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PROCEEDINGS OF THE FIRST CONFERENCE ON
COMPUTERIZED ADAPTIVE TESTING

FOREWORD

The plan for a conference devoted iv the state of research in the field of computerized adaptive testing grew out of a
suggestion made in late 1974 by Frederic M. Lord of Educational Testing Service. As one of the principal psychometric
architects of the latent trait theory of mental abilities, which underlies the work being clone in dos field, Ds. Lord observed
that it was now time to bring together as many as possible of the people doing this work, fur an overview of the state of the
art It was then decided that the appropriate sponsors of such a conference. were the Navy, whose Office of Naval Research
funds computerized adaptive testing projects in military and educational organizations, and the US. Civil Service
Commission. where psychologists in the Personnel Research and Development Center lave been carrying out research in the
area for a number of-years. Accordingly, representatives of these two offices met in March, 1975 to take the necessary steps
to organize the conference Members of the organizing committee were. Glenn L Bryan, Dirmtor, Office of Naval Research,
Marshall I Fair, Director, Personnel and Training Research Programs, ONR, Joseph L Young, Assistant Director, PTRP,
ONR-, William A. Gorham; Director, Personnel Research and Development Center, US. Civil Service Commission, Richard H.
McKillip, Chief, Research Section. PRDC, Item W. Urry, Frank L Schmidt, and John F. Gugel, Personnel Research
Psychologists, PRDC.

The principal objectives of the conference were defined as exchange of information. discussion of theoretical and empirical
developments, and coordination of research effort. It was decided that the conference should be invitational, because ofits
highly technical subject matter. andIhat invitations would be sent to those persons known to be interested in the subject.
Nominations were then made of researchers who should be asked to present papers and to act as discussants. From the list of
nominations, the committee selected those nominees it believed would represent the broadestrange of effort from theory to

- practical application and would also represent organizations in the public, private, and military sectors.Dz. Lord and Bert, F.
Green, Jr. of Johns Hopkins University agreed to serve as discussants.

Edmund F Fuchs was appointed conference coordinator to implement these decisions, and the conference was held -as
planned' on June 12 and 11, 1975, in Washington, D.C. Sixty -eight persons attended. Fourteen papers were read, and the
discussants, who had studied the papers in advance, commented upon them.

Informal discussion during and after the conference and replies to short questionnaire given to the attendees indicated
that the objectives were successfully met In general, attendees felt that a follow-up conference would be deniable, to pursue
further the potential of computers for the measurement of human abilities. Two announcements made at the conference
sessions concerning ways of establishing a continuous exchange of information among researchers.

Cynthia L. Clark
Editor
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OPENING REMARKS

William A. Gorham, Director. Personnel Research
and Development Center. U.S. Civil Service Commission

[(Nike to say first, a hearty velconie to you all. We are delighted to see this dislinguislied groupassembled. To lead off

the first computerized adaptive testing conference gives me a feeling of being. in the phrase Dean Acheson used as the title of

his mem:airs. "present at the creation." Some of you may remembei that the quotation is from the words of Alphonso X. a
thirteenth century king ot Spain. who said had I been present at the c.eatiun I would 11,1%e given sonicuseful hints for the

better ordering ot the universe.- Well. I think that the principal value of this gathering is that we will have an opportunity to

give useful hints fur the future of rewarch in the field of computerized adaptive testing. Our immediate purpose is the

exchange of information, and of course this of benefit to all concerned. Byt we hope the meeting will also result in the
qeation of ways of arineving some other objectives that we consider important to the future of our research. continuing
ctchange of infomiation, identification of all people working on computerized testing, continued discussion of both
theoretical and empirical developments, and the coordination of research and development effort. 1- won't elaborate upon
these object' 2s right nowby the end of the conference we will ,ill be in a better position to evaluate them and to devise
ways of accomplishing them. But I would like to say that it seems to me that our essential task is to achieve an orderly

progress of research that will avoid needless duplication of effort but that %sill at the same time allow the widest possible

Mite of effort a system that will aid but not constrain the people who use it, and that will be our common r<.sponsibilitf
The first step along the path to that achievement is the kind of exchange that will take place today and_tomoilow

look forward to hearing contributions from all of you.

4
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PAPERS PRESENTFD

GRADED RESPONSE MODEL OF THE LATENT TRAIT THEORY
AND TAILORED TESTING

INTRODUCTION

There will be no doubt-about the usefulness of the latent
trait theory in tailored testing. or the computer assisted
adaptive individual testing. This is a pilot study for actual
tailored testing, using full and partial information given by
a set of graded response items. The purpose of this study
is: I) to find out how tailored testing 'using mostly
dichotomous items can provide us with good estimates of
ability compared with non.adaptive-testing in which we use
the full information given by the graded item responses,
and 2) to find out possible branching effect of a graded
item when we use one as the initial item in tailored testing.
Actual data used in this study are: I) the empiricaliesults
of paper-and-pencil tests, and 2) a hypothetical test with
response patterns calibrated by the Monte Carlo method.
The data analyses were partly made in such a way that we
treat the data as if they were collected in actual tailored
testing situations. For this reason, we call it simulated
tailored testing. Termino:Jgy will be used in the same way(
as in. Samejinia's two Psychometrika Monographs (ctit
Samejima. 1969 and 1972).

RATIONALE

The consistency of the maximum likelihood estimator
when the likelihood function is given by the product of
identical probability density functions or probability func-
tions has been proved by Wald (Waid, 1949) and the proof
has been shown in a simplified form by Kendall and Stuart
(Kendall and Stuart. 1961, Chapter 18). In the latent trait
theory, this situation corresponds to the case where alLthe
items are equivalent, i.e.. when the sets of operating
characteristics of item response-categories are identical for
all the items, either on the dichotomous or graded response
level. This, of course, is a fairly restricted case, and, in
practice, We usually have to handle the sets of operating
characteristics which are not identical.

The proof can easily be expanded to the case in which
the probability density functions, or the probability func-
tions, are not identical, but observations increase in number

5
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following a relatively mild restriction. Let ti , ... be a
set of independent random variables having identical distri
bution with the mean p. The strong law of large numbers,
which is used in the above proof, states that for any given
positive numbers c and 6, there exists an N such that

n
prob. p L..6 for every n > N. (2-1)

1=I

Let us lie fine twu positive integers, ni and r, and cunsider n
such that

n = air, (2-2)

where r is a fixed number, however large it may be. Let
ti tI 25 i 2 , t 2 I 52 r be a set of
independent random variables, which are classified into
disjoint subsets, AI
t 2 2 , t 2 1 1 *

tl 2 ti r}. A2 = 42 I 9
Let us assume that within a-subset Aj

the r random variables are not necessarily identically
distributed, but among the subsets we can always corre,
spond, without overlapping, one random variable from each
subset Ai (j = 2,3, .. .) to each element of At which has an
identical distribution with that of the element of A- with a
specified mean. Let Pk (k = ,r) be thean of f k.

If we define random variables such that

r

(j = I 92 , )
k=1

(2-3)

then these random variables are independent and identically
distributed, with the mean such that

EGI.) = r E Pr P.
k=1

(2.4)

Thus the ,strung law of large numbers is applicable fur tt, if
nut fur k. Using this mild restriction, we can w rite



Inn prob. (log 1,140).- log L v(0)] =
can be considered as the expected steepness of the basic

(2-5) function Axv,(0) for item g. If we consider the respons
pattern information function.1140), such that

where 0 is the maximum likelihood estimator of the true
parameter 0 , which leads to the completion of the proof of
the consistency of the maximum likelihood estimator. The
same restriction enables us to prove the ultimate
uniqueness of the maximum likelihood estimator, the
asymptotic efficiency and normality fit the maximum
likelihood estimator, with the asymptotic sariance

0looL 40/ilt-i
2

(2.6)

We notice that (2-6) is the reciprocar'of the test
information function, 1(0). Thus if we can reasonably
assume that there are at most a finite number of non-iden-
tical sets of operating characteristics and the number of
items given to an examinee increases by repeating r items

-whose sets of operating characteristics are the same as these
sets, but possibly arranged in different orders, the maxi-
mum likelihood estimator ultimately distributes normally
with the true value 0 as its mean and the reciprocal of the
test information function as its variance For this reason,
when n is large, I(0) can he considered as a good measure of
accuracy-of estimation.

Let us consider the meaning of the information function
when n, is relatively small. In an extreme case where n = 1,

the test information function 1(0) equals the item informa-
tion function / (0). It has been shown tyt, as long as the
model satisfies the unique maximum , condition, like the
normal ogive or the logistic model: the item response
information function Ir (0) is positive for the entire range
of 0, except. at most' at enumerable points of 0 (cf.
Samejima. i973).` Under that condition, the basic function

A, (0) such that

itx,(0=a0 log l',g(0) (2.7)'

is strictly decreasing in 0 , and the item response informa-
tion function is given by

Ix
g
(0)= - 0-- A

g
(0)-

-a0

(2.6,

Thus the item information function, which is given .15 the

exiiectation of lx (0). such that

in
Ig(0)= Ptlx (0)1 = (0)Px (0), (2-9)

g x =0 g g

6

-7:, log Pr(0) 4,1:(0). (2.10)
x g

this IN a measure of the steepness of the left hand side of
the likelihood equation which is set equal to zero The item
response information function /A. (0), therefore, is the
Aare or contribution, of each respgnse xg to the response .
pattern V of which .vg -is an element, and the test
information function I(0), which can be written as

1(0 ); E [I v(04] = 131 v(0 )P v(0 ) (2.11),

where V means the sum over all the possible response
patterns, is the expected steepness of the left hand side of
the likeldwod,equation whirdi is set equal to zero. Since we
can interpret the steepness\ of the left hand side of the
likelihood equation as a measure of accuracy of estimation,
the test information -function can be considered as a
measure of accuracy of estimation even if n is relatively
small. Following the same logic, the item information
function 1x(0) can be considered' as the expected contribu-,
tion to the accuracy of estimation by adding item g to the
test. For this reason, the item information function will be
given an important role in 'the selection of item-and-way-
of-dichotomization in the present study of behavior of
maximum likelihood estimates in a simulated_ tailored
testing situatil-.

Suppose that we have collected testing data of n items,
each of which is scored into graded categories, 0 through
m (> I). It has been shown that the item information
function assumes much greater values for a graded item
than a dichotomous item, and the problem of attenuation
paradox is ameliorated for a graded item (cf. Samejima.
1969, Chapter 6). Thus it is obvious that, if we rescore, each
of the n items dichotomously, choosing one 'of the mg
category borders for dichotomization, then the accuracy of
estimation of 0 will be lowered. A question will be raised

here. how much accuracy of estimation can we still
maintain if we tailor a set of it optimal dichotomized items
to an individual subject, instead/ of giving a Set of n
uniformly dichotomized items to all-subjects? To find this
out, we can select an initial item out of all the n items more
or less arbitrarily, and treat it as if it had been presented
first. If we convert the initial-item to a dichotomous item
by choosing one of the mg borders for dichotomization, the
examinees' item scores for that item, which range 0 through

m will he converted to either 0 or 1, depending on.thb
category border used. Following the normal ogive model of
the graded or dichotomous response level (cf. Samejima,
1969, Chapter 9; 1972), the first ;stimate, Om, will be



obtained. If the item .score as 0, then 01 will be co. if rtes
/22s on the graded issponsc level tit 1 on the dichotomous
response level. then pi will be co. and. citherv.m. it will be a
finite,value. When 01 is negative infinity, the neat item and
de-lway of dichotomization will be chosen by searching the
least value of bx,s_ among those of the remaining (n 1)
items, and. wizen 01 is positive infinity. the greatest bxx is
searched and used. When ill as a finite value, then the item
and border vduch make the stem information function for
the dichotomized item maximum at 6 --eel is chosen and
treated assthe second presentation: In this way, the second

-estimate, 02, will be obtained, and the process will be
repeated until we get the nth estimate,

This simulated tailored testingsituation is different from
the ac.tual tailored testing situatiori, an the sense that the
selection is more linuted in later presentations of items. In
the ordinary case, we start with a large set of dichotomous
test items, and the number of items is 'educed by one after
each tailored presentation. In the present simulated tailuied
testing situation, however, the number of.items is redu..cd
by mz, after the presentation of item g, and at -t
presentation seleaion is made only out ofmh possibilities,
where h is the remaining item. This will snake the
estunatIon more inefficient in late' rnoctisea. and should be
kept in mind when obsenations are made fiat the mutts ,,f
the data analysis.

EMPIRICAL DATA AND THEIR ANALYSIS

A test of 18 items was constructed for research
purposes, each of which is to be scored in a graded way. It
consists of two subtests, figural (FGR) and numerical
(NMB), the former having -ten items and the lane' having
eight items. The initial instructions lot each subtest, and
also a hypothetical NMB item, which was made for
illustrative purposes are shown in Appendix A.

The test was administered to 446 subjects, mostly
college and summer, school students in the United States
and Canala, in March through' /lily, 1974, to get the
complete data of 406 subjects. In some sessions FGR was
presented first, and in some others NMB was presented
first. Each- session required approximately 90 minutes,
including initial instructions and five minutes' break be-
tween the two subjects. The number of, subjects in each
session varied from one to 36, but in many_cases it was less
than ten. A time limit is set for eIch item, and is between 2
and 6 minutes, except for the last NMB item for which it is
13 minutes. When there is one more minute left for each
item, the instructor calls, "One more minute to go." The
full item.score, mr, is 3 for each of the FGR items and also
for each of the first seven NMWitem and it is 7 for the
eighth NMB item. For the FGR 1 is given for the
completion of A and B, 2 for that of A through D, and 3

fin that of A through E (cf. Apputbt A). For the first
seven NMB items. the'scote is given in ac,ordance with the
numb= of cairrect answers in eadi item. and fox the Iasi
item the score is given in a sigulat.way as it is fox a FOR
item. -

It turned out that the tenth item in FGR was too
difficult fox most subjects. _and it was excluded in the
analysis of the data, to leave nine items for the sublest-
FOR. It also tumid out that frequencies for some item
score categories were -,too small, so suitable recategoriza-
tions were made to leave three item score categories for
items 4, 6, 7_ and 8 in FGR, two for item 9 in FGR, and five
for item 8 in NMB, makiirg every frequency, at least, as
large as 18. For the 17 item variables, which are assumed.
behind the item scores, the multivariate normality was
assumed, and- the poly dibric correlation coefficient (cf.

1962) was computed for each pair of the item
variables. using, Lieberman's program (Lieberman. 1969).
The pnncipal facto' solution was applied fist the resulting
couthtion mirth using the SPSS facto' analysis program

_ with iteratively eslmated communalities, to obtain eigen-
values. 5.859, 1.757, 0.902, 0.745, 0.578, etc., which
pion the existence of a strongly dominating rust principal
f actor and a moderately dominating second factor. Several
different facto' rotations were made, both orthogonal and
oblique,. for these two factois, and the results uniformly
showed the two clusters, One for each of the two subsets of
items, i.e., figural and numerical. Table 1 shows the results
of both -varimax and quartimax rotations, along with the
original factor loadings for the two principal factors. For
this reason, each subset of items, i.e., Fl through F9, for
FGR or Ni through N8 for NMB,.vtai analyzed separately,:
and the rust principal factor for the figural set of items,
whose eigenvalue turned out to be 3.029 o. 602% of the
total sum of communalities, was named the figural ability,
and the first principal factor for the numerical set, whose
eigenvalue was 4.132 or 79.5% of the total communalities,
was named the numerical ability. The item parameters for
the operating characteristics, which follow the normal ogive
model on the graded response level (cf. Samejitria, 1969 &
1972), were calculated, using the formulas:

7

and

as =Ax /n- Pg2J'A (3-1)

bxg,= 7x1p1 for xs = 1, 2, , mg ; (3-2)

where pg is the factor loading of Item g and .yzg is the
normal deviate corresponding to 'the proportion of the
subjects who got the item score set or greater... These
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TABLE 1

Factor Loads Matrices of the 'Screnteen Items for the First Two Corranon Factors for the Or*itul
hintipg Factors. After They Were Rotated Min Varimax and Quartimax Rotations.

Item
Witifont
Rotation

rust
Factor

Second
Factor

Fl .485 .371
F2 .612 .455
F3 .577 386
F4 .424 .L54
F5 .432 .216
F6 .433 .321
F7 .358 .174
F8 .381 .274
F9 .502 .106
Ni .683 -.344
N2 .750 -.165

113 .580 -.346
N4 .776 -.193
145 .524 -.410
,46 , .581 -.396
247 .826 -.133
N8 `537 .086

/ z

Wail:sax
Rotation

Quanimax
Rotation

- rust
Factor

Second
'F=or

Fast
Ftctor

Second
Factor

.106 .601- .611 .005

.143 .749 .762_ .017
.163 .675 .692. .050-
207 .400 .429 .139
.125 .503 .516 .040
.102 .529 .539 .013

..-.146
*7.113

f :370 389 .03
.440 .452 .039

.298 .418 l.461 225
:736 .208 326 .691
.664 .386 .490 .591
.662 .138 .245 .630
.702 83 .493 .630
.663. - .052 .160 .645
.696i: .102- ,215 .669
.698 .461 .570 .613'
337 A26 .476 262

parameter values are presented as Tables 2 and 3 for The
figural and the numerical abilities respectively.

Since there is no way of knowing each examinees true
ability score, the maximum likelihood estimate, 0, was
obtairied from his response pattern of graded item scores,
and was treated as the best possible estimate of his true
ability score. Also the test information function, which is
even by Equation 2-11, was calculated for each subtest, and
it turned out that the subtest NMB is far more informative
than the subtest FGR. Figure 1 -presents the test informa-
tion function of the subtest NMB. Taking the interval,

CIF

[-0.1, 1.0j, in which the values of the test information
function are no less than 7, we let the computer search the
best possible way of dichotomization of each item, to make
the test information as large as _possible for this interval,
and the resulting test information ftinction is drain by a
dashed line in Figure 1. A similar trial was made for the
least informative way of dichotomization, and the ?qualm
test information (unction is shown by a dotted line in the
samefigure. Selecting all the subjects whose 8 are located in
the above interval, the maximum likelihood estimate was
calculatid foreach of these 138 subjects, using bbth the

TABLE 2

Item Para.meters For the Subtest FGR

Item Discrimination
Index
as

I
x = 1g

Difficulty Inteces bx
g

x = 2 x = 3

1 0.8972 -1.0042 -0.3356 0.0833
2 1.31% -03468 -0.3532 -0.0465
3 1.0160 -1.2464 -0.5137 03476
4 0.5775 -0.7984 0.1730
5 0.5940 -1.1081 0.7169 0.9554
6 0.6558 -0.0337 3.1045
7 0.4293 07226988 3.2345
8 0.5644 0.7 2.5679
9 0.5483 2r ;2

8
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TABLE 3

Item Parameters For the Subtest SiMB

Item DiscriniBution
Index
al x = 1

Difficulty Indices bxz

x = 2 x = 3 x = 4

1 1.18738 -0.58387 0.02422 0.69302
127938 0.91100 121130 1.69291

3 0.90123 -1.97011 - 1.51105 -027804
4 1.44248 0.06765 032693 024445
5 0.80989 -0.99294 -0.15721 1.00489
6 0.93783 -0.48721 0.47768 131261
7 1.58894 0.02918 035303 0.72073
8 0.53530 0.14401 052872 1.90170 2.89,123

must idurmatwe and the least informauve was s diehoio
mizatiork Figure :shows the sets of these estimates plotted
aeamst 8. We ezn see a substantul diffeien,.c bciwcer, are
two scatter diagrams.

A question will be raised here. what will the scatter
diagram be if we Wm the way of dichotomization fur eadi
individual subje4.0 To answer this, a program was written
to treat the data as if these eight sterna had been presented

CO

.30 .21 00 10 2/ 10

f *use I. Test mfornution functions fur the subtest NMB, when
the graded scoring strategy is taken ( ), when the
most informative dichotomous scoring strategy is taken
for the interval [ -0.1, 1.0] ), and when the
least informative dichotomous scoring strategy is taken
for the interval [-0.1, 1.0] (-3

9
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un tailuted testing seltaing both item and way of dhloto-
nuzation, as was described at the end of the preceding
section. Using the must informative dichotomized item, N7
with the category border 2, the least informative dichoto-
mized item, N3 with the border I, and a medium
informative item, NI with the beide! 2, the resulting
si.attet diagrams are_ showniniigure_3_ We _can_see_thatin

these eases extremely scattered points are rare, corn-

A B

figure 2. Maximum likelil..tod estimates obtained by dichotomizin;
NMB items for the interval -0.1, 1.0j , plotted against 0,
those obtained from the original response patterns of
graded item scores for the 138 subjects whose dare set the
interval (-0.1, 1.01. A. Using the most informative, wzy
of dichotomization,B. Using the least informative way of
dichotomization.



A C

igure .i. Maximum liteithood estimates QS:owned by mandated tailored testing, plotted 4.amst e, those obtained from the original response
patterns of graded stem scores for the IN subjects whose a are in the interval 1-0.1. LC A. Using the most informative
dichotomised items, h7 with the category hordes 2, as the Initial item, 8.1:sin, the least informative dichotomized item N3 with the
category border I as the sattal item, C. t;surg-a dichotomized item of medium information, Ni with the category. bordet2,u3he_
initial item-

pared with Figure 2A, i.e., the case of the most informative
dichotomization for the group of these 138 subjects to say
nothing about the Lompanson with Figure 28. This can be
interpreted as a benefit obtained by tailoring an individual
test for each examinee.

A second question will be raised here; is there any
substantial gain if we use a graded test item, instead of a
dichotomous one, as the initial item in tailored testing?
Since the number of _items is as small as eight, it will be of
b enefit if the use of a graded item gives a substantial
branching effect at the beginning of tailored testing. To
find this out, using the most informative and the second
most informative graded items, N7 and N4, as the initial
items respectively, the same simulated tailored, testing
procedure was applied to obtain the maximum likelihood
estimate for each individual subject. The results are shown
as Figure 4. To observe the possible branching effect, in the
first case the total" 138 subjects were divided into two
groups, one consisting of the subjects whose grided score
for N7 are either 3 or 0, i.e., best or worst, and the other
consisting of those who obtained either 2 or 1. i.e.,
intermediate scores. We can see an obvious branching effect
by comparing Figures 4A and 4B.

Similar analysis was made for the othersubtest, FOR
and the results are presented as Appendix A_ Since the
maximum test information for FOR is a little more thin 4
compared with that of NNW which is almost 8, there is a
general tendency that diagrams are more scattered, but,
other than that, similar tendencies as in IIMB were
observed. The interval of ability taken for these observa-
tions was [ -0.8, 0.11, there are 123 subjects whose 8 are in
this interval, and the test information function for this
interval is greater than 4, with an approximate maximum of
4.251 at 0 = -0.3. The initial items used for the simulated
tailored testing are. F2 with the category border 2 (most
informative), F6 with the category border 2 (least informa-
tive), F3 with the category border 3 (medium); F2 (most
informative graded) and F3 (second most informative
graded).

Figure 5 presents two examples to illustrate how the
maximum likelihood estimate converges in the simulated
tailored testing, for NIAB, using the five different initial
items which were described in a previous paxagtaph. It may
be suggested that the number of items, eight, is not
sufficient for-all the. cases. It shOuld be recalled, however,
that in the present study the selection of item-and-way-of-

f
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B C

I trare 4. Maxunnen toxishuud estimates obtuned sunithica la doled zesunx, plotted ags.ms 1.)buincd :torn the otagnal response
patterns 01 graded item sores, lot the sibjects 41101O e are in the mufti! 1.01_ A_ Using the most informatne graded item,
N7, as the instill item. fox subjects whose item scums for N7 are extreme, Le., either f) of 3, B. Using the most Informative graded
item. N7, 4/ the initial item, lot subjects whose item scares fot N7 .ire intermediate, i.e., whet 1 or 2, C. Using the second most
informative ended item. N4, as the initial it=

diAotorruzatiun is more and more limited in later presenta-
tions ofitems. And yet each dichotomized response pattern
as a whole is a sektion out of the 8,748 posailities.

td

14
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0.4

0.3

MONTE CARLO DATA AND THEIR ANALYSIS

To make further.-observations in the present simulated
tailored testing, a hypothetical test of 24 items was used,

wore 5. Iwo examples to show how the maximum likelihood estimates converge in the simulated tailored testing. Initial items are N7. most
informative graded item ( ), N4, second most informative graded item ( ), N7-2, most informative dichotomized item
( ), N I -2, medium informative dichotomized item (- -), and N3-1, least informative dichotomized item (- ).

17
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following, the norm3 tr9ve model of graded response kid.
The item parameters were given within the tan= of those
of Ma. so that this hypothetical test can be corindezed es
an expansion of 1414B in a rough acme of the wind. Lille 4
presents the item parameters of these twenty -tout hypo-
theucal twins. which have uniformly foot item score
categories each. The test information function wins obtained
following the formula (2-11), and is presented as Table 5.
As we can see from this table. this hypothetical test is most
informative around 0 = -03. For this reason. one hundred
response patterns lot these twenty-lout test items were
czubrated by Montt Carlo method on tors lei e! of ability.
and were used as these of one hundred hypothetical
subjects. Figure t, presents the cumulative frequency tatic
of e lot these response patterns. in Lumpansua with the
ninmal distribution function with p = 0.3 and o = 0.2128.
i.e.. laa 2rf. .081. We can see that these two clines are close.
and this indicates that the maximum likelihood estimate
with these pazametei values alic.ady distribute almost nor
Bully for the 24 items. As before. the most informative and
least informative dichotomizations of the items were
searched, and the resulting maximum Ilellood estimates
were computed fin each of these one handled hypothetical
subjects. Figures 7A and 7B present the cumulative Ire
quency ratios of these estimates tosethet with the normal
distribution functions with p - 0.3 and the values of the
standard deviation obtained by lAfir-7)-73), which turned
out to be 0.2407 and 03685 respectively. Since m the

present situation the ability level is fixed at 03. the
difference between the Luz standard deviations. 02128 and
02407, should be interpreted as the minimized reduction
...rased by adopting the diilotomous scoring strategy, and
the one between 02407 and 03685 should be attributed to
the two different ways of dichotoCnization. It is also
noticed that the discrepancies between the normal curve
and the cumulative frequency ratio are more conspicuous in
these two dichotomized cases compared with Figure 6.

Figure 8 shows the same cumulative frequency ratios
compared with N(- 03,.02128). for the maximum like
blood estimates obtained by the simulated tailored
with the five different initial items. (23 2). the most
informative dichotomous. (3 3). the least informative di-
chonamuus. (14-3), a medium informative dichotomous,
(24), the most informative graded, and (23), the second
most infc,ioative graded, respectively. The mean square
errors for these five cases are 0.064, 0.068. 0.055. 0.056
and 0.058 respectively. If we take the square roots of these
values, they are 0.253, 0260, 0:234, 0.236 and 0240,
which are comparable to 02407, Le., Ify fr(1-0.-ji for the
result of the most informative dichotomization case. This is
understandable because in that case the dichotomization
was, indeed, tailored for the level of 0 = 03. To find out
about the branching effect of the initial graded items, four
more ...arcs were added using four different dichotomized
initial items of various information levels, and the results
were arranged in Table 6 in the order of information levels

TABLE 4

Item Parameters of 24 Hypothetical Test Items

Item Discrimination
index
as x = 1

Difficulty Indices bx:

x = x = 3

0.50000
0.50000

-0.70000
-2_00000

-0.50000
-0.80000

0.20000
- 020000

3 0.60000 0.30000 0.80000 2.10000
4 0.60000 0.0 0.40000 1.30000
5 0.70000 -1.30000 -0.20000 0.40000
6 0.70000 0.20000 0.90000 2.00000
7 020000 -0.50000 020000 1.90000
8 0.80000 -1.10000 -0.90000 -0.10000
9 0.90000 -0.20000 0.40000 0.60000

10 0.90000 -1.60000 -1.00000 020000
11 1.00000 -1.80000 -1.10000 -0.60000
12 1.00000 0.10000 1.40000 1.60000
13 1.10000 -0.10040 0.80000 1.10000
14 1.10000 -1.00000 -030000 0.0
IS 1.20000 - 120000 -0.20000 020000
16 1/0000 -1.70000 -020000 -0.50000
17 1.30000 -0.30000 0.50000 IA 0000
18 1.30000 -0.60000 0.40000 0.80000
19 1.40000- -0.90000 0.30000 1.10000

2P 1.40000 -0.40000 -0.10000 0.60000
21 1.50000 -1.90000 -1.60000 -1.20000
22 1.50000 -1.50000 -0.40000 0.90000
23 1.60000 -0.80000 -0.40000 020000
24 1.60000 -1.40000 -0.60000 0.40000
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of initial items. We can see from-this table that, with the
exception of (14-3), the values of the mean square errors
are greater for the cases in which we used dichotomized
items as the initial item, than those for the cases in which
graded items were used, although the differences are small.
To make a more detailed observation. two cases, in which
(24) and (14-3) were used as the initial item respectively,
were picked up, and these values were calculated for the
11 taXIMUM likelihood estimates when 4, 6, 8, 12. 16,20 and
24 items were used respectively in the simulated tailored
testing. The result is presented as Figure 9. in the form of
the comparison of the corresponding square roots of the
mean square errors. We can see that the branching effect is
conspicuous for the cases of fewer items, namely, 4, 6 and
8, and disappears with the addition of more items. This can
be interpreted that when we add more items the effect of
the initial item becomes negligibly small. Note, however,
that in the present simulated tailored testing situation` the
selection of item-and-way-of-dichotomization becomes
more and more limited in later presentation of items.

TABLES

Test information Function of the Hypothetical Test of
24 Grade Items

Ability - Information
Function

0 1(6)

-1.5 16.317
-1.4 17.250
-1.3 18.119
-12 18.915
-1.1 19.628
-1.0 20.252
-0.9 _20.784
-0.8 21.220
-0.7 2L562
-0.6 21.813
-0.5 21.979
-0.4 22.065
-co 22.081
-02 22.034
-0.1 21.930
0.0 21.776
0.1 21.574
0.2 21.326
0.3 21.030
0.4 20.681
0.5 20.273
0.6 19.800
0.7 19.256
0.8 18.636
0.9 - 17.938
1.0 17.164
1.1 16.318
1.2 15.409
1.3 14.449
1.4 13.452
1.5 12.435

f spirt. 6. CurnulaUrt frcquerma ratao of =MUM= lAdihuod esti-
mates obtained from the original response patterns of
graded item scores for the 100 hypothetical subjects
( ) and the normal distribution function (-)
with the parametersa = -0.3 and a = 02128

A

Figure 7.

13

9

B

Cumulative frequency ratio of maximum likelihood esti-
mates obtained from converted response patterns:
A. Using most informatiie dichotomization of items at
8 = -0.3, for the 100 hypothesized subjects (-) and
the normal distribution with the parameters p = -0.3 and
o = 0.2407 (- -), IL Using least informative dichoto-
mization of items at 8 = -0.3 for the 100 hypothetical
subjects (L---),nd the normal distribution function. .
with the pirameters p = -0.3 and a = 0.3685 (- - -).



A B

D B

l-ware 8. Lumulatoe trequeny gJUu so inammum likehhood emanates obtained by simulated tailored testing, fox the 190 hypothetical
subjects t- and the normal distribution with the parameters p = 0.3 and o = 0.2128 ( ). A. with the most informative
dichotomized item (23-21 as the intial item. B. with the least inforrnatoe chshotomized item (33), as the initial item, C with a
medium informative dichotomized item (14-3) as the canal item, D. with the most infonnatiepaded item (24) as the initial item.
E. with the second most informative graded item (23) as the initial item.

TABLE 6

Mean Square Tarots and Other Indices for the Variability of the Nlasirnum Oxblood Estimates in
the Simulated Tailored Testing Using Different Initial Items in NMB.

Initial
Item

Is (4.3)
Mean
Square
Error

NIMSE

3 - 3
5 -1

10 -3

0.104
0.260
0.479

0.068
0.069
0.060

0.260
0.263
0.245

Dichoto- 14 - 3 0.740 0.055 0.234
moos 18 -1 1.018 0.066 0.258

23 -1 1.287 0.063 0.250
23 -2 1.615 0.064 0.253

Graded 23 2.074 0.058 0.240
24 2.127 0.056 0.236

14

20

1/MSE

14.767
14.134
16.723
18.281
15.051
15.938
15.5g9

17.332
17.280
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Figure 9. Comparison of the square roots of the mean square errors,
of the maximum likelihood estimates in simulated tai-
lored testing with the graded item (24). plotted with x
and the dichotomized item (14-3y. plotted with o, as the
initial item. calculated for 4. 6. 8. 12. 16. 20. and 24
items.

DISCUSSION AND CONCLUSION

Through the observations of two types of data, it has
been made clear that tailored testing, in which we use
dichotomous test -items only. can provide us with much
more accurate estimation of ability than non-adaptive
testing, and that accuracy is almost comparable with that of

graded response level. We also have observed that the
branching effect-by using a graded item as the initial item is
conspicuous when we use a relatively small number of
items. When the number of items increases in tailored
testing, however, the effect of the initial branching, or the
amount of information given by the initial item, seems to
have a less effect on the final estimation. On this point, we
need a further study by using a larger number of items in
the original set of items. and also an item with more score
categories as the initial item.
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APPENDIX A

1. INSTRUCTIONS FORTHE FIGUILAL SUBTEST

There are 10 items in this part of the test. In each stem, nine
(*tires are arranged .O.1 three rows and that columns. two of which
are missing, as shown below. These figures are arranged according to
some rule, and you must find that rule by observing the seven
figures shown in the array.

Below this array. twelve figures are given. and you are to choose the
right figures for the missing ones in the above array, A and B.

Next, we add an additional column as shown above. You are to
choose the right figures for C and D out of the-same twelve choices.

After you have followed the above two steps. then you are to
draw the right figure for E in the additional column. This figure may
or may not be one of the twelve choices.

Don't turn the page until you arc
told to do so by the instructor.

2. INSTRUCTIONS FOR THE NUMERICAL SUBTEST

There arc 8 -items in this part of the test. In each item, a specific
rule is given, and you are to read the instruction carefully so that
you will Understand and be able to handle the rule. They are
numerical items, and in all of them you must use calculations.

In each item, be sure that you understand the rule correctly. If
you have time. check the calculations, and be sure that the (positive
or negative) sign attached to your answer to each problem is a
correct one. Try tc solve each problem correctly and as quickly as
possible.

Once you have started a calculation, continue the calculation
until you get the answer.-Don't leave it unfinished and start another.

Are there any questions?

Don't turn the pap until you are
told to do so by the instructor,

3. FTEM 1. NUMERICAL SUBTEST

The tollosim square array of numbers is named L
ii 1 2

41E _3 4

The first column of E.' 11. is filled c,. and its second column,
1 2 I is

Each number in a column is ,Q.UCCi an element. In the above
example. 1 and 3 are elements of the column ca. and 2 and 4 are
elements of the column e2.

The operator ft indicates that you-should subtract from each
element of the column which comes next to the operator the
corresponding element of the column Which follows, square the
resulting value, and then multiply all the results.

Example: Ste, = (1 2)' x13 4): = 1

Consider the above example(s), and be sure that you understand
the operation.

°noising this rule, compute each of the three numbers shun
on the next page for the square array A. which is given below.

3 5 -2
A = -1 9 -7

-1 8

fla, a,

(ii) 51a,

(iii) fla, as =

If you have already finished the above, confirm that you hare
used the operation correctly. Also check the calculations, and be
sure that the tpositin or negative) sign attached to your answer to
each problem is correct.

Don't turn the page until you arc
told to do so by the instructor.

22
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INCOMPLETE ORDERS AND COMPUTERIZED TESTING

A computerized adaptive testing system has three main
aspects. and consequently it can differ in three main ways
from a noncomputer system. First. there is the test item.
Full utilization of a computer allows an enormous broaden.
ing in the type of problem that can be presented to the
individual. Typing out objective questions to him is the .
most obvious thing to do. but it is far from the only thing.
and is perhaps far from the best thing. There is perhaps
even a greater extension of the possible types of examinee
response. as we can see not only from what is described
here but by borrowing from AlC techniques. Moreover, we

, can easily incorporate speed of response Into the sLoring,
we can determine not only whether the person can give the
answer. but whether he can give it id ten seconds. But the
greatest difference between computerized adaptive testing
and ordinary testing is in the extent and nature of the
decision process that goes on between items.

It is with the latter aspect that I will be concerned Isere
today: the approach suggested here is quite different
i.unixptually than others such as the branehing and the
Bayesian methods, su the paper will trait Its origins. Tests
try to order persons, so we will first consider the bask.
nature of orders :rad then how orders i.an be i.onstrisi.ted
from incomplete data. Testing will be shown to be a type of
ordering process which utilizes ini.omplete data...umputel
Iced adaptive testing develops orders from highly mum-
plete data. We will give a simple example of how a
computer program based on these ..uni.epts works. Finally.
some of the ways in wIni.h these uneepts form the basis
for a test theory will be suggested.

Our approach to a model fin umputerized testing has
Its origins In quite a different area. t ornputer-Interathve
judgment methods. In order to demonstrate the relation
between' testing and ordering. let us i.onsidei fur a moment
a simple order. A simple order is defined, and please let me
use quite.infurmal language, as a set whose members display
a relation between elements wind) demonstrates asym-
metry and transitivity. Now what that means is that, If we
have a matrix whit.lr re cards the existence uf the relation as
a 1, or its nun - existence as a 0, between a pair uf elements
of the set, the matrix must display the triangulai form
shown in the first figure. Paired.comparisons judgments of
some stimulus property of course often display a close
approximation to this form. For example, suppose we used
the five indicated letters, presented them in,pairs, and 4sked
a child which came first in the alphabet. Then we record-his
judgment as a I if he responds that the row letter comes
before the column letter and a 0 if Ile says the reverse. If he

' Preparation of this paper-was supported in part by th Offke of
Naval Research, Contract No. 150-373..
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vwxyz
I 1 1

w 0 1 1 1x00-II
y 9 0 0 - I
z 0 0 0 0 -

1 G. r. t. adra..en..) mow. for ..iy..!rnp!, ordcr shossinr,
transitivity and asymmetry.

knew the order of the alphabet, then the data would be as
shown.

An interesting property of such paired comparisons
matrices is that they need not be complete. Suppose we do

not ask about all pairs, but do assume that the data is
asymmetric and transitive. Then we may be able to
omplete the matrix by performing matrix algebra on the
elements which we du have. This is illustrated in the second
set of figures. The Willard one shows an incomplete
doiluisaii..c matrix, one which Incidentally would typically
be found by the kind of interactive ordering program we
developed, and the right one shows that-matrix multiplied
by itself. We see that in this instance the square of the
obtained matrix shows exactly the same triangular-form as
the complete matrix in Fig. 1. Actually, the data matrix
could be even mum incomplete than this one and still yield
a umplete order. The necessary part of the matrix- is the
supiadiagunal drain of ones which corresponds to the
Judgments i.onarning the letters which are next to each
who in the alphabet. As long as we have these, then the
matrix can be completed, we just have to raise_ iLt.o.a high
enough power. Of course, when dealing with likan
Judgments with limit ineunsistency, we have to buileir1/4_,...
sonic safeguards and redundancy in the proc.ess_

The reason for going through that exercise'is that the
model we ',lupine fur umputerized testing is exactly the

v w x.. y z
I 1 1

w 0 I 1

x 0 1

y 0 0 I

z 0 0 0

v

w
x 0
y 0

z 0 0

x- y z vwxyz
1 1 v 1 1 1 2

w 0
I x 0' 0 1 I

y 0 0 0 1
z 0 0 0 0

fig. 2. Suffident adiau.ny matrix At, Its square Ai and the sum At
+ Ai , showing that the latter has the same qualitative form as A.



same, %%'e say out tire- 0141..4 pe.ple_ In what selLse rs that
N.0' In What sense L. the :elation bctaccu people one which
is asymmetric and transitive' it is supcificialb .41;ious that
Il eN.ainisices are Liver; diffetent s,olt,N. then the relation
between the scores is as-1, nunetric and transitise. That is just

properly .4 numhas. in fast Ilic one AltiJa N31,:,1 as a
model for ordering in the thst place But it is a port:ay
which is just as true of the testees- Lip-cdes. or then social
seedily numbers. or their football joss:), rionthets. as 11, is
of their test scores, What is it about test scores that makes
the order empirically meaningful failler than arbitialy

Test scores start out from binary relations between
people and items_ flow is it that we are allowed to derive
from such relations. numbers which give its an order of
people. in the sante sense that we can assign numbeis to
stimuli that give their order? Where is the asy mmettic.
transitive relation?

A long time ago. Louis Guttman gate pan of the answer
(Guttman. 194D. Ile said that items order persons if the
score malnX displays the form we have sonic to ...dl the
Guttman scale. but should more fairly call the Gunman
Loevinger scale since she invented an ahnost identical
concept and developed it in a superior way (Loevinger.
1'747) But Guttman's alms er is not completely .satisfaciciry
to the formalist_ The score matrix is rectangular; not
square; item responses are defined as right or wrong by fiat
and have no chance to he other then asynimelns. Thu
transitivity of a Gunman scale is indirect.

The most important part of the answer to the questions
concerning the legitimacy of helm as orderers of persons'
lies in the realization that the ore in.nriX is only part of
larger matrix of relations_ The Mations matrix is really
items -plus persons by items-plus-persons. not just nunis by
persons. We think of the resporse of a person to an item as
indicating a dominance relation between the person and
the item. Habitually:we put a one in the score matrix if the
person gets the item right and a zero if he gets it wrong. But
that is because. being people. we identit'l v. tilt the persons
dimension of the matrix_ If instead we were items. in some
through the looking glass world, we would use the opposite
notation. giving the item a one if the person gat it wrong
and a tern if the dumb thing allowed itself to be gotten
right by the person.

J b 1 2 3 a b I / 3

a 0 I I a 0 I

b i---771 I b 0 0
1 1 1 1 0 1 2

2 0 1 2 0 0 1

3 0 0 3 0 0 0

fig_ 3. Complete (showing rights and wrongsi ',ore matrix S for two
items a, b and three person.. I. 2. 3 for ....31.1hk data. and SI
showing itemItem and personperson dominance.
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Taking the point of view Rif rienbet items nor persons
but rather of rest theorists. we must take a less chauvinistic
starme and play fail in our scorekeepail.t. The score mains, is
expanded In the expanded matrix. we ps,c a one to the
winner of the contit between item and person and a ICU*
to the loser, regardless of which is which. Such a matrix Is
titer, at the left of Figue 3. In lire lower left conic! of the
matrix we have the usual binary score Hullo, whlt,11 shows
Mush items were defealed by which persons. The matrix
here is of the Guttman form. In the upper sight we have
this same matrix hum the teeth point of view, giving a one
each time an item defeats a person. Since the score matrix
is complete here. the upper right mains is the transposed
complement of tire; lower right one.

There ate two other sections of this expanded score
matrix and these are left blank. These secnons correspond
to the iteniten and person-person relations, which are not
observed directly. In the case of pair wise judgments. we
found above that an incompleternamx could be completed
by squaring the abscised matrix. Let us do that an the
present case. The result is shown in the nght side of the
figure. It is two triangular matncez. one lot items and one
for persons. Thus. treated in this formal fashion, we see
that a GL scale does vise two asynnnettic transitive
relations. onefot items and one lot persons. We will return
to these two order matrices in another context.

We .an put the two orders together. Tins is illustrated in
Figure 4;the matrix on the lilt is simply the suns of the
two matrices from Figure 3. That rs S t Sa. The matnx on
the right of Figure 4 contains exactly the same elements.
but they hate been rearranged. that is. pre- and pristinulti-
plied by a permutation matrix P. Imo the order which is
implied here. a jam order of persons and items. which is
seen to in fact be a simple order because of the triangular.
i.e.. asymmetric ,and transitive form of the matrix. This
answers those querulous questions about where the order as
in the case of test data. If the data are a (Amman scale.
then the score matrix. expanded and operated an in the
manner indicated. does indeed define an order in the rather
strict sense of the existence of a relation on a set, a relation
which is transitive and asymmetric.

Let me say that for illustrative purposes here the matrix
alterations have been carried out in ordinary arithmetic.

a b I 2 3 1 a 2 b 3a01011 1 1 1 I 2b00001 a0-11 1
1 1 1 0 I 2 2 0 9 1 1

2 0 1 0 0 1 b 0 ,0 0 1

3 0 0 0 0 0 3 0 0 0 0

s +s2 +

I ig. 4. 5 + S2 in its ongmat segregated form deft; and reordered
form to the latter showing qualitative asymmetry and transi-
tivity like a simple order.
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Because the relations J/C 1,,W..441 rather than .iiithrne.ic. we
should hale been doing the matrix inulhrlicatwn with
Boolean antlimeuz. The only thing that 4:11J11;eN in tlie
present context rs that all numbers greater tlian one in the
matrices should he vet equal to rit.

So tar. we hate not teierred directly ttl an thmi: fi.r,j1v
to do with -computentzd ashipme testing but the
reletance of the aboie theorenc.il sketch is quite ding!.
Just as the score matrix Itsdi is a kind or incompkte
matrix of dominance relations that Lail s:ornrIeted ht
the 114'weling eralion. an even more incomplete set ot
relations is all that is really neeessr:s LI define the joint

14

0

1

0

0

0.

pet son-) der. 11 we happen to ask inch per \ t-n
the harde.t Twin he :Jr] answer correall, and the za_gest
item he would miss. those 21, relations zetu:Aly. 2:t-:.! Is

enourii are Id define the complete joint order of
items and persons. This subset of relations can quite imply
be shown to i.orrespond to the relations between adpeent
elements in the order. the supradiagonal string of ones we
saw in the incomplete paired comparisons matrix of Fig 2
In fact. if 11,0k at the righthand matrix of Figure 4. the
string of ones just above the diagonal there denotes exactly
this set of item-person relations. In the r)75 Butlain atlide

1 ir51 I illustrated the way in %Ouch stair a set of

4 S d

1 0' 0* V" a 0 1 1"

I 'r b 0 0 1 1* I'

0
. ,

0 1 0.. 0 0 I I'

0 1 0 0 1

1 1 1
1 1 1 1 0'

2 0 1
2 0 1 1'

3 0 1 1 3 0' 0 1 1

4 0 1 4 0" 0' 0 1

S 0 3 0' 0

A(A + 3)121

.1 1 4 b d 1 3 4;

0 _1 1 1
a 0 1 1* 1' 1*

b 0 0 1 1
0 0 1 1' 1'

0 0 0 1
0 0 0 1 1*

cl 0 4 0 0 d 0 0 0 0 1

1 0 1 1 1 0 1 1 1 1' 1'

0 0 1 1 1 2 0 1 1 1"

3 0 0 0 0 1 1 3 0' 0 1 1 0

4 0 0 0 0 1 4 0" 0" 0 1

5 0 0 0 0 0 5 0" 0' 0' 0

MA +1)131 MA +1)" )

1 kr. 5. Dow -loon of tompletron by powering- Starred entnei arc derived by implication,
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relations could be used to re...onstrou the complete score
matrix. That process is reprochiced here in figure S where
the matrix powering is carried out.

Unfortunately. there is a problem, we do nut know the
right items 13 ask a person tuml after wehave asked than_
The routine by which the computer searches for the right
items to ask is one of the two main aspects of the
processing par? of computerized adaptht testing, the other
main aspect being how it damps out error. In our research.

--what we are doing is carrying over some prinwiples which
we have presiously found to be effective in the paired
comparisons ordering OW.

The next set of figures illustrate the operation of a
prototype program of the kind we have in mind. written by
Jerry Kehoe. First, the program asks each person tuo items
at random. The entries in the lefthand matrix of Figure 6
show the results of these preliminary rounds and the
rialithand one shows the powered matrix which contains
the implications of these responses as well as the responses
themselves. So far these are very few. The computer then
decides which items to ask which persons next by seeing
which are closest together in the order so far determined.
This process of presentation, powering, and selection would
go on for several rounds. The next figure shows the sure
matrix for an intermediate round on the left and the
implications on the right. Now the powering prowess
having som.. effect. The next one shows the final swine
matrix on the left and the implications on the right where

items persons

a b c d c

b

d

e

1 2 3 4 5 6

we .ce that nut only has the swrc maim been completed
by tzipliatton but dicre ate now complete simple 'Alders of
persons and items.

WC incidentally doilyi have a name fur this method_ We
world hike to E c Extended Trarrsurvity System, or
ETS, but those initials have been preempted.

You can see that the savings are not very great in this -
instance. mai person must be asked must of the items. Thus
impression is pnmanly a funaron- of the size of the data
matrix here. The savings are much, much greater with large
matrices. An upper bound for the number of nem-person
relations that must be observed for it persodkand x items is
logAn * xY.. Fur 200 persons and 200 items this number is
about 2886. That means we would need to ask each person
only IS items to get thecompkte order, moreover.. the
upper bound z.quite a generous one in the presenunstanue,
a couple fewer might well be sufficient.

Thus the method will work if the responses form a
Guttman scale. It ;.- irks surpnsrrrgly quickly and requires
surprisingly little space in The comp'u'ter, pnmardy because
the programs take advantage of the binary nature of the
data to store responses as single bitsand then to any out
many of the 4.akulations on whole words. that is, 32
elements at a time are processed in raising the mat to the
next power.

It is really no surprise that it works with error! data.
The crucial questions are how well will it work w h the
kind of inconsistent items and persons that the ;cal

item

a bc de 1

a

0 b 0

0 0 r c 0 0

1 1 1

2 1 1

3 1 1

4

S 1 1

6 0 0 ,

1

0 0

0

0

1

1

1

0

Persons

3 4 5 6

,1

0

0 1

0 0 1

1 1 1 1-

2 1 1

3 1 1

4 0 1

5 1 1

6 0 0 0
_

kig 6, (Left) initial ;tcm n...punscs manna S, thuwalz, butte pawn aka's flArDACI And item Joinguiru.r.s.Bliank crane* ado-ate mrn-pcnors pans
not yet observed, (Risht)S 4- S2, showing the implied item-item and penal-person dominances. z
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gums

a b c d e f Z 1 - , i 4 5 6 a b c d c f Z I 2 13 4 5 6

a 1 1 2 1 1 1. 1. I. 1 1. 1. 1. 1

b 0 1 1 b 0 1 1 0 1 1

c 0 0 1 . c 0 ,1 1 1' 0 0 1 1 1"
d 0 d 1 I" 1' 0 1 14. is

O 0 i c o- 0 0 1 1 or 43 0 1 1*

f 0 0 f 0' 0 0' 0' 0 0' 0' 0 0' 0 1

g 0 0 1 g 0' 0 0' 0' 0 0' 0' 0 0' 0

1 0 1 1

2 1 1 1

3 0 1 1

4 0 0 1

5 0 1 1

6 0 0 0

1 0 1 1 1 Ise:4z 1 1 1' 1

2 1 1 1 1' 1' 1 1 1' 1'

3 0' 0 1 1 0 0

4 0' 0 0 1 1" 1" 0 0 1 1*

5 0' CP 0' 0 1 1 0' 0'

6 0 0 0* 17 0' 0 fl! 0

1

Frig, 7. (Left) intermediate item response mama S. tRighii S s 561 * Sr° * s(1:'.. Starred 01 entries are derived by S.-Ailed implication.
le.. from S(s). S(' ), or S(s ).

b

f

bc d c f b 1 2 3 4 5 6 a bride fg123456
1 1 1 a 11111°1111"11"1
0 1 1 1 1 b 0 1 1 1 1 1 0 1 1 1 1' 1

0 1 1 c 0 0 1 1 1 1 0 0 1 1 1" l'
0 0 0 1 d 0 0 0 1 1 l' 0 0 0 1 1" 1"

O 0 0 1 e 0 0 0 0 110'00011".-...

O 0 '1 f 0' 0 0 0' 0 1 .....0* 0' 0 0' 0 1
-----..--

O 0 0 g 0 0 0 Os 0 0 0' 0' 0 0" 0 0

1 0 1 1 1 1 0 1 1 1 1 1° 1 1 1 1 1* 1

2 0 0 1 1 1 2 0 0 1 1 1 1 I" 0 1 1 1 1'

3 0 --0, 1 1 1 1 3 0' 0 0 1 1 1 1 0 b 1 1 1

4 0- 0 0 1 4 0' 0 0 0 1 1" 1" 0 0 0 1 1'

5 0 1 1 5 0' 0' 0' 0'. it 1 1 0' 0 0 0 1

6 0 0 0 1 6 0 0 0' 0' 0' 0 1' 0- 0' 0 0! 0

Fig. 8. (Left)_Fnal response matrix S. showing 16 of the 42,itemlierson combinations which were used. (Right)S 4. S6/ # S( 1 . 5(4 + S6)
with starred (") elements indicating those entered by indirect implication.
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faces us with. and what advantages does it offer over other
approaches' The ziswer lu the first qoestion must await
the opportunLy to ten rat first with .2t1 1114 stochastu. dala
and then with ,-,21 Ana. iicnv well at will do in practice
:dative to the other approadies that have been reported
and which we art hung about during these two days must
await even further data.

A priori, the methodology here appears to offer at least
one potential advantage, the avoidance of extensive pre
testing to determine item duractensua. Such pretesting
presented problems, even to paper and penal testing. There
was the security proolem, the question of comps:bilk of
populations, the differing contexts, the expense itself. In
the computerized situation, these all become inure aunt.
The present process avoids pretesting since items and
persons are processed in parallel.

This method doss require a substantial number of
persons being tested simultaneously, however, but this is
only initially true. Once a substantial- et of person-item
relations has been built up, additional pefsons. can be
processed individually as they appeal, being fit into the
previously determined order by means of their responses to
the items. Under that mode of operation the amount of
additions] computer processing would be quite small.

It also seems to me thit this way of thinking about
tailored testing makes it easier to think of testing as
integrated into a total personnel process. After all, it could
be that the item selected for a person at a given point could
be something Re, "You have been assigned to welders'
school. Come back when you have completed the course."
The "item in that case is suuessful completion of the
COWS&

But tome, the most promising aspect of this method is
theoretical. It furnishes the basis for a test theory which I
think is more appropriate to the computerized testing
context. If what is wanted from testing is an order of

persons. sal norms after all just tell the individuals'
pertons relative Ls, some ben .mark persons, then surely
we want the circlet to be consistent and complete_ Hoc do
you tell if the order is consistent and complete You look
at the person person relation matrix and see if it is
asyrnmetzic and transitive. It is easy to think of indium
svhich would reflect the degree- to which that matrix his
those properties. Indeed, I had intended to spend m$ time
here today talking about them, but the results of our study
are not quite ready for presentation yet. Such indices
furnish analogues of the familiar Kneel Rkhardson for
amiss which are causal to basic. test theory, and m fact are
related to them in the case of complete data. They have the
additional property of being readily generalizable to the
incomplete or computer-adaptive case. Thus if we go about
computerized testing in the way described here, we can at
least hive appropriate evaluations] indices built into the
system. Other tailored testing schemes rely on external
information from traditional modes of testing to get their
biserial correlations, ACM -difficulties, reliahilities, and so
on. Here, analogies of these indices will come out of the
interactiveprocessitself.

cm. N. Complete ceders from incomplete data: Interactive order-
ing and tailored testing. Prycholosical EtuHetin, 1975X,
289-302: -

Gunman, L The quantification of a dais of attributes. A theory
and method of scale construction. In P. Horst (Ed.), The
prediction of personal ad-jut:mart. New York: Social Science
Research Council, 1941.

Lot-ringer, J. A systematic approach to the construction and
evaluation of Tests of Ability_ Plycholopcalitfonogrepiu, 1947,
61(4. Wholp No. 285).
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ADAPTIVE TESTING RESEARCH AT MINNESOTA
OVERVIEW, RECENT RESULTS AND FUTURE DIRECTIONS

Adaptive Testing and Error Reduction

The general objective of out research program on
adaptive testing is to view A from, a penpectne which
identifies several sources of potential error in test scores,
and to study adaptive testing as a means fur reelihang these
errors of measurement.

The first general source .of error that we have been
concerned with lot some time -as the cater that results horn
the mismatch of item difficailties m an ability teat with the
individual's ability. Obviously, the testers ability is not
known at_the startuftesung. But the differect strategies of
adaptive testing that have been proposed can be viewed as
different ways of matching iteal diffiailues with test=
ability and sequentially estimating the tester's
Consequently, one of our rnajoi focuses is to determine the
best, et at least bettet, ways of adapting 'tern Ifficolues to
individual abilities.

We are approaching this in two complementary ways.
First, we have been doing live computerized testing. Since
late 1972 we have tested more than 5,000 subjects on, a
variety of strategics of adaptive testing. But Inc min%
cannot provide the answer to all the questions concerning
which strategies are best- under which aonditions, uecause
there are too many questions to be answered. Therefore, we
are using computes simulation to supplement and extend
the results that we obtain from live testing.

Out general strategy IS to implement an adaptive testosg
strategy in live testing to obtain some data with an
arbitanly structured live adaptive test data such as
characteristics of score distributians and test retest
reliabilities. Then, our ultimate goal u to build a 4.umputu
simulation model which will accurately reflect the result
that we obtain from live testing. With the computer
simulation model we can then very rapidly study different
variations of the adaptive testing suategy. The next step is
to verify the simulation results in live testing.

Thus fat we have not yet developed a 5111101.11nm model
whIct completely reflects how live testees respond, but we
are making progress toward that goal. The ...ampule'

'Early development work on this research was supported during
1969°1nd 1970 by pants from the General Research 1 and of the
Graduate &hoof, Unrrenny of Minnesota_ Researil reported in this
paper was supported since early 1972 by Personnel and Training
Research Programs. Office of Naval Research, Contract No.
N00014-67-0113-0029, NR 150-343. Special thanks am due to
John DeWitt, our project programmer, without whom this research
would have been almost impossible.

DAVID J. WEISS
University of

simulations are nectssaty because of the rapidity with
which we =n study various alternatives. The live testing is
accessary, obviously, be it's people who take tests and
not computers using hypothetical items or hypothetical
subjects. So it is necessary to revezi& the results of the

.szmulattims to make sure that they still reflect
what real people do given the variations we have made in
the strategies studied in the simulations.

The second main focus of our research is a conarn with
the psychological effects of adaptive testing. Here we are
concerned with identifying jhe psychological aspects of
_testing and the test environment which an intioduct error
Into test scores. These variables include guessing, test
anxiety, boredom, frustration, and racial or ethnic group
effects.

Guessing ..an obviously artifically increase test scores,
frustration, znitiety, motivation and other facture can result
in test scores lower than true ability. Al! of these, therefore,
arc sources of error in test scores which are due to the
psychological effects of testing

We are also concerned with the psychological effects
that will result from the man - machine interface- This, from
our c.Aptince, is going to be an important problem in
computerized adaptive testing. There ate different kinds of
computer systems on which we can implement adaptive
leafing and each of those computer systems has its positive
and negative effects on testee behavior. There are different
kinds of terminal devices for adaptive testing and each kind
of terminal device displays in different ways and at
different speeds. All of these variations in the man machine
interface are going to be new problems for us to consider in
the years to come. Past research has demonstrated that
answer sheets in paper and pencil testing sometimes had an
effect on test scores. Similarly, research in adaptive testing
will need to study different kinds of CRTs, different kinds
of computer systems and different display speeds as part of
the psychological effects of computerized testing.

A third source of error that we are concerned with has
been briefly discussed this morning by Dr. 5amejima, this is
error that results from not extracting enough information
from a tester's response to a test item. To date, most
psychometric research has been concerned with binary or
01 scoring. But, as Dr. Samejima has indicated, we can get
more information out of a test response if we treat it as a
graded item. Our research extends that reasoning to
continuous responses using the continuous case oflatent
trait theory. The .continuous case is operationalized by
probabilistic responding.
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This aspect of out researtli is ixincemed with integrating
probabilistic responding with adaptive testing. Probabristie
responding, like adaptive testing, can result in horizontal
information functions. This implies that if we put adaptive
testing and probabilistic responding together we will have
extremely powerful niethode of redwing errors in :es!
stores due to the incomplete use of test responses.

The fourth source of error that we are studying is the
error that results from desiations from unidimensionality
Latent trait theory. as it is usually used in testing, is based
on the assumption of unidimensionality, although there are
multidimensional latent trait models being developed_ But
dimensionality that is defined on a group, such as the
unidimensionality of latent trait theory, dos not
necessarily hold true for an individual. That is
dimensionality defined by facto! analysis ln other methods,
when applied to an individual, assumes that the individual is
the typical or average member of the group on whii.h the
dimensionality was defined_ Thus., in the testing situation,
when a set of unidimensional- items is administered to an
individual, the result may be a set of responses that are not
unidimensionally determined.

Consequently. our research is concerned with
individual item pool intsiaations the interaction of one
individual with a set of "unidimensional- items. We arc
studying item response prutu.uh of this nature to
determine if meaningful devaauons (tom unidunensionality
du own fur specific individuals. If they du, we will than
attempt to develop :hula...toe testing models coat wui taks.
account of Latta -individual multidimensionality in an
adaptive testing siltation.

The focus of our research effort, as you can see, is with
the individual. We are concerned with identifying those
sources of caul in test sures which result in the OVCI- 01
under-estimation of each indurduars ability.

Recent Results

Most of our recent results arc aim-tined with the
psychometric effects of adaptive testing, or the comparison
of branching strategies. Thus far we have reported initial
results from both live testing and tomputet simulation on a
simple two-stage lest (Betz & Weiss, 1973, 1974. Larkin &
Weiss, 1975) and a pyramidal btanchinestiategy (Larkin &
Weiss, 1974, 1975). Below, I will report some results from a
flexilevel test (Betz & Weiss, 1975) and some data on r.,
stratified adaptive test (Weiss, 1975). Mr. McBnde will
present ,some data using Owen's (1975) Bayesian adaptive
testing strategy.

In general, the findings that we have to date show that
adaptive tests have highs test-retest stabilities a very
ptacucal and useful antenon when controlled foi number
of items and memory effects. Adaptive tests also teod to
show, in simulation studies, better distributions of ability
estimates. That is, ability estimates better reflect the
distribution of generated ability. And, in general, adaptist
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tests give information functions whial. are less variable
thosuAout the ability muse. in support of Lord's
theoretical findings (see Weiss &Betz, 1973).

Bescilevel abili4 resturs. Figure 1 Auws the item
structure for Lead's (1971a,b) flexilevel test. In this testing
suateD there is one item at each of a number of difficulty
kWh, nem 19 is the most difficult item and item 18 the
least difficult item. Everyone starts the fleaderel test with
an item of median difficulty. Items with odd numbers
increase in difficulty as they deviate (rum the rnedn, and
items with even numbers decrease in difficulty.

Figure 2 shows the paths taken by three different people
through a ten-stage flexilevel test. Starting with the first
itan, a correct response leads to the next more difficult
item wluw has not yet been administered. An incorrect
response leads to the most.difficult, of the anachninistened
easier items. Figure 2a shows a high ability testee going
through a flexilevel test; Figure 2b is for an average ability
testee, and Figure 2c is for a low ability testee.

Our live-testing study of flexilevel testing,(Betz &'Weiss,
1975) used a flexilevel test in which each testee would
answer 40 items, requiring a 79-item structure. That test
and a conventional peaked paper '-and -pencil type test,
administered on a computer to eontrol bat novelty effects,
was administered to 130 individuals. The same tests were
then used in a computer simulation study_ That study used
10,000 "subjects" sampled from a normal distribution of
ability, and an additional 1600 subjects, 100 at each of 16
levels of ability. From these simulation data we calculated
information functions, and test-retest or parallel forms
reliability.. From the live-testing study we calculated
test-retest reliabilities, and other data describing score
distributions.

The major result from the live-testing study was that
flexilevel test scores were no more stable on retest than
scores on the conventional test; test-retest stabilities forlhe
two were virtually identical. The m4ori result from the
simulation study is shown in Figure 3, which displays
information functions for the conventional and flexilivel
tests. Figure 3 shows two findings which were nofpredicted
by test theory. - -

First, test theory (e.g, Lord, 1971e) predicts that the
conventional test will always result ui higher levels of
information, i.c., better measurement, than any adaptive
test at the median of the ability distribution. Figure 3
shows that the flexilevel test had higher levels of the
information function at the median (0=0) of the ability
distribution. The second prediction from test theory (Lord,
1971b) was that the flexilevel test should yield a relatively
horizontal information function. Figure 3 shows an
information function for the flexilevel test which is quite
divergent from horizontal. In fact, the standard deviations
of the information functions show that the flexilevel test
had a larger standard deviation than did the conventional
test, that means that the flexilevel test tended to be less
equi-precise than the conventional test, at different levels of
the ability distribution.
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A comparison of the results tiom the computer
simulation study and the live-testing study showed
differenies in the test-retest reliabilities. This result was
expected because of the memory effects in live testing.
There were also differences between the two studies in the
shapes of the generated score distributions. These
differences demonstrated that the simulation model was
not yet adequate enough to 'idled the results of live testing
and that it needs some revision so that it will enable us to
extrapolate from live testing through wmputer simulation
and back to live testing.

Another interesting result from this simulation study
relates to the methodology of computer simulation itself.
The design of the study was one in which we repeated the
computations for a hundred samples of a hundred subjects
each in- order to study the sampling distribution of the
simulation results. This was done to examine the generality
of Fmclings from computer simulation studies which use
100 or fewer simulated subjects (e.g., Jensema, 1974, Urry,

1971). We found at estimates of validitythe correlation
of generated ability- with estimated ability, based on
samples of 100, ranged from .87 to .95, with a mean of .91.
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In certain inter-strategy 4.omparisons different 4.A.uulusions
about the relative utility of a testing strategy might be
drawn based on validities of .87 or .95. Thus, simulation
studies should be based on samples of more than 100 in
order to arrive at stable conclusions.

Two -stage testing. Figure 4 shows a computer report
from what we have called a continuous second-stage
two-stage test. This adaptive testing procedure was
developed by Brad Sympson of our research staff, welater
discovered that Fred Lord had independently developed the
same testing procedure. In Fall 1975 we tested a number of
college students on this continuous second-stage test.

The major oblem with two-stage tests as they have
been used in the past (Weiss, 1974) is that of routing errors
made in branching from the routing test to the
measurement test because of errors of measurement in the
Mining test. To solve this problem, we developed a
measurement test stage which consists of a number of very
short measurement tests: The example shown in Figure 4
used a 14-item routing test and 25 4-item measurement
tests, each at a different level of difficulty. Using this
adaptive, testing procedure, when an individual completes
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REPORT ON TWO-STAGE TEST

the-routing test his score is determined and that score is
used to choose an appropriate measurement test. Then, to
reduce routing errors, a number of measurement tests on
either side of the chosen measurement test are also
administered to the individual. In the example shown in
Figure 4, the individual's score on the routing test

.estimated his ability at 1.4 standard deviations above the
mean. Consequently, the most appropriate measurement
test was estimated to be number 18, Which had.items at
difficulty about 1.4 standard deviations above the mean.
But, to compensate for possible errors ofmeasurenienliii
the routing test, he was also administered items in

measurement tests 14 through 17 and 19 through 22, fora
total of 36 measurement test items. These Rents varied in
difficulty from about .25 to 2.25 S.D.'s on the difficulty
continuum.

Following a design that we have used in a number of
other studies, we did a test-retest Jive-testing study with this,
continuous second-stage two-stage test (in- which each
testee completed 50 items) and a 50-item conventional
peaked test, over about a five-week period, with 104
testees. To keep scoring method the same for both testing
strategies, maximum likelihood scoring was used for both
the two-stage and conventional test.
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The stuily was designed also to equate the two testing
procedures foe 1) item dn..am:nations. 2) inemoiy cffeccs.
and 3) numbs of items. Memory effects were equated by
first determining the cumber of items each individual
repeated on retest of the two-stags test. Then the retest of
the conventional test was stn.:lured to have- the same
inirribet of repeated items by inserting the appropriate
number of new items.

The test-retest correlation was .94 fin the continuous
two-stage test and kb fvz the equivalent conventional test.
Since the difference in stabilities was considerably Logi
than found in our previous studies of conventional vs.
adaptive testing strategies (e.g.. Betz & Weiss, 1973, 1975:
Larkin & Weiss, 1974), we carefully examined the
distribution of come-animal test swics denved horn the
maximum likelihood swans. Six. testees were found with
very low ability scores, apparently due to guessing on the
conventional test. Data fur these testees were eliminated
and the test-retest correlations were recalculated. The
stability correlation for the two-stage test was .93 and the
conventional test- .89. Thu result was anulai to that
obtained in other comparisons of cpnventional and adaptive
strategies, showing a higher test-retest correlation for the
adaptive test than fin the peaked convenuonal test_ Thu
result was obtained when both testing strategies were
equated for item discriminations and memory effects.

Stradaptive abiht, testing. The sib/Jar/live testing,
strategy (Weiss, 1973) is based on a senes of pealtedqests.
each one differing in terms of difficulty. Figure S shows the
distribution of item difficulties fin a hypothetical
stradaptive test. In Figure 5 there arc nine strata, each of
which is a peaked test peaked at a different level of
difficulty.

FigUie 6 shows an example of an individual moving
through a stradaptive. test. Testing begins with an item at
some point un the difficulty continuum, the entry point is
estimated by prior information about the testee. The
individual shown in Figure 6 began with the first item at
stratum 5, an item of average difficulty. Since he answered
that item correctly, he was administered the first nem at
stratum 6, which consisted of slightly more difficult items.
Following the same blanching rule a more difficult item is
administered following a correct response, and a less
difficult item following an incorrect response the
stradaptive test continues until the termination enterion is
reached. The test is terminated when a stratum is identified
at which the individual is responding at or below chance
level (i.e., 20% or less correct) based on a minimum of five
items administered at that stratum. The individual shown in
Figure 6 answered five items at stratum 8 and none of them
were -answered correctly. Consequently the test was
terminated since further testing was likely to provide little
additional information on the testees ability level.

Scoring of the stradaptive test results in both ability
level scores and consistency scores. Ability level scores
reflect the individual's` position on the ability scale,

29

consistency scum tellect the variation in item difficulties
encountered as the individual goes ditoitgl. the .stiadaptive
test. Figure 7 shows the stradaptive test response record for
an inconsistent individual. This person started the test with
a relatively difficult item at stratum 8 but answered some
easy items incorrectly items 8 and 26) and some
difficult items correctly (e.g., items I and 17). The result
was a response record which varied widely across six strata.
A comparison of the consistency scores for Figure 7 with
thou. of Figure 6 shows the former to be uniformly higher_
Thus, the testa depicted in Figure 7 was more inconsistent
in his interaction with this item pool than was the
individual in Figure 6.

Our live-testing test-retest study of the stradaptive test
was based on about 200 subjects. Over an average five week
period the test retest reliability fur the best method of
scoring the stradaptive test was .90, the test-retest
reliability fur a conventional test using the number of items
administered on the average in the stradaptive test (28
items) was .86_ This result showed about the same
difference in favor of the adaptive test as we have obtained
with other adaptive testingstrategies.

I had hypothesized earlier (Weiss, 1973) that consistency
scores should reflect something about the dimensionality
that results from an individual's interaction with an item
pool. To extend this hypothesis, if an individual is
responding unidimensionally his scores should be more
reliable than an individual whose interaction with an item
pool is multi-dimensional. In operationalizing this
hypothesis, consistency scores were used as an indicator of
dimensionality, and test retest stability as an estimate of
reliability. Specifically, testees were divided into five
sub-groups on the basis of their time 1 consistency scores,
and test retest reliabilities were computed separately Tin
each of the five sub-groups. The results arc shown in Table
1 for consistent.) score 11, the standard deviation of items
encountered.

As Table I shows, thc highest test-retest stabilities were
observed fur the very high consistency group for all ten
methods of estimating ability within -the stradaptive test.
The clearest pattern emerged for ability score I. On that
score, the stability for the highly consistent testees was .94,
and that for the very low consistency group was _65, with
stabilities for the intermediate groups decreasing with
decreasing consistency. The possible utility of consistency
scores as a moderator variable is that it might permi, us to
make more stable predictions for some groups of indivi-
duals (consistent testces) than for others (inconsistent
testees). Particularly noteworthy is the test-retest reliability
of .98 for the very highly consistent testers on ability
scores 8 and 9:

If these results can be replicated over longer periods of
time, the consistency store might prove to be a very useful
and powerful moderator variable derivable frorfi a stradap-
tive testing response record, It appears to be powerful
because it also moderates_the test-retest reliability, but not
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Hcb 31 .4.4041.7 Low

Very
Low

341e4262easurcy Scree 517 225 "06 415 1 054
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SaVarsnAbelaySectr 940 2.47 247 741 252
VS 721 799 773 751

3 1152 1113 472 126 702
934 140 346 731 *64

S 296 722 .793 756 741
_ 4 950 -92 .226 120 201

7 970 344 902 AS1 754
911 927 915 133 469

9 9113 919 .907 499 319
10 951 792 2n 422 71$

Cc2,exPoral Teo 979 490 915 226 S711

as systematically. on-the conventional test administered at
the same time. Table I shows a test-retest reliability of .979
on the conventional test for the highly consistent group
using the consistency scores derived from the stradaptive
test. But consistency scores arc not derivable from a
-conventional test so it is necessary to implement this
finding within the framework of the stradaptive testing
strategy.

Figure 8 shows .a number of subject characteristic
curves." which are derivable from the stradaptive test.
These curves, which reflect the individual's consistency of
interacoon with a stradaptive test. are based on a plot of
proportion cuirect for each individual at each stratum
the stradaptive test. Ful txan.ple, the plot fui W."
shows that he answered all items conectly at both stratum
S and stratum 6, about half correct at stratum 7 and nor..
coifed at stratum 8. Since proportion cuirect decreases
monotonically with increasing item difficulty this indivi
dual appears to be interacting with this item pool umilimen
stunally; William W. is a highly consistent individual. By
way of contrast, the subject characteristic curve fur "Carol
C." does nut decrease monotonically, reflecting an inconsis-
tent individual who answers items correctly at a variety of
difficulty levels.

To be useful, these subject characteristic curves must be
stable across time. To investigate their stability across an
average five-week retest interval we computed canonical
correlations between piopunions correct at initial test and
at retest. The complete redundancy analysis showed that
67% of the vanance in retest subject characteristic curves
was predictable from initial testing.%This is equivalent to a
stiu.aed multiple correlation of .82 fur predicting mdividuai
proportion curio.' at Time 2 from a best-weighted linear
combination of proportions correct at Time 1. These results
imply that subject haratAcilstit. curves are reasonably_
stable and that they may represent a stable trait of the
individual. But. certainly, more research is needed.
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Proportion correct at each stratum, by individual

In addition to this live testing, study of the stradaptivi
test. we also have tome recent data from a computer
simulation study. Items with constant discriminations, and
difficulties rectangularly distributed between normal ',give
difficulty values of 3.33 and 3.33 and grouped into nine
equally wide strata were used for the stradaptive test. Items
with constant discriminations and with difficulties rectan-
gularly distributed between .33 and .33 (equivalent to the
middle stratum of the stradaptive testi were used fur the
conventional test. 1000 Ss were generated with abilities in
the given interval at each of 13 intervals of 0. Major
findings are shown in Figure 9 and Table 2.

Figure 9 shows the information functions kit the
stradaptive and conventional tests at two different levels of
item discrimination. At both levels of item discrimination,
the information function fur the stradaptive test was nme
horizontal than that of the conventional test, with litt
difference more pronounced at the higher level of item
discrimination_ In confirmation of Lours theoretical pre
diction, the conventional test has a higher information
function than the stradaptive test at the center of the
ability distribution, but the range of superiority diminishes
with increasing item discriminations. However, the informa
thin fUnction fur the stradaptive test increases with ability
level, and for the lower discriminating items, the stradaptive
test at 0>2.5 yields a higher information function than the
highest value reached by the conventional test.
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Table 2 shows validities correlations of ability estimate
and generated ability-from the simulation data on uumcri
!tonal and stradaptive tests. Validity correlations are shown
as a function of both item discriminations and number of
items, These results show a slight superiority in validities
for the conventmal tests when item discriminations are low
ta=.5), and there 40 ot fewer Items in both tests,
similar result is found fur 10-item tests composed ofitenis
at 3=1.0. In all other conditions, the stradaptive test yields
higher validity, with sizable differences appearing as
num )er 9f items increases and discriminations increase. Fur
60-itvn rests at a=2,0, the validity of the stradaptive test
was r=.989, while the conventional test validity was only

.926.
Thus,. the data from both the live-testing study and the

simulation study of stradaptive tests show that the stiadap
tive test yields scores which are more equi-ptciseactoss the
ability range, and have higher validities and relTabili*s than
conventional tests under certain conditions. Further, the

-stradaptive test consistency scores appear to be powerful
moderator vanables which may have important practical.

applications in testing-individuals.
Psychological effects of computerized administration.

One of the psychological vanables that has been unsystem-
atically manipulated in computerized testing studies has
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TABLE 2

Scar. Ability Correlations of the Stradaptive Bayesian Soars arhi
the Conventional Test Score for Tests of 10 to 60 HMIS, 25 2
Eur.:,-uun wit= Discrimination

No. Items

Discrimination (a)

0-5 1.0 2.0

10
Strat .689 .840 .919
Cony .703 .8!"1 S88

20
.918Stmt 398 .963

Corry .811 .908 .906
40

Slut .869 .955 .983
Cony ? .887 .938 .918

60
.920Strat .971 .989

Cony .917 .950 .926

been feedback or knowledge of results, In computerize
testing we now have the capability to tell an individ
whether his answer was correct or incorrect after each
in a test. Bur.it is possible that such immediate kno edge

of results might have an effect on test scores, . we
designed a pilot study to systematically manipula e feed-
back and study its effects on test scores.

We administered two tests on the computer to a group
of inner-city high school students. The group was racially
mixed, consisting of both white students and black stu-
dents. Both a conventional test and a pyramidal adaptive
test were administered to each student, and half the group
received the conventional test first and half received the
adaptive test first. In addition, half the group received
feedback after each item and the other half received no
feedback after each' test item. We analyzed the data for the
conventional test only thus, the dependent variable in this
analysis was number s.orrect on the conventional test The
design was a 2x2x2 analysis of variance. The independent
variables were I) race black and white; 2) feedback-
immediate or none, and 3) order conventional test admin-
istered first or second in. the pair.

In order to make the feedback relevant to the high
school group, we had previously asked a subgroup of
students from the same school to generate a set of
statements which would, to them, indicate that they

answered an item correctly. We used six such statements, in
pseudorandom order, including "right on," "that's cool,
now try this one."and "all right, how about this one "This
was done on the hypothesis that feedback can have an
effect only if it is meaningful or relevant to the tester

The results for the three-why analysis of variance ?re
shown in Table 3. The only significant main effect was for
race. Mean scores for the blacks was 1734 and that for the
whites was 27.92, on the 40-item test. Neither order nor



TABU
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Group
1-eedhs--k No Feedback

Total
Group

Mean Mean Mean

Blacks -First 26.3R 6 13.83 14 21.00
Second 7 13.86 6 14.67 '13 14.23

Wastes- lint 15 26.07 14 30.93 29 28A 1
Second 15 30.00 19 25.53 34 27.50

Blacks 15 20.53 12 14.25 27 17.74
Whites 18.03 33 77.81 63 27.92
tint 23 26.17 25.80 43 26.00
Second 22 24.86 25 22.92 47 23.83
Total 45 IS St 45 14.20 90 24.87

3 Way Anova

Source or
Variation DF

Mean
Square F Est. P

Order 1 105.76 1.36 .15
Pace 1 2,013.26 2524 .00
Feedback 1 -81.74 1.05 .31
Race x Order 1 161.54 s2.07 .15
Order x Feedback 1 28.74 .37
Race x Feedback 1 170.40 2.19 .14
Order x Race x Feedback 599.46 7.69 <.01

, Error 81 77.92

feedback effects were significant, nor were any of the
two-way interactions. The three-way order x race x
feedback interaction was significant at p.01.

Figure 10 shows the means for the tfir;:;sax y inter-
action. As is indicated in Figure JO. under conditions of
immediate feedback, when a conventional test was adminis-
tered first, the mean of the black students (26.38) was not
significantly different from the mean of the white students
(26.0) who completed the conventional test under-the-same
set of conditions. This result implies. if it can be-replicated,
that race differences observed in test scores may be a
function not of differences in ability but of differences in
the psychological effects of the conditions of administra-
tion. Although these findings du nut completely replicae
those of Johnson & Masai (1973), they do support then
general writ-fusion that conditions of test administiation
might affect motivational conditions, which in.turn reduce
race group differences to nonsignificant levels.

There is some data in our results which suggest that the
three way interaction results might be duc to inotisational
effects. In addition to analyzing test scores, we also
anlayzed the proportion of items skipped on the wnvcn
'lona( test under the two experimental conditions and for

the two racial gro ups. These results showed that blacks
skipped more items than whites, in general. but-when the
conventional test ,was administered first to the black
students and- they received feedback, they skipped-almost
no items. This is also the same set of conditions under
which the test scores for the-blackS were not significantly
different than those of the whites. This appears to be a
motivational effect since when the blacks _arc given feed
back the test becomes relevant to them; and when it
becomes relevant they can answer the questions just as well
as the whites.

Future Plans

Based on these preliminary findings we plan to continue
to investigate the nature of feedback cffet.ts, and the effects
of other psychuhvcal vanables, on test scores. We also plan
to continue to study various branching schemes in an
attempt to develop optimal branching schemes which result
in maximum 1-Eduction in psychumetrit, error at all ability
levels.,Our general goal, as I indicated earlier, is to explore
all aspects of ...ornputerized ability testing in an effort to
make maximal use of the computer as a vehicle for making
each individual's test score as error -free as possible.
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ADAPTIVE TESTING RESEARCH AT MINNESOTA
S01!flE PROPERTIES OF A BAYESIAN SEQUENTIAL ADAPTIVE

MENTAL TESTING: STRATEGY'

Adaptive or tailored testing subsumes a number of
different strategies for adapting the difficulty of test items
to the ability of the examinee. One of.the moss elegant of
such strategies is a Bayesian sequentialieginique proposed
by Owen (1969) and studied empirically by several inves-

tigators including Wood (1969).1.:ny (1971) and Jensema

(1972). -

Owen's technique is a general one for the sequential and
design and the analysis of independent experiments with a
dichotomous response. Its application In mental testing is
to the problem of estimating ability by means of sequential a- PII. V z rattO I i = a'
selection, administration and scoring of dichotomous test
items. The mathematical details of the method arise outof
latent trait theory, with the item char ricteristic curves all
assumed to take the dorm of the normal ogive. The Following a wrong answer
properties of the normal ogive item ,haracteristic function,
and its logistic approximation, haie been described by Lord
& Novick (1968) and Birnbaum (1968), respectively:

sequential design of a test by appropriate choice of
available item pararneters2 (ar bz, cg) and estimation of

Pin+1 = E($ 10) =.- gm vi 2a

1:12177 )(OD)

oat 4(D)
(2)

Owen's procedure involves the individually tailored

ability via a Bayesian-motivated approximation. At each
s

step m in the ability estimation sequence, a normal prior and
distribution on ability 0) is assumed, with parameters
41,".02,) where m indicates the number of items already
administered in 'the sequence. A test item to be adminis-

lossfunction on O. With cg=9 (i.e.. no guessing) and
tered at step mil is selected so as to minimize a quadratic 472m

discrimination parameters ag constant over items, the

I = var(00) = em 1_ (5(0) 'TOY)

1 + --L_ 4,0))

aD) +

,2,0.2,71

appropriate item is the available one which minimizes the
absolute value of the difference (bg-)rm). With cs>0 the
-optimal difference is somewirat .negatiye. that is, optimal
difficulty is somewhat "easier" thAn examinees ability. In the above equations (taken from Owen, 1975)
Following item administration at step mil, the parameters
pm, °2m of the prior distribution are updates in accord OD) is the normal probability density function

JAMES IL MCBRIDE
Universir y °Minnesota

with the exanr:na's performance on the item. In the case
of a correct answer:

Pra I
tit))
-r 1.14-1)1

ii-ex)44D

I A-D

4)(D) is the cumulative normal distribution function, and

.',Research reported herein was supported by the Personnel and
Training Research Programs, Psychological Sciences-1).v: ision, Office (3)
of Naval Research, under contract No 00014-674-0113-0029, NR
No. 150-343.

Portions of these results were picsenteci at the Spring meeting of
the Psychometric Society in Iowa aty, Iowa, Apri11975.

A complete report of these results is in preparation (McBride
Weiss, 1975a).

2.lis most commonly used, 44, and 5 respectively are the
discrimination and difficulty paramIters of tie normal ogive model.
C is thi guessing parameter, the probability that an examinee wEl
respond correctly to the item when he does not know the answer.
The subscript g indexes items.
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pool and e, a the parameters of the &yes posterior.
&sails:mon on 8 are used as the parameters of the Deli
step's prior. At each step the prior distribution is taken to
be cabal, an asaureption which is not strictly correct after
the first item (Owen, 1975). Testing may be terminated
when ci2m becomes arbitrarily small or when in becomes
arbitrarily large, or when some other aiterion has been
reached. At termination the latest pm is the estimator of 8,
and al. is a measure of [he uncertainty of the estimate_

N. Um (1971) and Ierisema (1972, 1974) have interpreted
o2., as the squared standard error of estimate (SEE) of
8,. Owen (1975) gives a theorem showing that as rn

-+ 8-
hacticafly speaking, of course, the number of items

administered Will neverapproach 'amity, but if the pool of
available items is sufficiently large and appropriately
constituted, e, will diminish rapidly, permitting valid
estimation of 6 in a very small ntimber of items. Urry
(1971, 1974) has specified the requirements for a satisfac-
tory item pool for implementing Owen's testing procedure
and has shown in computer straulation studies that Owen's
sequential test an achieve in -frotiCto 30 items the
validity of a much longer conventional test, with the
average number of items diminishing as their discriminatory
power increased.

Validity, i.e., the correlation of test scores with the
simullated underlying ability, is only one criterion by which
to evaluate a proposed adaptive testing strategy. Since Zie
Bayesian sequential test scores are actually estimates, in the
same metric, of underlying trait level, the accuracy of the
estimates is also an interesting datum. By "accuracy" here
is meant the closeness of the estimates to actual ability,
which may vary systemati..11y with ability level. Another
interesting culvert) of estimates is bras, or error of antral
tendency. Two kinds of bias should be of some con
cern. 1) unconditional bras, of group mean error of
estimate, and 2) conditional bias, or mean error of estimate
at a given level of the parameter being estimated. As a
matter of convention, then, in the following the term
"accuracy will refer to mean absolute error of estimate,
(1/N) 2 ier-Oi, "bias" will refer to mean algebraic error of
estimate (1/N) 8,), and "conditional bias" will refer
to mean algebraic error of estimate at a given value of 8,
(1/N)1,(0r8j8).

The purpose of the present piper IS to report the results
of a series of simulation studies designed to investigate the
influence of item pool characteristics on soma properties of
the Bayesian sequential test other than the correlational
validity of the_trait estimates. These properties will include
bias and accuracy of the estimates, as well as others
enumerated below.

The studies reported below were motivated by results
-obtained with live testing of Owen's strategy, Using a
329-item- pod of vocabulary knowledge test items, a
correlation of .80 was obtained between estimated shifty
and number of test items to termination (McBride & Weiss,
1975b). Simulation studies designed to investigate the

influence of the item pool on that unexpectedly large
correlation led to our Iscovery of sygematc nonlinear
bias in the Bayesian estimates of ability_ The nature of the
kias, and some of its correlates, are disarmed below_

METHOD

L Dependent ngiabkt of interest included test length
(number of test delis a . istered before the termination
criterion was readied), of estimate. (8-8), bias of
estimate (mean over indisid. of (8 -8)),absohite value of
the error 19-81, and validity of e estimates of B,

2. Independent pariables of interest included the effects
of guessing in both the resficmie ;Dockland the scoring
algorithm, of item discrimination, and the correlation of
difficulty and discrimination parameters in the item pool,
and of different termination criteria.

3. Examinees for the first study were simulated by
computer-generation of pseudorandom numbers (from a
normal population with mean 0 and variance 1) which
represented the ability 91 of each examinee, i. For the
second study, 100 examinees were simulated at each of31
points on the ability continuums.

4. hen responses were simulated by comparing rz(0i)
for each item g and examinee i with a random number ea,
from a rectangular distribution in the interval [OA_ A
score of 1 for examinee i on kern g was asgned if
P4'.448,Pegi. Otherwise a score of 0 'asrignerl_
t4 5. Item pools were simulated under two different
conditions:

a. A perfect item pool with items of constant
discrimination a and guessing parameter Cs was fmulated.
Under this .anufition, the computes program computed the
optimal difficulty bmi./ of the next item to administer, and
a simulated item with that difficulty value was made
available. This is referred to as a "perfect" item pool
bemuse m effect we have simulated an item poll in which
an- unlimited rilunbet of items is available at any paint on
the difficulty continuum. The estimated optimal difficulty
of an item to administer at stage nit/ is equal to the
current ability estimate, when guessing is not a factor
(i.e., when VD). When guesaing is a factor (c0), the
estimated optimal difficulty N._is smaller than by-an
amount which is a joint function of ace- and cr:nThat is,
when cs>0 (be 8m)<0. (Actually, the true optimal diffi-
culty is a function of i! CI and the in)iciloifin parameter 8.
The Bayesian sequential test proced6re only estimates 8
and hence estimates -the optimal -item difficulty. At any
rate, the aimlated."perfect"-item pool maket available at
ever step in an item whose difficulty is exactly equal to
the estimated opiimal item difficulty based on ace, ca, ands
the then current estimate of 9).

b. A differentially discriminating 'perfect " item pool
was simulated by -having unlimited Rent difficulties- N.
available-(as in a:. above), but- varying Rail discrimination
systematically_ so that-the mean at be specified-and'
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the regression oft:: of item difficulty bb could be vaned. In
this yray it was possible to S'niulate stern pools in which
more highly discriminating stems were available in some
regions of the abilty continuum than an others. The details
of this procedure are described m Study 2, Wow.

6.. The.Bayesun sequential test was simulated by a
computer program. Input s-..natne:. were 8i, the parameters
xv and o20 of the initial prior distribution on 8, the
number of items to be administered to any examinee, the
constant discrimination parameter as of the paler!' iron
pool (or the mean discrimination parameter of the d4.-
ferentially cracraninarbw perfect item pool), along with
avo guessing specifications. The lust, e,, spec:fleri' the
propensity of the exartiMees to guess while the second, cg,
specified whether guessing was to be accounted for m
scoring.

Study 1: The effects ofguessi4
For this study the "perfect" item pool was used, with

ftwo values of og:cg= 110, paired with two values of the
personal guessing tendency' ci= lib. Of the four possible
pairwise combinations, only three were used, resulting in
three sets of conditions

41.

no riesling
uncorrected guessing
corrected guessing

Ci
0 OT

20 0
20

Ice the first condition, no guessing takes place (c4.1) and no
correction for guessing enters into the scoring formula
(cr3). In the second condition ci=.20-(eveiy individual i
has a random chance of correct response equal to 20), but
cg q.) (guessing goes uncorrected in the scoring algorithm).
Finally, in the third condition, the .20 guessing parameter
and the scoring correction for guessing take the same value

In each condition, the same 100 "examinees" (8i
sampled from a normal (0,1) population) were administered
14 simulated Bayesan sequential tests in which testing
terminated for an exanrinee whenever the o2m, the
estimated variance of the posterior distribution of 8, fell

below .0625 (this is equivalent to the Urrytlensema
criterion of SEE <.25). The 14 simulated tests in each
condition were experimentally independent, and differed
from each other an the value of thee, parameter, which was
constant within a test, but which' varied systematically
2C(055 tests. The 14a, values were a, = .6, .7, .8, .9,1.0,
1.25, 1.50, 1.75, 2.00; 2.25, 2.50, 2775, 3.00.

For each test in each condition, the following variables
were observed:

a. mean and range of test length,k
b. CMS of estimate, ei = (81-8D
c. test bias, (1 /N) E (01-0i)

d. mean absolute error, (1/N) E
e: test validity re.;
f. correlated error rie and see

g.g. correlated test length rek and rek

Study 2. The effects of the configuration of item Frrum-
eters in the item pool

Most simulation- studies of Osen's sequential test have
used a constant item crscrimination paratneter within each
test Typical item pools in actual use, however, have varying
item discriminations, with the potential effect of having
more dliscriminating items amlable/in some ranges of the
trait level than in others. In this study, different item pod
azx bz configurations were simulated by usingthe differen-
tially discriminating "perfect" item pod. The approximate
correlation (r,b) between item discriminating power and
item difficulty was varied in order to observe its effect on
some properties of the Bayesian test and of the resulting
scores.

Three different values of ria, were simulate& -11, 0
and +.71. With rab=31, more dis' aiminiting items are
available, on the average, at higher levers of &With rib= -.71
the more discriminating items were available at the lower
levels of 8_ And with rgb:), no-level of 8 was favored in
terms of available discriminating power of the items,
although discriminating power was free to vary randomly.
In each "item pool" configuration, the mean item discrim-
ination as was set at 1.25. Additionally, -2 minimum az
value of .80 was imposed, in accord with Uny's (1970
recommendation.

The item pool configuration was simulated by means of
1) selecting the appropriate bf for the next item from
perfect item pool as thouf- a14 as were equal tob;; call

this' bsz = (bzg
2) calculating a conditional as value from a linear

transform of b*g:

D.azgo:7_ rab ). +aD.B b*g g

where S.D.A is the standard .deviation of the as
parameters in the simulated pool

S.D.B is the stardard de/naion`of the be, parameters
in the simulated pool

ab b*r r,b,az are as previously defined;
3) adding an error component, eg, to the approximate

4g, so that for each item administered a i = a lb* s {es
when a*: is the simulated discriminating power of

the item
a i5* is the approximate discrimination defined

above
es is a random number from a population normal in

(O ;oae)

ae = R-e-=S.D.A (1 -1 b)".

4) setting reg, equal to .80 whenever it would otherwise
have a lower value.

"Examinees" for this study were 3100 simulated O's,
100 at each of 31 equally spaced intervals between -3.0
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and 3.0, inclusive. The correaed guessing condmon
(cece...20) was in effect. The postern,' variance ternuna
tioa aitetion (emt4.0625) was used, with an arbitrary
304tem maximum test length. At call of the 31 6 levels
the following variables were. observed for Gail. codordual.

2. test larigth,ki
b. test sore, 8j
c. error of esurnate, bre

audy 3 examined averace charactenstris of the
Bayesian test and test scores, Study 2 wa-=rcefned with
certain properties of the procedure as a function of trait
level, 0, and of the item pool configuration, /job. For each
configuration, the regressions of A, c and d on 0 were
estimated from the means of the 100 individuals at each
level of O.

Additionally, the data were used to calculate einprmal
values of the infomiapon function 4(0) of the Bayesian
test scores O. The iformation at any level Oi may be
calculated as the square of the ratio of the partial denvauve
with respect to 0 of the regression of test scores 8 on 0, to
the conditional standard deviation ((re la) of the test scores
at the given level of 6. This may be written Igo=
[amewhial2 (after Lord, 1970, p. 153). In each

configuration for each of the 31 levels of 0, the conditional
standard deviation was estimated as the observed S.D. of
the 100 test scores at that level. The numerator of the
equation was calculated for each 0 point from a third
degree polynomial equation for the regression of 0 on 0,
estimated by least squares fit to the thirty-one mean O's
observed under each item pool configuration.

RESULTS

Study 1
Tables le 2 and 3 and Figures 1, 2 and 3 contain the

results of sequential tesung under the three cunditions of
guesungkorrecuon for guessing, at each of 14 item
discnnunauonlevels. Some noteworthy trends arc.

a. Test .length was _constant at each as level in the no
guessing (Table 1, Figure 1) and uncorrected guessing
(Table 2; Figure 2) conditions, with test length to termina-
tion diminishing proportionately with the inverse of the ax
level.

In the corrected guessing condmon (Tablei3 and I -gore
3) test length vaned across individuals, while mean test
length within as level behaved in the same manner as di .
test length in the other two wndruuns. One datum of note
is the behavior of test length as a function of ag level. in
order for all examinees to reach normal termination in less
than 30 items (in the corrected guessing condition), the
item discrimination value must exceed 1.25 (ag.>1.25).

Another result of interest 15 an expected one. the
corrected guessing condition required more items to termi-
nation than did the other conditions.

39

b. Elms of estimate, e, (8,-0,) were moderately
...otreLited with ability 0 and test scare # under all
cceiditions, as revealed in Tables 1, 2 and 3. es tends to be
positive fin 8s<0 and negative for 0,>0. This result was
.insistent, and reflects a !egression effect ..aosed b) the
quadratic loss function employed in the item selection
procedures.

c. Test bias, mean absolute error, test validity, corre-
lated errors and correlated test length values for the no
guessing, uncorrected guessing and corrected guessing con
ditions are listed in Table 1, 2 and 3, respectively
Additionally, Figures I, 2 and 3 graph some of these values
as a function pfaz level within each condition. Noteworthy
in these data h the sizeable bias and Ine2J1 absolute error in
the uncorrected guessing condition (Table 2; Figure 2), as
Well as the tendency for bias and absolute error to increase
at as levels above 2.00 in the corrected guessing condition
(Table 3. Figure 3). Note also that hi the uncorrected
guessing condition (Table 2), test validity, rev, decreased at
ar levels beyond 2.0C. Jennia (1972) observed this
Phenomenon, which he termed "correlation drop-off."

Study 2
Table 4 lists the observed mean values under each item

pool configuration of test score, test length, and error of
estimate for each value of 0. Figures 4, 5 and 6 depict these
data graphically.

a. Test length. Mean test length (Figure 4) did not vary
with Din the rabo configuration since the maximum of 30
items occurred at all levels. In the rob-.71 configuration,
mean test length covaried positively and almost perfectly
with ability level. In the rab+.71 configuration, test length
covaried inversely with trait level, with more items required
at the lower trait levels until the arbitrary 30-item limit was
reached.

b. Test scores. The regression of mean trait estimates, a
on 0 was virtually linear in all three configurations in the
interval 1.5<0<2.0]. As can be seen from
Figure 5, the Bayesian test scores tended to underestimate
0 at high trait levels, and to overestimate 0 at low trait
levels. The regression of 8 on 8 departed from a linear
regression at extreme levels of 0 (beyond 0 = ±2.00) with
the departure more noticeable in the lower extremes of the
scale.

c. Errors of estimate. The regression of mean errors of
estimate on 0, seen in Figure 6, dearly illustrates a
tendency of the Bayesian test scores to overestimate e
markedly and consistently at 0.<- 1.5 in all three item pool
,onligurations. The tendency to underestimate high 0's is
also illustrated. In this data the latter tendency was quite
strong with tab -.7f but less so with rab+.71.

Information. The estimated' values of the derivative -41.
[E(619)1, the conditional-standard deviation iv e and

lie information at each level of 0, under each item pool
configuration, are listed in Table 5...Smoothed information
curves for all three configurations are plotted in Figure 7.

Some noteworthy trends are pointed out here.



TABLE 1

Test Length. Mean Errors of Esti mate. and Corehtes of Abil ity 8 and Test Score 0. as a
Function of Item Die-ritninarion in the Perfect Item ?ooL No Guessing Condition (c =eft)).

P:oPertY .5 .6

Test Length
Mean 100 71
NIMinnun 100 71
Maximum 100 71

Error of Estimate

Mean (Bias) .00 ...01
Mmn Al= lute Error .17 .17

Correlates
with error
re e -35 :27
rite
with test length

rek
re k

re 6(validity)

-.17

-- .98

-.08

.98

Item DisaimBs.ation r)
.7 .8 .9 1.0 1.25 IS 1.75 2..D

52 41 33 27 18 13 11 9
52 41 33 27 18 13 11 9
52 41 33 27 18 13 11 9

.02 .01 .00 .01 .00 02 .04 .06
.19 .19 .18 .19 .18 .21 .20 .21

-.31 -36 .39 -35 -.37 37 30 37
-.10 -.16 -.20 -.15 -.17 -.14 -.07 -.15

.98 .98 .98 .98 .98 .97 .97 97

a. Correlations not computed 11..x test kngth (k) seas constant.

TABLE 2

Observed Properties of the Bayesian Sequential Test as a Function of Item
Discrimination in the Perfect Item PooL Uncorrected Guessing (cg-0; ef .20

Property -5 .6 .7 .8

Test Length
Mean 100 71 52 41
Minimum 100 71 52 41
Maximum 100 71 52 41

Errors of Estimate

Mean (Bias)
Mean Absolute Error

Correlates
with error

rite
tee
with test length
re k
re k

rob(validity)

-57 .48 .47 .42
.58 .48 .48 .46

-.51 -.46 -.49 -.48
-.29 -.23 -.23 -.19

a

.9
Item Discrimination (ag)

1.0 L25 1.5 1.75 2.0

33 27 18 13 11 9
33 27 18 13 11 9
33 27 18 13 11 9

.37 .34 .30 .27 .29 .31

.42 .39 .37 .37 36 .40

-.48 -.43 -.44 -.36 -31 -.31
-.20 -.13 -.16 -.04 .01 .05

2.25 2_5 2.75 3.0

7 7 6 5
7 7 6 5
7 7 6 5

.04 05 .03 .04
21 - 20 .21 22

39 36 -.32 35
-.16 -.14 -.09 -.10

..0

.97 .97 .97 .97

2.25 2.5 2.75 3.0

7 7 6 5
7 7 6 5
7 7 6 5

.32 31 .29 .29

.39 .38 .37 .39

-32 -.32 -.32 -.32
.05 .05 .07 .02

"v. a". ea," ass. war*... . . . .. 0 - OMO. 4a
.97 .97 - .96 .95 .95 .95 .96 .94 .95 .93 .93 .93 .92 .91

a. Correlations not computed since test length (k) was constant.
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TABLE 3

Obacrved Properties of the Bayesiert Seq =till Test 352 EILLL:1013 of Item
Distheatution in the Paled Item Pool-Corrected Guessing (yre-20)

item Disaimkation (a )
Property .5 .6 .7 .8 .9 13) 1.25 1.5 115 2.0 225 23 2.75 3.0

Test Length

Mean 1013 99 77 60 48 40 27 20 16 13 11 10 9 9
Minimum 100 93 66 52 42 33 21 14 11 8 7 6 6 5
Shaba= 100 100 88 69 57 49 32 26 21 19 18 16 15 - 14

Enors of Estimate

Mean (Bias) .04 .03 .02 .03 .02 94 .01 -01 -01 .02 .04 _06 I/7 -08
Mean Absolute Error .22 .18 .16 A8 .19 .19 .16 .17 .19 .20 .18 .20 _19 21

Correlates

rae -.39
-.17

36
-.18

-.25
-.09

-.39
-.20

-.42
-.23

35
.16

37
-.19

37
-.18

38
-.18

39
-.19

25
-_14

37
-.14

33 33
-.10 -.08

rek
'ha ....

.54

.56
.80
-82

-78
.81

.78

.80
.81
.83

-81
.82

_82
.84

-85
.87

.88

.89
.85
-86

-88
.90

.90 -88

.91 .90

rei .97 .98 .99 .98 .98 98 .98 .98 98 .98 .98 97 .97 .97

a. Correlations not computed since test length (k) was constant.
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[trot' d ,y)
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I.0 2.0 2.5 3.0
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Figure I. Some observed properties of a Bayesian sequential test,
as a function of item discrimination- No guessing; perfect
item pool; posterior variance termination criterion.
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Figure 2. Some observed properties of a Bayesian sequential test,
as a function of item discrimination. Uncorrected .20
guessing perfect item pool; posterior variance termina-
tion criterion.
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Figure 3. Some observed properties of a Bayesian sequential test,
as a function of item discrimination. Corrected .20
guessing perfect item pool; posterior variance termina-
tion criterion. ._
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TABLE-4

Me= Test Sams (i). Mean Test Length a) and Mean Error oflisti=zte (e)
for Du= Item Pool Configurations, 2t each of 31 Trait Leeris

Item Pool Configurations

r cb+" 71 rA 7,6-.7 I

6

-3.0 -2.39 30 .612 -2.47 30 332 -2.30 14 .696
-2,8 -116 30 .545 -2.29 30 313 -2.20 14 .601
2-6 -2.06 30 .542 -2.25 30 .352 -2.17 15 .427
2.4 -2.00 30 -401- -2.06 30 342 -2.08 15 317
.12 -121 30, .D0 -1.94 30 .263 -1.93 16 .269
-2-0 -1.70 30 .296 -1.80 30 .204 -1.74 17 .263
-1.8 -1.60 30 200 -1.66 30 .141 -L65 18 .146
-1.6 -1.44 30 .163 -1.45 30 .151 -1.48 18 .125
-1.4 -1.24 30 .162 -1.32 30 .082 -1.29 20 .110
-1.2 -1.12 30 .076 -1.12 30 .032 -1.14 21 060
-1.0 - .93 30 .073 - .93 30 .071 - .98 22 .018
- .8 - - .74 30 .055 - .74 30 .055 - .76 24 .037
- .6 - 36 30 .038 - .59 30 .014 - .58 26 .015
- .4 - A4 30 -.040 - Alt 30 .004 - .35 27 049
- 2 - .25 30 -.046 - 21 30 -.010 - .14 29 .062

0 - .06 30 -.058 .05 30 .046 .02 30 .021
.2 .20 30 .003 .16 30 -.039 .19 30 -.007
.4 .35 30 -.053 .34 30 -.056 .35 30 -.051
.6 .53 29 -.068 .61 30 .010 .58 30 -.015
.8 .76 29 -.044 .74 30 -.058 .81 30 .013

1.0 .95 28 -.051 29 30 -.113 .92 30 -.080
1.1 1.11 27 -.091 1.16 30 -.036 1.15 30 -.047
1.4 1.37 26 -.034 1.33 30 -.068 1.25 30 -.150
1.6 1.53 26 -.074 1.48 30 -A17 1.46 30 -.140
12 1.73 25 -.070 1.68 30 -.123 1.64 30 -.165
2.0 1.89 24 -.113 1.88 30 -.119 1.78 30 -.224
2.2 2.09 24 -.107 2.05 30 ;146 1.98 30 =224
2.4 2.27 23 -.132 2.22 30 -.176 2.13 30 -.270
2.6 2.47 23 -.126 2.37 30 -.230 2.33 30 -.273
2.8 2.63 23 -.168 2.57 30 -.230 2.43 30 -.372
3.0 2.81 23 -.189 2.72 30 -282 2.57 30 -.426
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Figure 4, Mean estimated ability (a) at thirty -one ability points (0)
for the simulated Bayesian sequential test under three
item pool configurations.
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TA DLL 5

Estinut.%1 V414e. . the Ile:tutor Conditional Standard

Den:Alton co 9 and Vallte of the Information I-umloon 4101

for Duce !tent POQ1Cc.ntizuration.. at 31 Abili4 Lcivls Let

1:cm CorSiguration

6

rgb71 reb° rab-.71

BO Gila iitO) 5-0-
.

°op) 4(0) ao °filo 1a(a)

-3.0 .523 .301 2.90 .588 .336 2.58 .450 .353 1.63
-2.8 .566 .353 2 .57 .629 .333 3.57 .511 .308 2.75
-2.6 .607 .328 3.42 .668 304 4.83 .568 .279 4.14
-2.4 .645 .341 3.58 .704 .283 6.20 .621 .264 5.54
-1 2 .682 321 4.51 .738 .294 631 .670 .268 6.26
-2.0 .716 .330 4.71 .770 .284 735 .716 .289 6.14
-1.8 .748 .324 5.33 .799 228 12.29 .758 .289 6.87
-1.6 .778 .257 6.26 .826 .266 9.64 .796 .247 10.37
-1A .783 .311 6.34 .850 .265 1029 .830 .230 13.01
-1.2 .832 .314 7.01 .872 .261 11.16 260 .251 11.73
-1.0 .855 .278 9.46 .892 .275 10.52 .886 .235 14.21
- .3 .876 316 7.69 .909 .278 10.70 .908 .244 13.86
- .6 .895 .283 10.00 .924 .260 12.63 .927 244 14.44
- .4 .912 .282 10.47 .936 .288 10.57 .942 .255 14.66
- .2 .927 .308 9.06 .946 .278 11.59 .953 .284 13.96

0 .940 .305 9.50 .954 249 14.68 .960 .257 13.96
.2 .946 .253 13.98 .959 .248 14.96 .963 284 11.50
.4 .959 .255 14.14 .962 .281 11.72 .963 .252 14.59
.6 .965 .287 11.29 .962 .275 1225 .958 .285 11.31
.8 .965 269 12.26 .960 .248 15.00 .950 .276 11.85

1.0 .971 .228 18.15 .956 .250 14.62 .938 .336 7.79
1.2 .971 .228 18.13 .949 250 14.42 .922 .294 9.84
1.4 .968 .218 19.11 .940 272 11.94 .902 .295 9.36
1.6 .964 .246 15.35 .928 .259 12.85 . .879 301 8.52
1.8 .957 .229 17.464 .914 .292 9.81 .851 .317 . 7.21
2.0 .948 .263 13.00 .898 .289 9.66 .820 .296 7.67
2.1 .937 230 16.56 .879 .260 11.43 .785 .321 5.98
3.4 .924 .210 19.35 .858 255 11.32 .746 .294 6.44
2.6 .908 .227 16.00 .834 .270 9.55 '.703 349 4.06
2.8 .891 .258 16.69 .808 .250 10.46 .657 332 3.91
3.0 .871 .218 16.00 .780 .279 7.82 .606 .293 4.28

to.

4
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Figure 7. Smoorsted curves of the informV.pn functions of the
Bayesian sequential test under three different item pciol
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1) Cadet an three item pool configurations the Edema-
non functions were very low in the low end of the
distribution;

2) Fos acb*.71 the information values uniformly in-
crmsed with increasing 0.

3) Fos rcb0 information generally incr=ed with B. to
about 0 = 1.00. then decreased somewhat,

4) Fut 1,b .71 information /pc:eased sharply with 6. to
about 0 = 0, then just as sharply &creme&

DISCUSSION

SItidY
Test Length, or number of items required to satisfy the

posterior variance termination criterion, was shown to vat),
inversely with item discriminatory power, oz. when the
Utter is constant for all items in a given test.This result was
expected, and corroborates the findings bf Jenserna (1972.
1974) who aho pointed out that if constant item da
cnnimatory powers were available it would be possk to
predict the validity of the trait estimates Isom the number
of items administered, and conversely to estimate the
number of items required. U.. achieve any given validity
level.

In the no-guessing and uncorrected guessing conditions
tthat is, in tests which assume no guessing) the test length
was constant lot any fixed as value. This result would not
be likely to uccui with a clink. pool of items Joe to the
ineatabrhty of imperfect 8 with item - difficulty matches.
.hat ms. with a finite item pool son: vanance in test length
would likely %AAA!' even if all items had equal Itscnrriina
non parameters. The fact that there was no vanance an
test length (within any given discnnuriation level) with the
perfect item, pool indicates that any vanance in test length
in a teal, constant-discnnunation, no-guessing test must be
due solely to inadequacies in the distribution of item
difficulty parameters in the finite item pool

These results are pertinent to the use of Rasch -model
ability estimation in an adaptive testing situation. Except
lot the specification of the item charactenstic function, the
Rassh model u conceptually identical with the no-guessing
model used in Study 1. Within each test, item discrimina
non parameters were constant (as' the Rasch model
assumes) and no- guessing was assumed. Thus the major
difference between this purnon of Study 1 and a Rasa
model simulation would be in the definition of the item
response model. We assumed a one-parameter normal ogive
response model, whereas the Rasch model uses a one
parameter logcsni. one (Birnbaum, 1968, p. 402). As
Birnbaum (1968, p. 399) has pointed out, the tw o response'
models are very nmilai. Thus, the results of Study I fait the
no-guessing condition should be generalizabk, to adaptive
tests based on the Rasch model.

In the corrected guessing to ()minion (Figure 3) there was
some variance in test length tot all ag values (except
as -= 50 where no testees terminated in fewer than 100

50

items). Fin an a, Ives above 50, test lest 0 correlated
strongly and positively with the trait estimate 0 (Table 3).
The test length 8 correlation rik equalled or exceeded .80
for all ea values above .6. The correlation rekbetween test
length and alr2ity 0 was of sintilu magnitude but always
smaller than qt.. It seems obvious that for the case of
constant item disctirrination and.nasszero guessing there is
a systematic relationship between ability or test score
and number of items administered.. germination of the
partial correlations. however, showi thatrek vanishes when
0 is statistically controlled for. For instance, for ere = 1.0 we
observed rat = J81, r8k=.83, reS= 98. Controlling for
=de, respectively, yieids the following partial correlations:

rat; =.03

rike =-31

Analysis of the conesponcling partial corre. lations for the
other levels would yield a similar result_ teLeapproxi
irately Leto, but rgya.e positive and moderate_ This suggests
that, at least lot the constant item discrimination case, the
tendency An aBk to be positive is due to some characteristic
of the trait estimation method using the guessing correc-
tion.

Another observation with regard to test length has a
pialanai aPpLcation. ,Where the postetioi variance tennina
non cntenon is to be used, it is desirable that all or nearly
all examinees reach criterion (e.g., 02; _0625 or some
other arbitrary value) within a reasonably small number of
items. Typically (e.g., City. Jensema), a 30 item maximum
test length has been imposed in conjunction with the
posterior vanance cri tenon. If a large number of examinees
leach the 30-item limit before attaining the posterior
vanance criterion, the latter niay lose its usefulness as a
predictoi of test validity. The data of Table 3 (and Figure
3) indicate that even with a "perfect" item pool, the
constant item discrimination parameter must equal or
exixed a = 1.25 in urdet to insure test termination in
fewer than 30 items for the majority of examinees when
guessing is a facto'. Although it is difficult to generalize this
finding to the case of typical- finite item pools, it is

reasonable to expect that test termination via the posterior
vanance cntenon 4)217:G062S will seldom occur in fewer
than 30 items in Bay esirai sequential tests using item pools
whose mean _item discrunination parameter is less than
1.25.

Errors of estimate were moderately and negatively
correlated with 0 in all three conditions, with the strongest
conelations observed in the uncoirected guessing situation.
That a, with constant item discrimination and a perfect
pool of item difficulties, larger errors of estimate 01- 0)
tended to occur as 0 decreased. This tendency can be
viewed as a regression effect. As is typical with linear
regression estimates for all three conditions the estimates 0
tended to be closet to the rnean than the actual values 0.



The correlation ce between trait estimates 62nd entail
lif-0) was consistently of the same sign but lower magr
rack than rat, smith the no guessing and corrected guessing
conditions.

The mean error of estimate, or bias, was virtually zero in
the no gaessing condition, until ax beanie large (Table I;
Figure I). For ai>130 there was a tendency for positive
bias to occur_ Smilarly, mean absolute error was quite
constant unr3 a

43
=130, than bevaTie larger. In the conected

guessing condition (Table 3, Figure 3) mean absolate enoi
was fairly constant across a levels, but bias was positive at
low at values, diminished vutlally -to zero at intermediate
levels, and began to increase steadily as as increased above

Study 2
Test kregth. The data illustrate dearly the effect of item

pool configuration on the aorrelation of test length with 13
8). The correlation i, slicing and its sign was opposite

that of the lab correlation in the simulated item pooh (F4.11
the rad configuration there was no sanance in test length,
due to the arbitrary 30 -item limit. The-preceding three
studies have shown, however, that with constant act; lest
length vanes directly with 6. Presumably that Manua:411p
would hold for the aab0 configuration if test_length-was
free to exceed 30 items). We have already alluded to the
inverse relationship between test length and the rate of
reduction in the Bay-es posterior variance. Thus, it should
be dear that the configuration of difficulty and &anima-
tion parameters in the item pool, which can be-roughly
described by the correlation of the discnmination and
difficulty parameters (rob), effectively dictates the rate of
posterior variance reduction at any level of the trait O.
Furthermore, if a maximum tat length is arbitrarily
established (such as the 30-item limit used by us, and by
tiny, 1974, and lensema, 1972) that limit, in conjunction
with the item pool configuration, may dictate regions of
the 0 continuum in which satisfactory convergence of the
trait estimates will seldom occur.

Errors of estimate. Study I found very high validities of
the trait estimates 0, indicating that the Bayesian sequential
test is capable of ordenng sunulatea examinees from a
normal population quite well with respect to the vanable,
0, underlying the item responses. Study 2 was-motivated by
an interest in the accuracy of the estimates 010, rather than
the correctness of ordenng, as a function of 0 itself. The
data showed clearly that the Bayesian estimates behaved in
a manner similar to linear regression, except at the extremes
of the normal distribution (0<-I.5 and 0>2.0). Typically,
linear regression underestimates the cntenon variable above
the mean, and overestimates it for values below the mean.
Such was the case for the Bayesian sequential estimates,
except that the underestimates became faith sizeable
(around .20) on the average for 6>2.0, and overestimates
became severe (larger than .5) in the lower levels of the
trail Furthermore, it was shown that the behavior of the
trait estimates varies as a function of the item pool

aAtifigurathrt- Thus, by ...iootialant, !LC item pool ounfirara-
lion fin a live-testing item pod it should be posulle to
...antra the accuracy of the Bayesian test scones as
esthamors of the actual trait level of the examinees. Other
alternatives may pion useful in the regard. Six= of these
va be discussed below.

Informat:on. For the configuration rcb*-71, the In-
fos/a-atoll of the trait estimates appears to.uicriease linearly
with 6, at least in the interval 1-3.0.0<3.0j. This is what
we might expect, since item &scan:math/a increased with 6
in this configuration. Note. (Table 4) that mean test length
in this configuration was 30 Items for 3T.:94..6,md then
decreased linearly with for 6<6, reading a ,man -of 23
items at 0 =3.0.

For the rcb0 configuration the inforrnatiorifunction
appeared to take the shape of an inserted (and rather
asymmetric) shallow dish, with maximal information
attained in the interval [00.1_5]. This should approxi-
mate, at least in its form, the information structure
resulting from applying the Bayesun sequential test with a
real item pool whose configuration is based on I.Irry's
(1974) prescription. It should be apparent that some
efficiency of measurement will be lost in the extremes of
the 8 distribution, especially in the lower extremes. Note
that for these data, test length was a constant 30 items at
all levels.

For the nab- 71 configuration the information curve
does not take the shape one would assume intuitively
From knowledge of the distribution of the discrimination
parameters it would seem that the-curve should mirror that
of the rob+31 information but with maximal information
at 03.0. Instead it rather emphatically takes the convex
form. The test is maximally efficient in the interval
[ WO], and rapidly loses efficiency elsewhere. This is a
remarkably different result from what one-would expect.
The highest item discrimination parameters were available
at the low end of the 0 scale, yet information was as low
there [-2<0<-13] as it was where the lowest item
discrimination values occurred [1.5<0<3.01. The low levels
of information in the low 6 region are due in part to the
small number of items administered there. As Table 4
reveals, the posterior variance termination criterion resulted
in mean test length of 14 items at 6=-3.0; 17 items at
02.0; 22 items at 6=-1.0 The information values ob-
tained with these test lengths could be adjusted statistically
to estimate the information values for consCaUtIO item test
length. Such an adjustment would still show an efficiency
loss at 0< 2.0 for this item pool configuration, despite the
high average item discrimination in that region We will
address this problem further in the discussion to follow

Implications. These results were obtained by simulating
a "perfect" item pool, i.e., a pool in which unlimited
numbers of items of ally difficulty level were available. This
should result in data, Much, whim the limits of sampling
error, approximate the best possible results obtainable using
the sequential testing procedure as specified by Owen
(1969), under the conditions studied.

51

57



We have found, ss did l'ary. (1971, 1974) and Jenserna
(1972, 1974) before us, that the procedure has the
potential to yield Wan CSIarna1C51121Z4 r=1) 11# vaildities
with great economy in test length, plorided that highly
disciumnaling test stems, reatengularly distributed on
difficulty, cUllinute the item pool. We have also found that
there may be a tendency of the method to averestinute
group mean trait level. when item eanarimination pare
meters are very high, even when the trait estimation model
exactly .aanforms to the item response model. When the
estimation mudei is not .unguent with the deal /espouse
model (as in the uncorrected guessing aundition of stud) I)
we have found that iathei sizable bias of estimate may
occur, accompanied by diminished validity.

Lord (1970, p. 152) made the point that evaluating a
tailored test by means of a group statistic (such as our
validity coefficient raw) presumes some knowledge of the
group's distribution on the trait being measured, and
ignores information relevant to the accuracy of trait
estimates at any one level of the trait. The solidity of the
Bayesian sequential test trait estimates was, as we have
seen, quite high under the conditions used In oursimulation
studies. The accuracy of the estimates was also favorable in
what corresponds to the middle ranges of a normal
distribution on 0, but was found to be less favorable in the
extremes, especially the lower extreme. Similarly, the
information functions of the trait esitmates showed that
the effectiveness of measurement under the Bayesian

"'tailoring procedure varied systematically as a function of
the configuration of the item parameters constituting-the
item pool, but in all three configurations measurement
effectiveness was very low in the low ranges of the trait.

The observed loss of accuracy and information in the
extremes of the typical- range of 0 are disturbing, since
the advantage of tailored testing over convelitional testing is
the former's supposed potential for superior measurement
accuracy and-effectiveness in those extremes. From our
data it is apparent that with the exception of the rabs-.71
configuration, the sequential test scores are behaving much
like conventional test scores, at least in terms of the shapes
of their information functions. And even for the rab,71
configuration measurement effectiveness was relatively
poor in the lower extremes of 6. The utility of the Bayesian
adaptive testing strategy may be dunuushed considerably
by results like those reported fOr"Study 2, if they prove to
be general.

The problems -revealed in Study 2 (of bias non-linear in
0, and of convex information structures of the trait
estimates) have causes which may be amenable to improve
rune. At the heart of the problem is the effect of guessing,
which generally operates to reduce measurement efficiency
at all trait levels, and especially at low trait levels. Also at
the core of the problem is the Bayesian procedure itself. As
we have pointed out earlier, the Bayesian trait estimates
behave like regression estimates. Extreme values of 0 are
systematically regressed toward the initial prior esti-
mate. the assumption of a normal prior distribution of 0
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easures this tendency. Now, the more extreme 0 is for any
individual, the larger va be the ;egression effect. on the
amuse. Recall that the item stle..tion procedure sekz-ts an
gem with dmicuit) b somewhat easier than the zurrent 9
estimate. Rat fur hag 0 the Laurent estimate is almost
always too low. Hence the difficulty of the selected item
will almost always be too easy for extremely able exam
mem. Cumulated over, say 30 items, he effects of this
inappropriate item selection will be several

1) mean proportion correct will tend to -increase as a
function of 0, despite the explicit attempt of /he tailoring
procedure to make it constant at all levels of 0.

2) 0 will tend to lx underestimated feu high o due to
the inappropriate difficulty of the test items administered:

3) information loss will occur at high 0 due to the
/hallowing slope of the regression of 0 or 8.

For low 8 the initial prior is an overestimate. Hence, the
first item selected will generally be too dilliadt
[(61-6)>01, yet the examinee has a non zero chance of
answering it correctly_ A correct answer, of course, will
cause an-increase of 0 and thus result in another inappropri-
ate choice of item difficulty._ Furthermore, as Sarnejima
(1973) has shown, there may actually be negative infonna-
lion in a correct response to an item whose difficulty b
exceeds an eicarrinees actual trait level 6 by a fairly small
increment, when guessing is a factor. We suggest that
examinees in the low extremes of 0 are rather consistently
being administered overly difficult items Khz-0)>O1 with
several systematic results:

1) mean proportion correct tends to decrease with 0
despite the tailoring process;

2) posterior variance reduction tends to be more rapid
for individuals of low trait levels, due largely to their
sub-optimal proportion of correct responses, resulting in
shorter mean test length;

3) 4he shorter the test length, the less opportunity the
Bayesian estimation procedure has to converge to extreme
trait level estimates;

4) non-convergence combines with negative information
in some correct responses to diminish severely the effective-_
ness of measurement in the low regions of the trait

Some of the conclusions just stated are speculative
Specifically, we have not looked at proportion correct as a
function of 0, nor at the quantity (bi-8), both of which
bear on the appropriateness of the tailoring process Future
simulation studies will be necessary to examine these
variables.

One goal of adaptive testing should be to achieve a
constant high level of measurement effectiveness at all
levels of 0. This desideratum is equivalent to a high,
horizontal information function. We have found that the
Bayesian sequential test failed to achieve this goal despite
an unrealistically favorable set of circumstances-

item
the -per-

fect
-fect tem pool, errorfree item parameters, and a scoring

model perfectly congruent with the item response model
We have attributed the shortcomings of the Bayesian trait
estimates to the regression-like tendency of the sequential



estimates tirmselves, %hull n_ turn =stair, napplopnaoe
item selection for incrniduals whose trait levels are =-
timely high or low.

There are at least zo niethoih, 0 AIIIICLWALing this
problem, both of which should, to s.iine extent, lessen the
has of estimate at the extremes and the infunua
lion structure of the trait estimates. The first method
involves the assumption of a re...tang:1m rathet than a
normal ?no: distribution of 0_ The se..rid method would
involve replatang the present item selection pocked= with
a mai:nut-al branaung puxedure Mull, would be less
sennlive to large cisuas in the ,uncut lint estimate in its
choice of the next item to ad.-nrustez. Needless to say , both

of these alternatirsa Jo violence to. Owen's
&pat procedure_

If the practitioner is committed to the procedure as it
was origin3Iy proposed, it would seem that the best course
of action would be to take great ...are in Assembling the item
pool, and to adimpastei a ...instant nurubet of items (say
30) to each examinee. If no strong coinmitment to Owen's
I .....edure is involved, the practitioner may be well advised
to use another adaptive strategy, , such as Weiss stradapfive
test (Wass, 1974), Lord's (1974) maximum likelihood
procedure, or a somgai procedure being investigateol-by _
Sump= (197.5). Systematic. investigation of sinx of these
strategies, which will peanut them to be .Annpared with the
Itayesian sequential test, are currently in progress.
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AN EMPIRICAL INVESTIGATION OF WEISS'
STRADAPTIVE TESTING MODEL

This study' unrstigated the validity and utility of the
stratified adaptive ("stradaptive') computerized testing
model proposed by Weal and colleagues in the Psycho-
:mum Methods Program, University cf Minnesota. Weiss
and his associates have reported the theoretical develop-
ment of the stradapuve model (Weiss, 1973, DeWitt and
Weiss, 1974; McBride and Weiss, 1974) including some
examples of individual results. To date, no full empirical
studies of the model have been published.

The Strixiaptire Testing Model

Luids theusetical analysis of adaptive testing versus
qconvennunal testing makes one point very .dear_ a peaked
test provides mule precise measurement than an adaptive
test of the same length when the levee's ability is at the
Ann! at winch the conrenttonal test is peaked At some
point on the ability continuum, generally beyond 3 5
standard deviations from the mean. the adaptive test
requites fewer items lot ...JR:doable measurement effi
ciency.

Lord suggests that an "'dear testing strategy would
present a sample of items to each subject comprising a
peaked test with a .50 probability of a correct answer for
examinees of the pas tuailai subject's lice ability (Pc t- 50)
The catch. of ...ouise, is that the true abil.ty of the subject is
unknown, the estimation of which is, in fact, the desired
outcome of the measurement procedure.

Traditionally. this problem has been circumvented by
peaking the test at 30 for Ihe hypothetical average
ability level subject. This procedure worked well for
examinees near the ..enter of the ability continuum, but less
efficiently near the extremes.

Weiss" stiadaptive model extends the Binet rationale tc
computer -based ability measurement. A large item pool is
necessary. with item parameter estimates based upon a large
sample of subjects from flit. same population as potential
examinees. Items are scaled into peaked levels (strata)
according to item difficulty. A subject's initial item is based
upon a previously obtained ability estimate or the subject's
own estimation of his ability on the dimension being
assessed.

This paper u based on the author's doctoral dissertation
conducted at I- londa State Lniversity undo the disealun of Di.
Howard W. Stoke,. Requests lot copies of the dissertation should be
sent to the author do AFlIRL/FT,Wi1Liams APB, AZ 85224.

S.
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Figure 1 depicts a nine-strata distribution of items in a
hypothetical stradaptive item pool.

As in the Binet, the subject's basal and ceilingstrata are
defined, with testing ceasing when the ceiling stratum has
been determined_ A subject's score is a function of the
difficulty of the items answered correctly, utilizing various
scoring strategies (Weiss. 1973).

The Item Bank

Verbal analogy test items were used in this study
selected from the SCAT Series 1I.2 This test series provided
a single-format, unidimensional test with extensively
norrmd item parameter estimates. The item format was
easily stored in a compute: item file, being short and
standard for all 244 items.

Item pool data received from Educational Testing
Service contained five 50-item verbal analogy tests, Forms
IA, 1B, IC, 2A and 2B of the SCAT Series 11 examinations_
These tests had been nationally nonmed on a sample 3133
twelfth grade students in October 1966. Pvalues and
biserial correlations on 249 item:, were provided by ET&
These values were transformed into normal ogive item
parameters.

Table 1 shows the actual distribution of items used in
this expenment_ The final pool included 244 items gauped
into 9 strata According to normal ugivc item difficulty
parameters as VII in Table-1.

The nine stn in Table I are essentially nine peaked
tests, varying in average difficulty from 2.12 to +1.91_
Stratum 9, the most difficult peaked test, (or example, was
composed of 19 items ranging from bs = 1.27 to
b= 3 68 In this study, items were randomly ordered
within strata, unlike in Weiss' model, in older to permit an
alternate-forms reliability coefficient to be calculated for
stradaptive examinees_ As is typical in educational and
psychological research, the concvntiation of more difficult
items contains the Iowa discrimination values_ A correla
tion between bb and as of .31 reflects this problem.

Subject Pool One hundred-and two incurring freshmen
to Florida State University were tested in late July 1974_
Ninety-nine of the subjects had Florida Twelfth Grade

'Test materials from SCAT Series H Verbal Ability tests were
adapted and used with the permission of Eduction Testing Service.
The author of this paper gratefully acknowledges the help of ETS in
the pursuit of this research.



(12V) Verbal Scores or 12V esurnates denved from ACT or
CEEB verbaL scores to serve as 4anena ki the validity
investigation of the stradaptwe test scores.

Table 2 depicts imear n suadapine givup rest siausuts
on the 12V scores.

As can be seen in Table 2, the random assigrurrnt.of
subjects to linear or stradaptive testing group did a good
job in equating t1 groups on the ability continuum as
presented.

Testing onnnued .Lad a sr bje..fs 4x-ding stratum was
identified. fui this study, the ..rding suatum was defined as
the lowest stratum in -which 25% or less of the items

STAMM

measured by the Florida 12th Grace Verbal test
Siam SCAT V-published results had shows sisrafitantly

different difficulty levels between the five forms, linear
subtest sores were normalized within their separate distr;
butions and-then pooled into a linear total score distribu-
tion for comparison viithstradaptive results.

CRT Testing

A winpute: popam desarbed by DeWitt and Weiss
09731 was adapted to fit the FSI: Control Data Corpora
Lion 6500 computer.

Moir at
tressA

4

1

.$ .90 .00 .70 .60
Easy -itos

ability)

1.' 1 i I
.50 .40 .30 .20 .11 .01

Difficult items
(MO ability)

OlffICULTY/MilLITY
(p proportion coma) feel (kiu, 11174)

Figure 1. Distribution of items, by difficulty level, in a Stradaptive Test
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TABLE I

Item Difficulties (b) and Disaimkationsiral, Based on Normal Ohre
Parameter Estimates. for the Stradaptire Test 114:11 Pool

Stratum
Tess.;

Tei(Pc.30

Item..DfillcIeles
9159
1.2,1

Sem
to. cf Iters

Item hater

-1.94

4.57
-2.12

=

-1.46

.1.61

-1.68
25

3

- -93

.1.40
-1 -13

33

i

A

- .t2

- -83
- 4e
n

5

- .*3
..44
- .15

31

.25

- _12

.1:4
28

.57

.17

.44
M

1.34

.71

.ss

22

3.68

1.27
1_91
19

1:1011n Stratim8-ar a 8 a 8 a 838 a 8 a 8 3 a

1

2
-2.33 .43 -1.6'7
-1.97 .15 -1.74

.53
-59

- 93
-1.35

.55
-63

-.62
-.49

_79
.59

- .19
- .33

29
.41

.21
.25-

.9
.59

.33

.31
.53
.34

1.75
.75

.45

.64
1.75
1.59

.49

.44

3 -2.37 _42 -1.73 .95 -1-34 .42 -.72 .77 - -11 _53 .13 _44 .43 .53 1.19 .56 1-51 .44

4 -2.27 .64 .1.91 .52 -1 -11 1.17 .25 .73 - .17 .53 .24 . .53 .39 .33 .45 2.91 .49
5 -1.97 IS -1.53 _77 .1_39 .53 -.ES .A2 -- .11 .51 .09 .69 .65 .66 1.13 .36 3.62 28
6 -2.17 .35 -1.72 .59 - 92 . 3 3 -.42 .61 - .16 .3: -.13 .61 .34 .49 .27 .34 1.57 .29

7 -2.31 .41 -1.47 95 -1.15 _42 -40 .51 . .16 .E3 _79 .71 .30 .71 .71 .48 1.60 .33

8 -2.03 .41 -1.33 55 -1.31 .44 ._69 .75 - .1: .52 .12 .61 .9 .53 23 .53 1.34 .42

9 -2.13 .48 -1.0 .sa -1.22 .95 -_55 .52 - .44 Al .11 .63 -28 .64 .ta .42 1.83 .52

12 -3.57 .33 -152 .93 -1.26 .52 -.80 -55 - .42 .55 .33 .39 .16 .52 .72 .61 1.27 )27

11 -2.03 .53 -1.69 .83 -1.12 _72 -.57 -33 - .21 .39 .00 .41 .29 .51 1.24 .33 2.29 .44

12 -2.63 .32 -1.59 .41 - .95 1.01 -.64 .68 - -35 .59 .21 .53 .62 .55 .71 .7] 1.33 .33

13 -1.9S- .25 -1.65 .71 -1.37 .53 -.26 23 - .24 79 .13 .69 .53 .55 .91 .26 1.21 .41

14 -1.95 .55 -1.55 .34 -1.31 .54 -.76 .59 - .13 .55 -.S9 .77 .22 .37 1.26 .49 1.27 .42

IS -2.31 .53 -1.52 .69 -1.40 .75 -.54 -46 - 142 -75 .13 .44 .27 .69 1.24 .33 1.91 .27

16 -2_50 .53 -1.51 .61 - .52 .36 -.53 -73 - .41 .65 .'23 .71 .56 .45 1.21 .56 2.24 .Z5

17- -2.33 .50 -1.t8 .59 .7.rd4 -63 -.E3 -59 - .15 .83 ..5 .55 .67 .46 .75 .79 1.94 .41

18 -2.36 .61 -1.83 .93 - .97 .81 -.41 .58 - .33 .58 .13 .44 .40 .52 1.34 .37 7.13 .27

19 -1_56 .81 .1.£0 .36 -1.29 .58 -.62 _72 - .31 .71 .14 .65 .32 .53 .95 .25 1.33 .3;

n -2.21 .71 -1.35 .61 - .91 .77 -.26 .55 . _31 45 .:6 .64 .32 .73 .75 .56

21 -1.65 .45 -1.92 .75 .6, I.: .12 _68 -.91* .57 .29 .43 .79 .45

22 -1.78 .68 -1.19 .46 -.25 46 - .33 .54 -.35 _50 .66 .64 .24 .53

23 -1.51 .77 -1 35 -45 -.59 .77 - .35 .69 .12 .77 .37 .36

24 -1.45 .61 -1.17 .54. -.53 .41 - .1t .44 .36 .53 _26
.

25 -1.46 .49 -7.37 .27 -.65 -66 - .44 .52 -13 55 .5.0 .64
26 -1.93 .79 - .96 .65 -.75 .73 - .15 .81 .32 .45 .55 .39
27 ..1.3' 32 ...se Ala - .23 .49 -604 _68

28 -1.2, .71 -.63 1.'d7 . .19 .44 37 .35

29 -1.32 .ES -.74 .61 - .37 .79

30 - .93 71 -.61 .54 - .14 -65

31 -1.30 .69 -.93 .51 - .16 .44.1

32 -1.19 .36 -.75 .73

33 -1.21 _45 -.60 .59

34 -.83 81

35 -.77 .48

36 -.42 .33

37 -.65 .33

38 -.76 .43

39 -.73 .83

'Ibis Item wes aTiiiiliFiTto stratum 6 ratoer 'Fill 3.77ZrortuesteV,Tio sr:ER-its reia4d the item Ti me StrsIeptivt Pool.

TABLE 2

Comparison of Distributions of Linear and
Stradaptive Group Florida 12th Grade Verbal Scores

GROUP # SUBJECT MEAN STD D EV STD ERR KURTOSIS SKEWNESS

LINEAR 46 33.26 5.30 .855 .44 .70
STRAD/MI VE 53 34.06 6.12 .841 .36 -.03

Pr (p lin = p st4= .05

Pr ta' lin = o sir) = 3.05
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Testing Sequence. The subjects estimated then
using the procedures described in DeWitt and Weiss. The
first item that the stradaptive subject received was the first
item ut the stratum cusurnensoratt with her ability estimate.
The subject was then branched to the first item in the next
lughei tat iuwez stratum depending upon whether the initial
response was currea 04 incorrect. If the subject entered a
question mark ('_), the next item in the same stratum was
presented.

Testing continua until a subject's ceiling stratum was
identified. For this study, the .ceiling stratum was defined as
the lowest stratum in winch 25% or less of the items
attempted were answered correctly, with a constraint that
at least 5 items be taken in the ceiling stratum. The 25%
figure reflects the probability of getting an item right by
random guessing on a 4-option multiple choice test Once a
subject's ceiling stratum was defined,- the program looped
back to the exarrunee's ability estimate stratum and
commenced a second stradaptive test with item selection
continuing down the item matrix from where the first test
ended. Since items were random]) positioned within each
stratum, parallel, alternate forms were taken by all subjects
who reached terrnmation criterion on the first test_

A maximum of i 20 items per subject was established, as
pie-study trial testing suggested that subjects became
saturated beyond this point.

Termination Rules. Weiss hid two versions of his
suadapuve testing computer program. Version one, whi...h
was used in this study, presented another item in the same
stratum when a subject skipped an item.

The author of this study was unaware of the existence of
the second blanching strategy program prior to ..oMplet.on
of data collection. However, Weiss' program procedure of
ignoring skipped items in determining test termination was
questioned. It appeared that valuable information was being
lost when the Weiss procedure was followed.

It was reasonable to expect that a subject would omit an
item only when he felt he had no, real knowledge of the
correct answer. Thus, investigation of test termination
based upon omits counted as wrong answers was judged
appropriate.

Weiss had set 5 Resits in the ceiling stratum as the
minimum constraint upon termination. A secondary goal of
the present study was to determine what effect the
reduction of this constraint to 4 would have upon the
effectiveness of the stradaptive strategy. -

These two questions of the handling of omits and the
variation in the constraint on the termination of testing
created the following three methods fur comparison '..

Termination Method 1:
Omits ignored/constraint = 5 items

Termination Method 2:
Omits -1 wrong/constramt = S items

Termination Method 3:
Omits = wrong/constraint = 4 items
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Data was ccalecterLising Termination_Mettiod_ and
then rescored using Methods 2,and 3_ This was possible
slate no indication of the teunination of the first test was
given to the subject and since items were randomly ordered
within strata. Once test tezranation was readied using
Teti:rout:on Method 2 os 3. the next item taken by the
subject in his entry point stratum acted as the start of a
parallel forms test under the termination rule used.

Of course, Method 2 required fewer items than Method
I and Method 3 considerably fewer than Method 2_ The
thrust of this investigation, then, was to determine the
relative efficiency of the three methods in comparison with
one another and with Laeai testing_after equalizing test
length using the Spezria::i. Brown prophecy formula.

Stradaptive Test Out,..a. Figure 2 provides an example
of a stradaptive test report from this experiment A "+"
next to an item indicates a correct response, a " ", an
incorrect response, and ..?. shows that the subject omitted
the item.

The examinee in .Figure 2 estimated her ability as "5."
Hence, her first item was the fast item in the Sth stratum.
She correctly answered this question but missed her second
item, and after responding somewhat inconsistently for the
first nine items, "settled down" with a, very constant
pattern fur items 10 through 19 when.she reached stopping
rule criterion.and her first test terminated.

The testing algorithm then selected the 6th item in
stratum 5 (her ability estimate) to commence her second
test. (The subject was totally unaware of this occurrence as
no noticeable time delay occurred between her 19th and
20th items).

At the conclusion of her 31st item, this subject readied
termination cutenon for her second test, was thanked for
he' help in this research project, and given_hei score of 15
conect answers out of 31 questions with a percentage
correct of 48.4%.

The scores for this subject are shown fur both tests. The
interested reader may gain a more thorough understanding
of the scoring methods used in _this model by tracing this
subject's ability estimate scores through Table 1..

RESULTS AND DISCUSSION

Test theory suggests that measurement efficiency is
maximized at Pc = ..50 for a given test group. It was
hypothesized that the stradaptive test strategy would more
nearly approach this standard than the conventional linear
test, indicating an improved selection of items for the
stradaptive subject. Table 3 shows the result of this
comparison. It clearly indicates significantly different distri-
butions of test difficulty. The stradaptive test was far more
difficult than the linear test, with a smaller variance.
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.ZPORT ON SIPA-WINE TEST 1

IDNUMBER- 263354020 DATE TESTED- 11137/29

(EAST)
STRATUM- 1 2 3 4

5+-

f
30+

.

ituntun sco'is Get STFADAP7IYE TEST 1

7 8 9
1. DIFFID.LTY OF POST DIFFICULT ITEM COP.PECT..24

2. DIFFICULTY OF THE 11.1 TH IT?:- .11

3. DIFFICULTY OF HIGHEST MON-CrIANCE ITEM 03RRECT..24

4. DIFFICULTY OF HIGHEST STRATUM 111TH A COPSECT

MUER. .04

5. DIFFICLLTY OF TIE 701 TN STRATIR1..04

6. DIFFICU.17 OF HIGHEST /01-01ANCE STMTUM..04

7. INTRA:RATED STPATUM DIFFICULTY -.06

8. MEAN DIFFICULTY OF ALL COW.CT IratS. -.09

PROP. CORR: 1.00 .75 .71 0.00
TOTAL PR:WORT:CM CORRECT

.474

WORT ON STAADAPTIVE TEST 2

ICKLMBER- 263354070 ME TESTED- 74/07/29

(EAST) (DIFFICULT)

STRATUM 1 2 3 4 5 6 7 8 9

-PROP. CORR:

211421-
22*''

.%"23-
24."'".

27*
f :

30+,_ .

-"31-
Log .83 0.00

TOTAL PROPORTION CORRECT- .500

9. MEAN DIFFICULTY OF CORFLECT I1E16 MEDI
CEILING A710 3ASAL STRATA. -.02

10. MEAN DIFFICULTY OF ITEMS CORRECT
AT HIGHEST tf-CHANCE STRATUM. .09

SCO:ES ON STRADAPTIYE TEST 2

1. DIFFICULTY OF POST DIFFICULT ITEM CORRECT. -.11

2. DIFFICULTY OF THE 8+1 TM ITEM. .34

3. DIFFICULTY OF HIGEST NON-CHANCE ITEM 03RFECT. -.II

4. DIFFICULTY OF HIGHEST STRATUM
WITH A COP2ECT ANSWER- -.25

5. DIFFICULTY OF THE TN STRATUM. -.25

6. DIFFICULTY OF HIGHEST NON-CHANCE STRATUM. -.25

7. INTERPOLATED STRATUM DIFFICULTY. -.18

8. MEAN DIFFICULTY OF ALL CORRECT ITEMS. -.26

9. MEAN DIFFICULTY OF COMECT ITEMS BETWEEN
CEILING AMD BASAL STRATA. -.21

10. WAN DIFFICULTY OF ITEMS CORRECT AT
HIGHEST NON -CHAMCE STRATUM. -.21

Figure 2. Example of stradaptive testing report.

TABLE 3

Comparison of Difficulty Distributions (Pc)
for Linear and Stradaptive Groups

GROUP # SUBJECTS (Pc) STD DEV STD ERR KURTOSIS SKEWNESS

LINEAR
STRADAPTIVE

47- .752
55 .584

.123

.084
.018
.011

-.87 -.39
_5 14 1.97

*Pr (ji = Lin) = 4.0001

"Pr(cr2 Str = 03 I,in) = <.05
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Linear Test Rehthilit i. Makini,:he standard assumptions
underlying the one factor iandum effects analysis of
iiarianx (ANOVA). the-esurnated reliability cueffnaent of
the total scores is shown in Table 4 lot _

examinees.
The internal Consistency reliability estimate for the

linear test was .776 fox a test of an average of 484 items in
length. Stepped-up to 50 items via the Spearman -Brown
Prophecy formula, this estimate be.urnes .782. The ac
potted reliability of the ongual SCAT V tests a2s 17.
Using Feldrs (1965) test, Pr (psc, I = phn) = < .05.

It .an be assumed that The differeme between these
ithabilities was ...awed by one or mote of thiec

Testing mode (CRT vs paper and pernil)
2. Elimination of 6 of the 250 items hum the anginal

item pool.
, Restriction of range in eobject pool Lot this expen

;mat.
The Litter fautoi must likely caused the decrease in the
reliability of the test scores. The homogeneity of the
subjects would yield a relatively small amount of between
person variance. which would lower the reliability estimate.
It might also be mentioned that Stanley noted that
intraclass item oarrelation is a lower bound to the reliability
of the average item.

Straliptist Total Test Rettabtht). Using Stanley's
(19711 pioxiluxe. it was possible to estimate the internal

reliability of the person by item stiadaptive test
matrix. Of the 244 items in the stradaptive pool, only 133
items were actually resented to the subject pool in this
experiment.

Weiss* Sunng Method 8 provided the only set of
snasiiptin test .5.4.11CN wherein a peisun's total test scare
was a lineal Lithium of his items,ures. Ilene, this :wring
method was used to estimate inteinal curisisten.4 reliabil
ity. Table 5 summarizes these results.

Table 6 shows the parallel forms and KR 20 reliability
estimates fot the three ternunatiun rules used in this study.
Duca aampansons can be made between the stradaptive
KR-20 values and the .782 linear KR-20 estimate. Accord-
ing to Fetch's (1965) approximation of the distribution of
KR-20. all of the estimates of the stradaptave test reliability
are significantly (p = <.05) better than the linear KR-20
PUMA te prior to being stepped-up by the Speaisnan-Bruwn
formula Pr (.675 < jr20 < .858) = .95. Thus, the 19, 26,
and 31 item stradaptive tests all pi ed more reliable than
the 48 item linear test.

A sumpanson of the Leaf inteinai-wrinstency
oueffiLients (rix) and the stradaptive parallel-forms

reliability estimates (rxx) in Table 6 must be considered

TABLE 4
Analysis of Variance for Linear Test Person by Item Matrix

SOURCE df SUM OF SQUARES MEAN SQUARES

Persons 46 37.57 .817
Error 2229 408_55 .183
Total 2275 446.12

a MEW . 411.
/Lc lila) = 1 .183/.817 = .776 7 .mMi. .

TABLE 5

Analysis of Variance of Scoring Method 8
of Stradaptivc Test Person-By-Item Matrix

T

R
M

1

SOURCE df

54
1675
1729

SUM OF SQUARES MEAN SQUARES

Persons
Error
Total

191.941
588.253

3.555
.351

= .901)

I R Persons 54 178.870 3.312
N U 2 Error 1401 470.442 .336
A L Total 1455 (r = .899)
T

Persons 54 155.841 2.886
0 3 Error 1001 366.447 .366
N Total 1055 = .873)
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only tentatively unix they are different kinds of estimates
of thr true rehability. The sampling distribution of rx is
known and that of ru has been approximated_ by Feldt
(1965). Cleary Z. lam (1969) compared standard errors of
both indivts with generated data of known p_ They fuand
the standard error of KR 20 to be somewhat smaller than
that of the parallel test ..urrelatiur. (approximately .05 vs
.04 in the range of reliabilities, number of subjects, and
number of items involved in this experiment.)

Linear Test Validity. The ..orielatiun of obtained lined'
suites with the Flunda 12th Grade &Axes was .477, which
was signifivantly lower than the published SCAT V_SAT v
correlation of .83 (p = <.01). As with the linear reliability,
this differenve must likely iesulted from subject humugene
ity.

Stradaptire Test Validity. The validity cueffhaerats of
the stradaptive scoring under the three termination rules is
shown in Table 7. Validity was estimated by the unelatrun
between the test sLures and 12V scores. None of the
validity weft-menu in Table 7 were srgnifiLantly different
from the linear validity coefficient of .477. although
stradaptive validity coefficients were wnsistentiy higher
than the linear indices.

Number uf Items. Table 8 shows the difference in
Lumber of items presented fur the linear and the three
termination methods of the suadaptive test. The cunsis
teny in.average number of items presented per subject Was
surprisingly ..onstant over the two parallel tests of ternima
nun methods 1 and 3. Method 2 did show a signifivant

<.05) drop in the average number of items on the
se,und test, possibly-due to the 60-item limit.

Item Latency. It was hypothesized that mean item
iateny would be higher fur stradaptive subjects sin..e they
would have to "think about eadi item as it was near the
limit of then ability. Table 9 reflects the results of this
comparison.

The hypothesis of no differemrs between item latemies
was rejected._ For the subjects in this experiment, the
average stradapuve item required approximately 11% longer
than the average linear item.

Testing Casts. No full e-ost analysis was planned for this
study. However, computer costs were available for the
three-day data ..olleaion. A total of 589.00 was spent over
the entire period on the CDC 6500 computer. This total
inJuded core memory (CM), central proxssor (CP), per
manent file storage (MS), data transmittal between the

TABLE 6

Comparison of Scoring Method 8 Parallel Form Reliability
with KR-20 Reliability Over Three Termination Rules Stepped Up to 50 Items

Parallel
Forms

r (raw)
r(50)

1

TERMINATION RULES
2 3

= 12)
.892
.929

(N = 28)
.688
.806

(N= 38)
:732
.903

(N = 55) (N = 55) = 55)
KR-20 P20(raw) .901 .899 .873

P2.(50) .935 .943 .947
K, = 31.45 = 26.47 = 19.2

1{1= average number of items under termination rule 1.

TABLE 7

Comparison of Validity Coefficients of Scoring
Method 8 under Three Termination Rules

Termination Rule
64

2 80 .536 .693
3 91 .499 .626

rex =Correlation between criterion measure (12V)

rex * rex corrected for attenuation

6 Vi
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CRT's and the computer, lint punting (LP). and pundi ..ard
output for 102 subjects. Data files were pundied-out as
they were created to assure that data would not be lost in
case of hardware malfunction.

In the present study. 6 CRT's were-kept on and tied to
the computer continuously for 14 hours a day for 3 days in
order to be ready for subject-volunteers whenever they
arrived. In any institutional implementation of computer-
testing outside the experimental situation. exam time
would be scheduled. thus minimizing telephone line trans
mit tal costs.

The ..ost of aaually -tes".ir.g cad: indisidual ..arr.e to less
than 2t per subject for CM. CP, MS and LP zime_ The vast
majority of the was ..ited .sbove involve 42 hours on
continual tie in to the ..omputer. the "unnecessary punch
ing out of all data. and the extensive file manipulations
done by the author because dire,t a._cess space be..ame
critically short during data aillection. The latter fai.tor
required restorage of data tiles from dire.( indiret ilk
space:.

This ,_ost approximation ..ould be .ompared withtesting
costs from the reader's experience. Without trying to define
conventional. testing .osts per se. there is still little doubt
that computer based testing ...ists less thin ,onlentional

testing with the. papa and pencil iriode to, any
testing program.

CONCLUSIONS AND IMPLICATIONS FOR
FUTURE RESEARCH

The Jesuits of this study favor further investigation of
the stiadaptite testing model. The model produced unsa-
tently higher validity coefficients than conventional testing
with a significant reduction in the nurnbei-of items from 48
to 31. 25 and 19 fur the three stradaptive termination rules
autstigated in the study. The internal consistency reliabil-
ity for the best stradapave swing methods was sigufi-
candy higher than the conventional KR-20 eFurnate, and
the suadaptive parallel -forms reliability estimates were
consistently higher than cunvintiunal KR-20 estimates.

No prior research was found showing a comparison of
;tem latency data between adaptive and conventional
testing modes. Results in this study dearly indicate that
subjects take significantly longer to answer items adapted
to then ability level, about 117c Pangeran the present study.
This is an important result, as it indicates that future

TABLE 8

Comparison of Averai:e Number of Items for Linear Test and Three Termination
Methods of Alternate-form Siradaptive Tests

;SUBJECTS
AVG #
ITEMS

STD DEV
t ITEMS # SUBJECTS

AVG #
ITEMS

STD DEV
# ITEMS

LINEAR 47 48.43 .99

TEST 1 TEST
AVG STD DEV AVG # STD DEV

SUBJECTS ITEMS # ITEMS 0SUBJECIS ITEMS ir ITEMS
STRADA FIVE
Method 1 55 31.46 18.03 38 30.92 12.54
Method 2 55 26.94 16.76 41 21.98 13.10
Method 3 55 19:20 14.06 47 18.19 11.34

TABLE 9

Comparison of Distributions of Item
Latency Between Linear and Stradaptive Groups

GROUP

LINEAR
STRADA ITIVE

# ITEMS

2276
1730

MEAN # SEC/ITEM

35.999
40.047

STD DEV

12.062
13.219

Pr (pstr ri lin) = < .001

Pr (olstr = lin) = <.001
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research into act's-foist iest:ng of any kind should take this
variable into corwderation when evaluating an adaptive test
strategy. Thenet gain of the adaptive model is a function of
the testing time needed to adequately measure a subject%
ability, not the number of item presented to the subject.
All prior research reviewed tautly assumed that itecu
latency was consistent across testing strategies. This study
indicated this assumption to be false.

It ss recommended that future suadaptive experimental
studrks should consider both suadaptive blanching models
with i comparison of results fium variation in the minimum
number of items in the ceiling stratum. A comparison
between variable number of stage suategies -and fixed
dumber of stage strategies is desirable.

As suggested in previous research, adaptive testing may
reach "peak" efficiency at between IS and 20 items. A
comparison of stradaptive test-statrstrs for example with

_44/k 4-- 0, 15. 20 and 25 items with linear testing should
ivestigate this hypothesis. Once the stradaptive data is

4, collected under the variable strategy, the fixed item
statistics can be determined by grading-the stradaptive test
after "K.'. items and then "starting- the subject's second
test at the first item of the entry point level.

Following the same logic which led to termination of a
subject's testing when five items in a row in the highest
stratum had-been currealy answered, the missing of five
items in a row of any stiatum should provide immediate
ceiling stratum definition. The probability of this occur
rence would be less than .05 for a properly normed item
pool. In the case of the present study, 13 of the 55
stradaptive subjects would have -terminated a stradaptiveadaptive
test an average of 12.1 times earlier than termination
method 1, with no effect upon the other 42 subjects. The
resulting- stradaptive test statistics obtained from. the
implementation of this suggestion have not been calculated,
except that the change would have reduced the average
number of items presented under termination method I to
28.4 from 31.45 (9.7%).

Further research is recommended into adaptive testing in
which both the number of stages and step-size are variable.
The Bayesian strategies and Urry's model (1970) are
examples of this category of adaptive measurement and
further model development seems appropriate.
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Research is indicated with comparisons between adap-
tive models as well as the traditional desip of comparing
adaptive methods with conventional methods. Weiss' on-
going research is beginning this work, but more is needed
The traditional comparison assumes that conventional-test
statistics are the criterion that an adaptive testing procedure
should try to difplilmte. Lord, Green, Weiss and others have
argued that improved measurement of the individual at all
ability levels may be hidden by the use of classical test
statistic such as validity and even reliability

One objective of this study was the attempt to estimate
the degree to which the violation of the assumptions of the
one-facto: ANOVA model affected KR 20 reliability esti-
mates. The assumption that items are independent of one
another is dearly violated in any adaptive testing pro-
ctdure. The estent of the effect this violation causes is
unknown, yet most pre ii0IJS researchin adaptive testing has
only considered ANOVA KR-20 estimates.

The results from this study do not permit definitive
statements on this question. Nevertheless, the three KR 20
estimates were consistently higher than the 3 parallel forms
reliabilities. Cleary & Linn's (1969) Monte Carlo study
indicated that kut -provided better parameter estimation
than parallel-forms reliability estimates, so one must ques-
tion whether the higher p estimates are not the result of the
dependency between items. Perhaps the only way this
question can be validly investigated is through a Monte
Carlo study of adaptive testing with p known and the two
methods compared, for estimating

Green (1970) stated that the computer -has only begun
to enter the testiag_business_and that as experience with
computer-controlled testing grows, important changes in
the technology of testing will occur. He predicted that
"most of the changes lie in the future . in the inevitable
computer conquest of testing."'

The straclaprive testing model appears to be cne such
important change.

'Green, B.F., Ir., In Holtzman (Ed.), p. 194.
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USING COMPUTERIZED TESTS TO MEASURE NEW
DIMENSIONS OF ABILITIES: AN EXPLORATORY STUDY

Because most of the research with computerassisted -test
administratice has been concerned with tailoring iiem
difficulties to test takers, what appeal to be important
./Larat.terisucs of ...umpotenzed equipment f n e.xpanclaki,
dimensionality of measurement appear to have been largely
ignored- Since paper- and -pencil tests are limited in terrrs of
stimulus ..ontrol and response etude, the near exclusive
reliance on them for personnel selection has imposed
restrictions on the types of abilities width can be measured-
For example, using conventional paper-and-pencil tests, it is
difficult if not impossible to present a moving stimulus,
obtain measures of tracking performance, control item
exposure time, record response latenaes, or sequence items
as a function of prior responses. Computer terminals of the
type ordinarily used for programmed instruction do have
these capacities.

The battery of tests developed for the present research
has been especially designed to exploit the special
capabilities of compute: teritunals for pri.tonal display and
movement and has thus been designated the Graphic
Information Processing (GRIP) series. A major interest of
the research was in finduig abilities whit.* are important-fot
on-job performance which f.omputenzed tests could
measure accurately but paper-and-pencil tests could not.

As a starting point fox the investigation, five traits.of
"real world- sigruficance as defined by Mecham and
McCotmick (1969) were selected. They were_Short Tom
Memory, Perceptual Speed, Perceptual Closure, Movement
Detection, and D....h.ng with Concepts/Information. Empiri-
cal data on the relative importance of these attributes for
work performance is available from Mecham and
McCormick (1969). The study- was designed to provide
comparisons of computerized and paper-and-pencil tests
designed to measure these attributes and to compare the
computerized measures and the operational variables in
terms of dimensionality and validity fot job performance
criteria.

The equipment used for the research consisted of the
IBM 1500 system plus a cathode ray tube (CRT) display
unit and a screen for film presentation linked on-line to an
IBM 1130 computer. Subjects responded to visual stimuli
presented on the CRT by touching a target with a light pen,
or by entering a tesOnse Into the typewriter keyboard.
Programniwas carried out in Coursewriter.

CHARLES Ii. CORY
Navy Personnd Research and Derelopment Center

The GRIP Tests

The GRIP, battery consisted of eight computer-
admuustered tests, ea-3i designed to measure a major aspect
of one or more of the five job elements.

. Illustrative items from each of the GRIP tests are shown
in the Appendix-

. t

1. Memory for Objects. Fran, .showing line drawings
of common objects with simple one word names were
flashed on the screen at an average exposure time of about
one-half second per object per frame. Number of objects
per frame ranged from three to nine. After *the exposure
period, subjects typed in the nines of all of the objects
remembered.

2. Memory for Words. The test was identical in
intention and arrangement to the Memory for Objects, but
with words substituted for the pictures. Of course the
object of this test was to compare the recall of words given
with the recall of wards generated by the candidates'
recognition and labeling processes. Words were of two
lengths: 3-lettiA and 5-letters.

3. Visual Memory for Numbers Test. This is a digit-span
test using the same type of methodology as was used for
the two preceding tests but having digits as stimuli About
50 percent of the digits were presented sequentially and the
other 50 percent were presented all at once, as a single -
stimulus.

4. Comparing Figures The frames of this computerized
measure of perceptual speed contain sets of squares or
circles presented as rows, vertical columns, and right and
le:t slant columns. Three to six stimulus pairs are shown on
the screen at a time. Each stimulus has a crossbar, oriented
either vertically or horizontally. Subjects are asked to
record as true-false answers whether or not all crossbars of
corresponding pairs in a set have the same orientations.

5. Recp Objects. For this computerized closure
test partially blotted-out pictures of common objects are
presented. The first presentation shows 10 percent of the
area and more area is added in random increments of 10 per
unit until 90 percent of the picture is exposed. Subjects
enter the names of the stimuli on the keyboard.
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6. Memory for Patterns. A test hailed to treasure
movernenorktection abilities, In winch patterns are Council
by sequentially blinking dots. Subjects are asked to sewn
whether ox not two consecutive patterns are identical and
for other items they are asked to reproduce riven patterns
on the CRT witha light pen.

7. Twelve Questions. A test %chid, resembles the
Twenty Questions game In that subjects are asked to guess
the name of an object based on yes-nui.nswers supplied by
the computer to questions. It differs from Twenty
Questions in that the questions are supplied in the. test
rather than being posed by the subject. The subjects
objectives are to select those questions which sonde the
quickest identification of the object and to avoid questions
which are redtuidant or useless. &ores are sums of ...orte.1
responses weighted by number and ohatacteicstoo .f the
dues received.

8. Password. A test which resembles the regular
"Password- game in that sets of %olds are shown on the
CRT which suggest a target word. rise _separate wuids are
shown as dues. After the first two clues and each
succeeding one, the firm of the object may be typed on
the keyboard. Scores are sums of oorreot responses
weighted by number of dues received.

9- Latency and Accuracy Variables. In addition to
direct measures of the personal attributes, latenoy treasures
were computed for speed of response for the Memory for
Words and the Componng Figures tests and latency
Recognizing Objects responses (speed of closure). In
addition a measure of the total extent to which the
response patterns failed to duplicate the stimuli in Memory
for Patterns, free response was created (PAT-ERR).

Paper-and-Pencil Experimental Tests, Biographical Vari-
ables, and Operational Tests -

Together with the GRIP battery, eight paper-and-pencil
tests largely drawn from the ETS Kit of Reference Tests of
Cognitive Fictors (French et al., 1963), and a motion
picture test (Drift:Direction by Gibson, 1947) composed
the set of experimental tests: In addition, data for each man
were obtained for Om biographical variables and for the
nine tests which are routinely administered and used for
Navy personnel decisions.

Samples

The experimental battery was administered to students ,
at the Navy Training Center, San Diego, dunng May and (

June of 1972. Subjects were chosen from personnel in the
first two weeks of technical training for three ratings having
widely vaned duties. Also tested in (Adel to increase the
sample size were recruits in their final week of training who
were school eligible but /ma not yet re.-caved post-recruit

assignments.
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Ten to eleven months subsequent to the testing. after
the subie41s had servet( on jobs in the Fleet for several
munths. supervisory ratings oovering both global and job
clement aspects of onjob performance were zollected by
=gout questionnaire.

The questionnaire used vas an adaptation of the
Position Analysis Qom jonraire, a broad-based empirically
dented instrument developed by E. .1_ McCormick and his
assodates win& has been extensively used for job
classification research McCormick, kanneret, and
Median, 1972). The adapted questionnaire liras used to
ocilleot ratings on global performance qs well as perforrAnce
on all of the 42 job elements which were judeed by a panel
of Chief Petty Officers to be relevant to the positions

After a preliminary review of the .oestionnaire returns.
the 22 job elements having the largest representation in the
sample were selected for analysis. These 22 job elements
together oath the sample size for each rating for each job
element are shown in Table I. For instance, the rust rating,
Elecoricrads Mate, unolved Manual Control Non precision
Tools, Assembling-Disassembling, Hand Arm Manipulation?
Coordination, etc,. In contrast the Personnelman rating
required Using Written Materials, Compiling Data, Oper
acing Keyboard Devices, Persuadingflnfluencing Others.
et0., and the Sonar Technician rating required Using
Pictorial Materials, Using Visual Displays, Adjusting
Macliines,'Equipment, etc. The last croup consisted of
personnel in undifferentiated ratings, largely apprenticeship
ratings. Major aspects of the assignments of this group
involved Using Spoken Verbal Communication, Manual
Control Non-precision Tools, Attention to Details
Completing Work, Working with Distractions, etc_

For each rating separately, zero-order validities of the
tests for, supervisors' marls of the job elements were
computed and comparisons were made to identify the
predictability patterns of attributes for job elements and to
compare the operational, experimental paper-and-pencil,
and experimental computerized tests as measures of these
job elements. Similar types of statistics were computed and
comparisons carried out for the ratings of global job
performance.

RESULTS

of
of the statistically significant zero-order validities

of the operational variables were found for the 12 job
element's which are shown in Table 1 The predictor
variables on the left are the Armed Forces Qmlification
Test, GCT a test of vocabulary anct verbal reasoning, ARI, a
test of arithmetic reasoning, MECH, a test of basic
mechanical knowledge and principles, CLER, perceptual
speed, SONR and RADIO, memory for pitches and sound
patterns, ETST, electrical knowledge and mathematics,
SHOP, Tool Knowledge, and lastly years of education.



TABLE 1

Simple Sizes for the Taventy-Two Most Common Job Elements

EM PN ST : UAlob Elemmit

UsinsWritten Materials 48 30 _ 11
Using Pidorial Materials 23 32
Using Visual Displays 35 66
Using Spoken Verbal Communication 20 52 36 92
Ding Non-verbal Sounds 31
Analyzing Information 20
Compiling Data 49
Manual Control-Non-precision Tools 27 SO
Mutual Control-Psecision Tools 23
Operating Keyboard Devices 53
Adjusting Machineraquipm eat 23 29
AssemblingDisassembling 27
Hand-Arm Manipulation/Coordination 22
Hand-Ex Coordination 31
Persuading Influencing 0 thms 40
Exchanging Routine Information 51 69
Untisualty Good her:3i= 29 69
Attention to Details, Completing Work 25 51 36 102
Vigilance-Continually Changing Details 20
Coping wi th 7123e Pressure 22 49 78
Working with Distractions 48 84
Keeping up to Date 52 30 86

TABLE 2

ftnificant Zero-Order Validities of the Operational Varkibles
for Twelve Common Job Elements
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Only the stausuailly significant coefficientsare shown.
The level of sigmficance is indicated by a eingie underline
fix the five percent lestl and double underlines fox the one
percent level. Blank cells Indicate non-significant validities
and double dashes indicated that the Ns were too small fix
nfidity coefriaents to be computed. Rows fox individual
ratings winch did not have any statsucally 4rtificant
validities haw. been matted.

Operational variables were generally not effective for
predicting performance on Job elements in the technical
ratings, and where effective did not seem to he associated
with underlying relationships or constructs. Fox instance,

the writing abilities of ST% do not appear to be logically
related to scores on ARI and RADIO, but they were
significantly correlated with them. Similarly, the reasons
fix the significant relationships between RADIO and
Pictorial Materials, SHOP and Verbal Communication
abilities, ARI and Communicating Routine Information
MECH and Influencing Others, and CLER with writing and
verbal communication skills were not dear. Yet all of these
relationships were found.

On the other hand interpretation of tie significant
prechtia job element validities is much more logical and
wnsistent for the experimental tests (Table II)

TABLE 3

&prirseant Zero-Order Validities ofthe Experimental Variables
for Twelve Common Job Elements
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The first live tests are short term M =Lily tests with the
first test being the ETS Kit test of Aisociative Memory, the
next three being ecimputenzed memory tests and the last an
auditunly administered measure ofd gat span.. Interestingly
the memory tests show 4.4.1raSiStent nezative 4.4.111C121.Win
with job elements foi Eleetricands Mate and the Appren
ticeslup group and positive ..orrelations for Sonar Tabs,
con and Persurinelman. The 4.w:datums for PNs are for
Writing and Verbal Communication Skills, two job elements
for which it would be logical to expect positive comb
dons.

The next two tests, Counting Numbers and Comparing
Figures, are respectively paper-and-pencil and computerized
tests of perceptual speed. Both tests discriminate primarily
for Personnelmen and the Apprenticeships ratings and the
patterns of validities of the two tests were very similar_

The next three tests, together with CLO-LAT, measure
perceptual closure, Gestalt Completion and Hidden Patterns
were from the ETS battery, and Recognizing Objects and
CLOLAT were computerized measures. The tests have
negative validities for Electrician's Mate and positive validi
ties for Sonar Technician, with primarily visual types of
elements being predicted for the latter rating

The next test was separate parts of the i.omputeozed
test designed to measure alinement deteclton. It had
significant validities for Sonar Technician and also had

.arguru.ant sahamc:s fob Personnelmen Aiiprentie
ship rating group.

Non-nse Syllogisms and Infeience, aicasusts of sync,
tutu. reasoning from the ETS battery, and the next two
tests, 12 Questions and Password, are computerized van
ably hypothesized to measure the same type of ability_ Fur
Persunnelmen both Inference and 12 Questions were
significziatly related to job performance and the patterns of
significant validities were very

The four special variables at the bottom of Table 3
correlated with visual skills and with job elements involving
accuracy and precision.

These relationships are summarized in Table 4 which
shows the number of significant validities of the opera-
tional, experimental paper-and-pencil, and expeithental
computerized variables for the job elements in each rating
in which they were present.

Major areas in which the computerized measures were
useful predictors were Adjusting Equipment for Electri-
cian's Mates, Writing and Working with Distractions for
Personnelmen, and Visual Displays for Sonar Technicians.
In addition computerized measures were useful supple-
mental predictors of communication and interpersonal
relationships skills for Personnelmen. Thus, the computer-
ized tests predicted -job elements which would be expected
to be oentral to global performance for the Personnelrnan
and Sonir Technician ratings.

TABLE 4

Signifiunt Zero-Order Validities of Operational and Experimental
Variables for Twelve Common Job Elements
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TABLE 5

Zero-Order Validities of Experimental Variables for Global Performance

Pro

Validity

EM PN
iN=271 (N=54)

ST
(N237)

LTA

(N=111)

Short Term Meniory

Object Number -.26 .13 03 -.01
Memory for Objects -.16 -.03 -.05 -.07
Memory for Words -33 .20 .13 .01
Memory for Nombers(V) -.15 .20 .38. Al
Memory for NumberAA -.15 .17 :08

Perceptual Speed

Counting NuMbers _03 £4 .42 £6
Comparing Figures. Machine-paced .02 -.10 .07 -.06
Comparing Figures, Self-paced .06 .07 .21 .08

Closure

Gestalt Completion -.28 -26 .28 .06
Concealed Words -37 -.14 .13 -.10
Hidden Patterns
Recognizing Objects

-.04 .23
-.1I -.06

33
25

.11
-.05

Movement Detection

Drift Direction -.29 .07 .02 .06
Memory for Patterns. True -false .15 - -.07 .42 .07
Memory for Patterns, Free Response .19 .21 .23. .19

Dcalirg with Conceptsllnformatien

Nonsense Syllopsms -.30 .01 .30 -.06
Inference .18 .19 .00 .13
Twelve Questions -.20 .28 21 .11
Password .08 .13 .33 .04

Special Variables

WORD-LAT -.24 -.os -.OS -.11
CLO-LAT .05 .02 -.24 -.11
F1GLAT -.04 .00 .02 .04
PAT-ERR -.24 -.17 -.26 -.13

'Significant at p < 05,

Zero -under validities .4 the eivpciirnentai variables fur
the global sating *J1 jvb peifulinanit ate slivwx1 in Table L.
time of the validity i.oeffk.ients pekenti were
statistkally signifkant. Of the nine, five were fur ..umputci
u.cd tests. Must of the Sigfliicht validities were for Sunni
Tei.hrimans. In ...onipansun, five of 35 validities of die
operational tests were statisti,ally signifk.ant (Table
which three were for the OA group.

I0
69

Thus, variables in the operational battery were best for
predicting global performarnx in apprenticeship ratings
whereas those in the experimental battery were more useful
fur predkung perforrnana in technial ratings, and were
Faitkularly good fur prediaing the pelformanoe of Sonar
Teuhruaans. Personal attributes having the highest numbers
of sigmfkant validities were Movement Deteutipn and
Dealing with Concepts/Information.



TABLE 6

Zero-Order Validities of Operational
Variables for Global Performance

Predictor

EM

( =21)

Rating Group

PN

(N=31)1

ST

(N=35)

VA

LN=109)2

AFQT
GCT
ARI

-rir
-09
Al

-.20

.15
"74

.10

-.12
.11
.38'

.13

.0725..
MECH .04 .23 -.04 .12
(TER .21 -.15 .11 .19
SOLAR -.08 .15 -.08 -.03
RADO -.06 .11 A5 .15
ETST .16 .31 -.09 .33 `t
SHOP .20 .38' -.21 .17
YRBI -.12 .06 Al -11,
YRED Al- .05 -.02 .22

'Complete data were not available for some of the tests.
Significant at ir, < .05.

**Significant at p < .01.

TABLE 7

Optimal Predictive Composites for Global Performance cf Electrician's Mates

Predictor Set

R
s

Predictor
Beta Weight in

Final Composite NWeitbt
Determination

Expected Cross
Validation

Operational
Classification
Test Scores

.21 .00 CLER 27

-Complete Set of
Experimental and
Operational
Variables

.37

.49

.58

.65

.71

.18

.00

.20

.28

.34

.40

.53

Concealed Word
CLER
Drift Direction
PAT-ERR
Memory for Words
YrBi

' -A0
39

-18
-.50
-.40
-.36

27

Multiple regression statistics for optimal sets of the
operational and experimental variables for Electrician%
Mate are shown in Table 7.

The first super row shows statistics for the optimal
predictive composite for the eleven operational scores and
the same type of statistics for the complete battery of
operational and experimental variables are shown in the
second super row. The second column contains the shrunken
validity coefficient for each predictor selection step. Addi-
tion of the experimental tests to the battery increased the
expected cross validity substantially although the sample
size is so small that these figures should be interpreted with
caution. The negative beta weights for PAT-ERR and YtBi
are artifacts of the direction of scaling for those variables.
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The same type of finding was characteristic of the
predictive composite for Personnelman (Table 8). Again the
negative validity of WORD-LAT was an artifact of direction
of scaling.

For Sonar Technicians (rable 9) inclusion of the
experimental tests in the battery added 38 points to the
shrunken multiple correlation. All of the variables selected
fur the complete set were measures of perceptual types- of
abilities.

On the other hand, the experimental variables added
almost no increment to the expected ...toss validation for
the Apprenticeship group (Table 10).

The usefulness of this type of expansion of coverage- of
the battery may be illustrated by reference to the abilities



TABLE 8

Optimal Predictive Composites for Global Performance of Pcrsonnelmen

Predictor Set

lt

.. Weight Expected Cross Beta Weight in
Determination Validation Predictor Final Composite N

Operation:I
1712tv;fication
Test Scores

.38 .12 SHOP .38 30

.38 .12 SHOP .22
Complete Set of .47 .10 Gestalt Coinpletion -1.19
Experimental and .64 .46 GCT 1.40
Operational .71 .52 FIG -LAT .69
Variables .80 .65 4'ORD-LAT -.40

.86 .74 Mem. for Patt=s, Lf. .37

30

TABLE 9

Optimal Predictive Composites for Global Performance of Sonar Technicians

Predictor Set

R

Weight
Determinaticn

Expected Cross
Validation Predictor

Beta Weight in
Final Composite N

Operational
Classification
Test Scores

.38 .22 ARI .38 37

Complete Set of .42 .28 Counting Nos. .33
Experimental and .54 .40 Mem. for Patterns, LE .32
Operational .61 .46 Nonsense Syls. - .29
Variables .66 .50 Recog. Objs. .33

.73 .58 Gestalt Completion .32

37

TABLE 10

Optimal Predictive Composites for Global Performance of the Apprenticeship Group

Predictor Set

R

Weight Expected Cross
Determination Validation Predictor

Beta Weight in
Final Composite

Operational
Classification
Test Scores

.33 .28 ETST ..33

Complete Set of .33 .28 ETST .33
Experimental and .37 .29 CLER .21

Operational .41 .32 Concealed Word -.19
Vzsiables

111
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wtnch are being measured by the elements in each of the
four predictor cannposites selected. Thus. fin EM to the
Perceptual Speed measure in the operational battery were
added Closure, Movement Detection, Memory, and
Accuracy of Spatial Perception frorc, the experimental
battery. For Paso:mein-an. to the Technical Knowledge
component. witch provided the primary piedictiveness in
the ()irrational battery, were added measures of Closure.
Speed of Response and Memory from the experimental
battery. For Sonar Technician, to the general mental ability
component in the operational battery Were added measures
for the Movement Detection and Closure components from
the experimental battery. And for the UA group to the
measures of Technical Knowledge and Perceptual Speed
from the operational battery was added a measure of
Closure hum the experimental battery. With the exception
of the Closure measures, some of which were paper and
pencil, must disunctive predictive validities from the
experimental battery were supplied by computer adminis
tered tests.

DISCUSSION AND CONCLUSIONS

It is dear that the experimental battery represents an
increase in the breadth of abilities covered beyond those in
the operational Navy battery, a considerable amount of
which is attnbutable to the GRIP tests. Computer tests
apparently provided measures of several attributes which
were different from those measured by paper-and-pencil

- tests. Furthermore, the measurement expansions of the
experimental battery served to supplement the measures of
the operational battery to produce substantial increases in
global validities.

The unique measurement characteristics of the GRIP
tests appear to be as follows:

1. Computer administration of tests of short term recall
using a variety =of stimukis feasible, and appears to offer
advantages in ease of data collection and processing over
paper-and-pencil tests measuring the same attributes. Fur-
therniore, use of computerized tests to eliminate the
expensive and time consuming hand scoring required by
paper-and-pencil tests of short term memory would make it
feasible to routinely measure these skills during personnel
classification testing. Computerized measures of this attri
bute were found to have significant positive validities fur
several job elements, particularly for those dealing with
communication. It is probable that use of the tests for
other occupations would identify additional relationships
which are useful for personnel classification.

2. Computerized administration of perceptual speed, as
carried out in the GRIP battery, was only marginally
different from paper-and-pencil measures of perceptual
speed. Since these measures did not offer any substantial

improvements in validities over paper and pencil measures.
the initial judgment on their usefulness would be negative

3. Further research will be required to clarify the
relationships between computerized and paper and pencil
measures of Closure. Hidden Patterns, the best of the
paper and pencil tests, had significant validities far Mean
cian s Mates, Personnelmen, and Sonar Technicians. The
pattern of validities of Hidden Patterns for Sonar Techni
cians was duplicated by CLO- LAT, a measure which can be
administered and scored automatically..

4. The two experimental tests designed to measure
Movement Detection were not dosely related to one
another and therefore did not provide evidence of a
Movement Detection factor. Instead these tests loaded on
memory factors, Perceptual Speed, and perceptual Closure
On the other hand, of the measures, Memory for Patterns
puled to be very useful particularly as a predictor for both
specific, and generalized performance of Sonar Technicians
Fur the Eleanciarf's Mate and Personnelman ratings it
proved to be useful at a somewhat lower level.

5. Facility in Sequential Reasoning was apparently an
ability which was uniquely measurable by computer-
administered tests. These tests demonstrated widespread
and generalized validity for Personnelman and incremented
the predictability of communication and interpersonal
relations skills over that available from paper-and-pencil
tests.

It is believed that the initial results with this technique
are promising and that further development along these
lines is warranted, particularly for jobs which require
attention to scopes. Consequently, research to be carried
out during Fiscal Year 1976 will be concerned with refining
measures of Movement Detection, Sequential Reasoning
Perceptual Closure, response latencies, and accuracy of
spatial perception, together with the construction of tests
for other abilities which appear to be potentially useful for
personnel selection. Also, we hope to convert one or more
of the tests to a branching mode designed to tailor item
difficulties to candidates.
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7. COMPUTERIZED 12 QUESTIONS

Mineral

Frequently larger than a glove

1. Is it often used as clothing?
2. Is it made of a soft material?
3. Is it often used at seals?
4. Do people often wear it?
5. Does it have moving parts?
6. Does it have a hard surface?
7. Is it always found on an auto?

B. Is it sad, at least partly of glass?
9. Does it have more than one use?
10. Does it use electricity?

8. CORPUTERIZED PASSWJRD

Metal

Finger

Soaring
Emblem

Circle

Feathers

Shiny

Large

74

80

60%

11. Is it sometimes used by magicians?
12. Do men and women use it equally often?
13. Is it often used before a person goes out?
14. Can one use it with his eyes closed?
IS. Must one touch it to use it?

16. Does it appear dark in the light?

17. Can it be used to send messages?
14. Can it improve one's appearance?

Wedding

(Mirror)

(Ring)

Bald (*nem)



A BROAD-RANGE TAILORED TEST OF VERBAL ABILITY

This report describes briefly a broad-range tailored test
of verbal ability, appropriate at any level from fifth grade
upwards. through graduate school. The test score places
everyone at all *els directly on the same score scale.

In a tailored test, the items administered to an individual
are chosen for their effectiveness fui measuring him. Items
administered later in the test ale selected by computei,
according to some rule based on the individual's
performance on the items administered to him earlier_
Improved measurement is obtained 1) by matching item
difficulty to the ability level of the individual and 2) by
using the more discriminating items in the available item
pool. The matching of rest diffi...ulty to the individual's
ability level is.advantageous and desirable fui psy,hological
reasons. For references on tailored testing, sec Wood
(1973). Also Cliff (1975), Jensema (1974a, 1974b),

Ilcross (1974), Mussio (1973), Spinet: and Hambleton
(1975). tarry (1974a, 1974b), Waters (1974), Beta and
Weiss (1974). DeWitt and Weiss (1974), Larkin and Weiss

FREDERIC M. LORD
Educational Testing Service

(1974). McBride and Weiss (1974). Weiss (1973. 1974),
Weiss and Betz (1973).

The broad-range test consists of 182 verbal items These
were chosen from all levels of Cooperative Tests' SCAT and
STEP. from the College Entrance Examination Board's
Preliminary Scholastic Aptitude Test, and from the
Graduate Record Examination. The choice was made solely
on the basis of item type and difficulty level_ There was no
attempt to secure she best items by selecting on item
discriminating power.

Two parallel forms of this 182-item tailored test were
constructed. Only one of these forms is considered here.

Ideally there should be only one item ty pe in each row,
so that all examinees would take the same number of items
of each type. The arrangement of Table 1 is an attempt to
approximate this ideal using the items available. (Few if any
hard items of types a and e were in the total pool, also few
if any easy items of types b and c. Types a and b, also types
c and e, seem fairly similar.)

TABLE 1

Broad-Range Verbal Tcst Items Arranged by Difficulty Level and Serial Number.
(a, b, c. d, c represent different verbal itcm types.)

Item
Serial
No. Grade Level: IV

-Item(easy)_
1

V VI VII VIII

Diffieultis Level

XII

(hard)

1 a a a a b

I C e C C

3 d d d d d d

4 C C C c c c

S d d d d d d

6 a a a a b b

7 C c c c

8 d d d d d d

9 C C c c c c

10 d d d d d d

11 a a a a b b b b

12 C C C c c c c

13 d d d d d d

14 C C C c c c C

15 d d d d d d d

16 a a a b b b b b

17 C C C C c c c C

18 d d d d d d d

19 C c C c C c

20 d d d d d d d d d

21 a a a b b b b b

22 C C C C C c C C C C

23 d d d d d d d d d

24 C C C C c c c c C

25 d d d d -. d d d d
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The 182 items in a single form of the test ate
represented in Table I. where they are arranged in columns

, by difficulty level. Ari Ludindual answets Just one item ni
each row of the tabie a total of Just 25 items. There arc
five verbal item ty pes, denoted by a. d, e. Within each
item type. the items in each column ate ananged
of ducommating power with the best items at the top.

The examinee starts with an item in the first tow. The
difficulty level of this item is determined by the examinee's
grade level, or some other rough estimate of his ability. If
he answers the first-item col tecdy . he next takes an item in
the second row that is harder than (to the right of) the first
item. If he answers the first item incorrectly, he next takes
an item in the second tow that is came! than (to the left of)
the first item.

He may continue w.th the third and subsequent tows.
moving to the right after each coricutanswei, 01 to Cie left
after each incorrect answer, until he has at least one right
answer and at least one wrong answer. At this point, the
computer uses item characteristic curve theory to compute
the maximum likeihood estimate -of the examinee's,ability
level. In effect, the computer asks. For what ability level is
the likelihood of the observed pattern of responses at a
maximum, taking into account the difficulty and other
characteristics of -the items administered up to this point".
The ability level that maximizes this likelihood is the
current estimate of the examinee's ability.

From this point on, the next item to be administered
will be of the same item type as the item in the next row
that best matches in difficulty the examinee's estimated
ability level. Given this item type, we survey all items of

0

trr

0
0

this type and administer next the item that gives the mutt
information at his estimated ability level.

After each new response by the examinee. his ability As
reestunated. The item type of the next-item is determined,
as above, and the best item (nut aheady used) of that type

..hose:, and adnunistered. This ...onunues until he has
answered 25 items, one for each row of the table_ The
maximum likelihood estimate of has ability detcrmined
from l.is fespunses to all 25.items is his final verbal ability
score. According to the item laracteristic curve model, all
such scums, for various examinees. are automatically on the
same ability scale, regardless of which set of items was
administered.

About thirty different designs for a broad tang tailored
test of verbal ability were tried out on the computer,
adnunutenng each one to a thousand ui so simulated
exarrunees. The final design was recently chosen and-has
not yet been implemented on the computer fur
administration to real flesh-and-blood examinees.

Consider first the affect of the difficulty level of the first
item_ administered. The vertical dimension in rigule 1

represents the standard error of measurement of obtained
test score on the broad-range tailored test, computed by a
Monte Carlo study. Each symbol shows how the standard .
mut of measurement vanes with ability level (horizontal
axis). The four-symbols represent the results obtained with
four different starting points. The points marked + were
obtained when the difficulty level of .the first item
administered was near -1.0 on the hunzuntal scaleabout
fifth grade level. The small dots represent the results when
the difficulty level of the first item was near 0about

0

0

4

Grade: V
1

1l.0

VI VII VIII IX
1 I

0.5

2
O 0

XII

0.0
ABIL I TY

A

O

.5 1.0 1.5 2 0

Figure 1. The standard error of m:asurement at 13 different
ability levels for four different starting points for the 25-item
broad:range tailored test.
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ninth-grade eel. Fox the hexagons, it has neat 0.75 near
the average erbal ability level of college arlicants taking
the College trance Examination &win Scholastic Apti
tude Test. For the points marked by an x, it was near 1.5_
For any given ability level, the standard error of
measurement varies surprisingly little, considering the
extreme variation in starting item difficulty.

Vanous designs were also tnedyut with more ..slums
31 with fewer than the 10 columns shown m Table L A tut
with 20 columns, spanning roughly the same difficult,
range as Table 1 but requiring 363 items, was found to be
at least twice as good as the 10-column 182-item test of
Table 1. The reason for this is not that the.columns m
Table i are too far apart, but mainly that -clecting the Ins:
items (best for a panic-Wu individual) from a 363 item pool
will give a much better 25-item test than selecting the same
number tif,items from a smaller, 182 -item pool. Still belle:
tests could be produced by using still' argei item pools,
even though only 25 items are administered to each
examinee.

It is important to compare the broad-range tailored test
with a conventional test. Let us compare our broad-range
tailored verbal test with the Preliminary Scholastic
Aptitude Test of the College Entrance Examination Board.
Figure 2 shows the anfe.:::nation function for the Verbal
score on each of three forms of the PSAT adjusted to a test
length of just 25 items. Also the information function for
the Verbal score on the broad-range tailored test, which
administers just 25 items to each examinee. The tailored
test shown in Figure 2 corresponds to the hexagons of
Figure 1,since they represent the results obtained when the
first item administered is at 2 difficulty level appropriate
for average college applicants. The PSAT information
functions are computed from estimated item parameters.
For points spaced along the ability scale, the tailored Less

Figure 2. Information function for the 25-item tailored test, also
for three forms of the Preliminary Scholastic Aptitude Test (dotted
lines) adjusted to a test length of 25 items.

4
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inicamation function is estimated from the rest rapines
of simulated examinees!

It is encuuragini, but fivl surprising to !find that the
tailored test is at least twice as good as a 25-item
conventional PSAT at almost all ability levels. Alin all. at
the same time that we are tailoring the test to fit the
individual, we are taking advantage of the large item pool,
using the best 25 items available within ..C1141111 iends.t.WEIS
already mentioned ..oncerrung item type. It would, of

be desuabk to confirm this viral-114ton by extensive
test administrations, flesh-and blood examinees
instead of simulated examinees.

In conclusion, the writer would like to make an offer
that should enable research workers and graduate students

con,eruently design and build actual tailored testa and
adallnatet them to real examinees. On written request from
suitably qualified indtviduals, he will prcAde estimated
item parameters for the verbal items An any in all of the
following Cooperative Tests:

SCAT II, Forms IA, 2A, 2B, 3A, 3B, 4A (50 items
each);

STEP Reading Test, Part I only, Forms 2A, 2B, 3A,
3B, 4A (30 items each);

SCAT I, Forms 2A, 2B, 3A, 3B (60 items each)
This represents a pool of 690 calibrated verbal items
abailable fox research or other purposes. (Thai oirErtXPIIrs
when better methods foi estimating item parameters have
been developed very soon, it is to be hoped.)
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SOME LIKELIHOOD FUNCTIONS FOUND IN TAILORED
TESTING

This brief note cliStaisses some peouliaa likelihood
funai,eis enoounteied while admuustenng the Broad Range
Tailored Test of Verbal Ability to sunulatod cxanurec.i.
Othet workers have doubtless cni.ouritered smulai .paa
hems.

Samejlna (1973) shows that when the item parameters
are known, there may be no finite ability level that
maximizes the likelihood fu..tion_ Also. that the likelihood
function may have more than one (local) maximum.

Barnett (1966) states "Given a single sample of
observations jrjegularify conditions are no
guarantee that a sirrsic root of the likelihood equation will
exist for this sample. In fact, there will often exist multiple
roots, corresponding to multiple .relative maxima of the
likelihood function, even if the regularity conditions are
satisfied."

Huzurbarar (see Kendall & Stuart, 1973, sections
18.11-18_12) showed under regularity conditions that
ultimately. as the number of observations becomes large.
there is a unique consistent maxinuirii likelihood estimator.
His regularity conditions would apply if the test were
composed of Items with identical ICC. His conditions
would be violated otherwise, but it should be possible to
extend his proof to cover a reasonable set of regularity
conditions for the present problem.

To have a large number of observations, we would need
to administer a` -large number of test items. When the
number of items isnot large, and especially if the test is too
hard for some individuals, we may expect 'eat:- ca
occasionally. An examinee who makes unlucky guesses and
scores below the chance levelis, not unreasonably, likely to
get an estimated ability oft - ca. Such an estimate would
presumably be corrected if a sufficiently large number of
additional test items were-adriunistered to him.

In study on a Broad-Range Tailored Test of Verbal
Ability!, many tens of thousands of simulated'examinees
took various rimulated tailored tests. Items with known
ICC were administered one at a time to each individual
examinee. After each item was adminsiterecl, an approxima-
tion to the maximum likelihood estnnatel of "Ins.ability
was computed, based on all his responses up to that point.

When the examinee has wrong answers but no right
answers, I= Co . When he has right answers but no wrong

Research reported in this papa has btca supported by pant
CB-41999 from Nations! Science Foundation.
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answers, When he has both right and wrong
answers, there is usually no diffiuulty . finding finite V.
An ootasional diffioulty resolves itself as. more items are
administered. It is very tare to have any problem after the
first ten or fifteen items, since by then the item difficulty is
usually tolerably well tailored to the examinee's ability.

The present study investigates the case of simulated
curnmes T94 for whom there were unusual difficulties rn
obtaining a chute it. Table 1 describes the first 23 items
administered to him, shows his response to each item
(1 = right, 0 = wrong); and gives #`, the maximum likelihood
estimate of his ability based- on his responses to stems
already administered.

Examinee T94 is really a very low ability examinee -his
true 0 is actually -2.9. Furthermore, the first items
administered to him were very_ difficult items (be> 1351
which he would have no chance at all of answering
correctly except by guessing. By lucky guessing, he
nevertheless got 6 items right out of the first 12.

If ci were ./0 for each of these items, the chance of a
score as good or better than 6 solely by guessing as less than
.02. The maximum likelihood estimates of the exammee's
ability based on his performance on these first twelve items
range from 1.6 to 2.2, as shown in the last column of the
table.

His guessing on the next seven items was uniformly
unsuccessful. All items throaigh item 17 were difficult, with
b1 4> 135. His performance on these 17 difficult items
earned him an ability estimate of 0 . 1.2.

Item 18 was an easier item, br a = !suggest that the
following rationalizations provide a correct explanation of
the 0 subsequently obtained.

The examinee has answered correctly 6 items with
bi >135 and has failed 12 items including one with

= .65. The last failure suggests that 0 is low and that
earlier correct responses were due to lucr.y guessing. if 0 is
low, all items so far administered are too difficult for the
examinee and are of no use, even for placing a lower bound
on his,abihty level. When an examinee has given only wrong
responses and lucky random guesses, his estimated, bility
should be V=- Co.

When the examinee answers item 20 (b20 = .83)
correctly, it is now plausible to assume that his ability lies
between -'.83 and .65 (.65 being the difficulty level of item
18, which he answered*'incorrectly). The maximum
likelihood estimate turns out to be 0 - .4.
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TABLE 1

Successive Estimates of Ability for Exac-inee T94

liens
DO.

Curve
no. m
Fir. 1

liens Parameters
Exarnin(es

responte

Number
of right
=DMZ

Log

ate''

Estimate
ability

2 C

1 .61 2-20 .19 0 0
2.05 1.74 .18 1 I 22

3 1.48 2_51 .17 0 1 1.9
4 1.89 1.96 .20 0 I 1.6
5
6

1.93
221

1.89
1.73

.24
/1

I 2
3

1.8
2.0

7 1.57 1.76 in 0 3 1.8
8 1.68 1.40 .15 4 1.8
9 1.42 L36 .13 0 4 1.7

10 127 1.6S .28 1 5 1.7
11 1.56 1.49 .19 0 S 1.6
12 1 *34 134 .19 1 6 -7.7 1.6
13 2 1.07 1.52 -20 0 6 -8.7 1.6
14 3 1.31 1.89 .09 0 6 -9.2 IA
15 4 .93 1.35 20 0 6 -10.1 1.4
16
17

5
6

1.02
1.03

1.98
1.88

.21

.13
0
0

6
6

-103
-11.1

1.4
1.2

18 7 1.24 .65 .20 0 6 -11.7
19 8 2-00 127 .10 0 6 -11.8
20 9 .88 -.83 .33 7 -123
21 10 2.10 .05 .21 0 7 -12.6

11 1.37 -1A9 .15 0 -133 -24
23 12 1.10 -2.84 .24 0 7 -13.6

Not computed :orn< 12.

"For n 2.3. _ the listedlk. An AppruurnAte vAhse determined
log likelihood tabulated at intervals pf .2 along the 0 crate

Subsequent failures on items 21 and 22 ldwer this
estimate to .8 and then to 2.6. When the examinee
finally fails-an item with bra 2.84. it now appears that all
earlier coma answers were lu...ky guessing and that
all items so fax administered were t..,o difficult hi, this
examinee. The situation is inu,11 the same as the situation
after the answer to item 18, already discussed. Again, not
unreasonably,V=- 00. .

In this testing, only the very last item was of appropriate
difficulty for the examinee, whose true ability was

=-2.9. All but the last two items were very much too
hard. lie answered both the last two items incorrectly.
Thus, it is only to be expected that his final ability estimate
is 8.= 00_ Administration of further items of appropriate
difficulty would quickly correct this estimate.

The .likelihood funaions used to obtain most of the
successive 8 discussed above are shown in Figure 1. The
code numbers identifying the curves are given in Table 1.1n
order. to get -them all on the same graph, each likelihood

numeru-Ally.1 n II. the listed was V was read hum values of the

funtion is divided by its maximum value, so that the
maxima of the normalized curves all fall on the top
boundary of the figure. These curves, together with the
ili.st.ussiundgiven above, seem to explain the anomalous
values of O. When enough responses have been obtained to
induate a lower limit to the exarinnees ability, then tinge
ability estimates will be obtained.

REFERENCES

Barnett, V. D. Evaluauon of the maximumacelihood estimator
where the likelihood equation has multiple roots. Biometrac,
1966,53. 151-165.

Kendall, M. G. and Stuart, A. Tk cdvo.aced Mary of statistic:.
New York: Hairier, Vol. 1,1969; Vol. 2,1973.

Samejima, F. .A comment on Birnbaum's three - parameter logistic
model in the latent trait theory. Psychometrika, 1973, 38,
221-233.

8/
81



13.1(ESIAN TAILORED TESTING
AND THE INFLUENCE OF ITEM BANK CHARACTERISTICS

Conventional tests are generally constructed to dis-
criminate over a rather wide range of examinee -ability. One
of the consequences of this approach is that a conventional
test usually contains many items which are not appropriate
for a particular level of ability. Psychometricians have long
been aware of this and in recent years they have increas-
ingly turned their attention to the possibility of program-
ming computers to design and administer tests.

Of the many computerized testing methods which have
been proposed, the Bayesian process developed by Owen
(1969) seems to be the most elegant and intuitively appeal-
ing method. it assumes locally_ ndependent binarily scored
items and a normal ogive model (Lord and Novick, 1968.
Ch. 16) in which the probability of passing a free response
itern g at ability level 8 is expressed as

Pz (0) = exp dt
ag(0 -bg) A

Icc

sulow.mma,

(1)

If the item is not of the free response type and c is the
probability of guessing correctly, the probability orpassing
becomes

Pg (0) = Pg(0)+ eg [I- Pg
(2)

The derivation of Owen's Bayesian tailoring process has
been described several times in the literature (Owen, 1969;
Urry, 1971: Jensema, 1974a). We will briefly run through
the fundamental formulas here for the sake of complete-
ness.

Suppose N(00,u02) expresses our knowledge of an ex-
aminee having ability O. If we administer free response item
g, which has discrimination and difficulty parameters o and
b, and if the examinee responds correctly, Bay es theuiem
specula that the information available is

POW= k Pg (0) (NI-2;r u0)-1 exp { (6 °01
2r.02

where P (0) is defined by (1) and k is such that
00

(3)

The solution is

CARL J. J ENS EMA
Gallauder College

(5)

(6)

Jr2 = 112 (1 erfD)

where erf D is the error function

erf D =-"v-Tr- f exp( - t2) dt
fl

and

b -80
D=

NI2 (a-2 + 002)
(7)

The expectation of the posterior mean is

-12 002
E(011)= 00+ exp ( D2) (1 erfD)

vci. (a 2 +Q 2)

(8)

and the variance is

vas (OM = 002

I- 2D exp (D2) (I et f D)

4 l ÷ a -2o,-2) (exp(D2) (l erf D))2

-(9)

Smularly, if the examinee gives a wrong response to item g
we have

k
P(010)=(1 Ps (0)) (07---.00)- exp

k- I

(10)

I p (011)0 = 1.
- co (4) .&71

E (OW) = 0, exp ( - D2) (1 4- erfD)-1 ,
- Nig (a-2 +0`02)

'This resew"- .-.7.ported by the Office of Demographic -
Studies, Callaudet Colkge;Wasbington, D. C, 20002.
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and

vat te i3 t a.2
+ D expt D2 t II + elf D t

.vrifl +a 'a 't OciptD21 41 / of Die

E Cu 0 / t 1101 lEt9.01P 1E19,14:2

-2o, - pt:1112t (1 (cif D12)

(12) (19)

To expand this discussion a little further assume that
item g is not a free response item and that it has a probabil-
ity C's of guessing correctly. If the examinee gives a correct
response sue have

and

(011)= X P; (0) (VI; au) exp
(0

2 002

E' (Oil) = + (1 Cg)* -1 XS

V31.'(B11)=002" (1- Calk -11+52 (r

(13)

when items are of the free response type and

E' Ins te*M= 002
If

[1,1 CIAO + c (I k -I))
1

2-1(1 + co- 3a3) (l k- 1 )txp(2D2)

(20)

when the items are affected by guessing. In (19) and (20)u
refers to the correctness of the examinee's response and is

(14) taken as 1 or O. The item which leads to the smallest ex-
pected posterior variance is the most desirable one to ad-
minister. It is sufficient to select the item with the smallest
value a where

(15)

where the prime is used to signify the effect of guessing.
P (t3) is defined by (2), and we take

= Cs + (1 - Cg)k

S=kao exp;r- D2) (2-a(1 +a

t 1 - 2 Va exp (D2).

(16)

(17)

(18)

If the examinee gives a wrung response the formulas in
(10), (II), and (12) hold, sir._ our information, that the
examinee does not know the .utre.t answei, is the same as
in the free response case.

Now assume we have n items and want to select the best
one for administration. The expected pustenut variance of
0 after administration of a particular item is

83

a = (a -2 +1o2) (1 (erf D)2) exp (2D2)

for free response items and

1

a = (-) (1 + 00
1 -Cg

(21)

) (1 - ') X -I exp (2/12).

(22)

when guessing is present.

If we have a pool of n items and estimates of the normal
ogive model parameters for each item, we may use a
Bayesian sequential procedure to select items for adminis-
tration to a particular examinee. Let' j and V pnj be an
estimate of the examinee's ability and its variance where m
indicates the number of items administered. Assume the
population has ability distributed as N(0,1) and take 1(0)
and as 0 and 1. Calculate a- values for all (unused)
items, r =1,2, , (n-m), using (22). (Wc will assume
that the items are not free-response.) The examinee is :id-
ministered the item wits the smallest at value. If an incor-
rect response is given, 0, and V (m+i) are calculated
hum (11) and (12). If thaegjdonse u correct, (14) and (15)
are used. This cycle is repeated until a(m) is within some
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pre-selected limit. The selection of a Am Iva lue for tern
nation is, of course. arbitrary. It is usually selected to yield
some expected level of validity according to

r617.= (n)
(23)

The characteristics of an item bank used for tailored
testing are very important to the efficiency and accuracy of
the process. There are four basic requirements for a good
item bank. These have been mentioned in whole or part in a
number of publications (i.e. Urry, 1970, 1971, 1971b,
1974; Jensema. 1972. 1974a, 1974b; etc.) and may be sum-
marized as follows:

1) Item discrimination should be as high as possible and
should not be less than .8.

2) Item guessing probabilities should be as low as pos-
sible.

3) The item bank must consist of a sufficiently large
. number of items.

4) Item difficulties should have a rectangular distribu-
tion.

The remainder of this paper will concentrate on demon-
strating the Importance of each of these four requirements.

Assume that an infinitely large. item bank exists and that
all items have the same discnmmatoly power and the same
probability of guessing correctly. The assumption of an
infinitely large item bank allows the selection of an item i
having a difficulty level exactly equal to any given estimate
of ability. When this can be done many of the ftnmulas
may be greatly simplified since we have.

and

= (24)

erf Di =a (25)

-2The equations for o (, ) for correct and mcorrect
responses become

and

+ II :°(m)
2ti (1 )21

1

11.
".2
°(m + 1) °(m) 1

IT

(26)

(27)

where m Is the number of items previously administered.
An item i's difficulty is the point at which the probabil-

ity of knowing the correct arswer is exactly .S. If guersing
is in effect the probability of responding correctly is equal
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to the piobability of Ilisaine, the ins -ACi plus the piobabiL
sty of guessing correctly. Then cr24,14.11 may be expected
to be the sum of (26) and (27) weighted by the probabili
ties of a correct or incorrect responsf-.-

9q3 4ci .111 C,t
zti

A little algebraic manipulation reduces this to

+ = °(n) 1
(29)

L vo+cd

Inserting appropriate values for of and ct in equation
;29) and plotting the results against the number of items
administered demonstrates the influence of item discrimina-
tion and guessing probability on the tailoring process
Figure 1 plots the expected standard error of the estimate
ciao" ;) by the number of items administered for five
levels of discrimination when guessing probability is zero
and an infinite number of items are available Notice the
sharp difference in the number of items needed at different
levels of discrimination. For example, if the items have dis-
criminatory powers of 25 only 4 or 5 items are needed to
reach standard error of the estimate of .30 while 17 or 18
items are needed to reach this level when item discrimina-

tion is only 1.0. -

Now suppose we take item discrimination to be 1.0, a
rather low value which is easily obtained. Figure 2 plots the
expected standard error of the estimate for various guessing
values by the number of items administered. The guessing
values range from .5 (i.e. true-false items) to 0.0 (i.e. free
response items.) The greater the probability of guessing, the
more items required to reach a specific standard error of
the estimate.

To give a clear example of the combined effects of dis-
crimination and guessing on the tailoring process, suppose
we have three item banks which, for convenience, arc
referred to as I, II, and III. Assume Banki items have dis-
crimination and guessing paramenters of .J and .33. Bank
It's parameters are 1.0 and .25 while Bank III has parameter
values of 2.0 and 20. These banks may be roughly
classified as unacceptable, fair, and excellent for tailored
testing purposes. Assuming that each bank has an infinite
number of items and plotting the expected standard error
of The estimate against the number of items administered,
the three curves in Figure 3 are obtained.

In Figure 3, notice that Bank I would give unacceptable
results. After 30 items the expected standard error of the
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Figure 1. Expected standard error of the estimate according to

number of items administered at live levels of item discrimination.
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Figure 2. Expected standard error of the estimate accordir.g to-
number of items administered at six guessing probabilities.
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Figure 3. Expected standard error of the estimate for three item

banks according to number of items administered.
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estimate is only .56 (i.e. reliability = .69. validity = .83). in
contrast an excellent item bank, such as Bank III, would
reach this level after only 3 or 4 items. The advantage of
high discnmmation and low guessing pjobabditi in an Acii.
bank is obvious.

Up to this point we have discussed the behavior of
Bayesian tailored testing when the item bank is assumed to
be of unlimited size. The obvious question which follows is
what happens when item bank sizes are within practical
hunts? To answer tins question, Monte-Carlo data col 200
items are generated fur each of 100 "examinees" using
Urry's (1970) "LOGIST" program. The parameters fin
discrimination (1.0) and guessing (.25) were the same as for
Bank 11 mentioned earlier. Eight sets of 25 difficulty values
(-2.4, -2.2, , 0.0, , 2.2. 2.4) were employed.
Bayesian tailored testing was simulated with this data .sing
50. 75, 100, 150. and 200 items in the bank. Sinoe
difficulty had been specified in sets of 25 values, the item

TABLE 1

Validity (rory Obtained With Different Size Item Banks
(Monte-Carlo Data,N=100, A=1.0, 0--.25)

ITEMS IN BANK

Items
Adminis-
tered

50

.53

75

.53

100

.53

150

.53

200

.53 .441

2 .59 .59 .59 .59 .59 .57
3 .65 .65 .65 ..65 .65 .66
4 .72 .72 .72 .72 .72 .72
5 .78 .78 .78 .78 .78 .76
6 .81 .80 .80 .80 .80 .79
7 .83 .82 .82 .82 .82 .81

8 .84 . .84 .84 .84 .84 .83
9 .85 . .85 .84 .84 .84 .85

10 .86 .86 .86 .85 .85 .86
11 .86 .87 .88 .87 .87 .87
12 .87 .87 .89 .87 .87 .88
13 .89 .89 .89 .87 .88 .89

.90 .91 .90 .88 .88 .90
15 .91 .91 .91 .90 .90 .91
16 .91 .92 .92 .91 .91 .91

17 .92 .92 .92 .92 .91 .92
18 .92 .92 .93 .92 .92 .92
19 .92 .92 .93 .92 .92 .93
20 .93 .93 .93 .93 .93 .93
21 .93 .93 .9S .93 .93 .93
22 .93 .94 .94 .94 .93 .94
23 .93 .94 .94 .94 .94 .94
24 .93 .94 .94 .94 .94 .94

25 .93 .94 .95 .94 .94 .94
26 .94 .95 .95 .94 .94 .95
27 .94 .95 -.95- -;95-
28 .94 .95 .95 .95 .95 .95
29 .94 .95 .95 .95 .95 -.95
30 .94 .95 .95 .95 .95 .95

banks had 2, 3, 4, 6, and 8 items at each of the 25
difficulty levels respectively.

Fist each of the five item banks and futeach of the 100
cAanunees, tailoring was simulated until 30 iternslad been
"administered". As each item was "administered" the new
:climate of ability was recorded. Since the data was
randomly generated, true ability (distributed as.V(0,1) was
known and could be correlated with estimated ability.
Table I gives the validity (correlation between true and
estimated ability) for each item bank by the number of
items "administered". The last column in Table I gives the
expected validities for an item bank of infinite size as
calculated from equation (32) and (23).

The Monte-Carlo data above represents items which are
passable but not especially good for tailored testing. To see
how item bank size would influence validity wit .i the bank
was composed of excellent items, the Monte Carlo data
tailoring simulation was repealed with higher discrimination

TABLE 2

Validity Obtained With Different Item Bank Sizes
(Monte-Carlo Data,N=100, A =2.0, C=.2)

ITEMS IN BANK

Items
Adminis-
tered 50 75 100 150 10()

1 .66 .66 .66 .66 .66 .58
2 .75 .75 .75 .75 .75 .74
3 .84 .84 .84 .84 .84 .82
4 .89 .89 .89 .89 .89 .86
5 .92 .92 .92 .92 .92 .90
6 .93 .93 .93 .93 .93 .91
7 .94 .94 .94 .94 .94 .93
8 .95 .95 .95 .95 .95 .94
9 .96 .95 .95 .95 .95 .95

10 .96 .96 .96 .96 .96 .96
11 .97 .96 .96 .96 .96 .96
12 .97 .96 .96 .96 .97 .96
13 .97 .97 .97 .97 .97 .97
14 .97 .97 .97 .97 .97 .97
15 .97 .97 .98 .97 .98 .97
16 .97 .98 .98 .98 .98 .98
17 .97 .98 .98 .98 .98
18 .98 .98 .98 .98 .98
19 .98 .98 .98 .98 .98 .98
20 .98 .98 .98 .98 .98 .98
21 .98 .98 ..98 .98 .98 .98
22 .98 .98 .99 .98 .98 .98
23 .98 .98 .99 .98 .98 .98
24 .98 .98 .99 .98 .98 .98
25 .98 .98 .99 .99 .59 .98
26 .98 .98 .99 .99 .99 .99

-27- .98- -;98---;99--:, .99 .99 .99
28 .98 .98 .99 .99 .99 .99
29 .98 .98 .99 .99 .99 .99
30 ° .98 .98 .99 .99 .99 .99

skApeeted validities 4.alt.ulatcd from equations (32) and (23) for an sLapeted validities ,..alulated from equations (32) and (23) for an
una.ginasy bank having an infinite number of items. imaginary bank having an infinite number of items.
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(2.0) and lower guessing (.20) parameter values. These
configurations correspond to Bank III mentioned earlier.
The results of the simulated tailoring with this new data are
given in Table 2.

For practical application it is apparent that a very lap.
number of items is nut a critical item bank characteustic if
the bank is good in other respects. In both Table I and
Table 2 the Monte Carlo data validities obtained fui the five
banks closely match each other and they also parallel the
valid.les to be expected from a corresponding item bank of
infinite size. However, it must be remembered that this was
Monte-Carlo data and the tailoring simulation used known
parameter values for discrimination, difficulty, and
guessing. With real data involving imprecise parameter
estimates and a possible non-uniform distribution of
difficulty, it would be wise to be a bit cautious if a bank
had, say, fewer than 75 items. In connection with this,
there are some practical problems which arise if an item
bank is too large. ,% large bank has more items available for
administration, but the storage requirements and the
increased computer processing needed for item selection
also slow things down while adding w overall computer
costs. (Some good cost-efficiency studies are needed on
this!)

The last item bank requirement is uniform distribution
of difficulty. The exaa results of violating this rule are
difficult to predict, since they would necessarily depend on
the actual distribution of item difficulty, the discrimination
and guessing parameter values, the number of items in the
bank, and the criteria used to terminate the tailoring
process. The essential point to remember is that the
Bayesian tailoring procedure attempts to select for
administration the item which will yield the most
information. If, at a particular level of difficulty, there are

no items available, the Bayesian pru..ess will be &Hued to
select an item whi,h is nut apptupnate and %hull will yield
less than an optimal amount of m form nun.

To summarize, this paper has outlined a Bayesian
appluadi to item selection for tailored testing. rout basw
requirements of a good -item bank fur this ptui-ess have
bi.en dis..ussed. If these requirements arc met, Bayesian
tailored testing will yield excellent results. The key to the
process lies in careful construction of item banks. If
attention is given to this, the Bayesian tailoring rumen
gives us a fundamental tool fur plat-tit-al appbLatiun of
latent trait mental test theory.
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REFLECTIONS ON ADAPTIVE TESTING

The purpose of this paper will be to reflect on various
aspects of the adaptive testing field. Budding fivm uut film
Memphis State University and Air-force work in the area.
the vanous issues, alternatives. priorities and ultimate styles
of research for adaptive testing will be placed in the context
of empirical findings and institutional requirements. The
rationale for proposing such a pontifical and extremely
challenging task is twofold. First, all our substantive ..rid
empincal work was recently reported (Hansen, 1975) and it
would seem superfluous to rewnte to try to extend this
research pnor to more effort, therefore, only the major
questions and findings will be summarized m this paper.
Secondly, the various charactenstics of tiittadaptive testing
tick! will be reflected on in terms of research productivity
and institutional requirements. Having by scholarly
necessity been forced to read extensively in this domain
over the past five years and in many instances, to take a
pencil in hand to follow a variety of forital derivations, I
think it appropriate for me to comment about vanous
purposes and styles of research. This is not doneto criticize
any of these models but rather to seriously address the
question. "Arc we moving in the most profitabIe direction
and using the most expeditious procedures?"

MSU Adaptive Testing

Generic to any research in adaptive testing or that
relating to the whole educational entcrpnsc is a clear
understanding of its purpose. For our group, the purpose is
that of facilitating achievement or mastery testing. Within
Industry and military training it is common to find that
testing time and managerial demands, especially for
individualized techniques, are now taking upwards of 20
percent of the total training time. Such a training
commitment becomes sizable and the systems managers
mast inevitably ask the question, "Is there a more efficient
and effective way of going about it?" For example, the Air
Force Advanced Instructional System will ultimately have
700 students aboard fpr any given training shift (2,100
students per day). If one considers that their day consists of
six hours of instruction and that approximately 20 percent.
of this will be given over to testing, one can sec that 72
minutes are being allocated on the average for each
student's evalution per day. If such testing time can be
reduced by 50 percent, an adaptive testing goal set fur our
.efforts, then effectively 1.5+ million dollars worth of
salancd money can be gained by shortening the training
time for the 2,100 manpower units flowing in this system.
It is precisely this type of monetary achievement that
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impresses our representatives in Congress concerning the
importance of research ideas applied to significant
educational problems. As will be suggested later, such
specific, operational goals, while unachieved to date, give
the best rationale for continued research support in this
area.

As a corollary to the efficiency issue, an accorpianying
objective concerns the efficierkt application- of t-cinputer
technology to the testing prodebss. In essence, one can
demonstrate that adaptive testing falls closer to the drill
and practice end of the computer usage continuum
(Hansen, et. al., 1973) and certainly is orders of magiritude
less demanding on a computer than CAI or simulated
training. Our experiences and computer algorithms can be
offered to y, ou for your consideration. These document an
efficient use of computers, tools which are fast becoming
integral to the educational processes within our human
institutions.

rfinally, adaptive testing should be considered within the
context of a total systems effort. FsiSr our group, adaptive
testing is just one component within an dverall adaptive
instructional system. As one significantly alters the
environment and the sequence of educational elements so
as to foster or optimize learning outcomes for a given
individual, one can see that testing becomes just one more
component in such a stream of events. One should look at
it, though, in terms of its contributions to the individual
and the institution, be this increasing levels of competency
or the educational system itself. Thus, one can contend that
theoretical models have little or no value unless placed
within such a system context since it is the context which
will mold and determine the criteria, values, and operation
by which its characteristics shall be judged. Let us turn
'then, to the specifics of the MSU adaptive testing model

MSU Adaptive Testing Model

Our adaptive testing approach involves three com-
ponents, namely, the entry of a student into the test,
tailoring the test items for the student, and adaptive scoring
procedure. Each of these will be discussed in turn In

reference to the entry and test composition processes, a
student is entered at a level commensurate with our
prediction of his ultimate performance. Therefore, using
linear regression techniques mostly composed of variables
from ,prior test performances, a student is placed into a
monotonically arranged test. Such a procedure seems to
work quite successfully and has an additional advantage of
reducing the number of test items to be presented for.any



given student. (Hoe this is dOLt sh.ruld be obvious
understanding of the fleialevel algorithm.)

While we have very limited data concerning the eficaty
of this procedure, entry to final score correlations tsnd to
be in the low 20 range. 71.:se are similar to cor elation
coeiNcienu reported by aeary at the Unive sit), of
Wisconsin for students who were placed in a br.nch test
according ,to a predictid outcome level (a personal
communication at an AERA conference in 1969). Thus, the
adaptive entry of a student seems to be a positive step
forward and should be taken into account by any model
working within this field.

In reference to test couvosition,:t can be sptafied that
each student, based on his entry profile, ea have a

#specially developed set of composed items. These composed
items -1=y reflect information concerning the student's
prior performance on various objectives winch form the
achievement test. Therefore, if one has Information about a
student's achievement of these objectives, there is no
rationale for presenting the item. It is precisely this concept
of test composition that appears so advantageous, although
it has not been empirically pursued. One can anticipate that
sometime within the next year one o the military training
systems will pursue it in greater depth.

Tailored Testing of items

As indicated, Lord's flexilevel algorithm is utilized for
tailoring the presentation of test_ items. For achievement
testing, this approach violates the assumptions as to
normality as axiomatically represented within this model,
but it can empirically be countered that our findings justify
the utilization of the algonthm from a student and systems
point of view. This adaptation is precisely the ability to
move between very difficult and very easy items while at
the same time adjusting uutoff ntena where considered
appropriate (up to this point our group always used end of
test item cutoff procedures but others could be
considered). Achievement and mastery testing, especially in
a technical training environment, always tend to yield
asymmetric performance score distributions. Such distribu-
tions, if better understood, could be more readily adapted
to flexilevel testing and yield optimal algorithms.
Obviously, no attempt to prove such an assertion has been
made at this point.

Scoring

Ow views on st.onng represent an attempt to remau
consistent with the traditional procedures.of adding up all
correct responses and giving weights to those items that are
most difficult. Therefore, we have used the Green
procedure (Green, 1970), that is, an averaging of the
correct item difficulties achieved by a student. Using the
flexilevel algorithm and this scoring process, the overall
reliability and validity of the adaptive testing procedure
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seems reasonably sausfaaory as II yields -oeffident, that
vary between and .8 (is., alpha coefficients and parallel
test coefficients).

In addition, we are making plans to contrast two
additional adaptive routines so as to resolve what we
perceive as a critical probk.o, namely, the critical zone
performer. In any oven taming situation, there is a critical
criterion zone, typically being between the 70th and 90th
percent level -which is stipulated as a requirement for the
attain:ng oi course mastery. if a student scores dose or
within this level (consider it being bounded by the standard
error of measurement), then one should collect more
information prior to judging this student as having achieved
the objectives or in need of further remediation. At least
two approach es.san be considered to resolve this problem.
The fiat is an obvious approach simply involving the
presentation of an additionallet of items for thiSZOIIC; this
is similar to a branching test. A more promising one;
especially given the role of the computer, is Bores (1972)
procedure for item latent structure which makes use of the
information contained in wrong alternative ansvi'ers. The
Bock model appear to us to be a far more preferable
procedure in terms of ongoing large-flow training situations
and it shall be evaluated during the coming year within the
AF/AIS context.

Data relating to reduction in testing time indicates that
only approximately 31 percent bf the items are utilized if
individualized entry and adaptive techniques are employed.
This yields a 150 percent -savings in testing time. The
samples unfortunately, were extremely small and our group
locks forward to,a much more extensive validation study in
the AIS military training situation. Similar savings are
reported by Tam (1973) in his study of affective adaptive
testing although modest ones were reported by Hedl (1971)
in his intelligence testing. All in all, the results are
sufficiently promising to extend the validation for these
approaches as well as explore alternative designs within
realistic training situations. These alternatives form the
substance of the remainder of the paper.

Issues in Adaptive Testing

As an active reader and investigator in the adaptive
testing area over the last eight years, one general
observation comes to mind, namely, a classical psycho-
metric approach emphasizing those cherished characteristics
of excellence, improved reliability, validity, and conse-
quential individual description, is limited in its systems and
institutional view. In essence, our efforts have been to
describe each and every individual in reliable, finegain
terms while recognizing the needs to improve the testing
system. Given these broader insights, the purpose of this
section will be to uise issues and possible alternatives as
reflected by priorities concerning objectives for adaptive
testing. There are three arzas to be considered as reflected



by these queries (1) What are the possible purposes for
adaptive testing? (2) What types of formal models might
best be pursued for adaptive testing? and (3) How can our
theoretical and procedural methods best be evzluated?

Purposes for Adaptire Testing

The tradition within psychometric. meareh as well as
test development has fomsed urn descriptuena and decisions
concerning indinduals. On the other hand, many
institutions believe group differences in the testing process
should be stressed since it is group data that form the basis
of decision making. For example, in the current
controversy concerning the taintaution or schools and
curnculum effects, Rakiew (1974) argued that tests have
been wasetucted 1.0 !MUM= On Andividual disaiminations
and to nunuruet group diffeiences. Therefore it is not
surprising that one finds no statistically significant group
effects for schools 4JI iumdums. the Coleman study
e1968) or the Jencks follow-on study (1972) represent this
type of outcome. Rakow areues that if one utilizes
inter-class oenrelational te.hruques. one ...an find highly
significant relationships of a subset of items whicli
distinguish among groups. Fui adaptive tests that attempt
to support Large human in eanizations such as military
trauung. this implies that classifying an individual
concerning group membership and the characteristics of
this group is of a high pricnity. This adaptive testing
approach would utilize a blanching item technique was as ta
lead to reliable alternative group classifications Lot an
individual. Having adueved this, then the mote onven
tional individual discrimination techniques could be
applied. Obviously, the utilization of a Ileedevel algorithm
based on appropriate individual placement would be
preferable. The point of such a two-stage model is to
provide for more effective adaptation for group placement
and ultimately fur maximizing on institutional criteria
rather than individual cntena alone. Simply, might it be
better to find the correct group for an individual rather
than know his "true score" on some ability, dimension?

In turn, one can look at training systems and recognize
that there is a trade-off between training load vs. standard
error effects. In essence, as the training load absorbs more
and more of the readily available resources, an improve-
ment in the testing process with an associated reduction in
standard error is superfluous since all the remaining
individuals will have the Mille minimal treatment. In
essence, each student is likely to spend long waiting times
and not be able to pursue any kind of optimum course of
instruction. Under such circumstances, it is therefore
critically important to identify those individuals who can
pursue self-study where appropriate. Moreover, it might
also be highly Important to have adaptive tests that better
detect those individuals who seem to have aptitudes for
transfer, so that when branched forward or back for review
within a normal sequence of instruction, they will receive
facilitating effects rather than negative ones.
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In sum. as the training load on resources diminishes, one
should expect the test length to increase so as to reduce
errors of meesurerrent. Thus, one can see that a systems
approach to adaptive testing tends to reflect a far more
dynamic . ecedure which might change the criteria, the
test length, and the algorithms depending on the state of
the training system.

Finally, to be optimally adaptive. one should recognize
that ow clientele and their institution basically do not
understand the concepts, methc0.s, or models of adaptive
testing. To them, the quantification, especially as
represented by our psychometric models, tends to defy
understanding. Allow me to illustrate. MSU has been
teaching a measurement ...ourse on base at NAS, Memphis
Two of the students were commending officers of navy
technical tianung salools and have direct responsibility for
superniang the measurement prod -s width' these schools
After oompleting an eight-week course, each volunteered
that they had, prior to the course, never understood any of
the quantitative test item statistics or reports other than
those concerning students passing or failing, the all

Important attrition rate. To be adaptive the system should
provide the ocimmending officers, instructors, students, and
other concerned people with verbal reports rather than
quantitative reports, thus, a client-oriented product
approach would vastly enhance the acceptance of adaptive
testing. The work of Fowler (1969) with the MMPI

succasfully demonstrates that psychiatrists readily desire
and understand verbal interpretations rather-than quantita-
tive reports of the 13 MMPI subsceles_ These observations
about institutional effects hopefully will stimulate your
Interest in thinking about your clientele as well as your
model when you formulate some of your priorities for
future research. As cited in the introduction, adaptive
testing research must be scholarly, diligent, and of the
highest quality while reflecting a form of institutional
adaptation which can be appreciated and supported by the
alientele who provide the resource support for all research

Psychometric Models Or Adaptive Testing

Within the tradition of adaptive testing research, one
reads numerous reports that focus on the comparative
merits of alternative psychometric models for adaptiie
testing. It shall be the thesis of this section that pursuit of
an optimal adaptive testing model is likely to be ineffective
and the adaptive testing domain needs a strategy for
identifying selection criteria that chooses among the many
existing models. Optimization studies, especially from a
formal point of view, have been pursued for the last 30
years in different contexts with surprisingly similar
indifferent results. For example, during the 1940's many
statisticians pursued within analysis of variance models the
issue of optimal a posteriori mean difference tests. After
better than a decade and a half of effort, John Tukey
(1962) observed that one could not really argue for the one
best a posteriori test because each varies according to the



decision criteria of the investiptor. In essence, it is the
characterize of the research winch dete manes whiJI uric
of the many tests is the most appropriate.

In turn, he area of mathematical learning models offers
a similar finding.. Within the context of research on the
all-or-none vs. incremental learning processes during the
early 1960's, one notes a flurry of research, all of which
ended with the conclusion (Alinson, et. al., 1965) that
each mathematical learning model has a set of task
characteristics which allows it to be optimal provided that
the a priori task 6..-..nactenstics are sufficiently matched.

Recently a great deal of effort Ins gone into the
investigation of adaptive instructional models from an
optimization point of view. Generalized approaches include
various recession models. While these regression models are
dearly non-optimal, they have proven siznificantly
successful in facilitating the process. On the other hand,
fairly specific models, be these Markoff processes or
dynamic programming structures, provide an elegant
theoretical explanation (Hansen, et. al., 1973) but rarely fit
the data or facilitate learning. Thus, one is led to the view
that an array of models for the instructional aka will be
necessary in order to fit the rather diverse nature of the

learning process.
Bated on these examples, the proliferation of psycho-

metric models for adaptive testing is likely to have limited
productivity. Our efforts to focus on the criteria to be used
for the selection of a raven adaptive testing model and a
better description of how to test the model's fit with the
given behavioral phenomena would seem to be a more
desirable direction in which to move.

Validation Procedures

As -has been observed by each of the reviewers in this
area, the amount of empirical work is modest at best. If one
considers critical topics, namely, sample size and design
techniques, one is even further impressed by our modest
beginnings. For example, in reference to sample-size there
are those such as Bock (personal communication) who
would advocate that at least for his latent item structure
model, a sample size of 2,000 students would be required.
While pursuing some of the test data for the Air Force with
a sample of 1,000 plus airmen, the groups were divided into
samples of 200 each and then the usual reliability and

validity analysis ants performed. In addition. each sample
was progressively legated into the net Ft is fairly clear
that the parameter convergence prows_ was gill taking
place after the sample size had increas-41 to SOO. Therefore,
it can be argued that it is important to consider num:Minn
on sample size and to develop techniques by which both
item and test parameters converge on their appropriate
group and individual values.

In turn, our review of the designs for validation is
consistent with that proposed by T2111(1973), namely, thaf
one has to consider a within-test as well as 2 between-test
validation procedure. This can be achieved simultaneously
if one notes that one can present adaptive testing as 2
variation within total test procedure. In turn, this can be
contrasted with a parallel form presentation. The two
statistics, correlation between the two adaptive and total
test scores and the correlations between the two parallel
forms, yield a comprehensive representation of the validity.
While this may seem excessive to some, such validation
procedures provide more substantial empirical results which
dearly indicate the justification for reducing total test
items.

Summary

This review and reflection has run on in a rather
extensive manner. Furthermore, it seems inappropriate to
have reflections on reflections_ Therefore, this summary
will state a final point of view, namely, adaptive testing is
sufficiently dynamic that multiple concepts and hypotheses
can be incorporated in a design sequentially so as to
determine their effect on the efficiency and effectiveness of
the assessment process: This extensive review of a number
of neglected topics should not be taken as a set of
imperatives for research. Rather, these topics and
suggestions can best be considered as potential variations
within experimental designs of the future. They are offered
to you under the assumption of collegial productivity and a
firm commitment to the human and societal benefits from
adaptive testing. Of all the evaluational techniques available
to us at this time, adaptive testing offers that chance to
humanize our assessment processes. Such an eventuality,
especially in terms of shortening high-stress situations
commonly found in testing, cannot be minimized in terms
of its benefits.
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COMPUTER ASSISTED TESTING: AN ORDERLY TRANSITION
FROM THEORY TO PRACTICE

The United States Civil Sertsce Coninussion
responsible for examining applicants for Federal tubs
throughout the world_ It examines almost two million
persons and nukes about 200,000 plabzincnts annually -

The Conurizion s investments:1 computerized adaptive
testing research and development is a s significant one. This
exciting -and innovative program is currently budgeted at
almost 5200,000 per yeal. This expenditure conies at a
time when Federal agencies' budgets are most austere and
when resources are sorely needed to respond to the
increasing challenges faced by conventional examining
methods.

The Comm ison's investment in computerized adaptive
testing is based primarily on the potential payoff in
improved employee selection and placement. The large
numbers of examinations and applicants nukes com-
puterized adaptive testing an economical, practical vehicle
for impro'ved measurement. The answer to attacks on tests
in the employment situation is complex; the economic and
social, implications of this problem are enormous.
Unquestionably, however, the greatest benefit-both to the
employer -and to the employee lies in better measurement,
not in less measurement. Every improvement in the
selection and placement processes should contribute to thf:
economic health of the employer, the psychological well
being of _the affected individual, and the welfare of society.
Computer technology offers not only an opportunity to
make significant improvements in employment decisions
but also a better means of assessing the effects of such
improvements.

While there are problems yet to be solved, computerized
adaptive testing is well on the way to implementation.

As conventional approaches to test constmction are
modified m light of developments in latent trait theory,
computerized adaptive testing becomes more and more
feasible. The Rasch Model showed capabilities for
computerized adaptive testing in the special case where all
items discriminated equally and were unaffected by
guessing. This special ase was simply not practical to
expect in available test items (Urry, 1970). Since item
requirements lot three parameter logistb. or normal ogive
models can be met with existing items (Lord, 1970),
computerized adaptive testing can- be implemented. The
implementation can be cost effective (i.e., the number of
test items adrrunistered is substantially redut.ed visa vis
conventional testing) when certain rigorous item bank
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specifications can be met (Jensen:a, 1975). The detenrdrui-
tion that the item bank specifications can be met with
existing items is contingent upon a new look at
..onventional item statistics and then relationship to model
parameters. It has become apparent that the distortions
caused by guessing result in severe underestimates,
particularly of item discriminatory powers (Urry, 1975).
Reliable estimates of parameters can now be made (Gugel,
et at, 1975). An algorithm exists that will allow on-line
computer - interactive item calibration (Schmidt & tiny,
1975).

Problems remain in tailoring -test batteries to specific
occupational' requirements and in adequate coverage of
job-related abilities. Of serious concern are the time and
dollar respources that are needed for comprehensive
measurement. The improved medium of presentation
inherent in the hardware will facilitate resolution of these
problems; for example, new item types and audio input
possibilities.

Application of computerized adaptive testing in civil
service examining Has several desirable features.

Job relatedness. With multivariate test item banks, it is
feasible to interpret scores on specific abilities in terms of
differential occupational requirements. This then enables
the employer to test a large number of abilities and to
weight these abilities in accordance with their importance
for success in specific jobs. The employer can array
applicants across a large number of jobs and select in terms
of priority, thus riaidmizing the utility of the selection
process.

Standardized Examination Administration. Individual
differences among administrators under conventional
testing make error variance due to =standardized
administration largely unavoidable. Since administration
procedures can be programmed under individualized
testing, standard conditions can be better maintained.

Compromise of Examination Materials. Under com-
puterized adaptive testing, examination questions are
located in a central computer. No test booklets are used,
therefore none can be taken from the examination room.
As a result, the security of tests and test questions can be
maintained more easily. Different individuals will receive
different sequences of items, reducing the likelihood of
cheating.

Improved Administrative Procedures. Test booklet
printing, storage, and distribution ..oats become inconse-
quential.
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Examination 'SCAT &Sift Tests can be administered on a
walk -in, basis since different tests can be administeredera
simultaneously. The shortened testing time makes possible
the administration of a multiple abilities battery in the time
now required to examine for a single ability. Further, if
selection is specific to a given position, individualized
testing for the requir. NI:abilities can be accomplished in a
manner that mininizes. the time of testing while
maximiz' ing the job relatedness of a final weighted score.

Power Conditions of Examination. Tests of ability
should be power tests. However, due to administrative
considerations, Le., sehedarng, space restrictions, etc.,
conventional tests of ability are usually speeded to a certain
degree. Under computerized adaptive testing, the power
con_ ritions required by ttis type of test can be ensured.

Test-Takirt Illotirttion. Test-taking motivation and,
consequently. test performance may be' impaired when the
level of difficulty of the examination material is
inappropriate to the level of ability of the examinee. In
conventional testing, the examination is constructed for an
entire population. This method of construction necessarily
leads to inappropriate question difficulties when a
conventional test is presented to a giveri examinee. In
computerized adaptive testing, the difficulty level of the
questions is matched to the level of ability of the examinee.

Improving Examinations. The current conventional
testing technology is the product of more than fifty years
of research and development. Substantial improvements
have been less frequent with the passage of time. This calls
for a rather dramatic change in testing procedure. At
present, the appropriate change would be towards an
individnaliv-d testing technology. Certainly greater experi-
mental control and a thorough monitoring of the
measurement process is made possible through the aid of
this new medium.

Improsint Personnel Decisions. When a computer
interactive network has been established for individualized
testing, one has necessarily established a vast data accession
network to- effect immediate evaluation of the personnel
decision making- process. Optimization -in the decision-
making process is the natural extension of events when
many sources of information are available to a central
computer and are readily accessible for analysis by the
personnel researcher and personnel specialist.

IL appears, at this time, that computerized adaptive
testing research has progressed to the point item
Implementation will be feasible. In Fiscal Year 1976, a
comprehensive cost analysis will be undertaken. Preliminary
estimates are favorable. For example, computer connect
time in testing in one ability area now costs less than forty
cents per CX2Milsee- it is reasonable to expect that cost to
drop as the program progresses. Current plans all for fully
operational computerized adaptive testing by 1980. At that
time, it is expected that the exanination for most
entry-level professional and administrative jobs w1 include
a test battery administered in the computerized adaptive
system. Approximately 200,000 applicants arrrently file
for these job:. It will take until 1980 to get ready for an
examination of this scope and number of participants.

My colleagues this morning will address some- of the
progress we have made in solving technical problems
associated with the program.
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A FIVE-YEAR QUEST:
IS COMPUTERIZED ADAPTIVE TESTING FEASIBLE?

Five years of research on the feasibility of computer
=Si-Sled testing has attempted to answer four extremely
significant questions: (1) What types of items are required
for effective computerized adaptive testing? (2) Do these
types of items exist in sufficient number to measure
important abilities adequately? (3) Can estimates of the
item parameters be obtained that arc sufficiently reliable to
be used successfully in a computerized adaptive testing
algorithm? and (4) Is there an efficient and accurate
adaptive algorithm for computerized testing?

In answer to the first qicition, "What types of items are
required for effective computerized adaptive testing?", the
development of specifications for effective item banks or
item pools for computerized adaptive testing was begun
about five years ago (Urry, 1970). These specifications were
written with reference to the three parameters of the
normal ogive model (Lord & Novick, 1968) and the logistic
model (Birnbaum, 1968). At that time, they included
requirements for a minimum of 100 items with item
discriminatory powers (the ad of at least .80, with item
difficulties (the bi) evenly distributed on the interval from
2.00 to 2D0, and with item coefficients of guessing (the
ci) of 25 as a maximum. Some research was later
completed (Jensema, 1974; Urry, 1974b) indicating that
the maximum value for the ci could be set as high as .30
with item bank effectiveness still maintained.

In these studies, an -item bank was adjudged effective
when computerized adaptive testing required fewer items
than conventional paper and pencil testing to attain the
same level of reliability. The specifications were arrived at
through model sampling and simulation techniques. The
concern was the capability of the 3-parameter models for
the specific purpose of computerized adaptive testing. After
model capabilities were adequately explored, there
remained the empirical question, "Do these types of items
exist in sufficient number to measure important abilities
adequa tely?"

At first glance, it might have appeared that the
requirement for item discriminatory powers of .8 or greater
was unreasonably high given the usual test item because an
item discriminatory power of .8 corresponds to a biserial
correlation of .62- between the Item and latent ability. In
the experience of most psychometricians this would seem
an impossibk specification to meet, because the usual
item-test biserial correlations tend-to be much lower, than
this specified value. However, the impossibility, exists only
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if the attenuating effects. of guessing on conventional
indicants of item discriminatory power, are not fully
understood. These effects mask the true discriminatory
power of multiple-choke items to a marked &gee, and
they are still largely unappreciated.

In order to illustrate these effects, equations were
derived for the point-biserial (Wry, 1974a) and the biserial
(Uny, 1975) correlations between multiple-choice items
and latent ability. The equation for the point-biserial
correlation was derived as

10- e ofri)

/P; (2

(tiny, 1974a, eq. 15); (1)

and the derivation of the biserial correlation resulted in

(1 P19 55 (7i)

(71)

(Urry, 1975, eq. 6). (2)

In these equations, a prime was used to indicate that the
given term was affected by guessing. Definitions -were as
follows:

ci the item coefficient of guessing, is the lower
asymptote of the regression of the binary item
on latent ability;

p10 is the biserial correlation, unaffected by
guessing, between the binary item and latent
ability;
is the baseline value of the item distribution
N(0,1) above which the probability of (or
proportion) knowing the correct- response
occurs;

Xii) is the height-of the ordinate at-yi;
Pi is the probability of (or proportion) passing a

multiple -choice item;
QI or 1 Pi, is the probability of (or proportion)

missing a multiple- choice item;

1 -03
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7; is the baseline value on the datnbution A10,1)
above which the probability of (or prpportion)
passir fir, occurs

0(71) is the lxight of the ordinate at 71.
The difference between the probability of (or proportion)
knouing the correct response to an item, viz...

1 03

P;= f exp
Ntra

(3)

and the probability of (or proportion) passing a
multiple-choice item, viz.,

Pis =ci+ (1- c,) (4)

is to be duly noted. As a consequence, it is known that 7i is
equal to 7t only when ci is zero. When guessing is effective
(or. synoonmously, ci is not zero), neither 7i and 71 nor
X7r) and X7,) are equal. Further, when guessing is
effective, 71, as a baseline value, is unlike which divides
the item distribution meaningfully on the basis of success
on the item. Notice that for ci equal to zero, equation (2)
indicates the eauality of pie and pre. Otherwise the
distinction between these two coefficients is to be kept
clearly in mind. Since item discriminatory power it defined
by the normal ogive model as

a-='l -p120
P

p10 (5)

it is totally inappropriate to substitute estimates of pie for
pm in equation (5) to estimate ar. When guessing is
effective or when the items are of a multiple-choice variety,
this procedural error adversely affects computerized
adaptive testing.

The derived equations for the point-biserial and biserial
correlations were used to illustrate the attenuating effects
of guessing on these conventional indicants of item
discriminatory power. In the procedure, the item-
coefficient of guessing is_uSually set at some meaningful
value, say, the reciprocal of the number of alternatives for a
multiple-choice question; and for this fixed value of cr, the
equations are evaluated to map the levels of al and h1 onto
the planes defined by -the coordinates, the point-biserial
correlation and the p-value, or the biserial correlation and
the p-value. In Figure 1, the levels of a, viz., .8, lb, 1.2,
1.4,1.6, 2.0, and 2 0, and the levels of b, viz., 2.0, 1.6, ,
-2.00, have been mapped onto the plane defined by the
population point-biserial correlation- and the population
proportion passing or p-value for c equal to .20. When c is
fixed at .20, the effectiveness of guessing is roughly
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equivalent to the level typical of 5-alternative items. Since
the biserial correlation (unaffected by guess:as) between
the item and latent ability is defined as

(6)

./1 +a;

in the normal ogive model, the levels of a portrayed in
Figure 1, viz., 1, 1.0,12, 1.4, 1.6, 2.0 and 3_0, correspond
to item ability -bisecials of .62, .71, .77, .81,15, .89, and
.95. Notice then the apparent paradox. For example, an
item which has an item-test point-biserial correlation of .11
with a p-value of 22 is indicated to have an item
discriminatory power, al, of 3.00 or a Pie of 95. The
astonishing paradox is due to the attenuating effect of
guessing. In Figure 2, identical levels of a and b have been
mapped onto the plane defined by the population biserial
correlation and the population proportion passing or
p-value, again, for c fixed at .20. While the attenuating
effect is less pronounced for the biserial correlation relative
to the point-biser:al correlation, it is most severe for
difficult items. For example, a five-alternatie multiple-
choice item with an item-test- biserial correlation of .17 and
a p -vake of 22 is indicative of an item discriminatory
power of 3.0 or an item-ability biserial of .95 and an item
difficulty of 2.00. What would happen if the procedural
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Figure J. Relationship between conventional and normal ogive item
when the coefficient of guessing "(c) equals
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.20.

error alluded to earlier were committed in connection with
this interesting case? It will be recalled that the error
involved, the misuse of pie in equation (5). In this
instance, of would have been erroneously estimated as 17
when the true value was 3.00. Obviously, gross errors of
this nature render computerized adaptive testing less
efficient than it should normally be. If the data point
defined by the item-test point-biserial or biserial correlation
and the p-value is plotted on one of these maps or charts,
the corresponding values of ai and bi for the given item can
be interpolated from the grid system that identifies the
various levels of of and b1. For reliable total tests' and large
samples, the interpolated values of ai and b1 approximate
the true parameters and allow the researcher (1) to identify
items appropriate for the purpose of computerized adaptive
testing and (2) to assess the efficacy of a given set of
appropriate items for the purpose of computerized adaptive

testing by comparing the obtained interpolated values with
the specifications for item bank effectiveness. When the
specifications are met, improved reliability per item used is
assured for computerized adaptive tests relative to
conventional tests. However, the number of items required
in computerized adaptive testing relative to conventional

testing an be markedly reduced when the of appreciably

As total test reliability decreases, the approximations for the
parameter:al systematically underestimate the true values of at.

exceed the minimum value of .80, the bi are widely and
evenly distnbuted, and the c1 are maintained at low values.

Experience has shown (IellSeTtla, 1972; Urry, 1974b)
that roughly one -third of the items in the usual aptitude or
ability test survive this screening for appropriateness.
Moreover, item discriminatory powers have been frequently
found to exceed 2.0 in value.

After it was ascertained that sets of items could be
found that would satisfy the specifications for effective
item banks, there remained the important question, "Can
estimates of the item parameters be obtained that are
sufficiently reliable to be used successfully in a
computerized adaptive testing algorithm?" In answer to this
question, a relatively rapid and inexpensive item-analytic
procedure was developed (Urry, in pressa). It has been
programmed and is currently available for use on several
computers. The output of the program is an item analysis
yielding ancillary estimates for a1, item discriminatory
power; b1, item difficulty; and eh item coefficient of
guessing.

Estimates of the parameters ai,bi, and ci are obtained by
an iterative, minimum x-square procedure. The procedure
consists of two stages that differ only with respect to the
particular measure used for manifest ability. In the first
stage, the distribution of manifest ability is represented by
corrected raw scores where the item being parameterized is
omitted from the sconng. In the second stage, the
distribution of manifest ability is represented by Bayesian
modal estimates of ability (Samejima, 1969). Generally,
Bayesian modal estimates of ability more closely
approximate the distribution of latent ability than does the
distribution of corrected raw scores. Therefore, the second
stage constitutes a refinement on the first stage. In both
stages the procedure iterates item by item through values of
ci to obtain pairs of a; and bi consistent with large sample
estimates of the item-manifest ability point-biserial
correlation and the item p-value. This allows thfe generation
of various item characteristic curves (ICC's). The ICC's are
then compared with the regression of the binary item on
manifest ability. The ICC that best fits this regression, as
indicated by the mini iim x-square, is given by the set of
approximations 'Si, and fe. . The approximations are
then corrected for characteristics of the particular sample
of items being parameterized to obtain "ancillary
estimates" 21,4 and(ei. Ancillary estimation as a generic
method was developed by Fisher (1950). The ancillary
corrections improve the efficiency of the estimates.

The procedure has been evaluated throtigh model
sampling and simulation techniques. In -particular, two
parameterization -samples, one of 2,000 and' one of 3,000
cases, were generated from -the logistic model using
specified, and hence known, item parameters. The data I

were then analyzed by the procedure, and the resulting
estimates were compared to the known parameters for each
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of the samples. Specifically, root mean square errors
(RMSE's), i.e. .

m m

i =1
ad2

i =1
(b,- b,)2 111-1

m
cd2 m-1%

1= I

and

- , were obtained. These measures of

deviation are given in Table 1 for the two parameterization
samples and stages. Notice that the particular RMSE
indicated by a given equation tends to decrease with stages.
This is an indication of improved efficiency
due to ancillary corrections. For the final stage ancillary
estimates, -these deviation measures were .242, .123 and
.056,fOr the 2000 case sample, and .228, .148, and .056 for
the 3000 case sample. For 100-item parameterization tests,
these data indicated that 2,000 cases were sufficient for the
effective use of the procedure. Correlations were also
computed bet.-ieeii- the estimates and the known para-
meters, i.e., rfpa, rpb, and ri.c. These correlations are
provided in Table 2 for the two parameterization samples
and stages. Notice that there is a tendency for each
correlation to increase with stages as predicted given that

the ancillary corrections improve efficiency of estimation.
For the final stage ancillary estimates, the correlations wer9."
.915, .996, and .764 for the 2,000 case sample, and .918,
.997, and .760 for the 3,000 case sample. Since the ranges
Of the ai and c1 were somewhat restricted, these correlations
arc very respectable, The results of these comparisons
between the estimates and the known parameters indicated
the merit of the item-analytic procedure..

The ancillary estimation procedure was further evaluated
using simulation techniques. In particular, testing was
conducted using a Bayesian algorithm developed by Owen
(1969). Samples of 100 cases each were generated for
computerized adaptive testing using 100 items with known
item parameters. In the generation process, values of 0, the
ability parameter, are sampled randomly from N(0,1) and
are also known. As a result, estimates of .the ability .
obtained under computerized adaptive testing could be-
correlated with known ability. Comparisons of correrations,
re', were made across three conditions of computerized
adaptive testing where (1) the known item parameters, (2)
the ancillary estimates of the item parameters based on the
2,000 case sample, and (3) the ancillary estimates of item
parameters based on the 3,000 case sample were used in the
algorithm. The appropriateness of the use of the_ancillaiy..._
estimates could be evaluated, therefore, by comparing the
results obtained for the last two conditions with those

TABLE 1

Root Mean Square Errors for Estimates by Parameterization
Samples and Sines

Sample Size Parameterizatio Stage Root Mean Square Error

inE I

1=1

M
1163M")1/2

1,-71

2000 Corrected Raw Score:
Approxiniation .309 .1,81

Ancillary Estimate .283 .120

Bayesian Modal:
Approximation .269 .150

Ancillary Estimate .242 .123

3000 Corrected RaWScore:
Approximation .308 .139

Ancillary Estimate .253 .135

Bayesian Modal: =
Approximation .252 . :109

Ancillary Estimate .228 .148
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TABLE 2

Correlations Between Estimates and Known
Parameters by Parameterization Samples

and Stages

-.Sample Size Parameterization Stage Correlation

rae rgb CC

, 2060 . Corrected Raw Score:
Approximation , .876 .996 :651

Ancillary Estimate .873 .996 .668

Blyesian Modal:
Approximation .909 .996 .754

Ancillary. Estimate .915 .996 .764

3000 Corrected Raw Score:
Approximation .884 .996 .611

Ancillary Estimate .895 .996 .616

Bayesian Modal:
Approximation .914 .997 .752

Ancillary Estimate .918 .997 .760

obtained for the first. In Table -3, the results are

summarized for each of the conditions of testing.
Further explanation, however, is in order before

proceeding to an interpretation of these results. When
compared with conventional testing procedures, comput-
erized adaptive testing can lead to a substantial reduction in
the number of items required to obtain a given degree of

TABLE 3

Validity Coefficients Om, and Average Number of
Items (Ii) Required for Tailored Testing to
Various Termiriation Rules Where the Item

Parameters Wire Known or Estimated

validity. Therefore, the concern was not only with the
validity obtained but also with the economy in items
observed in obtaining the given validity. Control over the
validity of computerized adaptive testing is direct. When an
individual is being evaluated, the standard error of the
estimate of ability is available at any stage in the sequence.
Validity, over individuals, is controlled by terminating the

Termination Rules

P3 oe Pee
Parameters Known

Item Parameters Estimated in ,
a Sample of:

2,000 Cases 3,000 Cases

roe is reo

1 .5477 .70 .84 .84 2.7 .83 2.0 .84 2.3

2 .5000 .75 .87 .85 3.2 .86 2.7 .86 2.6

3 .4472 .80 .89 .89 3.9 .89 3.4 .88 3.2

4 .3873 .85 492 .91 .7 .90 4:0 .90 4.0

5 .3162 .90 .95 .94 6.6 .92 5.4 .93- 5.6

6 .2828 .92 .96 .96 8.2 .94 6.7 .93 7.1'

7 .2449 .94 .97 .96 10.8 .95 9,1 494 9.6

8 .2236 .95 '.97 .96 13.3 .95 11.1 .95 11.9

."
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individual sequences at a common value for the standard
error of the estimate of ability. In the study, eight such
termination rules were designated. These rules are identified
in coluMns 1 and 2 of Table 3 and specify that the standard
error of the estimate of ability, oe, was equal to or less than
(1) .5477, (2) .5000, -(3) .4472 (4) .3873, (5) .3162, (6)
.2828, (7) 2449 and (8) .2236, respectively, oyer all
individuals. Given oe for any termination rule, synonomous
rules may be generated through

and

4 =.1 -oE (7)

Po = (8)

for:the expected reliability and validity, respectively. These
synonomous rules are .given in coin* 3 and 4. The
validities of column 4 may then be compared with obtained
validities. Eight estimates of ability satisfying these rules
were obtained for all cases. Olitained validities were
indexed by the correlations between known ability and
estimated ability rfo, for specified termination rules as
appropriate to the testing condition. As the termination
rule becomes more stringent, the obtained validities given in
columns 5, 7, and'9 increase and compare very closely with
expected validities given in, column 4. Additionally, the
average numbers of items required, the ii, given in columns
6, 8, and 10 also increase as the termination rule becomes
more stringent. Notice that the Fi at each termination rule
differ only slightly across testing conditions. Since- the
results were almost identical across testing conditions, the
item-analytic procedure appeared very appropriate in
computerized adaptive testing applications. Consequently,
ancillary estimates of the item parameters based on more
than 2,000 cases- and 100 items were strongly recom-
mended for use in computerized adaptive_ testing.

`Further research in evaluating the item-analytic pro-
cedure has been accomplished for varying numberS of cases
and items (Gugel et. al., 1975), and more ;detailed
recommedations regarding the use of the procedure will be
given later in the conference.

As it turned out, the last signiiicant question, "Is there
an efficient and accurate adaptive algorithm for comput-
trized 'testing?" could have been answered in the
affirmative as early as-1969. The important event was the
publication of an Educational Testirig Service research'

-Roger
bullptin, "A Bayesian Approach to Tailored Testing", by \

1. Owen. Subsequent research (Urry, 1971, 1974b, in
pressa; Jensema, 1972, 1974, 1975) hair shown the
efficiency and accuracy of the algorithm. For example, it is
possible to construct some 2,000 computerized adaptive
tests in some ) 7 minutes of central processor unit time, and
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the precision of measurement can be accurately controlled
frith termination rules.

In summary, we now find that. (1) the specifications for
effective item banks have been developed, (2) these
specificatithis- can be met for a number of significant
abilities, (3) efficient procedures exist for the .reliable
estimation of parameters, and (4).an efficient computerized
adaptive testing algorithm is available to conduct the actual
testing. All the necessary prerequisites for the success of
computerized adaptive testing ate therefore now in
evidence. At this juncture, the feasibility of computerized
adaptive testing can be realistically-, assessed, and this
realistic assessment is decidedly and resoundingly affirma-
tive in nature. At present, computerized adaptive testing
appears to have a future without parallel in the literature of
psychological measurement:
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EFFECTIVENESS OF THE ANCILLARY ESTIMATION
PROCEDURE

JOHN F. GUG EL, FRANK L. SCHMIDT, AND VERN W. URRY
U.S. aril &nice Commis ion

Urry (1974a) has presented .4 graphic method to
provide approximations for the item parameters of the
normal ogive and Birnbaumlogistic three-parameter latent
trait models. This method has since been further developed
(Uny, 1975) to provide a, more accurate 'Computational
procedure for estimating the three parameters, ai (item
discriminatory power), bi (item difficulty), and ci (item
coefficient of guessing). Programmed for the computer, this
technique produces parameter estimates quickly and
inexpenshely.

Initial studies of this procedure employed large sample
sizes (N=2030 and 3000 cases) and a relatively large
number of items (n=100). Under these conditions, the
procedure produces very accurate parameter estimates
(tiny, 1975). We are now in a position to examine the
effects of reduced numbers of cases and items on error in
the parameter estimates Ind on the accuracy of tailored
testing using those estimates. It is known a priori, of course,.
that reduction in either the number of cases or the number
of items will, other things being constant, tend to increase
estimation errors. But it is not known at present how large
or practically sgnificant such increases would be The
pres5nt study, exploratory in nature, is addressed to these
questions.

METHOD

Based on suggestions by Lord (1968, p.,1016) and the
results of the previous study by Urry (1975), it was decided
to allow the number of items to vary from 50 to 100 and
the number of cases to range from 500 to 2000. The initial
100-item bank, from which the smaller banla were later
selected, was characterized by a1 values ranging uniformly
from .80 to 2.20, ii values distributed uniformly from -1 9

.to +1.9, and ci values from .02 to .24, also uniform in
'distribution. These parameter values are not different from
what one might reasonably expect to fini empirically given
prescreening of items (Urry, I 974a; Jensema, 1972). In the
reduced item samples, the a1 values were chosen in equal
steps from .80 to 2.20. For example, there were five levels
of a1 for the 50-item test and ten for the 1004tem test. Ten
values of b1 in equal steps between -1.9 and 19, inclusive,

'Computer processing for this study was done at the University of
Maryland Computer Science Center in conjunction with graduate
work by John Gugel. Arrangements for computer time were made
by Professor Charles Johnson of the Department of Measurement
and Statistics, College of Education, University of Maryland.

were arranged within each level dal. (an exception was the
554tem test, which had eleven i-alues of hi in equal steps
between -19 and 1.9, inclusive, within each of its al
values) For different levels of a items were matched bs
values. The c values ranged from .02 to 24 in equal steps,
irrespective of al and k. Values of 0, representing simulated
subjects, were sampled randomly from 11(0,1). Then for
each B, the simulation procedure described by Uny (1975
was used to generate. a vector of responses (1 = correct;0
Incorrect)-for the item bank in question using the known
item parameters..Pan.meter estimation was then carried out
using Ibbsimulzted data.

Two indices were used to evaluate the parameter
estimates relative to the known parameters. First, the root
mean square error (RASE) was computed for the #;stimated
parameters. The formula for this statistic, is;

/2(RMSE = Z

where the p = known values of a1, el, or pie, and
n = number of items involved in the particular
analyses.

Second, Pearson correlations between the known and
estimated parameters were computed, i.e., app.

To illustrate the effects of error in the parameter
estimates on the accuracy of tailored testing, Owen's
(1968) algontfun was employed. Specifically, tailored
testing was carried out on 100 simulated subjects using first
the known item parameters and then item parameter
estimates obtained on 1000-cases and 60 items. To increase
the number of items used in tailored testing to a more
realistic level, another identical set of 60 items was
parametenzed on a separate, independent group of 1000
simulated subjects, and these "items" were combined with
the original 60 to produce a bank with 120 items. In the
case of the known_ ..parameters, both 60 -item sets were
entered into the tailored testing bank. The known
parameters in this bank were used to generate the response
vectors of the 100 simulated subjects, and these vectors in
rum, welt used in the tailored testing. Correlations between
estimated and actual 0 were computed at each of eight
termination rules for each condition of testing. This
allowed a comparison of correlations across the conditions
of testing, i.e., where (1) known or (2) estimated item
parameters were used in the tailoring process.
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RESULTS AND DISCUSSION

Results produced by the parameterization procedure for
raying combinations of sample size and number of items
are shown in Tables 1 and 2. In both tables, "Raw Score
Estimates" refer to the parameter estimates prior to
application of the micillap, correction procedure, and the
columns headed "Final Estimates" refer to estimates after
application of the corrections. Table 1 includes the S.E. for
p19, the correlation between the continuum underlying the
item and 0, as well as for ai, b,, and e,. "Lost items" are
those for which the estimation procedure did not converge
because of insufficient cases in the tails or the distribution.

Looking at the S.E.'s fa the final estimates in Table 1, it
can be seta that, in general, decreasing both sample size and
number of items results in increased ME's. This effect
appears to be more pronounced for ai than for the other
parameters. Moving from 50 to 60 items (sample size
constant) appears to produce marked .reductions in error
for but beyond this, improvements in accuracy with
increases in number of items are smaller. The bi and ci were
estimated rather accurately throughout the range of bath
independent variables, although variation in sample size
and number of items did have the expected effect. The last
column in Table 1- "reveals a tendency for items to begin to
fail to converge during parameter estimation when sample

size is dropped as low as 500. Sample size appears more
crucial in this respect than number of items. Correlations
between final parameter estimates and actual parameters,
shown in Table 2, also pattern themselves as expected,
within the limits of sampling error. In examining these
cosrelations, one should bear in mind that in the case of
4 and to a lesser.extent restriction in range is operating
to lower the tabled values. The items parameterized
contained no values of ai lower than SO. This value of ai
corresponds to a biserie correlation of .62 between the
item and latent ability. Past studies (Ienserra, 1972; Urry,
1974b) have shown that only about one third of the
items in conventional tests have a1 values this large. No el
greater than 24 were included; in practice ei does exceed
24, although the range restriction here is probably less
severe than in the case ofai.

Results of simulated tailored testing using known"
parameters and parameters estimated on a sample of 1000
with 60 items are shown in Table 3. The eight termination
mks, expressed as the standard error of estimate (a;) are
seen in column 2. Column 3 translates these values to
reliability coefficients for e, based on the relationship

TABLE 1

Root Mean Square Errors MUSE)
Before and After all Corrections

1 (2)

Items Cases era

Raw Score Estimates
RMSE

ai el Pio ai

Final Estimates
RMSE

bl c1 Pie
Lost
Items

50 2000 283 .124 .086 .043 395 .137 .064 .053 0
50 1000 .292 .193 .097 .053 .209 .078 -059 1

50 500 370 .164 .097 .067 .4.2 259 .077 .064 0

55 2000 .385 .195 .091 .061 .308 .150 .057 .053 0
55 1000 352 .194 .101 .050 .315 .124 .071 .050 0
55 - 500 .281 .185 .098 .054 .403 .227 .086 .065 4

60 2000 321 .204 .091 .056 .253 .140 .065 .040 0
60 1000. .343 .231 .089 .059 .322 .144 .062 .044 0
60 500 .360 .194 .080 MO .342 .179 .068 .062 0

70 2000 .272 .131 .095 .041 225 .166 .067 .040 1

70 1000 .324 .189 .095 .054 273 .174 .074 .045 -
70 500 386 .197 .096 .072 .351 .187 .083 .058 4

80 2000 .266 .141 .092 .046 .214 .150 .072 .039 1

80 1000 .259 .178 .092 .048 .261 .166 .073 .047 1

80 500 .319 .224 .091 .063 .311 .229 -.079 .048 6

90 2000 .297 .180 .094 .049 .244 .149 .069 .036 0
90 1000 .341 .171 .089 .051 .304 .140 .072 .044 0
90 500 316 .184 .094 .056 .283 .144 .086 .049 2

100 2000 .290 .138 .085 .049 223 .131 .056 .036 0
100 1000 .286 .137 .088 .052 .240 .162 .062 .039 .0
100 500 /354 .189 .100 .061 .276 .161 .083 .047 s

104

110



TABLE 2

Cone-htions-Known Parameters vs. Estimated Parameters
Before and After All Corrections

Items Cases
Raw Scare Es 't.ates

rns r rte.

Final Estimates
ra r sci

50 2000 .846 999 .599 249 .997 236
50 1000 288 .992 .429 .908 .990 .492
50 500 .745 993 .428 .780 .989 -454

SS 2000 .731 .995 .488 -891 .995 346
55
55

1000
500

.758

.850
.995
992

.428
387

270
.824

.995

.990
.546
376

60 2000 228 996 491 299 997 .630
60
60

1000
500

.771
263

.994
994

.546
.626

242
.801

.995

.995
5111
.661

70 2000 .834 997 .471 sn 997 .632
70 1000 2:3 996 468 228 .996 521
70 500 .715 993 .464 .813 .995 .449

80 a)D0 273 .996 .535 .914 397 374
80 1000 .850 .994 .465 .879 .993 .550
80 500 .839 .991 A10 .823 989 302

90
90

2000
1000

.861

.757
.996
.995

.483
.518

.871

.847
.996
995

368
.547'

90 500 .804 .995 A47 274 .993 413

100 2000 -837 997 339 998 .690
100 1000 .843 .996 470 .863 -996 .627
100 500 .741 .993 344 124 .994 .420

The square root of this value is pie, the correlation
between the latent ability estimates () and actual latent
ability (6). Validity coefficients of this sort are given in
columns 4, 5, and 7. Those in column 4 are theoretical
validities based solely on the termination rule chosen.
Those in column .5 were obtained by correlating the 0

produced using thp known item parameters with knovm
As expected they are essentially identical to-the predicted
theoretical validities. Those in column 7 were obtained by
correlating the e" produced using the parameter estimates
With the known 0. As expected, they are somewhat lower
than those in 4-olumns 4 and 5, but it can be noted that, as

TABLE 3

Validity Coefficients (r69). and Average Number of Items 0) Required for
Tailored Testing to Various Termination Rules Where the Item

Parameters Were Known or Estimated

(1)
a.

(2) (3) (4)
Termination.Rules

(5) /6)
Parameters Known

(7) ( ;-
ParametersEsum8)ates1

"d8 Fig rio

1 .5477 .70 .84 .864 2.43 .792 2.26

2 .5000 .75 .87 .904 3.31 221 2.89
3 .4472 .80 .89 .932 4.00 .821 219
4 .3873 .35 .92 .935 4.91 264 330
S .3162 .90 .95 .955 7.03 .895 5.30

6 .2828 .92 .96 .962 8.77 .921 6.57

7 .2449 .94 .97 .969 11.77 .942 8.91

8 .2236 95 .97 .975 14.51 .952 11.12
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the termination rule becomes more stringent, the
discrepancy decreases. At the most stringent terminaucci
role, the validity of the S derived using the parameter
esumates is only .023 lowet than that based on the knoivn
parameters. The reliabilities of the two 's at this termina-
tion rule are .95 and .91, respectively.

Why are the termination rules noL fully attained Mien
the parameter estimates are used? Tne tailoring algorithm
capitalizes on errors in the parameter estimates. As a
consequence, tailored testing using the estimated para-
meters terminates prior to actually reaching the pre-set
termination rule. That is, because of capitalization on error
in parameter estimates during the process of item selection,
the reliability levels implied by the Owen algorithm at
any stage during the tailoring process are somewhat
inflated. This leads to a too early termination of tailored
testing, and, when the obtained I are correlated with 6, it
becomes evident that the pre-set reliability level for
termination has not been met. In the present example, an
avenge of 14.51 items was administered when the known
parameters were used but only 11.12 when the parameter

estimates were used. This sluinlage problem can be
ovenorre by setting the reliability terminmation rule higher
than that actually required. In our present example, the
termination rule should be set at 95 in order to obtain 0 of
reliability

I I.2
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ITEM PARAMETERIZATION PROCEDURES FOR THE FUTURE

Failure to appreuate the important psythometri, rule
played by guessing in yonventional multiple choke tests
prevented until reixntly praf.m..al application of latent trait
theory to tailored testing. When this problem was properly
addressed, it was found that the solution could be
expanded to produce an inexpensive and highly accurate
stem parainetenution procedure- Combined with Owen's
(1969) elegant Bayesian algorithm and available CRT
hardware, these developments made computerassisted
tailored testing feasible from a practical point of view.

The capacity to. parameterize new items for possible
later inclusion in the item bank during routine operation of
the computer-assisted testing system would be a significant
step in the direction of even greater practicality (CHIcross.
1974). Such a procedure would eliminate the necessity for
periodic application of the full parameterization process
described by Urry (1975a; 1975b). The Urry anallary
estimation procedure can be modified to provide the
capability to parameterize items in the environment of
a live, brge.scale, computer-interactive tailored testing
system or network. It can thus provide a convenient
technology for updating and expanding item banks in
ongoing tailored testing systems.

The parameterization procedure is as follows: In addi-
tion to the items that are part of his tailored test, each
examinee receives a group of additional experimental items.
On -line ancillary parameterization can begin for any of
-these items as soon as a sufficient number of examinees
have responded to it. For each item, Re is computed
against the uniformly reliable Bayesian 0 from the Owen
algorithm. (Notice that the item does not enter in any way
into the determination of O.) pi is estimated in the usual
way using sample data. The 0 are next grouped into k
-intervals. Provisional values for cr arc assumed, and the
minimum x2 procedure is applied to obtain approximations
of al, bi and c,. These procedures have been outlined in
Urry (1975b) and are described in full in Urry (1975a).

The purpose 9f this study was to evaluate the on-line
ancillary parameterization process using model sampling
and simulation techniques. The one hundred items to be
parameterized were those used in the earlier Gugel study,
and are shown in Table 1. (In practice, a much smaller
number of items would typically be parameterized, but for
evaluation purposes a larger number is desirable)
Dependent variables in this study were also the same as
those in Gugel's study. correlations between known and
estimated parameters and the square root of mean squared

FRANK L. SCHMIDT AND VERN W. URRY
US aril SerrIce Commission

deflations of estimated from known parameters_ Inde
pendent variables are illustrated in Figure L Two different
banks were used in tailored testing to produce the Owen 8,
designated as the Verbal Ability Bank and the Ideal Bank
The Verbal Ability Bank of this study consists of the 103
most frequently used items (based on counts from presious
simulation studies) from the Commission's 200 item Verbal
Ability Bank. The Conunission's bank in trim, is made of
the best 200 items out of 700 verbal ability items calibrated
by Urry (1974). Calibration was carried out on krge
samples and the final 200 items were chosen to provide a
wide distribution of bi values, high ai values, and low
(below 30) ci values. The 103 item bank used here thus
represents a currently attainedthough improvable -level of
quality. The Ideal Bank is the same 100 items being
parameterized /(See Table 1). Three different termination
rules were examined for the Ideal Bank; for the Verbal
Ability Bank, the most stringent rule (95) was omitted as
impractical. Sample sizes of 1000, 1500, and 2000 were
examined. Simulated subjects (0's) were sampled and their
response vectors generated as in the Gugel study_ (This
procedure is described in full in Urry 11974a1).

RESULTS AND DISCUSSION

The-obtained standard errors for the Ideal and Verbal
Ability banks are shown in Tables 2 and 4, respectively.
Tables 3 and 5 present the correlations between actual and
estimated item parameters. In most cases, changes
associated with variation in the independent variables were
in the hypothesized direction. Increasing the number of
subjects and the reliabilities required for termination of
tailored testing usually resulted in lower standard errors and
higher correlations between known and-estimated para-
meters. Some deviation from this pattern occurred because
of sampling error. (For each bank, a different sample of
simulated subjects was used for each termination rule-and
sample size examined) The same is true of the- ancillary
corrections: the-effect was generally to decrease standard
errors and increase correlations, but because of sampling
error this was not always the case.

In examining the correlations between known and
estimated parameters, one should bear in mind that in the
case of di, -and to a lesser extent ci, restriction in range is
operating to lower the tabled values. The Items
parameterized (See Table 2) contained no values of ai lower
than .80. This value of at corresponds to a Wiens'
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TABLE 1

True P=mriers of the 100 Items Passooeterized
Yu the Oa-the Procedure

Rau

iii eg

Para ime 7.=s

bg Ft

1 .80 -1.90 .03
2 .50 -1.70 .06
3 20 -1.50 .09
4 20 -1.30 .12
5 .80 -1.10 .15
6 29 -50 .18
7 .80 -.70 11
8 20 _30 .24
9 20 -.30 27

10 20 -.10 .03
11 .80 .10 06
12 .80 .30 09
13 .80 .50 .12
14 20 .70 .15
15 .80 .99 .18
16 .80 1.10 .21
17 20 1.30 .24
18 ..80 1.50 .27
19 20 1.70 .03
20 .80 1.90 .06
21 1.20 -150 .09
22 130 -1.70 .12
23 120 -150 .15
24 1.20 -1.30 .18
25 1.20 -1.10 .21
26 1.20 -.90 24
27 1.20 -.70 .27
28 120 -c0 .03
29 120 -.30 .06
30 1.20 -.10 .09
31 1.20 .10 .12
32 1.211 .30 .15
33 120 .50 .18
34 1.20 .70 .21
35 1.20 .40 .24
36 1.20 1.10 27
37 1.20 130 .28
38 1.20 ISO .06
39 1.20 1.70 .09
40 110 1.90 .12
41 160 -1.90 .15
42 1.60 -1.70 .18
43 1.60 -1.50 21
44 1.60 1.30 .24
45 1.60 - 1.10 27
46 1.60 -.90 .03
47 1.60 -.70 .06
48 1.60 -.50 .09
49 1.60 -.30 .12
50 1.60 -.10 .15

..

11 Item Paratucters

0.1

51 160 .10 .18
52 1.60 .30 21
53 1.60 50 24
54 1.60 .70 _27

55 1.60 .90 .03
56 160 1.10 .06
57 1.60 1.30 .09
58 1.60 130 .12
59 1.60 1.70 .15
60 1.60 1.90 .18
61 2.00 -1.90 .21
62 2.00 -1.70
63 2.00 -150 .27
64 2.00 -1.30 .03
65 2.00 -1.10 -06
66 2.00 -.90 .09
67 2.00 -30 .12
68 2_00 -SO .15
69 2.00 -.30 .18
70 2.00 -AO .21
71 2.00 .10 .24
72 2.00 -10 27
73 2.00 .50 .03
74 2.00 .70 .06
75 2.00 .90 .09
76 2.00 1.10 .12
77 2.00 1.30 .15
78 2.00 1.50 .18
79 200 130 .21
80 2.00 1.90 24
SI . 2.40 -1.90 27
82 2.40 -1.70 .03
83 2.40 -1.50
84 2.40 -1.30 .09
85 2.40 -1.10 .12
8'6 2.40 -.90 .15
87 2.40 -.70 .18
88 2.40 -.50 .21
89 2.40 -.30 .24
90 2.40 -.10 .27
91 2.40 .03
92 2.40 .30 .06
93 2.40 .09
94 2.40 .70 .12
95 2.40 .90 .15
96 2.40 1.10 .18
97 2.40 130 21
98 2.40 1.50 .24
99 2.40 1.70 .27

100 2.40 1.90 .03

correlation of .62 between the item and Latent ability. Past
studies (Jensema, 1972, Urry, 1974) have shown that only
about one -third of the items in ...onventiunal tests have al
values this large. N0 ci peatet than .27 were injuded. to
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0.34.1k.c. Li does exceed .27, although the range restriction
here is probably not as great as in the case of

The lathe' high ar values among the items paiametenced
;Last be t.unsidered also m evaluating the rout mean square
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.91
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2000 .93

.95

S

Reliability values for termination rules.

Figure 1. Expetimenul Design. Independent Vatiabl=

errors for al. Errors in hi are much larger for high al than
low ai, since when ai is high, small errors in file lead to large
errors in ai. For example, if = _90, ai = 2.01. If
.88, 01= 1.85, a difference of .16. But if he = .50, ai = .58.
Then ifko = .48, = .55, a difference of only .03.

The. real test of the user.: less of the on-line parameteri-
zation process lies in the performance of the parameter
estimates in tailored testing. The better the estimates, the
closer they will come to equaling the performance of the
known parameters. The parameter estimates obtained in
this study have not yet been used in simulated tailored
testing, but an idea of how well they would perform can be
obtained by examining the performance of parameter
estimates from Gugel et aL (1975) with roughly equivalent
errors. Table 6 compares root mean square errors and
correlations between known and estimated parameters from
the present study for the Verbal Ability Bank. with 2000
cases and reliability cut-off of S3 with the results obtained
by Gugel et al. (1975) using 1000 cases and 60 items with
the full parameterization process. Except for the standard
error of b (winch is lower) and race (which is also lower), his
results are essentially equivalent. Using a reliability cut-off
of .95, Gugel et al. conducted simulated tailored testing
using both the known and the estimated parameters.
Known parameters produced riee = .9752, exactly corre-
sponding to the termination rule (i.e., f.97521 2 = .95).
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With the parameter estimates, ria was .9516, corresponding
to an obtained reliability of 9044.

Because the tailoring algorithm capitalizes on chance
errors in the parameter estimates, tailored testing using the
estimated pararners is terminated prior to actually
reaching the pre termination rule That is, because of
capitalization on error in parameter estimates during the
process of item selection, the reliability levels computed by
the Owen algorithm at any stage during the tailoring
process are somewhat inflated. This leads to 1° too early
termination of tailored testing, and, when the obtained
8 are correlated with 0, it becomes evident that the pre-set
reliability level for termination has not been met. In the
present example, an average of 14.57 items was
administered when the known parameters were used but
only 11.12 when the parameter estimates were used. This
shrinkage problem can be overcome by setting the
reliability termination rule higher 'than that actually
required. In our present example, the termination rule
should be set at .95 in order to obtain 6 of reliability .90.
Simulation studies provide a convenientand perhaps the
onlymethod of determining in advance of actual use the
amount of shrinkage to be expected when items are
parameterized on ern sample sizes and with given
numbers of items. The- shrinkage problem here is thus
somewhat different from that characterizing, say, multiple
regression, in that its- Effects` can be cancelled out by
appropriate selection, of derirtill2tiOrl rules. Two points,
however, should be noted here:

1. Parameterizing on large sample sizes (both numbers
of items and numbers of cases), and thus obtaining
more accurate initial parameter estimates, is prefer-
able where feasible to adjusting termination rules to
allow-for-shrinkage.

2. For certain tailored testing usagesfor example,
battery tailoring or multivariate tailored testingthe
advantages of parameter estimates that can fully meet
pre-set termination rules become substantial. That is,
adjustment of termination rules to allow for shrink-
age becomes, at best, inconvenient and awkward.

In light of these facts, an important question is whether
or hot the on-line parameterization process can produce
estimates with errors low enough to reduce shrinkage to
negligible levels. An important consideration, of course, is
the quality of the item bank on which the original 0 are
derived. By parameterizing and adding to the Verbal Ability
Bank those items which were erroneously rejected earlier
on the basis of low point-biseriaL and biserial item-total
indices, it will probably be possible to make the Verbal
Ability Bank equivalent to the Ideal Bank used in this
study. By increasing the number of cases to 3000, or
perhaps beyond 3000, it-should be possible to reduce the
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TABLE2

Root Mean Square For Item Parameter Estimates And
j the Ideal Bank

Subject Cut-offs

Uncorrected Corrected

a- bi ci pm al bi ci PIO

.91 A65 226 .089 .076 .340 .174 .086 .057
1000 .93 .480 .227 .095 .075 .357 .164 .079 .054

.95 .418 .202 .093 .068 283 .187 .074 .045

.91 .481 .159 .086 .079 .318 .225 .075 .051
1500 .93 .467 202 .091 .079 290 208 .067 .049

95 .445 .193 .095 .071 .311 .206 .070 .047
.91 .506 .232 .091 .082 .267 236 .079 .044

2000 .93 .477 .218 .090 .071 .270 .19F .067 .042
.95 .454 .209 .090 .071 .297 203 .066 .042

RIME = :srpri;it2
whezep = parameters

n it = number of items

TABLE 3

Conditions Between Known and Estimated
Parameters -Ideal Bank

Subject

Cnrorrected Corrected

Cut-offs

.91 .807 .995 .567 .820 .994 .548
1000 .93 .780 .994 .495 .780 .994 .540

.95 276 .994 .504 .874 .995 _.553

.91 .844 .996 .617 .832 .995 .656
1500 .93 .861 .995 .593 .860 .995 .624

.95 .857 .995 567 .852 .995 .610

.91 .883 .995 .610 .886 .995 .631
2000 93 .892 .996 .602 .892 .996 .641

.95 - .883 .996 .617 " .883 .997 .649

TABLE 4

Root Mean Square Errors' For Item Parameter Estimates And
Ole Using the Verbal Ability Bank

Uncorrected Corrected

Subject Cut-offs Cli c1 PIO at bi cl PIO

.91 .596 .259- .093 .103 .370 .261 .097 .055

1000 .93 .599 .285 .093 .107 .400 .258 .095 .060
.91 .514 .208 .090 .081 .280 .267 .084 .048

1500 .93 .554 .286 .082 .098 336 .267 .075 .050
.91 .562 .217 .087 .096 .338 275 .076 .043

2000 .93 .553 .257 .086 .096 .331 .250 .072 .045

"RMSE (IppriI2y where p = parameter,
n= number of herds.
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TABLES

Correlations Bence= Known And Estimated
Parameters-Verbal Ability Bank

Uncorrected Corrected

Subject Cutoffs al b1 c1 b1

.91 .786 .993 324 .780 .933 .550

1000 .93 .821 .993 S10 .807 .993 .515

.91 .875 .994 .565 875 .994 394
1500 .93 271 .993 .614 .870 .993 .624

236 .996 .622 .819 .995 .655
2000 .93 .878 .996 .562 .879 .996 391

TABLE 6

Comparison of Gugel Results with Present Study Remits

Root Mean Square Errors Correlations (rip)

at be. 1210
'41

76,41 raft

Cost! (1975)' .322 .140 .062 .044 -842 .995 .588
Present Study` .331 250 .072 .045 .879 u .996 .591

N= 1000, 60 items; full parameterization procedure.
**Verbal Ability Bank. N=2000. Relaibility cut-off = .93.

root mean square errors shown in Table 2 (2000 cases, cut
off at .95) to levels comparable to those obtained by tiny
(1975) with the full parameterization process (2000 cases,
100 items). Urry'sloot mean square errors were .242, .123,.
and .056 for hi, bi, and 4, respectively. At this level of
accuracy, little shrinkage was in evidence, It should be
borne in mind that, in the case of the on-line parameteri-
zation process, the number of cases can be increased at
little or no cost. Also, as the quality of the bank is
increases, more stringent termination rules can be intro-
duced, further increasing accuracy of the on-line parameter
estimates.

A final modification of the on-line parameterization
process can be made which should further reduce estima-
tion errors. M the parameterization procedure is presently
set up, those examinees whose # do not attain the
termination rule reliability within 30 items are dropped
from the sample. Because coverage or° is weakest in the
Verbal Ability Bank in the low ranges, . the dropped-
subjects tend to be concentrated in the low end of the
distribution. This creates a paucity of information in a
range in which many ci values are determined, leading to
higher ci -errors. Also, when the truncated distribution is
restandardized, the result is a displacement of the ti values
In the case of the Ideal Bank, no subjects were dropped at
the .91 and .93 termination rules. Even at the .95

termination rule few examinees failed to reach the criterion
(10 at N = 1000, 8 at N = 1500, and 9 at N = 2000). In
the Verbal Ability Bank, no subjects were dropped at 91,
but at .93, 23 were dropped-at N =1000, 53 at N = 1500,
and 40 at N = 2000. Thus, up to 3.5% were eliminated. This
probably explains- to a great extent the failure of the .93
termination rule 'to produce noticeably better estimates
than the .91 rule (Tables 4 and 5). Estimates would
probably be improved by retaining in the sample those
subjects who fail to reach the termination rule within 30
items. Although these 0 are less reliable, they probably
provide information at low 0 which is useful for parameter-
ization purposes.
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INVITED DISCUSSION

DR. FREDERIC LORD
Educational Testing Service:

It is appropriate that my discussion should be expressed
in the first person singular to continually remind you ilia.
I am giving my own opinions, which may be biased, since I
am not a disinterested party here. There have been many.
many important points made during these sessions. I have
chosen 14 points to emphasize in my discussion.

I. Cliff (Note I) writes. It is felt that our formulation
will provide the framework for a test theory which is more
appropriate to the interactive case than either the classical
or traceline theories are. I am sure he would nut want this
challenge to ICC theory to go unanswered. Cliff proposes
that the appropriate model for the Item responses is the
Guttman scale.

Since the Guttman scale is a special case of the more
general logistic or normal ogrve item characteristic curse, I
cannot see how the Guttman scale car be called a more
appropriate model than the logistic or normal ogive. If the
Guttman scale were the correct model, the fitted logistic or
normal trace Imes would come out in the Guttman form.

The Guttman scale assumes that the retrachonc correla-
tion between any two items is 1.00. This value may be
approximated for certain attitude test data. but for
aptitude and achievement test data typical tetrachoric item
intercorrelations are usually less than 0.35. This is so very
different from 1.00 that I cannot see how the Guttman
model can be considered acceptable for aptitude and
achievement tests.

2. Consider the problem of testing and assigning new
armed forces recruits. One recruit, perhaps, should take a
complete battery of tests to determine his suitability fui
officer training school. The next recruit, however, should
be quickly extricated from this battery of tests and perhaps
given a battery of mechanical aptitude tests. How can we
use adaptive testing to route a new recruit through many
such batteries of tests efficiently, with a minimum waste of
time? Glenn Bryan raised this important question with, me
some years ago. It seeii.s-as if adaptive testing shuuldbc an
excellent way to deal with this problem. Yet the situation is
so multidimensional that current 'theory dues not tell us
how to proceed. Here is a very important unsolved
problem.

3. Waters has pointed out and documented something
that some of us had overlookedthat an adaptive test
should be expected to take longer to administer than a
conventional test with the same number of items. The
reason is that-the conventional test contains items that are
too hard or too easy for each examineeitems that he-,can
answer (or omit) without need for lengthy consideration.
Studies of adaptive testing will have to take testing time
into account.
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4. There is one situation in which adaptive testing (or
some other unconventional procedure) is fully indispens
able. Suppose it is necessary to have good measurement
over an unusually wide range of ability. As a first step, one
mien build a conventional type of test with extra easy
items added at one end-and extra hard items at the other,
so as to have some items that are appropriate in difficulty
for each ability level. Of course, the easy items are a w..ste
of time for the high level examinees, but that is not the
serious problem. The hard items are not merely a waste of
time for the low-level examinees. The guessing of low-level
examinees on the hard items adds so much noise that the
measurement provided by the easy items is-nearly drowned
in random error,

In such situations, it can be shown that the test
be much improved as a measuring instrument for low-level
examinees if we simply threw away (or refused to score)
the more difficult half or two-thirds of the test. The
situation cannot be remedied simply by adding more easy
items. If we wish to obtain good measurement at low t'
well as at high ability levels, some kind of tailoring is
necessary so that hard items are not administered to
low-level examinees.

5. If total testing time is held fixed, adaptive testing
leads -to better measurement for some examinees. If
accuracy of measurement is held fixed, adaptive testing
leads to reduced testing time for some examinees. These .

two alternatives are not basically different_
Keeping the standard error of measurement fixed across

examinees would be simple if the test were very long or if
we knew the true parameter values, and if all items had
identical characteristic curves. Otherwise there may be
difficulty in finding a good small sample theory and
method. Gugel and Schmidt have given empirical evidence
of this. This is a problem in sequential estimation (Wald,
1951, Robbins, 1959, Bickel & Yahav, 1968). Except
perhaps for Bay esians, methods of sequentig-estimation are
not as well settled as are methods of sequential hypothesis
testing. Even sequential hypothesis testing poses unsolved
problems when the items do not all have identical charac-
teristic curves.

6. It is undoubtedly significant that most of the
speakers here are using two- or three-parameter item
characteristic curve models. No one here has urged that
adaptive testing be limited to the one parameter Rasch
model.

If is sometimes asserted that the Rasch model is the only
one that allows us_to estimate examinee ability independ-
ently of the items administered. I would argue that all ICC
models allow-us to do this. The unique-virtue of the Rasch
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model is that it provides a sufficient statistic fuz estimating
examinee ability. Sufficient statistics are desirable. but they
are not common in statistical work. outside of the usual
normal-curve theory. Statistical inference still proceeds very
effectively in the absence of sufficient statistks.

The objection usually 'cited against the Rasch model is
that it assumes all items ter-be-of equal discriminating
power. I sifspeci that an'even more serious objection is that
it assumes there is no guessing. Any attempt to modify the
Rasch model to take guessing into account would necessar
ily destroy the sufficiency properties of the Rasch model
that make it attractive_

7. This brings us face to face with the question whether
to use a two. or a three-parameter ICC model. Waters used a
two-parameter normal-ogive model and the assumption that
ability is normally distributed to estimate the a parameters
(discriminating power) of the 50-verbal items in Form 2B
of SCAT IL By chance, I had available estimates of the
same parameteri based on the three-parameter logistic
model, computed by a program called LOGIST (available
on request).

I have plotted Waters' values against the LOGIST values
F;gure I. Each point is shown as a digit representing item

chfliulty. The largei the digit, the mute difficult the item
and the more the examinees responses are, affected by
guessing. Agreement is guvd only foil the easy items when
there is no-guessing.

Many studies comparing different estimation methods
should be carried out. Some should use real 41414, svirie
should use artificial data, where the true parameters are
known. I should be glad tu run on LOGIST any suitable set
of data that someone here may wish tu use fur making stish
comparisons.

8. In the three parameter models, the 1CC's hare the
form c +(1 ci)F[a,-(0 - bi)] . This mathematical form is
not beyond challenge, as Samejima hassointed out, but it
is relatively easy to defend as a versatile form that fits the
data, so long as we du not suggest that examinees either
know the answer to the item or else guess with probability
of success c,. We all know that examinees do not respond
this way. If ICC theory were based on the dichotomy,
knowledge or random guessing, it would not be credible.
For this reason, it may be best net to refer to c, as a
'guessing parameter.' (I confess to violating this good
advice.)

9. When working with real answer sheets, it becomes
necessary to deal with the problem of omitted responses. If
we require the examinee to answer all items, Ave are
purposely introducing random error into our data. In
addition, we are forcing an examinee who has:demonstrated
4-certain -level of performarbe by-his responses to gamble
on some possibily random events. which may, if he is
unlucky, destroy all the positive evidence of ability that he
has displayed.

If we _permit the examinee to-omit-items, we cannot
properly treat such responses as wrung. To do so would

penalize the examinee why omits. in comparison tu the
examinee who guesses.

It seems at fiit thought that we might simply treat
omitted .tems as if they had nut been administered at all.
This ,cannot be correct, however. If we ignore omitted
items, an examinee could win a very high estimate of ability
simply by answering items only when he was completely
sure of his answer.

The fact that an examinee has omitted an item carries
information about his level that cannot be ignored. A
method fui using this information efficiently, under certain
assumption:, is outlined in a Psychomemka paper (Lord,
1974). .

10. 1 want to take this opportunity to make a correc-
tion. In a 1968 paper (Lord, 1970), I wrote.

If as --- 0.333, under the assumptions already made [the!
=liability for a 60-item test will be 0.80; if ai= 0.5, this
reliability will be 0.90; if at= 1.0, this reliability will be 0.97.
In view of this, we shall choose ai= 0.5 as a typical vatic ;nd
shall address most of our attention to it.

After seven years of experience with the a parameter,
these reliabilities sound high. Actually, they are correct,
but, as the -assumptions stated, they are fur free response,
nut multiple choice items. erry made this same point this
morning. Since most of the cited paper dealt with multiple-
choice items, it was a mistake to suggest a, =.50 as a typical
value. Although the diagrams presented in that paper
required the reader to supply his own values of a,, the
general impression given was one of only limited enthusi-
asm for adaptive testing.

Current results show that when al= 0.9, a peaked test
composed of 40 five-choice items should have a KR2o
reliability of .90. When a. is 0.9, the conclusions supplied
by the, diagrams in the cited paper are quite encouraging for
the future of adaptive testing.

11. The purpose of the cited paper was to evaluate
adaptive tests in companson to conventional tests. To do_
this, the situation considered had to be a simple one. This
was the reason for the use of a fixed-step-sue up-and-down
branching procedure. Such a procedure is not ,to be
recommended for practical testing.

When the Item parameters have been estimated and a
computer is available for making the calculations, the
choice of the item to be administered next should be made
by checking all unused items (perhaps within a specified
item type) and selecting the item that is expected to give
the most inforMation about the examinee.

If a Bayesian prior distribution of ability is being used,
and if this,distribution is normal, this is Owen's (in press)
procedure, _frequently used today. In such a procedure,
except for certain approximations each step is locally
optimal. We cannot expect local optimality to produce
oxerall global optimality, but the difference may not be of
great importance.

12. When we select the next item to be administered on
other considerations besides Item difficulty, we no longer
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have an upand-dossn !awaiting pisnctiute. The next item
administered aftet a .i.vite.t response might be an C451111
item, not a harder item.

The recommended procedure means that items with high
at will be used very frequently and items withlue at will be
used seldom ur nut at all. The gain from this use of the best

m.

items will prob41)1, mom than double the gain from any
put-edam. such as the up-and down ptoixdule. that seles.ts
items solely on item difficulty.

Furthermore, the barges the item pool, the greater the
gain. This is nut surprising. We always knew that if we
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selected the best items from ten tests, we could build a
single test that would be much more reliable than any of
the original tests.

13. My last point concerns the use of Bayesian inference
in adaptive testing. When we are testing large numbers of
examinees all coming from a single source, we are in a really
exceptionally good position to obtain and use a prior
distribution describing the examinees. It would seem
negligent not to obtain and use such .a readily available
prior distribution. '

On the other hand,1 would like to make a simple point
not often expressed. Bayesian inference based on a prior
distribution will give correct results when the prior corm-
sponds, in some sense, to reality. It is likely to give
incorrect results if the prior itself is incorrect.

In most Bayesian work, it is usually not practicable to
determine whether the prior is correct or incorrect. In our
work, on the contrary, it...is fairly easy to do so. We need

-2

estimates will not be spoiled.by an incorrect prior distribu-
tion of ability provided the test administered is long
enouzh.

This is not the whole story, however. The assumption of
a normal distribution of ability, if false, may lead to
unsatisfactory estimates of item parameters. The usual
-formula for biserial r can give absurd results if the
continuous variable,-in this case examinee ability, unknown
to the statistician, is far from normally distributed. Unlike
some other effects of Bayesian priors, this,difficulty does
not diminish as sample size becomes large.

Two different estimates of the distribution of examinee
ability -afor one set of data are shown in Figure 2,
reproduced here from Lord (1974). The afreement between
the two estimates, obtained from very different assump-
tions, gives me some confidence in these results. My
empirical results from other sets of data (including a
representative sixth-grade group) are similar. When the

-0

Figure 2. Distribution of estimated- 8 (histogram) and estimated
distribution of et- (curve). Reproduced from Lord (1974)
with permission of Psychofneirika.

only estimate the ability of each- person tested and then
look at the distribution of estimated abilitiei.

If we were testing _unselected school children in grade
School, a normal-distribution of ability might possibly be
found. When we are testing highly selected groups in college
or elsewhere,.itseeras- unlikely that we will find a normal
distribution'.

layesians point out that the effect of-an assumed,prior
becomes- unimportant as the number of observations

-becomes large. -In_ oui context, this Meanslhat our ability
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ability scale is chosen so that all item characteristic curves
are three-parameter normal ogives, or logi-stic curves, It
turns out, for my data, that ability is not, norm_ allY
distributed.

14. Although -I-an not-a market .analyst, I svill'Oithout
much risk venture two assertions. CoMputer costs-if-they

-have not,ilready done so-Will- come down-to the point.
where. computer-bisectadaptivetestint is economical. When
this happens, adaptive testing-Will come-into wide use, The
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McXsfiip and Ur) paper Fowles ampunant details on tha
subject.
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DR- BERT-F. GREEN, JR.
Johns livkins University:I

Tailored testing has been talked about for man), yeais
academic circles. In this 4.unfereatz we have heard fum
plans for action_ The promise of tailored testing is
becoming real- Numbed= simulated examinees have taken
tailored tests and a substantial, though smaller, number of
real people have also had the experience. The use of
tailored tests will provide substantially implored efficiency
and will have a number of beneficial side effects, as
mentioned by McKillip and Weiss, among others. Testing
conditions will be more nearly standardized, the test will
hold the taker's interest because each item will be a
challehge, possibly there will be less test anxiety. feedback
may decrease racial bias. (Weiss;Johnson, 1973)'

There will also be some harmful side effects, that we
may as well face. People will have trouble understanding
the system, and complaints will be frequent Two people
with widely different abilities will both experience getting
about half the items rights, yet get very different scores;
one will be accepted, the other rejected_ If these two people
compare notes, they may be confused. The anti-testing
forces are also for the most pall anti-computer, so negative
voices will be raised_ Security is at least-as difficult with a
computer system as with a paper and pencil system. But
these are operational problems, and now is not the time to
worry about them. They will all be solved, somehow. I
merely list them to counter the tendency to believe that the
millenitunis upon us.

Now let me make one thing perfectly clear_ I am about
to criticize aspects of the work reported at this confersnce
That is my job. But the one most importaWt fag, that
outweighs all criticism, is this. The operational use of
tailored testing is a giant step forward in personnel
evaluation. Evidence incPates as much as a 2 to I gain in
efficiency, and possibly some very important side benefits
I am completely convinced that this is an important step to
take_ My comments are of two kinds suggestions for
clarifying-and improving the theoretical basis for this big
step, and impatience at our not yet having planned further
giant steps. These steps should be justified not in terms of
'saving money, which Hansen claims, but in terms of doing a
better job.

Let its now consider some of the technical,problems in a
computer-based system. We have heard two plans for item
analysis "on-the-fly", as they say in the computer trade. A
-"uestion arises about some of the item analysis procedures

This work was done with support from Grant GB37S20 from
the National Sacnce I oundation. The author is indebted to Warren
S. Torgerson for many fruitful discussions of computer applications
in testing and personnel decision.

1Throughout, references to other papers in this conference are
by author only, ()Ma referenon arc followed by publication
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Urs).lcuscrna) which still seem to be built on the biserial
correlation of the item with the ability sole, and the
overall proportion of correct answers. These raw data are
reparatneterued (to use an ugly word that should be
banned from civilized discourse) but the basic data are pe,
and P;.-Both of these indices depend on the notion of a
population of test takers. Yet one purpose of tailored
testing is to avoid the notion of.population. What, for
e.ample, is the population for Lord's broad-range flexilevel
test-of verbal ability? Everyone from fifth grade to college?
In tailored testing, it would seem that the item parametexi
must be based on the regression of the item on the ability
scale. This sounds a little circularperhaps itis. Some snit
of iterative optimization process would be needed at the
start, to ever get the ability scale in the first place. Cliff
described one such procedure for his ordinal scale model,
an equivalent procedure could easily be devised for the
metric modeL

Cliff's procedure also depends on a population. He goes
so fax as to say that the purpose of a test is to rank order
the population of exarnem Sometimes it is, but often it is
not_ Often the purpose is to categorize the ere-211E1W as
qualified or not qualified :In a particular Job. 01 even
better, to give a quziaitative index of the degree of
qualification. The only population we are really interested
in is the population of successful job holders.

There are other technical problems with Cliffs scheme,
which he promises to solve. For example, he did not
describe what happens when a person's item responses have
contradictory implications for other cells in his matrix.
Indeed his system probably tries to avoid asking questions
that might provide contradictory information.

The main reservation I have about the technical side of
tailored testing is the commitment to latent trait theory.
The concept of a latent ability scale is a great improvement
over the concept of a true score. The true score model was
never a very good idea, rather, it was a simple model that
worked pretty well. But arc we sure that the latent ability
score is much better? Does the latent trait model fit the
tests for which it is used? Is the assumption of local
independence really tenable? Suppose, for example, that
there are secondary factors in common among subsets of
items. How much difference would that make? Nobody
knows.

The point is that latent trait theory is a theory, just as
any other behavioral theory, and it needs verification.
Empirical work is needed to show that latent ability scores
work as the theory predicts. Simulated examinees will not
do studies are nmded with real- people. Are the scores
invariant over item selections, or over samples of individ-
uals? Does the precision of measurement really work the
way the information variable says it does? What about the
relation of validity to test length or information? Empirical
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work has been presented by Waters and others, but whether
it supports the theory is not clear.

Classical test theory has a curious status. most psyctiolo
gists and educators berme that it is fact, not theory_
Nowhere in Lord & Novick's treatise is there a section on
empirical verification of the theory. Actually, test theory is
a self-consistent, much-elaborated theory that seems to
work pretty well. For example, the Spearinan-Brousi
formula usually walks. Some people Zook upon the
Spearman-Brown formula as a fact. It is a fact only in the
sense that it is a logical consequence of the basic assump-
tions of the theory. So far as I know, neither true score
theory nor latent trait theory has been put to a critical test,
as have most other mathematical theories of behavior

One final theosetiell issue needs clarification. The
literature contains results (e-g, Lord, 1970) indicating that
a tailored test is not much more effective than an ordinary
test with 3 peaked item difficulty distribution. The 2dV22-
tar lies mainly in the extremes_ But the theoretical and
empirical results presented in this conference indicate that a
tailored test is much better even in the mid- range. Work is
needed to clarify when a tailored test will help and when it
won't.

One final point about technical terminology. in the
simulation studies of lensema, Waters, McBride, and others,
the estimated ability f, which is the test score in tailored
testing, is supposed to be nearly 8. The doneness off to 8
is measured both by (46 8)21)''5, which was called the
"standard error" and by roil, which was called the
"validity". In engineering, the former measure is commonly
called the root-mean-square error, or RMS. error, it is not,
after all, a standard error, since it's not a standard
deviation. Mean square error includes both error variance
and squared bias. Thus the measure is very appropriate, but
it is misnamed. To call re; the "validity" is much worse, it
is downright sinful. This use of the term goes back, I'm
told, to Ledyard Tucker and Hubert Brogden, but that only
proves that people in high places make mistakes. A
different word must be used. "Validity" is seriously
misleading, and has even been mis-interpreted at this
conference. My or candidate for a name for rei is
"fidelity". I hope the in-group either uses "fidelity" or
finds another word.

Next Steps.

Now that tailored testing is about to become opera-
tional, perhaps it is time to take a longer-range perspective.
Do the present developments really exploit the power of an
interactive computer? Many scientists, in their fust en-
counter with a computer, use the computer mainly to do
faster and outer what they were already doing before
computers. It is as if the horse and buggy industry's
reaction to internal combustion engines had been to build a
mechanical h6rse. Statistical computation is a good case in
point. To a very large extent, statistics is still at the
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mechanical horse stage in its use of .,:,aaputmrs. The
statistical program packages are fast ways to do old
things analysis of vans' nce, regression, facto; analysis. Even
the few new dines, such as nonmetric scaling and cluster-
ing, hai thei roots in pre-computer ideas. Interactive
stztisticai methods are still in their infancy. Mostly,
interaction mesas replacing the control cards in an input
deck by questions printed by the machine and answered by
the uses on the spot. No subtle interplay of law rasa
judgment and camputerspeed is implied.

The mechanical horse stage in computerized testing
would be an automatic test production system. Given the
characteristic of a population, the computer would select
the most appropriate items from its item files and would
print a suitable test. I naively thought testing had avoided
this typical first stage, but apparently such systems were
built, some years ago.

Tailored testing is one step beyond the mechanical horse
stage. To be sure, the up-and-down method had seldom
been used in mental testing, barring Binet, who didn't do it
right, but the up-and-down method is an old stand-by
in prychophysics, and in sensitivity testing generally, dating
from World War II and =lien Also, test theoreticians knew
that measurement was best when the items were all
sufficiently difficult that the examinee got about half of
them correct. (AcPtilly about 68% for 5-alternative items,
Fred Lord reminds me, because of guessing) This is one
part of the theory that none of the operational people
believed, but the theory was there. So the adaptive test was
a natural next step in computer involvement in testing.
Still, the only use of the computer in tailored testing, apart
from the trivial use in presenting the items Cra a terminal, is
in selecting the next item and computing the ability =ore.
The same 5-choice items are being used, the item is scored
either right or wrong, the same kinds of-traits are being
measured. Now is the time to move on, in research at any
rate, to better things.

Many more opportunities exist. Some have been men-
tioned at this conference. Samejima proposes that we use
the particular wrong choice of an item as partial informa-
tion. Some wrong choices are better than others. Item
response weighting has minimal utility in standard tests,
primarily because of the test kngth. Weighting becomes
more useful with fewer items, which is just what tailored
testing provides. In addition to Sarnejuna's proposal, even
more information could be obtained, when-the response is
wrong, by asking for a second try. The procedure of trying
alternatives until getting the right answer goes back to the
1940's or earlier. In those days, Science Research Associ-
ates sold a punch board on which answers were ranched
oat. Instructions were to punch out alternatives until-the
red dot appeared, signalling the right choice. The item score
was the number of unpunched choices, except that omits
got a negative score. I am- told that test scores based-on
these item scores were consistently more reliable and more
valid than scores based on a 1-0 item scoring. The computer
terminal is an elegant punch-board! Another possibility is



to have the examinee rank or rate for alternatives for
suitability. The probability asUgnment proposal of Shuford
et al., (1966) now being tried by Weiss and his coworkers is
equhralent; *hoopla the restriction that the ratings must add
to one, like probabilities, is an unfortunate complication
that is likely to have adverse operational cccsequences.
Ratings cur rankkigs would be better.

The computer permits the use of constructed re-
sponses-fill in the blanks-rather than multiple choice.
Computer processing of constructed responses has been
worked on in computer assisted instrucrion; these tech-
niques could be adapted to the testing situation. Most of
our present item types have evolved in a multiple choice
environment, and constructed responses would be no help.
For example, some verbal =lopes items would not work
as constructed responses - e.g., "Brick is to building as
lather is to " Others would work: "Shoe is to
foot as helmet is to "The difficulty of vocnbu-
lary items is controlled almost entirely by the distractors,
so asking the crania' ee to construct a synonym would
markedly alter the item. But there is no reason why new
item types cannot evolve in the new context. Verbal
fluency is a natural for the computer to test, and virtually
impossible in the multiple choice context.

Of even more interest is the possibility of new types of
items, and new types of traits. The GRIP tests of Cory are
especially interesting, as are Some of the items briefly
mentioned by Weiss, such as his conceptual maze. Many of
these types- can be tried on present day alphanumeric
terminals, others need graphic terminals, which are at
present too costly, but which may soon be relatively
inexpensive.

1 am convinced that the potential foi new styles of
items, or contingent sets of items, is the next important
contribution of the computer. After all; we already know
how to-measure verbal ability and quantitative ability. The
computer merely eves us efficiency. Whit we need is more
information.

The computer could also be immensely helpful if we
placed less emphasis on meararement and more on the
decision process. Instead of providing a test battery, we
could provide a decision system. Many years ago Cronbach
& Gleser (1965) argued for the necessity of coupling the
decision process with the testing process. The computer,
and computer assisted testing, have provided an unparal-
kled opportunity to do this. Hansen, McKlllip, & Lord have
mentioned this.

Consider the simple example of selecting among
cants for a particular job or for entry to a particular college.
The -teit's job is to label each taker as qualified or not
qualified. This implies a cut-off-score, or at least a cut-off
region. The very well qualified and the very poorly
qualified phsoni can probably be identified relatively
quickly; most of the effort should be spent on the
.borderline muses. To be sure, we must beware of Lord's
lucky guesser, and Weiss' low consistency scorer, but With
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ewe, an efficient system can be devised that does not
measure accurately at all levels, but only where it counts.

A one-tEmensional use is only the begMning. Both Weiss
and Hansen have suggested that additional savings can be
made when there are several relevant dimensions. Here,
progress requires that the &Baba process be coupled with
the testing process to bad a complete system.

There are many different approaches -to a personnel
decision system. One model would treat jobs as regiOns in a
space whose dimensions are specific job requirements,
specific abilities, or cha racteristics needed for the job. A
person- is a point in this space, the testing problem is to
pinpoint the person's position sufficiently accurately to be
able to list the jobs for which be is qualified, and possibly
to list these-in rank-order from the ones for whiale is
most qualified to the ones for which he is barelyqualified:
The dimensions of the job-space might be abilities, or they
might not. And individual items might serve to locate a
person on only one dimension, or items- night help to
!oak a person in the total space. At least, there is no a
priori reason for discarding impure middling/ ml items.
Indeed such items might be especially useful in a decision
sYstem-

Eve years ago at a similar conference (Green, 1970) 1
said that the computer had a great future in testing. Tbday,
happily, it has a present as well as a future. Operational
versions of tailored tests represent a great technical achieve-
ment Furthermore, the computer plays a central role in the
enterprise. Still, the potential of the computer has barely
been tapped. The future lies ahead.
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ANNOUNCEMENT'S

Dr. Robert-J. Gettelruiner of-Educational Testing Service
announced that - organization's Willingness to edit a news -
letter on the subject of computer-asisted testing. He asked
for suggestions as to the content of the newsletter,and for
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the opinions of the conferees as to what subject matter
should be covered and as to svhether contributions should
be entirely voluntary or should be obtained by asr.,a- ring

Dr David J Weiss of the University of Minnesota
announced that he svill edit a new journal. Applied
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Psj-cholusisal ifeasattrment. that sv41 emparical
resew a, on the zpplit.atIon of wainscots of pytholopc.-zi
snewrement LO substanyve problems to ail areas of
psychology and related disciplines such as sociology and
political science.. He invited conference participants to
submit their papers and promised to send further details to
all participants.

0

127



Mr. James D. Baker
US. Army Research Institute
1300 Wilson Boulevard
Arlington, Va. 22209

Ms. Annette Basden
Code L5IA
Naval Air Station
Pensacola, Florida 32512

Dr. Ralph R. :canter
U.S. Army Research Institute
1300 Wilson Boulevard
Adingtca, V1.12209

Dr. Glenn L Bryan,
ONR Code 450
800 N. Quincy St.
Arlington, Va 22217

Dr. James A. Caplan
US. Civil Service Commission
1900 ESL N.W.
Washington, D.C. 20415

Ms. Cynthia L Clark
U.S. Civil Service Commission
1900 E St. N.W.
Washington, D.C. 20415

Dr. Norman Cliff
Department of Psychology
University of Southern California
University Park
Los Angeles, California 90007

Dr. Charles H. Cory
Navy Personnel Research and

Development Center
San Diego, CA 92152

Dr. Dorothy D. fdwards
American Institutes of Research
3301 New Mexico Ave, N.W.
Washington, D.C. 20016

Mr. Kenneth I. Epstein
U.S. Army Research

Institute
)300 Wilson Boulevard
Arlington, Va. 22209

4e.

4

LIST OF ATTENDEES

128

122

Dr. Marshall J. Farr,
ONRCoe.e 458
800 N. Quincy St.
Arlington, Va. 22217

Dr. Victor Fields
13905 Northgate Drive
Silver Spring, Md. 20906

Dr. M. A. Fischl
US. Army Research

Institute
1300 Wilson Boulevard
Arlington, Va. 22209

Dr. Dexter Fletcher
US. Navy Personnel

Research & Develop-
ment Center

Code 31
San Diego, Calif. 92152

W. -Paul Foley
Code 310
Navy Personnel Research

and Development Center
San Diego, Ca. 92152

Mr. Edmund F. Fuchs
2206 Westview Court
Silver Spring, Md. 20910

CMDR. Thomas J. Gallagher
Bureau of Medicine & Surgery
Bldg. 3, Potomac Annex
23rd & E Sts., N.W.
Washington, D.C. 20372

Dr. Robert Gettelfinger
Educational Testing Service
Princeton, NJ. 08540

Dr. Robert Glaser
Learnimg.Research & Develop-

ment Center
University of Pittsburgh
Pittsburgh, Pa. 15213

Dr. William A. Gorham,
US. Civil Service Commission
1900E St., N.W.
Washington, D.C. 20415



Dr. Peggy Goulding
US. Civil Service Commission
1900 E.St.,N.W.
Washington, D.C. 20415

Dr. Bert F. Green, Jr.
Department of Psychology
The Johns Hopkins University
Baltimore, Md.21218

Mr. John F. Gugel
US. Civil Service Commission
1900 ESL, N.W.
Washington, D.C. 20415

Dr. Duncan N. Hansen
Memphis State University
Memphis, Tennessee 38152

CAPT. Dickie Harris, USA
AFHRL/PES
Lackland Air Force Base,

Texas 78236

Mr. John Hawk
US. Department of Labor
Room 8408
601 D St., N.W.
Washington, D.C. 20213

Ms. Julie Hopson
Naval Aerospace Medial

Research Lab
Naval Air Station
Pensacola, Florida 32512

Dr. Carl J. Jensema
Gallaudet College
Kendall Green
Washington, D.C. 20002

Dr. Robert C. Johnson
Gallaudet College
Kendall Green
Washington, D.C. 20002

Ms. Sally Jones
US. Civil Service Commission
1900 E St., N.W.
Washington, D.C. 20415

Dr. Stanley Kalisch
Control Data Corp:
4201 Lexington Ave., N.
AHR-207
Arden Hills, Minnesota 55112

V

Dr. Michael T. Kane
Education Dept.
State University of New York
Stony Brook, N.Y. 11790

Mr. John D. Kraft
US. Civil Service Commission
1900 E St., N.W.
Washington, D.C. 20415

Dr. Frederic M. Lord
Educational Testing Service
Princeton,NJ. 08540

Dr. Clifford E. Lunneborg
Bureau of Testing
University of Washington
Seattle, Washinton 98195

Mr. James R. McBride
Department of Psychology
University of Minnesota
Minneapolis, Minnesota 55455

Mr. Richard H. McKillip
US. Civil Service Commission
1900 E St., N.W.
Washington, D.C. 20415

Mr. George MacReady
Department of Measurement and

Statistics
College of Education
University of Maryland
College Park, Md. 20742

Dr. Charles G. Martin
U.S. Civil Service Commission
1900 E St., N.W.
Washington, D.C. 20415

Ms. Sherryl May
Learning Research and Development
University of Pittsburgh
Pittsburgh, Pa. 15213

Dr. John Mellinger
US. Army Research Institute
1300 Wilson Boulevard
Arlington, VA. 22209

123

12.9



Ms. Francia G. Morhzrdt
US. Postal Service
Selection Methods Branch
Room 2300
475 L'Enfant Plaza, West, S.W.
Washington, D.C. 20415

Dr. Mary Anne Nester
US. Civil Service Commission
1900 E St., N.W.
Washington, D.C. 20415

Dr. Harry W. O'Neil
ARPA 745 Architect Bldg.
1400 Wilson Blvd.
Arlington, Va. 22209

Mr. Herbert Ozer
U.S. Civil Service Commission
1900 E St., N.W.
Washington, D.C. 20415

Mr. Yosef Pavlov
US. Civil Service Commission
1900 Est., -N.W.
Washington, D.C. 20415

Mr. Steven M. Pine
Psychology Dept.
University of Marylan d
College Park, Md. 20740

Mr. Lewis Price
9761 Good Luck Rd. Apt. 9,
Seabrook-, Md. 20801

Dr. Martin Rauch
Chief Psychologist
Ministry of Defense
53 Bonn
Post Box 161
Republic of Germany

Dr. Mark D. Reckase
8 Hill Hall
University of Missouri
Columbia, Missouri 65201

Dr. Marty R. Rockway
AEHRL/PES
Lackland Air Force Base, Texas

- 78236

Dr. Bruce Rogers
Department of Measurement and

Statistics
College of Education
University of Maryland
College Park MD 20742

Richard Rosenblatt
Research Scientist
Hum RRO
300 N. Washington St.
Alexandria Va. 22304

Mr. Robert M. Ross
US. Army Research Institute
1300 Wilson Boulevard
Arlington Va. 22209

---Mr:-Arnold Rubinstein
Naval Materiel Command, Code NMAT-03424
824 Crystal Plaza #6
2221 Jefferson Davis Highway
Arlington, Va. 20360

Dr. Fumlko Samejima
Department of Psychology
University of Tennessee
Knoxville, Tennessee 37916

Dr. Frank L Schmidt
U.S. Civil Service Commission
1900 E St., N.W.
Washington, D.C. 20415

Dr. Donald J. Schwartz
US. Civil Service Commission
1900 E St., NM.
Washington, D.C. 20415

Dr. Robert G. Smith
R&D Plans Division, Code OP 987 P-10
Office, Chief of Naval Operations
5D772 Pentagon
Washington, D.C. 22305

LT. Col. Henry L Taylor
ODDR&E
3D129 Pentagon
Washington, D.C.20301

Dr. Vern W. Urry
U.S. Civil Service Commission
1900 E St., N.ft-
Washington, D.C. 20415

124

I 3 0



Ir. Lonnie D. Valentine
AFIIRL/PFS
Lack land Air Force Base,

Texas 78236

LCDR C. L Walker
Central Test Site Fa PTEP
NAUGMS
Dam Neck, Vuginia 23461

Major Brian K. Waters
Department of the Air Force
AFHRL Flying Training Div.
Williams AFB Arizona 85224

Dr. David I. Weiss
Department of Psychology
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Harty Wilfong
Armed Forces Vocational

Testing Group
Randolph Air Force Base, Texas 78148

Dr. Ifilda Wing
US. Civil Service Commission -
1900 E St., N.W.
Washington, D.C. 20415

Mr. Victor Wischert
Educational Testing Service
Princeton, NJ. 08540

131
125

* us. coyckromo riturrus OffIa 1974 0-203-473

MI tiff till TON 00


