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Since the LOCO Turtle took hi: first step he has been rnathematkally confined to running
around on flat surfaces fortunately the physically intuitive, procedurally orimted nature
of the Turtle which makes him a powerf ul explorer in the plane is equally, If not more
apparent when he is liherated w tread curved surfaces, MIA paper is airned roughly at the
High School level. Yet because it is built on intuition and physical action rather than
formalism, it can reach such "graduate school" enathernatical ideas as geodesics, Gaussian
Curvature, and topological invariarus AS expressed in the Gauss-Bonnet Theorem,



-TRIANG1-4.

This paper U a i eporatron into the dark anii dangeions cont1nent of
ir,arlhernatics 'wherein we shar trek fror the almost civilized land of georne1, through the
forbideen grounds or differential g etry and tdence to topology wnere many a scul tis
perished on the gieat, barren and nfinitely extensible rubber sheets. I think, however, I
bve chosen for you a path which will show you some the geat sights without undue
physical danger. In fact I woutd be great), disappointed if you do not retuto safely and
with great score tt souvenirs to entice you td return on your own and explo0 for yourstlf.

Let rrve teg In with a humble tria.ngle; any che will do. Ever/one knows a
ngle has i31 swarth of angles in its three .vertkes. What wonde,qul thing that any

zrJaiigle, no matter ilow big or smail or how it i5 shaped, has exact ,I. iioV,1 do you
know that is true? don't think it's obvious. After all, the angle3 art in 6af fercint
Lrt me show you my f7vorite way to sum the angles in a tr:tarigle.

I have a turzle toho can be an exckzilent guide to many, pPlees ri mathematics. Yet
n donly do two things, walk In a straight line iy Itlirn through any "trigle. Luckily he Is

sma t enough In tell the measure o any angle when he turns through it. S...1.1 .o.in send him
out to rneaw thr nes in iota of triantzles, one at a time and find out what the sum of
thern is.

After tatcbing Turtle measuring triangles for a whille I vi tied he always does
the same thing. .starts at vertex 1 of a triangle and aims toward tex 3. Then he tuans
toward vertex 2 arid therefore measures the angle in vertex I.

He marches t
2.

Fig. Motu rinj

MCC{ 2 and Mates again, in t e

gle 1.

e dir bfore0 to measure angle



Fig. 2. 111easuri

(To do this last he rnus: look back, over Ith tail while rotating.) Then he mvc to vertex 3
and do-es the same thing he did at vertex 1. Finally 142 just returns to where he started, az
turtie3 usually do.

Fig. 3. ring angle 3 nd going home.

But now look, the turtle has turned through each vertex in the same direction, so his full
rotation is just the sum of the vertex angles. And he's now pointing in the direction from 3
to 1 whereas he started out pointing from I to 3, In all he has turned exactly 1800 ! We don't
even have to ask Turtle to remember the separate angles that he measured. Notice that the
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final heading of the turtle (180° from initial) does not depend at all on the details of the
triangle. Stretch side 1-3, pull vertex 2 off into the distance, the turtle still must end up 180°
from his beginring, because having started at 1 pointing at 3, he ends at the same point,
pointing along the same line, but in the direction exactly opposite his Initial direction.

That sounds pretty solid. After all it proves something we all know (don't we?!)
is true. But let me confuse the issue by asking a very hard question. What happens if my
turtle is drawing big triangles on the earth rather than little ones on a table top. Is the 180°'
theorem still tme-'

Well, you might say, that's just a huge case of a little triangle; the same thin&
only a million times bigger sides. And since Turtle's triangle measuring process doesm.'t
depend at all on size, he should still find 1130° . But careful, watch this!

Suppose Turtle starts on the equator and goes straight north until he get3 to
(where else?) the North Pole. Now he turns 90° and goes straight south until he get; to the
equator. Now he turns 90° and runs along the equator to get back where he started. He's
made a triangle. But look carefully, the triangle has 3 90° angles in it! That's 27e° Try
that out on a globe.

Fig. 4. Triangle with 3 900 v eaic

So what, you say. That's no triangle. Everyone knows a triangle is made up of straight
lines, and anybody can see those lines in the "triangle" en the earth are curved. Well, I say,
almost anyone can see that, but turtle can't. He's very nearsighted and can't see the curved
horizon; he only sees which direction he's going. As far as he's concerned all those "lines"
are straight. He's just walking along (like a car with wheels welded straight) not doing any
turning at all between equator and pole.

So what, you say again. (You are obstinate.) Turtle, then just doesn't know
enough to know he's not drawing a *rear triangle. But hold on. Le s get some things
straight before deciding exactly what's what.



URTLE LINES

First of all we h ve a new kind of "straight line" to look at, a "turtle fine." Turtle
can walk on lots of things: the earth, a table top... and whenever he walks without turning,
he walks along a "turtle line." (That's a definition, don't argue.)

How about a ping pong ball. Obviously an average size turtle can't walk on it,
but I think there are clearly some turtle lines on it. Imagine that the ping pong ball is a
little globe..i.e, a map oF the earth. You can cleaw on the equator, and I certainly would
want to call that a turtle line. Why? Because a line has the property that if you make a
bigger or smaller model of it, it's still a line. So if you shrink the earth with its equator
turtle line down to the size of a ping pong ball, I'd still want to call the equator a turtle line.
If you want a different reason, imagine a miniature turtle on the ping pong ball; nis non-
turning paths still call "turtle lines." And I'm sure you'll agree that the "equator" of a
ping pong ball must be a tiny turtle line. To find a turtle line,then, ali I need is to make
sure my turtle is appropriately sized for what he's walking on, In any case he must not be
so big that he can't walk around comfortably.

I have a good question. If the equator is a turtle line, is any line of latitude also
one? Well, you might initially he inclined to say yes. After all it looks pretty much like the
equator. But is it really?

To decide that you have to decide if Turtle can walk along it without turning.
Imagine Turtle's little legs churning away. How does Turtle know he's walking in a
straight line without looking (he's nearsighted, remmber)? To answer that, star out
thinking of a simple situation--a table top. I'd also suggest you think how Turtle turree

Here's my answer: If his left legs take the same number of steps and the same
length steps as his right legs he'll go in a "straight line", If he starts taking fewer steps
with his right legs (or even takes negative steps) he'll turn, Do you agree? I hope so.

So now, is any latitude a turtle line? Well, Turtle straddles a (Northern
Hemisphere) latitude and starts walking. His "south" legs travel on a latitude a bit below
and "north" legs a bit above. Marching all the way around the earth has he taken the same
number of steps with north as with south legs? Of course not! The more north the
latitude the smaller the round trip path. Take a look on a globe again. The equator is the
longest latitude, and as you get closer and closer to the North Pole the latitudes get smaller
and smaller and eventually reach zero length at the North Pole!

So the turtle must take a different number of steps with his left and right legs,
and therefore a latitude is not a turtle line. Do think about that if you're not convinced.

Here's a more clever way to prove a latitude is not a turtle line. It's a symmetry
argument, and it works like this. There's one thing we know for sure about turtle lines.
There is nothing in the line that distinguishes right from left as the turtle walks along. If
he turned, of course he would be turning either- right or left; but if he doesn't then there
should be no dif ference in what is right and what is left. Add that to the fact that a
sphere does not distinguish one place from another, and you must conclude that on a
sphere the lei t part of the world looking from a turtle line must look exactly like the right
part of the world. That is true for the equator or any longitude, but not for any old line of
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Turtle E5cs the Plane

latitude. Those divide the world into a polar cap and a bigger part, so distinguish right
from left and therefore can't be turtle lines. (If you're not convinced by this argument,
don't worry. Although I think it's true, I'm not sure it's convincing.)

Turtle lines exist on any surface, it doesn't have to be a flat one or a sphere. Any
old bent up surface will do, just set a turtle on it with legs a-churning and watch a turtle
line!

But now back to a sphere, the earth. We have a nice triangle made up of turtle
lines and 3 900 angles. What happened to the turtle proof that triangles have only 1800 ?
Something obviously went wrong. As far as Turtle is concerned there are only three places
he has to turn (i.e. three places that his right legs don't match the speed of his left legs).
And each of those is a 900 angle. But he still winds up pointing 1800 from his start. The
problem is, if you wind up pointing in the opposite direction on a sphere, it isn't necessarily
so that you made 180° worth of turns. Try this! (Get your globe out again.) Start Turtle at
the North Pole; notice which way he's pointing. Now walk him straight ahead until he
gets to the South Pc le. Now don't let him turn at all but walk him sideways (a good
straight turtle walk but sideways) clear back up to the North Pole. Presto, he's facing
zaactly the other way. Turned 1800 without "turning* at all. That's the problem with
spheres; you can gelturried even if you're not turning. If you look from the side you can
easily see the sphere turning the turtle without his knowing it.

Ar-t1

Fig. 5. "Getting turned" without tur&le turning."

Meanwhile back at the 900 900 90° earth triangle, it's easy to understand what's
wrong with Turtle's original triangle proof of 180°. For sure, from beginning to end of the
trip around measuring angles, the turtle has changed his heading by 180° . Evidently the
turtle himself turned 270° (3 vertices of 90° each). But now that we realize spheres can turn
Turtle without him knowing it, we can hypothesize about that extra 900. While he was
turning 270°, Turtle must have been turned back 90° by the sphere. Turtle turns 270° but
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the trip around the sphere turns him back 900 of that.
So you see, there are two kinds of turning: actual "urtie turning" and "trip

turning." Turtle only thinks he's turning when he's "turtle turning," but he can be turned
by going on a trip even without "turtle turning."

Let's try that idea out (I hope you still have your globe around). We can take
Turtle around the triangle without him turning at all by having hlm walk sideways
sometimes. If his trip around the sphere really accounts for that missing 900 (missing
between the triangle theorem and the real 2700 ), Turtle should come back to where he was
turned 90° and turned in the direction opposite to the turning he would ordinarily do at the
triangle vertices. So start him out on the equator facing East. Walk him sideways up to
the Ncrth Pole, now walk him straight down (following his nose) back to the equator.
When he gets back to the equator he's pointing South and continues'pointing South while
walking sideways back to his starting point. There he is. Without turning, but merely
going on a trip, he's ben 'turned" 90° . And 90° oppositely from the turns be would make
to measure the angles in 1 le triangle. Hooray! The extra 900 in the triangle come from the
trip and get added to th(! 180° of the "triangle theorem.'

III. ANGLE EXCESS

Believe it or not, we've made some real mathematical progress in understanding
because we have run across a new concept. The concept is what mathematicians call "angle
excess" or simply "excess." Excess is the "trip turning" that the turtle gets turned M
traveling around a closed path without doing any "turtle turning" of his own on the way.
For triangles the excess is exactly the angle you have to add to MO° to find the actual sum
of angles in that triangle. Ri ht away there are some nice things to notice about angle
excess.

THINGS TO NOTICE:
1) You can ask what it is for any polygon1 not just a triangle. (This is provided

of course the turtle knows how to walk a straight line in any direction, not just forward or
sideways. It is not hard to trait) turtles to do this.)

2) You can ask about angle excess on any surface, not just a sphere. Simply have
the turtle walk around on the surface. So excess is a rather general concept. It's an angle
assigned to any closed path on any surface in a particular way.

Perhaps the best thing about it is not its generality but all the nice questions
you can ask about it.

THINGS TO WONDER ABOUT:
1) Can you ever compute angle excess without just measuring it? A partial answer

you probably guessed alreadyyes indeed, an excess angle on a plane is always zero! If you
still believe the turtle triangle theorem on a plane then you know the excess angle for all
triangles is zero in a plane. Even if you can't prove it I bet you'd believe that all polygons
in a plane have zero excess. This leads me to ask if the plane is the only surface with zero
excess for all polygons? (Think about that.)

2) Is this angle always greater than zero for any'surface, Ai is it always a tura
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opposite the triangle measuring direction?
3) In general what does knowing excess tell you about a surface? Everything?
4) What does angle excess really mean?
But let's not get too far ahead of ourselves. I think that we'd better make sure

the excess angle concept is nailed down. That means asking some simple questions about it.
Is it well-defined, i.e. have we really specified exactly one number r) be associated with any
polygon? In particular:

Question I) Does excess angle depend on the initial direction of the turtle faces?
Question 2) Does the it depend on where you start in the polygon?

If you think you have the concept nailed down, skip this section for now, but I'd suggest
you come back to it.

Answer I) N. :zinc the tin-0c walking around a path without turning and comparing
his final heading with his initial to find the excess. Now suppose we take another turtle
and start him out pointing go° away 7rom the first turtle and walk him sideways along the
first leg of his trek around the path. Compare the new turtle's heading with the old one's
dt each point as he goes along. I don't know about you, but I'd say the turtle was broken or
didn't know how to walk sideways properly if he gradually changed relative heading to the
first turtle, 900 to 890 to 85° to... Somehow the turtle is turning his body to face in a new
direction while walk 4. (Try this idea out by thinking about turtles marching on a table
top.) So if the secon,d turtle walks sideways properly, he will maintain his relative
positioning to the first turtle and will wind up after going all the way around still 90°
different from turtle I. The difference between initial and final heading must then be the
same for the two turtles.

Actually I can be clever and make the argument above into a real proof. I will
define a turtle marching sideways (or at any other angle) on a turtle line to be marching
properlr only if his relative heading to a straight marching turtle doesn't change. Then

Answer 1) is trivial provided we do all measuring with properly marching turtles. Isn't that
clever? This is an example of a great mathematical trick used all the time. If you've got a
good-theorem and can't prove it, then define things so that it's true.

Answer 2) No. Look at the following record of how a turtle faced as he measured the
excess in a triangle starting at A. The excess is marked O.
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Fig. 6. Measuring Excess.

Suppose some other turtle measures the angle excess starting at B. Because of Answer 1) we

might as wen take the new turtle to start facing the same way as the old turtle, and so he
will face the same way all the way round to A. There the record of the old turtle changes
by 0 Answer I) says that the angle between old and new turtle will be maintained as new
moves f rom A to B.

Fig. Ne Turtle (solid) compared to Old Turtl

01

do

But then 0 will be the angle between the beginning and the end a new turtle's trip, the
same as old turtIt's excess angle.
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The result of Answer 1) and Answer 2) is that it doesn't matter where you start or
what heading you start, the excess will be the same. (Note that this had better be true,

otherwise the understanding of excess as being the difference between triangle vertex sum
and 180° would likely be in error. Capisce3 (This is more or less obviotu depending on
how you think about ft. In any case you should think about it until it's more cm less
ob vious.))

IV. EXCESS ADDS!

sack to more investigation and less formalization. Let`i concentra e on the sphere
for awhile. I started on the sphere with a triangle of fairly large excess, 90°. Can ye:J*1
imagine a triangle with a bigger excess? (Look for one if you have time.)

How about this one. A triangle with 3 180" vertitvs! The enuat Just start
anywhere, call it point 1. Travel 1/3 of the way around then stick in a 1800 ver e,; there and
continue around on the equator another 113 circumference to point 3. Stick in anothel nel
vertex and run the rest of the way round home to I. An excess of 360° ! That's one of my
:a vorite triangles.

How about a triangle with a smaller excess I guess that's no problem just take
a very small triangle, like one in your front yard, compared to the earth-sized sphere (the
earth!). I'd bet such a triangle has angles totalling very nearly 180" so an excess or nearly a

It looks like small triangles have small excesses and large ones have large excesses.
If you haven't already noticed, the 5 X 180° triangle has 4 times the excess of the
triangle, and can be made up by pasting together exactly 4 of the 3 X 900 triangles. (Look
closely.) From that it looks like excesses add- Take a look at a triangle made by combining
2, 3 X 90° triangles. It has a excess of 1800! Look at any triangle made up of 2 900 angles
at the equator and n degrees at the pole. It has excess of ri° and can be made up of re
triangles of one degree excess.

Fig. & Ezceu of the large triangle is surn of the

12
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Turtle the Plane 11

This it beginning to look like a theorerrs,

l'hecire if a triangle is subdivided in to sobtriangles then One excess in the
triang e is the sum of the eXcesses in the subdivisions.

I'll give you a. proof so you don't hawe to fiddle around a lot- Notice dist the theorem
doesn't mention anything about spberes in particular, neither ieill the proof: it's true on
ail surf ace-

I'll jillst do ale case of subdivision's into two. It's tricky (really!) extendIng trsis to

any subdivision, bait I think just this much should give you an idea cif valat's going on.

Proof: Measure excess in ABC. I've sla o n a record of turtle pointing.

Fig.. 9. Ewe's 11CD (z. to 2) I. teed ABC is o

Ile starts out .with heading x and ends up with y. Now do ACID. 'To make things simple
you night as swell start from A with tie same heading, y, sthich ended measuring ABC.
Then the second neasuring turtle should agree with the first all the way to t. (Do you
agree?) Turtle 2 Ellen continues to I:1 and erids up 2t A with lheaclintg L Finally measure Ube
excess in BCD by starting-at A in position x, running all turtle Es patti to C. l'hen follow
turtle 2 (who sorts from C with the sane heading turtle l left off with) around clear back
o A. He wields up with tiading L Look, th excess of the big triangle is the angle lc to a

whiclh is just the sum of the excesses (x to y and y to 0 of the two mallet triangles .
mei really a pretty nice theorem. It's the beginning of a really great one.

Theorem The excess of any poinom AS the surn of the excesses in any

S



Turtle Escapes the Plane 12

polygonal subdiv1sion.

Can you see how to prove that? It's not that important, but it's nice to notice that all you
have w do is start with one polygon and add on connected ones, one at a time. To prove
each step in that process you can use the proof given for adding two triangles together
because that proof did not depend on the pieces being triangles! All it needs is a picture
like below. Polygon vertices are irrelevent.

Fig. 10. The Topology of Fig 9,

In mathematical lingo, the proof only depends on the topology i.e. how the thing is hooLcd
together, who's connected to whom. Not on where vertices are or how long any side is or
how much area anybody has.

V. CURVATURE DENSITY EXCESS PER UNIT AREA

Whether or not you spent time proving that theoren, ce tainly suggested by our
observations about excess being additive in sone special cases. And furthermore the
theorem is really suggestive of other things. Compare It to the obvious:

Theorem: The area of any polygon is the sum of the areas of any polygonal
subdivision.

Welt excess Acts like area in that respect Could it be that excess Is proportional to area,
that is E-kA where E.excess A-area and kdome constant? That would account for the
additivity of excess. But it's obvious that k couldn't be a universal constant like T. After
all k must be zero for a plane, b t it can't be zero for a sphere Not only that but it caret
even be the same constant for all spheres. Consider also a 3 a triangle on the earth and

14



Turtle Escapes the Plane 13

one on a ping pong ball. They have the same excess but certainly don't have the same
area. So how about the hypothesis that k depends on the surface, and every surface nay
have a different k? Let's try that out.

Obviously any plane has lo.O.

Theorem: On a sphere of radius r, E.kA and k.lfr2 (if E is measured in
radians).

Proof: This is not a rigorous proof just as the other proofs I've given are not rigorous.
But the main idea is there First I want to show E.I(A. Then it will be simple to find out
what k is.

The idea is to measure excess as you measure area. Subdivide a general area into
a bunch of tiny uniform areas and add them all up. For example how might you measure
the area of an arbitrary polygon. Divide it into little tiny squares and count squares. (Of
course there can be a little area left over but not much. I can always use smaller squares to
get a better estimate if I want. And you calculus buffs out there know how to talk about
the limit of small squares.)

lIUIAMR

siTiktit
!tjm

No

Fig. 11. Dividing a polygon into small squ r measurint arot.

So do the same for excess. Divide your polygon up into little tiny uniform "squares" (again
there may be some area left over, even cracks between "squares", but again if your °squares"
are small enough--not much will be left over). Now these "squares" are all absolutely
identical so not only must they have the same area, they must have the same excess. If the
area or a small "square is a, its excess 13 e and there are N squares, then A.114a and E.Ne
and thus E-(e/a)A. If you take another polygon, you can measure Its A and E using the
same small squares and if this new polygon has M squares A-14a and Ealvie, still we have
E.(e/a)A. The same e and a so same k.e/a.
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So kaeia -VA. We still need to find what number k is for a sphere. Welk take
an ex mple. For the 3 x 1800 triangle faali2 sphere area a2er2. Ea2w (3W). kEdA
.2f12fr2 lir2.

There are a few things to be said here. The above proof that EakA applies to
any surface which is the same everywhere. It applies to a plane WA) to a sphere (kalfr2)
and to anything else which is the same everywhere By 'the same everywhere" I mean that
you can use the same small square as your little measuring stick everywhere. Certainly you
can move any little square on a sphere to any other plac:, an the sphere The same in a
plane. But suppose thal you have a sphere and drop I: s thrt one side gets flattened-
Then you just can't move a little square from the round part of your smashed sphere to the
flat part to measure some A and E. It won't fit. After all flat is flat and round is rounded.
You must use a different "tiny square' reference for measuring E and A on the sphere part
and on the flat part of your smashed sphere So eiriak is different on the two parts.

said that ka0 for a plane which is not curved at ail. A very large sphere like
the earth doesn't look very curved and indeed a little chunk of sphere like your back yard
or part of a very calm lake if your back yard is too rocky for your taste) could easily be
mistaken for a flat plane. k is very small in this situation since kal/r2 and r is big. Now a
ping pong bail is very curved compared to a large spherc hence kal/r2 is very large.

Let me make a very interesting analogy. ke/a is a 'density". It's like how much
paint you have per little chunk of surface area. In fact I'll call k the "curvature density..
and I want to think of it as analagous to "paint density." Spheres and planes have uniform
coats of "paint"thatis the curvature density is the same at all places but just like a room
which has perhaps 1 coat of paint on the wall (112 cup per sq foot) and a double coat on
the woodwork (1 cup per square foot) and no paint at all on the windows, the curvature
density may vary from place to place on a surface. The flattened sphere has no curvature
density ors the flat side and 1/r2 on the side that hasn't been smashed. A football is not too
curved in the middle, k is not too big there. But at the pointed ends a football is curved as
much as a sphere of small radius. It has a thick coat of paintI mean a large curvature
density there Between the middle and the pointed ends the 'paint' probably gets gradually
thicker and thicker.

If you want to know how much total paint, P, on some surface with constant paint
per unit area, p, the answer is simple, PapA, where A is the total arra. In the same way the
total curvature, lc of a surface of constant curvature density is just KkA. Now if the
paint density varies from place to place and you want to know how much total paint there
is, how do you do it? My answer is divide your surface into little tiny pieces. You find out
how much paint is on each little piece by multiplying paint density times area, znd then add
to find the total paint. (If you have only have two thicknesses of paint then you only have
to divide your surface into two pieces, take density times area for each one. But if you
have lots of different thicknesses then you're probably best off dividing into lots of small
areas.) In any case I imagine you believe that it you know the paint or curvature density
everywhere you can figure out how much total paint or total curvature Is on the surface.

18



Turtle Escapes the Plane 15

ES APADE: I want to look at curvature on another surfact, a cylinder.
(?; What is k on a cylinder?
k kO like a plane! Obviously a cylinder is °the same everywhere so k is Just a

single number. I'm sure you'd agree that lines running the tenth of the cylinder and
circles perpendicular to those lines arl turtle lines.

So look at the square below.

Fig. 12. Square on a cylinder.

Turtle goes forward 1 to 2 sideways 2 to 3 backwards 3 to 4 and sideways I co 1, and he
winds up not turned at all. E.0 so if E.kA then k.O.

Now why is that? The reason it's true is profound. It's that a cylinder is ju
plane rolled up. And rolling something up doesn't change any path lengths on the surface
(Demonstration: draw a path on a piece of paper, now change that path length. Well, you
can't, not without ripping the paper. So rolling doesn't change any lengths. For those who
are not easily convinced, I suggest the following. Glue a rubber band to a piece of paper
Now try to stretch the rubber band without ripping the paper. RoElsig just won't do it
(except for a tiny bit which happens because the rubber band is not on the surface but a
little above.)

If path lengths don't change on rolling, then a straight (turtle) lint drawn on a
paper which is then rolled up, remains a turtle lime. How can I be so convinced that
straight lines don't become non-turtle lines? Because having diought about .how Turtle
runs along turtle limes I know that all it depends on is that a bunch of distances areequal.
Turtle knows he is walking in a straight line when his left legs and his right legs are
moving the same distance in each step.

17
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Fig. 13. A turtle line wilh trio

Look at the above straight line and turtle tracks around it. Now imagine the paper rolled
up. Turtle could walk in the exact same tracks because no distances have changed. A
turtle line remains a turtle line when rolled up.

There's more. Angles don't change when you roll something up or unroll it
either. $ o any polygon of turtle lines on a cylinder is the just the same u a polygon in a
plane. It has zero excess.

If angles and distances don't change when you roll a paper into a cylinder, what
does? Topology! Here it is again. The only thing that changes is who is connected to
whom.

There's a rather important lesson here. When we began with planes and spheres .

it was pretty clear that ltO meant what people usually mean by saying "Oar and k not
equal to zero meant curved. But now here's a surface, the cylinder, which most people
would say is curved. You have to decide now whether you want to go on saying a cylinder
is curved as you always did, or change your definition to 'flat" means kO, and then say
that a cylinder is flat. That last may sound very strange, but mathematicians (and I) think
it's a good thing to do. Why? Because we are interested in geometry like hole many
degrees in a triangle and squares having right angles etc. We are not interested so much in
"how things look.' A plane has so much more in common with a cylinder from a geometric
point or view than a cylinder hes with a sphere, that it makes much more sense to say both
a plane and a cylinder are ila_t (rather than saying spheres and cylinders are curved). In
fact if a turtle were never allowed to go clear around the cylinder and dlicover its different
topology, he'd never be able to tell the difference between that cylinder and a plane at all!
So if you're talking to your friends who haven't read this paper you'd be better off saying
a cylinder is curved, but if you're talking to a mathematician, he'd be happier to hear you
say a cylinder is flat. If you're doing geometry ies hard to go wrong with flat cylinders.
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Let's stop and catch our breath, Take a look at what we've done. We started
with your usual garden variety straight line and things you an build out of them, like
triangles. You can ask yourself what really is a straight line and there are lots of ways to
answer that. One useful way is with a turtle walk. If a turtle walks an equal number of
steps with right and left legs and equal distance in a step, then that's a straight line. Rut
that way of characterizing a line works just as well on a sphere or a football or a cylinder
as it does on a plane. The question arises, what happens to things like triangles with these
'turtle linee for sides. The main thing is that certain angles or sums of angles change We
found that you can think of this change as being described by a new angle, the _angle
rotation which the surface performs on a turtle (as opposed to that which a turtle does
himself) in travelling around a polygon. That rotation is called the excess. Then there was
our prime theorem about excess. It is additive the excess of a polygon which is
subdivided is just the sun of the excesss of the subdivisions, That makes excess look very
much like area, and in fact for surfaces which are everywhere the same, excess is Just
proportional to area. In other surfaces the amount of excess per unit area mit:. from
place to place being greatest where the thing is curved most and le,'s where it is curved very
little. That all leads us to define curvature density, k, as the excess per unit area in a
particular place on a surface (It's k-lfrz on the rounded part of the dropped sphere and
it.0 on the flat part Don't ask what it is on the edge between rounded and flat just yet)

You may ask me why I called k.e/a the curvature density rather than excess
density, after all you compute k.e/a by meesuring how much excess 00:1111 per unit area.
Or why did I call 1(.1tA the total curvature rather than the total excess? Well, one reason
is that while k is measured using angle excess, it is really important for its "meaning as
how curved something is_ It's always good to remind yourself of what something means in
its name. There is another reason which is really quite subtle though. I know how to
compute the total curvature on any kind of surface by adding up curvature density times
area of little pieces. For example how about the following surface.

19
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Fig. 14. An arbitrary surlacc wiLh Wes.

Suppose, to be simple minded, that e/a.constant. No problem you sa I hope) if you can
measure area. But if I try to think of e/a as density of excess, then I may be tempted to
think of the total curvature as a total excess. But where is that excess? An excess always
belongs to a closed path. And I'll give you a hint, the total curvature of the above shaped
surface will not be the excess angle of any of its three edges!

Here's a different example of the same thing. What% the total curvature of a
sphere Well k-l/r2 and A-4wr2 so K-4w. That sounds like an excess angle, but where is
the path for that excess??? That's why I use the names "'curvature density" for Oa and
"total curvature" for K-kA rather than anything involving excess which may make you
start looking for a path.

Let me go back to the holes business and look a bit more carefully. Suppose you
dra ,a polygon on an arbitrary surface, and you want to measure the total curvature inside
it. So you divide it up into lots of tiny polygons and add up k times a for all the small
pieces. You're just adding up the e from each small polygon. But doesn't the additivity
theorem say that that sum is just E of the big polygon! Look at an example Suppose that
the surface we are talking about is a sphere with the polar cap cut out (say from latitude 80
on up). Take the equator as a polygon, a polygon with one side! You know it has an angle
excess of 2w (SW). But the total curvature contained in the upper part of the sphere is
(k-ela.1112) times (an area less than 2fr2). Thus the total curvature inside cannot be the
excess of the equator. Something is rotten in the state of the additivity theorem!

Let me tell you what's gone wrong so you don't have to figure it out. The
additivity theorem needs lometh2r.g that I didn't mention explicitly. It needs the polygon to
have an inside which topologically looks just like the inside of a polygon in a plane That
means no holes, no tears or other such gobbekly-gook. (Those holes and tears won't allow
the proof by adding pieces one at a time to work. That's because we can only add together _
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pieces which have exactly the topology of Figure 10. With a hole you always come to a
situation where adding on a piece does not have the Figure 10 topology. Try working out
an explicit example!)

By the way, holes aren't the only things that can mess up the additivity theorem.
The "square with handle" shown in Figure 29 has no holes, only one edge (the square), yet
the excess of the square will not be equal to the total curvature inside it. We'll learn more
about that kind (3f thing later.

Just to remind you that we're still doing mathematics I'll restate' the above
discussion in a theorem and give a proof. The reason I'm doing this extra work is because
this is really a key theorem and an example of a class of theorems which are very
important in math and physics. It's a theorem which relates something that depends on the
interior of a region to something which can be computed on the boundary of that region.
You'll see how such theorems can be important soon.

Theorem: Given a polygon on an arbitrary surface which has an interior
topologically like the interior of a polygon in a plane, the angle excess of the
polygon is equal to the total curvature of its interior.

Proof: Let's compute the total curvature In th,2 interior. To do that divide the polygon Into
lots of very tiny 'ones. Then multiply the curvature 'density in each small polygon by its
area and add up the results. But the curvature density, k, of .each tiny polygon is Just c/a
and so k times the area is e. We are really just adding up the excesses of the small
polygons. The additivity theorem now says that the thing were computing, total curvature,
is illst the excess of the large polygon. QED.

This theorem tells you exactly when E K.

Problem: Whaes the total curvature of a sphere? Previous Answer: A sphere is the same
everywhere so K-kA. 1(.1/1.2, A-41er2 so K.4r. Another Answer: to find total curvature
we can add up the curvature from any- convenient pieces. A sphere is its Northern
Hemisphere plus its Southern Hemisphere. Each of these is a polygon (the equator)
bounding a nice interior. So the curvature of each hemisphere is just the angle excess of
its boundary, the equator. We know the equator has excess 2w. That makes the curvature
for each hemisphere 2, and a total of 4w for the sphere.

VII. DENTS AND BENDS

Suppose I put a little .dent in a sphere, what happens to the total curvature? You
might guess lots of things. Perhaps it depends on the dent If it's a flattening maybe that
reduces it; if it's a pointy kind of outward dent maybe that increases it. But the answer is
noth j_aL2-ia ens totivature!!!! Watch carefully how I prove this.

Suppose you make a dent in the sphere. Let me draw a polygon around the
dent but far enough from it so that the vicinity of the polygon is unaffected by the dent.

21
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Fig.15. Making a dent in a sphere.

The total curvature of the sphere is just that inside the polygon plus that outside. The
total curvature outside the polygon cannot be affected by the dent so all we have to worry
about is the total curvature inside But that's Just equal to the excess of the polygon. And
the turtle's walk around the polygon is entirely unaffected by the dent since I drew the
polygon deliberately far enough away from the dent so that there's no bending there. (The
turtle before and after denting treks the same territory.) The excess must be the same
before and after denting, and the totpl curvature does not change at all!

I can dent, bend, smash, buckle, push, pull a sphere one small piece at a time into
any shape I choose and the total curvature remains the same The total curvature is a
topological invariant, that is, it doesn't change no matter what you do to the sphere as long
as you don't rip it or in sorne other way change its topology. I thick that is really
marvelous. So a football has total curvature 4w. A Mickey Mouse balloon, ears and all has
total curvature ihr. That sphere I dropped earlier and smashed one side flat still has total
curvature 4w. (Whoa. Suppose I smash the Southern hemisphere flat, you say. 'That part
has total curvature zero. The Northern hemisphere has only 2w. Where'd the other
curvature go? It's there! Find id)

Suppose you take a sphere and pull it to make a cylinder capped on each side
with a hemisphere.
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Fig. 16. Cylinder between two hemisp

That thing has total curvature 4w. But each cap has 2w, so that doesn't leave you anything
for the cylinder. Cylinders have total curvature zero! And since a cylinder is the same
everywhere, the curvature density must be zero everywhere. (Now we've shown that two
ways, it must be true.)

All this bending and stretching and moving curvature around makes me ask,
what kind of bending and stretching you can do to something, even if it's not a whole
sphere, and keep the same total curvature Pretty clearly I'll keep the same curvature as
long as I can put an unbent "turtle road" around the dent and isolate the rest of the surface
from the dent. (Well that may not be so obvious as you think, but it's a good working
hypothesis.) In any case it is definitely true that if the surface I'm talking about is a turtle
polygon with a nice interior (no rips or funny business) then the additivity theorem tells me
I can compute the total curvature by running a turtle along the edge. So if I leave a little
ribbon undented along the edge of the polygon as a 'turtle road,' I can be sure I haven't
changed the total curvature of a nice polygon.

Can you extend this discussion about maintaining total curvature to surfaces
which are not nice polygons but might have hales or rips in them? How about a polygon
with an interior which has a 'handler Can you give an example where you keep the edge
polygon of a surface unbent but don't maintain an entire little ribbon "turtle roae and
consequently change the total curvature?

Here's another way to keep the same total curvature. Just make a bigger or
smaller model of your surface If your surface is a polygon with a nice interior then total
curvature is just an angle (the angle excess). Angles don't change when you change just the
scale of something. Can you prove in general that the total curvature of any surface
doesn't change on making a bigger model of it? Hint: Think about how you rneuure total
curvature.
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VIII. SURGERY

How much total curvature in the surface of a donutmathematicians call It a
torus. The first thing to notice is that any donut has the same total curvature as any other.
Why? The same reason spheres, footballs and Mickey Mouse balloons have the same
curvature. I can isolate a small dent with a turtle path and show the total curvature doesn't
change. Then I can make any number and kind of small dents tc bend a donut into the
shape of another donut and the curvature stays the same at each step.

I might try to do for a donut the same as I did for a sphere. Unfortunately
donuts are not the same everywhere. Inside the hole a little chunk of surface looks like a
saddle but outside, the surface looks a lot more like just a cap on a sphere. So I can't use
K.kA.

What n do is start with something I know, a sphere, and do some surgery on it
to make a torus. If I can figure out what happens to the curvature during surgery. I win.

So take a sphere. Squash the North and South Poles inward together. Still has
curvature 4w.

Fig. 17. Squashing a sphere.

Be sure to m ke the middle where the poles nearly touch flat so that there Li no curvature
density there. Now cut a small hole out of the North and Sou h Poles.
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e

Fig. 18. Removing a amall, flat o cares e. disc.

That does not remove any of the curvature. Now just insert a little valve shape like below,
to make a donut. (Top edge of valve fits in North Pole hole, and bottom fits in South.)

i0 4i W0i-{)n 0 e 1,0tE

Fig. 19. A valve.

If you I ke, pull the center hole out until K looks like a real donut
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Fig. 20. Strich ing the v 1 hole.

The only place where curvature was added was when we glued on the little valve.
All we have to do Is figure out how much curvature is in the valve and add that to the IT
from the sphere. If I can construct the valve out of surfaces of known Curvature, that
would do it. Try this. Start with a sphere (total curvature quals 4) Put a belt around
the equator and squeeze, then straighten things out so that the North Pole bulge arid the
South Pole bulge are spheres. Total curvature lir on top bulge, 4st on the bottom bulge
and look who's in between.

Fig. 21. Barbell Sphere Valve 4 SA's'
Total Curvature: 4e 4ir Valve 4 4r

Valve -4.
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The valve! He must have curvature mint r so that this "barber still has total curvature
4. Thus the donut which we constructeu ilorn a sphere and a valve has total curvature
4f minus 4f equals zero. That does not mean a donut has curvature zero everywhere, but
just that it has as much negative curvature as positive curvature.

Now as an exercise how much curvature is in a two holed donut?

Fig. 22. A two holed donoL

IX. CONES ANOTHER LOOK AT CURVATURE

I'd like to go back and look at cones for a bit. Now a cone is mostly just rolled
up flat paper. Cut a little chunk out of the side of the cone and you can easily lay it flat.
That means that the cone is just about everywhere a zero curvature density object. But
there is an exception, the tip. The tip won't flatten out without ripping. All the curvature
in a cone must be concentrated at the tip.

How can you figure out how much curvature is in in the tip? Of courseuse a
turtle and find out how much excess is contained in some path around the tip. So that I
can easily see a turtle walking around on the cone, let me do a little trick. Cut the cone up
the side and lay it out.
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Fig. 23. Laying a cone flat.

This doesn't affect any distances, and turtle paths can easily be seen now; they are regular
straight lines (except where they crou the cut). I can also tell easily when the turtle doesn't
turn; he just keeps the same heading. So now look at a turtle path around the point. I've
drawn in the direction the turtle points along the way. (I started him at A pointing parallel
to the cut.) If I glue the cone back together it's easy to see that the excess for the now
closed path is exactly the angle 8 between the turtle at B and the cut.

Fig. 24. Turtle path with turtle headings.

But 0 Is exactly the angle of the pie cut out of the cone when laid flat. (That's just a littk
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elementary gee etry for you.) So the excess of the turtle path is just the "'pie angle."

Notice that this result, excess of path around tip equals "pie angle" does not
depend at all on how big the path around the tip is. So you can see by pushing the path
closer and closer to the tip and always getting the same excess that the curvature must be
concentrated in the tip with zero curvature evffywhere else.

What's nice about crinm, thee, that yr;ta ,:an see the angle encess. ft is in fact
the angle you need to cut from a flat piece of surface to make it into a cone.

Suppose Turtle is sitting on the apex of a cone. And then he goes a distance r
away and draws a "circle (actually a many-sided polygon) around the apex. Being
nearsighted and not too concerned with curvature he thinks r is the radius of his circle.
But of course he finds the circumference is not 2,,r but something less. (It's missing eractly
the "defect pie" from being 27r.) He'll find the same thing on a sphere. The
circumference of a circle is not 27r, but a little less. (Look at a globe and what the turtle
thinks is r.) In general positively curved things (1(4) have this property of circles having
"insufficient" circumference. Of course that really is why they are curved; there's
insufficient circumference to a circle to allow you to push it flat without ripping the thing.

How about negative curvature? It's like a cone with too much rather than
insufficient "circumference." Not a pie with a slice taken out but a pie with an extra slice.

Imeet Itee

Fig. 25. Negative curvature.

You can't push such a thing flat. Not because you re short of circumference and will rip
the cone trying to flatten, but because you have too much circumference for a given radius
and can't cram it all into a plane. Saddles have negative curvature.
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X. PROBLEMS

1 through n:(Author's prerogative) kiswer all the (interesting) questions in the text.

nI:(Back to basics) Convince yourself that an equator must be a turtle line independent of
the fact that I told you it was. Is the path of a boat with rudder aimed straight a turtle
lino? HMI about a jot pinne flying rtrairitit?

n.2:(Cutting and pasting) Is a circle around the apex of a cone a turtle line? Make yourself
a cone and claw some turtle lines on it just to see how they look. Draw in some unturning
turtle direction flAgs.

Akts cuç4(,e

Fig. 26. "Circle" around cone's

11.3:(An easy one) Show that a football has total curvature 4w without using the fact that it
is a bent sphere. Hint: Find a subdivision of a football into nice polygons of which you
know the excesseg.

n44:(But I already knew that) Using the theorem that making a bigger or smaller model
does not change total curvature, conclude that all the curvature in a cone is in its tip. Do
this by observing that a smaller model of a cone has the name curvature but is exactly a
smaller piece of the original cone.

n.5:(Some idiot poured paint in my garden hose) Sometimes it is not useful to describe the
location of paint by paint density (paint per unit area). After an when it's still in the can
you just say, "there's a gallon right there." The curvature in a cone is like that. It's all in
one place, the tip. On the other hand some crazy person might pour your paint into a
garden hose, and then the most reasonable measure would be paint per unit length (or
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hese). Can you find surface where that sort of measum is appropriate for curvature.
Hint: The edges of a cube are not an example! Convince yourself that they contain no
curvature. (By the way, where is the curvature in a cube if it is not distributed along the
edges?)

ry5:(Changing scale) Convince yourself that making a larger maelel of any surface changes
the curvature density by a factor of f2 (f is the factor of incrcase of all dimensions from
orirtnal surface to rmiel), but that the total curvature of model and surface remains the

same.

n7:(Turtlo I _ok at the following record o le track./

Fig. 27. A turtle line?

The !eft legs take the same number of steps as the right legs. And all steps are the same
length. So why isn't the track a turtle line? (It obviously isn't one.) Can you apply the
principle of "a line must be everywhere the same." Can you anlwer the question without

the principle?
Another problem along the same lines is as follows: If a line must be "everywhere

the same," then what happens to a turtle line on a smashed sphere as it goes f rom the
round part to the flat part? Can you reformulate the "a line is everywhere the same"
principle so that it really applies to turtle lines? Think of a turtle line as a procedure.

n+8:(More turtle lines revisited) Would the little turtle which we used for ping pong balls
draw the same turtle lines on a big sphere as a b'g turtle? What do you have to say about

turning a real (motors and gears) turtle loose to draw triangles in your back yard. Would
his size matter? Think about a tiny,tiny turtle crawling over each pebble in your back yard.

Does that make you nervous about what a turtle line really is? I mean you know pretty
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much what a triangle of turtle lines say 20 feet o a side should look like on your back
lawn but wouldn't a tiny tuitle get all confused by the blades of grass? Who tells you sehat
size turtle to use?

Ask a mathematician to answer this question. Ask a physicist.

na9:(Relatively speakin ) Suppose somebody told you that not only is the earth not f at, our
UNIVERSE is not flat either. What might he mean by that? Answer in terms or angles,
circumferences and radii of circles, and perhaps surface area and radii of spheres. Notice
before starting that we never had to go out of the surface of a sphere to discover it was
curved as long as we had turtle lines drawn. The same applies to the universe. (Einstein
decided that the universe was not flat. He thought it was curved in a very special way to
account for the existence of gravity. In fact he arranged things so that the funny shaped
paths objects travel under the inflaence of gravity are ust turtle paths" in our curved
universe.)

n40:(Holes) Can you find the total curvature of a surface with hoL: 4,1 in terms elf the
.excesses of the boundaries of the surface? Hint: Fill in the hole,. Now how much
curvature does the surface have? Cut them out. How much curvature did you remove?

Fig. W. Surface with two holes.

n.II:(Handles) ay doing some bending and surgery show that the addition of a hand e to a
surface always decreases the total curvature by fr.
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=ecsmralmiklimilpgg'

Fig. 29. Incerting a 'handle.'

A77

(Adding a handle 13 C9.pologically drilling two holc5 and glu ng in a bent cylinder lye) to
connect them.)

By doing surgery, show tlutt a knotted handle car be untied without canglng
total curvature.

Fig. 30. Untying a knotted "handle'

You may want to use the fact that aA unbent cylinder hu zero curvature so you can saw
out part of it without losing any curvature Alternatively you can prove and/or use the
theorem that bending any surface does not change total curvature as ling as all edges
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remain tint-lent.

Finally as an interesting point for you, consider tl e class of surfaces which can be
made from a limited amount of area (thus planes are excluded) anti have no edges. A
sphere and a torus are eramples. Now the remarkable fact is that, topologically speaking,
every such surface is just L. sphere, with handles stuck in. (A torus is topologically a sphere
with one handle.) The preceeding discussion of handles should convince you that evary
such surface has total curvature belonging to the set dr, 0 -4e, -an ...etc. and that the total
curvature teils you exactly how many handles the surface has. (Note: This little discussion
refers only to the garden variety surfaces found in ordinary three dimensional space.)

n+12:(Plato) A Platonic solid is any object which is flat almost everywhere and otherwise is
as "regular" as can be. That means its surface is made up of a number of faces which are
all identical regular polygons pasted together. (A regular polygon has all sides and angles
identical.) Each vertex of the solid 4 Aso identical to any other,i.e. has the same number of
faces ad pinta&

Show there can be nu more than five Platonic solids. (There are in fact exactly
etrahedron, octahedron, cube, icosahedron and dodecahedron.)

Platonic Solids: Tetrahedron, Ociohedron, Cuba
1couhedron, Dodecahedron.

Hint: The surface of a Platonic solid is topologically a sphere so has total curvature 4sr.
This is distributed among v verticei (no curvature along any edge) all containing the same
amount of curvature, c.

yc

Each vertex on the other hand is made up of a vertex from each of the f Is
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together thr. The vcrtez of a regular polygon has trite

Thus

Fig. 32. A vertex of a lid where the vertcee of the faces meet.

c 2e. fi

(If you don't unde stand this, go over the section on curvatu e of There's one more
formula I can write down. Each face has s sides and so

r -2th.

Let's start with 9 sided faces. imr/3, cm2r-fsr13. Now f can't be I or 2 becau
least 3 faces must meet at each vertex (that's more or less obvious). c,however can't be zero
or negative (since vc 440.So that only leaves f4,4, or 5 with v41r/c4/(2-(I3) 120-f) go
t S. or 12. These possibilities are tetrahedron, octahedron and icosahedron respectively.

Now how about 4 sided facet, squares. The only way to make a proper vertex out
of squares is with 3 of them.
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Fig.13. Cu 4, irir/2, sr/

That's a cube.
Five sided faces: s.5, 305. The only way to make a p

of such vertex angles is with 3 faces, c -2r 4r15 "r15, v.20. That's a dodechedion.
How about 6 or more sided figures? The basic problem is that 6 or more sided

regular polygons have 1200 or more at each vertex. And since you must have at least 3 rat
them at each vertex of the solid, you have at least 3609 of 'cone" at each of the solicit
vertices. That just won't work, because it makes negative curvature (see CONES again).

If you like arithmetic, try it this way: Remember c 0. But ce2r fl 2r-a0B-
2r/s). This means

and

But must

0gr(2 (1-2/s))

0<24(l-2/s)

2

2s s-2
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And finally we find that

There a

s<8.

no Platonic solids with six or more sided figures as fa es.

n«13:(A 0new0 excess) Suppose someone is unable to train his turtles to walk turtle lines any
way except with their noses pointing in the direction of walk. He gives the following
definition of the excess of a path.

excess - 21- (the turtle turning needed for the turi e to walk around the path

He also says the turtle is turning positively when he's turning "toward the interior" o
path.

Can you make sense of that?
Is it the same excess as used in this paper?
Is it more precise or more useful or easier to understand than our standard

def in ition?
To confuse the issue notice that the latitude 80° North path bounds two nice

regions so it s excess should be the total curvature of both. Yet the regions obviously have
different total curvatures. Can either or both definitions of excess explain this?

n.14:(Sewing) Does the dress of a dancer which is meant to have pleats even whe . she is
spinning (and the dress is pulled outward by 'centrifugal force") have positive or negative
curvature?

An u brella Is made by sewing together sin pieces shown roughly below.

ig. 34. A pioc of on umbrella.

37
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Where does the umbre la have negat ve curvature? How can you tell? 14int: Think about
the finished umbrella. You can tell its total- curvature from an edge ribbon (turtle road
around the outside). If you start cutting away ribbon after ribbon from the edge. does the
total curvature ever increase, indicating you cut away a strip of negative curvature? Now
go back and relate this to things you could measure on the piece in Figure 34.

When you get done with this problem you should be able to look at Figure 34
and say. "Well, looks like the total curvature is almost exactly 2w, but there is some negative
curvature from here to here."

n.15:(Broken turtle) A turtle is a bit out of adjustment and takes slightly longer (by 2%)
strides with his lett legs than with his right. (The distance between turtle's right and left
legs is the same as his right Ole stride.)

What is the radius of the circle such a turtle would walk on a plane if he does
not "turtle turn?" (Use turtle stride as your unit of distance.)

Suppose this turtle walks 25 steps and finds he has returned to his beginning
position and heading. What is the total curvature. interior to this path, presuming the
interior is topologically nice?

How about a 100 step trip as above?
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