
BD 125 599

AUTROP
TITLE

INSTITUTION
PUB DATE
GRANT
NOTE

EDES PRICE
- DESCRIPTORS

IDENTIPIE ?S

DOCUNBET RESUME'

Danielson, F. L:; And Oihers
Final aepqrt on the .Automated Computer Science
Bducation,Systea.
Illinois Univ., Urbana. Dept. of Computer Sc
qun 76
1SF-EC-41511; NSF-EP1%-74-2150
51p.; Period .of p'roject: January
1976

IR 003%86

1974't

ence.

June 30,

8F-$0.83 BC-$3..50 :Plus Pogtage.
,Annttal Reports; .*Camputer Assistep Instruction;
*toaputer Science Education; Higher Education;
Independent.5tudy
*PLATO; Programmed Logic for Automatic Teaching
Operations; *University,of Illinois,Urbana .

ABSTRACT
At tle(niversity of Illinois at Urbanat_a computer

based curriculum called Automated Computer Science Education System
pCSES) has been developed to supplement instruction in introductory
computer science courses or to assist individuals interested in
acquiring a foundation in computer science throdigh independent study.
Tie system, which uses PLATOternj.nals, is presently in routine use
i several courses at theUniversity of Illinois, and it has beefi

ed at .Wright Community College in CJiticago. Recent changes in
p °grating and technical innovations have increased ',its instructional
e festiveness. The first section-of this repo.rt describes 'the goals

an design of ACSES. Lat'er- sections provide yearly reviews of
prbgress made forthe duration of a grant -from tee National SCience
Foundation. (AB)

41***#4444#4c*********************####******V**(#*44*****44***************
Documents acquired by ERIC include many informal unpublished

* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *

* reprqducibility are often encountered and this affects the quality *

* of the microfiche and hardcopl reproductions ERIC makes available *

* via the ERIC Document Reproduction Service.(EDRS) . DRS is not
* responsible for the quality of the original documeni. Reproductions *
* supplied by EDRS are the best that calvbe made from the original.
***V

.

NI Ilk V

***..

1111.

t

p.

t'

`

N.iF---7-7-7??27L-2159c)

-1V.PYTE? 3-72177 72..,*^A.77q!:N 3vS'=v

Ncs.: NSF-E--511 ar,1 NZF-HZP---21590

= prc:ect: ...7a.s1ar- a -97- 7.0 la-E

ty: F. 1. Lanielson

F. G. Frielman, Jr.
W. J. Hansen
F. G. Yontanelli,

Niev,;..rgelt

T. R. Wilcox

Departrent of ?ompuIer Science

Thiversity of IllinoTh-,at Urbana-Champaign

t r

Urbana, alinois 61801

US OEITMENTOc KEALThl
EOUCATIONA WELD ARE
NATIONAL INST PTUTE Of

COUCATION

te-S 00nm00' .4S SEEN REPRO.
Ot,r ED E X4('L 45 ACCEIVEC ?00.

'HE PE PSON OR ORCr4.02ATION ocno-rt.
A' PO'N"...0C 'E a OR OPINI.ONS
YA.re V.., NC.' NE'ESSAP,LY PEPPE

NA" 11,.4_ POT r,sE 0,
EC'.' ON PC;S^N T'Ot. C

2

ye

Introduction

1.1. Peviawle ;he pro.=ect and its roals-"

1.2. Summary of current status

2 Activi
.

ties: January, 197- - June, 1974 .

2.1. The library of lessons

2.2. Computer assisted pro6ramming system (CAPS) ,

2.3. Iftformation and advising syste

2.-. Exam system

2.5. Automatic jUdging of student brpgrans-

%.6. The FL.IL project
_se of ACSES in instruction

Activities. July, 1974 June? 19-'5

..
;3.1. ' The -library of ?lessons t" --.

3.2. Cor.putr assisted programming ' ,

3.3C Irformatpn. and advising system .

3.4. Exam system ,

3.5. Automatic judging of student programs

3.6. The KAIL 'project .

?

3.7. '.use of ACSEC instruction'instructon'

Page

. 1

6

6'
7

11

13

13'

: 14

.:

16
17

18._
1.9

!,

9-

r ,

5.

. .

Activit:ies: July, 1975 - June, 1976 ,

4.1. The librdry of lessOns. ,

4.2. Computer assisted programming systed (CAPS)

4.3. Exam system' . . e ..). . t
li.4. Automatic judging of stint programs

,

L.5. The KAIL project . ,

4.6. use of ACSES i6 instruction

Papers and Reports

.

- '').0

22

22
22

35

37

38

6

.

1'

.

n-..roduction

This-first section r,rovides 2 brief .desc.ription of the
X

-
design O, goals of the -Automate:- :omput.er :iciende Education System AC SF-

and a surr...y of its current' status-- The.next three sections provide

yearly reviews of progress made toward5thAs cUrr`ant, statxts-iallIV: the

duration of the grant. Section j is a bibliography of papers and

reports produced by ,-e-.bers of -&he ACES project.

A s:ightly nore detailed:summary- of the bomporIents

she sys.ten is contained, in .Nie.45,-eraelt, et: al, 19-76.; Complete.

c.,.f carls...zz :c-.ronents be one or ore of the rutl.ications
.

. .
4'

. .1c2.. Re....i,,,-.44,-,f the 1.-,,,,'fect :and its goals 2

e ../
. 1 a . 6

... 4, 1 .\ .
t 5*

t . '. '. * .
... 4 %Cver tiv pas;,- tl-ree years,,the Department of7,c1T.pnter-:34"..i,ence '.." I-

2 - . .. , .,:- 2,-.
t,61. .;,* I . ,

5.
'

. as been 1.,-.etivily enga..ged., a proiect to'1..e/e.l.e.p_oc,
.

.P_LiVir an instruetiohaif '`-
. -., . , .

t.
. .

s;istem rapal.`,7, of. a :..' S',IEJ.C.C, a lar,.-e. peat c,.....tne. ...eacti.i.ng load.57-in 3.11.-,Its

2,

introd.uctcr; prob-arming tours,-,e, Beginrarg, Janua'n..; '1 .a.,0 iv *-1-1., pro-tect...
:

, .. - , ,
, -,'..

has been- jartially s.lpDarted. by ._;.:. ur:der. .r. nts'EC-L.153:1 'ar;.'1.. Er--P.,7-215c0v -...e.,

.. A ,! ' - . . . s
'

t

y' -; The ita,,or goals of tne. pr'ojeci?.;:ere.5:-..zr..:, .'-'fit' .

,-
2 - 2

the syi-,tem shOuld be useful as a supplement to
classroom instruction in any introduhOry computer
science coitrse-Ino.matteer what programming 'language

what examples of computer applications
- are -di sduese, -4-,.-_, aril what he instructor 's philosophy

',4-:
ii- about hCr,r, programming. should be taught. ,

,..., .,, .1
,

, 5

.
4', ,,-- the ,syste-m should.:be able to provide, at least half7 ,

. .

.. ''. o'f.tihe instaVction in any one of 'our own introd.uctiory,
, C4,,tourses;fourieritly, C:S. 101, 102, 103, 10i, 106,,

. . i'..a.07.; .1;21, -e,.i-td c.s.: 1400).i.

: F

40

t 'ir,.t".\:
it .

. . '
it 7..

r

.,

.24, the system should bussible without an instructor by
anyone having accessto a PLATO terminal who wands to
learn the beginnings of computer science on his 4awn.

T'

4

A

r'ne can s_:.--.mar-..ze :nese ps"nts ". ca7ing tnat the insI.ristisha_ :v7--.em

shou.la be elle to oreret. 'n e Tarta'lv au:o7ete

automatei node,

he

"cv the, 1nstruc:sr as.well as in a fully

The=e gcals have caused tQ,organize the ihst,-uct'onel system

as a. collection of relatively independent and s.1-14-conta4ned components.

ire has no: been titaf.e one of our existing (..7S courses and put

it on F-..".PC as it is. Father, we wanted to :urn a FLATC terminal into

a rich enviror:-.ent. analogous to a congtntional library and labsratorv,

w: ere :he at sne's fingertips, many useful things ft /T. learning aboAt

con:- ter science, and for practicing i:n.mediate' whet one he.: leerh.l.

It is the stuient and his instructor who decide which of thes- things

they want to use.
'a

The brincifile components of ACSES which allow this flexibility

are: The lesson library, with a classification scheme in which any

;elf-contained lesson about introductory computer science will fit; the

.

guide, an information and advising"system which bites the user access

to this,library and allows an administrator to Pplep track of all his lessons

;and their interrelationships; and the piogramfbing system, on which an

additional programming language can be implemented in'a few man-months

(by somebody familiai with the system), and in which all user - dialog

(program entry and editajig,error-analysis, and execution modes) is carried

out in a uniform way, independenvf the particular programming language

Alh-f....

of the
'

.
.., .4- ', ''"-Z. Z.".11,,t .

, ./. /
-.---- in e

olved. .

--- -

k

- Last but not least, the bro,fect had one more important goal:---

g)
.

.

, ---to serve as a stimulating environment for 'ccnputer

science repeirch in a variety of areas: compilers,

inforrhatL.o sys-temsf artificial intelligence.

- 2 -

st

This last point --ay deserve so:--e ex-planation, since the miscor.ceDtion

5.s widespread that lersor. ,wri-,inc: is a routine activity. Zt can be,
1 sif.

one creates poor lessor. -also be. a task as ch2 llertdr.-~44 as one

wishes to 7.ar'e if- one views a leston as an interactive tro;:2,', :-..--.

has a certain domain `of and is able com.-.ur.icate. with

sts.ients atc'...t the knowledge it has

1.2. of
0

exterienne w4th .7.7S, and tho stat.:s of the ma.or comAloonents
/

of S7S-..e-, may be ss.nmarized as f.,ollcws:

'- The s.,8:e- 1.s. in rc".:-.i,ne :Joe for 'Several of c --:ntroluo tc,/-:
,

p.rogramming courses [72.3. 101; 102, 3-03 105; and .--',..0,-. :r, C!..3,., 103 a."..nd.

.
10,';,, ACEE.",5 is used to replace one leo,,u_re eac'n`w-ee-. with eac:-. st!...<5.ent

Spending about one hour wee'Y.2.y at a PiiiTC ter-inal;0.S: 121 t.r.i 102 .haVe

so far-sed.."-.032 as supplemer.tary material only; 0.3. .-ofj is tanpht

primarily vitt:AC.3E2. All told, nearly 1,3Q0 completer sciere ss,.;.d; nts per

semester are making contact with PLATO:

'Controlled experiments have.indicated that students in F,I..40.
sections learned as much as those in non-P sections, strongly-r'

. .
k

recommend PLATO sections to their friends, but dropped a a somewhat - . -

V.

higher rate.
.<.

As an indicatiOn of- the.acce-otince of P,LATO,iithin epa. rtrrse ntil
0.'l

. ''''

in Fall 1976, (2*.S. 101 and*C.S. 105 will each have ori'leS; prfortijor-/,'
4.4r .

. * 4 .--
assigned than usual, ,with the remaining .11`ttructiprra.1 ldid. tike by ACV..:J.:.P. ." .

3 -

6

? '
',4$

S.: t I .
,

to

e.ffort, we have been s.icoess,fu., in

-,e-aLar use of the

ac4-1e--.ic year c.;^er five sections of three course:

Wriftht r. Tr.'ca...cto h."--.:a received part of their

instr-ction by way of c.i.r

The '-esso,n rro-,:n to about. l'Or- 'lessor- f--.,-.oubed7- DI

into al:0,7: 21 area:, aad continues tc expand :n addition, we are

-::.stene-:^ efforts to '--,:rove the of the le sons 'cased on oar

ex7er'e:t.e w tn their instr_zczion.

-"- a3.''" - systert operational

en ;CB': , an! Droc-ra.-s

of errors at both eci-.D'e-time and run-time,

. ,.., .

i-'-er-at..--.in -:-;-,..."!: the st,....-ient to 1"-' T.) 1'1'. find .'",a cause or his error.
. .. .

t'nf`ortunatel.:,- the ..;.,..;ability of tl--..,is system has been severely ha.- edbi.'
.el, -L - a. . 1.

. t

the pro^r:17s'in,s-,,limications'.imposed by P'Lil', f1 We have thus de Jot d a gieats.,
-

. ,
dea Oi st an-Si ..7.:1";. to develbing teq.n.;tquesto improve.the fficienc5,. ..

tre syste7..
. ...t. ,

, c r; ...
. 4 ' ' 5 1 The irrorm,ation' azd advising system, c'S-':,isle,,,

.
1

. . ,
.

.
e

, .
4 ...3. * ,

...): F.:..Liae is -iesigr,e-1 to ,-,.a.% b itd..7i. 3 :usable by people whb want o ,so..icly

id complet6.,

. .
t.t..

. on. t4-.e:..r ,own, by atyising the-A o'n it choice of lessoris based on ..1c,her-
y . .

,,,"

. ,. 1' pioal.svericf pa.94, perforx.-ance. :t commu-n5,nat2,es,ptimarilyf by,meins of striiple,,y,
,

,...... . . .-- f It ' ,

.**- 1

', S 4- '' ''''' .
. ,

.. . -41g2 i f ,ri. phyase.-- ,as' .4ipili,, re.i. pit.tare-p for output, where the 41-elatib.pshis ,
..,.

.- , .,,, -
', '- ... --

,, ,

. ar.tapi., l'el-,scin-1 (DS sr,elevansie.,t0 the 11e4erl are- di sp;ay.ed in graphic form . . , -/,-* . ..5 .4" ,
. e

',... '
. e

, ' ; - ,. g 4 ."'" .. 1.- . .. ,
, . i , ,

"_; ,,. 41 ' r *--k, , - ,..- 4. ,.; r to .

7 n,' a rrothrq .-sise- of.,AC:T.E'3. material aside ou.r.,group, the gu.e',, ::" , ,

...! , 1.. . ,.,:.,,:.;- , t `o , .,- ; i.
" t.,-. ,'.. . 1 , Y'',... i ,

, a.-i beeii gc.-.1.o-c;t6d. tr;,-, the 1W-Xf-.) foreign 'A.a.hguage gi-oup' to administ,er their,-2 '
.) , . .

-" - .

'
..,.... " .. . ' . .

. ,
: colle'cti'orf bic:pot4 Ls ' s',. ' : -"- 4 4 r- . ,

. . h ' '.. t . I

.

4

4

A

(6)I'o interactive ex system, designed_for automatic
, ,

generation and administration of exams, has been completed, aftliourl

there is still heed of additional problem generators and graders. We

have conducted several experiments involving the exam systemi and are

conducting another, in Summer-1976. As a part of the exam system, a quiz

systep designed to assess and control the student's progress through

various lessons has'been implemented. Many lessons have had such quizzes

written, and we are continuing to write more.

(`,
1;xperimentation on the design of control structures for

,interactive programminsg languages, particularly in CAI, has been completed.

his work has led to the developenl; of several principles (uniformity,

separability, and locality) which are proposed as a partial basis for the

design of programming language features.

(8) Two lessons concernedrwith judging student programs have

been essentially completed, and work on determining techniques for detecting

. _

various anomalies in- Student programs by global flow analyses 'has been

sinificantly advanced.

a

'C ¶
7

.`re. ,

I* , ' A '

N:

*I

I. 5

8'

C.

"I"

2. Activities: January, 1974 - June, 1574

2.1. The library of lessons

During this period the librey has grown from 50 td about 90

lessons which are in some sense "operational", 'and, more importantly,

many of the lessons,have been improved. Much of this effort (by 'H.' G.

Friedman, R. G. Montanelli, D. Eland. and S. Leach) has been directed

toward polishing elements of the FORTRAN sequence and improving

csrouter in preparation for the PLATO experiment in CS 103 this fall.

Among the improvements to the lessons has been a certain

amount of standardization. For e<ample, the function of the keys

tnat allow a student to control his path through a.les8on has been

standardized among all CS lessons, so that a student who has gohe

through a few le'ssons has become familiar with most of the control

options in all lessons and can proceed through subsequent lessons more

easily. These conventions are described in lesson csauthors (F.

izquierdo). Standard pieces of code, character sets, and micro tables

have been collected in lesson cslibrary (H. G'. Friedman).

Also, several communication lessons have been completed.

Lesson csnotes serves a "bulletin board" function between authors.

Lesson cscomments (D. Eland, E. Reingold) serves to record remarks

made by students taking instructional lessons, for feedback to the

authors of,theaessons. Lesson cstelk (H. G."-Friedman) allows real-

time communication between an instructor and each'of several studehts;

this allows human assistance to a student by an instructor who might

be locatedet a different PLATO site

6

.r

2.2. Computer asgisted,programming system (CAPS)
I ^

A table- driven program entry and editing and syntax analysis

*

program has been completed (T. R. Wilcox, A. Davis, M. Tindall.). Tablesi°

f(*jr.PL/1 are complete. Tables for FORTRAN, BASIC, COBOL, SNOBOL, APL,

and MIX have been started. Program entry and editing are. workibg-for

FORTRAN, COBOL, and BASIC.

The run timetsystem for each of these languages is diffetent.

The PL/1 run time system works for a subset of PL/1 suitable for the

first half of one semester's instruction, and is being use this semester

in one introductory course, CS 10(,. Run time systems for FORTRAN and

BASIC are in progress, and COBOL has been completed.

M. Tindallhas implemented,a prototype version of an automatic

syntax error analysis scheme; this prototype systemis,installed in a

developmental version of the general compiler sy.s:tem and works moderately

well on the PL/1 language and tables. 'He is currently attempting to

achieve this same working level with the FORTRAN language and tables (and,

perhaps, the COBOL language). When this is accomplished, he will revise

and refine the prototype model.to obtain' a stable,,operati.onal version of

the compiler with the automatic error analysis system included.

'A. Davis has expanded his execution supervisor for PL/1 to

ink Jude character(variables and-their associated operators and built-

in functions: concatenation, INDEX; SUBSTR, LENGTH, and.VERIFY. The

necessary changes were also made to the PL /1 syntax.tables. Because

of space limitations imposed by PLATO it seems unlikely there will be

any immediate expansion of the subset of PL/1 executed. Presently, the

statement types accepted include PBOCEDURE, DECLARE, assignment, IF THEN

ELSE, GOTO, DO (all forms), GET 'LIST, PUT LIST, and END.

3

-7-

About 80% of the '7eecution-time error\analysis system has

been coded and debugged. Despite delays caused by the previously:

mentionedspacelimitations,completign of the run -time analysis package

is expected before the end of the calender year.

B. Segal is conductinga study to.expler'e the effect.of system,

interruptions on user iSerformance.at.a terminal. Our compilers interrupt

the. student whois typing a program at the very moment he makes an error

that can be detected. by the compiler, and we would like to.iknow whether

or not this is a More effective way than the conventional approach,

where all errp'rs are signaled when the program has been entered completely..

A pilot study has been.'completed 'and results show some

statistically significant differences between the two error interruption

p
.....

... ,,
i

methods; a full-zeale experiment 14111-be carried out in October.
,.

..

)

.

2.3.Information and advising system

- A version of
,
the GUIDE conversational information system,

,

designed to advise students in their choice of lessobs based on their

goals and past performance, is,currently operational. .A student can

type in a request for information English sentence), and the

system will respond by displaying the desired information (or an

explanation will be given as to why the request could not be handled).

The first part of the GUIDE, the translator, has been completed

.

as part of a ph.D. thesis by, J. Pradels. A request in Edglish is

translated into-an internal request language by means of a finite state

.automaton. This internal, representation is translated back into English,

so that.the'user can judge for himself whether his request has been .

properly understood.

11

- 8 -

O.

11

I7

. R
.

D. Eland has implemented a,request processor which analyzes

4

the intermediate reppentation of the original request, searches the

proper databases fQr the desired informati!On, and generates a 'display

A

-.which presents an appropriate resporise to the student: In addition,

4-

he has completed detailed degign of thetenti're data base for the systM.

A data base editor has been.implemented which Pacilitatee the entry of

information, maintains internal consistency, and manages the alloCatiOn

.0of storage. Informatgon on each lesson in the library and several course'.

outlines have been entered in the data base, and,routines to manage
t

collection anal display Of student record data have been:written.

.Current work on the.systedincludes monitoring its performance

under student use,.development of a thorough description of-eadh lesson

in the library (with particular emp hasis on the structure of 'relationships

between lessons), and research into the-tcontenf'and structure of the

concept.space describing thejiseipline of computer science.

2.4. Exam system

Eland, has written a program called examadmin to handle all
I .4

security d data .collection aspects of exams given on PLATO. He' has

also yIT tten a'prototkpe PL/1 exam. Two efforts have been started'toward

automatip problem generators. F. Izquierdo has nearly complelecT a table-

7--

driven'generator of single statements, of specified type and complexity,

in'any of the programming languages implemented in the CAPS interactive

ProgreamingsYSteril.ThisProgramigillbellsedtogithacillesii-ori/

generator and related grader, to produce a variety of test questions'

using single statements.

4,
B. Bartp. has begun work on an'interactive.system for automatic

examination of programming skills using thd(CAPS system for checking

. w

.9

4

4.t

..
and gralinr p.,ramS prepared by students. The, student 4akif-.7-she exam

types in a program as a solution and keeps intAsting 4th the system

until either the system accepts the solution as correct- or the student

decides to gall. The seAuence sf_interactions and the ling criteria'

are partly specified by the problem author and Tartly built into the

tystem. The instructor' prescribing the examination have some

controlton t;ae scoring criteria.

,?.,. Autsmatic .:udgin(L: sf student programi

Wofk is undoray on twoaessons which ask the student to

write fairly scsn 4icatei'prsgrans ani attempt tc ,:udge thete pro-rams

interacti':ely.

One of these (R. Danielson; asks the student to write a PL/1

procramfor symbolic differentiation, and is operational in a protstype

form. Current efforts are concerned with refining tne prototype's

reaction to student inputs. Two approaches are being taken: protocol .

analysis of sessions on'the symbolic differentiation problem between

introductov-level students ..nd human tutors, as an aid to determining

valid solutions and aligning the natural language understanding routines

with statements used by beginning programming students, and (a) closely

supervised, student use of the machine tutor, to improve the operational

aspects of the studept-tutor interface.

The other (P. Mateti) is intended to be able to judge arbitrary

sorting programs written in a specialized language. An editornd

interpreter have been written for this special programming language

,,

and for an assertiv,language in which assertions can be made about the

state of the array tcr.tfe sorted. These routines 'are being reviewed in

c

.

13

10

" .

4

an attempt to improve their 0" 'ency, and design efforts ha Ye 'rerun

on a,theorem prover which will'use the assertions to prove OT d

the co'rrortnes's of the sorting program.

The MA IL pro. ect
IOt

The ob,:!es.tive of the KAIL proect is to propose an alternative

to the 7-UTOP 1-amTuage in the PLATO environment. In designing KAIL,

emphasis has been placed on providina a goad structure for the language

since this is the area in which OR is weal:0st. Thus, KAIL is ar.

AL7.-0L-1 ike s"..pers.et .of 7''"ICF, hitn procedures, 'clock structure, and

*scope rules for Yviables, modifications, and user defined interrupts.

A subset of KAIL was chosen for implementation and a compiler

has been designed, implemented, and debugged (D., Embley, W. Hansen,.

The output of the.comiler is 7U7OR code which is .'61.idensed and run

on the PLATO system. Experiments are being designed to determine if

these new features are easier tc'understand and use than traditional

features, as represented in TUTOR.

2.7. Use of ACSES in instruction

The system has been used in several courses.' The most

extensive use involived.about sixty student's (one-half the class) who

learned PL/1 on PLATO in CS 121 in the fall of 1973. This two month

trial was used to test procedures fbr a later controlled experiment and

to evaluate the existing PL/1 lessons. Tentative conclusions from the
2

experiment were that students rearmed favorably to PLATO and learned

as much as students in the regular sections, even though the lessons

were still in need of improvement. This latter finding is only a,

14

s1i7ht indication tnat tne existiniz lessons were cn a par With tne

teachinz assistants in '-eachinr PL/1, as students were not randomly

assizned t5 Frc s, and other experimental coptrols were lac?.iniz-

,
In the sprinr cf 197-., the instructional system was used in

an auxiliary mode twc introductory courses, OS 103 and CO 1)(,,, and

also in CS 211.

,

15

- 12 -

er,

0 %.7111Y,19-7 - 1977
I

3.1. The'librAry of lessons

We currently have over 10 lessons, grouped into about -I"

areas. The ma.!ority of them were created by students as -term projects

in a course on. computer - assisted instruction, or as other academic

activities, such as theses; Considering this origin, it is understandable

that many of these lessons are of poor quality. Considering their

number,it is also 'ziderstandable that we do not have the manpower to

1..r.:nr all of tham tro to a sufficient level of quality.

Tho need for repeated revision based on ,.:,c-perience :.pith actual

instruction, and the significant amount of effort required for each

revision, are the causes for the fact that only a fraction of our lessons

are anywhere close to their "final form". We have many lessons that

.have never been used in instruction, and ,are unlikely to be used in our

own courses in the near future, since the library has grown to a size

beyond our needs.

until further uses of ACSES appear, we have concentrated most

of .our resources for lesson improvement on the following core of about

5C lessons,:

1) FORTRAN sequence-(used in CS la, CS 103, CS 105, cs too).

2) PL/1*sequence (used in CS 106, CS 107, CS 121, CS 300).

3) Lessoni on computer applications suitable for these courses.

4) Language-independentlessons on programming principles.

- Alio, we plan to introduce into ACSES some tighter means of

,

controlling the student's progress through his course, and giving him

certain options only after he has completed important assignMents..

16

-13-

s .

Because of our goal to create an instructional sy stem that could be

accepted in any school, ACSES has been designearaccording tc the
A

philosophy appropriate for an information sytem: if 'someone i S;. .

sufficiently motivated to do so; he should be able to extract

the system the relevant information he wants-; the system should 'ffeo r

A: I

a large number of choices, and it should never impose itself Fsj forcing

the user to do anything he may not wish, to dp. This philogophy is

appropriate for some uses of an instructional system.(e.g., adult

continuing education), but a more structured syStem is likely to le

more effec tive for teaching large introductory courses that, are

required, where a large number of'students ar e not self,motivat,ed.

H. G. Friedman manages; the library of lessons,. with the

assistance of S. Leach, The FORTRAN sequence, which is our best

tested set of lessons, is supervised by R. G. Montanelli, Jr:.

3.2. Computer assisted programming system (CAPS)

The table-driven programming system. is operational and tuns

for subsetsof PL/1, FORTRAN, and COBOL suitable.for a.firs.t programming

course.. The-FORTRAN processor, implemented by M. Milner, was used last

semester by 600 students in CS 105 for about one hour per week. The
. - .9.

r 1 r

ti
COBOL processor was implemented as part of an M.S. thesis by R. Barnett.

As part pf their Ph.D. reSearch, A. Davis and M. Tindall have completed

nerror-atlalysisi system (for run-time and syntax errors, respectively),

'which carries ou't a dialog to 'help the student find the cause of the

, error and correct it:,

P1/1,.FORTRAN and COBOL constitute the core'of our programming

4 ,

.

... system that must be maintained in reliable form. Other efforts are
l*

17

411

A

.l4

eing on t ich are nob eSsential'for the use of tne programming system.

in our co,:rses: implementat.-Lons of Pascal, P.AST.C, and LISP, Prd a

1-

table-driven interpreter. These may or nay not lea' to useful products

in the near f-lture.

The ,efficiency of the programming system i of continuing

conc4rn to 11.9. Prior to the expansion -of PLATO's Ex ended Core Storage

1,m'llion.words, the memory requirement of the. rogramming system

ade.itS use difficult, but since .February this probe m has disappeared.

Kow 'tne requirements sf the progradming sys m make its use

unplroasant when there alr.e.X.) active terminals. We have improved the

efficiency of the programming system in a variety of ways, for example

by adding a mode where syntej is performed line--by-line instead of

character-by-characte'r. This !ersion of FORTISAN is being used this

sebester by 2450 CS 105 students. CEft has col6perated in this effoit

. ,

,-

by,IAtroaucncr,; TUTOR!,feature, "vertical segment" which makes

-1talVe-loup operationll fas'cir. Dea.Pite these efforts, the
e

pro4yamT;inq systemm-often forces the-student io go slower. than he

e con ld. L.,:White is c rently engaged in a careful' analysis of the
,

ORTRA.11 procesi sor:in an attempt to isolate and than improvd the time-
I,.

cOrisumIng portilon;i'of.the.Syst'em,
. .

,

3.3. .Information and 441,,,isinf,:zysten'

The ciguide infOrmatiOil syStet has. been completed by D. Eland

-as part of his Ph. D. theSis: astuid'C4munkates prMarily by means

of Simple English phrases as input; 601 ilictures.foroutput, where the
'I

relationships among lessons of relevance-to the student aredisplayed

in graphic form.

18
;

4

csguide was designed to make ACSEZ usable by someb2d who

wants to study on his own. ,Where stud...-nts are formally enrolled in

our CS courses, the instructor carries out many of the functions for

which -csguide was designed, And hence csguide has not been used much

so fa'r. It will only serve Its purpose if ACSES attracts an audience.

at remote sites.
;('

The csguide dati,ble is also used in the routing and control

of students the computer s ce lesons or. PLATO. A fPw

additions to this data base have there re been made by H. J. Frieiman

t2 enable more flexible routing of students. Also, the information

maintained in the routing process P1qal!t each student's progress has

been made available in a lesson, cs cords, in a for:: in which it can

be reviewed by an instructor.

The guide's ability to respond to student requests and quickly

and concisely present information via graphic displays has resulted in

the core routines being adopted by the PLATO foreign fangua.7e group

to administer their collection of lessons.

3.L. Exam system

As part of-the emphasis to develop those aspects of ACSES that

are of direct use in our own courses, various programs that have to do

with exams (an,interactive program grader written by B. Barta, a4

problem generato'r by F. Izquierdo, an exam administrator by D. Eland)

,have been integraid into an exam system by L. Whitlock. he system

is organized' around a central monitor responsible fox record keeping,

and uses a number. of "problem generator /graders ", each responsible

for generating a problem and grading the answer.

19

- 16. -

)

..11

o ,e-:ans for 3.-; 101 were ad*nfstered using the exaft: ,stam

dur'ng summer, 1"-=.7. F. Dorirj, Whiticdk, and W. Hansen hate

,

conducted an exberiment this fall to comare the time students sfend

taking an exam on FLA:Cs with that spent on a pencil and paper exam.
I, t

These ex-periences have bee: used to improve the ht:manterface oP the.

exam system:.

There are currently several p/Ig2ple.wor'king on additional

problem enerators for the system, some of which will accept a

difficulty parameter and enerate a probleM of that relative

of tha wide variety of problems that will be available, the

system can be used for exams, for student review, and for experiments.

We intend to explore the acceptability of exams where the difficulty
A

of problems is aried during the exam in reaction to previous responses.

Automatic .judging of student programs

This past` year we have continued to work on two-lessons for

j'udging student programs, and.have just begun another effort in that

direction.

The recently cc4pleted lesson by R. Danielson tries to follow

the student's thought processes as he develops a PL/1 program for

s!imbolic differeaTtiory_ofNexpifessions by the technique 91' stepwise

refinement of the probi*i. An AND-OR graph is used as a model of the

refinement process, ariV_ds traversed by the lesson in the cqurse of

monitoring prfogram devqlopment.

,

As part 9f his thesis research, P. Mateti iS completing a

program which will be capable of,proving the correctness (or incorrectness,

-with counterexample) of an arbitrary Sorting program written in a

language with specia1ly designed sorting primitives (e.g., intercliapp)

4'0

- 17 -

0

anti incaudin, at variou.y..pof.nts in the propram, appropriate. assertions

about the state of the array being sorted. A program entry and monitoring'

mollule has been cOmpleted which provides a dynamic display of pro;zram

execution. A special thebrem prover which is highly efficient for the
. .

.

restricted aomain of programs being considered, is being implemented

to complete this lesson.

A third project in judging student programs has recently. been

started by W. r.;illett It is concerned with those legal programm4g

constructs which probably indicate a lack of understanding by the

student 3**1/2, which is equivalent to 3/2. A study is underway

to identify and categorize these "conceptual errors'& and a system is

being designed which will scan arbitrary student FOIRTRetri prbgrams for

such errors, describe them to the student,,and proyidd'adv'ice andintS

on how they should be corrected.

3.6. The KAIL project

.

s

4

D. aibley and W. Hansen 'have developed author -..

language, KAIL, and written'a preprocessor,which translates KAII) into

TUTOR. Several lessons have been written in thenew'language. KAIL-.

.
.

.
.

adds structured control facilities to the-set of TLITOR commands by

means of-the "selector", which combines flow of control with answer

judging, and subsumes most of the currently popular control COnstructS

(e.g., if-then-else, case, cond, while).

The results of a recent experiment indicate KAIL's Version

of selection and iteration is easier to understand than more traditional

syntax. These results are summarized in a technical report.. Another

experiment is A.R progress to compare KAIL's proposed means of lesson

and help sequencing with those of TUTOR:

21

- 18 -

FA?

I

. 7 . rce of ACSEZin instruct..cn

During the past academic year ACSES has been systematically

introduced into our introductory courses: firs:t, in a small class for

social scienc,e, students (CS 103;, in order to cla'ss-test the FORTRAN

lesSons; then large course for commerce students (Cs 105). In the

first case, a controlled ekperiment turned out unfavorableto the

/ ,

PLATO group; for .reasonq we believe we understand, and haNe corrected.

In the second case, results were favorable both with regard to stnent

performance and attitude. We are trying to validate this favorable

impression by ,Means of a controlled, experiment this fall.

These experimental evaluations' have been carrried out by --41"r

R. G. Montenelli,,Jr., some in Cooperation trith Esther Steinberg of

the CERL evaluation group.

They are low described in more detail.

(1. In Fall Semester l971, CS 103 (a class of about 60

students) was rando divided in half for an experimental evaluation of

the FORTRAN lesson's uence. The control group received two lectures

and one discussion (meeting in.a small group of about 15 students;

with a teaching assistant) per week, as the course has always been

taught in recent history. The, experimental group had one,of ehe lectures.

e'l

replac d by an hour on PLATO, tclearn FORTRAN./ The two groups were

.
the-. ompared on various measures during the semester.

Results indicated that the experimental group performed worse

on all three exams during the.semester, although there' were no differences

on scores on computer programming prOblems. However, students /rained

interested in and enthusiastic about PLATO in spite of their deficit

in pjformance on the exams. Also, there were-no differences in drop

rate between the two sections.

22

19 -

Student Questionnaires and interviews indicated several

possible reasons for the poorer performance by the PLATO group.

Several of these were: (a) lessons not available because of lack of

memory to load them, (b, errors in lessons, and (c) lessons too long.

In addition, Esther Steinbeli from the PLATO PEER group reviewed many

of the lessons and reported that some of them were lacking in student

interaction. The first problem was caused by a-lack of ECS

essentially prevented students from making up lessons at odd hours

cr even from reviewing (or going ahead to other lessons during

scheduled' hours. These problems were alleviated by the addition of

more memory-in January, 1975. In response to the other problems,

many lessons were corrected and revised, and a few have become the

object of experiments to determine what makes a good PLATO computer

science lesson.

(2). In Spring 1975, CS 105 (a class of 600 freshmen. in the

College of Commerce_and Business Administration) students spent about

90,minutes a week on PLATO. Fifty minutes replaced a lecture, and 40

'minutes were spent using the interactive compiler to solve a small

programming problem. Although there was no course-wide experiment

conducted, the results were more positive than the previous one.

Performance on the first, two hour exams seemed to indicate that students

learned more than they had in past CS 105 courses. .(This was based on

the assumption that.exams from one semester to another are roughly

equivalent.) These results are in spiteoitthe fact that PLATO was

down for essentially the first ten days of the'semester due to hardware

problems. In order to obtain a more valid measure of student achievement,

23

- 20 -

' -

7f-he final exam was a modified version of -;:he exam used the pre.-..ious

semest.er. 'For several reasons'tnis was thought to be a safe procedure,

in that students would not have access to the earlier exam. These

reasons were: (1, final 'exams are not returned; (2 the exams were

not placed in the library; (3) exams irad never previously been reused;

and (4) the exam was modified so that answers and details were different,

even though the level of difficulty was not altered. The means on the

final exam for the two semesters were nearly identical. This was a

further indication that the PLATO students were learning aS much as

non-PLATO students.

A questionniare handed out by Esther Steinberg to 75 students

O

on April 22; 1975, showed that most students were happy with the leisons

and found them
i

helpful.

(3).. Current experiments on individual lessons being carried

out in cooperation with CERL's evaluitiOn group are continuing in CS 1Q3

this fall. In order to determine which teaching strategies are most

useful on PLATO, comparisons will be made by implementing different

versions of the same lesson. Some of the variables to be tested are:

.quantity of exercises, whether exercises are optional or requiree,',And
..

whether exercises should be scattered throughout the lesson or occur

at the end. Preliminary findings indicate that while students found

more frequent placement of exercises make a lesson more interesting, their

performance on a quiz was not better than that of students who didn't get

the extra exercises.

24

- 21
Wet

I

July, 1975 - Jw:A, 1274.

4-.1 The library of lessons tp

Our library has expanded to about 1".z5 lessons: The er-,phasis

this year has bees!' on making improvements to certain of these lessons,

-primarily the FORTRAN lessons., for use in our own courses. Some lr.ssons,

most notably foredo, have b` en complObly rewrittenafter usage experience

has shown that the initial effort was 6Cmpletdly unsatisfactory.

Among the more significant new additions to the library are

a small series'of lessscns on System Prograr.ming, written by 'or under

the direction of Axel T. Schreiner. Several of these were used by

Schreiner during-the Spring 1971 offering of CS 323, Operating Systems'.

These-lessons are primarily "lab" lessons, in which the students can

set up and run .,, small system (e.g., a dispatcher'using semaphores for

task syncronizatisn), and then watch the system run.

4.2' Computer assisted programming system (CAPS)

CAPS is a highly interactivediagnostid compiler/interpreter

that allows beginning programmers to prepare, *debug and execute fairly

simple programs at'a PLATO terminal. Complete syntax-checking and most

sellantic analysis is performed as the program is entered and as it is i 1;1(

subsequently edited. Analysis is performed chardcter-by-characIer

The most remarkable feature of CAPS is its ability to adtom4tically

diagnose errors both at compile-time and at rt1n7time. 'Errors are .not

4
automatically corrected. Instead,CAPS interacts with the stud&it to help

him five the cause of his error.

'45
4

-22 -

ft

ti

Arr
Under CAPS many lano4ses (e.g., FORTRAN, PL/1 and COBOL) have

been .implemented and some hare ,:b.,eeF.r1-4.13'f.'Ci 1.r1 elementary programming language

courses. These implementations have shorn that CAci,Norks well many

respects and that thiydesign aims of the, system are perPee y adapted to

the educamonal emvironment. Unfrtunately,.in the _aspect of real time
101...*

peformance, IWS fall :ell below a:Ccepttble levels.tTherefore, the
. . ,

1 .

development effort in tne pastiyear ha s concenfrate on improving the
. .

4t.

performance of DAPS both.durir,g pr,ogfam Acing and during program execution;
Ava

A

To understand the dealopment let's review the organization of the

compilers. .1A,

C APS compiler organizat4ons
1,

Each compiler in the CAPS system consists cA interpretive tqbles

specific to the language be4-1g compiled; -common driv.frig routines tointerpf*

these tables; and a few routLes., specific to the languag,e,ithat..4pA fa11 r31:%

eA

. (

r 7

t

'

A ,

from the interpreted tables. These tables are built from ans,emt:1 ike .1.0

-, .. a
. +. -

source code written bar a compiler .implemytor, After gehexitatior4,*thr,;.-,e :)'1,:,1..
. . .;, . .

tables are stored in 'common where they alk loaded lnto.4de"4-iedri'ab1eS an
, ... ,.. ,

1
needed in compil.j.ng student ,programs.

s/ dr

- Flow of control in the Ci'PS compilers is-..shiIwn*.i:m 1..
'

editor looks at each keypress the student enters fr6111 the kenminal;

' the key indicates a text editing; function, it is performed by.the edi--tOr

Ifthe,student is-dntering new,textieach leypTess. is. parsed 011 torth

:lexical qbalyzer. When the. lexical analYzer reeeiVes.aOmpletetplinni,t,hat
, . _

, .

.

2 '3

-2.1 -

/

1,..
G.

r 1 r 1 . 1

I i I i I I

1 Student 1 >1 Editor I .>1 Reverse L
1 lerainal i<

I
1< 1 Editot 1

I I
. 1

_
I I I

i J. J L J

1
..-

-
7..,

V

1

1

1 LexiCal
1 Analjzer 1

a.

1

I

v

I I I
1

1 Compress l< - 1 Syntax 1

1 nodule 1 >f Analyzer 1

I I
1

I

1 J l J
. ,

r

Parser

> Name Table

> Trace

> Symbol Table
> Trace

4

Figure 1: CAPS Compiler hodAlles.

27

- 24 -
1

token is passed on to the syr.,-,,ax ano.1'zer and paroer fcr compila-,ion.

each keypress i s n,-coassed as it io entered, the oor-piler can g:ve

error messages wnen tne student enters an invalid lanruage construct.

While compiling new text, "Trace" information is stare'}, allowing

the Reverse Editor to ithcompile the student's program as the student backs

up to make a chance. r.:scasionally the storage area fcr Trace information

gets full. When this happens,: a compression unit is called whicn removes.

alternate entries. from the :race tale. After comprecon is nr,rfcrrod

the reteroe editor can only back up to alternate tokens. necessarY,

it will back, up to t'leprevious token and then forwar.14pile to t,le

current token. In practice, the cs4xession routine may', e called three

or four times for a student program. 'After four calls, there is Traoe

information for one out of every 16 of the first tokens entered. Closer

to the "cursor" where the student is working, the Trace information is

'available for. -every token, or at least alternate tokens.

The lexical analyzer and the parser are both table driven. The

table for the lexical analyzer is a state transition diagram interpreted by

'..TUTOR codes For example, if currently, the'".-' node of the diagram for

II

PL/1, a following '.' causes transition to another node, whike.a following

>' is an error noted by the lexical analyzer. Conve sely, in

'BAS C.'< >' is the "not, equal" token.

The tables in the Pai-ser are not just a state transition array/

in the lexidal analyzer, but consist of internal codes interpreted by' a

TUTOR unit in each compiler. This'internOode is complete with arithmetic

operations, conditional jumps, calls to error routines, and calls to tile

lexical analyzer tp receive the, next token, Thus the student whites in

4
iPL/1, for example, and his protram s, compiled bA cbdobeing

by TUTOR code being interpreted by PLA10 run time routine,w

28

interpreted

Cli ECS

nc variables (1500) Storage (64u)

I i 1

I I
i Parse Storage 53 1

I Lexical 1 i

I or
1 Iv Symbol Table 109 I

1 Parse .

. I
1

I Tables
I

Iv Name Table 64 I

i , -I -,' ,., 1---4." i

I .1400 1 Iv Char Take 16b I

I I I I

I- 1 I 4

1 Parse Storage 53 I J Hash Table 20'1
F____

i . I i

Iv Symbol Table 109 I I Text 60 1

F---- -I 1-- i

Ic Symbol iablE 210 1 1 Tiace 96 I

I I I i

1 i I
Variables 88 (

Ic Name Table 110 I
J

I- 1

.1V Name Table 64 I Common (12 &b)

1--- i

lv Cbar Table 168, I I

I I I
Parse

I-- i . 1 Table
Ic Cbar Table 119 I

I

I I
1 400.

I---- i 1

I Hash Table 20 I I

F 1 i---
1 Text 60 I

1 i Lexical I

1 Trace 98 (I Table I

F-- i I 1

1 . variables 88 I 1 400 I

L , J
I I

1

i

1

v = variable portion
c = constant portion
number = length of table

F----
I

Pointers 22 I

F --- -1

lc Symbol Table 210
I

i

/
lc Name Table
F________

v ,
..

Ic Char Table s I119 I

J

Figure 2: CAPS Data Areas

2.9

-26-

Compiler data .re-

The CAPS corpilers use -..--.on".:or 1..c.in'.ers and taL1ras

ap..1 users of one c:.mpiler and "stora:e" for all rointers and tatls n.,,edod

lioJj an individual ustar. Few, if an':, of the stu'ient variables are use] by

the corpilers. Portions of comor% an, storare may be loaded into 131):'-nc% .

variables in central memory. However, at most three areas of each ray be

loaded at once. As shown in Figure 2, by arranging the data areas in

carefully, it was possible to meet this three-area restriction and still

get the tables in desired location: in central memory. However, the

-lexical and parse tables are each ;.T..0 word long, and only one ,pf then can

he loaded at once. (This is s;gnificant sine the 'compilers spend r of

their time changing the loadinc arrangement.) Figure 2 shows the layout

of these areas.

Possible improvements

Four suggestions for improving the CPU time requirements of the

editor, have been made, The ,first involves- .minor recoding of critical

sections of the compiler and would give a minor improvement in speed. Two
.64

such changes are to 1) stop displaying the "space left" indicator on the

student's screen .2.57, improvement, and 2) stop doing unnecessary -stolnad-

commands-r2710.speedup. (The compi,]er is reexecuting the-same -stoload-

command once for every token; which is unnecessary, at least for the PL/1

compiler.)

-' The second suggestion involves reeoding the lexical analyzer or

parser in TUTOR, rather than having TUTOR code interpret these tables.' This

would give an unknown amount of speedup; estimated at 2i for the lexical

analyzer, more for the parser, but reduces the generality of the driver

program.

30

27

Ine thir-J method proposed for speeding up the editor is to pr-ce--

she 'r.e of source tezt a a time rather than one character Kt

This me es t'me -cllecticn process from the T;7-CiP1 lesion to the P',,A7C, 7V2tr."',
...

and allows :F..e'l.s.,-1- -..o correct errors .in his current line before r hg it

to the lexical analyzer ano parser. his method nas been implemen:e3 and

tested, and does reduce the C.P.:time used, but the system is then urable :s

respond immediately to an invalid character or token.

The fourth method suggested is to move se.-antic checKing and symbol

table construction to a later pass. Timi g conducted by L.

sus::qes: anticipated improvement is probably mcre thorn

Cf the for possible i-nprovements, tnis last is least ',-:b,:ec',ionabie

since it retains the .table-driven nature of the CAPS editor and11 still perTit,,,

instantarleous analysis of many .errors commonly made by the prograra-dng,

neophyte. In adjition, tne second compiler pass permits generation of a.

reprenntaton of the program that is more ,easily ipterpreted so that

execution speed is improved as well.

in progfess.
4

In the past year, S. Nakamura has implemented an experimental-
.

FORTP,Ail.compiler using the two pass organizatiOn with encouraging results.

4 His eompilef ts diagranined in Figure 3.
0

Paralleling Nakamura's experimental compiler development is an

effort by T.AfFishMan to improve the parser module of the editor. The

current parsing tables must be programmed by the compiler-writer. Considerable

knowledge and effort is required to implementta language and the process is -

prone to error. Since, in the'rprganized editor, the parser .is responsible

only for syntactic deta4S, more formal,grammar-driven parsing method are

possible. In particular, Fishman is investigating the possibility of using an

31

- 28 -

L

4.

KtYBOARD

MONITOK

oo,

of,

SOURCE r
',PROGRAr. r

I

7 1LEXICAL

T ABLE

chp..--
ao ver

s,.

I PARSER / COW, G'ENERATOR

INTERnE,DIgE'TEXT

LEXICAL token SYNTAX

ANALYZZR

1

SYNTAX TABLE

rte SEMANTI6
!

ERROR CHECK

,4/

ANALYZER

I

1:9nAcofcrble
dror

PASS 2

:46ENXNTIC FiRROR C4CK,

ATTRIBUTtsr C.OLI.FtC,ZON

'C9DD GElitaktION

,.o,

. .* ' .

.4
4

A t'
. ,

RUN TIIE
r-7 7--

I INTE

.I.-NPLIT DATA

SUPERVISER

RPRETER, I

RE:,ULT :i
.' ,'

....,.,
. . , '. .

5. : ',DATA FLDIV , .. fit.s. ,,,.

,

---br : EXECUTIOW FLO'.1

Pligurp 3:, Reorganized Compiler (Nakamura)
, ..

)'

32

LALR parsing technlque in CAPS. MJ aivantages ,-.. an LAIR parser .13 tea:.

`both the parser and the .parsing; table will be more compact tnan the

current parser and the table can be constructed directly frxrVthe for7al

grammar specifying the programming language.

Tne output of tne new parser will have more of the ,syntactic

structure cf the program built into the intermediate text, whicn will
. -

permit the eeitor to deal directly with syntactic units such as statements

and 'expressions. 'As long as these syntactic units 'are left intact during

editing, the parser will not have to be called to unparse them as the cursor

Roves pst.

Tne structured intermediate text should permit tne second

pass to be table-driven to a greater extent that it is now. ,13. Sbeclp4nninr

is currently revising Nakamura's FORTRAV compiler to use the output

Tishman's LALR parser to make use of this\tructure.

f

:he attempts by Nakamara, Zishman, and Speelpenning are eF;ential

the c-.ntinued existence of CAPS at its current level of diagnostic

. ,
.

assltanc:a. i.-',xperi,ence has shown teat in its ori?.,inal 'formulation, CAPS

ww4d be intolerei)ly.slow in: rigorous classroom use and this degraded

performance is directly a consequence of providing enhanced diagnostic

'-dssistance-. So should the current research prove fruitless, we must conclude
.

that at thelevel of CPU processing currently available, the desired leveiN

of automatic error diagnosis is uflattainable on PtJTO.

4.3- Exam system

The Generative Exam System developed by L. Whitlock- is a .completely

interactivd system for construction and administration of examinations.

During a single terminal session, the system can administer an examination,

grade it, 'and a thelstudent-to compare his answers with the current

33 .k

30

_,

1

;

1
7

Examinaticn pro.ule-..s are gianers-,ei .- ,--1e syste- accsrlinr to ssecif_-,ti'lls
1

1

written by an ins::%;stor. -Analyses : stuient re-rf^rr-ance, class pe!;',!-7.1rse

and exainations are also provided the sys-_es-:.

Figure is a block diagram of the major components of tne

Generative Exam System. All users enter tne system tnrough the Vonitor.

Students take and reriew exams in the Exam Administration section.

instructors write exams in the Exam Writing section and work witn exam

results in the Exam Statistics section. Problem Generator/Orajers (pr /r;)

provide tne-prob:Lema for the exams. Eacn p /g handles all aspects of a

probic-, e:cept ']ata storere; as-oists an instrJr-tor in writin7 nro';ler

specifications, c:enerates a problem for each studen, adrcinisters ahi Trades

that problem, reviews it with tae stuient, and collecti-, data for improving,

future problems.

When a user first enters the Exam System, he is allocated a

record in the Student Records data area and a permanent storage area for

his worK in theiStudent 'rams data area. The system. differentiates between

two kinds of users -- student and instructor. An instructor has access to

both,student and instructor options while all other users have access to ,

the student options only. An instructor writes' an exam by writing problem

specifications for each fthired pg/g. ibis set of problem specifications'

is assembled into an exam specification and stored in the.Exam Specs data

aiea. When a student takes an exam, the appropriate exam 'specification is

transferred from the Ekam Specs data base to thestudent's permanent storage

area in the,Student Exams data base. The sme,area is used to record his work

as he changes from problem to problem.

-This past year pg/g's have been written for many aspens of FORTRAN.,

With these, various versions of the system have been used to giv.e not-for'-

credit exams in several introductory computer science courses, and part o

34

Exam Student I

Statistics Reconjs
7 (scores;

_

1
Student. .1

Exams
(all

details Oil
the wnrk) I

Monitor

Exam

trati-n

A

I

.,noes

7xarn
1

s;.

PG /G 1

Exam

PG/r; 3
tt

. .
9311)C1C.DTAGPAM OF THE MAJOR C,OMPONEITS OF,

THE GEN. V,14:--eXtti-SYSTEM.

/,

for-credit examinations in two co,_;rs--s (C:7 1C1 and CS 10?,. Tv most

popular with students)/ use of s, stem has been to provide practice

examinations just prior to paper examinations; students may take these

as often as they like.

During early experiments with the system it was noticed that

students were spending roughly twice as long on PLATO exams, as they would

on an equivalent paper exam. Analysis of video take of four.students; taking

an exam on PLATO and on paper revealed that 401,,of the time was"due tO quirks

of the systemr, we have since eliminated; 25";,, is an unavoidable artifact

(mostly terminal speed;; and about 35-Ywas due simply to longer think-time.

This think-time may result from an unconscious expectation of an immediate,

irreversible grade; though this isnot the case in the eXam System, it is

usual in other instructional uses of PLATO.

Our major experimental effort ofthe past year has been an

exploration of alternate sbyles of examination, based on a set of pg/g's

--which can generate prOlems to a specified "difficulty level". In a

"gambl"ing" style the student chooses a difficulty level indirectly by

specifyin7-1-51----each-problem, what perSeatage of the maximum points he

wouldlike to try for:, In a "tailored" style, thee system adjusts the

difficulty level on the basis of the student's prior performance on the

problem. At a minimum, the tailored sty/e.eliminates the problems

attendant on giving,an examination that is top hard or too-easy.

Initial results. show that the tailored exam subjects got more

points than any other group, even though maximum points can only be achieved

by correctly working a problem at the highest difficulty level. In response

to a-quest o naire, students showed preference for the tailored st'yle.

Exper ents are continuing.i-

36.

-33-

,r-

In an effort related to t.,e e: am system, a special ci:17. s,stem

has been aeeloped whicn enables pr2sentatian of a criterion-referenc.;-d

quiz following a PLATO computer science lesson. Designed -and implemented

by R. Anderson from a concept proposed by R. Montanelli, the system consists

of a central system monitor and numerous ;'quiz renerator/graders", each-6f
: -

the latter generating quiz questions and grading them in a manner identical

to ,that of the problem generator /graders of the exam system.

The system provides a means to:

as-pesi tne completeness and effectiveness of inr"_ ction within

PLATO CS lesson. Loch quiz is developed from the ph:jectives

which produced the CS lesson which it follows, thus student

responses accumulated by a quiz should identify lesson errors

and deficiencies as well as weaknesses in the quiz itself.

- facilitate student learning of lesson content. Alteraticns to

both the lesson and the quiz based an the analysis of quiz

question responses should yield a quiz that will aid a student.

in determining what has and hasn't been'learned from the

material fully covered by the lesson.,

An initial-trial of the system occurred durifig the fall semester

of 1975 when one quiz was presented following its corresponding lesson.

Responses accumulated for each quiz question clearly indicated leSson

shortcomings which were later eliminated via additions to and the

restructuri g of the lesson.

With the development of more quiz generator/graders, further

trials ere attempted during spring semester Of 1976. An experiment to

,

det rmine' student performance tendencies on differ'ent types of quizzes was

also conducted. Data accumulated .by the quizzes and" the experiment are

currently being analyzed.

.37

- 34

4.4 Automatic :ulgin7 of student programs-

An automated system for instruction snculeicapable Of makhg

judgements and 'providing commer;ts on -student prorrar,f-, analogoli% to the

role Played by teaching assistants and graders in the" more traditional

means of instruction. Our efforts to provide this capability have resulted

in i) two lessons which ask the student to write fairly sophisticated

programs and attempt to judge these programs interactively with respect to

both correctness and good design, and ii) . the development of technques

capable of automatically detecting anomalies in 1')eginning student's programs

without knowledge of the user algorithm beipr implemented.

A program by R. Danielson, which exposes students to a dynamic

;example of the top-down programming process by monitoring their attempts

to write a PL/1 program for symbolic differentiation of a polynomial, has

been, completed. PATTIE (Programmed Aid for Teaching Top -down - programming

by Interactive Example) mimics the action of a human tutor, in that she

engagas the student in an interactive dialo 'udging the correctness of

student-suggested refinements and providing hints and comments where

necessary.

The tutor uses an AND -OR graph as a model of,the stepwise

refinement process, which student and tutor traverse together in the course

of prog-ram development. The interactive dialog is concluctea' in natural

language, parsed via a keyword/pattern matching scheme which is built _into

the PLATO author language, TUTOR. This 'simple scheme is effective (P,O!, of,

inputs understood) clue to the limited domain of 'discourse. A small amount.

of testing of PATTIE with beginning students has been conducted, and more is

planned for the immediate future.
./

Tiother lesson is a sorting laboratory and program'verificatMI

system developed by P.'Mateti. This system allows the student to write a

3 8

35

itrary in-place. sorting piorram pfogramminr language with spee!ialt/

designed sorting primitives_ A special itterpreter then prdvides a.dynamic

display of the status of the array and indices during execution. This

laboratory is an excellent facility for understandNg the operation of

various sorting algorithmand experimenting with different implementations.

of ohe particLar algorit hm.

In addition, the student may provide assertions about the state

of the keys in the array; and the truth 'or falsity of these assertions is

indicated during execution. The\student may submit completed programs to

the program verification routines, Which use the inductive assertion method

to'prove the program correct, or prove it incorrect and prpvide a counter-'

example. A special theorem prove4., which is highly efficient in this

restricted domain, is the heart of the system. Unfortunately, while the

verifier can prove or disprove a sorting program faster than any other
.

known prdgram (for example, a bubble sort routine is proven in approximately

nine MI-seconds), the severe limitations on processor use imposed by

PLATO make use of the verifier for actual instruction diffiCult (the

same bubble sort may require, as much as 30 clock-minutes to prove).

A third project is being ccznducted by W. Gillett to automatically

detect prog ram anomalies (i1procedural langleges such as FORTRAN or PL/1)

without knowledge of the user algorithm being implemented. D ata has been

collected and is currently being analyzed to'identify and catebprize

programming ' "defects made by. beginning p5ogrwmners. Many of these
0

"defects" occur because thy -stdent"'views his program as a`sAuenceN
tially independent state s instead of an integrated wh

Detection techniques based on, it erative global flow-algorithms

-have been coped. Even though the user alr,orithm 'being:implemen ted

A

^

kir *

is unkn(wh, these -techniques ere capalle of '3'.r:^r

detail and can, it) many cases, dire

-I ,

-of the 'defect .

e-f

TI,14114-,:7;trIward-a resolutiQr.

,1

Amy ea, 0

.5 rim NAIL D -t

. ;.mbley explcr experimental and formal language aes4- and

Tidied these, design met o s to an investigation of cor "structs for

interactive computing, articularly in compute lued in ction. As a

meads for exploration,

feat-rA the 'an select

in teractye

iteration, it

new CAI'authnguage, rJtIL was designed. the

r [Embley and Hansen 76 1,`tandles-structured flow

dialogues. This construct not cnly unifies selection and

ubsumes CA answer judging as well. For nona-1.-ructured flew

of control, KAIL includis static exception processing scheme some.' at

similar to PL/1 on-canditi ns.

Thebe contr 1 constructf were tested in two experiments conducted

on-line in t e PLAT environment. The first flThibley 75] matched the KAII

selector a nSt set of typical ALGOL-like constructs. The results

indicate hat subjects understood pro'grams written using the KAIL selector

at leas as well as and perhaps better than programs written using typical

and while Constructs. The second experiment-fEMbley76]

t'
,,ilized the PLATO system to monitor subjects as they found and fixed program

bugs and modified a substantial CAI lesson about 500 linesint,length. SOme
4

/7-,-,s. .

subjects saw 4 version written in a TUTOR-like language, Dth.er',1aAw a

/,

version in:a KAIL-like language. Observations basically suppprted t KATI,

sequencing, constructs, but'also uncovered unforpseeo,di-Pflculties in the

KAIL-like language. The results of the'two experime'nts generally indicate'

'that the KAI', constructs are likely to be psychologically sound.

These constructs were also examined through a formal defi ition
,

their semantics. , An axiomatic approach was applied to the KAIL selector,

40
. ,

7 37

Y

a

.and one slifTested extension was fo.nd to be nn order of manitude ncre

complex titan, the basic qtlector,contrucc.. moth the'KAIL and the::"T..7

: 4
eXception.prcoce'ssinr. scnemes.yere defined in tents cf a behavioral model,

en.e the two 'schemes were rIpaNd. The formalism exposed context

dependencies in TUTOR and showed wny programners are likely to find the

. TUTOR sequencing constructs more difficult ti-c understand and use than

the corresponding constructs in.KAIL#

As a result of the investif,atiOn, three basic design ptinciples
'

evol ed: uniforMity, separability, and'locality._ The uniformity -rinciple

sJggests tnat tinges ocicrit.to to .designed .ith a one -to -one rein ",ionship

between syntax a.d .3emantics.. The separabill4 principle.suRcests

special- purpose, composite structures that are only indirectly separable .

may be harmful. The locality principle' suggests thataanguage featilres'

should be as permandint a-nd local as possible. These, three principles are

proposed-as a,Partial, basis for .the design of prorramming language features

in general.,

4:6 Use of ACSES in instruction

PLATO is now in routine use in CS 101, 192, 103, 105, and 400 for

a. total of 1000-1200 students per Semester on the U of I campus. In fall

1976, CS 101 and 105 will each have one less professor assigned, an itiliciption

.Of the acceptance of PLATO. Other Otroductory courses are in the process

_of phasing in PLATO.

Also, there has been systematic.use of ACES lesson materials

in six sections of three coursed at Wright Community College in Chicarb,
V

mainly under the direction of Kathleen Galway. The table below suMmarizes

this use fox the fall 1975 semester.

4

41

- 38 -

q

D? 101

.Students

'

Hours per
student

DP 101 27 3.2

DP 101 2.2

DP 106 33 8.2

DP 06* 2;?, 5.8

Di 135' 1.1

Session,'svident Deriptien

Introduction

Introduction _

introduction

FORTRAN

FORTRAN

As can easily be ceen, tne heaviest use has been in the FORTRAli

course (DP .1C,,;, T.ainly because we nave spent rlt)re tine develcpinh

lessons.

In oriel? assess the effect of,rePlacing one lecture a week.

with a PLATO lesson in a large university class, a controlled experiment

(described below). w.4.1 run in fall 1975.. Essehtiailly the results indicated

that PLATO students would strongly recommend PLATO sections to their

friends, learned as much as non-PLATO students,, but dropped at a somewhat

higher rate.

(1). Procedure

Ih order to allow for testing some hypotheses about the use of

PLATO in our introductory computer science courses, a controlled experiment

was .designed for CS 105, for fall 1975. Five lecture sections were offered,

with four of them arranged in the follOwing way. Professor A taught a PLATO

section (one hour on PLATO replacing one lecture) at 9:00 am, and a non-
4

PLATO section (two lectures, ho access to .PLATO) at 10:00 am. Professor 8

taught a non-PLATO section at 9':00 am and a PLATO section at 10:00.

Professor C, who was in charge of the course, taught a fifth (PLATO) section

in the afternoon, but it was not involved in the experiment. It should be

noted, that this author did not teach any sections, and that neither professor A

42
39 ,

c

nor B nad ever usei PLATO before t!ic semester. An additinnal

difference between tne two types cf sections was that the ?LA-.0 students

did their first two machine problems using cn-line PLATO FORTRAN compilers

instead of the IBM

Before the semester bear:an, students' registrations fcr_the five

sections were equalized .(by the comp'$ter program which makes up dent

schedules', so that there were equal numbers of students in each section.

Then students in the 9:00 and 10:00 sections were randomly reassigned to

eithe. 7T0 Or non-PLATO r Students were kept separate by usinc

were not allowed to tranzfcrfollowinc nectanis-,s.

unless it could be ione-witncut affecting the exprir-,ent. For examplc, a

student could not stagy at tne sam2 hour and cane sections. If a r'tl,dent

wanted to change from 9:00 to 10:00 (or vice-versa), he/she had to keep

the same type of section (PLATO or non-PLATO: ,If a student wanted to

switch from the afternoon section to a morninR section, he/she was randomly

assigned to a PLATO or non-:PLATO section. Students, were not allowed to

transfer to the afternoon section. Any student who felt she/he could not

abide by these rules was sent to the author who attempted to convince her/him

of the value of edueetional experiMents and of PLATO (There were about ten

such students, and most wanted:out of PLATO, presumably due to having heard

about the problems from the previous semester). The result of these

discussions-was that two students who protested violently against PLATO and

mahines in general were allowed to transfer' out of 'PLATO sections.

2) Students in non-PLATO sections were not:given access to PLATO, as a student

record with associated name and code had to be created for .each PLATO student,

and this was notcdone for non -PLATO students. 3) ,Individual attendance was

taken in the leCtures intended for *non-PLATO studentt only, insuring that no
x.

(

PLATO students Could enter. in or,t:r to assess the effect of these

0
precautions, students were asked (.-fa a qtestionnaire riien to ;."udents

immediately after completing their CS 105'fina1 exams) they had looked

at Paaterials for the other group ',they were assured That there would be no

penalty:. sit few non -PLATO students had seen somekof the PLATO Fraterials

through friends or through naving access through otherr courses, and a few

TJAV,D--atudents attended lectures, either through usi 4,ne name of a friend

who was-not attending or through slipups in our re,ords. It was felt that

none of these minor disturbances would have, any majo effect on rec..u1s.

The three hypotheses of this study were:

?LA: students would el%oy the course more, and Five iy a stronger

recommendation to their friends.

2. PLATO and non-PLATO students would perform equall:"/ we/1 on exams

,homeworks in the course.

nd

, 3. The drop rates in the.two types of sections would ue similar.

"(2). Results

In .pnswer to the question (from the questionnairastered

, with the final exam): a friend were taking CS 105 next spring and

PLATO and non-PLATO sections were offered, what would you recommend he

take ?' PL'ATO students trongly recommended PLATO (112 circled 'definitely

PLATO', 88 'PLATO if convenient', 45 had 'no recommendation', 15, said 'lecture

- if convenient', and 21 said 'definitely lecture'. On the other hand, non-
-

PLATO students were neutral (their responses, in.ordar, were/29, 22, 91, 2f;;.

19), or even showed a slightpreference fo PLATO.

In ordeY to compare learning'qc oss groups, a-2x2 univari.ate

,

analysis of4 variance was computed.for each endand for total points on.

r.

computer programs. 7o significant difference: were cpund, and -.Pans were"

nearly identical for the various vo.ps (Table 1).

The third fiypothesis concerning drop rates was rejected, however.

Professor A had 19 (15) drops-from his PLATO section, and only 44 4) Prom

nom-PLATO. Professor B Had 28 (251) drops from PLATO, and 18 (1411k, from

non-PLATO.

Table 1,

Average Scores on ExaMs
and Machine Problems .

(a: Machine iroblems

PTATO non-PIATO

A 143 11x2
Professor

140

(b) Hour Exam 1

Professor

(c) Hour Exam

Professor

(d) Final*Exam

Prof cssor

A 9?

B 51, 91

A 65 62
B 62 '62

A 240) 323

B 135 13/4-

\

(3). Discussion'
.

Students in the PLATO groups woad strongly recommend that their

friends choos4 PLATO, seCtionq, thus confirming the first hypothesis. Even

if the 'extra' 25 drops. in he PLATO ations were strongly negativ.e, they

45

would have'a snail effect on the' totals of FLA_

PLATO; and only =1:, of them recor,Insning lcztures. sliould.be
.

tnat when thejlIATO students were dc-eed to indicate :Ir.;A..t they thout -ere

tne worst features of FLAW, 78 :neck=ed 'The.listance.to 'Infort:.:41;-tely

s

the terminals are .locates on-the north edge of campus in CE L, about a..m.Le

from most coftimerce coUrses.), eheCiced 'Lac,k of human contact!, and
1

: 0

"- 31 checKed 'PLATO going down', the next two Most frequently checked respitrelses

Thus tne major problem was unfortunately out of our control.

The second hypothesis was not rejeqed. The nearly identical,:

Scores on exams and machine problers, in table I are evidence, of tnat,

without reference to sta.tistics. mere is no reason to suspect tnat

-the PLATT; ,:rops peor.students. however, if the dropped PLATO st,ident;.1

were averare, they could nOt hire had a 'large enough effect cn tie

results to after,the obvious conclusion: This re::Ult, is certainly

agreement with -ost studies of the effects of CAT. In fact, ',:hen ,a- icon,

Suppes, and Wells (137L-, urveyed'tne effectiveness ofaiterhati-:a
C

instructional r-.edia, thei stated:

, 4
...theeq-Jal-effectivene!.-sc6nclo,zion seems to be 1-,)road.ty correct for

most'alternate met".nods'of instruCtion at thecollege

.
and surgested studying costs of various tri,etnods of delivery. Hpweve, a

.
. .

major advaritage of CAI is that once used, itis not -set in stone like a

.textbooK or movie. :As-a result of -thie,exPeriment, the two'lessons Nhich

students. liked the leaot are being rev;rit'ten.frgm's'eratc. Secondly, .a

quiz system 'has been begun. When , plqted, it wi11 ptesent-a quiz to. each
- ,

student at the completion of-each lesson. The quIzzes.are:ndt'Nritteri-by'.
e -

., ...! .
the authors of the lessons, and in fact quiz authar are-discoUraged from

- ;

4.

--

30okirig,at the lessens. however, the quizzes arexratten4rom-tne'same,written, ,.

' 1

.11

S

objecti...es that were used to write .o lessons. The resultinr qT.iz

will not only tell the students Aew d ell they unders'i,and)hes material wrioll
.

the lesson is supposed to cover, but will tell instructors and lessor,

authors 1174 sell toe lesson is working. Thus, continual improvement is

possible, and pernaps eventually CAI materials '.:ill ..be as rood as' the pest .

lecturer, and therefore getter than mani:.

On the other hand, the hypothesis about equal dr;p rates was

rgjected. This was a surprising result, especially wnen the smaller

experiment a year earlier (under worse conditions) showed no differences.

H-)wever, the earlier course may ha:ercseen a snecial case..:It ...as a r2lati71

small elective cc...rse with mainly 'unistrs a.54 senior:. in psycnclo:-,y and

similar fields. These students were more. involve:: and intenested in the

experiment (as the author was teaching the course), and they may havP'

stayed for .that reason. On toe other hand, 03 105 is a required course

for freshmen in the college of commerce, and the students ;were presumably

less interested in long term educational goals (for themselves as well as

for the PLATO materials). However, although this drop rate was disturbing,

there were a few,, likely reasons fo it, all of which couldbe fixed; For4

one thing, the first three weeks w re confusing for the students because

they had pre-enrolled in a course which they expected would consist of two

lectures and a discussion each week. Instead, three-fifths of them had

a leCture cancelled and had to sign up for a PLATO section idstead. These

sections caused a lot of trouble, as some were scheduled for week-ends,

and many students complained that they were unable to meet any of the

remaining'available PLATO-..time. Although most of this confusion was

necessary due to the nature ofSne experiment, in the future students

will preregister for PLATOseqtAns just as for any other class. A second

4i

.

possible oau,se for he different 'rates wan thlt for the firnt fr

weelis, PLATO students :.ire `require) to do their pror,ranning problems in

one of the on -line, interactive compilers. Although it'was thought that

this would be fun for the students, the compiler gave very poor resppnse

"/.

gimme because of the amount of processing going on to "neck for errors
_ .

after' eaen student keypress, Finally, drops might have been due in part

to student dis sfaction with the two poor lessons which were later

rewritten. Students had nOt been systematically polled about the lessons

before, and the relatively negative reaction to two of them was quite

surprising.

Another possible ex-glehation for the higher drop rate on PLATO,,

is that some students (< 10':;) are anti-machine and that CAI will always

have tnis problem. The author does not feel that the 'large differences

found hdre could be attributed tc0,his reason. Howeer, this-is being,

checked during the current semester, because the problems mentioned in

the preceding paragraph have, been fixed, and although no experiment is

'being run dui-ing the currept,semester (all five Sections of C3 10544re

usj.ng PLATO), the current drop rate could be coMpared "with past drop 4atesp

in order to see ift*he PLATO drop i-ate is as high as-was-found here.

(4). Summary

PLATO

an introductory

,-

, -

lessons can be'used o replace one lecture a" week in

computer programming co urse. Students learn as much and

prefer PLATO'to large lecture sections. The remaining problems are:

1) Is there a higher drop rate on PLAID? and 2) Can instruction.be

improved throligh continued develOpmentof the CAI materials?

48-
45 -'

ar.d.Peports

. . .

Anderson, I., -Useri,s% manual an:: guide to the ACS:1-7.S quiz systtm,

to appearas DCS Report, September 19-7f,:

Arldersoi),'R; I., "An experiment on modes of question,anwering", tb

appear as DCS Report, September 1976.

Barber, J. A., "Data collection as an,improvement technique for PLATO
leisons", Report UI6CDCS-R-75-777 (M.S. Thesis), Department of Computer
Science, University of Illinois, December 1975. .

B?rnett, "An interactive COBOL system for PLATO", Report
UIUCDCS-R-75-685 (M.S. Thesis), Department of ymputer Science,
University of Illinois, January 1975.

Danielson,"R-and Nievergelt, J: (1975'., "An automatic tutor for
introductory Programming stuights", Proc. Fifth Symp. on Computer
Science Education, SIGCSE Bulletin, Vol. 7, No. 1, February 1975.

Danieln, R. L/,'"PATTIE: An 'automated tutor, for top-down programming",

Report UILMCS-R-7,5-75 (Ph.D.Thesis), Department of Computer Science,

University 6f Illinois, October 1975.,.

bavis,' A., Tindall, 1.1. H. and Wilcox,' T: R. (1975), -"interactive

error diagnostics, for an instructional programming system", Proc.

Fifth Symp. on Computer Science Edi.icatipn, SIGCSE Bulletin, Vol. 7,

No. 1, February 1975.

Dayis, A. M., "An interactive analysi$ system for execution-time errors",

Report UIUCDCS-R-75-695 (Ph.D. Thesis), Department of Computer Science,

University of Illinois, January 1975.:

Eland, D. R., "An information and advising system for'an,automated
introductory computer science course", Report UPICDCS-R-75778
(Ph.D, Thesis), Department-of"Computer, Science, UniVe'rsity'of Illinois,

June, 1975..

Embley, D. W.,' "An experiment on a unified control construct", Report
UIUCDCS-R-75-759, 'Department Of Computer Science, University of Illinois,

October 1975. 4

abley, D. W. and Hansen, W. J.', "The KAIL selector - a"unified control
construct", SIGPAN Notices, Vol. 11, No, 1,.January 1976.

EMbld, D. W., "An experiment on CAI sequencing constructs", Report
UIUCECS-R-76-771, .Department of COmputer, Science, University'of.

Illinois., February 476.

Embley, D. W., "Experimental and formal language design applied to
control constructs eor interactive,computing" (Ph.D. Thesis), to

appear as DOS Report, July 1976.

Gillet:, W. D.,- An ibteraotive program advising system , r,r--oa^'ng.=

of SIGCSE-SI7:7:E.Joint Symposim 177-.1p=.:ter Science Edncation, SIG=

3-4.114:1:01. e, No. 1, February 1,-76.

a Gillett, W, D., Tterativeteehniques foi- detection 'of press.*: anom.4.1ies",-

suomitted to the Conference on Principles of Programming Languages, Los

Angeles, California, January 1977.

. Gillett, W. D.,' "Interval maintenance in an interactive environment",

in preparation.

:zquierdo, F. J., "A generator/grader of problems about syntax of
programming languages to be used in an automated exam system',
Report UIUCDCS-R775-755 (M.S. Thesis, Deparment of Computer Science,
University of'Illinois, September 1975.

Mateti, F., 'An automatic verifier for'a class of sorting programs"
(Ph.D. Thesis;, to appear as DCS Report, September 1976.

Montanelli, R. G., Jr., "CS 1p_.; PLATO experiment, Fall 1974", Report.
T:TUCIDCS-R-75-7L, Department of Computer Science, University of
Illinois, July 1975. ,

Montanelli, R. G., Jr., "Evaluation of the use of'CAI materials in an
introductory computer science course", presented gt the AEDS Inter-
national Convention, Phoenix, Arizona, May 1976.

Montanelli, R. G., Jr., "Using CAI to teach introductory computer
programming", submitted to_c9mmunications of the ACM.

Montanelli, R. G., Jr. and Steinberg, E. R., '''using PLATO to teach
introductory computer science - an overall evaluation," in preparation.

Nakamura, S., "Reorganization bf an interactive piler" (M.S. Thesis),,

to appear as DCS Report, August 1976.

./Tieverge3,t, J:, Reingold, E. M. and Wilcox, T. R., ,"The-automation of
introduntOry compute science-pburses", in A. GUnther, et,al. (gds),
:International Computing Symposium'1973, North-Holland Publishing Co.,

19714.

Niever'gelt, J., et al., "AC$ES, an automated computer science education
system", Angewandte InfOrmatik, Vol. 3, April 1975.

Nievergelt,:i., "Interactive systems for :education -- the new look of

CAI", Invited paper presented t the IFIP-World Conf. on Computer,
.Education, Marselle, France, .eptember 1975.

41'

Nievergelt;eJ., tS: the automated 'computer Science education
system at the University o' Illinois', Report UTUCDdS-R-76-£310, Department
of Computer Sciendeo Univ of Illinois, August/1976. .

,

I

17---
?radels, J. L., "The Guide, an information system", Report UIUC1OS-R-
7L-626 (Ph.D. Thesis,, Department of Computer Science, University of

Tilinois, March 19 4.

Renshaw, J. W., "Robocar: educating the layman in computer science",

Report UTUCDCS-R.-7-71.1 (M. S. Thesis, Department of Computer Science!

University of Illinois, July 1975.

Segal, B. Z., "A comparison of student performance under two methods
of ,error announceMent", Report UTUCDCS-R-75-727 (M.S. Theks),
Department of Computer Science, University of Illinois,-May 1975.

Steinberg, E. R. and Montanelli, R. G., jr., "Effects of coerciveness
and aspects of human- machine interaction in a computer science CAI
lesson", to be submitted to Journal of Computer-based Instruction.

`Tindall, X. H., "An interactive table-driven parsersystem", Report
UT1CDCS-R-75-71-9 (M.S. Thesis', Department of Computer Science,

University of illinois,*.August 1975.

Tindall, M. H" "An interactive compile-time diagnostic system",
Report'UTUCD(jS-R-75-748 (Ph.D. Thesis), Department of Computer'Sciendt,

University of Illinois, October 1975..

White, L. A., "CAPS compiler CPU use report", Report UTUCDCS44-75-790,
Department of Computer Science, University of Illinois, December 1975.

Whitlock, L. R., "Interactive test construction and administration in
the generative exam syStem" (Ph.D. Thesis), to appear as pos Report,
September 1976.

Wilcox, T. R.; "The interactive'compiler as a consultant in the computer

aided instruction of programming", Proceedings of the Seventh Annual
Princeton Conference on Information Sciences and Systems, March 1973.

Wilcox, T. R., Davis, A. and Tindall, M. H., "The design and implementation
of a table-driven, interactive diagnostic programming system", to appear
in Communications of the ACM.

Wilcox, T. R., "An interactive table-arien diagnostic ditpr for

high -level prog.eamming language", in preparation-,

61

-'48 -

A

