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These modules were prepared by fifteen college physics professors for
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COMMENT TO USERS

in the upper richi-hand corner of each Mastery Test you will find the “pass”
and "recycle® terms and a row of numbers “1 2 3 ..." to facilitate the
grading of the tests. We intend that you indicate the weakness of a student
who is asked to recycle on the test by putting a circle around the nuzber of
the learning objective that the student did not setisfy. This procedure will
enable you easily to identify the learning objectives that are causing your
students difficulty. -

ERRATA
Traveling Waves: f’ 10, K(4), 1ine 5, "...0.00300 m in amplitude.” P.11. line 3
in F{1){h) "...48) (2..." The Practice Tast Answers on p. 13 are:

1. (a) y; = Asin (kx - at). ... y, = A sin(kx + ot)...A = 0.00100 m, k = 5.24 o,

and =157 s~V . . .(b) v = w/k =/TTg, T = «2u/k2 = (157)2(2 x 1073)7(5.24)2 = 1.80 .
2. (b).:.4#x direction....(c) ...by /2. -

He shall correct thege and any other errors brought to our attention when thé
CBP Modu]es_are reprinted. We would be happy to receive your suggestions or
any corrections that you discover necessary in using the modules.




COMMENT TO USERS

It is conventional practice to provide several review modules per semester or
quarter, as confidence builders, learning opportunities, and to coasclidzate what

has been lasarned. You the instructor should write these modules yourself, in terms
of the particular weaknesses and needs of yout students. Thus, we have not supplied
review modules as such with the CBP Modules. However, fifteen sacmple review tests
were written during the Vorkshop and are available for your use as guides. Please
send $1.00 to CBP ¥odules, Behlen Lab of Physics, University of Nebraska ~ Llincoln,
Nebraska 68588. ;

FINIS

This printing has completed the initial CBP project. We hope that you are finding
the materials helpful in your teaching. Revision of the modules is being planned
for the Sumzer of 1976. We therefore solicit your comments, suggestions, and/or
corrections for the revised edition. Please write or call

CBP WORKSHOP

) Behlen Laboratory of Physics
University of Nebraska
Lincoln, NE 68588

Phone (402) 472-2790
(402) 472-2742




¥odule 1
STUDY GUIDE

GRAVITATION

INTRODUCT ION

The members of the solar system - the Sun, the Moon, and the planets - have

held a strong fascination for mankind since prehistoric times. The motions of
these heavenly bodies were thought to have important specific influences on
persons’ Tives - a belief that is reflected even today in horoscopes and
astrological publications. A revolution in man's thinking that occurred about
four hundred years ago established the concept of a solar system with planets
orbiting about the Sun and moons orbiting about some of the Planeis. Copernicus,
Kepler, Galileo, and Newton were the four scientific l1eaders chiefly responsible
for establishing this new viewpoint. One of its very practical aspects, yet
difficult for us earth-bound creatures to grasp, is that the force of gravity
gradually diminishes as one recedes from the Earth, in a way beautifully

stated by Newton in his universal law of gravitation.

Gravity is a universal force: It acts on every material thing from the smallest
nuclear particle to the largest galaxy. It even acts on objects that have zero
rest mass, such as photons - the fantastically minute “chunks"” in which light
comaes, One of the most exciting areas of astronomical research today is the
"pblack hole," where the gravitational field may be so immense that not even
1ight can escape!

Hewton's law of gravitation is important not only in itself, but also because
it serves as a model for the interaction of electric charges, which you will
study later. Not only are the force law and the potential-energy function
nearly the same, but the concept of a field carries over and becomes even more
useful in the calculation of forces between electrically charged particles.

PREREGUISITES

Before you begin this module, Location of

you should be able to: Prerequisite Content
*Relate the resultant force-acting on a particle to Newton's Laws
the particle’'s mass and acceleration (needed for Module
Objectives 1 and 2 of this module)

*Relate the acceleration of a particle moving in a Planar Motion
circular path to its speed and the radius of the Module
path (needed for Objective 2 of this module)

*lse the principle of conservation of total mechanical Conservation of
energy to solve problems of particle motion {needed Energy Module

for Objective 3 of this module)




STUDY GUIBE: Gravitation 2

1 EARNIHG OBJECTIVES

After you have mastered the content of this module, you ;11 be able to:

1.

3.

Law of gravitation - Use Newton’s law of universal gravitation to determine
{a) the {vector} gravitational force exerted by one object on another - or
the distance or a mass when the force is known; and (b} the gravitational
field of an object.

Circular orbits - Use the gravitational force law, together with the expres-
sion for centripetal acceleration, to find the speed, period, orbital radius,
andfor masses of objects moving in circular orbits as a result of gravita-
tional forces. .

Energg conservation - Determine the potential energy of one object in the
gravitational fieid of another; and use energy conservation to relate

changes in this potential energy to changes in kinetic energy and speed
of the first object.




STUDY GUIDE: Gravitation 3(B 1)

TEXT: Frederick J. Bueche, Introduction to Physics for Scientists and Engineers
(McGraw-Hill, New York, 1975), second edition

SUGETSTED STUDY PROCEOURE

Read the General Coamznis on the following pages of this study guide, along with
Sections 10.8, 10.9, and 10.11 in Chapter 10 of Bueche. Recommended: Read
Chapter 14, Sections 14-4 and 14-8 thru 14-10 of Halliday and Resnick (HR)*

or Sections 13-5, 13-6, and 13-8 in Chapter 13 of Weidner and Sells (WS).*
Optional: Read Sections 10.13, 10.12, and 10.13 of Bueche.

If possible, you should read through a derivation of the result for large,

spherically symmetric objects mentioned in General Comment 2 below; and you

may wish further discussion of gravitational potential energy, beyond that given

in General Comment 4. Both these topics are covered in the Recommended Readings above.

A correction to Figure 10.13: The quartz fiber in a Cavendish balance is actually
very fine, and not twisted! In use, the mirror rotates through only a small angie.

Work the problems for Gbjective 2 starting from the fundamental gravitational
and centripetal force expressions. Do not try to remember the equations in
Ilustrations 10.5 and 10.7.

BUECHE
Problems with Assigned Additional
Solutions Problems Problems
Objective Study TExEE_ Study (Chap. 10}
Number Readings Guide Guide
1 General Comments A fus. D, £(b), F(a) J, 12-14,
1, 2; Secs. 10.8, 10.6 24
10.9
2 GEﬂera] Comment B ius. E(a)’ F(b)’ K’ L’ 23’ c
3; Sec. 10.11 10.5, ¢&(c), I(a, c) 25, Quest.
10.7 1, 11, 13
3 General Comment C G(a, b}, H, M, N, 17
45 HR®: Secs. 14-8  a 1(b}

thru 14-10; or WS*:
Secs. 13-5, 13-6

qSee Example in General Comment 4. bI'I'Ius. = Ilustration(s). SQuest = Question(s).

*HR = David Halliday and Robert Resnick, Fundamentals of Physics (Wiley, New
York, 19705 revised printing, 1974).

WS = Richard T. Weidner and Robert L. Sells, E]emgntar Classical Physics
' (ATlyn and Bacon, Boston, 1973), second edition, Vol. i.

8




STUDY ghinr. Gravitation 3(HR 1)

TEXT: David Halliday and Robert Resnick, Fundamentals of Physics (Hiley,
New York, 1970; revised printing, 19

SUGGESTED STUDY PROCEDURE

Read the €eneral Comments on the following pages of this study guide, along
with Chapter 14 in your text; but Sections 14-3 and 14-5 are optional. Also,
you will not be expected to reproduce the derivation in Section 14-4; however,
you should read it through because the result, Eq. (14-8), is very important.

At this point, it's quite 1ikely that you haven't yet studied oscillations
(as in the module Simple Harmonic Motion). But you need not be dismayed at
the two references to simple harmonic motion - they're not critical to your
understanding of this module, and you can simply take the stated results
about oscillations at face value.

On p. 266 in Section 14-8, the quantity "F(r)" would more appropriately be called
"Fe(r).® It is really the component of F(r) along the outward radial direction
(which can be negative and is, in this instance}, whereas the notation used
makes it look 1ike the magnitude of a force (which cannot be negative).

Work the problems for Objective 2 starting from the fundamental gravitational
and centripetal force expressions. Do not try to remember Eq. (14-13) and
the subsequent equation.

HALLIDAY AND RESNICK

Problems with Assigned Additional
Solutions Problems Problems
Objective Study  Text Study (Chap. 14)
Humber Readings Guide Guide
1 General Comments A D, E(b), J, 3, Quest. 1, 26
1, 2; Secs. 14-1, F(a)
14-2, 14-6
2 General Comment B Example* E(a), F(b), K, L, 20, 22-27,
3 6(c), I{a, c) Quest.¥ 5, 8,
12, 21
3 General Comment C General ¢(a, b), H, t, N, 30-34, 43~
4; Secs. 14-8 Comment 4 1(b} 45
thru 14-10 Example;
Ex.v 4, 5

*Study derivation of Eqs. (14-12) and (14-13)} in Section 14-7 (pp. 262, 263}.
+Ex. = Example(s). Quest. = Question(s).




STUOY GUIDE: Gravitation 3(sZ 1)

Francis Weston Sears and Mark W. Zemansky, University Physics (Addison-
Wesley, Reading, Mass., 1970}, fourth edition

TEXT:

SUGGESTED STUDY PROCEDURE

Read the General Comnents on the following pages of this study guide, along with
Chapter 5, Sections 5-4 and 5-5, Chapter 6, Section 6-9, and Chapter 7, Section
7-4. Recommended: Read Sections 14-4 and 14-8 through 14-10 in Chapter 14 of
Halliday and Resnick (HR),* or Sections 13-5, 13-6, and 13-8 in Chapter 13 of
Weidner and Sells (WS).™ Optional: Read Section 6-10 of the text.

If possible, you should read through a derivation of the result for large,
spherically symmetric objects mentioned in General Comment 2 below; and you may
wish further discussion of gravitational potential energy, beyond that given in
General Comment 4 and Section 7-4 in the text. Both these topics are covered
in the Recommended Readings above.

Work the problems for Objective 2 starting from the fundamental gravitational
and centripetal force expressions. Uo not try to remember the equations in

Section 6-9.
SEARS AND ZEMANSKY
Problems with Assigned
Solytions Prob]ems
Objective Readings Study Text Study Additional
Number Guide Guide Problems
1 General Comments A Sec. 5-4, D, E(b), J, 5-2, 5-4,
1, 2; Secs. 5-4, Ex. 1, 23 F(a) 5-8 to 5-12
5-5 Sec. 5-6,
Ex. 8 .
2 General Comment B Sec. 5-9, E(a), F(b), K, L,
3; Sec. 6-9 Ex. G(c), 6-43 to 6-47,
I(a-, C) 7‘35(3)’
7-50(e, f)
3 General Comment C G(a, b) M, N,
4; Sec. 7-4 after b H, 1(b) 7-36(b, c)

Ex.? 5; HR: Secs.
14-8 thru 14-10; or
WS*: Secs. 13-5,
13-6

%x. = Examples(s). b

See Example in General Comment 4.

*HR = David Halliday and Robert Resnick, Fundamentals of Physics (Wiley, New York,

1970; revised printing, 1974).

WS = Richard T. Weidner and Robert L. Sells, Elementary Classical Physics (Allyn
and Bacon, Boston, 1973), second edition, Vol. 1.

10




STUDY GUIDE: Gravitation 3(Ws 1)

TEXT: Richard T. Yeidner and Robert L. Sells, Elementary Classical Physics
(A1lyn and Bacon, Boston, 1973), second edition, Vol. ]

SUGGESTED STUDY PROCEDURE

Read the General Comments on the following pages of this study guide, along
with Chapter 13 in your text; but Sections 13-4 and 13-7 are optional. Also,
you will not be expected to reproduce the derivation in Section 13-8; however,
you should read it through because the result, Eg. {13-18) and the implied
equation for the force due to a large spherical object, s very important.

Work the problems for Objective 2 starting from the fundamental gravitational
and centripetal force expressions. Do pot try to remember the equations derived
for planetary and satellite motion.

WEIDNER AND SELLS

Problems with Assigned

Solutions ProbTems
Objective Readings Study Text. Study Addi tional
Number Guide Guide Problems
1 ceneral Comments A  Ex.* 13-2 D, E(b), 3, 13-2,
1, 23 Secs. 13-1 F(a) 13-10
thru 13-3
2 General Comment 3 B Ex. 13-1 E{a), F(b), K, L, 13-5,
c{c), 13-8, 13-9,
I(a, ¢) 13-20
3 General Comment 4; C Ex. 13-4 G(a, b}, M, N,
Secs. 13-5, 13-6 t H, 1(b) 13-12(b),

13-14 to 13-16,
13-21, 13-26,
13-27

+*
Ex. = Example(s).
+See Example in General Comment 4.

11




STUDY GUIDE: Gravitation 4

GENERAL COMMENTS

1. The Gravitational Force Law and the Gravitational Field 3

The LAW OF UNIVERSAL GRAVITATION is easily expressed:
Every particle (with mass Mz, say} in the universe is attracted toward
every other particle (with mass M}, say} by a force with magnitude

F

G(M}MZZrz},

where r is the distance between the two particies, and

6=6.67x 107" N mi/kg’

js an experimentally measured universal constant (see Fig. 1}.

{in the figuve, M} has been placed at the origin for later cunvenience.} Note
that the direction of F is exactly aiong the 1ine joining the two masses. This
Taw can also be expressed vectorially:

The gravitational force experienced by M, due to the presence of M, is

- 2,0
?é] = ~G{M;H,/r°)r,

~

where r is again the distance of separation, and r is a unit wvector pointing

z
I / 2~ Pt ¥
b ,{ﬂ;lr)
v/ )/
’

in the direction from M; toward M, (see Fig. 1}.

A Figure 2

Figure 1

Two masses are required in order to talk about the gravitational force ?é}.
But notice that if we divide through by MZ’ we obtain a quantity

37y = % -GG}]F

12




STUDY GUIDE: Gravitation 5

that depends only upon the magnitude of M, and the point where H, is located,
relative ts H]- [Since ¥ = orrois simply the position vector of that point
relative to M], we have indicated this latter dependence by writing EI?),
instead of simply 9.3 See Figure 2.

In fact, we don't need Mz at all in thinking about this quantity a(?), which is
called the gravitational field intensity or, more simply, just the gravitational
field due to H]-

This abstraction E'associated with @ single mass M]_occupies all space surround-
ing M] whether other masses are present or not; and at each point, it can be
represented by a vector pointing toward M], with the magnitude GH/rz. Notice
that, physically, the gravitational field intensity at a given point is simply
the acceleration a very small object would experience if it were placed at that
poirt. -

The use of the concept of a force field to describe an interaction at a distance
is an-exceedingly important technique; and will be -developed further in later
modules on electric and magnetic interactions. The gravitational field is &
central conservative field; central because it acts along the 1ine joining the
interacting particles, and conservative (for energy) because it is possible to
define a potential energy function of distance. If you have already studied
torque and angular momentum, you will recognize that a particie subject only to
the centrally directed gravitational force of anothe; body experiences no torque;
thus its angular momentum is constant, or "conserved.” (For circular orbits,
this reduces to the simple result that the speed is constant.} Furthermore,

as the particle changes its position (in whatever kind of an orbit), all de-
creases in kinetic energy are accompanied by equal increases in gravitational
potential energy, and vice versa, so that the total energy remains constant.

In this module, you will make extensive use of the conservation of energy.

Hote that because the moving particle is subject to a force, its 1inear momentum

is not constant.

2. “Large” Spherically Symmetric Objects

One of the interesting and useful consequences of the functional form of the

law of gravitation (namely, the dependence 1/r2} is that the gravitational field
of an extended spherically symmetric object of mass M and radius R (see Fig. 3}
js exactly the same as the field of a "point” (i.e., very small) object of mass
M located at the same place as the center of the sphere. That is, the gravita-
tional field due to 3(a) is exactly the same as the field due to 3(b)} for every
point r > R. (For r < R, the fields are very different for these two situations.)
Therefore, whenever you encounter a spherically symmetric object, you can sim-
plify the situation by replacing the object with a point object of equal mass -
assuming you are interested only in points outside the spherical object, and
not, say, in @ tunnel through its middle.

13




STUDY GUIDE: Gravitation 6

Caution: When using the gravitational law in such situations, be sure to use
the distance from the center of the gravitational attraction, and not the
height above the surface of the Earth or the other body!

Figure 3 Figure 4§ M
qMassz M L = T8 Ssatelite
7 AN
k F A Y
(a) / ’! Tos \
RadiusR ! ) !
1 Mg Eorth

> \ 7
(b) J-Massz M N - P /

3. Circular Planetary and Satellite Orbits

In reality, the orbits of planets and satellites are never exactly circles, but,
rather, more general ellipses. However, the orbits of most planets and of many
satellites are near enough to circular that only a very small error results from
treating them as circular. This simplifies the calculations greatly, since then
you can use what you learned about circular motion in the module Planar Motion.

In Tact, you found in Problem G of Planar Motion that a circular trajectory such as

F(t} = 2[cos(xt/8)7 + sin(zt/8)31 m

has an acceleration

I(t) = -u2E(t),

where » = v/r. [See, in particular, parts (c) and (d) of that problem.] That is,
a particle moving in a circular path of radius r at the constant speed v = wr has
a centripetal acceleration with magnitude a. = wlr,

-+ -
Furthermore, you found in the module Newton's Laws that it takes a force F = ma
to give a particle with mass m the acceleration a. From these last three equa-
tions, it follows that the centripetal force

Fc = mwzr = mvzlr

is requived to hold a particle in a circular path.

In the case of a satellite moving around Earth as in Figure 4, this centripetal
force is provided by the gravitational force of attraction between Earth and the
satellite. Since Me >> m, we can ignore the motion of Earth; it acts just like
a fixed force center. As you learned in your studies for Objective 1 of this
module, the gravitational force acting on the satellite has the magnitude

i4
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2
£ =
g GMemfres.

Equating Fc to F9 yields

2 Mm (4
mv e 2 e
Fes Fos Fas

This relation allows us to calculate, say, v in terms of He and Fos Once ‘we
have found v from a relation such as the above, then it is, of course, easy

to find the period T of the circular motion, since ¥T is just the circumference
2ar of the circular orbit.

The motion of planets around the Sun is very similar;s since the Sun has a mass
much greater than that of any planet, it can be treated as a fixed force center,
Just as the Earth was above.

4. Grav1tat1ona1 Potent1a1 Energy

In an earljer unit, you learned that an obJect of mass m that s rajsed a
distance h in the vicinity of Earth’s surface gains potential energy in the
amount mgh. Let's show this directly from the law of gravitation, F = Gﬂemirz.
The work done 1ifting m is the integral of the force we must exert through

the given distance:

R+ h GH +h '
: (-—-T-]dr = GM mj % = -GM_m[—}

=
[}

= 1 14 _ h
= SR - ® T OTRR Ay

When the height h is much Iess than the radius R of -the Earth, this yields the
approximate value W = GH. mh/R =-mgh.

Note that this is valid only when h << R.

What if we go all the way from the surface of Earth to infinity? This time we get

1,% GM m
W(R to «} = —GMem[F]R = -Gﬁem[O - ]

This is the amount of energy that must be expended fo carry a mass m from the
surface of Earth to a point infinitely far away. (We are neglecting the pre-
-sence of the other planefs and the Sun.} Since it is convenient and customary

15




STUDY GUIDE: Gravitation 8

to say that an cbject has zero potential energy at infinity, we see that the
gravitational potential energy of an cbject is a negative quantity (zero only
at infinity) that becomes more negative as the object approaches any other
massive object. For instance, as an object approaches Earth, it loses more

and more potential energy (its potential energy becomes more and more negative),
and its kinetic energy becomes correspondingly greater. Recall that space
capsules returning from the Moen attain extremely high velocities just before
reaching Earth's atmosphere. .This is exactly analogous io the example of a

car gaining speed as it coasts down a steep hill - potential erergy is being
transformed into kinetic energy.

I we use the customary symbol U(r) to denote gravitational potential energy,
then our result above is just

u(r) = -G(Mém/r),

for a point or spherically symmetric mass. A particle in such a gravitational
field (with no other forces present) always moves in such a way that the sum of
its kinetic and gravitational potential erergies is constant:

E;

Total initial (mechanical) energy = K + U;

= K¢ + Uf = Total final (mechanical) energy = Eg-

This energy-conservation eguation is very useful in solving many problems.

Example

Space scientists wish to launch a 100-kg probe to infinity (i.e., far from
Earth). How much energy does this require? Hhat initial speed is needed?
Ignore the presence of the Sun for this example. ("Initial" means at the time
of burnout, which for this problem is only a negligible distance above the
surface of Earth.)

Solution

The minimum required energy K. is that which gets the space probe to "infinity"
with zero kinetic energy. That is,

Ki+ui=Kf+Uf=0+0’

or
GM_m -11 4
K, = U = e o (6:67 % 107160 x 10°4(100) ; - 4.5 x 16 4.
e 6.4 x 10

i i
The needed initial speed follows from the relation

= 2 _
vihich yields

vi = BEIJR = 1.12 x 10? a/s. 16

1
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ADDITICHAL LEARNTNG MATERIALS

Auxilliary Reading

»
Stanley Williams, Kenneth Brownstein, and Robert Gray, Student Study Guide with

Programmed Problems £o Accompany Fundamentals of Physics and Physics, Parts 1
and 11, by David Halliday and Robert Resnick \#iley, Hew YOrK, i970).

Objective 1: Sections 14-1 and 14-2;
Objective 2: Section 14-B, especially Problems 1 to 7, and 15 to 17;
Objective 3: Sections 14-5 through 14-7, and 14-8, Problems 19 to 28.

Film Loop
Ealing £80-212: Heasurement of "G"/The Cavendish Experiment.

Various Texts

Frederick J. Bueche, Introduction to Physics for Scientists and Engineers
(McGraw-Hi1l, Hew York, 1975), second edition: Sections 10.8 through 10.13.

Oavid Halliday and Robert Resnick, Fundamentals of Physics (Wiley, Hew York,
1970; revised printing 1974): Chapter 14.

Francis Weston Sears and Mark W. Zemansky, University Physics (Addison-Hesley,
Reading, Mass., 1970), fourth edition: Sections 5-4, 5-5, 6-9, 6-10, 7-4.

Richard T. Weidner and Robert L. Sells, Elementary Classical Physics (Allyn
and Bacon, Boston, 1973), second edition, Vo%. {: Chapter 13.

PROBLEM SET WITH SOLUTIONS

Since some of the problems for this moduie are numerically arduous, you may use
the simplified numerical values below (accurate to within a few percent) when
working these problems.

6 = (2/3) x 10710 j mP/kg? 22 = 10

Mass of Sun = 2.0 x 10°0 kg Radius of Sun = 7.0 x 10° m
Mass of Earth = 6.0 x 10°% kg Radius of Earth = 6.4 x 10° m
Mass of Moon = (3/4) x 10%° kg Radius of Hoon = (1/6) x 107 m
Mass of Mars = 6.3 x 1023 kg Radius of Mars = (1/3) x 'IO7 m
Earth to Moon = (3/8) x 107 m Earth to Sun = 1.5 x 10

g on Earth = 10 m/s2 Saturn o Sun = 1.5 x 1012 m

17




STUDY GUIDE: Gravitation ] 10

A(1). A space probe determines that the magnitude of the gravitationai field
E'is 1.1 times as large at the surface of Uranus as it is at the surface
of Earth. Use the radius of Uranus, Ru =2.4x ]07 m, to determine its
mass.

Solution
Since g = GH/rz, vie have

- gr¥yg = L1124 x ‘??JJ kg = 9.5 x 10°° kg.
(273} x 10 ]

B(2). Communications satellites, such as Telestar, are placed in synchronous
orbits around Earth. (A synchronous orbit is an orbit in which the
satellite is constantly above the same spot on the surface of Earth.)

How far above the surface of Earth must such a satellite be? Be sure
to start from the fundamental gravitational and cenfripetal force equations.

Solution

For a synchronous orbit, the angular velocity of the satellite must be the
same as that of Earth, namely, w = 27 x (number of revolutions per second)
= (27724 x 60 x 60) rad/s.

Since the Earth is much heavier, it is nearly stationary. Therefore, the
radius of the satellite's orbit is virtually the same as the distance between
the center of the Earth and the sa@e]]ite; call this distance r. Then the
equation Fcentrip = Fgrav becomes just

rmz = Gﬁem/rz

or

e = an s = [(2/3) x 107109(6.0 x 10%)[12 x 3600)2/7°] m® = 74 x 102! .

And thus r = 4,2 x ]07 m. But the problem asked for the height above the
surface of Earth:

h=r-R =22x10 n-060x10 n=3.6x10 n

C(3). If an object is fired from the surface of Earth with a great enough
speed Vo it will escape from the gravitational field of Earth and will
not return. What initial speed is needed for an object fired vertically
to rise to a maximum height Re/3 above the surface of Earth, before it
returns? Express your answer in terms of vVoi Re is the radius of Earth.
(You do not need to use any numerical values!)

18




STUDY GYIDE: Gravitation 1
Solution

At its maximum height the object will not be moving, so that Kf = 0. Therefore,
Ki + Ui = Kf + Uf becomes

GM m GM_m
1 .-e _g., =8 2 _1,%%
2 - O Vi)
Thus
z -10 4ya
Vi ® [E?g}z - {[(2/3) = 10" "7(6.0 x 10°)2 = 3.8 x 10° m/s.
PR 2(6.4 x 10°) J
Problems

D(1). (a) At what height above the surface of Earth is the gravitational field
equal to 5.0 m/sz? Express your answer in terms of the radius of
Earth Re.
(b} At what point between fhe Earth and the Sun does an object feel no
gravitational force? Express your answer in terms of the masses Me

and Ms’ and the Earth-fo-Sun distance Fos®

E(1,2). Jupiter has a moon with an approximately circular orbit of radius
4.2 x 10° m and a period of 42 h.
(a) What is the magnitude of the gravitaticnal field § due to Jupiter
at the orbit of this moon?
(b} From (2} and the value of G, find the mass of Jupiter.

F(1,2). Answer the questions below, using only Hewton's law of universal
gravitation, the centripetal force 1aw, and the following data:

At the surface of the Earth, g = 9.8 m[sz.
The radius of Earth is 6400 km.
The Moon completes one orbit around the Earth every 27.3 d
= 2.40 x 10° s.
From the Cavendish experiment, € = 6.7 x 107]] N mszgz.
(a) vhat is the mass of Earth?
(b) What is the radius of the Moon's orbit?

19




STUDY GUIDE: Gravitation 12
6(2,3). Typical satellite orbits back around 1960 were 1.6 x ]os m above
the Earth’s surface.

(a) ¥hat is the potential energy, relative to infinity, of a 1000-kg
satellite in such an orbit?

(b) What is its potential energy relative to the Earth’s surface?

(c) Find the time that such a satellite requires to complete one orbit.
Be sure to start from the fundamental gravitational and centripetal
force laws! ]

H(3}. A space traveler in interstellar space is working near her craft when
her safety 1ine breaks. At that moment she is 3.00 m away from the center
of mass of the craft and drifting away from it at the speed of 1.00 mm/s.
If the mass of the craft is 10 000 kg, will she reach a maximum distance
and be drawn back, or will she drift away indefinitely?
1(2,3). A1.00 x 106 kg spaceship making observations in interplanetary
space is in a circular orbit about the Sun at a radius of 1.50 x 'IOTl m
(approximately the orbit of Earth).
(a) what is its kinetic energy while in this orbit? [You must start
from the gravitational and centripetal force (or acceleration) laws.]
(b} Having completed their observations here, the crew next depart on
& voyage to the vicinity'bf Jupiter's orbit, five times as distant
from the Sun (7.5 x 10]] m). There, however, it is not necessary
to establish a circular orbit; the ship can arrive there with essen-
tially zero kinetic energy. Purely on the basis of energy conserva-
tion, what is the minimum energy that the engines must provide for
this voyage?
(c) While in the orbit of part (a), the ship made two complete trips
around the Sun. How long, in seconds, was it there?

J(1). Astronauts on the Moon can jump considerably higher than they can on

Earth; that is, the acceleration due to gravity is much less. In fact,

9 = 0.17 9pe The moon is also much smaller: Rm = 0.27 Re.

{a) Use these data to find the ratio of the masses of the Moon and the
Earth, Hm/Me.

(b} On the straight 1ine between the Earth and the Moon there is a
point whers a spaceship experiences no gravitational field, because
the fields of the Earth and the Moon cancel. How far is this point
from the Moon? The Moon is 3.5 x 10° kn from the Earth.

S 20




STUDY GUIDE: Gravitation 13

K(2). Certain neutron stars are believed to be rotating at about one revoilution
per second. If such a star has a radius of 30 km, what must be jts mass
in order that objects on jts surface will not be thrown off by the rapid
rotation?

1(2). An asteroid revolves about the Sun in a circular orbii once every eight
years. Approximately how far is it from the Sun in astronomical units
(1 AU is the mean distance from the Sun to Earth)? You must start from
the fundamental gravitational and centripetal force (or acceleration)
equations.

M(3). UWhat speed is necessary for a 1000-kg spaceship at a distance from the
Sun equal to the radius of Saturn’s orbit to escape from the Sun’s
gravitational field?

30 3%
#(3}. A star of mass 2.0 x 10 kg and another star of mass 4.0 x 10 kg are
initially at rest infinitely far away. They then move directly toward
one another under the influence of the gravitational force. Calculate
the speed ofotheir impact, which occurs when their ceg&ers are separat§9
by 3.0 x 107" m. The radii of the stars are 1.0 x 107" mand 2.0 x 107" m
respectively. MNeglect the motion of the more massive star.

Solutions
p(1). (a) h=r - R, = 0.41Re; (b) re = fﬁslﬁe r,» and thus
.= Yes .
e N
1+ M /M,

E(1,2). (a) 0.73 m/sz; (b) 1.9 x 1027 kg.
F(1,2). (a) 5.9 x10% kg; (b) g’/rl = g (at the Moon's orbit)
2 (Zwrm/T)z (2::)21-111

. _v _ 2,0, v291/3 _ 2 g » 108
R o lh-M@/wd] = 3.9 x 10° m.

10, 1.6x10°3; (c) 88 min.

6(2,3). (a) -6.1x10
H(3). Llet’s hope she has a wrench in her hand that she can throw, since her
totai energy is 2 6
E=K+U=(1/2)mw" - 6Mm/r = m{1/2 - 2/9) x 10" J > O!

1(2,3). (a) 4.4 x10%3; () 2.7x10%3; (c) 2n x10 s.

3(1). (a) m/M = 0.012; L(2). 4.0 Au.
(b) 0.35 x 10" kn. M(3). 1.3 x 10% ays.
K(2). 1.6 x 10%° kq. N(3). 1.3 x 10° a/s.
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STUDY GUIDE: Gravitation 14

PRACTICE TEST

Use the simplified numerical values below (accurate to within a few percent)
in the Practice Test.

6 = (2/3) = 10710 n n¥/kg? 7% =10

Mass of Sun = 2.0 x 100 kg Radius of Sun = 7.0 x 16° m
Mass of Earth = 6.0 x 10% kg Radius of Earth = 6.4 x 10° a
Mass of Moon = (3/4) x 1023 kg Radius of Moon-= (1/6) x 197 m
Mass of Mars = 6.3 x 102> kg Radius of Mars = (1/3) x 10’ m
Earth to Moon = (3/8) x 10° m Earth to Sun = 1.5 x 101!

g on Earth = 10 tn,.!s2 Saturn to Sun = 1.5 x ]0]2

1. The radius of the planet Jupiter is 11 times that of Earth, and its mass is
310 times as large as that of Earth. Using only these data, find out how the
acceleration due to gravity on the surface of Jupiter compares with that on

Earth.

6 - . )
2. A 1.0 x 10 kg spaceship making observations in interplanetary space is in
a circular orbit about the Sun at a radius of 1.5 x ]0" m (aporoximatelv
the orbit of Earth).

(a) ¥hat is its kinetic eneray while in this orbit? [You must start from the
gravitational and cetripetal force (or acceleration) Taws.]

(b) Having completed their observations here, the crew next depart on a voyage
to the vicinity of Jupiter's orbit, five times as distant from the Sun

(7.5 x 10*! m). There, however, it is not necessary to establish a circular
orbit; the ship can arrive there with essentia'l'ly Zero kinetic energy. -Purely
on the basis of energy conservation, what is the mmmum energy that the
engines must provide for this voyage’

(¢) While in the orbit of part (a), the ship made two complete trips around the
Sun. How long, in seconds, was it there?

s ,0L % 12 (3) 0L x £2(9) e 0Lxvy ()2

.95 g'7 = es ‘4

SISMSUY 3581 doL30Rt]
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GRAVITATION Date

Hastery Test Form A pass recycle
1 2 3
Name . Tutor

Use the simplified numerical values below (accurate to within a few percent)
in this Mastery Test.

6 = (2/3) x 10710 4 m¥/kq? 2 =10

Mass of Sun = 2.0 x 10°0 kg Radius of Sun = 7.0 x 10° m
Mass of Earth = 6.0 x 10°% kg Radius of Earth = 6.4 x 10° m
Mass of Moon = (3/4) x 1023 kg Radius of Moon = (1/6) x 10’ m
Mass of MaFs = 6.3 x 10°° kg Radius of Hars = (1/3) x 10" m
Earth to Moon = (3/8) x 10° m Earth to Sun = 1.5 x 101

g on Earth = 10 nVsz Safurn fo Sun = 1.5 x 'IOQ'2 m

1. On certain Saturdays in thé autufin, 1argé numbers of peopie experience a strong
attraction for the football stadium. Do you suppose that this attraction could
be gravitational inorigin? That is, -estimate the gravitational force of attrac-
tion exerted by the stadium on an 80-kg foottall fan one block (133 m) away.
Assume a total mass of 1.0 x 107 kg for the stadium (including the fans al-
ready assembled there}.

2. 1In 1944, when the first group of astronauts landed on Mars, they discovered the
thi rd]moon of Mars, which was in a circular orbit 1.0 km above the surface of
the planet. .

(a) What was the speed of this moon in its orbit? Remember that you are to

start from the fundamental centripetal and gravitational force eguations!
Since a moon this close to the surface of Mars interfered with their explorations;
the astronauts decided to move it into an erbit at a higher altitude. Fortui-
tously, the angular speed for this new orbit was

w= Y42 x 'IO'6 rad/s.

(This is especially fortuitous if you use a calculator that does not take cube

roots!) 3
The mass of the moon was 2.0 x 107 kg.

(b) What was the radius of the new orbit?
(¢) How much energy did it take to move the moon to its new orbit?

23 ,_




GRAVITATION

Hastery Test Form 8

Hame

Date

pass recycle
1 2 - 3

Tutor

Use the simplified numerical values below (2ccurate to within a few percent)

in this Mastery Test.

6= (2/3) x 10710 i n?/xg?
Hass of Sun = 2.0 % 1030 kg
Mass of Earth = 6.0 x 1027 kg
Hass of Hoon = (3/4) x 1023 kg
iass of Hars = 6.3 x 1023 kg
Earth to Hoon = (3/8) x 10° m
g on earth = 10 m/s2

o T e e A e i

=10

Radius of Sun = 7.0 x 10% m
Radius of Earth = 6.4 x 106 m
Radius of Moon = (1/6) x 107 m
Radius of Hars = (1/3) x 107 m
Earth to Sun = 1.5 x 101! g
Saturn to Sun = 1.5 x 10]2 m

1. A meteorite originally at rest in interstellar space fails to the surface of
Earth; find the speed with which it hits. For this probiem, make the
simplifying assumptions {not really justified) that the effect of the Sun,
the motion of the Earth, and the retarding force of the atmosphere can be

neglected.

2. Because of an accident on a space flight, a 70-kg man is left in deep space,
1.0 x 10 m from the spherical asteroid Juno of mass 1.5 x 101* kg.

(a) How fast must he move, propelled by his rocket pack, to achieve a circular
orbit around the asteroid at this distance, rather than crashing to jits
surface? [You must start from the fundamental gravitational and centripetal
force (or acceleration) equations.]

(b) It takes 8 h and 45 min for the rescue ship to arrive. ihere should
they look for him, relative to the place of the accident?
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GRAVITATION Date

Mastery Test  Form C pass recycle
1 2 3

Hape Tutor

Use the simplified numerical values below (accurate to within a few percent)
in this Mastery Test.

6 = (2/3) x 10719 N m?/kg? =10

Mass of Sun = 2.0 x 103D kg Radius of Sun = 7.0 x 108 m
Mass of Earth = 6.0 x 1027 kg Radius of Earth = 6.4 x 10° m
Mass of Moon = (3/4) x 1023 kg Radius of Moon = (1/6) x 10 m
Mass of Mars = 6.3 x 1023 kg Radius of Mars = (1/3) x 107 m
Earth to Moon = (3/8) x 10g m Earth to Sun = 1.5 x 1011 m

g on earth = 10 m/;zﬁ ) o Saturn to Sun = 1.5 3_1912 ..

S R —

1. When Deathwish- Hershey reported for his Space Corps preinduction physical,
he brought with him a letter from his psychiatrist to certify that he showed
suicidal tendencies in low-g environments. In spite of this, he was assigned
to a tour of duty on Mudberry, a perfectly spherical airless asteroid of
radius 200 km, where g = 0.20 m/s=. After a month of solitary duty,
Deathwish could stand i1t no longer. Having completed a quick calculation,
he fired a bullet parallel to the asteroid’'s surface at speed v and stood
at attention, waiting for it to hit him on the back of the head. Little
did he know that his appeal had been successful and that a ship was due to
arrive in one and one-half hours to return him to civilian 1life.

(a) At what speed v did Deathwish fire the builet? [You must start from
the fundamental gravitational and centripetal force (or acceleration)
equations. ]

(b) Did the ship or the fatal bullet arrive first?
2. If Deathwish had fired the bullet vertically instead of horizontally, but

with the same speed v as in the preceding problem, how high would it have
gone? Or would it have escaped from the asteroid entirely?
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GRAVETATION A-1

MASTERY TEST GRAQOING KEY - Form A

1. So]ution: Hardly, since

4 -]0 4
£ G?_[&ﬁ} 10 ]no 10M&1ﬂ_30xw N,
9 r (133)°

2. What To Look For: (a) Check that the student really started by equating
the centripetal force to thé gravitational force. (Eouating accelerations
is essentially equivalent.) If some other (correct) equation was used, make
her/him derive it!

(c} Make sure that both kinetic and potential energies have been included
for both orbits. If the student used one of the relations E = -K = (1/2)¥
(valid only for such orbits), ask her/him how the problem could be done
without assuming this relation. (But don't require the student to go through
the arithmetic again.)

- . 2 = = i
Solutions: (a) Fooppnsy = Fgpay OF MV7/Ry = G M/R2. (8 gpirsp = 3gpay 1
also acceptable.) Thus

& 1/2 410 3172
S V2 L(273) x 10 ]w3x1¥ ms = 3.5 x 10° s,

V=

(1/3) = 10
(b} As above,
M 61 1/2 10 1023172
2 _ [(2/3) x 10 ](6 3 x 10°%
Mra <= or r = m
> (=9 = 2 = 70! )

r=1.0x 108 m :
(c) v, = (1/3) 107 m, re= 1.0 x 108 m, v, = 3.5x10% ws,

- -6 - - < 102 m/s-
= /82 x 10”° rad/s, and Ve = reue = /A2 x 10° m/s;

of
thus the energy needed is AE = K. + U - U, = Elvz L2 4 en (1_.- 1,3
us energy neede g ¥ U - K 2°f 21 mr,  Te
= (2.0 x ]03) x {f(ﬁl_z'x 0 ) - -2-(3.5 x ]03)2

+ [(2/3) x 107193(6.3 x 1023

% (3.0 x 107 - 1.0 x 1078

= (2.0 x 109)[0.21 - 6.1 + (4.2)(2.9)7 = 10°

or AE = 1.3 x 10g J

26




GRAVITATION - - 8-1 .

MASTERY TEST GRADING KEY —- form B

1. So]utioq: Ef = Ei or Kf + Uf = Ki + Ui =0+ 03 thus

ZG“e]"z @less 10“0)(6 0 x 1024)\”2
R (6.4 x 10°)

2. What To Look For: (a) Check that the student really started by equating
the centripetal force to the gravitational force. (Equating accelerations
is essentially equivalent.) If some other (correct) equation was used,
make her/him derive it.

= 1.1 x 10 mys.

Solutions: (a) F or nwzjr = GHm/rz. Thus,

centrip = Fgrav

-10 144, 1/2
v = [Gﬂ)Ilz - (L2/3) 107 3015 < 107705 e g g ays,
4
1.0 x 10
the speed he needs to orbit.

=6.3x10%s.

4
, _2ar _ 22(1.0 x 10")
(b) 7= 5% = o

8 h + 45 min = 8(3600) + 45(60) = 3.15 x 10% s.

They should, therefore, look for him almost exactly on the other side of
Juno.
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GRAVITATION C-1

MASTERY TEST GRADING KEY ~ Form C

1. What To look For: (a) Check that the student réally started by equating the
centripetal force to the gravitational force. (Equating accelerations is
essentially equivalent.} If some other (correct) equation was used, make
her/him derive jtt

Solutions: (a) F.=F (Centripetal force = gravitational force} or

2

R

g

v = (aR)? = 1(0.20)(2.0 x 10°)3"/2 w/s = 200 nys.

(b) T = 2sR/v = [22(2.0 x 10°)/200] s = 2z x 10° 5 = 6280 s.

By comparison, Tx hour = (1.5)(3600 s) = 5400 5. Cheers!

2. what To Look For: #ake sure that both kinetic and potential energies have
been inciuded. If the student used one of the relations E = -K = (1/2)U
(valid only for such orbits), ask her/him how the problem could be done
without assuming this relation. (But don‘t require the student to go
through the arithmetic again.)

Solution: Use energy conservation: Ef = Ei’ or Kf + Uf = K1 + Ui'

Llet h be the maximum height of the bullet, the point at which Vg S 0; then
Gdm _ 1 2 GMn

O-g+H=2™ - % -

Since €M = ng [see Problem 1(a}], and v = /gR, this becomes
2

mgR~_ _ 1 _1
R+h - 'fng 4+ mgR = Eng'

Thus, R = (1/2)(R+ h), and h = R = 2.0 x 10° m.

(If the energy had been so high that the bullet escaped, there would have
been no value of h that satisfied this equation.)
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Fodule 1
STUDY GUIPE

SIMPLE HARMONIC MOTICN

INTRODUCTION

Have you ever felt you were the slave of a clock? Clocks are mechanisims that
include a pendulum or balance wheel whose repeated patterns of movement define
equal time intervals, one after another. Such repeated movements are called
periodic motion. Periodic motion may occur-when a particle or body °s confined
to a limited region of space by the forces acting on it and does not have
suificient energay to escape.

In this module you will study the special kind of periodic motion that resulis
when the net force acting on a particle, often called the restoring force, is
directly proportional to the particle’s displacement from its equilibrium position;
this is known as simple harmonic motion. Actually, simple harmonic motion is

an idealization that applies only when friction, finite siZze, and other small
effects in real physical systems are neglected. But it is a good enough
approximation that it ranks in importance with other special kinds of motion (free
fall, circular and rotational! motion) that you have already studied. Examples of
simple harmonic motion include cars without shock absorbers, a child's swing,
violin strings, and, more importantly, certain electrical circuits and vibrations
of a tuning fork that you may study in later modules.

PREREQUISITES

Before you begin this module, -Locatibn of
you should be able to: ?rerequisite‘COntent
*Define kinetic energy (needed for Objecti

of this module) Y | or Dhjective 3 o o nergy
*Define potentail energy, and use the conserva- i

tion of energy to solve simple problems (needed Ro;g:}ggai
for Objectives 2 and 4 of this module) Module
*Define angular velocity, acceleration, dis- i or
placement, and torque sneeded for Objf’:ctives Rorﬁg::::'gga]

2 and 4 of this module Module
*/ipply Newton's second law for rotation i

to solve simp!e problems (needed for Objectives Rﬁ;ﬁgéggg]

2 aqq 4 of this module) Module
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STUDY GUIDE: Simple Harmonic Hotion ) 2

LEARNING OBJECTIVES

After you have pastered the content of this module, you will be able to:

1.

3.

Definitions - Define the following terms or relate them to the solution of

Newton®s second 1aw for simple harmonic motion, x = A cos{wt + 8) (instead
of 6 you may see & or 6):

simple harmonic motion, - amplitude,

frequency, phase constant (or phase angle),
angular frequency, period,

spring constant, restoring force.

Identify simple harmonic motion - Analyze the motion of a particle to determine

whether simple harmonic motion occurs, and if so, determine its angular
frequency.

{inear simple harmonic motion - Ofganize the necessary data about a particle

undergoing linear simple harfonic motion to find any or all of the following
quantities: the particle's position as a function of time, angular frequency,
period, amplitude, phase, frequency, velocity, acceleration, mass, and the
restoring force, kinetic energy, or potential energy of the system.

Rotational .or approximate simple harmonic motion - Apply Newton's second law

or conservation of energy to cimple physical systems carrying out rotational

or approximately linear simple harmonic motion to determine any or all of the
quantities listed in Objective 3.
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STUDY GUIDE: Simple Harmonic Motion 3(8 1)

TEXT: Frederick J. 8ueche3 Introduction to Physics for Scientists and
Engineers (McGraw-Hil1l, New York, 1975), second edition

SUGGESTED STUDY PROCEDURE

Read Chapter 13, Sections 13.1 through 13.5, 13.7, 13.8, and work at least
Problems A through H, and 1, 4, 16, 9, 20 in Chapter 13 before attempting
the Practice Test.

The general soiution of a differential equation is discussed in General

Comment 1. Study that carefully. Read the discussicn on the small-angle
approximation, sin ® = 8, in General Comment 3.

Conservation of Energy

If you forgot how to obtain the potential energy of a simple harmonic oscillator,
read Section 9.6 in Chapter 9. Since the forces within a spring that make it
resist compression and extension are conservative, the sum of kinetic and
potential energy in any harmonic oscillator is a constant. This observation can
often be used to solve for the amplitude of vibration. For instance, if we

know the velocity of the oscillator as it passes equilibrium {when the potential
energy is zero), we can find its maximum displacement (when kinetic energy is
zero) from

0+ (1/2)nv? = (1/2)kx§ £0, Xy = vg/k.

BUECHE

Objective Readings Problems with Assigned Problems Addi tional

Number Solutions Problems
. — (Chap. 13)
Study Study Text
Guide guide (Chap. 13)
1 Secs. 13.1 to A 3 I )
13.4, General
Comment 1
2 Sec. 13.3, 8 F
General Com-
ments 2, 3
3 Secs. 13.5, C G 4, 16 1
13.7
4 Secs. 13.7, p H 9, 20 6, 15, 18

13.8, General
Corment 3




STUDY GUIDE: Simple Harmonic Motion 3(8 2)

Similarly, if we know Xg» We can solve for the maximum velocity of the
oscillator, v, = xe(klm)”2 without even thinking about derivatives {Note,
however, that this is v(t),,..1:

_ (gﬁ) ) d[x0 cos(wt + 8)]

dt’max ~ dt ]ma

v(t)

max x = [-xom sin(et + a)]max.
The maximum value of [-sin(wut + 8)] is +1. Thus

W)y = %0 = %K.
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STUDY GUIOE: Simple Harmonic Motion 3(HR 1}

TEXT: David Halliday and Robert Resnick, Fundamentals of Physics (Wiley,
Hew York, 1970; revised printing, 1974}

SUGGESTED STUDY PROCEDURE

Read Chapter 13, Sections 13-1 through 13-6, and work at least Problems A through
¥, and 1, 9, 17, 27, 37 in Chapter 13 before attempting the Practice Test.

The genaral solution of a differential equation is discussed in Eeneral Comment 1.
Study that carefully. Read the discussion on the spall-angle approximation,

sin 8 = 8, in General Comment 3. There are no problems on Section 13-6, but
reading it should help to clarify angular frequency.

Example: Physical Pendulum

A rather simple example of simple harmonic motion is the physical pendulum or
compound pendulum as shown in Figure 1. A rigid body of mass m is suspended
from an axis 0. The center of mass is a distance h from the axis. The torgue
about the axis 0 on the body is equal to the moment of inertia about the axis, I,
times the angular acceleration:

t = Ta = I{d%/dt?).
The restoring torque is provided by the weight mg:

T = -mgh sin o.

HALLIDAY ANO RESNICK

Objective Readings Problems with Assigned Problems Additional
Humber Solutions Problems
(Chap. 13)
Study Study Text
Guide guide (Chap. 13}
1 Secs. 13-1 to A B 1,17 16, 18
13-3, General
Comment 1 )
2 Sec. 13-3, B F
General Com-
ments 2, 3
3 Secs. 13-3 to C G 9, 27 5, 14, 32
13-4
4 Sec. 13-5, 0 H 37 35, 40, 42
General Com-
ment 3
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Therafore,
-mgh sin e = I{d%e/dt2).
If @ is small, sin o = @, thus

-mghe = 1(d%e/dt?).

This is the equation for simple harmonic motion. Compare this with Eq. (13-21)
in the text, setting k equivalent %o mgh, and thus
2

w = mgh/I.

Figure 1




STUDY GUIDE: Simple Harmonic Motion 3(s2 1)

TEXT: Francis Heston Sears and Mark Y. Zemansky, University Physics
(Addison-Hesley, Reading, Mass., 1970), fourth edition

SUGGESTED STUBY PROCEDURE -

Read Chapter 11, Sections 11-1 through 11-6, 11-8 and 11-9, and work at least
Problems A through H, and 11-1, 11-5, 11-13, and 11-29 before attempting the
Practice Test.

In Section 11-4, note the integral on the left-hand side of Eg. (11-7). You
will not be expected to do integrals 1ike this by yourself; instead, you can
Took them up in a book of tables. The general solution of a differential

equation is discussed in General Comment 1. Study that carefully. Read the
discussion on the small-angle approximation, sin & = 8, in General Comment 3.

Reference Circle

First, let us define "simple harmonic motion.” If a particle, displaced a
distance x from a position of rest and released, experiences a force toward
that position of rest of magnitude proportional to the magnitude of its dis-
placement, the particle will move with simple harmonic motion. Exoressed
algebraically, this is F = -kx, where x is the displacement from the position
of rest, F the restoring force, and k a positive constant. ’

Now, leave this for a moment, and consider the projection of the motion of
a particle, moving at constant angular speed « in a circular path of radius A,

SEARS AND ZEMANSKY

Objective Readings Problems with ‘ Aséigned Problems Addi tional

Number Solutions Problems
Study Study Text
Guide Guide
] Secs. 11-1 to A £E nwa
11-4, General
Comment 1
2 Sec. 11-2, B F
General Com-
ments 2, 3
3 Secs, 11-4 to c G 11-5, 11-2, 11-3,
11-5 11-13 11-4, 11-18
4 Secs. 11-6, D H 11-29 11-22, 11-26,
11-8, 11-9, 11-30
General Com-
ment 3
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upon a diameter of the circle, as in Figure 2. Arbitrarily, let the projection
be at the center of the d1aneter at t = 0, and call x the displacement of the
projection from the center. Then, at some later time t, the particle will

have turned through an angle 8, equa] to ot, and the progect1on will then have
moved a distance x = A sin »t.

Figure 2

How, differentiate this expression twice with respect to time, obtaining

dx/dt = wA cos wt and dzx/dt2 = -mZA sin wot.
By definition, dzx/dt2 is acceleration, wz is a positive constant, and
A sin wt is x, the displacement of the projection from the center of the circle.
From Newton's second law:

F = md%/dt?, F = -mZA sin ot.
Therefore our final equation is F = -ﬁmzx = -kx, and the projection moves with
simple harmonic motion, with the center of the diameter as the position of

rest. The circle used here is referred to as the circle of reference.

The amplitude of the simple harmonic motion is defined in Section 11-3 as the
maximum value of x. Since sin «t cannot be greater than one, the maximum value
of x is A in our equation x = A sin ot, and A, the coefficient of the trigono-
metric term, is the amplitude of the simple harmonic motion. The period of

the motion is the time required for one complete vibration. In this time, then,
the projection must move from the center of the diameter, up to a maximum posi-
tive displacement, down to a maximum negative displacement, and back to the
central point. In the same time, then, the particle moving with angular speed w
in a circular path will go just once around the circle. The angle turned through
by this particle is 2» rad, and we see, from the definition of angular velocity
w = 6/t, that w = 2n/T, where T is the period of the simple harmonic motion.
Also, since the frequency f = 1/T, w = 2uf. Thus, in our equation x = A sin ut,
the coefficient of t is 2af or 2#/T.

36
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By definition, ds/dt is the velocity, and dzs/dt2 is the acceleration. By

the use of just our equation x = A sin wt and its derivatives, we may now find
the velocity and acceleration in our particular simple harmonic motion for any
position x or time €.

The constant 8y in Eg. (11-11) is of use only when the position of the projection
is specified when t = 0 at some point other than the position of rest, and in the
absence of such specification may arbitrarily be set egual to zero. Suppose,
though, that x has some value xj at t = 0, Then Eq. (11-11) becomes

XO = A sin eo,

and By may be evaluated.

Another use of the circle of reference is to simplify the kind of problem we
encounter in part (c) of Problems 11-3 and 11-4, where we are asked for the
minimum time necessary to move from point X1 to point x, in the simple harmonic
motion. See Figure 3. We can determine the angles ¢ and by since sin 4 = x]/g
and sin ¢y = xZIA. Their sum is the angle & turned through by the particle in the
circle of reference while the projection moves from x; to x,. As the angular
velocity o is a constant, we may say that v = 8/t = 25/T or t = (8/2%)T, and,
knowing 6 and the period T, the time is immediately determined.

Figure 3
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TEXT: Richard T. Heidner and Robert L. Sells, Elementary Classical Physics
{AY1yn and Bacon, Boston, 1973), second edition, Voi. 1

SUGGESTED STUDY PROCEDURE

Read Chapter 14, Sections 14~1 to 14-4, and work at least Problems A through H,
and 14-1, 14-5, 14-12, 14-15, and 14-29 before attempting the Practice Test.

The general solution of a differential equation is discussed in General Comment 1.
Study that carefully. Example 14-3 should be studied before working Problems B
and F for Objective 2. Read the discussion on the small-angle approximation,

sin @ = 8, in the General Comment 3.

WEIDNER AND SELLS

Objective  Readings  Problems with  Assigned Problems  Additional

Number Solutions Problems
Study Text Study Text
Guide Guide
1 Sec. 14-1, A E 14-] 14-4
General Com-
ment 1 .
2 Sec. 14-3, B Ex. 14-3 F 14-12
General Com- .
ments 2, 3
3 Secs. 14-1, c G 14-5, 14-9, 14-10,
14-2 14-15 14-11
4 Sec. 14-4, D H 14-29 14-22, 14-25,
General Com- 14-28
ment 3

*Ex. = Example(s).
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GENERAL COMMENTS

1. Differentia] Equations

Your present calculus course may not have acquainted you with differential
equations. Hence we shall discuss them briefly without getting too fancy or
formal. The equation

d%x/dt? = ~uPx ()

is called a2 second-order differential equation becausz it contains a second
derivative. It is not 1ike an algebraic equation for which certain constant
values of x satisfy the equality. As js shown in your text the solution of
Eq. (1) is a function of the time. Although the function

x=Acos{ot + 8) = A cos 8 cos wt - A 5in 8 sin of (2)

can be thought of simply as being arrived at by a very clever guess, it can be
shown (by advanced mathematical techniques) to be the most general possible
solution of £q. (1).

Equation {2) can 2lso be written in terms of two new constants B and C as

x(t) = B cos wt + C sin wt. (3)
(What are the relations among B, C, A, and 6?) The velocity is

v(t) = dx(t)/dt = -uB sin wt + C cos wt. (4)

These last two equations are especially helpful. For instance, if you are told
that the particle begins its simple harmonic motion from rest at the point Xg»
you know that x(0) = xg and v(0) = 0, hence since cos(0) = 1 and sin(0) = 0
you immediately have B = xg and C = 0, If the particle starts at the origin
with velocity vg, then you can conclude that B = 0 and C = vg. Look at the.
equations and check these results for yourself. If you have a more complicated
case in which the particle starts at xg with velocity vg, then you can find B
and C yourself, using the same method. Try it. Once you have found B and C,
you can find then A and 8.

Note in the above discussion that a change in phase of #/2 does not changa the
solution. That is, let 8 = 8~ ¥+ #/2: '

x = Acos(ut + 8), x=Acos{ut + 8~ + n/2), x = A sin(ut +8~).

This last equation is just as valid a2 solution of the differential equation as
the cosine function. Try substituting it in Eq. (1) and see for yourself.

2. Outline of Method for Investigating a System for Simple Harmonic Motion

F{x) = ~kx, (5)
m(dzx/dtz) = -KX. {61
39
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I. Determine the net force acting on the particle.
(a) Identify forces acting on the particle by drawing a free-body
diagram. Choose a convenient coordinate system.
(b) Find the net force acting on the particle as a function of its
position in the chosen coordinate system.-

II. Describe the particle’s displacement from the equilibrium position.
(a) Find the position where the net force is equal to zero. That is
the equilibrium position of the particle.

(b) If necessary, introduce a new coordinate system with origin at the
equilibrium position.

ITI. Use the coordinate system introduced in II(b) to state Egs. (5) and (6).
(a) Express the net force as a function of the new coordinates. Compare
this with Eq. (5).
(b) Express the acceleration in terms of the second time derivative of
the new coordinates.
(c) Use the expressions derived in steps (a) and (b) to state Newton's
second law ¥ = ma in terms of the new coordinates. Compare its form
with Eq. (6).

3. Approximation: sin & = 6 for Small Angles

The first thing to note is that this is true only if 6 is in radians. Obviously
sin 1.00° # 1. But 1° = 0.0174 rad, and sin{0.0174 rad) = 0.0174. This
approximation is good up to about 15.0° or 0.262 rad. sin(0.262 rad) = 0.258.
This is only an error of about 1% so the approximation is pretty good. The
error in the period of a pendulum when the amplitude = 15.0° is only 0.50%.
Thus , even though a system actually does not execute simple harmonic motion, if
the angular displacement is kept small enough its motion will be essentially
simple harmonic.

A few of the many examples of simple harmonic oscillators are listed below,

along with the expressions for Fy or:. You should verify these expressions for
yourself. The determination of w, f, and T for each is left as an exercise.

Examples of Simple Harmonic Motion

a. Object on a spring (Fig. 4). Equilibrium occurs at the height for which
the spring force equals -mg. When the object is displaced, the spring
force changes, but mg remains the same. Restoring force is Fx = -kX.

b. Object fastened to two stretched springs (Fig. 5). When the object is
displaced, one spring pulls more, and the other pulls less. Restoring

force is Fx = ~(2k)x.

c. Object fastened to two stretched springs, but displaced sideways {Fig. 6.
I the displacement is small, the forces exerted by the springs change in .
direction, but hardly at all in magnitude. Restoring force is Fx = -ZFO(X/L).
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X ot £
‘ % — % 2 ‘-——g——-F
l’?“‘ e
/' ’ - p X r~ ™
fx Frictisnfess surface };ﬁ:fw ’ f‘fm;l: i
Figure 4 Figure 5 Figure 6

d. Object fastened to iwo stretched elastic strings (Fig. 7). Essentially
the same as above. For small displacement3, the fension Fg in the sirings
does not change appreciably. Restoring jorce is F, = -2Fg x/2).

e. Hassive object on a "massless flagpole™ (Fig. 8). For small displacements,
the motion is almost 1inear. Restoring force is Fx = ~Kx.

f. Object on a string (pendulum, Fig. 9). The restoring force is the compenent
of ng perpendicuiar to the string, -mg sin 6. For small displacements, the

motion is almost 1inear, and sin & = 3. Restoring force is F, = -mge = -mg(x/2).

g .

4—"—.4——4—-)-

._.-“Fo @_x Fi"' 2 ‘\
-~ e P i
.'{E" 1 9
med,
Figure 7 Figure 8 Figure 9

g. Small object sliding in a frictionless spherical bowl (Fig. 10). Same as
above. Regtoring force is F, = -mgé. Or, use the restoring torgue = = -mgi®
with I = 22m and © = Ia = I d20/dt2,

h. Pivoted plank on spring (Fig. 11}. Same as a car with good shocks in front,
very bad shocks in back. As the object bounces up and down, the force of
gravity is constant, but the spring force changes. Restoring torgue is
1 = -gk(28) = -kedo.

*. Object hung from wire and rotating about a vertical axis (torsion pendulum,
Fig. 12). Some mantlepiece clocks use a penduium of this kind. Generally,
the wire provides a restoring torgue = —x6.

..' E i ‘bﬁfe -
o
Figure 10 Figure 11 Figure 12

ADDITIONAL LEARNING MATERIALS

Film loops: *"Simple Harmonic Motion
“Yelocity and Acceleration in Simple Harmonic Motion"

Available from Ealing Corporation.
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PROSLEM SET WITH SOLUTIONS*

A(1}). Beigne the following terms: amplitude, angular frequency, phase constant,
period.

Solution
Amplitude: the maximum displacement from equilibrium of an oscillating particle.

Angular frequency: 27 divided by the time required to complete one cycle of
the motion {or 2zf). Another definition is the number of radians completed per
second, knowing that 2z rad equal one cycle.

Phase constant: if x = A cos{ut + 8) then (ut + 8) is called the phase of the
motion. @ is called the phase constant (phase angle). The amplitude and the
phase of the motion determine the initial velocity and position of the particle
(or vice versa if you 1ike). For example, if ¢ = /2 at t = 0, then x = A cos(=/2)
=0 and the particle starts at x = 0. The unit of the phase will be radians.

Period: the time reqiired to complete one cycle.

B(2). A particle of mass m is restricted to move on a vertical frictionless
track. It is attached to one end of the massless spring with spring
constant k and unextended length 25 = 0 m (small compared to other lengths
in the problem). The other end of the spring is hooked to_a peg at the
distance d from the track (see Fig. 13). (Use g = 9.8 m/s2.)
(a) Show that the particle carries out simple harmonic motion when displaced
from its equilibrium position.
(b) Find the pericd of oscillation of the particle.

L

(a) The Physical
System

M— particle AY

Figure 13

(b} One Choice of
a Coordinate System

*Ine key to Problems B and F is to find the net force-acting on the particle,
find. the particle’s equilibrium position, and then express the force as a
function of the displacement from equilibrium. If and only if the force can
be written as F(x} = -kx; then the motion is simple harmonic. The three-step
procedure jis described in General Comment 2.
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Solution
(a) 1. 1In Figure lﬁ,'§ is the force of the spring,'ﬁ js the constraining
force of the track, ¥ is the gravitational force, y is the wvertical position
of the particie,
W=-mj, ®N=-H4i, F=-(spring constant) x (extended length) = —k(-di + y3).
The total force is then F(y) =S + W+ W = (kd - 1) + (ky - mg)j.
II. %here is the net force = 02 Set F = 0 and solve for y.
F=0=(kd - %) + (ky - mg)3.

Thus the net force is zero when N = dk and y = -mg/k. Introduce a new coordinate
system at the equilibrium position:

X=X, ¥y =y + mg/k.

111. In this new system, the total force is

This is the same form of the force that gives rise to simple harmonic motion,
F(x) = -kx, thus the motion of the mass on the vertical track is simple harmonic.

(b) MNewton's second law is ¥ = m3, so
ky-5 = mldPy-7dtD);,  ky” = mldPy-sdt?), Z=km, T = 2sfu= 2u/w/K.

kS

C(3). One day you visit 2 friend who has a chair suspended on springs. ¥hen
you sit down on the chair, it oscillates vertically at 0.50 Hz. After
the oscillations have died down, you stand up slowly, and the chair rises
0.50.m. MNext, your friend sits in -the chair;, and you find that the
oscillations have a period of 2.10 s. Assume that your mass js 60 kg:
(a) What is the spring constant for the two springs tegether?

(b) What is the mass of the chair?

EC) What is the mass of your friend?

d} While you are sitting in the chair, at a certain instant (t = 0) the
chair is 0.300 m above its equilibrium position, and momentarily at rest.
Find the expression for y(t), its displacement from equilibrium as a
function -of time.

(e} Under these conditions, what is the maximum kinetic energy of you and
the chair? What is your maximum speed?

Solution
(a) F= 'kx, -mg

(b) wz = k/m, m=

-kx, & = ma/x = 60(9.8)/0.50 = 1180 = 1200 N/m.
o, = K/t = k/(24F)2,

n

m, .
chair

43




STUDY GUIDE: Simple Harmonic Hotion 9

m, . = k/(Z:f)2 -m = 1200 %/m - 60 kg
chair YO 1(24)(0.50)1%(1/5°)

= (120 - 60) kg = 60 kq.

(€) Bgyieng = K/(22)7 -

riend ~ = 72 kg.

Tehair

(d) A=0.300 m = 2af = 22(0.50) = = rad/s. y = A cos(ut + 8).

At t=0,y=A, A=Acos(0+6). Therefore cos 6 =1, 6 = 0.
y(t) = 0.300 cos(zt) n.

(e) Maximum kinetic energy = maximum potential energy

= (172 = (172)(1200)(0.300)% = 54 3.

Haximum speed = (dy/dt)max = (~Aw sin ”t)max = fis = 0.94 @/s.
§

7/
/8

f
s/ 1\R
f
;

Figure 15 1 Figure 16

{
D(4). ™A challenging problem." A particle with mass M slides freely in a
hemispherical bowl of radius R, as shown in Figure 16.
{a) Find the potential energy U(x), making the approximations

1-cos0=1=[1-(172)6% + -5s7 = (172)6? and o = x/R.

(b) Suppose the particle starts from rest with a displacement Xg5 what

is its kinetic energy K(x)? -

(c) uhat is its velocity vy as a function of x?

(d) what is its acceleration a, as a function of x? (Hint: Differentiate:)
(e) Does this particle undergo simple harmonic motion? If nof, explain

why not; if so, find the angular frequency « for this motion.

Solution

(a) As the particle slides up the slope to an angle o it has jncreased in
height a distance R - R cos 8 = R(1 ~ cos 8). If o is small then
(1 - cos 8) = (1/2)62 and 8 = x/R, so that

R(1 - cos 8) = R[(1/2)61 = R[(1/2) (x2/R%)] = (1/2)(A2/R).

Potential energy = mgh = (mg/2R)x2.
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loss in potential energy
(m9/2R) (x5) - (m/28) (x°) = (mg/2R)(Z - D).

(c) Total kinetic energy is (1/2)mv2. Gain in kinetic energy = loss in potential
energy:

(172)m = (/R - 23, v, = H(e/R)GG - )72,

Is this reasonable? First check the units. The resulting units should be the
sac2 on both the left- and right-hand sides of the eguation:

2y 2
[{%}(X)Z]m =7 [{%}(xz)fﬂ = S“”:}—)‘“f/z = @P75%)/2 = s = unit of velocity.

(b) Kinetic energy

L}

Thus the units are correct. How what wouid happen if x = xo? (x0 - x) =0 and
v = 0. Bs we expect, the velocity is zero at the starting point. HNow Jet's
take x approaching zero. As x -+ 0, (xg - xz) -+ xg, a maximum value. Thus the

velocity becomes maximum at x = 0, which is where we have the maximum kinetic

energy.

(d) Before differentiating by brute force, remember that d(yz) = 2y dy, therefore

differentiate
2 _ 2
V2 = (a/R) (G - X).
Thus 2vx dv, = (g/R)(-2dx dx).
pivide by dt: Vx(dvx/dt) = _{g/R)(dx/dt).
Now since dx/dt = Vys dvx/dt = a,
divide each side by Vy to get
a, = (-9/R)x.
(e) From Hewton's second law F = ma = m(dxzfdtz), thus
m(d?x/dt?) = ~(g/R)x or d’x/dt® (g/Rm)z = O.

This is a form of the equation for simple harmonic motion:

d2x7dt + (k/m)x =0 or F = -kx.

So yes, simple harmonic motion does occur. The angular frequency » = vk/m = Yg/mR.
Part (e) could also be answered by finding the restoring force.
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Problems
E(1). The displacement of an object undergoing simple harmonic motion is given

F(2}.

6(3).

H(4).

by the equation

x(t) = 3.00 sin(8zt + =/4).
ZJ 4
fil rad s rad

=
Note that the mks units of each term are shown underneath.

(2) What is the amplitude of motion?

{b) What is the frequency of the motion?

(c) Skegch the position of the particle as a function of time, starting
att =40,

In the book Tik-Tok of 0z, Queen Anne, Hank the mule, the Rose Princess,
Betsy, Tik-Tok, Polychrome, the Shaggy Man, and the entire Army of Oogaboo
all fall through the straight Hollow Tube to the opposite side of the
earth. The retarding force of the air is evidently negligible during

this trip, since they ali pop out neatly at the other end. For an object
at a distance r from the center of such a spherical mass distribution the
gravitational force has the magnitude (ysu will not have to derive
something 1ike this):

Fglr) = (r/Re)BGHe(Wrz) = ngr/R,,

and is directed toward the center of the earth. Use Re =6.4 x 106-m for
the radius of the earth:

(a) Oo they undergo simple harmonic motion? How do you know?

(b) How long does their trip last?

An automobile with very bad shock absorbers behaves as though it were
simply mounted on a spring, as far as vertical oscillations are concerned.
When empty, the car’s mass is 1000 kg, and the frequency of oscillation

is 2.00 Hz.

{a; What is the spring constant? . _

b) How much energy does it take to set this car into oscillation with

an amplitude of 5.0 cm (assuming 211 damping can be neglected)?

(c) what is the maximum speed of the vertical motion in (b)?

(d)} Suppose that four passengers with an average weight of 60 kg now enter
the car. What is the new frequency of oscillation?

The rotor of the electric generator in Figure 17 js to be driven by 2
long shaft. Since any rotational oscillations about axis AA“ of the rotor
would cause fluctuations in the electrical output, an engineer decides

- to investigate this possibility, starting with the case of completely

undamped motion (i.e., no friction).

(a) It takes a torque 1 = 8 to twist the shaft an angle 6. When one end
is clamped as in the figure, will the rotor undergo simple harmonic motion?
How do you know?
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(b) With the parameters indicated in the figure, what will she find

for the freguency?

(c) What are the maximum potential and kinetic energies of the oscillation
if the amplitude is 0.00100 rad? What is the total mechanical energy?

(d} What change in the stiffness of the shaft (x) would be necessary to
double the frequency of oscillation?

I=100kg mz
Rotor —
Long Shaft -
k=20 10%N m/rad | __
A —t — - — A
- This end clamped |
Ball Bearings
{no friction}
Figure 17
Solutions
£(1). (a) 3.00 m. () f
(b) s = Bx rad/s, ; > ¢
-3
if % = 3.00 sin(8at + &) m.
f = w2 = 4.0 Ha. Figure 18

F(2). (a) Yes; the gravitational force they experience has a magnitude
proportional to the distance from the center of the earth, and, is. directed.

toward the center.
(b) If you take the x axis to 1ie along the tube, thén m(d x/dt%) = F, = -mgx/R,

or 2 x/dt (g/R }x. But from (a) above we know that the1r motion 13 given
by an expression of the form X = A cos{st + 8), for which d Zedt? = -ux.
Therefore, w = /G/R,; and the durat1on of their trip is (1/2)7 = ﬁfﬁ = 800z s

= 0.70 h.

6(3). (a) k= 2 = M(Zﬁf)z = 1.60 x 10 K/m. Ooes th§s seem reasonable?
(b} Total energy maximum potential eneray = 2.00 x 10
(c) From conservation of energy,

Voax = /k/mA = 0.63 m/s.
(d) £ = (1/2x)/Kfm = 1.80 Hz. (¥hich mass should you use?)
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H(4).. (a) Yes, = is proportional to s.

(b} Ia = v = -x8, or dze/dt2 = -(x/F}o. But o = 8, cos(ut +0), from part (a),

so that dzldt2 = -mze. Therefore, w = /x/T, and f = o/27 = 2.25 Hz.

(c) 0.0100 J each.
(d)f?ince X varies as the square of v, if © is doubled, % becomes four times as
stiff.

PRACTICE TEST

1. Seesaws at parks often go unused because two small children seldom decide

to play on them simultaneously. As Technical Consultant to the Park Board,
your first assignment is to provide specifications for a One-Tof-Teeter.

The design is partly determined by the existing equipment. (See Figure 19.)
A child of mass m is to receive a ride with a period of T seconds. Without
child or counterweight, the teeter-totter has a rotational inertia Iy; the
child and counterweight, of course, have I;. KNote: the spring is attached
to the teeter. Start with Newton's second law for rotational motion to fiud

the answer.
{(a) Does simple harmonic motion occur? Why?
(b} ¥hat spring constant is needed?

M counterweight _
ZN;; £ 43 !
TIIT I I YT I_Tf!fl”fliir

Figure 19 Figure 20

2. A child is bouncing a 50-g rubber ball on the end of a rybber string,
in such a way as to give the ball and string a total energy of 0.050 J
(counting the potential energy as zero at the equilibrium position). If
the ball were just hanging at rest, it would stretch the string 20.0 cm.
For the motion of the bouncing ball, find
(a) the angular frequency w,

(b} the amplitude,

(c) the maximum kinetic energy,

{d; the maximm speed of the ball, and

e) the expression for its acceleration as a function of time, if the
position = +0.200 m at £ = 0 s,
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STUDY GUIDE: Simple Harmonic Motion 14

Practice Test Answers

1. (a) Total moment of inertia equals B+L ==L

Total torque = <opiyq * Teounterweight * Tspring®  “child = ~“counterweight®
Total torque Tspring - (force) x (distance) = —kyd,
y = (sin e?d = od approximately.

n

n

Thus 1 = -kedz, which is a restoring torque proportional fo displacement.
Therefore motion will be simpie harmonic.
(b) <=l = I(d%/dt?) = & d%, dPe/dt? = (kd?/1)e = w’e,

of = k%71, oF = (2af)? = (20/7)2,

thus
kd?/1 = (20/T)%, k= H(2e/dT)o
2. (a) F=-kx, -mg=-kx, Kk =mg/x,
w = JK/m = /mg/Xm = vg/x = v9.8/0.200 = 7.0 rad/s.
(b) A=7 k=mg/x= (0.50 kg)(9.8 m/s2/0.200 m} = 2.45 N/m.
= /28, U, = (/2kaE, A= /AT —JK = /2(0.050)/2.45
= /00408 = 0.200 m.

(c) Kmax = Umax = Etotﬂ] = 0.050 J.
: 2 - = 0 =
(d) Kmax (?/2)mvmax, Vmax = ,kaax/m = #/20.05/0.050 = 1.40 m/s.

(e} a= Amz cos{wt + 8) = (0.200)(72) cos{7t + 8) = 9.8 cos(7t + e)-m/s?.

Att=0, x=Acos e=0.200cos 6 = 0.200. Thus cos 8 =1, & = 0 rad.
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SIMPLE HARMONIC HOTION Date

pass recycle

1 2 3 4

Mastery Test  Form A

Hame . Tutor

1. A block sliding on a frictionless surface is held in place by itwo springs
attached to opposite sides and stretched to clamps at the edge of the
surface as in Figure 1. The springs have an unextended length = £ and a
force constant k.

(a) Show that the block will carry out simple harmonic motion on the
surface if it is pushed closer to one of the clamps and then released.

(b} Find the angular frequency & for this motion.

2. You have been retained as a consultant to a traveling circus to advise on
problems of a trapeze act. See Figure 2. The artists each have a mass of
83 kg and will use a trapeze hung from ropes 30.0 m long to travel between
platforms 15.0 m apart. The approximation, sin 6 = 6 {s valid here.

{a} The musical director wants to know how long it will take them to Swing
back and forth with one of the two persons on the trapeze.

{b} “hat is the magnitude of the maximum velocity?

(¢} The property manager wants to know what the maximum tension on the
ropes will be with two people swinging.

{d) ¥rite an expression for the displacement as a function of time, assuming
the artists start at the right-hand side at t = 0.

Furthermore, the circus owner insists that you start from Hewtpn’s second law
to find the answer to (a). We await your answers.

3¢m

Figure 1

&”,,f’”

1
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SIMPLE HARMORIC MOTION Date

pass recycle

Mastery Test form B

Name ' Tutor

1.

1 2 3 4

A car with good shocks in front and very bad shocks in the back can be
modeled by a pivoted plank on a spring as in Figure 1. The spring constant
is k, the length is 2, and the moment of inertia I about the pivet is

2
me/3.

(a} Show that the plank will carry out simple harmonic motion if it is
pushed up at a small angle & and then released.

(b} Find the angular frequency for this motion.

You have just been hired by Tinseltown Movie Studios to design a “jungle
elevator” for Tarzan. We want 90-kg Tarzan to grab the end of a. hanging
elastic vine, step off his tree branch, and be brought to rest at the
ground 15.0 M below.

(3} Where should the equilibrium point be for the system of Tarzan-plus-
vine?

(b} What must be the force constant of the vine?

(¢} How long does the trip take?

(d} what is the maximum pull on Tarzan's hands?

(e} wWhat is Tarzan's maximum velocity.

(f} wWrite Tarzan's velocity as a function of time if he starts from the
1imb at £t = 0.

plvot

Figure 1
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SIMPLE HARMONIC MOTION Date

pass recycle

1 2 3 4

Hastery Test Form C

Name Tutor

1. A long thin rod of length £ and mass m is pivoted about a point on the
rod that is a distance h above the center of the rod. The moment of

inertia about the pivot point issm(22/12 + h?). See Figure 1.

(a) Show that the rod will carry out simple harmonic motion if it is
pushed to one side and then released.

(b) Find the angular frequency for this motion.

2. A body of mass 100 g hangs on a long spiral spring. When pulled down
10.0 cm below its equilibrium position and released, it vibrates with a
period of 2.00 s.

(a)} what is its velocity as it first passes through the equilibrium
position?

(b) Write the position of the body as 2 function of time assuming that
x=-10.0cmat t = 0..

(¢} What is its acceleration when it is 5.0 cm above the equilibrium position?

(d) wnen it is moving upward, how long a time is required for it to .move from
a point 10.0 cm below its equilibrium position to its equilibrium position.

(e) Bow much will the spring shorten if the body is removed?

Figure 1 '

I2juss

52




SIMPLE HARMONIC MOTION A-1

MASTERY TEST GRADING KEY - Form A

1. What To Look For: If student shows that F = x, that's enough for part (2).

Solution: (2) See Figure 21.. Let origin be at midpoint. Since at that
point the springs are not extended, the horizontal forces are equal and
opposite. Thus, that is the equilibrium position as well. If it is dis-
placed a distance x from equilibrium then

5 s o i N R Ry 2
Tf] = -kxi, F,= ki, By o0 = -2k = m(dx/dto)i.
Thus m(dzx/dtz) = 2kx: same form for simple harmonic motion. Thus
simple harmonic motion does occur.

2
(b) d_’f..;..g.’ix =0, o= J?E?m.

T

2. ¥hat To Look For: (a) See if student uses Newton's second law to get
equation of motion. (c) Could also use

= -mg sin 6 = -mg 6 = -mg(x/L) = (dzx/dtz),
so that dzx/dt2 + (g/L)x = 0.
(d) Why. is it not 7.5 cos(0.57t + 6), where 6 is. some angle other than zero?
Solution: (a) v = -mgk sin 6. For SMall'éy sin 8 = 6,
T =mglb = !(dzﬁldtz}, I= mL2 for a ﬁéf%ic]e around an axis.
-mgko = m2(d%e/dt), d%e/dt? + (g/L)8 = 0. ® = vO/L.
T=1/F=2nfe=2n0]q = 2a/30.0/3.8 = 11 s, the time for one cycle,

back and forth. T is independent of mass, thus time is same for one or
two persons.

(b) From conservation of energy:

(1/2)m?

max = mgh,

N
T »”
FZ € g > Fl [_"—)x ~~‘-¢--.-ud‘
Vo g’ _
v me
Figure 21
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SIMPLE HARMONIC MOTION A-2

where h is the distance from ledge to botfom of swing: h = L(1 - cos 8}
= L{1 - coslsin™'(7.5/30)1}, v, = V75 = 4.32 w/s.

(¢} See Figure 22. For circular motion: HNet force = centripetal force,

T-mg=mw?/L, T=mg+avi/L.

Tmax occurs at v_ .. which occurs at the bottom of the swing. From Part (b}

v = 2gL(1 - cos 8}.
Tension = 2mgh/L + mg = 2mg{] - cos[sin'](7.5/30}]} +mg. = 1.66 x 10% n.

(d} x = 7.5 -c0s(0.57t}.
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SIMPLE HARMONIC MOTION B-1

MASTERY TEST GRADING KEY - Form 8

1.

¥hat To Look For: (a) If they show that T = 0, that is enough for
part (a). HNote: y°/% =sin 6 =6.

Solution: (a) See Figure 23. Y
_ .
/':)"‘ F__.
N A%’ spring
Figure 23 —E# ' x

g

Considering rotational motion only, the plank is in equilibrium when
torquemg = torq"espring’ -mgk/2 = kyt, y = ~mg/2k = equilibrium position.

If it is displaced a distance y~ from equilibrium then the net restoring
torque js given by

= k2 = 1(Pordt?) = (me?s3)(Lesdt?)-

Trestoring
Thus
2
2.2, 3ky ¥y a8 , 3k ., _
dp/dt” + 2% =0, £ =9, + 2 = 0.

Thus it is simple harmonic motion: w = /3k/m.

What To Look For: (cg How long would it take to go from the tree 1imhs to
7.5 m above ground? (d) If Tarzan were oscillating up and down, is there a
point where the pull would be zero? If S0, where? (f) Check for minus
sign if they used the sine function.

Solution: (a}) Since the points of zero kinetic energy are the tree 1imb and
ground, the point of maximum Kinetic ener:;s or equilibrium is halfway or 7.5 m.

(b) If Tarzan were to oscillate siowly and finally come out te rest, he would
be at equilibrium and
F

= -kxe = -mg,

¥ine
Thus

g

k = mg/xeq = 90(9.8}/7.5 = 118 N/m.

(c} Trip would taks one-half cycle or E()'I/Z}:'l’.
I




SIHPLE HARMONIC MOTION B-2

T = 1/f = 2z/u = 2a/0/k,

(1/2)T = =/m/k = = = :n'xeqiy = o/7.5/9.8 = 2.75 s.

m
mleeq

(d) Maximum pull = maximum restoring force of vine

= Fvine (max) = -kxmax = '(mg/.?(e‘:l)xmax = 80(9.8)(15/7.5) = 1760 K.

(e) ('Ilz)kx2 = (1/2):11\!2 from conservation of energy.

Voax = YK X, = /T18/90 7.5 = 8.58 a/s.

(f) v=v__ cos(et+ 8).

max
At t=0, v=0, thus 8 = /2.

v(t) = 8.58 cos(1.14t + 7/2) = -8.58 sin(1.14t) m/s.




SIHPLE HARNMGHIC MOTION c-1

MASTERY TEST GRADIKG KEY - Formi C

1. Hhat To Lock For: (a) For how large an angle does sin & = 6 hold?

Solution: This is the same thing as a physical pendulum. See Figure 24.

Figure 24 A Figure 25

restoring torgue = -mgh sin 8, torgue = I = I(dza/dtz),
-mgh sin @ = 1(d%e/dt?}.
sin 0 = o for small 8, -mghe = !(dze/dtz), dze/dt2 + mghe/I = 0.

This is the same as for simple harmonic motion. Thus simple harmonic
motion occurs.

) 0= [EE - [ Y —

w2212 + 1%y /(212 + w2) .

2. What To Look For: (b} It s more confusing if we say A = #10.0 cm, 0 = =,

although it can be done.
(c) Alternate solution for (c):

= kx, ~kx = -ma, a = (-k/m)x, a= -mzx = -0.49 m/sz.
(d) How long would it take to go from x = -10.0 cm %o x = 10.0 cm?
Solution: (a) From conservation of energy:

(1/2)nwr§lax = (1/2)kx:ax, = kim or k=m?, (1/2mv? = (1/2)mux.
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SIKPLE HARMCGRIC HOTION €2

2 2 _ — -
Voax = ¢ xgax, Yooy = WXy = Zz(]ﬂ)xmax = 2z{1/2)(0.100) = 0.310 m/s.

(% ay

(b} x = A cos{et + 8), v = 25/T = =.

= A, thus Voay = Aw.)

At t =0, x = ~10.0 cm, thus 6 = 0, A = -10.0.

x = =10.0 cos(ot).

() at x=+5.0cm, £ = ts
5.0 ecm = -10.0 COS(mt]) cm or 0.50 = cos(mt]) at x = +5.0.

Acc. (at x = +5.0 ¢m) = %;%l = Amz cos(mt]) = AuZ(O.SO)
{x = 45.0) (x = +5.8)

= 0.100[25(1/2)3%0.50 m/s = 0.49 m/s°.
(d) As in part (b), A = -10.0 and 8 = 0. Let time = ty:
x=A cos(mtz), 0 = -10.0 cos(mtz), cos(atz) =0,
mtz = a/2, t2 = 0,50 s.
(e) See Figure 25.
k=m’ = al2e/NP, Fy = kxe, F, = -mor,

&x = -mg, m2x(1/T)Px = -mg, x = gt/(2)° = -(9.8)(2)%/(2n)? = 1.0 m.

Thus, spring will shorten by one meter.
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REVIFH MODULE 1

~~u,

PARTIAL DERIVATIVES

Can you evaluate partial derivatives of functions of more than one variable?

Try the following self-check test. If you gef all the answers correct you should
be able to handle the material in this course involving partial derivatives. If
not, read the material that follows the test.

SELF-CHECK TEST
1. Suppose ¥ is a function of the independent variables x and t:

xZ 2

yix, t) = x" + t + axt",
vhere a is a constant. Determine the expression for
(a) ay/ax;
(b) 3y/at;

(c) 32y/3t2.
(d) If a = 3, evaluate y at (x, t) = (2, 5).
{e) If a = 3, evaluate 3y/ot at {x; t} = (4, 2).
2. Try another function y of the independent variables x and f:
y = A sinf{uwt ~ kx).
If the constants are A= 3, v =2, k = 7, evaluate:
(a) ¥y at (x, t) = (3/2, 37/2);
(b) ay/at at (x, t) = (-5/2, 3n/4);
(c) 3%y/at? at (x, t) = (1/2, -2/8).

Answers are at the bottom of this page. If you did not get them right, continue
reading in this review module.

At the end of this review we shall provide a more rigorous definition of a

partial derivative, but go ahead and read straight through to get a feeling for
what you need to do from an operational standpoint.

29~ () 9 {q) ¢~ (&) -2
"6 (2) t65L (P) “xez (3) f3xez + L (9) 3@ + %2 (2) L

- SABMSUY 3531 ooY)-3195
29




REVIEW MODULE: Partial Derivatives 2

If we have a function of more than one independent variable, than we can define

a partial derivative with respect to one cf the variables, which is simply the

derivative of the function with a11 the other variables fixed. The notafion using

3, which we will use below, tells you it is a partial derivative. For example,

suppose vwe have the function y that depends on the independent variables x and t:
y = A sin{kx - wt),

where A, k, and « are constants. Then, “the partial derivative of y with respect
to x" is denoted by ay/ax and is found by setting t constant and differentiating
with respect to x:

ay/ax = kA cos{kx - ut).

Similarly, "the partial derivative of ¥ with respect to t* is denoted by oy/at
and is found by sefting x constant and differentiating with respect to t:

ay/at = -wh cos(kx ~ wt).

Hote that the value of either of the partial derivatives depends on both independent
variables x and t as well as the constants A, k, and w.

Here are some Exercises to practice on (answers at bottom of page):

Exercises

1. If y(x, t) =  # 4x3t St4 determine the expression for the following partial
derivatives and their values at (x, t) = (4, 3):
(a) 3y/ax;
(b} 3y/at;

(c) Bzyjatz T (3/9t)(3ysat) (i.e., perform the partial derivative with respect
to t two times in succession).

2. If y(x, t) = A cos{k(x - ct) - 9], determine the expression for the following
partial derivatives.

(a) sy/ox;
(b) ay/at;

(c) 32y/ax at = (asox)(aysat) (i.e., perform the partial derivative with
respect to t followed by the partial derivative with respect to x}.

[ - (30 - x)4is00 uoza (?)
‘[6 - (39 - ¥)aluts yoy (9)  °[$ - (39 - x)yluts vi- (e) "2
"0%S fznog (d) 909 * 302 + Xb (9)

=(€x 9L x2l)+ (h x 2) 396 03
(e ‘#) = (3 “x) 3e uoyssaudxa slyjy ajenjesd aﬂ *afqelJA a3yl SB X ylm uolRALUSp
ay) bupuwiojuad pue juelsuod 3 DBulllas jo 3pnsas ayy st styj "1,X2L + X2 (®) "t

SA3MSUY aslidax
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REVIEW MODULE: Partial Derivatives 3

As promised, here is a more formal definition of a partial derivative of a function
of more than one independent variable:

Suppose that we have a function y that depends on the independent variables Xq»
Xy5 X3» efc. We can write it as y(x], Xps X35 .++}. The “partial derivative
of y with respect to x,* is then denoted by 3y/3x and is defined by the expression

y(x] + 4Ax, xzj xas '--) - y(x]’ xz: xas -'-)

a

Z  lim )
X a0 ax
Similarly,
-—1—5 ]im y(x]’ x2+ ﬂx, X3’ v.-) - y(X], XZ, x3, ooo)

]
3x2 ax + 0 bx

As you can see, this is the same sort of 1imit used to define the derivative of

a function of only one variable, the difference being that the function and its

partial derivatives are functions of more than one variable. You should consult
a calculus textbook fo: more details.
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HSdu]e 1
STUDY GUIDE

TRAVELING- WHAVES

IRTRODUCTION

“For many people - perhaps for most - the word 'wave' conjures up a. picture of
an ocean, with the rollers sweeping onto the beach from the open sea. If you
have stood and watched this phenomenon, you may have felt that for all its
grandeur it contains an element of anticlimax. You see the crests racing in,
you get a sense of the massive assault by the water on the 1and - and indeed the
waves can do great damage, which means that they are carriers of energy - but
yet when it is all over, when the wave has reared and broken, the water is
scarcely any further up the beach than it was before. That onward rush was not
to any si%nificant extent a bodily motion of the water. The long waves of the
open- sea {known as the swell) travel fast and far. Waves reaching the California
coast have been traced to origins in South Pacific storms more than 7000 miles
away, and have traversed this distance at a speed of 40 mph or more. Clearly
the sea itself has not traveled in this spectacular way; it has simply played
the role of the ‘agent by which a certain effect is transmitted. And here we
see the essential feature of what is called wave motion. A condition of some
kind is transmitted from one place to- another by means of a medium, but the
medium itself is not transported. A local effect can be linked to a distant
cause, and there is a time lag between cause and effect that depends on the
properties of the medium and finds its expression in the velocity of the wave.
A11 material media - so]1ds 1iquids, and gases - can carry energy and informa-
tion by means of waves..

"Although waves on water are the most familiar ty?e of wvave, they are also among
the most complicated to analyze in terms of underlying physical processes. We
shall, therefore, not have very much to say about them. Instead, we shall furn
to our o1d standby - the stretched string - about which we have learned a good
deal that can now be applied to the present discussion."*

PREREQUISITES

Before you begin this module, _Location-of

you should be able tfo: Prerequisite Content
*Proyide a mathematical and p1ctor1a1 description Simple Harmonic
of a particle undergoing sinusoidal motion (needed Motion Module
for Objectives 1 through 4 of this module)

*Find the partial derivative of a simple function Partial Derivatives
of two variables (needed for Objectives 1 through Review

4 of this module)

*A. P. French, Vibrations and Waves (Norton, New York, 1971}, pp. 201, 202.
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STUDY GUIDE: Traveling Yaves 2

LEARNING OBJECTIVES

After you have mastered the content of this module, you will be able to:

1. Description of wave - Describe and interpret descriptions of traveling
transverse waves on a string, using both pictorial and mathematical formu-
lations.

2. Mave velocity - Relate the wave speed to the physical properties of string.

3, Superposition - Apply the superposition principle to (a) reflections at a
boundary, (b) waves moving in the same direction, and {c} waves moving in
opposite directions (standing waves, resonance}.

4. Power - Discuss the dependence of transmission of povwer in a wave in a
string on the physical variables.
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STUDY GUIDE: Traveling Haves 3(B 1)

TEXT: Frederick J. Bueche, Intrpduction to Physics for Scientists and Engineers
{McGraw-Hil1l, Hew York, 1975;, second edition

SUGGESTED STUDY PROCEDYRE

This module is limited to transverse waves on a string. Your text's treatment of
waves on a string is combined with other wave phenomena, thus to satisfy the
stated objectives in this module you will have to skip around a bit, reading some
material that does not apply specifically to waves on a string. That should not
hurt, and you may pick up some related ideas that are interesting.

Read the following material in Bueche: Appendix 8, Section 29.4 to 29.6, 31.1 to
31.3, and 34.1 to 34.3. Work at l1east Problems A through K before attempting the
Practice Test.

_ BUECHE
Objective Problems with Assigned
Number Readings Solutions Probiems Additional Problems
Study Text Study
Guide Guide
1 Appendix 9, A F, 6 Chap. 29, Probs. 1, 3
Sec. 29.4
2 Sec. 29.5 B Mius.?  H
29.2
3 Secs. 31.1 C, D Illus. I, d Chap. 31, Quest. 2,
to 31.3, 34.1 Probs. 7, 8; Chap. 34,
34,1 to 34.3 Probs. 1, 3
4 Sec. 29.6 E I1lus. K Chap. 29, Prob. 4
29.3

2 1lus. = ITlustration(s).
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STUDY GUIDE: Traveling Haves

3(HR 1)

TEXT: David Ha]]iday‘and Robert Resnick, Fundamentals of Physics {Wiley, New

York, 1970; revised printing, 1974)

SUGGESTED STUDY PROCEDURE

Read Chapter 16 and work at least Problems A through K before attempting the

Practice Test.

HALLIDAY AND RESNICK

Objective Problems with Assignad b
Humber Readings ._Solutions Problems Additional Problems
Study  Text Study {Chap. 16)
Guide Guide
1 Secs. 16-1 A F, G 3,5
to 16-3
2 Sec. 16-4 B ex.21, H 1, 13, 15
) 2
3 Secs. 16-6 c,D I,4d 25, 28, 32, 33, 39
to 16-8
4 Sec. 16-5 E K

22

ey, = Example(s).

bPr‘ob'lem 28 should be worked with a wave velocity of 20.0 m/s. Problem 33
should be worked with a wave velocity of 15.0 m/s.




STUDY GUIDE: Traveling Waves 3(sZ 1)

TEXT: Francis Weston Sears and Mark ¥. Zemansky, University Physics (Addison-
Wesley, Reading, Mass., 1970), fourth edition

SUGGESTED STUDY PROCEDURE

Read Chapters 21 and 22. Since this module is 1imited to waves on a string, you
can skip Sections 21-4, 21-5, 2i-6, 22-6, 22-7, 22-8, and 22-9 and still achieve
the objectives of this module. Work at ieast Problems A through K before
attempting the Practice Test.

For Objective 4, look at the situation pictured in Figure 21-5. HNot only is

the transverse force F providing a transverse impulse, but it is also doing work
on the string. This work goes into increasing the kinetic energy of the string,
since more and more of the string is moving. We also see that energy is being
transmitted along the string since to the left of the point P the string has
kinetic energy and to the right of that point it has none, and point P is moving
along the string with the wave speed c.

We can compute- the inst ntaneous power furnished by F in the following way. The
instantaneous power is We see from Figure 21-5 that the negative of the
slope of the string is g1ven by F/S, so we have a value for F in terms of the
slope of the string and of S.

Power = S x (negative of the slope of the string) x v.

Suppose we have a force that is producing a sinuscidal wave of the form in Eq.
(21-3}, the force being applied at x = 0. HNow,

v = 3y/ot = wY cos{wt - kx),

SEARS AND ZEMANSKY

Objective Problems with Assigned
Number Readings Solutions Problems Additional Problems
Study Text Study
Guide Guide
1 secs. 21-1, A Ex22 F, G 21-3, 21-7
21-2 (Sec,
21-3)
2 Sec. 21-3 B Ex. 1 H 21-1
(Sec.
21-3)
3 Secs. 22-1, cC, D I, d 22-3
22-2, 22-3,
22-5
4 This module E K
x. = Example(s). 66




STUDY GUIDE: Traveling Waves 3(SZ 2)

and the slope
3y/ax = -kY cos{wt - kx},

so that the eguation for the power gives, at x = 0,

2

Power = kaZS cos™ wt.

Using the facts that & = S/u, c = w/k, and the fact that the time-average value

of c052 wt = 1/2 {which you can see by noting that c052 wt spends equal amounts
of time at equal distances above and below 1/2), we find

_ 2.2
Powerav = {(1/2)u"Ypc.

This is the time-average power that is put into the wave and the power that the
wave carries off to the right. MNote that the power is proportional to the square
of the angular frequency w, the square of the amplitude Y {reminiscent of the
energy in a simple harmonic oscillator), and is directly proportional to the
velocity of the wave and to the mass of the string.
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STYOY GUIDE: Traveling Waves 3(us 1)

TEXT: Richard T. Weidner and Robert L. Sells, Elementary Classical Physics
(Allyn and Bacon, Boston, 1973}, second edition, Vol. 1

SUGGESTED STUDY PROCEDURE

Read Chapter 16 through Section 16-18. Note the following points: (a} In Eq.
{16-2a}, note that F(x - ct} stands for “function of the quantity x - ct."* Don‘t
confuse this F with the F¢ that represents the tension in the string. (b} In
Figure 16-4, and in most of the figures following, the displacement of the String
away from jts equilibrium 1ine has been greatly exaggerated. The Superposition
principle for waves on & string will only hold for waveforms with very small slopes.
Work at least Problems A through K Lefore attempting the Practice Test.

WEIONER AND SELLS

Objective Problems with Assigned
Number Readings Solutions Problems Additional Problems
Study Text Study
guide (Ex.%) tuide
1 secs. 16-1» A 16-2 F, € 16-3, 16-9, 16-10
: 16-4
2 Sec. 16-1 B 16-1, H 16-1, 16-8
16-2
3 Secs. 16-3, c, D 16-3 I,Jd 16-22
16-6, 16-7,
16-8

4 Sec. 16-5 E K 16-11, 16-22, 16-14

4Ex. = Example(s).
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STUDY GUIDE: Traveling Waves

PROBLEY SET WITH SOLUTIONS

A(1). A “"snapshot® of a traveling sinusoidal wave at t = 0 traveling to the left
js shown in Figure 1 along with some other information. (Hote that the
vertical scale is exaggerated.} At the position x = 0, the wave reaches
a positive maximem 30 times each second.

(a) Determine the frequency, wavelength, wave speed, angular frequency,
period, propagation constant (or wave number} and amplitude of this
traveling wave.

(bg Sketch the “snapshot” of the wave that you would obtain at t = 1/120 s.
(c} Write the mathematical expression that represents the transverse

displacement as a function of x and t. .

(d) Determine an expression for the displacement of the point P that moves

with the string at x = 2.50 m, and compute the velscity of P at t = 1/60 s.

yun)
0.005 1 &~ Dirvrection of

wave propagation

Figure 1
t ' — ' - * x (o)

1 2 3
4 3 6 Wave pictured
-0.005 4 at £=0
Solution

(a) From the text of the problem, the frequency = 30.0 Hz. Thus angular
frequency = 2nf = 188 5™ and the period = 1/§ = 1/30.0 s. From the figure
we see that the wavelength A = 4.0 m. Thus the wave speed = frequency x
wavelength = 120 m/s. We also know that

wave speed = (propagation constant}/(angular freguency) = w/k, k = 22/% = 1.57 ml.

From the Tigure we see that the amplitude of the wave is 0.06050 m.

(b} He could work part (c} first and then plug in t = (1/120) s to see what we
get, but let's try a graphical approach. We know that since the wave js moving
to the 1eft at 120-m/s, in 1/120 s it has moved 1.00 m to the left. We can
jmmediately sketch the wave shifted 1.00 m to the left as in Figure 2.

y(m)

0-005 f——————-— - D SR S e S S Em e

Figure 2

= x (a1)

Have plctured
at t = 1/120 s

Q -0.005 k- g R A aw SR e AP mp E GD e w - mp e o
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STiIDY GUIOE: Traveling Waves 5

(c) We recall that a sinusoidal wave traveling in the negative x direction is
written in the following form (or one equivalent to it):

y = A sin(kx + ut + ¢).

How do we recall this without resorting to rote memory? Here's how: The
amplitude factor A is the nimber (whose dimension is a length for this kind of
wave) that multiplies a sinusoidal function (which oscillates between +1 and -1).
What's left is the argument of the sine function - the phase. It has to be
dimeénsioniess (radians) and has to depend independently on x and t. Therefore
we multiply x by k and t by w. 7o get a wave moving in the negative x direction
we add: kx + «t. This guarantees that the phase (corresponding to, say, the
maximum of the sine curve) remains constant as x decreases while £ increases.
(Here you should check to see that you can argue that - wt is what you want
for a wave traveling in the +x direction.} Finally, we need a phase constant

é to ¥ix up the sine curve to agree with the picture at t = 0. If we write

y = A sin(kx + wt + &), how do we determine ¢? Well, if & = 0 we don't get the
right picture at t = 0, thus we have to give ¢ a nonzero value. If we let ¢

go negative, this has the effect of shifting the sine curve to the right at

t = 0. Since we want to shift the sine curve a quarter wavelength to the left,
we need to make ¢ = +n/2. How we have it:

y = A sin(kx + wt + 7/2),

where A, k, and w have already been determined in part (a). We could write it
as y = A cos(kx + wt), since sin(6 + n/2) = cos 8.

(d) Before putting any numbers into this part, let's get symbolic expressions
first. Use xg for the x coordinate of P. Then the transverse displacement of
P is given by the expression for the wave with %9 plugged in for x:

y=A sin(kx0 + wt + 7/2).

This is the expression for the displacement of P. Note that the only variable is
the time and that P is executing s'mple harmonic motion. The velocity of P is
given by

3yP}3t = A cos(kx0 + wt + 71/2).

Plugging in all the other numbers and t = (1/60) s we get -0.666 m/s. (Take
care that you look up the cosine Tur an argument in radians.) Note that we can
check the sign by looking at a sketch of the wave for which the wave has been
shifted another quarter wavelength to ‘the left beyond the situation in part (b):
Figure 3. In this figure we see that P is moving in the negative y direction,
in agreement with- our calculation.

P
Figure 3 I /‘\ €——— pave velocity
lj‘l Z\ly Pictured at
t = 1/60 s
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STUDY GUIDE: Traveling Waves 6

8(2). A string with linear density 15.0 g/m propagates waves at a speed of
20.0 m/s. The string is driven transversely by an oscillating arm with
2n angular frequency 20.0 s™* and an amplitude 0.0300 m.
(a) Determine the tension in the string.
(b} Determine the maximum velocity of a point on the string 2.00 m from

the driver.
Solution
(a) He know the wave speed from the derivation in the text:
y = ftension in string 1]/2 - ¢F /2
‘mass/unit Tength of string’ (;3

Before proceeding, we can check this formula to see it it is dimensionally
correct (If it isn't, we have the wrong formulai):

[v1 = [L/7]
- VR L

TZ

The formula is dimensionally correct. Thus we find F = pv= = 6.0 N.

(b} Since the maximum velocity of any point on the string is the same as any
other (although the maximum velocity occurs at different times at different
points) the 2.00 m is not relevant. We can, for example, consider the point at
which the driver is attached to the string- You should get (ay/at)max = 0.60 m/s.

2

C(3). A pulse moves along a string with wave speed v as shown in Figure 4.
The right end of the string is fixed to a wall. The situation is shown
a? t = 0. Sketch the vertical displacement of the point P as a function
of time. R

P
*
Figure 4 ]( . * o

\i\ NN\
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STUDY GUIDE: Traveling Haves 7

Solution

The boundary condition at the wall is that the string has no transverse displace-
ment (i.e., it is fixed). Ye can guarantee this boundary condition by imagining
that the string dses not stop at the wall but extends off to the right where a
symeetrically located wave is propagating to the 1eft. See Figure 5. This new
wave is shaped Just 1ike the other wave except that it is inverted and is
reflected front to back. Now, the principle of superposition sfates that the
displacement of the string is just the algebraic sum of the displacements in

the two waves. The new wave has been set up so that, at the former position

of the wall, the displacement of the string is always 2ero, and as far as the
left half of the string is concerned, it is just as if there were a wall at that
position still. The mation of point P thus is first affected by the passage of
%he wave pulse going to the right and, later, by the reflected wave going to the
eft.

Figure 5

D(3}. A string vibrates according to the equation
y = (0.0040 m) sin[(25.0 m~V)x] cos[(400 s~ ')t].

(a) ¥hat are the amplitude and velocify of the component waves whose
superposition gives rise to this vibration?

{b) Determine the distance between nodes.

c) Sketch the shape of the string at several different times to provide
a "motion picture” of the motion of the string.

Solution

We hope that you recognized this to be the form of a standing wave, produced

by two traveling waves of equal amplitude and freCuency traveling in opposite
directions. You can consult your textbook for a mathematical plug for the answer
to part (a}, but it is important that you also be able to reason out the answer
pictorially. Let us answer part (c} first to get Figure 6. Before doing
arithmetic, write the formula you were given in algebraic quantities:

¥ = A sin kx cos wt,
By inspection of the formula and Figure 6 we see that both the standing and the

traveling waves take a distance 25/k to go through one cycle along x, thus
A = 2a/k. It is also easy to see that the period of the standing wave is the
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STUDY GUIDE: Traveling Haves 8
same as that of the traveling waves, thus f = «/27. The wave speeds are thus
v = A = w/k, and for this example

v = (400 s"13/(25.0 &Yy = 15.0 n/s.

The amplitude of both traveling waves is one-half of the maximum awplitude of
the standing wave, as we see from the figure, therefore the

amplitude of traveling waves = A/2 = 0.0020 m.

Again, as we can see from the figure, the distance between nodes equals

A_12x_3_ % _
Figure 6
» —3 . .
k /— Standing wave {sum
i/ of component waves)
!
i
's./ 1 A -Componf:nt waves ]
; : — interfering constructively
1
i I e®e®e nositive velocity
! : — = negative velocity
' v :
1 e ——
)
. /’:\\ o % o /’ r'\ b Component waves
T . R interfering destructively
_ﬂ/ e 1 @ \\__/ . c. * ..
] v ]
1 1
1 s
] 1
: I
: i
H 1
i 2
{

One-half cycle after
top picture
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STUDY GUIDE: Traveling Waves 9

E(4). Give a physical argument (give an analocy to some other, possibly simpler,
physical situation) to justify that the power cerried in a sinusoidal
traveling wave depends on the square of the frequency. Does your analegy
also provide an explanation tor why the energy transmission also depends
on the other variables the way it does, or do you fiave to dredge up some-
thing else? (&fter answering this question, you should not have to claim
that you have to "memorize” the formula for power transmitted by a wave
on a string.)

Solution

Suppose you start to wiggle, with a transverse motion, the end of a string that
is initially at rest. %4nat does the string look 1ike at successive instants?
Consider a small segment of the siring. It is moving up and down with simple
harmonic motion, pulling the next segment up or dewn and thus doing work on it.
Power is work over time, and thus we find that the povier for a sinusoidal wave
is similar to that for simple harmonic motion, with the square of the frequency
(which arose from the derivative) taking the place of angular velocity. How
does the kinetic energy of the piece of string depend on the amplitude and
frequency? How does it depend on the mass per unit length of the string?

Problems

F(1). A sinusoidal traveling wave has the form

y = 0.0300{sin(0.50x - 20.0t - /4}],
L m s'] s rad

where the dimensions of each quantity are shown below the equation.

(a) Determine the frequency, wavelength, wave speed, angular frequency,
period, amplitude, and direction of travel of this wave.

(b) Sketch "snapshots" of this wave at £ = 0 and at t = 0.0250 s.

6(1). A pulse travels along a string with a speed of 5.0 m/s. Its shape and
direction of motion at £ = 0 are shown in Figure 7.
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STUDY GUIDE: Traveling YWaves 10

y (=)

v = 5.0nfs

x (@)

Figure 7

(a) Sketch the pulse at £ = 0.80 s.

{b} The point P is fixed to the string at x = +1.00 m. Sketch the dis-
placement and velocity of P versus time. Label the axes of your sketch
carefully, showing the scales on each of the axes.

H(2}. A rope under 80 H_tension carries a sinusoidal wave of wave constant (wave
number} k = 4.0 m ! at 2 wave speed of 25.0 m/s. Determine the frequency
of the waves and the mass per unit length of the rope.

1(3}). Show that the superposition of two sinusoidal waves of equal amplitude,
frequency, and wave speed that are traveling in the same direction gives
a sinusoidal traveling wave regardless of the phase difference between them.
Determine the amplitude of this traveling wave in terms of the amplitude of
the two waves and the phase difference between them.

J(3}). A string 2.00 m long is attached to the prong of an electrically driven
tuning fork that vibrates perpendicularly to the length of the string at
a frequency of 80 Hz. The mass of the string is 12.0 g. Determine the
tension that must be applied to the string to make it resonate in three

1oops.

K{#). Two long wires of linear densities 2.00 x 1072 kg/m and 5.0 » 1072 kg/m;
respectively, are joined at one end. The two free ends are pulled apart
with a tension of 10.0 N. At the point at which the two wires are joined,
an oscillating arm starts to shake the wires transversely with a sinusoidal
oscillation of 25.0 Hz, 0.00300 in amplitude. Oetermine the energy
supplied to the wires after 3.00 s. '
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Solutions

F{1). (a) The equation is of the form of a wave moving in the +x direction:
y = A sin(kx - ot - ¢),

from which we immediately note the substitutions

1 1

k=0.50m , angular frequency o = 207 s~ = 62.8 s-}, amplitude A = 0.0300 m,

from which we can derive the other quantities:

wave speed = w/k = 126 m/s, frequency = /27 = 10.0 Hz,
= wave speed _ _ w23 _ 27 _ PR ]
wavelength Frequency e X 12.6 m, period ¥ 0.100 s

{b) #e note that this is a wave of ampiitude 0.0300 m and wavelength 12.6 m. It
is shifted at t = 0 from sin kx by the phase shift 4. For ¢ = #/4, the wave siope
is shifted (=/4)/(21) ! wavelengths to the right, and thus the snapshot Tooks

1ike Figure 8. At t = 0.0250 s we have

y = 0.030 sin{0.50x - =/2 - 7/4),

which is a sine function shifted (3z/4) (Zn)'} wavelengths to the right, as in
Figure 9,

(1. (a) ' v@
G{1). (a) See Figure 10. .
(b} See Figure 11. Pictured at £ = 0

0-030 1-—-—_@—

Figure 8

Figure 10

_0-030 oty S S SR s S

y(m)

y(m) Pictured at t = 0.025 s

0.02 T 0.030 1

-1 102 3 4 x{m)

-0.030 ¥
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STUDY GYIDE; Traveling Waves 12

H(2). The frequency is 15.9 Hz, the density 0.128 kg/m.

I(3). This problem gives a 1ittle practice in applied trigonometry. Let us write
expressions for the two waves:

¥y = A sin(kx - wt}), ¥, = Asin(kx - ut - ¢),
that have the same amplitude, frequency, wave speed, and direction of propagaticn.
The wave ¥y, leads y; by a distance $/k, which you should verify for yourself. Ue
wish to calculate y = y; + ¥, but first we can reexpress y; and yz, using the
jdentity (which you should know)

sin(a« ¥ 8} = {sin a)}(cos 8} + (cos «)}(sin B)

to write
sin{a + 8) + sin(a - B) = 2 sin a cos 8.
We can put y] * Y, in this form by letting
a+ B = kx - wt, a-8=k%kx-uwt -4,
which gives
a=kx -ut - $/2, B=4¢/2,
and
y = 2A sin(kx - ot - $/2) cos(¢/2).
This is a traveling sinusoidal wave, regardless of the value of ¢. The amplitude
of the resultant wave is 2A cos(¢/2}). If ¢ = 0, 2x, 4%, etc., the waves are "in
phase," and the amplitude is 2A - an example of constructive interference between

the two waves. If ¢ = %, 3w, 51, etc., the amplitude is zero - destructive
interference.

J(3). 68 K.
K(4). 0.39 0.

‘ 0.02 T ;
8y
Eﬂ (m/s) o

y(m)

;6 1.0
-.50 T tls) Figure 11

(X
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PRACTICE TEST

7. A standing wave on a string is shown at £ = 0 in Figure 12. The frequency
of its motion is 25.0 Hz, and the displacement of the string is a maXimum.
(a2) Hrite down symbolic expressions for the traveling waves whose super-
position produces this standing wave, and give the numerical values for the
symbols in your expressions.
(b} Determine the tension in the string if its mass per unit length is 2.00 o/m.

u{/’/’ String

Figure 12

Equilibrium line

k 5a )

2. The motion of 2 string is given by

y = A sin{wt - kx),

where A = 0.00200 m, w = 65 5!, and k = 2.00 w"!

(2) Determine the maximum speed of a point on the string at x = 4.0 m.

(b) In what direction is power being transmitted along the wave?

(c) If the amplitude and frequency are kept the same, but the tension in. the
string is increased by a factor of 2, how is the power transmitted by the
string affected?

2 Ag saseaaoul JaMog (0) -u0t3d8aLp X~ 3y3 Ui (q)

*sju 0510 = (59)(00200°0) = 7 = *a

“(x2 - 369)502 (59)(00200°0) = 3p/Ap = A “(%00°2 - 359)Uts 00200°0 = A (2} 2

"N 9°€L = (00°2),(0£°€),(0°62) = ¥4 = L “(V/1)(,¥/L) = ;4 “MLA/D=
‘WOE'E =Y  ‘zHO'Gz =4  ‘wb ooz =1 (9)

S/ g8 =

(0£°€)(0°G2) = ¥4 = A pue “w 0g°g = X ‘W 00200°0 = Y 43yM ‘3431 03 BufjdAed} aaem
(3A + xYJULs ¢ = 2k “qubta 03 Bupfaaedy aaem (an - xxjﬂ;s ¥ = [ﬁ-(e) L

SAaMsuy 3531 3913984d
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TRAVELING WAVES Date

pass recycle

Mastery Test Form A

Name _ _ Tutor

1.

2.

1 2 3 4

A standing wave of 5 loops (or antinodes) is set up on a flexible wire. The
wire is 1.20 m long, and its total mass is 10.0 g. The maximum amplitude of
oscillation of the wire is 0.50 mm, and its frequency of oscillation is 400 Hz.
(a) Sketch the shape of the wire at several instants, each separated by a
quarter cycle from the previous instant.

(b) Determine the tension in the wire.

(d) Let one end of the wire be at x = ¢ and the other end at x = 1.20 m. At

t = 0 the wire is straight, but its tranverse velocity at x = 0.050 m is in
the +y direction. Write the mathematical expression for the displacement y

of the wire as a function of the variables x and t.

A sinusoidal traveling wave on a string moving to the right with a velocity
30.0 m/s is shown in Figure 1.

(a) Sketch the vertical velocity of the point P, which is at x = 2.00 m, as

a function of time, labeling the axes of your sketch carefully.

(b} If the wavelength of this wave is increased by a factor of 3, keeping the
amplitude the same (and presuming the tension and mass of the string are
unchanged)}, determine the change in the rate of energy propagation on the
string.

Figure 1

y(m)
— v = 30 mfs

0.003 ¢ P /\ /
2 ) ) 4 . m— (it )
~0.003 ¢ v

1 2 3 45 6 7
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TRAVELING WAVES Bate

pass recycile
Mastery Test Form B
1 2 3 4

Name . Tutor

1. A wave propagates along a string whose mass per unit length is 0.0040 m kg/m.
The transverse displacement ¥ the wave is given by

y = Asin(kx - wt - &),

where A = 0.00300 m, k = 6.0 m ', w=80s"), and ¢ = 7/2.

(a) petermine the tension in the string. _

(b) Sketch a "snapshot” of the string at t = 2/320 s, showing the horizontal
and vertical scales.

(c) Oetermine (i) the direction and (ii) the magnitude of the wave velocity.
(d) If the amplitude of the wave is halved, what effect does this have on the
pover transmitted by the wave? (Give your answer in a complete sentence.)

2. A pulse propagatés with speed ¢ down a long string that is fixed to a wall at
one end. Figure 1 shows the string at t = 0. Sketch the shape of the string
at t = 32/2c showing its location with respect to the wall.

—_—
Figure 1 l
= 2 >
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TRAVELING WAVES Date

pass recycle
Mastery Test Form C
1 2 3 4

Hame _ _ Tutor

1. A wave propagating to the left is shown at t = 0 in Figure 1. The frequency
of the wave is 60 Hz.
(a) Sketch the wave at t = 1/30 s.
(b} Sketch as a function of time the vertical position of the point on the
string at x = 0. Show the scale clearly on the axes of your sketch.
{c) Determine the mass per unit length of the string if its tension is 50 N.
d) If the appropriate traveling wave is superposed on the wave in the figure
to produce a standing wave, determine the amplitude of the standing wave
and determine the distance between nodes.

y(m)

. direction of wave
Figure 1
propagation

0.005 fomom i m =

x{m)

2. A-wave given by
y; = A sin{wt - kx)

transmits power P. Oetermine the power transmitted by a wave that is the
superposition of Y with the wave

¥o = A cos(ut - kx}.
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TRAVELING WAVES A1

MASTERY TEST GRADING KEY - Form A

1. What To Look For: (a) Clear picture. (b) Encourage algebraic manipulation
before plugging in numbers. (c) Expression for standing wave.

Solution: (a) See Figure 16, in which £ = 1.20 m, f = 400 Hz, m = 0.0100 kg,
and the ampiitude is 5.0 10~ m.
(b) Since £ = 5(a/2), » = (2/5)%. v = (F/o)]]zs

F=p¥=%ﬁn2=%ﬁ%hz=ﬁ§£=m7m

(c) See Figure 17.

y = A sin ot sin kx,

where A = 5.0.x 107 m from the problem. @ = 2f = 2.51 x 10° 7,

k =2s/x = 2z(2/5)2 = 3.02 m"]. Note that this form provides that y = 0
everywhere at t = 0 and 3y/5t > 0 in the first loop.

AN}

Figure 16 éﬂ
'%\T%;L E ). XC ) f--—-l—#—;--
} — m
20.050 5T ? 7 ; 1 : :
4 120 1 { I |
att =0 y I ! ! A~
Z 1 T | —Z
2 £ ~
Figure 17

2. What To Look For: (a) Clear picture, appropriate mathematical justification.
(b) Clear statement.

Solution: (a) See Figure 18. Wave_is written as y = A sin(kx - wt), where
A=0,00300m, k=2x/x = (2¢/8) m } = {5/2) o},

w = 2af = 2n(v/2) = 2x(30/4) = 15x 57",
(ay/at}],, - » = -wh cos(-ut + %) = wh Cos wt,
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TRAVELING HAVES A-2

where wA = 0.141 m/s. By inspection of the figure we see that at t = 0,
P has its maximum positive-y velocity.

{b) Power transmission is proportional to (mﬁ)zpv. We keep A, p, and v
the same but change i:

A= v/f = v2afe,  aus P 1732

if A, ¢, and v remain constant. Therefore power, or rate of energy propagation

on string, is reduced by a Tactor of 9 (is multiplied by 1/9) if 1 is increased

by a factor of 3 (is multiplied by 3).

343t (wfs)
Figure 18

+O0. 1% 1

b +(s)
0133

‘-1-h

— o.l"l’ "
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~  MASTERY TEST GRADING KEY - Form 8

1. Whet To Look For: Correct scales on x and y axes; unambiguous statements.

Solution: (a) ¥y = A sinfkx - ot - &), where A = 0.00309 m, k = 6.0 m™),

p=0.0040 kg/m, A = 1.050 m, © = 80 51, period = 2n/w = =/40 s, & = /2,
wave speed ¢ = w/k = (F/ﬁ)]lzs and F = ;m?/kz = 0.71 \.
(b) See Figure 19. At t = 7/320 s, we write the equation of the displacement
of the string as
y = A sin(kx - w/4 - 9/2), a sine curve shifted 3s/4k toward positive x.
(c) (i) The direction is along #x. (ii) The magnitude of the wave velocity
is ¢ = w/k = 80/6.0 = 13,3 m/s.
(d) P = Az. If the amplitude of the wave is halved, the power transmitted by
the wave is decreased by a factor of 4 (i.e., the power transmitted is multiplied
by 1/4 if the awplitude js multiplied by 1/2).

2. Solution: See Figure 20. The string travels a distance ct = c(3 /2¢) = (3/2)
and is reflected at its fixed end.

4l B ¢ ?
R I NN X 2
"°'°°3°°'_<—/——>\——-\—> f/

& —p

Figure 19 Figure 20
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MASTERY TEST GRADING XEY - Form C

1. Solution: (a) See Figure 21. t = 1/30 s is two cycles later than t = 0.

The figures Took exactly the same.
(b) See Figure 22.

= 1/2 _ 2 _ 2 _ 2 2 _
(c} c = (F/p)''c, thus p = F/c© = F/(AF)° = 50 4/(2.00 m)“(60 Hz)® = 3.47 g/m.
(d) To get a standing wave, we must superpose a traveling wave of the same
amplitude, traveling in the opposite direction. Thus the ampiitude is 2.00 x
0.0050 m = 0.07100 m, and the distance between nodes is A/2 = 1.00 m.

2. Solution: ¥ = A sin(wt - kx}, given Py = 2.
Yy = A cos{wt - kx} = A sin(wt - kx + #/2). If we do the trigonometry correctly,

t using sin{c + 8) = sin o cos B8 + cos « sin 8, we get
T Y7 * ¥p = 2A cos(w/8) sinlwt - kx + u/8),* where 2A cos(z/4) is the new
amplitude. The new power is thus
P” = [24 cos(n/8)3° = 4(1/v2)2A2 and P~ = 2P.
(*This can be checked for reasonableness for the cases when ¥ and ¥, are
exactly in phase and out of phase.)

yim)

40.0050

—~0.0050

Figure 21

+0.0050 ! : /\\
_ | ——> ()

~0.0050 T 7z0 ° Ly

Figure 22
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