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SUMMARY

This is the last in a series of technical reports concerned'with
mathematical approaches to instructional sequence optimization in
instructional systems. The problem treated here is very closely re-
lated to that treated by Smallwood, and Sondik (4). Both papers deal
with Markov decision processes where the true state of the system is
'not Kpovn with certainty. Hence the state of the system is characterized

a prObability vector. Each action yields an expected reward, trans-
. forms the system to a new state and'yields an observable outcome. One

wishes to determine an action for each probability state vector so as
to maximize the total expected reward. Smallwood and Sondik (4) solve
this problem exactly for a finite time horizon. This report treats
the infinite time horizon with a discount factor, using a partial N
dimensional Maclauiin series to approximate the total optimal reward
as a funitipp of the probability state Vector. Mlle this model was
developed for computed aided instruction, it is applicable to other .

situations as well. This model also, s of considerable theoretical
valui.
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4.

ABSTRACT

'

This paper describes a system that may be in any one of states
1,2,...,N. , The. true state of the system is not known with Certainty,
and consequently is described'by a probability vector. At each stage
an action bust be chosen from a finite set. Each-possible;action
returns an expected reward, transforms the system to a.hewstate in
accordance with a Markov transition matrix, and yields atiob4rvable
outcome.. It is required 'to determine an action. tpi each pOssikle
state vector in order to maximize the total e et d reward over an
infinite time horizon uhder aAiscount factor, B,r e 0.56 <1..

1/4
The problemof finding the total maximum disc%r,ted reward as

a function of the probability state vector may be4fArmulated as a
linear program with an infinite number of : constraints. The reward
function' may be expressed as*an N dimensionS\ Maclaurin series and
in this papeit is approximated by a partialiReriesconsisting of
terms yip toilSgree n. The coeffiCients in thisf4eries Ste'also
-determimseas an optimal solution to a linear program with* infinite
number of cOnsitraints. A sequence of related finitely ConStrained
lineaf programs are solved which, generate a sequence of solutions
cthat converge to a. local minimum for the infinitely constrained pro,
igraM. It is an open qiiestion as to whether this local minimum is
actually a global minimum. However it should be noted that,the
function being approximatedis convex and consequently has the pro
perty that any local minimum is a'globalone as well.
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PARTIALLY OBSERVABLE MARKOV DECISION

PROCESSES OVER AN INFINITE PLANNING

HORIZON WITH DISCOUNTING

1. Introduction

This paper describes a system that may, be in anyone of states

1, 2,...,N. The true state of the system is not knowo(with certainty

and consequently is described by,a probability vector. At each stage

an action must be chosen from a finite set. This action returns an

expected reward, transforma the system to a new (but not necessarily

different) state according to a Markov process, and yields- an observ-

able outcome. The problem addressed here.is that of determining an

action for each possible state vector in order to maximize the total

expected reward over an infinite horizon under-a"discount factor, 13,

were 0.(13<1.

Smallwood and Sondik (4). -have treated this problem for the

finite horizon case without a discount factor and have determined that

the total maximum expected reward is a piecewise linear function of

the probability state vector. Their results can be trivially extended
%

to include the discount case.

The observable state case, that is the case x4here the true

state of the system is known with certainty has been treated extensively.

For both the finite-and infinite horizon under a discount factor, Howard (1)

develope&s polio), improvement routine for determining an optimal action'

andthe optimal cost for each state.

-1-



II, Formulation

f be used .

Im this formulation; the notation of Smallwood and Sondik will

s assumed, that this:system,can be modeled by an N-state

disvete time Markov decision process.

The o served state of the system is charactetized by a proba-
.

bility vector ,where n is the probability the true state of the

system -is -i.

At each point in time an action must je selpcted from a finite

a1set. Associated with an action, , io a probability transition matrix
,

_ 0

Pa where Pi is the conditional probability the system will make its
Pig . .

0

next transition to state-j given the current state is i and action 0

is taken. An observed outcome follows each action with r
a

denoting.

the probability of observing. output A given the new state of the system.

'is j and action a was taken. In addition an immediate reward w
ije'

is"
.

.

,
. .

.ineurroyi if action a is thken, output 0 is observed, and-the,systemmakes

the transition from state i to state j. Thus if action a is-taken and

output.0 is.observed, the new state is n idhere

n' = E.E n e ra 1 / rE n Pa ra
j ij j0.1/ I. 1, ij jai

The above transformation is summarized by.,

(1)

V.

=.T(n/a,e) (2)

. .

A policy is a rule that assigns an action to each possible state,

vector. It is required to find a policy that maximizes the eXpected

counted rewards, over all periods for each possible state vector. Let

V(n) be the total discounted reward associated with such a policy.

9
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Then y must satisfy the following

VOT)''.=

max
a ffi

i=N

recursive equation:,

.

a _a fa ma
Letting

41. vij 0-4j0
,e

ivaije+ OT(ff/a,0)) (3)

equation -'(3) is simplified somewhat to equation (5).

max
V (7T) = a

(4)

[ X 71.07 + a 4,10ffi4j10 VIT(TT/a,0)] ' (5)-,,

Once the fUnction for V(.70 isynown, an optimal action for it can
4

cal be determined as -one which maximizes the right hand side of (5). /

U

10,
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t
III: A Learning 'ExaMple

,4. 4' : e,. o..

As an Allustration. .it Wilrbe shown how the system deScribed.
w.

.t,

2 ir

is

in the previous section may be'' applied to the human learnitng process.

Considdr a-cdurse4ihich is.given in several levels of instruc-

tion. ,The levelsvare.denited L, 2,... t?with N being the easiest and

'1 theintrdesl. The structure of the levels is a definite hierarchy in

the sense that4if a7stndent knoWSthe material at level i he must also
4

know the material at. any evel j>i. Several examples where this situ-
,

ation may apply ,follow:

The'first sitdation:i one where the material Covered at one
/

level includes all that covered at preceding levels. plus site additional

material. An example of this is a program develop- t Behayioral Tech-
4'. V

nology Laboratories (BTL) to teach students Kirchoff's Laws/. This

course is .comprised oUeleven levels with.the Lowest level defining the
4

units for voltage, current anSI resistance up to the higheSt level whi

deals with the application of Ohm's Law and irchoff's voltage and current

laws in complex networks. Another program developed at BTL is short

course in trigonometry consisting of five levels. At the lo est level
a

students are given the definitions of the six basic trigo metric ratios.

Thin the student is given a right triangle in which the engths cif the,

sides are determined by a random number generator an the student is

asked to determine these ratios for done of the adut -angles. Succeeding

levels deal with material on relationships between these ratios and pro-

blems .testing the student's knowledge of these relationships.

A second situation is one where the material and problems covered

at a particular level are virtually the same as the immediate/y preceding

level except more clues and hints are given at th editeleitel. A

good example of this is aversion of the Kir off's laws program considered

11:
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earlier at BTL which problems would be,given in level as follows:
,

e

1. Problems are given in steps with cues and,knowledge of
.results at each step.

2. Problems are, given in steps with no cues or knowledge of
results at each step.

. The student solves problems in steps but he chooses the
steps.

,

4. The students s, simply given problems and asked to solve
them.

A third sittlatioh iii?one in whil`a student is to be drilled

in a skill in order that he be able to perform it rapidly. Thus the'

exercises are virtually the same at all levels but the time constraintss,

are tighter at the higher levels:''In the BTL intercept L iner for

the radar intercept observer function, the student is trying to fire

a missile at the nose-of a target and then turn around and fire another

missile at thp tail of that aircraft. The first missile is a radar

guided missile fired when in the forward quarter and,the second a heat

seeker tired When in the rear quarter of the enemy aircraft. Weis

given a radar reading and must correct his angle of ipproach so as to

be on a lead collision:course that will insure a high hit probability

A
when he fires the missile. At higher levels the student is given such

problems gt faster aircraft speeds.

Note, however, the assumption given for this.Model' Would not

be.app?cable for tile situation where a given level did not use certain

m aterial introduCed at preceding levelS.

A student is in statei if, he knoWs the material of le el i

but not at any level more difficult than i and in state N+1 if he does

not know the material at any level.

There are N actions and action i cons instructing the

student-in the material of level i and then giving the student a 9,at

12



on that material. For each action there are two possible outcomes--

either the student passes the test or he fails it. The objective.is

to develop an adaptive instructional sequence so that the student demon-

strates. knowledge of the material at level 1 as quickly as possible,

Knowledge at level 1 is demonstrated by passing a test on the material

at level 1. The reward, wijO' would be the negative of the expected

time it would take to obtain instruction at level a and the system goes

from state i to state i Ind 8 (success.or failure at a) is observed.
a

For completeness a trap state 0 would be needed. The student goes to

state 0 with probability one Once he successfully completes the material

at level 1. The only action in state 0 is to,do nothing which yields

. , .
.

a, zero reward and keeps'the student. in state 0 with probability one.

Wollmer (6) treatsthe.mbre restricted problem where pig ,= 0

unless i=j or if i=aland j=i+I. Thus if a stud t is in state i, he

' remains in state i unless he receives instruction at level i+1, in
-11

which case he either remains in state i or advances to state i+1. This

would not allow'the possibility of'forgetting.

; Other situations where partially observable/ Markov Decision

processes occur are in machine replacement, decoding from sohrces trans-
.

mitting over a.:Inoisy channel, medical diagnosis, and searching for a

e-
moving object.

Note, that if the'asSumption of a strict hie'rarchy in levels

were dropped, the set of states would expand from N+2. to .2
N
+1 including

the trap stale.

13



IV. The Maximum Reward Function

In this section' it will be shr,that a 4.ximum reward. functi n

'exists and that it is a convex function of the reward 7.

Let
%

V
n
(7) be the maximum reward function for the n period

horizon. Then

max
V
n
(7) = a E474qT:4- 0 E 44rao 41.(7/a,e1 /0)

i,J,0 -J

Smallwood and Sondik (4) have shown that V
n
(7) is *

_1. Convex
0

2. Piecewise Linear ,

lim
It will be shown that n +.03V (7) exists and is convex in ira

Define f
n

so that IV
n
(7) - V

n-1
(7) 1 < fn all n and f

n
is the

smallestrealnumbermiththispropertndV0(7)=0.Thefii's are

well defined since all Vn(7) are bounded above and below.

Lemma 1: f Bf
n+1 n

Proof Choose a(7) as the action that maximizes the right

hand side of (6) for V
n+1

(7) if V
n+1

(7) > V
n
(7) or for V

n
(7)

otherwise.
AM

Then 11111+1(7) - Vn(7) 1 5 0 E

i,J;(3

V fT(7/a,0)]

V
a- 1

IT(7/a,0)4 5-

.
Corollaryl:Forn) < c(n)

%where a (n) 0.

While Smallwood
0<051.

and Sondik assume 0=1, their results hold for

14
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n(n)

Proof: From lemma 1, f
n

< f
1
and consequently

1 *
n*

111 (n) - V MI < E f

n n i=n+1

anf y Si
1 I-

i=0
= f fin/ (1-0)

Theorm 1: The function V
n

(
n
) is abAblutely convergent.

Proof: Choose/Any particular n=17.

is bounded above and below'and hence has

subsubsequence with li4it V*(n). Choose e > 0 a

for N > n and e(n) is as defined in corollary 1.

n > n in the convergent subsequence IVN(n) -

IV (n) - V*(n).1 <,A. Since n is independent of

4
Thus V6 lim

(x)

) = V
n
(n) is well defined..nip

By Corollary 1, the

an infinite covergent

nd n such that e(N) <

For any N > n and

n)I < e and consequently

n, the theorem is proven.

Theorem 2: V(n) is convex in n.

Proof: Define f(V
'
n P

2
) = V(1/2n

1
+

2
ITA) - kV(ni) - kv(..

Astsiume V(n) is not convex and choose ni.and n2 such that f(11,n1,./2 ) =

k > 0. Choose n such that N > -0.1VN(n) - V(n)I<K/2., If(V,irl,n2) -

f(VN,Iii,n2)1 < K. Thus f(VN,ni,n2) > 0 which is impossible since VN(n5

is convex.

Note,'that the piecewise'linear prperty of Vn(n) does not imply

piecewise linearity of V(n) as any continuous function may be expressed

as the limit of a sequence of piecewise lfhear functions.

15
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. Linear Program Formulation

In the case of the observable finite state Markov decision

processes with'a Alscount factor, the problem of finding a makimum

return for,each state may be formulated as a linear program. The

development of this may be found in Ross (6). In this section it is
1

shown that a modification of this formulation extends to the problem
.

formulated in Section II. Portions-of the development which are similar ,

to the finite state case will be outlingd but without rigorous proofs.
Z."r4

'Consider the.set B of all continuous'bounded functions defined

on S,:= {Tr/Tr > 0 all 1, Tr 1- = 11 . Let, the operator A be slefined on
1=1

this set as follows.

max
= a Trigi p L

Note'ihat

1. u < v Au < A
v

2. AueB all ueB

(7)

3. A:B->B is a contraction mapping on B. ,

The Operator A is the optimal return function for the one, period

probleM in which a terminal reward u(7) is given for the terminal state.

Since A:B B is a contraction mapping,,it has, a unique fixed point,

V'= Av.=
lim n

u for iny.ueB. By Equation (3), this unique'fixed pAint

4

must be the optimal reward. functiOn. Let us consider any u such that

Au < u. Thenuz_ Au z_A2 uz_nl+ im mAnu= v. .thUs the optimal return tune-.,

4

-.

tion V minimizes u(w) for each ffeS among all functions u satisfying Au < u.
4'

In the finite,state case where the above conditions also hold,

it is noted that minimizing ui for each state i may be accomplished by
. . .

16
-9-
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. /

minimizing.the.sum of the u Is. For this probleth where such'a sum

Would be infinite, the average value of (n) may-be minimized. Thus,

finding the function u(n) is equiValent to solving the following-
.

infinite constrained prograM.

Find min g, u such that

Jr
Z = ... u(n)dnndnn_idnn_2...dni

,

(8)

Xn =1, n >0 ,
i 1.--

subject to

-F,A3 X nip74e;eu[T(n/a,8)) <41(n) for (9)

ni 0, 1 n -= 1

Since the function u(n) is continuous 40 defined 6 a closed

bounded set, it may be\expressed in an N-dimensional Maclaurin series:
A

VOT) = C
o

4- X Ci i il i2 ' iN
(10)

i
1
, ."--n n1 72.nN"'"in l'

I

V(n) is expressed as such a serir or approximated by a

partial series consisting of te up .to degree n, the'coefficient of

C in (8) is simply
il,.1

1 1-nl-n2-...
N-I

niN dn'dn .nJ62 2 jr
N N

d1
0 0 0

In evaluating the integral the following lemma is needed.

Lemma.2:.

0

m n' m! n! m+n+1
(a -x) x dx = a

(nfn+1)!

\I7
-io:-



'Proof:! Integrating by parta one obtains for the:above

l-/
integral -

m+
x
a-1

(a-x) +
1

. p m+1
n

(a-x) x dx
m+1.n-1'

o

a
m+i'n-1

Jo
(a-x) .x dx. 'Applying this relationship

M+1
o

n!m!
...

recursively, one obtains f a(a-x)m471dx = ----'-min!
a
m+n+1

p *.. o
.,

t(

m+n+1)!

T VI

From this lemma expression b4) can ,be evaluated.'
.?

1
Theorem 3! The value of expression (11)-

1 -I*

s:- n 1.41/ ri (i4+1)] I

pia=1 J " J ,:

-

# _,

Proof: Integra
.t

ing111) with respect to n. gives
, P

.1 n-2 .'
.,: .

, . 1
i
n

!
1._ E it , n- i +1 1,7

(i
n
+1)1

.f Trl ' w2

111 jr. '.2 -.1"- , 1 '' i

0 - 0 ,\\ , _

N, 1 -j

n n-1
d7114...dt

1

n-2,

Applying lemma 1 with'4=1- n an d i tegrating with respect to nn-1

yields

in! i 1.1 ' 1-n

n2f
i

n-1. 1

0 0

Continual application of lemma 2 yields II

j=1

j! (1.4-1-1))!

j=1

Thus if V(n) is to be approximated by an n=
th

degress polynomial

function in n,then substituting the expression of theorem 3 and (1) in

(8) and 69) and rearranging terms yields:

n-1
L

+1. +2
L(1 - IT)n n-1 dn ..dn

n-2. 1
1

Find Co, min a such that
i' i
2'

..1
n'

=C +X
0

n

!),/ ( (ii+1)]j

/
18

C
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(i $)C0

(

n ffi `" az
j=1 J 0

n
a

C . > i. wq
i

2. n
i i

where.k
i

(0)

(0= ra
iri i

(i
di (0) = (i pa ra j

1
32iN ij 11 JA I

for all 0, all w>0 such that Xvi=1

Thus. the problem of sol4ing the program (8-9) with a multi-

nomial approximation of u(v) becomes a lizteai program (12-15) with

an infinite number of constraints and unrestricted variables. Note

that the minimum value of g Obtained In the linear program (12-15)

would actually be lakger than that obtained in the rogram (8-9).

9
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.VI. Computational Procedure

Given an optimal'solution to the linear program (1 -15), con-

\

sider the settof constraints for which the C 4 are basic. If

,thenrogram was solved with these constraints only, the same solution

would bP obtained and all other constraints would be.satisfiech Thus,

while the program consists of an infinite number of constraints, only

a flmite number ne to be inclUded provided the correct ones are chosen.

This will be taken ge of by, solving the program with aifinite

subset of the constraints, introducing an unsatisfied constraint, then

dropping any that are not binding, and continuinguntil an optimal .

solution 1.3 obtained, -
I

Let the quantity f(n,C) be defined as follows:

f(t,C) = (1-000 Z - Bqk ") d (6). 1)j=1e ili2...iN iii2...iN

n

E-

qa

1 2 N 1=1
(16)

x

The constraints (13) arc equivalent to F(_w,C) > 0 all w. Thus if at
.

least one constraint is not satisfied for a given C vector,the value

of w that minimizes F(IT,C) is the mostunsatisfied one.

The procedure forAving the linear program (12-15) is given,

in algorithm 1..

Algorithm 1

I. Formulate the linear program with any finite subset of the

constraints in (13),
ti

2: Solve:the linear program for C.
.

3. Delete any constraints for which a slack variable is basic.

4. Solve the following non-linear progr

13-
20



Find n > min 14- sup
.

that

= f(n,C)

Tri =.1

117)

(18)-

If S' > 0, terminate as C is optimal. Otherwise introduce the

constraint corresponding to the value of IT that optimizes (17-18) and

.go back to Step 2.

A Aocal optiMum to (17-16) may be found by algorithm 2.

'Algorithm.2

1. Choose an arbitrary probability vector and evalute f(IT,C).

.

2. Find an order pair (i,j) such that increasing IIi by e and

decreasiag nj by e deCieases f(n,C) without violating0<ni<1 and

0<n.<1. )If no .such pair can be found, terminate as it is a local.

optimum.
.,

3. Increase n
i

to IT and decrease nj to n.,
J
such that neither

i

the pair '(fd) or (j,i) satisfied the conditions of Step 2. Then go

*

back to Step Z.'

For'finiteness, thee of Step,2 would be chosen ahead of time.

There are several ways of performing Step 3 to find the new

value of ni and nj.\One efficient way is to first bracket and njf

-between ni, Sand n7 and Ti 3 and continually reduce the difference between

these by a factor Of one half, thus converging on a single point.

Initially ni and would d be the current values of IT
i

ansi nj

and n? = n (5, N." = ffi .,- (5 where (5 = min J1-ni,nj). Then.consider
i j

.

the pair 7?i = + ei
J

) and IT = n:). If fa.,C) is a local
-. .
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minimum under the restriction that all componehte of IT other than IT
i

.-.

And IT are held constant, then IT is the desired point. Otherwise,
J t

, , /,
let IT

i
and IT

i
replace IT

A
and IT

i
if the direction of decrease is towards

- ,
IT

i
and IT

J
but let IT

i
and -II

rj

replace.x
i

k4 IT4 if the direction of

. ,.
,

decrease is towards ITt acid ITi .If neither direction yields a detrease,-

. , ,
, II II II

let IT
i

and IT
j

replace IT
i

and IT
j

if f(IT-)>f(IT ) but replace ITi and ITi
.1.

otherwise. Step j would terminate. when ri - yel where
1
<E

I
. Note that if the C vector approximation of U(IT) were exact,

any local minimum of f(IT,C) would be a global minimum due to. the con-

vexity of V(IT). While this is not guaranteed in the approximation, one
, __.

could take random mples of,IT'in an attempt to find a vector y ding

a, lower value. of\ han the local minimum or evaluate E' fpi all IT

vectors whotie components are multiples of 1/n where n ielarge if the
.

result min a'=o is obtained.

When introducing an unsatisfied cyseraint,,it s recommended'

that the dual simplex method be used to solve -the resulting program

which is already dual. feasible.,

The sequehte of min W4alues generated by algorithm 1 is'non-
, .

decreasIng, bounded above, and hence must have a limit.- It is an open

question as to whether this limit is the true min E or in paiiicular

if the.sequence.of 0' values in'algorithm 2 tend to zero. Consider the

sequence et linear programs solved by algorithm 1 and assume the number

of equations in each equals the number of components in the C vector

plus one. It has already been shown that, it will not exceecrthis num-
'

'ber anclif it is less, additional constraints with all coefficients

being zero may be added. Consider also the sequence of matrices formed

by the piobability vectors that generate these constraints. -7, Since these

22
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are bounded above, these matrices, and consequently' the set of linear

programs for algorithm 1. must have a convergent subsequence. Consider

now/the sequence of constraints generated by this sequence in algorithm 2.

By the sore argument this sequence-must have a'convergent subsequence.

In this latter sequence, either f(r,C)+p or else the cost coefficient

in the pivvot column tends to zero for if, not the increase in min

would not tend to zero which is impossible since min 0 is bounded above.

I the sequence of f(n,C) values generated by problem 2 did

not appear o tend to zero after many iterations while the change

in in 3 dJ.d \appear to tend to zero, some possible ways out areas

follows. First one may sample a large number of probability vectors

and find ohe which would give the largdst increase in on a single

pivot. Seond, one may search all probability vectors that are multiples

of 1/n wherein is a large number and find the one whiCh gives the largest

4t.

increase in 3 for one pivOt.

It should be noted
-

that if the sequence of 0 values obtained

in algorithm .2 do not tend to zero, then one has a situation somewhat

analogous to cycling in the duil simplex methOd. Since cycling almost

,

never occurs in the primal simplex method, there appears to, tie, some
,

,
.

basis for thinking that the. seq4ence of 0 valueIS would tend to "Zero

the majority of times.

-
One could course only consider constraints generated by

probability vectors whose colpponentsare multiples of l/n. By imposing

a lexicographic ordering, one could insure, rue optimum in a finite !

number of step -x.

23
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VII. Bounds on Accuracy

In solving the non-linear program (17-1) in Step 4 of the

. ,.

algorithm to find:the most unsatisfied constraint of the linear program

t .

when a > -6 rather thanAl2 -15), one may wish to terminate the program

'for a>0 where d is a small, positive number, If so, the valueof a

obtained for (12) will be,less than the true minimum for B. since the
I'

program has been optimized for only a subset of the constraint's. How-

eve'r, it is easy to se&from (12) and (13) that increasing Co by 61(1-8)

'yields a feasible solution and increases H by that same amount. Conse-

quently, this.feasible Set would come to within 6/(1-0 of minimizing S.

The question now arises as to how close V(
\.

series approximation to V(n)-, is to the true value

T
this consider the operator Au(n) defined in equatio

IIAu ull

:
max

= i I Au -

laurin

'V(n). To n= er

defi

(19)

oleSince the operator,A is a constraction mapping with IAu - Avi<

8Iu - vI'it can be shown lhat Ile+lu
Anu

11.4111A4 411 and

n
A u - ulk(1-85I 1eu -

IT(Tr)- = v(Tr)I_sl I

111.(1=8) and V(Tr)
im

) =
n

it follows that

(20)

0

One could find a local maximum to lAv vI by an incremental

procedure similar .6-thai usedto finhe most unsatilified coast aint

to introduce infothe linear progiSmmiOg problem. .Alternatively4 one

-;,Could enumerate_(20) for all possible prObabilityyectors-Whose com-

ponents #re multiples of 1/n.

24
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