin-
cipia Mathematica) to argue that mathematics is concerned not with actual
physical existence hut only with the possibility

of physical existence
(Benacerraf & Pugnam, 1964, Introduction), Thus, it can be said, on the
one hand, that mathematice 1s an abstract conception of the world, and on
the other that it is a hypothetical conception of a possible world. In
each case, mathematics 1s a theory about the world, whether empirically
based or hypothetical.

The position that iias come to be known as logicism (derived from
Frege, Russell, and Whitehead), which is consistent with the hypothetical
view of mathematical theory, holds too that mathematics does not have 2
subject matter but deals instead with the "pure relations among concepts”
(Benacerraf & Putnam, 1964, p. 9), that is, such concepts are bound by
logical and not empirical relations. By contrast, mathematicians such
as Hilbert maintain that mathematics does have an "extralogical' subject-
matter, which Hilbert called "expressions' employing elements such as
“strokes" ( /, // ,///) that are finite, discriminable, and gelf-avident.
Hilbert notwithstanding, the logicist achievement profoundly affected the
conception of mathematics by not only axiomatizing much of the existing
mathematics, but by attempting to reduce all mathematics to 1@312.3 As
Benacerraf and Putnam point out, it is now generally regarded that the
logicists succeeded in reducing mathematics to elementary logic plus thea
theory of sets (1964, Introduction) even though it is evident from the
proofs of Godel and others since that the completeness of such a system
can no longer be assumed. An important exception te the logicist position
ig the claim of intuitionist mathematicians such as Brouwer that some of
the fundamental concepts and operations of mathematics, guch as the sys-
tem of deductien, involve finitely iterable operations that are purely
mathematical and do not belomg to logic. Consequently, mathematics can
be considered either as a theory about the world that is logically for-
mulated or intuitively known from its operations.

In his early work, Wittgenstein, following Russell and Frege, held
that mathematics was reducible to logic and that logic in turn reduced
to the propositional caleuius. The relation of propositions to mathe-
matical "truth," however, is debated by two groups of mathematicians,

31 am indebted to Professor Osborne for pointing out that in Hilbert's

view problems and questions were the very source of mathematical ideas,
and his formalism was, in part, motivated by a desire to resolve many of
the developing conflicts hetween intuitionism and logical positivism.
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the Platonists and non-Flatonists Platonists consider that propositions
represent the discovery of structures that have an existence independent
of the mind of the mathematician. Non-Platonists, in general, hold that
mathematics is a constructive acrivity in which the mathematician actively
creates a system or theory im which propesitions are "true'' only to the
extent they follow from assumptions and definitions proposed by the mathe=
matician and gain acceptance from othars by convention. In an extreme
form of the non-Platonist position, mathematics is a sort of "language-
game,” in Wittgenstein's sense, wherein the process of deriving a theoren,
for example, results in a new rule of language, and thus mathematical
concepts embodied in the theorem undergo change as a proof is developed
(Dummett, 1964, p. 496).

The emphasis on language in Wwittgensteis'= r=age serves a radical

constructionist thesis and informs to some .+ -~ . “empiricist philoso-
phy of mathematics" (Uummer 1964, p. 503 © .~3.r..0ur central place is
glven to languass in na*¥.z" o} cheorv o - Y s of the loglcal
positivists, particular’ly Carpap. Fourde. = .- em3 such as logic and mathe-
matics are treated Ly them as corcepfual ot aeoretical languages, parti-
cularly when they appear 27 .ien’ 11~ thecry construction. Thus, at

jeast in some sense, mathemstics serves a linguistic function. At one
extreme, mathematics 1s treatad as a language system itself, at the other,
it is a theory represented by a special (i.e., formal) language.

In attempting to understand the nature of mathematics, one cannot
ignore either that mathematical theories appear in contexts that are
nonmathematical (in such physical thecries as the laws of relativity,
magnetism, celestial mechanics, etc.). Such applications of mathematics
are often as important te an understanding of mzthematics as they are to
an understanding of physical and related theories. These contexts may be
as diverse as arithmeric (in which the fundamental properties of algebra
are applied) or physical theories (in which Lobachevskian or Riemannian
geometry are applied). In quite another sense, mathematice serves a ''com-
putational" function that makes applied areas more precise, abstract,
manipulable and amenable to deductive and inductive inference.

In sum, mathematics is a theory either of reality or a possible model
of reality, which is elther discovered or constructed (in the way number
relations could be said to have been "discovered" in ancient clvilizations),
and which is represented either in specisl language structures or functions
conventionally as a language {i.e., as a cultural convention). Lastly,
mathematics can serve a computational and conceptual function in relation
to physical and social reality.

We will consider each of thesa features of mathematics as a modul for
research in mathematics learming. Detailing these (or gimilar) models can
serve the researcher in the following ways. First, a model organizes in
a systematic and (hopefully) coherent fashion a single conceptual frame-
work for explaining the nature of observed behavior or implicit caussl
mechanisms. Second, a model serves to provide the basis for testing
specific hypotheses about mathematics learning. Third, a :sodel provid
an accessible means for applying more sbstract theories (such as liay
or ccanitive theories) to observed data than is offered by such theer . -
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A logical Modei

From what has been said, mathemati.ce may be concelved of as a theory
in two respects: as a logical theory of axiomatized abstract relations
that are purely hypothetical and whose validity depends solely on its
coraistent and noncontradictory derivaiion from its premises (in a pre-=
Gddei sense), and as a theory of the vorld, again, as an abstract
axiomatized system that maps onto perceived physical relations and whose
validity is dependent, at least in part, upon systematic relations in
reality. The two notions parallel to some extent the Kantian distinection
between the analytic and the synthetic. A way of seeing the distinction
iz to consider two views of geometry considered as s madel for explaining
and comprehending the nature of space. With respect to geometry as a
deductive system (in the logicist sense), one asks whether the theorems
of geometry follow logically from its axioms. This is ordinarily the
mathematician's task and requires knowledge of relevant logical primei-
ples embodied in a mathematical framework. The second sort of question
is addressed to whethar the axioms of geometry and the theorems derived
from them are factually true (L.e., fi: reality). Discovering the ansver
to this question is usually che task of the physicist. In this context,
mathematlcs is applied or used in a sclentific theory and is not a
“mathematical theory" as such at all (Nagel, 1961).

In the first case, the validity of the logical derivation of the
theorems of geometry from its axloms does not depend on the particular
meaning of the terms appearing in the premises and the conclusions. The
validity of the derivations is dependent instead on the formal structura
of the statements that include the terms and on the appropriate use of
the logle. Mathematical expressions of this kind entail the use of words
or symbols that represent logical relations or operations (Nagel, 1961).
The central question that one asks in this context is whether the con-
clusions (theorems, etc.) follow consistently from the Efémises ({axioms,
etc.) and less so as to whether they are true or false. Although the
example is from geometry, it applies to all deductive argument in mathe-
matlcs. GCeometry as a logical theory is usually identified as "pure
geometry," and when studied as a system of factual validity is known as
"applied" or "physical geometry" (Nagel, 1961, p. 221). The attempt to
formulate geometry, to stay with this example, as a rigorous logical
discipline is evident in Oswald Veblen's 1904 axiomatization of geometry.

4 , . . ,

A preat deal of attention is given thesze days (again following Gdidel),
to questions of ~idability: whether and how mathematical relations of
patticular kinds are capable of proof (i.e., logical deduction).
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A contemporary extension of this effort is to be found In Frenowltz and
Jordan (1965). Im this formulation, the logical elaboration of theorems
{s based on the theory of sets. The postulates of the theory are based
on a series of properties, such as extension, determination, linearity,
and dimensionality of a set of primitives identified as a point, lime,
and plane. The primitives or basic terms are undefii.ed and can remain
so because thev refer to no physical objects as such (i.e., they are
abstract hypothetical entities). The emphasis in the de ivation of the
theory iz on the properties of the logical relatiens among the primitive
terms as explained in the postulates (s.g.; a line is a set of peints,
containing at least two points) and not on any physical or material con-
tent, To emphasize that the relations amorg the primitives are about
hypothetical entities aud not actual, it is possible and even desirable
to employ logical signs oy symbols to substitute for words (such as point)
since such words have no specific reference.

A loglcal theory not only employs abstract signifiers (which may be
ssts or other constructs), but a set of logical operators such as iden-
tity, nonidentity, and negation that also represent abstract relations
and not actual cognitive operations (i.e., of the mind). The logical
operators together with sets thus become the fundamental lomzical elements
in the construction of geometry and mathematies in general, at least as
proposed by Russell and the logicists. A theorem (Prenowitz & Jordan,
1965), for example such as, "Two distinct lines have at least one point
in common," is thus derived utilizing the postulates of the theory and the
operators and terms embodied in them.

The description of the system properties that hold for geometry are
applicable to other theories of mathemutics, such as algebra. What this
te

a
description stresses is the fundamental legical character of mathematics
in part, con-

not only considered in its "pure" sense but also, at least
sidered in its applied usuage.

What follows from the foregoing is a conception of mathematics learn-
ing based on the logiczl properties of mathematical theories. However one
conceives of the nature of the learning process, it should take account of
the fact that mathematics is at root a logical system involving deductive
proceases. Contemporary mathematics in the broadest sense is not one
system; one should speak of algebras, geometries, and the like, Contem-
porary mathematics embodies a number of theories quite diverse in scope;
yet, each entails the use of logical relations and sets. Their diversity
results from the elements to which the fundamental postulates refer that
may differ from one system of mathematics to another to a very considerable
extent. By the same token, the logies that enter into mathematics, al=
though they may not be equally diverse, also dilfer from one anothear in
some fundamental respects. That is, contemporsry logic is congtituted by
a set of logical theories, each based on different assumptions, utilizing
different systems of notation and to some extent differing in application,
Thus, a logical model is required that encompasses not only algebraic or
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Boolean logic but modal and other logies as well,

It is possible to have a logical model for wathematics learning that
emphasizes only the logical properties of mathematics and another that
also defines or constraing the propert f mind or thought tb
nece v to mathematics learning and problem solving. With the purely
logical model, concern is primarily with the logleal structure of mathe-
matical tasks (theory, problem, prouf, ete.) and alrernative ways of
structuring mathematical materlals for learning. Such a cours has been
followed {n the past and Into the present, It defines curriculum develop=
ment and Instryuctional methods solely won che basis of the logic or mathe-
matical relatiens inherent in mathematics itself. Many of the so-called
"new math" programs wer: devised on this basis. The primary consideration
that determined what was to be included in -1y mathematics instruction,
such as sets, set notation, and set logle ¢ its loglical or mathematical
rel=tion to the content of more advanced mathematical subject areas  This
application af the logical model has its virtues because it bears
upon crltical propervies of mathematies itself, and it forces curriculum
development to art ate with underlying mathematical systems. Tts
principal limi ion is that it omits consideration of the cognitive
chiora teristics nf the learner or else makes implicit assumptions about
hin that may or may oot be correci, and If incorrect may place serious
limitation on learning.

‘. alternative logical model Is a conceprion that translates the
delincated model of mathematics into a consern for how learners acquire
the ability to deal with theories of a logical nalure (in contrast to
other disciplines, for example, that bear upen the child's abili
deal with physical facts and peneralizations). The latter extended
logical model overceomer the limitations of a pure logical model and en—
compasses both the nature of mathematics and the cognitive proparties
of the learner. We will see later that this "extended” logical model
relates i{n a significant way to cognitive models of mathematica learning.

in contrast to the emphasis on its logical forms, it should be re-

cognized too that mathematics had its origin in the need for measurement
and caleulation. Conseyuently, a complex system of measurement and cal-

culatlan evolved that is evident in its more sophisticated forms in
scaling theory, statisties, and so on. The mathemstica associated with
these applications {s rhe "pure™ mathematics refer.ed to previously,

such as the theory o1 aumber, nrob yility, ete.  There iz also a body

of mathematical relations and concepts unique to each measuyrement or cal-
culation system, defined by the physical parameters of that system, Just
as natural and formal languages provide coutexts in which mathematical
tdeas and processes are communicated, measurement and ealeulating systems
in which mathematics is applied provide interesting and significant con-
texts for the study of mathecmatical concepts.

Thus for practical reasons, in the sense that mathematies has clearly
utflitarian value to thoge with knowledge of it, and for theoretical
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reasons, in that it mey illuminate the nature of mathematical relations
and concepts, it is desirable to investigate the nature of mathematics
learning employing computational and measurement procedures, The first
step is to elucidate the logical and mathematical properties basic to
measuremnunt and computation, then to define the specific mathematical
contuxts in which they appear, and finally to investigate the cognitive
capacities that are required to deal with these applied system propertic.s.
Thus, again we see that an "extended” logical medel is required that takes
into account not only the logical form of mathematics and its applications
but also the cognitive status of the learner.

Applications of the model. The logical model for learning proposed
here has implicit cognitive assumption:, as is evident from the questions
the model sugpests: How, for example, does information from the world
become a zon t in respect to the world, if it is correct to view
mathematics as a theory of reality? In turn, how do abstract hypothetical
concepts come into being either from information from the world or from
other concepts? How are systems of such concepts elaborated; what is the
relation between Individual concepts to logical structures that embody
groups of concepts? Or, how does a system become a system, that is, how
are the parts built into a structure? What is the relation between logi-
cal processes and logical products? That 1s, what relationship exists
between the knowledge one constructs or abstracts to the processes of
obtaining such knowledge? Do logical products in the form of logical
structures feed back, leading to their use ir mathematical reasoning, or
are the products of thought indeprndent of th: processes that give rise
to them? What is the nature of the processes by which logical comparisons
of structures occur that lead to isomorphisms, correspondences, etc? The
way these questions are formulated suggests a relation between formal
ayatems such as mathematlcs and cognitive processes and structures. Thera
are, howaver, questions that concern the formal properties of mathematics
as they bzar upon mathematics learning.

Can one speak of fundamental mathematical ideas that .e#cessarily pre-
cede other mathematical ideas, and would these constrain th.: leazning of
mathematics? Is each mathematical discipline in fact logi.ally unique or
do they share a common logic? If they share structures or have common
properties, what makes them different? Do common properties suggest a
common logie? If there are common properties and a common logic, should
these be taught prior to differentiated system properties, or would it be
more advisable to instruct in each discipline first and then have the
learner abstract the common propertiea? Does the relation between pure
and applied mathematics constrain learning in any way? Should applied
mathematice be learned pricr to pure mathematics or should it be the re-
verse? How should a mathematical discipline be segmented for most effec-
tive learning; are there natural divisions or must the he arbitrary? 1Is
there a minimal unit in mathematics: is it the same ¢ mathematical
disciplines? 1Is it best to teach in relation to min 1 3, Or to
related units and 1f the latter, at what level of ir. = N
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Prior to examining the properties of a cognltive model that artl-
culate with the logical model, we will elucidate the properties of a
linguistic model for mathematics 1earniﬁgi5

g;;ingpisg}crﬂadal

The principal assumption of the linguistic model is that the language
(or languages) used to resent mathematical theory have proper-izs that
determine at least im payr “he nature of mathemat ice learning.
in fact two languages im .ni. 1 mathematics iz repieseated. The oIt
natural language. One has natural languape expressions as:
p
g

planes have one oint in common, they have a second point in common
This =mentence has properties common to all natural la ..age sentences in
tical constituents obsy linguistic rules that govern the

o

that its grammati

manner in which a sentence is generated. Some rules define how linguistic
conatituents are combined, while other rules define thae roles that parti=-
cular lexical items (words) can play in a sentemce inciuding those that
deflne how words are allowed in specific sentence slots and so on.” These
linguistic rule systems are quite complex, at least for the lingulst to
describe, although Z- to 5-year-old children leawn their mother language
without any special instruetion. We indicated in earlier discussion that
sentences in geometry -ontain terms (words) that are not to be understood
in the manner *aat they ordinarily appear in the natural language lexlcon.
“plane" is not the usually understood plane and "point" 1s not the usually
uiderstood point. They reflect mathematical and loglcal properties that
are part of a more abstract "meaning" system. By virtue of this, these
and re? “uad reims require representation in a special language. Such
represens - fon ia found in the formal or logical language of mathematics

>The logical model discussed here does not necessarily refer to the
process by which mathematical ideas are developed or the way in which
hematics iz "done.” Even the creative mathematician does not of
g ity procead "logieally" in his own thinking. The logical model
pre.: 'ted is based on the analysis of mathematical ideas or products of
thought. The mathematician like the learner proceeds more "{ntuitively,"
following hunches, testing out hypotheses, and devising and revising
strategies. These suggest the cognitive processes by which mathematical
jdeas are constructed. Underlying these activities are systems of thought
with abst . 1

¢ formal properties similar in wind 1f not isomorphic with the
logic of the finished mathematical products.

YIhis description reflects the views of the transformacional genera-
tive linguists, such as Chomsky, 1965. (See Greene (1972) or Dalie (1972)
for details of this and related linguistic theories.}
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that emplcys a bol (or more properly a sign) system different from
that of uat | Zuage An example of one (algebraic) =tatouent in
rhat langwaps is: (yl -y, )=+ (x, = )Y + (aly7 - X,Y.. =

1

Thig =t.ateme ! could be translated into a natural langeige statement,
but it wouid b2 mach more awkward to state and even to conceptualize.
The virtue of special or formal language is that it more precisely repre-
sents mathewitical relations and lends i 1f more easily by the nature
of its abstract form to the representztion of abstract "ideas.”" It per-
mits more efficient deduction by the parsimonious expressions of only
the terms ..o operations that ecnter into the r. " itions, which natural
language 1s unable to do equally well. Are special languages such as
mathematics, larguages in the same sense as natural languages? The answer
is probably : and no. Each mathematical language can be said to have
a lexicon an: syntax. In algebra one would have ter in the lexicon
in two e¢la .ses, variables (x.y.z) and constants (such as pi). 1Im this
lexicon tlhure are no "words'" with rich denotative and connotative meanings
They are, ro bter, terms without Ymeaning” in the same sense az in the
logical mods !, Vhat meaning there comes from the expression of the
relations am v ithese terms, embodied in the various logical operations
of the senven.:, +, =, -, and the brackets. Again, meaning is different
in kind fre. awwdral lan7iage mear What meaning it has comes from
ical meaning,” if one can legitimately cntLrtaln such a notion. When
mathematlcal expressions contain terms that are "interpreted” empirically,
thxt is, the variabl = refer tou statements about physical reality, then
tiie same terms take on a very different ki of meaning (i.e., referential
meaning). In different matnematical theories (geometry in contrast to
algebra, for erample), the "terms” of the theory likewise aiffer. Thus,
polint, iine, and -laue in geometry, although they can be translated taco
algebraic terms and ~re treated with the =ame logical operations, are
representad in a completely different special laneuag;, namely the lan-
guage of ideoworphic or pictorial signs. The "meaniwg" of such a system
by its potential reference to objects or relations in srace has "meaning”
that differs from the uninterpreted variables and constants of algebra.
Thus, ¥ in a statement 38 no meaning except as defined hy the context of
the statement. If ane subsii utes a uumber or the word "line" for x, it
acquires the mesning associasted with “h: mber or the meaning of "line"
either in its comnn sense meaaing ri iis special mat' 2matical meaning.
Thus machematics, 75 a theory of reality, provides a meaningful context
for mathematical statements. Mathemaitirss theory a= a rmalism provides
only what could be called formal mesni»; .7 the mea ‘ng entailed by the

assumptions of the formal 5¥5tL M . -fny l: the: ¢ twoe senses is to be
distinguished .orther from ' peychﬁlf catt o rand t sorething ''means"

PRI

to a child ¢ aiislt, which entails . : The
nead for different EY1tEms of represéiutation re.aces at least in part to
the referential Yuncrions they serve. Number terms differ from spati-~’
terms bkecause tpney have reference to different aspects of reality.

The fact that mathematies is taught and/or learned in both natural
and special language suggests that leaiaing mathematics is in part a lin-
guigtic phenoprron, [f so, the significance of lingui: -ic representation
7¢ that it emab.us the learnsr, as well as the mathematician, to 2mploy
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a means by which mathematical reastring can o¢cur. The implicatien of
this ies that such thought occurs linguistically or by linguistic means.
Two poasibilities exlst. The first is that thought is structured as
language -3 “ructured and functions similarly. ThE so=called Whorfian
Lypothan oae such view, although Chomsky a ratwry diffryeat
view of Lis relation. second, lanpuage (of mathematies) is merely che
vehicle for abstract thought. Although such thought iz not structured

as language is structured, it 1s facilitated by the forms and functions
of language. Plapet holds this view. Viewing the mind as operating by
the properties of a language leads to 0 emphasis on the lineistic fea-
turvs of mathematics learning. It @ oads further to an examivation of the
linguistic characteristics of matheratical expressions, how mathematical
expressions are constructed and understood, and on the 1iﬁguisciﬂ rule
system that governs the generation of such expressions,

On the other hand, the consequence of conceptualizing mathematical
apes as representational systems for Ldkhemst” al thinking is to see
vehici~s for thought and not as the necessary elements n thoup* t,
Matrnematical ‘fﬂﬁque acquisition in this sense facilitates or inhibit
mathematical lvarn:ng; it is not sufficient for ensuring mathematical
reasoning “ven though the distinctive properties of linguistic repre-
sentation v iy not directly conform to intellectual or cognitive structures,
their form may nevertheless affecc mathematical undcrstanding. Fur
example, " he comprehension of jaxical terms, such as pumber-words, oy

young children, or the lack of it, may affect their understanding of mathe-
matical lations (Beilinm, 1975} - .arly, a lack of understanding of
tha ab: _ract nature of gecmetri. - . older cnildren and even adults
may - orsely affeect their under.. *- - uf geometry. In addivisn to

th. icon, the very manner in . .nathematical ideas are expressed

ir ral language statements, which is the mode of representation and

- .ation of much of early math=mati may differentially affect

i cstarding. We can illustrate this with tho following two mathematical
¢ -egsions that are usually thought to be mathematically equivalent but
are probably not equally understoed by young ehildren.

If I have ten bananas and take away four bananas, how many do T have
left? T T - o T ) )

If 1 take away four bananas from ten bananas, how many do I have left?

Tho second expression iz likely to be more difficut for the linguis-
ticilly simple reason that ti constltu.iis of the first sentence are in
the usual mathematical process ing arder (10 = 4 = ?7), whereas in the
second they are not (=4 [+10] = For processing the second sentence
tts constituents would probably hzve to be transformed into the usual

(or canonical) order to be properly understood. sencence might be
even more difficult if the question part *wure transposed to the first
part of the sentence, thus:

How many bananas do I have left if 1 take away four bananas from ten

bananas?



g1

On ;h; other hand, sign.ling in the first part of the sentence that
erator is to follow might make it sier to comprehend
acrion operation were not so indicated, as in:

4 subtrac
than if the subtr

Hnwrmany bananas are therv ©f [ rake away four bananas from ten

These examples are meant to {Jlustrate how rather simple changes in
sentence order may affect comprehension. (They are not, however, des-
criptions of how they are actually comprehended.) Why sentence compre-
henston is eolated to order, even in the sentence cited, s not as easy
to explain as 1t might appear. Accounting for the relative difficulty
of the above sentences is a problem for bath psyecholinguistics (i.e.,
peychological theorles of lingulstic performance) and linguistic theory
{: act theorles of grammar). 7 The debatL in recent years over lin-
theory has been of great signif i fect on a number

of 1ntelicetual disciplines ineluding the -1 cience the natural
scivnces, the humanities, and philosophy. The details of the debate
need net concern vs here, but one important point of focus has been the

7while this problem has been studied by mithematics educators it is
wy Impression that varidations in sentvnce form that have boeen employed
have not been related to what is known in modern linguistics of the nature
of syntactic structure and semantics.

The problem arises in these sentences because a~-called surface
structure of sentences (the sentence read or heard), even héﬁ the same
ained in them, do not necessaril onvey the same

congtirvonts are
(deep tructure) meaning. Thus, the differcnt ling ¢ formz illustrated
may hove different structure meanings. This phenomenon has now been
xtunsively studied and debated in natural lang;ahe, but what is not known
is the extent to which the same phenomenon holds with mathematical state-
qments. For example, the sen:ence they are hurting people has two meanings
velated to two different deep (syntactici st ures depeuding on whether
] 1g people is a noun phrase or hur is s verb, Or, consider the
lfference between the blind venetian awl the venetian blind which is some=
what more closely related to mathematical examples cited. The words are
the same in both, and only their word order differs. But, 1t is clear
that there is a considerable difference in meaning. Can one consider the
differences in word order in the mathematical sentences cited as involving
the same linguistie rules and their consequences for aning as matural
language statement, or do mathematical statements constitute a different
clasas of linguistic objects with different properties. Very little is
known of this.

ad
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place of "meaning" or "semantlc interpretation" in a linguistic system.
Psychologists, in addition, have been concerned with the relatien of language
to thought. It would appear from our discussion of linguistic models for
mathematics learning that parallel issues exist in respect to the influence
of linguistic form on mathematical reasoning. 1If it iz the case, as in

the examples cited, that linguistie form affects understanding, then for
instructional purposes, particularly with young learners, the form of
communicating mathematical ideas is important. If one wishes learners

to understand all forms of mathematical expression, then the nature of the
linguistic translation from one to another sentence form has to be known

as well ﬂlthuugh thi= dﬁéﬁ not 5n1VF the pfub]em af huw these translations

Application of the model. What then are the questions concerning
mathematics learning that the language model can illuminate? The most
general and at the same time probably the most difficult is whether mathe-=
matical reasoning and learning occur according to a linguistic model (1.e.,
thought = language) or to a linguistic representational model (i.e., thought
#+ language). In each case, a particular linguistic theory is rgqu1red of
generative traanufmitlunal throry (e.g., Ch xy, 1965) that makes dis-
tinctions between deep and surface structures and provides for the transfor=-
mations between them, as well as assigns different roles to syntactic, seman=

tic and phonological components of the grammar (to eite the most prominent
of present-day linguistic theories). If language, on the other hand, is
~onsidered simply as a representational system for thought, one would wish
*o know first how lingulstic representation facilirates and/or inhibits
mathematical reasoning (as in the banana examples), and second, how various
linguistic forms represent mathematical ideas.

1t is not toc well - awn at present how the lexical features of mathe-
matical language develop ..»d how such knowledge enters into mathematical
reasoning and problem solving. One knows lirtle, too, of the reverse,
that 1s, how cognitive structure influences or affects knowledge of the
lexicon, although there is increasing research on this question (see
neilin, 1975). 1t is not at present clear whether mathematical languages
have a syntax comparable to natural lsnguage syntax or whether other
features of the language serve the ordinary functions of ayntax. Again,
it is no.L known in what way syntactic structures of mathematical (anguages,
if they exist, relate to the processes of mathematical reasoning and
problem solving, whether they are isemorphic to cognitive structures, or
vhether they are different in kind and simply map onto cognitive structures.

selection uE gapars is to be found in. Akmaglan and Heny (1975}, Steinberg
and Jackbovits (1971): see also Chomsky (1965, 1968), Fillmore (1908), and
McCawley (1968). Cood discussions of language development, as well as
general {ssues. are to be found in Brown (1973), Dale (1972), McNeill
(1970}, and Slobin (1971)}.
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Other processes enter into mathematical reasoning and learning and
problem solving that relate siynificantly to the linguistic functions of
mathematies. Are memory processes and fmagery. Much of contempo=-

rary research into the nature of language couprehension concerns memory -
for linguistic structure and linguistie meaning (see, for example, Kintsch,
1974). One y similarly concern himself with the role of memory in mathe-
matical reasoning and in the comprehension of mathematical expressions.

Will a child, for example, better retain machematical facts or relations

if they are put into natural language forms (sentences) than in special
language constructions (Formulas, equations, ete.) or the reverse; might

it differ for children of different ages? Is there memory for meaning in
mathemati-s that differs from menory for ling e form? tHow important

is memory of form In contrast to meaning in mathematical reasoning?

[
=

Mathematical imagery is said to be particularly evident in tpne rea-
soning of the geometer and e learner of geometry. What function doe
it serve? Is Lt necessarv .o geomd “ric reasoning, if not necessary in
what ways [g it helpful and why! what is the relation botween mathemat:-

Does geometric Intuitiop result from geometric imagery, does it
have its origin in linguistic form, or dees it come from some other
source? 1Is imagery a significant mode of representatfon in mathe. ‘ical
systems other than geometry {(such as algebra)? Whatr relation does

have to linguistic represent.tiun In all of mathematics? In "pure"
geometry if points, lines. a: slancs are abstract entities, what are
points, lines, and planes - wtric imagery? Are they abstractions,

or are theay partigulars7 TS gdrtl;ular ; how are they trans-
lated into the understand¢ﬁ~ e wetrice abstractions that are necessary
to the peometer's task?

cal reasoning and learn-

In sum, there are many aspccts of mathemati
em in which mathematical
£

irmg that are relaced £o the nature of the syst
relations are represented and processed. he orm and functions of that
system provide a model r understanding the nature of mathematics learn-
ing; according to seme, it provides the Gﬁly modul to aceount For math
matical soning although this interpretation may be too extreme to
be probable.

:ﬂ'w—-] o

The Cognitive Model of Math 5 Learning

The models above are derived primarily from the properties of mathe-
matles itseif, from mathematical logic, and mathematical language. The
cognitive model, on the other hand, is based on assumptions about the
perscn who processzes information from the world »r creates and constructs
such knowledgz. The ability to construct ms ical theorems and solve
mathematical problems is assumed to requirs cerﬁain structures or process=
ing systems. In this model, the emphasis iz on the nature of the learner,

00
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whether one assumes that mathematics is.a unitary or complex system of
theories, and whether mathematics 1is concelved as a hypothetical system
or a theory of reality. If one assumes that mathematics is a multiple
entity, one can expect an interaction between the type of mathematics
(e.g., algebra or geometry) and various forms of cognition, assuming
that cognition encompasses more than one kind of process (e.g., lmagexy,
memory, reasoning, ete.).

Developmental models. Two types of cognitive theory provide models
of mathematics learning, developmental and nondevelopmental. Develop-
mental theorles assume that the cognitive system undergoes change over
time, with some theorles emphasizing maturational control of bebavior,
others experizantial, and some (like Piaget's) emphasizing the interaction
of both maturational and environmental influence. One group of theories
aysumes further that the changes are :ttage-like, reflecting qualitative
differcnces in cognitive structure and performance, wi.:’le another set of
developmental theories 1s based on assumptions ol continuity, with changes
in priformance attributed to units adied through experience. The stage
theorles are best represented b the developmental theory.of Piaget, and
the contlnuity theories best represeanted by Gagné's neobehaviorist theory
of cognitive learning. According to the Plagetian model, learning is a
functlon of development, while in Gagné's and similar empiricist theories,
development is a fi.ction of learning. What is meant by - "cognition" 1is
different in each r2se. Although each theory attempts to account for
cognitive processes (or in the case of the behaviorists, for cognitive
performance or behavior), Plaget's explavation is based on a structuralist
model while Gagné's nonstructuralist theory derives from an associationist
model. The difference is important to how learning 1s conceptualized.
Piaget's account embraces the vlew that structures or schemes are con-=
structed in the course of development from encourters with the real werid
in which existing cegnitive structures interact -th inferences (or new
schemes) developed from experience. The need to resolve differences
between what is known frcm existing structure (e.g., continuous length)
and what is newly experienced (e.g., partitioning) leads to the elabora-
tion of new structures (l.e., of measurement) that incorporate and inte-
grate che elements of the new experience with avallable structures.
Emphasis in Plaget's theory 1s placed on the dominant role of schomes

and cognitive structures. The struriures that have a bearing on mathe-
matical reasoning are loglesi structuves, and Plaget is at pains to
demonstrate that these lozical structures are differcntly constructed irom
empirical generalization~ -v inferences made from physical experience. As
a consequence, Piaget proposes the existence of two types of knowledge

and two types of internal processing systems. One process, probably that
of abstraction and inductive inference, leads te physical knowledge, such
as knowledge of coler and forms of objects. The other type of knovledge
is logico-mathematical and lnvolves processes of deduction that establish
relations ameng concepts achieved by abstraction and inductive inference.
Knowledge of the transitivity of weights, for example, is a different

01
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kind of knowledge from knowledge that an object has weight. The transi-
tive relation among weights (A*B, B>C, therefore A=C) is a logical relation,
and knowledge of it is achleved through a logico-deductive process; whereas
knowledge of weight is achieved by inference from experience, that is,
from directly holding objects in one's hands. To determine that one
ohject welghs more than another is also empirically determinable, However,
to determine whether one object weighs more than another without a

direct comparison between them, but only by reference to a third object
againat which each is compared, requires a purely logical process that
does not depend on knowledge of the world for its verification. Such
logical knowledge 1s acquired within a framework of group structures

that has an analogue in the group structures of logic and mathematics.
Mathematical reasoning and logical thought, according to Plaget, is
defined at least in part by the logic of classes, the logic of relations,
propoaitional logic, etc. The ability to reason mathematically is acteri-
buted to the development of cognitive systems that are analogues of
logical-mathematical systems. )

A model based on Gagné's and similar views rests on the assumption
that {nternal "arganization" is not in the form of schemes or structures
{n the sense meant by structuralists like Piaget, but on associatiounal
chains. Knowledge gained from new experience becomes associatively linked
with old knowledge. These chains might be quite complex and need not be
continucus; they might in fact assume the form of the tree structures of
classification systems. The learning is conceived as taking place
through the cumulative addition of units of experience or knowledge, and
no distinction is made between lagico-mathematical knowledge and physical
krowledge. All knowledge is essentially the same, except for differences
ir complexity. More complex unite are simpler units tied together. Tran-
sitivity, f7r example, would require prior experience or training in com-
parisons between pairs of constituent elements (e.g., A & B, B&C, C&D
ete.) and then training or experience with A & C, B & D, with feedback as
to the correctness or incorrectness >f response. Learning is the conse-
quence of such experience and not from any conflict between internal
structures as in Plaget’s theory. o )

In Piagetian training, there are also experiences with censtituente,
but the hypothesized change in knowledge (or structures) comes from thz
encounter between the child's predictlon of the relationship between ele-
ments (correct or incorrect) and information obtained from directly weigii~
ing the elements A & C (correct). Transitivity would be constructed out
of conflict berween inferences based on old knowledge, evident from the
child's prediction and the new knowledge obtained from the weighing. The
newly developed structure from the synthesis (transitivity schemes) would
enable the child to solve the problem correetly.

The state of the learner in Gagné's model is assumed to be a funection
of the learned hierarchy of skills aequired through experience; whereas
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in the Plaget model it is a funection of the st,gé af structural ovp i-
zition. In each model it is assumed that the developmental status of
the learner is a significant determinant of h1= ability te learn.

Nondevelopmental cognitive mndvlni Nondevelopmental models, iun
ne al mike the assumption that Lg;ﬁithL processes or structures (or
atimnal Gfgﬂﬂlgatlﬂﬂ;) du not uﬂderga develmpmantal change. Su&h

Sygtems are 11§tatad at thL time that thL Flf,t (Dynitlnn% y he
sa d to appear. The prototypic theory of this class is information-
processing theory.

Information processing lan zes in contrast to processing theories
are formal systems that are used Iln pure mathematics as a2 means of repreo-
sentation for Turing machine rhcufy, recrursive function theory, and auto-
maton theory. They are used in applied mathematics, in linguistics, com=-
puter sclence, and cognitive psychology (Simon & Newell, 1974). The=e
languages provide a valuable means for the construction of models of
the nature of cognition and its functions in concept formation, problem

solving, pattern recogni®isn, linguistic pr oces~ing, eteo.

Informavi.. | #ging theories, as the na - applies, are based on
the thesis tnat the input to a psyrknla ieal pro sing system, whi~h
may be an external or internal "stimulus," pre—it . information that is
transformed and acted upon in a variety of wa d1ad by the task, with
the output translated into a verbal, motor - N -nonge, or else

stored for future wag. The varied types o Ut iatwes ation are repre-—
sented in the system v a consistent form » "coding  avice." The sys-
tem properties define the code. In some - il the cod is a linguistie

code; in others it is a system of patterr or 3. . may im fact be
any form of symbolic representation. The viu »seied information
is processed further depending on the natu. it iee. If the task
is that of recognition or identification, th: wsv e a mateh process
between incoming coded informavion and al:pady voded data in the form of
templates or otherwise stored information. The results of the match or
mismztch may be processed further, so that if a verificatiocn of truth
value is required, a "truth-index" may be posited in the system and a
true-false decision may be made. The thus-processed coded information is
then decoded and transformed into some type of response. Charagtafisti=
cally, the system includes feedback procedures or loops whereby o t
information is recycled and introduced into another processing procedure
if it did not in the first place lead to a satisfactory solution. The
feedback system permits the system Co be self-regulating. The number of
processing components and their hypothesized Ffunction is defined by the
nature of the tagk and the nature of the information to be processed.

Some information processing theories encompass in their basic for-
malism set-theoretic and relational concepts (e.g., Reitman, 1963) and
others equivalent graph theory. 8till others embody a truth-table logie
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as a ba: . for deecision rules (Bouzae, Zkeir.nd, & Dominowski, 1971).
Among the things information processing meiels attempt to do is explore
the manner in which algorithms (systematic solution procedures) and heur-
istics (procedures for limiting search) enter into problem selving. They
test search and acawning schemes which determine the manner in which sub=
goals are defined and uslternative dircetions of search are scanned (Bourne
et al., 1971). Thus, the informatiosn processing approach, which is
intimscely zZsted with computer processing models in the simulation
of intellectual functions, is p: 1larly oriented to the analysis of
problem golving atrvategles. Au & simulation model, it is also utilized
in exploring the nature of cognitive processing especlally In concept
learning, zame playing (e.g., chese), and language processing contexts.

Applications of the cognitive muJel. From the description of the
respective developmental and nondevelopmental models, it is clear that
their aims are in purt Jifferent. The developmental models, particular-
1y Piaget's, assume that cognitive stages reflect different levels of
cognitive structure and propose that the abiliiy to learn particular
21 or mathematical tasks is a function of the child's cognitive
.. The behavioristic cognitivs models assume the existence of skill
-archics, and leurning 1s a functicn of the cavelopmental (i.e.,

v iyeriential) achlavements of these skills. Thus, oie of the principal
tnuues that has to be decided in respect to ma*“ematics learning is
whether such learning is under control of deveiuspment or the reverse,
that development i{s a function of learning. A whole series of individual
questions can be asked concerning the relation between specific hypothe-
sized cognitive structures (in Pilaget's theory) and the aequisition of
specific mathematical concepts. What, £or example, are the cognitive
structures necessary to an understanding of the tenets of Lobachevskian
and other non=Euclidean geometries? Are these cognitive structures the
same as required for understanding Euclidean geometry? If not, what

are the differences, and how do they arise? In addition, must one kind
of knowledge or cognitive structure be acquired prier to another before
certafin types of mathematics ean be learned? Behavioristic theories
assume only that the constituents be known before the more complex system
can be constituted inte a larger unit.

The cognitive model as already suggested inters2cts with the logical
and linguistic models. The extent to which logic, cognition and lin-
gulstic theories, and the processes to which thev refer, are inturrelated
is as yet little known. Mathematiecal learning provides a natural context
in which to study these interrelations.

The relation of curriculum design to cognitive development is often
alluded to, yet iu studied relatively little. Reallstic efforts to deve-
lop articulated curricula according to the cognitive rndel which are
{oined te a mrogram of experimentation on learning wor.i appear to be
long overdue. Haybe it is so long overdue that it +# wo lomger worth-
while doing. Whether it is or not, the problems and - .stions related
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to mathematice curricvlum development remain. Contemporary interest in
particular curriculum designs seems to be a functien more of political,
economic, and social commitments than to scientific decision making
bearing on what contributes most effectively to learning and knowladge
acquisition.

Insighta into cognition and problem solving provided by nondevelop-
mental models offer added tools to the exploration of mathematical learn=
ing and reasoning. While these approaches have been undoubtedly oversold
by premature large=-scale application through programmead
methods, the computer and information processing models still offer prom-
ising approaches to understanding the nature of problem solving. If they
have not as yet fully exposed the properties of problem golvir.. aad other
forms of reasoning, they have added much to what had been knawn. Whether
mathematical problem solving has benefited from this knowledge would re=
quire a hazardous guess, but the road would seem open to 2 great deal
more research of this kind.

Hnﬂe:g;and[n;,ﬁathemipi;s Learning

What I propose is that an understanding of the processes by which
knowledge of mathematics is achieved requires the application of each of
the foregoing models. No full comprehension of the intersctior between
deveioping cognition and the complex fields of mathematics is likely with-
out a conceptualization of both mathematics as a set of logical, linguis-
tic, and computational theories and the learner as a complex of develop-
ing cogniivive structures and processes,
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The Erlanpger Programm As i Hodel
cf the Child%s Construction of Space
J. Larry Martin

Mizsouri Southern Stare College

Many mathematicians perceive beauty in the precision of mathemﬂLical
structures. For educators who may choose to seek erotica in other ' 'forus,"
there is still reason to consider mathematical structure. Shulman (1970,
p-22) has stated that, o
to detemine whether a child is ready to learn a particular
concept or princlple, one analyzes the structure of that to
bz taught and compares it with what is already known about
the cognicive atructure uf the chlild,

Smock in this monograph has emphzsized that the learning environment mast
be cansidered from two frames of refereace: the operational systems
determining the child's interpretation of environmental events and the
inherent sequence snd structure 5f the conteat. Since we are cunsidering
the ciild's conception of space, it is natural to exanpine the atructure of
geonetry. It is Important Lo note that the domaln of discussion 4s space,
not gEEﬁEtf). Ceometry will be used to provide models of the child's

conception of space.

The Erlanger Programm

In a lecture in 1872, Felix Kelin presented his nov famous definition
of a geometyy: '"A geometry ir the study of those properties of a set X
which remain invariant when th: elements of X are subject to the trans-
formations of some transformat’on groupg" (Tuller, 1567, p. 70). Some
underlyimg concepts are needed Lo understand this definiticn. A few more
baslc definitions ars provided first. A mcre careful analysis of the
meaning and implications of th:: Programm follows throughout the paper.

Oordinarily, a person regards a transfo'mation as a change. In
o chematics, a tronsforration may be regavded as arule as@ncidzirg points

of a get X with polnts of a set ¥, More explicitly, a rrar rmation of
the set X into the set Y can be thought of as a rule of ¢ ,pcndenae

that assigns to each element of set X one and only one elﬂmﬁnt of a sat
Y. If y in ¥ 1s associated with x in X, then y 1is called tha inage of
%. Denoting the transforration by f, "y is the image of % can be
symbolized y = f(x). If every element of Y is assigned to soue element
of X, the transformation is called a transformation of X onto Y. If
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no nlement in ¥ £5 the imaze of more than ene clement of ¥, the trana-
formation i{s sald to be one-to-one.

The tzansfcrmations of the Erlanger Programm are from a set X onto
the same set X. That 1a, they assign to rach element of the a=t X an
element of the name set X. If such a set T of cransformations of X onte
¥ have the following twu properties tlie set T of trans format loens may be
properly called a group of transformations or tranaformation groun:

1. me inverse of cvery transformation in T is itself a transformation
in T.

2. The resultant of any tws transfommations (distinct or not) 1in T
ig alse a transformation in T. That 1z, If f3 and £; are tramsturmations
in T, then there existe a third traﬂsf@%matiaﬂ £1 ln T which han the same
effect on X as do f; and Iz applied successively.

A propetrty of a set X which iz wnchanged under all the traus formations of
the group is called an invariant property of ser X rmder thut transformation
group. 1If a subset 3 of a group T of trane formations itself forms a

group, then § is called a subgroup of T.

its applicahlility as o model of the child's con tion of space. The parer

is organized azound considevation of the questions
1. Waat irz the tranafornations?
2. What are the invariancs?
3. What is the zer X?

4, What are the subgroup relationships existing ~mong the various
geomacries!

5. What iz the nature of spatial reality?

§. What are the consequences for research of appealing to the
Erlanger Programm as = model of the child's conception nf space?

An attempt will be made to polnt cut thast many of these questions have
alternative answers. Wnen selecting one set of answers to the questlions,
one should at lesst be aware of the fact that he haa mede ome cholce and
discarded others.

Transformations and Invariants

Using Klein's definition of a geometry, it is possible to categorize
and name various geometries according to both the tramsformation groups
involved and the invaviant properties under that group. Figure 1 shows
the relationships existing among some transformstions groups {geametries).
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n subgroups.

This hisrarchy Iindicates that if certain gedpulations are made (thesa
stipulations are discussed later)., then che group of E idean trans-=
formations ia a subgroup 3f the group of gimilarity transformations, the
similarity group i1s a subgroup of the groyp of affine transformations,

the affine group is a subgroup of the groy of projective transfo-mations,
and the projective group iz a subgroup of the group of topologieal
transforrations.

The transformations of topalogy are galled homeomorphisms. A one-
to-one transformation f from X onto Y is called a homeomorphiam 1f it is
continuous and reversibly continucus. That is, f 1s one-to-cne, onto and
continuocus and the ipverse of £ is also continuous. Roughly speaking,
then, topology is the atudy of properties that remain invariant under
hemeomsrphisms. These imvariants are called topological properties.

An intuitive notion of homeomorpihism will help identify some of these
properties, If one figure can be distorted into a second figure by ve
more than pulling, bending, stretching, or shrinking, then the two figures
are topologically equivalent or homeomorphic. Shape distortions such as
these are always homeomorphisms. There are also homeomorphlsms other
than shape distortioems. However, this inguitive 1dea of homeomorphisms

as shape distortions wiuil suffice for now,
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concept of topologlcal cransformations
demonstrates that shape and sizz ¢ definitely uot topologlical properties.
Neither is "stralghtness.' What are some topologlcal properties? Examples
are interlor of ser, exterior of a set, boundary but not baundedness

of a set, connectedness of a set, linear and cylic order, and openness

and cloaedneszt of curves.

Applying this low-powercd cor

If topology is characterized as the study of invariant properties
under the group of homeomorphisms, projective geometry can be characterized
as the study of properties invariant under the group of collineatlons.l
Collineations are special homeomorphisms which transform collinear points
into collinear points and, hence, lines inte limes. Concurrence of lines
is a projective property. That is, if three or more lines Intersect at
one point, then the lines resulting from the transformation will also
intersect at one point. Also a polygon of n sides will transform into a
polygon of n aldes. To illustrate, triangles will go into triangles
and quadrilaterals Iinto quadrilaterals.

Affine geometry is obtained as a subgeometry of projcective geometry
by restricting the group of projective transformations in such a vay as
to introduce parallelism. Besides parallelism, affine invariants are
hatweenness of points and racios of distanc Note the Iintroduction of
distance. An affine transformation multiplies all distances on the same
line or on parallel lines by the same amount, that is, by zhe mame positive
constant. Thus, the ratio of two distances on the same line or on parallel
lines is preserved. In particular, affine transformations sand =qual
distances into equal distances on the same or parallel lines and ridpoints
into midpoints.

Whereas an affine transformation multiplies distances in the same
direction by a constant, a similarity transformation multiplies a1l
distances by the same positive number K. K is called the ratio of the
similarity transformation. Angle measure is a similarity invariant.
The shape of a configuration is preserved but not its size.

If the ratic of simllarity is one, distance between points is an
invariant property. Such similarity transformations are rigid motions
or isometries. These are the transformations of Euclidean geometry.
The group of Euclidean transformations consists of translations,
rotations, reflections, and compositinns of translations and
reflections which have fixed lines, i.e., a unique line is azsociated

1I§ is possible to define a "general projective group” which includes
the group of collineations as a subgroup. See Gans (1969, p. 342) or
Tuller (1967, p. 102}.
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by the compositlon wite fteelf. These special compesitions are called
gliide-reflections.

1deal .y the propercies held invariant by a group of trunszformations
are also invariant under any subgroup. Invariants oi the topologlceal
formation group are invariants of the projective transformation

g , the affine :ransformation group, the similarity transformst
group, and the Euclidean transformation group. Figure .2 provides an
outiine of the relationships existing among the invariant properties of
the various gaometries.

Invariant Properties

openness {closedness) of curves.

2. 1interior, exterior, bourdary »oint.

3, linear order, cyclie order.

lé, connectedness,

| 7. straightness of lines.

6. convexity of figures.

7. purallelism ot lines.

Af fine

Similirude

Euclidean

Figure 2. Properties invariant under transformation groups.
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The Set X

The wored "ideally" was used at the beginning of the previous paragraph
because in z:tuality u subgeometry has the propertles of its parent geometry
only for the point set which they have in common. Klein talked of the
“properties of a set X which remain invariant." Until now the reader has
been left to furnish his own set X and interpret the discussion of invarlants
in terms of thia sct. As will be shown, the selection of X can have note-
worthy effects on a categorization scheme of varlous geometries.

The discussion of geometries began with the hope that they would
provide models of the child's conception of space. As the child constructs
the "reality"” of space, different geometries might model the child's
conception at different stages of his construction. But what is the
endpoint of development? As Smock pointed out:

Analysis of cognitive learning and development, then, 1s always
"biased" by the Fact of a context of preconceived ideas of
reality...and a particular set of concepts or theory and selected
observations.... The designation of a conception of space toward
which the child will most likely develop, i.e., that conception
held by most adults, is the critical firat step. Observations
and interp.etations of the child's behavior are organized around
the: specifications inherent In that 'endpoint' of davelepme-t.
(1974, p. 145)

Interpretations, then, about the child's conception of space are based

on his progress in the construction of a spatial "reality" with a direction
of "progress" and an "endpoint" determined by forces external to the

child (e.g., culture, curriculum, adults, etc.). The child’'s conceptual
growth, if not in the prescribed direction of progress, might go unnoticed
or misinterpretad.

What is the conception of space held by most adults? One can glibly
say that it ds flexible. That is, an adult can shift, for example, from
projective to Euclidean spatial representation and back again depending
upon what the situation and circumstances seem to dictate. But how would
the question have been answered a few hundred years ago before the advent
cf projective geometry? Presumably the space in which a 14th century man
moved was exactly the same as the space of modern man. But what of his
representarional space?

The desire of Renaissance painters to produce a visual geometry
provided the impetus for projective geometry. They asked questions like
"how ean the way things really look be represented in a drawing?" Thus,

a geometty of vislon developed rather than one of measurement (Gould,

1957, p. 299). The picture made by a painter can be regarded as a projection
of objects in space onto canvas. Since length and angles are distorted,

how is it that objects are recognizable? It must be that the propertiea
invariant under projection provide the clues.
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Let us review the ldea of projecting points from onea plane in Euclidean
space onto another plane. Consider a glass table on which a magazine with
cornera A, B, C, D is lying as shown in ¥Figure 3. 1f a lamw 1= placed at
point L not in the pline of the table top nor in the plane of the floor,
then the shadow on the floor of the magazine on the table will be as repre-
sented by the Figure A', B',C',D'., The projection {1lustrated is called
a central projection of a plane onto a parallel plane, It is a homeomorphism
which multiplies all d
but not ne sarily
iz a similarity transformation.

Figure 3. Central projection, parallel planes (Doxwart, 1966, p. 6).

If the table is tipped, the planes are no longer parallel. Such a
situation s demonstrated in Figure 4. What would be the effect on the
shadow? This obviously creates some problems. Where does such a trans-
formation fit in Figure 2? It does not conserve length, measure of angles,
intersection of lines, nor closeness of curves. In fact, it 1s not even
a one=to—~one transformation. Point A in plane 7 has no image in plane
n'! Hence, the transformation cannot possibly be a homeomorphism. The
set X of Klein's definition of a geometry cannot, then, be ordinary
Euclidean space if the classification scheme of Figure 2 is to hold.

The Euclidean concept of space must be extended in such a manner so as
to eliminate the difficulties noted.
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Figure 4. Central projection, nonpsrallel planes.

In order to portray three-dimensional scenes in two-dimensional
drawinga, Renalisance palnters drew parallel lines as if they actually
met in the distance. Since the images in 7' (Figure 4) of segments AR
and AC In 7 appear to meet at some distant point, why not, with the
artist's "vanishing point" in mind, create a new point to serve as the
image of A? Then every polnt of the triangle ABC in w would have an
image in r', and the image of a triangle would be a triangle which i3
what is desired. This new point is called an ideal point as opposed to
the ordinary points of Euelidean space. -

A little imagination raises several quesations here. Two parallel
lines, appear to meet at both Yanda." Should two ideal peints be added?
What abcut a third line parallel to the two in question? Should more
ideal points be added to represent its apparent distant intersections
with the two given parallel lines? These questions are dealt with in the

following way:

1. To each straight line in Euclidean space a gingle id

eal point
is added. The geometrical object resulting is called an extende

d line.

2, The ideal points whick are sdded to two parallel straight lines
are the same.
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3. The ideal points which are added to two nonparallel atraight
liues are distinct.

4. The geometrical object which consists of Eucllidean space and
all ideal points is called extendad space (Gans, 1969, p. 231).

While these agreements may appear arbitrary, they are motivated by
two desires. One desire is to prescrve an ofiginal law in Euclidean apace
{i.e., through every two points exactly one line may be drawn). Second,
the new law should be consistent with the visual geometty of the artist
(i.e., every two lines in a plane intersect in exactly one point). Let
us examine some of the consequences of these agreements.

To each given ordinary line an ideal point was added. This ideal
point also belongs to all ordinary lines parallel to the given line.

Thus, lines parallel in Euclidean space will meet at an ideal point in the
new space. Different families of parallels #will meet at different ideal
points. Consequently, any two coplanar extended lines will intersect at
exactly ome polnt: anordinary point 1f they interswet in Euclideun space,
an ldeal poinc if they are par-llel in Euclidean space.

It ls = characteristic of Euclidean space that two points determine
a line. Consider one ildeal point and one ordinary poiut P. They determine
an extended lipe through P in the directionm determined by the ideal point.
If two ideal points are chosen, what unique line is determined? It
cannot be an extended line because extended lines contain only one ideal
point. Moreover, it cannot contain any ordinary points because an ordinary
point and 4an ideal point determine an extended line. Logically it must
consist of only ideal points. Just as each line in Euclldean space was
extended to include an ideal point, each plane in Euclidean space will be
extended to include one ideal line. An ideal line is composed of all the
idesl polnts associated with the lines in a given plane. It naturally
intersects any other line in its plane at an ideal point. Thus, any two
lines in an extended plane, whether tvwo extended lines or one extended
and one ideal, intersect in exactly one point.

So far ideal points have been added to produce extended lines. In
turn nev lines, ideal lipnes, were createc. For each plane there is an
ideal 1ine making an extended plane. The situation in three dimensions
is similar. Ordinary three-dimensional Euclidean space is extended by
the addition of an ideal plane which consists of all the ideal points.

All the ideal lines lie in this ideal plane. Two extended planes associated
with parallel planes in Euclidean three~dimensional space meet in an ideal
line, and two extended planes not associated with parallel planes in
Euclidean space meet in an extended line. Simllarly, the ideal plane

meets each extended plane in an ideal line. Therefore, in this extéended
space, any two planes meet in a unique line.

To summarize, new points called ideal points have been added to
Euclidean three-dimensional space, resulting in extended lipes, some
completely new limes' called ideal lines, extended planes, and one completely
new plane called the ideal plane. The new system of points, 1line:s, and
planes is extended Euclidean space or real projective space.
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Consider Figure 5 as representing sets of polnts in real projective
Spacé Figure 5a represents two lines whieh interszet at an ldeal point,
the same ideal point "at both ends.” Figure 5b represeants a triangle with
one vertex at an ideal point. Returning to Figure 4, the image of triangle
ARC will be triangle A'B'C' wherc A' is the ideal point associated with
the extended line through 0 and A. The transformation from w to ' now
preserves closeness of curves Intersecting lines have intersccting
imagea., The image of line 1 15 an ideal line, so lines transform into linmes.

@
N
— N

(b)

weting Lines (a) and a triangle (b)
: ijEEtiVE Space.

Calling these new mathematical entities peints, lines, and planes
may cause consternation for some. After all, how do you locate an ideal
point in space? Heow can you draw an ideal 1{né7 Where is the ideal
plane? One ne ds to recall the dialogue between Alice and Humpty Dumpty
in Through the Looking-Glass:

"When I use a word," Humpty Dumpty sald in rather a scornful
tone, it means juEt what I clioose it to mean - neither

more nor less. "The question is,' sald Alice, "whethef
you can make wnrds mean so many different things." "The
question is,”" sald Humpty Dumpty, "which is to be master-
that's all.”
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Hierarchies of Geomstries

Using extended Euelidean space for tie set X of Klein's definition
of a geometry, the projective transformations are one-to-one transformations.
But before projective cransformations can be considered a subgroup of the
topologlcal transformations, projective transformations must be continuous
with continuous inverses. What does it mean for a transformation to be
continuous? One definition ls as follows. Suppose f is a transformatlion
from a set X to set Y. Then f 1s zaid to be continuous at a point x in
X if for any distance e = 0, no matter how small, there exists a distance
d > 0 such that whenever a point p in X is within a distance d of %, the
image of p Ilu ¥ will be within a distance e of the image of 2 in Y. A
transformation is sald to be continuous 1f it is continuous at each point
in X. Loosely speaking, points close together in X have images close
together in ¥.

However, since prejective geometry is ordinarily considered to be of
a nonmetric character, it would seem that the defirition of continulty
should not involve notionsg of distance. First, consider a neighborhood
of a point. In topological spaces, neighborhoods are sets satisfying
certain specified conditions. This paper will not delineate these
conditions. 1In the Euclidean plane, a basic neighbarhood of a point ia
the interior of a clrcle containing that point. In Euclidean three-
dimensional space, a basie neighborhood of a point la the interlor of a
sphere containing the point. Thus, each point in a topological space
can have many neighborhoods, and a set may be a neighborhood of many
pointa. In Euclidean space each point has many neighborhoods, some large
and some small. Although the usual neighborhoods in Euclidean space
invelve the notion of distance, In general topologlcal spaces distance
need not be invelved. For instance, a neighborhood of a point could be
the interior of any region formed by a simple closed curve zurrounding
the peint.

Continuity can be defined in terms of neighborhoods, A transformation
f of a set X into a set Y is said to be continuous at the point x in X
if for each neighborhood U of the image of x in Y, there is a neighborhood
V of x in X such that the image of V is contained in U. The transformation
is continuous if it 1is continuous at each point in X. For example, 1f the
sets X and Y were ordinary Euclidean planes, a function f from X to Y
would be continuous at x in X Lf for any circle C around the image of x
in Y there exists a circle V around x wh image was contained in U,
that is, V was a subset of U. The situation is demonstrated in Figure 6.
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Figuxe 6 A comiinwus function.

Using this defindtionm of ctontinuity, projectdve transformationz can
be regarded as homeonorphitms vithout using distance, sndthe projective
group can be regarded as 2 subgromp of che topological group. In vhat
way can the affine groyp be comider#d a subgroup of the projective group?
Parillelisn 4s an affine divaxiant, Yet in extended Euclidean space any
two coplatar limes meet, It wioul«d geem that a subgeouetry should have
the properties of 1ts parent geometry. To eliminate the conflict, one
could define two lines sg parallel if they meet at an ideal point. Other
agreemencs would need to be made ahout £deal lines. An aleemate approach
would be to simply restrict che st X to the ordiniry points of three—
dinensional space, Then €vo «oplama¥ limes are parallel if they have no
points in common, The latter ippXoach £8 adopted here. ’

The statement "a sybgtometry has the properties of its parent )
geotetry only for £he point set which they have in comon" vas used earlier .
in this piper. If the get X 48 restricted to ordinary peints, then the :
affine tras formitions foIn & subgrow of che projective trmsformations.
For this reatriction on ¥, proferties invariant ynder projective trans-
fomations will remsim {pvariant wunder affine tramsfomations. For
exmple, intersecting (ar Orddnary poincs) lines will have intersecting
images. In this restricedom of extended Ruclidean spice to ordinary
Euclidesn space, the sipilarity € rensformations form 8 subgrop of the
affine txins formations ynd the Euclidearx trans formations fom a & ubgroup
of the sfnllarity cramsformagdons . It Ls withdin this context that the
classdification of geomerrdes pressnced L1 Figure 2 is valid.
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Mrematiwve structures = fuclidean . The nesting of the transformacion
gxoups as dispRayed in Figure 2 ds dependent wpora the set X, thae is. the
space upon which the transformacdions act. Idesl poimts vexe ajjed to
oxdimary Buclidear gpace so thar this pesting would hold. Vhat would be
a clamni flcation of these geomerTies If ordinary space wWere not eZteraded ?
It has been shown that dn orddna®y Byclidean space projectioms neced ot
be oxie-co-ome, mnd thus, pot homeonorphisms, Projectioms are not &
subgxoup of topelogical trans format dons In ordinary space, Houwewtr,
extended space vas restricted to ordinary Rucdidesn space for affine
t vnsformedons. 1f the get X 18 oxiipary Fucliden space fox o1l thme
t rnsaformeion grows mencioned, the subgroup relstioiships are as shaom
fn Flgure 7. Afffine geonetry is a subgemetry of topology &nd of projective
geometrs, but gopology and Projectiwe geometry are on separate prrinchies
of the classifdcacion s8cheme.

To pology Pro jective

Af fine
Simd lardty

Buelii=m

Figure 7 - A classification of gemetries in Euclidean space.

Whether the ser X ia ordipaly or extended spice, there are othex
geometriey that could be placed iIn a cLassificardoy schene based o Sub—
groud relationships. For example, the similarity tras format lops are a
shape preserving subgrouwp of the af fine trug formatims. Thexe s
ancher subgrow ©of the gfflme group thit preserves ares but mor hecessarlly
shape. This group 18 called the egulareal or equiafilne group of trang—
Formationg. A clasgificarion gcheme could include the equiareal growp
ag shown i Figure 8.

g imiLérity

Euclidean

Hgure 8, A classificatfion includdng equalaresl transformations,
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Alternative structure - non-Euclidean. Thus far subgroups of the
topological group have been considered only according to classdfication
schenes culminating with Euclidean geometry. Other endpolnts are possible.
Suppose a specialized conic, fox exanple an ellipse, is chosen in the
real projective plane (extended Euclidean plane). Call the points
interior to the ellipse ordinary, points on the ellipse ideal, and poimts
exterlor to the ellipase ultraideal. If the points on the ellipse and the
exterior points are deleted from the real projective plane, what ia
left is called a h erbolic plane. This presents another set X to which
Klein's definition of a geometry can be applied. The transformation group
consists of the collineations that mend points on the ellipse iato points
an the ellipse and send interior points into interior points, Each of
these transformations is a projective transformatiom, but they behave in
the special way described, The study of the invariants of this transformation
group with the hyperbolic plane taken as the set X is called hyperbolic
geometry. Simce these transformations are collineations, hence projections,
hyperbolic geometry is a subgeometry of projective geometry.

Klein presented a model, shown in Figure 9, of the hyperbelic plane.
The "plane" consists of only the points interior to the ellipse. The
"lines" of the plane are chords of the ellipse. Lines are "parallel" if
they meat at an ideal point. Lines axe "nonintersecting" if they are
part of projective lines vhich neet at an ultraideal point. "Nonintersecting'
and "parallel" are not synonyms. From the nature of the particular
eollineationas forming the hyperbolic group (i.e., collineations gsend
ideal points to ideal points and ordinary points to ordinary points), it
follows that parallel lines will have parallel images. Also nonlntersecting
1ines wilil have nonintersecting images. That is, parallelism and non-
intersection are hyperbellic invariants. Some striking characteristics of
this geometry are: (a) the sum of the measures of the angles in a
triangle 1s less than a straight angle, (b) there exist lines parallel to
both of a palr of intersecting lines, (c) given a line and a polnt not
on the line there exist exactly twe lines through the given point parallel
te the glven line, and (d) given a line and a point not om the line there
exist infinitely many lines through the given point which do not intersect
the given line. The last three of these situations are displayed in

Figure 10.
b~
ULTRAIDEAL
POINTS

IDEAL POINTS
Figure 9. Klein's model of the hyperbolic plane (Fishback, 1969, p. 229).

111

ERIC

Aruitoxt provided by Eic:



105

Figure 10, Some characteristics of hyperbelic geometry.

Thete are other non-fuclidean geometries. If the space X is taker
to be the surface of a sphere and straight lines are defined as great
c¢ircles on the sphere, two linea alvays interseet. Inm facr, they Lntec-
gect twice. No parallels would exist for a given line. This wruld seen
to be close to the "reality" of a navigator on the earth, The tyrans—
formations of this space form a subgroup of the projective group. The
geometty ism called spherical geometry or double elliptic geometry. In
this "reality,” the sum of the measures or the angles in a triangle is
wre than a straight angle. Another non—Euclidean subgeometry of pro-
jective geomztry is single elliptic or merely elliptic gaumetry. In
this geometry, two lines always meet in exactly one point and emclose an
area. The space X of this geometry is similar to real projective space.
Thus there are many possible "paths of progress” and "endpoints" for
spatial conceptualfzation suggested by an analysis of geometries via
Klein's definmition. Some are Fuclidean; some are non-Euclidean. Even
Euclidean “endpoints" could be arrived at by following different "paths
of progress.” The relationship of the non-Euclidean geometries to those
geometries culminating in Euclidean geometry is shown in Figure 1l.

Topology
?rajalﬂ:ive
) Afffi,ne _ o o _ ey
Simil ardity Equiareal Elliptic
Euclidean Hyperbolie

Figure 11. A classification including non-Euclidean geometries,
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Spatial Reality

The Physical Reality of Space

Klein's definition of a geometry has been used to identify and classify
many geometries. Perhaps these geometries can provide models for the
study of tha child's construction of mpace. (Questions consequent (o such
an attempted modeling of the child's construction are discussed later im
the paper. Before these questions and before exaunining the nature of
the child's conception of space, it would seem natural te examine the
prototype, that is, the physical reality of space.

Some may consider geometries other than Euclidean to be strictly
formal, of interest only as an intellectusl exercise. They might accept
that they are logically developed and intemally consistent while still
rejecting their "truth.” They would view axioms of such systems to be
arbitrary statements and the concepts to be merely symbols with which to
operate, That a non-Euclidean geometry could have any correspondence to
physical reality was considered absurd 200 years ago. Kant, one of the
most influential philosophers of the late 1700%s, held as a basic
tenet that "Euclid's axloms are inherent in the human mind, and therefore
have an objective validity for 'real' spsce" (Courant & Robbins, 1961,

p. 2193, Yowever, Klein (1939) points out that "our space perception

is adapted only to a limited part of space, and chen only with a limited
degree of accuracy and can be satistifed by eirher hyperbolic or spherical
geometry' (p. 179).

The guestion as to which geometry should be preferred as a model of
the physical world was raised long before Klein made the statement includad
in the preceddug paragraph. Gauveg prEEtEdlyz attempted to settle the
question by reasuring the angles In & triangle whose vertices were the
peaks of thre< mountains about 100 miles apart. The sunm of the angles was
not sufficiearly different from 180° to suggest a non-Euclidean geomefry.
Had the sum been noticeably less than 180°, hyperbolic geomerry might have
been preferahle to describe physical reality. Hovever, the variation from
180° was small enough to fall within the error of measurement.

Lebachevski experimented on a larger scale. Using a fixed star and
poaitions in the earth's orbit six months apart, he concluded that to
find a peasureable defect from 1800, one would need to use a triangle
with sides many million times as great as the distance from the earth to

Z‘ﬂlilé Gauss did measure these angles, there is some doubt that his
purpose was to check which geometry was most appropriate tc phvsical
reality, See Boyer (1964) und Gauss (1880).
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the sun {Gould, 1957, p. 294). Thus, both experiments were inconclusive,
But they did demonstrate that for distances of a few million miles either
Euclidean or nomn=-Euclidean geometry can serve as a model.

In the early 20th century, Poincaré pointed out that physical exper-
iments must start with certain axiome about physical reality just as the
geometer starts with axioms for his geometry. If the physical definition
of "straight line" is the path of a ray of light, then the mathematieian
pust take this into account as he teats a geometrical model against
physical reality. Geometrical properties of straight lines defined as
paths of light rayas could differ from those of Euclidean straight lines.
with this in mind, suppose Gauss had obtained less than 180° as the sum
of the angles in the triangle formed by the mountain peaks. This could
be explained by a hyperbolic space. Or it could be that space is
Euelidean but that 1ight rays travel in a curved path and not in the
straight lines of Euclidean geometry (see Figure 12). The discrepancy
would be due to two different meanings of stralght linme: the physicist’s
and the geometer's. Thus, different systems of geometry can describe
the same physical reality Lf the axioms of physics are altered.

- PATHOF LIGHT RAYS

Figure 12. An alternative tg hyperbolic space:
curved light rays in Euclidean space.

Einstein's theory of relativity utilizes a curved space. The
navigator uses spherical geometry. Recent research in optics suggests
that three-dimensional hyperbolic geomefry can be used as a model for
visual spzce (Blank, 1958; Blank, 1961; Luneburg, 19i0). Poincaré stated
“one geometry cannot be more true than another; it can only be more
convenient” (Coxeter, 1969, p. 288). If the choice of a geometry is merely
one of simplicity or convenience, Euclidean geometry would seem the best
choice to many.
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However, convenience is noet the central concern. It must be kept
in mind that it is the child's construction of his gpatial realicy that
is the primary concern, not the geometry +f physical reallity or the child's
conception of hyperbelic, projective, Euclidean, or any other specific
system of geometry.

The Chi;d‘gﬁSpaE;al,REaligz

Thus far the discussion of spatial reality has dealt only with the
nature of physical space, a space external to the ehild. Whatever geometry
one uses to model physicsl space, this space exists external to the child's
construction of his spatial reality. The main objective of this paper is
to wodel the child's construction using geometries from the Erlanger
Programm. Hence, attention is now focused upon the child. Since Piaget
has described a rather comprehensive theory of the child's conception of
space, his theory provides the foundation for much (though there are
intentional differences) of the following discussion.

e

At least five aspects of the child's space warrant the attention of
mathematics educators ond psychologists: (a) visual space, (b) sensori-
motor space, (c) perceptual space, (d) represertational space, and (e)
conceptual space. The folloving discussion attem;ts to clarify the nature
of and the relationships existing awong thesev.rious aspects of the
child's space.

Visual space. A distinction must be made between visual space and
physical space. There is an immediate visual sensation or experience vhich
{s a function of at least the variable factors of time and location of
the observer and the invariable factor (at least for 1lmited time spans)
of the physiclogical characteristics of the observer. A geometry modeling
these visual sensations (visual space) could be entirely different than a
geometry modeling physical space. Visual space is bounded; physieal space
may not be. In visual space, changes in shape and apparant distances
occur; in phyaical space shape and distance may be invariant. For
example, two objects A and B may be placed on a table. As an gbserver
walks around the table, the distance between A and B visually changes.

The shapes of A and B are visually different from different vantage points.
However, in physical space the distance between A and B does not change
nor do A and B change shape-

optics research (Luneburg, 1950) demonstrates that visual space
possesses a uniguely de firied meerie and that this metric is the metric
of three-dimensional hyperbolic geometry. Blank {1958, 1961) analyzes
Luneburg's theory and makes explicit its underlying assumptions. He
reports several experiments to substantiate Luneburg's claims. While
these articles presuppose a certain mathematical sephistication, they
need to be interpreted by mathematics educators and psychologists. It
would appear obvious that the child's construction of space is heavily
influenced by the nature of visual space.
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Sensori-motor space. Sensori-motor space begins with a set of unrelated
spaces: oral, tactlle, pestural, visual, and auditory. Each of these
spaces is body centered, though the child's own body may not be conaidered
ag part of any of these spaces. Toward the end of sensori-motor develop-
sent these individual spaces are coordinated into a single space in which
the body is one objert among others. The child develops a concept of
object pefmanence (see Smock, 1975) and objects gain an independence
from the child's body (Beth & Piaget, 1966).

Péerceptual and representational space. "Perception is the knowledge
of objects resulting from direct contact with them" (Piaget & Inhelder,
1967, p. 17). At first, perceptual space is included in sensori-motor
space. To use only the visual compoaent of sensori-motor space &= an
example, before perceptual space differentlates itself, a child’s perception
of an cbject may coincide precisely v ith his visual image of the object
(the object in visual space). But perceptual space is constantly enriched
by the child's activity. His perceptual space evolves into a synthesis
of the knowledge resulting from this activity and his visual Epace. Objects
seen in peraspective, for example, ecan be related to the observer's knowledge
of the objects. Thus, what in visual space may be a trapezoid can be
perceived (perceptual space) as a square or a rectangle.

Jw.. _w perceptual space extends sensori-motor space, representational
space exjr-da perceptual space. Representation "involves the evocation
of obje tr f.n their absence or, when it runs parallel to perception; in
their presence. It completes perceptual knowledge by reference to objects
not actually perceived" (Piaget & Inhelder, 1967, p. 17). It is one thing
to recognize or percelve that two lines are parallel or that two figures
are similar. It is quite another to be able to comstruct a figure similar
to an existing model. While extending perception, representation introduces
a new element into the child's comstruction of space, a system of alig=
nificatiens., The child mow has available to him reconstructable repre=
sentations or images. These internalized imitations are distinct from
perceptions and are recognized as such by the child. At the level of
representation the child can differentiate between the symbol and that
vhieh 1a symbolized.

Conceptual space. The evolution of the nature of images provides
the basic distinction between representational space and conceptual space.
Piaget and Inhelder (1971) have studied the nature of imagery and defined
the mental image as the "evocation of a model without direct perception
of 1t (p. 4). The function of the image is to provide a faithful and
accurate copy of the model. While not a direct prolonjzation of a perception,
the image, which i{s an intermalized imitation, can reproduce the content
of perception, e.g., shape and color. Naturally the imitation only
includes what the child understands and considers tvpical or exemplary.

According to Piaget and Inhelder (1971), the two maln stages in image
development correspond to the precperational and operational stages of
». ~ the child"s cognitive development. Up to the age of about seven or eight
" years, images are essentially static, direct copy images. While not

116

ERIC

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

110

static in all respects, the preoperational image fails to coordinate states
and transformations. The static nature of these images is due primarily

to the limitations cf precperational thought. That is, transformations

are slighted in favor of states. '"Generally speaking preoperational thought
may be thought of as a system of notions within which figurative treatment
of states takes precedence over comprehension of transformations" (Piaget

& Inhelder, 1971, p. 17).

There is a pseudo-conservation peculiar to the preoperational images.
Pseudo-conservation iz best explainmed with an example from Piaget and
Inhelder's work (1971). Children were shown two cardboard squares (zee
Figure 13a) and asked to imagine what the figure would iook 1like 1f the
top square were moved slightly to the righe (see Figure 13b). Drawings

of the youngest children (4 years) tended to show the squares completely
separated (see Figure 13¢) or put together in a new way (see Figure 13d).
But as the children began to imagine the glide, pseudo-conservation became
more prevalent (see Figure 13e). Whereas operational conservation would
keep the shapes and sizes of the squares constant, precperational pseudo-
conservation attends more to boundaries. Note that the characteristics
which the child chooses to leave invariant are precisely those that are
modified in actuality. On the other hand, characteristics which he alters
are actually invariants. In other tasks pasudo-conservation manifested
itself in a reluctance to violate interlors or enclosures when a trans-
formation resulted in intersecting figures.

pseudo-conservation arises, then, when a subject retains certain
characteristics of an object which he considers typical or
exemplary, and which he clings to at the expense of other
apparently more important characteristics. (Piaget &

Inhelder, 1971, p- 362)

130 13b Be I3d I3e

Figure 13

W

! The imagery during the preoperational stage of development utilizes
the figurative aspect of thought almost exclusively. As the image is
increasingly directed by the child’s active operations, the figural aspect
hecom:s more and more subordinated to the operative aspect of thought,
With the formation of operations and operative structures, children
become capable of thinking in terms of transformations. The mobllity of
the operations is reflected in their images. Tmages become more mobile,
more anticipatory. Whereas at the preoperationmal level of developument,
figurative functions, and imagery in particular, govern thought, the
situarion is reversed at the operational level. That is, the image
becomes subordinate to operational thought. Prior to the advent of the
operations, images are static. Antilelpatory images frequently require
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congservation ability for which the preoperational child can only substitute
pseudo-conservation. They may require transformations whils he can nnly
deal with states. With operational capability, children can be concerned
with the transformations linking states. States can then be viewed as
endpoints of some transformations and as starting points for others.

The basie distinction, then, between representational space and
conceptual space Iz this: In the former, the image is basically statie
and attempts at conservation result in inadequate pseudo-conservation.
Images govern thought. In the latter, the image can coordinate states
and transformations. States are subordinate to transformations.

For Plaget knowledge i3 invariance through transformation. The mental
image, insofar as 1t 1= static, iz always only a symbel and is not in
itself a form of knowledge. Operations suppose systems of transformations.
Thus operations are more than images. However, images can serve as a
tool of the operations.

Summary and conclusions. Visual space was differentiated from physical
space. Fhysical space 1s external to the child's construction. Visual
space 12 one component of sensori-motor space and later of perceptual
space. In the early stages of perceptual space development, perceptual
gpace and visual space may coincide. Later, perceptual space iz a
synthesis of what an observer "sees" and what he "knows." What he "knows"
may emanate from representational or conceptual space. Therefore, when
talking about perceptual space in adults, one must be careful not to
attribute to perception what rightfully is representational or conceptual.

Researchers must be aware of the various aspects of the child's space.
A geometry that models one aspect may not model another. Also, though the
various spacea exist simultanecusly in a child, they exist in various
degrees of development. With the exception of visual space, which is
more a function of the physiological characteristics of the child, each
agpect of space iz a function of cognitive development. Different aspects
of space dominate the child's construction of space during differeat
perlods of his cognitive development. With the advent of operations,
representacions become mobile and serve as tools of the operations.

Some Assumptions

Plaget emphasizes invariability through transformations. He opposes
the view that knowledge is a passive copy of reality. To know reality
one must assimilate reallity into a system of transformations, a system
of transformations which attempts to model isomorphically the transformations
of reality (Plaget, 1970). Knowledge iz invariance through transformations.
Klein also emphasized invariability through transformations. The notions
of Plaget and Klein vould seem to dovetall nicely into a model for studying =
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the e¢hild's concept of space. While it is true that Piaget and Klein
each use and even emphasize many of the same terms, LO make a vague appeal
to Klein's Erlanger Programm and to Piaget's epistemology as providing

a model serves little purpose. In what sense do they or could they pro-
vide a model of the child's conception of space?

The position taken here is that the appeal to Klein and Piaget
should be based on thelr common emphasis on groups of transformations
and invariance through transformation. The assumptions made here are:

1. Piaget's definition of the nature of knowladge is essentlally
correct. Knowing requires construction of systems of transformations.
These transformations become progressively more nearly isvmorphic te
transformations of reality. They eventually are combinad into systems
modeled by the mathematical group.

2. It is the technique of Klein's classification that is primary.
1t emphasizes a set X, a group of transformations, and invariance
through transformation. This technique can be utilized to study the
structure and sequence of the child's construction of his spatial reality.

3, The various classification hierarchies resulting from Klein's
definition of a geometry are secondary. They can provide organization
on the basis of transformations. They may be used to generate many
regearch questions., However, 1t is premature to make any claim that any
particular hierarchy models the sequence or the structure of the child's
eonstruction of his spatial reality.

Some Research Questions

Mathematics educators can raise many questions about the child's concept
of space from a study of the Erlanger Programm. Knowing requires con-
structions of systems of transformations. What transformations do children
use? Transformations can be studied in terms of thelr invariances. What
are the invariants im the child's conception of space? Transformations
must act on something. What is the set of points in which the child uses
his transformations? It appears obvious that the answers to these gquestions
depend on the child. Is there a sequence, common to all children,
through which children naturally develop? Does this order parallel any
hierarchy suggested by the Erlanger Programm?

Sequence. Filaget and Inhelder (1967) contend that the child's
representational space is predominantly topological in nature until about
six years of age. The child's first spatial concepts are those of
proxioity, separation, order, enclosure, and continuity. These are )
“topologlcal relations" to Plaget. Deriving from these topological .
relations are the projective and Euclidean concepts. .
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Piaget does not always use mathematical language as precisely as
pathematicians might desire. Consequently strong inferences from his
work should be made only with caution. Piaget's topological tasks have
been analyzed from a mathematical point of view (Martin, 1976) and the
difficulties involved in making inferences pointed out. More analytical
studies sre needed yhich examine the mathematics Involved in Plaget's
other tasks e.g., those dealing with projective transformations (Piaget &
Inhelder, 1967) or those dealing with mental imagery (Piaget & Inhelder,
1971).

On the basis of evidence now available, it appears that certain topo-
logical coacepts such as interior, exterior, and boundary and primitive
forms of proximity and separation develop early. Other cuncepts such as
topological equivalence, order, and continuity evidently develop later.
Probably some projective concepts also develop early, earlier than many
topological concepts. More evidence is necessary.

"Inherent” sequence in mathematies may actually be only an organi-
zational aid employed by mathematiclans. That is, it may be merely a way
to organize knowledge., Consequently, the Erlanger Programm does not
impose an inherent sequence to the study of geometries, much less a
sequence to the child's construction of space. What geems logically a
prerequisite for attainment of a concept may appear so only as a result
of a particular erganization of the mathematiea. If one takes the position
that topology is the most primitive geometry because it contains the
others, would one then say that the real number system is the most primitive
because it contains the other number systems, e.g-, the rationals, integevs,
and naturals? Structure does not automatically determine the sequence
of the child's conceptual development. However, the Erlanger Programm
does offer many alternative sequences to test as models of the child's
sequence.

Continugus functiona. Topological transformations are continucus
transformations., They also have continuous inverses. Many continucus
transformations do not have continuous inverses. It seems loglcal and
consistent with Plagetian theory to expect notions of continuous functions
in general to precede the notieon of homeomorphisms, since inverses are not
involved in the former. Proximities are the most elementary spatial
relationships to Piaget. Proximities are preserved by continuous trans-
formations, loosely speaking. A natural question 1s "What is the nature
of the child's concept of continuous functions?”

Reighborhoods. 1If the child's spatial reality is essentially

topological in nature before developing to incorporate projective and

. Euelidean concepts, homeomorphisms, the transformations of topology, have
to exist without accesg to a metric. Homeomorphisms are continuous
‘functions. Continuity was defined earlier using both metric and neighbor-
hood notiona. If length 18 not an invariant to the child, it would seem

" that his notion of continuity would have to be based on the nelghborhgod
definition. Not much is known about the neighborhoods or proximities
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that a child uses in his space. Are his basic neighborhoods the same as,

or can they be induced by some function from, the "usual" babic
neighborhoods the mathematician uses in Euclidean space? The topology
of the child could be drastically different from the usual topology of
Euclidean space. Consequently, it could yield a reality quite different
from a Euclidean reality.

Ideal points. It was shown earlier that projective transformations
are not a subgroup of homeomorphisma in ordinary Euclidean space. Ideal
points were introduced to Fuclidean space. This is a mathematical convenince,
Is it also a part of the child's construction process or are ideal polats
simply mathematical inventions? (me's first reaction might be that it

is silly to expect a child to have a concept of ideal points., Yet the
Renaissance painters saw "points at infinity" in their viaual space. And

all of us are familiar with the "illusion" of the rallroad tracks meeting

in the distance. Ideal points could in fact exist in the c¢hild's space.
They could be abandoned later because he cannot find a place for them in
his developing Euclidean model of space. This would be analogous to our
restrieting real projective space to Fuclidean aspace when moving from the
projective transformations to the affine transformations in the discussion
of the hierarchies of various geometries.

Recall that only one ideal point was associated with each line. Note
that the railroad track illusion suggests the tracks meet "at both ends."
Would the child consider these nyotersections" as being at the same point
or at different points? If the answer is two points, perhaps the child's
space has elements of a non-Euclidean geometry.

The previous section discussed neighborhoods. 1f the child's space
contains ideal points, what do neighborhoods around these points consist
of? Intultively one would expect a neighborhood of an ideal polnt to
consist of points "far away" and in "about the same direction” as the
ideal point. This could be described mathematically as follows. Conslder
a plane with a set of coordinate axes as in Figure 14. Each line through
the origin is taken as represeating its family of parallels. The line
is identified by the angle 0° < © < 180° that it forms with the positive
horizontal axis. A neighborhood of an ideal point P assoclated with a
iine £ could be the interior of a hyperbola whose vertices and focl are
on line £. The asymptotes for the hyperbola are the 1lines identified
by the angles © + £ and © - €, where € > 0°. Note that points "far away"

" in space from the origin, or the subject, would be in the neighberhood

if they were "in about the same direction.”™ Thus intuition is satisfied.
Also there are many neighborhoods for each ideal point and each neighborhood
contalns mwany ideal points. Whether or not this desecription models the
child's construction, if indeed he even has a cuncept of ideal pointsa,

is unknown.
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Figure 14. HNelghborhood of an ideal point.

Ratios of distances. Similarity transformations multiply distances
in all dimensions by the same amount. For example, the image of a triangle
is a triangle whose sides are gome constant k times as long as sides of
the original triangle. The sides of the image are in proportion to the
aides of the original. An affine transformation cannot multiply distances
in all directions by the same amount (unlesa, of course, it is a similarity).
However, affine transformations do preserve ratios of distances on the
same line or parallel lines. In particular, they send equal distances
into equal distances, thus preserving midpoints. The situation is
illustrated in Figure 15. The rectangle ABCD is afflnely equivalent to
the parallelogram A'B'C'C'. Note the ratio AP/PB 1s equul to A'P'/P'B'.
These are ratios along the same line. Note that the ratio AP/AR is
not equal to A'P'/A'R'. These are ratios in different directions. A
logical question from both the mathematical and psychologieal pointe of
view ig "Do children develop the ability to conserve ratios of distances
in one direction prior to the ability to conserve ratios of distances in
all directions?"”

A__ P B

Figure 15. Ratios of distances preserved.
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Constant of proportionality. Another question concerning proportionality
can be raised. Similarities require conserving ratios in all directions.
But they also allow the constant of proportionality to be any positive
sumber. Euclidean transformations require conserving ratios in all
direcrions alse. But tbe constant of proportionality is always one. If
oue accepted a topologlcal to Euclidaan sequence of development, the
Erlanger Programm would suggest that similarity transformations develop
prior to Euclidean transformations. Yet, is it paycholegicall~ sound to
expect a child to develop the concept of a variable constant o. propor=
tionality before the concept of a fixed conatant of proportionality,
whether or not the fixed constant is one?

Fquiafiine transformstions. As vas ghown in Figure 8, ths equlaffine
group lies ilntermediate to the affine group and the Euclidean group. Whareas
similaritiea preserve shape but not necessarily area, equiaffinities pre-
gserve area but not necessarlly shape. Does a child's space have any
elements of equiaffine geomotry apart from those inherent to Euclidean
geometry? That is, can he preserve area without also preserving length?
Have Piaget's area inveatigations used transformations which are not
basically Euclidean to gee {f aresz conservation might precede Euclidean
equivalence? There are vestiger of pauedo=conservation of area in the
thinking of many adults. For example; many believe that a kidney-shaped
region has the same area as a circulat region provided they both have
the same perimeter. In this case, conservatlion of one length produces
psuedo-conservation of area. The interrelationships among aimilarities,
equiaffinities, and 1sometries need study.

Isometries. Isometries have been the subject of more investigation
than have other transformations and will not be discussed in detail here.
However, one question ean be raised. Do certain isometries develop
before others? Mathematically, rotations and translations can be expressed
as the resultants of reflectioms. Are reflections the most basie isometries
paychologically? There i{s some evidence which suggests not {(Lesh, 1975).

Group properties. The Klein Programm emphasizes groups of trans-
formations. The group is not among the mental structures of the young
child. Perhaps the child's conception of space develops first using a
wesker structure. Semigroups require only that a set be subject to some
rule of combination so that the resultant of the combination of any two
elements 18 a unique element which is in the set and that the associatlve
law holds. Semigroups do not require identity elements or inverses. It
is possible that the semlgroup would serve as a model for the child'a
mental structure. Using this structure a child could develop certaln
invarlants of a geometry but not others. For example, the set of con-
tinuous transformations forms a semigroup. Proximities are preserved
by continuous transformations whether or not theae transformations have
inverses. But a continuous transforuation may not preserve openness
of curves. Thus, &child whose mental-structures were isomorphic to a
semigroup would develop some invariants of a geometry. The development
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of others might require the group structure. Using the semigroup properties
of the projective transformations, what invariants could a child construct?

0f course, transformations can be more general than continuonus
transformations, and structures can be more general than the semigroup.

What about transformations that ars just one-to-one, many-to-one, oY

the composition of transformations in general? Classification can be
modeled by the many-to-one transformation. Perhaps other types of trans-
formations could be used to model other structures. Much work could be

done In this area.

The child's construction process. The Erlanger Programm can be uzed
to provide gecmetriec models of the spaces which a child constructs. It
can focus reasearch on transformations and invariances rather tham on
states. It can offer hypothesized sequences of the order the child's
construction will follow. It cannot provide a model of the process of

the conatruction.

The operative aspect deals with transformations. Knowledge is invariance
through transformation. Conceptual space, as discussed in this paper,
relies on operative thoughr. It follows that the construction process

for conceptual space should be of primary concern. Investigations

regarding perceptual space would derive importance only insofar as they

deal with the foundations of the construction of conceputal space. Studies
of the eonatruction process for representational space would have comparable
value particularly if a careful analysis of the beginning points or
foundation for the construction process is provided.

To Piaget the essential aspect of thought is operative not figurative.

In this prper, the structure of geometry via Klein's Erlanger Programm
has been examined, and the varlous aspects of the child's conastruction
of space (2 la Plaget) have been discussed. From the union of Klein's
Programm and Piaget's theory, many research questions have been generated.
The Erlanger Programm offers a model which focuses research on transformations
and invariances. However, it must be remembered that this model is
offered only to assist the description of the product of the child's
construction of space and not the process itself.
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A Dynamical ¥-del for Cognitive Deévelopment
with Applications to Problem Solving
Danald G. Saar!

Northwestern University

Can problem solving be taught? I contend that, within limits, it
can be. 1t is the purpose of this paper to provide a foundation for
this elaim. However, in order to discuss this issue (indeed, even before
a defirition of a problem zan be put forth), we must develop a model for
cognitive development. Once this model is derived, applications to problem
solving, education, ete., will be immediate.

The proposed model is based on elementary first principles frum the
study of cognitive development. These principles will be in the form
of basle minimal assumptions concerning the behavior of assimilation
and accommodation im the udaptation-organization model used by J. Plaget.
We shall assume -hese basic principles as the building blocks for the
model and use some recept results from mathematics, namely, R. Thom's
catastropbe theory, to show the relationships between these principles.
Tt will turn out that while the inputs are elementary, the conclusions
sre sharp and far reaching. One of the surprising facts for me was that
this dynamical wmodel based upon the theory of differential equations
provides an understanding as to why "attitudes" play sich an important
role both in the educational process and in problem solving. This was
entirely unexpected, but it was most happily received. A second unexpected
bonus was an analytical description of the well know eyewitness phencmenon.

For technical reasons which will be explalusd in the next section,
the exposition of the model for cognitive develoupuent will be simplified
by the simple device of restricting attention to a small, fixed portion
of the environment. It seems natural to label such a restriction a
problem, and we shall do so. Consequently, problema and problem solving
are the main topics of discussion,where problem solving is viewed as a
special case of cognitive development. However, in the context used here,
the discussion of problem solving must be viewed as a description of the
general ideas of cognitive development given by this model.

p—y
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Once the model iz descrihed. some applications will be given. These
aections are not intended to be complete or comprehensive. Instead,
applications will be reastricted to those coneclusions which follow in a
natural fashion from this model.

There are two reasons these sections are included. The first is
to further illustrate and explain the model. The second ig to aild
researchers interested either in applying or in experimentally verifying
this predictive moedel. Indeed, this is a theoretical model, and for the
mogt part, it requires empirical supporting evidence before its ramifi-
cations and limitations can b complately understood.

This paper 1s an encapsulation of some of my conclusions resulting
from a study of cognitive processes (Saari, in press-a, in press-b). All
of the points raised here will be elaborated upon in greater detail in this
reference, which can be viewed in a more general context of being a atudy
of the adaptacion process. 1Indeed, even in the abbreviated version provided
here, the reader should find little difficulty in applying some of the
conclusions to other models--say from paychology or economics—-which

I would 1fke to thank R. Lesh and B. Chartoff for their patience
in listening to these ldeas while they were still in a formative crude
astage., I would like to give particular thanks to Edward R. Saari for
the several informative discussions we had exploring the topies of creative
thinking in the visval arts aund general problem solving. Several of his
his observations concerning the discontinuicies inherent in problem =olving.
Some of the examples used here are due to him.

Cognitive Development

We shall start o’f with some elementary first principlesz of cognitive
development. These statements will be rephrased in mathematical termi-
nology, where we will need to appeal to some recent mathem:tical results
to complete this translation into a mathematical language. This transla-=

tion will ecnstitute our model for cognitive development.

Starc off with environment £ where we shall ignore any given structure.
This is a key point since our underlying amsumption is that any environ=-
mental structure we perceive is imposed upon the environment by us--an
interpreving organism. But how does the organism do this? Assume a
message, or event, e e E, Mezssage is "interpreted" by a matching of this
message to come existing organizational structure of the organism. The
organization:1 structura to which this message has been assigned provides
the organisy's interprectation of the event.
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We shall be vague abou: the form of the organizntional structures
since this is of little interest to us here. They could be interpreted
as elements of the long-terr. memory, as schemata, ete., but au esrct
definition or choice of terminology will divert us from the goal of
findiag a description of how the organizational structures chauge.

Whatever these structures may be, there must be only a finite number
cf them. The physical limitations of an orgaiism dictate this. Thus,ve
shall assume there exist N possible organizational structures, where N ia
a (possibly very large) finite number. All pussible organizational
structures 122 the closed positive orthant of an N dimenslonal Euclidean_
space H,- A glven organizational struciure i3 tepresented by a vector X
from this space, where the kth compunent of this vector represents the
kth organizational structure. Xp = 0 implf - the kth structure is inep~
erative, wnile a large value for Xj implies tnat the kth structure can
handle, or pe-mit tha interpretation of a large number of messages fron
the environment. At any given instant of time, t, not all of these
potential structures are developed. This f{u a direct consequence of the
fact that the value of N must be so large that all "reagonably" possaible
organizational structures are represented 4s a component of vector X.
Consequently, at sny time the valuea of most of the components will be
elther zerc or close tn zero.

So far we have represented the environment and the space.of possible
organizational structures respectively by E and E§. We now need to
represent the process which transmits the meassage ¢ from E into R . This
procedure of attempting to match a message from the environment to exlsting
organizatieonal structures is ce'led the assimilation process, which we
shall denote by As. This process consists of two potentially conflicting
parts. The first is discriminatory asgimllation which 18 the process of
examining s message to discover its particular characteristics, to deter~
mine how it differs from other messages, ete. The gecond ia generalizing
assimilation which is the process of searching for agreement between
chis message and others, of finding a general class to which this message
belongs. We shall denote the former by Asy and the latter by Asg. Clearly
thege processes change in effectiveness with time, due to changes in
motivation, ete. In this communication we shall not address the important
problems of how to establish d*scrimination or generalization behavior
in a learner. Ravher, we shall concentrate on fitting thene capabilities
within a model for cognitive behavier of large scope.

All of this can be expressed mathematically as

Asy, Asgt E x R— Ry . (1

That is, the two types of assimilation depend upon time, at least indicectly,
and they match messages from the environment to organizational structures.
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If the image of Asg(e,t) agrees completely with that of Asy(e,t),
then there are no difficulties, and the message is interpreted as the
common image. However, ve cannot expect this to alwaya occur, even for
the same messsage at a different time, Therefore, in general we can expect
that the images of these two processes do not match precisely, that is,
they are in-at least partial conflict. This state of conflict in the
interpretation of a message 1s our definition of a noutrivial problem.

To resolve this conflict, sumething in the system has to change.
Changes 1n the organizational structure in response to a nontrivial
problem iz called the accommodation procedure. Namely, it iz the process
whereby the organizational structures must be modified to fit the
message from the environment. This iz the process one must understand

1f theras is to be any hope in modeling cognitive development.

Examine the above description. Defore the accommodation procsdure
can change the organizational structures, there wust be an initial inter-
pretation of a message. Consequently, it follows that the accommodation
process, denoted by Ac, depends upon Asd(ejt) and Asg(g,t), Indeed,
accommodation 1s the process whereby the system attempts to find a new
structure which will eliminate the conflict created bv these interpre-
tations. MNotice that accommodation 1s a part of the cognitive system;
we are not assuming i¢ is a conscious cvert act of the organism. Thus,
in some crude sense, Ac determines the amount of change in the structures
which is needed to elimiuate this conflict, or

Ac[Asy(e,t), Asg(e,t),-1: RN— AN )

where the value of the kth component of the image corresponds to the amount
of change required in the kth siructure to reach equilibrium or a state of
no conflict. Since the kth structure may need to decrease, the image

space is RN, not 55. Perfect agreement in the message corresponds to an
image where none of the structures need to change, that is, to the image
O0e R,

to a manageable level. The problem 1s that Asy and Asg depend upon all
possible e £ E. Consequently, we are potentially dealing with an infinite
dimenaional parameter space. Therefore, restrict attentlon to a given
message @ or to some small neighborhood of e in E, for example, some
subject field. The idea of a small neighborhood makes sense since zome
gort of structure or topology has been imposed upon E via the inverse
images of the assimilatory processes. Namely, we can assume F has the
weakest topology making these maps continuous. Furthermore, we can sgafely
assume that the initial interpretation, or assignment, or e ¢ E depends
upon the respective talents, degree of sophistication, and motivation
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of As,(-,t) and Asy(-,t). Assume there is some sort of metrie or norm
which“measures this drive or wotivation; flasg(=,e)}} = d = 0 and
||Asg(e,t)l|3 g > G. Zero values mean the corresporling processes are
not working. Larger numerical values for these parameters correspond to
a more talented, able, and motivated process. Finally, let X denote the
common portion of the imsges of Asy and As,. Namely, X corresponds to
that agreed upon component of the differing interpretations of Asy and
Asg. (This dual usage of X should not lead to any confusion.)

;EESE assumptions permit Ac to be viewed as a finction from RE x RE
into A, namely the function which gives the vec.or from X to an equilibrium
poaition corresponding to the given values of d and g. We are interested
in the state of perfect equilibrium,

Ac(d,g,X) = 0. (3)

If Ac ig a smooth function (in the sense of differentiabiliry), then this
equilibrium state is generically a smooth two dimensional manifold (a
smooth surface which locally appears to be a two dimensional space). The
interpretation of this equation is straight forward. For a gilven value
of d and g, a value of X satisfying Equation 3 corresponds to a structure
where the message is interprated without any confliet.

There are three complicacions:

1. The process of accommodaticn is not an instantaneous one. The
process does not arrive at the equilibrium position of Equatiom 3
immediately, but only after a period of adjustment and change.

2. The proecess of accommodation must admit discontinuities. It is
a common experience and observation that a sudden change may occur in the
interpretation of a message from the environment.

3. Not too much is known about the accommodation process. Therefore,
any description of this process must be generic or stable in the sense
that small variations reflecting changes in our understanding of the
process or changes due to individualistic differences still should result
in a similar qualitative description with the same conclusions. We shall
consider these copstraints in the order 1, 3, 2.

Constraint (1) claime there must be a period and process of adjust-
ment between the assimilation and accommodation process--between the
values of d and g, and the corresponding choice of X. This proceas of
reaching some sort of accord between As and Ac is known as the adaptation
process. Since it is an adjustment process with the implied notion of
rate of change, it is natural to modei it with a differential equation,
which for technical reasons, we assume is given by a gradient of a smeath
function. That is,
= nf(dsgnz) = nVF = n(%i—?*!-,%% (4)
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where F: EE *® Eg-aéﬁl and wvhere n 12 a positive parameter. A stable
equilibrium position, that is, an element of a subset of the zero set of
f(d,g,X) = 0, 18 the equilibrium position of the Ac process. (For the
remainder of this paper we shall, incorrectly, identify Ac with the
equilibrium position given by Equation 1. Namzly, we assume that the
zero set of f has an attracting surface for the equation in some bounded
region of Eﬁ, For fixed d and g, the solution of Equation 2, X (t)
tends toward some element of this zero set with coordinates (d,g,X).
Recall, our space is Ef x Eﬁ; The process of moving X(t) toward the zero
set, modeled by the differential equation, is the adaptation process.

The limiting position in the zero set of f 1is what we shall call the
accommodation procsss.

It remains to choose function F satisfying conditions (2) and (3).
It turns out that this seemingly impossible task can be accomplished by
using our basic assumption that parameter d and g are basically in
conflict; that is, there does not exist a smooth combination of these
paramgters which would allow Ac or F to be viewed as a function of a
single parameter. For expositorv reasons, we shall discuss our choice
of F in the mpecial, unrealistic setting N = 1, and then describe the
model for arblitrary finite N. That is, we ghall initially discuas the
model for an organism which possesses only one organizational structure,
and then generalize it to a more realistic setting.

Recent developments in mathematics, knowa as catastrophe theory and

primarily due to Koué Thom (1969, 1972), require that the local behavior

of the zero aset of a function f exhibiting constraint (2) and satisfying
constraint (3) must be as given in Figure 1. Recall, N = 1. The probable
global behavior of the zero set of £ can be pleced together from this
knowledge of the local behavier and the Ac process, Also, we need to
establish the orlentation of the cusp fold in the space Ri xRk, To
determine this, consider the behavior of Ac with respect to changes in

the values of d and g.

Representation of surface for £ = 0, N = 1.
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Fix d at a small value and let g increase. This means that the
process of assimilation 1s generalizing, noting more similarities between
messages from E. Consequently, after the adaptation process has been
completed, the organizational structure can incorporate a large number
of messages from E; this means that small fixed d but increasing g
leads to increasing values for X. This does not mean that the structure
ig "bEEtef," just that it is interpreting a larger subset of E. It may
be doing so "unwisely,"

To determine the impact of parameter d, fix g at a fixed value
and let d increase. This reana the differences and the diacrepancies
in messages are noted and emphasized. This causes problems in trying to
interpret messages within the one existing structure, which results in a
smaller subset of E which the structure can interpret with any confidence.
T*us, small fixed g and increasing < 1leadz to a decressing X.

In the above two cases one parameter dominated the other. Turn now
to the case where one parameter starts from a position of strength. Let
g be large and _d be small. As we have seen, this corresponds tc a
large value of X. Hold g fixed and let 4 dincrease. This means
that there is an increase in emphasis on the differences between mesaages.
However, the noted similarities between the messages are so strong (large

g) that this increase In d has little effect on the value of K As
d continues to increase in value, more dlscrepancies in the meaaagés
are noted, leading to a decrease in the value of Z. Nevertheless, the
amassed evidence 1s still not sufficient to question seriously the
accuracy of the interpretation. This proceas can De expected to continue
until some critleal point where the accumulated ~onflict and the welght
of the discrepancies of the message so undermine the interpretations of
the one astructure organism that there i1s a sudden decline in the value
of X corresponding te a sudden reduction to a "safe" level of inter-
pretation. (Of course, all of this is in the case N = 1. For larger
values of N, this "discontinuity" in ¥ may be manifested by the division
of one structure into several other structures. At the same time, different
atructures may be combined into a new one.) Thus, we can expect that 1if
a structure will experience a discontinuity, then it occurs for large
values of d and g. Indeed, a larger initial value for g, implying a
stronger, more atable generalized structure, would require a larger value
for d before the structure breaks down.

This leads to the general pesitioning of the cusp fold in Figure 2.
(We shall interpret this figure in the next paragraph.) The arrows in
the figure correspond to Equation 4, and the action of the differential
equations. That is, they denote the adaptation processes of changing
the structure and foreing X(t) toward the equilibrium surface which
denotes perfect agreement in messages for that level of d and g (plus
the restriction on E). HNotice that not all of the zerv set of f corre-
gponds to Ac. The "tuck" in the surface between the upper and lower
surface 18 the location of the unstable points (the arrows tend away
from this part of the surface).
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d

Figure 2. FProbable orientation of the adaptation equilibrium
surface in d-g~X space, N = 1. The vectors
represent Equation 4.

The best way to interpret all this is to consider the consequences
of changes in the values of 4 and g. A path moving in the d-g plane,
will have its image forced toward the surface by the adaptation process,
the vector field in Figure 2. TFor example, consider the two different
patha in Figure 3. (To determine the images of these paths, compare
Figure 3 with Figure 2. The cuaps in Figure 1 correspond te the location
of the boundaries of the folds in Figure 2. That is, they are the image
of a vertical projection of these folds into the d-g gpace,) The
images of the patha from 1-2 and 2-3 can be only on the upper surface.
The path from 3 to 4 crosses a branch of the cusp fold. However, this
branch corresponds to the fold on the lower surface, so it has mo impact
upon this path, and the image stays on the upper surface. HNotice that
path 4-5 crosses the second branch of the cusp, and this branch does
correspond to the fold on the upper surface, Therefore, once the path
crosses this branch, the adaptation vector field forces the image to
the lower surface. Thus,we have the apparent diseontinuity in the
structure discussed above. (In fact, it is not a discontinuity, but
rather a velatively rapid change in the value of X.) The analysis of
the second path 1s similar, except notice that the image of point 4
for the second path differs from that of point 4 for the first path,

Notice that the changes in the values of X are continucus except vwhen

a path crosses the second branch of a cusp. Thus, the cusps in the d-g
plane provide valuable information in that they mark the locations of
the discontinuities of the process.
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Figure 3, Two paths in d-g spsce, N = 1.
Notice that the cusp is a projection
of the boundary of the surface in
Figure 2.

it turns out that Thom's theory still holds for arbitrary finite HN.
Locally, the location of the discontinuities emanates from cusps. Argu~
ments similar to the one used for N = 1 show that the general positioning
of these cusps is outward and centered about a diagonal line somewhat in
the center of R%; The main difference is that a discontinuity may result
in some rapid changes in several coordinates, reflecting the gemeral bifur-
cation of organizational structures. The main idea to remember is that it
is the "sec nd" branch of a cusp which a path crosses before there 1s an
apparent discontinuity. Also, in the more gen:ral setting of arbitrary
N, tha cusp pertaining to a given path depends upon which gurface is the
image of the path. (In Figure 4, we have given an example of a parameter
space for N = 1.)

Two more points need to be explained before the model 1s completed.
The first is positive parameter n. This parameter determines the operating .
rate of the adaptation procedure: the larger the value of n the faster
the process. Indeed, n = = corresponds to an infinitely fast process.
Parameter n is included to allow for individual differences in the rate
of adaptation, perhaps of a physioclogical nature.
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Figure 4. Schematic ruopresentation for N = 1
of the projection of the boundaries
of the equilibrium surface onta the
d=-g parameter space.

It follows from the above discussion that the process of change in
the organizational structures depends upon the selected path in the d-g
space. However, movement of a path presupposes some interpretation of
the preceding events. Namely, the rate of change of a path in the d-g
apace is related to the speed of the adaptation process! an equilibrium
position must be approached, meaning that new structures are formed or
old ones extended before the path can continue. We repeat this fact as
a hypothesis: '

Hypothesis. The rate of change of a path in the d-g space must
be "slow" compared to that of Equation 2, that is, compared to the
value of nl. T )

The fact that the rate of change of the assimilation process (the
path in the d-g space) depends upon how fast some sort of accord can
be reached with the accommodation process completes a cirecle illustrating
tha strong imterrelationship between the assimilation and accommodation
processes. The extended structures and the new interpretations permitted
by the accommodation process are necespary before a change in the values
of d and g can cccur. However, this relationship, as modeled here,

leor a given choice of F, a mathematical description of "slow" and
its relationship with n can be found in Levinson (1950).
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is a continuous dynamical one. While the two processes operate simul-
taneously, there is a strong feedback mechanise between them which acts
as a cheek om their movement. It is the conflict in the interpretation
of the messages which is the driving force for the path in the d-g
space. Movement of the path changes the structures, but these changes
in the structures must be realized before the path can contlaue.

Consequences

We can now reach some conclusions about cognitive processes. Some
of the more obvious ones will be glven here, and a more complete list
will appear in another study (Saari, in presa-b). However, the reader

should find it easy to compile a fairly complete 1ist, since the procedure
ia to examine the consequences of different paths in Figures 3 and 4.

Eﬁe learner's current btgsﬁisat onal structures dgpend very strongly on
the learner's history. This is reflected in Figure 3 by the fact that
the image of point 4 can only be determined if we know its history,
namely, to which path it belongs. 1In Figure 4, with its vealth of cusps,

we see that two paths arriving at the same point in the d-g space, but ;
with differeat histories, may result in images where completely different - =
components in X are emphasized. This may result in radically different ’
interpretations of the same message from E. Since this is what we expect,

it adds partial confirmation to this theoretical model.

What can this mean for education? Consilder an example of teaching .
elementary arithmetic. The goal is to teach both comprehension and ability
to use basic addition, subtraction, and multiplication facts. Suppose that
in learning these facts, most of the students in a class took a route in i
Figure 4 similar to that of Path 1, 2, 3, 4 in Figure 3, and they have
attained a certain level of comprehension and competency in arithmetie.
Now suppose one member of the class learned these facts by rote. That
is, essentially, the child viewed each new fact as a separate entity.
It is the differences in the facts which are impressed upon him, rather
than any similarity between them. Thus, the g parameter remains at a
low value while the d parameter is increasing. This corresponds to a
path similar to 1, 2', or 3' in Figure 3.

The problem is to help the child reach elass level. A natural
approach may be to try to direct his path to point 4. Although, when
the child has reached this point, his assimilation talents are equivalent
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to class level, his understanding is not; he is still on a different
surface. It follows from Figures 2 and 3 that the path needs to move to
the vicinity of point 5' before a new level of comprehension is achieved.

It is questionable whether this is a feasible path. For example,
the increase in the g parameter required to cross the second branch of
the cusp may require generalizing examples or experiences beyond the
capacity of the teacher to provide them. Second, it is not clear this
path is optimal in terms of time and the required effort. A more effi-
cient path may be one which crosses the second branch of the cusp near
the vertex. This requires a decrease in d - a return to the beginning
firat principles.

While this example is elementary, it does illustrate how this model
can be used to derive conjectures or explanations for educational problems.
For example, notice that this example shows the importance of recognizing
and correcting a problem of this type at an early stage when the distances
between branches of the cusps are still small. This leads to our second
observation.

That is, small chsnges In the values af ~d and g ‘are not as likely to
reach the appropriate branch of the cusp causing a discontinuity in the
organizational structures. Examples supporting this statement are abundant.
We can see this in the stabilization of certain parts of our beliefs with
time. It indicates why people new to a field are somewhat more receptive
to innovative ideas; it peints out the impact and importance of impresaions
coloring early interpretations of events in the environment.

However, since we can expect the distance between the surfaces in
the fold to increase with the distance from the vertex, if a change occura
for large values of d and g, it may be a dramatic and significant one.
Consequently, while the above paragraph suggests the impact of indoctri=
ﬁstign at an early stng, this QbEEtVEEiGﬁ suggLstE a pgssible 13ter

the reader,

The third obaservation is a somewhat surprising one. While the
accommodation process is path dependent, it does not ‘depend continuously

upon the choice of paths! Namely, two individuals with almost identical

historiles and abilities can reach different interpretations of a message.
To see the origin of this statement, trace the image of two nearby paths
which pass on opposite sides of a vertex of a cusp. The image of one
path will be on a different surface. The implications this statement
has for education are obvious. For example, it explains why a class

can be at two different levels of comprehension. This discontinuity in

Ac will be exploited in our discussion of strategles for problem solving.
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Problems and Problem Solving

Problems are usually defined as an impediment, restriction, or delay

in the stimulus-response mechanism. A problem, then, becomes a stimulus

- for which a response is not immediately forthcoming: a question for which
there 18 no immediate or obvious answer.

In our setting we have defined a nontrivial problem to be a conflict
in the images of Asy(e,t) and Agg(e,t), a definition that agrees with the
above, However, for the model such a definition is incomplete (we shall

explain thie at the end of this section), and we need a more general

definition.
Definition. gaage e from the environment which

is assigned to a nonzero organizational structure. 1f Asg(e,t) agrees
with Asg(e,t), then it is a trivial problem. (Assignment of the message
Tto @ zero vector means the message 1s not being interpreted.)

A method of problem solving is a path in the d-g space. A success~
ful method is one for which agreement in the images can be attained in
finite time. We assume these paths, y(t), are continuously differentiable.
Thus, a succeasful method 1is one for which y'(ty) = 0 for t = t; in some
compact interval. For a trivial problem, the path 1is a stationary one.

No value judgement is implied by the term Yauecessful.” For example,
a successful method may be one for which the terminal value of some
parameter (4 or g) is less than its initial value. This may correspond
to a rejection of the conflict by ignoring the implications of the original
interpretation. On the other hand, this path may correspond to a return
to first principles. Nevertheless, it is reasonable to label such a path
as a regressive method of problem solving.

The stages of problem solving can now be read directly from the
model. It is important to understand these stages bacause they form the
foundation for problem—solving strategies. Of course, once we have prablem-
solving strategies, the major obstacle to the teaching of prablem solving
has been removad. It will turn out that several of these stages can
operate simultaneously. Thus,a first order approach to problem solving
is to assist the process by concentrating on each stage separately and
in the proper order. Since these steps for problem solving will parallel
the stages of problem solving, they will be discussed together. The
step corresponding to a given stage will be designated by a primed number.

1. Transmittal of the message. There is a message from the envi-
ronment. It is trensmitted by the sensory system, and it must be
assigned by As to some existing organizational structure.
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1'. Pay attention. Understand the message. The resulting problem

depends upon what percentage of the message 1s recelved. Therefore, pay
attention to the message.

Even a casual examination of the model shows that the initial inrer-
pretation of a message is most crucial. Consequently, the assignment of
a message to a structure must be done rationally. The measage should be
carefully examined and understood before au initial interpretation is
accepted.

2. Conflict in the interpretation. If the message is a trivial
problem, the process is completed. If there 1s conflict in the interpre-
tation of the message, then the nontrivial problem must be solved.

2', Understand the problem. The problem must be studied to deter-
mine why it is a nontrivial problem. The conflict, weakness in the
interpretation, and what additional information is needed should be
established. This is the first place where attitude plays a role.
Students should realize that conflict and a lack of complete understand-
ing or the lack of an initial plan of attack are most natural.

3. Preliminary movement of the path. It is the conflict caused by
a nontrivial oroblem which is the feedback mechanism forcing changes in
the values of d and g. This change or movement of the path is an
attempt to solve the problem by reinterpreting the message. It is aided
by gathering of information (previously interpreted messages), etc,

3'. Accumulation of information. In step 2', the problem was
defined and the weak points isolated. In this step the confliet and weak
points are studied and additional information is sought. That ia, the prob=
lem, or at least different aspects of it, are compared with other events,
usually already interpreted, to determine differences and similarities.
This new information changes and/or extends the existing organizatiomal
gtructure. It may result in a plan of attack. (This is a most impor=
tant step. Some additional techniques suggested by this model will be
discussed in the next section.)

4. Adaptation disequilihrium, or inecubation. The path in the d=-g
space may be moving "fairly fast." This would move the image of the path
away from a reglon near the equilibrium surface. According to our hypoth-
esis, this leads to a pericd of disequilibrium. During this peried,
movement of the path in the d-g plane is slowed until the adaptation
vector field can force the image, X(t), back to a region near this surface.
When X(t) 1s away from a region about this surface, it is changing rapidly,
which would lead to a state of confusion or no progress. The interpre-
tation of e 1s not clear since the distance of X from the surface
measures the conflict in these interpretations.
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A setaﬁd and moTe dramatic typg of sdaptatinn disequilibrium actutg
tinuity, Ihis pEfiQd may “be langEf uring bath types nf iﬂcubatiun
periods, there may be no external signs of work or activity.

4'. Positive attituds, incubation. Just by its nature, the state
of disequilibrium can be a confusing and frustrating one. During this
perlod, take a short vacation from the problem-=take a walk or read
something else, but give the adaptation process the time it needs to do
its work. This is easy advice to accept because it follows 3' which is
a period of hard work. However, by a recess, I do not mean the problem
should be abandoned. A positive attitude toward the problem is needed.
This approach is needed to counter possible negative side=effects of
this state of disequilibrium, a period which may be marked by irritability,
need for privacy, doubt, etc. {(depending, of course, on peraonality
tralts). Without a positive approach, a natural mode of problem solving
might be the regressive method. Namely, a path is selected which elimi-
nates the conflict by ignoring part of it.

This is somewhat ironic since the greatest degree of conflict should
appear near the branch of the cusp leading to a discontinuity or an
incubation period of the second type; after all, it is the confliet near
the branch which leads to the disearding of the old structures and an
attempt to assign new ones. However, this is also the period whare,
without a positive approach to the problem, a regressive method will
most likely be adopted; consequently, the threshold line may not be
crossed. - ) S

5. Equilibrium and inspiration. When i does approach a region
near the equilibrium surface, that is, at the conclusion of an incubation
period, there is a new interpretation of the message. Since the adapta-
tion vector field is "fast" compared to changes in the path in the d-g
space, this new interpretation may appear quite suddenly--an inspiration.
After an incubation perled of the first type, the inspiration is typified
by a "Oh, that's right; of course.” type comment. After an incubation
period af the second type, the equilibrium position cerresponds tc a
reasgignment of formation of new structures to interpret the message.
Thus, this inspiration can be characterized by the exclamation "Oh my

goah! So that's what happenal”

5'. New plan of attack. The inspirational period provides a dif-
ferent interpretation of the problem. This should be analyzed to see
if 1t provides a new plan of attack for the solution of the problem.
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6. Confirmation. The message is examined in terms of the mew
structures to determine whether this interpretation solves the problem
and resolves the conflict. If not, the process 1s continued. Notice,
if this reassigmment of the structures is of the second type and if the
projection of this :urface onto the d-g space, RZ, indicates that our
path is near the vertex of a cusp or a threshold branch (with respect to
the path) of the cusp, then we might expect another reassignment shortly
thereafter. However, if the path is "far" from the threshold branch of
the appropriate cusp, then we can expect tHat this was a stable reassign-
ment.

6'. Carry out the plan of artack. Return to step 2' and determine
whether the problem is solved. Continue on this loop of steps until a
solution is obtailned either by a regressive method, which includes giving
up, or by finding a solution.

7. Completion. The problem is solved. If the problem was not a
trivial ere, than the concluding structures differ from the initial ome.
The values of some of the components of X have changed. The concluding
structures will be used for the interpretation of new similar messages
from the environment. Indeed, it may even provide a new definition for
a neighborhood of the message in E. This is discussed in greater detail
in Saari (in press=b). : N

7'. Examine the solution. Since the resulting structures will be
used for the interpretation of future similar messages, the structures
should be strengthened. Namely, the solution of the problem should be
examined until it is completely understood. (What were the techniques
used? Why did they work?)

Thia completes an outline of the stages and steps of problem solving.
Notice that these stages hold even for the regressive method of problem
solving; however, the steps are intended to avoid this approach.

We conclude this section by briefly explaining why "trivial problems"
were included in our definition of a problem. The main reason is a mathe-
matical one. A method of solution 1s a smooth curve, but we did not
specify a minimum lengtn for the curve. Therefore, for reasons of com-
pleteness, problems with solution curves of zero length should be included,
but this is our definition of a "trivial problem." Thus, our definition
of problems includes the 2 + 2 variety of simple problems. This is
assuming, of course, that the learner is sufficiently advanced so that
2 4+ 2 is trivial.

A trivial problem is trivial because its solution path has zero
length or approximately zero length. This does not mean it is elemen—
tary in the usual sense of the word. We will give an example, using
the above limit argument on the length of a path and the incubation
period to illustrate this point.
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but replete with details, such as a short advanced lecture. The first

stages of problem solving are to recelve the message and assign it to

gome existing organizarional structure. However, the lack of familiarity

and the number of details lead to conflict in the interpretation and
assignment of the message. This provides the impetus to move the d-g
parameters. The number of details and the short duration of the event

leads to an attempt to move this path very quickly. According to our
hypothesis on the speed of the path, and our model, this will tend to s
move the image of the path away from the equilibrium rurface. Consequently, :
the path cannot move subatantially forward until the image is near the -
equilibrium gurface, that is, until the current data or message is under-
stood. However, by the time this incubation period has ended, the details
are past this point and are confusing. This leaves the regressive approach .”:
as the only viable method of problem solving--we turn him off. Thus, our
terminal interpretation is nearly the same as our initial, and perhaps
incorrect, assignment of the message. HNotice, thla suggests that if the
lecturer is to "keep" a large portion of his audience, he should help ina

the assignment of the message. This should be done by assigning it to a
stable structure, which 1s presumably an elementary concept.

How, decrease the period of time allowed fur the message, in this
case, the lecture. The above shows that the difference between our
initial and final interpretations of the message is small, and in the
limit the two interpretations are essentially the same.

At this point our example of a lecture breaks down. Therefore,
consider a sudden, short-lived, and unexpected disruption in the classroonm,
or in some public facility. 1In this case; the time period of the message
closely approximates the limiting process described above, and the initial
and final interpretations of the event are essentially the same. Therefore,
this must be classified as « :rivial problem. The accuracy of the inter- )
pretation of the event, as compared with the interpretation arrived upon
i1f the event could be replayed in slow motion, would depend upon the
accuracy of the initial assignment. (How unexpected or unfamiliar was
the event? How experienced is the observer and what are his prejudices,
i.e., what are his existing organizational structures?) No matter how
"inaecurate" the interpretation may be, the observer has no reason to
doubt it. This is, of course, the well-known eyewitness phenomenon.
Thus, a trivial problem may be anything but trivial.
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Strategies for Problem Solving

In the preceding section the steps of problem solving were oultined,
but it is not entirely clear how to implement some of them. Therefore,
in this seetion we shall briefly discuss some strategies for problem
solving suggested by this model.

1. Optimal choice of paths. While we have not introduced the
concept, .the scratch pad for problem solving is our Short Term Memory
(STM). STM holde at any time a maximum of somewhere between five to nine
symbols, and this upper bound decreases when an unrelated task is being
performed. Thus, for any task invelving the combination of a large number
of concepts or computations, STM will require aid. This can be done
through external aids such as tape recorders, computers, paper and pencil,
ete,, but it also can be accomplished by combining several ideag or con=
cepts into a single class. Carried one step further, this suggests that
in order to avold overloading STM, an optimal path is one which emphasizes
the similarities between the messages first, the g parameter, and then
it considers the differences between them, the d parameter. (It may
seem to the reader that we are cheating since STM is not part of our
earlier discusaion. However, in & more general discussion (Saari, in
preas-b), STM becomes an integral part of the model.)

In addition, it is suggested from the model that a path of the type
described above results in structures capable of interpreting a larger
portion of the environment, which is clearly a deaired state. Also, this
type of path seems to be the route which leads to intuition. The intuition
iz gained by a generalization--the lumping of a given message with a large
¢lass of other messages. The detalls are checked later.

With this knowledge of the optimal path, any technique which aids
the development of the g parameter will be a most useful technique for
problem solving. For example, this includes collaboration, discussions
with others, presenting a lecture on the problem (that is, discussing the
problem without external aids for STM, which forces a more general organi-
zation of the material), studying similar problems in other regions of
the environment, etc. Most of the statements which follow in this section
can be viewed as additional methods to realize this optimal path.

Notice, however, this choice of a path suggests that a method which
emphasizes complete understanding of each aspect of a problem before
proceeding to the next one may not be optimal! Furthermore, it suggests
that in research, the approach of shooting to the boundary of research
and then picking up details at a later date may be a positive approach.

2. Deferred judgement. The principle of deferred judgement should
be employed. Namely, ideas, plans of attack, and options should be explored’
before they are evaluated and discarded. This 1is, of course, the basic
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premise behind brainstorming. But I mean it to aprly to all types of
problem solving, for example: a photographer deeply involved in his work
should defer final evaluation of a given print until a later date, a
mathematician trying to solve a problem should explore that wild idea

and check the details later, or a student seriously interested in studying
the arts or pure sclences should defer some of the technical aspects until
a later date.

There are at least four reasons this principle is suggested by the
model. The first is that it leads to the type of path discussed above.
This principle clearly emphasizes the g parameter, the generalizing type
of assimilation. A judgement of an idea is a careful examination of its
derails, which is an emphasis on parameter d. Thus, in this terminology,
brainstorming is an exaggerated degree of deferred judgement. It is
characterized by a path where the d parameter is temporarily set to a
cmall value and the g parameter increases., Eventually the ideas must
be evaluated, but since Ac is path dependent, its terminal image may be
significantly different than what it would have been had the evaluation
been performed at an earlier stage.

A second reason is that while Ac is path dependent, it is not every-
where continuous with respect to the choice of paths. Consequently, a
path altered by evaluations at an early stage may lead to sharply different
gtructures.

Third, an evaluation at an early stage, or a constant evaluation,
uses up valuable space in the STM. Since thils space is limited, all of
the space should be used to attempt to solve the problenm.

Fourth, the evaluation may be applied during the incubation period
or during the critical stage of conflict near the threshold line leading
to an incubation period of the second type. Consequently, instead of
having a positive effect upon the problem, the evaluation may lead to a
regressive method of problem solving.

3. Independence. This is another form of deferred judgement. When
a nontrivial problem is encountered, it should be examined, studied, and
at least a partial attempt be made to solve it before outside information
is sought. For example, J. E, Littlewood (1968) recommends that when
attempting to solve an unanswered research problem, you should understand
the problem, but, at least initially, you should stay away from learning
how other people have attempted to solve the problem. The fact that Ac
has discontinuitles with respect to paths shows why this 1s good advice.
(I have always been impressed with the number of highly acclaimed people
in the history of the arts and sclences who were, to some degree, gelf-
taught. Therefore, we can assume their path in the d-g space was not
the standard one.)




O

ERIC

Aruitoxt provided by Eic:

140

4. Simplify the problem. Simplify the problem until it assumes a
form which is either trivial or solvable. Examine the solution. This
may suggest a plan of attack. If it does not, then generalize this new
problem and solve it. Esseutially this is going back to first principles
where it is sasier to jump from one surface to another. Also, it aids
STH, since the simpler problem does not have as many detalls.

%. Reasoning by analogy. There are two stages in the model which
suggest this approach. The first is the initial asgignment of a message—
the problem may be simplified if it can be related to other problems, even
from other fields, having a similar conflict. This shows the importance
of a general formulation of the statement of a problem. In this €£ashion,
the problem becomes a part of an already partially established structure.
it is difficult to start a problem with d and g both small, that is,
start the analysis of an event from scratch. However, 1if a problem can
be attached to an existing structure, perhaps even from a different "field,"
a solution may be easier to obtain.

Seccnd, reasoning by analogy helps increase the value of the g
parameter. Since this method is an attempt to compare the message with
problems already solved, or problems easler to solve, it is almost by
definition the seeking of similarities between this given message and
others.

6. Extension. Once a nevw technique or organizational structure has
been dgvgléped,’use it to interpret as much of the enviromnment as possible.
This 1s a well-cstablished approach employed by successful researchers in
all fields. It is the loglcal extension of step 7'.

Elsewhere other strategies will be discussed, but for our present
putposes the above short list will suffice. It should be claar how these
strategles are generated. The various stages and mechanisms of problem
solving are examined to locate both thelr weak and strong points. A
strategy is then proposed which will aid the former and emphasize the
latter. For example, the limitations of STM suggest such external ailds
as checklists or matrices to show the different possible combinations
of concepts. It also points out the importance of adopting a convenient
notational syatem, etc.

Education

If teaching is the process of relatlng some structure which has been
imposed upon the environment to the cognitive structures of the student,
then a goal of education is to eventually eliminate the student's dependency
upon a teacher or a second person in the interpretation of the environment.
From this model, it is clear that before a student can achileve this state
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of lndependence and self-study, his education muat provide him with four
things: organizational atructures, attitude, strategies, and wotivation.
1f any of these are missing, the student will be handicapped in his dealing
with a changing environment. The structures of today cannot be expected

to suffice a decade from now. Let me briefly review theze terms under
different labels,

1. Content. If a message is to be iInterpreted, it must be assigned
to some existing cognitive structure. For this to happen, the structures
must exist. Thus,a formal educational program should provide courses
whieh will develop structures necessary for the interpretation of future
messages.

2. Confidence. An educational program must develop the student's
confidence in his ability to interpret the environment. This is important
in order to avold the regressive method of problem solving. Confidence
is needed to handle the conflict which appears in a nontrivial problem
and the period preceding an incubation period of the second type.

Methods for imstilling confidence are widely known, and reports of
successful methods are the basis of some excellent popular books on eduea-
tion. Of course, the basic idea is to convince the student he can find
or could have found the solution. For example, in the discovery method,
this can be accomplished by providing gentle hints which suggest the
obvious next step to the student in the sense it helps the student to
formulate his or her own ideas. I suspect that without this judiciocus
assistance the discovery method could lead to regressive methods of
problem solving.

Because of this,I believe that while it is a compliment if students
leave a lecture impressed with the beauty of the subject, it 1s even a
higher accolade to the lecturer if the students feel cheated that they
had not been born earlier because it is clear they would have discovered
the theory.

3. Strategies. By example or by curriculum design, a student must
be exposed to the technlques and approaches for handling new problems.
This can be done when the student is introduced to the particular tech-
niquea of problem solving for a gilven subject, 1f these techniques are
described in a general fashion. (''Let me see, where did we see that
before?" "Maybe 1f we consider a simpler version we can see what's golng
on." 'Hey, this seems to be similar to that problem in subject A; maybe
there is a connection.”) 1In other words, overly polished lectures, not
to be confused with "earefully prepared," deprive the students of the
opportunity to see the subject being developed. What is happening here
is that such an approach trains the students how to use the two different
types of assimilation,

147




O

ERIC

Aruitoxt provided by Eic:

142

4. Independent thinker. The above three traits will probably
suffice to allow the student to react to different messages and changes
in environment, but it will pnot permit him to become an original thinker.
To do this, he must learn to generate and solve new problems on his own.
Only afcer this ia done, can he develop independent interpretations of
the environment. However, the only way a perdgon can become an original
thinker is to do original thinking. This raises the question whether
this can be taught, or at least directed. I believe the answer to be
yes, modulo the patience of the inatructer.

From the above, we see that perhaps the best way to stimulate original
thinking i8 to start with a simple problem, solve it, generalize the
problem, solve the new problem, etc. This provides movement for the path
in the d-g space. But of greater importance, it provides movement for
the path for a new subset of messages from the environment, a subset that
has not been previously interpreted. Once d and g become well
developed, i.e., they have large values, we can expect that nevw problems
will be generated in an automatic fashion. However, note that the succeas
of this approach presupposes a cestain degree of development in the first
three stages.

By reading their early published papers, it is clear this is the
approach used by some successful researchers vhen they switech their
field of interest, J. E. Littlewood suggests a simllar approach in
a recent book (1968), and R. P. Boas told me that G. H. Hardy used
this approach to train his graduate students to do research. After
a student solved several successively more general problems, the
gtudent would begin generating his own problems. While this example
comes from graduate level education, there is no reason this approach
cannot be applied at much earlier levels within the limits imposed by
the degree of development of the firat three stages. Indeed, since it
involves the development of original interpretations of the environment
rather than the acceptance of offered interpretations, this “"regearch"
should be started at the earliest possible age.
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Learning Difficulties in Children's Arithmetie:
A Clinieal Cognitive Appfaach*
Herbert Ginsburg

Cornell University E

For several yesrs, we have been conducting research on the develop-
mental psychology of children's mathematical thinking. Employing a cogni-
tive approach, we have attempted to describa the intellectual processes
children employ in their arirhmetic work. This paper begins with a brief
sumnary of our research and theory, and then presents some hypotheses
concerning learning problems. Insight into these difficulties or learning
problems may be gained through a clincial-cognitive appresch to research.
The approach is illustrated by two case studies. Finally, we consider
implicationa of our work for research in mathematics education.

The primary aim is to provide an account of the processes children
uge in doilng school mathematics. The focus 1s on the child's understanding
and misunderstandin;, on his strategies; on the procedures that rasult
In error as well as success. The research examines both the mathematical
activities that children develop outside the school context and the formal
knowledge of mathematics which children acquire in the academic setting.

*

The writer wishes to express his appreciation to Barbara Allardice
and Kathy Hebbeler, both of whom have contributed in important ways to
the project. The research has been supported by a grant from NSF,
G5-6311. A preliminary version of this paper was delivered at the
Georgla Center for the Study of Leamning and Teaching Mathematics,

May 29, 1975.
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Method

The research is based mainly on the use of Piaget's clinical mechod
(see Ginsburg & Opper, 1969) as applied to children from about 4 to 12.
The clinical method begins with a specific task for the child. Ofren,
the task is "concrete'’ in the semse of involving real objects, written
problems, and the llke. The child's responses to the task include verbal
statements, written responses, and behavieral phenomena like counting on
the fingera. The interviever has the Freedom to follow up on the child's
reaponses (verbal or otherwise) if it seeums ipportant to do so. The
cliniecal method is thus an extremely flexible (nonstandardized) procedure
for investigating children's intellectual activities in response to
specific and often concrete problems.

The method is based on some sound theoretical principles. The chief
of these 1s that intellectual sctivities—-"underlylng processes’ oT
"cognitive processes''--are complex, and thelr measurenent should display
& comparable degree of complexity. Since a ¢hild may solve an addition
problem in curious and complicated ways, the measurement technique, to be
effective, must display corresponding subtlety. The clindical interview
attempts to follov the child's arguments, to challenge them, to pose new
problems, ete. The attempt to measure underlying thought procemses demands
the use of flexible measurement procedures. T

A second theoretical principle which requires use of the clinical
pethod or an equivalent is the distinction between the behavior a child
may show im some particular situatien (his performance) and what he “really
knows,'' or "the best he can do" (his ccmpetence). The idea is simple. The
¢hild's behavior in a testing sftuation may be influenced by a variety of
factors: his true intellectual codpetence, fatigue, boredom, test anxiety,
ete. We are interested not in his test behavior per se, but £n his test
behavior as an index of underlying intellectual competence. We recognize
that the child's overt test behavior (performance) may not always reflect
the intellectual processes vhich represent the best he can do (competence)
but nay instead be depressed by other (e.g., wotivational) factors.

Standardized testing .-rocedures, despite superficial attempts at
rapport ("Now, children, we are going to play a game''), often fall at
uncovering competence. Ses, for example, 1abov's (1972) account of how
standard language tests fail to Teveal black children's lingulstic competence,
vhereas flexible procedures of various types ate far more successful at
this, Consequently, one must use nethods like the clinclal intervievw in
an attempt to measure underlying competence. For a fuller dlscussion of
this point, see Ginsburg and Koslowski (19276).
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The Theorxy

A review of the literature and our own research (Ginmsburg, in press-a,
in press—b) suggests that children's knowledge of arithmetic” may be con-
ceptuailzed in terms of three cognitive systems which may operate concurrently
as the child solves problema. System 1 involves patterns of perception
and thought which are used to deal with quantitative problems but do not
enploy counting or other explicit forms of mathematics. System 1 develops
outaide the formal school setting and hence may be termed informal. Further,
since System 1 doea not involve counting or other specific information
or techniques transmitted by culture, it may be termed natural.

System 2 involves counting and related procedures by which children
cope with quantitative problems in the absence of formal instructioa.
System 2 is thus informal insofar as it develops outside the context of
achooling but is cultural since it depends on the social transmission of
counting.

System 3 involves techniques fovr dealing with symbolic, codified
arithmetic. Theze techniques typically develop in the school context and
hence may be termed formal; they are products of the culture and transmitted
by it.

In individual children, the three systems may exist in relative iso—-
laglon from one another or may display some degree of integration. Consider
each system 4in turm.

System 1. By the age of about 4 or 5 years, the young child can
easily perceive which of two randomly arrayed sets (see Figure 1) has

*Note that our work is limited, for the present, to the study of
arithmetic, not geometry, etc.
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"more" than the other, at least when relatively small numbers of elements
are invelved. The child need not use counting to solve the task. Typleally
thie method is based on the perceptlen of area. That set which occupies
more space 1s considered to have the greater number. The echild's method

ie frequently successful because, all things begin equal, the set occupying
the larger area does indeed have the greater number. Area occupled 1s
correlated (imperfectly) with numerosity.

There are several points to stress concerning System 1:

1. Before entering school, or outside the context of formal education,
children and adulta develop many techniques, 1ike the one described, for
golving quantitative problens which do not demand a numerical response.
Children can deal with one-to-one correspondence, equivalence, and series.
Their techniques are reasonably effective and can serve as a basls, even
a prerequisite, for later school mathematics.

2, 8o far as is known, elementary informal techniques are cognitive

universals. All children seem to develop them.

3, Usually, Piaget's theory is interpreted as proposing that young
children exhibit many deficiencies with respect ro informs1 mathematics.
That interpretation is only partly accurate. It is true that the young
child cannot conserve numerical equivalence, perhaps because of immature
thought processes, as Plaget proposes. But one must keep in mind that
the young child does not fail at all aspects of informal mathematics.
Indeed, there are many facets of the young child's informal thought which

are quite sophisticated and powerful, as Piaget himself asserts.

System 2. At some point in history man invented counting, a
technology permitting important advances in cognition. Counting allowed
those using it to solve quantitative problems with a new precision. The
child learns to employ counting too, and it permits important intellectual
advances.

During the preschool years, the child begins to say the counting numbers
and to count objects. His countingis infor ; in genersl, it develops
outside the context of formal education. During the elementary school
years, the child expands the range of his counting activities: He learus
to say larger numbers, to count greater numbers of cbjects, and fo enumerate
more efficiently. He also blends counting yith formal arithmetic. Counting
is no longer purely informal. At the same time, counting is very much the
child's preferred method. He finds it comfortable and uses it to solve
various problems in arithmetic. Indeed, the bulk of the young child's
arithmetic may involve counting. During the elementary achool yeawsa, the
child may attempt to apply counting t2 additien, subtraction, and other
arithmetic problems. Furthermore, heve is a conjecture: Probably the
great majority of young children interpret arithmetic as counting, regardless
of how thay are taught. Whether they are taught sets oTnumber lines or
Llogic, new math or old math, they probably use counting a8 the basic method
for dealing with arithmetdic.
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Consider the child's use of counting for work with real objects.
The dnterviewer asked Kathy, a second grader, how she would add 9 and 6

dotsa.
Kz I would draw a box and put the dots in and count them.
I: Know any other ways?
Kz Well, I could count on my hands, like 9, 10, 11, 1Z, 13, 14, 15.
Iz And you think that will give you the total number of dots in
the boxea?
Kz Yes. 'Cause I used the biggest number first so I don't have to

count as much.

Counting can be a poverful tool for doing arithmetic. Sone "primitive”
cultures have developed rather elaborate systems of arithmetic based almost
entirely on counting. BRosin {1973) refers to the fact that in rural India
il1literate persons can deal effectively with money lenders and shopkeepers
who are skilled in the traditiomal arts of calculation. Rosin analyzes the
calculation executed by an 1lliterate person who has devised an arithmetic
of his own. The informant can solve problems that require the use of whole
numbers and fractions. His methods are based heavily on elementary counting.
For example, Rosin notes that "the operation of addition is accomplished by
agunting one number onto another" (p. 5). This is done by a highly elaborate
systen of finger and joint counting. Furthermore,

other arithmetic operations, such as multiplication, doubling,
halving, and quartering are worked out by memorizing results
obtained by counting the finger joints. Each of these operaticns
are painstakingly learmed, first through calculation and

then memorization. Learnlpg these operations is worthwhile
because they aid in a variety of customary activities. (p. 5)

b:ief, extensive arithmetic systems can be derived from elementary
unting and addition. The culture and the child may go a long way with
;hese skills.

Conzider now a few general couments concerning the nature and develop-
ment of counting.

1. Typiecally, the child’s counting is an organized activity. For
exanple, adding two numbers often involves an organized process like
beginning with the larger number and counting on. Children's arithmetie,
even on the most elementaxry level, does aot involve only memorized facts
or rote activities.

2. The child uses counting to assimilate aritimetic problems.
Thus, the child may add by counting, or may subtract by counting. Im
Pilaget's language, children tend to assimilate new problems into already
existing schemea. Children seem confident in and comfortable with
counting. They revert to it when other procedures fail.

et
(9]
-
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3. Counting is a technique of considerable power. HilstoTy suggests
that arithmetic developed frowm counting. Anthropological studles show
that some illiterate cultures use counting to perform difficult caleculations.
Many cultures seem to place heavy reliance on counting as the basic
arithmetic technique. And children employ counting as a technlque for
the solution of various arithmetic problems. Procedures of this type--
for example, finger counting--can be remarkably effective.

System 3. The child who attends school is exposed to more than
counting. He is taught gymbolic arithmetic. He encounters written sym—
bolism, algorithms, and mathematical principles. These cultural inventions
and discoveries are more powerful than counting and, if used properly, can
provide the child with greater efficiency in quantitative problem solving:

Consider now how the child deals with symbolic arithmetic.

Algorithms. A good deal of elementatry school education is devoted to
teaching the child to do addition, subtraction, multiplication, and division
with whole numbers. Typlcally, the teacher ghows the child a standard
algorithm for calculation (e.g., the borrowlng or regrouping method for
subtraction), and the child is expected to learn it. Often this happens
and the child does arithmetic in the standard waya. There is little to
say about this except that the successful use of a standard algorithm
doas not necessarily imply any kind of understanding. The child may add
a column of numbers by the conventional rule without knowing the
cationale for that procedure. In brief, it is evident that children often
caleulate in the ways they are taught, but understand little about them.

Invented procedures. While common, standard algorithms are not the
only methods “hich children use to caleulate. Much of children's computa-
tion imvolves invented procedures--methods which in part the child deviges
for himself and whieh in part are based onm school learning. Some invented
strateglies may be characterized by their use of previous knowledge or
techniques, that is, by the assimilation of current problems into existing
schemes. Addition by counting is one example of such an invented strategy.

Other invented methods seem to use combinations of procedures, some
of which may or may not have been learned in school. Carol, at B years 7
months of age, was asked to perforn some simple word problems. The inter=
viewer began by establishing that Carol knew that there were seven daye in
a week and 24 hours in a day. Then he asked, "how many hours in a week?"
and, "what do you do to get the answer!" Carol did not conceptualize the
problem in terms of multiplication. She replied, "just add them up,”
and wrote the following column of numbers.

165
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Then she used a combination of procedures to Bolve the problem. She
began by adding the first four 4's in the colum.

C: 4 and 4 45 8. 8 and 8 is 15.

Note that Carol added the first two 4's to get 8; {mplicitly, she
added the second two 4's to get 8§ and then added the first two sums to
get 16.

Then she continued.
¢: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 18, That's the 28.
So after adding B to get 16, Carol used a counting procedure to
reach 28.
Next she employed a different metheod.
€: 1 put the 8 down and then I carried the 2 up there. I brought
it upstairs.
224
24
24
24
24
24
24

8

C: Then all I have to do 18 . . . 8 x 2 . . .[she wrote down 16]
+ « «168.

80 Carol finished the problem by multiplying.

Instead of employing the conventional method of solution which she
had been taught, Carol assimilated the problem into her own conceptusl
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framework. She used a rather unique strategy, invelving a variety of
computational methods: First she regrouped and added, then she counted,
then she carried, and finally she multiplied. All this to find the sum
of a colum of numbers!

LELOTrS

Children often make mistakes in arithmetic. While the facts of failure
are obvious, their causes are not. Some propose that the child's failure
is due to "deficient intelligence" or to "low mathematical aptitude" or
"learning disability" or even to "cultural deprivaiion." We believe
that explanations of this type are overly vague, imprecise, usually not
helpful, and sometimes even dangerous. To explain the child's failure
one must examine his thought processes in some detall; one must attempt
to discover those mental procedures which underlie his mistakes. Research
shows that the child's failure is often the result of an organized procedure.

For example, Joe, 11 years of age, in grade 5 vas presented with the
following addition problem:

and Joe's response was simply to add Ydownward," Six and six is 12, carry
the one, ete. It is evident that Joe's mistake on thiz problem was the
result of his blind application of the usual addition algorithm to a sit-
uation where it is ipappropriate. Joe neglected to rearrange the numbers
in the problem presented to him. Joe's mistake was not simply the vesult
of random error, lack of memory for the addition facts, or even "low
intelligence" (whatever that is). Rather his error was the result of a
systematic misappllcation of a correct procedure. Later the interviewer
asked Joe to write down some numbers for an-addition problem: 19: 472;

3: 6,023; 71,845; 56.

Joe wrote:

19

472
6023
71,845




153

Joe'smiatake was obviously to line up the numbers from left te right
rather than right to left. Again we see that Joe's mistake iz not capricious.
Rather it is a result of a systematic application of an incorrect rule.

Other research (e.g., Erlvanger, 1973) confirms these observationa: Errors
often result from systematic strategies.

1. Like counting, children's formal arithmetic is typlcally permeated
by rule-governed organized activitiea., Even so simple an act as writing
8 number operates by rule. More complex activitles, like calculating a
gum, are characterized by a varlety of underlying organlzations.

2. Children's arithmetic is often based on ontogenetically prior
schemes and counting is the chief of these. Children add by counting and
mulediply by adding. In general, they asaimilate new problems into familiar
ways of doing things.

3. Children often solve arithmetic problems by invented procedures.
Children do not simply employ standard algoritnms as taught in school;
inatead they devise thelr own procedures. These usually rely in part on
assimilation into familiar schemes. This seems to be the way in which
children gradually learn written arithmetic, which of course can be more
powerful than oral counting methoda.

4. Children's mistakes are not capricious or the result of low
"{ntelligence" or "mathematical aptitude;" they are the products
of strategies.

Relations among the systems., Frequently, ihe thiee systema operate
concurrently in the individuval child. Often, however, there may be dis-
continuities among or within the systems. One wajor kind of discontinuity
involves formal writren algorithms and other procedurcs {e.g., mental
calculation, invented procedures, counting methods).

Churchill (1961) reports this observation concerning Caroline at 6
years of age. The teacher asked Caroline: "If you bought 24 bulbs and
81% of them were tulips, how many daffodils would you have?”

Caroline responded correctly, "eighteen."

"Mow you can wrlte down what you have done in your head?" Caroline
wrote:

O
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Then:

i
]
B

|

22
She then said, "But it cught to be eighteen, oughtn't 1c?"

Caroline could do a simple subtraction word problem in her head, but
she was not able to calculate it on paper. Further, she believed that
the mental subtraction givea the correct result, a2s indeed it does. There
ig a diserepancy between the child's solving the problenm in one mode
(mental calculation) and another (written calculation). Children seem
to have particular difficulty with the latter; they often cannot use
standard algorithms to calculate on paper while at the same time they
ean golve essentlally the same problems via alternative (nonwritten)
procedures.

Why does the child have se much trouble with wrltten work? Before
encountering written mathematics, most, if not all, children invent
senzible methods for dealing with arithmetie problems in the real vorld.
Then written symbolism—-those astrange marks on paper--is introduced, and
children need help in interpreting it. They need to see the connection
between what they can already do and the arbitrary representations, . They
have te learn the meaning of symbols-~that ias, how symbolism relates to

1f discontinuity amoung systems implies misunderstanding, the integra-
tion of systems involves understanding. Thus, one way in which children
"understand" a calculation is to connect it with or assimilate it into
a more elementary calculation procedurs like counting. For example, on

paper.

5; This is8 6 + 3 = 9 and I put 2 9 here, just remembering. Some
poeple say 6 + 3 = B: They get their answers wrong. But 6 + 3
is 9 'ecaude you can tell. . .adding 3 more 18 9. . .6, 7, B, 9.
[Counting on her fingers.)

Seslie knew that 6 + 3 = 9 because she could make a comnection between
this addition fact and her counting scheme. 5he interpreted addition in
terms of counting; she understood the former in terms of the latter.

To summarize:

1. There are often discontinuities among or within systems-—-parti-
cularly involving the child's written mathematics aud other areas of his
thinking.
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2. Understanding may be considered a comfortable integration between
what the child must learn (usually some aspect of symbolic mathematics)
and what he already knows (often an informal or invented procedure).

Eyplicgtigpsrth;;ggrning;P;@blemg

While deriving from the study of relatively "normal" children, the
theory described above seems to have implicationa fer the understanding
of learning difficulties in mathematics. Consider three propositions
conceening such difficulties and their study.

1. According to the theory outlined above, learning difficulties
in mathematics (or any other area) have a systematic basis in intellectual
processes. Learning difficulties result from orderly rules which produce
error, and involve gaps between powerful informal knowledge or invented
procedures and faulty written algorithms.

A corollary iz that errors are not capricious. Nor does it seem
useful to propose that they stem from mental entitles 1like deficient
"intelligence" or low "mathematical aptituda." Concepts like these are
both vague and impractical. No one has a clear theory of intelligence
or mathematical aptitude. Measurement of cither of these entities
suggests nothing about how remediation might procede.

2. There seems to be a clear basis for the remediation of learning
difficulties. Many, of not all, children possess relatively powerful
informal knowledge or invented strategles which may be used as a basis
for learning school mathematics. For example, before entering school,
children can use counting for rudimentary calculation. Such abtllities
are intellectual assets for child and teacher, both of whom can use the
child's informal knowledge as a foundation on which to build a sound
understanding of school mathemsties. A focus on the real abllities which
children bring with them to the task of coping with school arithmetic is
eapecially important for helping poor children, minority children, and
children with learning difficulties.

3, The clinical interview is an important tool for the study of
learning difficulties. Omne reason is that the clinical interview pro-
cedure (described earlier) is based on a sound theoretical ratiomale.
The clinical interview is not a preliminary or sloppy procedure which
needs to be standardized; it is a legitimate method in its own right.

A second reason 1s that the clinical method may help overcome the usual
difficulties associated with standard assessment procedures. There is
now a research literature (e.g., Cicourel, Jennings, Jennings, Leiter,
MacKay, Mehan, & Roth, 1974) documenting the difficulties children have
wlth standard tests-—-e.g., how children misinterpret the tests, are not
wotivated to take them, and how the tests do not measure what they claim
to. Anyone who has taken such tests knows, or should know, how bad they
are. The clinlcal interview may overcome many of these difficulties.

We have found it useful in dealing with children who do not test well by
other means (e.g., the case of Peter, in Ginsburg, 1972).
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Unanswered Questions

These principles require further investigation. One reason, as
pointed out above, 1s that they derive Irom the study of "normal”
children experlencing reslatively minor difficulties in their arithmetic
work. This raises the question of the extent to which the principles
apply to chiidren exhibiting severe difficulties in mathematical
thinking. For example, we need to know whether children with "learning
disabilities" nevertheless possess a relatively powerful syztem of
informal knowledge, Similarly, we need to know whether children
diagnosed as suffering from neurological deficits make errors which
result from systematic strategies and whether such children exhibit
gaps between adequate informal or invented procedures and faulty written
algorithms.

A second reason for further investigation is that the principles
are crude and based on a relatively small body of data. Consequently,
many questions remain open.

1. We need to have a clearer understanding of the intellectual
processes producing errors. Is it possible to develop a taxonomy of the
major types of processes leading to error?

2. We need a more detailed portrait of children's intellectual
assets. Relatively little is known of the informal strategies which
children acquire outside of achool for the purpose of calculation.

3, We need further investigation of the notlon that there exist
gaps between a child's informal knowledge and his school learning.
What makes written symbolic arithmetic so difficult for children to
asgimilate?

4. While there appears to be a sound rationale for the clinieal
method, and while some have used it with considerable success, we know
relatively little about the clinical interviever's mode of operation
and its strengths and weaknesses. What is the interviewer's strategy
and how effective is it?

One method for getting insight into these issues is the clinical
cognltive casze study.

The Clinical Cognitive Case Study

Description

The clinical cognitive case study involves the use of flexible
methods, particularly the clinieal interview, for the purpose of
investigating the intellectual roots of learning difficulties Iin
individual children. The approach is clinical in two senses: It employs
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the clineial interview method, and it is coneerned with the remediation
of severe learning difficulfies. The approach is cognitive in that it

The clinlcal-cognitive case study method may be fruitfully employed
to answer the queations posed above. It has several advantages:

1. 1t permits a test of our theory of arithmetical learning
difficulties on a population which exhibits them In extreme form. The
astudy of "normal" children may not be as useful from this point of view.

2. The clinical method permits the discovery of new phenomena and,
hence, way result in useful modifications and expansions of the theory.
Thus, the clinical approach may make it possible to identify new
intellectual sources of error in arithmeric. Standard tests de not

3. The case study method permits an examination of cognitive
complexity within the individugl. Por exacple, one may investigate
the unique pattern of discontinuities among different zaspects of the
child's knowledge. Standard experimental designs often have difficulty
in dealing with the "idiogrephic" (Allport's term).

4. Case studles of the type describud provide an opportunity for
the study of the clinfcal interviev metrod itgelf,

Hethod

Our first case studies were done as fellows. ' went to a loeal
Ithaca elementary school serving both middle- and lower-elass children
and asked a teacher of a cowbined third- and fourth-grade class for
those students who were having the most difficulties with mathematics.
We wanted to know nothlng about the children except that they were
having diffliculties. KNevertheless, the teacher could not keep from
telling us that all the children suffered from "perceptual problems."
At the time of testing we knew little about the kind of instruction
the children received except that to some externt they were using
Suppes' Sets and Numders text and were partlcipating in the IMS
programmed learning syatsw. We laterviewed sazch child care a week,
over a period of four to six weeks. DMost interviews wers recorded on
TV tape in a roowm adjolning the clasaroom. Ar the outmet of the inter-
vlews, we demonstrated the TV taping to each child so that he or she
wuld ba famillar with it. After the fivatr few minutesz, the children
seeped to ignore the TV camera which waz in full view throughout all
segajons. Jonsider first an laterview with Patty.

e
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Patry
Patty was first given a subtraction prablEmiigg which she did
correctly using the standard algorithm with —== "borrowing." She
wrote: 8 6 12 Then she did an additlon problem 226. She followed
L 3.9 +421
5 2 3 647

the standard algorithm except that her procedure was to count out loud
and on her fingers when she could not remember the relevant number factsa.
Thus, she added from right to left, remembering that 2 and 2 are four and
counting to determine that 4 and 2 are 6. Next she did 29. Again this

+ 39

68

involved the standard algorithm, with carrying, and was done in part by
counting on the fingera. Patty would give no rationale for the carrying
of the 1. All she could say was that it was wrong not to carry the 1 and
inatead place it on the bottom with the 6 and the 8.

These first few incidents reveal some basic things about Patty. Firse,
she was familiar with che common borrowing and carrying algorithm for
subtraction and additien, respectively. Second, she could execute these
fairly smoothly, at least under certain conditions -- specifically, when
relatively awall numbers, each having the same number of digits, were
involved, and when she could count on her fingers and therefore did not
have to rely on memory for number facte. Third, she did not seem to know
much about the theory of place value and hence could not explain why one
carries, although she could do it. Se far it does not seem as if Patty
had any particular difficulties --— perceptual or otherwise —- with arithmetic.

Then we have the following exrhange:

Interviewer 1 (Barbara Allardice): I'm going te give you another
problem. You seem to be doing pretty wcll adding. Suppose you have 29
again and 4.

Patty wrote 29

o + A4
69
I-1: What does it say right here?
P: 29 and 4
I-1: Are hew much?

P: 69
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This then was Patty's first error in the interview. She got a
wrong result (69) because she employed a wrong strategy. At this point
in the interview, a sensible hypothesis concerning the strategy is as
follows: When the addends have unequal numbers of digits, she lines them
up from left to right and then applies the standard additien algorithm,
with counting on the fingers, from right to left. The initial assess-
ment then was that Patty had a systematic but incorrect strategy which
leads to error.

At this point the teacher might wish to intervene and straighten out
Patty's incorrect method. But subsequent porfions of the interview shed
a different light on some of Patty's abilities.

I-1: Are you sure that 29 and 4 are 697
P Altogether?

I-1: Uh uh [yes]

F: No

I-1: How much are 29 and 47

Next Patty made a large number of tallies on the bottom of the page:

LT ete.

e appeared to count them, ar least scmetimes using her fingers. Then
e announced the result: 33.

Clinical interviewing is a highly tteoretical activity in which the
interviewer continually invents hypotheses and tests them. At this point
the interviewver's hypothesis--that is, her theory or assessment of Patty=-
was something like this: Patty has an incorrect strategy for written
addition of the type descrived above. At the same time she has an effective
strategy for performing addition when real objects—=<here tnsllies--are in-
volved. The correct strategy for objects is essentially to combine the
two groups and count the aggregate. fThere is a discontinuity of the type
deseribed earliar between written work and arithmetic with real objects.

We see that so far the assessment has depended heavily on the theore-
tical framework eleborated above. We have analyzed Patty's arithmetic
performance in terms of systematic formal processes which lead to errors
(the written algcrithm); systematic informal processes {(combining and
counting objects) which lead to successes; and the discontinuity between
the two.

The interviewer now tried to determine whether Patty placed more
confidence in the written procedure than in the coun:irg one.

I-1: 33. 0.K. How come this says 69 [polnting to Th= writtenm work]?

164
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P: Joops! Because you're mot doing it like that [pointing *. :he
tallies]. Oh, this iz wrong.

Apparently Patty saw that her answer of 69 was wrong, and that it
differed from the result obtained by counting. She changed the 69 to 33.
Patty seemed to have greater confidence in the result cbtalned from

courtting than frem written additien.

At this point the interviever decided to challenge Patty's mew
response (33). The interviewer offered a counter-suggestion to see how
firm was Patty's belief in her counting-derived result. Plaget often
uses such a counter-suggestion to test the ehild's confidence in a
verbalization.

I=1: How can you put a 3 here [referring to the second 3 in 33] 4if
it says 9 here [referring to the 9 in 29]7

Patty looked at what was mfitten—*—jg ==gnd changed it back to +§'g.
EX 69

P: That's 9 and that's gotta be 6. It's just that you're doing it
differently than that.

I-1z So you get a different ansver. )

P: Yesh. 'Cause you're adding all of this up together [weaning
the tallies]. .
You're not adding it all up altogether this way [pointing te
the wricten vaﬂ’j. You're putting the 9 down here and the 6
down here. 'Cause you're adding 2, 4 is 6 and 9 by itself and
that's 69.

I-1: So when you do it on paper you get 69 and if you do it vith the
1ittle marks you get hov many?

P: 33, Because you're adding all of it altogether. And you're
not doing it over here.

I-1: Suppose we had 29 of these 1ittle chips and put out 4 more.
Would vwe get 33 or 697

P: i3

I-1: How do you know?

P: Because 1 did it down here and I added 4 more onts i€ [points
to the tallies on the bottom of the pagel.

I-1: 0.K. So that means these ehips would be like these lines.

P: = Yes.

I-1: What would be another thing that would be like this [the writien

problen] where I conld get 697
P: There ain't no way, I don't think.

So Patty knew that several ways of counting objects (tallles, ﬁhips)
were equivalent but could think of nothing similar to the written problem.

I-1: Let's see. You have 29 and 4 and you get t3. Suppose you had 30,
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80 you had 1 more here, and 3, so you have 1 lesa there. Would
you still get 697

The interviewer's intention was to present Patty with a situation
producing a contradiction. 30 + 3 should yield the same sum as 29 + 4.
30 had 1 more than 29 but 3 had leas than 4. Yet by Patty's method she
ghould 3t a different result for 29 tban 30 . Would Patty see the

+=4 +3

contradiction?

P: No. 'Cause you'd get bigger than 69.
30
+h
70

She did 30 + 4 instead of 30 + 3 and wrote:

P: Yep. I told you you'd get more than 69.

Up to this point ve seem to have evidence to support the hypothesis
that Patty uses a combining and counting method to get correct sums whefh
real objects are imvolved and that she uses an incorrect algorithm——
lining up on the left with uneven numbers of digits--when written numbers
are involved. The faulty algorithm is used iu at least two cases.

At this point a second interviewer (the present writer) who had been
observing the interaction wanted to test the generality of Patty's written
algorithm. How would Patty react to extreme cases? -

1=2: 0.K. 1Let me try something, Patty. Can you write down for me
100 + 17

100

+1

200

1-2: 100 plus 1, huh? Do you think that's right? Got any other way
of doing itr?

P: N». Unless the one 1s on the wrong side. Unless the one's
supposed to be thers [points to the one's column].

1=2: Vhere's the one supposed to be?

P: 1 think it"s supposed to be there [points to the hundred's
column].

I-2: You think it"s supposed to be there, huh? O0.K. Let's do
another one. What about 10 plus 17

Patty wrote and said: Zero, zero, and two. It would be two hundred.:

Patty wrote +§Q and said: That's zero and that's 2. 20,
o
1-2: 20, think that's right?

P: Yeah.
I-2: Got any other way of doing it?
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At this point it was clear that Patty's written method gemeralized

widely. Now the interviewer wanted to get Patty to See the discrepancy
between her written and counting methods.

gnt

I-2: Well, suppose you couldn't use paper at all and 1 said how much
is 10 plus 17

P: I'd count on my fingers.

I-2: VWhy don't you do it?

Patty held up 10 fingers and stared at them.

P: You have 10 [looking at the fingers]. You put the zero on the
bottom [draws a zero with her finger].

I-2: Just use your fingers now.

P: Then you put 2 and you add 1 and 1 and it'a 2.

Patty seemed unable to count 10 and 1 on her fingers. Instead she
perseverated in using the written procedure, apparently doing "in
her head" something very much like 10
L
20

I-2: What about on your fingers? Show me how you do it on your
fingers. You can use my fingers too [1=2 puts both hands on
table]. Put out your fingers too.

P: You put the zero on.

I-2: HNo, I dou't see any zeros. All I see are these 1ittle fingers.
Never mind zeros. )

P. That's hard. [looks as though thinking intently]

1-2: [ro 1-1] Barbara, put out your fingers, too. Now you have all
kinds of fingers to work with, Patiy. How you figure out how
nuci: 18 10 plus ona.

P: Yo have to put & zere underneath.

I-2: I dva't see any zero at all. All T see asre these fingers.

P: 0.%. If you waut wero you have to take those ten avay [points
:m I-7's Fingers]. You put zero, then you have 1 and 1 left
and you add them up and you get 2. So it's 20.

I-2: Car you do it without zeros?

P: Ner.

“atty's perseveration was very strong. S5he could not seenm to
away from using the incorrect algorithm.

I-1: How about with little marks on your paper like you did here?
How can you make 10 and 1 on the paper?

In other words, could Patty use tallies to solve the problem of 10
and 1?7 Patty made 10 tallies.
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P: [whispering] 1, Z . . . 10 and then put one [makes another mark].

I-l: How many do you have altogether?

P: Eleven

She made a sweeplng motion with her hand as 1f to indicate that she
meant to combire the two Sets.

I-1: Eleven?

P: Yeah. Altogether.

This incident seems to support the hypothesis that Patty uses one
procedare (the incorrect algorithm) for written numbers and another pro=-
cedure (combining and counting) for real objects (ineluding tallies).
But consider the following episode.

I-2: Eleven altogether. What about . . . Let's do this . . . We've
got.. .There are 10 of these [chips] and here's one more. How
many do you think there are altogether?

P: Altogether, it would be 11.

I-2: O.K. What about 10 plus one, not altogether, but plua?

B Then you'd have to put 20. i o -

I-2; Then vou'd have 20, I see. What if we write down on paper,
here's 20, now I write down another 1, and you want to £ind
out how much the 20 and the 1 are altogether.

The interviewer wrote 20 1 placing the numbers side by side.

P: It's 21.
I-2: 0.,K., now what would 20 plus 1 be?
P: Twenty plus one? She wrote 20

£

30

This behavior indicates that the original hypothesis was wrong. she
does not just use the counting strategy with real objects and use the
written algorithm with numerals. '"7tters are more complex. Perhaps we
can state a new hypothesis as foliwws. The erucial distinction 1s not
so much betveen numerals and Teal objects as between the word "altogether"
with the strategy it elicits and the word "plus” with its strategy.
"Altogether" seems to elicit the strategy of combining real objects and
counting them, or counting on when numerals are involved. 'Plus” seems
to elieit the incorrect addicion algorithm when both numerals and real
objects are involved. "Altogethex" seems to be the child's natural word--
used in her everyday life-—vhich is associated with an informal sirategy
used in everyday life, viz., combining and counting. By contrast, "plus®
is a school word, associated with a formal algorithm which happens to be
vwrong.
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While this hypothesia seems reasonable, further evidence 18 necessary
to teat it., The interviewer would need to determine if counting on is
really used vith numerals, if the strategies generalize to different kinas
ef numbers, etc.

This in the first interview with Patty. It teaches us several things.

1. Patty's maia mistakes in addition are the result of a systematic
strategy. This confirms our hypothesis that errors generally result from
organized patterns of thought.

2, Patty shows important stremgths. In particular, she can use a
sensible strategy--combining and counting—-to do addition. 5he shous
o evidence of severe problems of any sort, imcluding perceptual problens.

3. Our notlion of a gap between different gystems--Patty's incorrect

algorithm and her counting and combining strategy--seems useful.

4. At the same time, the case study suggests that the theory needs
to be expanded so as to include heavier concentration on linguistic factors.
In Patty's case, the discontinuity was not betveen approa hes to real objecta
and approaches to written work. Rather, for Patty, different worda elicited
different strategles. The case study thus Suggests a comparison of the
child's everyday mathematical words with those taught in school.

5. 1In general, the clinical case study method seems promising. It
seems to have the flexibility to yleld a rich portrait of the individual
child experiencing learning difficulties. This portrait seems to do
justice to the complexity of mathematical thinking and provide insight
into both strengths and weaknesses. One measure of its success is that
the case study ylelds information which suggests concrete teaching
stravegles. Thus, the teacher might choose te help Patty with addition
by building on her strength--the counting and combining strategy. In-
stead of merely telling Patty to line vp numbers differently, the teacher
might help her to see the relation between her "altogether strategy” and
the written algorithm. Then perhapa she can learn to see how and why

one needs to line up numbers properly in the algorithm.

6. The case setudy illustrates a basic feiture of the eclinical inter-
view method. The clinical interview is a hypothesis testing procedure.
It is analogous to a series of experiments in the case of one child.
Thus, to test the hypothesis that the causative factor is language ("plus"
va. "altogether") and not type of problem (real vs. written), the
interviever held type of problem constant and varied language. Thus,
he did real object 'plus" vs. "altogether,” and then written number "'plus”
vs. "altogether.” This is equivalent to a 2 x 2 factorial design, with
of course only one subject. The clinical method thus attempts to
manipulate the independent variable so as to produce results which allow
reasonable inferences concerning various hypotheses.
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Stacy. Consider now the case of Stacy, also a third grader, whose
behavior illustrates the power of the clinical interview techaique to
identify Intellectual strengths in a child who seems almost retarded at
the outset. In the first session, I was the interviewer.

I: Can you tell me first what kind of work you are doing in math
now?

Stacy responded, and continued to respond throughout the session, im
a siow, quiet voice. Her manner was extremely diffident——even lethargile
and depressed.

§: ZLots of things. )

I: You write stuff on paper. Can you shov me what stuff you write?

§: Papers like math [she then began to write a sentence, mot just

numerals]. :

I: Can you read that?

$: Jimmy had 8 cats; he gave Brian 2 cats.

I: What comes next?

§: How many does Jimmy have?

I: How many do you think he hasa?

8: 5.
1: How did you know that?
§: He had 8, and 2 and 1.

y It was very hard to get Stacy to respond-=to indicate how she had
done the problenm.
I: How did you do that, Stacy? He had & cats, and he gave Brian

2 cats. How many did he have left?

§: 5. He had 5 and 2 others got avay.

I: So how many did he have left?

§: B cats and I count back.

i: How do you count back?

§: 8 and I got 3 more and then I took 2 away.

I: What do you mean 3 more? Let's start from the beginning.
Show me how you count back.

§: 8, 7, 6, 5, 4. He had 4 left.

I: Now did you know to stop at 47 You went 8, 7, 6, 5, 4. How

did you know to stop at 47
§: Because there's 7.

This initial episode gives the flavor of the interaction with Stacy.
She posed herself a very simple problem with which a third grader ought
te have no difficulty. Indeed, the problem was in words, rather than
written numerals, and involved a simple story: If Jimmy had 8 cats and
gave avay 2, how many would be left? 1In response to this problem,
Stacy did several things. The most obvious 1s that she gave several
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‘different wrong answers. She changed her response geveral times. B5She

- Indicated that her method of solution was by counting backward. But her

" hehavior did not seem to be a simple product of this or any oth=r strategy.
. Indeed, her responses were diserganized and chaotic: it 1s hard to see

. how any underlying organization could have produced them. In brief, the

' 4ndtdal episode suggested that Stacy gave wrong ansvers to extremely
‘atmple problem:. and that she seemed to have mno organized method for pro-

- ducing answers.

) The remainder of the first interview showed that Stacy's work vas on

. an extremely low level. The interviever then gave her a very simple
-problem. If there were 4 dogs and 2 ran away, how many would be left?

. Staey gave the corre~t answer. When asked how she did it, she replied
""Bacause 2 and 2 ‘s 4." So Stacy seemed to do subtraction by remembering

‘ gome relevant addition facts. Asked to solve this problem by counting
backwards, she could not do so; she merely persevered in the addition or
produced appavently choatic, senseless behavior.

How much are 3 apples and 4 apples? Stacy answered, &ix. "because 3 and
4 18 6." Thua, the wrong answer is apparently the result of faulty
memory of the addition facts. Asked to do the problem by counting.
Stacy merely shrugged her shoulder and. shock her head--behavior which
she often displayed when she did not know what to do. HNext the inter-

" vlewer asked Stacy: "How much are 2 oranges and one more? She got the
answer right, appacently because she remembered the number facts. That
was the ead of the first interview.

Next the interviewer gave Stacy some simple addition problems. First,

The initial results zugzested that Stacy could do very iittle. She
was struggling with problems which should have been trivially simple
for a child her age., About all she could do was occasionally remember
some number facts. GShe seemed unable to use counting procedures—-which,

a8 we have aeen, are usually children's method of preference.

After the first interview, we were very discouraged. We seemed to
have encountered a child=~the first we had seen-~who had almost nothing
going for her. The initial results led us to formulate the following
questions: Is she retarded? Can she hear properly? Was she very
pervous or intimidated by the interviewer? Can she eonserve? Can she
coumt? How would she do with concrete objects?

Note that some of the questions refer to her motivation and some
to her cognitive abilities. We wanted to know esgentially whether the
testing situation interfered with her true competemce or whether she
had much of any competence to begin with. Usually we assume that
elementary school children's difficulty with mathematics is not due to
inadequacy at the Piagetlan stage of concrete operations. But Stacy
did so badly that we could not assume this. Similarly, we could not

- apsume that Stacy knew the counting numbers up to a reascnable 1inmit.
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Technical difficulties prevented the videotaping of the second inter-
view, conducted by Barbara Allardice. ("Techuical difficulties" means
that the TV broke down, which often happens.) Nevertheless, Allardice
reports that Stacy had no difficulty in conserving number nor in counting
up to at least 80, There is some evidence then that Stacy had available
some fundamental cognitive tools., She was probably im the concrete
operational period, and she had reasonable knowledge of the counting
numbers.

1 by Barbara Allardice, was devoted
real objects. The interviewer

The third interview, also d

c hr

m a larger plle. S5tacy took 7, one
1
i

a
ta ﬂiSCDVEfiﬁg what Sgacy cou

it a tir : ine. The interviewer then asked
her to gEE 3 more. Stacy did so, putting t'iem in & line under the first
ag shown.

XXX
I: 0.K. How many do you have altogether now?
§: Ten.
I: Ten., Very good. How did you figure that out?
5: .Just counted them.
I: Counted them up. O0.K. Now suppose we have one more. Can you
- - get one more chip? How many do we have altogether now?
5% Eleven.
I: Eleven. And how about one more. How many do we have now?
§: Twelve.
I: How come you did that so fast?
5: There's ele ven, then I count twelve.
I: You count 12. O0.K. How about getting 2 more?
§: [quickly] 14.
I: TFourteen. O0.K. How are you doing that so fast? What are you

doing in your head? Are you doing something, saying some
numbers to yourself?
§: 1 say 13, 14, like that.

We see then that Stacy could enumerate sets; could remember from one

situation to the next; could add by counting on when real objects are
involved and when the numbers are small. Lstét in the interview she

demonstrated an ability to work with larger numberz. She was able to
add 10 and 12 chips.

interviewer wanted to see if Stacy could do addition in the

e

eal objects. The interviewer took 4 chips, onz at a time,

d them behind a screen. S5he did the same with another 3 ;hips;
tified the number in each set. All Stacy could see was each chip
iﬂd the screen, How many altogether? Stacy answered correctly.
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Then the iuterviewer presented Stacy with 4 and 5 chips in the same manner.
Again, she answered correctly. How did she do it? Previously she had
denied counting on fingera. Probably the denial vas the result of her

_ teacher's styong opposition to such metheds. Now, hovever, Stacy admitted

to solving the problem by counting. She was able to do 6 + 35 (after an
initial error), 10 + &, and 14 + 6. She seemed to count on her fingers,
aometimes starting from 1, and sometimes counting on from the larger number.
Apparently, Stacy could solve problems invelving absent objects, at least
when she had the opportunity to see them, however fleetingly, before they
were hidden. Is this because smeeing the objects helps her to form the
relevant imagery to use when they are absent?

What can we conclude about Stacy from the evidence presented so far?
Initially, she did quite poéorly; at the outset, her behavior seemed chaotic
and she seemed retarded. There are several possible explanations of her
initial difficulty. Perhaps it was largely emotional in character: She
may have been intimidated by the interviewer. It is also possible, how-
ever, that the difficulty was intellectual: Stacy may have had difficulty
in dealing with story material (8 cats, etc.) in the complete absence of
real objects. Of course, it may well be that a combination of emotional
and intellectual factors contributed to her problem; indeed, I suspect
that this last hypotheais is most probable. Whatever its source, Stacy's
difficulcy was real and pervasive. Stacy's teacher felt that she had
perhaps the most difficulty of anyone in the class, that she lacked even
basic concepts like one-to-one correspondence, and that she needed the
most help. Both the teacher and the interviewer (at least after the first
session) concurred in seeing Stacy asg severly deficient in mathematical
ability, whatever the cause of the deficiemcy may have been.

But soon the clinical interview began to reveal some of Stacy's
strengthe. Perhaps this process was facilitated by the interviewer's
encouragement of Stacy's counting on the fingers, which her teacher had
discouraged. In any event, Stacy showed that she could perform addition
by c-ubining and counting or by counting on, when real objects were in=-
volved. She could also deal with absent objects when she was given some
concrete supports. As her intéllectual strengths emerged, Stacy lost
much of the diffidence that characterized her earlder work: GShe became
more sssertive, and stopped shrugging her shoulders and saying, "I don't
know."

This case study teaches us several things.

i. Our notion of informal knowledge--particularly ecounting procedures=-
is again extremely useful in interpreting children's mathematics.

2. A focus on the child's intellectual assets--especially his infor-
mal knowledge==helps to direct the remediation effort. The case study
approach identifies strengths and suggests areas where instruction might
be effective and therefore where emotional difficulties might be alleviated.

It seems clear that Stacy needed a good deal of work with counting--including Lk
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finger counting--before she could te on to more formal procedures. Further,
about the last thing she needed was the kind of set theoretic verbalisms
encountered in her textbook.

3. The clinical interview method can be effective in making contact
with children who are difficult to reach by other means. Thus, the
interview was effective in overcoming Stacy's initial shyness and anxiety
and In demonstrating that there was a good deal she cculd do.

Conclusions

Theory

The theory we have proposed seems to have some utility. It seems
to give a useful analysis of the complexity of children’s mathematical
work, and seems to provide insight inte problems of learning difficulty.
One measure of the theory's value is its ability to suggest practieal
remediation efforts for dealing with learning difficulty. The case
study method seems to confirm the theory's main principles and to suggest
intereasting directions for elaboration of the theory.

Case Study Method

The clinical cognitive case study method appears to be a useful tech=
nique for the study of learning difficulties and mathematical thinking
generally. The method seems successful in its effortas to focus directly
on intellectual processes involved in academic work and to discover new
phenomena for further investigation. The method seems useful in establish-

ing contact with children who 'are difficult to reach by other means. While
the clinical approach may be more accurate in this respect.

The elinical procedure is based on sound theoretical principles.
Also, it is a subtle investigatory activity, involving the use of quasi-
experimental techinques in a hypothesis-testing procadure. Given the
general success of clinical techniques In psychology--e.g., the work of
both Freud and Piaget--one must take them quite seriously. The clinical
cage atudy sppears to be a viable procedure for the study of mathematical
thinking.

At the samec time, there exist many unanswered questions with respect
to the clinleal approach. We require investigations of such issues as
the reliability of the technique and the extent to which interviewer
expectancies can blas the results. It is necessary, however, to keep
these possible difficulties in perspective: Standardized tests may
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suffer from moFe severe difficiencies--e.g., their tendency to misrepre-
gent children's competence,

Implications For Research

The main implication of our work for research in mathematics education
is that ve require a greater emphasis on the flexible observation of
children's mathematical thinking. We need as direct a viev as possible of
how children solve or fail to solve mathematical problems. We require
techniques which permit the unexpected to happen and let us see 1it. iIf
we look closely and directly at how children do mathematics, wa will
often be surprised at what ve see. We believe that the clinical cogni-
tive study can help to clarify our perception,

H
-3




171

References

Churchill, E. M. Counting and measuring. Toronto: University of

Toronto Press, 196l.

cicourel, A. V. Jennings, E. H., Jennings, 5. H. M., Ledter, K. C. W.,
MacKay, R., Mehan, H., & Roth, D. R. Language use and school
performance. New York: Academic Press, 1974.

Erlwanger, 5. H. Benny's conception Of rules ard answars in IPI mathe-
mathematics. Journal of Children's Mathe /.. ‘=havior, 1973,
1, 7-26. ) ) T -

Ginsburg, H. zov_myih of o i glewoad Cliffs, New

Jersey: Prentlce izl

Ginsburg, B. Young children's inforwal knowladge of mathematica.
Journal of Children's Mathcwatical Bebavior, in press. (a)

Ginsburg, H. TLe psychology of arithmetic thinking. Journal of
Children's Mathematical Behavior, in press. (b)

Ginsburg, H., & Roslowski, B. Cognitive development. In M. R. Rosenzwelig
& L. W. Porter (Eds.), Annual Review of Psychology, 1976, 27, 29-62.

Ginsburg, K., & Opper, S. Piaget's theory of intellectual development,
Englewood Cliffs, New Jersey: Prentice-Hall, 1969.

Labov, W. Language in the inmer city. Philadelphia: University of

Pennaylvania Press, 1972.

BRosia, R. T. Gold medallions: The aritbmeilc calculations of an
illiterate. Council on Anthropology and Education Newsletter,
1973, 4, 1-9.

176

O

ERIC

Aruitoxt provided by Eic:



Cn a Model for Teachirng
Young Children Hﬂthgmstical
Leslie P. Steffe

University of Georgia

The basic purpose of this paper 1s to present a model that may be
useful in teaching mathematical concepts. The relestlionship of the model
to teaching mathematics i1s analogous to the relationship of a blisprint
to building a house. The principles that architects of biueprints use
generally are taken from mathematics and frowm the sciences. The architect
utilizes these principles in juxtaposition or in synthesis to formulate &
plan, and the builder uses the blueprint to guide him in the construction
of the house. But, the blueprint in no way giscantees the quality of the
bullder's work. In a similar way, psychological prineiples are used in
the construction of the model presented for teaching mathematical concepis.
The model, however, in uno way guarantees the quality of the learning of
the children, for that is largely influenced by the quality of the wvork
of the teacher and how well the model is interpreted. To ald in the
interpretation of the model, the three mathematical concepts of relatiom,
class, and number (both cardinal and ordinal) are discussed prior to
the presentstion of the model, and known ways which these concepts develop
in children are also presented. After these two tasks are completed,
the model for teaching mathematical concepts is presented.

concerning model-building for mathematical instruction is in.order. A
model of mathematical instructlion can be useful as new informatior about
the mathematical instruetion may be obtained. Ultimately, however, the
model must be tested in real learning or imatructional settings in order
that (a) basic assumptions of the model may be tested, (b) the utility
of the model determined, and (c) aspects of mathematical instruction te
which the model is not applicable clarified.

The model presented 1s a cognitive model biused on developmental
principles elaborated in the paper by Charles D. Smock in this collectilonm.
It 18 an attempt to translate those principles inte primciples of mathe-
matical instruction. No claim is made that the inatructienal model has
been shown to be valid on an empirical basis.

1An earlier version of this paper appeared in a teachers strategy manual
written for the Ceorgla Follow Through Program, Charles D. Smock, Director.
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Teachers of mathematics often to oot perceive the poteatial of
cognitive development theory for teaching mathematies. But 1f all a
child learned about mathematics had to be taught through school instruc-
tion, education in mathematice would be forced to be much more efficient
than it now is. It is a mistake to assume that children begin school
with 1ittle or no mathematical knowledge and acquire such nowledge from
school instruction alone. Many mathematical concepts have been showm to
develop through the interaction of children with their total environment .
2nd can be considered part of the basic intelligence of children at certain
stages of their intellectusl growth. I i3 imporrant for teachers to Imow
the basic stages of intellectual growth of ckildren, ways children
concelve of mathematical concepts at different stages, and how children o
shift from one stage to another for the following reasona:

1. Ia many cases, what & ehild learns from a particular bit of )
instruction is influenced by the stage of intellectual growth of the child.

2. Often a child does not think about a particular tople in the
same way as does an adult. An adult, not knowing this, may inhibit the
child's attempt to understand by imposing thinking patterns om the child
in a highly eymbolic form. ’

3, Because stages of intellectual growth are characterized by using
mathematical-like concepts, an adult is able to pgain insight into the
thinking of the child in mathematical situationa by understanding stages
of intellectual growth.

4, Insight can be gained in teaching mathematical concepts from
knowing how children shift from one stage to another.

The stage of preoperational representation begins around 18 months
of age and lasts until around six to eeven years of age. Obviously,
dramatic changes take place in children during this time—-the most
dramatic perhaps is language development. The upper end (4~6 years of
age) of the stage is of concern for mathematies teaching in preschool or
early elementary school. The stage of comcrete operations begins around
aix to seven years of age and lasts until about 11-12 years of age. It
must be emphasized that the age break between the two stages varies from
child to child. One cannot expect age to determine exactly the stage of
the child. Some children du not reach the stage of concrete operations
until after eight years of age, whereas some children may reach the .
stage as early as five years of age. Every child goes through the stages
in the same order bt not necessarily at the same rate. In the following. -
material, the stages of intellectual growth are presented by selecting
particular mathematical concepts and describing known ways that childrem
deal with the concepts.
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Relations

Children's_Conception of One-to-One Corrsapondence

shildren in the stage of preoperational representation do not conceive
of the relations in the same way as do older children. Some examples are
given of how children at the stage of preoperational representation have
difficulty.

Example 1: Establishing a correspondence. Imagine that two children
drop beans into one jar (Figure 1) in such a way that for eark lima bean
one child drops, the other drops a navy bean. Suppose the lima beans
are exhausted before the navy beanas. TIrom the action of placing beans
inte the jars, the children should know that (a) each child put as many
beans in the jar as the other, (b) the child who has navy beans remaining
has more than the other, and (c¢) the child who has lima beans has fewer
beans than the ather. The children should also realize that the navy
berpn consist of the remainlng navy beans as well as the pnavy besns in
the jur. Five- and six-year-old children (especially the five-year-olds)
have difficulty interrelating such knowledge. They may think that the
child with navy beans has more beans in the jar than the other child
beeaus: they may not di=ztinguish the navy beans in _the Jar from those

remaining and make the comparisons of the beans ;E,EEE;,ég based on those

U‘

ﬁu oo0
\

Figure 1

This example is important inm cases where children are being taught
to order the whole numbers. At least two distinect varieties of tasks
are used in establishinpg, say, that eight is less than nine and that
nine is greater than eight. On the one hand, two distinct collections

of objects, one of elght and one of nine, are presented te the child whe
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is required to match the objects of the two collections one-to-one.
Based on this matching, the child is axpected to realize that elight
objects match one~to-one to a subeollection of the nine objects; that
there are more objecta in a collection of aine objects than in any one
of its subecoilcctions; and finally, based on these two reasons, nine
objects arz mere than eight objects. Except for context, this ordering
task is analogous to the one presented in the previcus example. Children
at the stage of preoperational representation have difficulty in
conceiving of a total collection and two of its subcollections at the
eame tims. If they think of the total collection, they may lose sight
of the subcollectiona, and Lif they think of the subcoilections, they
may lose sight of the total collectien and make the arrors deacribed in
the example of placing beans in the jar.

on the other hand, if one collection of nine objects is presented to
a child who is required to count them, that nine is more than eight is
egtablished through noting that eight is the number of objects in a
subcollection of nine objects. Here again, the child is expected to
realize that any subcollection of a collection of objects has fewer
objects than does the original collection.

Example 2: Comnserving the relation. To say that a child should be
able to determine the correct matching relations between two collectiors
of objects would be artificial if the relation, once it is determined,
could not be couserved by the child. Consider the case where a child
constructs a matching as pictured in Figure 2 and says that there are
more circles than stars, Then if the stars are altered in full view of
the child to the display, as in Figure 3, and the child thinks that

A& Rk
000000
Figure 2
there are more stars than circles, it would not be correct to say that he

can determine a matching relation between two collections of objects
except in a most superficial manner.

£ ¥ ¥ ¥ *k
00000

Figure 3
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Example 3: Effects of perception. Imagine an experimental setting
where two transparent glasses are present of the same size and shape with
two plles of beads: blue beads and red beadas. The child and the experi-
menter place beads in different glasasea at the same time-=the experimenter
blue beads and the child red beads—-one after the other imtil the two
glasses are full and tcr:gin the same number of beads. The child ~ays,
"They're both the same." When asked how he knows, the child repifss,
"Because they are the same." The experimenter and child then ta:. the
beads, bead by tead, simv’l. au=cusly from the two glass2s and place them
inis two ocher glasses, 5. tulier but narvower than the firast glasses and
one shorter but wider thsn the first glasses. After completion, the child
is asked whether there are now the same amount in both He responds,

"No, here (the taller glass) therc are more because ft's big."

Figure 4

The- - weswonsea are characteristic of the stage of precperational
repregenta. o,  The perceptual features of the situation completely over-
ride the uiyge gained through the correapondence, and the correapondence
E L 7z in the face of the beads having differing shapes in the
i0 final containers. The relative heights of the blue beads and red
beads serve aw the basis for the final judgement that thers were more
blue beads than red beads. One could argue that no correapondence
exiated for the child when the beads were in the identically shaped
: ara=-that the initial judgement of equality of the beads was based

: -hape and aize of the two glasses. The action of placing beads
Bimulluneausly into two glasses did not result in a quantifying coerrespon-
dence for the child. In the experiment, then, the quantitative judgementa
made by the children could be categorized as gross quantitative judgements.

Example 4: Correspondence in "transitio.zl" ehildren. Imagine an
Exﬂer;meﬂﬁﬂl setting where the child is asked to ‘select the same number
of candizs as there are in a row of seven candies. Various typers of
responses are possible on the part of the c¢hild in rhe atage of preoper=-
ational representation. Quite often such children ¢il1 make a row of
candies the same length as the given row t .~ ignore the number of candies
in the row they conatruct. The placement ~. the correct number of candies
inn their row 1s purely an accldent. These children do not coordinate the
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leng *1 of the row of their candies with the density of the o ‘{es in

the row. Tay focus on only one feature {length) of the iy ion at

a time. L: w.:ld b2 a mistake to say these childron have & oo “.aptien

of one-tyu-.nz -ori.spondence or even atiempt to construct Ong. They react
purely on the perceptual features of the configuration of the candies
without coordination of those features.

Another level of responses has been identified which goss beyond
those above. Children may coordinate the length and density of the two
rows of candles, making two rows ol =qual leagl. and demsity, bui not
conserve the one-to-one correspondence 1f one of the rows is spaced
close together or further apart. Such children do believe that if the
two rows of «ndies are identically spaced there will be the same number
in each row. Consider the child who made a row of alx candles correspond
te a given row of slx (the wodel row) by spacing them equally with the
model row, but when his row was crowvded together, he then thought there
were more in the model row. When asked to make the two rows have the
same number »i .sndies agair, he spaced his row identical to the model
row, not adding nor taking any candies away from either row. This child
was definitely .ore advanced than the children at the stage of preoper-
ational vepresectstion (umo are only capable of gross quantitative
comparison), but dees not fully comprehend the concept of one-to-one
porrespendence. His concepr 18 T itional fuom essentially no concept
t+ an opecational cvucept of gne-to-one correapondence. This child's
concept of cne-to-one iz =aid to be in a transitional stage.

Example 5: vperational one-to-one correspondence. Imagine a situa-
tion of five toy cars corresponding to five toy garages, the red car in
the red garage, the blue car i the blue garage, etc. The one-to-one
correspondence is based on the color of the cars and garages. It is
qualitative in nature because it iz based on the quallit’es of the elements.
But does 1t go beyond a qualitative oune-to-one correspondence? It rould
be an intuitive or an opefrational one~to-one correspondence, intultive
1f it is not conserved and op:rational f it is. Being operational means
the elements az2 cnnsiderad as wnita--t+.¢ i3, any car can be placed in
any garage==the calor is {rrelevant to the fact that .here are the same
aumber of cars == garages. A glven car can be considered o be a place-
holder for amyv sther car. They can be excFanged without a loss in the
one-to-one correspoendence.

Example 6: Transitjvity and or:e;z0; ;v ygpondence. Knowing
that three levels of one-to-one corresponden st for children iz
important in planning leatning activities for children involving ope-
cne corrsspondence. The three levzls are (a) no one-to-one correspondence,
(b) ‘ntuitive one-to-one correspondence, and (c) cperational ‘one-to-one
correspondence.

Conslder .7z following problem. Twelve buttons aa on a table in
front of a cardboard box frow which the top and front are removed. A
partition divides the box inte halves; tea checkers are attached to

the bottom of the tux on one side of the partition, and t-.m tiles are
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attached to the bottom of the box on the other side of the partition.
The child iz asked to find out if there are as many checkers as tiles by
uging the .#:wug. Following are protocols of two children who tried
the proble:

Deb: (5 years, 11 months).

Experimentar: Deb, find out 1if there's as many checkers here as
tiles here. Use th buttons to find outr (Deb
pairs buttons and 2.)

Deb: Ain't no buttons over there.
Experimenter: No. We just have one pile of buttons.
Deb: Yellow ones is my favorite color=-i got a good idea I can dJdo.
“uperimentay: What is that?
Deb: Wa’'  a minute--put two on each one of 'em.
Experiu_uter: What arz you doing now?
Deb: 1 had to pick up the two lemon ones,
Exp: -imenter: The two lemon
Yea.
.lmenter: What are you delny with the buttons now?

cb: Pairing them. .
Experimenter: Pairing them with what?
Deb: With the tiles and the checkers.
Experimenter: Are there as many checkers as tilesa?

Deb: HNo.

[l

xperimenter: How can you tell that?

Deb: Cause these two, these two, these two, these two are missing.
Yes.

Experimenter: Yes, there is?

]
o'y}
: St
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Experimenter: Well now, vhen you had all the buttons ove. here
except the two lemon ones, were there as many buttons
in there aa checkers’

Experimenter: But when you haJd thes two lemon omes here and had all
the other buttons in there with the checkers, were
there as many buttons as checkers?

Deb: Yes. HNo.

Evperimenter: Let's put them back to see.

Diab: Oh, yes.

Experimenter: All right. Suppose you hand me the two lemon ones,
and suppose I keep them for you. Now, I wonder if
there’s as many buttons as tiles?

Deb: Let me see. BSee 7y new shoes. You got your Easter shoes?

Experimenter: No, I don't have my Easter shoes.

Deb: I don't have mine either. It's as many.

Experimenter: There nare ag many buttons as tiles? (Nod, indicating
yes.) Okay, are there as many checkers as tiles?

De'- T don't know because I can't palr the checkers and the tiles
together.

Experimenter: You can't?

Experimenter: Did you have as mamy huruons as tiles?
Deb: Yes.

Experimenter: Okay, how about the checkers and tiles?

Deb: I don't know. (Then Deb points one finger at a checker while
pointing another finger at a tile. She then announces:) Yes.

Experimenter: How do you know?
1

DPeb: Cause I point my finger at each of 'em,

Experimenter: 1 see.

idt
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Tom: (5i% years, 0 months).

Experimenter: What are these objects, Tom?

Tom: Chackers.

Experimenter: These.

Tom: Tiles.

Experimenter: Tom, Iwant you to find out if there ar< as many
checkers as tiles. You may use the buttons to fimd
out if there are as many checkers as riles. Okay,
how can you use the buttons?

Tom: Pair 'em—-

Experimenter: Tom, tell me what you have done.

Tom: Paired the checkers with the buttons.

Experimenter: What did you find out?

Tom: As many buttons as checkers.

Experimenter: But I want to find out if there are as many checkers
ag tiles. Can you do that using the buttons? (Tom
pairs buttons and checkers.) Tell me what you have now.

Tom: As wmany tiles &. checkers.

Experimenter: All right, how do you know that?

Tom: Cauge both of these buttons don't have a checker and a tile for
a partner.

Experimenter: All right. There were two buttons left her. whiu we
paired them with the checkers?

Tom: Yes.

Experimeater: And there are two buttons left now when they're paired
with the tilesg?

Tom: Yes,
Experimenter: Does that make it as many tiles as checkera?
Tom: Yes.

Experimenter: Thank you.
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Deb never solved the problem of comparing the checkers and tiles.
Her comment, "I DON'T KNOW BECAUSE 1 CAN'T PAIR THE CHECKERS AND TILES
TOGETHER." 18 most revealing--she can only find out through direct
comparison. Her concept of one~to-one correspondence is not operatlonal.
The cortespondence she established between the buttons and checkers haa
iittle significance for her when comparing the two astatic collections
{checkers and tiles). It was as if the first eorreapondence between the
buttonz and tiles never existed. Tom's solution was sophisticated in
that he used the twe remalaing buttons for his comparison. For him, the
one-to-oné correspondence established in both cases was related and
quantified thz sets. One-to-one correspondence for Tom was operational.
U= was able to use one=to-one correapondence inm problem solving, whereas
Deb was not able to do so.

In summary, children’s conception of one-to-one correspondence passes
through three stages: no one- s-one correspondence, intuitive one-to-one
correspondence, and operational one-.¢ one corregpondence. JIa the two
first stages, children do not comsexve cne—to-one correspondence. How-
ever, intuitive one=to-one correspordence is definitely an improvement
over no one-to-one corfespondence. Children in the stage of preopera-
tional representation are in the first stage of one-to-one correspondence,
children in the transitional stage are in the intuitive stage of one-t~-
one correspondences, and children in the concrete operational etags ».
in the operational stage of one-to-one correspondence. Children in the
operational stage of one-to-one vnrrespondence are able te uge one-to-
cne correspondence in solving " ‘ams involving the principle of
transitlvity (example 6) and :iz notic- of an arithmetical unit (examples
4 and 53). The concept of one-to-ors rrespondence is quite well developed
for these chiidren.

Classification and Equivalence Relations

If a child is given a collection of sticks and asked to put the
sticks into piles so that the sticks in zay one plle are the same length,
ke must base his classification activities on the relation “the same
langth as." 1t would eccem essential for the child to smploy properties
(reflexive, symmetric, and transitive) of this equivalence relation. In
srder to clarify this, the following analysis is given of a child's
behavior in sorting a collection of sticks into piles.

The child must select a stick (say s) from a given collection of
sricks and search For another stick r the same length as s. If no such
stick r exists, then the child must classify s with itself (reflexive
property). 1I some stick r does exist the same length a5 s, the ehild
gzust realize that not cnly is s the same length as ¢, but r is also the
same length as s (symmetric property) for r and & to he considered as
forming 2 class. Given that r amd 5 are classified together, then the
child at som: time must humt through the sticks yet to be classified to
determine 1f there is aiother uiick the same length as 8 (and r). Suppose
rhat such a stick t exlsts. TFor t te be classified with r and 8, the
child must realize that all three are the same length, which entails

186
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knowledge of transicivity of "same length as" (s is the same length as
t and r is the same length as s, so r and t are the same length). One
may object and say that all the child has to do is compare t and r and
s by placing the sticks together, so transitivity has never to be used!
Our contention is that children would not think of classifying the
sticks together in absence of the abllity to eiploy transitivity, the
reflexive property, and the symmestric property.

To obtain an idea of what classification abilities to rxpect from
first and second grade children, 81 first and second grade children (39
first and 42 second) were given three tasks to perform. 1n the first
task, the children were given a collection of sticks to sort into three
collections and three sticks on which to base the sorting. Each of the
sticks im the coliection was exactly as long as one of the three sticks.
Sixty-two of the childreu correctly sorted the sticks into three pilles.

In the second task, the children were given another .ollection of
gticks :~ sort but were not given three ~ticks on which to base the
sorting. The children were asked to put together all of the stichs that
belonzed rogether. Six of the 81 children 1id not attempt the task.
However, only 37 children completed the second task as compared to 62 In
the first task. The 44 children who did not complete the task made some
piles, but did not mer+tally connect together pilea that went together
and generally placed siicks into piles incorrectly.

The third task consisted of giving the children three piles of sticks
already sorted together on the basis of "six. length as" and asking them
why the sticks were put together in the way they were. Fifty-nine
children did not discover the basis for the classification (same length
as). The remaining 22 children showed some evidence of being aware of
the classification.

Classification has been studied more widely than just in relation
to "the same length as." In order to fully appreciate classification
behavior of children, it is necessary to discuss classes (or sets) per
se. Generally, when objects are classified together, they share common
properties. For example, quite dissimilar objects can be classified
together under the heading "{ruit." Whac makes these objects "fruit"
is what is common. Within the class of {ruit, however, ilmportant
differences exist--oranges and apples are different. Glven a unlverse
of objects, three distinct kinds of properties exist (Inhelder & Piaget, 1969).

i. Properties specific to members of a given class (e.g., the
properties which make items fruit)} which distinguishes the class from
other classes (from vegetables, meat, etec.).

2. Properties which are common to members of a given clase and
those of other classes to which it belongs (e.g., that vwhich is conmon
to fruit and vegetables}.

3. Properties which
from another (those whl:.
example).
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Part-whole relations of class membership and inclusion also exist.
These relations are conveyed by the terms "all," "some," "one," "none,"
when applied to the members of a given class and those of the classes to
which it belongs (all oranges are fruit, some fruit are apples, no

frult are vegetables).

The intension of a clase is the properties common to the elements,
and the extension of a class is just the members of the class. The
coordination of the intension and the extension of a class is what
develops in children in stages. These stages correspond to the three
stages identified in the development of one-to-one correspondence.

Young children below about six years of age employ primitive
behavior in attempting to form classifications. The types of collections
formed by thesa children have been called complexive collections or
graphic collections. For example, children were asked to classify a
collection of geometric objects together, some triangular shapes, some
square shapes, and some half ring shapes. At least three varieties of
graphic collections were identiffed. First, some children constructed a
number of subcollections, ignoring the rest of the material which was
never clagsified. The subcollections had ne common property--the child
would change criterla of classification within a subcollection. Some
times, subcollections were not formed but properties of individual items
noted.

Second, successive similarities between one object and the next were
formed. While this is an improvement over the type of behavior noted in
the first example, it is not true classification as no overall criteria
for classification was found for subcollections; subcollections were not
differentiated, and part-whole relationships were not identified.

Third, definite figures are made out of the objects—-a "hcuse" is
made, then windows, etc. That 1s, the child makes no real attempt at
classification, but instead plays with the objects, making whatever comes
to his fancy.

The graphic collections described above have two features differen-
tiating them from true classes. First, some collections are formed on
the basia of the spatial arrangement of the objects. Second, no criteria
for classification (no properties which tied all the elements together)
were lsolsted by the children. These two aspects are simply another way
of saying that intensive properties were not identified by the children~--
these children are at Stage 1 (preoperational) as regards their
clasgification behavior.

Stage II (or transitiomal) classification behavier is an advance
over Stage I classification behavior, but it is not yet operational
classi fication behavior. Stase 7" classification behavior can best be
characterized by a recognitiv: of intensive properties, with no complete
coordination between the intension of a claoss and the extension of a
class. Given a class of objucts, children are able to separate the class
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of objects into subclasses. This means that they understand that all
elements can be classified, each subclass contains elements of a specific
kind or which possess a specific property, and two or more subclasses
are constructed. Yet, the subclasses formed are not thought of as
forming a hizrarchy of claszses. The class-inclusion relation 1s not
mastered.

The class-inclusion relation being mastered means simply that, given
a class A which 18 contained in a class B, the child understands all of
the A are some of the B but all of the A do not constitute all of the B.
For example, 1f A is the class of Siamese cats and B 1s the elass of
cats, then all Siamese cats are certalnly cats, but they do not exhaust
the cats. That is, there are cats that are not Siamese cets. So, all
of the A do not constitute all of the B, but just some of thz B.
Children at the transitional stage of classification certainly realize
that Siamese cats are indeed cats and, in fact, are part of the set of
cats. 5o, one would think they would understand class-inclualon. But
they do not. It is critical they understand that there are other cats
than Siamese cats or, in ¢*f. ¢ words, that all cats are not Slamese. If
A' are the non=Siv- 3 c:.0; Liaen AUA' = B and A 3 = A' (see Figure 5).

g - at gre not Sigmese)

4 (Siames sats)

Figure 5

To understand class-inclusiun, the child must be able to engage in
reversible thinking. To do so i3 to be able to concelve that the Slamese
cats, together with the non-Slamese cats (AU A"), wake up the cats B;
and that the cats, minug the non~Siamese cats, riake up the Slamese cats
(A=B - A'). In this reversible reasoning, the child has to be able to
conceive of the total class of cats as being made up of the two subclasses
at one and the same time. Stage IT children, when focusing on the cats,
iose sight of the subclasses, and when focusing on the subclasses, los=
sight of the total collection. Typical responses of transitional
children (Stage II) are given in the following situaticns. A plcture
is shown to the children on which there are, say, four Siamese cats
and three cats which are not Siamese. The children are asked to compare
the number of cats to the number of Siamese cats. When asked to do so,
thae children will comparz the Siamese cats to the other cats.

The childres at Stage III (concrete operatisonal) are capable of
solving the class-inclusion problem and are much more flexible in thelr
classification behkavior than are Stage II children. Stage 11 children
are able to build hierarchies ¢’ classes. For example, they are capable
of conceptualizing such hierar ¢s =as Multese “»*rlers are part of the

e
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terrlers, rriers are part of the dogs, dugs ure part of the mammals,
ete. Stage III children are not only capable ¢! building hierarchies

of classes, but are able to change the criteria of classification and re-
classify a set of elements in a new way. The child may consider new dogs
in his classi:ication and refine the classification to include many more
c¢lassifications than thase glven. Two romplementary processes exist that
describe the Stage 7iI flexibility in classification, One, given a
classificarion,. the child can ge back and construct timer classifications
or whole new classifications and nnt uz tied to the one constructed. Two,
a chlld can anticipate a classificacion hefore it is done.

v surmzacr, the foilowing throe stames in children's elassificatory
behavier have been identified (tnhelde- * Plaget, 1969):

Stage One. (Preaperationz1) Given a collection of objects

and told to “put everything tepather thac goes together,” a
child at this stage forms what is known us "graphic collections."
10 Le does anyehing, he constructs ons or more snatial wholes.
This 13 a child's first sttompt to coordinate part-whole
relatlona with those of equivalence and vifference.

Stage Two. (Transitional) At this atag-. the construceed
collections are no longer graphic collec:cions. Trial and error
plays a large role in construction of classifications and no
overall plan is present. Chiliren cannot yet solve the clasg-
inclusion problem but do understand that all elements need
classifying, each subeclass contains elements which possess a
gspecific property, and two or more subclasses are constructed.

Stage Three. (Concrete Operational) Children at this astage
are able to coordinate the intension and extension of a class,
as evidenced by the solution of the class=inclusion problem.
Children at this stage are capable of conceiving of hierarchical
arrangements of classes, and are capable of imposing more than
one classificational system on the same collection of elements,
anticipating the new classification systens before carrying

out the classification.

Order Relations and Seriation

Order relations determine a seriation of the objezts on which they
are defined just as equivalence relations determipe a classification of
the objects on which they are defined. Three gtages eoxist 1n the
development of seriation behavior (Inhelder & Piaget, 19¥62:.

:'tized by no

Stage 1. (Preoperational) This stage is ch.,r
sdinated

attempt at seriation or the formlag of small un

serles.
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Stage 1I. (Trvnsitional) This stage is characterized by
seriation by trial and error.

Stage 1I1. (Concrete gperational) This stage 1s characterized
by a systematic method of serlation.

At Stage I, the child either does not attempt to form a gserlies or
elge forms small uncoordinated series of two or more elements, In the
lattar case, the subseries are not connected by the ehild (.l il iy
The representation in parentheses is supposed to connote that the child
first orders two sticks, then two more, then three more, nzver reallzing
that the sticks need to be ordered into one series.

At Stage II, the child is not systematie. He can form a seri:3, but
does 2o with no overall plan nor complete anticipation of vhat he I8 to
do. For example, a child may pick two sticke and put them in order, pick
two more and then put them in order, and then attempt to coordinate the
four sticks into an order, ete. Or, a child may lay a whole "series’
out and then attempt to put them in order through a process of trial
and error. This is an advance over Stage I seriatiom behavior.

At 5cage III, children proceed systematically, e.g., choosing the
smallest slement (or largest, depending on where they start), then the
ne:t smallest, etcetera, until they are done. These children know
beforehand that a given stick (say the third) 1s goirg to be longer
than those already chosen, but shorter than all those yet to be chosen.
Children at the second stage do not Tealize this, being capable of
thinking in one direction only.

Children's Conception of Number

Classes (sets) and relation+ logically are fundamental to number,
both cardinal and ordinal. Because of thls logical relationship among
classes, relations, and number, the material on children's conception of
classes and relatinns is pertinent to the discussion on children's
coniception of number.

One-to-one correspondence is essential to class usage of cardinal
and ordinal number. In the section ertitled "Children'a Conception of
One-To-One Correspondence,” three types of one-to-one correspondence
were identified from the point of view of the child, no one-to-one
correspondence, intuitive one-to-one correspondence, and operational
one-to-one correspoudence., These three types 0 one-to-gne correspondence
determine the quantitative judgments of which children are capable--
gross quantitative judgments, intensive quantitative judgments, and
extensive quantitcative judgments. The gross quantitative judgmencs are
based on the pefceptual features of the gituatisa==but only one at a
time. For example, if two rowa of asveral candieg are arranged so one
is longer than the other (State 2 in Figure 6) the child capable of
gross quantitative judgments may say there are more in the longer
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row, not paying attention to the density of the candies in the two rows,
aven 1f they had been previously arranged (State 1 in Figure 6) @o as
to be the same length and density. In the case of State 1, the child
may Lave said that the two rows of candies had the same number, but ;ru,
not recognize the contradiction in his judgments about the two states.

Sta-e 1 State 2
DO000000 O 000 O 00
000000 O 000 000

Fer the judgments were baseq ' the apparent reality-—the perceptusl zce—
figurations. Essentially, no v.u=is-one correspondence exists for fhe
child.

The child capable of intensive quantitative judgments would begin
to coordinate the length and density of the objects in the two rows in
State 2, but would not yet realize that the increase in length in row 1
is exactly compensated for by a decrease in the density of the objecis.
He would only admit that if the two rowa are put back as they were in
State 1. that they would be of the same length.

The child capable of extensiv. quantitative comparisons would
immediately say that the two rows in State 2 are of the same number because
he views the objects as units. For this child, equal pumber and greater
length implias less density. Here, the one-to-one correspondence is
operational for the child.

As noted earlier, if the one-to-one correspondence is operational
for “te child, he should be capable of engaging in transitive reasoning--
the notion of equivalent sats becomes operational. The child, of rourse,
does not now the symbolism invelved, nor iz he avare in any way of set
theery. But he is able to reason in conerete situationz involving
collections of objects.

The child, then, for whom one-t- ome correspondence is not opera-
tional, would not be capable of the ..ass usage of number, either cardinal
or ordimal. He may know number nomes, however, and bde able to asgociate
them wich specific collections. Un the other hand, the child for whom
ona~to-one correspondence 1s operational should be capable of the class
usage of number, both cardiral and ordinal. The class usage of cardinal
and ordinsl number invelves classificstion, where the classification is
based on one-to-one corresp.ndence (set equivalence). In fact, 1f 2
eardinal number, such as A, s viewed s a particular set, such as 12, b,
¢, d}, then surely classification is iavolved even in the nember-af-a
class meaning of cardiaal number. If {z, b, c. d} is considerasd as aa
ordered sszt, then an asymetrical transitive order relation "preceu.s"
is invoived iu tae member-of-a clas. usage or crdinal number as well as
classification. 8o, order relations and, hence, seriatlon is involved
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in the notion of ardinal e, and o lirgs

rardinal and ordinal number cven In the o

It should be clear that 1T a child Is
¢oamsification, seriation, 9r oie-to=ong J0rra
much ol e uf dealing with ¢
MOSE Sup " levels. It must he cwshas!zed thag thare is nothing
"wrong" {s at Stage [ or any of the above, Ail children

g idenvificd. At Stne T1 (transitional) in
respondence, children are

d Jdefinitely are progressing
ealing with eardinal and ordinal number.
Stage 1T classification beaaviar vas charact ed by children recognlzing
the intension of a class, but yet, with no cocrdination between the
inten=sion and extenslon. ©hildren at Stage LI are able to partition a
¢lams of objects into subclasses, but the subclasses formed are not
thought of as [orming a hierar:hv of classes--the class inclusion relation
3 oot -tiuted, and hierarchieal c¢lassification systems are not conceived
of., Comsequently, thern 15 a good possibility that ehild at Stage 1II
clamsification behaviar are able to deal with the member-of-a class
meanlng of ucardinal number in terms of relatively small numbers of

s than scven). However, even though a Stage 11 child is

able to ecite verbal namber names in order, ono should not uvake that to
meari that the child is iorming successors of sets--or a sequence of
ordinal numbers. His numher names constitute a verbal chain, each
individual number having a referenc, but the numbers are not "nested"

for Lhe child hocause he 1s not yer capable of forming a hierarchy of

dinzl or ordinal

olements (lo

sos, which is necessary in dealing with ordinal numbers, and hence,
counting.

[

i1 ciassifi ion behavier amornes at about the same time ns
so that the ginning of the menbar-cf-a
for the child. However, it

is not untll Stapge I1I that the child comes to a conception of number
in its operational sense. He is tow capable of classification and
ceriation and concelves of equivalence dand order relations in the sense
tha: thinking follows these relational patrterns.

A Model for Teaching Mathematics

e relationships

time te cury our attention to possibl latio P
betwaen ¢ learning in mathesatices and stages of intellectual develop-
mernt . rmation presented to this point might suggest that one

i

should
in the stage

sut the toples of sets, relai‘ons, and number to children

* preoperational representat’ 7. The =ituation, hovever,

is not as ci it as that. The information that has been presented is
pased an what 1s known about how children reason when thar reasoning
involves equivalence or order relations, sets, and number, not on the

way in vhich that reasoning develops., The following discussion on

factors contributing to development will shed more light on how such
reazoning develops, and how one could influence that development (Piaget, 19
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i led whiich vontriaute ro the
snocifizatly, a2 che
aties in the child., lLe flrst is maturation., In
involved in Fomnitive growth,

At loast four facters Lase been Lde
development of cosnitive proveh of Childron—-and

doevelegpment o1 maczhenm
support of the sroposirion that maturation
it is a fact that transitive reasoning ! seldom baen vhmervaed in
children four years of aee or yoeunger. While thar statemart cannot be
taken as proof that maturation i{s involved ia development, it certainly
indicates that maturation does play a promiment role. If it playad no
role in development, then subjecting a child to learnlng experiences would
be sufficient for hin to gain an understanding of tho concept ur oripeiple
invelved. Evidence does exist, however, that great diflicnley in learning
transitivity of "as many as" existsz for ildren in the stage of preope
ational representation, even when apparcntly appropriate learniug ox
ances have been encountere Thus, iv seems likely that tke shanpe
v the child grows older make possible learning which was nor

,_.‘,
w

[a?

ocourring as
previously possible.

EKFLFiPnﬁP hy itselfl duLf nn[ Pvpidin QHL(DLHJI growth of children
vtual growth. Too
anh VJTLALLUR as becﬂ uh;'rvyd in the afre g! angiumcng of the stage of
toucrete operations to disccunt the role of experience. But expetlence
alone does not explain the groewth of mathema al concepts. Othervise,
as already noted, all one would bave to do to wny child transi-
tivity would be to give him sufficient experience-—and he would 1-arn.
But, unfortunately, it is nat that simple. '

Experience should
fanece, ang the

pericnce,

be dnqlv?ed in twg wa 2 of phys 3
other iz mathemati.al TD make a diseinection betwakn these
two types of s;perleﬂce, imagine a child mateching the ohjects of sct

A one-to-ont irith the objects ot set B through overt actions. He pleces

one object f+ = Awith oane object from set B, ete., uncil all th- objects
of one or » - ‘f % gets ure exhausted. Then he takes the objects ot met

B and likewiz ».eu them with the objects of another uer C. Now, does

this matching sonsrir. e a physiczal exper‘ence oF a mathematical exvarience?
1 I it could be either cre, depending un the child. One

ate betwesn the two types of experiences through

mbq r‘“tiun nf thv overt acts of matehine in which the chiid SNEags 3.

The crrcisl determiner of the type of experience is whether the sets A

and € are related by the child by virtue nf the comparisons of A and B

and B and C. If the child is not able, through reasoning, to determine
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the relation bztyeen A and C, then the experience gained through evert
mitching of the objects of A and B and B and € was mainly phys 1
nature. The relatloi between the sets A and B, in this case, was a
funetion of the physical arrangem of the objects and would not exisrt
for the child in the absence of the physical pairing of the objercts

The relarion would be external to the child and would be destroyed hpDﬂ
fearranging the objects of the sets. While the two asects of objects were
in a state of physical comparison, the child could definitely obtain
lkiowledge abont the objecrs--either they match or they don't--but f{or the
knowledge to be methematical in nature, the relation must be conserved by
che child when the objects are moved to new states, and the child muat

be able to enpage in reasoning invelving the properties of the relations.

Thiz distinection between a physical experience and mathematical
experience i. important in understacding the growth of mathematical con-
cepts. Maturation contributes the imternal mechanisms to this growth
that 311@“1 the child to gu béyﬁﬁd physical ekperienca. Dévelgpmgnﬁ

th;if rLlJtivu cuntribukluna tg th; CnglLiVE grnwth af :hilqrén are ﬁﬂt
known, However, as has been emphasized, each is important tv conceptual
deve lepmant.

re rust said councerning the distinction between physical

Yper ¢ and mathenacical experience. If a child is wrong, it is casy
to show hir he is wrong if his knowledge is from physical experience
alone. WhE'Eﬂq. ip knowledge derivable from mathematical experisnce, 1f
: iid is wrang, it i= generally quite difficult to show him that he is
wrong. Verbal transmission of the correct answer to the child is most
aften insufiicient te show him he is wvrong. For example, when overtly
compariag two sticks, 1f a child falls to align two endpoints correctly,
it is easy co correct his miztake. 1If, hewever, he fails to display
rransitive reasonines in a task, 1t 1s very 2ifficult to demonstrate
transitivizy to him in one or two examples. In the case of transitivicy
of "az many as” ziven shove, the relation between A and C has to be
inferred by the child becauss the elements of A and C vere not dire.cly
matched., There was no physical experience on which the child could

rel;. Cn che cther hand, when physically comparing two sticks, the

child can be shown thirough a physleal aetion if he is wrong in his
alignments of the endpeints. Another example is where a child has eight
wocden beads, three wnite and five brown. If he iz asked whethet he

fas more brown beads or mare wooden beads, and 1if the child errs, again

it 1s quite Jifficulet =uv show him ke is wrong. Kaowledge acquired through
physical experience alone is worth knowing wund often is the source of
observations leading to more organized knowledge.

Ytnowledge derivable from physical experience alone is called
vsical knowledge. Physical knowledge 1s characterized by knowledge
it the properties of sbjects. Physical experience is generally
~ught of as experience through direet contact with objects through one
he five senses. For ezample, one may touch something and it is
hard, cold, hot, soft, supple, ete. Or, one may =2e something--an object

ﬂE‘C
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{5 red, 2 ulamond catting glass, tha shape of a banana, atz. Knowledge
gained trceph Lavsc obarpvations L cencermed with the properties of the
objects. An ol.orver may Lring somzthia, to the observation which allows
hi.a go g beymnd paysl knuwledge and gain loglecal or mathematical
knowle oo abo L e nhjroty not posslble by another ghserver. An example
is t while redness o property of an abject whica is in fact red, a
property which exists independent of the ovpaervei, light can also be

Gesc ribed as wuve -wotlen, so tha: an observer who krows this may experi-
snee che rednens at the level of mathemurical experience. Another

exanpl 2 18 where an obsetver ses an lron boat floating and another plece
of iron slnk. Thrse "ws ohser ::lons can he summarized by saying, "some-
tines iicn floats and sometimes Lrsinks) This knowledge is pure physical
knowledge if rhe implicit contradiztion is not removed. Its removal
demands a men=al construccion -eyond the physical knowlzdge gained through
d -ect observatior. Krowlecze gained through observation alone is at

bezt fragmentary if net cennecrei by principles.

sperience which is the result of direct contaet with
an object through the senses may go beyond ~tysical ewperience (depending
on the ohserver), the source of matheaatical experiencs 13 generally
thoupht of au belng overt actions. This d rot mean that just becauss

a child is involved in overt actions, he will b= having a mathzmatical
cxpeTinmce [= hig bren olreadv acted that o i1d may overtly match

the objects of two aguivalent celleetions, and the knowledge gained from
the overt matchings may be aothling more than physical knowledge. This is
especlally true for children at the atage of preoperationsl representation
and those capable of oaly intuitive one=to-one rorrespor.dence. Those

chil dren capable of one-to-one correspondenze would, by definition, goin
mathematical knowledze from the overt actiens. A cricical difference is
that the mathematical krowledpe gained demands that 1 pair of physical
ohjects not he defined by the closeness ol the objects. Twoe objects

may make a pair .ven though chey are quite far apart. An example often
cited of mathematical exparience i5 where a chlld cealizes that 1t malkes
no difference how you count a collection of objects--you get the same
number. This knowledge is gained through eountineg ip at ledast two ways.

Linggisti;ﬁiggﬁsm;§sig§

ts ¢ factor contributipg to the growin of mathematical comceptc
is linguistic transaission of information (infcrmation transmizted through
language, oral or written). This factor includes the verbal interchange
of the child with other pesple. As such, 1 is fo he considered as a

part of the experience of the child. However, experlience goss beyond
linguistic transmission, so what is sald about the lacter is 1ot
necessarily true of the former.

Certainly, a child can receive valuable information via language.
One m:. mot think, however, that information contzined in a verbal
communication will necessarily increase a child's underatanding of a
mathematical concept. To verify this statement, a cransitivity problem
was presented to 40 first graders, 40 second graders, and 40 thircd
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graders who were In the top two-thirds of their classes accovding to
teachers' judgments. Each cvhild was presented with a cransirivity
probiem involving length relations. 1f chey could not solve the problem,
they were told the correct rel which held between the two sticks.
For example, if a child fook a ati B and comparcd it with € and then
with A and found that A and B we the same leny

hoaud B and C were the
game length, then could not infer the relatlon between A and C, they
were told that A and € were the same length. Afier being teld, the
child was asked to explain why £ wus as long as C. Of 24 cl lldran who
could not infer the correct relation hetween A and €, only five could
explain why A and C were of the zame length after being told. Even
thQuEh the children were not told the v A and C were the same
length, tkey had just gone through the two comparisons and said that A
and B and B and C were of the same lenpth Being told that A and C were
of the same length was not sufficient for 19 of the children to go back
mentally over their actions and gailn {information from reflecting on
them. The actions became significant for only five of the children.

The above example illuztrates the point being made. Attempiing to
teach che preoperational child wathematics by only verbal or symbolic
means has the potential of leading to disasterous rosults. But, because
words and symbols are a part of mathematics tesching, their role must
be further clarified Experience has taught us that there should be a
continual LHLEIDIQY between the spoken words wiiich sywbolize a mathe-
matical concept and the set of actions a el.ild performs while constructing
3 makes the concept tangible. In short, there is good
son to develop mathematical vocabulary during the course of activities
used to develop the concept. The particular “lend has to be determined
by the specifiec activity and child engaging in the activity. But it is
a long way from promoting vocabulary developmen® to recommending that
the teaching of mathematics vo young children be Lased on symbols of
mathemuatics or verbalization.

2quilibration

5]

The last factor important in the growth of mathematical concepts is
a principle called equilihration. Of the four factora wich contribute
to the growth of mathematical concepts, this faector is the most fundamental
but the most difficult to employ in practice. There is not much one can
do to vary maturation, shert of being sure the child is physically healthy.
S0, while one must acknowledge and understand maturation, essentially
there is lifcle a teacher of school mathematics can do to control it.
Experience and linguistic transmission are under control of the mathe-
matica teacher, but only in so far as the "mathematical" experiences of
the child are concerned. Here it ina crucial to distinguish the different
levels of experience and appreciate the role of language in planning the
mathematical environment for the child.

But little has besn said yet about knowledge acquisition~-that is,

is there anything which wuuld help to understand how a child acquires
mathematical knowledge? 1In the casze of relations, either children have
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litele or no knowlcdge of relatiars, they are able to engage in racsoning
lations, or thoey are vseillators.

If they are able to reason Jnvoelviog ¥ ationa, that reasonlng =

limited and can be extingu’shed quite sily. The difference botween
phvsieal experience and mathemacical cxpe-icnce helps to clavify the

role of manipulative activitiea in the ¢lassroom. Some children may
engage in a manipulatlve actlvity but vet be involved only at the level

nf physical experlence, whereas wnotheor child may be {molyed at the

level of mathematieal experience. Fut the question of how Lo maximize

the possihility of a child engaging in the actlvity at the lovel of
mathematical experience remains yer unanawered. Stated another way, are
there any cluas which one could use in taking a eniid from a physical
experience te n mathematical experience? One of these elues is equilibra-
tion. The reader is referred to the paper hy Smock fa this collection

for a full elaboration of the concept.

irvoiving the propertices of the ro

Leaining=Tnsiructional Phas for Mathematical Concepis

One basic assumption in this document is that most mathematical
concepts po through levels for the person whe is learning the concept.
For concepts not shown to bo develpprental, these Lovels should not be
confuscd with stages in Jevalopment r concepts which have been shown to
be developmental., One cusential difference is that stage=s of development
are the resnlt of a4 child's iInteracrion with his tntal environment and
oceur in every =.ane person. For nest mathemarical concepts to occur,
special learning euvironments musi be created. Buf the creation of the
learning envivonments doss not insure that a concept will be learned.
notion ¢¢ learning-instructional phases elaborated below is uaeful in
reating a propriate environments for concept acquisition. The first
sarning- instructional phass, salled explovatlon, corrasponds esseatlally
{rst level of concept=-that of no concept. The second learning-
called abs:raction and representation, corresponds

a second level of concept. The third learning-instructional phase,
1led formalization and interpretation, corresponds to a third level
of concept.

il
L

Euploratory Phase

The first learning-instructional phase is called exploratory.
Children's play is considered as a critical part of this learning=
instructional phase. Play 1s viewed as an assimilatory activity and is
an sssential part of early mathematics learning. Wheneaver assimilacion
occurs, its counterpart, accommodation, also occurs if equilibration is
to operate. Equilibration is viewed as one essential factor of develop=
ment and is now extendad to learning mathematical concepts in general.
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Equilibration is a wseful thearetical copstruct to help guide

learning activities in mathemntiecal inzcruction, By irsclf, however,

it provid few hints in spe situat lon: Mure 18 peeded 1o ordey
to employ the principle in practice Play activitiea, as a teaching
technique, should be thought of as corresponding mainly to the firat
level of mathematical concepts identified --egsentially no concept--and
to the second lavel--rudiments of the concept, At these two levels of
mathematical concepts, a great deal of construstive thinking needs to be
done by the child. It is a period of cor formation, not analysis,
More analytical chinking must come afte sthing exists to be analyzed.

O

Flay activitics can vary along two quite important dimensions. The
first 15 the type of material, and the second .4 the external direction
the ehild is piven. The materials can vary from structured to unstructured,
and a play actlvity can vary trom highly directed to undirected. In the
latter case, it 1s important to realize that the child usually structures
his own play activities.

Hultiple embodiment principle. In order to illustrate the princi-

ples of self ngulatlﬂﬂ and play accivities using particular concepts,
imagine that a teacher decides that one-to-one correspondence is to ba
worked on. In this case, no concept of one-to-one correspondence corres-
ponds exactly to the preoperational stage of development. Problem situa-
tions have been glve- ~hich can be used to approximate which of her chil-
dren are without a concept of one-to-one correspondence. After such an
approximation 13 made, the teacher should allow the childran who do not
display any concept of one-to-one correspondance Lo engage in undirected
play activities, using physical objects which will later be used in
dirvected play activities. TFor example, the teacher may have assortments
of beads, bird cutcuts, blocks, discs, animal cutouts, toy animals, toy
cowboys, toy soldiers, toy guns, dolls, dresses, toy dishes, or toy
utensils.

Let's take a particular free play activity where the preoperational
children involved place cowboys and Indians on horses. Through this
assimilatory activity, the children can gain the physical knowledge that
indeed the cowboys and Indlans fit on the horses. The teacher can not
employ an artful suggestlon which may create a disequilibrium or mis=
match for the children. For example, she may suggest that the children
find if there are enough cowboys and Indians so each horse would have a
rider. In order to find out, a child has to accomodate his practical or
symbolic activity to engage in a goal directed activity. If the children
do so, the teacher can employ the multiple embodiment principle (Dienes,
1971) and give them new materials with a similar geal. (For example, are
there enough dresses 6o one could put a dress on each doll?)

If the children do not initiate their own goal directed activity
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upoh suggestion, she may directly show them how to find out if there

s and Indians so each horse has a rlder. The children,
tion or accomodatory activities can answer the
question. Heve, agal the prineciple of multiple embodiment is important
because the teacher talnly wants the child to initiate such activity
in any appropriate situation and may wish to have the children employ
imitative behavier in more than one siruation, if necessary. The teacher
must be senaitive to the type of knowledge the child is acquiring in
theae imitative activities. The knowledge acquired has a high probability
of being physical knowledge for children in the stage of preoperational
representation. While this should not alarm the teacher, it would be in=
appropriate to try to bulld higher-order concepts on one-to-one corre-
spondence with children at this staps.

are enough cowhoy
then, through i

play actlvities of children. It has already been pointed out that
while ehildren engage in free play activities, the teacher through
artful intervention can cliange free play activity into a directed
activity For the chiildren. Tf the teacher's suggestion fails to
transform the freeplayactivity into a directed activity, she can try
other suggestions or a direct demongtration. Tor example, by placing
cowboys and Indians on horses, she can lead the children to engage in
imitative activity. Beyond these suggestions, the teacher can employ
what iz called the mathematical variability principle (Dienes, 1971).
In the multiple embodiment principle, the mathematical content is held
constant and the materlals varied under the constraint of being condu-
clve to constructinn of the concept by the child. In the mathematical
variability principle, the mathematical content is varied. In case of
one-to-one correspondence, the teacher can vary the relation being
considered to either a new relational cateogry altogether (e.g.,
length relations; family relatrions) or vary the relation within the
category of matching relations (more than, fewer than, as many as).
Each of thesc variations can be used to create disequilibrium in the
child, so that self-regulation is given an opportunity to operate.

Play can vary from free play to directed play. Directed play
is a natural extension of free play. The teacher can employ in the context
of play the principles of multiple embodiment and mathematical variability
in attempting to take a child from physical experience to mathematical
experience. But maturation also contributes to the development of
cortalr mathematical concepts; for example, classes, relations, and number.
The teacher should not expect dramatic short-term success in teaching those
topics to preoperational children. She can expect more success with children
in the transitional stages which corresponds here to the second level of
mathematical concepts. But agaln, the short-term success wil undoubtedly
be modest. With children in the stage of preoperational representation,
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it is advoeated that the teacher hold the learning phaae constant; that
{5, use the exploratory phase, employ the mathematical variability prin-
ciple, the multiple embodiment principle, and utilize the free play -
directed play dlstinction. It is felt that it is more humane to utilize
a wide variety of mathematical concepts in multiple contexts than to
attewpt to take the children to the higher two learning instruetional
phases for particular concepts. This opinion is predicated on the assump-
tion that the preoperational children will he onerating at the level of
physical experience in most play activities. For the higher two learning
inst,. uctienal phases, the children must be able to acquire mathematical
knowledge-=which is another way of saying thac they must be able to
engage in mathematical experience. At the exploratory phase, it is ad-
vocated that the mathenatical language specific to the mathematical con-
cepts dealt with be developed.

The mathematical variability principle and the multiple embodiment
principle both have beeu explained in terms of the play activities of
children. These play activities are viewed as the first learning instruec~
tional phase in a cycle ol three inmstructional phases for mathematical
conceptz. The two others are: a phase of abstraction and representation
and a phase of formalization and interpretation.

Abstraction and Bepresentation Phase

The second learning ilustructional phase identified, that of abstrac-
tion and represcntation, is based in part on the distinetion between
physical experience and mathematical experience. In the case of physical
knowledge, abstractlon can and does occur, but it is simple abstraction
about properties of objects and generally does not lead to mathematical
knowledge. Two examples cf such abstractlons are hardness and sharpness.
But another type of abstraction exists. 1t iz called reflective abstrac—
tion whieh is abstraction from the acrions performed on objects or repre-
sentations of objects., Knowledge galned through reflective abatraction
{s called mathematical knowledge. An example is the child who counts a
string of beads from one end, then from the other and realizes that the
number of beads is independent of the order of counting them. The beads
are there, but the knowledge galned had to do with the actions of the
¢hild. The capabllity of gaining knowledge came through going ba &t over
the actions and realizing their significance or, in other words, reflecting
on them. Another example is the child pairing elements from two sets until
one is exhausted before the other, and then pairing them again a different
way. These actions lead to the realization that it makes no difference
how the palring is done (i.e., one set will always contain more elements
than the other). Still another example is the child who compares atick
& and stick B, then B and stick C and deduces that A is longer than C
based on the two initial comparisons.
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The examples are all of situations in which a ehild may be engaping
in play but still eng tive abstraction. [here 1s no con-
tradicelon here. The child who does enpage in reflective abstraction has
the pocential of goilng quite beyond play activities in the sense of the
exploratory phase. While it is entirely possible to continue in mathe=
matical-like games for such chiildren, sueh children can engage in much
higher level games, insafar as mathematical concepts are concerned. But
the teacher need uot be restricted to pane-like aetivities in ber teach-
ing of these children.

in refle

The child ean engage in reflective abstraction, but yet, not make
a representation of newly gained kpnowledge. A r.presentation could be a
drawing, a diagram, or a collection of symbols., For example, if a child
compares a green stick with a red stick and finds the green stick shorter

thz1 the red stick, G < R could be used 28 a representation; | <

G R
coiild be used as a representation; or cauld be used as a rapresen-

Y ——

|

tation, among others. Tf a child is engag d in reflective abstractien and
representation, he is definitely operating at a higher level than he was
expected to in the exploratory phaze-.

Formali 1Eipﬂraqgwlﬁ£EEPf§;ﬁtiQﬁ‘Ehmﬁg

The learning instructional phasc of formalization and interpretation
I he cycle of learning math igal concepts. In order to
explicate this phar2, the mathema “neept base ten numeration system
is selected to illustrate and differentinte che three phases.”

i

We will assume that the child is at the concrete stage of operations
in development. Operatory classificaticn and relations are at his dis=
posal. Just because a child is at the stape of concrete operations, he
will not necessarily knce hase ten numeration ar even have made represen—
tations of his knowledge. What he is able to do with classes, relations,
and number has not necessarily been formal ized. This knowledge is largely
unconscious for the child. However, we will assume the child has completed
a learning cycle concerning the digies 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9,
can write them, order them, and do simple additioen.

Any natural number can be wriften i ex anded notation. For example,
326 in expanded notation is 3 X 102 + 72 = 10+ + 6. The 3, 2, and 6 are
called coefficients, 10 is called the baze, and the 2 and 1 in 102 and 10l
called exponents. “onsequently, the eoefficients, the base, and the
exponents can all be allowed to vary in employing the mathematical varia-
bility principle. Usuallv, the base is hzld constant and only the exponents
and coeffieicnts are allowed to vary. This practice is adhered to in all
except the very beginnings of inmstructien in the exploratery phase.

Subsequent to writing this paper, changes and refinements have been
ade in the learning and instructional phases for numeration as a result of
a teaching experiment.

=)
[
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Imagine that children are given a collection of varlous assortments
of mat-riala, such as geometrlecal shapes, checkers, or dried beans. The
children are allowed to engage in free play with the materials, building
whatever they wish == castles, houzes, roads, forts, etcetera. DBecause
these children are at the stape of concrete operations, the teacher can
intervene with artful suggustions to direct play activities, The firsat
type of suggoation she could make is to have the children find how many
piles with a certain number in cach pile they can make. 5he can employ
the mathematical variability principle to vary the number in each pile
or the total number of objects in each co’leetion., The total czollection
should not contain more than, say 40 to 50 objects, or the children will
quickly tire of the task, The multiple embodiment principle can also
be employved in at least the following ways., The type of objects can
be variled, thus setting a new problem each time, or the type of collection
formed by the children can be varied. For example, strings of beans with
five per string. stacks of blocks with ten pev stack, or plates of dried
beans with ten per plate can all be used. The essential thing being

that a collection of objects can be partitioned into subcollections with
the same number In each subcollection and one other subcollection with
fewer objects in it than in any other subcollection =- a cojlection of
twenty-six objects can be partitioned inte four gubeollections with six
per subcollection and two moye:

In the first fey partitions, the children will probably participate
at the leval of physical experience. Une of the flrst bits of mathematical
knowledge the children should acquire iz :that there is the same rumber
of ohjects in the tatal collection before and after partitioning. That
iz, the child should be able, through his actions, to determine that a plle
an always ke pur back the way it was before the partitionm,
that no objects were added or subtracted, the number of objects before
piling 1= the same as after piling.

child partitions

Specifically, if a child makes three piles with six per plle and one pile
of four, the child should know that the total number of objects in the
original pile is the same as the number of objects in three piles of

six and one pile of four, without knowing there are 22 objects. 1If a
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child realizes this, he iz in trannition from the exploratory phase to
the abrtraction and representation phase, Hopefully, the tezcher can
use tho mathematical varfiability principle by varylng the number of
gbjects In each pile, so that the chi'd will realize that no matter how
many are in each pile, the total number in all the piles is the total
numbher of objects.

With this realization, the child is well on his way to constructing
the concept of a numeration system. While he has g lot of information
yet to acquire, the operational ziz for further work has been laid.

The basic gral in the second phase is to have the child construct a
notational system ond construct the place-value coneept. The two digit
numbers are worked on at different age levels than are the three digit
aumbers, which in turn are encountered at different zge levels than are
the four digit and higher digit numbers in order to establish the genera-
lization of place-value. i

After the children first enter the second phase, they are able to
pattition a wollection {nto subcollections and know that the number of
objects In the original collection is the same as that in all the sub-
collectiona. Capitalizing on this knowledge and the ability of the
children to engage in rational counting, place=value concepts may be
developed. For example, the children may be given a collection of objects,
eay 35, and asked to count out a nile of ten and olace them in a
transpavent bag: count out another pile of ten and place them in a trans-
parent bag; and then note there are only five remaining. The children then
may fill cut the following: _tens and _ones.

Various activities such as the above can be done until the children are
ready, in the teacher's estimation, to take one further step and write,
for example, the symbol "35" to represent 3 tens aad 5 ones., Another
act ivity at this second phase which is useful later on in subsequent
learning is the tally chart. The tally chart may be thought of as a
representation. For two digit numbers, it looks as follows. In

the tally chart im Flgure 3, the two marks under “tens'' mean

tens ones

/1l /

Flgure 8

two sets of ten have been counted, and the mark under "ones" means there

is a single element remaining in the total collection. The tally chart is
a representation and can be used to represent amny number from 0 teo 99, in=
clusive. Use of the tally chart should be coordinated with the develop-
ment of the numerals. The most singular difficulty children have with

the tally chart is that they forget the marks in the tens place have a
different meaning than do the marks in the ones place.
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In the activit!~z mentioned, it should be noted that the
numbet nates were m. mentioned, only the symbols, such as "63" were
meritioned , and they were to be interpreted as six tens and three ones,
Afeer children can represent any collection, such as a tens and b ones,
where 2 and b are digits, as "ab," they are quite ready to learn the
number names For two digit numbers and order the numbers frem O to 100.
The pext phase is entered because the knowledge gained to this point is
godng to by systemized by the children. The basis for the learning has
beep 1aid in the counting of piles of ten. However, the main goal of the
next learning stage is to systemize the whole numbers from 0 to 100 using
the nulber names. Other leakning cycles will be built on this cycle--
such a8 cycles having to do with counting by tvos, threes, fours, fives,
sixes, ete,: addition, multiplication of two digit numbers and their pro-
pexties; and subtraction and division.

To initiate the last phase, have the children count out a collection
of objects as the basic learning mechanism. When a pile of ten has been
found and collected together, then one more ten is counted out. The two
teng are symbolized by "20" and the spoken number is given. The decades
are developed in this manner and the symbol "<" and the phrase "less than"
is introduced or reviewed, as the case may he. The children then should
wvoxk ot ordering the decades arriving eventually at 10 < 20; 20 < 30;

30 < 405 40 < 50; 50 < 60; 60 < 70; 70 < 803 80 < 90; and any other
vaxiationx, such as 20 < 70. The tally chart is useful in developing the
abeove sctivitieas. The children should be able to write "20 < 30," as
well a8 sqy "twenty 1is less than thirty," and be able to complete open
sentenices such as [J ¢ 40 correctly., The mathematical variability prin-
ciple should be used in all of the activities in the second and third
learning phase, The multiple embodiment principle should be used especially
in the second phase but to a lesser extent in the third phase. This

is natural due to the character of the activities and the level at which
they are conducted, In the third phase, however, the multiple embodinent
principle is used most in providing interpretations and models of the
comcept For the child to use.

Fformalization is taking place in the sense that a notational system
16 developed and organized by the child. The organization of the nota-
tional system is based on the abstraction and representation accomplished
at phase two and on the new element f gn order relation. The order
relacdon 1s an zssential part of the third phase for the concept of
numeration, Without it, the third phase would have little meaning. The
order telation, however, i3 based on one-to-ome correspondence, &0 that
preliminary learning cycles will have to have been completed with regard
to one-to-onie correspondence and number.

After the decades have been symbolized and ordered, and the child
cam ecount by tens, the decades can be completed based on the relation
"ome more than" just as the decudes were ordered on the basis of 'one
moTe ten than." Eventually, we want the child to be able to say the number
names for all the numbers from 0 to 99 inclusive, be able to write the
numerals, order any two of them, have the complete sequence ordered, and
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be able to count by ones from | to 99 inclusive. In the ordering tasks,
the child should %now, for example, that any number in the "sixties"”

ig greater than any number in the "forties,” so that no confusion existe
in ordering two numbers such as 47 and 63.

The above learning cycle with regard to numeration will undoubtedly
be interrupted by other learning cycles. In face, it is advocated that
two or more learning eycles be pperating concurrently so that boredom is
decreased.

§ L!Iﬂﬁ'lf? ry

For a particular learner, it {58 assumed that ma thematical concepts go
through three levels -~ essentially no concept, then rudiments of the
concept, and then an operational coneept. These levels of concepts
form the basls for identifying three learning-instructional phases for
mathematical concepts ~- the exploratory phase, the phase of abstraction
and representation, and the phase of formalization and interpretation.
These learning-instructional phases Interact with the type of experiences
and the cognitive stage of the child. Mathematical concepts which have
been shown to be developmental in nature (number, relation, and classes)
need to be considered different than concepts whieh have not been shown
to be developmental in nature. For the case of the latter category of
concepts (numeration, ”ldition, subtraction, multiplication), if a child
is preoperaticnal, the: the teacher should not force the child to go
beyond the expleratery learning-instructional phase. The only type of
experience such a child is capable of is physical experlence. It nust
be stated explicitly that the type of experience of a child is not under
the control of the teacher. She can give children the opportunity to
engage in mathematical experiences, but there is no way she can force the
child to engage in mathematical experiences. Moreover, the child has
little or no consclous conlrol over which type of experience he engages
in. It is something which just happens and, to a large extent, depends
on the cognitive stage vhich the child is in. So, for preoperational
children, the teacher should not expect the children to go beyond physical
experience in the exploratory phase. She can aid the ehild (or give the
child the opportunity) to engage in mathematical experience through
employment of the multdple embodiment principle and the mathematical
variability principle, but she canmnot make the reflective abstraction for

the child. Through the process of self-regulation, the child will even—

tually realize the significance of his actions and thus enter the next
learning-inatructional phase with regard to particular concepts. Through
maturational processes and experience, preoperational children will move
to the concrete operational stage and thus become much more likely to
engage in reflective abstraction.

2006




O

ERIC

Aruitoxt provided by Eic:

201

Concrece operational children have much mere mathematical learning
potential than do preoperational children. These children will begin,
with regard to particular concepts, with play activities just as do the
children in the two other phases. While they may begin with physical
experience, they can go quite beyond physical to mathematical experiemce,
and hence to the higher two learning-instructional phases. If a child
is operating at the phase of abstraction and representation, with regard
to a particular cencept, there is no way that he will engage only in
physical experience because of the very definition of that phase. The
game can be said for the next higher phase.

All ehildren, then, wvhether they are concrete operational, preopera=
tional, or transitional, should be given the opportunity to learn the same
mathenatical concepts, The depth of concept learning will depend to a
Jarge extent on his stage of development -- 8o that a teacher should
expect concrete operational children to complete the learning cycles,

But children in lower stages of cognitive development ghould not be
expected to complete the learning cycles; however, they should be given
the opportunity to do so. )

One further comment is in order concerning physical experience and
mathenatical experience. One should not equate physical experience with
physical objects, or physical actions on such objects, and mathemtical
experience with abstract thought. A child may engage in mathematical ex—
perience through manipulation of phyeical objects, physically ot nentally.
The presence or absence of the objects just does mot determine whether a
child engages in mathematical experience. In fact, presence of objects
may facilitate a mathematical experience —- but the presence of ohjects
is not logically necessary for a mathematical experience. Physiecal
actions are not necessary for a child to engage in physical experience
-~ but some physical context is. 8o, whether a child engages in physical
experience or mathematical experience depends ultimately on the child.

Tabular Representation
of a Learning-Instructional Model

Types of Experience

LT Phase | T ’ —
E Abstraction and | Formalizatfon and
gognitive Exploratory Representation | Interpretation
oeate  |Physical and | Physical and Physical and
Operational Mathematical Mathenatical Mathematical

Transitional  |Physical and “Physical and =
Mathematical Mathematical

Preoperational Physical

Figure 9
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In the tabular representation of the learning-instructional model
(see Figure 9), concrete operational children are capable, at each learning-
instructional phase, of engaging in physical or mathematical experience.
It must be emphasized that a child's being in the stage of concrete opera-
tions does not guarantee he wil! be able to complete a learning-iastruc=
tional cycle with each concept presented. However, it would be unlikely
that a child who did complete a learning-instructional cycle would b=z a
preoperational or transitional stage child, especially a preoperational
child. 1In fact, it is not assumed that a child in the preoperational
stage {8 capable of making a reflective abstraction. Children in tne
transitional stage should be expected to be capable ¢f making abstractions
and representations, but not necessarily be capable of organizing their
knowledge in the sense of the formalization and interpretation phase.
Precperatlonal children should be expected to be capable of engaging
in mathematical experiences. It should be emphasized, however, that

representation.
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