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ABSTRACT

Levin's (1975) sample-size determination procedure for completely ran-

domized analysis of variance designs is extended to designs in which antece-

dent or blocking variable information is considered. In particular, a re-

searcher's choice of designs is framed in terms of determining the respective

sample sizes necessary to detect specified contrasts of a given magnitude

with given Type I and Type II errors. A solution is provided for dealing with

real-world considerations in which errors of measurement cannot be neglected.

A worked example presents an instance wherein a blocking strategy is clearly

advantageous assuming infallible measuring instruments, but not when the sane

instruments are granted fallibility.
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Additional Considerations in Determining

Sample Size

Joel R. Levin and Michael J. Subkoviak

University of Wisconsin

INTRODUCTION

When it comes to designing an experiment, an educational researcher can

draw from a variety of sources--some in the form of old wives' tales, and some

in the form of theoretically sound recommendations (e.g., Feldt, 1958)--to de-

termine whether it is preferable to assign subjects randomly to K experimen-

tal conditions and subsequently to perform an analysis of variance on the de-

pendent variable Y (hereafter referred to as a completely randomized design);

or rather to include in the analysis antecedent information based on variable

X (known or assumed to be related to Y). The antecedent information included

can be operationally dealt with in various ways: chiefly, in terms of random-

ized blocks analysis, analysis of covariance, or analysis of an index of re-

sponse (such as change scores)--cf. Porter & Chibucos (1974).

The major advantage of these procedures, relative to the completely ran-

domized design, is one of reducing the within-treatment variability by remov-

ing the variation in Y that is due to the relationship between X and Y. The

present paper focuses on one of these procedures, namely the randomized block

design, as a competitor to the completely randomized design; and, in particular,

it considers an alternative to the traditional way of deciding whether to block

or not to block that includes real-world situations in which errors of measure-
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ment associated with X, `I, or both are likely to be present. Moreover, since

the discussion by Porter and Chibucos (1974) suggests that in "true" (Campbell

& Stanley, 1966) experiments of moderate sample size, analysis of covariance

and analysis of an index of response may be regarded as essentially equivalent

procedures to blocking--within degrees-of-freedom differences and slight dif-

ferences in their error expected mean squares--the material presented here

has implications for the other two procedures as well.

Reliability and Sample Size

Statistics texts typically acknowledge four ingredients of hypothesis test-

ing: (a) Type I error probability (a); (b) Type II error probability (0) or

its complement, power (1 - 0);(c) sample size, and (d) the magnitude of the ex-

perimental effect of interest. In planning an experiment, a researcher can

specify a and the power desired to detect an effect of specified magnitude, and

subsequently calculate the required sample size; or, in evaluating a completed

experiment, the predetermined a level and sample size can be used to compute

the power that was available to detect an effect of given magnitude.

Such calculations tacitly assume that dependent variables and/or antecedent

variables are measured without error, i.e., they are perfectly reliable (true

scores). In actual practice, however, both antecedent and dependent variables

are measured with error, i.e., they are fallible (observed scores), with the

result that "textbook" power/sample size calculations (which do not take the

unreliability of the observed data into account) produce inaccurate estimates.

In particular, they produce underestimates of required sample sizes in the

planning stage and overestimates of available power in the post hoc evaluation

condition. The present paper provides formulas for the computation of power

and sample size that include the reliability coefficient of observed scores,

thereby augmenting the list of hypothesis-testing ingredients mentioned above.
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Several authors have considered the effect of unreliability on statisti-

cal tests (e.g., Cleary 4 Linn, 1969; Cleary, Linn, & Walster, 1970; Overall

& Dalai, 1965; Sutcliffe, 1958; Porter, Note 1). Cleary et al. (1970), for

example, have demonstrated that the power of the F-test in a one-way, fixed-

effects analysis of variance (ANNA) decreases as the reliability--and also

as the validity--of the dependent variable decreases. The purpose of the pre-

sent paper is to extend some of the Cleary et al. notions to designs in which

antecedent information is considered; in particular, to the randomized block

design. Moreover, in contrast to the commonly recommended strategy for decid-

ing whether or not it would be advantageous to block (i.e., by determining the

relative efficiency of a randomized block design to a completely randomized

design for a fixed number of subjects--cf. Kirk, 1968, pp. 147-149), the strat-

egy adopted here consists of framing the decision in terms of the respective

sample sizes associated with the two designs that are required to yield equiva-

lent power for detecting specified effects of interest (see, for example, Cohen,

1969, pp. 46-50).

CASE 1: LATENT TRUE VARIABLES

Sample Size Determination for the Completely Randomized Design

The reader is referred to Levin (1975) for a discussion of sample size

determination based on a researcher's a priori specification of the minimum

value of any given linear contrast of interest (which has been called inin

accordance with desired a and 1-0. The resulting number of subjects required

per experimental condition (n) guarantees the researcher the desired power

associated with detecting the contrast of interest, should it be of the spec-

ified magnitude. In the case of a planned-comparison approach to hypothesis

testing, the F-test is performed with 1 and K(n - 1) degrees of freedom (these
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referring to the degrees of freeda associated with the contrast and the mean

square within respectively); and in this situation the probability of detect-

ing a contrast of the magnitude specified is alternatively the probability of

obtaining a significant F-ratio (both 1 - 0). In the case of a post hoc ap-

proach to hypothesis testing, the F-test is performed with K - 1 and K(n - 1)

degrees of freedom (where K - 1 represents the degrees of freedom associated

with the mean square between); and in this situation the probability of detect-

ing a contrast of the magnitude specified is alternatively the probability of

obtaining a significant F-ratio and then identifying that contrast as statis-

tically significant according to Scheffe's (1953) multiple comparison proce-

dure (see Levin, 1975). According to this formulation, To represents the magni-

tude of the contrast in means considered to be of interest to the researcher,

and which is expressed in within-treatment standard deviation units (a). Thus,
K

if T = 1 avuu (where the ak represent contrast coefficients chosen such that
k1 ^

K

k=1
akuk

k 1
a
k

= 0) , then T
a

=
a

=

Sample Size Determination for the Randomized Block Design

Rather than adopting the completely randomized design, a researcher may

choose to form n blocks of K subjects (on the basis of some relevant antecedent

information), and then randomly assign subjects within blocks to the K treat-

ment conditions. It is well known that the effect of introducing a blocking

variable into the design is to reduce a by a factor of df=q , where on.

represents the correlation between the antecedent variable and the dependent

variable. Thus, in terms of the present approach, all that needs to be done
K

k=1
akuk Wo

is to redefine a standardized contrast as 11, = _ . The

crs4"521CY 11-77ICY
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effect of blocking, then is to increase the value of Ta of the completely

randomized design which, if it overcompensates for the corresponding loss in

error degrees of freedom, i.e., from K(n - 1) to (K 1)(n - 1), results in a

decrease in the number of subjects required in order to maintain equivalent

power to that in the completely randomized case.

CASE 2: FALLIBLE VARIABLES

The above discussion has proceeded under the assumption that the only

"error" in the ANOVA, model consists of subject error. If there is measurement

error as well one's effective power will not be as great as one's nominal

power; or stated differently, a researcher will require more subjects than

the "textbook" sample size determination indicates are needed in order to have

the desired power (see, for example, Cleary, et al., 1970). Classical test

theory (Lord 4 Novick, 1968) assumes that the observed score Yi for person i

is equal to his or her true score Ti plus measurement error Ei, such that

Y.=T.+ESinceT.and-El are independently distributed with respective
2 2

expected values of UT and 0 and respective variances of aT and aE, it follows

that:

and

PY uT

uT

2 2 2

aT aE

(1)

(2)

The reliability of observed scores Yi is the ratio of true score variance to

observed score variance:

2 2
a
T

a
T

PTV 2-7
aT of oY
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Sample Size Determination for the Completely Randomized Design

How do these properties affect sample size determination in the completely

randomized design? As was noted previously, Ta is simply a contrast involving

the treatment means which is expressed in within-treatment standard deviation
IC

k=1
akuk

units, or T
a a

. Because of the relationship in (1), the numerator of

T
a is unaffected by measurement errors. What is affected is the denominator.

Thus, a in Ta reflects the within-treatment standard deviation of true scores,

or aT. Following Cleary et al. (1970) and employing (3), we note that in terms
a
T

of observed scores, ay = Thus, for the usual case where measurement

errors associated with the dependent variable are expected, we simply redefine

T
a

as:

akuk
k=1

cIT/15iT

where it may be easily shown (though it will not be here) that per, represents

the (assumed common) within-treatment reliability of the dependent variable.

Sample Size Determination for the Randomized Block Design

In the case of the randomized block design, the situation becomes compli-

cated due to potential errors of measurement associated with X in addition to

those associated with Y. Employing correction-for-attenuation formulas, one

can obtain the following general expression:

T
* 160/11)9Pril Pfff *

-CI
Pxx, (1 pxy)

a

(where ono represents the reliability of the antecedent variable) .
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It should be noted that this expression can be easily adapted to fit var-

ious special cases. In particular, if only X is assumed to be fallible, it

may be seen that:

2

1))0(' Pxy *V = .

-a /Ow (I piy)

On the other hand, if only Y is fallible:

PIT2
yt Pxy

Ta
I PXY

Finally, if neither X nor Y is fallible:

which is as it should be.

2y * *

-Cr a a
1 -

AN EXAMPLE

Levin's (1975) sample size determination formula is given by:

(4)

where: $ = a parameter in the Pearson and Hartley (1951) power charts,

available in most experimental design textbooks; more complete

tables displaying qi are also available (e.g., Tiku, 1967, 1972).

Let us apply (4) to the simplest ANOVA situation, namely for K = 2 which is

equivalent to the independent two-sample (nondirectionaQ t-test situation.

10



8

Assume that a researcher wishes to have an 80 percent chance of detecting

a difference in K = 2 means of at least 1 standard deviation unit, based on

a Type I error probability of .0S. How many subjects per treatment group

should he/she include? [With reference to Formula (4), it should be noted that

for all cases to be considered, vl + 1 = 2, which will always equal K in the
K 7

one-way layout; and 1 at = 2, which will always be true when only pairwise
k=1

differences in means are of interest, even for K > 2. (However, in some situa-

tions complex comparisons may interest the researcher, in which case the value

of a
2
will change--see Levin, 197S.)]

k=1
The information contained in the preceding paragraph may be translated as

follows: a = .0S, 1 - 8 = .80, Ta = 1.00. Incorporating this into (4) and

the appropriate power charts, and proceeding in the manner described by Levin,

we find that in the completely randomized situation (assuming a perfectly reli-

able dependent variable), a total of 17 subjects per treatment group is required

to yield the desired power.

If we further assume that an antecedent variable is selected that corre-

lates .S0 with performance on the dependent measure (i.e., p .50), then it

can be seen that T
*
=

1
= 1.155. Substituting this into (4) and check-

° V1-(30)'
ing with the appropriate v2, we find that if a randomized block design (assum-

ing perfectly reliable antecedent and dependent variables) were employed, a

total of 14 subjects per treatment group would be required to yield equivalent

power to that in the completely randomized design above.

Now let us suppose that either or both of the two variables involved

(antecedent and dependent) are fallible. Given separate (and equal) reliabil-

ities of iv= pyr= .80, for example, we are able to retrace the steps asso-

ciatedciated with (4), incorporating T and T as previously defined. Table 1 sumnarizes
-0

Insert Table 1 about here
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the results of this endeavor.

What is especially interesting about this particular example is that even

though we start out with a situation in which it is clearly preferable to block

(as reflected by a total savings of six subjects for Situation 1 of Table 1),

by the time the antecedent and dependent variables are both granted fallibility

on the order of per, = pry, = .80, the randdmized block advantage disappears

(as reflected by the 0 total subject savings difference in Situation 4 of

Table 1).

To make this lesson somewhat more concrete, assume that a researcher is in-

terested in comparing the efficacy of two instructional variations designed to

teach eighth grade mathematics. Both variations are to be incorporated into

programed instruction booklets and randomly assigned to students within class-

rooms or schools), and end-of-year performance will be assessed via a standard-

ized mathematics achievement test. Suppose further in this hypothetical situa-

tion that the production cost of the booklets is somewhat of a factor, so that

an experimental design that will yield the desired power with the fewest stu-

dents is the one to be selected. Given this information, should the researcher

randomly assign students to the two treatment conditions or block on seventh

grade standardized mathematics achievement scores, known to correlated .50 with

eighth grade scores? Ignoring the unreliability associated with two achievement

tests (as in the "textbook" case), the researcher would clearly do well to

block; he would require six fewer students with a randomized block design than

witha completely randomized desigp. However, considering the published relia-

bilities of the two tests of .80, the researcher would discover that it makes

little difference which of the two experimental designs he selects, since there

is a 0 subject savings. In fact, if it would require some additional effort to

obtain and/or record the seventh grade achievement data the researcher may well
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opt for the seemingly less efficient (though not so in this case) completely

randomized design.

CONCLUSION

This particular example is but one of several that could have been

contrived. What should be clear to the reader, based on this example and the

larger message of this paper, is as follows: First, each potential experiment

should be examined on an a priori basis to determine whether or not it is ad-

vantageous to block. This decision cannot be made without considering the

number of treatment conditions included, the magnitude of the relationship be-

tween the antecedent and blocking variables (pxy), as well as the various hy-

pothesis-testing ingredients described at the outset of the paper. Second,

to follow these procedures without simultaneously considering errors of measure-

ment is to live in a "fool's paradise," for these too will affect block-no

block decisions. In cases where a priori reliability information is lacking,

pilot research or sagacious judgments (to obtain approximate and conservative

estimates, respectively) will surely do better than nothing.
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Table 1. Comparison of Completely Randomized (CR) and Randomized

Block (RB) Design Sample Sizes for the Present Example

(K = 2, a = .05, 1 - 8 = .80, 'a = 1.00, pxy = .05)

Number of Total Subject
Situation 1' or Equivalent Subjects Per GrIT Savings (RB - CR)

1. X is Infallible,

Y is Infallible

CR 1.000 17
6

RB 1.155 14

2. X is Infallible,

Y is Fallible (pyy, = .80)

CR .894 21
6

RB .989 18

3. X is Fallible (per, - .80),

Y is Infallible

CR 1.000 17
4

RB 1.106 15

4. X is Fallible (PXX'
'80),

Y is Fallible (pyy, = .80)

CR .894 21

RB .931 21


