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COYMENT TO USERS -

In the upper right-hand corner of each Mastery Test you will find the "pass”
and "recycle” terms and a row of numbers M1 2 3 ..." to facilitate the
grading of the tests. W¥e intend that you indicate the weakness of a student
vho is asked to recycle on the test by putting a circle around the nucber of
the learning objective that the student did not satisfy. This procedure will
enable you easily to identify the learning objectives that are causing your
students difficulry.

COMMENT TO GSERS

It is conventional practice to provide several review modulé%‘per semester or
quarter, as confidence builders, learning opportunities, and to consolidate what

has been learned. You the instructor should write these modules yourself, in ternms
of the particular weaknesses znd needs of your students. Thus, we have not supplied
review modules as such with the CBP Modules. However, fifteen sample review tests
were written during the Workshop and are available for your use as guides. Please
send $1.00 to CBP Modules, Behlen Lab of Physics, University of Nebraska -~ Lincoln,

Nabraska 68588.

FINIS

-

This printing nhas completed the initial CBP project. We hope that you are finding
the materials helipful in your teaching. Revision of the modules is being planned
for the Summéxr of 1976. We therefore solicit your comments, suggestions, and/or
corrections for ‘the revised edition. Please write or call

CBP HORKSHOP

Behlen Laboratory of Physics
University of Nebraska
Lincoln, NE 68588

Phone (402) 472-2790
(402) 472-2742




¥odule 1
STUDY GUIDBE

DPTICAL INSTRUMEHTS

INTRODUCTION

You are now familiar with some of the prope: Lies of idealized single lenses and
simple spherical and plane mirrors. Almost all optical instruments are made up
of a combination of lenses, some close together and others far apart. Real lenses
and mirrors heve many undesirable properties intimately interconnected with their
desirable properties. By making careful and clever combinations of lenses one

can enhance the desirable and minimize the undesirable characteristics. In this
module you will begin the siudy of some simple combinations of mirrors and simple
lenses; it will give you some insight into the complications and fascinating
possibilities of complex optical systems.

PREREQUISITES

Before you begin this module, Location of

you should be able to: Prerequisite Content
*Solve problems to find image or object Lenses
location and lateral magnification by and Mirrors
calculation and by ray diagram for spherical Module

mirrors and thin lenses {needed for
Objectives 1, 2, and 4 of this module)

LEARHING ORJECTIVES
Yhen you have mastered the content of this module, you will be able to:

1. Ray diagrams - Use ray diagrams to find magnification and locate objects,
images, or lenses when appropriate other information is given for two-lens
systems.

2. Lanc equation - Use the thin-lens equation to find magnification and locate
objects, images, or lenses when appropriate other information is given for
two-lens systems.

3. Angular madnification - (a) Define angular magnification for various optical
instruments. (b) Apply the definition of angular magnification to systems of
two lenses, or one lens and one mirror, such as telescopes and compound
microscopes.




STUDY GUIDE: Optical Instrurents 2(8 1)

TEXT: Frederick J. Bueche, Introduction to Physics for Scientists and Engingers
(HcGraw-Hill, New York, 1975), second edition

SUEGESTED STUDY PROCEDURE

Study the text-Chapter 33, Sections 33.1, 33.3, and 33.4, and read the General
Comments. Then study Problems A through F and work the Assigned Problems. To
satisfy Objective 1 you should draw ray diagrams for the assigned problems even
though they are not specifically requested. Study the ray diagrams in the study
guide and Figure 33.5(b) in the text, but note that Figures 33.1, 33.4, and 33.5(a)
a;e ?gthr?y diagrams. There is a minor notation problem that the following table
shou elp.

Text Study Guide
Index of refraction y n
Object distance p 3
Image distance p- s~
BUECHE
Objective Problems with Assigned Problems Additional
Kumber Readings Solutions Problems
Study Guide Study Text (Chap. 33)
Guide  (Chap. 33)
1 Sec. 33.4 A, B 6
2 c, 0 G 13, 15, 17 14, 18
3 Secs. 33.1, E, F H 8 9,1,
33.3, 33.4 12
6




STUDY GUIDE: Optical Instruvents 2(5R 1)

TEXT: David Halliday and Robert Resnick, Fundaneﬁtalg of Physics (Wiley, Hew
York, 1970; revised printing, 1974)

SUGGESTED STUDY PROCEDURE

Since there is no discussion in your text specifically covering the objectives
of this module, you can follow the study guide supplied by your tutor if you have
one of the following texts available.

Frederick J. Bueche, Introduction to Physics for Scientists and Engineers (McGraw-
Hill, New York, 1975}, second edition.

Francis Weston Sears and Mark 4. Zemansky, University Physics {Addison-Wesley,

Reading, 4ass., 1970}, fourth edition. ({Nole thalt Sears and Zemansky use

s and s°, instead of o and i for object and image distance, respectively.)
Note also that most of the diagrams are not ray diagrams that follow the ray-
construction rules.




STUDY GUIBE: Optical Imstruments _ ‘ 2{sz 1)

TEXT: Francis Heston Sears and Mark ¥. Zemansly, University Physics {Addiscn-
Yesley, Reading, Mass., 1970, fourth edition

SUSEESTED STUDY PROCEDURE

Study the text Chapter 40, Sections 40-5, 40-10, 40-13, and 40-14, and 1ead the
General Comments of the study guide. Study Problems A through F and ray diagrams,
noting that most of the diagrams in the text are not strictly ray diagrams that
follow the ray-construction rules. Uork the Assigned Problems. To satisfy
Objective 1, you should draw ray diagrams for all Assigned Problems, even though
they are not specifically requested.

SEARS AND ZEFANSKY

Objective Problems with Assigned Problems Additional
Number . Readings Solutions Problens
Study Guide Study Text
Guide
1 A, B 6
2 Sec. 40-5 c,D 6 40-20,
40-21 (a) *
40-22
3 Secs. 40-10, E, F H 40-32, 40-35, 40-39
40"] 3 H 40-’33 N R
40-14 40-37,
40-38,
40-40




STUDY GUIDE: Optical Instruments 2{us 1)

TEXT: Richard T. Weidner and Robert L. Sells, Elementary (lassical Physics
{Allyn and Bacon, Boston, 1973), second edition, Vol. %

SUGGESTED STUDY PROCEDURE

Study the text Chapter 37, Section 37-3 on lens combinations, and be sure to study
Figures 37-16 through 37-20, as they are carefully drawn and merit careful study

although 1ittle is said about them in the text. Read the General Comments. Study
Problems A through F and work the Assigned Problems. You should draw ray diagrams
for the assigned text problems even though it is not specifically suggested in the

problem.
WEIDNER AND SELLS
Objective Problems with Solutions  Assigned Problems
Humber Readings
Study Guide Study Text
Guide
1 Sec. 37-3 A, B ' G
2 Sec. 37-3 C, D G 37-11,
37-12,
37-14
3 Sec. 37-3 E, F H 37-17
a




STUDY GUIDE: Optical Instruments 3

GENERAL COMMENTS _
Anyone who has a modest competance in geometrical optics has found ray -diagrams
essential for the understanding of optical systems. You have probably already
discovered that remembering and correctly applying the sign conventions for the
thin-lens equation can at times be difficult, and it gets worse for nultiple-
component systems. Drawing a ray diagram has fewer and less confusing rules. Ray
diagrams provide a relatively independent check on the results of a calculation
using the lens equations. Successful use of a ray diagram does require some
practice, and you must draw several before trying a Mastery Test.

There is one case of two thin lenses that is particularly simple - when they are

close enough together so that you can neglect the distance between them and when

the object distance for the second lens is the negative of the image distance for
the first lens. One of the Assigned Problems asks you to work out the details.

One experimental way fo find the focal length of a converging lens is to set up

an object and the lens and then find the location of the real image on a screen.

A simple calculation using the object distance, image distance, and the thin-lens
equation will then give you the focal length. This method cannot be used directly
with a diverging lens because with normal diverging wavefronts a diverging lens
cannot form a real image. Problems B and D illustrate a method of getting a real
image with a diverging lens and thus a way to find its focal length.

Our ability to distinguish details depends in part upon the size of the image on
our retina, which in turn depends on the angle subtended by the object at our eye.
Thus to see an object more clearly we bring it closer fo our eyes. There is a
limit, however, because when it gets too close we -can no longer focus on the object.
We somewhat arbitrarily take 25 cm as the nearest distance of distinct vision, and
characterize many optical instruments by their angular magnification. For a
microscope, angutar magnification (M) is defined as the ratio of the andle sub-
tended by the image viewed by the eye to the angle subtended by the object at

25 cm. For a telescope, however, the angular magnification is defined as the
ratio of the angle subtended by the image viewed by the eye to the angle sub-
tended by the object at its actual location. These definitions are slightly
different but reflect the actual use of the instrument. Note that the actual
magnification will depend on the location of the final image, which in most

instruments is adjustable.

PROBLEM SET WITH SOLUTIONS

A(1)}. Two thin converging lenses are on a common axis 1.00 m apart. The first
lens (L;)} has a focal length f; = +0.40 m; the second lens (Lz) has a, focal
length f; = #0.200 m. An object 0.0200 m high is 0.90 m to the left of the
girst lens. Find the location and size of the final image by making a ray

jagram.

o

Solution

To solve this problem draw a ray diagram, as you learned in the module Lenses and
Mirrors, to find the image of the object as formed by the first lens. This is
Figure 1. MNow using the image formed by the first lens L1 as the object for the

10




STUDY GUIDE: Optical Instruments 4

second lens, draw a ray diagram for the second lens, as in Figure 2. There is no
need to use extensions of any of the rays from the ray diagram of L]. Ray diagrams
in textbooks usually show particular rays continuing through both lenses, but

that is not necessary.

P

Figure 1

. A
% I
! f P
— | 4
'
\
/
."l

Figure 2

B{1). A thin converging lens (Ll) of focal length fy = 0.40 m and a thin diverging
lens (L2) of focal length f2 = -0.300 m are on a common axis 1.00 m apart. 1
An object 0.0100 m high is 0.60 m to the left of L]. Find the location and
size of the final image by making a ray diagram.

Solution
As in Problem A find the image formed by the first lens: 3See Figure 3. The next
step is a bit tougher, however: we cannotl treat the image from i..l as a simple

S 11




STUDY GUIDE: Optical Instvuments 5

object for L2 because its rays are intercepted by L2 before they can form an
image (virtual object). We shall proceed by choosing very carefully the rays
that we will draw.

(1) A parallel ray headed toward a virtual object point will aiverge from f2.

(2) A ray headed for f; and a virtual object point will be refracted parallel
to the axis.

{3} A ray-passing through the center of the lens and heading for a virtual object
point will be undeflected.

Note that on a ray diagram, you may use rays refracted by an extension of the lens.
See Figure 4.

r--} L2
1 L}
y |/
) y i £
f fa Y 2
.- L
i1
f] i
+—+
L.
Figure 3
3 L
2
I"\L1
{ ‘
f/
g i !
\ ]
\‘ !
\ { 1
v

Figure 4

o 12




STUDY GUIDE: Optical Instruments 6
C(2). For the same conditions as in Problem A, find the location and size of
the final image by calculation.

Solution

Apply the approximate thin-lens eguation fo find the image location of the original
object as formed by the first lens:

= — —..-..-I— -I_-_e - -
sTYTH twte Toee YC072m

from similar triangles on the ray diagram or the formula for lateral magnification,
image size = -{s”/s){object size) = (0.72/0.90){0.0200) = -0.0160 m.

The negative simply implies an inverted image. Since the lenses are 1.00 m apart,
the image from L] is now the object for LZ and has an object distance

S, = 1.00 - 0.72 = 0.280 m.
He now apply the thin-lens equation again:

] ] = ]_ ] ]_= ] s =
5,5 7F, 02 5T om0 %2 0.70 m,

final image size = -(-0.0160)(0.70/0.280) = 0.940 m.

These results agree quite closely with the graphical solution to Problem A.

D{2). Work Problem B using the thin-lens equation.

So]upion

The location and size of the image formed by the first lens should be fairly
routine by now:

11,1
S

f]’ 0.60

+

|-
N | e
\

0°30° s’ = 1.20 m;
image height = -(s/s){object height) = -3—:%—3(0.0100) = -0.0200 m.

This image now becomes the object for LZ’ its object distance
5, = 1.00 - 1.20 = -0.200 m.

The negative sign indicates a virtual object.

1 1 1 1 1 1 .
——t s —nt == s s; = 0.60 m;
S, S5 f2 0.200 S5 0.300 2

image height = -(s°/s){object height) = -[0.60/(-0.200)]{-0.0200) = ~0.060 m.
13
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STUDY GUIDE: Optical Instruments 7
This result agrees with the result from the lens diagram in Problem B.

E(3). The Moon at a distance of 3.8 x 108 m subtends an angle of ~0.5° as seen
from the Earth. With a felescope objective lens L] of focal length 2.00 m:
(a) Find the image I;> location, and size.
(b) A converging lens L, (f = 5.0 cm) is used to view the image I, created
by the objective Tens. The final image 12 is virtual and 0.250 i from LZ.
Find the distance from image I] to L2.
(c) What angle does the image Ij subtend at the lens Lz?
(d) ¥hat z2ngle does the image 12 subtend at the lens L2?
(e) Yhat is the angular magnification of this simple telescope?

Solution

{a) From the thin-lens eguation, since the cbject distance is very large the image
will be at ¥ = 2.00 m. The image and object of a thin lens subtend equal angles;
thus, 8 = y/T, where y is the image size:

y = fa = (2.00 m){0.5°)

It

{2.00 m){0.00873 rad) = 0.0175 m.

1]

(b) For LZ’ 5, is unknown. s~ = -0.250 m, ¥ = 0.050 m,

—_———mee B e s, =0.042 m.

{¢) The angle subtended,
tan 32 = y]sz = 0.0174/0.042 = 0.42, 92 = 0.40 rad = 22.7°.

Since we have freguently used the small-angle approximation, we could egually as
well have said 8, = y/sz = 0.42.

(d} The image subtends the same angle as the object:
s = = = o
85 5. 0.40 rad = 22.7°.

(e} M = e5/8 = 22.7/0.50 = 45. Hotice that this corresponds roughly to the approximate
formula

M= foffe = 2.00/0.050 = 40

(derived for the final image at infinity).

14




STUDY GUIDE: Optical Instruments 8

F(3). A compound microscope has an objective lens L], of focal length 4.0 m.
It forms an image I, at a distance of 16.0 cm of an object of 10 n *

diameter. It is viewed by a simple eyepiece (Lz, f, = 2.50 cm) adjusted

to form a virtual image !2 at infinity.

(a) Find the angle subtended by the object at the closest distance of

distinct vision.

(b) How large is the image !]?

(¢) ¥hat angle does the image I.l subtend at Lz when the final image 12

is at infinity?

(d) vhat angle does I, subtend at L,?

(e) Find the angular magnification of the microscope.

Solution
(a) tan 9 = 8 = 107/0.250 = 4.0 x 10" rad.

(b) The image size = (object size)(si/s, = 107°(0.160/0.0041) = 3.9 x 1077 m.
The object distance will be slightly larger than fy:

1 1 _ ] _

‘g:l-* 6.156 = ﬁ_ﬁoqﬁ 3 S-l = 0.004].

(¢) For I, at infinity s,, the object distance, is f, = 0.025 m. Thus,
6, = (3.9 x 1077)/0.0250 = 0.0156 rad.

(d) Same as part (c), 0.0156 rad.
(e) M = 8,/6 = 0.0156/(4.0 x 10°°) = 390.

Problems

G(1, 2). A thin diverging lens, fj = -0.40 m, and a thin converging lens, f, =
0.200 m, are on a common axis 0.100 m apart. An object 0.040 m high is
located 0.40 m to the left of the diverging lens. Find the location and
size of the Tinal image by a ray diagram and by calculation from the
thin-lens equation.

H(3). A Galilean telescope is to be constructed using an objective lens L.l of
1’-.l = +0.40 m and a diverging lens L2 of focal length f2 = -0.050 m.




STUDY GUIBE: Optical Instrumentis ' 9

(2) ¥hat angle is subtended by a 2.00-m object 2t 100 m distance?

(b) How large an image will be formed by lens L2

(c) The diverging lens L, is placed so that the final image I, is a
virtual image at infinity. Find the angle subtended by the virtual object
I-l at L2.

(d) Find the angle subtended by I, at L,.

{ej Find the angular magnification ¥ for the Galilean telescope adjusted
as above.

Solutions

g(]a 2). Location: 0.60 m to the right of the converging lens.. Size: 0.040
igh.

#(3). 0.0200 rad. (b) 0.0080 m. {c) 0.160 rad. (d) 0.160 rad. {(e) 7.9.

PRACTICE TEST

1. Two thin lenses each of focal iength #20.0 cm are 20.0 cm apart. An object is
10.0 cm to the left of the left-hand lens. Find the location of the final
image by both a ray diagram and calculation using the thin-~lens equation.

2. Define angular magnification for a microscope.

3. An opera glass consists of a converging lens of focal length 0.60 m and a
diverging lens of focal length -0.100 m. Find the angular magnification for
a 2.00-m tall opera singer at a distance of 30.0 m. ?If you use any simple
formulas for angular magnification be sure that you derive them.) Assume the
final image to be at infinity.

g'§ ¢

‘0 G2 1e Joafqo ay3y £q papuazqns
aibue ay3 o3 ‘«einio ay} je abewr (eury 3yl £q papualqns 3ibue 3yl 30 oLleu ayr -¢

“sual puey-3ybia g0 Jybra wo ofF 1

S4aMSUY 3sal 9013004y
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OPTICAL INSTRUMENTS Date

pass recycle
Mastery Test Form A
1 2 3

flama Tutor_

1. Two thin lenses each of focal length +0.200 m are 0.200 m apart. An object is
0.200 m to the left of the left lens. Find the location of the final image
both by a ray diagram and by a calculation using the thin-lens equation.

2. Define angular magnificatfon for a microscope.

3. The telescope in Figure 1 is constructed from an objective that is a concave

spherical mirror of diameter €.200 m and radius of curvature 3.00 m, and an.
eyepiece equivalent to a simple lens of focal length 0.0250 m. The telescope

is used to view a palr of stars whose separation subtends an angle of 0.00100 rad.
The Tinal image of the star pair is formed by the telescope at 1.00-m. Find the
angular magnification of the telescope when so adjusted. (Do not use any simple
formulas you may have remembered, but do the calculation step by step Trom

the definition.) The plane mirror simply reflects the image out of the incident
beam and need not be considered in this problen.

¢ To stars

Figure 5




DPTICAL INSTRUMENTS Date

pass recycle
Mastery Test form B

1 2 3
Name Tutor

1. Two thin lenses each of focal length +D0.200 m are D.200 m apart. An object
is D.30 m left of the left lens. Find the location of the final image both
by a ray diagram and by a calculation using the thin-lens equation.

2. Define angular magnification for a Galilean telescope.

3. A compound microscope is constructed from two simple converging lenses of
focal lengths 5.0 min {objective) and 5.0 cm {eyepiece) and a tube, Separating
the lenses, D.20D m long. The object is Tocated so that the final image is
at infinity. Find the angular magnification. (Do not use any simple formulas
you may have remembered, but do the calculation step by step Trom the
definition.)

18




OPTICAL IRSTRUMENTS Date

pass recycle
Mastery Test Form €

1 2 3
Hame _ _ Tutor

1. Two thin lenses, the one on the left of focal length ~0.200 m and the second
of focal length +0.200 m, are separated by 0.2C0 m. An ébject i5 0.200m to -
the left of the left lens. Find the location of the final image both by a ray
diagram and by a calculation using the thin-lens equation.

2. Define angular magnification for a telescope.

3. A pair of binoculars has an objective lens of focal length of 0.280 m and an
eyepiece of effective focal length 0.040 m. They are focused on an object
0.050 m high at a distance of 6.0 m with the final image at 0.250 m. Find the
angular magnification. (Do not use any simple formulas that you may have
remembered, but do the calculations step by step Trom the definition.)

19




OPTICAL INSTRUMENTS A-1

MASTERY TEST GRADING KEY - Form A

1. khat To Look For: The ray diagram is a bit tricky, but the student shouid
indicate para'l'le'l rays between the lenses (parallel to each other, .lot the
axis). Check sign, magnitude, and units of the numerical answer.

Solution: See Figure 6. For the first lens:
First lens: 1/0.200 + 'l/sf = 1/0.200, si' = o,
Second lens: 1=+ 'l/sg = 1/0.200, sé = 0.200 m to right of right lens.

W Figure 6

\Ob.iect at infinity
2. Solution: The angular magnification of a microscope is the ratio of the angle
subtended by the final image at the ocular o the angle subtended by the object
at the nearest distance of distinct vision, usually 25.0 cm.

3. Hhat To Look For: Be sure that the problem is so‘IVed in a stepmse fashmn ]
- similar to- that below, -and--not -by- ¥ -—fojf S e ]

Solution: The focal length of a spherical mirror is R/2 = f = 1.50 m. For an
object as far away as a star the image will be at the focal plane. The separ-
ation of star images will be

d= fo, = (1.50){0.00100) = 1.50 x ‘10_3

To find the distance to the ocular we use the thin-lens eguation:

s, - 1/1 = 1/0.0250, s, = 0.0246 m.

8, = dfs, = (1.50 = 107%)/0.0246 = 0.061 rad.

M = 2/0.00100 = 0.061/0.00100 = 61.
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OPTICAL INSTRUNENTS 3-1

MASTERY TEST GRADING XKEY - Form B

1. What To Look For: Be sure that the ray diagram has rays that can be con-
structed and is not “faked” from the numerical answer. Check magnitude, units,
and reference point of Tinal answer.

Solution: See Figure 7. 1/0.40 + ‘l/s.I = 1/0.200, si = (.40 m;

S, = 0.200 - s7 = 0.200 - .40 = -0.200;

-1/0.200 + T/sé

1/6.200, s3 = 0.100 m to right of right lens.

Figure 7

. -;_.52 —3. o

2. Solution: The angular magnification of a telescope is the ratio of the angle
subtended by the final image at the ocular to the &ngle subtended by the
object at the objective lens.

3. Yhat To Look For: Be sure that the problem is dore stepwise similar to the
Eolutign zglow, and not by substitution into M = L(25/fo)fe {except perhaps
as a check).

Solution: Assume an object y {small), 8y = y/0.250 = dy. Since the final
image is at infinity its object is £ = 0.050 m from the objective, 0.200 -
0.050 = 0.150, and the object distance can be calculated:

]/ST + 1/0.150 = 1/0.0050, 5y = 0.0052 m;

image size = y(0.150/0.0052) = 29y.

8, = 29y/0.050 = 580y; and, finally, M = 580y/4y = 145.
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MASTERY TEST GRADING KEY - Form C

OPTICAL INSTRUMENTS c-1 j
|
|

What To Look For: Be sure ray diagram uses correct‘principal rays and ig not
“faked” from numerical answer. Check magnitude, units, and reference point
of Tinal answer.

Solution: See Figure 8.
1/0.200 + 1/5{ -1/2.200, 5] = -0.100 m;

= 0.100 + 0.200 = 0.300,

]

2
= 0.60 m to right of right lens.

1/0.300 + TISE 1/0.200,

52

Figure 8

Solution: The angular magnification of a telescope is the ratio of the angle
subtended at the ocular by the final image to the.angle subtended by the object. —  _|
at the objective lens.

What To Look For: 8e sure that the problem is done stepwise similar to the
Solution below and not simply M = fo/fe = 7 {except maybe as a check on the
result).

Solution: The object subtends an angle 8; = 0.050/6 = 0.0083 rad. The image
is at s3:
1

1/6 + llsi = 1/0.280, s; = 0.290 m.

Its size is {0.050){(0.290/6) = 0.00240 m. Its distance from the ocular is Sp3
1/52 ~ 1/0.250 = 1/0.040, s, = 0.0340 m.

The angle subtended at the ocular is

6, = 0.00240/0.034 = 0.072. M = 0,/8, = 8.5,
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Module 1
STUDY GUIDE

DIFFRACTION

INTRODUCT ION

Have you ever wonderad why you can hear around corners, but .cannot see around

them? You know that light and sound are waves, and should therefore share the
same basic properties. Why then do they seem so different in the property of

their “shadows”?

In this module you will learn that light does exhibit all the bending properties
of sound and water waves. The effect, however, depends on the size of the obsta-
cle -compared to the wavelength. It is only the largeness of everyday obstacles
compared to the very small wavelength of light that deemphasizes the bending,

or diffraction, of light. In this module we shail use very small obstacles- and
windows in order to mzke the diffraction effect most apparent to you.

PREREQUISITES
Before you begin this module, Location of
you-should be-able-to: - - - - - - - Prerequisite -Content - -- - -
*Explain interference of light in terms of the Interference
properties of waves {needed for Objectives 1 Module
through 4 of this module)
*Give the source and wavelength of some common Wave Properties of Light
electromagnetic waves {needed for Objectives Module

1 through 4 of this module)

LEARNING OBJECTIVES

After you have mastered the content of this module, you will be able to:

T. Huygens' principle - Use Huygens' principle to explain how light from a single
s1it can produce interference fringes.

2. Fraunhofer diffraction - {a) State the optical conditions necessary to produce
Fraunhofer diffraction through a single slit. (b) Use the equation for the
diffraction intensity pattern from single-slit Fraunhofer diffraction to solve
for the intensity, the position of various intensities, the size of the single
sl1it, or the wavelength of the wave.

3. Resolving power - {a) Describe the conditions for which two objects viewed
through a slit or circular aperture are just resolved. (b) Solve for the

23




STUDY GUIDE: Diffraction 2

separation, distance, or the wavelength emitted by two objects that are just
resolved; or solve for the smallest orifice through which they can be iden-
tified as two objects.

Diffraction grating - Solve diffraction-grating problems that ask for the

position of the principal.{or most intense) maxima, the order number, the
wavelength o the light, or the optical construction of the diffraction
grating.
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STYDY GUIDE: Diffraction 3(8 1)

TEXT: Frederick J. Bueche, Introduction to Physics for Scientists and Engineers
(McGraw-Hill, New York, 1975), second edition

SUGGESTED STUDY PROCEDURE

Read General Comments 1 and 2 in this study guide, and Section 32.1 of Chapter 32.
Then- study Problem A. HNext read Sections 32.2 thyough 32.4 and study Illus-
tration 32.1 and Problem B, before working Problems E and F. Read Section 32.5
and study Problem C; work Problem G. Then read Sections 32.6 and 32.7, study
Problem D, and work Problems H and I.

Take the Practice Test, and work some Additional Problems if necessary, before
trying a Mastery Test.

BUECHE
Objective Readings Probfems with Solutions Assigned Additional
Problems Probiems
Study Text Study (Chap. 32)
Guide Buide
1 General Comments A Quest.a 1
1, 2, Sec. 32.1
2 Secs. 32.1 to 32.4 B 11us.? 32.1 £, F Quest. 4, 7,
Probs. 1 to 8,
) 10
3 Sec. 32.5 o & Quest. 9,
Prob. 9
4 Sec. 32.7 b H, I Quest. 2, 3,
Probs. 14 to 16,
19, 21

M1us. = I1lustration(s). Quest. = Question(s).
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STUDY GUIDE: piffraction 3(HR 1)

TEXT: David Halliday and Robert Resnick, Fundamentals of Physics (Wiley,
New York, 1970; revised printing, 1974)

SUGGESTED STUDY PROCE DURE

Read General Comments 1 and 2 in this study guide, and Section 38-1 in Chapter 38.
Then study Probleém A, Read Sections 38-2 through 38-4 and study Problem B and
Examples 1 to 3, before working Problems E and F. Read Section 38-5, study
Problem C and Example 4, and work Problem G. Then read Sections 38-6 through
38-9, study Problem D and Example 7, and work Problems H and I.

Take the Practice Test, and work some Additional Problems if necessary, before
trying a Mastery Test.

HALLIDAY AND RESHICK

Objective Readings Problems with Solutions Assigned Additional

Number _ Problems Problems
Study Text Study (Chap. 38)
Guide Guide
1 General Comments A
1, 2, Sec. 38-1
2 Secs. 38-1 to B £x.2 1, 2, E, F Quest.? 1 to 6,
38-4 3 Probs. 1 to 4,
6, 7
3 Sec. 385 ¢ Ex. 4 6 Probs. 10 to 15
4 Secs. 38-7 to 38-9 D Ex. 7 H, I Quest. 14, 15,
17, Probs. 30
to 36

ey, = Examb]e(s). Quest. = Question(s).
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STUpY GUIDE: piffraction 3(sz 1)

TEXT: Francis Weston Sears and Mark K. Zemansky, University Physics (Addison-
Yesley, Reading, Mass., 1970), fourth edition

SUGGESTED STUDY PROCEDURE

read General Comments 1 and 2 in this study guide, and Section 41-10 in Chapter 41.

Then study Problem A. Next read Section 41-11, study Problem B, and work Problems
E and F. Read Sections 41-12 and 41-13, and study Problem D. and. Examples 1 and
2. Then read Section 41-14 and study Problem C. Work Problems G through 1.

Take the Practice Test, and work some Additional Problems if necessary, before
trying a Mastery Test.

SEARS AND ZEMANSKY

Objective Readings Problems with Solutions Assigned Additional

Number Probl ems Problems
Study Text Study

Guide Guide

1 General Comments 1, A
2, Sec. 41-190

2 Sacs, 41-10, 41-11 B E, F 41-15, 41-16,
41-17

3  Sec. 41-14 ¢ g 41-22, 4i-23

5 Secs. 41-12, 41-13 D £x.21, 2 H, 1 41-18, 41-29,
(Sec. 41-12) 41-21

%y, = Examp]é(s).
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STUDY GUIDE: Diffraction 3{¥s 1)

TEXT: Richard T. Weidner and Robert L. Sells, Elementary Classical Physics
(Allyn and Bacon, Boston, 1973), second edition, Yoi. 2 i

SYGRESTED STUDY PROCEDURE

Since your text does not follow the order of the lLearning Objectives of this
module, you might do well to read Chapter 39 through quickly at first, for an
overview, then study the sections according te objective, as given in the Table.
Read General Comments 1 and 2 in this study guide. Then read Sections 39-1 through
39-3, study Problems A and B and Example 39-1, before working Problems E and F.
Next read Sections 39-4 through 39-7, study Problems C and D and Example 39-2,

and work Problems G, H, and 1.

Take the Practice Test, and work some Additional Probiems if necessary, before
attempting 2 Mastery Test.

WEIGHER AND SELLS

Objective . Problems Assigned Additional
Humber Readings with Solutions Problems Problenms
Study Text Study
Guide Guide
1 General _A
Comments
1, 2, Secs.
39-3, 39-1
2 Secs. 39-3 8 Ex.? 399 E, F 39-5, 39-7, 39-8
39-1, 39-2 ’ 39-9
3 Sec., 39-7 C G 39-14, 39-15,
39-16, 39-17

4 Sec. 39-5 b Ex. 39-2 H, I 39-19, 39-20

9y, = Example(s).
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STUBY GUIPE: Difiraction 4

GEHERAL_CDMHEHTS
1. Huygens® Principle

Huygens® principle describes the motion of a wave moving away from its source by
having you visualize that each point on the expanding wavefront is a Source of
spherical waves of the same wavelength. 1In Figure 1 are shown two examples of
waves coming through different-size windows. The small left-hand window in Fig-
ure 1{a) can be thought of as containing only one point, with the spherical wave
emanating from it and spreading into the region to the right of the window with
equal intensity in all directicns.

(a)
Figure 1 Figure 2

As the window becomes larger, as in Figure 1(b), the transmitted wave becomes

more planar and the bending around the edge becomes a less important effect. The

many spherical waves produce interference in all directions except that normal

to the plane of the windows. This is a qualitative reason why large windows {or ]
obstacles) appear to cast sharp shadows. ]

2. Interference of Waves

A1l through the readings in this module you will encounter the 1ight and dark
fringes that you have learned to associate with interference of waves. This
remains the correct interpretation of these fringess but now the inferfering waves
are the spherical waves predicted by Huygens' principle. An example is shown in
Figure 2. Two points, A and B, are shown on a wavefront moving to the right. The
secondary waves from A and B are also shown. At point P the waves from A and B
have different length paths and will interfere. Depending on what the pathlengths
to P are for the other secondary waves from the wavefront, you might see a fringe
at P.

it is not difficult to realize, though, that for a wavefront containing many
pointss the conditions for all the secondary waves to interfere in just the right
way to produce fringes at P are rare. Your everyday experience agrees with this:
except for cases such as when you are looking through an umbreila- or at a far-
away light, you do not see fringes.
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STUDY GUIBE: DifTfraction 5

PROBLEH SET WITH SOLUTIDHS

A(1). A single slit is illuminated from the left with monochromatic waves, as
in Figure 3. Use Huygens' principle to explain how fringes can be seen
on the screen. Assume plane waves.

Solution

Pick points A and B on the edge of and midpoint of the slit. Draw some secondary
Huygens' waves, as shown in Figure 4. How that you have the spherical waves you
can pick two parallel rays and detemine their path difference. A lens is neces-
sar'y to achieve a- focus on the screen. See Figure 5. If F = /2, the rays will

interfere destructively at the screen. Additional pairs -of points can be chosen

similarly until the slit is full. Each pair will have rays at the same angle as ;
those coming from points A and B, which will also interfere destructively. Thus, 9
point P on the screen will be the location of a dark fringe. The location of the )
bright fringes is more complicated to detemine. Suffice it to say that in between
every two dark fringes there must be a light fringe.

Figure 3 Figure 4

E
B

B(2). A thin lens with a 3.00-m focal length is placed directly to the right of
a 0.60-mm-wide single s1it. The slit is illuminated from the left with
500-nm-wavelength 1ight. The intensity at the central maximum is 12.0 x
107 W/m2. Assume Fraunhofer diffraction, and find the intensity 2.00 x
10°2 m to the side of the central maxXimum.

Figure 5

Figure 6
T

{or w or b)/j_ -




STUDY GUIDE: Diffraction (]

Solution
See Figure 6. The texts give the intensity equation for Fraunhofer diffraction as

I=glsirf a)/e?d, a= (sa/2) sin 6 ) (HR)*
1= Io[(s‘in2 Wil u= (zb/2) sin 93 (B)*
< - 2
i= 10[5‘23}’2’;2‘2 o)y (sz)*
sin2 &f2 2 .
I= 10[ 3 ], ¢ = (2zw/2) sin 8. ) (#S)*

Find 8: tan 6 = y/f = (2.0 x 107> m)/(3.00 m). For this small angle, tan 5
= §. Using the notation of Halliday and Resnick:

agy) - 6.0 x 107 m)(2.00x 100 w) _, o
d (500 x 1072 m)(3.00 m)

o=

>

Then
1= (12.0 x 107° g/ §)[sin?(148°)/(2.51)2] = 6.58 = 107 3/ .

C{(3). A counterfeiter photographs a bill prior to making his engraved plate.
See Figure 7. His camera has a 2.00 x 1072 diameter lens, and he uses
. daylight (550 x 10'9 m). What is the farthest he can place his camera
from the bill if he wants to be able to resolve details 1.00 x 10 % m apart.

Solution

The 1imiting angle of resolution for a circular aperture is & = 1.22X/d.
The angle 8 is related to the bill-camera distance by y/x = tan 8 = 8 for small
angles, which you can anticipate here. See Figure 8. Thus, y/x = 1.22x/d and

\
\\ ;\
S
%\
\\\
s\
Y
_ N
Figure 7 Figure 8
*HP = Halliday and Resnick. B = Bueche. SZ = Sears and Zemansky. WS = Weidner
o and Sells. 31




STUDY GUIDE: Diffraction 7

-4 -2
d .
yd _ (1.00 x 10”° m){2.00 x 107° m) _ 3.00 .

x =
L2 (q.22)(550 x 1077 m)

D{4). A diffraction gra;ing has 5.5 » 105 lines/m. %nhat is the highest order for
which a 560 = 10"~ m green light can be observed? Assume normally incident
plane waves.

Solution

The intense {principal) maxima are located by mx = d sin 8. The maximum viewing
angle is @ = z/2. In this case, mA < d because m is an integer. Thus,

meda
- A

Problems

£(2).

F(2).

6(3).

1

— =3.2 and m=3,
(5.5 = 10°/m)(560 x 10~ m)

If the yellow light from a sodium arc (1 = 583 x 10'9 m) is used in a
Franunhofer single-slit diffraction experiment, how wide must the slit
be if the first minimm occurs at an angle of 6°? Yould it be difficult

to carry out this experiment? _
A plane ave having wavelength 5.90 x 107 m falls on a slit of width
0.400 > 10-3 m. A converging lens, focal length of 0.70 m, is placed
behind the slit and focuses the light on a screen. What is the distance
on the screen from the center of the diffraction pattern to (a) the first

minimum? (b) the second minimum?

Some persons who live in the Arctic reduce the amount of 14ght entering
their eyes by wearing opague screens with slits cut in them as shown in
Figure 9. What is the smallest width of the slits so that the “sunglasses”

will not prevent resolution of objects 0.30 m apart and 500 m away? Assume
sunlight with A = 6.00 x 10'7 m and Fraunhofer diffraction.

Figure 9
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STUOY SUIDE: Qiffraction 8

H{4). A student calibrates a diffraction grating using light from a helium-neon
laser (A = 6.328 = 10'7 1) and Fraunhofer conditions. See Figure 10.
The first-order principal {or most intense) maximm occurs at 38°.

(a) What is the spacing between the rulings on the grating? (This is
vhat the calibration accomplishes.)

(b) At what angle is the second-order principal maximum?

I{4). A diffraction grating 0.0200 m wide has 6000 rulings. At what angles will
the principal (or most iniense) maxima occur if the incident radiation has
a wavelength of 5.89 x 107 @, Assume Fraunhofer conditions.

Solutions

E{2). 5.6 x 107®* m. Yes, if you had to make your own apparatus. The slit
1S very narrov.

F(2). (a) 1.03x10"*m. (b) 2.06 x10™>m

6(3). 1.00 x 1072 m. H(4). {a) 1.03 x 10"% m. (b) It does not occur.

1(4). First order: 10°. Second order: 21°. Third order: 32°. Fourth
order: 45°. Fifth order: 62°.

PRACTICE TEST

1. Use Huygens’ principle to explain how light through a single slit can produce
interference fringes.

2. .(a} State the optical conditions necessary for Fraunhofer diffraction.
(b) 4hat is the distance between the central maximum and the third minimum
of a Fraunhofer single-slit diffraction pattern on a screen 0.40 m away from
the s1it? The light has a wavelength of 5.50 x 10~7 m, and the slit is
2.50 x 1073 m wide.

3. (a) Use the Fraunhofer single-slit diffraction pattern intensity graph to
describe the conditions for which two objects are just resolved.
(b) A telescope is used to observe two distant point sources 0.50 m apart.
The light used has a wavelength of 5.00 x 10~7 @, and the objective mirror
of the te]escope is covered with a screen having a rectangular slit of width
1.00 x 107 m. Yhat is the maximum distance at which the two sources may be
distinguished as two?

4. What is the longest wavelength that can be observed in the third order for a
diffraction grating having 1.00 x 10° lines/m?

W, O0LxEE P 0L =007l (9) € W 0Lx 092 (9) -2
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DIFFRACTION Date

pass recycle

Mastery Test Form A

Name _ Tutor

T.

1 2 3 4

?‘plane]wavefront advances from the left toward the single slit shown in
igure 1.

(2) Use Huygens® principle to explain how the wave can go through point P.

(b) Use Huygens’ principle to explain briefly how there might be a light or
dark fringe on a screen placed at point P.

(a) Why is a lens necessary to focus the fringes resulting from Fraunhofer

diffraction?

(b) Light of wavelength 4.00 x 10'7 m is used in a Fraunhofer single-slit

experiment. The slitwidth is 4.5 x 10'4 m. What is the ratio of the inten-

sity at 2.00° to the intensity at the central maximum?

{a) Briefly describe the conditions on the separation of their diffraction
patterns for two objects that are just resolved. '

{(b) An astronaut lands on the Moon and sets off two bright, yellow flares

(x = 590 x 102 m) 10.0 m apart. The #oon is 3.8 x 10° m from Earth. Could
the 200-in. (5.1-m) telescope on Mt. Palomar resolve the flares? Explain.

A diffraction grating having 10 000 lines per centimeter produces a first-
order principal {or most intense) maximum at 8 = 28°. wuhat is the wavelength
of the light used?

Wavafrontt Figure 1
™~
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DIFFRACTION Date

pass recycle

Mastery Test Form B

_Naﬁé.L -t Tutor

1.

Warefront |

—? o Light source

vy

s L.
LR o

A plane wavefront advances from the left toward the single s1it shown in
Figure 1.
Eai Use Huygens® principle to explain how the wave can go through point P.
b) Use Huygens® principle to explain briefly how thére might be a light or
dark fringe on a screen placed at point P.

{a) What are the optical conditions necessary to produce Fraunhofer diffrac-
tion through a single s1it?

(b) You are given the task of measuring the width of a: very narrow slit and-
you decide to use Fraunhofer diffractien. Your apparatus is shown in Figure
2. A 1.50-m-focal-length lens is placed against the slit. You measure the
distance between the second- and third-order dark fringes to be 5.0 x 1072 m.
What is the width of the s1it? (X =475 x 107° n.)

(a) The intensity diffraction pattern for a small object is shown in Figure 3.

A second similar small object is placed near the first, and -it can just be
determined that two objects are present. Sketch the intensity diffraction
pattern for the second object in Figure 3. B

(b) An approaching car with headlights separated by 1.40 m is viewed through
a single slit 1.00 x 107" m wide. How close must the car be to the observer

before she, can distinguish that there are two headlights? (i = 7.00-x 1077 m.)

You are given a diffraction grating with 6000 lines per centimeter.
(a) What is the highest order you can observe for a principal (most intense)
maximum for the 632.8 x 102 m wavelength helium-neon laser light?
(b) At what angle does this order occur. '

Jhinges

? Lens

Figure 2

Figure 3

Y |

Dark __f'lL

1:50 m ;::;;:::j[




DIFFRACTION Date

g pass recycle
Mastery Test Form €
1 2 3 4
Name _ Tutor

1. A plane yavefront advances toward the single slit from the left in Figure 1.
a) Use Huygens' principle to explain how the wave can go through point P.
b) Use Huygens' principle to explain briefly how there might b2 a light or
dark fringe on & screen placed at point P..

2. (a) in the apparatus shown in Figure 2, where T1 and T, ars the focal lengths
of Lenses 1 and 2, respectively, will the diffraction of Tight through the
single slit be Fraunhofer diffraction? Briefly explain why.

(b) I the 1ight source emits two wavelengths, 500 and 750 x 1072 m, show that
the second-order dark fringe for one wWill coincide on the screen with the
third-order dark fringe of the other.

3. (a) A small objJect is placed near the similar small object whose intensity 3
diffraction pattern is shown in Figure 3, and it can just be determined that :
two objects are present. Sketch the intensity diffraction pattern for the
second object on Figure 3. _ )

{(b) A circular radar antenna {A = 0.250 m) is designed to resolve two airplanes
1000 m apart and 200 km away from the antenna. W#hat is the minimum diameter
of the antenna dish? ;

4. You are given a diffraction grating and told to determine the number of lines
per meter. Using the green line of mercury (546 x 10-% m), you find that the
angle between the central and the first principal (most intense) maxima is 30°.

Sct-emfd .
I ‘ Lens & k
- \y/
Have- > B )
front :
—>
ﬁ ° ' ;q
45; —_—
Figure 1

Figure 2
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DIFFRACTION A-1

MASTERY TEST GRADING KEY ~ Form A

1. Solution: See Figure 18. Each point in the slit is a source of secondary
spherical waves. Rays from any of these waves can go to point P.
(b) IT the spherical waves that go through point P have pathlength differences
such that their superposition causes complete destructive or constructive
interference, there will be fringes at P.

2. Solution: {(a) Fraunhofer diffraction is characterized by plane-wavefronts
(parallel rays) on both sides of the obstacle or window. A lens. is necessary

to focus parallel rays.
(b) uvsel = IO[(sin a)/a®], where a = mafA sin 6.

Solving for &, we find
a = 5(8.5 x 10°% m)/(4.00 x 10”7 m) sin(2.00°).

Use the small-angle approximation sin 6 = 6 to get sin 2.00° = #/90. Then
« = 72(4.5 x 1074 m)/(4.00 x 1077 m)(90) = 123 rad.

How

I _ sin®a _ sin?(211°) _ sin’(31°) _ 1.75 x 107>

Ip & (123)2 (123)%

3. Solution: {(a) The central maximum of one object’s diffraction pattern is at
the first minimum of diffraction pattern of the other object.
(b) Use sin 6 = 1.22 }/a and anticipate that 6 will be very small so that
sin 6 = tan 6. See Figure 19. tan 6 = y/X, and thus, y/x > 6 is the condition
for resolution of the flares.

¥ = (10.0 @)/(3.8 x 10%m) = 2.6 x108, 8=1.220(500 x 10°° m)/5.1 m] .

= 14.1 x 1078,

Thus the flares are not resolved.
4, Solution: Use mh = d sin 6.

A = (d sin 6)/m = (1.00 x 107° m)(0.469)/1 = 469 x 10° m.
p

y - Flare
Telescope

Figure 18

Figure 19

37
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DIFFRACTION B-1

MASTERY TEST GRADING KEY - Form B

1.

Solution: {a) See Figure 20. Each point in the slit is a source of secondary
spherical waves. Rays from any of these waves can go to point P.

(b) See Figure 20. If the spherical waves that go through point P have path-
length differences such that their superposition causes complete destructive
interference, there will be fringes at P.

Solution: (a) The wave on the upstream side of the slit must have plane
wavefronts. The analysis for interference on the downstream side of the
s1it is done with parallel rays (also plane wavefronts).

(b) See Figure 21. Using mr = a sin 8, and the small-angle approximation
8 = sin 6 = tan €: mA = ay/x, and for the second and third dark fringes,

2% = aY,/x, A= aygfX, Y - ¥, = (3 - 2)ax/a,

c A (475 %1070 m)(1.50 m) _ g 434107
Y3 - Y, 5.0 x 1072 m

a

Solution: {a) See Figure 22. The central maximum of one pattern must be over
the first minimum of the other. -7 -4 -3

(b) Use sin & = Afd = (7.00 x 107" m)7(1.00 x 10" m) = 7.00 x 10°°, and the
small-angle approximation sin & = tan 6 is justified. See Figure 23, where

tan 6 = y/x. Thus: P

=Y . LAOD . 909,
7.00x 1073 7.00 x 10

X

Solution: (a) Use mx = d sin 6 and, since |sin6f <1,
_ 1
(6 x 10°/m)(632.8 x 107 m)

Figure 20
= 2.6.

ned-

Thus Moax = 2.

(b) sin 8 =m/d = 2/2.60 = 0.77. 6 = 5]1°.

Figure 21 B |
(RE

Figure 22




DIFFRACTION A C-1

MASTERY TEST GRADING. KEY - Form C

1. Solution: See Figure 24. Each point in the slit is a source of secondary
spherical waves. Rays from any of these waves can. go- to peint P.

(b) If the spherical waves that go through peint P have pathlength differ-
ences such that their superposition tauses complete destructive or construce
tive interference, there will be fringes at P.

2. Solution: (a) Yes. Lens 1 causes parallel-ray (plane wavefront) light to
shine on the s1it; and lens 2 focuses only parallel rays onto the screen.
{b) Use mA = a sin 8. When the two orders coincide they will have the: same
6. The s1itwidth a2 is the same for both wavelengths, t_hus-m.li.l = Myhys

24, = 3, and A,/A, = 3/2, which is satisfied for A, = 750-x 107" m and

A, = 500 x 1079 .

3. (a) See Figure 25. The central maximum of one pattern miist be over the
first minimum of the other.

(b) Use sin 6 = 1.222/d. Since the planes are two hundred times farther
away than the distance between them you can use the small-angle approxima-
tion sin 8 = tan 8. See Figure 26. tan 6 = y/x = 1.22A/d and ~

. 1.22x _ (1.22)(0.250 m}(200 x 10° m) _ ¢y

¥ 1000 m -

d

4., Solution: Use mix =d sin 8. d is the distance between the lines. We
want 1/d. Thus

s:ln 6 ___ 0.50 =91 x 165/m.
1(546 x 107 m)

Figure 24

Figure 25
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Module 1
STUDY SUIDE

ALTERNATING-CURRENT CIRCUITS.

IHTROBUCTION

The electric clock on the wall, radio and television, the incredibly rapid handling
of information by compuiers, and the transmission of signals by our own -nerves

are among countless devices and effects that depend on circuits in which- currents
or voltages vary with time. Alternating-current (ac) circuits, in which charges
oscillate back and forth in awire in such a way that the average current is :
Zero,are among the simpler time-varying circuits. In this module you will study '
the behavior of simple ac circuits containing resistors, inductors, and .capacitors.

Pl

PREREGUISITES

Befors you begin this module, Location of

you should be able to: . Prereq'ui_site Content

*Convert degrees to radians and radians to Trigonometry
degrees (needed for Objective 1 of this Review
module)

*()ifferentiate and integrate sine and cosine Calculus
functions (needed for Objectives 1 and 2 of Review
this module)

*Relate emf, current, and resistance in dc Birect-Current
circuits (needed for Objectives 1 through 3 of Circuits Module
this module)

*Relate capacitance, charge, and potential Capacitors.
difference (needed for Objectives 1 through Module

- 3 of this module)

*Relate inductance, current, and emf (needed Inductance
for Objectives 1 through 3 of this module) Module

*Calculate energy in the electric field of a Capacitors
capacitor (needed for Objective 4 of this module) Module

*Calculate energy in the magnetic field of an Inductance

inductor (needed for Objective 4 of this module) Module

LEARNING OBJECTIVES
After you have mastered the content of this module, you will be able to:

40
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STUDY GUIDE: Alternating-Lurrent Circuits 2

3.

4.

Rotating vectors - Illustrate phase relations among currents and potential
differences in different portions of a given ac circuit, using vector and/for
graphical techniques.

AJternating-currgnt analysis - Solve for unknown quantities in an ac circuit,
using vector techniques, given 2 suitable set of currents, potential differences,
emfs, resistances, capacitances, inductances, and/or frequencies.

Averages - Calculate root-mean-square {rms) potential differences, currents,
and/or average power in a given ac circuit.

Energy - Describe the energy flow in a given ac circuit.
41
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STUBY GUIDE: Alternating-Current Circuits 3(8 1)

TEXT: Frederick J. Bueche, Introduction to Physics for Physics for Scientists and
Engineers (McBraw-HilT, New York, 1875), second edition

SUGGESTED STUDY PROCEDURE

You have already studied simple examples in which currents or potential differences
varied with time. For Objective 1, it will be useful to review quickly Sections
21.12 in Chapter 21 and Section 25.4 in Chapter 25. Then study Section 27.1 in
Chapter 27 for Objective 2. Usually angular frequency, e« = 2xf (radians per sec-~
ond), is used to avoid carrying factors of 2= along in all the equations.

Study General Comments 1 through 3 and Chapter 27, Sections 27.2 through 27.4
for Objective 3. Keep in mind the text's convention on notation: v, i are time-
varying gquantities; Vo io are the maximum values, or amplitudes of time-varying
quantities; and V, I are rms quantities. To make the text on p. 524 consistent
with Figure 27.3, change "C" and "D" to “A" and "B," respectively, in the second
paragraph and in the footnote.

BUECHE
Objective Readings Problems with Assigned Problems Additional
Number Solutions Problems
Study Text Study Text
~ Guide uide (Chap. 27) (Chap. 27)
1 Sec. 27.4, A TMus.? 0 7,8,14 9,1n0,1s, 16,
General Comments 27.5, 19
3,5 27.6,
27.7
2 Secs. 27.2, B Illus. £ 3,57, Quest.?9¢o
27.3, 27.5, 27.2, 8, 14 13, Probs. 4,
General Comments 27.3, 6, 9, 10 to
1, 6 27.4 13, 15, 16, 19
3 Sec. 27.1, c F Quest. 5, Probs.
General Comments 1,2, 9, 18
2, 5
4 Sec. 27.6, B, C £, F Quest. 3, 4

General Comment 4

31lus. = Dlustration{s). Quest. = Question(s).
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The vector treatment used to represent rms potential differences and currents (e.q.,
Fig. 27.8) can be extended to give instantaneous values, v(t) and i{t). Suppose
the potential difference between twe points in a circuit is given by the exprassion

vy = Vg Sinut = 72V sin ot,

where ¥V = ["(t)]rﬂm' Let us draw a vector representing the amplitude, Vi = 2v.

IT the vector is horizontal at t = 0 and is allowed to rotate counterclockwise with
angular velocity w, it will look like the sketches in Figure Bl at the stated times.
The instantansous value of v(t) at time t is then simply the vertical component of
the rotating vector.

1f a potential difference is the sum of two potential differences, with a difference
in phase, as in Figure 27.8, the same analysis can be applied. The entire vector
triangle rotates with angular velocity w. Thus, if i = i sin ut as in Figure 27.8,
the vector triangle looks, at different times, like Figure B2, In summary, to find
the instantaneous potential difference or current at any instant t, algebraijcall

add the component instantaneous values. To find the amplitude or the rns_potent%a]
difference, add the component values vectorially. In comparing the triandgies drawn
here with those in Figure 27.8, notice that Bueche has drawn the triangle for mms
values, but we have plotted maximum values. This does not affect the geometry in
any way, since we multiply the length of each yms gquantity by the same factor vZ

to get the amplifude. Solve Problems A and B. Compare your solutions with those

in the study guide. Then solve Problems D and €, and Problems 3, 5, 7, 8 and 14

in Chapter 27.

Study Sections 27.5 and 27.6. Resonance is an important special case of the general
RLC circuit. If you can handle the general case, resonance is easy! In Section 27.6
the author suddenly changes his notation. To avoid confusion, add the subscript "av®
to the left-hand side of Eq. {27.14b} and the unnumbered equation following it. Read
General Comments 4 and 5. Solve Problem C and compare your answer to that in the
study guide. Then solve Problem F. Take the Practice Test, and work some Additional
Problems if necessary, before frying a Mastery Test.

Figure Bl

w

[ W

wt = 7 rad
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TEXT: Dayid Halliday and Robert Resaick, Fundamentals of Physics {Wiley, Hew York,
1970; revised printing, 1974)

SUGGESTED STUDY PROCEDURE

Your fext does not treat the subject of ac circuits. If you have available any of
the books listed below, your instructor can supply you with a study guide for this
module:

Frederick J. Bueche, Introduction to Physics for Scientists and Engineers {#cGran-
Hil1l, New York, 19/5), second edition.

Francis Heston Sears and Mark W. Zemansky, University Physics {Addison-Wesley,
Reading, Mass., 1970), fourth edition.

Richard T. ¥eidner and Robert L. Sells, Elementary Classical Pnysics {Allyn and
Bacon, Boston, 1973), second edition, vol. 2.
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TEXT: Francis ¥Weston Sears and Mark W. Zemansky, University Physics {Addison-Kesley,
Reading, Mass., 1970), fourth edition

SUGGESTED STUDY PROCEDURE

You have already studied simple examples in which currents or potential-differences
varied with time. It will be userul to review gquickly Chapter 29, Section 29-7,
Chapter 33, Sections 33-11, 33-12, and 33-13. Study General Comments 1 and 2. Then
work Problems 35-1{a), (b), {c), and 35-3(a), (b}, (c).

Study Sections 35-1 and 35-2. MNotice the conventions used by your text: lower-case
letters imply instantaneous values, upper-case letters imply amplitudes, or maximum
values. The use of rotors was Tirst described in Section 11-4. Review that section

if the use of rotor diagrams seems unfamiliar. Rotors are also called rotating vectors
or phasors. Solve Problem A and compare your solution with that given. Then work
Problem D. Tne word “voltage," derived from the volit unit, is commonly used for
either potential difference or emf. Its useage is so common that you will have to
learn to live with it.

Study Section 35-3. Impress on your mind the last paragraph on p. 507. Kirchhoff’s
rules for circuit analysis depend ultimately on two of the great conservation laws
of nature: the conservation of charge and the conservation of energy. We sometimes
get so accustomed to applying “rules” that we forget what physics lies behind them.

SEARS AND ZEMANSKY

Ohjectiie Readings Problems Assigned Problems Additional Problems
Number with
Solutions
Study Study Text
Guide Guide
1 Secs. 11-4, A D 356 to 35-10, 35-12, 35-14,
35"3’ GEﬂel‘a] 35"9’ 35-]], 35-]5, 35"']6’ 35-]8’
Comments 3, 5 35-13 35-19, 35-20
2 Secs. 35-1, 35-2, B E 35-1(a), Eb;, 35-10, 35-12, 35-14
35-3, 35-6, c » 35-3 to 35-20
General Comments
1, 5
3 Secs. 35-4, 35-5, C F 35-12,. 35-14 to
General Comments 35-17, 35-19
2, 5
4 general Comment B, C E, F
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Study Sections 35-4 and 35-5. Study General Comment 3. Then solve Problem 8 and
compare your solution with the one provided. Solve Problem E and Problems 35-5 to
35-9, 35-11, and 35-13. Study Section 35-6. Resonance is an important special
case of the general RLC circuit. I7 you can handle the general case, resonance is
easy! Study General Comment 5. Solve Problem C and compare your solution with
the one in the study guide. Then solve problem F.

Take the Practice Test, arnd work some Additional Problems i necessary, before try-
ing a Mastery Test.

46
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JEXG: Richard T. Weidner and Robert L. Sells, Elementary Classical Physics (Allyn
and Bacon, Boston, 1973), second edition, Vol. ¢

SUGGESTED STUDY PROCEBURE

You have already studied simple examples in which currents or potential differences
varied with time. It will be useful to review quickly Chapter 27, Section 27-7,
Chapter 32, Section 32-2, and Chapter 34, Section 34-1. If you have not done so,
correct Eq. (34-7); the first term on the right-hand side should read

Qﬁ(cos wt)Z/ZC.

Study carefully Section 34-2. Keep in mind the notation used by your text for
instantaneous, rms, and maximum values. Rotating vectors are sometimes abbreviated
rotors. Another common term for them is phasors. By convention- the vector rotates
counterclockwise, thus ot is the angle measure counterclockwise from- the position
at time t = 0. The important point when adding rotating vectors is that Instantaneous
values add algebraically, amplitudes (maximum values) or rms values add like vectors.
Solve Problem A in this study guide, and compare your solution with the one provided.
Then solve Problem D. Study General Comments 1 to 3 in the study guide. Theﬂ study
Sections 34-3 through 34-5. Hote the Common; but imprecise, use of the vord "volt- g
age" to refer either to potential difference or emf. Equation (34-16) states that :
the average power in the RC circuit is P = Vi, where ¥V and I are rms values of v and
i. This is ihe average power delivered to the circuit by the source of emf. Where
does that power come from? Does the generator create the energy? What happens to
the energy when it is delivered to the Circuit? Solve Problem 34-4.

WEIDNER AND SELLS

Objective Readings Problems with Assigned Problems Additional
Rumber Solutions Problems
Study Text Study Text
Guide Guide
1 Secs. 34-2, A Ex.a D 34.4, 34-8; 34-3, 34-6, 34-7
34-6, General 3401 34-10 to 34-9, 34-13, 34-14
Comments 3, 5 34-12
2 Secs. 34-2 to B Ex. E 34-8, 34-10 38-3, 30-6, 34-7,
34-6, General 34-1 to 34-12 34=13, 34-14
Comments 1, 5 to 34-3
3 Secs. 34-2 to c Ex. F 34-8, 34-11, 34-9 -
34-5, General 34-2 34-12 =% 313
Comments 2, 5 34-3
4 Genera]qumment B, C E, F 34-3

[ El{llc 3y, = Example(s). 47




STUDY GUIDE: Alternating-Current Circuits 3(¥S 2)

Study Section 34-6, including especially Evample 34-3. Notice that the circuit
analysis depends ultimately on two of the great conservation laws$ conservation of
charge and conservation of energy. He sometimes get so accustomed to applying “rules”

‘that we forget the physics that lies behind them. Study Section 34-7. The resonant

circuit is, of course, just a special case of the RLC series circuit. Solve Problems
8 and E. Then solve Preblems 34-8, 34-10, 34-11, and 34-12. In Problem 34-11, draw
a graph of v, vp, and £ as functions of time. Study General Comment 5, and solve
Problems C and F.

Take the Practice Test, and work some Additional Problems if neceSsary, before
attempting a Mastery Test.
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GENERAL COMMENTS
1. Signs

In writing the differential equation representing Kirchhoff's loop equation for
a circuit, you must be precise and definite in your choice of signs. For example,
suppose we have an RC circuit as in Figure 1. We can choose any convention we
wish for the signs, but we must make a choice and stick with it. In this case,
a common choice is to say that the current is positive clockwise when the top of
the source of emf is at a positive potential with respect to the bottom. We
still must choose a sign for the charge on C. Let us choose the bottom plate to
have positive charge. (That is a reasonable choice. If € were missing, ¥q on
the bottom plate would provide a clockwise current.) HNow the circuit diagram
looks 1ike Figure 2. Kirchhoff's rule tells us to set the emf equal to the
potential difference between points a and b:

iR - 9/C = &(t).
Differentiating with respect to time gives us

r@L) - e - Ele)

Now the temptation is to set dq/dt = i. However, with the signs chosen here,
positive current means that the magnitude of the charge stored in each plate of
C will decrease. We therefore must set

dqfdt = ~i.

The circuit equation then becomes

redh) + i - B,

and the work of solving it can begin.

L(t) A

Figure 1 Figure 2

If, on the other hand, we had chosen the reverse convention for the sign of the
charge on C, a positive current would cause an ¥ncrease in the charge stored on
the plate. The equation would then read

iR+ q@/C = &(t)  with the condition dg/dt =
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This-gives us, after differentiation,

R + &= G

He get the same equgtion, as we must, since it describes the same physical situation.
But we get it only if we are consistent in dealing with sians.

in a circuit with an inductor, if fhe current increases in the direction of
positive current {(di/dt > Q), we know there will be an opposing emf, trying to
prevent the increase in current:

g = -L{di/dt).

See Figure 3. This means that at the time shown in Figure 3, with positive di/dt,
the induced emf in the inductor will tend to drive an opposing current counter-
clockwise. The net emf in going around the circuit is & - L{di/dt). (See the
redrawn version of the same circuit in Figure 4.)

g(t) - L(di/dt) = iR;  &(t) = L{di/dt) + iR.

Try to reach the point where you can analy2e a circuit physically to be sure
you get the signs correct. Rules memorized without physical understanding are
fallible and readily forgotten.

wg .E=.E0 sin (wt + ¢) R

Figure 3

Figure 4 Figure 5

2. Approximations

Consider an RLC circuit, with an ac source as in Figure 5. The phase ¢ in the
emf is to allow for the fact that the initial phase of the emf may depend on the
particular conditions. (The emf might not be 2ero at the instant you turn on
the switch, for example.) The loop equation for the circuit, assuming the signs
given, is

iR + q/C = £ sin{ut +¢) - L{di/dt).
Differentiating, rearranging, and using the fact that i = dq/dt gives us
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L('_f) + R( ) + (c)1 = _d't_)= By cos(ut + 4).

This differential equation, along with the initial conditions, determines the
complete, exact behavior of the current for all time t > 0, up to the time when
the switch is again opened. There are mathematical techn1ques for solving this
equation. The solution will give you the current, including transient effects.
However, since we do not wish to plunge into that much mathematical detail, we

can learn a great deal about the circuit by making some assumptions and aoproxima-
tions. In so doing, we lose some of the detailed information contained in the
exact solution of the differential equation.

Figure 6

One important assumption we make throughout this module is that we are most
interested in the steady-state solution; that is, the solution after the currents
and potential differences have had time to reach their maximum final amplitudes.
Thgt means we sha]] not learn how the current builds up from zero to its final
value.

Another implicit assumption in the treatment used here is that the current has
the same frequency as the applied emf. That is certainly true, but is not proved

here.

Because the frequencies are typically so large that we can ‘ignore the details of
the oscillation of V ¢r i, we frequently are interested only in average or rims
values. That is what you read on an ac voltmeter or ammeter. Of course, you are
sacrificing a 1ot of information that would be contained in the exact solution of
the differential equation.

3. Pha;e

When two oscillations of the same frequency are superimposed, the result depends
on the relative timing of the oscillations. At one extreme, the maxima of both
oscillations occur at the same instant, and the oscillations add constructively.
At the other extreme, the maximum of one oscillation coincides with the minimum
of the other, and the oscillations subtract. There are, of course, infinitely
many cases in between the two extremes.
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The relative timing of the oscillations is determined by the relative phase of
the two. Mathematically, the relative timina can be expressed by equations such.
as

€ =8y sinut and 8, = £, sinfut + ¢),

whera ¢ is the phase angle of 82 with respect to S]. A plot of these two
expressions, for ¢ = 7/4 rad = 45° looks like Figure 6. MNotice that a crest of

€é occurs at an angle wt = 7/4 earlier than a crest of 8]. The difference between
leading and lagging is sometimes confused: because, in our right-handed society,

82 appears to the left of 81, and therefore looks as if it's "behind" 81. Remembey,
the abscissa is proportional to the time, not the position. If one wave precedes
the other in time, it leads!

If you simply try to memorize the fact that the potential difference leads the
current for an irductor, and the current leads the potential difference in a
capacitor, that knowledge probably will not stay with you very long. Even if you
resort to mnemonic trickery, it will not help you learn physics. The correct way
to learn which quantity leads which is to reason physically.

An inductor is a coil of wire. A current in the wire will produce a magnetic field
through the coil, and therefore a magnetic flux. If the current changes, the flux
will change, and Faraday's law, & = -d®/dt = -L{di/dt), tells us that the changing
flux produces an induced emf to oppose the change. Because of the opposina emf,

it is hard to force a change in current in the wire of an inductor. In fact, if
you try to abruptly change the current, the emf approaches infinity, since it is
proportional to di/dt. Because the induced emf always opposes a current change,
the current change cannot "keep up with" an imposed change in emf. The chande in
current always lags behind a change in the imposed emf.

To change the potential difference of a capacitor, we must transport charge from
one of the plates to the other. To change the potential difference abruptly, we
must transport a lot of charge in-a verY short time. In the 1imit of very short
times, we approach an infinite derivative,

dv/dt = 1/C{dq/dt} = (1/C)i.

Since we cannot get an infinite current, we cannot change the potential across
a capacitor in an infinitesimal time: The potential change cannot "keep up with"
the current; the potential lags behind the current.

4, Energy

In charging up a capacitor, the source of emf performs work on the charges, which
increases the energy -stored in the electric field of the capacitor. e know that
a capacitor C, charged to a potential difference V, will have energy

02
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£ = (1/2)cv?

stored in the electric field. Similarly, an inductor with a current I has
stored in its magnetic field the energy

E= (1721,

\ "\fco =—i'0/.»;,c,

Figure 7 Figure -8

In an ac circuit containing capacitors and inductors, and possible resistors, there
is clearly some kind of energy -exchange going on between the electric and magnetic
fields, with the source of emf available to do work or have work done on it. To
try to understand what is qgoing on, consider a simple LC series circuit, as in
Figure- 7, in-which -we assume that the inductor has zero resistance. We construct

a vector diagram for the circuit in Figure 8, referring all vectors to the current,
since all elements of the circuit have the current in common. The net emf & is the
difference between V, and V., since those two vectors are 180° out of phase. Let
us assume that wl > 1/{wC), so that € is in phase with ?L. He can now plot the
emf, the current, and the potential differences as Ffunctions of the time - see
Figure 9. In Figure 10 are shown the confiqurations of fields at the times t], t2,
't3, and“t4'thdt are jndicated on the graphs of Figure 9. These configurations

are easy to figure out, if you recall that the magnetic field is proportional to
the current, and the electric field is proportional to the potential difference
.across the capacitor. We see that between ty and t2 the magnetic field is collapsing,
and the electric field is building up. The energy in the circuit oscillates
‘between the inductor and the capacitor, as the fields build and collapse in the

two elements.
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@ 4 -

i ‘ ' ot =
1 2 4 - §§§§§§§ (ESE) y :
\ '-‘h‘“*h;;;‘-i"’,;f""-? wt (ES;) __]:i}\ 21 JE :
| Y (b) £, '
Ve _/\ ot Figure 10
-

. . (c) t;
5. More Complicated Circuits

You might by now have the impression that all ac circuits must be hooked up in

series. That is not true, and this comment will emphasize a general approach to

all ac circuit problems.

I 1‘%)0
. 4 L L Figure 1 i s fio) E
r 4 R‘ 0
: 2 ¢ == v, Figure 12— )y
L JEVLJO
a,
Ry
o
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The key is to break a complicated circuit into sections in which all elements

have a potential difference or a current in common, and to draw a vector diagram
for each section, referring each vector in a diagram to the common factor. For
exampie, suppose we had in a circuit the combination shown in Figure 11. Both th
and' C must have, at each instant, the same potential drop. Let us call that 91.
The inductor L and resistor R2 both have, at each instant, the same current 1i.

For the CR] section, refer the two current vectors (iR )D and (ic)o, to the common
potential drop. The diagram is shown in Figure 12. The current in a resistor is
always in phase with the potential drop across it, and the potential droo across a
capacitor always lags behind the ac current in the capacitor by n/2 rad.

Refer the two potential drops in the LR, section to the common current i, The
vector diagram is shown in Figure 13. The potential drop across RZ is in phase
with the current in the resistor. The current in an ideal inductor always lags

behind the potential drop across it by n/2 rad. The only tricky part is to couple
these two vector diagrams together. We do this by noting from the circuit diagram

that
i(t) = iR_l(t} + ic(t),.
or, if we add amﬁlitudes or ras values, that iD is the vector sum of (iR )D and

(ic)o. Going back to the first vector diagram, Figure 12, we can draw in ip- Ye
see from Figure 14 that i, leads (i, ), by
D R] D

1,(i¢) )
$ = tan ](r;g-?aa = tan ](IV%T§7§;) = tan ](R]mC)L

1
Now, since we have iD on the first vector diagram, we can simply add the rest of
the second vector diagram, rotating so that ali .ectors bear the proper relationship
to iD‘ See Figure 15.

Figure 14

575 Figure 15
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1f the problem demands it, we can get (vz)o, the vector sum of CUL)O and (VRZ)O.
¥e can even get the total amplitude of the potential drop,

To= Bh)o + W)

Since the vector diagram gets messy by now, iet us summarize by drawing two vector” _
diagrams, one for currents and one for potential drops, Figures 16 and 17, respectively..
By studying the diagram for potentjals, you can see that :

1 ) -1 (Vp)g sin(e + ¢)
R R R (Y R AT R

Using these relationships, and equations such as
(¥ )g = G lgets (Ve)g = (3c)g/ul, and (Vp)g = (ip)gRs

one can learn everything about the circuit, if the algebra does not get too messy.
Remember, the instantanenus value of any of these quantities is the vertical
component of the vector at time t, if the diagram is rotated counterclockwise
with angular velocity w.

Figure 16 Figure 17

PROBLEM SET WITH SOLUTIONS

A(1). Figure 18 represents part of an ac circuit. The potential differences Y,
and V2 are: v](t) =0 sin{ut + 5]), vz(t)3= Va0 sin (wt + 6]),
vhere vy = 24.0 ¥, Vog = 16.0 ¥, v = 3.00 x 10 rad/s,:él = ~-30°, and
8, = 45°.

(a) On a rotating vector diagram, show vectors for Y10 and Y20 at times
t=0; t=(n/1.80) x 10'4 s; and £t = {n/6) x 10-3 s.

(b) Calculate the instantaneous values of v](t), vz(t), and the total
potential drop VT(t) ¥ vz(t) at the times specified in part (a).
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(¢) Determine the maximum value of v(t), and its phase with respect to
either Vip OF V20'
(d) Plot V15 Vs and v as functions of time.

Figure 18

et

Solution
(a) At t = 0: see Figure 19(a). At t = (=/1.80) = 1074,
ut = (3.00 x 10%)(x/1.80 x 107%) = /6 rad = 30°
See Figure 19(b). At t = %/6 x 1075,
ot = (3.00 x 103)(a/6 x 1073) = 5/2 rad = 90°.
See Figure 19(c).
(b) Component of ) along verical axis iv(t). See Figure 20. Instantaneous values
add algebraically:’
t=0: v{(0) = vqq sin 8, = 24 sin(~1/6) = -12.0 V.

v2(0) = ¥y sin 8, = 16 sin(n/8) = 16(/2/2) = 11.3 V.
v(0) = v](O) + v2(0) = -0.70 V.

Vzo

(b} .

» Vi

57 Figure 19




STUDY GUIDE: Alternating-Current Circuits 13

t = z/1.80 x 1074 v](=/1.80 x 10-4) = Vg sin{ut + 6]) = Y30 sin(s/6 - =/6) = 0. :

This was obvious from the vector diagram. See Figure 21. ]

] Y , Figure 21
‘l:.i'ﬂ 20 vzft) - .....?.112._-— —_—— /-—.-//
Figure 20 )51 | ‘//'/
)s, Iy
y - ¥y
{ 77,
%) £=0 Y10 £ = a/L90 x ot

vz(a/l.ao x 10'4) = Yy sin{wt + 62) = V50 sin(75°) = 12 sin(75°) = 11.6 V¥,

viz/1.80 x 1074 = 11.6 v.
= /6 x 107>, ot = x/2 rad. See Figure 22.
v](xls x 10'3) = Vg sin{ot + 6]) = ¥y sin{=/3) = 20.8 V.

v(/6 x 1073) = 32.1 V.

Figure 23

Figure 22

{c) Maximum values add like vectors. ¥e can use any one of the vector diagrams.
The easiest to use is Figure 21, since Y10 has only one component: .

vg = Vgx . ng’ VOy = Vo0 sin 75° = 11.6 V from part (b).

- : - 2 _ -
Vox = V10 T Vog 05 75° = 28.1 V, Vo © 924.17, Vo 30.4 V.

$ = tan'](voyIVOX) = tan”' (11.6/28.1 % % 22.4°,
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where $ is the phase angle by which Yy ieads Y10 See Figure 23,
(d) See Figure 24. E—
. Vv

Figure 24 /‘ 5, A\ N\ 32 s for
z 7,

B(1-3). {2} iIn the circuit shown In Figure 25, draw a rotating vector diagram showing
Vons Yens £ns and §,.
RO* "CO° 70 0
(b} Calculate the current amplitude 10, and Vep 2nd Yro? in terms of 80, R,
and C. )
{(c) Determine values of R and C such that the maximum potential difference
across C is (‘1/2)8o at a frequency of T = w/2a = 108 Hz,
(d) For the values chosen in part {c), determine the phase angle and draw a
graph showing vc(t) and E{t) versus time.
(e) Calculate the maximum instantaneous power djssipated in the resistor.

(f) Compare the average power dissipated in the resistor with the average
power. supplied by the source of emf.

Figure 25 \ ‘Vftf' o) $ Vio
© 7T - f
_—C T Vo
, B Yoo €
Nt
2,
£=8& sin wk Figure 26 (b
v,
Solution co

(a) Since i(t) is common to both R and C, refer the vectors to the current i.

Vp = iR is in phase with i, thus Vro is parallel to i; Ve 1ags behind the current
by n/2 rad (why?). See Figure 26. If you wish to rotate the diagram to time,

t = 0, get € horizental, as in Figure 26(b).
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(b} Vpo = 10R, Voo = io/cc,

ag = io[RE + ()] or iy = 8/,

where
7= % + (1a0)2"2.
Does that make sense? Are dimensions right? As the plates of the capacitor come

together, the capacitance increases. If they touch, the capacitor is shorted.
See Figure 27.

q{-
AT
:ct C—
- J./r.o
* R
R | —o

Figure 27 Figure 28
lim iy = sﬁln. That looks 0K.

C+o

lego ig = aomc = sﬁ/xc, which also looks CGK. Then Voo T ioxc = 80 sin &,

where ¢ = tan'](vcolvgn) = 1/RaC from the diagram. Then
Vo © 80 sin & = So(l/mc)(l/iﬂz + {1/eC)* = 80(1/¥W + (ch)Z),
‘where Veo is a function of freguency. The higher « is, the smaller the potential

drop across C. This circuit is called a "low-pass filter" if_vc(t) is taken as
the output. It "passes” low freguencies.

. 1/2
Vg = iR =8y cos §= 80§-= SC/[T + C(ﬁ%E)] .

vp gets bigger as w increases. IT p is used as the output, it is called a "high-
pass filter." BAs a high-pass Tilter, the circuit is usually written as shown in
Figure 28.

{c) Veo Eol/i + (RmC)2 = 80/2, therefore

14+ (ReC)2 = 4, R =B/ = /312 = 10%)C.
If we choose C = 1 nf = 1072 F, then

R = /3/25 x 10° = 276 .
B} 60
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{d) See Figures 29 and 30.

tan¢=-§.9-=ﬁ-= 3
(#3/2n x 10°)(2x = 10°)(107)

é = 0.523 rad = 30°.

=}§-=o.577

Yeo )
£=0 ~”
& -~
\<o° ’ *1
Yeo
Figure 29 Figure 30

{e) pR(t) = ['i(t)}zR. But i(t) = io sin{ut + 6), where 6 = 90 - ¢ = 60°, The
maximum power is

[p(t)] . = [iZR sinz(mt +0)) .. = i%p = BSR .
R "/ “max 0 max 0 m

For w=25 x10°, R=276, =109, and

= 2 -3
[pg(t)] ,, = 85(2.72 x 107°).

C(1, 2, 3, 4). 1In the circuit shown in Figure 31,
R=3.00x10%g, c=102%F,

L = 2.00 H, o = 10% rad/s, and £ = L

€ = 25.0 V. £, sinut '

(a) Calculate i(t). R C""-L
(b) Calculate the average power -—_r

supplied to the circuit.

(c) Plot &(t), i(t), and p(t)
versus wt. Figure 31
Solution 3

Begin by dividing the circuit into sections in which all elements have a potential
drop or a current in common. See Figure 32. The RC combination has a common poten-
tial difference. C(all it V-
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STUDY GUIDE: Alternating-Current Circuits 17

vy = iR s (1)
V] - ic(i/ﬁlc)s (2)

Where iR is in phase with vy and ic leads v, by z/2 rad {(why?). The total
current i is the sum of iR and ic. The amplitude io is the vector sum of iRﬁ-
and icn. (Of course, so far we do not know any of the currents.) The angle ¢
in Figure 33 is given by

tan ¢ = Tog/ing = V3gulR/V;o = whC = 10%(3.00 x 101 (1078) = 3.00; 4 = 71°38-. (3)

,Lﬁl éj__. L

LY

— —

Figure 32 Figure 33

Now we have to hook up the rest of the circuit. The top and bottom elements have
the current io in common, therefore we draw a vector djagram, referring ) and Vi
to io. See Figures 34 and 35. v, leads 1 by #/2 rad (why?). The amplitude is

= x,‘_ = 1qul. (4)

Figure 34 Figure 35

62
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STUDY GUIDE: Alternating-furrent Circuiis 18

We already know from Eq. (3) that 2 lags behind io by a phase angle

1

é = tan = «RC= 71°34-.

The vector sum of 10 and Va0 is the amplitude of emf 80. We are given that 80
= 25.0 V. The angle @ ‘is

tan 6 = (vzo - VTO Sin- ¢)/(V10 Cos ¢)- (5)

Now let us izke stock. We know 80, R, L; C, and é. We do not know io, Vi0° Voo?
and 6. So let us siart with 80, and work our way back. From the vector diagram,

2 _ .2 2 _ 2 _ = 2 _
8y = &g, * GOY (VTO cos ¢)° + (vzo Yy SiP o). (6).
IT we can get 10 and Va0 in terms of io, we can solve for io, and also get 6:

Voo = iomL, Vip = iRR = io(cos ¢)R.

The last step comes from the first vector diagram, Figure 33. Equation (6) now is

Sg = ig(mL)2 cos? ¢ + ig[ﬂ cos ¢ - ub sin é]z. (6-)
©ib = gl/e(u)? + R cos ¢ - ut sin ¢T0)

= (25)%/1(2 x 102 + [(3.00 x 10%)(cos 71°3¢7) - (2 x 10%)(sin 71°34°)F%
1.13 x 1073 A, (7)

We know, from Eq. (4), that Voo = iomL = 22.6 V and vy = igR cos ¢ = 10.7 V.
Equation (5) then gives us 8:

74.8°.

tan ¢ = 3.68; e

Finally,

a

is= io sin{ot + 8) = (1.13 x 10'3) sin{ut + 74.8°)

= (1.13 x 1073) sin{ot + 1.31)  if the angle is in radians.
P ) . ~ P
(b) Pyy = Epppgipms COS ¢ = (1/2)y1, cos ¢ = 4.5 x 1077 w.
(c) See Figure 36.
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1 e &t) i)
&)
falN I,'.J:'\
/ > / \
3 V4 LY
'y ¥ b i | -
' e /2T ot
19&’ \\\hp, Jwﬁb \_4;,
Figure 36
Problems

B{1). 1In Figure 37 are sketched two potential differences as functions of time.

(a) State whether vy leads or lags vy-
(b) Draw a vector diagram for vy and v, at an instant of time that you choose.

State the instant you choose.
{c) In terms of w{assumed known) and the other given constants, write

algebraic expressions for v](t) and vz(t).

w8
10/1.5 ¥
_r”””f:;%
; ‘i-, i’mf'
E ¥

Figure 37
E(1-4). (a) In the circuit shown in Figure 38, draw a rotating vector diagram showing
VRO, VLO’ 80, and 10.
(b) Calculate the current amplitude iy, and vpq and Vig> in terms of &,

R’ L,-and .
(c) petermine values of R and L such that the maximum potential difference

across L is (1/2)g, at a frequency of T = w/2x = 2.00 x 10% tz,
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STUDY EUIDE: Alternating-Current Circuits 20

(d) For the values chosen in part (c), determine the phase angle and draw a
graph showing v](t) and &(t) versus time.

(e) Calculate the maximum instantaneous power dissipated in the resistor.

(f) Compare the average power dissipated in the resistor with the average
power supplied by the source of emf.

F(1-8). In the circuit shown in Figure 39, iy = 10.0 mA, f = 10° Hz, L, = 10.0 mH,
L2 = 250 mH, C = 0.100 »F, and R = 1.00 kq.
(a) Draw phase diagrams for the L]—C segment and the L2-R segment of the
circuit.
(b) Calculate VLTO, Yege VLZO, Vo-

{c) Calculate 80.
{d) At ot = 27, calculate the energy stored in L], C, and L2.
(e) At wt = 3a/2, calculate the energy stored in Ly, C, and L,.

2z =_,£,o sin wk

Figure 38 Figure 39
Solutions

p(1). (a) v, lags Y, by «/3.
(b) See Figure 40, at t = 0.
(c) v;(t) =10.0 sin{et = #/2) = 10.0 cos ut.
vz(t) = 7.5 sin{owt + w/2 - #/3) = 7.5 cos{uwt - #/3).

£(1-4). (a). See Figure 41.

(b) ig = 90/¢ﬁ2 + (ul)2. Veo © SDR//ﬁz + (wL)Z. Vig ® ole#Rz £ (ul)?,
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V-l' 3

j
> 0
3 R > 1RO
----- T
Figure 40 Figure 41

(c) R=3.06 x 10°; e.g., if L = 0.200 H, R = 6.92 x 10° a.
(d) ¢ = 30°. Sge Figure 42.

2 2 2
(e) (PL) oy = oR = ER/IR™ + (eL)].

(£) (Pg)., = (1/2)1‘ = g3R/2[RF + (u)?].
(Pe)., = 82R/2[R2 + (wL)Z]

F(1-4). (a) See Figure 43. ¢ = 57.5° = 1.00 rad.
(b) VLTO = (0.628 V; Vep = 15.9 ¥; VLZO =13.2 V; Vpo = 13.2 V.

(c) 80 = 11.9 V.
(d) E(Ly) = 05 E(C) = 1.26 107° 95 E(L,) =2.57 x 10 g
(e) E(L,) = 0.50 x 10" 695 E(C) =05 E(L,) =6.32x 10764

A4
r Ladll
Yoo 4 i
\':‘HD Lo /]
A ¢
3 A0 >R
7% \ (1]
é | —-—""'>
|
Y, = 5 '
co “*z0 9 v “1 20
co
Qo Figure 43
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Practice Test Answers L9

1. See Figure 45.

2. iR(f) = 15.0 x 10'3 sin{2.00 x 104t); iL(t) = 0.300 sin{2.00 x 104t - n/2).
ic(t) = 1.20 sin{2.00 x 104t + w/2); i(t) = 0.90 sin(2.00 x 104t + 89°).

3. (PR)av = 0,225 Y; (PL)av = 0; (Pc)av = 03 (Ps)av = (.225 Y.

4. Source supplies energy that is dissipated in the resistor, as heat. Some of the
remaining energy oscillates -back and forth between the electric field of the capacitor
and the magnetic field of the inductor. The rest is alternately pumped into the
source and is supplied by the source.

5. At the resonance frequency, io =1p = £/R. The phase angle is zero. The total
energy in the LC part of the circuit remains constant, simply oscillating back and
. forth between the capacitor and the inductor.

Figure 45
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Mast

Name

RNATING-CURREHT CIRCUITS Date
pass recycle ﬁ
ery Test Form A R
1 2 3 4
Tutor

In the circuit shown in Figure 1, calculate the ctirrents as a function of time.
Include in your solution a phase diagram showing all relevant phases. Assume
that £y, @, R, L, and C are known. Plot j(t) and €(t) as functions of wt.

Given that w is 106 rad/s, 50 = 15.6 V, R = 10.0 k2, determine values of L and
C that will satisfy the resonance condition. What happens to the amplitude of
i under that condition?

With the values of L and C determined in Problem 2, calculate the maximum enerqy
in the magnetic field of the inductor, and the maximum energy in the electric
field of the capacitor. Describe how these energies vary with time.

Calculate the average power delivered to the circuit under the conditions of
Problem 2.

-

Figure 1 . —
~—\A\A/
R
Fo 80 Sin wi
E
i
68




ALTERNATING-CURRENT CIRCUITS Date

MHastery Test form B ]

pass recycle

1 2 3 4

Name Tutor

The following problems apply to the circuit shown in Figure 1. Assume Bgs ©s R, L,
and C are known.

1.

2.

Divide the circuit into sections that hdve a common current or potential. Draw
a vector diagram for each section.

What is the phase angle between the emf £ and the potential dvop across the
resistor VR? Does VR lead ~r lag £2 ¥hat is the phase angle between the current
i and the emf €2 You may express your answer in terms of the {unknown) currents
1] and iz if you wish.

Calculate the average power dissipated in the resistor, in terms of 80, R, L,
C, and w©.

Describe the eneégy Flow in the circuit, qualitatively, and as quantitatively
as you can.

38

1
Rab

£ =€° sinwt

Figure 1 @ 0=
L




ALTERNATING-CURRERT CIRCUITS Date

pass recycle
Mastery Test Form €

1 2 3 4
H>1e Tutor

In the circuit shown in Figure 1, draw 2 vector diagram showing all currents and

potential differences. Calculate the current i as & function of time. Let

80 = 1.00 V, w=377 rad/s {or T =60 Hz), R=500%, L =4.0H, and C = 2.00 pF.

2. Calculate the power delivered by the source as 2 function of time. Calcwlate
the power into the field of the capacifor as a function of time.

3. Calculate the average power delivered to the circuit. What would you do to
L, or €, or the product LC, to maximize the power delivered?

4. Dpescribe the energy flow as a function of time.

ot
—lly
L
£ = 80 S i 69
Q::
b —aAA—
A

Figure 1




AL TERNATING-CURRERT CIRCUITS A-1

MASTERY TEST GRADING KEY - Form A

1. Hhat To Look For: Diagram may be done in parts, but all phases should be
properly indicated. Figure 50 is plotted for positive é. Be sure student
knows the difference between positive and negative phase.

Solution: See Figure 43. vqq = i g L = ig5/uC. ] (A1)
VRo = igR- {A2)
To = g0 ~ Tror (#3)
From Eq. (Al), ico = iLOmZLC. From Eq. (A3),
ig = iyglelLe - 1); (A1)
6 = tan N (vyfvon) = tan" (i, ul/i R) = tan [ul/R(62LC - 1)] (25)
10’ VRO Lo/ g @ .

From Eqs. (A4) and (Al),

ig = iLo(mZLC -1) = (vw/ml.)(mzl.c - 1) = (g sin ¢/ L)(PLC - 1);  (46)

i= io sin{wt + ¢). See Figure 50.

Figure 50

Figure 49

2. What To Look For: Any combination of L and C such that LC = ]9712 is OK.
Solution: Resonance occurs when w = 1//1C, therefore

LC = 1/w2 = 10712 s/rad. ‘
tet L =1.00 mH, C = 1 nF, for example?

ig = &g sin o(uC - VL) = €uC - Vel)tl/IR(PLC - 1P + ()22

-G‘ 71




Al TERHATING-CURRENT CIRCUITS A-2
If v = 1/4C, ig=¢g x0=0.

3. ¥hat To Look For: There is no current from the source ai resonance. Know
energy of an inductor and a capacitor. The maximum energies in L and C are
the same at resonance.

Solution: (€)= (1/2)Lifo. Since iy is zero, the poteitial difference across

the inductor and capacitor is the potential difference across the source:
£g = ¥yg = Tyoels g = Fplels
_ 2 _ 2 2 _
(€)= (W)Lt = /2L, o = 1.

Therefore,

(€ )pay = (M2)85C = (1/2)(15)%(107°) = 1.125 = 1077 4,

= 2 _ 2 _ -7
Since ¢ = 1/2, £ is a maximum when Ee is zero, and vice versa. Energy leaves the
collapsing magnetic field, and goes into building the electric field, etc.
4. Solution: Since the current io is zero, the power delivered. fo circuit:
Py = (1/2)8010 cos ¢ = 0.

Current oscillates in the LC branch, but no power is dissipated, and none is
delivered by the source.
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ALTERRATING-CURRENT CIRCUITS B-1

MASTERY TEST GRADING KEY - Form B

1. ¥hat To Look For: Correct phase relations. Ask student about omitted guantities.

Solution: See Figure 51.

Figure 51

2. VYhat To Look For: Any of the relations below are OK. Algebra not as important
as beginning with correct relationships.

Solution: ¢ = tan'](vLolvRO) = ta".][ilomL/iIOR] = tan"l(atfﬂ). v leads €. The
angle between 1 and & is 6.

(iz0dy * (igg) 120 * T1p Sin ¢

6 = tan ' [—20 Y] = tan”'[ ]
(i), iyg cos ¢
1 BquC + (E,/R) cos ¢ sin ¢ _ 2, 22
- [0 o/ ’ 1= tan el 2 1)+ ol

(Sb/Rj cos® ¢

3. What To Look For: Knowledge that rms voltages and currents are 1/¥2 times
amplitudes. Look for correct place to start in PR calculation.

Solution: 110 = VROIR = (80 cos ¢)/R= SOI(R? + mZLZ)TIZo

~—

(PR)av = ("R)rms(il)nms cos ¢ = (1/2)vRDi]0 cos ¢ = BSRZIZ(RZ + 32L2)3/2.

4. Solution: Energy will oscillate back and forth between magnetic and electric ]
fields. Energy dissipated by the resistor will be supplied by the source. in ;
general, some energy will alternately enter and leave the source from L or C.
Quantitatively, ‘
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ALTERNATING-CURRENT CIRCUITS ' . B2

P (t) = iy, = i%ml. sin(ot + ¢) sin(ut + $ - %
5 g
e8Pl eoRul

- m sin{ot + §) cos{ot + é) = - 2(52 N ‘.QZLZ) sinf2{et + 3)1.

Pe(t) = Velp = ﬁgwc sin ot sin(ot + x/2) = (112)£j,guc sinf2(vt)].

Pelt) = voly = 15 0R sin(ut + ).

To plot these would be very messy. It is. important that P, and P are out of phase,
and there is an oscillation in znergy. i




Ai TERNATING-CYRRENT CIRCUITS c-1

MASTERY TEST GRADING XEY - Form C

1.

3.

What To Look For: Correct signs of all phases. All angles correct.
Arithmetic not so importani. Proper setup is important.

Solution: See Figure 52.

g sin(ot + &)
i= %.—_ 0 ) ]/2; ¢ = tan-](ﬁ-T]'@) = 20.0°.
R + (-~ Vec)?]

i= 3 5 156 Sin(_(ﬂt + 200) %3 ]/2 = 0.293 Sil‘l(mt + 200).
(500)“ + (377(4) - 1/[377(2 = 107°])

Solution: Pe(t) = §{t)i(g) = SOiO sin ot sin(ut + ¢) = 45.7 sin ot sin(at + ¢).

Polt) = v (8i(t) = (i%/uL) sinfet - 2/2) sinfut + $) = ~(i%/uC) cos ut sin(at + ¢)

= <114 cos ot sin(wt + 8).
(Pe)av = (1/2)9.0i0 cos & = (1/2)(156)(0.283) cos 20° = 21.4 Y.

Maximize ic and cos ¢ by setting /IC = 1/w. Maximum energies in the inductor
and capacitor are not the same, except in resonance. In this case,

(B )pax = (V2ILI5 = 0.172 0. (Egh,, = (V2)0¥E, = (1/2)c(iy 262) = 0.151 4.

The 0.151 J is transTerred from the electric field of the capacitor to the
magnetic field of the inductor. Energy is dissipated in the resistor, with
the maximum value of power dissfipation being (Pa)max = (1/2)igR = 21.5 U, with
an average value of 10.7 . Some energy (0.021 J max) is alternatively put
back into the source, and delivered by it to the electric field of the
capacitor.

VLO F
. €
Figure 52 Vo~ %o Am—m——=
:
— YVeo —
“p
v
Veo
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