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N o This is the last in a series of technical reports concerned ‘with
%

‘ ' mathematical approaches to instructional sequence optimization in =
4 \\ . instructional systems. - The problem treated here is very closely re-
’ - lated to that treatéed by Smallwood and Sondik (4). Both papers deal
\“ " with Markov decision processes where the true state of the system is
L ’not kpoxn vith certainty. Hence the state of the system is" ‘characterized
by a probability vector. Each action yields an expected reward, ttgns—.
- forms the system to a new state and’ ylelds an observable outcome. . One
wishes to determine an action for each probability state vector so as
. = to maximtze the total expected reward. Smallwood and Sondik (4) solve
- this problem exactly for a finite time horizon. This report treats -
..~ the ipfinite time horizon with a discount factor, using a partial N
e, . 'dimensional Maclau¥in series to approximate the total optimal reward
L N "~ . -as a funétion of the probability state Vector. Whilé this medel was
develéped for computed atded Instructionm, it is applicable to other

situations dg well. This model alsg is of considerable theoretical
Ya e Value . v ’ ~ - ‘
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EE _ ABSTRACT c . . ‘

o This paper describes a system that may be in any one of states
1, 2,...,N. The true state of the system is not known with certainty. )

~ and consequently is described by a probability vector. , At eadh stage Y
an action must be chosen from a finite set. Each possible action "
returns an expected reward, transforms the system to a.new State in L ~\\~
accordance with a Markov transition- matrix, and yields an’ observable ;
outcome. It is required to determine an actio r each poasiQ}e
state véctor in order to maximize the total e et d reward- over an
infinite time horizon under a discount factor, B, éne 0<B<1 o

" The problem-of finding the total maximum disc&%ﬁted reward as
a function of the probability state vector may be’ qumulated as a
linear program with an infinite number of coﬁstraints. The reward
function may be expressed as an N dimensional Maclaurin series and
in this papé@‘it 1s approximated by a partia1a§eries coneisting of
terms up to degree n. The coefficients in thist'deries ate ‘also
‘detexmined”as an optimal solution to a linear program with, an infinite
number of constraints. A sequence of related finitely coné%rained
# linear programs are solved which. generate a séquence of solutions
that copverge to a. local minimum for the infinftely constrained pro-
* ?gram. It is an open question as to whether this local minimum is
actually a global minimum. However it should be noted that . the
function being approximated is convex and consequently has the pro
. perty that any local minimum is a global one as well ’ a

.
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1, 2,.;.,N. The true state of the system is not known“with certainty

acfion for each possible state vector in order to maximize the total

'finite horizon case without a’discountAfactor and have determined that -

. : /- . .

> e

PARTIALLY OBSERVABLE MARKOV DECISION

' PROCESSES OVER AN INFINITE PLANNING

HORIZON WITH DISCOUNTING .~

1. Introduction 3

.

This paper describes a system that may be in anyone of states
'y . . v

- - ¢

and consequently is described by a probability vectorﬁ At each'stage'

an action must be chosen from a finite set.' This action returns an
T ' ;-
expected reward, transforms the system to a new (but not necessarily :

‘different) state according to a Markov process, and yields an observ- o

able,outcome. The problem addressed here, is that of determining an

e
-

+ -
4

expected rewvard over an infinite horizon under a’discount factor, B8,

. . ' o
where 0<p<l. - - R o - \

“~

Smallwood and Sondik (4)- have treated this problem for the

3

the total maximum expected reward is a piecewise linear function of ‘ .

the probability state vector. Their results can be trivially extended

'Y R “« . . R : .
ya 4

' to-include the discount case. S . . \k\

14
.

- The observable state cgse, that 1s. the case where the true
state of the system is known with certainty has been treated extensively. e
1A . ?
For both the finite~and infinite horizon under a discount factor, Howard (l) e

developed a poliecy improvement routiie for determining an optimal action'

o

and .the optimal cost for each state.

- ) i




11 Formdlation . L . ‘ . . -

) §1% this‘formulation; the notation of Smallwood and Sondik will

" '#be used.. It is assumed that this_ system can be modeled by an N—state

disgrete time Markov decision process. - - f _' .
. . . ‘ ;
. The o&served state of the system is characterized by a proba-
/-
bility vector ' where w is the probability the true state of the '

i .
system 151, v T

A} N . . . - ..
i -

At each point in time an action must.}e selected from a finite'-
I .
set. Associated with an action, a, is/a probability transition matrix

P? where Pij is the conditional probabilidy the system will make its
[

next transition to state»j given the current state 1s 1 and action E

is taken. An observed outtome follows each action with r2 denoting

je
the probability of observing. output 6 given the new state of the system

»

1s j and action a was taken. In addition an immediate reward wije 1is" ?

-incurred if action a is tbken, output 0 is observed and the system makes

the transicion from state 1 to state j. Thus if action a isvtaken and

-

output.eris.observed; the new state is ! Where

[Ei"i 13 je]/ [Eq 1F ij je] o .’ \/' E ‘vi(.l)

The above transformation is summariced by..

!

.‘n' =?T(n/a,6) .' '. . : (2?

e . o . ‘
A poliey is a rule that assigns an action to each pessible state

vector. lt is required to find a policy that maximizeshthe‘ewpected dis-

counted'rewards‘oyer all periods forfeach‘possible‘state vector. Let
Py ] . A2 ? . .

V(n) be the total discounted reward assoclated withfsuchva policy;

¢ .
-




l'—f ¥ .{ -1g ,
. . ] . ¥ o - L ) '
Then V(v) must satisfy the following recursive equation. ¥ .
L
; " ) : t. . 2 max Ig N a Z a e ¢.
| P T ym= a o Y.t Yr [ 4 BT(n/a, e)] NG
N - S P 3?1 139 138 I
M o N : TT—— \y : < - + P
' \'\ " . letting ¢* Z b2 12 8 | - ;. w
Lo T e gy T L PygTetage - . .
. . ™~ ) ' .o . .
o -] equation (3) is simplified somewhat to equation (5). : ; o )
| ( , max a . a a "9l
g
' , V(n) a Z niq1 + B X:l;,j.,»eni_pijrjﬁ v.['r(n/g_,e)].
‘ ‘. ) |
" Once the function for V(n) is- known, an optimal action for w can .
L 4 7 .
- o gxn be determined as one which maximizes the right hand side of (5) y
. -t . - ' _“ . . - ! ‘ ® ’. N \\'\/\\\
‘J ' v ;/ . k , o
@ | |
A ‘ , 14 \\ /
& .
‘\\ N o
@ N ‘\ M \ , ° "
U . :
e , o : : coN
) { ! - \
. N “« ) y
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III: A Learning’Example . ) : .
. . 4 : N ° "’ A4 * ) . ¢ v ’ f

As an-dllustration;.it will‘berhown'how the system described.

|
i

"in the previous section may bé applied bo the human learnkng process. N
Consider a cdurseﬁwhich is-given in several levels of&insfruc-

tion. The levelsxare denéted &,. ,...J?vdth N Being the easiest‘and o

l the hamdes& _ The structure of the levels is a definite hierarchy in .V

, &
the sense that if a student knows the material at level i he must also

*

1 4

know the material at.any 1fve1‘j>i. Several examples where this situ-

iation>may“applyJ£ollow: o Y : R
. [l . . ‘.% ", v ‘ . : \ . . . )
Lo . The “first situation'is ‘one where the material covered at one
) 9. o o ot - 3

lével includes all that covered at preceding IEVEI:;/Zijiﬁigﬁé additional
material An example of this is a program develop Tat Behavioral'Tech— )

nology Laboratories (BTL) to teach students Kirchoff s Law#  This

course isgcompriSed of.eleven levels with.thelowest level/defining the

I

units for voltage, current angd resistance up jto the highest level whi

. . . . . o . ~ : ) ’
‘deals with the application of Ohm's Lay and Kirchoff's voltage and/current
: RO \ . ) ] , .

laws in compleXrnetworks.” Another program developed at BTL is & short

EY

course in trigonometry consisting of five levels. At the lowést level
. »

-

students are given the definitions of the six basic trigo metric ratios.
Then_ the student is given a right triangle in which the engths of the/
sides are determined by a random number generator and /the student is
asked t0'determine these ratios.for one of_the acdut /éngles. Succeeding

levels deal with material on relationships between these ratios and pro-

“blems testing the student's knowledge of these relationships. -

.

A second situation is one where the material and problems covered

R k ) . e .

at a particular level are virtually the same as -the immediately preceding

P

" level except more clues and hints are given :Zﬁ;he’p£96351n§’level. A

good example of this is 4 version of the KircHoff's laws program considered

i1
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L . . . DR ] u

earlier at BTL in which problems,would be given in level as follows:

" 3. The student solves problems in’ steps but he ohooses the/

1. Problems are given in steps with cues and- knowledge of
. results at each step. .. N
EIEEN !
2. Problems are given in steps with no cues or knowledge of
results at each step.

]

-
2

steps.

- &4, The studen:}ﬂs simply given problems and asked to solv

them,

.-

.\ . ‘

A third sityation ié?one in which“a student is to be drilled

~in a skill in order that he be able to perform it rapidly. Thus the -

exercises are virtually the same at all levels but the time constraints

are tighter at the higher levels. In the BTL intercept ﬁvginer for

l

the radar intercept observer function, the student is trying to fire

a missile atrthe nose of a target and;then turn ‘around and fire another

)

missile at the tail of that aircraft The first missile is a radar

i

/
i

-

v

o
S

guided missile fired when 1in the forward quarter and the second a heét

I

seeker fired when in the rear quarter of the enemy aircraft. He is

giVen a radar reading and must correct his angle of igproach so as to

£ ’ -

be on a lead collision -course that will insure a high hit probability

-~

when he fires the missile. At higher levels the student is given such

problems at faster aircraft speeds.

-

~
[y

Note, however, the assumption given for this model'Would not

%

material introduced at preceding levels. . & o

Y

/

. A student is in state 1 if he knows the material of level 1

- ¢

{
but not at 4ny level more difficult than i and in state N+l if he does

not know the material at any level.

/

’

< .

There are N actions and' action i cons‘ instructing the

student in the material of IEVel i and then giving the student a tﬁst

,/

R 12

)

@ | 0
y -5- / i
/ S
/ : .
/,/

be appﬁdcable for ébe situation where a given level did not use certain

. ¢




& . Y .
. -’ - -
4

- on that material. For each action there are two possible outcomes--

either the student passes the test or he fails it. The objective is

teldevelop an adaptive instructionai sequence so that the student demon-
strates knowledge of.the material at level 1 as quickly as possiblev
Knowledge at level 1 is demonstrated by passing a test on the material
at level 1. The reward, wije’ would be the negative of the expected

time 1t W°U¥9 take to obtain instruction at level a and the system goes
'4 ~

: frgm state 1 to state 3 and 0 (success.or fallure at a) is observed.

Y : . ‘

For completeness a trap state ¢ would be needed. The student goes to

state ¢ witﬁ probability one éqpe he successfully completes the material

at level 1. The‘gﬁly aceion in‘state ¢ 1s to_do nothing which yields\

o . !

a\zero reward and keeps ‘the studencﬁih state ¢ with probability one.

4
a

L _ Wollmer (6) ;reats.the‘mbre restricted problem where‘pij,= 0

unless 1=j or 1f iﬁg/and j=i+1. Thus if a studeQ: is in state 1, he

remains in stat,'i unless he receives instruction at level i+1 in
M.

" which case he either remains in state i or advances to state i+1. This

s »
sy

would not allow‘the possibility Qf‘fdrgetting.' ‘ ~

v .
. . . . s

' ; Other situations where partially observable/Markov Decision

‘

. Co [ e ‘
. processes occur are in machine replacement, decodiqg from sources trans-

mitting over a:noisy channel,.medicalydiagnosis, and.searching’for a

movihg‘objecr. ; : S ' .
~ . Note, that if,thefassumptidnvof a strict hierarchy in levels
were dropped, the set of states would expand from N+2‘to.2N¥1 includihg
3»‘ ) ! . . ‘ ) P /’/
the trap state. = ' - o ' //'
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. ’ IV. The Maximum Réyard Function . \

-

In this section it will be sh?yn,that a ffaximum reward. functigdn

K

"‘exists and that it is a convex function of the reward 7.

{ : ~ Lety Vn(ﬂ) be the maximum reward function for the n period‘ }

horizon. Then . . o \ ~
‘ :
‘, max[ . . RIEREE
_ | Vh(n) = a Ziniqi‘+ B 1 pijrjevn_l[r(n/a,eﬂ (6) D
o e i,3,6 ‘ . :
v, ‘ ' ,
» i .
. Smallwood and Sondik (4) have shown that Vn(n) is *
| 1, ’Con;ve)': - v N S | \
A\ ) 2. Piécewise Linear
. o . L “lim S ‘ v
It will be shown that n . °°Vn(1r) exists and is convex in m, : bY

4 - . - 4
Define fn 80 :tha?:"‘]Vn(n) - Vn_l(n) I < f‘n all n and fn is the'

. . . »
smallest real number with this property and V (m) = 0. The f.'s are

well defined since all V (n)l are bounded above and below. _ '

nt+l Bfn o . T .

Proof -: Choose a(w) as the action that maximizes the right

A o

‘Lemma.l: f

~a

hand side of (6) fo; Vn+1(n) if yn+1(1r) > Vn(n) or for Vn(n)

otherwise. ,’ [
Then |V, (m - V (] < l?i E.GPijrie(vn‘[T("/a’O)]

-vn_l‘mn/‘a.onl' < Bf .

-t

Corollary 1: For n* > n, Vn*(n) - Vh(n)l, < e(n)

Iy \where e(n) + 0. : . ’ - ' »
MY - t
i . - .

v

r -

x ; |
:—.While Smallwood and Sondik assume B=1, their results hold for

‘ | 0<B<1. ~ . R _ '
: . ) \" f ) ' ’ \ “J » ]




Proof: From lemma 1, fn < Bn-lfl and consequently 'l
. ‘
v (m) - v (my] < Z £, < B Zs = £,87/-8) .
n n i=n+l _ 1=0 ,
/ -
>

Theorm 1: The function Vn(ﬂ) is absblutelf convergent. ’

Proof: Choose 7any particular n-;.n By Cerollary 1, the

V:(ﬂ) is bounded above and below and hence has 'an infinise covergent

subsubseqience with liéit Vx(m). 'Choose € > 0 and n such that g(N) < €

” -

+for N 2 n and €(n) is as defined in corollary 1. For any N.z_n and

. v : ‘
‘n > n in the convergent subsequence |VN(ﬂ) - Vﬁ(ﬂ)l < ¢ and consequently 9 ’
|VN(ﬂ) - V*(RJJ <;g. Since n is independent of m, the theoren}is proven.
‘ - ' \ Y ! . I
‘ : e 1im : - - "
Thus V(n) = n *,mvn(n) is well defined.. R : ¢ o I
. . i : e ) _ .
;% Theorem 2: V(n) is convex inn. ~  ° . - R

v

N ' Proof: ‘Define f(V,ﬂl,wz) = V(%ﬂl + %?2)‘512V(ﬂ1) - %v("ZZE-
. , . .

AsSume V(ﬂ) is not ceonvex and choose ﬂl»and m, such that f(V!ﬂl,qz)'= RN

k > 0.. Choose n such that N > n +|V (m) - V(ﬂ)|< K/2 |f(V;ﬁ1,ﬂ2) - ) "

£(V ,ﬂl,ﬂz)l < K. Thus f(VN,ﬂl m,). > 0 which is impossible since VN(ﬂ)

v < ’ ¥
18 convex. : _— Cw :

1

. Noté \that the piecewise: linear P operty of V (ﬂ) does not imply

~

piecewise linearity of V(m) as any continuOus function may be expressed

as the limit of a sequence of pilecewlse lfhear functions A
. )
o ) ' - '. B

.
A




' ‘,v "~ .7 V. Linear Program Formulation ' . .
. A,

)

" In the case of the observable finite state Markov decision

\ : processes with a discount factor, the problem of finding al maxXimum .
_ . . . S ) - N
. return for.each state may be formulated as a Iinear program. The . .

* . - - Y

development. of this may be found in Ross (6). In this section 1€ i
. ] . '

- h [] . \ . . . . ";' .
a shown that a modification of this formulation extends to the problem o l

"i, . : 'v/\ . o - ot «
. formulated in Section II. Portions-of the deVelopment: which are &imilar |,

{
to the finite state case will be outlin&\d but without rigorous proofs. . );
: 5. ‘
Consider the set B of all continuous bounded functions defined '

. ’ ‘n ,
X onS§ = {ﬂ/ﬂi >0alli, z = 1 ] . Let the operator A be giefined on )
. 1=1 . >
‘this set as follows. o B ,' ; : .
& :;“ ;‘ v‘ max ’ u\‘ . )
o Au(mr) = a |J.mq®+8 J.mpdru [T(ﬂ)/a e)] (7
VLT3 T F 1P13" 40 no
. \ ) ioj)e -
. - 4
_ Note that - . R .
1. u<v->Au<A .
. } v 1, ‘..
‘ + 2. AueB all ueB ‘ . Coe ‘
./‘ -l . A ’ .
. . 3. A:B+*B is-a contraction mapping on B. . . ‘ o
Ny < S . o - \ : -
! : . The Operator A 1s the optimal ret:urn function for the onq period -
e T ‘problem in wixich a terminal reward u(m) is given for the terminal state. .

Since A B + B is a cont.ract:ion mapping, it has- a ‘unique fixed point, «°

V= Av.= nl_i;mwAnu for 4ny ‘ueB. By Equation (3), this unique fixed point:

4 _
must be t:he opt:imal reward funct:ion. Let us con’si.der any u such that . y

Au < u. Then u > Au > A%y 2 nlimwAnu = v. fhus the optimal return func-

" tion V minimizes ufn) for each meS among all functions u satisfying Au < u.
. / ; : . : o
s

. . : ' In the finite, state case where the above conditions also hold, . ‘.-
. . A ’ e [
‘ ‘ '+t is noted that minimizing u, for each state 1 may be accomplished by ~
‘ ‘ . s | . N

, ", - K .
. 16 v
L4 L} - )
. » . ) r . .




minimizing the sum of the ui's. For this problem where suéh‘disum

ol ﬁould be infinite, the average valﬁe bf’u(w)-may-be minimized. Thus,
J, woul
- . \ .

finding the function u(n) is equivalgnt to solving the following

l

infinite constrained program : S ; ’ . , )
’ ¢ . - ! .
-Find min B, u such that x S ) ?fk\\ v
Z = e e e K ” . ’ B ‘ ’
f f (mydm an ARLLPERICL , SR )
Zw 1, = >0 ‘ "
.. » .

-

subject to - ’ ' . - '

\ .
Z q +.B8 Z P U[T("/a 8)] < u(ﬂ) for ) 9) '
1"1% ijeiijje | L
- - > 0, X m= 1 * E

>‘ ) : . . . ‘ ' lr.
' Since-the function u(ﬁ)”is continuous gnd defined &nha,closed

\ o

bounded set, it.ﬁay bg\gxpressed~ih an N-dimensional Maclaurin series:
- N
V(n) = Co + ‘ z c, , '

2 R I‘L_ 10
: i, 1.,... 2"'" - (10)
. 1 27 n .
\ _ |
1 . _ : ~

o If V(1) 1s expréssed as such a series or apprqximatéd By a

~ ) - {

partial series gonsiét}pg qf'te up to degree n, the coefficient of
c, - , 1;1 (8) is simply . |
Lyadgeedy o) - | | ‘ .
zl-w | lwﬂ —w SeeemMe i ‘ | - ‘ . '
f f f’" N d1r dﬂ 1._;.d1r1 - an o “,‘,: ‘

In.evaluafing the intégfal the following lem;s is needed.

. v
» . -

. ' . x
Lemma 2: f (a—x) x dx = ﬁn—ﬁ atrlﬂh‘n--’-1 A S
\17 B ‘ ~ :
i ., ! R . \ o ) _10_ o R ‘

. |




A

N
AN
&

/.

1 1-n n-2
1t 1'1, - N -
_+1)! f "rrI'l fuzz f -1 (Lo- % "j) PSS R
' o L o2 o ~,. » g

1
??"’a\ o - . I

- A‘”‘-, [\*\\ - ...ea-,_:_r___“““ o .
» 'Proof:\' Integrating by parts one obtains for the above
> l o /\ - R . ) \
' 1l / n-1 _n_ a m+l. n-1 . .

- — a- dx
integral gy ( (a + m+1 f “ SG x) x o ‘
o \

. a ¢ \" - . .
- -‘Lf (a-x)“"'f“ “Lax. 'Appl-ying this relationship
wHl J, .

» .

. +. . L ’
recursively, one obtains !m! f (a- x) minl amvl e

(m+n) !

7

From this 'lemma! expression (11) can f.be evaluated

¢ L -
oW o n o

Theorem 3% The{value of expression (11«} is" I~ ij!/ z (ij+1) !
« . . j j:l
’ - . * . N

Prpof' Integrating (11) with respect to 17 gives
c , . R ] . .

ﬁv' n-1 1+11,1

.

: Applying lemma 1 with’ a=1- §2ﬂj and 1 tegrating with respect to T -1
" ylelds ' T . )
'14: ) 11 . 1= Imoe oaa ‘1{1+1 )
o +in +2)' f :/: % f v (1\\-”; nj) n n-1"dm _,...dmo
: o ‘,4' ‘ "“, 1, n : ,‘ '.
Continual application of lemma 2 yields jzl 3! /(jzl(ij-q-]_)) S w.

H
V

Thus if V(n) is to be approximated by an n=-Ih degress polynomial

[ A

- function in m, -then substituting the expression of _theorem 3 and (1) in

v

(8) add @) and rearrangihg terms yields: .

Fintl Co’ Ci 1....4, min & such ’that : ‘ ' ‘

o 1 72 n , B . ‘
. o n Iz} e ' ) !
2=C +]) ! Q.+ ¢, , :
. © j 1 j j=1 j 4 il 12"'in (12)

) . / - ) X t .
18 |

-11-




- \ . ‘
n .
(1-8)C, + J <3=1"3 BZ[ki . f?).iN/di . (0)1 ) x o
Ciliz...it;z izlniqi - £13)
~wheredy, D= m n G nip;‘j ;‘e)ij | Coaw - ‘
| :%‘2... j=1 \ L |
\ _ . X(ij—l') - | /
o, L B . diliz...:LN(e) (Zﬂipij je) > (15)]‘ | s
: ® ’ . ‘ . \\. »
! far all o, all m™0 such that Xn =1 ' K*: : , ‘ - \\
| | . ‘Thus ‘the problem of solJing the ptogram (8-9) with a multi- @' ; \Qj :
: nomial approximation of u(m) becomes a linear program (12—15) with ) ) Aig
an infinite nimber of constraints and nnrestricted veriables. Notel * | S\\
o that the minimum value of 2z obtained in the linear program (12 15) ) : <
would actually be larger than that obtained in the #Z;éram (8-9) . ﬁ l

‘ : .o
> .
- . . .
. . .
W - .
. .
v

. ’
. -
- S B
s T .
, "I
S " a
- - '\ .
» | ]
_ ’
- - .
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. >

- -VE. Computational Procedure L . , : \

ll L : ' Given an ootimal'solution to the linear program (l?QLS), con-
. \ | '
sidervthe setof constraints for which the C ' are basic. If »
- » | 1112. . ‘iN A} )

,the .program was solved with thﬁse constraints only, the same solution

i would be obtained and all other\constraints would be-satisfied;.-Thus,

j S . )
S ' while the programrconsists of an infinite number of constraints, only

affinite number ne | to be included provided ‘the correct ones are chosen.

u ' This will be taken dvan ge of by solving the program with a-finite

|
subset of the constraints, inttoducing an unsatisfied constraint ‘then

EEEESS
(Y3

dropping aFy that are not binding, and continuing until an optimal .

»

il
€

" solution i% obtained. -
I . o ) | - . .
h Let the quantity f(m,C) be defined as follows:. .

®

‘ F('(r C) = (1—3)c + z(

‘ VO | R =1 :I [k .?.1N 1,1, :LN])

' . - 'A‘ | " | ‘ . n . a . : l“ .
T B ETECOPE W 1Zi "1“,1. E o (16) |
i . | - ‘ _ v , v -
" ; - " The constraints (13) are edsivalent'to F(w,C) :_b all . Thusaif‘at ri )
i v least one constraint 1is not satisfied for a given C vector,: the value
e . . - ’ o9

: i o of m that minimizes F(n,C) is the most unsatisfied one.

I .

o in algorithm 1‘2

'

The procedure for ,80lving the linear program (12—15) is given,

¢ o ,
| \fl . ¢ Algorithm1l . . . )
I a | 4 )X 3 ~

h ‘ ’ o 1. Formulate the linear program with any finite subset of the~

N . .
li \
” o .
' . . ‘
. .
\ .
.)'

constraints in (13) , .
% 2. Solve:.the linear program,forycs . - : ‘
v ; " T Lo ' . N L
‘ . . i+ 3., Delete any constraints for which a slack variable 1s basic.
° S ) J 4 . K . X v - v -
. '/ - 4. Solve the following non-linear progjhm.
* " *\ ' ' * ‘ ! ' .
Q e o -13- - . N ’




3 ﬁind ! 3:60 min\é—suck'tnatn o _ .._ : ,l

L

2 = £(m,0) an

§ i
T, =.1 (18)
=] 1

If g' > 0, terminate as C 1is optimal Otherwise introduce the
constraint corresponding to the value of w that optimizes (17-18) and

'go back to Step 2.

.<{

A loeal optimum to (l]-LB) may be found by algorithm 2. .

.
oo

-

‘AMlgorithm.2 . = .,

1. Choose an arbitrary probahility vector and evalute f(w C)
2, Find an order pair (i,j) such that increasing w by e and

decreasiﬁg m, by € decreases f(w,C) without‘violating Qiﬁiii and ’

3

/ L, B ”
anjfi. /If no -such pair can be found, terminaté as 7 is a local..

s

optimum. . - ' . - ‘ s S ’

v
P -

. N i - Sy
3. Incz‘easevwi to "i and decrease "j to "j such that neither
, ———

sthe pair (1 j) or (j 1) satisfied the conditions of Step 2. ﬂhen go

.

back to Step 2

NS
<

For‘finiteness,.the~e of Step.2 would be chosen aheadAof time. - .

“ There are several ways ‘of performing Step 3 to find the new

value of-v and T .xQOne efficient way is to first'bracket w, and w

i 5 1 9% Ty

-between "i' w! and W " and 7" and continually reduce the difference between

] h|
»these by a factor of one half thus converging on a single,point ! .

Initially "i and wi would be the current values of LI and 1
and #; = + 6, 7 = w, - § where § = min " [l-1ri Ui ] Then.consider
the pair Ri = %(wi { w;) and'_1-rj'= %(wj + w}).- If f(w C) is a local

» z
. .




a

‘ , minimum under the restriction that all components of T other than = 1 -
: . Aand ﬂj are held constant, then T is the desired point. Otherwfse,
- v . ¥ J !
let m, and T replace 7, and W if the direction of decrease is towards .

A I N -3 3

- ” ” ”

ﬂi and L but let “i and ﬂj replace L &E: if the direction of
L

decrease is towards ﬂi ahd ﬂj. ‘If neither direction yields‘a decrease,'
” ”

’ ‘- ’ - ' A v v " , ]
S let 7, and n, replace n, and n  if f(m )>f(m ) but replace 7, and ™

157 i 3 ' i3

otherwise.  Step 3 wOuld'terminate-when'ﬂi - ﬂi<€1 where €, €.

. Note that if the C vector approximation of U(w) were exacti

. e
’ any local minimum of f(w,C) would be a globat minimum due to.the con-

- vexity of V(ﬂ) thhile this is not guaranteed in the approximation, one

could take random sdmples of T in an attempf‘fozfind a vector yiglding .

v

_a lower value.of\ han the local minimum or evaluate 8' /pr all =

\
vectors whose components are multiples of 1/n where n ié/large if the

e

‘ ' result min 2'=0 s obtained ) - s .

pd
When introducing an unsatisfied c//sfraint i\\is recommended

4
that the dual simplex method be used//o s017e ‘the resulting program :

- - <
N

which is already dual feasible. //'

/

- The sequence of min ﬂ values generated by a1gorithm l is non-

+

decressing, bounded above, and hence must have .a limit. It is an open

°

question as to whether this limit is the true min 2 or in particular
if the,sequence‘of Z' values in‘algorithm 2 tend to zero. Consider the

sequence of linear programs solved by algorithm 1 and assume the number
. of equations in each equals the number of components in the C vector
plus one. It has already been shown that it will not exceed this num-

A}
4

"ber and?if it is less,_ additional constraints with all cS‘fficients

'being zero may be added. Conéider also the sequence of matrices formed

‘ °

' . - ‘by the probability vectors that generate these constraints. . Since these
Q - ’ : <« =15- '

.




-

» » . r ' - '
are bounded above, these matrices, and consequently the set of linear

”~

programs for algorithm 1 must havée a convergent subsequence. Consider

e - now’the sequence of constraints generated by this sequence in algorithm 2. -
By the sare argument this sequence-must have a’ convergent subsequence. ‘
In this lFtter sequence, either f(i#,C)+D or else the cost coefficient :

e . . N C

in the pikot column tends to zero for 1f not the increase in min 2

would not|tend to zero which is impossible since min & is bounded above. -

1f\ the sequence of f(w,C) values generated by problem'Z did

not appear ‘to tend to zero after many iterations while the change

A

in foin 2 did&appear to tend to zero, some possible ways out are as

follows. First one may sample a large number of probability vectors

.
‘

and find oﬁe which would glve the largest increase in 2 on a single

: ~ pivot. Segond, one may search all probability vectors that are multiples
- ]
. ' of 1/n whereﬁn is a large number and find the one which gives the largest
. t . . y ]
' increase in 2 for one pivot. - s .- ?

- . ’ | .
It should be noted that:iffthe sequence of‘Z) values bbtained

in algorithm. 2 do not tend to zero, then one has a situation somewhat )

analogous to cycling in the dual simplex methdd Since cycling almost

never'occurs in the primal simplex method, there appears éo-be.some .i
. basis for thinking thatjthéiseééeﬂce of E’ values would tend to zero '. o {_ ’
the majority of times. . - “\\\\' B ‘A ' 'f J
) T 6ne could_of course only consider constraints generated by ° "t’

'
i

probability vectors Whose componentsvare multiples of lfn. By imposing i

S a lexicographic ord “i ng, one could insure4? true optimum in a finite . - 7 .

fig \
- ~I

number of steps\\s S X T . . e

1 : M o - .




VII. Bounds on Accuracy ,‘ o | . ) . o ;
In solving the non-linear program (17-IB),in~Step 4 of the

alg&rithm to find. the most unsatisfieﬂ constraint of'the L&near program J.

‘(12—15), one may wish to terminate ‘the program when ] >-6 rather than

»

for #>0 where § is a small,positive numberx 1f so, the value-of 3

obtained for (12) will be,less than the true minimum for & _since the
4
program has been optimized for on1y a subset of the ponstraints. How-

*

ever, it is easy to se@‘from (12) and (13) that increasing C0 by §/(1-B)

‘yields a feasible solution and increases # by that same amount Conse-

quently, this. feasible sec would come to within 6/(1-3) of minimizing B.

The question now arises as to how close V(
=~ \

-~

vseries approximamion to V(m), is to the true value o . ,- To %n er

-

Fa
this consider the operator Au(m) ‘defined in equatio '

S

. ‘max ' .o ‘ :
||Au - ul| = = |Au - uf. : . o (19)

(] ,. . .

- ‘}Since the operator A 1is a constraction mapping with |Au - Av|<

8lu - v[?1f can be shoyn that ||a™y - A7 ||<s |au - ul| and
/" .
]lA u - ullé(l-ﬂo)llkéu - u|1/(l— ) and V() = 1imA\nu, it follows that ;
- ’ © . - . J )
. v -~ o~ Y ) \
vy - V.(nblsllAv -Vl -0 o)
' ' ] o

- . o ' o & B}
One could find a local man/mum to ]Av - v| by an incremental

procedure similar to that used‘to fin\\the most unsatisfied constfaint .

o

to introduce intol'the linear programming problem. . AlternativelyQ one

—rcould enumerate .(20) for all possible probability‘vectqrs‘Whose com-
ponents gye;multiples”of 1/ns N S 5

L

: . '.' . . . : . ) ‘
! ' , . B _17_ I v . . L M N
. . - .. . .
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