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1 Overview

The 6_ _gia Gunter far tho Study of Learning and Teaching atlinatica
(, ;LTM) was started July 1, 1175, through a founding grant from the
Natkrnal Science Foututatien. Various activities preceded the founding
of the GCSLTM. The most significant vas a conference held at Columbia
University La October of 190 on Piagetian Cognitive-Development and
Mathemiticat Education. This conference was directed by the late Myron
F. Rosskopf and jointly sponsored by the National Council of Teachers of
Matlamatics and the Department of Mathematical Education, Teachers
College, Columbia University with a grant from the National Science
Foundation. Following the October 1970 Conference, Professor Rosskopf
spent the winter and spring quarters of 1971 as a visiting professor of
!4.athem1tics Education at the University of Georgia. During thcco two
qtvomers, the editorial work was accomplished on the proceedings of the
October conference and a Leter of Intent was filed in February of 1971
with the National Science Foundation to create a Center for Mathematical
Education Research and innovation. Professor Rosskopf's illness and
untimely death made it impossible for him to develop the ideas contained
in rhaL Letter.

After much discussion among faculty in the Department of Mathematics
Eda flon at the University cf Georgia, it was clear that a center devoted
to the study of mathematics education ought to attack a broader range of
problems than was stated in the Letter of Intent. As a result of these
discussions, three areas of study were identified as being of primary
interest in the initial year of the Georgia Center for the Study of
Learning and Teaching Mathematics--Teaching Strategies, Concept Develop-
ment, and Problem Solving. Thomas J. Cooney assumed directorship of the
Teaching Strategies Project, Leslie P. Steffe the Concept Development
Project, and Larry L. Hatfield the Problem Solving Project.

The CCSLTM is intended to be a long-term operation with the broad
goal of improving mathematics education in elementary and secondary schools.
To be effective, it was felt that the Center would have to include

ematics educators with interests commensurate with those of the
project areas. Alternative organizational patterns were available--
resident scholars, institutional consortia, or individual consortia.
The latter organizational pattern was chosen because it was felt maximum
participation would be then possible. In order to operationalize a
concept of a consortia of individuals, five research workshops were held
,luring the spring of 1975 at the University of Georgia. These workshops
wore (ordered by dates held) Teaching Strategies, Number and Measurement
Concepts, Space and Geometry Concepts, Models for Learning Mathematics,
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and Problem Solving. Pope rs were commissioned workshop. it

was necessary Lo commission p4pers for two reasons. First, current

analyses and syntheses of the knowledge in the particular areas chosen

for investigation were needecL Second, catalysts for further research

and development activities were needed--major problems had to be

identified in the project areas on which work was needed.

Twelve working groups have emerged from these workshops, three in

Teaching Strategies, five in Concept Development, and four in Problem

Solving. The three working groups in Teaching Strategies are: Differen lel

Effects of Varying Teaching Strategics, John Dossey, Coordinator;

Development of Protocol Materials to Depict Moves and Strategics, Kenneth

Retzer, Coordinator; and Investigation of Certain Teacher Behavior That

May Be Associated with Effective Teaching, Thomas J. Cooney, Coordinator.

The five working groups in Concept Development are: Measurement Concepts,

Thomas Romberg, Coordinator; Rational Number Concepts, Thomas Kieren,

Coordinator; Cardinal and Ordinal Number Concepts, Leslie P. Steffe,

Coordinator; Space and Geometry Concepts, Richard 1.0sh, Coordinator; and

Models for Learning Kathematics, William Geeslin, Coordinator. The

four working groups in Problem Solving are: Instruction in the Use of

Key Organizers (Single Heuristics), Frank Lester, Coordinator; instruction

Organized to use Heuristics in Combinations, Phillip Smith, Coordinator;

Instruction in Problem Solving Strategies, Douglas Grouws, Coordinator;

and Task Variables for Problem Solving Research, Gerald Kulm, Coordinaten

The twelve working groups are working as units somewhat independently

of one another. As research and development emerges from working groups,

it is envisioned that some working groups will merge naturally.

The publication program of the Center is of central importance to

Center activities. Research and development monogrAphs and school mono-

graphs will be issued, when appropriate, by each working group. The

school monographs will he written in nontechnical language and are to be

aimed at teacher educators and school personnel. Reports of single

studies may be also published as technical reports.

All of the above plans and aspirations would not be possible if it

were not for the existence of professional mathematics educators

the expertise in and commitment to research and development in mathematics

educ.ien. The professional commitment of mathematics educators to the

betterment of mathematics education in the schools has been vastly under-

estimated. In fact, the basic premise on which the GCSLTM is predicated

is that there are a significant number of professional mathematics

educators with a great deal of individual commitment to creative scholar-

ship. There is no attempt on the part of the Center to buy this scholar-

ship--only to stimulate it and provide a setting in which it can flourish.
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The U542 of Modolq in Mathematics Edt car I

Alan R. Osborne Editor

The Ohio State University

The word "mo 1" sipmifies an importlant concept in mathemat
education.. It is impractical, even impossible, to achieve the romantic
ideal of a complete and total description of all of the factors alfectini
the teaching and learning of mathematics. Researchers and practitioners
alike must settle for describing a corner of the reality that is the
teaching and learning of mathematics. Since models are used out of
necessity, it behooves us to consider carefully the nature of a model,
how it is constructed, the pitfalls and payoffs associated with the
use of models, as well as what a model orientation can do for the field
of mathematics education.

A model serves a variety of purposes in mthematics education.
First, a 17...,del is a predictive device. Describing a portion of what
happens when learning or teaching takes place, it should predict out-
comes of that learning or teaching. Second, a model is a thought-
stimulating mechanism serving to suggest critical components of the
context of learning and teaching. Third, a model facilitates communica-
tioi among researchers and, more importantly, between researchers and
practitioners.

The predictive purpose of a model is at the essence of the nature
of a model. This purpose reflects the influences of the more mature
sciences on the field of education. The intent is to identify those
essential variables, parameters, and conditions in the environment that
produce comfortable and efficient learning in mathematics. For some
researchers, identification of salient variables provides an end in
itself and is sufficient reward for the creative efforts spawned by their
curiosity. But the control that this predictive capability brings with
the application of the model justifies our attempts at research in
mathematics education. If the application of a model yields eAsier,
more efficient, and happier learning by children and more comfortable,
rewarding teaching in the schools, then research efforts are perceived
as worthwhile by educational policy makers. Thus, within the predictive
capability of a model, we find that more is at stake than the goal of
one researcher talking to another researcher. At the heart of an orien-
tation to models is the desire to specify functional control over
learning and teaching.
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The second purpose of a model orienta/ion is in terms of stimulating

questions concerning learning and teaching processes. The traditional

purpose of research via the scientific method has been described in terms

of refining and extending our conception of reality. By asking more pre-

cise questions, by being sure not to overlook criticel factors in the

lertning process, and generally attending to the comprehensiveness of the

model, the predictive capability of the model can be extended. But a

model dOes more than stimulate questions within the model; it also

suggests reconstructing our conception of reality. Implicit within the

selection of one model of learning or teaching is the question of wbether

that model is the most appropriate or the best prediction of reality. The

shifting of u paradigm or mociel has frequently had a salutory effect in

both the physical and life sciences. Such shifts or reconstructions of

reality have often stimmlated new and insightful questions revealing

different operant processes that improve the predictive capability within

the particular field of science.

The third purpose of using a model is to improve the communication

within the field of science. A carefully described model is interpretable

to both the researcher and to the practitioner. An adequate description

of a model yields a rationale for an experiment. This rationale yields

the specification of the variables: the definition of methodology, an

indication of the appropriate measures to be token and a delimitation of

many of the significant constraints. In short, it establishes the base

necesmry fer commonlcatirg the essentials of the experiment. This base

for communication is missing within a laissez-faire open description of

research. Thus a researcher can perceive more readily what the

experiment or evaluation was about and can adduce more precisely how the

findings fit with his own. The ability to conduct meaningful worthwhile

replications is Increased. The odds for conducting coordinated comple-

menting research studies are improved. One of the real needs in mathe-

matics education, as well as education more generally, is to design

experimental programs that add up to something. Unfortunately, most

bits of research appear as separate and discrete entities unto themselves.

A model for learning and teaching
should provide a matrix into which

experiments would fit. Research should build to a more complete and

comprehensive picture of what happens when an individual learner copes

with mathemics. The coordination of research cannot happen without

adequate columunication of experimental results nor without fitting the

experiments into a larger plan for research. A model provides a major

vehicle for accomplishing this.

Most of the applications of research
results or findings are not by

scientists. Rather practitioners and agencies make use of the work of

scientists. Most practitioners in education want principles, rules, or

maxims for application. An adequate model does provide the setting from

which maxims or principles are generated. The model serves as a communi-

cation device encapsulating the control features within the model.

We have made several errors in the past in conceiving of models in mathe -

matics education. We have had a rather vacuous fixation on the idea of

model. Educators have been prone to connect boxes and circles with

I 1



Niels and arrow acat ter sonw lalpds over the ne. Knit, and call this
apparition a mhdel. Having just enough familiarity with the benefits
of using models in science, many Aucatots have said, in effect,

"New we are being .;eientific; isn'i.: that wonderful." Ignoring the hard
work that goes into building a model, the careful thought needed to
identify the critical variables and to describe and controt the environment
of experimentation, arel the sheer artistry of building a comprehensive
model, such people are simply indulging in self aggrandizement.

'ho ho included within such vacuous fixations is the building of
models based upon s.,atements so weak that their trulh cannot be questioned
hut which have little predictive powe7- Thus, to say that learning i;
a product of the learner, the curriculum, the teacher,and society is to
say little Lit OW sensc of a model. Of course this is a valin observation=
This does not provide the researcher or the practitioner with an appreciable
amoliat of control over learning or very much insight into that learning.

Another cat ry of error made in the name of models in mathematics
educatioa is the confusion of research and statistical designs with the
model, Thus, sow students of learning in mathematics are more concerned
with nicoties of blocking, cell size, whether to use nonparametric
statistics or not, and other questions of this order than what is being
learned or taught about mathematics. Such designs and research models
aro nott directed to rhe learning,of mothomatioN; rather they are tools
of research in mathematics learning in the same sense that a thermometer
is a tool for a chemist or a differential eq ration is a tool for a
physicist. The design of the research problem should not be confused
with the idea of a model in the learning or teaching of mathematics.
Mathematics educators must he familiar with these tools if they are to
be researchers or consumers of research.

Some professionals in mathematics education have rejected the
statistical app roach _: research and adopted a more clinical approach.
For some, this is a mature recognition of the complexity of human
learning. The researcher recognizes that there are several levels of
reality in the study of the learning of mathematics, each having the
potential for.revealing aspects about a model of mathematics learning.
Most significant problems in mathematics education require study on
several levels and with many different tools before one can say with
certainty that a particular model provides adequate explanation and
predictive power. But for other researchers, the rejection of the
statistical approach has led to usage of the clinical approach to
justify haphazard research methodology and the statement of isolated
unrelated observations as "truth" or "reality." Researchers operating
within this latter framework who do not respect and recognize the
power (and limitations) of statistical tools are antiintellectuals.
They reject an entire category of needed and useful studies of mathematics
learning.



The papers included in this volume eerapLify anv cliffet-nt wars
o f utng models to st Ululate questions, to reconstruct our perception

of the reality of how learners deal with mathematics, -othat should go

into an adequate research model, and how teachers might use a model_

The problenia of building and ti.5 ing a model are attacked on several

dif f erent f routs.

The paper by Char es Soncfc ad4resses the task of how to iicorporate
developmental psychology into our percept ions of what is happening jn
the slind of the child. Smock makes the c ritical point that we should

riot confuse the child's construction of reality with out perceptions
and conceptions of what the child is santpulating and thirking, lie

issues a warning that all who are building models of humam theught
processes must be aware of this confusion..

The problema that Poyal gelson reports are fascinating e lentples of

same f the principles espoused by Smock, In each problem, tlie child is

faced with more information than is necessary to solve the probLem.
These distracting elements represent noise that the child mus t structure
111 5orne way to get to the meat of the problem. In examining this aspect

of problem solving, Nelson* a research group reports the differential
effects of this chaotic world of extra tnformat on in terms of the
saturity of learners.

Harry Beilin and LarrY Martin each deal %vith the mathematics t
provides the goals for instruc tion. Each approaches the building o f a

'nodal for learning f rota the vantage point of the nature of what is to

be learned= Each suggests the nature Of mathematics sust be a :significant

factor in the design of any poweriul modsh geilin discusses different
psychologies of learning in building a rivodel in terms of the nature of

mathematics. Martin artaly2es the use of mathernatice to model childrens

thought. Filch indicaten that a researcher's philosophy of mathematics
is evident in the conception of a model for learning mathematics.

Donald Saari constructs a ino del for learning matheuzatics that looks

similar to what is now the tradit lonal rrieans of cOnst rac tin a model tam

physical sciences, First , sot* assumptions concernirg tie learning
process or problem solving are at ated. Then these are restated in terms

of functions that oPproximate the assutptions. Thus, a struetuted space

is constructed that is hypothesized to rept- enerit learning. 'The task 0 f

the model builder represented here is fitting a perceptiOn of learning
and learning Processeas to a sathematical description. The important

next s top is verifying the "f dt." Are the functional eq uati ons predic tive

of learner behavior?

Herbert Ginsburg' s paper is a caution to yodel builders. Frequently

researchers base their concluSions on how children perform on tests.
Many of these are paper and pencil tests that are at best symptomatic

of the thinking of the child in dealing with the mathematics. Thus,

Ginsburg' s paper indicates a need to examine carefully what children's

perfornance means. Hie paper suSgests that cognitive clinical Int ervievs
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are one of the most significant means of coping with this problent in
building an adequate model of ieamfng of mathematics.

The final paper copes with a significant problem for the researcher
who indulges in constructing models. This problem is interpreting a
complicated model for the practitioner. tie know enough about the
learning of mathematics to state that any nontrivial model is cornplex.
Les Steffe attempts to capture several major principles in a Fiagetian-
oriented model for the practitioner.

These seven papers demonstrate several different fac_ ef the
problems associated with constructing and using models of mathematics
learning. None attempt to describe the instructional or teacher commoment
of learning to any marked degree, not does any paper attempt to tightly
specify sociological and/o7 environmental influences on learning. Ent
each does capture a corner of the reality that is learning mathernatics.

If the field of mathematic0 educaLion is to acquire the inacurity of
a science and an art, it must attend to constructing models of learning
and testing them in a reasonable scientific fashion. Replication arld
fitting pieces of research together is a necessary condition to attain
this maturity. Replication and coordination of research is made
possible through careful and judicious use of 1TOdels.
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A Constructivist Model for Instructionl' 2

Charles D. Smock

University of Georgia

ScIence is not jumt a collection of laws, a catalogue of

unrelated facts. It is a creation of the human mdnd, with its

freely invented ideas and concepts . The only justification

our mental structures is whether old in what way our theories

form . a link with the world of sense impression.

(Einstein)

The fruitfulness of mathematics education research on problems and

issues posed by nowt depends on the collaboration of Individuals in

several disciplines. Oertainly, many problems of concern to mathematics

educators are common to those of developmental psychologists--but many

are not. At the saue time, the identification of psychological issues

critical to the mathematics education researcher will determine the degree

of progress to be expected from the current work in mathematics education.

These meetings provide a forum that will help isolate the common problems

of interest in the two disciplines.

The influence of Plaget's work is so pervasive that one hardly knows

where to begin. But, why mot at ale beginning? That is, Piaget's primary

concern has beer epistemology In the study of the nature of knowledge and

knowledge acquisition. If we wish to understand Piaget's theory of cogni-

tive development, and to conduct empirical investigations relevant to the

implications of that theory, consideration of his epistemological foundations

This paper ls a specially prepared version of a paper entitled

Constructivism and Frinci les for Instrue on Smock, 1974).

2T is report is based on activities supported by the Hathemagenic

Activities Program-Follow Through, under grant No. OW-0-8-522478-4617 (287)

Department of figW, U. S. Office of Education. Ihe opinions expressed herein

however, do not necessarily reflect the position or policy of the U. S.

Office of Education, and no official endorseumnt by the U. S. office of

Education should be inferred.



is essctial. EssentLal, first because that foundation influences his
theoreAcal constructions relevant to development of concepts of apace,
time, causality, et cetera. Essential, second because the setting of
observational conditions to test that theory must meet certain method-
ological imperatives if the findings are to provide relevant information
and not merely "noise."

We need also to begin with Fiaget's own writing and research findings.
In doing so, we must go beyond a surface critical analysis (e.g., beyond
"obvious" ,leakness in design or number of subjects) to the structuring and
organization of the research as examples of his epistemology and theory in
action. I an not proposing that we not be criticalrather that we need
to be sure that we do not engage in criticism that represent the assimi-
lative tendencies of the critic rather than contradictions inherent in
the theory itself.

Everybody "knows" what is wrong with education; in fact, the definitions
of the problems by professionals are the same definitions of "everyman."
In most cases, the solutions proffered by professionals are not only the
traditional ones but often more trivial than those of the "amateur." Few

have the courage to face two fundauental questions involved: (a) what is
the purpose of the institution of public eduLation, and (b) what is the
nature of knowledge and knowledge acquisition? Failure to deal with
the first leads to tinkering with trivial elements of a complex societal
institution that should be a mechanism for guiding change (whether of the
child or society) while unwillingneas to confront the second produces, at
best, temporary excitement about "innovations." There is hope, however;
a fev scholars are beginning to view the school as an important element in
cultural change (Sarason, 1471; Smock, Graham, Silverman, 6 Huberty, 1975).
This paper, I hope, reflects an appropriate interpretation of the impli
cations of one's view of the nature of knowledge acquisition for instruction
of young children in mathematics.

Currently, the names LisIt_ and/or laboratory, especially mathematics
laboratory, are sure to attract interest. While "laboratories" are gaining
in fad appeal, meaning for such an instructional technique has remained
loosely and ambiguously defined. Teachers who attempt to use such a
teaching strategy typically have been forced to rely on a set of "rule of
thumb" slogans such as: "concrete understanding before abstract:"
"intuitive understanding before formalization:" "activities, then pictures,
then symbols:" "discovery rather than reception methods;" et cetera.
Unfortunately, such slogans refer to distinct instructional variables
which often specify contradictory approaches to teaching if their range
of appropriateness is not qualified and coordinated by at least an
embryonic theory of instruction.

Educators appear to have little tnterest in theory construction despite
the current Interest in "model" building. Theory, too often, is used to
justify instructional biases and the "laboratory" and/or "open-classroom"
is considered only an instructional device, whereas theory construction
is necesp to clarify the roles that different classroom structures have
in educational research and practice. Also, a classroom laboratory should
provide a context for research on problem relevant to specific aspects
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of the instructiocal process (variation of teaching

ar.d for discovering those psycholo-ical conditions c

of thinking in children.

tegies and techniques)
cal for development

However, in my opinion, Chesterton's remark is quite appropriate:

"It is not that they can't see the solutionthey can't see the problem."

We have yet to identify the fundamental dimensions of educational and

instructional problems facing the teacher. Key psychological principles

for mathematics instuc'cion and construction of a theory of instruction

can be realized only after this first step has been achieved. A body of

knowledge now exists in developmontal-cognitive psychology that should

have considerable utility for contributing to more rLfined theories of,

and strategies for, instruction (i.e., for creating better school learning

environments). An approach to the immediate task is to search for

suggestions from developmental psychology that pose relevant problema for

developing theories of instruction.

There is no paucity of choices of psychological "models" available

from which to start the search. Berlyno, Bandura, Bruner, Scandura,

Skinner, Suppes and, of course, Piaget have each proposed a set of idaas

relevant to a theory of instruction requiring theoretical and empirical

study. The selection of any one model brings with it many hidden pre-

suppositions and is determined in no little part by one's own preconceived

notions regarding human development, learning, and education. As a group,

these models represent a virtual wonderland of exciting ideas. Each of

us can understand Alice's dilemma better as W9 explore their fantasies

(Suppes, 1972).

A theory of instruction must begin with an adequate theory of cognitive

develordent and lear :ag. No longer can we accept that statement as

"obvious"and go about the busianss of generating a multitude of methods

based co unorganized intuitive reles based on inadequate knowledge of

-11e process of cognitive development in children. All educatorn need to

return to the beginning and ask, not "how do we teach?", but nather "how

do aildree learn?"

M6dern doolopmental psychology provides a ne.:easary, but not sufficient,

body uf looviel.ge for identifying
some of the fundamental issues, constraints,

and facts associated with the process of generating a theory of learning

and instruction. But, to imply and act as if psychology had become relevant

to mathematics learning only AP (i.e., after Piaget) misses a fundamental

point about the relation of the science of psychology to the science of

education. It distorts the history of both. Piaget's theory of cognitive

development should not be abandoned without clear understanding of why.

The historical pattern in education and psychology seems to be one of

enthusiastic adherence to a relatively novel theory--with disappointment

and rejection following close behind. The absence of serious controversial

issues underlying much of the current research in cognitive development

increases my concern that much of what is valuable in Piaget's theory may

be lost.
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Natural Genetic L_F istmo nd nitive Develoiment

Many psycholOgists, including myself, consider Piaget's clarification
of the necessary bases of theory construction as important as his cognitive
developmental theory per pe. Implicitly and explicitly, Piaget was greatly
influenced by advances in theoretical physics (Bridgman, 1927/1961) during
the 1920's and 30's. The fundamental aspects of relativity theory that
cannot be ignored in psychological theorizing are that a) conceptual
judgments are always relative to the position of the observer and that
b) analysis of knowledge acquisition requires a description of its
operational basis (i.e.. the mental operations of the individual associated
with the construction and maintenance of consistent patterns (structure)
of his continually transforming relations with his physical and social
environments). Thus, Piaget is unique in that his emphasis on a conotruc-
tivist theory of knowledge (Piaget, 1968, 1971a) is indissoluble from
his interpretation of operationism. "Reality" is constructed, not imminent
in mind, man or stimulus, and applies to the child and, contrary to some
interpretations (e.g., Stevens, 1935), theorist alike.

The form of epistemology typical of American psychologists (cf. Mischel,
1971) has been naive realism. That orientation has been quite useful. Our
epistemological preconceptions, whatever they may be, are part of our
theoretical picture of the child. Kessen (1966) states the issue clearly:
"The child who is confronted by a Stable reality that can be described
adequately in the language of contemporary physics, is a child very different
from the one Who is seen facing phenomenal disorder from which he must
construct a coherent view of reality" (pp. 58-59).

Analysis of cognitive learning and development is always "biased" by
the fact of a context of preconceived ideas of reality (i.e., Vestern
culture) and a particular set of concepts or theory and selected observa-
tions. Pieget's approach to the analysis of the development of childrer's
conception of space provides us with an excellent example (Piaget & Inhelde
1956). The specification of a conception of space toward which the child
will most likely develop, i.e., that conception held by most adults, is the
critical first step. Observations and interpretations of the child's
behavior are organized around the Specifications inherent in that "endpoint"
of development. rhis is not an example of bad science or of inappropriate
procedures but rather illustrates that conclusions about the child's:
cognitive structure are often more a function of the construction of reality
imposed on him by the scientists rather than of the reliability and
generality of "objective" observations. WI:ether we are engaged in
instructional practice, research, or theory budlding, there is, for each
of us, a set of guiding propositions that constitutes a theory of learning
and development. These "fantasies" or "freely invented ideas and concepts"
provide a particular coherent view of the developing child and of the
presumed detenminants of learning.

18
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Piag constructivistic epistemology, and his biological background,

predisposed hit toward an operational and structural analysis of the

knowledge acquisition process (Plaget, 1967, 1968, 1970a, 1970b, 1971a).

The essentials of his position require only brief review here. Knowledge

is defined as iavarianee under transformation (a most familiar concept to

mathematicians). The construction of invarianees in organism-eavironment

relations takes place through the operation of two complementary biological

adaptation processes, both of which are under the control of the internal

self-regulating mechanism of equilibration.

One of the Mwo processes (assimilation) concerns the appliCation of

zognitive operational systems (structures) to the organization of sensory

data. New data or events are incorporated into existing structures through

both on-going physical and mental activity. Such eveats and the products

of new experience can be incorporated into the cognitive structure only

to the extent that they are consistent with existing functional structures.

Accommodation is the complementary process whereby adaptation occurs by

integration of existing structures with functional structures and/or by

differentiation of new structures under confrontation with new experience.

Activities such as play, practical or symbolic, represent assimilative

activity; whereas memory, in the sense of invoking past experience, and

imitation ate accommodative since only prior forted structures are trans-

formed for a new use or application. Assimilation is an active constructive

process by which the data from experience are transformed and tategrated

with an already generalized cognitive structure. Accommodative activity,

on the other hand, is the process whereby modified existing structures or

novel structures are brought to bear on newly assimilated sensory data.

Too often instructional theory and practice have emphasized assimilation

(i.e., "play") or accommodation (i.c., imitation) activity and neglected

the role of equilibration of these complementary processes for cognitive

learning. Bowever, generalization of Piaget's ideas to instructional

theory and practice is not simple and straightforward. The special

meanings attributed to "logic," the role of equilibration mechanism in

constructing experiential iata, and the distinction beodeen operative

and figurative thought are critical to such an enueavor.

0

Piaget recently (1970b) elaborated his position that all human beings

possess the same biological structures and functions that, in "exchange"

with the common features of the natural world, generate mental (operational)

structures and functions characteristic of each stage of development%

Logical thought, in the Piagetian sense, is universal and of fundamental

importance to an understanding of development and learning. But, whereas

Chomsky tmintatus the human mind is "programmed" at birth with cognitive

structures (i,e., mental representation of a universal grammar), Pisget

accounts for the universality and stability of structures across cultures

1 9



(Goodnow, 1962; Goodnow & Bethon, 1966; Greenfield, 1966; Maccoby & Madiano,
1966; Piaget, 1967) in terns of the self-regulation mechanism of equilibra-
tion. Thus piaget (1971h) proposes that the mind at any point in develop-
ment is the unfinished product of continual self-construction. Logical
processes are generative and not fixed. Structures are not preformed,

but are self-regulatory, transformational systems with the functional
factors in that construction being the processes of assimilation and
accommodation.

Intelligence, the basis of knowledge acqufsitlon, has two aspects:
adaptation with the complementary process of assimilation-accomodatien
under the self-regulatory mechanism of equilibration and organization
consisting of sets of mental operations that form the basis for maintaining
invariance under transformation (i.e., knowledge). It follows from these

considerations that there is an inherent logIC to development. Operational
.ystems consist of elements and laws of combination of those elements
that form a "logical" closed stera. These mental structures are observable
in the actions of the organism in its environment. They are describable

in terms of formal or logicc-mathematical structures. aenetic psychological_
analyses of these structures are a necessary prerequisite to an understandink
of thought processes since there is "no structure without genesis, no
genesis without structure."

,.ring the sens ri-motor period of development, action structures
IadivIclual are revealed in "practical" groups, i.e., the coordinated

ations of the individual (Forman, 1973). During the properational
period, the child constructs representations called figurative structures
which do not have the operational property of reversibility. Fiaget was

able to Identify operational structures with mathematical system properties
in children between ages five and seven. The discovery of a resemblance

between the structure of the mental action system (reasoning or thought)
and mathematical structures (i.e., mathematical groups and lattices) had
a profound effect on Piaget's thinking. Thought, it would appear, has
the same or similar properties us mathematical group structures and both
are governed by the same Internal logic.3

The basic structuralistic approach of Fiaget involves finding or
creating logico-mathemarical systems that describe the thought processes

of an individual. Mathematical group and lattice theory are algebraic

3Piaget never .1a.a tried to find a mathematical "logical model" to "fit"
the observed facts tf behavior; rather the mathematical aspect of Piaget's
theory is unique in that he assumes, somewhat reminescent of Boole's "laws
of thought," an identity between the inherent logic of thought processes
and certain mathematical systems that have become formalized mod "exter-
nalized" through inductive reasoning.

20
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systems (Flavell, 1963, Piaget, 1957a, 1957b) which might well describe

operational thought. Piaget found it necessary to generate a "grouping"
model with additional properties (i.e., both group and lattice properties)

to describe the concrete operational structures. Most importantly, the

propertiea of these eelhei_..0eiles are not derived from the pro-

perties of things, but from petteens in reletieu_to_things. Thus, the

elementa of psychological groups are themmelves transformations that

characterize the indildual's operations as he acts upon sense data.

The revelations emerging from relativity theory require a construe-
tivistie position with respect to the nature of knowledge. Understanding

of knowledge acquisition requires a description and characterization of

the mental operational systems applied to the data of experience. Fiaget's

emphasis on structural analysis thus ia in terms of three traditiOns in

modern intellectual. thought: (a) the epistemological implications emerging

from relativity theory; (b) the biologists' emphasis on development as the

formation, differentiation and hierarchical integration of functional

ction structures; and (c) the mathematicians emphasis on formalized syste _

that permit description of these atrunteres. The task of the developmental

psychologist in to describe the nature of action structures of the child

at each point in development and, as much as possible, to formalize those

descriptions in terms of logico-mathematical terms.

The classical "conservation" tasks, if administered appropriately,

fort one basis for generating observation of coordinated actions that

appear to reflect such mental operational structures. The available

evidence appears to support the hypothesis that such operational (mental)

Structures "exist" both in terms 0f replicability of hypothesized develop-

mental trends and in appropriately designed training studies (cf. Beilin,

1971b). At the same time, neither psychological nor educational researchers ,

have yet devoted sufficient attention to the problems of the validity (i.e.,

internal consistency) of the grouping Structures (Clarey, 1971; Green, Ford,

& Flamer, 1971) nor to the role of such structures in learning (Berlyne,

1965; Bruce, 1971; Inhelder 6 Sinclair, 1969), beyond these few studies.

Only recently have educators, especially mathematics educators, become

interested in Piaget's views of fundamental logico-mathematical relations,

much es his idea$ about the logical properties of number and apace. Beilin

(1971a) points out that philosophers of science generally have emphasized

the desirability of isolating philosophical and logical issues frOm

psychological matters. Psychologists, mathematicians, and logicians

generally have maintained this position with respect to Piaget. However,

a significant part of his psychological theory has mathematical and logical

content which cannot be ignored by either psychological (Alonzo, 1970,

Leskow 4 Smock, 1970) or mathematics-learning researchers. Mathematics

education researchers rightly should be directed to the analysis Of the

logical and mathematical validity of Piaget's system and to the correspon-

dence between the characteristics of the psycho-logic systems and those

21
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logic structures derived from purely mathe- tical analysis. Recent work
from Steffe's laboratory (e.g., Johnson, D., 1975; Johnson M., 1975; Kidder,
1976) represents an excellent beginning in this direction.

Role of E e 7enc and E-uilib-a ti

Experience is not the only critical factor in development according
to Piaget. Merely being exposed to particular environmental situations
is conducive neither to cognitive activity nor to developmental change.
Children may or may not make discoveries in the course of play. Watching a
laboratory experiment or conducting one may or may not help a child acquire
a particular concept. Equilibration is the central factor in structural
change whether that refers to "stage" or to concept learning. _Equilibra-
tion is the process of the adaptational structure "controlling" itself
(intrinsic regulation), balancing assimilatory and accommodatery processes,
compensating for external and internal disturbances (internal or external
to a particular structure), and making possible the development of more
complex, hierarchically integrated operational structures. Rhythms,
regulations, and operations are the three essential procedures of the
self-regulation and aelf-conservation of structures. Anyone is free to
see in this the "real" composition of structures, or to invert the order
by considering the operative mechanisms as the source of origin. In any case,

it is necessary to distinguish two levels of regulation. One level of the
regulation remains internal to the already formed or nearly completed
structure and, thus, constitutes a state leading to equilibrium. On the
other level, such regulation participates in building up and integrating
new structures.

Disequilibrium occurs as the child assimilates data from immediate
experience into existing mental structures. As cognitive structures
change to accommodate to the new experiential data, equilibrium is restored.
The equilibration process is one of auto-regulation -- both of the trans-
formations of data based on existing cognitive structures and of changes
through accommodation. Thus, the child must be exposed to situations that
are likely to "engage" the functional structures. He must be involved in a
personal striving to understand or "accept" the task as a "problem."

A basic question for instructional theory and practice is: What are

the processes and conditions that motivate and insure engagement or acceptance
of the problem task by the child? The source of "interest" that promotes
striving for problem solution is contingent on assimil;tive-accommodative
activity, but the specifics remain unclarified in Piaget's theory (cf.
Mischel, 1971). Within a structuralist framework -- if a structure exists,
it must function -- multiple cognitive structures provide a dimension of
openness that make probable continual sources of disequilibrium from
interaction of the internal operational and/or figurative structurea
activated, as well as by exchanges involving novel experience. Despite

lack of specifications, Piaget is quite explicit on his general position:

2 2
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It is not necessary for us to have r4course to separate factors of
motivation in order to explain learning; not because they don't
intervene. . but because they are included from the start in
the concept of assimilation. . .to say that the subject is interested
in a certain result or object thus means that he assimilates it or
anticipates an assimilation and to say that he needs it means that
he -ossesses schemes e uirin ut zat on. (Piaget, 1959, p. 86)

In passing, it might be noted that natural or life-like contexts seem to
provide excellent situations for promoting cognitive change. Unfortunately,
toe little empiricaa investigation has been oriented to questions of the
natural environmental determinants of curiosity of Children at various
stages of development and with different experiential backgrounds. What
do children recognize as problematic? What kinds of incongruities are
sufficient to motivate change in concepts and/or beliefs?

Cep- ve conflict, or the awareness of a momentary disequilibrium,
generates a need to establish equilibrium between the existing schemas
and/or novel information. This condition is the motivationfor cognitive
activities. Both application of an existing schema, and the elaboration of
new ones in the course of development, stem simply from the overriding
need to make "sense" of present problems by fitting them coherently into
schemas "learned" in the course of solving prior problems.

The notion that disturbances introduced into the child's systems
of prior schemes lead to the adoption of a strategy for information
processing is the fundamental difference between the equilibration and
essociationistic theories of learning (Fiaget, 1957b). For associationis-
tic theories of learning, "what is learned" depends on what is given from
the outside (copy theory) , snd the motive that facilitates learning is an
inner state of soma sort or other. Equilibration theory holds that learning
is subservient to development; what is learned depends on what the learner
can take from the given by means of the cognitive structures available to
him. Further, cognitive disequilibrium is the functional need that motivates
learning. Questions or felt lacunae arising from attempts to apply schemes
to a "given" situation are disequilibrium. The child will take interest
in what generates cognitive conflict or in what is conceived as an anomaly.
If the task demands are so novel as to be unassimilable or so obvious as to
require no mental work, the child will not be motivated.

After the period of sensori-motor development, equilibration becomes
a process of compensating for "virtual" rather than actual disturbances.
At the operational level, intrusions "can be imagined and anticipated by
the subject in the form of the direct operations of the system--the
compensatory activities also will consist of imagining and anticipating

Translation by E. von Glaserfeld
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the transformations to an inverse sense" (Piaget, 1957b, p. 93).* Further,

there need be no external intrusions in order for the equilibration process

to be activated. For example, the acquisition of conservation concepts is,

in Piaget's view, "not supported by anything from the point of view of

possible measurement or perception -- it is enforced by logical structuring

much more than by experience" (Piaget, 1957b, p. 103).* It is the in-

ternal factors of coherence -- the deductive activity of the subject him,

self that is primary. Equilibration is a response to internal conflict
between conceptual schemas rather than a direct response to the character

of environmental structure factors.

0perative_ahd_Eigurative Thought_

A considerable amount of confusion concerning Piagetian ,theory and its

implication for both research and instructional practice derives from a

failure to consider the figurative and operative aspect of intellectual

functioning. In general psychological terus, the distinction is between

the selection, storage and retrieval versus the coordination and trans-

formation of information (Inhelder, Bovet, & Sinclair, 1967). More speci-

fically, the development of any sequence of psychological stages, a la Fiaget,

consists of an interactive process of equilibrating functional structures

of the organism with sensory event-structures of the perceived environment.

Fiaget (1970a) analyzes "experience" into the two components: "physical"

and "logico-mathematical." This distinction between a physical and logico-

mathenatical experience is essential to the understanding of the growth of

knowledge. Knowledge based on physical experience alone is knowledge of

static states of affairs; if a child reasons incorrectly in a phYsical

experience, it is easy to demonstrate that he is wrong. While knowledge

emerging from logico-mathematical experience is knowledge of transformotion

of states and quite another uatter. If a child reasons incorrectly in a
logico-mathematical experience it is difficult, if not impossible, to

demonstrate convincingly, or even to get the child to accept verbal explana-

tion of the "correct" answer. For ex.n_ple, If a child fails to align the

two endpoints when comparing length of sticks, it is easy to correct the

mdstake. If, however, he fails to display transitive_reesoning in a task,

one or two examples are not likely to "teach" him the concept.

Physical experiences provide for the construction of the invariants

relevant to the properties of states of objects (figurative processes)

through exchange with objects involving sensory mechanisms. For example,

one may touch something and it is hard, cold, hot, soft, supple, et cetera.

Translation by E. von Glaserfeid
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Or one may see something an object is red, a diamond cutting glass, the

shape of a banana, et cetera. The course of logico-mathematical experience

is assumed to be abstractions (operative knowledge) from coordination of

actions yis-a-vis representations of "objects," or transformations of the
"states" associated with series of discrete physical experiences. The

cal difference is that logico-mathematical knowledge demands that a

pair (or set) of physical objects not be defined by the temporal-spatial
(perceptual) similarities, but rather by invariant relations among or

between objects.

Figurative and operational processes represent two types of functional
structures necessary to account for knowledge acquisition. Figurations

are defined as those action schemata that apprehend, extract and/or rep-o-

duce aspects of the prior structured or organized physical and social
environment. Such action schemata include components of perception,

speech, imagery, and memory. Figurations and associated acts are based on

physical, as contrasted to logico-mathematical, experience and consititute
the "empirical" world. Empirical truth is no more than the "representation

of past experience in memory."

Operations do not derive from abstractions from objects and specific
events; rather, operational knowledge is derived by abstractions from

coordinatedaction s relevant to those events. Thus, operations are chose

action schemata that construct "logical" transformations of "states."
Such gical" systems of transformtions'operate either upon representations
of events, or on the cognitive system's own logical operations, i.e.,
reflexive operations.

Figurative and operative structures are two parallel streams with
their genetic or developmental origins in the same source (Piaget. 1967,

1968, 1970a, 1970b; Piaget & Inhelder, 1971) -- the sensori-motor structures.
Logical (operational) structures are not immediately generated by the
figurative schemata alone (i.e., not from perception, memory, et cetera).
Reciprocally, figurative structures do not derive from operative schemas
but from the representations of past states of events derived from physical

experience. Most importantly, figurative structures do not derive from each

other, but have unique bases in sensori-motor schema. Imagery, for example,

is a derivative of deferred sensori-motor imitation Piaget, 1951, 1952;

Piaget & Inhelder, 1971) and not perception.

The postulation of these quite different levels of functional struc-
tures is one of the cornerstones of Fiaget's theory of knowledge acquIsi-

tion cognitive development (cf. Furth, 1969). The source and function

of each structure is theoretically distinct. Operative structures derive

from abstraction from coordinated actions. Figurative structures derive

from sensori-motor and perceptual activity. Operative structures produce
"logical" transformations (conservation of invariants) whereas figurative

ctures reproduce sensory perceptual consequences of externalized or

"environmental" configurations. The variant operative structures of the
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ive, the concrete, and the formal levels form the discontinuous

sequence of stages of cognitive development. Figurative structures are

static and depend directly upon the data of experience (sensory-perceptual

consequences of stimulation). Piaget makes the fundamental assumption

that all knowledge acquisition activity is constructive, but the construc-

tion of figurative representations is quite a distinct process from the

constructive activity at the operative level.

Logically, there are three possible relations between the figurative

and operational structures (Langer, 1969). First, they may be unrelated.

If so, as mentally segregated functional structures, they do not set limits

on the functioning and development of each other. Second, psychological

phenomena might be reduced to one of the types of structures. Langer (1969)

suggests that subjective Idealists try to reduce psychological phenomena

to assimilatory operations. There are many theorists wh9 try to reduce

all mental phenomena to accommodatory figurations and the naive realists

propose that all knowledge is figurative (e.g., perception is knowledge)

(Garner, 1962; Michotte, 1963). Third, Piaget proposes there is a partial

communication between figurative and operative structures within the

constraints of the assimilation and accommodation processes. The relations

and the potential from of interaction of the components of adaptation

and organization discussed above are schematically presented in Figure 1.

Langer (1969) has examined the organizational and developmental

(i.e., transitional) impact of accommodatory figurationa on aSsimilatory

operations (8, Figure 1). This is equivalent to asking how does the

child mentally extract and/or represent empirical information about

physical and social objects and the consequences of that empirical acti-

vity for the construction of logical concepts. IMitation of an observed

event, comparison of one's predictions with the perceived outcome of a

physical manipulation, comparison of an observation or appearance (i.e.,

immediate experience) with the way things have been constructed and exter-

nalized, represent different modes of introducing internal conflict and

cognitive-structural change. Generally, Langer's findings are confirmatory,

but not definitive with respect to the Piagetian hypotheses. In any case,

if the development of each type of functional structure has implications

for, but not direct causal effects upon, the structure and development of

the other, current paradigms for the study of learning mathematical con-

cepts will require considerable modification. The work of the Geneva

group mentioned earlier, concerning for example, memory (A, Figure 1) and

langer's (1969) analysis of the impact of accommodatory figurations (i.e.,

imitation, etc.) on assimilatory operations represent beginnings in this

direction.

Analysis of learning, in the context of Piagetian theory, poses requ

ments for more detailed empirical analysis than has been generally recog-

nized. On the one hand, researchers attempting to assimilate Piaget to
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Figure 1. Relations of two invariant processes of adaptat_ n and two

types of cognitive structures.

their own concetual structures concentrate on experimental procedures
whereby the subject is required only to remember event contingencies or
similar figurative structures (e.g., responsereward associations or "a"
follows "b", follows "c"; Bruner. Rose,&Greenfield, 1966). Such procedures

certainly produce change in "behavior" (e.g.. Bever, Mehler,&Epstein, 1968;
Gelman, 1969; Mohler & Bruner, 1967), however, failure on transfer tasks
and a lack of persistence of task solution over time indicate that a
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figurative process underlies the change in performance. On the other hand,

the accommodators (i.e., those more favorable toward Piaget's theory) often

fail to generate experimental paradigms that adequately differentiate

between the figurative and operational knowledge (Wallach iC Sprott, 1964)

or assume that "external disparity" (appetance vs. "reality") is sufficient

to establish disequilibrium or conflict between logical necessity derived

from the operational structures and perceptual prognance (cf. Bruner, 1966).

Situations designed to establish disparity between Cie child's predictive

judgment of ihe outcome of a transformation Lnd his observation of the actual

outcome may, in fact, generate little or no cognitive conflict. A most

parsimonious explanation of many "negative" findings in training studies

is that suc.a dIsparity belongs to the experimenter's "reality" and is

external to the child's own logical operational system.

lice in= nd InstructIon

In some form or other, the goals of American educators have always

been stated in terms of "optimizing" the intellectual, social, or

alternative aspects of development of individual children. Whatever s

goals imply, the educational and instructional processes must_ be based toeor.

an understanding of the nature of psychological development of children.

Whether we want to produce individuals who will strive to maintain the status

quo, individuals who desire and accept change, people content to be techno-

logists, or problem solvers, it is necessary to understand the basic pro-

cesses of child development and the conditions that permit "quality control

of the product."

The issue is important because science can only yield "what la" and

not what "ought to be." We are fortunate, in one sense, that the sciences

of psychology and pedagogy are young and imperfect. The proposed models

and methods for educating young children are no less imperfect and are

influenced as strongly by current social thought and individual philoso-

phical biases as by an understanding of the laws of psychological develop-

ment. Such a state of affairs, while producing wasted efforts, spurious

claims, and more rediscoveries than discoveries, may hopefully provide

time for the development of articulated sets of societal goals for

education.

The beet that can be hoped for, under the current conditions of our

knowledge, is development of preliminary "models" for instruction. Such

models can provide, at least, a L-zhematic set of principles and guidelines

for constructing a learning environment consistent with the admittedly

inadequate theories and knowledge of psychological growth. However, we

should try not to v olate recent advances in theory and known laws of

child development.

Piaget, until recently (1971b), declined to generalize his tbeory

to specifics for educational practice. His theory of knowledge acquiai-

tion has contributed to clarification and integration of a set of
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propositions about psychological development, many of which have a long

history in child psychology and education. If we accept his theory of

cognitive development, several deductions concerning the construction of
II optimum" environments can be generated. A modest attempt in this direc-

tion has been made at the University of Georgia for the Follow Through Fro-

gram (Smock, 1969). Though the basic propositions of the model are not

inconsistent with Piagct's thinking about knowledge acquisition, the inter-

pretation is that of the modeler. It is influenced, therefore, by numerous

sources of bias, misunderstanding, and distortions that are inevitable under

conditions where abstract theoretical concepts are not represented in

unequivocal abstract or logico-mathematical terms.

We start with the general proposition that the child is not_ a
passive recipient of stimulation, nor can external reinforceant be con-

sidered a primary factor in learning and behavioral change. Further, the

introduction of "mediation responses" (verbal or otherwise) is not able to

account for the complexities of observed changes in behavioral organization

during the course of psychological growth during childhood. Many psycho-

logical theorists have adopted, in one fotA or another, the idea that

human organisms actively respond to their environment and that the pattern-

ing of these responses reflects a "plan" or "set of cognitive operations."

Tn other words, the child "interprets" environment input, and the interpre-

tations are controlled by his capabilities for generating rule systems for

coordinating and transforming the input to "match" a scheme, plan, or a

mental operational structure. Analysis of the "rule systems" characterizing
cognitive development, thinking, and learning, requires specifications of

the properties of, and antecedent conditions for, selection and structuring

of the consequences of environmental events (mental representation/figurative

knowledge) and of the mental actions (operative knowledge) necessary for

coordination and transformation of those representations. The study of the

development of rule systems defined as auch is coincident with the systematic

investigation ef the "inherent logic" of development of operative and figura-

tive thought processes.

Intelligence, first of all, is considezed no mare, and no leas, than

biological adaptation. Adaptation at any level of complexity reflects

"intelligent" activity. "Knowledge" consists of two types of functional

structures (figurative and operative) that give rise to invariants in

organism-environment relations. These invariants are derived from abstrac-

tions from objects (physical experience) in the first case, and from coordi7

nated actions (logico-mathematical experiences) in the second. Intelligence,

then, refers to both types of cognitive learning and is defined in terms of

functions (i.e., thinking or reasoning) rather than content_ (i.e., words,

verbal responses, associations, et cetera). Analysis of conditions for

cognitive learning and development must begin with the identification of

components of behavioral organization (structure) that reflect particular

eoordinated action-modes of the child as he is confronted with changing

intr n -turation and prior cognitive acquisitions) and extrinsic
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(physical and socio-linguistic) factors.

Cognitive structures or systems of coordinated (men al) actions
proceed through invariant stages of structural change with ontogenetic

development. The successive differentation and hierarchical intevation
Of these cognitive structures permit the individual to cope with increas-
ingly complex social and physical "realities." The process of cognitive

development involvea the changing characteristics of transformational rule
systems (virtual and/or cognitive operations) characterizing the child'S
mode of adaptation. Neither the maturational structure of the organism
nor the "teaching" structure of the environment is the sole source of

reorganization; rather, It is the structure of the interaction (exchange
events) between the child and the pfs.Eslya environment that provide iJie
basis for intellectual development.

Optimal conditions for structural organization and reorganization

require: (a) an optimal degree of discrepancy between perceived environ-
mental/demand structures (i.e., perceptual activity, images, memories)
and cognitive operational structures; and (b) social-learning conditions
that demand "spontaneous" or "constructive" activity by the child.

Several implications for the conatruction of theoretically appropriate
learning environments are implied in these general principles. First,

structural change depends upon experience bUt not in a way that tradi-
tional learning theorists conceive of experience or learning interpreted
as pairing of specific objects and responses, direct instructions, model-
ing, et cetera. Rather, the functional genetic view holds that the
co ive ca-acities determine the effectiveness of training. For example,

ability to solve class inclusion problems implies that the child already
has the requisite single and multiple classification operational system
for classes (i.e., combination, reversibility, et cetera) in addition
to appropriate information selection, storage, and retrievel abilities.
At the same time, while experience is necessary for developmental pro-
gress, and appropriate enrichment of the environment can accelerate such
development, expeilence cannot change the sequence, structuring, or
emergence of action modes in the process of developmental change. In

other words, organization of experience is not provided solely by the
environment nor solely by the structures intrinsic to the child.

Second, the structure of the learning onvlronment must be considered
relative to two frames of reference: in terms of the operational systems
controlling the child's interpretation of "environmental" events and the
content to be learned. Operational systems are expressed behaviorally
in the coordinated actions of the child corfronted with changes in his
physical and social world. For example, the mental operations of
associativity or reversibility are inferred from the manner in which
the child attempts to solve problems involving regular environmental

3 0
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con ingencies or causality understanding of spatial relations, arithmetic
and the other substant areas (such as science or mathematics). Each

must analyzed in terms of their own logical sequence and commonalities
with other content areas. Content concepts in the physical sciences,
languages, and mathematics, for example, may have an inherent sequence
and structure. Thus, certain concepts may be necessary precursors to
subsequent understanCtng of higher order concepts. Optimal educational
conditions require, then, thorough understanding of the psychological-
cognitive capacities of the child as well as the sequential structuring
of concepts within a particular curriculum area.

Third, the striving for equilibration between assimilatory and
Acoommodatory processes under both intrinsie and/or extrinsic pressureo
underlies the adaptive process. Optiml_conditions for structural rear-
mni_zation, learuing in the broadsense,2nyiLedlse uilibratioa. This

conition is met when there is an appropriate "mismatch" between the
cognitive capacities 0:: the child and the conceptual demand level of the
leavning task. Too little or too much "pressure" may result in over-
assimilation or over-accommodation respectively, and not promote r3gnitive-
developmal change.

Fourth, :acilitation of learning requires analysis of two levels of
cognitive functioning -- figurative and operative processes. The first

is moLt emphasized by those theorists, particularly behaviorists,
recommending a direct tuition approach to instruction. The operational
theory of intellectual development does not deny the value of "provoked"
learning (i.e., through imitation, algorithms). Ilather, such learnings
are considered limited because of lack of generalization or transfer to
new situations and because the basic intellectual processes concerned wi h
problem solving and reasoning are not significantly affected.

While there is some doubt that much acceleration of structural reor-
ganization is possible through environmental enrichmen , early childhood
education should provide opportunities for utitization of relevant cog-
nitive operational structures. Oaneralization of conceptual learning
across content areas rather than the building of specific knowledge and
skills (e.g., a large vocabulary) should be emphasized since the latter
cannot directly accelerate operational syStem change and may, in fact,
retard development of these "deeper" competence structures.

In any case, the nature and varietz of the child's "exchanges" with
the environment need to beconsidered in educational planning. The nature
of the interaction refers to the relative emphasis on ontogenesis (self-
directed) as contrasted to exogenesis (environmental or teacher-directed)
structure of the learning environment. The functional grnetic position
can best be summarized in the old adage -- "you can lead a horse to water,
but you can't make him drink - unless you feed him salt." Thus, the task

of the teacher is to engineer an educational environment consisting of
curriculum materials, social interactions, and directed activities that
proVide appropriate "salt" for each child. Sequentially structured

3 1
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curricula should be designed vn provide an optimal degree of structure and

conceptlIal level to permit an appropriate balance of assimilatory and

aecnmmodatory activity=

The variety of interaction or enrichment refers to the types of

structured curriculum content relevant to the child's physical, social,

and symbolic experiences. The interlocking nature of substantive curri-

zulum areas makes it possible to provide a variety of experiences relevant

to acquisition of the cognitive "products" that provide representation

of the environment, such as memories, vocabulary, or symbols and, at the

same time, to facilitate tht development of coordinated rule systems

associated with cognitive operational development. For example, analysis

of the visual environment (attention or observational skills) as well as

cognitive operational structures (e.g., conservation of area) can be

emphasized in science socIal studies, mathematics and art.

The engineering of an educational or "learning environment" based

on the preceding consideration necessarily involves the development of

specifications of: (a) the child's cognitive developmental level; (b) the

physical structures, including curriculum materials; and (c) the social

or interpersonal structures. The organization of these "elements" should

be such that equilibration, between different cognitive systems and/or

between intrinsic functional structures and "environmental" structures,

is achieved. Thus, sequentiallx_e!rueturee_sets of zurriculum materials

and of social interaction situations are necessary to provide the "pressu

necessary for learning and adaptation. A variety_of specific learnin

environments needs to be available to maximize the probability of each

child's finding activities that attract or "trap" him Into interacting

with the physical and social environment at both the behavioral and

symbolic levels of leaguage and mathematics in creative and spont:aneous

ways be it through F.rt, role playing or music. Finally, the physical

and social environments should be arranged so that considerable freedom

of movement, within the structure of a variety of contents, is possible,

i.e., "a modified open-structure classroom." A careful balance between

relatively high and low structured learning situations and between group

and individual 1.!arning activities should be maintained.

The Nathemagenic Activities Program, a model developed in the

context Jf enriching the educational environments of economically deprived

childpen,4 is based on three explicit principles derived from the consi-

derations discussed above. Specifically, the MAP principles of change --

4Mathemagenic Activities Program: A Model for Early Childheod Educa-

tion, pre,aared by C D. Smock (A preliminary statement of the conceptual

basis fo,. the Mathemagenic Activities Program for the Follow Through Pro-

gram appeared in Terminal Report (1,J70)).



25

whether the target ;or change is the individual organism (child) 0r a
complex social system (e.g., Local Education Authority)--are based on
the above asstimptiotA concerning the role of experience ta learning and

development. First, the source of motivation to change is provided by
a discrepancy (disequilibration) between different conceptual systems
(ideas) and/or between previously acquired conceptusl systems aid environ-

mental task demands. Thus, an appr_op112,t±_912match (M) is necessary to

generate exploratory activities and iusure the individual has the pre-
requisite conceptual basis for learning higher order concepts.

Second, since coordinated actions ;pra(:tical and mental) are the
basei tor knowledge acquisition, thu entning envirOnMent must be
structured so that specific tssk deuands iticlude appropriate practical,
perceptual, and mental activity U,.)

Third, the learning etwiroumem; must inclide provisions for p rsonal
self-regulaulry (P) constructions. Enewledge acquisition involves con-
struction of invariants from properties of objects (physical experience)
and from the child's actions on objects (logico-mathematical experiences).
Optimal conditions for facilitating new "constructions" (concept learning)
involve a balance between tasks that are highly structured (in which thr,,
child merely "copies" or imitates the correct solution) and tasks that
permit the child to generalize and discover new applications of his

concepts. Practically, self-regulation implies a yariety of task options
available to the child; the number of options may well vary with the
nature of the task and many other factors. MAP proposes, however, that
options--in terms of level of task difficulty, mode of learning, and
choice of activity--are necessary ingredients of developmental change,
whether the target be a child, a teacher, or an educational system.

The implied educational model requires significant changes in the
teachers' role definition and teaching strategies and tactics. The need
for sensitivity to the child's capabilities, and the structuring of learning
situations that promote self-regulated, "coustructive" knowledge acquisition,
together with thorough acquaintance with avallable technological aids,
require an "educational engineer" in the best sense of that term.
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Pro lem Solving in a Model for Early Mathemat Learning

hoyal Nelson

University of Alberta

A number -f mathematics programs for young children have been developed
in recent years which are modelled after various theories or hypotheses
about how children learn. The Montessori program (OreM. 1971), based on
a "prepared environment" around which mathematical experiments are
arranged, is probably the best known. More recently there is the highly

structured DISTAR Program of Englemann and Carnine (Englemann, 1969) which
lealm heavily on a task analysis of mathematical skills provided by Gagng
(1972) and his hierarchical notion of how experiences should be arranged.
Kamii (1971) is attempting to arrange an entire program of preschool educa-
tion around the processes of development found in Piaget's work. A good

deal of research is being donc to evaluate these and other developing

program (Suydam, 1974). However, another alternative Which has been
widely discussed but which has not been adequately investigated is what
might be called the problem solving approach.

It would appear that mathematics instruction in the early years should
be aimed primarily at helping children solve problems associated with
situations and e ents which occur in their lives from day to day. Such
problem solving situations for young children could not be the usual kind foU

in mathematics programs where the solver is expected to find Some mathe-
matical expression to fit reality. The system of symbols available to
young children is too incomplete to process problems of any consequence

this way. However, it should be possible to get children involved in
solving problems which require the use of a variety of mathematical pro-
cesses but which require the use of no symbols at all- There is evidence
that such processes are available to young children and it might be assumed
that their application to problems in the real world could provide a
sound basis for mathematical abstraction.

The purpose of mathematics instruction at say ages three to eight

could be best served when the child gains new control over, and a deeper

understanding of, some aspects of reality and can in turb transform or

reorganize it in ways that more nearly suit his own ends. Such control

wouid be manifested when he lea ns to share a number of toys or candies

fairly and equitably; when he can draw a map to show bow to move from one

point to another on r plane; when he can arrangg a row of markers in a

straight line; when ho can construct a series of rowers each higher than

the one before, and so on.
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It might be assumed that any progress toward abstraction and mathe-
matical understanding would require that the child have wide experience
in dealing with problems of this kind. It would appear in any case that

the child comes in contact at a very early age with a surprising nuMber

of processes which are, and which continue to be, of importance mathe-

matically. If one can imagine a child playing with a set of discrete
objects he will, depending on the nature of the objects, separate them,
combine them, pile them, group them, partition them, compare them, order
them, classify them, label them, and the like. When considering the
spatial aspects of a three dimensional solid, for example, he may represent
it, project it, dismantle it, turn it, bounce it, copy it, and so on.
Many Such processes find expression in mathematical symbola in the course
of the child's early school experience and later mathematical experience
would certainly require it. But is there any guarantee that the child
has a good grasp of an idea or process as it applies to reality before

he is required to represent it symbolically?

In the present situation, it iS doubtful that this question could be

answered in the affirmative. In the first place, the way most mathematics
progrrma are organized for early grades it is necessary for the teacher
to introduce the symbols of mathematics whether the child fully understands

what the symbols mean or not. Second,if the teacher wanted to arrange

experiences to guarantee basic understarding before symbols are introduced,
there is not enough specific research evidence upon which to base a
comprehensive program of such experience.

To illustrate some of the difficulties associated with establishing
a problem solving program for the purposes outlined, consider a single

example. Suppose one wished to arrange a series of experiences to

guarantee that a young child understood meas.rrement division before he

was required to do exercises involving the division algorithm. In its

simplest manifestation one would expect that there would be a set of
objects and directions given to the child to find the number of equivalent
subsets each with a specific number of objects. Presunably the objects

would be movable, would fit nicely in the child's preceptual field, and

would all be the same. what would the child's response be if the number
of objects in the subsets was a factor of the number in the original set?

How would Oie child respond if there was a rmainder? What if the objects

were not all in the same class? Mow would tha child behave if the objects
were to be grouped in another location? Wouldthe way the directions are

given make a difference? Can very young children cope with the problem?
Do they behave differently in the fare of distracting elements of the

problem than do older children? Mow real does one make the problem?
What kind of variables influence the child's problem solving behavior in
this situation and how should they be controlled? If one wanted to gen-

eralize division to include partitioning, the questions posed above (and
possibly some others) would have to be asked again. Answers to such

questions would have to be available on all aspects of a mathematics
program if one were to include problem solving in a model for mathematics

learning. It is important that attempts be made to seek these answers.



Certain features are characterintic of any model for mathematics

learning. Assumptions have to be made, for example, about how children

in a particular age range learn mathematics; mathematical content has to

be specified; attention must be given to the physical and social situations

in which the content is to be learned; and finqlly, some empirical infor-

mation must be available to permit interpretation of any variation in

behavior exhibited by children in the learning situation.

If problem solving is to be included in a model for early mat -

matics learning, a number of steps must first be taken. First, criteria

need to be established which will serve as guidelines in designing the

problems. The works of Piaget, Bruner, Dienes and others would of course,

Provideinitial guidance in designing such guidelines. Once the criteria

were established, their potential as guidelines for creating good problem

situations would have to be tested. Such tests should suggest ways of

refiniug the criteria to make them increasingly effective. Since little

is known about how children at various ages behave when presented with

such problems some procedure would have to be developed to collect such

behavioral information. The b2havioral data should serve as a means of

making further refinements to the criteria. The research model for

studying probem solving behavi.lr of young children is shown below.

A Model For Stud Problem So1v1n Behavlo

The purpose of th s paper is to describe the progress that has been

made so far on the research model.* The preliminary research does not

Assumptions about
How Children Learn
Mathematics

ordiaated
Analysis
cross All

Sample Proble-

Criteria for the
Creation of "Good"
Problem Situation

Analysis o
Behaviors in
Individual
Problems

gn and
veloPment of
mPle Problem
uatlona

TV

Protocols for
Use with
Problem S a ons

Behaviors of
Children (Age 3-
n Problems

Figure 1. The main features of the research model.

*The project designed to do this is being supported by Canada Council,

a federal research agency which supports basic research in social science

And the humanities: Director, Doyal Nelson; Co-Investigator, Daiyo Sswada.
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address itself directly to the matter of including problem solving in

a model for mathematics learning. It is, however, an example of the kind

of research that needs to be conducted before adequate models for learn-

ing can be desigeed.

The Assum-tions

Although certain assumptions, both about the role of problem solving

in mathematics learning and about mathematics learning in general,

are implicit in the opening discussion, the OrimarY assamntions on whici

the project is based are as follows:

1. Significant problem solving situat o s can be devised for young

children and their solution does not depend on a complex knowledge 0f

mathematical symbols or expressions.

2. Mathematical abstraction and understanding is based largely on

solving problems involving real objec s and events.

3. Action is the single most important aspect of such problem

solving situations.

4. Observable behavior of young children in problem situations can

reveal important information about their mathematical understanding,

5. Interpretation of such behavior can provide some guidance in

designing problem solving experiences for the promotion of deeper and

clearer understanding of various aspects of mathematics on the part of

the child.

6. Children learn in the presence of "noise" or dIstracting elements.

Such "noise" should appear in the problem situations.

Th-

Some years ago, a colleague, Dr. Joan Kirkpatrick, and the inve /-

gators set about to construct a model which could be used to create

"good" problems for young children. We wanted to be reasonably sure

that if the criteria stated in the model were adhered to, that the

resulting problem or problem situation would stimulate problem solving

activity on the part of the child. The criteria which finally emerged

are as follows:

1. The problem should be of significance mathematically. It is

for the potential of the situation as a vehicle for the development of

mathematical ideas that a particular problem situation or family of

situations is chosen above all others.

2. The siCuation in which the problem occurs should involve real

objects or obvious simulations of real objects. The main consideration

here is that it be comprehensible to the child and easily related to his

world of reality.

4 1
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3. The problem situation should capture
the interest of the child

either because of the nature of the materials, the situation itself, the

changes the child can impose on the materials, or because of some combina

tion of these factors.

4. The problem should require the child to make moves or ilsfor

mations or modifications with or in the materials. It is difficult to

overemphasize the role of action in early childhood learning. Most of

the mathematical models we are interested in at this level are what might

be called "action models."

5. If possible, problems shoul,, le chosen which offer opportunities

for different levels of solution. If the child can move immediately from

the problem situation to an expression of its mathematical structure it

is not a problem.

6. Whatever situation is chosen as the vehicle for the problems,

it should be possible to create other situations which have the same

mathematical structure. That is, the same problem should have many

physical embodiments. It may not be possible for a child to generalize

a solution to a certain structure of problem until the problem has come

up in a variety of situations. Abstraction and understanding is probably

facilitated when the child sees more than one physical situation embodying

a particular mathematical idea or process.

7. The child should hi_ convinced that the problem can be solved

and should he able to show when he thinks he has a solution for it.

If the child is somehow required to react with or transform materials

used in problem situations, it is usually easy to determine whether the

problem meets the criteria or net.

The model is still crude, but its application has been reasonably

effective in providing direction for the creation of productive problem

situations to study the behavior of young children. It is necessary at

this point to introduce the following three definitions:

a. roblem situation all aspects of apparatus designed according

to the criteria listed above;

b. problem the apparatus and the accompanying verbal statement or

demonstration designed to stimulate some reaction on the part of

the child; and

.uIvalnt iroblem solvin situation a situation involving

the same general mathematical process or idea as another but net

designed necessarily to stimulate the same problem solving

behavior on the part of the child.

4 2
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Creating the Problem Situations and the Problems

In applying the criteria to the creation of sample problem situations

it was decided to limit their number to six but to develop, for each of

these six, one Itlivatent situation The general mathematical areas

involved were:

1. division - measurement and partitive, no remainder.

2. co-ordinated reference systems - two dimensional and three

dimensional.

3. se uences - alternating with two or more ele _n s.

4. reflections on a lane.

5. factors - prime and composite numbers.

6. o ric re esentation - three dimensional in two dimensions.

Appendix A contains a complete description of the division problems and

their protocols. Appendix B contains a brief description of all the

other problems.

Sam.lin Procedures and Recordin Behav

The purpose from this point on was to determine if the problems

would stimulate interpretable behavior on the part of young children.

The age range of particular intetest was three years to eight years.

in that range many of the processes of mathematics are encountered for

the first time and at the upper end of the range many mathematical

situations and processes are being represented in mathematical symbols.

Interview protocols were devised to permit a child to present any kind

of response to a problem from the purely physical to the purely symbolic.

Por the preliminary work, a sample of fifteen children from each

age level three to eight was selected. Children were volunteered hy

their parents and came from an area served by five schools in the vicinity

of the University of Alberta. It is recognized that voluntary samples

may show specific kinds of bias, hut this shortcoming was not considered

to be serious in a preliminary survey where very little is known about

the behaviors that might occur. In any case it would be very difficult,

if not impossible, to obtain a truly representative sample of children

as young as three years of age. No biographical data except age was

collected in any systematic manner.

The laboratory was set up with a videotape recorder, two cameras,

and a monitor. The child came into the room with his parent. An

interviewer sat at a table at which a problem situation was displayed.

The child was asked to sit in a chair beside the interviewer and the problem

4 3
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was presented according to pro_ocol. while the child solved the problem
the two video cameras (and sometimes a super 8 movie camera) were trained

on him and recorded whatever he did. Split-image capability permitted

two opposing views to be recorded at the same time. Counting the parent.

laboratory assistants, technicians, and interviewers, there were usually

about eight adults in the room. As soon as one problem was completed,
assistants removed the apparatu; and presented another set. Six separate

problem situations were presented to each child according to a strict

schedule. The schedule provided that ten children at each age level did
each problem and that five of these did the equivalent as. well. The

decision as to which would be the problem and which the equivalent was
made randomly before the data-gathering began.

To begin with there was some fear that the child might refuse to

react because of the rather overwhelming laboratory setup. Most children

however, were apparently not influenced by this. In fact, all children

but one completed all six problems. That one, a three year old, did

a single problem and would not go on. Jt was appraent that it was not the
laboratory situation that upset him but rather an unpleasant experience

on the way to the laboratory.

Protocols were followed closely unless a child either failed to make

any response or continued to make responses that were unproductive. The

interviewer in these cases was permitted to intervene. Children took

from twenty minutes to one hour to do the six problems. (It should be

noted that all available children will come back in the summer of 1975

after one year and do six more problems. This longitudinal aspect

should provide a check on the validity of interpretations.)

Ana ysis of _Behaviors

There are a numbei of steps which must be taken in analyzing taped

data. tn the first place, some decision has to be made about which
behaviors are significant enough to be included in the analysis. Second,

sufficient time must be spent viewing sequences to be sure that all
significant behaviors are considered. Third, a coding system has to be

devised which will convert the data into a form which can be readily

analyzed. Pinally, adequate reliability checks must be devised so that

one is reasonably sure that all significant behaviors have been

considered.

Although coding has been completed, analysis f the coded data has

not proceeded far enough to permit a complete report. In order to

illustrate the general form of analysis and to indicate the directions

these analyses might take, preliminary work has been done on those problems

involving measurement and partitive division. A report of these resulting

analyses is included in this paper.

4 4
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Results for Car-o Grou s and Animal Grou s - Measurement and Partltive
Division (see Appendix A for details of the problem situations and the

corresponding interview procotol)

These problems were designed to find how children would behave in
problems involving measurement and partitive division. In the cargo
groups, the child was involved in finding the number of groups of three
cars in fifteen (measurement division). Then he was involved in finding
how many cars would be at each of three houses if the fifteen cars were
distributed among the houses so that there were the same number at each
house (partitive division). The cars were all from a single set of
small plastic models which represented a variety of makes in a variety
of colors.

It was assumed that the older children might merely count the cars
and then divide the number by three to get the result. They might on
the other hand group the available cars in threes for the measurement
situation or in three equal groups for the partitive situation. It was
expected that younger children would have no systematic means of attacking
the problem.

In the animal groups, the child was asked to tell how many cages would
have to be built so that there would be five animals in each cage. The
child was given an assortment of twenty plastic animals. The partitive
question asked the child how many animals would be in each of three
cages if each cage were to have the same numberof animals. Again he
had available an assortment of plastic animals, but there were eighteen
animals this time. Animals were selected so that a classification of
them based on what kind belong together in a cage would not give the
solution. The most incongruous was a single lion which some children might
be reluctant to introduce into a cage with other animals. This problem,
too, could have been solved with minimal physical movement of the animals.

Certain distracting elements were built into each of the problems.
In the cargo groups, for example, the ferry was to hold three cars, but
there was obviously room for four. Also when the child unloaded the
cars there was nothing to suggest that each load should be kept separately.
When the cars were to be parked by the houses, they could be driven
down the road. But to park them the child would have to move them up on
the "grass." The animal group cages would preserve the groups so they
could be counted, but the animals were so chosen that no system of
classification would serve to help in the solution. In addition, the
design of the cages was such that cage building would be highly attract ve
to most children.
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Cargo Groups (see Appendix A)

Measure-nt division. Ten children at each age level from three to
eight years did th_s problem. From the information, it was poSsible
to determine the kind of general procedure each child used in response
to the problem. The observed procedures were arranged in seven cate-
gories as follows:

The child listens to the problem, looks at the apparatus, and
gives the correct solution without manipulation.

II. The child makes groups of three ca s- counts the groups, and
gives a correct solution.

III. The child places cars on the ferry and makes one or more trips
but gives the correct solution before all the cars are moved across the
river.

IV. The child places cars on the ferry three at a time, makes
five crossings, and gives the correct solution.

V. The child places cars on the ferry, three at a time, makes
five crossings, hut gives an incorrect solution.

VI. The child places cars on the ferry but not three at a time,
gets all cars across the river, and gives an incorrect solution.

VII. The child either does not attempt the task or abandons
before the cars are all across the river.

Of course, these categories might have been collasped into two
classes--one for correct solutions and the other for incorrect solutions.
Table 1 shows the distribution of responses in the seven categories
according to age and sex of the child.

The response categories were listed in order from what was judged
to be the highest level of solution observed to the lowest. The distri-
bution of subjects among the response categories indicates a relation
between the level of the solution and the age. The striking thing,
however, was the great variety of procedures observed to he used in a
single age group. The six-year-olds, for example, ranged from being
highly manipulative on the task to very low. One six-year-old appeared
to have only minimal comprehension of the problem while another displayed
almost complete control. The others were spread between these two levels.
While the eight-year-olds all gave the correct response, half of them got
involved in manipulating the cars across the river to arrive at the solution
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Table 1

Responses at Various Ages

Incorrect Solution
(N a 35)

Correct
(N =

Solution
25)

F
F
F

M
M
M F M

M
Ha
H H

F

F F

M
M

FF
FF
FF F

M
MM
M

M
M
M

F
F
F

F

F
F

F

VII VI IV

Response Categories

Note. Females and _-_ = Hal

The most common response categories were those labeled IV and V.

In each of these categori4s the children moved the cars across three at

a time. However, sone of them could answer how many trips they teak and

some could not. Those who could not were put in category V. There were

almost three times more responses in this category than were in category

4 7



41

IV. Children in both categories used a perfectly valid way of deter-

mining the result, but by far the majority of them failed to remember the

number of trips they had taken. The problem was structured so that there

would not be any record of the number of trips unless the child made a

deliberate attempt to group cars as the ferry was unloaded, to keep some

mental count, or to use some other means of keeping track of the nuMber

of trips. The method of actually moving the cars across the river three

at a time peaked at age five and was less for children either older or

younger. The three- and four-year-olds apparently had trouble remembering

the rules. There was some indication that boys tended to bring their oun

reality into the situation more often than girls. _However, this type of

behavior did not appear to be related to the child's ability to give a

correct response to the problem.

Although analysis of verbal responses was not central to this study,

it would appear that there is something to be gained from such an analysis.

About half the participants made no verbal response at all except when

they gave a solution. One response which persisted acrosa the age range

had to do with a clarification of the rules. There were questions such

as, "no I do it?" "How many cars on the ferry?" "Three and one more?"

and the like. The younger children often wanted to make their own rules.

For example, there was room on the ferry for four cars, and many of them

wanted to put four on instead of three. They would also make rules

about what cars should be parked together and how the cars should be

loaded and unloaded. Another kind_of rule making was in the form, "The

yellow car wants to go back." and "This car has to back up."

It was assumed that some of the boys, at least, would Make the sounds

that go with the movement of cars and ferries. Six boys in the sample

did, indeed, make such sounds; they were in the three-, four-, and five-

year age range. It was also assumed that counting would be a very common

verbal behavior across the age range. There may have been some covert

counting, and no doubt there was, but only four children counted so it

could be observed and three of them were eight-year-olds. The other was

a six-year-old. Some of them may have had trouble making groups of three

cars because they could not recognize such a group. Children who made

errors on the first load were correcteC but many of them continued to

make errors in the number of cars they put on the ferry.

The interesting thing is that the procedure of moving the cars across

the river three at a time in a more or less systematic way was observed

in children as young as age three but still persisted in the behavior

of eight-year-olds.

The procedure described in category III was used by only two children.

These children started to move the cars across but apparently realized

that they could use a more efficient procedure; they made groups of

three cars and gave the number of trips it would take without further
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manipulation. It would appear that most children, once having undertaken

the moving across, did not want to abandon the procedure until it was

completed.

At every age lev l at least one child responded to the reality of the

situation in a greater mesure than the problem seemed to demand. This

behavior was manifested in the child making chugging noises for the fern',

roaring noises to accompany the cars' movement, driving the care onto

and off tile ferry, turning the ferry around for docking, and the like.

Such behavior was most common among the three-, four-, and five-year-

olds. The most common verbal behavior among the younger children appeared

to be description of the actions being carried out. As they loaded the

ferry and moved it back and forth across the river, they would provide

a verbal monitoring of what they were doing. The purpose did not seem

to be to communicate with the experimenter but appeared to be merely a

verbal equivalent of the actions as they occurred. The behavior persisted

through age six but was absent in4the seven- and eight- year-olds. One

seven-year-old, however, summed up as follows, "Well, you see what you do.

You take three, and_you get another three and another three until yail get

to the end and that's how you find how many you got." This child did not

move the cars across on the ferry; he just gave the answer and a verbal

explanation of his procedure.

Three three-year-olds made comments about the apparatus. They seemed

to be more interested in the features of the cars and layout than in the

problem. Two three-year-olds and a four-year-old wanted to talk about

Something entirely unrelated to the situation. A three-year-old girl

had trouble with herkneesocks which kept falling down and a boy Was

attracted by a name tag that had been put on his shirt when he entered

the room. The four-year-old had just had a birthday and wanted to talk

about that. in the cargo group measurement problem, the most important

observation seems to be that the process of grouping by threes is avail-

able to at least some children in every age range. Over half of the

children in the sample actively loaded the ferry and took the cars across.

Of those who used this procedure, the great majority failed to remember

what the problem was about and could not give a correct solution. In

designing instruction, it would seem to be important at some stage at

least to arrange for problem situations which would preserve the integrity

of groups once a grouping is made. (See discussion under animal groups.)

Partitive divis n As soon as the children completed the measurement

division ta k, the partitive division problem was given. They wen? asked

.to park all the cars they had just brought across the river around the

three houses so chat each house would have the save number of cars. The

observed procedures were arranged into six categories:
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I. The child places five cars at a time at each house or makes groups

of f_ve cars.

II. The child distrIbutes cars
systematically one at a time among the

houses until there are five at each house.

III. The child uses a partly systematic procedu e to distribute the cars

and arrives at a correct solution.

IV. The child uses a partly systematic procedure to distribute the cars

but does not arrive at a correct solution.

V. The child uses an apparent rqndom system of distrlbutfon and does

not achieve a correct solution.

VI. The child either does not attempt the task or abandons it part

through.

These categories are arranged in an order from what is judged to be

the highest to the lowest level of solution. The six categories might be

collapsed into two--one for correct solutions (I, II, III) and the other

for incorrect solutions (IV, V, VI) . Table 2 is a distribution of responses

in the six categories according to age and sex of the child.

Although the partitioning process is often considered to be complicated

and to require more systematic treatment
than measuring out equal groups,

there was more success in this problem than in the previous one. Eleven

children who could not do the measuring problem could do this one. Only

two who were successful in the
measurement problem could not do this one.

One reason may be that the children were more familiar with the apparatus.

A more reasonable explanation seems to be that the child had a record of

the groups of cars in front of him once he had moved the cars to the

houses. Adjustments could then be made and the feedback used to make the

result fit the question that was asked.

The very systematic approach to the partitioning process first showed

up in the four-year age group and was used increasingly among older

children. Eight-year-olds may have been able to deduce that if it took

five trips to get the cars across the river in groups of three, then

there would be five cars at each of the three houses. Still, seven of

the ten eight-year-olds actually distributed the cars around the houses

in a systematic manner, as in dealing cards, and gave the answer only

after the distribution had been made. Regardless of the skill in parti-

tioning, there were few children who seemed to see a relation between 4

mathematical expression of division and the process they were carrying

out.
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Table 2

Responses at Various Ages

No Sr.lution
(N w 26)

Solution
(N 34)

M F
M F

F

VI

-e. F Fèaales and
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Over half the children in the sample made no verbal response
while they were solving the problem and only responded te give their
solution or when questioned about it. The younger children, aged three

to six, tended to ask questions to clarify the problem more than they

did in the measurement problem. One of the difficulties with these
younger people was that once they had parked one car by each house1 they

could not see why more cars should be parked there. Closely asSociated
with this concern were questions about how the cars could be parked at

thehouses. Some children at every age level tried to match the color of

a car with the color of the house. For the younger children, this was
distracting enough to prevent some of them from solving the problem.
Although older children were often distracted by color matching, they

could at the same time give their attention to the number of cars at the

houses and come to a correct solution. Again, there was very little

evidence of overt counting and if it did occur, it was in older children.

In summary, it might be observed that though the partitioning process

may in most circumstances have more inherent difficulties than the measuring

process in division, there were more solutions for this problem than for

the measurement one. The very young children had trouble making sense

out of the situation, probably because of the large number of cars that

were to be parked and the small number of houses and also because the

color of some cars matched the color of some houses. Once these distrac
tions could be overcome thia seemed to be the easinr problem to solve.

Animal _Groups (see Appendix A)

Measurement division. After they had completed the cargo groups,
five (7)itt'n children at each age level were given the animal groups
problem (see Appendix A for details). In the measurement situation,

they were given animals and asked how many cages would be needed if there

were five animals in each cage. Although this problem when completed
would preserve the integrity of the groups and permit the child to check

his response, the choice of animals was such that it would be necessary

to put animals together in a cage which would never be together in reality.

A further distraction involved the building of the cages which those

children seeking a physical solution would have to do.

The response categories for this problem situation were as follows:

I. The child gives a correct solution by making groups of fire or by
making no physical contact w th the material.

II. The child makes one or more cages, puts five animals in each, and
continues building cages until there are enough and all animals are In

cages, then gives the correct solution.

5 2
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The child makes two or more cages, stops building cages and
distributes animals among those cages and gets an incorrect solution.

IV. The task is abandoned or not attempted.

7

6

4

Table 3

Responses at Various Ages

Incorrect
SelUtion
(N = 13)

Correct
Solution
(N = 17)

F

IV III IT

Response Categories

No ales and ri = Males.
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Only five children out of twenty-seven who atteMpted the problem
appeared to be able to ignore the reality in this situation and to arrive
at a solution. Three three-year-olds did not attempt the task. By far
the ma.lority of the children were either completely engaged in classifying
the animals, making them stand upright, finding ways of getting them into
cages, in building cages, or in some combination of these behaviors. Except
among the three-year-olds, there were children in every age range who could
overcome such distractions and solve the problem.

One question whIch might be asked is this: Were the children who
were successful on the measurement part of the cargo groups problem also
successful on this one? It was found that seven children who failed to
get che measurement part of the cargo groups problem were successful in
doing the measurement problem with the animals. Only one child who was
able to do the cargo groups problem failed to get the one with the animal
groups.

Only five children in the entire sample were able to ignore the
reality aspects of the problem in seeking a solution and three of these
were eight-year-olds. All of the others felt compelled to put animals
in a cage only if they were of the same kind, or to make animals stand
upright, or to remove a panel in the cage for the animal to enter, and
the like. This inability to ignore how things should be in reality
appeared to be an important source of difficulty at every age level
except seven and eight. Some children would have all the animals in the
cages, for example, except the lion and would hold it trying to decide
what to do with it. Others would get so involved in getting the animals
to stand that they seemed to forget what the problem was. Undoubtedly
some younger ones did not know how to make a group of five. There was a
high incidence questions about the problem or commentS about the
apparatus. Children were apparently trying to get information about how
to handle the incongruities.

In this problem, once the animals were placed in the cages, all they
had to do was count the cages. In the cargo groups problem, they finiShed
the process and did not have anything to count. This fundaMental difference
in the nature of the two problems appeared to make this one easier to do.
It would appear that a very careful analysis of problems is necesSary if
they are to become an integral part of an instructional program.

Partitive division. As soon as the measurement part of the problem
was completed, the child was provided with three cages, eighteen animals,
and asked how many animals would be in each cage if each would hold the
same number.

The response categories are as follows:
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I. The child places abc animals in each cage or partitions animals
among the cages and gives the correct solution.

II. The child places two or more animals in each cage to begin with,
then partitions the remainder one by one and gives a solution.

III. The child places animals in cages in unequal groups, theft evens
them out and gives a correct solution.

IV. The child places animals in cages- tries to even them out but can't
give a correct solution.

V. Tank abandoned or not attempted.

Table 4 shows how the response,s were distributed.

There were two children who could not do the measurement part of this
problem who were successful in this part. Only one child did the measure-

ment but not this part. All the others missed them both or got them both.
All of the seven- and eight-year-olds could do both parts. There was a
decrease in the frequency of questions or comments about the problem or
about the app.iratus and an increase in observable counting behavior.

It should be noted that this was the last of four quite distinct
problems concerning division for the thirty children This problem suppl ed
a good deal of feedback in that the cages kept the groups distinct and
the child could keep a check on what was happening. There were a number
of children who responded to the reality of the situation more than they
needed to in order to solve the problem. Indeed, four out of the five

eight-year-olds put the animals in cages according to class, made sure
animals stood up, arranged the animals in groups, adjusted fallen animals,
and the like. This type of behavior was observed to be prevalent at all
levels except at age three. The three-year-olds either found the problem
incomprehensible or did not attempt it.

This behavior contrasted sharply with that obse ved for the partitive
problem with the cargo groups. For that problem, only one of the eight-
year-olds out of the ten shoved evidence of responding Strongly to the
reality of the situation. The others of this level and age, seven in all,
just distributed the cars among the houses without apparent regard for
type or arrangement or any other physical aspect. Attempts to drive the
cars to houses, to group cars of the same color, to match car and house
colors, etc., did occur, however, among the three-, four-, five-, and
six-year-olds.
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Summary

The following general findings are sign

1. The problems Wiich were designed to study behaviors associated

with measurement and partitive division contained a variety of distrac-

tors to which children at all age levels in the sample responded.

Children in the seven- and eight-year-old sample were, in general, able

to cope with the distractions and to solve the problems. However, the

younger children were often so distracted by the reality in the situa-

tion that their ability to handle the problem was impaired. A much

closer monitoring of the reality aspects of problems will have to be

achieved before 3 proper assessment of the instructional value of such
problems can be made. It may be that problems have to be designed which

provide a range of distracting elements. In any case, mastery of the
process would apparently involve the child in coping with varying amounts

of "noise" in the form of such distractions.

2. nie partitioning process appears, on analysis, to be more

complicated than the measuring process i4 division, However, the question
asked in the measurement situation seems to be a very difficult one if

the integrity of the equal groups is not maintained in the process of

solution. Thus, children who moved the cars acrose on the ferry failed
often to be able to remember how many trips they had taken--if indeed

they gave any thought to the question at all, On the other hand,
children had no difficulty with the onimais in the cages because the

grouping of five anirmals was maintained throughout and provided a continu-

check. The process requires that to answer the question the child must
remember the number of groups. Here again the design of problem has to

be brought into question. Aay attempt to establish instructional procedures
based on the probleus would have to take into account the kind and

amount of information, in the form of feedback, provided to the child.

It would appear to be important to maintain control of the feedback

dimension and to consider its influence on the ability of the child to

handle problems in a particular domain. Some very limited examination

of the other problems in the investigation would seem to lend some

support to this view. In the reflected shapes, for example, the shadows
can be made to change constantly and thus provide the child with immediate

and constant information about his success. Children obviously uSe this

information to guido them to solutions to problems in a very unfamiliar

setting.

3, It was assumed that the seven- and eight-year-olds, at
least, would respond to the simple division problems as set up in
the protocols with very minimal reference to or contact with the
objects and materials in the problems. Rather surprisingly, there was

a great deal of dependence on manipulation of the objects among chil-

dren of all ages in the sample. Even though they might have been able

ra
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to respond by just looking at the apparatus, they seemed to want to
verify by making the physical moven implied in tke statement of the
problem by the interviewer. The nmterials themsejves may nave been
attractive enought to magnify this tendency.

4. Protocols whicb the Interviewer was required to follow when
interacting with the child and in setting up t L problem made it impossi-
ble to check the influence this factor had on the behavior of the child.
It would seem that directions such as, "Build enough cages so that there
will be five animals in each and so that all the anirials are in cages.",
would stimulate a different set of responses than, "How many cages would
be needed if there were five of these animals in a cage?". In any case,
the presentation of the problem to the child would appear to be an impor-
tant determinant of subsequent problem solving behavimr tf it were
possible to monitor such presentations, it may be possible to show that
the use of symbolic solutions as opposed to purely physical ones could
be controlled largely by how the problem was stated.

5. In ea h situation, the cargo and animal groups, the partitive
problem always came after the measurement one. Children more often asked
questions about the partitive problem than about the measurement problem.
This may have been because the partitive situation, if done systematically,
would require more moves and more control than the measurement one. It

seems as likely, however, that the requirements of the first problem
interfered with the child's understanding of the requirements of the
second. In many cases the child would ask what aspects of the new
problem were the same as the former one. The confusion might have come
because of two apparently different but obviously related problems using
the same apparatus. The type and variety of problems involving identical
or nearly identical apparatus and their interactions might have to be
considered in instructional programs which contain a large proportion of
?roblem solving activities.

The criteria on which the development of these problems and problem
situations were based included reference to "multiple embodiment" in the
sense that the same mathematical idea should appear in vote than one
embodiment (Dienes, 1960). The question which has not been considered
in the criteria is concerned with the use of a single problem situation
to involve a variety of mathematical ideas. Judging from the questions
the children asked, use of a single situation in this way may be an
additional source of noise and, therefore, an important factor in
problem solving behavior.

D _cussion

From the foregoing summary it is clear that a number of refinements
must be made on the model used to develop problems and the model used to
study the pro!!'lem solving behavior of children from age three to age eight.
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The analysis of the data from only one set of related problems has been

considered at any length. As analyses for the other problems are completed,

it seems reasonable to assume that other guidelines will develop for

the inclusion of problem solving in a model for mathematics learning in

the range of ages from three to eight. Before this is accomplished,

however, work will have to precede this that will eliminate some of the

crudities of the present investigation and lead to refinements in the

model used for studying problem solving behavior.

The most crucial factors to incorporate in the criteria for good
problems or in some other part of the model appear to be the following:

l. A control ov dlBtractln2 as.ects of t e -roblem. For learning

to take place the child would have to u_ through" a variety of dia-

tracting elements. Indeed, mastery of the problem and the processeS

involved would probably demand it. Thus, one would want to develop,

for example, a series of problems in division in which the child could

be _rovided with distractions of various kinds and amounts and to make

a systematic study of these distractions anc: their influence on problem

solving behavior.

2. A method of monitorin, feedback. Some problems supply intrin-

sicallyt continual and IedIate feedback. In others, if there is any

feedback at all, the child may have to go through a series of involved

processes and may actually lose contact with the problem he started tO

solve. Some method has to he devised to vary the feedback dimensiun and

to maintain a measu e of control over it.

3. F resen children. The nature of the

apparatus and the verbal comaunicatton with the child needs to be

carefully monitored to give some assurance that 4 child, in making a

response, is actually responding to the problem the investigator has in

mind. There should be an effort made to determine which problem type
will stimulate the child to make a more symbolic form of response and

which form stimulates a more physical one. Some young children, for

example, in the ferrying, were more involved in getting cars on and off

the ferry and in guiding the ferry than in determining the number of

trips; they did not even consider that problem. Others would probably

have said it will take five trips but were interested primarily in tike

ferrying process so deferred their answer until the action had been

completed.

4. Use of a articular a aratu for a varlet The

possible difficulty here can perhaps be expressed in many ways. In

setting up the problems, it was aSsumed that a particular piece of

apparatus was as effective a vehicle for one kind of problem as another.

The evidence, meager as it is at this point, is that such may not be the

case. There appears to be some possibility, whether advantageous or not,
that using an apparatus for one problem may cause some uncontrolled

interactions. This needs to be more carefully accounted for.
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Up to this point, only limited analysis has been completed. Indi-

cations are that the model for studying problem solving behaviorS is
sufficiently productive to warrant further refinement. Fortunately,

the information seems to point the way to what general areas need to

be improved. Any research on problem solving, whether in this
model or not, should take into account the general areas which have

been discussed here.

6 0
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ement and Partitive Divi

C2,1E-ijo_p_:;rou s_

The apparatus is placed on a table in front of the child who la

standing or seated. The model is referred to and the child ia shown the

river, the islands, the ferry boat, the parking lots, and the houses.

There are fifteen plastic cars in the parking lot on one side of the

river and three houses placed on the other side of the river. The child

is first shown how the ferry can cross the river and is asked to choose

a car, put it on the ferry, take it off the ferry, and park it in the

parking lot on that side. Assistance is given the child with these moves

if necessary. When they are completed, the car is returned to the first

parking lot.

The child is then told that all the ears are to be taken across the

river and parked in the second parking lot. He is advised that the

ferry accommodates exactly three cars each trip and the following quesZion

is asked: "If the ferry boat can cake only three cars each trip, how

many trips must the ferry take to get all the cars across?" If the child

does not appear to be interacting at any level, then after a period of

about fifteen seconds ask: "Would you like me to repeat the question?"

and repeat as necesary. If the child still appears to be stymied and

unable to give a response, suggest that he can load the cars on the fe'ry

and take them across if he wants to, If the child loads other than

G3



three cars on the ferry ask: "How many cars were you supposed to put

on the ferry?" and give the answer as necessary. Provide this information

only once. If he persists in putting other than three cars on the ferry,
further help is restricted to a reminder of the original question. When

the child indicates that he has finished the operation he is asked: "Hew

trips did the ferry boat take?" If all the cars are not on the
second parking lot, they are now assembled there.

The child is asked then to park all the cars beside the throe houses
so that there are the same number of cars at each house. If the parti
tioning operation offers some difficulty, he is reminded of the original
problem. When the child has parked all the cars, he is asked: "Does

each house have the same number of cars? "How many cars at each house?"
Be sure to ask these questions in the same order for all children.

Animal Groups

The board is placed on a low table in front of the child so
has an overview of it. Two boxes are rftleed between the child and the

board: one containing 26 posts and 17 slats for fence building and
another containing an assortment of 20 toy animals. The child is shown

how the posts fit into the holes, which were designed to accommodate
them, on the board. He is also shown how a slat fits between two posts

to make a fence- The child is asked to build two more fences, like the

one he was shown, anywhere on the board. When the child has completed
these, he is asked to build a closed corral (cage, pen) to keep some
animals in. If he has any difficulty constructing this cage, he is given

assistance.

G
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The child is then presented with the box of animals which includes
four camels, four ducks, four mice, four hippopotamuses, an elephant,

moose, horse, and a lion. The child is asked: "If each cage holds five

animals how many cages will we need?" If the child does not appear to

be interacting at any level after an interval of approximately fif-

teen seconds ask, "Would you like me to repeat the (location?" and repeat

as necessary. If the child still appears to be stymied and unable to
make a response suggest that he build the cages and put the animals in

theM. If the child puts other than five animals in each cage ask, "How

many animals were supposed to go in each cage?" and give the answer as.

necessary. If he still persists in putting other than five animals per

cage he is shown a set of five. Further help is limited to a reminder

of the original question. When he indicates that he has finished the

task, the child is asked, "Are there the same number in each cage?"

"How many cages are there?"

The animals are collected, two camels are removed, and the
remainder (18) are placed in the box. One of the cages is dismantled

so only three cages remain. The child is told that the remaining cages

are for the animals in the box. Ask the symbolic questions first. Pe

is asked to put all the animals in the cages so that there are the same

number of animals in each cage. If the child has difficulty with this

operation or appears to have forgotten the problem, he is reminded of

the original question. When the child appears to have completed the

task to his satisfaction he is asked, "Are there the same number in each

cage?" "How many animals are there in each cage?" The order in asking

these questions should be the same for all children.



59

Appendix



6()

Coordinated Reference Svstems

Parking LoCrid

On the simulated parking lot, the child is required to park cars as

indicated on a slip of paper. There is an ordered pair shown on the

slip. The first number Andicates how many spaces to the right; the

second how many up. A warm-up exercise is provided. The object is to

determine how a child coordinates moves in two dimensions.
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Elniatatrair

RN"
1111111141

ire
Niallaiitsace

A theatre with three sta -' is presented to the child. Each stage

is a different color. Set on each stage are labeled with letters for
rows and numerals for seats in the row. The child is given a ticket with

a letLer and a numeral written on it. The color of the ink used to write

the letter and the numeral indicates the floor. He is then given a
wooden man and asked to place the man in the correct seat. The object

is to determine how the child coordinates moveg in three dimensions.



Circular Se uence

The carousel
The back is open s
front is arranged
He is show object
as the carousel is
follows: blue air
blue airplane, ele
After seeing a few
come next. The na
indication of his
around back and se
given some obj,4cts
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Se uences

mh sequences are displayed has twelve divisions.
objects placed in divisions can be viewed. The

t the child can only see one division at a time.
averal of the divisions from the front in order
1. The sequence set in trle carousel is as
camel, red airplanet caml, red airplane, ,7amelt
red airplane, elephant, red airplane, elephant.
a objects he is required to predict what will
E these predictions is assumed to give soum
ige of the sequence. He is permitted to go
the objects are placed in the carousel and then is
aked to make his own sequence.

69
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Linear Se uence

A box with three rOVA of 14 compartments is presented. Each com-

partment has a snug-fitting cover. The covers on the raw nearest the

child are all off. Those on-the other two rows are left on. Id the

middle row the compartments each have a small coiored block in them in

this order: orange, brown, orange, brown, orange, brawn, etc. The

back row has colored blocks but in this order: orange, orange, brown,

blue, orange, orange, browrI, blue, etc.

The chili is shown what is in the first three compartments of each

row in turn t.-4 then asked to predict uhat is ha the successive compart-

ments. A prpliction must be wade before the cover is removed. The final

problem is nYe. the child to place objects in the row closest to him in

some order. J
covert are placed on the compartments and the child

asked tQ -,11-edict 01.r is in each.

71
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Reflections on a Plane

Object Refl ccion

The board shown has rubber bumpers along its edges. A shooter ejects
a steel ball which can be bounced off the bumpers. An object (in this
case, a plastic bear) is placed on the board and the child asked to knock
it over by shooting the steel ball. Then some blocks representing houses
are placed between the object and the shooter. The child is instructed
to bounce the ball off one side and knock over the object. Pinally the
object is placed behind the houses so that two bounces are necessary.
The way the child aims and makes corrections in pointing the shooter is
the behavior most closely monitored.
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Mirror_Reflectiçn

This board is similar to the one for object reflections except the
edges have mirrors all around. The shooter, in this case, is a point

source of light. The beam can be trained on silhouettes of animals.
Here again a direct hit, one reflection, Lnd two reflections are required
in the problem. The way the child controls the light source is of par

ticular interest.

7 3
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Factor Platform

+14

The board has thirteen vertical grooves into which small blocks

will fit. Twelve blocks are arranged in four grooves: three in the

first, one in the second, si.; in the third, and two in the fourth.
The child is asked whether the blocks can be arranged so there will be
the same number of blocks in each pile. The number of blocks and the
number of rows occupied by blocks are varied. The main object is to
determine whether children see any connection between the number of
blocks and the way they can be arranged in the grooves.

7
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Rectangular areas are indicated on the board in different colors.
Rectangles made up of a number of squares divisible by two are in yellow,
divisible by three in blue, divisible by four in red. The child Is given

a number of blocks and asked to find a colored space that they will just

fit. He is given two more blocks and asked to find another which the

whole set will fit. The object is to find whether the child sees any
relation between the number of blocks he has and the factors of that

number. It is expected that if he could see such a relationship his

search strategy Should reflect it.

7 5
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_Geometricallifpresentation

Fold-out Shapes

Squares, triangles, and pentagons are fitted with alternating strips
of Velcro so that various geometric shapes can be easily constructed and
dismantled. The child is shown a cube and how it can be dismantled. He

is asked to reconstruct the dismantled cube. In the main problem he Is
shown the cube dismantled with the pieces joined in various ways and asked
whether it can be folded to make a "box" without changing the relation-

ship of any of the pieces. Similar tasks are required for the tetrahedron.
Finally, the child is shown a :odecahedron and is asked first to lay it
out flat and then to reconstruct it. Particular note is made of the
predictions the child makes and the kind of moves he uses to reconstruct

a shape,

7 6



Projected_Shapps

70

A set of wire networks is available for the child. A screen is
provided so that the shadows of the shapes can be projected on it. In

one corner of the scr,yen a diagram of a shadow is shown. The child has
to choose the particn1ar wire shape and turn it so as to make a copy of
the diagram. The choices made by the child and the moves he makes to
copy the diagram with the shadow are of special interest in this problem.

7 7
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Linguistic, Logical and Cognitive Models for

Learning Mathematical Concepts
1

Harry Bellin

City Univers ty of New York/Graduate School

The conduct of research in mathematics learning is dependent both
upon the nature of mathematics and the nature of the learner.2 Consider-

ing that mathematics is a complex discipline that encompasses many subject
matters, its properties are not likely to be subsumed by a single concep-
tual category or by one conceptual system. It follows that no single

model for research is likely to be adequate, and the purpose of this
paper is to show that a variety of models are required to reflect adequate-

ly the varied functions of mathematics. Knowing the nature of matheMatics
is not in itself sufficient, however, to define the scope and focus 0f

mathematics learning. What is needed additionally is a specification of
those features of thinking and learning that are required irrespective of the

nature of the subject matter. Some features are constrained by the nature

of mathematics, but others are independent of it.

The_Nature Of Mathematics

It might be said that mathematics is a theory (or a set of theories)

about the nature of reality. The classical empiricists, in particular,
have maintained that ideas of reality derive primarily, if not scaely,

from experience. Such mathematical notions, for example, as "infinite
structure" are said by them to be too ambiguous to be true or even use-
ful if they do not in fact make reference to the real world (Benacerraf
Putnam, 1964). If the physical world is the source of such mathemati-

cal concepts (as "infinite structure"), one should be able to look to

physics for such legitimacy. Hilbert, as is well known, argued that

physics could offer no such security since the evidence from physics for

1_-I am indebted to Professor Walter Prenowitz for a number of insights

into mathematics that are reflected in various ways in this paper.

2 discussion is not directly concerned with curriculum or ins uc-

tional processes; these encompass more than the issues which we treat.
The limitations imposed here are motivated by theoretical and pragmatic

justifications.

7 8
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an infinite and continuous universe has been progressively eroded by

arguments for finiteness and discontinuity. Hilbert held that if mathe-

matics were not to be reduced to reliance on dubious physical assumptions,

then its own assumptions had to be independent of knowledge of the physi-

cal world. This view led Russell in turn (in the second edition of prin-

sipia_Mathematica) to argue that mathematics is concerned not with actual

physical existence hut only with the 222.s11411iy of physical existence

(Benacerraf Putnam, 1964, Introduction). Thus, it can be said, on the

one hand, chat mathematics is an abstract conception of the world, and on

the other that it is a hypothetical conception of a possible world. In

each case, mathematics is a theory about the world, whether empirically

based or hypothetical.

The position that uas come to be known as logicism (derived from

Frege, Russell, and Whitehead), which is consistent with the hypothetical

view of mathematical theory, holds too that mathematics does not have a

subject matter but deals instead with the "pure relations among concepts"

(Benacerraf & Putnam, 1964, p. 9), that is, such concepts are bound by

logical and not empirical relations. By contrast, mathematicians such

as Hilbert maintain that mathematics does have an "extralogical" subject-

matter, which Hilbert called "expressions" employing elements such as

"strokes" ( /, // ,/// ) that are finite, discriminable, and self-evident.

Hilbert notwithstanding, the logicist achievement profoundly affected the

conception of mathematics by not only axicanatizing much of the existing

mathematics, but by attempting to reduce all mathematics to logic.3 As

Benacerraf and Putnam point out, it is now generally regarded that the

logicists succeeded in reducing mathematics to elementary logic plus the

theory of sets (1964, Introduction) even though it is evident from the

proofs of Godel and others since that zhe completeness of such a system

can no longer be assumed. An important exception to the logicist position

is the claim of intuitionist mathematicians such as BrOuwer that some of

the fundamental concepts and operations of mathematics, such as the sys-

tem of deduction, involve finitely iterable operations that are purely

mathematical and do not belong to logic. Consequently, mathematicS can

be considered either as a theory about the world that is logically for-

mulated or intuitively known from its operations.

In his early work, Wittgenstein, following Russell and Frage, held

that mathematics was reducible to logic and that logic in turn reduced

to the propositional calculus. The relation of propositions to mathe-

matical "truth," however, is debated by two groups of mathematicians,

1_-1 am indebted to Professor Osborne for painting out that in Hilbert's

view problems and questions were the very source of mathematical ideas,

and his formalism was, in part, motivated by a desire to resolve many of

the developing conflicts between intuitionism and logical positivism.

7 9
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the Platonists and non-Platon;str P1-4 onists consider that propositions

represent the discovery of struciures that have an existence independent

of the mind of the mathematician. Non-Platonists, in general, hold that

Mathematics is a constructive activity in which the mathematician actively

creates a system or theory In which propositions are "true" only to the

extent they follow from assumptions and definitions proposed by the mathe-

matician and gain Acceptance from others by convention. In an extreme

form of the non-Platonist position, mathematics is a sort of "language-

game," in Wittgenstein's sense, wheCein the process of deriving a theorem,

for example, results in a new rule of language, and thus mathematical

concepts embodied in the theorem undergo change as a proof is developed

(Dummett, 1964, p. 496).

The emphasis on language in
constructionist thesis and informs to some
phy of mathematics" (DummetP 1964, p. 503)

given to languar,c, in a I heor-

positiviats, gartics1ariy Carnap.

serves a radical
-empiricist philoso-

central place is
of the logical

ems such as logic and mathe-

matics are treated by tt,sm as coecetv.ea': ot .-,neoretical languages, parti-

cularly when they appear in slen'Ifir_ theory construction. Thus, at

least in some sense, matherwtics serves a Linguistic function. At one

extreme, mathematics is treatnd as a language system itself, at the other,

it in a theory represented by a special (i.e.. formal) language.

In attempting to understand the nature of mathematics, one cannot

ignore either that mathematical theories appear in contexts that are

nonmathmatical (in such physical theories as the laws of relativity,

magnetism, celestial mechanics, etc.). Such applications of mathematics

are often as important to an understanding of mathematics as they are to

an underatanding of physical and related theories. These contexts may be

as diverse as arithmetic (in which the fundamental properties of algebra

are applied) or physical theories (in which Lobachevskian or Riemannian

geometry are applied). In quite another sense, mathematics serves a "com-

putational" function that makes applied areas more precise, abstract,

manipulable and amenable to deductive and inductive inference.

In sum, mathematics is a theory either of reality or a possible model

of reality, which is either discovered or constructed (in the way number

relations could be said to have been "disawered" in ancient civilizations),

and which is represented either in special language structures or functions

conventionally as a language (i.e., as a cultural convention). Lastly,

mathematics can serve a computational and cinceptual function in relation

to physical and social reality.

We will consider each of theee features of mathematics as a model for

research in mathematics learning. Detailing these (or similar) models can

serve the researcher in the following ways. First, a model organizes in

a systematic and (hopefully) coherent fashion a single conceptual frame-

work for explaining the nature of observed behavior or implicit causal

mechanisms. Second, a model serves to provide the basis for testing

specific hypotheses about mathematics learning. Third, a model proW .

an accessible means for applying more abstract theories (such as liar

or cnitive theories) to observed data than is offered by such thsrf,

8 0
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themselves.

From what has been said, mathemat'Lcv may be conceived of as a theory

in turo respects:as a logical theory of axiomatized abstract relations

that are purely hypothetical and whose validity depends solely on its

consistent and noncontradictory derivacion from its premises (in a pre-

G6del sense), and as a theory of the k,orld, again, as an abstract
axiomatized system that maps onto perceived physical relations and whose

validity is dependent, at least in part, upon systematic relations in

reality. The two notions parallel to some extent the Kantian distinction

between the analytic and the synthetic. A way of seeing the distinction

is to consider two views of geometry considered as a model for eiplaining

and comprehending the nature of space. With respect to geometry aS a

deductive System (in the logicist sense), one asks whether the theorems

of _ etry follow logically from its axioms. This is ordinarily the

mathematician's task and requires knowledge of relevant logical princi-

ples embodied in a mathematical framewock. The second sort of question

is addressed to whether the axioms of geometry and the theorems derived

from them are factually true (i.e., fit reality). Discovering the answer

to this question is usually the task of the physicist. In this context,

mathematics is applied or used in a scientific theory and is not a
"mathematical theory" as such at all (Nagel, 1961).

In the first case, the validity of the logical derivation of the

theorems of geometry from its axioms does not depend on the particular

meaning of the terms appearing in the premises and the conclusions. The

validity of the derivations i$ dependent instead on the formal Structure
of the statements that include the terms and on the appropriate use of

the logic. Mathematical expressions of this kind entail the use of words

or symbols that represent logical relations or operations (Nagel, 1961).

The central question that one asks in this context is whether the con-

clusions (theorems, etc.) follow consistently from the premises (axioms,

etc.) and less so as to whether they are true or false.4 Although the

example is from geometry, it applies to all deductive argument in mathe-

matics. Geometry as a logical theory is usually identified as "pure

geometry," and when studied as a system of factual validity is known as

"applied" or "physical geometry" (Nagel, 1961, p. 221). The attempt to

formulate geometry, to stay with this example, dB a rigorous logical

discipline is evident in Oswald Vehlen's 1904 axiomatization of geometry.

4A great deal of attention is given these days (again following G6del),

to questions of 'idability: whether and how mathematical relations of
particular kinds are capable of proof (i.e., logical deduction).

8 1
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A contemporary extension_ of this f fort is to be found in Prenowitz and

Jordan (1965). In this formulation, the logical elaboration of theorems
is based on the theory of sets. The postulates of the theory are based

on a series of properties, such as extension, determination, linearity,

and dimensionality of a set of primitives identified as a point, line,

and plane. The primitives or basic terms are undefiLed and can remain
so because they refer to no physical objects as such (i.e., they are

abstract hypothetical entities). The emphasis in the derivation of the

theory is on the properties of the logical relations among the primitive

terms as explained in the postulates (o.g, a line is a set of points,

containing at least two points) and not on any physical or material con-

tent. To emphasize that the relations among the primitives are about
hypothetical entities avid not actual, it is possible and even desirable
to employ logical signs or srmbols to substitute for words (such as point)

since such words have no specific reference.

A logical theory not only employs abstract signifiers (which may be
sets or other constructs), but a set of logical operators such as iden-

tity, nonidentity, and negation that also represent abstract relations
and not actual cognitive operations (i.e., of the mind). The logical

operators together with sets thus become the fundamental logical elements
in the construction of geometry and mathematics in general, at least as
proposed by Russell and the logicists. A theorem (Prenowitz & Jordan,

1965) , for example such as, "No di tinct itnes have at least one
in common," is thus derived utilIzing the postulates of the theory and the

operators and terms embodied in them.

The description of the system properties that hold for geometry are
appl-cable to other theories of mathemitics, such as algebra. What this

description stresses is the fundamental logical character of mathematics
not only considered in its "pure" sense but also, at least in part, con-

sidered in its applied usuage.

What follows from the foregoing is a conceptIon of mathematics learn-

ing based on the logical properties of athematioal theories. However one

conceives of the nature of the learning process, it should take account of

the fact that mathematics is at root a logical system involving deductive

processes. Contemporary mathematics in the broadest sense is not one

system; one should speak of algebras, geometries, and the like. Contem-

porary mathematics embodies a number of theories quite diverse in scope;

yet, each entails the use of logical relations and sets. Their diversity

results from the elements to which the fundamental postulates refer that

may differ from one system of mathematics to another to a very considerable

extent By the same token, the logics that entel7 into mathematics, al-
though they may not be equally diverse, also differ from one another in

some fundamental respects. That is, contemporsry logic is constituted by

a set of logical theories, each based on different assumptions, utilizing

different systems of notation and to some extent differing in application.
Thus, a logical model is Isquired that encompasses not only algebraic or

8
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Boolean logic but modal and other aN well,

It is possible to have a logical model for mathematics learning that

emphasizes only the logical properties of mathematics and another that

also defines or constrains the properties of mind or thought that are
necessary to mathematics learning and problem solving. With the purely

logical model, concern is primarily with the logical structure of mathe-

matical tasks (theory, problem, proof, etc.) and alternative ways of
structuring mathematical materials for learning. Such a course has been

followed in the meet and Into the present. It defines curriculum develop-
ment and Insteuctional methods solely on ehe basis of the logic or mathe-

matical relations inherent in mathematics itself. Many of the so-called

"new math" programs were devised on this basis. The primary consideration

that determined what was to be ineluded in early mathematics instruction,
such as sets, set notation, and set logic was its logical or mathematical

relotion to the content of more advaeced mathematical subject areas This

application of the logical model has its virtues because it bears
upon critical properviea of mathematics itself, and it forces curricelum

development te artieulate with underlYing methematical systems. Its

prineipal limitation is that it omits consideration of the cognitive
teristirs of the learner or else makee implicit assumptions about

hin thet may or may not be correct, and if incorrect may place serious

limitation on learning,

alternative logical model is a conception net translates the
delineated model of mathematics into a coneern for how learners acquire

the ability to deal with theories of a logical oaeure (in contrast to
ether dinciplines, for example, that bear upon the child's ability to
deal with physical facts and generalizetions). The latter extended
logical model overeomee the limitatione of a pure logical model and en-

compassee both the nature of mathematice and the cognitive properties

of the learner. We will see later that this "extended" logical model
celOtes in a significant way to cognitive models of mathematics learning.

In contrast to the emphasis on its logical forms, it should be re-

cognized too that mathematics had its origin in the need for measurement

and calculation. Conseyeently, a complex system of measurement and cal-
culation evolved that is evident in its more sophisticated forms in

scaling theory, statistics, and so on= The mathemetics associated with

theme applications is ehe "pure" mathematics refer:ed to previously,

such as the theory ot nember, Probability, etc. There is also a body
of mathematical relations and concepts unique to each measurement or cal-

culation system, defined by the physical parameters of that system, Just

as natural and formal languages provide contexts in which mathematical

Ideas and processes are communiceted, measurement and calculating systems
in which mathematics Is applied provide interesting and significant con-

texts for the study of mathematical concepts.

Ihes for practical reasons, in the sense that mathematics has clearly
,rIl itarian value to those with knowJedge of it, and for theoretical .
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reasons, in that it moy illuminate the nature of mathematical relations
and concepts, it is desirable to investigate the nature of mathematics
learning employing computational and measurement procedures. The first
step is to elucidate the logical and mathematical properties basic to
measurement and computation, then to define the specific mathematical
contexts in which they appear, and finally to investigate the cognitive
capacities that are required to deal with these applied system propertis.
Thus, again we see that an "extended" logical model is required that takes
into account not only the logical form of mathematics and its applications
hut also the cognitive status of the learner.

ilLppljeations of the model The logical model for learning proposed
here has impliCit cognitive assumptioml, as is evident from the questions
the model suggests: How, for example, does information from the world
become a concept in respect to the world, if it is correct to view
mathematics as a theory of reality? in turn, how do abstract hypothetical
concepts come into being either from information from the world or from

concepts? How are systems of such concepts elaborated; what is the
relation between Individual concepts to logical structures that embody
groups of concepts? Or, how does a system become a system, that is, how
are the parts built into a structure? Wbat is the relation between logi-
cal processes and logical products? That is, what relationship exists
between the knowledge one constructs or abstracts to the processes of
obtaining such knowledge? Do logical products in the form of logical
structures feed back, leading to theix uae in mathematical reasoning, or
are the products of thought independent of tl-t processes that give rise
to them? What is the nature of the processes by which logical comparisons
of structures occur that lead to isomorphismn, eorrespondences. etc? The
way these questions are formulated suggests a relation between formal
systems such AA mathematics and cognitive processes and structures. There
are, hovaver, questions that concern the formal properties of mathematics
as they bear upon mathematics learning.

Can one speak of fundamental mathematical ideas that cessarily pre-
cede ocher mathematical ideas, and would these constrain th learning of
mathematics? Is each mathematical discipline in fact logi..ally unique or
do they share a common logic? if they share structures or have common
properties, what makes them different? Do common properties suggest a
common logic? If there are common properties and a commlon logic, should
these be taught prior to differentiated system properties, or would it be
more advisable to instruct in each discipline first and then have the
learner abstract the common properties? Does the relation between pure
and applied mathematics constrain learning in any way? Should applied
mathematics be learned prier to pure mathematics or should it be the re-
verse? How should a mathematical discipline be segmented for most effec-
tive learning; are there natural divisions or must the' 1)-8 arbitrary? Is
there a minimal unit in mathematics; is it the same 1 mathematical
disciplines? Is it best to teach in relation to mir s, or to
related units and if the latter, at what level of ir. ,
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Prior to examining the properties of a cognitive model that arti-

culate with the logical model, we will elucidate the properties of a

linguistic model for mathematics learning.5

A _Linguis c Model

The principal assumption of the linguistic model is that the language

(or languages) used to tepreaent mathematical theory have propetas that

determine at least in pa)-t :The nature of mathematics learning. .L.re are

in fact twn languages in .4.i. 1 mathematics is repiescuted. The rst is

natural language. One has uch natural language erpressions as: If two

planes_have_one_noint in common, they have_a second point in common.

This sentence has properties common to all natural la age smitences in

that its grammatical constituents
obey linguistic rules that govern the

manner in which a sentence is generated. Some rules define how linguistic

constituents are combined, while other rules define the roles that parti-

cular lexical items (words) can play in a sentence including thosethat

define how words are allowed in specific sentence slots and so oni) These

linguistic rule systems are suite complex, at least for the linguist to

describe, although 2- to 5-year-old children learn their mother language

without any special instruction. We indicated in earlier discussion that

sentences in geometry ,Iontain terms (words) that are not to be understood

in the manner :Liat they ordinarily appear in the natural language lexicon.

"Plane" is not the usually understood plane and "point" is not the usually

wderstood point. They reflect mathematical and logical properties that

are part of a more abstract "meaning" systcm. By virtue of this, these

and re? 'ed reims require representation in a special language. Such

represen!.,- is found in the formal or logical language of mathematics

5The logical model discussed here does not necessarily refer to the

process by which mathematical ideas are developed or the way in which

mpthematics is "done." Even the creative mathematician does not of

ity proceed "logically" in his own thinking. The logical mndel

prc.-i,-,ted is based on the analysis of mathematical ideas or kroduqs of

thought. The mathematician like the learner proceeds more "Intuitively,"

following hunches, testing out hypotheses, and devising and revising

strategies. These suggest the cognitive processes by which mathematical

ideas are constructed. Underlying these activities are systems of thought

with abs ..cn formal properties similar in kind if not isomorphic with the

loc;ic of the iinihed mathematical products,

''This description reflects the views oF the transformational genera-

tIve linguists, such as Chomsky, 1965, (See Greene (1972) or DaJe (1972)

for details of this and related linguistic theorie6,\
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that employs a symbol (or more properly a sign) system different from
that of natural language. An example of one (algebraic) !t,t,,,ient in

thu t. larwuag is= (yl Y)x + (x2 Y1)Y + (xlY) xiY

This r could be translate(' into a natural la;e statement,
but it woa ma,?h more awkward to state and even to conceptualize.
The virtue of special or formal language is that it more precisely repre-
sents mathematical relations and lends itself more easily by the nature
of its abstract form to the representation of abstract "ideas," It per-

mits more efficient deduction by the parsimonious expressions of only
the terms cJ operations that enter into the r.'ltions, which natural
language is unable to do equally well. fte speAal languages such as
mathematics, larguages in the aame sense as natural languages? The answer

is probably yes and no. Each mathematical language can be said to have
a lexicon aec a syntax. In algebra one would have terms in the lexicon
in two cla variables (x,y.z) and constants (such as pi). In this

lexicon tH2r dre no "words" with rich denotative and connotative meanings.
They are, re her, terms without "meaning" in the same sense as in the
logical modc". Vint meaning there is comes from the expression of the
relations these terms, embodied in the various logical operations
of the ..n!:en.1 -, and the brackets. Again, meaning is different
in kind frod imvsage meaning. What meaning it has camas from
"logical meaning," if one can legitimately entertain such a notion. When

mathematical expressions contain terms that are "interpreted" empirically,
tht is, the variabl .5 refer to statements about physical reality, then
the same terms take on a very different kind of meaning (i.e referential
meaning). In different matnematical theories (geometry in contrast to
algebra, for example), the "terms" of the theory likewise differ. Thus,

point, line, and :laae in geometry, although they can be translated loco
algebraic terms and ;Ire treated with the .7.ame logical operations, are
represented in a completely different special language, namely the lan-
guage of ideomwrphic or pictorial signs. The "meaniag" of such a system
by its potential raerence to objects or relations in soace has "meaning"
that differs from the uninterpreted variables and constants of algebra.
Thus, x in a statemant s no meanlng except as defined hy the context of
the statement. If one substl..utes a lamber or the word "line for x, it
acquires the meaning associated with '11=7 number or the meaning of "line"
either in its comwcn sense meaning rt Its special mat'amatical meaning.
Thus maJlematics, Is a theory of reality, provides a meaningful context
for mathematical statements. Mathemalrat theory as a formalism provides
only what could be callad formal meani- the: mea -,ng entailed by the

assumptions of -che formal systi.. V ru the:e two senses is to be

distinguished ,rtiatIr from "psychol- .-111Ing--what something "means"

to a child ;:i: adlt, which entaila ranerties of meaning. The

need for different systems of represecation re'.a,es at least in part to
the referential functions they serve. Ilumber terms differ from spati'
terms because tney have reference to different aspects of reality.

The fact that mathematics is taught and/or learned in both natural
and special language suggests that leataing mathematics is in part a lin-
guiste phenowcan. If so, .ho significance of lingui:-ic representation
Is that it enables the learner, as well as the mathematician, to .mploy

36



a means by which mathematical reasoning can occur. The implication of

this is that such thought occurs linguistically or by linguistic means.

Two possibilities exist. The first is thnt thought is structured as

language -ructured and functions similarly. The so-called Whorfian

l-,ypothoh- ooe sw-h view, although (homsky 0968) has a ratlor diffcnt
vicw of tal relation. Second, language (of mathematics) is merely ate

vehicle for abstract thought. Although such thought is not structured

as language is structured, it is facilitated by the forms and functions

of language. Piaget holds this view. Viewing the mind as operating by

the properties of a language leads Va n emphasis on the line!stic fea-

tures of mathematics learning. It further to an examif,tion of the

linguistic characteristics of mathematical expressions, how mathematical

expressions are constructed and understood, and on the linguistic rule

system that governs the generation of such expressions.

On .he other hand, the consequence of conceptualizing mathematical

languages as representational systems for L,Ithematical thinking is to see
them as vehici,s for thought and not as the necessary elements in thoue't.

I:=Inuage acquisition in this sense facilitates or inhibit .

mathematical earria3; it is not sufficient for ensuring mathematical

reasoning= :*,,ren though the distinctive properties of linguistic repre-

sentation IT y roc directly conform to intellectual or cognitive structures,

their for may nevertheless affecL mathematical undcrstanding. FOr

example, Jle ccmprehension of lexical terms, such as number-words, by

young children, or the lack of it, may affect their understanding of mathe-

matical :elations (Bellin, 1975) atly, a lack of understanding of

the ab:-_ract nature of getmetri, older cail,dcen and even adults

may ersely affect their under,- . af geometry. In addiv.lan to

th icora, the very manner in mathematical ideas are expressed

Ia ral language statements, which is the mode of representation and

.ation of much of early mathmatics, may differentially affect

:starling. We can illustrate this with tha following two mathematical

.-essions that are usually thought to hu mathematically equivalent but

are probably not equally understood by young children=

I have ten bananas and take awicEbenana- bow ninuy_Elave

If I take away_four bananas from ten b --as man:. do I have left?

The second xpresion is likely to h more difficut for the linguis-

ticAlly simple reason that _a constitus of the first sentence are in

the usual mathematical processing order (10 4 = ?), whereas in the

second they are not (-4 [+10] ?) For processing the second sentence

tts constituents would probably have to be transformed into the usual.

(or canonical) order to be properly understood. The sencence might be

even more difficult if the question part ',.ere t,-ansposed to the first

part of the sentence, thus:

llow many bananas do.J have left if I take away four bananas from_ten

bananas.?

8 7



On the other hand, sigtv.ling in the first part of the sentence thac

a subtraction operator is to follow might make it easier to comprehend
than if the subtraction operation were not so indicated, as in:

How many bananas_are there ff I take away four bananas from ten

bananas?

These examples are meant to illustrate how rather simple changes in
sentence order may affect comprehension. (They are not, however, des-

criptions of how they are actually comprehended.) Why sentence compre-
hension is related to order, even in rho sentence cited, ls not as easy

explain as it might appear. Accounting for the relative difficulty
of the above sentences is a problem for both psycholinguistics (i.e.,
psychological theories or linguistic performance) and linguistic theory
(absr.7act theories of grammar).7 The debate in recent years over lin-
gu!2ic theory has been of great significance in its effect on a number
of ihtellectual disciplines including the social sciences, the natural
sciences, the humanities, and philosophy. The details of the debate

need not concern es here, but one impertant point of focus has been the

7 _ _

iWhile ths problem has been studied by mathematics educators it is
mv impression that variations in ::entence form timt have been employed

have not been related to what is known in modern linguistics of the nature
of syntatic structure and semantics.

The problem arises in these sentences because the so-called surface
structure of sentences (the sentence read or heard), even when the snow
constituonts are contained in them, do not necessarily convey the same
(deep -tructure) meaning. Thus, the different linguistic forms illustrated

may have different structure meanings. This phenomenon has now been
extensively studied and debated in natural language, but what is not known
is the extent to whict the same phenomenon holds with mathematical state-
ments. For example, the seL:zence 1112y !:p h.srtitig_ar/plt has two meanings

related to two different deep (syntactic) structures depending on whether
,uirtin2_tsale is a noun phrase or hurtlAg. is a verb. Or, consider the

,iiffcrence between the blind venetian afiti the venetian blind which is some-

Ant more closely related to matheMatical examPlea cited. Tte words are

the same in both, and only their word order differs. But, it is clear

that there is a considerable difference in meaning. Can one consider the

differences in word order in the mathematical sentences cited as involving
the same linguistic rules and their consequences for meaning as natural
language statement, or do mathematical statements constitute a different
class of linguistic objects with different properties. Very little is

known of this.



place of "meaning" or "semantic interpretation" in a linguistic system.8

Psychologists, in addition, have been concerned with the relation of language

to thought. It would appear from our discussion of linguistic models for
mathematics learning that parallel issues exist in respect to the influence
of linguistic form on mathematical reasoning. If It is the case, as in

the examples cited, that linguistic form affects understanding, then for
instructional purposes, particularly with young learners, the form of
communicating mathematical ideas is important. If one wishes learners

to understand all forms of mathematical expression, then the nature of the
linguistic translation from one to another sentence form has to be known
as well, although this does not solve the problem of how these translations
and the sentence form come to be known and understood.

Application of the model. What then are the questions concerning
mathematics learning that the language model can illuminate? The most

general and at the same time probably the most difficult is whether mathe-
matical reasoning and learning occur according to a linguistic model (i.e.,

thought --. language) or to a linguistic representational model (i.e., thought
A language). In each case, a particular linguistictheory is required of
generative transformational theory (e.g.. Chomsky, 1965) that makes dis-
tinctions between deep and surface structures and provides for the transfor-
mations between them, as well as assigns different roles to syntactic, semen-

_ and phonological components of the grammar (to cite the most prominent

of present-day linguistic theories). If language, on the other hand, is

considered simply as a representationaisystem for thought, one would wish
o know first how linguistic representation faeilirates and/or inhibits

mathematical reasoning (as in the banana examples), and second how various

linguistic forms represent mathematical ideas.

It is not too well .awn at present how the lexical features of mathe-
matical language develop -nd how such knowledge enrers into mathematical
reasoning and problem solving. One knows little, too, of the reverse,
that is, how cognitive structure influences or affects knowledge of the
lexicon, although there is increasing research on this question (see

eilin, 1975). It is not at present clear whether mathematical languages
have a syntax comparable to natural language syntax or whether other
features of the language serve the ordinary functions of synt:c, Again,

is not known in what way syntactic structures of mathematial Aanguages,
they exist, relate to the processes of mathematical reasoning and

Problem solving, whether they are isomorphic to cognitive structures, or
whether they are different in kind and simply map onto cognitive structures.

8_For those interested in contemporary linguistics, a sophisticated
selection of papers is to be found in: Akmajian and Heny (1975), Steinberg
and Jackbovits (1971); see also Chomsky (1965, 1968)9 Fillmore (1968), and

McCawley (1968). Good discussions of language development, as well as
general issues, are to be found in Brown (1973), Dale (1972), McNeill
(1970)9 and Slobin (1971).

8 )



Other processes enter into mathematical reasoning and learning 4nd
problem solving that relate sienificantly to the linguistic functions of
mathematics. These are memory processes and imagery. Much of contempo-
rary research into the nature of language comprehension concerns memory
for linguistic structure and linguistic meaning (see, for example, Kintsch,
1974). One may similarly concern himself with the role of memory in mathe-
matical reasoning and in the comprehension of mathematical expressions.
Will a child, for example, better retain mathematical facts or relations
if they are put into natural language forms (sentences) than in special
language constructions (formulas, equations, etc.) or the reverse; might
it differ for children of different ages? Is there memory for meaning in
mathematies that differs from memory for linguistic form? How important

is memory of form in contrast to meaning in mathematical reasoning?

Mathematical imagery is said to be particularly evident in tne rea-
soning of the geometer and ie learner of geometry. What function does

iS it necessary o geomc-.ric reasonieg, if not necessary in
what ways is it helpful and why What is the relation between mathemat-
ical imagery and mathemati I logic?

Does geometric intuition result from geowtric imagery, does it
have its origin in linguistic form, or does it come from some other
source? is imagery a significant mode of representation in mmmathe ical

systems other than geometry (such as algebra)? What relation does_it
have to linguistic represent- lieu In all of mathematics? In "pure"

geometry if points, lines_ elanes are abstract entities, what are

points, linestand planes eetr[c imagery? Are they abstractions,

or are they particulars? Tarticulars, how are they trans-
lated into the understandife: 'oetric abstractions that are necessary

to the geometer's task?

In sum, there are many aspects of mathem.atical reasoning and learn-
img that are related to the nature of the system in which mathematical
relations are represented and processed. The form and functions of that
system provide a model for understanding the nature of mathematics learn-
ing; according to some, it provides the only model to account for mathe-
matical reasoning although this interpretation may be too extreme to
be probable.

tdel_ of Mathematics Learning

The models above are derived primarily from the properties of mathe-
ma_ics itelf, from mathematical logic,and mathematical language. The

eognitive model, on the other hand, is based on assumptions about the
person who processes information from the world er creates and constructs
such knowledge. The ability to construct mathematical theorems and solve
mathematical problems is- assumed to require certain structures or process-
ing systems. In this model, the emphasis Is on the nature of the learner,
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whether one assumes that mathematics is-a unitary or complex syStem of

theories, and whether mathematics is conceived as a hypothetical system

or a theory of reality. If one assumes that mathematics is a multiple

entity, one can expect an interaction between the type of mathematics

(e.g., algebra or geometry) and various forms of cognition, assuming

that cognition encompasses more than one kind of process (e.g., imagery,

memory, reasoning, etc.).

IjoyE922T2sa1 models. Two typos of cognitive theory provide models

of mathematics learning, developmental and nondevelopmental. Develop-

mental theories assume that the cognitive system undergoes change over
time, with some theories emphasizing maturational control of behavior,

others experiotial, and some (like Plaget's) emphasizing the interaction

of both maturational and environmental influence. One group of theories

assumes further that the changes are ttage-like, reflecting qualitative

differences in cognitive structure And performance, wI'le another set of

developmental theories is based on assumptions c: continuity, with changes

in p ,formance attributed to units acted through experience. The stage

tl,,:ories are best represented I); the develolDmental theory.of Plaget, and

the: co4tinutty theories best representee by Gaga's neobehaviorist theory

of cognitive learning. According to the Piagetian model, learning is a

function of development, while in Gagn6's and similar empiricist theor1e_3,

development is a f--,ction of learning. What is meant by "cognition" is

different in each r-Ise. Although each theory attempts to account for
cognitive processes Or in the case of the behaviorists, for cognitive

performance or behavior), Piaget's exploration is based on a structuralist

model while Gagn's nonstructuralist thtz.ary derives from an associationist

model- The difference is important to how learnin is conceptualized.

Piaget's account embraces the view that structures or schemes are con-
structed in the course of development from encoorters with tho real wrrld
in which exigting cognitive structures interact -th inferences (or new

schemes) developed from experience. The need to resolve differences

between what is known frcm existing structure (e.g., continuous length)

and what is newly experienced (e.g., partitioning) leads to the elabora-

tion of new structures (i.e., of measurement) that incorporate and inte-

grate the elements of the new experience with available structures.

Emphasis in Piaget's theory is placed oa the dominant role of sch-mes

and cognitive structures. The stru(ures that have a bearing on mathe-

matical reasoning are logiczi structures, and Piaget is at pains to

demonstrate that these 1-),,Ical structures are differLatly constructed from

empirical generalization,- -1 inferences made from physical experience. As

a consequence, Piaget proposes the existence of two types of knowledge

and two types of internal processing systems. One process, probably that

of abstraction and inductive inference, leads to physical knowledge, such

as knowledge of color and forms of objects. The other type of knowledge

is logico-mathematical and involves processes of deduction that establish

relations among concepts achieved by abstraction and inductive inference.

Knowledge of the transitivity of weights, for example, is a different



85

kind of knowledge from knowledge that an object has weight. The transi-

tive relation among weights (A*B, b>C, therefore A>C) is a logical relation,

and knowledge of it is achieved through a logico-deductive process; whereas

knowledge of weight 1.6 achieved by inference from experience, that is,

from directly holding objects in one's hands. To determine that one

object weighs more than another is also empirically determinable. Howev

to determine whether one object weighs more than another without a

direct comparison between them, but only by reference to a third object

against which each is compare, requires a purely logical process that

does not depend on knowledge of the world for its verification. Such

logical knowledge is acquired within a framework of group structurea

that has an analogue in the group structures of logic and mathematics.

Mathematical reasoning and logical thought, according to Piaget, is

defined at least in part by the logic of classes, the logic of relations,

propositional logic, etc. The ability to reason mathematically is attri-

buted to the development of cognitive systems that are analogues of

logical-mathematical systems.

A model based on Gagng's and similar views rests on the assumption

that internal "organization" is not in the form of schemes or structures

in the sense meant by structuralists like Piaget, but on associational

chains. Knowledge gained from new experience becomes associatively linked

with old knowledge. These chains might be quite complex and need not be

continuous; they might in fact assume the form of the tree structures of

classification systems. The learning is conceived as taking place
through the cumulative addition of units of experience or knowledge, and

no distinction is made between logico-mathematical knowledge and physical

krmwledge. All knowledge is essentially the same, except for differences

in complexity. More complex units are simpler units tied together. Tran-

sitivity, f:Ir example, would require prior experience or training in com-

parisons between pairs of constituent elements (e.g A & B, B & C, C & D

etc.) and then training or experience with A & C, B & D, teAti feedback as

to the correctness or incorrectnes )f Teqpionse. Learning is the conse-

quence of such experience and not from any conflict between internal

structures as in Piaget's theory.

n Piagetian training, there are also experiences with constituents,

but the hypothesized change in knowledge (or structures) comes from th

encounter between the child's prediction of the relationship between ele-

ments (correct or incorrect) 4nd information obtained from directly weign-

ing the elements A & C (correct). Transitivity would be constructed out

pf conflict between inferences based on old knowledge, evident from the

child's prediction and the new knowledge obtained from the weighing. The

newly developed structure from the synthesis (transitivity schemes) would

enable the child to solve the problem correctly.

The state of the learner in Gagnd's model is assumnd to be a function

of the learned hierarchy of Aills acquired through experience; whereas
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in the Plaget model At is a functiln of the stage of structural org.
zation. In each model it is assumed that the developmental status

.

the learner is a significant determinant of his ability to learn.

Nondevolopmental cognitive models. Nondevelopmental models, in- -= -=---

general, make the assumption that cognitive processes or structures (or
aosociational organizations) do not undergo developmental change. Such
processes are eitter natively given or develop at such an early age that
the systems are instated at the time that the first cognitions may be
said to appear. The prototypic theory of this class is information-
processing theory.

Information processing A2Elalv/E in contrast to rrocessing theories
are formal systems that are used in pure mathematics as a means of repre-
sentation for Turing machine theory, recursive function theory, and auto-
maton theory. They are used in applied mathematics, in linguistics, com-
puter science, and cognitive psychology (Simon & Newell, 1974). These
Languages provide a valuable means for the construction of models of
the nature of cognition and its functions in concept formation, problem
solving, pattern recogni17!.:,n, linguistic proces,ing, etc,

Inform; ._ng theories, as the na. , applies, are based on
the thesis tuat the input to a psychological tusing system, which
may be an external or internal "stimulus," pro-i,; information that is
transformed and acted upon in a variety of wa ied by the task, with
the output translated into a verbal, motor

, -nonse, or else
stored for future The varied types e. Lit ouu. ation are repre-
sented in the system ro a consistent form "coding ,!vice." The sys-
tem properties define the code. In some dc1 Mic co,i is a linguistic
code; in others it Is a system of pattern- or os. may in fact be
any form of symbolic representation. Thr c:hus--represeod information
is processed further depending on the natp. ,-. --ice. If the task
is that of recognition or identification, thP., 1,e a match process
between incoming coded informuion and already coded data in the form of
templates or otherwise stored information. Tte results of the match or
mismatch may be processed further, so that if a verification of ttuth
value is required, a "truth-indee may be posited in the system and a
true-faise decision may be made. The thus-processed coded information is
then decoded and transformed into some type of response. Characterist-
cally, the system includes feedback procedures or loops whereby cmcput
information is recycled and introduced into another processing procedure
if it did not in the first place lead to a satisfactory solution.
feedback system permits the system to be self-regulating. The number or
processing components and their hypothesized function is defined by the
nature of the task and tho nature of the information to be processed.

Some information processing theories encompass in their basic for-
malism set-theoretic and relational concepts (e,g., Reitman, 1965) and
others equivalent graph theory. Still others embody a truth-csble logic
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as a ba,. for decision rules (Bou:.Ae, & Dominowski, 1971).

Among the things information processing moiels attempt to do is explore
the manner in which algorithms (systematic solution procedures) and heur-
istics (procedures for limiting search) enter into problem solving. They

test searci7 and scanning schemes which determine the manner in which sub-.
goals are defined and alternative dircetions of search are scanned (Bourne
et al.. 1971). Thus, the information processing approach, which is

intimaely fil:-,ac.',1ted with computer proceesing models in the simulation
of intellectual functions, is parLlenlarly oriented to the analysis of
problem solving strategies. At; simulation model, it is also utilized

in exploring the nature of cognitive processing especially in concept
learnine gav9, playing (e.g., chose), and language processing contexts.

ApplisglIejts_of the fogni,tiveel. From the description of the

respective developmental and nondevelopmental models, it is clear that
their Aims are in prt different. The developmental models, particular-
ly Plaget'st assume that cognitive stages reflect different levels of
cognitive structure end propose that the ability to learn particular

or mathematical tasks is a function of the child'e cognitive
The behavioristic cognitive models assume the existence of skill

rchius, and le,zrning is a functicn of the t,evelopmental (i.e.,

freriential) achievements of these skills. Thus, eoe of the principal

1-AtOs that has to be decided in respect te me.',ematics learning is
vhether such learning in under control of development or the reverse,
that development is a function of learning. A whole series of individual
questions can be asked concerning the relation between specific hypothe-
sized cognitive structures (in Piaget's theory) and the acquisition of
specific mathematical concepts. What, for example, are the cognitive

uctures necessary to an understanding of the tenets of Lobachevskian
and other non-Euclidean geometries? Are these cognitive structures the
same as required for understanding Euclidean geometry? If not, what

are the differences, and how do they arise? In addition, most one kind

of knowledge or cognitive structure be acquired prior to another before
certain types of mathematics can be learned? Behavioristic theories
assume only that the constituents he known before the mon:, complex system
can be constituted into a larger unit.

The cognitive model as already suggested intersects with the logical
and linguistic models. The extent to which logic, cognition and lin-
guistic theories, and the processes to which they refer, are interrelated
is as yet little known. Mathematical learning provides a natural context

in which to study these interrelations.

The relation of curriculum design to cognitive development is often
alluded to, yet iu studied relatively little. Realistic efforts to deve-
lop articulated curricula according to the eognite nel which are
Joined to a program of experimentation on learning -ior Appear to be

long overdue. Maybe it is so long overdue that J.!. tio longer worth-

while doing. Whether it is or not, the problems a-.1d ..r.-,stions related

04



to mathematics curriculum development remain. Contemporary interest in

particular curriculum designs seems to be a function more of political,

economic, and social commitments than to scientific decision making

bearing on what contributes most effectively to learning and knowledge

acquisition.

Insights Into cognition and problem solving provided by nondevelop-

mental models offer added tools to the exploration of mathematical learn-

ing and reasoning. While these approaches have been undoubtedly oversold

by premature large-scale application through programmed iatruional
methods, the computer and information processing models still ofter prom-
ising approaches to understanding the nature of problem solvIrkg, If they

have not as yet fully exposed the properties of problem solvir_ and other

forms of reasoning, they have added much to what had been known. Whether

mathematical problem solving has benefited from this knowlerige would re-
quire a hazardous guess, but the road would seem open to a great deal

more research of this kind.

UnderstandV earnin

What I propose is that an understanding of the processes by which
knowledge 0f mathematics is achieved requires the application of 'each of

the foregoing models. No full comprehension of the interaction between

developing cognition and the complex fields of mathematics is likely with-

out a conceptualization of both mathematics as a set of logical, linguis-

tic, and computational theories and the learner as a complex of develop-

ing cognitive structures and processes.
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The Erlanger ?roprainm AB a Model

the Child's Construction of Space

J. Larry Martin

Missouri Southern State College

Many mathematicians perceive beauty in the precision of mathematical
structures. For educators who may choose to seek erotica in other "forms

there is still reason to consider mathematical structure. Shulman (1970,

p.22) has stated that,

to dctemdne whether a child is ready to learn a particular
concept or principle, one analyzes the structure of that to
be taught and compares it with what is already known about
the cognitive structure of the child.

Smock in this monograph has empized that tha learning environment mu t
be considered from two frames of reference: the operational systems
determining the child's Interpretation of environmental events mid the
inherent sequence Pod structure DI the content. Since we are considering

the 6-lid's conception of space, it is natural to examine the atrutture of

geometry. It is important to note that the domain of discussion is space,

not geometry. Geometry will be used to provide medels of the child's

conception of space.

The Erlanger Programm

In a lecture in 1872, Felix Kelin presented his now famous definition
of a geommtry: "A geometry iT the study of those properties of a sot X
which remain invariant when th,-,! elements of X are subject to the trans-

formations of some transforeaton group" (Tuller, l967 p. A)). Some

underlying concepts are needed to understand this definiticn. A few more

basic definitions are provided ff_rst. A mcrc careful analysis of the
meaning and implications of tici Programmfollows throughout the paper.

Ordinarily, a person regards a transfomation as a change. In

mathematics, a tronsfo:71ation may be regarded as a rule associating points

of a set X with points of a set Y. Mere eIplicitly, a transforma:lon of
die set X into the set Y can be thought of as a rule of correspondence
that assigns to each element of set X one and only one element of a set
Y. If y in Y is associated with x in X, then y is Called the iMage Of

X. Denoting the transformation by f, "y i the image of x" can he

symbolized y f(x). If every element of Y is assigned to some element
of X, the transformation is called a transformation of X onto Y. If

9 8
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a one aement ot tenon-

lhe tfancfcrmations of the ErlangLr t3togramrn arc from a set X on 0

the same set X, Mat is, they assign to each element of the net X an

element of the ira Fat X. If such a s(t T of transtormation6 of X onto
X have the folio,Ang tw,o properties tlie set T of transformations may be

properly callod a group of transformations or transformation grouo:

Tbe Inverse of every
fu T.

ion in T is itself a ttaoaferrnarlon

2. The resultant of any twa transformations (distinct or not) to I

is also a transformation in T. Thar is if fi and E2 are transformations

in T. the n. there eAsts a third tranafoliation f3 ha T u.thich has the same
effect on X as do fi and 12 applied successively.

A proper t, of a act which is unchanged under all the ttS4ItF forhiStlOnS of
the group is callud aa invarlant_pro_pertx_ of set X under that transforma

group. If a subset S of a group I of transformat:lons itself forms 0

group, then S is called a subgroup of T.

The rcmaincr of this r_aper will discuss the Erlanger Program and
its applicability as a model of the child's conception of space. The parer

is organized atvmd consi de ration of the questions:

Wnat ara the transfornations?

2. What are the invarlan_

3. What is the set X

4. what are the subgroup relationshIps eiettng ranong the various

geometries?

5. What i the nature of spatIal a ity?

6. What ar,2 the consequences for research of appealing to the

Erlanger Program as a model of the child's coN Aption of space?

An attempt will be made to point out that many of these questions have

alternative answers. Wften selecting one set of answers to the questions,
One should at least be aware of the fact that he has merle one choice and

discarded others.

Tnaformattoris and Invarlan

Using Klein's definition of a geometry, it is possible to categorize
and name various geometries according to both the transformation groups
involved and the invariant properties under that group. Figure 1 shows

the relationships existing among some transformations groups (geometries).
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Tran,Jormation

Pt.-riecti=vo

7ransformat:Ions

_

Affine
Transformations

Siuilarity
Transflrmations

Fuclideen
Transfcrmations

-

Flire 1. A hierar..11hy of trcor_amtlon subgroups.

This hierarchy iridicatsa that if rerta n stipula e mmdc (these

stipulations are discussed later) then the group of f4,1cl1dean trent.-

formations is a 5,uhgroup of the group of 9imi1ar1ty transfoimationr, the
similarity group is a subgroup of the group of affine transformations,
the affine group is a subgroup of the grow) of projective transfcr:mations,
and the projecilve group is a subgroup of the group of topological
transforrations.

The transformations of topology are called homeomorphisms. A one-
to-one transformation f from X onto Y is called a homeomorphism if it is

continuous and reversibly continuous. 11;.at is, f is one-to-one, onto and

continuous and the imverse of f is als0 continuous. Roughly speaking,

then, topology is the study of properties that remain invartant under
homeornarphisms. These invariants are called topological properties.
An intuitive notioa of homeomorOism will help identify some of the6e
properties. If one figure can be distorted into a second figure by 00
more than pulling, bending, stretching, or shrinking, then the two figures
are topologically equivalent or homoomorphic. Shape distortions such as

these are always homeomorphisms. There are also homeomorphisms other

than shape distortions. However, this intuitive idea of homeomorphiStas
as shape distortions 1,(_11 suffice for now.

0 0



Applying this low-powe rod concept of topological trirmsformations
demonstrates that shape and size aro definitely not topological properties.

Neither is "straightness," What are some topological properties? Examples

are interior of a set, exterior of a set, boundary hum not houndedness

of a set, connectedness of a set, linear and cylic order, and openness

and closednesa of

If topology is characterized as the study of invariant properties
under the group of homeonorphlsms, projective geometry can be characterized

46 the study of properties iavariant under the group of collineations.1

Collineations aro special homeomorpbtsms which transform collinear points

into collinear points and, hence, lines into lines. Concurrence of Lines

is a projective property. That is, if three or more lines intersect at

one point, then the lines resulting from the transformation will als

intersect at one point. Also a polygon of n sides will transform into a

polygon of n sides. To illustrate, triangles will go into triangles

and quadrilaterals into quadrilaterals.

Affine geometry is obtained as a subgeonetry of projective geometry
by restricting the group of projective transformations in such a way as

to introduce parallelism. Besides parallelism, affine invariants are

betweenness of points and ratios of distances. Note the introduction of

distance. An affine transformation multiplies all distances on the same
line or on parallel lines by the same amount, that is, by Lhe SOMW positive

constant. Taus, the ratio of two distances on the same line or on parallel

lines is preserved. In particular, affine transformations send equal
distances inlo equal distances on the same or parallel lines and Udpoints

into midpoints.

Whereas an affine transformation multIplIes dIstances in the same

direction by a constant, a similarity trasfoririarIon multiplies all

distances by the same positive number K. K is called the ratio of the

similarity transformation. Angle measure is a similarity invariant.
The shape of a configuration Is preserved but not its size.

If the ratio of similarity is one, distance between points is an

invariant Property. Such similarity transformations are rigid notions

or isometries. Theme are the transformations of Euclidean geotnetry.
The group of Euclidean trannEnrmations consists of translations,
rotations, reflections, and compositinoS of translations and
reflections which have fixed lines, i.e., a unique line is associated

1 it is possible to define a "gcneraA. projective group" which includes

the group of collineations as a subgroup. See Gana (1969, p. 342) or

Tuller (1967, p. 102).
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b the composition wirn itself. Thccie special compositions are called

glide-reflections,

idealLy t:le properties held invariant by a group of trL,asformations

are also invariant under any subgroup. Invariants of the topological
transformation group are invariants of the projectiva transformatIon
group, the affine Lransforaltion group, the similarity transformation
group, and the Euclidean transformation group. Figure 2 provides an
outiAne of the relLtionships existing among the invariant properties of
tae various gometries.

Invariant Properties

openness (c osedness) of curves.

Interior, exterior, boundary ooint.

linear order, cyclic order.

connec

st aigh neis of lInes

6. convexity of figures.

7. parallelIsm of lines.

8. ratios of distance.

9. measure of angles.

length.

Figure 2. PropertIes invariant under transformation groups.

102



96

The Set X

The wer "ideally" was used a- Lbs beginning of th e previous paragraph
because in u.:tuality u subgeometry hos the properties of ita parent geometry
only for the point set which they have in common. Klein talked of the

"properties of a set X which remain invariant." Until now the reader has

been left to furnish his own set X and interpret the discussion of invariants
in terus of this act. As will be shown, the selection of X can have note--
worthy effects on a categorization scheme of various geometries.

The discussion of geometries began with the hope that they would
provide models of the child's conception of space. As the child constructs

the "reality" of space, different geometries might model the child's
conception at different stages of his construction. But what is the

endpoint of development? As Smock pointed out:

Analysis of cognitive learning and development, then, is alwaYs
"biased" by the Fact of a context of preconce.ived ideas of
reality...and a particular set of concepts or theory and selected
observations.... The designation of a conception of space toward
which the child will most likely develop, i.e., that conception
held by most adults, is the critical firSt step. Observations
and intervetations of the child's behavior are organized around
th,2 specifications inherent in that 'endpoint' of developmc-t.
(1974, p. 145)

Interpretations, then, about the child's conception of space are based
on his progress in the construction of a spatial "reality" with a direc on
of "progress" and an "endpoint" determined by forces external to the
child (e.g., culture, curriculum, adults, etc.). The child's conceptual
growth, ifnot in the prescribed direction of progress.might go unnoticed
or misinterpreted.

What is the conception of apace held by most adults? One can glibly

say that it is flexible. That is, an adult can shift, for example, from
projective to Euclidean spatial representation and back again depending
upon what the situation and circumstances seem to dictate. But how would

the question have been answered a few hundred years ago before the advent
cf projective geometry? Presumably the space in which a 14th century man
moved was exactly the same as the space of modern man. But what of his

representational space?

The desire of Renaissance painters to produce a visual geometry
provided the impetus for projective geometry. They asked questions like
"how can the wny things really look be represented in a drawing?" Thus,

a geometry of vision developed rather than one of measurement (Gould,
1957, p. 299). The picture made by a painter can be regarded as a projection
of objects in space onto canvas. Since length and angles are distorted,

how is it that objects are recognizable? It must be that the properties
invariant under projection provide the clues.
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Let us review the idea of projectIng points from one plane in Euclidean
space onto another plane. Conelder a glass table on which a magazine with

corners A, B, C, D is lying as shwa in Figure 3. If a lame is placed at
point L not in the plane of the table top nor in the plane of the floor,
then the shadow on the floor of the magazine on the table will be as repre-
sented by the Figure A', B',C',D'. The projection illustrated is called

a central projection of a plane onto a parallel plane. It is a homeomorphism
which multiplies all distances by the same constant k, thus preserving shape
but not necessarily size. As ha5 already been stated, such a transformation
is a similarity transformation.

Figure 3. Central projection, parallel planes (Dorwart, 1966, p. 6

If the table is tipped, the planes are no longer parallel. Such a

situation is demonstrated in Figure 4. What would be the effect on the

shadow? This obviously creates some problems. Where does such a trans-

formation fit in Figure 2? it does not conserve length, measure of angles,

intersection Of lines, nor closeness of curves. In fact, it is not even

a one-to-one transformation. Point A in plane a has no image in plane

10! Hence, the transformation cannot possibly be a homeomorp%ism. The

set X of Klein's definition of a geometry cannot, then, be ordinary
Euclidean space if the classification scheme of Figure 2 IS to hold.
The Euclidean concept of space must be extended in such a manner so as
to eliminate the difficulties noted.

10 1
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Figure 4. Centra on, nonparallel planes.

In order to portray three-dimensional scenes in two-dimensional

drawings, Rnaiisance painters drew parallel lines as if they actually

met in the aistance. Since the images in x' (Figure 4) of segments AB

and AC in_x appear to meet at some distant point, why not, with the

artist's "vanishing point" in mind, create a new point to serve as the

image of A? Then every point of the triangle ABC in x would have an

image in a', and the image of a triangle would be a triangle which is

what is desired. This new point is called an ideal point as opposed to

the ordinary points of Euclidean space.

A little imagination raises several questions here. Two parallel

lines, appear to meet at both "ends." Should two ideal points be added?

What about a third line parallel to the two in question? Should more

ideal points be added to represent its apparent distant Intersections

with the two given parallel lines? These questions are dealt with in the

following way:

1. To each straight line in Euclidean space a single ideal point

is added. The geometrical object resulting is called an extended line.

2. The ideal points which are added to two parallel straight lines

are the same.
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3. Th9. ideal points which are ndded to two nonporalle

lines arc distinct.

4. The geometrical object wlich consists of Euclidean space and

all ideal points is called extended space (Cana, 1969, p. 231).

While these agreements may appear arbitrary, they are motivated by

two desires. One desire is to preserve an original law in Euclidean space

(i.e., through every two points exactly one line may be drawn). Second,

the new law should be consistent with the visual geometry of the artist

(Le., every two lines in a plane intersect in exactly one point ). Let

us examine some of the consequences of these agreements.

To each given ordinary line an idEal point was added. This ideal

point also belongs to all ordinary lines parallel to the given line.

Thus, lines Parallel in Euclidean Space will meet at an ideal point in the

new space. Different families of parallels will meet at different ideal

points. Consequently, any WO coplanar extended lines will intersect at

exactly one point: an ordinary point If they interscct in Euclidean space,

an ideal point if they are par,11e1 in Euclidean space.

It is a characteristic of Euclidean space that two points determine

a line. Consider one ideal point and one ordinary point P. They determine

an extended line through P in the direction determined by the ideal point.

If two ideal points are chosen, what unique line is determined? It

cannot be an extended line because extended lines contain only one ideal

point. Moreover, it cannot contain any ordinary points because an ordinary

point and 4n ideal point determine an extended line. Logically it must

consist of only ideal points. Just as each line in Euclidean space was

extended to include an ideal point, each plane in Euclidean space will be

extended to include one ideal line. An ideal line is composed of all the

idecl points associated with the lines in a given plane. It naturally

intersects any other line in its plane at an ideal point. Thus, any two

lines in an extended plane, whether two extended lines or one extended

and one ideal, intersect in exactly one ioint.

So far ideal points have been added to produce extended lines. In

turn new lines, ideal lines, were createe. Por each plane there is an

ideal line making an extended plane. The situation in three dimensions

is similar. Ordinary three-dimensional Euclidean space is extended by

the addition of an ideal plane which consists of all the ideal points.

All the ideal lines lie in this ideal plane. Two extended planes associated

with parallel planes in Euclidean three-dimensional space meet in an ideal

line, and two extended planes not associated with parallel planes in

Euclidean space meet in an extended line. Similarly, the ideal plane

meets each extended plane in an Ideal line. Therefore, iu this extended

space, any two planes meet in a unique line.

To summarize, new points called ideal points have been added to

Euclidean three-dimensional space, resulting in extended lines, some

completely new lines'called ideal lines, extended planes, and one completely

new plane called the ideal plane. The new system of points, line3, and

planes is extended Euclidearas or ret_jj__p_r=_ore_s_p_lst.
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ConSIder _
FIgure 5 as representing sets of poInts in real projecrtve

space. Figure 5a represents two lines which intersact at an ideal point,
the same ideal point "at both ends." Figure 5b represents a triangle with

one vertex at an ideal point. Returning to Figure 4, the imago of triangle

ABC will be triangle. A'B'CI where A' is the ideal point associated with

the extended line through 0 and A. The transformation from Tr to 11' now

preserven closeness of curvos. Intersecting lines have intersc'cting

images. The imago of line 1 is an ideal line, so lines transform into lines.

(b)

Figure 5. Intersecting Lines (a) and a triangle (b)

in Real Projective Space.

Calling these new mathematical entities points, line8, and planes

may cause consternation for some. After all, how do you locate an ideal

point in space? How can you draw an ideal line? Where is the ideal

Plane? One no (1s to recall the dialogue between Alice and Humpty Dumpty

in Through the Looking-Glass:

"When I use a word," Humpty Dumpty said in rather a sco nful
tone, "it means just what I choose it to mean - neither

Mere nor less." "The question is," said Alice, "whether

you can make words mean so many different things." "The

question is_," said Humpty Dumpty, "which is to be master-

that's all."
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hierarchies of_ Geometries

Using extended Euclidean space for the set X of Klein's definition

of a geometry, the projective transformations are one-to-one transformations.

But before projective transformations can he considered a subgroup of the

topological transformations, projective transformations must be continuous

with continuous inverses. What does it mean for a transformation to be

continuous? One definition is aa follows. Suppose f is a transformation

from a set X to set Y. Then f is said to be continuous at a point x in

X if for any distance e 0, no matter how small, there exists a distance

d 0 such that whenever a point p in X is within a distance d of x, the

image of p in Y will be within a distance e of the image of x in Y. A

transformation is said to be continuous if it is continuous at each point

in X. Loosely speaking, points close together in X have images close

together in Y.

However, since projective geometry is ordinarily considered to be of

a nonmetric character, it would seem that the definition of continuity

should not involve notions of distance. First, consider a neighborhood

of a point. In topological spaces, neighborhoods are sets satisfying

certain specified conditions. This paper will not delineate these

conditions. In the Euclidean plane, a basic neighborhood of a point ig

the interior of a circle containing that point. In Euclidean three-

dimensional space, a basic neighborhood of a point is the interior of a

sphere containing the point. Thus, each point in a toPological spaee
can have many neighborhoods,and a set may be a neighborhood of many

points. In Euclidean space each point has many neighborhoods, some large

and some small. Although the usual neighborhoods in Euclidean space

involve the notion of distance, in general topological spaces distance

need not be involved. For instance, a neighborhood of a point could be

the interior of any region formed by a simple closed curve surrounding

the point.

ContInuity can be defined in terms of neighborhoods. A transformation

f of a sat X into a set Y is said to be continuous at the point x in X

if for each neighborhood 0 of the image of x in Y, there is A neighborhood

V of x in X such that the image of V is contained in U. The transformation

is continuous If it is continuous at each point in X. For example, if the

sets X and I were ordinary Euclidean planes, a function f from X to I

would be continuous at x in X if for any circle C around the image of x

in Y there exists a circle V around x whose Image was contained In U,

that is, V was a subset of U. The situation is demonstrated in Figure 6.
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Figure 5- A toilriiiOu functio

Using this def ini tiara of con tinidty. projective transformations c an
be regarded se horneomorphisms without using distance, and the projective
group can be regarded as a subgrosup of the topological group. In what
way can the affine group be ccesiddered a- subgroup of the projectiNe group?
Parallelism is an affine invariant, Yet in extended Euclidean apace any
two coplanar lines seet, It vola.ci seem that a auhgeometry should have
the properties of its parent geometry. To eliminate the conflict , one
could define two lines as Parallel if they meet at En ideal point . Other
agreements would need to be mode abont Ideal lines. An alternate approach
would be to simply restrict tbe eat to- the ordinary points of three
dimensional space. 'rhea two coplanar lines are parallel if they have no
points in common. The latter app2oaeh La adopted here.

The statement "a auhgeotoestry hat the properties of its parent
geometry only for the point set which they have in cocoon" was used earlier
in this paper. If the set X is restricted to ordinar7 points, then the
af fine trans formations form a suhgroop of the projective transformations.
Por this restriction on 3C, Proper-ties invariant under projective trans-
formations will remain invariant Ander affine transformations. For
exsple, intersecting (at ordiser, poinCs) lines sill have intersecting
imagea. In this reatrictlou of emttended Euclidean space to ordinary
Euclidean space, the similarity tteneformations form a subgroup of the
afffna transformations and the Emelideara trans for/anions form a subgroup
of the similarity transformations It Le within this context that the
classification of geometries apresanted La Figure 2 is valid.
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iatjue BtrUCtures Eu 'The neti of the CrotrnaLOn
gxou isplayed ifl Figure 2 depeIldelt opots the et X, that is
sPace upon which the transioraron act. Ideal points were added tco
o-rdipaty Euclidean. space so tha thI ritestAng wouild told. What seouldi be
a classi fication of these geometries if ordinary apace were not emersded?
It hes been shown that lu ord10aly Euclidean space p-rOjwafts need tmot

orie-tv-one, and thus, not tooleotnorphiamm. Projections are not a
subgroup of topological trans iornsations in ordinary space. Hoves.rer,

ezdenadecl apace was restricted to ordinary Xuclidean space for aff toe

t tannfocrationa. If the set is ordinary Euclidean space for all the
t tanefon-nat ion groups mentioned, the antgreup relationships are ma shown

ydgure 7 . Affine geome try fg a subgeornetrY of topology and of pr.rDjaatitre
geometry, but topology and prejecti.me geometry ant ou separate branebies
0 f tt classification Schema-

To pology

e
51Aullarlty

Pro jec tive

Pigurc 7 . A classif ication o I eonetr n Euclidean space.

WIther tgie set K ia ordinary er extended space, tlere are /other
geometries that could be placed in a claseificatlor, scheme has d on eub--

groirP relationships. For example, the slinila-rity trims fornation are a
hope preserving subgroup of the af fine transformations . "There A

another subgroup of the af fine grotxp tbat preserwea area but mot necessarily
ahape. Thia gTouP I B called the equiareal or equiaffine group of trAna--
faraiattezna. A Classification acherat could include the equiarual gromp
as gbovri in pivre 5.

Fipure 8. h classification including eqoiureal trans
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Alternative strcturc -non-Euclidean. Thus far subgroup_ of the

topological group have been coanidered only according to classification

ochemee calminating with Euclidean geometry. Other endpointe are possible.

Suppose a specialized conic, for example an ellipse, is chosen in the

real projective plane (extended Euclidean plane). Call the points

interior to the ellipse ordinary, points on the ellipse ideal, and points

eXterior to the ellipse ultraideal. If die points on Mhe ellipse and the

exterior points are deleted from the real projective plane, what is

left is called a hyperbolie_plane. This presents another set 2 to which

Klein's definition of a geometry can be applied. The transfornatieft group

Consists of the collineations that send points on the ellipse into points

On the ellipse and send interior points into interior points. Each of

these transformations is a proiective transformation, but they behave in

the special way deseribed. 'The study of the invariants of this transformation

greuP With the hyperbolic plane taken as the set X is called hYterbolic

goonetre. Since these transformations are collineations, hence projections,

hyperbolic geometry Is a sub:geometry of projective geometry.

Klein presented a model, shown in Figure 9, of the hyperbolic plane.

The "plane" consists of only thm points interior to the ellipse. The

"lines" of the plane are chords of the ellipse. Lines are "parallel" lf

they meet at an ideal point. Lines are "nonintersecting" if they are

Not of projective lines which meet at an ultraideal point. "Nonietersecti -"

and "parallel" are not synonyms. From the nature of the particular

eollineations forming the hyperbolic group (i.e., collineations send

ideal points to ideal points mad ordinary points to ordinary points)1 it

follows that parallel lines will belie parallel images. Also nmnintersecting

lines will have nonintersecting images. That is, parallelism and non-

intersection are hyperbolic invmriants. Some striking characteristics of

this gmometry are: (a) the sem of the measures of the angles to a

triangle is less than a straieht angle, (b) there exist lines parallel to

both of a pair of intetsecting lines, (c) given a line and a point not

on the line there exist exectW two lines through the given point parallel

to the given line, and (d) given a line and a point not on the linm there

exist infinitely many lines throuei the given point which do not intersect

the given line. The last three of these situations are displayed in

Figure 10.

lILIVAIDEAL
POINTS

ORDINARY
POINTS

INTERSE
ES

-14111111111111111
IDEAL POINT

Figure 9. Klei model of the hyperbolic plane (FLahback, 1969, p. 2 9
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not i

Figure IC). Some characteristics of hyperbolic geometry.

There are other non-4uclidean geometries. If the space X is taker

to be the surface of a sphere and straight lines are defined as great
circles on the sphere, two lines always intersect. In fac:7, they intew-

sect twice. No parallels would exist for a given line. This Wuld seem
to be close to the "reality" of a navigator an the earth. The trans-

formations of thin space form a subgroup of the projective group. The

geometry is called s-herical_ pomet or elliptIc In

this "reality," the sum of the measures or the angles in a triangle is
more than a straight angle. Another non-Euclidean subgeometry of pro-

jective geomatry is gligkilliE1211 or merely elliptIc gaumetry. In

this geometry, molines always meet in exactly one point and enclose an
area. Tbe space X of this geometry ls similar to real projective space.
Thus there are many possible "paths of progress" and "endpoints" for
spatial conceptualization suggested by an analysis of geometries via

Klein's definition. Some are Euclidean; some are non-Euclidean. Even

Euclidean "endpoints" could be arrived at by following different "paths

of progress." The relationship of the non-Euclidean geometries to those
geometries culmdnating in Euclidean geometry is shown in Figure 11.

Projective

Affine
Simi arlty Equii real

But Id ean

Sphefrai-j111aLL---E7-'lliptic

Hyperbolic

Figure 11. A classIficatIon including non-Eucltdean geometrIc

112



106

Spatial Reality

Klein's definition of a geometry baa been used to identify and class

Many geometries. Perhaps these geometries cam provide models for the
Study of the child's construction of apace. Questions consequent co such

an attempted modeling of the child's conatructima are discussed later in

the paper. 4efore these questions and before examining the nature of
the child's conception of space, it would seem natural to examine the
prototype, that is, the physica/ reality of space.

Some may consider geometries other than Euclidean to be strictly
formal, of interest only as an intellectual exercise. They might accept

that they are logically developed and internally consistent while still

rejecting their "truth." rhey would view axioms of such systems to be
arbitrary statements and the concepts to be norely symbols with which to

operate. That a nonEuclidean geometry could have may correspondence to
physical reality was considered absurd ZOO years ago. Kant, one of the

most influential philosophers of the late 1700's, held as a basic

tenet that "Ximlid's axioms are inherent in the humma mind, and therefore

have an objective validity for 'real' space" (courant & Robbins, 1961.

p. 219), However, Klein (1939) points out that "our space perception
is adapted only to a limited part of space, and then only with a limited
degree of accuracy amd can be satistifed by either hyperbolic or spherical
geometry" (P. 179).

The question as to which geometry should be preferred as a model of

the physical world was raised long before Klein made the statement included

in the precediag paragraph. Caton reportedly2 attempted to settle the
question by paasuring the angles In a triangle whose vertices were the
peaks of thrto mountains about 100 miles apart. The sum of the angles waa
not sufficiently different from 1840 to suggest a non-Euclidean geometry.
Had the sum 6eet noticeably less than 1800, hyperbolic geometry might have

been preferMlle to describe physical reality. However, the variation frets

180° was smsl enough co fall within the error of measurement.

Lobachevski experimented on a larger scale. Using a fixed star and

positions in the earth's orbit six mon ha apart, he concluded that to
find a measureable defect from 18000 one would need to ume a triangle
with sides many million times as great az the distance from the earth

2,While Gauss did measure these angles, there is some doubt that his

purpose was to check which geometry was most appropriate tc physical

reality, See Boyer (1964) and Gauss (1880).

113



107

the sun (Gould, 1957, p. 294). Thus, both experiments were inconclusive.
But they did demonstrate that for distances of a few million miles either
Euclidean or non-Euclidean geometry can serve aa a model.

In the early 20th century, Poincar pointed out that physical exper
jments must start with certain axioM1 about physical reality flust as the
geometer starts with axioms for his geometry. If the physical definition
of °straight line" is the path of a ray of light, then the mathematician
must take this into account as he tests a geometrical model against
phyaical reality. Geometrical properties of straight lines defined as
paths of light rays could differ from those of Euclidean straight lines.
With this in mind, suppose Gauss had obtained less than 1800 as the sum
of the angles in the triangle formed by the mountain peaks. This could

be explained by a hyperbolic space. Or it could be that space is
Euclidean but that light rays travel in a curved path and not in the
straight lines of Euclidean geometry (see Figure 12). The discrepancy

would be due to two different meanings of straight line: the physicist's

and the geometer's. Thus, different syateme of geometry can describe
the same physical reality if the axioms of physics are altered.

MOUNTAIN
PEAK

PATHOF LIGHT RAYS

Figure 12. An alternative tp hyperbolic space:
curved light rays in Euclidean space.

Einstein's theory of relativity utilimes a curved space. The

navigator uses spherical geometry. Recent research in optics suggests
that three-dimensional hyperbolic geometry van be used as a model for
visual space (Blank, 1958; Blank, 1961; Luneburg, 1950). Foinearg sta e

"one geometry cannot be more true than Another; it can only be more
convenient" (Coxeter, 1969, p. 288). If the choice of a geometry is merely

one of simplicity or convenience, Euclidean geometry would seem the best

choice to many.
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However, convenience is not the central concern. It must be kept

in mind that it is the child's 000struc6o0 of his_ spatial reality that

is the primary concern, not the geometry if physical reality or the child's

conception of hyperbolic, projective, Euclidean, or any other specific

system of geometry.

The Child's S atial Reality

Thus far tho discussion of spatial reality has dealt only with the

nature of physical space, a space external to the child. Whatever geometry

one uses to model physical space, this apace exists external to the child's

construction of his spatial reality. The main objective of this paper is

to model the child's construction using geometries from tine Erlanger

Programm. Hence, attention is now focused upon the child. Since Piaget

has described a rather comprehensive theory of the child's conception of

space, hia theory provides the foundation for much (though there are

intentional differences) of the following discussion.

At least five aspects of the child's space warrant the attention of

mathematics educators and psychologists: (a) visual space, (b) sensori-

motor space, (c) perceptual space, (d) represertatlonal space, and (e)

conceptual space. The following discussion attenrits to clarify the nature

of and the relationships existing aviong
thesev..rious aspects of the

child's space.

A distinction must be made between visual space and

physical space. There is an immediate visual Sensation or experience which

is a function of at least the variable factors of time and location of

the observer and the invariable factor (at least for limited timm spans)

of the physiological characteristics of the observer. A geometry modeling

these visual sensations (visual space) could be entirely different than a

geometry modeling physical space. Visual space Is bounded; physical space

may not be. In visual space, changes in shape and apparent distances

occur; in physical space shape and distance may be invariant. For

example, two objects A and B may be placed on a table. &s an observer

walks around the table, the distance between A and 8 visually changes.

The shapes of A and 8 are visually different from different vantage points.

However, in physical space the distance between A and B does not change

nor do A and B change shape.

Optics research (Luneburg, 1950) demonstrates that visual space

possesses a uniquely defined metric and that this metric is the metric

of three7climensional hyperbolic geometry. Blank (1958, t961) analyzes

Luneburg's theory and makes explicit its underlying asSummtions. He

reports several experiments to substantiate Luneburg's claims. While

these articles presuppose a certaln mathematical sophistication, they

need to be interpreted by mathematics edueatora and psychologists. It

would appear obvious that the child's construction of space is heavily

influenced hy the nature of visual space.

11



Sea ori-motor space. Sensori-eotor space begins with a set of unrelated

epaces: oral, tactile, postural, visual, and auditory. Each of these

spaces is body centered, though the child's awn body may not be considered
as part of any of these spaces. Toward the end of sensori-motor develop-
meet these individual spaces are coordinated into a single space in which

the body is one objent among others. The child develops a concept of

object permanence (see Snack, 1975) and objects gain an independence
from the Child's body (Beth & Piaget, 1966).

Perce tual and re-resentational a-ace. "Perception is the knowledge
of objects resulting from direct contact with them" (Piaget & Inhelder,
1967, p. 17). At first, perceptual space la included in sensori-motor

space. To use only the visual component of senaori-motor space_oe an
example, before perceptual space differentiates itaelf, a Child's perception
of an object may coincide precisely u(th his visual image of the object
(the object in visual space). But pc-tceptual space is constantly enriched

by the child's activity. His perceptual space evolves into a synthesia
of the knowledge resulting from this activity and his visual space. Objects

seen in perspective, for example, can be related to the observer's knowledge
of the objects. Thus, what in visual space may be a trapezoid can be
perceived (perceptual space) as a square or a rectangle.

perceptual space extends senaori-motor space, representational
space We--.4a perceptual space. Representation "involves the evocation
of obje t, f.n their absence or, when it runs parallel to perception, in

their presence. It completes perceptual knowledge by reference to objects
mot actually perceived" (Piaget & Inhelder, 1967, p. 17). It is one thing

to recognize or perceive that two lines are parallel or that two figures

are similar. It is quite another to be able to construct a figure similar
to az existing model. While_extending perception, representation introduces
a new element into the child's construction of apace, a system of sig-

nifications.. The child now hss available to him reconstructable repre-
sentations or images. These internalized imitations are distinct from
perceptions and are recognized as ouch by the child. At the level of

representation the child can differentiate between the symbol and that
which is symbolized.

Coneeptual space. The evolution of the nature of images provides
dle basic distinction between representational apace and conceptual space.
Piaget and Inhelder (1971) have studied the nature of imagery and defined
the mental image as the "evocation of a model without direct perception

of it" (p. 4). The function of the image is to provide a faithful and

accurate copy of the model. While not a direct prolowAstion of a perception,
the image, which ia an internalized imitation, can reproduce the content
of perception, e.g., shape and color. Naturally the imitation only
includes what the child understands and considers typical or exemplary.

Ateording to Finger and Inhelder (1971),the two main stages in image
development correspond to the'preoperational and operational stages of
the child's cognitive development. Up to the age of about seven or eight
years, iaages are essentially static, direct copy images. While not
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static in all respects, the preoperational image fails to coordinate stares

and transformations. The static nature of these images is due primarily

to the limitations cf preoperational thought. That is, transformations

are slighted in favor of states. "Generally speaking preoperational theughl

may be thought of as a system of notions within which figurative_treatment

of states takes precedence over comprehension of transformations" (Piaget

& Inhelder. 1971, p. 17).

There is a pseudo-conservation peculiar to the properational images.
Pseudo-conservation is best explained with an example from Piaget and

Inhelder's work (1971). Children were shown two cardboard squares (see

Figure 13a) and asked to imagine what the figure would look like if the

top square were moved slightly to the right (see Figure 13b). Drawings

of the youngest children (4 years) tended to show the squares completely

separated (see Figure 13c) or put together in a new way (see Figure 13d).

But as the children began to imagine the glide, pseudo-conservation became

more prevalent (see Figure 130). Whereas operational conservation would

keep the shapes and sizes of the squares constant, preoperational pseudo-

conservation attends more to boundaries. Note that the characteristics

which the child chooses to leeve invariant are precisely those that are

modified in actuality. On the other hand, characteristics which he alters

are actually invariants. In other tasks pseudo-conservation marafested
itself in a reluctance to violate interiors or enclosures when a tvms-

formation resulted in intersecting figures.

Pseudo-conservation arises, then, when a subject retains certain

characteristics of an object which he considers typical or
exemplary, and which he clings to at the expense of other

apparently more inportant characteristics. (Piaget &

Inholder, 1971, p. 362)

13b

LI
13d 13e

Figure 13

LI

The imagery during the preoperational stage of development utilizes

the figurative aspect of thought almost exclusively. As the image is

increasingly directed by the child's active operations, the figural aspect

heeon3s more and more subordinated to the operative aspect of thought.

With the formation of operations and operative structures, children

become capable of thinking in terms of transformations. The mobility of

the operations is reflected in their images. Images become more mobile,

more anticipatory. Whereas at the preoperational level of development,
figurative functions, and imagery in particular, govern thought, the

situation is reversed at the operational level. That is, the image

becomes subordinate to operational thought. Prior to the advent of the

operations, images are static. Anticipatory images frequently require
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conservation ability for which the preoperational child can only substitu e
pseudo-conservation. Tbey may require transformations while he can only
deal with states. With operational capability, children can be concerned
with the transformations linking states. States ean then be viewed as
endpoints of some transformations and as starting points for others.

The basic dIstinction, then, between representational space and
conceptual space is this: In the former, the image is basically static
and attempts at conservation result in inadequate pseudo-conservation.
Images govern thought. In the latter, the image can coordinate states
and-transformations. States are subordinate to transformations.

For Piaget knowledge is invariance through transformation. The mental
image, insofar as it is static, is always only a symbol and is not in
itself a form of knowledge. Operations suppose systems of transfornations.
Thus operations are more than images. However, images can serve as a
tool of the operations.

Summary_ and conclusions. Visual space was differentiated from physical
space. Physical space is external to the child's construction. Visual
space is one component of sensori-motor space and later of perceptual
space. In the early stages of perceptual space development, perceptual
space and visual space may coincide. Later, perceptual space is a
synthesis of what an observer "sees" and what he "knows." What he "
may emanate from representational or conceptual space. Therefore, when
talking about perceptual space in adults, one must be careful not to
attribute to perception what rightfully is representational or conceptual.

Researchers must be aware of the various aspects of the child's space.
A geometry that models one aspect may not model another. Also, though the
various spaces exist simultaneously in a child, they exist in various
degrees of development. With the exception of visual space, which is
more a function of the physiological characteristics of the child, each
aspect of space is a function of cognitive development. Different aspects
of space dominate the child's construction of space during different
periods of his cognitive development. With the advent of operations,
representations become mobile and serve as tools of the operations.

A Re rch Model

So-- Assumptions

Piaget emphasizes invariability through transformations. He opposes
the view that knowledge is a passive copy of reality. To know reality
one must assimilate reality into a system of transfornations, a system
of transformations which attempts to model isomorphically the transformations
of reality (Piaget, 1970). Knowledge is invariance through transformations.
Klein also emphasized invariability through transformations. The notions
of Fiaget and Klein would seem to dovetail nicely into a nodel for studying
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the child's concept of space. While it is true that Fiaget and Klein

each use and even emphasize many of the same terms, to make a vague appeal

to Klein's Erlanger Programm and to Fiaget's epistemology as providing

a model serves little purpose. In what sense do they or could they pro-

vide a model of the child's conception of space?

The position taken here is that the appeal to Klein and Piaget

should be based on their common emphasis on groups of transformations

and invariance through transformation. The assumptions made here are:

1. Piaget's definition of the nature of knowledge is essentially

correct. Knowing requires construction of systems of transformations.

These transformations become progressively more nearly isomorphic to

transformations of reality. They eventually are combined into systees

modeled by the mathematical group.

2. It is the technique of Klein's classification that is primary.

It emphasizes a set X, a group of transformations, andAnvariance

through transformation. This technique can be utilized to study the

structure and sequence of the child's construction of his spatial real

3. The various classification hierarchies resulting from Klein's

definition of a geometry are secondary. They can provide organization

on the basis of transformations. They may be used to generate many

research questions. However, it is premature to make any claim that any

particular hierarchy models the sequence or the structure of the child's

construction of his spatial reality.

Some Research uestions

Y.

Mathematics educators can raise many questions about the child's concept

of space from a study of the Erlanger Frogramm. Knowing requires con

structions of systems of transformations. What transformations do children

use? Transformations can be studied in terms of their invariances. What

are the invariants in the child's conception of space? Transformations

must act on something. What is the set of points in which the child uses

his transformations? It appears obvious that the ansWers to these questions

depend on the child. Is there a sequence, common to all children,

through which children naturally develop? Does this order parallel any

hierarchy suggested by the Erlanger Programm?

12314,1sR. Piaget and Inhelder (1967) contend that the child's

representational space is predominantly topological in nature until about

eix years of age. The child's first spatial concepts are those of

proximity, separation, order, enclosure, and continuity. These are

"topological relations" to Pinget. Deriving from these topological

relations are the projective and Euclidean concepts.
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Piaget does not always use mathematical language as precisely as
mathematicians might desire. Consequently strong inferences from his

work should be made only with caution. Piaget's topological tasks have
been analyzed from a mathematical point of view (Martin, 1976) and the
difficulties involved in making inferences pointed out. More analytical

etudies are needed Which examine the mathematics involved in Piaget's
other tasks e.g., those dealing with projective transformations (Piaget 6
Inhelder, 1967) or those dealing with mental imagery (Piaget & Inheldet,
1971).

On the basis of evidence now available, it appears that certain topo-
logical concepts such as interior, exterior, and boundary and primitive
form of proxinity and separation develop early. Other concepts such as
topological equivalence, order, and continuity evidently develop later.
Probably some projective concepts also develop early, earlier than many
topological concepts. More evidenceis necessary.

"Inherent" sequence in mathematics may actually be only an organi-
zational aid Employed by mathematicians. That is, it nay be merely a way
to organize knowledge. Consequently, the Erlanger Program does not
impose an inherent sequence to the study of geometries, much less a
sequence to the child's construction of space. What seems logically a
prerequisite for attainnent of a concept may appear so only as a result
of a particular organization of the mathematics. If one takes the position
that topology is the moot prinitive geometry because it contains the
others, would one then say that the real number system is the most primitive
because it contains the other number systema, e.g., the rationale, integers,
and naturals? Structure does not automatically determine the sequence
of the child's conceptual development. However, the Erlanger Programa
does offer many alternative sequences to test as models of the child's
sequence.

Continuous functIons. Topological transformations are continuous

nsformations. They also have continuous inverses. Many continuous

transformations do not have continuous inverses. It seems logical and
consistent with Piagetian theory to expect notions of continuous functions
in general to precede the notion of homeomorphisma, since inverses are not
involved in the former. Proximities are the most elementary spatial
relationships to Piaget. Proximities are preserved by continuous trans-
formations, loosely opeaking. A natural question is "What is the nature
of the child's concept of continuous functions?"

Neiihborhooda. If the child's spatial reality is essentially
topological in nature before developing to incorporate projective and
Euclidean concepts, homeomorphisms, the transformations of topology, have
te eXist without access to a metric. Homeonorphisme are coetinuoua

funCtions. Continuity was defined earlier using both metric and neighbor-
hoed notions. If length is not an invariant to the child, it would seea
that his notion of continuity would have tope based on the neighborhood
definition. Not much is known about the neighborhoods or proximities
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that a child uses in his space. Are his basic neighborhoods the amo ea,

or can they be induced by some function from. the "usual" bahic

ghborhoods the mathematician usea in Euclidean space? The topology

of the child could be drastically different from the usual topology of

Euclidean space. Consequently, it could yield a reality quite different

from a Euclidean reality.

Ideal poiats. It Was shown earlier that projective transformations

are not a subgroup of homeomorphisms in ordinary Euclidean space. /deal

points were introduced to Euclidean space. This is a mathematical conveni-mce.

Is it also a part of the child's construction procesa or are ideal points

mply mathematical inventions? One's first reaction might be that it

is silly to expect a child to have a concept of ideal'points. Yet the

Renaissance painters saw "points at infinity" in their victual space. And

all of us are familiar with the "illusion" of the railroad tracks meeting

in the distance. Ideal points could in fact exist in the child's space.

They could be abandoned later because he cannot find a place for them in

his developing Euclidean model of space. This would be analogous to our

restricting real projective apace to Euclidean apace when moving from the

projective transformations to the affine transformations in the discussion

of the hierarchies of various geometries.

Recall that only one ideal point was associated with each line. Note

that the railroad track illusion suggests
the_tracks meet "at both ends."

Would the child consider these
"intersections" as being at the same point

or at different points? If the answer is two points, perhaps the child's

space has elements of a non-Euclidean geometry.

The previous section discussed neighborhoods. If the child's space

contains ideal points, what do neighborhoods around these points consist

of? Intuitively one would expect a neighborhood of an ideal point to

consist of points "far away" aad in "about the seam direction" as the

ideal point. This could be described mathematically as follows. Conaider

a plane with a set of coordinate axes as in Figure 14. Rath line through

the origin is taken as representing its family of parallels. The line

is identified by the angle 00 < 0 < 1800 that it forum with the poeitive

horizontal axis. A neighborhood of au ideal point P associated with a

line t could be the interior of a hyperbola whose vertices and foci are

on line Z. The asymptotes for the hyperbola are the lines identified

by the angles 0 4- t and 0 - c, where c > 00. Rote that points "far away"

in space from the origin, or the subject, would be in the neighborhood

If they were "in about the same direction." Thus intuition is satisfied.

Also there are many neighborhoods for each ideal point and each neighborhood

contains many ideal points. Whether or not this description models the

child's construction, if Indeed he even has a cuncept of ideal points,

is unknown.
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Figure 14. Neighborhood of an ideal point.

distances. Similarity transformations multiply distances
Ln all dimánsions by the sane amount. For example, the image of a triangle
is a triangle whose sides are some constant k timea as long as sides of
the original triangle. The sides of the image are in proportion to the
aides of the original. An affine transformation cannot multiply distances
in all directions by the sane amount (unless, of course, it is a sindlarity).
However, affine transformations do preserve ratios of distances on the
same line or parallel lines. In particular, they send equal distances
into equal distances, thus preserving midpoints. The situation is

illustrated in Figure 15. The rectangle ABCD iS affinely equivalent to
the parallelogram A'B'C'C'. Note the ratio AP/FR ip equal to Age/FW.
These are ratios_along the same line. Note that the ratio AFAR is
not equal to A'F'/A'R'. These are ratios in different directions. A

logical question from both the mathematical and psychological points of
view is "DO children develop the ability to conserve ratios of distances
in one direction prior to the ability to conserve ratios of distances in
all directions?"

Figure 15. Ratios of distances preserved.
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Constant of proportionalitK. Another question concerning proportionality

can be raised. Similarities require conserving ratios in all directions.

But they also allow the constant
of proportionality to be any positive

number. Euclidean transformations require
conserving ratios in all

directions also. But t6e constant of proportionality is always one. If

accepted a topological to Euclidean sequence of development, the

Erlanger Program would suggest that similarity transformations develop

prior to Euclidean transformations. Yet, is it psychological!- sound to

expect a child to develop theconceptof a variable constant ol propor-

tionality before the concept of a fixed constant of proportionality,

whether or not the fixed constant is c'ne?

ui af fine tranbfor'atIons. As was shown in Figure 8, the equiaffine

group lies Irterstediate to the affine group and the Euclidean group. Whereas

similarities preserve shape but not necessarily area, equiaffinities pre-

erve area but not necessarily shape. Does a child's space have any

elements of equiaffine geometry apart from those inherent to Euclidean

geometry? That is, can be preserve area without also preserving length?

Have Plaget's area investigations used transformations which are not

basically Euclidean to see if area conservation might precede Euclidean

equivalence? There are vestiges of psuedo-conservation of area in the

thinking of many adults. Por example, many believe that a kidney-shaped

region has the Jame area as a circular region provided they both have

the same perimeter. In this case, conservation of one length produces

psuedo-conservation of area. The interrelationships among similarities,

equiaffinities,andisometries need study.

es Isometrics have been the subject of more investigation

than have other rranBformattona and will not be discussed in detail here.

However, one question can be raised. DO certain isometries develop

before others? Mathematically, rotations and translations can be expressed

as the resultants of reflections. Are reflections the most basic isometrics

psychologically? Ihere is some evidence which suggests not (Lesh, 1975).

proup properties. The Klein Program= emphasizes groups of trans-

formations. The group is not among the mental
structures of the young

child. Perhaps the child's conception of space develops first uaing a

weaker structure. Semigroups require only that a set be subject to some

rule of combination so that the resultant of the Combination of any two

elements is a unique element which is in the set and that the associative

law holds. Semigroups do not require identity elements or inverses. It

is possible that the semigroup would serve as a model for the child's

mental structure. Using this structure a child could develop certain

invariants of a geometry but not others. For example, the set of con-

tinuous transformationsforms a semigroup. Proximities are preserved

by continuous transformations whether or not these transformations have

inverses. But a continuous trunsforwation
may not preserve openness

of curves. Thus,cchild whose mental-structures were Isomorphic to a

semigroup would develop some invariants of a geometry. The development
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Of others might require the group structure. Using the semigroup properties
of the projective transformations, what invariants could a child construct?

Of course, transformations can be more general than continuous
ansformations, and structures can be more general than the semigroup.

What about transformations that are just one-to-one, many-to-one, or
the composition of transformations in general? Classification can be

modeled by the m6ny-to-one transformation. Perhaps other types of trans-

formations coule, be used to model other structures. Much work could be

done in this area.

The child's construction process. The Erlanger Program can be used- -
to provide geometric models of the spaces which a child constructs, It

can focus research on transformations and invariances rather than on
states. It can offer hypothesized sequences of the order the child's
construction will follow. It cannot provide a model of the process of

the construction.

To Fiaget the essential aspect of thought is operative not figurative.
The operative aspect deals with transformations. Knowledge is invariance

through transformation. Conceptual space, as discussed in this paper,

relies on operative thought. It follows that the construction procesa
for conceptual space should be of primary concern. Investigations
regarding perceptual space would derive importance only insofar as they
deal with the foundations of the construction of conceputal space. Studies

of the construction process for representational space would have comparable
value particularly if a careful analysis of the beginning points or
foundation for the construction process is provided.

In this paper, the structure of geometry via Kle n's Erlanger Program
has been examined, and the various aspects of the child's construction
of Space (A la Piaget) have been discussed. From the union of Klein's
Programm and Piaget's theory, many research questions have been generated.
The Erlanger Program offers a model which focuses research on transformations
and invariances. However, it must be remembered that this model is
offered only to assist the description of the product of the child'S
construction of space and not the process itself.

1
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A Dynamical r,-,0e1 for cognitive Development

with Applications to Problem Solving

Donald G. Snarl

Northwestern University

Can problem solving be taught? I contend that, within limits, it

can be. It is the purpose of this paper to provide a foundation for

thil claim. However, in order to discuss this issue (indeed, even before
a defirition of a problem zan be put forth), we must develop a model for

cognitive development. Once this model is derived, applications to problem
education,etc.,will be immediate.,

The proposed model is based on elementary first principles frwm the

study of cognitive development. These principles will be in the form
of basic miniroal assumptions concerning the behavior of assimilation
and accommodation in ne adaptationorganization model used by J. Piaget.
We shall assum, -hese basic principles as the building blocks for the
model and use some recent results from mathematics, namely, R. Thom's

catastrovhe theory, to show the relationships between these principles.
It will turn out that while the inputs are elementary, the conclusions
are sharp and far reaching. One of the surprising facts for me was that

this dynamical model based upon the theory of differential equations
provides an understanding as to why "attitudes" play finch an important
role both in the educational process and in problem solving. This was

entirely unexpected, but it was most happily received. A second unexpected

bonus was an analytical description of the well know eyewitness phenomenon.

For technical reasons which will be explained in the next section,
the exposition of the model for cognitive developoent will be simplified
by the simple device of restricting attention to a small, fixed portion

of the environment. It seems natural to label such a restriction a

problem, and we shall do so. Consequently, problems and problem solving

are the main topics of discussion,where problem solving is viewed as a

special case of cognitive development. However, in the context used here,

the disussion of problem solving must be viewed as a description of the

general ideas of cognitive development given by this model.

12 7
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Once the model is described some applications wi I be given. These
sections wre not intended to be complete or comprehsnsive. Instead,
applications will be restricted to those conclusions whin follow in a
natural fashion from this modeL

There are two reaSons these sections are included. The first is
to further illustrate and explain the model. The secOnd iS to aid
researchers interested either in applying or in experimentally verifying
this predictive model. Indeed, this is a theoretical model, and for the
most part, it requires empirical supporting evidence before its ramifi-
cations and limitations can 5e completely understood.

This paper is an encapsulation of some of my conclusions resulting
from a study of cognitive processes (Saari, in press-a, in press-b). All
of the points raised here will be elaborated upon in greater detail in this
reference, which can be viewed in a more general context of being s Study
of the adaptation process. Indeed, even in the abbreviated version provided
hors, the reader Should find little difficulty in applying some of the
conclusions to other models--say from psychology or economics--which
depend upon an adaptation process.

I would lIke to thank R. Leah and B. Chartoff for their patience
In listening to these ideas while they were still in a formative crude
stage. I would like to give particular thanks to Edward R. Saari for
the several informative discussions we had ,exploring the topics of creative
thinking in the visual arts and general problem solving. Several of his
points turned out to be most helpful and useful, particularly some Of
his observations concerning the discontinuities inherent In problem solving.
Some of the examples used here are due to him.

Eognitive

We shall start to'2f with some elementary first principles of cognitive
development. These atatements will be rephrased in mathematical termi-
nology, where will need to appeal to some recent mathewtical results
to complete this translation into a mathematical language. This transla-
tion will constitute our model for cognitive development.

Start off with environment E where we shall ignore any given structuri.
This is a key point since our underlying alsumption is that any environ-
mental struCture we perceive is imposed upon the environment by us--an
interpreting organism. But how does the organism do thls? Assume a
message, cr event, e c E. Message is "interpreted" by a matching of this
message to oome existing organizational structure of the organism. The
organizatIon41 structw:a to which this message has been assigned provides
the organisw's interpretation of the event.

123
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We shall be vague abcst': the form of the organizstional structures

since this is of little interest to us here. They could be interpreted

as elements of the long-tern memory, ea schemata, etc., but an exrct

definition or choice of terminology will divert us from the goal of

findiag a description of how the_organizationsl structures chae ,

Whatever these structures may be, there must be only a finite number

cf them. The physical limitations of an orgadism dictate this. Thus,we

shall assume there exist N possible organizational structures, where N is

a (possibly very large) finite number. All possible organizational

structuses 1:3 the closed positive orthant of an N W.mensional Euclidean_

space R. A given organizational strucZure il represented by a vector X

from this space, where the kth component of this vector represents the

kth organizational structure. XR 0 irrlt r the e.th structure Is inop-

erative, wnile a large value for Xk ImplIe tnat the kth structure can

handle, or pezmit the interpretation of a large number of messages frwl

the environment. At any given instant of tirpe, t, not all of these

potential structures are developed. This La a direct consequence of the

fact that the value of N must be so large that all "reasonably" possible

organizational structures are represented ds a component of vector X.

Consequently, at any time the values of most of the components will be

either zero or close to zero.

So far we have represented the environment and the space.of possible

organizational structures respectively by R and R. We now need so

represent the process which transmits the message a from E into R. This
procedure of attempting to match a message from the environment to existing

organizational structures is celled the assimilation process, which we

shall denote by As. This process consists of two potentially conflicting

parts. The first is discriminatory assimilation which is the process of

examining a message to discover its particular characteristics, to deter-

mine how it differs from other messages, etc. The second is generalizing

assimilation which ig the P rocess of searching for agreement between

chis message and others, of finding a general class to which this message

belongs. We shall denote the former by Asd and the latter by Asg. Clearly

hese processes change in effectiveness with time, due to changes in

motivation, etc. In this communication we shall not address the important

problems of how to establish discrimination or generalization behavior

in a learner. Rasher, we shall concentrate on fitting thene capabilities

within a model for cognitive behavior of large scope.

All of this can be expressed mathematically as

Asd, Asg: E x

That is, the two types of assimilation depend upon time, at least innis'ectly,

and they match messages from the environment to organizational structures.
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If the image of Asg(e,t) agrees completely with that of
then there are no diffieulties, and the message is interpreted as the
common image. However, we cannot expect this to always occur, even for
the same message at a different time. Therefore, in general we can expect
that the images of these two processes do not match precisely, that is,
they are in.at least partial conflict. This state of conflict in the
interpretation of a message is our definition of a nontrivial problos.

To resolve this conflict, something in the system has to change.
Changes in the organizational structure in response to a nontrivial
problem is called the accommodation procedure. Namely, it iu the process
whereby the organizational structures must be modified to fit the
message from the environment. This is the process one must understand
if there is to be any hope in modeling cognitive development.

Examine the above description. Before the accommodation procedure
can change the organi7ational structures, there must be an initial inter-
pretation of a message. Consequently, it follows that the accommodation
process, denoted by Ac, depends upon Asd(e,t) and Asg(e,t). Indeed,
accommOdation is the prness whereby the system attempts to find a new
structure which will eliminate the conflict created by these interpre-
tations. Notice that accommodation is a part of the cognitive system;
we are not assuming it is a conscious overt act of the organism. Thus,

in some crude sense, Ac determines the amount of change in the structures
which is needed to eliminate this conflict, or

Ac[Asd(e,t), Asg(e,t),-]: RNRN (2)

where the value of the kth component of the image corresponds to the amount
of change required in the kth structure to reach equilibrium or a state Of
no conflict. Since the kth structure may need to decrease, the image
space is RN, not R.I. Perfect agreement in the message corresponds to an
image where none of the structures need to change, that is, to the image
0 c

Before continuir.g, we would like to reduce the number of parameters
to a manageable level. The problem is that Asd and leg depend upon all
possible e c E. Consequently, we are potentially dealing with an infinite
dimensional parameter space. Therefore, restrict attention to a given
message e or to some small neighborhood of e in E, for example, som
subject field. The idea of a small neighborhood makes sense since some
sort of structure or topology has been impoSed upon E via the inverse
images of the Assimilatory Proces9es. Namely, we can assume E has the
weakest topology making these maps continuous. Furthermore, we can sa :ly
assume that the initial interpretation, or assignment, or e c E depends
npotrthe respective talents, degree of sophistication, and motivation

13 0
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of As
-Z
('- t ) and Asd (-,t). Assume there is some sort of me

which meas._ this drive or motivation; HAsd(-,04 d 0 and

HAy-,011 g ? G. Zero values mean the correspotling processes are

not working. Larger numerical values for these parameters correspond to

a more talented, sble,and motivated process. Finally, let 7 denote the

common portion of the images of Asd and Asg Namely,X corresponds to

list agreed upon component of the differing interpretations of Asd and

Asg. (This dual usage of X should not lead to any confusion.)

These assumptions permit Ac to be viewed as a function from R x 4
into R", namely the function which gives the vec'..or from X to an equilibrium

position corresponding to the given values of d and g. We ate interested

in the state of perfect equilibrium,

Ac(d,g,TO 0=

if Ac is a smooth function (in the sense of differentiability), then this

equilibrium state is generically a smooth two dimensional manifold (a

smooth surface which locally appears to be a two dimensional space). The

interpretation of this equation is straight forward. For a given value

of d and g.a value of X satisfying Equation 3 corresponds to a structure

where the message is interpreted without any conflict.

There are three complications;

1. The process of accommodation is not an instantaneous one. The

process does not arrive at the equilibrium position of Equation 3

immediately, but only after a period of adjustment and change.

2. The process of accommodation must admit discontinuities. It is

a common experience and observation that a sudden change may occur in the

interpretation of a message from the environment.

3. Not t much is known about the accommodation process. Therefore,

any description of this process must be generic or stable in the sense

that small variations reflecting changes in our understanding of the

process or changes due to individualistic differences still should result

in a similar qualitative description with the same conclusions. We shall

consider these constraints in the order 1 3, 2'.

Constraint (1) claim-t there must be a period and process of adjust-

ment between the assimilation and accommodation processbetween the
values of d and g, and the corresponding choice Of X. This process of

reaching some sort of accord between As and Ac is known as the adaptition

process. Since it is an adjustment process with the implied notion of

rate of change, it is natural to model it with a differential equation,

which for technical reasons, we assume is given by a gradient of a ermeth

function. That is,

nf(d,g,N) nVf m
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where F: x R144.--4R1 and where n is a post,ve parameter. A stable
equilibrium position, that is, an element of a subset of the zero set of
f(d,g,X) ft 0, is the equilibrium position of the Ac process. (For the
remainder of this paper we shall, incorrectly, identify Ac with the
equilibrium position given by Equation 1. Namely, we assume that the
zero set of f has an attracting surface for the equation in some bounded
region of R. For fixed d and g, the solution of Equation 2, X (t)
tends toward some element of this zero set with coordinates (d,g,X).
Recall, our space is x The process of moving X(t) toward the zero
set, modeled by the differential equation, is the adaptation process.
The limiting position in the zero set of t Is what -. we shall call the
accommodation process.

It remaina to choose function F satisfying conditions (2) and (3).
It turas out that this seemingly impossible task can be accomplished by
using our basic assumption that parameter d and g are basically in
conflict; that is, there does not exist a smooth combination of these
parameters which would allow Ac or F to be viewed as a function of a
single parameter. For expository reasons, we shall discuss our choice
of F in the special, unrealistic setting N Iv and then describe the
model for arbitrary finite N. That ia, we shall initially discuss the
model for an organism which possesses only one organizational structure,
and then generalize it to a more roalistic setting.

Recent developments in mathematics, knowa as catastrophe theory and
primarily due to Rcn6 Thom (1969, 1972),require that the local behavior
of the zero set of a function f exhibiting constraint (2) and satisfying
constraint (3) must be as given in Figure 1. Recall, N ft 1. The probable
global behavior of the zero set of f can be pieced together from this
knowledge of the local behavior and the Ac process. Also, we need to
establish the orientation of the cusp fold in the space R! x R*. To
determine this,consider the behavior of Ac with respect to changes in
the values of d and g.

Figure 1. Represen a ion of surface for f 0, N 1.
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Fix d at a small value and let g increase. This means that the
process of assimilation is generalizing, noting more similaritiea between
messages from E. Consequently, after the adaptation process has been
completed, the organizational structure can incorporate a large number
of messages from E; thin means that small fixed d but increasing g

leach] to increasing values for X. This does not mean that the structure
is "better," just that it is intirpreting a larger subset of E. It may

be doing so "unwisely."

To determine the impact of parameter d, fix g at a fixed value
and let d increase. This teens the differences and the discrepancies
in messages are noted and emphasized. This causes problems in trying to
interpret messages within the one existing structure, which results in a
smaller subset of E which the structure can interpret with any confidence.
V-us,small fixed g and increasing leads ts a decreasing X.

In the above two cases one Parameter dominated the other. Turn now
to the case where one parameter starts from a position of strength. Let

g be large and d be small. As we have seen, this corresponda to a
large value of X. Hold g fixed and let d increase. This means
that there is an increase in emphasis on the differences between messages.
However, the noted similarities between the messages are so strong (large
g) that this increase in d has little effect on the value of X. As
d continues to increase In value, more discrepancies in the meseagee
are noted, leading to a decrease in the value of X. Nevertheless, the
amassed evidence is still not sufficient to question seriously the
accuracy of the interpretation. This process can 'oe expected to continue
until some critical point where the accumulated rJ3nflict and the weight
of the discrepancies of the message so undermine the interpretations of
the one structure organism that there is a sudden decline in the value
of TC correeponding to a sudden reduction to a "safe" level of inter-

pretation. (Of course, all of this is in the case N 1. For larger
values of N, this "discontinuity" in 7 may be manifested by the division
of one structure into several other structures. At the same time, different

structures may be combined into a new one.) Thus, we can expect that if
a structure will experience a discontinuity, then it occurs for large
values of d and g. Indeed, a larger initial value for g, implying a
stronger, more stable generalized structure, would require a larger value
for d before the structure breaks down.

This leads to the general positioning of the cusp fold in Figure 2.
(We shall interpret thia figure in the next paragraph.) The arrows in
the figure correspond to Equation 4, and the action of the differential

equations. That is, they denote the adaptation proceeses of changing
the structure and forcing X(t) toward the equilibrium surface whicb
denotes perfect agreement in messages for that level of d and g (plus

the restriction on E). Notice that not all of the zero set of f orre-

spends to Ac. The "tuck" in the surface between the upper and lower
surface ie the location of the unstable points (the arroWs tend away
from this part of the surface).
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Figure 2. Probable orientation of the adaptation equilibriu

surface in d-g-X space, N 1. The vectors

represent Equation 4.

The best way to interpret all this is to consider the consequences
of changes in the values of d and g. A path moving in the d-g plane,

will have its image forced toward the surface by the adaptation process,
the vector field in Figure 2. For example, consider the two different

paths in Figure 3. (To determine the images of these paths, compare

Figure 3 with Figure 2. The cusps in Figure 3 correspond to the location

of the boundaries of the folds in Figure 2. That is, they are the image

of a vertical projection of these folds into the d-g space.) The

images of the paths from 1-2 and 2-3 can be only on the upper surface.
The path from 3 to 4 crosses a branch of the cusp fold. However, this

branch corresponds to the fold on the lower surface, so ir has no impact

upon this path, and the image stays on the uppar surface. Notice that

path 4-5 crosses the second branch of the cusp, and this branch does

correspond to the fold on the upper surface. Therefore, once the path

crosses this branch, the adaptation vector field forces the image to

the lower surface. Thus, we have the apparent discontinuity in the

structure discussed above. (In fact, it is not_ a discontinuity, but

rather a ?:elatively rapid change in the value of X.) The analysis of

the second path is similar, except notice that the_imitie_el_p_sistLe

for_the secand_path differs from_Oat_ofoint 4 for _the first Rth

Notice that the changes in the values of are continuous except when

a path crosses the second branch of a cusp. Thus, the cusps in the d-g

plane provide valuable information in that they mark the locations of

the discontinuities of the process.
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Figure 3. Two paths in d-g space. N 0 1.

Notice chat the cusp is a projection
of the boundary of the surface in
Figure 2.

It turns out that Thom's theory still holds for arbitrary finite N.

Locally, the location of the discontinuities emanates from cusps. Argu-

ments similar to the one used for N 0 I show that the general positioning

of these cusps is outward and centered about a diagonal line somewhat in
the center of R. The main difference is that a discontinuity may result
in some rapid changes in several coordinates, reflecting the general bifur-

cation of organizational structures. The main idea to remember is that it

is the "sec.lnd" branch of a cusp which a path crosses before there is an

apparent disLnntinuity. Also, in the more gerral setting of arbitrary
N, the cusp pertaining to a given path depends :von which surface is the

image of the path. (In Figure 4,we have given an example of a parameter

space for N > 1.)

Two more points need to be explained before the model is completed.
The first is positive parameter n. This parameter der0rmines the operat

rate of the adaptation procedure: the larger the value of n the faster

the process. Indeed. n = m corresponds to an infinitely fast process.
Parameter n is included to allow for individual differences in the rate
of adaptation, perhaps of a physiological nature.

0,144.a
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Figure 4. Schematic ropresentation for N _

of the projection of the boundaries
of the equilibrium surface onto the
d-s parameter spaee.

It follows from the above discussion that the process of change in

the organizational structures depends upon the selected path in the d-g

space. However, movement of a path presupposes some interpretation of

the preceding events. Namely,the rate of change of a path in the d-g

space is related to the speed of the adaptation procesa: an equilibrium

position must be approached, meaning that new stru4ture8 are formed oe

old ones extended before the path can contime. We repeat this fact Ete

a hypothesis:

Hypothesis:. The rate of chan e (21RLWiirLdOt
be "slow"_com-ared to _that of E-uation 2, that is corn ared to the

value of T.

The fact that the rate of change of the assimilation process (the
path in the d-g apace) depends upon how fast some sort of accord can
be reached with tl.o accommodation process completes a circle illustrating
the strong interrelationship between the aseimilation and accommodation
processes. The extended structures and the new interpretations permitted
by the accommodation process are necesoary before a change In the valuea
of d and g can occur. However, this relationship, as modeled here,

1For a given choice of F, a mathematical description
its relationship with n _an be found in LeVinson (1950).

136

'slow" and



131

ls a continuous dynamical one. While the two processes operate simul-
taneouslyithere is a strong feedback mechanism between them which acts
as a check on their movement. It i8 the conflict in the interpretation
of the measagea which is the driving force for the path in the d-g

space. Movement of the path changes the structures, but these changes
in the structures must be realized before the path can continue.

Consequences

We can now reach some conclusions about cognitive processes. Some

of the more obvious ones will be given here, and a more complete list
will appear in another study (Saari, in press-b). HoweVer, the reader
should find it easy to compile a fairly complete list, since the procedure
is to examine the consequences of different paths in Figures 3 and 4.

The first observation is that the accommodation process and hence
the subsequent_organizational structures 4epend not only on the capability
and driye_of the assimilatimwocesses_($ .e._the values of _4_81124 g)

.hutalsou.oWtrtaatIl_takento reaa theaeyalues. This means that
the learner's current organizational structures depend very strongly on
the learner's history. This i8 reflected in Figure 3 by the fact that
the image of point 4 can only be determined if we know its historY,
namely, to which path it belongs. In Figure 4, with US wealth of cusps,
we see that two paths arriving at the same point in the d-g space, but
with different histories, may result in images where completely different
components in 7 are emphasized. This may result in radically different
interpretations of the same message from E. Since this is what we expect,
it adds partial confirmation to this theoretical model.

What can this mean for education? Consider an example of teaching

elementary arithmetic. The goal is to teach both comprehension and ability
to use baaic addition, subtraction, and multiplication facto. Suppose that ,

in learning these facts, most of the students in a class took a route in
Figure 4 similar to that of Path 1, 2, 3, 4 in Figure 3, and they have
attained a certain level of comprehension and competency in arithmetic.
Now suppose one member of the class learned these facts by rote. That

is, essentially, the child viewed each new fact as a separate entity.
It is the differences in the facts which are impressed upon him, rather
than any similarity between them. Thus, the g parameter remaina at a

low value while the d parameter is increasing. This corresponds to a

path similar to 1, 21, or 3' in Figure 3.

The problem is to help the child reach class level. A natural
approach may be to try to direct hia path to point 4. Although, when
the child has reached this point, his aaaimilation talents are equivalent
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to class level, his understanding Is not: he is still on a different

surface. It follows from Figures 2 and 3 that the path needs to move to
the vicinity of point 5' before a new level of comprehension is achieved.

It is questionable whether this is a feasible path. For example,

the increase in the g parameter required to cross the second branch of
the cusp may require generalizing examples or experiences beyond the
capacity of the teacher to provide them. Second, it is not clear this

path is optimal in terms of time and the required effort. A more effi-

cient path may be one which crosses the second braneh of the cusp near

the vertex. This requires a decrease in d a return to the beginning

first principles.

While this example is elementary, it does illustrate how this model
can be used to derive conjectures or explanations for educational problems.
For example, notice that this example shows the importance of recognizing
and correcting a problem of this type at an early stage when the distances
between branches of the cusps are still small. This leads to our second

observation.

Ler er valuea_of _d and/or tend to lead to more stable structurea

That is, small changes in the valuea of d and g are not as likely to

reach the appropriate branch of the cusp causing a discontinuity in the
organizational structures. Examples supporting this statement are abundant.
We can see this in the stabilization of certain parts of our beliefa with
time. It indicates why people new to a field are somewhat more receptive
to innovative ideas; it points out the impact and importance of impressions
coloring early interpretations of events in the environment.

However, since we can expect the distance between the surfaces in
the fold to increase with the distance from the vertex, if a change occurs
for large values of d and g, it may be a dramatic and significant one.
Consequently, while the above paragraph suggests the impact of indoctri-
nation at an early stage, this observation suggests a possible later
consequence--a large discontinuity which may manifest itself as a complete
rejection of the original interpretation. We leave other examples to

the reader.

The third observation is a somewhat surprising one.

accommodation oces h de.endent It does not de end cont

upon the choice of ;tether! Namely, two individuals with almost identical
histories and abilities can reach different interpretations of a message.
To see the origin of this statement, trace the image of two nearby paths
which pass on opposite sides of a vertex of a cusp. The image of one

path will be on a different surface. The implications this statement

has for education are obvious. For example, it explaina why a class

can be at two different levels of comprehension. This discontinuity in
Ac will be exploited in our discussion of strategies for problem solving.

138



133

Problems and Problem Solving

Problems are usually defined as an impediment, restriction, or delay

in the stimulus-response mechanism. A problem, then, becomes a stimulus

for which a response is not immediately forthcoming; a question for which

there is no immediate or obvious answer.

In our setting we have defined a nontrivial problem to be a conflict

in the images of Asd(e,t) and Ass(e,t), a definition that agrees with the

above. However; for the model such a definition is incomplete (we shall
explain this at the end of this section),and we need a more general

definition.

Definition. A problem is a Mesesm_e fzom the envi
is assigned_to a nonzero_organizstional structure. If Asa e

with As (JtLat then trivial (Assignment of the message--8
to a zeta vector means the message is not being interpreted.)

A method of problem solving is a path in the d-g space. A success-

ful method la one for which agreement in the images can be attained in

finite time. We assume these paths, y(t), are continuously differentiable..
Thus,a successful method is one for which y'(ti) 0 for t t1 in some

compact interval. For a trivial problem, the path is a stationary one.

No value judgement is implied by the term "successful." For example,

a successful method may be one for which the terminal value of Some

parameter (d or g) is less than its initial value. This nay correspond

to a rejection of the conflict by ignoring the implications of the original

interpretation. On the other hand, this path may correspond to ayetura

to first principles. Nevertheless, it is reasonable to label such a path

as a regressive method of problem solving.

The stages of problem solving can now be read directly from the

model. It is important to understand these stages because they form the

foundation for problem-solving strategies. Of course, once we have problem-.

solving strategies, the major obstacle to the teaching of problem solving

has been removed. It will turn out that several of these stages can

operate simultaneously. Thus,a first order approach to problem solving
is to assist the process by concentrating on each stage separately and

in the proper order. Since these steps for problem solving will parallel
the stages of problem solving, they will be discussed together. The

step corresponding to a given stage will be designated by a primed number.

1. Transmittal_ofthe message. There is a message from the envi-

ronment. It is transmitted by the sensory system, and it must be
assigned by As to some existing organizational structure.
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1' Pay attention. Understand the mes a e The resulting problem
depends upon what percentage of the message is received. Therefore, pay
attention to the message.

Even a casual examination of the model shows that the initial inter-
pretation of a message is moot crucial. Consequently, the assignment of

a message to a structure must be done rationally. The message should be
carefully examined and understood before an initial interpretation Jo
accepted.

2. Conflict fn .the interpretation. If the messa e is a trivial
problem, the process is completed. If there is conflict in the interpre-
tation of the message, then the nontrivial problem must be solved.

2'. Understand the roblem. The problem must be studied to deter-
mine why it is a nontrivial problem. The conflict, weakness in the
interpretation, and what additional information is needed should be
established. This is the first place where attitude plays a role.
Students should realize that conflict and a lack of complete under end-
ing or the lack of an initial plan of attack are most natural.

3. Preliminary_ movement of the _FAO. It is the conflict caused by
a nontrivial problem which is the feedback mechanism forcing changes in
the values of d and g. This change or movement of the path ia an
attempt to solve the problem by reinterpreting the message. It is aided

by gathering of information (previously interpreted messages), etc.

3'. Accumulatfonof InformatIon. In step 2', the problem was
defined and the weak points isolated, In this step the conflict and weak
points are studied and additional information is sought. That is, the prob-
lem, or at least different aspects of it, are compared with other events,
usually already interpreted, to determine differences and similarities.
This new information changes and/or extends the existing organizational
structure. It may result in a plan of attack. (This is a most impor-
tent step. Some additional techniques suggested by this model will be
discussed in the next section.)

4. Adaptation_disequilibrium, or incubation. The path in the d-g

space may be mOving "fairly fast." This would move the image of the path

away from a region near the equilibrium surface. According to our hypoth-
esis, this leads to a period of disequilibrium. During this period,

movement of the path in the d-g plane is slowed until the adaptation
vector field can force the image, X(t), back to a region near this surface.
When X(t) is away from a region about this surface, it is changing rapidly,
which would lead to a state of confusion or no progress. The interpre-

tation of e is not clear since the distance of X from the surface
measures the conflict in these interpretations.

1 4 0
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A second and more dramatic type of adaptation disequilibrium occurs
if the path crosses the appropriate branch of a cusp leading to a discon-
tinuity. This period may be longer. During both types of incubation
periods,there may be no external signs of work or activity.

4'. Positive_attitude incubation. Just by its nature, the state
of disequilibrium can be a confusing and frustrating one. During this
period, take a short vacation from the problem-take a walk or read
something else, but give the adaptation process the time it needs to do
its work. Thia is easy advice to accept because it follows 3' which is
a period of hard work. However, by a recess, r do not mean the problem
should be abandoned. A positive attitude toward the problem is needed.
This approach is needed to counter possible negative side-effects of
this state of disequilibrium, a period which may be marked by irritability,
need for privacy, doubt, etc. (depending, of course, on personality
traits). Without a positive approach, a natural mode Of problem solving
might be the regressive method. Namely, a path is selected which elimi-
nates the conflict by ignoring part of it.

This is somewhat ironic since the greatest degree of conflict should
appear near the branch of the cusp leading to a discontinuity or an
incubation period of the second type; after all, it is the conflict near
the branch which leads to the discarding of the old structures and an
attempt to assign new ones. However, this is also the period where,
ithout a positive approach to the problem, a regressive method will

most likely be adopted; consequently, the threshold line ma- not be
crossed.

5. gguilibrium and Inspiration. When X does approach a region
near the equilibrium surface, that is, at the conclusion of an incubation
period, there is a new interpretation of the message. Since the adapta-
tion vector field is "fast" compared to changes in the path in the d-g

space, this new interpretation may appear quite suddenly--an inspiration.
After an incubation period of the first type, the inspiration is typified
by a "Oh, that's right; of course." type comment. After an incubation
period of the second type, the equilibrium position corresponds to a
reassignment of formation of new structures to interpret the message.
Thus, this inspiration can be characterized by the exclamation "Oh my
gosh! So that's what happens!"

5'. New plan Pf attack. The inspirational period provides a dif-

ferent interpretation f the problem. This should be analyzed to see
if it provides a new plan of attack for the solution of the problem.
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6. ConfIrmation. The message i8 examined in terms of the new
structures to determine wiwther this interpretation solves the problem

and resolves the conflict. If not, the process is continued. Notice,

if this reassignment of the structures is of the second type and if the

projection of this surface onto the d-g space, R!, indicates that our

path is near the vertex of a cusp or a threshold branch (with respect to
the path) of the cusp, then we might expect another reassignment shortly

thereafter. However, if the path is "far" from the threshold branch of
the appropriate cusp, then we can expect Mat this was a stable reassign-

ment.

6'. Carrv_out the Plan 9f atteek. Return to step 2' and determine

whether the problem is solved. Continue on this loop of steps until a
solution is obtained either by a regressive method, which includes giving
up, or by finding a solution.

7. Comgletion. The problem is solved. If the problem was not a

trivial one, than the concluding structures di fer from the initial one.
The values of some of the components of !have changed. The concluding

structures will be used for the interpretation of new similar messages

from the environment. Indeed, it may even provide a new definition for

a neighborhood of the meheage in E. This is discussed in greater detail

in Saari (in press-b).

7'. Examine the_eolution. Since the resulting structures will be

used for the interpretation of future similar measages, the structures
should be strengthened. Namely, the solution of the problem should be

examined until it is completely understood. (What were the techniques

used? Why did they work?)

This completes an outline of the stages and steps of problem solving.
Notice that these stages hold even for the regressive method of problem
solving: however, the steps are intended to avoid this approach.

We conclude this section by briefly explaining why "trivial problems"
were included in our definition of a problem. The main reason is a mathe-

matical one. A method of solution is 4 smooth curve, but we did not
specify a minimum length for the curve. Therefore, for reasons of come-

pleteness, problems with solution curves of zero length should be included,

but this is our definition of a "trivial problem." Thus, our definition

of problems includes the 2 A- 2 variety of simple problems. This is

assuming, of course, that the learner is sufficiently advanced so that

2 A- 2 is trivial.

A trivial problem is trivial because its solution path has zero

length or approximately zero length. This does not mean it is elemen-

tary in the usual sense of the word. We will give an example, using
the above limit argument on the length of a path and the incubation

period to illustrate this point.
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Conaider an unfamiliar event in the environment which is short-lived
but replete with details, such as a short advanced lecture. The first
stages of problem solving are to receive the message and assign it to
some existing organizational structure. However, the lack of familiarity
and the number of details lead to conflict in the interpretation and
assignment of the message. Thin provides the impetus to move the d-g
parameters. The number of details and the short duration of the event
leads to an attempt to move this path very quickly. According to our
hypothesis on the speed of the path, and our model, this will tend to
move the image of the path away from the equilibrium rurface. Conaequently,
the path cannot move substantially forward until the image is near the
equilibrium surface, that is, until the current data or message is under-
stood. However, by the time this incubation period has ended, the details
are past this point and are confusing. This leaves the regressive approach
as the only viable method qf problem solving--we turn him off. Thus,our
terminal interpretation is nearly the same as our initial, and perhaps
incorrect, assignment of the message. Notice, this suggests that if the
lecturer is to "keep" a large portion of his audience, he should help in
the assignment of the ressage. This should be done by assigning it to a
stable structure, which is presumably an elementary concept.

Now, decrease the period of time allowed for the message, in this
case, the lecture. The above shows that the difference,between our
initial and final interpretations of the message ift small, and in the
limit the two interpretations are essentially the,same.

At this point our example of a lecture breaks down. Tberefore,
consider a sudden, short-lived, and unexpected disruption in the classroom,
or in some public facility. In this case,the time period of the message
closely approximates the limiting process described above, and the initial
and final interpretations of the event are essentially the same. Therefore,
this must be classified as ;rivial problem. The accuracy of the inter-
pretation of the event, as compared with the interpretation arrived upon
if the event could be replayed in slow motion, would depend upon the
accuracy of the initial assignment. (How unexpected or unfamiliar was
the event? How experienced is the observer and what are his prejudices,
i.e., what are his existing organizational structures?) No matter how
"inaccurate" the interpretation may be, the observer has no reason to
doubt it. This is, of course, the well-known eyewitness phenomenon.
Thus, a trivial problem may be anything but trivial.
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Strate ies for Problem Solv n

n the preceding section the steps of problem solving were oultined,

but it is not entirely clear how to implement some of them. Therefore,

in this section we shall briefly discuss some strategies for problem

solving suggested by this model,

1. Optma1 choIce of paths. While we have not introduced the
concept,.the scratch pad for problem solving Is our Short Term Memory

(STM). STM holds at any time a maximum of somewhere between five to nine

symbola, and this upper bound decreases when an unrelated task IS being

performed. Thus,for any task involving the combination of a large nuMber

of concepts or computations, STM will require aid. This can be done

through external aids such as tape recorders, computers, paper and pencil,

etc., but it also can be accomplished by combining several ideas or con-

cepts into a single class. Carried one step further, this suggests that
in order to avoid overloading STK, an optimal path is one which emphasizes

the similarities between the messages first, the g parameter, and then

it considers the differences between them, the d parameter. (It may

seem to the reader that we are cheating since STM is not part of our

earlier discussion. However, in a more general discussion (Saari, in
press-b), STM becomes an integral part of the model.)

In addition, it is suggested from the model that a path of the type

described above results in structures capable of interpreting a larger

portion of the environment, which is clearly a desired state. Also, this

type of path seems to be the route which leads to intuition. The intuition

is gained hy a generalization--the lumping of a given message with a large

class of other messages. The details are checked later.

With this knowledge of the optimal path, any technique which aids

the development of the g parameter will be a most useful technique for

problem solving. For example, this includes collaboration, discussions
with others, presenting a lecture on the problem (that is, discussing the

problem without external aids for STK, which forces a more general organi-

zation of the material), studying similar problems in other regions of

the environment, etc. Meat of the statements which follow in this section

can be viewed as additional methods to realize this optimal path.

Notice, however, this choice of a path suggests that a method which

emphasizes complete understanding of each aspect of a problem before

proceeding to the next one may not be optimal! Furthermore, it suggests

that in research, the approach of shooting to the boundary of research

and then picking up details at a later date may be a positive approach.

2. Deferred judXement. The principle of deferred judgement should

be employed. Namely, ideas, plans of attack, and options should be explored

before they are evaluated and discarded. This is, of course, the basic
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premise behind brainstorming. But I mean it to apply to all types of

problem solving, for example: a photographer deeply involved in his work

should defer final evaluation of a given print until a later date, a
mathematician trying to solve a problem should explore that wild idea
and check the details later, or a student seriously interested in studying

the arta or pure sciences should defer some of the technical aspects until
a later date.

There are at least four reasons this principle is suggested by the
model. The first is that it leads to the type of path discussed above.
This principle clearly emphasizes the g parameter, the generalizing type

of assimilation. A judgement of an idea is a careful examination of ito
details, which is an emphasis on parameter d. Thus, in this terminology,

brainstorming is an exaggerated degree of deferred judgement. It is

characterized by a path where the d parameter is temporarily set to a

cmall value and the g parameter increases. Eventually the ideas must

be evaluated, but since Ac is path dependent, its terminal image may be
significantly different than what it would have been had the evaluation
been performed at an earlier stage.

A second reason Is that while Ac is path dependent, it is not every-
where continuous with respect to the choice of paths. Consequently, a

path altered by evaluations at an early stage may lead to sharply different

structures.

Third, an evaluation at an early stage, or a constant evaluation,
uses up valuable space in the STN. Since this space is limited, all of

the space should be used to attempt to solve the problem.

Fourth, the evaluation may be applied during the incubation period
or during the critical stage of conflict near the threshold line leading

to an incubation period of the Second type. Consequently, instead of
having a positive effect upon the problem, the evaluation may lead to a

regressive method of problem solving.

3. IndependeOZe. This is another form of deferred judgement. When

a nontrivial problem is encountered, it should be examined, studied, and

at least a partial attempt be made to solve it before outside information
is sought. For example, J. E. Littlewood (1968) recommends that when
attempting to solve an unansWered research problem, you should understand
the problem, but, at least initially, You should stay away from learning
how other people have attempted to solve the problem. The fact that Az
has diocontinuitleo with respect to paths shows why this is good advice.
(I have always been impressed with the number of highly acclaimed people
in the history of the arts and sciences who were, to some degree, self-
taught. Therefore, we can assume their path in the d=g space was not

the standard one.)

1
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4. Simplify the problem until it assumes a

form which is either trivial or solvable. Examine the solution. This

may suggest a plan of attack. If it does not, then generalize this new

problem and Solve it. Essentially this is going back to first mrinciples

where it is easier to jump from one surface to another. Also, it aids

STM, since the simpler problem does not have as many details.

ReaSoniog btanslogy. There are t stages in the model which

suggest this approach. The first is the initial assignment of a message-
the problem may be simplified if it can be related to other problems, even
from other fields, having a similar conflict. This shows the importance

of a general formulation of the statemtnt of a problem. In this fashion,

the problem becomes a part of an already partially established structure.
It is difficult to start a problem with d and g both small, that is,

start the analysis of an event from scratch. However, if a problem can

be attached to an existing structure, perhaps even from a different "field,"

a solution may be easier to obtain.

Secend, reasoning by analogy helps increase the value of the g

parameter. Since this method is an attempt to compare the message with
problems already solved, or problems easier to solve, it is almost by
definition the seeking of similarities between this given message and

others.

6. Exteneion. Once a new technique or organizational structure has
been developed, use it to interpret as much of the environment as possible.

This is a well-established approach employed by successful researchers in

all fields. It is the logical extension of step 7'.

Elsewhere other strategies will be discussed, but for our present
purposes the above short list will suffice. It should be clear how these

strategies are generated. The various stages and mechanisms of problem
solving ate examined to locate both their weak and strong points. A
strategy is than proposed which will aid the former and emphasize the

latter. For example, the limitations of STM suggest such external aids
as checklists or matrices to show the different possible combinations

of concepts. It also points out the importance of adopting a convenient

notational system, etc.

Education

If teaching is the process of relating some structure which has been
imposed upon the environment to the cognitive structures of the_student,
then a goal of education is to eventually eliminate the student's dependency '

upon a teacher or a second person in the interpretation of the environment.

From this model, it is clear that before a student can achieve this state

146



141

of independence and se -study, his education munt provide him with four
things; organizational structures, attitude, strategies, and motivation.
If any of theae are missing, the student will he handicapped in his dealing
with a changing environment. The structures of today cannot be expected

to suffice a decade from now. Let me briefly review these terms under

different labels.

1. Content If a message is to be interpreted, it must be assigned
to some existing cognitive structure. For this to happen, the structures

must exist. Thus,a formal educational program should provide courses
which will develop structures necessary for the interpretation of future
messages.

2. Confidence. AA educational program must develop the student's
confidence in his ability to interpret the environment. This is important

in order to avoid the regressive method of problem solving. Confidence

is needed to handle the conflict which appears in a nontrivial problem
and the period preceding an incubation period of the second type.

Methods for instilling confidence are widely known, and reports of
successful methods are the basis of some excellent popular books on edUce-
tion. Of course, the basic idea is to convince the student he can find
or could have found the solution. For example, in the discovery method,
this can be accomplished by providing gentle hints which suggest the
obvious next step to the student_ in the sense it helps the student to
formulate his or her awn ideas. I suspect that without this judicious
assistance the discovery method could lead to regressive methods of

problem solving.

Because of this,' believe that while it is a compliment if students
leave a lecture impressed with the beauty of the subject, it is even a
higher accolade to the lecturer if the students feel cheated that they
had not been born earlier because it is clear tIm would have discovered

the theory.

3. Strategies. By example or by curriculum design, a student muat
be exposed to the techniques and approaches for handling new problems.
This can be done when the student is introduced to the particular tech-
niques of problem solving for a given subject,if these techniques are
described in a general fashion. ("Let me see, where did we see that

before?" "Maybe if we consider a simpler version we can see what's going
on." "Hey, this seems to be similar to that problem in subject A; maybe
there is a connection.") In other words, overly polished lectures, not
to be confused with "carefully prepared," deprive the students of the
opportunity to see the subject being developed. What is happening here
is that such an approach trains the students how to use the two different
types of assimilation.
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4. Independent _thinker. The above three traits will probably
suffice 6Ti1iariiii-liaTIWE to react to different messages and changes
in environment, but it will not permit him to become an original thinker.
To do thiso:hemust learn to generate and solve new problems on his own.
Only after this is done, can he develop independent interpretations of
the environment. However, the only way a person can become an original
thinker is to do original thinking. This raises the question whether
this can be taught, or at least directed. I believe the answer to be

modulo the patience of the instructor.

From the above4wesee that perhaps the best way to stimulate original
thinking is to start with a simple problem, aolve it, generalize the
problem, solve the new problem, etc. This provides movement for the path
in the d-g space. But of greater importance, it provides moVement for
the path for a new subset of messages from the environment, a subset that
has not been previously interpreted. Once d and g become Well
developed, i.e., they have large values, we can expect that new problems
will be generated in an automatic faahion. However, note that the success
of this approach preaupposes a ce:tain degree of development in the first
three stages.

By reading their early published papera, it is clear this is the
approach uaed by some successful researchers when they awitch their
field of interest. J. E. Littlewood suggests a similar approach in
a recent book (1968), and R. P. Boas told me that G. H. Hardy used

this approach to train his graduate students to do research. After

a student solved several successively more general problems, the

student would begin generating his own problems. While this example
comes from graduate level education, there is no reason this approach

cannot be applied at much earlier levels within the limits imposed by

the degree of development of the first three stages. Indeed, since it

involves the development of original interpretations of the environment
rather than the acceptance of offered interpretations, this "research"

should be started at the earliest possible age.
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Learning Difficulties in Children's Arithmetic:

A Clinical Cognitive Approach*

Herbert Ginsburg

Cornell University

For several years, we have been conducting research on the develop-
mental psychology of.children's mathematical thinking. Employing a cogni-
tive approach, we have attempted to describe the intellectual processes
children employ in their arithmetic work. This paper begins with a brief
:ummary of our research and theory, and then presents sous hypotheses
concerning learning problems. Insight into these difficulties or learning
problems may bt gained through a clincial-cognitive approach to research.
The approach is illustrated by two case studies. Finally, we conaider
iMplications of our work for research in mathematics education.

Theorv_and_Hvpotheses

The primary aim is to provide an account of the processes children
use in doing school mathematics. The focus is on the child's understanding
and misunderstandinL, on hie strategies; on the procedures that result
in error as well as success. The research examines both the mathematical
activities that children develop outside the school context and the formal
knowledge of mathematics which children acquire in the academic setting.

The writer wishes to express his appreciation to Barbara Allardice
and Kathy Hebbeler, both of whom have contributed in important ways to
the project. The research has been supported by a grant from NSF,
GS-6311. A preliminary vereion of this paper was delivered at the
Georgia Center for the Study of Learning and Teaching Mathematics,
may 29, 1975.
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*thee!

The research is based mainly on the use of Piaget's clinical method

(see Sinabarg & Opper, 1969) as applied to children from about 4 to 12.

The clinical method begins with a specific task for the child. Often,

the task is "concrete" in the sense of involving real objects, written

problems, and the like. The child's responses to the task include verbal

statements, written responses, and behavioral phenouena like counting on

the fingels. rhe interviewer has the freedom to follow up on the child's

responses (verbal or otherwise) if it seems important to do so. rhe

clinical method is thus an extrenely flexible (nonstandardized) procedure

for investigating children's intellectual activities In response to

specific and often concrete problems.

The method is based on msme sound theoretical principles. The chief

of these is that Intellectual activities--"underlying processes" or

"cognitive processes"--ere complex, and their measurement shoudd display

a comparable degree ofeomplexity. Since a child may solve an addition

problem in curious and complicated ways, the measurement technique, to be

effective, must display corresponding subtlety. The clinical interview

attempts to follow the child's arguments, to challenge them, to pose new

problems, etc. The attempt to measure underlying thought processes demands

the use of flexible measurement procedures.

A second theoretical principle which requires use of the clinical

method or an equivalent is the distinction between the behavior a child

may show in some particular situation (his performance) and what he "really

knows,"'or "the best he can do" (his cempetence). The idea is simple. The

child's behavior in a testing eituation may be influenced by a variety
of

factors: his true intellectual competence, fatigue, boredom, test anxiety,

etc. We are interested not in his test behavior per se, but in his test

behavior as an index of underlying intellectual conpetence. We recognize

that the child's overt test behavior (performance) may not abways reflect

the intellectual processes which represent the best he can do (competence)

but nay instead be depressed by other (e.g., motivational) factors.

Standardized testing y:ocedures, despite superficial attempts at

rapport ("Wow, children, we are going to play a game"), often fail at

umcovering competence. Sea, for example, Labov's (1972) accoent of how

staridard language testa fall to reveal black cbildren's Lingulstic competesce,

whereas flexible procedures of varioua types are far more successful at

ads. Consequently, one must ese methods like the clincial interview in

an attempt te measure underlying competence. For a fuller discussion of

this point, see Ginsburg and goslowski (1976).
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2hIlymEy

A review of the literature and our own research (Ginsburg, in pressa,
In pressb) suggests that children's knowledge of arithmetic' may be con
ceptua.lized in terms of three cognitive systems uhich may operate concurrently
as the child solves problems. System 1 involves patterns of perception
and thought which are used to deal with quantitative problems but do net
employ counting or other explicit forms of mathematics. System 1 develops

outside the formal school setting and hence may be termed info_rmal. Further,

since System 1 does not involve counting or other specific information
or techniques transmitted by culture, it way be termed natural.

System 2 involves counting and related procedures by which children
cope with quantitative problems in the absence of formal instructiox.
System 2 is thus informml insofar as it develops outside the context of
schooling but is cultural since it depends on the social transmission of
counting.

System 3 involves techniques for dealing with symbolic, codified

arithmetic. These techniques typically develop in the school context and
hence may be termed formal; they are products of the culture and transmdtted

by it.

In individual children, the three systems may exist in relative iso
lation from one another or may display some degree of integration. Consider

each system in turn.

Systeml. By the age of about 4 or 5 years, the young child can
easily pErcelve which of two randomly arrayed sets (see Figure 1) has

Figure 1

-Note that our work is limited, for the present, to the study of
arithmetic, not geometry, etc.
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"mare" than the other, at least when relatively small numbers of elements

are involved. The child need not use counting to solve the task. Typically

this method is based on the perception of area. That set which occupies

apre space is considered to have the greater number. The child's method

is frequently successful because, all things begin equal, the set occupying

the larger area does indeed have the greater number. Area occupied is

correlated (imperfectly) with numerosity.

There are several points to stress concerning System I:

1. Before entering school, or outside the context of formal education,

children and adulta develop many techniques, like the one described, for

solving quantitative problems which do not demand a numerical response.

Children can deal with oneto-one correspondence, equivalence, and series.

Their techniques are reasonably effective and can serve as a basis, even

a prerequieite, for later school mathematics.

2. So far as is known, elementary informal techniques are cognitive

vaiversals. All children seem to develop them.

3. Usually, fiaget's theory is interpreted as proposing that young

children exhibit many deficiencies with respect to informal mathematics.

That interpretation is only partly accurate. It is true that the young

child cannot conserve numerical equivalence, perhaps because of immature

thought processes, as Piaget proposes. But one must keep in mind that

the young child does not fail at all aspects of informal mathematics.

Indeed, there are many facets of the young child's infernal thought which

are quite sophisticated and powerful, as Piaget himself asserts.

System 2. At some point in history man invented counting, a

technology permitting important advances in cognition. Counting allowed

those using it to solve quantitative problems with a new precision. The

child learns to employ counting too, and it permits important intellectual

advances.

During the preschool years, the child begins to say tbe counting numbers

and to count objects. Ris couetingis informal; in general, it develops

outside the context of formal education. During the elementary school

years, the child expands the range of his counting activities: He learns

to say larger numbers, to count greater numbers of objects, and to enumerate

more efficiently. He also blends counting with formal arithmetic. Counting

is no_longer purely informal. At the same time, counting is very mach the

child's preferred method. Re finds it comfortable and uses it to solve

various problems in arithmetic. Indeed, the bulk of the young child's

arithmetic may involve counting. During the elementary school years, the

child may attempt to apply counting to addition, subtraction, and other

arithmetic problens. Furthermore, here is a conjecture: Trobably the

great majority of young children interpret arithmetic as counting, sgsardlesa

of how they are tauaht. Ubether they are taught sets ornumber lines or

logic, new math or old math, they probably use counting as the basic method

for dealing with arithmetic.
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Consider the child's uae of counting for work wIth real objects.
The interviewer asked Kathy, a second grader, how she would add 9 and 6
dots.

K: I would draw a box and put the (Iota in and count them.
I: Rnaw any other ways?
K: Well, I could count on my hands, like 9, 10, 11, 12, 13, 14, 15.
I: And you think that will give you the total number of dots in

the boxes?
K: Yes. 'Cause I used the biggest number first so I don't have to

count es much.

Counting can be a powerful tool for doing arithmetic. Some "primitive"
cultures have developed rather elaborate syStems of arithmetic basted almost
entirely on counting. Rosin (1973) refers to the fact that in rural India
illiterate persons can deal effectively with money lenders and shopkeepers
who are skilled in the traditional arts of calculation. Rosin analyzes the
calculation executed by an illiterate person who haS devised an arithmetic
of his owm. The informant can solve problem that require the use of whole
numbers and fractions. His methods are based heavily on elementary counting.
For example, Rosin notes that "the operation of addition is accomplished by
counting one number onto another" (p. 5). This is done by a highly elaborate
system of finger and joint counting. Furthermore,

other arithmetic operations, such as multiplication, doubling,
halving, and quartering are worked out by memorizing results
obtained by counting the finger joints. Each of these operations
are painstakingly learned, first through calculation and
then memorization. Learning these operations is worthwhile
because they aid in a variety of customary activities. (p. 5)

In brief, extensive arithmetic systems can be derived from elementary
counting and addition. The culture and the child may go a long way with
these skills.

Consider now a few general comments concerning the nature and develop-
ment of counting.

1. Typically, the child's counting is an organized activity. For
example, adding two numbers often involves an organized process like
beghaning with the larger number and counting on. Children's arithmetic,
even on the most elementary level, does not involve only memorized facts
or rote activities.

2. The child uses counting to as imilate arithmetic problems.
Thus, the child may add by counting, or may subtract by counting. In

Fiaget's language, children tend to assimilate new problems into already
existing schemes. Children seem confident in and comfortable with
counting. They revert to it when other procedures fail.
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3. Ceunting is a technique of considerable power. History suggests

that arithmetic developed from counting. Anthropological studies show

that some illiterate cultures use counting to perform difficult calculations.

Many cultures seem to place heavy reliance on counting as the basic

arithmetic technique. And children employ counting as a technique for

the nolution of various arithmetic problems. Procedures of this type--

for example, finger counting7-cao be remarkably effective.

Eyltsaj. Tbe child who attends school is exposed to more than

counting. He is taught symbolic arithmetic. He encounters written sym-

bolism, algorithms, and mathematical principles. These cultural inventions

and discoveries are more powerful than counting and, if used properly, can

provide the child with greater efficiency in quantitative problem solving.

Consider now how the child deals with symbolic arithmetic.

Algosi_Ihns_. A good deal of elementary scheol education is devoted to

teaching the child to do addition, subtraction, multiplication, and division

with whole numbers. Typically, the teacher shows the child a standard

algorithm for calculation (e.g., the borrowing or regrouping method for

subtraction), and the child is expected to learn it. Often this happens

end the child does arithmetic in the standard ways. There is little to

say about this except that the successful use of a standard algorithm

does not necessarily imply any kind of maderstanding. The child may add

a columm of numbers by the conventional rule 4ithout knowing the

rationale for that procedure. In brief, it is evident that children often

calculate in the ways they are taught, but understr.nd little about them.

Invented procedures. While common, standard algorithms are not the

only methods which children use to calculate. Much of children's computa-

tion involves invented
procedures--methods which in part the child deVises

for himself and which in part are based on school learning. Some invented

strategies may be characterized by their use of previous knowledge or

techniques, that is, by the assimilation of current problems into existing

schemes. Addition by counting is one example of such an invented strategy.

Other invented methods seem to use combinations of procedures, some

of which may or may not have been learned in school. Carol, at 8 years 7

months of age, was asked to perform some simple word problems. The inter-

viewer began by establishing that Carol knew Chat there were seven days in

a week and 24 hours in a day. Then he asked, "how many hours in a week?"

and, "what do you do to get the answer?" Carol did not conceptualize the

problem in terus of multiplication. She replied, "just add them up,"

and wrote the following column of numbers.
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24

24

24

24

24

24

24

Then she used a combination of procedures to solve the problem. She

began by adding the first four 4's in the column.

C: 4 and 4 is 8- 8 and 8 is 16.

Note that Carol added the first two 4's to get implicitly, she
added the second two 4's to get 8 and then added the first two suns to
get 16.

Then she continued.

C: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28. That's the 28.

So_after adding 8 to get 16, Carol used a counting procedure to
reach 28.

Next she employed a different method.

C: I put the 8 down and then I carried the 2 up there. I brought

it upstairs.

2
24

24

24

24

24

24

24

8

Then all I have to do is . . {she wrote down 16)
. .168.

So Carol finished the problem by multiplying.

Instead of employing the conventional method of solution which she
had been taugtt, Carol assimilated the problem into her own conceptual
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framework. She used a rather unique strategy, involving a variety of

computational methods: First she regrouped and added, then she counted,

then she carried, and finally she multiplied. All this to find the sum

of a column of numbers!

Errors

Children often make miStakes in arithmetic. While the facts of failure

are obvious, their causes are not. Some propose that the child's failure

ia due to "deficient intelligence" or to "low mathematical aptitude" or

"learning disability" or even to "cultural deprivation." We believe

that explanations of this type are overly vague, imprecise, usually not

helpful, and sometimes even dangerous. To explain the child's failure

one must examine his thought processes in some detail; one must attempt

to discover those mental procedures which underlie his mistakes. Research

shows that the child's failure is often the result of an organized procedure.

For enample, Joe, 11 years -f age, in grade 5 van presented with the

following addition problem:

14

37

7

3406

14526

98

and Joe's response was simply to add "downward." Six and six is 12, carry

the one, etc. It is evident that Joe's mistake on this problem was the

result of his blind application of the usual addition algorithm to a sit-

uation where it is inappropriate. Joe neglected to rearrange the numbers

in the problet presented to him. Joe's mistake was not simply the Wesult

of random error, lack of memory for the addition facts, or even "low

intelligence" (whatever that is). Rather his error was the result of a

systematic misapplIcation of a correct procedure. Later the interviewer

asked Joe to write down some nutbers for an'addition problem: 19; 472;

3; 6,023; 71,845; 56,

Joe wrote:

19

472

3

6023

719845

+56

1'57
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Joe'smistake was obviously to line up the numbers from left to right
rather than right to left. Again we see that Joe's mistake is not capricious.
Rather it is a result of a systematic application of an incorrect rule.
Other research (e.g.. Erlwanger, 1973) confirms these observations: Errors
often result from systematic strategies.

Consider now a few general prInciples concerning System 3:

1. Like counting, children's formal arithmetic is typically permeated
by rule-governed organized activities. Even so simple an act as writing
a number Operates by rule. Mare complex activities, like calculating a
ensm, are Characterized by a variety of underlying organizations.

2. Children's arithmetic is often based on ontogenetically prior
schemes and counting is the chief of these. Children add by counting and
multiply by adding. In general, they assimilate new problems into familiar
ways of doing things.

3. Children often solve arithmetic problems by invented procedures.
Children do not Simply employ standard algorithms as taught in school;
instead they devise their own procedures. These usually rely in part on
assimilation into familiar schemes. This seems to be the way in which
children gradually learn written ari hmetic, which of course can be more
powerful than oral counting methods.

4. Children's mistakes are not capricious or the result of low
"intelligence" or "mathematical aptitude;" they are rile products
Of strategies.

gelg,ampanns. Frequently, e systems operate
concurrently in the individual child. Often, however, there may be dis-
continuities among or within the systems. One major kind of discontinuity
involves formal written algorithms and other procedures e.g., mental
calculation, invented procedures, counting methods).

Churchill (1961) reports this observation concerning Caroline at 6
years of age. The teacher asked Caroline: "If you bought 24 bulbs and
six of them were tulips, how many daffodils would you have?"

wre

Caroline responded correctly, "eighteen."

"Now you can write down what you have done in your head?" Caroline

6

24
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6

-24--

22

then said, "But it ought to be eighteen, oughtn't it?"

Caroline could do a simple subtraction word problem in her head, but
she was not able to calculate it on paper. Further, she believed that
the mental subtraction gives the correct result, as indeed it does. There
is a discrepancy between the child's solving the problem in one mode
(mental calculation) and another (written calculation). Children seem
to have particular difficulty with the latter; they often cannot use
standard algorithms to calculate on paper while at the same time they
egn solve essentially the same problems via alternative (nonwritten)
procedures.

Why does the child have so much trouble with written work? Before
encountering written mathematics, most, if not ail, children invent
sensible methods for dealing with arithmetic problems in the real world.
Then written symbolismm-those strange marks on paper--is introduced* and
children need help in interpreting it. They need to see the connection
between what they can already do and the arbitrary representations. They
have to learn the meaning of symbolsthat ia, how symbolism relates to
previously developed knowledge.

continuity among systems implies misunderstanding, the integra-
tion of systems involves understanding. Thus, one way in which children
"understand" a calculation is to cOnnect it with or assimilate it into
a more elementary calculation procedure like counting. For example, on
the most elementary level, Seslie was asked why she wrote 6 + 3 m 9 on
paper.

S: This is 6 + 3 m 9 and I put a 9 here, just remembering. Some
people say 6 3 m 8: They get their answers wrong. But 6 3

is 9 'cause you can tell. .adding 3 more is 9. . .6, 7, 8, 9.
[Counting on her fingers.]

e knew that 6 3 9 because she could make a connection between
this addition fact and her counting scheme. She interpreted addition in
terms of counting; she understood the former in terms of the lAtter.

To summarize:

1 There are often diseontlnuitles among or within systemsparti-
cularly involving the child's written mathematics and other areas of his
thinking.

9
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2. Understanding may be considered a comfortable integration between

what the child must learn (usually some aspect of symbolic mathematics)

and what he already knows (often an informal or invented procedure).

Ions For Learnin Problems

While deriving from the study of relatively "normal" children, the

theory described above see= to have implications for the understanding

of learning difficulties in mathematicS. Consider three propoaitions

concerning such difficulties and their study.

1. According to the theory outlined above, learning difficulties

in mathematics (or any other area) have a systematic basis in intellectual

processes. Learning difficulties result from orderly rules which produce

error, and involve gaps between powerful informal knowledge or invented

procedures and faulty written algorithms.

A corollary is that errors are not capricious. Nor does it seem

useful to propose that they stem from mental entities like deficient

"intelligence" or low "mathematical aptitude." Concepts like these are

both vague and impractical. No one has a clear theory of intelligence

or mathematical aptitude. Measurement of (Ather of theae entities

suggests nothing about how remediation might procede.

2. There seems to be a clear basis for the renediation of learning

difficulties. Many, of not all, children possess relatively powerful
informal knowledge or invented strategies which may be used as a basis

for learning school mathematics. For example, before entering school,

children can use counting for rudimentary calculation. Such abilities

are intellectual assets for child and teacher, both of whom can use the

child's informal knowledge as A foundation on which to build a sound

understanding of school mathematics. A focus on the real abilities which

children bring with them to the task of coping with school arithmetic is

especially important for helping poor children, minority children, and

children with learning difficulties.

The clinical Interview is an impo_:ant tool for the study of

learning difficulties. One reason is that the clinical interview pro-
cedure (described earlier) is based on a sound theoretical rationale.

The clinical interview is not a preliminary or sloppy procedure which

needs to be standardized; it is a legitimate method in its own right.

A second reason is that the clinical method may help overcome the usual

difficulties associated with standard assessment procedures. There is

now a research literature (e.g., Cieourel, Jennings, Jennings, Leiter,

MacKay, Meilen, 6 Roth, 1974) documenting the difficulties children have

with standard tests--e.g., how children misinterpret the tests, are not

motivated to take them, and how the tests do not measure what they claim

to. Anyone who has taken such tests knows, or should know, how bad they

are. The clinical interview may overc0O0 many of these difficulties.

We have found it useful in dealing with children who do not test well by

other means (e.g., the case of Peter, in Ginsburg, 1972).
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These principles require further investigation. One reason, as

pointed out above, is that they derive from the study of "normal"

children experiencing relatively minor difficulties in their arithmetic

work. This raises the question of the extent to which the principles

apply to children exhibiting severe difficulties in mathematical

thinking. For example, we need to know whether children with "learning

disabilities" nevertheless possess a relatively powerful system of

informal knowledge. Similarly, we need to know whether childtren
diagnosed as suffering from neurological deficits make errors which

result from systematic strategies and whether such children exhibit

gaps between adequate informal or invented procedures and faulty wr tten

algorithms.

A second reason forfurtherinvestigation is that the principles

are crude and based on a relatively small body of data. Consequently,

many questions remain open.

1. We need to have a clearer understanding of the intellectual

processes producing errors. Is it possible to develop a taxonomy of the

major types of processes leading to error?

2. We need a more detailed portrait of chi : n'A intellectual

asSets. Relatively little is known of the informal strategies which

children acquire outside of school for the purpose of calculation.

3. We need further investigation of the notion that there exist

gaps between a child's informal knowledge and his school learning.

What makes written symbolic arithmetic so difficult for children to

assimilate?

4. While there appears to be a sound rationale for the clinical

method, and while some have used it with considerable success, we know

relatively little about the clinical interviewer's mode of operation

and its strengths and weaknesses. What is the Interviewees strategy

and how effective is it?

One method for getting insight into these issues Is the clinical

cognitive case study.

The Clin_cal_Coguitive_CAAEJLAt

Pescription

The clinical cognitive case study involves the use of flexible

methods, particularly the clinical interview, for the purpose of

investigating the intellectual roots of learning difficulties in

individual children. The approach is clinical in two senses: It employs

1 1
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the clincial interview method, and it is concerned with the remediation
of severe learning difficulties. The approach is cognitive in that it
attempts to identify cognitive processes which cause the difficulty.
The approach involves clincial case study in that it deals with the
long-term and intensive investigation and treatment of individuals.

The c in cal-cognitive case study method may be fruitfully employed
to answer the questions posed above. It has several advantages:

1. It permits a test of our theory of arIthmetIcal learning
difficu _ies an a population which exhibits them in extreme form. The
study of "normal" children may not be as useful from this point of view.

2. The clinical method permits the discovery of new phenomena and,
hence, may result in useful modifications and expansiona of the theory.
Thus, the clinical approach may make it possible to identify new
intellectual sources of error in arithmetic. Standard tests do not
seem to facilitate this kind of discovery.

3. The case study method pernits an examination of cognitive
complexity vithin the individual. For example, one may investigate
the unique pattern of discontinuities among different eapecta of the
child's knowledge. Standard experimental designs often have difficulty
in dealing with the "idiagraphic" (Allport's term).

4. Case studies of the type described provide an opportunity for
the study of the clinical intervicv method Uself.

Method

Our fIrst case studies wnre done as follows. vent to a local
Ithaca elementary school sot-VI-11g both middle- and lower-class children
and asked a teacher of a combined third= and fourth-grade class for
those students who were having the most difficZties with mathematics.
We wanted to know noth-:Ing about the children except that they were
having difficulties. Nevertheless, the teacher could not keep from
tellina us that all the chilAren Suffered from "perceptual problems."
At the time of testing we knew little about the kind of instruction
the children received except that to sone extent they were using
Suppes' Sets and Notibers telM and were p.sracipating in the IMS
programmed learning system. We interviewed stch child once a week,
over a period of four to six weeka. Mast interviews were recorded on
TV tape in a mow adjoining the clasaroom. At the outset of the inter-
views, we demonstrated the TV taping to each child so that he or she
would be familiar with it. After the first few minutes, the children
seer4ed to ignore the TV camera which wau in full view throughout all
sessions. Consider first an interview with Fatty.
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962
Patty was first given a subtraction problem_439 which she did

correctly using the standard algorithm with "-=- "borrowing." She

wrote: 9 6 12 Then she did an addition problem 226. She followed

4 3 9 +421

5 2 3 647

the standard algorithm except that her procedure was to count out loud

and on her fingers when she could not remember the relevant number facta.

Thus, she added from right to left, remembering that 2 and 2 are four and

counting to determine that 4 and 2 are 6. Next she did 29. Again this
+ 39

68

involved the atandard algorithm, with carrying and was done in part by

counting on the fingers. Patty would give no rationale for the carrying

of the 1. All ahe could say was that it was wrong not to carry the 1 and
instead place it on the bottom with the 6 and the 8.

These fIrst few incidents reveal some basic things about Fatty. Fir

she was familIar with the common borrowing and carrying algorithm for

subtraction and addition, respectively. Second, she could execute these

fairly smoothly, at least under certain conditions -- specifically, when

relatively lmall numbers, each having the same number of digits, were

involved, and when she could count on her fingers and therefore did not

have to rely on memory for number facts. Third, she did not seem to know

much about the theory of place value and hence could not 2711_4141 why one

carries, although she could do it. So far it does not seem as if Patty

had any particular difficulties perceptual or otherwise -- with arithmetic.

Then we have the following exchange:

Interviewer 1 (Barbara Allardice): I'm going to give you another

problem. You seem to be dotng pretty well adding. Suppose you have 29

again and 4.

29
Patty wrote

'r

,

69

1-1: What does it say right here?

P: 29 and 4
I-1: Are how much?
P: 69

133
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This then was Patty's first error in the interview. She got a

wrong result (69) because she employed a wrong strategy. At this point

in the interview, a sensible hypothesis concerning the strategy is as
follows: When the addends have unequal numbers of digits, she lines them
up from left to right and then applies the standard addition algorithm,
with counting on the fingers, from right to left. The initial assess-

ment then was that Patty had a systematic but incorrect strategy which
leads to error.

At this point the teacher might wish to intervene and straightea out
Patty's incorrect method. But subsequent portions of the interview shed
a different light on some of Patty's abilities.

I-1: Arc you sure that 29 and 4 are 69?
Altogether?

- Uh uh [yes]
P: No

I-1: How much are 29 and 4?

Next Patty made a large number of tallies on the bottom of the page:

111111111etc
She appeared to count them, at least sometimes using her _ ngers. Then

she announced the result:

Clinical intervitOng is a highly ttaretica1 activity in which the
interviewer continually invents hypothese and tests them. At this point
the interviewer's hypothesis--that is, her theory or assessment of Patty--
was something like this: Patty has an incorrect strategy for written
addition of the type descrived above. At the same time she has an effective
strategy for performing addition when real objects--here tallies--are in-
volved. The correct strategy for objects is essentially to combine the
two groups and count the aggregate. There le a dIscontinuity of the type
described earlier between written work and arithmetic with real objects.

We see that so far the assessment has depended heavily on the theore-
tical framework eleborated above. We have analyzed Patty's arithmetic
performanCe in terms of systematic formal processes which lead to errors
(the written algcrithm); systematic informal processes (combining and
counting objects) which lead to successes; and the discontinuity between
the two.

The intervie er now tried to determine whether Patty placed more
dence ii the written procedure than in the tourGivg one.

1-1: 33. O.K. How come this says 69 [pointing to rh. written work]?

4
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Ooops! &eau you're not doing it like that [pointin

tallies]. Oh his is wrong.

Apparently Patty saw that her mower of 69 was wrong, and that it

differed from the result obtained by counting. She chamged the 69 to 33.

Fatty seened to have greater confidence in the result obtained froth

counting than from written addition.

At this point the interviewer decided to challenge Patty's mew

response (33). The interviewer offered a counter-suggestion to ace how

firm was Patty's belief in her counting-derived result. Piaget often

uses such a counter-suggestion to test the child's confidence it a

verbalization.

I-1: Now can you pu_
it says 9 here

Patty looked at what

a 3 here [referring to the second 3
referring to the 9 in 29]7

itten--
29
+4

33

That's 9 and that's gotta be 6.
differently than that.

So you get a different answer.
Yeah. 'Cause you're adding all

the tallies].
You're not addin-
the written work
down here. 'Cause

that's 69.
So when you do it on paper you
little marks you get how many?
33. Because you're adding all of

not doing it over here.
Suppose we had 29 of these little chips
Would we get 33 or 69?
33.

How do you know?
Because I did it down here and I added 4 more ont
to the tallies on the bottom of the page].

O.K. So that means these chips would be like these

Yea.
What would be another thing that would be like this

problem where I could get 697
There ain't no way, I don't think.

29
--and changed It back

69

P: t's just that you're doing It

I-1:

P:

I-1:

P:

I-1:

P:

I-1:
P:

I-1:

P:
I-1:

P:

of this up together [m

all up altogether this way [pobmting to
You're putting the 9 down bore mmd the 6
you're adding 2, 4 is 6 and 9 try itself and

get 69 and if you do it with the

it altogether. And you're

and put _ut 4 more.

it [points

1 nee.

he written

So Patty knew that several ways of counting objects (talus

were equivalent but could think of nothing similar to the'Vrit

chips)
problen.

I-1: Let's see. You have 29 and 4 and you get 69 Suppose you had 30,
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so you had 1 more here, and 3, __ you have 1 leas there. Would

you still get 697

The intervimaer's intention was to present Patty with a situation

producing a contradiction. 30 + 3 should yield the same sum as 29 + 4.

ID had 1 mere than 29 but 3 had less then 4. Yet by Patty's method she

should lt a different result for 29 than 30 . Would Patty see Che
+4 t3

contradic

P: No. 'Cause you'd get bigger than 69.

She did 30 + 4 taste d of 30 + 3 and wTote:
30

+4
70

P; Yep. I told you you'd get more than 69.

Up to this point we seem to have evidence to support the hypothesis
that Patty uses a combining and counting mothod to get correct sums whet
real objwcts.are involved and that she uses an incorrect algorithm--
lining up on the left with uneven nuMbers of digitswhen written numbers
are involved. The faulty algorithm is used in at least two cases.

At this point a second interviewer (the present writer) who had been
observing die Interaction wanted to test the generality of Patty's writtem
algorithm. now would Patty react to extreme cases?

1-2: O.K. Let um try something. Patty. Can you write down for me

100 + 1?

Patty
100

and said: Zero, zero. and
'41

200

two. It would be two hundred.

1-2: 100 plus 1, h 7 Do you think that's right? 0ot any other way

of doing i
P: No. Unless the one is on the wrons side. Unless the one's

supposed to be there [points to the one's column].
1-2: Where's the one supposed to be?
P: I think it's supposed to he there [points to the hundred's

column].
1-2: You think it's supposed to be there. huh? O.K. Let's do

another one. What about 10 plus 17

10
Patty wrote and said: That's zero and that's 2. 20.

20

1-2: 20, think that's right?
P: Yeah.
1-2: Got any other way of doing

1 6



162

Patty indicated no.

At this point it was clear that Patty's written method generalized

widely. Now the interviewer wanted to get Patty to see the discrepancy

between her written and counting methods.

1-2: Welt, suppose you couldn't use paper at all and I --id how much

is 10 plus 1?
I'd count on my fingers.

1-2: Why don't you do it?

Patty held up 10 fingers and stared at th--

P: You have 10 [looking at the fingers]. You put the zero on the

bottom [draws a zero with her finger].
1-2: Just use your fingers now.

P: Then you put 2 and you add 1 and 1 and it's 2.

Patty seemed unable to count 10 and 1 on her fingers. Instead she

perseverated in using the written procedure, apparently doing "in

her head" something very much like 10

41
20

1-2: What about on your fingers? Show me h w you do it on your

fingers. You can use my fingers too =2 pats both hands on

table]. Put out your fingers too.
P: You put the zero on.
1-2: No, I don't see any zeros. All I sec are the_- little fingers.

Never mind zeros.
P. That's hard. [looks as though thinking intently]

1-2: [:o I-1] Barbara, put out your fingers, too. Now you have all

kinds of fingers to work with, PatLy. Now y u figure out how

raoci Ls 10 plus one.

P: Yoe 4ave to put a zero underneath.

I-2: I d-,a't see any zero at all. All I see are these fingers.

0.K. If you 1:aut t.eto you have to take those ten away [points

fiagers]. You put zero, then y,m have 1 and I left

and you add them up and you get 2. So it's 20.

1-2: Can you do it without zeros?
P: No,

7-ratty's perseveration was very strong. She could not seem to

get away from using the incorrect algorithm.

I-1: How about with little marks on your paper like you did here?

How can you make 10 and 1 on the paper?

In other words, could Patty use tallies to solve the problem of 10

and 1? Patty made 10 tallies.
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P: [whispering] 10 2 . 10 and then put one [makes another mark].

I-1: How many do you have altogether?

P: Eleven
She made a sweeping motion with her hand as if to indicate that she

meant to combine the two sots.

I-1: Eleven?
P: Yeah. Altogether.

Tbis incident seems to support the hypothesis that Patty uses one

procedure (the incorrect algorithn) for written numbers and another pro-

cedure (combining and counting) for real objects (including tallies).

But consider the following episode.

1-2: Eleven altogether. What aboue . . Let's do this . . . We've

got...There are 10 of Mnese [chips] and here's one more. How

many do you think there are altogether?
P: Altogether, it would be 11.

1-2: O.K. What about 10 pins one, not altogether, but plus?

P: Then you'd have to put 20,

1-2: Then you'd have 20, I see. What if we write down on paper,

here's 20, now I write dawn another 1, and you want to find

out haw much the 20 and the I are altogether.

Tbe Interviewer wrote 20 1 placing the numbers side by side.

P: It's 21.

1-2: O.K., now what would 20 E121 1 be?

P: Twenty plus one? She wrote 20
+1
30

This behavior indicates that the original hypothesis was wrong. She

does not just use the counting strategy with real objects and use the

wrltten algorithm with numerals. 1-Icters are more complex. Perhaps we

can atate a new hypothesis as folaoas. The crucial distinction is not

so moch between numerals and real objects as between the word "altogether"

with the strategy it elicits and the word "plus" with its strategy.

"Altogether" seems to elicit the atrategy of combining real _objects and

counting them, or counting on when numerals are involved. "Plus" seema

to elicit the incorrect addition algorithm when both numerals and real

objects are involved. "Altogether" seems to be the child's natural word--

used in her everyday lifea/Lich la associated with an informal sirategy

used it everyday life, viz., combining and counting. By Contrast, "plush

is a school word, associated with a formal algorithm which happens to be

wrong.

1
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While this hypotheuis seems reasonable further evidence is necessary

to test it. The interviewer would need to detennIne if counting on is
really used with numerals, if the st:tategies generalize to different kinds

of numbers, ete.

This in the first interview with Patty. It teaches us several things.

1. Patty's maiu mistakes in addition are the result of a systematic

strategy. This confirms our hypothesis that errors generally result from

organized patterns of thought.

2. Patty shows important strengths. In particular, she can use a

sensible strategy--combining and counting--to do addition. She shows

no evidence of severe problems of any sort, including perceptual problems.

3. Our notion of a gap between different systemsPatty's incorrect
algorithm mnd her counting and combining strategy--seeus useful.

4. At dhe same tine, the case study suggests that the theory needs

to be expanded so as to include heavier concentration on linguistic factors.

In Patty's case, the discontinuity was not between approaches to real objects

and approaches to written work. Rather, for Patty, different words elicited

different strategies. The case study thus suggests a comparison of the
child's everyday mathematical words with those taught in school.

5. In generel, the clinical case study method seems promising. It

seem to have the flexibility to yield a rich portrait of the individual

child experiencing learniag difficulties . rhis portrait seems to do

justice to the couplexity of mathematical thinking and provide insight

into both strengths and weaknesses. One ueasure of its success is that

the case study yields information which suggests concrete teaching

strazegies. Thus, the teacher might choose to help Patty with addition

by building on her strength--tbe counting and combining strategy. In-

stead of =rely I2ilia& Patty to line up numbers differently, the teacher

might help her to see the relation between her "altogether strategy" and

the written algorithm. Then perhaps she can learn to see how and why

one needs to line up nuabere properly in the algorithm.

6. The case study illustrates a basic fetture of the clinical intere

view method. Theclinicalinterview is a hypothesis testing procedure.
It is analogous to a series of experiments in the case of one child.

Thus, to test the hypothesis that the causative factor is language ("p '

vs. "altogether") are not type of problem (real vs. written), the

interviewer held type of problem constant and varied language. Thus,

he did real object "plus" vs. "altogether," and then written number "plus"

vs. "altogether." This is equivalent to a 2 x 2 factorial design, with

of course only one subject. The clinical method thus attempts to
manipulate the independent variable so as to produce results which allow

reasonable inferences concerning various hypotheses.

169



165

Stacy. Consider now the case of Stacy, also a third grader,

behavior illustrates the power of'the clinical interview technique to

identify intellectual strengths in a child who seems almost retarded at

the outset. In the first session, I was the interviewer.

I: Can you tell me first what kind of work you are doing in math

now?

Stacy responded, and continued to respond throughout the sessIon, in

a slow, quiet voice. Her manner was extremely diffident--even lethargic

and depressed.

S: Lots of things.
I: You write stuff on paper. Can you show me what stuff you write?

S: Papers like math [she then began to write a sentence, not jugt

numerals].
I: Can you read that?

S: Jinmy had 8 cats; ha gave Brian 2 cats.

I: What comes next?
S: Haw many does Jimmy have?
I: Haw many do you think he has?

S: 5.

I: How did you know that?
S: He had 8, and 2 and 1.

--a very hard to get Stacy to respond--to indicate how she had

done the problem.

How did you do that, Stacy? He had S cats, and he gave Brian

2 cats. How many did he have left?

S: 5. Me had 5 and 2 others got away.

I: So how many did he have left?
S: 8 cats and I count back.

I: How do you count back?
S: 8 and I got 3 more and then I took 2 away.

I: What do you mean 3 more? Let's start from the beginning.

Show me haw you count back.
S: 8, 7, 6, 5, 4. He had 4 left.

I: How did you know to stop at 4? You went 8, 7, 6, 5, 4. How

did you know to stop at 4?

S: Because there's 7.

This initial episode gives the flavor of the interaction with Stacy.

She posed herself a very simple problem with which a third grader ought

to have no difficulty. Indeed, the problem was in words, rather than

written numerals, and involved a simple story: If Jimmy had 8 catO and

gave away 2, how many would be left? In response to this problem,

Stacy did several things. The most obvious is that she gave several
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different wrong answers. she changed her response several times. She

Indicated that her method of solution was by,counting backward. But her

'-behavior did not seem to be a simple product of this or any other strategy.

Indeed, her responses were disorganized and chaotic: it is hard to see

Jim any underlying organization could have produced them. In brief, the

initial episode suggested that Stacy gave wrong answers to extremely
-,simple problem- and that she seemed to have no organized method for pro-

ducing answers.

The remainder of the first interview showed that Stacy's work was on

an extremely low level. The interviewer then gave her a very simple

problem. If there were 4 dogs and 2 ran away, how many would be left?

Stacy gave the corre.7t answer. When asked how she did it, ahe replied

"Because 2 and 2 ts 4." So Stacy seemed to do subtraction by remembering

same relevant addition facts. Asked to solve this problem by counting
backwards, she could not_do so; she merely persevered in the addition or
produced apparentlychoatic, senseless behavior.

Next the interviewer gave Stacy some simple add4Zion problems. Piret,

How much are 3 apples and 4 apples? Stacy answered, 41x, "because 3 and

4 is 6." Thus, the wrong answer is apparently the result of faulty

memory of the addition facts. Asked to do the problem by counting.

Stacy merely shrugged her shoulder and.shook her head--behavior which

she often displayed when ahe did not know what to do. Next the inter-

viewer asked Stacy: "How much are 2 oranges and one more? She got the

answer right, appacently because she remembered the number facts. That

Wilfti the end of the first interview.

The initial results suggested that Stacy could do very little. She

wee struggling with problems which should have been trivially simple

for a child her age. About all she could do was occasionally remember

some number facts. She seemed unable to use counting procedureseewhich,

as we have seen, are usually children's method of preference.

After the first interview, we were very discouraged. We seemed

have encountered a child--the first we had seen-ewho had almost noth

going for her. The initial results led us to formulate the following

questions: Is she retarded? Can she hear properly? Was she very

,nervous or intimidated by the interviewer? Can she conserve? Can she

count? How would she do with concrete objects?

Note that some of the questions refer to her motivation and some

to her cognitive abilities. We wanted to know eseentially whether the
testing situation interfered with her true competence or whether she

had much of any competence to begin with. Usually we aasume that
elementary school children's difficulty with mathematics is not due to

inadequacy at the Piagetian stage of concrete operations. But Stacy

did so badly that we could not assume this. Similarly, we could not

assume that Stacy knew the counting numbers up to a reasonable limit.
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Technical difficulties prevented the videotaping of the second inte
view, conducted by aarbara Allardice. ("Technical difficulties" means
that the TV broke down, which often happens.) Nevertheless, Allardice
reports that Stacy had no difficulty in conserving number nor in counting
up to at least 80. There is some evidence then that Stacy had available
some fundamental cognitive tools. She was probably in the Concrete
operational period, and she had reasonable knowledge Of the counting
numbers.

The third interview, also conducted by Barbara Allardice, was devoted
to discovering what Stacy could do with real objects. The interviewer
first asked Stacy to get 7 Chips from a larger pile. Stacy took 7, one
at a time, and put them in a straight line. The interviewer then asked
her to get 3 more. Stacy did so, putting tfiem in a line under the first
as shown.

X X X

I: O.K. How many do you have altog her now?
5: Ten.

I: Ten. Very good. How did you figure that out?
S: Just counted them.
I: Counted them up. O.K. Now suppose we have one more. Can you

get one more chip? How many do we have altogether now?
S! Eleven.
I: Eleven. And how about one more. How many do we have now?
S: Twelve.
I: How come you did that so fast?
S: There's eleven, then I count twelve.

You count 12. O.K. How about getting 2 more?

S: [quickly]. 14.

I: Fourteen. O.K. How are you doing that so fast? What are you

doing in your head? Are you doing Something, saying some
numbers to yourself?

S: I say 13, 14, like that.

We see then that Stacy could enumerate sets; could remember from one
situation to the next; could add by counting on when real Objects are
involved and when the numbero are small. Later in the interview she
demonstrated an ability to work with larger numbers. She was able to

add 10 and 12 chips.

Next the interviewer wanted to see if Stacy could do addition in the
absence of real objects. The interviewer took 4 chips, one at a time,
and placed them behind a screen. She did the same with another 3 chips.
She identified the number in each set. All Stacy could see was each chip
going behind the screen. How many altogether? Stacy answered correctly.
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Then the i.utervtewer presented Stacy with 4 and 5 chips in the same manner.

Again, she answered correctly. Row did she do it? Previously she had

denied counting on fingera. Probably the denial vas the result of her

teacher's strong opposition to such methods. Now, however, Stacy admitted

solving the problem by counting. She W89 able to do 6 + 5 (after an

initial error), 10 + 4, and 14 + 6. She seemed to count on her fingers,
sometimes starting from 1, and sometimes counting on from the larger number.
Apparently, Stacy could solve problems involving absent objecta, at least
when she had the opportunity to see them, however fleetingly, before they
were hidden. Is this because seeing the objects helps her to form the
relevant imagery to use when they are absent?

What can we conclude about Stacy from the evidence presented so far?
Initially, she did quite pearly; at the outset, her behavior Seemed chaotic
and she seemed retarded. There are several possible explanations of her

initial difficulty. Perhaps it was largely emotional in character: She

may have been intimidated by the interviewer. It is also poasible, how-

ever, that the difficulty was intellectual: Stacy may have had difficulty

in dealing with story material (8 cats, etc.) in the complete absence of

real objects. Of course, it may well be that a combination of emotional
and intellectual factors contributed to her problem; indeed, I suspect

that this last hypothesis is most probable. Whatever its source, Stacy's

difficulty was real and pervasive. Stacy's teacher felt that she had

perhaps the most difficulty of anyone in the class, that she lacked even
basic concepts like one-to-one correspondence, and that she needed the
met help. Both the teacher and the interviewer (at leaat after the first
session) coneurred in seeing Stacy as severly deficient in mathematical
ability, whatever the cause of the deficiency may have been.

But soon the clinical interview began to reveal some of Stacy's
trengths. Perhaps this process wee facilitated by the interviewer's

encouragement of Stacy's counting on the fingers, which her teacher had
discouraged. In any event, ritacy showed that she could perform addition
by robining and counting or by counting on, when real objects were in-
volved. She could also deal with absent objects when she was given some

concrete supports. As her intallectual strengths emerged, Stacy lost
much of the diffidence that characterized her earlier work: She became

more assertive, and stopped ohrugging her shoulderc and saying, "I don't

know."

This case study teaches us several things.

1. Our notion of informal knowledge--particularly counting procedures--
gain extremely ualful in Interpreting children's mathematics.

2. A focus on the child's intellectual assetsespecially his infor-
mal knowledge--helps to direct the remediation effort. The ease study
approach identifies strengths and suggests areas where instruction might
be effective and therefore where emotional difficulties might be alleviated.
It seems clear that Stacy needed a good deal of work with countingincluding
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finger counting--before she could to on to more formal procedures. Further,

about the lastthingshe needed was the kind of set theoretic verbalisms
tncountered in her textbook.

3. The clinical interview method can be effective in making contact
with children who are difficult to reach by_other means. Thus, the
interview Liss effective in overcoming Stacy's initial shyness and anxiety
and in demonstrating that there was a good deal ahe could do.

Conclusions

Theory

The theory we have proposed seems to have some utility. It seems
to give a useful analysis of the complexity of chileren;s mathematical
work, and seems to provide insight into problems of learning difficulty.
One measure of the theory's value is its ability to suggest practical
remediation efforts for dealing with learning difficulty. The case
study method seems to confirm the theory's main principles and to suggest
interesting directions for elaboration of the theory.

Case Study Method

The clinical cognitive case study method appears to be a useful tech-
nique for the study of learning difficulties and mathematical thinking
generally. The method seems successful in its efforts to focus directly
on intellectual processes involved in academic work and to discover new
phenomena for further investigation. The method seems useful in establish-
ing contact with children who,are difficult to reach by other means. While
standard tests often provide an incorrect view of children's competence,
the clinical approach may be more accurate in this respect.

The clinical procedure is based on sound theoretical principles.
Also, it is a subtle investigatory activity, involving the use of quas -
experimental techinques in a hypothesis-testing procedure. Given the
general success of clinical techniques in psychologye.g., the work of
both Freud and Piaget--one must take them quite seriously. The clinical
case study appears to be a viable procedure for the study of ma hematical
thinking.

At the sanc time, there exist many unanswered questions with respect
to the clinical approach. We require investigitions of such issues as
the reliability of the technique and the extent to which interviewer
expectancies can bias the results. It is necessary, however, to keep
these possible difficulties in perspective: Standardized tests may
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suffer from more severe difficiencies--e.g., their tendency to misrepre-

sent children's competence,

Implications For Research

The main implication of our work for research in mathematics education

is that we require a greater emphasis on the flexible observation of

children's mathematical thinking. We need as direct a view as possible of

how children solve or fail to solve mathematical problems. We require

techniques which permit the unexpected to happen and let us see it. If

we look closely and directly at how children do mathematics, va will

Jten be surprised at what we see. We believe that the clinical cogni-

tive study can help to clarify our perception.
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-odel f.r Teaching

Young Children Mathematics
1

Leslie F. Steffe

University of Georgia

The basic purpose of this paper is to present a model ttat may be
useful in teaching mathematical concepts. The reletionahip of the model
to teaching mathematics is analogous to the relationship of a bldeprint
to building a house. The principles that architects of blueprints nee
generally are taken from mathematics and from the sciences. The architect
Utilizes these principles in juxtaposition or in synthesis to formuiate a
plan, and the builder uses the blueprint to guide him in the construction
of the house. But, the blueprint in no way guarantees the quality of the

builder's work. In a similar way, psycho1ogits1 principles are used in
the construction of the model presented for teaching mathematical concepts.
The model, however, in no way guarantees the quality of the learning of
the Children, for that is largely influenced by the quality of the work
of the teacher and how well the model ie interpreted. To aid,in the
interpretation of the model, the three mathematical concepts of relation,
class, end number (both cardinal and ordinal) are discussed prior to
the presentetion of the model, and known ways which these concepts dev lop
in children are also preaented. After these two tasks are completed,

the model for teaching mathematical concepts is presented.

But before launching into the elaboration of the model, a comment
concerning model-building for mathematical instruction is in.order. A
model of mathematical instruction can be ueeful as new informatiov about
the mathematical instruction may be obtained. Ultimately, however, the

model must be tested in real learning or instructional settings in order
that (a) basic assumptions of the model may be tested. (b) the-utility
of the model determined, and (c) aspects of mathematical instruction to

which the model is not applicable clarified.

The model presented is a cognitive model bLeed on developmental
principles elaborated in the paper by Charles D. Smock in this collection.
It is an attempt to translate those principles into principles of mathe-
matical instruction. No claim is made that the inatructional model has

been Mown to be valid on an empirical basis.

1An earlier version of this paper appeared in a teachers strategy manual
written for the Georgia Follow Through Program, Charles D. Smock, Director.
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Teachers of mathematics often to not perceive the potential o

cognitive development theory for teaching mathematics. But if all a

child learned about mathematics had to be taught through sdhool instruc-

tion, education in mathematics would be forced to be much more efficient

than it now is. It is a mistake to assume that children begin school

with little or no mathematical knowledge and acquire such Anowledge from

school instruction alone. Many mathematical concepts have been shown to

develop through the interaction of children with their total environment

and can be considered part of the basic intelligence of children at certain

stages of their intellectual growth. It Is important for teachers to know

the baeic stages of intellectual growth of children, ways children

conceive of mathematical concepts at different stages, and how children

shift from one stage to another for the following reasons:

1. In many cases, what a child learns from a particular bit of

ins ruction is influenced by the stage of intellectual growth of the child.

2. Often a child does not think about a particular topic in the

same way as does an adult. An adult, not knowing this, may inhibit the

child's attempt to understand by imposing thinking patterns on the child

in a highly symbolic form.

3. Because stages of intellectual growth are characterized by using

mathematical-like concepts, an adult is able to gain insight Into the

thinking of the child in mathematical situations by understanding stages

of intellectual growth.

4. Insight can be gained in teaching mathematical concepts from

knowing how children shift from one stage to another.

The stage of preoperational representation begins around 18 months

of age and lasts until around six to aeven years of age. ObvlouslY.

dramatic changes take place in children during this timethe most

dramatic perhaps is language development. The upper end (4-6 years of

age) of the stage is of concern for mathematics teaching in preschool or

early elementary school. The stage of concrete operations begins around
six to seven years of age and lasts until about 11-12 yaars of age. It

must be emphasized that the age break between the two otages varies from

child to child. One cannot expect age to determine exactly the stage Of

the child. Some children do not reach the stage of concrete operations

until after eight years of age, wheresa sone children may reach the

stage as early as five years of age. Every child goes through the stages

in the aame order llt not necessarily at the same rate. In the following :

material, the stages of intellectual growth are presented by selecting

particular mathematical concepts and describing known ways that atildren ,

deal with the concepts.
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ans

Children s_Coacsytion of One-to-One Corres ondence

hildren in the stage of preoperational representation do not conceive
of the relations in the same way as do elder children. Some examples are
given of how children at the stage of preoierational representation have
difficulty.

_Exa le 1: Establishing a correspondence. Imagine that two children
drop beans into one jar (Figure 1) in such a way that for earl: lima bean
one child dcopS, the other drops a navy bean. Suppose the lima beans
are exhausted before the navy beans. From the action of placing beans
into the jars, the children should know that (a) each child put as many
beans in the jar as the other, (b) the child who has navy beans remaining
has more than the other. and (c) the child who has lima beans has fewer
beans than the other. The children should also realize that the navy
be:%In consist of the remaining_navy_beans as well as the navy beans_in
thc, 1Jr. Five- and six-year-old children (especially the five-year-olds)
have difficulty interrelating such knoWledge. They may think that the
child !Jith navy beans has more beans in the jar than the other child
becse,, they may not dietinguish the navy beans in_the_jar from those
remaining and make the comparisons of the beans in_the jar based on those
remaining.

Figure 1

This example 1S important in cases where children are being taught
to order the whole numbers. At least two distinct varieties of tasks
are used in establishing, Nay, that eight is less than nine and that
nine is greater than eight. On the one hand, two distinct collections
of objects, one of eight and one of nine, are presented to the child who
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is required to match the objects of the two collectiona one-to-one.

Based on this matching, the child is expected to realize that eight

objects'match one-to-one to a subcollection of the nine objects; that

there are more objects in a collection of nine objects than in any one

of its subcollectione; and finally, based on these two reasons, nine

objects nrc more than eight objects. Except for context, this ordering

task is analogous to the one presented in the previous example. Children

at the stage of preoperational representation have difficulty in

conceiving of a total collection and two of its subcollections at the

name time. If they think of the total collection, they may lose sight

of the subcollections, and if they think of the subcollections, they

may lose sight of the total collection and make the errors described in

the example of placing beans in the jar.

On the other hand, if ono collection of nine objects is presented to

a child who is required to count them, that nine is more than eight is

established through noting that eight is the nunber of objects in a

subcollection of nine objects. Here again, the child is expected to

realize thee any subcollection of a collection of objects has fewer

objects than does the original collection.

_nservin the relation. To say that a child should be

able to determine the correct matching relations between two collections

of objects would be artificial if the relatiov, once it is determined,

could not be conserved by the child. Consider ehe case where a child

constructs a matching as pictured in Figure 2 and %4sys that there are

more circles than stars. Then if the stars are attered in full view of

the child to the display, aa in Figure 3, and the child thinka that

*
00 0 0 0 0

Figure 2

there are more stars than circles, it would not be correct to say that he

can determine a matching relation between two collections of objects

except in a most superficial manner.

* * * * *
0000 0 0

Figure 3

1' 0
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Example 3: Effects of perception. Imagine an exverimental setting
where two transparent glasses are present of the same size and shape with
two piles of beads: blue beads and red beads. The child and the experi-
menter place beads in different glasses at the same time--the experimenter
blue beads and the child red beads--one after the other until the two
glasses are full and certain the same number of beads. The child '7ays,
"They're both the same." When asked how he knows, the child reps,
"Because they are the same." The experimenter and child then taL the
beads, bead by bead, simao-,ounly from thfl two gInmm and ple-v them
into two ocher glasses, ii tz4ier but narrower thau the first glasses and
one shorter but wider than tt.e first glasses. After completion, the child
is asked whether there are now the same amount in both He responds,
"No, here (the taller glass) there are more because ft big."

Figure 4

res2onses are characteristic of the stage of preoperational
representpa, The perceptual features of the situation completely over-
ride the gained through the correspondence,and the correspondence
is not ;AAol in the face of the beads having differing shapes in the
i.40 final containers. The relative heights of the blue beads and red
beads serve au the basis for the final judgement that there were more
blue beads than red beads. One could argue that no correspondence
existed for the child when the beads were in the identically shaped
lornsrs--that the initial judgement of equality of the beads was based
on Alape and size of the two glasses. The action of placing beads
simult.,,neously into too glasses did not result in a quantifying correspon-
dence for the child. In the experiment, then, the quantitative judgements
made by the children could be categorized as grosa_quantitative_judgemonts.

Examplej4: Corres ondence _ "tran children. Imagine an
experimental sett_ng where the child is asked to select the same number
of candlos as there are in a row of seven candies. Various typer of
responses are possible on the part of the child in the stage of preoper-
ational representation. Quite often such children 1;i2.1 make a no% or
candies the same length as the given row t ignore the number of candies
in the row they construct. The placement '; the correct number of candies
in their row is purely an accident. These children do not coordinate the

1 8
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lens '2 of the row of their candies with the density of th,, = -:(en in

the rGw. roy focus on only one feature (length) of tha o .un at

a time. 12 id ';e. a mistake to say these children have:s ;:ptiom

of one-tr-v ooriospondence or even atocmpt to construct out. They react

purely on the perceptual features of the configuration of the candies

without coordination of those features.

Another level of responses has been identified which goes beyond

those above. Children may coordinate the length and density of the two

rows of car:Ulan, making two rows oZ equal lenw_ and density, but not

conserve the one-to-one correspondence if one of the rows is spaced

close together or further apart. Such children do believe that if the

two rows of itndies are identically spaced there will be the same number

in each row. Consider the child who made a row of six candies correspond

to given :coi of six (the wodol row) by spacing them equally with the

model row, bv.t when his row was crowded together, he then thought there

were more in the model row. When asked to make the two rows have the

same number c) ,A-Idies again, he spaced his rov identical to the model

row, not neidiv nor taking any candies away from either row. This child

was deffnitPly Aore advanced than the children at the stage of preoper-

ational oeprosertotion (ono are only capable of gross qoantitative

comparison),but does not fully comprehend the concept of one-to-one

correspondence. His concept is transitional foot, essentially no concept

tr, an operational coucept of one-to-one correspondence. This child's

concept of one-to-one is said to be in a trapaitipnal stage.

Example Cperationa one- o-one corres ondence. Imagine a situa-

tion of five toy cars corresponding to five toy garages, the red car in

the red garage, the blue car in the blue garage, etc. The one-to-one

correspondence is based on the color of the cars and garages. It is

qualitative in nature because it is based on the qualit:es of the elements.

But does it go beyond a qualitative one-to-one correspondence? It oonld

be an intuitive or an operational one-to-one correspondence, intuitive

if it is not conserved and 000ratioaal it is. Being operational means

the elements aro. considered as units--t ia, any ear can be placed in

any garage--tho cliar is irrelevant to ::he fact that ...here ore the same

number of cars garages. A given car car be considered ro be a place-

holder for any Aber ar. They can 14 6xobenged viollout a loss in the

one-to-one correspondence.

In 6: Traneitivit and wondence. Knowing

that three levels of one-to-one correspondence e-oist for children is

important in p1anning learning activities for children involving one

one correspondence. The three levalo are (a) no one-to-one correspondence,

(b) tntuitive one-to-one correspondence, and (o) operatioaal'one-to-one

correspondence.

Cons2der ,-Aa following prchlem. Twelve buttons aa on a table in

front of a cardboard box from which the top and front are removed. A

partition divides the box into halves; ten cneckers are attached to

the bottom of the box on one side of the partition,and V51 tiles are
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attached to the bottom of the box on the other side of the partition.
The child is asked to find out if there areas many checkerS as tile° by
using the Following are protocols of two children who tried
the problo

Deb: (5) years, 11 months).

Expe menter: Deb, find out if there's as many checkers here as
tiles here. Use tL :e buttons to find our (Deb
pairri buttons and :

Deb: Ain't no buttons over there.

Experimenter: No. We just have one pile of buttons.

Deb: Yellow ones is my favorite color--1 got a good idea I can do.

d,xperimenter: What is that?

Deb; Wa a minute--put t o on each one of 'em.

Experiuter: What a you do'ng no 7

Deb: t had to pick up the two lemon ones.

Exp.: -imenter: The tWo lemon

Yea.

,imenter: What are you doini; with the buttons now?

a: Pairing them.

Experimenter: Pairing them with what?

Deb: With the tiles and the checkers.

Expe me_ rr: Are there as many checkers as tiles?

Deb:

Experimenter: How can you tell that?

Deb: Cause these two, these two, these two, these two are missing.
Yes.

Experimenter: Yes, there is?

Deb: Yes.

116
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Experimenter: Well now, when you had all the buttons ove here

except the two lemon ones, were there as many buttons

in there as chcckere

Deb: No.

Experimenter: But when you ho, the two leMon ones here and had all

the other buttons in there with the checkers were

there as many buttons as checkers?

Deb: Yes. No.

Exper menter: Le _ put them back to see.

Deb: Oh, yes.

Exper en er: All right. Suppose you hand me the two lemon ones,

and suppose I keep them for you. Now, I wonder if

there's as mnny buttons as tiles?

Deb: Let me see. See my new shoes. You got your nnter shoes?

Experimenter: No, I don't have my Easter shoeo.

Deb: / don't have mine either. It's as many.

Exper _enter: The e nre as many buttons as tiles? (Nod, indicating

yes-) Okay, are there es many checkers as tiles?

Dc' I don't know because I can't pair the checkers and the tiles

together.

Experimenter: You can't?

Experimenter: Did you have as many hntcoqs as tiles?

Deb: Yes.

Experimenter: Okay, how about the checkers and es?

Deb: I don't know. (Then Deb points one finger at a checker while

pointing another finger at a tile. She then announces:) Yes.

Experimenter: How do you know?

Deb: Cause I point my finger at each of 'em.

Experimenter: I see.
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Tom: (Six years, 0 __ hs).

Experimenter: What are these ob

Tom: Checkers.

Experimenter: These.

Tom: Tiles.

ec_s Tom?

Experimenter: Tom, 'want you to find out if there &te as many
checkers as tiles. You may use the buttons to find
out if there are as many checkers as tiles. Okay,
how can you use the buttons?

Tom: Pair 'e

Experimenter: Tom, tell me what you have done.

Tom: Paired the checkers with the buttons.

Exper menter: What did you find out?

Tom: As many buttons as checkers.

Experimenter: But I want to find out if there are as many checkers
as tiles. Can you do that using the buttons? (Tom
pairs buttons and checkers.) Tell me what you have now.

Tom: As many tiles checkers.

Experime ter: All right, how do you know that?

To ' Cause both of these buttons don't have a checker and a tile for
a partner.

Expe All right, There were two buttons left her... wil-m we
paired them with the checkers?

Tom: Yes,

Experimente And there are two buttons left now when they're paired
with the tileel

Tom; Yes.

Experimenter. Does that make It as many tiles aa checkers?

Tom: Yes.

ExperiMenter. Thank you.
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Deb never solved the problem of comparing the checkers and tiles.

Her comment, "I DON'T KNOW BECAUSE I CAN'T PAIR THE CHECKERS AND TILES

TOGETHER:sis most revealing--she can only find out through direct

comparison. Her concept of one-to-one correspondence is not operational.

The correspondence she established between the buttons and checkers has

little aignificance for her when comparing the two static collections

(checkers andtiles). It was as if the first correspondence between the

buttons and tiles never existed. Tom's solution was sophisticated in

that he used the two remaining buttons for his comparison. For him, the

one-to-one correspondence established in both eases was related and

quantified the sets. One-to-one correspondence for Tom was operational.

Hz was able to use one-to-one correspondence in problem solving, whereas

Deb was not able to do so.

In summary, children's coneeption of one-to-one correspondence passes

through three stages: no one- )-one correspondence, intuitive one-to-one
correspondence, and operational one-,:e 'ono correspondence. In the two

first stages, children do not conserve one-to-one corresnondence. How-

ever, intuitive one-to-one correspondence is definitely an improvement

over no one-to-one correspoedence. Children in the stage of preopera-

tional representation are in the first stage of one-to-one correspondence,

children in the transitional stage are in the intuitive stage of one-te-
one correspondences, and children in the concrete operational atAge c'

in the operational stage of one-to-one correspondence. Children in the

operational stage of one-to-one c,,rresponden,le are able to use one-to-

ene correspondence in solvine p ems involving the principle of

transitivity (example 6) and notio of an arithmetical unit (examples

4 and 5). The concept of one-to-ore' rrespondence is quite well developed

for these children.

Classification and Equivalence Relations

If a child is given a collection of sticks and asked to put the

sticks into piles so thot the sticks in ruy one pile are the same length,

he must base his classification activities on the relation "the same

length as." It would ecem essential for the child to employ propertiea

(reflexive, symmetric, and transitive) of this equivalence relation. In

order to clarify this, the following analysis is given of achild's

behavior in sorting a collection of sticks into piles.

The child must select a stick (say s) from a given collect on of

5tieks and eoarch for another stick r the same length as s. If no such

stick r exiets, then the child must classify a with itself (reflexive

property). II some stick r does exist the same length as a, the Child

must realize that not cnly is s the same length aa r, but r is also the

same length as s (symmetric property) for r and s to be considered as

forming a class. Given that r and n are classified together, then the

child at some, time must hunt through the sticks yet to be classified to

determine if there la ar.other 4eick the same length as a (and r). Suppoae

that such a stick t exists. For t to be classified with r and a, the

child must realize that all three Are the same length, which entails
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knowledge of transitivity of "same length as" (s is the same length as
t and r iS the same length as s, so r and t are the same length). One

may object and say that all the child has to do is compare t and r and
s by placing the sticks together, so transitivity has never to be used!
Our contention is that children would not think of classifying the
sticks together in absence of the ability to elaploy transitivity, the
rWaexive property, and the symmetric property.

To obtain an idea of what classification abilities to expect from
first and second gvade children, 81 first and second grade children (39
fIrst and 42 second) were given three tasks to perform. In the first
task, the children were given a collection of sticks to sort into three
collections and three sticks on which to base the sorting. Each ot the

sticks in the collection was exactly as long as one of the three sticks.
8Ixty-two of the children correctly sorted the sticks into three piles.

In the second task, the children were given another ,ollection of
sticks sort but were not given three etieks on which to base the

sortin. The children were asked to put together all of thc sticl.:1 that

bolcinged together. Six of the 81 children lid not attempt the task.
However, only 37 children completed the second task as compared to 62 in

the first task. The 44 children who did not complete the task made Some
Piles, but did not mortally connect together piles that went together
and generally placed sticks into piles incorrectly.

The third task consisted of giving the children three piles of sticks
already sorted together on the basis of "s;i:;;,, length as" and asking them
why the sticks were put together in the way they were. Fifty-nine
children did not discover the basis for the classification (same length
as). The remaining 22 children showed some evidence of being aware of

the classification.

Classification has been studied more widely than just in relation
to "the same length as." In order to fully appreciate claSSification
behavior of children, it is necessary to discuss classes (or sets) per
se. Generally, when objects are classified together, they share common

properties. For example, quite dissimilar objects can be classified

together under the heading "J:ruit." Whav makes these objects "fruit"

is what is common. Within thQ class el Lrult, however, important
differences exist--oranges and apples are different. Given a universe

of objects, three distinct kinds of properties exist (Inhelder&Plaget, 1969).

1. Properties specific to members of a given class (e.g., the
properties which make items fruit) which distinguishes the class from
other classes (from vegetables, meat, etc.).

2. Properties which are common to members of a given eloss and
those of other classes to which it belongs (e.g., that which is common

to fruit and vogetableS).

3. Properties which entiae members of a given class one
from another (those whiL, diU,-entiate a pear from an apple, for

example).

7
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Part-whole relations of class membership and inclusion also exist
These relations are conveyed by the terms "all," "some," "one," "none,"
when applied to the members of a given class and those of the classes to
which it belongs (all oranges are fruit, some fruit are apples, no
fruit are vegetables).

The intension at a class is the properties common to the elements,
and the extension of a class is just the members of the class. The

coordination of the intension and the extension of a class is what

develops in children in stages. These stages correspond to the three

stages identified in the development of ono-to-one correspondence.

Young children below about six years of age employ primitive
behavior in attempting to form classifications. The types of collections

formed by these children have been called complexive collections or

graphic collections. For example, children were asked to classify a

collection of geometric objects together, some triangular shapes, some

square shapes, and some half ring shapes. At least three varieties of

graphic collections were identified. First, some children constructed a
number of subcollections, igporing the rest of the Material which was

never clasSified. The subcolleetions had ne common property--the ehil
would change criteria of classification within a subcollection. Some

times, subcollections were not formed but properties of individual items

noted.

Second, successive similarities between one object and the next Wtre
formed, While this is an improvement over the type of behavior noted in
the first example, it is not true classification as no overall criteria
for classification was found for subcollections; subcollections were not
differentiated, and part-whole relationships were not identified.

Third, definite figures are made out of the objects--a "hcuse" is

made, then Windows, etc. That is, the child makes no real attempt at
classification, but instead plays with the objects, making whatever comes

to his fancy.

The graphic collections described above have two features differen-

tiating them from true classes. First, some collections are formed on

the basis of the spatial arrangement of the objects. Second, no criteria

for classification (no properties which tied all the elements together)
were isolated by the children. These two aspects are simply another way
of saying that intensive properties were not identified by the children--
these children are at Stage I (preoperational) as regards their

classification behavior.

Stage Il (or transitional) classification behavior is an advance
over Stage I classification behavior, but it is not yet operational

classification behavior. Stac!,e 7: classificationbehavior can best be

characterized by a recognitio of intensive properties, with no complete

coordination between the intension of a class and the extension of a

class. Given a class of objocts, children are able to separate the class
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of objects into subc sses. This means that they understand that all

elements can be classified, each subclass contains elements of a specific

kind or which possess a specific property, and two or more subclasses

are constructed. Yet, the subclasses formed are not thought of as

forming a hierarchyof claeses. The class-inclusion relation is not

mastered,

The class-inclusion relation being mastered means simply that, gieen

a class A which is contained in a class B, the child understands all ef

the A are some of the B but all of the A do not constitute all of the B.

For example, if A is the class of Siamese cats and B is the class of

cats, then all Siamese cats are certainly cats, but they do not exhaust

he cats. That le, there are cats that are not Siamese cets. So, ell

of the A do not constitute all of the B, bet just some of tha B.

Children at the transitional stage of classification certainly realize

that Siamese cats are iadeed cats and, in fact,are part of the set of

cats. So, one would think they would understand class-inclusion. But

they do not. It is critical they understand that there are other cats

than Siamese cats or, in e"' words, that all care are not Siamese. If

A' are the non-Se' aen AVA' . B and A 1 - A' (see Figure 5).

Figu

'It ere not Siamese)

(5:arnes :nts)

To understand class-inclusien,
the child muet be able to engage in

reversible chinking. To do so is to be able to conceive that the Siamese

cats, together with the non-Siamese cats (AU A'), make up the cats Bt

and that the cate, minus the non-Siamese cets, make up the Siameae cats

(A 0 A'). In this reversible reasoning, the child has to be able to

conceive of the total class of cats as being made up of the twp subclasses

at one and the same time. Stage II children, when focusing on the cats,

lose sight of the subclassee, and when focusing on the subclasses, lose

sight of the total collection. Typical reaponses of transitional

children (Stage II) are given in the following situations. A picture

is shown to the children on which there are, say, four Siamese cats

and three cats which are not Siamese. The children are asked to compare

the number of cats to the number of Siamese cats. When asked to do so,

the children will compare the Siamese cats to the other cata.

The children at Stage III (concrete operational) are capable of

solving the class-inclusion problem and are much more flexible in their

classification behavior than ars Stage IT ehildren. Stage II children

are able to build hierarchies c classes. Yor eeemple, they are capable

of conceptualizing such hierar as as Maltese are part of the
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terriers, triers -,Are part of the dugs, dogs ra part of the mammals,
etc. Stage ill children are not only tenable building hierarchies
of classes, but are able to change the critcria of classification and re-
classify a set of elements in a new way. The child may consider new dogs
in his classl.j.cation and refine the classification to include many more
classifications than those given. Two emplementary processes exist that
describe the Stage 711 flexibility irt classification. One, given a
classifiarSoa, Oe child can go back and construct tiner classifications
or whole new classifications and nnt 6a tied to the one constructed. Two,
a child can anticipate a classification before it ia done.

T1 the foiThwirtg children's classificatory
behnvior have been identfIcd Tnhelde:- L Piaget, 1969):

der

_ perational) Given a collection of objects
and told to put everything together that goes together," a
child at this stage fomis what is known Is "graphic collection
:1 does anything, he con'Atrncts one or more spatial wholes.
This is a child'$ first attempt to coordinate part-whole
relltions gith those of equivalQnce and Lifference.

.Stage Two. (Transitional) At this star-. the constructed
collections are no longer graphic colleccions. Trial and error
plays a large role in construction of classifications and no
overall plan is present. Chiliren cannot yet solve the class-
inclusion problem but do understand that all elements need
classifying, each subclass contains elements which possess a
specific property, and two or more subclasses are constructed.

(COncrete Operational) Children at this stage
are able to coordinate the intension and extension of a class,
as evidenced by the solution of the class-inclusion problem.
Children at this stage are capable of conceiving of hierarchical
arrangements of classes, and are capable of imposiug more than
one classificational system on the same collection of elements,
anticipating the new classification systems before carrying
out the classification.

ons and Seriarion

Order relations determine a seriation of the objects on which they
are defined just as equivalence relations deterndue a classification of
the objects on which they are defined. Three stages exist in the
development of seriation behavior (inhelder & Fiaget, 1963-,L

aagej. (Preoperational) This stage is chiric!. zed by no
attempt at seriation or the forming of small uz,c :dinated
series.

I 0
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Stage (Trasi onal) This stage is charac-- _2 d by

seri-ation by trial and error.

12_2! III. (Concrete operational) This stage is characterized

by a systematic method of seriation.

At Stage I, the child either does not attempt to form a eries or

else forms small uncoordinated series of two or more elements. In the

latter case, the subseries are not connected by the child ( d d iii ).

The representation in parentheses is supposed to connote that the child

first orders two sticks, then two more, then three more, neer realizing

that the sticko need to be ordered into one series.

At Stage II, the child is not systematic. He can form a scr,ws, but

does so with no overall plan nor complete anticipation of 1;hut he, is to

do. For example, a child may pick two stickt and put them in order, pick

two more and then put them in order, and then attempt to coordinate the

four sticks into an order, etc. Or, a child may lay a whole "series"

out and awn nttempt to put them in order through a process of trial

and error. Th.3 is an advance over Stage I seriation behavior.

At Stage III, children proceed systematically, e.g., choosing the

smallest element (or largest, depending on where they start), then the

nemt smallest, etcetera, until they ore done. These children know

beforehand that a given stick (say the third) is goieg to be longer

than those already chosen, but shorter than all tnose yet to be chosen.

Children at the second stage do not realize this, being capable of

thinking in one direction only.

Children's Coricaprioriof Number

Classes (sets) and relation, logically a e fundamental to number,

both cardinal and ordinal. Because of this logical relationship among

classes, relations, and number, the material on children's conception of

classes and relc:tions is pertinent to the discussion on children's

conception of number.

One-to-one correspondence is essent al to class usage of cardinal

and ordinal number. In the section ertitled "Children's Conception of

One-To-One Correspondence," three typeS of one-to-one correspondence

were identified from the point of view of the child, no one-to-one

correspondence, intuitive one-to-one correspondence, and operational

one-to-one correspondence. These three types ty; one-to-one correspondence

determine the quantitative judgments of which children are capable--

gross quantitative judgments, intenSive quantitative judgments, and

extensive quantitative judgments. The gross quantitative jAgments are

based on the petceptual features of the situattle--but only one at a

time. For example, if two rows of several candies are arranged so one

is longer than the other (State 2 in Figure 6) the child capable of

gross quantitative judgments may say there are more in the longer
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= not paying attention to the density of the candies in the two rows,

even if they had been previously arranged (State 1 in Figure 6) so as

to be the same length and density. In the case of State 1, the child

may Lave said tbat the two rows of candies had the same number, but frA7,

not recognize the contradiction in his judgments about the two stato,

5t =e

00 0 00 0
00000.00

Firs 1:z. 6

State 2

0 0 0 0 0 0 0
0000 00 0

For the judgments were booed 1. the: apparent reality--the percept

figurations. Essentially, no correspondence exists for be

child.

The child capable of intensive quantitative judgments would begin

to coordinate the length and density of the objects in the two rows in

State 2, but would not yet realize that the increase in length in row 1

is exactly compensated fo!: by a decrease in the density of the objects.

He would only admit that if the two rows are put back as they were in

State 1, that they would be of the fw;-ne length.

The child capable of extetwiv. quantitative comparisons would

immediately say that the two rows in State 2 are of the same number because

he views the objects as units. For this child, equal number and greater

length implies less density. Here, the one-to-one correspondenee is

operational for the child.

As voted earlier, if the one-to-one correspondence is operational

for child, he should be capable of engaging in transitive reasoning--

the notion of equivalent sets becomes operational. The child, of course,

does not know the symbolism involved,noris he aware in any way of act

theory. But he is able to reason in concrete situationc involving

collections of sbjects.

The child, then, for whom one-t- ,ne correspondence is not opera-

tional, would not be capable of the ass usage of number, either cardinal

or ordinal. He may know number nr.mes, however, and be able to associate

them with specific collections. On the other hand, the child for whom
one-to-one correspondence is operational should be capable of thn class

usage of number, both cardir;a1 and ordinal. The class usage of cardinal

and ordinal number involves classification, where the classification is

based on one-to-one corresp,t,dence (set equivalence). In fact, if a

cardinal number, such as A, s viewed AS a particular set, such as i, b,

e, di, then Surely classification is involved even in the member-of-a

class meaning of cardinal number. If fa, b, c, di is considered as an

ordered S4c, then an asymmetrical transitive order relation "preccus"

is involved in the member-of-a claaL, usage or ordinal number as well as

classification. So, order relations and, hence, seriat"..on is involved

192



MCHOGOO 1-0(10.111Cri IF31
Wwt !NA', 0,0M :,)MIDAlr, 1,0 A



180

In the notion of ein_Htal ii)ir, -md cli -:( icatton f iavolved (n both

cardinal. and ordinal number even in the memrer-of-a-class usage.

it should be clear that if a child is at Stage I (preopotational) in

'ossification, sedation, or onc-to-oRe A' n-,2pondonco, lie desrl't have

much chance of dealing with cardinal or ordinal. number on any except the

wsr superficial or levels. ft most be ei)mhasIzed that thare is nothing

"wrcnog" with a child who is at Stage 1 or any of tho above. Ail children

pass through the stag2s identified. At Sta;.e TI (transitional) in

classification, sedation, or one-to-one correspondence, children are
beginning to deal with conce?tuai aspects and definitely are progressing

to a mire advanced stage of dealing with cardinal and ordinal number.

Stage II classification benavior wns characterized by children recognizing

the intension or a class, but yet, with no coordination between the

iolemsion and extension. Children at Stage LI are able to partition a

class of objects into subclasses, but tha subclasses formed are not
thought of as forming a hierar,Iliv of classes--the class inclusion relation

not mrsteaed, mid hierarchical classification systems are not conceived

Consequently, thorn is a good possibility that children at Stage 11

clasification behavior are able tf.1 deal with the member-of-a class

meaning of cardinal number in tlems of relatively small numbers of

etervents (less than seven). However, even though a Stage II child is

ahlc Lo cite verbal number flumes in order, one should not tak.a that to

mean that the child is iorming successors of sets--or a sequence of

ordinal numbers. His number names constitute a verbal chain, each
individual number having a referent, bra the numbers are not 'nested"

for the child because he is not yet capable of forming a hierarchy of

classes, which is necessary in dealing with ordinal numbers, and hence,

counting.

elass:fi( i ott behavior amorts at about the same time ns

Stage ll seriation behavior, so that the beginning of the membsr-of-o

class usages of ordinal number is beginning for the child. However, it

is not until Stagelit that the child cones to a cnnteption of number

in its operational sense. He is now capable of classification and

ceriation and conceives of aunivalenen dnd order relations in the sense

tha thinking follows these relational patterns.

A_Model _for Teaching themat ics

ft is now time to LUC)) our attention to possible relationships

between school learning in mathcaties and gtages of intellectual develop-

ment. The information presented te this point might suggest that one

should not preent the topics of sets, relei'ons, and number to children

in the stage of preoperational representaCltl. The situation, however,

is not as clearcut as that. The infornaton that has been presented is

based on what is known about how children reason when that reasoning

involves equivalence or order relations, sets, and number, not on the

way in which that reasoning develops. The following discUasion on

factors contributing to development will shed more Light on how such

reasoning develops,and how one could influence that development (Piage 19

19:1
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At toast four facthrs h ie been identified which contribute to the
development of clymitive growch of hhildrem -and fj.i ly, 't) tho
development ot mwzhematics in the child. Ike first is maturation. In
support of the proposition that maturation is invetved in cognitive growth,
it is a tact that transitive reasoning has seldom been ol2served in
children four years or age or younger. White that statement cannot be
ta en as psoof that moturation is involved in development, it certainty
indicates that maturation does play a prominent role if it played no
role in development, then subjecting a child to learning experiences would
be sufficient for him to gain an understanding of the concept or principle
involved. Evidence does exist, however, that great difficulty in learning
transitivity of "as many as" exists for children in the stage of prooper-

'onal representation, even when apparently appropriate learning experi-
ences have been emountorted. Thus, it seems likely that tbo changes
occurring as; the child wows older mak- possible learninv which von not
previously possible.

ExTe_ric_fice.

Experience by itself does not ex ' 'n conceptaal growth of children
but oxperienre does play an important role In conciTtual. growth. Too
much variation :las been otc;erved in the age of attainment of the stage of
concrete operations to discount the role of experience. But experience
alone does not explain the grcwth ol mathemmtical concepts. Otherwise,
as already noted, all one would have to do to "teach" Lary child transi-
tivity would be to give him sufficient experienceand he woulI learn.
But, unfortunately, it is not that simple .

cal experienre and mathema ic_ experience. Experience should
be ancilyzod in two ways. One is in rrrrns of physical experience, and the
other La at;enatIeal experiert.e. To make a distinction between those
two types l experience, imagine a child mateMing the objects of sit
A one-to-o ,lth the objects ot set B through overt actions. He pl:ces
one object f-, .ict. A with one object from set B, etc., ;mill all th- objects
of one or b.' 'I gets are exhausted. Then he takes the objecte ot set
B and likewl, vo.er them with the objects of another bet C. Now, does

matching unst't-;'_e a ?hysical exper'ence or a mathematical exyerience?
answer is that it could he either ore, depending :_in the child. One

cannot differentiate between the two typos of experiences through
ohserl-Ition nf the overt acts of matchiny in which the child engngig.
The cricial determiner of the type of experience is whether the Sets A
and C are related by the child by virtue of the comparisons ef A. and B
and B and C. If the child is not able, through reasoning, to determine

1 0 I
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the -na between A and C, then the experience gained through ov r
mtching of the objects of A and 3 and Ii and C WAS mainly physical in
oc.ture. The relatioll between the sets A and II, in this case, was a
function of the physical arrangement of the objects and would not exist
for the child in the absence of the physical pairing of the objects.
The relation would be external to the child and would be destroyed open
Aarranging the objects of the sets. While the two sets of objects were
in a state of physical comparison, the child could definitely obtain
kiowledge about the objectseither they match or they don't--but for the
kcowledgo to he mythematiu.al in nature, the relation must be conserved by
the child when the objects are moved to new states, and the child must
be able to engage in reasoning involving the propertIes of the relations.

This distinction between a physical experience and mathematical
experience is. important in understanding the growth of mathematical con
cepts. Maturation contributes the internal mechanismm to this growth
that allows the child to go beyond physical experience. Development
IluSt he supported by experience--a child does not mature in a vacuum.
lhe boundary between maturation and experience is not known--that is,
their relative contributions to the cognitive growth of children are not
khown. Uowcve-r, as has been emphasized, each is important to conceptual
developmemt.

More must be said concerning the distinction between pLysical
,rperionce and mathematical experience. If a child is .irong, it is easy

to show hir he ts wrong if his knowledge is from physical experience
alone. Whereat,. in knowledge derivable from mathematical experience, if
a child is wrong, it is generally quite difficult to show him that he is
'wrong. Vbal transmission of the correct answer to the child is most
often insurciont to show him he to wrong. For example, when overtly
comparing two sticks, if a child fails to align two endpolrlts correctly,
it is easy cc corrct his mistake. If, however, he fails to display
transitive reasoning in a task, it is very difficult to demonstrate
transitivity to him in one or two examples. In the case of tzansitivity
of "as mrly as" eiven ohove, the relation between A and C has to be
inferred hy th child becausa the elements of A and C vere not dire--tly
=tched. There was no physical experience on which the child could
rely. Cn the cther hand, when p"aysically comparing two sticks, the
child can be shown through a pllysical action if he is wrong in his
alignments of the endpoints. Another example is where a child has eight
wocden beads, three waite and five brown. If he is asked whether he
has more brown beads or =re wooden beads, and if the child errs, again
it is quite difficult to thaw him he is wrong. Knowledge acquired through
physical experience alone is worth knowtng L.nd often is the source of
observations leading to more organized knouledge.

Knowledge derivable from physical experience alone is called
ph7sical knowledge. Physical knowledge is characterized by knowledge
about the properties of objects. Physical experience is generally
thought of as experience through direct contact with objects through ono
of the five senses. For example, one may touch something and it is
hard, cold, hot, soft, supple, etc. Or, one may cree somethingan object



ia rod, a uLanond catting glass, O.:2 shape of a banana, etc. Knowledge

.0cd Circr01 ohsQrvations Ia ccmerned with the properties of the

objects. An ,11...cr.hr may Lring Gomechlo', tJ the observation which allowa

hi.it to g, hey:md p'aysUa knowledge and gain logical or mathematical

nho t te ohjt. s not possible hy another observer. An example

is that while reiness is a property of an object whicn is in fact red, a

property which exists independent of tho oostrver, light can also be

Ciescibed as wave %oticn, so th4c.: an observer who knows this may experi-

encr., ohe rdnens at tb.e level (A mathematical experience. Another

exeTple is where an o'onerqer sels an iron boat floating and another piece

of iron sink. 11-k-se two observi-A.ons can be summarized by saying, "some-

floats and sor:atimes itsanks." This knowledge is puro physical

knowledge if the implicit contradition is not removed. its removal

demands a merr:al cunstructton Ucyond the physical knowledge gained through

d -ect observation- Kr.owlec.7c.e gained tirough observation alone is at

be,7t Nagmentary net eonrntei by principles.

Even ,hoc4la or, experIence which is Cae result of direct contact witt

ah object throJgh the snsee, may go beyond 7hysical eLperience (depending

on the observer), the source of mathe.latical oxperienci. jo generally

thonjit of as bein overt actions. This dos rot mean that lost because

o ehild is Involvef In overt actiona, ha will be having a mathmatical

caperiacc V has h:en rIrliv noted thrx a. child may overtly match

the objects of two equivalent collections,and the knowledge gained from

the overt 7latchit.es may be nothing nore than physical knowltdge. This =L

especially true fo-r children at the stage of preoperational representati

and those capabte of only intuitive one-to-one correspor.dence. Those

children capable of one-te-one correz-Tonden,:e would, by definition, gLin

mathematical knowlede from tha overt acti:.ns. A critical difference is

that the mathematical 1L7oVleige gained denands Chat A pair of physical

objects not he define6 by the ckosehes5 of the objects. Two objects

may rake a pair ren though awl are quite far apart. An example often

cited of me.hematical Qxperience io where a child realizes that it makes

no difference how you count a collection of objectsyou get the same

number. This kmowle4e is gained thrcu3h countinl in at least two ways.

n uistic Transmits lon

Mother factor contributing to the erowtn of mathematical concepts

is linguistic trans.nission of information (information transmited through

language, oral or written). This factor includes the verbal interchanee

of the child with other people. As sir.:11, it is to he considered as a

part of the experience of the child. However, experience goPs beyond

lingw:stic transmission, so what is said 417_301At the latter is not

necessarily true of the former.

Certainly, 4 child can receive valuable infor_ation via language.

One np,7!_ not think, however, that information contained in a verbal

communication will aeceSserily increase a child's understanding of a

mathematical concept. To verify this statement, a transitivity problem

was presented to 40 firat graders, 40 second graders, and 40 third
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graders who were in the top two-thirds of their classes acce d-
teachers' judgmtuats. Each child was presented with trawiitiv_y
prob1cm involving length relations. If they could not 4cilve the problem,

they wore told the correct relations which held between the two ;ticks.
For example, if a child took a stick B and compared it with C and then
with A and found that A and 13 were the same length aud B nod c were the
same length, then cnuld not infer the relation botween A and C, they
were told that A and C were the same length. After being told, the
child was aaked to explain why P wLs as long As C. Of 24 clildrn who
could not infer the correct relation between A and C, only five could
explain why A and C were of thn aame length after being told. Even
though the children were not told the reason. A and C were the same
length, they had just gone through the two comparisons and said that A
and B and B and c were of the same length. Being told that A and C were
of the same length was not sufficient for 19 of the children to go back
mentally over their actions and gatn information from reflecting on
them. The actions became significant for only five of the children.

The above exaAple illustrates (lie point being made. AttempAng to
teach the preoperational child mathematics by only verbal or symbolic
means has the potential of leading to disasterous results. But, because
words and symbols aro a part of mathematics teAching, their role must
be further clarified. Experience has taught ug that there should be a
continual interplay betweco the spoken words Which symbolize a mathe-
matical concept and the set of actions a child performs while constructing
something that makes the concept tangible in short, there is good
reason to develop mathematical vocabulary during the course of activities
used to develop the coacept. The particular ')Iend has to be determined

by the specific activity and child engaging in the activity. But it is
a long way from promotins vocabulary development to recommending that
the teaching of mathematics to young children be Lased on symbols of
mathem,LItics cr verbalization.

Equilibration

The last factor important i71 the growth of mathematical concepts is
a principle called e4ullibration. Of the four factors wich contribute
to the growth of mathematical concepts, this factor is the mast fundamental
but the most difficult to employ in practice. There is not much one can
do to vary maturAtion, short of being sure the child is physically healthy.
So, while one must acknowledge and understand maturation, essentially
there is little a teacher of school mathematics can do to control it.
Experience and linguistic transmission are under control of the mathe-
matics teacher, but only in so far as the "mathematical" experiences of
the child are concerned. Here it in crucial to distinguish the different
levels of experience and appreciate the role of language in planning the
mathematical environment for the child.

But little has been said yet about knowledse acquisitionthat is,
is there anything which would help to understand how a child acquires
mathematical knowledge? In the case of relations, either children have
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Halo or no knowliedge of relatiardl, tbcy arc able to CLigagO in ra.c-

frvolving the properties of the relations, or they arc oscillators.

If they are able to teA600 1 nVO1W-Lng tat reasoning .ft

limitod and can be extingeshed qultL e!asily. The difference between

physical experience and mathematical exoe'ienee helps to cia-Afy the

role of ronipulative activities in the cassroom. Some chiWren may

engage in a manipulative activity but .vot be involved only At th level

of physical experieuce, whereas 4_,nothe-r child may be in.elved at the

level of mathematical experience. Put the question of how to maximize

Cae poasihility of a child engaging in the activity at the lovel of

mathematical experience remains yet unanswered. Stated another way, ere

there any clu:xa which one could use in taking a child from a physical

experience to a mathematical experience? One of these clues is equilibra-

tion. The reader is referred to the paper by Smock ia this collection

for a full elaboration of the concept.

Lea neingLns ctional Phases rtinatiai _Con; Ls

One bstr assumption in this document is that most mathemntical

concepts go through levels for the person who is learning the concept.

For conceptn not shown to be developmental, these levels shold not be

confused with stages in development (:)r concepts which have been shown to

be developmental. One esential difference is that stages of development

are the result of A child's interction with his total environment and

occur in every siiie person. For most mathematical concepts to occur,

special learnig eavironments musz be created. But the creation of the

learning envionments dues not insure that a concept will be learned.

The notion learning-instructional phases elaborated below is useful in

creating .:ipropriw.:e environments for concept acquisition. The first

learning-Lnstructonal phase, called explol:ation, corrcsponds essentially

to a fttst level of concept--that of no concept. The second learning-

instructional phase, called abs.:raction and representation, corresponds

to a second level of concept. The third learainw-instructional phase,

called formalization and interpreteition, corresponds to a third level

of concept.

The first learning-instructional phase is ca1ld exploratory.

Children's play is considered as a critical part of this learning-

instructional phase. Play is viewed as an assimilatory activity and is

an essential part of earl.) mathematics learning. Whenever assimilation

occurs, its counterpart, accommodation, also occurs if equilibration is

to operate. Equilibration is viewed as one essential factor of develop-

ment and is now extended to learning mathematical concepts in general.
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Equilibrat Ion is a useful thea rot [cal e astruet to help guide

learning activities in mathematica't instrictin. by itself, however,

It provides few hintn in specific situations. Mute is noeded in order

to employ the principle in practice. Play actIvItIes, as a teaching

technique, should he thought of as corresponding mainly to the first

level of mathematical concepts-Identifiedessentially no eoncept--and
to the second levetrudiments of the concept, At these two levels of

mathematical concepts, a great deal of constructive thinItiag needs to be
done by the child. It is a period of concept formation, not analysis.
More analytical thinking must como after something 6<ists to be analyzed,

lay activities can vary along two quite important dimensions. The

is the type .of material,and the second ,o the extermal direction

the child is given. The materials can vary from structured to unstructured,

and a ploy activity can vary from highly directed to undirected, in the

latter case, it is important to realize that the child usually structures

his own play activities.

ldultIpleembodimentjlicli In order to illustrate the princi-

ples of self-regulation and play activities using particular concepts,
imagine that a teacher decides that one-to-One correspondence is to be

worked on. In this case, no concept of one-to-one correspondence corres-
ponds exactly to the preoperational ntage of development. Problem situa-

tions have been givc- 'Mich can be used to approximate which of her chil-
dren are without a concept of one-to-one correspondence!. After such an
approximation is made, the teacher should allow the children who do not
display any concept of one-to-one correspondence to engage in undirected
play activities, using physical objects which will later be used in

directed play activlties. For example, the teacher may have assortments
of beads, bird cutouts, blocks, discs, animal cutouts, toy animals, toy
cowboys, toy soldiers, toy wills, dolls, dresses, toy dishes, or toy

utensils.

Let's take a particular free play activity where the preoperational
children involved place cowboys and Indians on horses. Through this
assimilatory activity, the children can gain the physical knowledge that
indeed the cowboys and Indians fit on the horses. The teacher can not
employ an artful suggestion which may create a disequilibrium or mis-
match for the children. For example, she may suggest that the children
find if there are enough cowboys and Indians so each horse would have a
rider. In order to find out, a child has to accomodate his practical or
symbolic activity to engage in a goal directed activity. If the children

do so, the teacher can employ the multiple embodiment principle (Dienes.
1971) and give them new materials with a similar goal. (For example, are

there enough dresses so one could put a dress on each doll?)

the children do not initiate their own goal directed activity

I 9
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upon suggestion, she may directly show them how to find out if there

are enough cowboys and Indians so each horse has a rider. The childr:'_,

then, through imitation_ or accomodatnry activities can answer the

question, ileto, again, the principle of multiple embodiment is important
because the teacher crtainly wants the child to initiate such activity
in any appropriate situation and may wish to have the children employ

imitative behavior in more than one situation, if necessary. The teacher

must be sensitive to the type of knowledge the child is acquiring in

these imitative activities. The knowledge acquired has a high probability
of being physical knowledge for children in the stage of preoperational

representation. While this should not aUtlin the teacher, it would be in-
appropriate to try to build higher-order concepts on one-to-one corre-
spondence with children at this stage.

Mathematical. variabil4t=inclTle. The princ ple of multip _
embodiment is uot the only principlt tho teacher can use in managing
play activities of children. It has already been pointed out that
while children engage in free play activities, the teacher through
artful intervention can change free play activity into a directed

activity for the children. If the teacher's suggestion fails to
transform the freeptayactivity into a directed activity, she can try

other suggestions or a direct demonstration. Por example, by placing

cowboys and indians on horses, she can lead the children to engage in

imitative activity. Beyond these suggestions, the teacher can employ

what in called the mathematical variability principle (Dienes, 1971).

In the multiple embodiment principle, the mathematical content is held

constant and the materials varied under the constraint of being condu-

cive to construction of the concept by the child. In the mathematical

variability principle, the mathematical content is varied. In case of

one-to-one correspondence, the teacher can vary the relation being

considered to either a now relational catoogry altogether (e.g.,
length relations; family relations) or vary the relation within the
category of matching relations (more than, fewer than, as many as).

Each of these variations can be used to create disequilibrium in the
child, so that self-regulation is given an opportunity to operate.

Play can vary from free play to directed play. Directed play

is a natural extension of free play. The teacher can employ to the context

Of play the principles of multiple embodiment and mathematical variability

in attempting to take a child from physical experience to mathematical

experience. But maturation also contributes to the development of
certain mathematical concepts; for example, classes, relations, and number.

The teacher should not expect dramatic short-term success in teaching those

topics to preoperational children. She can expect more success with children
in the transitional stages which corresponds here to the second level of

mathematical concepts. But again, the short-term success wil undoubtedly

be modest. With children in the stage of preoperational representation,
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it is advocated that the teacher hold the learning phase const that

is, use the exploratory phase, employ the mathematical variability prin-

ciple, the multiple embodiment principle, and ntilize the free play -

directed play distinction. It is felt that it is more humaae to utilize

a wide variety of mathematical concepts in multiple contexts than to

attempt to take the children to the higher two learning instructional

phases for particular concepts. This opinion is predicated on the assump-

tion that the preoperational children will he operating at the level of

physical experience in most play activities. For the higher two learning

inst.uctional phases, the children must be able to acquire mathematical

knowledgewhich is another way of saying thac they must be able to

engage in mathematical experience. At the exploratory phase, it is ad-

vocated that the mathematical language specific to the- mathematical con-

cepts dealt with be developed.

The mathematical variability principle aad the multiple embodimen

principle both have beet explained in terms of the play activities of

children. These play activities are viewed as the first learning inst c-

tional phase in a cycle o three instructional phases for mathematical

concepts. The two others are: a phase of abstraction and representation

and a phase of formalization and interpretation.

:traction _and Representati_on_Fhase

The second learning instructional phase identified, that of abstrac-

tion and represontation, is based in part on the distinction between

physical experien.:-e and mathematical experience. In the case of physical

knowledge, abstraction can and does occur, but it is simple abstraction

about properties of objects and generally does not lead to mathematical

knowledge. Two examples ef such abstractions are hardness and sharpness.

But another type of abstraction exists. It is called reflective abstrac-

tion which is abstraction from the actions performed on objects or repre-

sentations of objects. Knowledge gained through reflective abstraction

is called mathematical knowledge. An example is the child who counts a

string of beads from one end, then from the other and realizes that the

number of beads is independent of the order of counting them. The beads

are there, but the knowledge geiaed had to do with the actions of the

child. The capability of gaining knowledge came through going ba .3. over

the actions and realizing their significance or, in other words, reflecting

on them. Another example is the child pairing elements from two seta until

one is exhausted before the other, and then pairing them again a different

way. These actions lead to the realization that it makes no difference

how the pairing is done (i,e., one set will always contain more elements

than the other). Still another example is the child who compares stick

A and stick 9, then 9 and stick C and deduces that A is longer than C

based on the two initial comparisons.
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The examples are all of situations lo which a child may be engaging

in play hut still engaAe in reflective abstraction. Mere is no con-

tradiction here. The child who does engage in reflective abstraction has

the potential of going quite beyond plaw activities in the sense of the

exploratory phase. While it is entirety possible to continue in mathe-

matical-like games for such children, such children can engage in much

higher level games, Insofar as mathematical concepts are concerned. But

the teacher need not be restricted to gale-Like activities in her teach-

ing of these children

The child can engage in reflective abstraction, but yet, not make

a representation of newly gained knowledge. A r,T,resentation could be a

drawing, a diagram, or a collection of symbols. For example, if a child

eami,ares a green stick with a red stick and finds the green stick shorter

thal the red stick, G R could be used as a representation;

R

,7onid be used as a represen%ation; at I
could be used as a represen-

C R

tattoo, among others. If a child is engaged in reflective abstraction and

representation, he is definitely operating at a higher level than he was

expected to in the exploratory phase.

Formalization_and interpretation Phase

The learning instructionalphaso ol formalization and interpretation

completes the cycle of learning mathemiiical concepts. In order to

explicate this phara, the mathematical (,)ncept base ten numeration system

is setected to illustrate and differeritte the three phases.2

We will assume that the child is at the concrete stage of operations

in development. Operatory classification and relations are at his dis-

posal. Just because a child is at the sOu;,:, of concrete operations, he

will not necessarily knct, base ten numeration or even have made represen-

tations of his knowledge. What he is able to do with classes, relations,

and number has not necessarily been formalized. This knowledge is largely

unconscious for the child. However, we will assume the child has completed

a learning cycle concerning the digits 0. I. 2, 3, 4, 5, 6, 7, 8, and 9,

can write them, order them, and do simple addition.

Any natural number can be written Tilt ex ended notation. For example,

326 in expanded notation is 3 x 102 2 x 10 4- 6. The 3, 2, and 6 are

called coefficients, tO is called the base, and the 2 and 1 in 102 and 101

are called exponents. Consequently, the coefficients, the base, and the

exponents can all be allowed to vary im employing the mathematical varia-

bility principle. Usually, the base iv held constant and only the exponents

and coeffieients are alloved to vary. This practice is adhered to in all

except the very beginnings of instruction in the exploratory phase.

2_-Subsequent to writing this paper, changes and refinements have been

made in the learning and instructional chases for numeration as a result of

a teaching experiment.
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Imagine that children are given a collection of various assortments
of mat-rials, such as geometrical shapes, checkers, or dried beans. The

children are allowed to engage in free play with the materials, building
whatever they wish -- castles, houses, roAs, forts, etcetera. Because

these children are at the stage of concrete operations, the teacher can
intev!ene with artful suggestions to direct play activities, The first
typo of suggestion she could make is to have the children find how many
piles with a certain number in each pile they can make. She can employ
the mathematical variability principle to vary the number in each pile
or the total number of objects in each collection. The total aollection
should not contain nnre than, say 40 to 50 objects, or the children will
quickly tire of the task. The multiple embodiment principle can also
be employed in at least the following ways. The type of objects can
be varied, thus setting a new probleM each time, or the type of collection
formed by the children can be varied. For example, strings of beans with
five per string, stacks of blocks with ten per stack, or plates of dried
beans with ten per plate can all be used. The essential thing being
that a collection of objects can be partitioned into subcollections with
the same number in each subcollection and one other subcollection with
fewer objects in it than in any other subcollection -- a collection of
Wentysix objects can be partitioned into four subcollections with six
per subcollection and two rflore.

In tl,e first fw partitions, the children will probably participate
at the level of physical everieace. one of the first bits of mathematical
knowledge the children should acquire is nat there is the same number
of objects in the total collection before and after partitioning. Tbat

is, the child should be able, through his actions, to determine that a pile
of objects can always Le pot back the way it was before the partition,
that no objects were added or subtracted, the number of objects before
piling is the same as after piling.

child partitions

Figure 7

Specifically, if a child makes thr.2e piles with six per pile and one pile
of four, the child should know that the total number of objects in the
original pile is the sem as the number of objects in three piles of
six and one pile of four, without knowing there are 22 objects. If a
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child realizes this, he is in trailuitlon from the exploratory phase to

the abctraction and representatIon phase. Hopefully, the teacher can

use tle mathematical variability principle by varying the number of

objects in each pile, so that the chiid will realize that no matter how

many are in each pile, the total number in all the piles is the total

number of objects;

With this realization, the child is well on his way to constructing

the concept of a numeration system. While he has a lot of information

yet to acquire, the operational basis for further work hns been laid.

The halic goal in the second phase is to have the child construct a
notational system and construct the place-value concept. The two digit

numbers are worked on a different age levels than are the three digit
numbers, which in turn are encountered at different z:ge levels than are
the fouc digit and higher digit numbers in order to establish the genera-
lization of place-value.

After the children first enter the second phase,they are able to
partition a collection into subcollections and know that the number of
objects in the original collection is the sama as that in all the sub-

collections. Capitalizing on this knowledge and the ability of the
children to engage in rational counting, place-value concepts may be

developed. For example, the children may be given a collection of objects,

Cay 35, and asked to count out a pile of ten and place th= in a
transpnent hag: count out another pile of ten and place them in a trans-
parent bag; and then note there are only five remaining. The childrem then

may fill out the following: tens and ones.

Various activities such as the above c-an be done until. te-childrea-are
ready, in the teacher's estimation, co take one further step and write,
for example, the symbol "35" to represent 3 tens aad 5 ones. Another

activity at this second phase which is useful later on in subsequent
learning is the tally chart. The tally chart may be thought of as a

representation. For two digit numbers, it looks as follows. In

the tally chart in Figure 0, the two marks under _ ns" mean

Figure 9

ten have been eounted, and the mark under "ones" means there

, a single element remaining in the total collection. The tally chart is

a representation and can be used to represent any number from 0 to 99, in-

clusive. Use of the tally chart should be coordinated with the develop-

ment of the numerals; The most singular difficulty children have with

the tally chart is that they forget the marks In the tens place have a

different meaning than do the marks in the ones place.
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In the activitl-a mentioned, it should be noted that the

number names were rh mentioned, only the symbols, such as "63"
merdioned, and they were to be interpreted as six tens and three ones.
After children can represent any collection, such as a tens end b ones,

where a and b are digits, as "ab," they are quite ready to learn the
number names for two digit numbers and order the numbers from 0 to 100.

The next phase is entered because the knowledge gained to this point is
going to by systemized by the children. The basis for the learning has

beem laid in the counting of piles of ten. However, the main goal of the

next Jearming stage is to systemize the whole numbers from 0 to 100 using
the number names. Other learning cycles will be built on this cycle--
Ruch aS cycles having to do with counting by twos, threes, fours, fives,
sixes, etc.; addition, multiplication of two digit numbers and their pro-
perties; end subtraction and division.

To initiate the last phase, have the children count out 4 collection
of objects a$ the basic learning mechanism. When a pile of ten has beet

bawd and collected together, then one more ten is counted out. The two

term ere symbolized by "20" and the spoken number la given. The decades

are developed in this manner and the symbol "<" and the phrase "less than"

is introduced or reviewed, as the case may be. The children then should

work on ordering the decades arriving eventually at 10 < 20; 20 < 30;

30 < 40: 40 < 50; 50 < 60; 60 < 70; 70 < 80; 80 < 90; and any other

variation, such as 20 < 70. The tally chart is useful in developing the

abcye activities. The children should be able to write "20 < 30," as

well as &ay twenty Is less than thirty," and be able to complete open

Sentence& such as 0 < 40 correctly. The mathematical variability prin-
ciple should be used in all of the activities in the second and third
learning phase. The multiple embodiment principle should be used especia
in the second phase but to a lesser extent in the third phase. This

is natural due to the character of the activities and the level at which
they are cmnducted. In the third phase, however, the mmltiple embodiment
principle is used most in providing Interpretations and models of the
cormept for the child to use.

Formalization is taking place in the sense that a notational system
is developed and organized by the child. The organization of the nota-

_nal system is based on the abstraction and representation accomplished
at phase two and on the new element em order nelatinn. The order

relation is an 2ssenti3l part of the third phase for the concept of

nummration. Without it the third phase would have little meaning. The

circler relation, however, is based on one-to-one correspondence, ao that
preliedmary learning cycles will have to have been completed with regard
to one-to-one correspondence and number.

After the decades have been symbolized and ordered, and the child
cam count by tens, the decades can be completed based on the relation
"orm more than" just as the decades were ordered on the basis of "one

more ten than." Eventuall Y, we want the child to be able to say the number
manes for all the numbers from 0 to 99 inclusive, be able to write the

nunerals, order any two of them, have the complete sequence ordered, and
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be able to count hy ones from 1 to 99 inclusive. In the ordering tasks,

the child :should %now, for example, that any number in the "sixties"
is greater than any number In the "forties," so that no confusion exi
in ordering two numbers such as 47 and 63.

The above learning cycle ,L.Ath regard to numeration will uneioubtedly
be interrupted by other learning cycles. In fact, it is advocated that
two or more learning cycles be operating concurrently so that boredom is
decreased.

Summary

For a particular learner, it is assumed that mathematical concepts go
through three levels -- essentially no concept, then rudiments of the
concept, and then an operational concept. These levels of concepts
form the basis for identifying three learning-instructional phases for
mathematical concepts -- the exploratory phase, the phase of abstraction
and representation, and the phase of formalization and interpretation.
These learning-instructional phases interact with the type of experiences
and the cognitive stage of the child. Mathematical concepts which have
been shown to be developmental in nature (number, relation, and classes)
need to be considered different than concepts which have not been shown
to be developmental in nature. For the case of the latter category of
concepts (numeration, IditIon, subtraction, multiplication), if a child
is preoperational, thc,. the teacher should net force the child to go
beyond the explc,fatory iearning-tristructional phase. The only type of

experience such a child is capable of is physical experience. It must

be stated explicitly that the type of experience of a child is not under
the control of the teacher. She can give children the Inprt_140.(y to
engage in mathematical experiences, but there is no wsy she can force the
child to engage in mathematical experiences. Moreover, the child has
little or no conscious control over which type of experience he mAgages

in. It is something which just happens and, to a large extent, depends
on the cognttive stage which the child is in. So, for preoperational
children, the teacher should not expect the children to go beyond physical
experience in the exploratory phase. She can aid the child (or give the

child the opportunity) to engage in mathematical experience through
employment of the multiple embodiment principle and the mathematical
variability principle, but she cannot make the reflective abstraction for
the child. Through the process of self-regulation, the child wll even-
tually realize the significance of his actions and thus enter the next
learning-instructional phase With regard to particular concepts. Through

maturational processes and experience, preoperational children will move
to the concrete operational stage and thus become much more likely to

engage in reflective abstraction.
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Concrete operational children have much mere mathematical learning

potential than do preoperational children. These children will begin,

with regard to particular concepts, with play activities just as do the

children in the two other phases. While they may begin with physical

experience, they can go quite beyond physical to mathematical experience,

and hence to the higher WO learning-instructional phases. If a child

is operating at the phase of abstraction and representation, with regard

to a particular concept, there is no way that he will engage only it

physical experience because of the very definition of that phasa. The

same can be said for the next higher phase.

All children,then,uhether they are concrete operational, preopera-
tional, or transitional, should be given the opportunity to learn the same

mathematical concepts. The depth of concept learaing will depend to a

large extent on hie stage of development -- so that a teacher should

expect concrete operational children to complete the learning cycles.

But children in lower stages of cognitive development should not be

expected to complete the learning cycles; however, they should he given

the opportunity to do so.

One further comment is in order concerning physical experience and

mathematical experience. One should not equate physical experience with

physical objects, or physical actions on such objects, and mathemtical

experience with abstract thought. A child may engage in mathematical ex-

perience through manipulation of physical objects, physically or mentally.

The presence or absence of the objects just does not determine whether a

child engages in mathematical experience. in fact, preaence of objects

may facilitate a mathematical experience -- but the presence of objects

is not logically necessary for a mathematical experience. Physical

actions are not necessary for a child to engage in physical experience

-- but some physical context is. So, whether a child engages in physical

experience or mathematical experience depends ultimately on the child.

Tabular Representation

of a Learning-Instructional Model

Types of Experienc

L-I Phase

aogaitive
5
Concrete
Operational

Exploratory

Abstraction and
Rapresentation

Formalization and
Interpretation

Physica and
Mathematical

Physical and
Mathematical

Physical and
Mathematical

Transitional Physical and
Mathematical

Physical and
Mathematical

-Prooperational Physical

Figure 9
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In the tabular representaLion of the learning-instrue nal model

(see Figure 9), eon,=rete operational children are capable, at each learning-
instructional phase, of engaging in physical or mathematical experience.
It must be emphasized that a child's being in the stage of concrete opera-
tions does not guarantee he will, be able to complete a learning-instruc-
tional cycle with each concept presented. However, it would be unlikely

that a child who did complete a learning-instrectional cycle would be a
preoperational or transitional stage child, especially a preoperational

child. In fact, it is not assumed that a child in the preoperational
stage is capable of making a reflective abstraction. Children in tile

transitional stage should be expected to be capable cE making abstractions
and representations, but not necessarily be capable of organizing their
knowledge in the sense of the formalization and interpretation phase.,
FreOperational doildren should be expected to be capable of engaging
in mathematical experiences. It should be emphasized, however, that
there may be exceptions to the patterns outlined in the tabular

representation.
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