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COMMENT 70 USERS

In the upper right-hand corner of each Mastery Test you will find the *‘pass”
and "recycle” terms and a rov of nushers 1 2 3 ..." to facilitate the
grading of the tests. We intend that you indicate the weaskness of 2 student
who 15 asked to recycle on the test by putting a circle around the nurber of
the learning objective that the srudent did not satisfy. This procedure will
enable you easily to ideatify the learning objectives that are causing your
students difficulty.

COMMENT 70 USERS

Tt is conventlonal practice to provide several review modules per semester or
quarter, as confidence builders, learning opportunities, and to consolidate what
has been learned. You the instructor should write these modules yourself, in terms
of the particular weaknesses and needs of your students. Thus, we have not supplied
reviewy modules as such with the CBP Modules. However, fifteen sample review tests
were written during the Worksnop and are available for your use as guides. Please
send $1.00 to CBP Modules, Behlen Lab of Physics, University of Nebraska - Lincoln,
Hebraska #8588,

FINIS

This printing has completed the initial CBP project. We hope that you are finding
the materials helpful in your teaching. Revision of the modules is being planned
for the Sumxer of 1976. We therefore solicit your comments, suggestions, and/or
corrections for the revised edition. Please write or call

CBP WORKSHOP

Behlen Laboratory of Physics
University of Nebraska
Lincoln, HE 68588

Phone (402) 472--2790
(402) 472-2742




Module 1
STUDY GUIDE

CONSERVATION OF ENERGY

InTRODUCT 10K

Imagine a bicycle rider coasting without pedaling along a road that is very
smooth but has a lot of small hills. As he coasts up a hill, the force of
gravity will, of course, slow him down; but it speeds him up again as he goes
down the other side. #¥e say that gravity is a conservative force because it
gives back as much kinetic energy (KE) to the cyclist when he returns to a lower
level, as it took away when he ascended to the top. We therefore assign a gravi-
tational potential energy (PE) Ug to the cyclist, which depends only on his
elevation. The lost kinetic energy is converted into this Ug. We then find to
our delight that the sum £ = K + Ug is (approximately) constant: Ug is larger
at the top of "each hill, and smaller at the bottom, in just such a way that its
change compensates for the change in the kinetic energy K!: This is an example
of the conservation of mechanical energy.

However, if we watch the cyclist for some time, we are disappointed to find that
K+ Ug is only approximately conserved: frictional forces gradually siow the
cyclist down; and after awhile he starts pedaling again, thereby increasing

K+ Ug. But still, all is not lost. The energy-conservation 1aw can be saved
by defining other kinds of energy {for example, chemical, thermal, and nuclear)
that are produced by the action of so-called nonconservative forces. If we call
these nonmechanical energy forms Enc, then E =K+ U + E“c is exactly conserved.
in fact, energy conservation is one of the great principles of physics, and one
that holds even outside the domain where Newton's laws are valid.

Another example of energy transformation is provided by hydroelectric power
production, beginning with the water stored behind a high dam. As the water

rushes down the intake pipes it gains kinetic energy, then does work on the tur-
bine blades to set them in motion; and, finally, the energy is transmitted
electrically to appear as heat in the oven in your Xitchen. Experience with
energy transformations of this kind led to the formulation of the law of conserva-
tion of energy in the middle of the nineteenth century: ENERGY CAN BE TRANSFORMED,
BUT NEITHER CREATED NOR DESTROYED. This 1aw has survived many scientific and
technological -developments since that time, and our conception of the possible

5




STUDY SUIDE: Conservation of Energy 2

forms of energy has been enlarged. Whenever it seemed that energy was created

or destroyed, physicists ullimately have been zble to identify a new energy source
{for example, thermonuclear energy in the sun) or a new energy receiver {such as
neutrinos in beta decay).

In this module we shall be concerned only with mechanical energy and energy
exchanged by doing work. %e shall therefore be describing examples of mechanical
energy conservation - the case of the ideal bicycle rider, and nonconservation of
mechanical energy - the case of the real bicycle rider or the hydroelectric power
plant. As a matter of fact, all practical, physically realizable phenomena involve
friction, air resistance, and similar effects that result in some heating and a
corresponding loss of mechanical energy. ¥e shall therefore deal with idealized
sitvations in which frictional forces are absent or are of a simple form. Since
these forms of mechanical energy 1oss are often very small, our descriptions will
be adeguate approximations for many phenomena, and they will illustrate the law
of conservation of energy as applied to mechanical procasses.

PREREQUISITES

8efore you begin this module, Location of

you should be able to: Prereguisite Content
*Calculate the work done by constant or variable . Work and Energy
force (needed for Objectives 3 and 4 of this module) Module

*Apply the work-energy relationship to solve problems Work and Energy
involving conservative and/or nonconservative forces Hodule

{needed for Objectives 3 and 4 of this module)

LEARNING OBJECTIVES

After you have mastered the contents of this module, you will be able to:

1. Forces - Define a conservative or a nonconservative force, or distinguish
between them in problems. :

2. Potential energy - Calculate the potential energy function U{(x), given a
conservative force F(x) depending on one coordinate; or conversely, given
U(x), find F(x).

3. Conservation of mechanical energy - Use the law of conservation of mechani-
cal energy for conservative forces to solve problems involving particle

motion in one dimension.

4. Conservation of total energy - Apply the law of conservation of total energy,
specifically including frictional forces, in the solution of problems of
particle motion in one dimension.




STUDY GUIDE: Ccnservation of Energy 3(8 1)

TEXT: Frederick J. Bueche, Introduction to Physics for Scientists and Engineers
{KcGraw-Hill, New York, 197%), second egition

SUGGESTED STUGY PROCEDURE

Read Chapter 8, Sections 8.5 through 8.8 and Chapter 9, Sections 9.6 through
9.9. Bueche treats the cbjectives in this module in different order from

most texts. #e would suggest thai you read Sections 8.5 and 8.6 in which the
author shows that the abiliiy of the gravitational field te do work on a

man can be defined as gravitational potentfal energy, Eq. (8.6); then skip

te Chapter 9 and read Section 9.6 up to I1lustration 9.5, in which the potential
energy of a spring is derived in Eq. (9.16). These are the two forms of potential
energy we will use most often. Many others exist in nature, however, and the
point of Objective 2 is the general relation between force and potential.

At the end of Section 8.5 {p. 119), the work of gravity is shown as a sum of
increments over a path iny. This would result, in the 1imit, in a general
relation for an arbitrary conservative force:

X2
U{x} = -f © F(x) dx.

X1
BUECHE
Objective Problems with Assigned Problems Additional
Humber Readings Solutions Problems
Study  Text Study Guide
- Guide
1 Sec. 8.5 A
2 Sec. 9.9 B, C M Chap. 8,
Prob. 2,
Chap. 9,
Probs. 30, 31
3 Secs. 8.5- D, E  IMlus.* N,0,P Chap. 8,
8.7 8.6, 8.7, Quest.* 6,
9.5 Probs. 17; 23,
25; Chap. 9,
Probs. 21, 25,
27
4 Sec. 8.8 F I1lus. 8.8, Q, R Chap. 8,
8.9, 9.6, Quest. 8, 14,
9.8 Probs. 16, 18,
21, 22

*I1us. = ITlustration{s). Quest. = Question{(s).
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ﬂ?w)read Section 9.9, which derives the differential relaticn between F{x) and
Ul{x}:

F = - dU/dx.

(You need not worry about more than one dimensior.} With these eguations the
potential energy function can be found for an arbitrary force and conversely
F(x) can be found for a given U{x)}. Problems 8 and € in this module and Problems
30 and 31 in Chapter 9 of the text are keyed te Objective Z. You have already
read about conservative and nonconservative forces in Section 8.5. Conservation
of mechanical energy is treated in Section 8.7. Hote that the author does not
use the ternm “mechanical energy," Breférring to use the symbolic form {U + K}
instead. In Objective 3, "(U + K)* is equivalent to “mechanical energy.”

The last logical step is to extend conservation ideas fo nonconservative forces.
This is done in Section 8.8. It should be pointed out that in I1lustration 8.8,
the “friction work" is ihe energy output equivalent of the actual work done by
friction on the body (which is a negative quantity).

Read the General Cemments; study the solutions to Problems A through f; and
solve Problems ¥ through R. If you need more practice, you may wish to work
some of the optional problems 1isted above. Take the Practice Test before
attempting a Mastery Test.
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David Halliday and Robert Resnick, Fundzmentals of Physics (Wiley, New
York, 1970; revised printing, 1974)

TEXT:

SUGGESTED STUDY PROCEOURE

Read all of Chapter 7 except Sections 7-6 and 7-9. You should have no difficulty
with Objectives 1 and 2, which are well described in the text. The important
principles of energay conservation are developed logically but rather briefly

in Sections 7-7 and 7-8. You should note that £q. (7-12b) is a statement of
conservation of mechanical energy and is applicable to problems that do not
involve friction. Section 7-8 discusses how to include friction or any other
nonconservative force in the conservation principle. The last equation on

n. 125 is a statement of conservation of total energy. The formulas given in
General Comments may help you solve problens.

Read the General Comments; study the solutions to Problems A through r; and
solve Problems M through R. If you need more practice, you may work some of
the optional problems listed below. Take the Practice Test before attempting
a Mastery Test.

HALLIDAY AND RESNICK

Objective Problems with Assigned Problems Additional
Number Readings Solutions . Problems
Study  Text Study CGuide {(Chap. 7)
Guide
] Secs. 7-2, A Quest.* 2,
7-7 3, 4
2 Secs. 7-3, B, ¢ Ex.*1, M Probs. 2{a),
7-4 2,3 3(a), 15(a),
22
3 SECS. 7"'3 0’ E EX- 5 H’ 0’ P 5’ 7’ ]7’
to 7-5 18, 25, 28,
30
4 Secs. 7-7, F Q, R 23, 32, 33,
7-8 37, 39 [part
(di is
difficultl

*Ex. = Example(s). Quest. = Quesfion(sj.




STUDY GUIDE: Conservation of Energy 3(sz 1)

TEXT: Francis Weston Sears and Mark W. Zemansky, University Physics {Addison-
Wesley, Reading, Mass., 1970), fourth edition

SUGGESTED STUDY PROCEDURE

Read Chapter 7, Sections 7-4 through 7-8. The authors develop the principle

of conservation of mechanical energy but do not state it in a form directly
applicable to Objective 3. Egquation (7-14) is a statement of total energy
conservation {(Objective 4) in which ¥ contains the nonconservative forces.

As the authors state, when ¥ = 0; aEk + aEp = 0 = conservation of mechanical
energy. Some further discussion of this is given in the General Comments. Note
that the text notation is different from the more common notation we have used
in the General Comments; Ep = Up, Ek =K, ¥z Nnc' Note that Objective 1 is

not covered in the text until Section 7-6. This change in order from other
texts is unimportant and should cause you no difficulty.

Guidance for Objective 2: In the previous module Work and Energy, the work-
energy theorem was introduced in terms of the kinetic energy;

5
SEARS AND ZEMANSKY
Objective ’ Problems with  Assighed Problems  Additional
Number Readings Solutions Problems
Study  Text Study Guide
Guide
1 Sec., 7-6 - A
2 Secs. 7-4, B, € M 7-11, 7-12,
7-5, 7-7, 7-13, 7-34
7-8
3 Secs. 7-4, D, E Sec. 7-4, N, O, P 7-22, 7-23a,
7-6, 7-7, Ex.* 1, 7-26, 7-29
7-8 2, 4,8
Sec. 7-8,
_ Ex. 3
4 Secs. 7-4, F Sec. 7-4, Q, R 7-19, 7-24,
7-5, 7-7, £x. 3 7-27
7-8
O  *Ex. = gxample(s). 10




STUDY GUIDE: Conservation of Energy 3(sz 2)

In Section 7-4, the text introduces the potential -energy, associated with the
ability of a body in a force field to do work, by considering as an example

tha energy of a body in a gravitational field. The text then generalizes the
concept by introducing elastic poential energy. This treatment leads easily to
the conservation-of-energy law, but obscures a useful relationship between
force and. potential energy. As you read Section 7-4, note that if W* = 0 in
Eq. ¢-7), then (rearranging terms

dyp - mdyq = “%‘“"g i %‘“"%"*

or in general Ep = - Ek’ and from Work and Energy

£y = - [2FQ) - &
5

Alternatively, this relationship may be stated in differential form:

F(s) = -dEp(s)/ds.
You will be assisted in mastering this objective by studvng Problems B andC.
Read the General Comments} study the solutions to Problems A through F; and
solve Problems M through R. If you need more practice you should work some of

the optional problems listed in the Table. Try the Practice Test before
attempting a Mastery Test. :

11




STUDY GUIDE: Conservation of Energy 3(¥s 1)

TEXT: Richard T. Weidner and Robert L. Sells, Elementary Classical Physics
{A11yn and Bacon, Boston, 1973), second edition, Vol. 1

SUGGESTED STUDY PROCEDURE

Read Chapter 10, Sections 10-1 through 10-5. Although the order of presentation
is different from the order of the objectives, we suggest you read the text

in order. You may omit £q. {10-7), since we are 1imiting this module to motion
in one variable. A1l of the material in Sections 10-1 through 10-4 is a
development of the concept of potential energy, although Section 10-4, Property
5 will help you the most to develop problem-solving ski111s for Objective 3.

In Section 10-5, the conservation of total mechanicazl energy is defined,

E =K+ U= constant. The total energy of an isolated system is always conserved,
but mechanical energy is conserved only in the absence of friction and other
nonconservative forces. Read the General Comments; study the solutions to
Problems A through F; and solve Problems M through R. If you need more practice,
you rray work some of the optional problems 1isted below. Try the Practice Test.

WEIDNER AND SELLS

Objective Problems with Assigned Problems  Additional
Number Readings Solutions Problems
Study  Text Study Text
Guide Guide
1 Sec. 10-4 A
2 SeCS. ]0-] B’ C M ]0"]7’
to 10-4 10-18
3 Sec. 10-5 D, E  Ex.* N, 0, 10-2, 10~3,
10-1 to P 10-4, 10-9,
10-6 . 10-10, 10=11,
10-14
4 Sec. 10-5 F q, R 10-16, 10-19,

TG?ZO

*Ex. = Example(s).

12




STUDY GUIDE: Conservation of Energy 4

GENERAL COMMENTS

The texts vary somewhat in their presentation. of formulation for conservation
of mechanical eneray and total energy convenient for solving problems. ¥e
suggest the following for problems involving single springs and single masses
(or multiple masses moving at the same velocity).

(1} Bechanical energy conservation: Ki tU; = Kf + U or
2 _ 2 2
(/23 + Q/2)0 + mgh, + U; = G/2)m% + 0/2)6 + moh + U,

where the subscripts i and f refer to initial and final states of the motion.

(2} Total energy conservation where friction is the only nonconservative force:

Kﬁ + Ui

Re+ Ug+ Ep s

2 2 X
.. . e - U
1

The absolute magnitude sign has been used for the work of the frictional force
to avoid sign confusion, which arises because

X
£ =-H=-f2Fds
nc

X1
But since f and dx are always oppositely directed, ?‘d§ = -f dx(cos 8); Hence
Enc = f cos 6 dx. It should be pointed out that because one is always concerned
only with differences in potential energy, the choice of the zero of potfential
energy is arbitruary. If the force associated with the potential energy is con-
stant, as in the case of the gravitational force on an object close to the earth,
we may choose any convenient horizontal level (usually the lowest, or ground
level) as the zero for grayitational potential energy. If, on the other hand,
the force varies with displacement, as in the case of the spring, it is
customary to choose the zero. of potential energy as that displacement for
which the force is zero. '

Objective 1 will be satisfied by the following statement: A force is

conservative if the work done by it on a particle that moves between two
peints depends only on these points and not on the path followed. A force
is nonconsérvative if the work done by that force on a particle that moves

‘between two points depends on the path taken between those points. (See

Prob]em A for an alternative definition.)




STUDY GUIDE: Conservation of Energy 5

PROBLEM SET WITH SOLUTIONS”

A{1). Define a nonconservative force and give an example of one.

Solution

A force is nonconservative i¥ the work done by the force on a particle that
moves through any round trip is not zero. (See General Comments for
alternative definitions.)

Example: friction

A block sliding on a flat surface is projected against a spring mounted
on the wall., If the surface is frictionless, the block will be brought
to rest momentarily by the spring. The work done by the spring on the
body is

Wy = fFF - dt = - I,
174 2

The motion reverses; on the outward path the work done is Hz = +(]/2)kx2,
and the total work H] + “2 = 0. If the surface is not frictionless, then
the work done by the frictional force is

wfsz?-'d;:
i

which is negative in both directions, and H] ¥ Hz_f 0 for the round trip.
Frictional forces, therefore, are an-example of nonconservative forces.
Conversely, for a conservative force the round-trip work is zero.

B(2). A body moving along the x axis is subjéct to a force given by

F(x) = - kx + cx®. Find the potential energy function for this
force. Let U(x) = 0 at x = 0.
Solution
2= o ) _ o
The potential energy is defined as U(x) = - [ F(x)dx + u(xo).
X
0

In this case x5 = 0 and U(xo) = (.

Ux) = f* ke dx - [ o dx, U(x) = i) - Hex).

£(2). What force corresponds to a potential U(x) = =KMo/ % + Kox?

'*Prob]ems satisfying Objective 4 also satisfy Objective 1 (i.e., Problems
F, Q, R). 14




STDY GUIDE: Conservation of Energy

Solution
For one-dimensional motion F(x) = -d(x)/dx. Therefore,

k.m
F) = S112) - Sy -

i
X 2

) - (ko).

B(3). A 1.00-kg object coasts along a smooth horizontal surface at 2.00 m/s
and strikes a spring with force kX = 25.0 N/m whose right end
is firmly attached to the wall. What is the maximum amount by which
this spring is compressed? (See Fig. 1.)

Solution

Use conservation of mechanical energy, taking i1 to bz the point of first
contact with the spring and f 2s the point of maximum comprassion:

Ky + U, = K (172)mv% + 0 = 0 + (1/2)k2,

£+ Vg

x = (m/k)Y2(v) = (1.00 kg/25.0 t/m}/2 (2.00 m/s) = 0.40 m.

0f course, when the object is at rest, the spring continues to push to the
1eft, and the object is accelerated to the left. When it returns to its

initial point the energy conditions will be the same as in i above, although

v will be oppositely directed. p—
v .
s | MAAAAA
p— -

Figure 1 Ie xal | (r——r

E(3}. A block of mass 1.00 kg, initially at rest, is dropped from @ height
h = 1.00 m onto a spring whose force constant is k = 50 N/m. Find
the max;mum distance y that the spring will be compressed. (See
Fig. 2.

So]ution

This is @ process for which the principle of the conservation of mechanical
energy holds. At the moment of release, the kinetic energy is zero. At the
moment when maximum compression occurs, there is also no kinetic energy.
Hence, the loss of gravitational potential energy of the block equals the
gain of elasiic potential energy of the spring:

15
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i T

e

R

Figure 2

Release Maximum
Compres-:ion

mglh +y) = (2" or v% - 2mgysk - 2ughyk - o,

Therefore,
2
-mg 1r2may2 . 8mgh41/2 mg _ {1.00 k9)(9.8 m/s°) _ .

y = 0.196 m * (1/2)(0.15¢ + 1.568) /2 1 = 0.196 m + 0.656 m = 0.85 m.

(The negative solution corresponds to stretching the spring and is an
unphysical solution since the block is not attached to the spring.)

F(4).

Figure 3

A 5.0-kg body is given an initial speed up an incline plane of 4.0 m/s.
It coasts up the plane, comes momentarily to rest, and then coasts
down again, {ts speedat the base of the incline being 3.00 ny/s op
return. (a) How much energy is dissipated in friction? (b) If the
angle of the incline is 37°, what distance does the body travel up
along the incline, asstming one-half of the eneray found in part

(a) is expended as the Block goes up the plane?

Q 16
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Solution

(a) ¥e find the loss in mechanical energy by comparing the initial and final
mechanical energies. The potential energy is the same in the initial and final
states, the body being, both initially and finally, at the base of the incline.
Therefore, the decrease in the mechanical energy is simply the change in the
kinetic energy:

E .= (ki + Ui) - (Kf + uf) = (172)m (vg - Vi)
= (1/2)(5.0 kg)(16.0 of/s® - 9.0 m/st) = 18.0 J.

(b) Now we choose as our final state that at which the body is momentarily

at rest on the incline. From part (a) we know that 9.0 J of mechanical energy
have been converted into nonmechanical energy as the body increases its
vertical displacement by y = d sin- 6, as shown in the figure.

Eoc = (K5 #U5) - (K + U),
9.0 J = [(1/2) m’ + 03 - (0 + mgd sin o)
= (1/2)(5.0 kg)(16.0 n’/s?) - (5.0 kg)(9.8 n/sZ)d(sin 37°),
d = (40 - 9.0)/29.4 = 1.05 m.

Problems

M(2). Find the potential energy function corresponding to this force field
often used to describe the interaction of iwo atoms in a molecule:

F(r) = -a/r] +8/e13

(r is the distance between atoms, A and 8 are constants). Let the
potential energy be zero when the atoms are infinitely far apart.
Draw a rough sketch of the force and potential energy function.

N(3). A particle is suspended at one end of a taut string whose upper end is
fixed in position (a simple pendulum). Thé string’s length is 12.5 m,
and the particle passes through the lowest point at a speed of 7.0 m/s.
What is the angle between the string and the vertical when the particle
is momentarily at rest?

0(3). A 2.00-kg block and a 1.00-kg block are attached to opposite ends of a
massless cord 2.00 m long. The cord is hung over a small frictionless
and massless pulley a distance of 1.50 m from the floors with the
1.00-kg block initially at floor level as shown in Figure 4. Then the
blocks are released from rest. What is the speed of either block
when the 2.00-kg block strikes the floor?

17




STUDY GUIDE: Conservation of Energy 9

Figure 4

2.00 kg [

1.00 kg

P(3). A 2.00-kg block is dropped from a height of 40 cm onto a spring
whose force constant k is 1960 X/m. Find the maximum distance the
spring will be compressed.

0(4). A block of mass M slides on a frictionless track that is bent as in
Figure 5. The radius of the loop is R. The block starts its journey
at a height H above the floor with an initial speed (at height H)
of v,.
0

(a) How fast is the block traveling when it is upside down at the top

of the loop?

Eb; How fast is the block traveling after it has completed the loop? .
c) At point A the block siarts sliding on- a rough portion of tke floor.

The force of friction is F. How far beyond A does it travel before it
stops at point P?

R(4). A 4.0-kg block starts up a 30.0° incline with 128 J of Kinetic energy.
How far will it slide up the plane if the coefficient of friction. is
0.3002

Solutions
m2). u(r) = - a/6r° + Baa2e1, R(2). 4.3
- N(3). 37°.
0(3). 2.60 m/s.
P(3). 10.0 cm. _
o4). (a) [v) + 2(n - R)1V/2,
(b) (v] + 2g0) /2.
(c) (mv] + 2ngH)/2F.

18




STUDY GUIDE: Conservation of Energy 10

PRACTICE TEST

1. A particle of mass 16.0 kg constrained to move along the z axis is
subject 1o a conservative force field given by F(z) = Az + Bz, as in Figure 6.
(F is in newtons; the numerical values of A and B are A = 8.0, B = 1.00.)
{a) What are the dimensions of A and B?
(b) Find the potential energy as a function of z and sketch it.
[ (0) =0.]
{c) With what speed will the particle arrive at z = 0 if it starts from

rest at 2, = 4.0 m?
(d) Do the same for the particle stavting at z; = 0.100 m.

2. WYhat is meant by a conservative force? -

3. A 16.0-kg block traveling at 6.0 m/s in a horizontal direction collides
with a horizontal weightless spring of force constant 5.0 N/m: The
block compresses the spring a distance s. When the spring is back to
the uncompressed position, the block is traveling with a speed of
2.00 m/s. If the ceefficient of friction between the block and surface
;? o.gof determine the energy expended by nonconservative forces. (See

g. 7.




STUDY GUIDE:. Conservation of Energy 1

Practice Test Answers

1.(a) A: W21 8: WP, since F: ML/TS.
© (b) Uz} = - [F Flz)dz = ()2° - &),
0

u(o) = 0 = 22% - (1/2)22.

(c) (1/2)m? + U(z) = E = const, E = U(4) = 512 - 8.0 = 504 J,
atz=0, U(0) =0, E= (-?/2)!1!\?2, y = 2E/m = (2 x 504)/16.0 - 63 = 7.9 m/s.

(&) (1/2)m2 + U(z) = E = const, E

]

V(0.100) = (2 x 10~%) - (0.50 x 1072)
- 0.0498 < 0. :

Since U(0)} = 0, and (]lz)mr2 > 0, the particle will not arrive at origin
(it is repelled).

2. A force is conservative if the work done by the force om a particle that
moves through any round trip is zero.

3 Ry U Ret Ut By, B (K - K)o+ (U - U) = (172)M(s% - v2)

+ (0 - 0) = (1/2)(16.0 kg)(36 - 4.0)i’/s% = 256 4.

Ao
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CONSERVATION OF ENMERGY
pass recycle

Mastery Test Form A 1 2 3 4

Name _ ) Tutor

-

1. (Note: The following. experiment takes place in an orbiting space ship.)
A 1.00-kg body is hurled against a special spring. that exerts a restoring
force given by the function F(x) = ?k1 - kzxz wheq-defbrmed from -equilibrium.
What was the body's initial speed if it compresses. the spring by 0.200 m
befo*e being stOpped7 The constants in the force function are ky = 100N
and K2 2000 N/m .

2, Two 10.0-kg blocks are connected tcgether by a massless rope strung:over a
massless, frictionless pulley. The table exerts a 20.0-N frictional force
on m. The blocks start from rest at t = 0 and are allowed to accelerate
(see Fig.1). .
(a) Using only energy considerations, calculate the speed of M after 1t
has fallen a distance of 2.00 m.

{b) Calculate tha kinetic energy of the two blocks after M has fallen a
distance of 2.00-m.

{c) Give a definition of a nonconservative force. Identify all forces.
that do not work in this situation. Which are conservative? Which are
nonconservative?

Figure 1
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CONSERVATION OF EHERGY
pass recycle

Hastery Test Form B 1 2 3 4

Hame . Tutor

1. A 2.00-kg object, initially at rest, slides down a frictionless segment of
the track from & to B, as illustrated in Figure 1.
(a)BCa]cu]ate the speed of the object
at B,
(b) The track between B and € is
sufficiently frictional that the
object, after continuing past 8,
comes to rest at point C. Calculate
the work done by friction in-slowing
the object.

Ec “Define a conservative force.
d) Calculate the net work done by

conservative forces for travel between B
points A and C.

{e) Calculate the net work done by

nonconservative forces for travel

between points A and €. Figure 1

2. The potential energy of a particle of mass m constrained to move along
the z axis is U(z) = AzZ + B.
[a).what is the physical significance of B8?

b) Find the force field F(z) experienced by the particle, and sketch it

as a function of z. .
(c) With what speed will the particle arrive at the point z = 1.00 m_if
it sta?t; with zero speed at the point z = 6.0 m? Let A= 2.50 kg/sz;
m=7.0 kg.
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CONSERVATION OF ERERGY
pass recycle

Mastery Test Form C 1 2 3 4

Hame _ _ . Tuter

1. Define a nonconsérvative force, and give an example.

2. A block of 0.200 kg is released from rest from its position of being
pressed against a Spr1ng whose length is initially G. 100 m.shorter than
1t5 relaxed lengih and whose spring constant is 1200 N/m. The block slides
without friction along the horizontal and up a ramp that makes an angleof
30.0° with the horizontal and whose top edge is 1.30 m-above thé level -of
the horizontal surface. (See Fig. 1.) "Determine the velocity of the
block as it flies off the ramp..

3. A certain peculiar spring obeys the force law F (x) = -AX - sz,.where

A = 22.0 N/m and B = 18.0 /. (See Fig. 2. Note this is not Hooke's
1aw?)

{(a) -Compute the potential enérgy function U(x), taking U(0) =

{b) One end of this spring is fastened to a wall and the other end is
fastened to an object of mass M = 1.20 kg resting on a rough horizontal
surface. The object is moved to the right; stretching the spring by 1.00 m,
and then released. If B = 0.50, what is the speed of the object when it
reaches the point at witich the spring is unstretched?




CONSERVATION OF ENERGY

MASTERY TEST GRAD;ﬁG KEY - Form A

What To Look For . Solutions  _

1. (a) First step is to 1.
find the potential.
Check the minus sign.

(b) Make sure all terms
in the conservation
eqguation are present.

2. (a) Complete energy . 2.
balance, ¥.é., make sure
all terms are present.
Common errgor is omission
of (1/72)mve. Check free-
body diagram.

Eﬁay be done in two steps )
a) Find the potential energy from the force

v=- [xz F(x) dx = fx (k] + kzxz) dx,
%3 0
U(x) = k]x + (k2/3) x3.

Gravitational forces do not enter into this
“weightless” -environment.

{b) Using conservation of mechanical energy,
find v:

(Ui + K‘i) = (Uf + Kf)s
kyx + (_]/3)k2x3 +0 =0+ (1/2)w2,
vz = 2k x/m + 2k x373m'

_ {2)(100 §)(0.200 m)
BRLIN
+ (2)(2000 #/n?)(0.200 m)’
{3)L1.00 kg) ‘

= 40 + 10,7 = 50.7 = 7.1 m/s.

(a) "
Figure 12
_;L ) .
mg l
1]
_.- . Ah
\l .JL_f
Mg

Figure 13
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CONSERVATION OF ENERGY A-2

What To Look For Solutions
Conservation of total energy:
Up # Kj = Up + Ke + B, mgh” + Hgh, + 0
= mgh” + thz + ("'1;’2}va + (]/Z)Mvz + fh,
(172)(m + #v% = (mg - F)h,
v% = 2(1g - £)b/(m + M) = 16.0 n’/s%,

v = 4.0 mfs.
(b) K = (1/2)(m + MW? = (1/2)(10 + 10)16
= 160 J.
(c) Look for alternative (c) For a nonconservative force, the work
definitions of non- done in a round. trip is not zero: .
conservative force. Mg - conservative,
f - nonconservative.

Alternative definition: nonconservative
force —-a -force--is nonconservative if work
done by it integrated around a closed path
is not zero.




CONSERVATION OF ENERGY B-1

FASTERY TEST GRADING KEY - Form 8

Hhat To Look For __Solutions
1. (a) By conservation of total energy:

Ui K = Uf + Kf + Enc'

There are no nonconservative forces so

E, =0, mgh +0=0+ (1/2)m’7,

v = (20h)"72 = [(2)(9.8 w/s®) (10.0 m)3'/2
B ) =)0 mfs. .. .

1. (b) The energy used up in B)U. + K. = Ue+ K +E,
friction is equivalent 1 1 n

to a negative work on 0+ (]/2)mv2 =mgh, +0 - W,
the particle by Re )
frictional force. W = mgh, - (1/2)m” = (2.00 kg)(9.8 m/s%)(4.0 m)

- (1/2)(2.00 kg) (196 f)
i
(c) Look for acceptable (c) If the total work done by a force in a

alternate definitions of round trip is_zero, the force is .conservative.. el
conservative force.

(d) Heonsy =

= -1.20 % 10% J.

=80 = U; - Ug = mg(hy - hy)

{e) W = -1.20 % 102 J5 see part (b).

2. (a) Question the student 2. (a) Physical significance - an arbitrary
to see if he is aware -constant can always be added to the potential
of the concept but does energy. Note it cancéls in part {c).
not relate it to the i
question in this form.

(b) Look for lack of (b) F = -du(z)/dz = -(d/dz)(Az% + B) = -2 Az.
negative sign in F(2)
- definition.

Figure 14




CONSERVATION OF ENERGY

Solutions

¥hat Te Look For

(¢) Conservation of mechanical energy:
u_I ¥ Ki = Uf + K.,
A22+B+0-'Azz+8+(] 2} 2
‘l ’ = 2 / mvfs-
v = (2&/m) (2 - 22) = [(2(2:50)/7.0)1(36 - 1)
= 5,0(35)/7.0 = 25.0,
ve = 5.0 m/s.
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CONSERVATIGN OF ENERGY c-1

MASTERY TEST GRADING KEY - Form ¢ i

¥hat To Look For Solutions

1. If the work done by a force in a round trip is
not zero, the force is nonconservative. Friction
and air resistance are common examples. -

2. Reléasing the spring transfers the potential
energy stored in the spring to kinetic energy of
the b]ock. By conservation of mechanical energy:

Ui+Ki=Uf+Kf,

(1/25kZ + 0 = 0+ (1/2)%,  v% = ke/m.

As the block goes up the ramp, kinetic energy is
transformed to gravitational potential -energy:

Uy + Ky = Up + K,
2 2 2_ .2 .
0+ (1/2)mv" = mgh + (1/2)mvf, Ve = V" - 20h,

From above, v2 = kx fm,

vf kxZ/m - 2gh = (1200 H/m)(0.100 m)%/(0.200 kg)
- 2(9.8 m/s2)(1.30 m) = 60 - 25.5 = 34.5,

v =59 m/s. x

3. (a) Using U(x) = ~f % F(x) dx,
X3
Find U(x) for F = -Ax - Bx%:
sz x3 :

U(X)=+f (AX'PBX)CIX’T* .'?'Uo(ﬂ),
U(x) = ‘I'Ix + 6x3

(b) Free-Body 01 agram: N

F, & > f

ng
= mg, Fs = f = ymg. By conservation of total energy;
U. + Ky = U + K+ E = U+ K - W, 1152 +6x +0= 0+K-.ffdx,

3. Ke + wigx, or K= 115 + 655 - ymgx = 11 + 6 - (1/2)(1 20 kg)

11%% + 6x
x (9.8 m/s2)(1.00 m) =17 ~ 5.88 = 11.1 4,
v = [2001.1 3)/(1.20 xg)1V/2 = 4.3 ys.




#odule 1
STUDY GUIDRE

THPULSE ANO MOMENTUM

INTRODUCTION

You have already learned that you stub your toe harder trying to kick larger
masses. How imagine another unpleasant activity: catching a Bowling ball.
This gets harder to do as the ball is dropped from higher places. The aiffi-
culty depends both on the ball’s mass and its velocity just before you apply
the stopping force. This force can be applied in different ways. Any winner
of an egg-throwing contest will tell you the way to stop an object with the
least force is to spread the stopping process out over a maximum time.

This module will develop the above “folk physics” into. a system of concepts
and equations; and even a new law that is believed to be more fundamental
than the laws from which it will be derived. This wonderful .anomaly will not
be further explored in this module, but it does indicate some of the philo-
sophical richness and curiosity that continues to be part of this science.
The concepts are "center of mass” and "linear momentum”; the law is called
"conservation of 1inear momentum.”

PRER?QUIS!TES

Before you begin this module, _ ~ Location of

you should be able to: Prerequisite Content

*Pescribe the motion of a body moving in ﬁ plane B Pianér Hotion--
{needed Tor Objectives 1 to 3 of this module) Module

*Solve problems requiring the application of Newton®s Laws
Newton’s second and third laws {needed for Module

Objectives 3 znd 4 of this module)

LEARN!HGQOBJECTIVES
After you have mastered the content of this module, you will be able to:

1. Center of mass - Write the formulas for the center of mass {(c.m.} of a system
and explain all the terms, Write the formulas for the 1inear momentum of
a system. Explain all the terms.

2. Linear momentum - Given the masses, positions, and velocities of all particles
in a system, find the position and velocity of the center of mass, and the
total (vector) linear momentum.
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STUDY GUIBE: Impulse and Homentum
3.

2
Impulse - Given a force versus time graph or function for a systen, calcu-
Tate ihe change of the system's linear womentum.

Linear-momentum conservation - Recognize conditions for which the linear
momentum of a system 1s conserved.
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STUDY GUIDE: Impulse and Momentum 3(p 1)

TEXT: Frederick 8. Bueche, Introduction to Physics for Scientists and Enaineers
(Mc6raw-Hi11, New York, 1975), second edition

SUGGESTED STUDY PROCEDURE

Read Chapter 9, Section 9.1 first. This explains the center of mass. Then read
Chapter 7, Section 7.1, which introduces 1linear momentum and impulse and the
relation between them.

Now read Section 9.2, which partially shows how to calculate the velocity of
a system’s center of mass; You solve Eg {9.3) for vx(c m.) and similar but
unspecified equations for Ve(c.m.) and :z(c.m.)' The velocity components are

then combjned into a single velocity: Vem = Yx(e.m.) + Yy(c.m.)j ¥ Vz(c.m.)k'
This section also relates the external forces acting on a system to the motion
of the system's center of mass.

Although Section 7.1 describes a single particle, Sections 9.1 and 9.2 have
shown how to reduce a system of masses into a somewhat equivalent single
particle. This particle has the total mass of the system and is located at
the center of mass of the system. It is equivalent only in that it has the
same linear momentum as the system. If you do not need to know details of the
internal structure of the system, you can apply the ideas of Section 7.1 to
systems of masses by treating them as a single particle located at the center
of mass. For example, the earth is regarded as a particle by the scientists
who calculate very high-altitude satellite orbits, but such an earth would be
without meaning to most geologists.

BUECHE
Objective Probiems with Assigned Problems Additional
Number Readings Solutions Problems
Study Text* Study Text*
Guide (I11us.) Guide (I11us.)
1 Secs. 9.1, A A
7.1
2 Secs. 9.1, A, B 9.1 A, B 9.1 Chap. 9,
9.2 Probs. 1, 3, 4
-
3 Secs. 7.1, c 7.1, c 7.1, Chap. 7,
7.2 7.2 7.2 Quest.* 10, 12
4 Sec. 7.4 B 7.3, D 7.3, Chap. 7,
7.4, 7.4, Quest.* 5, 7
9.1 9.1
*TTlus. = ITTustration(s}. Quest. = Question(s].
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STUDY GUIDE: Impulse and: Homentum 3(B 2)
Continue to read Sections 7.2, 7.3, and 7.4. Keep in mind that now when the
text specifies a particle it can also be interpreted as referring to the

¢.m. of a system of masses.

Read the General Comments; and read and understand hew to solve the problem
set. If you need additional help work some of the Additional Problems.

Try the Practice Test.
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STUDY GUIDE: Impulse and Momentum 3(HR 1)

TEXT: David Halliday and Robert Resnick, Fundamentals of Physics (Wiley, New
York, 19703 revised printing, 1974)

SUGGESTED STUDY PROCEDURE

Read all of Chapter 8. Understand and know Eq. (8-3b). 1t contains all the
previous equations in this chapter. Equation (8-4b) is Eq. (8-3b) in calculus
form. The next imporiant equation is ?8-8). 1t also sums up the arguments of
Section 8-2. Section 8-3 starts out with a definition you must memorize: the
linear momentum of a particle, Eq. (8-9). Equation (8-10) wi1l be used in.
Sections 8-4 and 8-5. If is a statement of Hewton's second 1aw. Section 8-4
shows how to calculate the total linear momentum gf a system of particles:

Eq. (8-12). Equation {8-13) can be used to find Vc.pm, . Equation {8-10) appears
again in a more restricted form as Eq. (8-15): the internal forces have been
eliminated. You should know why. Section 8-5 begins with the important
equations describing the conservation of linear momentum, but paradoxically
does not give them numbers.

Read and understand Examples 1 to & in this chapter. Then read Section 9-2
in Chapter 9. Read the General Comments; and read and understand how to soive
the Problem Set. If you need additional help, work some of the Additional
Probiems.

Try the practice test.

HALLIDAY AND RESNICK

Objective Problems with Assigned Problems Additional
Number Readings Solutions i Problems
Study Text
Guide Study Guide
1 Sec. 8-1 A ] '
2 Secs. 8-1, A, B (Chap. 8, A, 8 Chap. 8,.
8-2, 8-4 Ex.* 1, Quest. 1 to
2, 3 4, 10;
Probs. 1 to
13, 21, 22
3 Sec. 9-2 ¢ Chap. 9, ¢ Chap. 9,
Ex. 1 to 4 Quest. 3, 4,
8; Probs. 1
to 13
4 Sec. 8-5 b Chap. 8, D Chap. 8,
Ex. 4, 5, Quest. 5, 8,
6 g; Probs. 23
to 39

*Fx. = Example(s). Quest. = Question(s}.
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STUDY GUIDE: Impulse and Momentum 3(sz 1)

TEXT: Francis Weston Sears and Mark W. Zemansky, University Physics (Addison-
Wesley, Reading, Mass., 1970), fourth edition

SUGGESTED. STUDY PROCEDURE

University Physics does not include center of mass, and therefore other texts
must be suggested for this important topic. Read the indicated sections in
one of the three texts listed below.

Author and 1ext ] Topic Section

Frederick J. Bueche, Introduction o Physics  center of mass 9.1

for Scientists and Engineers {McGraw- motion of c.m. 9.2

Hill, New York, 1975}, second edition

David Halliday and Robert Resnick, center of mass 8-1

Fundamentals of Physics (Wiley, New York, motion of c.m. 8-2, 8-4

1970; revised printing, 1974)

Richard T. Weidner and Robert L. Sells, motion of c.m. 6-1, 8-4
center of mass 6-2

Elementary Classical Physics (Allyn and
Bacon, Boston, 1973}, second edftion, Vol. 1

SEARS AND ZEMANSKY

fbjective Problems with Assigned +
Kumber Readings __Solutions Problems  Additional Problems
Study  Text Study -
Guide Guide
1 Use one of the A Ex¥1, A
readings recom- 2 (Sec.
mended above. 8-2)
Sec. 8-1
2 ‘Use one of the A, B A, 8 B: Chap. 9, 1, 3, 4 (non-
readings recom- calculus), 5-8 (calculus)
mended. above HR: Chap. 8, Quest.*
1-3, 103 Probs. 1-13,
Ex. 1-3
Ws: 6-1, 6-3 to 6-8
(calculus)
3 Sec. 8-1 ¢ Ex. 1 ¢ 8-3, 8-4 (calculus)
(Sec.
8-1)
4 Sec. .8-2 D D 8-5

*tx. = txample{s). Quest. = Question(s).
8 = Bueche.

WS = Weidner and Sells.
34
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STUDY GUIDE: Impulse and Momentum 3(sz 2)

The above readings develop the jdea of replacing a system of masses by an
imaginary but somewhat equivalent mass particle. This particle has the same
total mass as the system and is located at a place called the center of mass
{c.m.) of the system. In Chapter 8, Sections 8-1 and 8-2, University Physics
develops the ideas of momentum and 1mpu]se for particles, and these concepis
can be applied to all systems of masses since you now know how to reduce
systems to egquivalent particles.

Read Chapter 8. Examples 1 and 2 in Section 8-2 show that the momentum of
a system of particles is the sum {vector) of the momenta of the particles.
Read the General Comments; and read and understand how to solve the Problem
Set. If you need additional help, work some of the Additional Problems.

Try the Practice Test.




STUDY GUIDE: Impulse and Momentum 3(¥S 1)

TEXT: Richard T. Weidner and Robert L. Sells, Elementary Classical Physics
(Al1yn and Bacon, Boston, 1973), second edition, Yol. 1

SUGGESTED STUDY PROCEDURE

Read Chapter 5, Section 5-5. This section defines the linear momentum of a
particle: £q. (5-2}. It furthermore shows by a worked example that in a
articular collision the total 1inear moment:m of the two colliding particles
goes not change. The total linear momentum of a system of particles is defined
in £q. (5-5). Work through gxamples 5-1 to 5-3. You should draw figures showing
the linear-momentum vectors of the systems before and after the collision.

How read Chapter 6, Sections 6-1 and 6-2. These sections show you how to
calculate the velocity and the location of a system’s center of mass (c.m.).
They also give you a method of reducing any collection of masses to -a single
someéwhat equivalent particle located at the c.m. Now you have the tools to
apply any rules for particles to collections of masses. The remainder of this
moduje will show you how to use these tools.

Read Section 7-4 in Chapter 7. Here you are shown the relationship between
the linear momentum of a system and the forces acting on the system: Eq. (7-6).
Example 7-3 should be understood.

Read Chapter 8, Section 8-4. This is an important section because it tells.you
the general requirements for a system in order that its 1inear momentum be
conserved. Example 8-8 is a good review of the ideas presented in this module.
There are summaries at the ends of the chapters that gather the ideas into a
few lines.

Read the General Comments; and read and understand how to solve the Problem
Set. If you need additional help, work some of the Additional Problems.

Try the Practice Test.
WEIDNER ‘AND SELLS

Objective _- Problems with Assigned Problems Additional
Number Readings Solutions Problems
Study  Text Study Text
Guide Guide
1 Sec. 5-5, Chap. A A
6: Sec. 8-4
2 Sec. 5-5, Chap. A, B A 5-3, 6-1 to
6, Sec. 8-4 6-8, 6-5
(calculus)
3 Sec. 7-4 ¢ ¢ 7-2 to 7-9,
’ 7-11, 7-12
4 Sec. 8-4 D D
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STUDY GUIDE: Impulse and Momentum 4

GENERAL COMMENTS

1. Center of Mass

The center of mass (c.m.)} of a system is an intrinsic property of that system.
Although the formulas for the -position of the c.m. give it as the distance
from the origin of a coordinate frame, the position of the c.m. does pot move
with respect to the system if the origin is moved. The distances from the
origin to the c.m. will change, of course. But this is only because the origin
or the system as a whole has moved.

This property allows you to pick any point as the origin in a problem where
you have to find a c.m. A clever choice may simplify your calculation. Look
for a symmetry axis in your system and place the origin somewhere on it. Or
you can place the origin on one of the system's particles.

2. Linear Momentum

Linear-momentum vectors are added jike any other vectors, but they exist in
1inear-momentum space (see Figure 1). Two-dimensional examples of a linear-
momentum. space and an ordinary coordinate space are shown below. Points in
ordinary space show position, and vectors in this space show displacements.
Points and vectors in linear-momentum space represent linear momenta. You

have no informatiun -about the position of anything in linear-momentum space.
Sometimes when solving problems you may draw displacement and 1inear-momentum
vectors in the same figure and not realize that they are superimposing ordinary
and linear-momentum spaces. Watch out! This can lead to mistakes such as
attempts to add displacement and 1inear-momentum vectors.

: Y
& k)
> 134
? CPX.PY) —R -
P X
X
Momentum Space Coordinate Space
Figure 1
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STUDY GUIDE: Impulse and Momentum 5

3. Qoordinéte System

You will learn that the total 1inear momentum of a system is the product of
the total mass of the system and the velocity of the system's c.m. If the
system has zero resultant external forces acting on it, its c.m.. is not
accelerated. Thus the c.m. moves at-constant velocity, and: a coordinate
system whose origin is placed at the c.m. and moves with it will be an iner-
tial coordinate system. Furthermore, the total 1inear momentum of the system
relative to that origin is zero because theé velocity of the c.m. relative to.
the origin (at the c.m.) is zero. Here is another case where a good choice
of coordinate-system.origin may sometimes simplify a prbb]em. By placing the
origin at the system’s c.m. (providing the c.m: is not accelerating) you can
use the fact that the total 1inear momentum of the system is zero.

This placement of the coordinate system’s origin establishes what is called
the center-of-mass coordinate system or-center—of>mass reference frame.

PROBLEM SET WITH_SOLUTIONS

A(1). (a) AR system of several particles is shown in Figure 2. You are told
the mass of the particles and their position coordinates relative
to the coordinate axis. Explain how to find the center of mass of
the system.

(b) At the instant shown in Figure 2 the particles are in motion. my -
is moving upward (+z direction) with speed-v] mz'is moving to
the left (-y direction) with speed. Vo. g is moving toward my with
speed V3 Explain how to find the tota] linear momentuin- of the

system.
Z
m;
om, f
I |
g 17
| i
Z3
| pom—t—— ¥
i ' "'“-"-47',"""4::
. L = . & * 172
V4 Y3 zZl
X Y3
Figure 2
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Solution

(a) éy inspection of the figure you can see that the c.m. will be at a place
that has %, ¥» and z coordinates. Your texts give formulas for each of
these coordinates:

N N 1 N

Xem. if xim‘I/iEimi “H 1.E-Imix'i =%
N N 1 N

Yem. ~ 1E]y1mi/i21m1 N ﬁ'iflmiyi =Y
N N 1 N

Zeam. 1£]z1m1/i§]m1 ) ﬁ'iilmiz1 =L

Since this problem uses particles and not -extended bodies you can use the c.m.
formulas for particles. If the masses were not particles you would have to
use the calculus formulas for c.m. coordinates.

The c.m. of the system (see Figure 3) is located at the point having coordinates

s 2 J. You can also express the position of the c.m. by

(xc.m.’ yc.m. c.m.

specifying the vector ?c . Use unit vectors and write

J+z k.

¥ =
c ImI

= i+
c.M. xc.m.! yC.l'l'l.

The problem could also have been given to you in terms of the masses and their
position {or displacement) vectors. You would then have the additional first
step of resolving the position vectors into their components, j.e., finding
the Xys ¥q> ;5 xz,....
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(b) The total 1inear momentum of the system is the sum (vector) of the momenta
of its parts. 1In this problem you must calculate the 1inear momentum of each
particle and then add them to obtain the total linear momentum. The momentum

of each particle is p = mv, where m is the mass and v is its velocity. The
momenta vectors would look as shown in Fidure 4, and the total 1inear momentum is

e

P=py +, + By = W = m¥y + m¥, + mg¥y.

Since the three momentum vectors of the parficles are not collinear nor even
coplanar, the best way to add them is by their components. Resolve the velocity
vectors into their X, ¥, and z components and add them:

vx B P * Vox * V3x®
Yy = Voy * Vay * V3
V, = Vg # Vg, + Vg, >
Then
V= Vi + V3 + VK, P,
and finally }
Figure 5

P=W. 4 —

The total 1inear momentum and its components would 1ook as shown in Figure 5.
Although it's not asked for in this problem, you should recognize that V is
the velocity of the center of mass of the system.

8(2). Three partic]eé aré moﬁiﬁé_radia]]y outward from the coordinate origin,
at andgles of 120° to one another in the xy plane. Their masses are
my = 1.00 kg, m, = 2.00 kg, and my = 0.80 kg, and their speeds are
vy =.6.0 m/s, V, = 2.00 m/s, and v = 10.0 m/s, respectively.
(a) Sketch the system in a coordinate frame.
(b) Which particle has the momentum of greatest magnitude?
(c) What is the total momentum of the three-particle system?
(d)} Find the velocity of the ¢.m.

Solution

(a) Draw an xy coordinate system and show. the particles and their motions on
it (Figure 6). There are many ways to place the particles on the coordinate
system. In Figure 6 one of the particle’s trajectories was placed along the
¥y axis. This will save effort later if it becomes necessary to resolve the
velocities or momenta into components in the x and y directions.
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STUDY GUIDE: Impulse and Homentum 8
Also draw the momentum vectors for the three particles (Figure 7). The
$agnitudes may bs wrong in this figure because the linear momenta have

not yet been calculated; but this gives you an idea of the momenta and their
directions. HNow siart answering the guestions.

(b) Linear momentum is p = mv, and its magnitude is p = mv. For each particle:

Py = MYy = (1.00 kg}(6.0 m/s) = 6.0 ka m/s,

Py = ByV, = (2.00 kg)(2.00 m/s} = 4.0 kg m/s>

Py = ByVz = (0.80 kg)(10.0 m/s) = §.0 kg m/s.

Particle 3 has the largest 1inear-momentum magnitude. We can now redrav
figure 7 to scale as Figure 8.

Y PY
-ﬁl
120° JJ 120°
.m . 120°fF 120°
= m P
. x
8 B
: P
Figure 6 ' 1% Figure 7
?I

- Figure 8
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STUDY GUIDE: Impulse and Momentum 9
(c) The total linear momentum of the system is
P =3, +P,+ ;.

In pictorial form this addition is shown in Figure 9, and you see from inspec-
tion that P # 0. Pity.

Unless you prefer to work directly with the polygon in Figure 9 the best
methad to find P is to find its x and y components and add (vector) them.
This will require you first to resolve the momenta of the three particles
into their x and y components (refer to Figure 7):

Py = 83 = mvyd = (6.03) kg m/s,

P, = p, cos (30°)i + p, sin (30°)(-3)

. . =
= [(8.0)(0.866)7 ~ (8.0)(0.500)31 kg w/s, 3
~ ~ 1
Py = Py cos (30°)(=i) + p; sin (30°)(=3) _
_ : - 3
= {(4.0)(0.866)7 - (4.0)(0.500)31 kg m/s. 2
Figure 9

Use

B, = By + Po + P, = 0 + (8.0)(0.866)i - (4.0)(0.866)3

= 3.51 kg m/s.

Similarly
ﬁy = Pyy * Ppy * Pyy = [6.0 - (8.0)(0.500) - (4.0)(0.500)) kg m/s =D

for this case. Thus for the total 1inear momentum,

? = [(2.00)(1.732)i] = 3.5% kg m/s.

(d) The velocity of the -center of mass is the total 1inesr momentum of the
system divided by the system's masss

?c.m. =PM=smv/m=V or va(c‘m A RITEE K

Thus ¥ or¥= [(2.00)(1.732)1 kg i/s1/3.8 kg = (0.53)(1.732)7 mfs = 0.921 /s,
Ux(c.m.) = {(2.00)(1.732) kg-m/s1/3.8 Xg-= 0.92 m/s,

which is the magnitude of the velocity of the c.m.
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STUDY GUIDE: Impulse and Homentum 10

c{2). A croguet ball (mass 0.50 kg) initially at rest is struck by a maliet,
receiving the impulse shown in Figure 10. What is the ball's velocity
Jjust after the force has becowe zero? Assume the graph is a parabola.

2000

i / Figure 10
- / Figure 11

F(1t) /
1000 ] g
® @ >
500
\ initially after force becomes zero
0
G T F2 3 k4

Solution t(ms)

This is an impulse problem. The croquet ball’'s initial velocity (and there-
fore its initial momentum) is zero, and you want to find its final velocity.
Since you are given the ball's mass, you must find its final momentum and

. - - b
divide by the mass: Ve = p_f/m.

Note that the problem is one dimensional, and you are not told the direction
the ball rolls. However, you are asked for the ball's velocity {vector),
and you must just assume a direction such as "horizontally to the right,”
and proceed to find the speed. Start with

ti ! P P m.

and apply this eguation to the crogquet ball. Since ‘\'ii = 0, you can solve for
-\?f algebraically:

You know m and the integral is the area under the force versus time graph.
Here are two ways to integrate this area:

E]) Square counting: See Figure 12. -Each small square has an area of (100 K)

0.200 x 10 %) = 0.0200 N s. Now you simply count the number of squares under
the graph and muitiply this by the area of one square. A count accurate to 1%
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gives 210 squares. Thus the fotal area is

t
f Trap= (210 squares)(0.0200 N s/square) = 4.2 K s.
t. .

3

Since this is a one-dimensional problem the vector notation has been dropped:

t

i Y _4.2Ns _

vf—ﬁ-{. Fdt and Ve = 050 9-8.4111/5._
i

(2) Calculus: An eguation for a parabola is y = ka'. However, this parabola
passes through- the origin, but zyour graph does not have F at zero when t is
zero; thus the equation F = kt¢ will not work for you. The equation-

(F - 2200 K) = k(t - 2.00 x 1073 5)2

3

will work, if you evaluate k. Pick a point such as F =0 and t = 0.50 x 10™~, and

plug these values into the above equation. This gives

k = -9.78 x 10% n/s2.

Now
F = (9.78 x 108 W/s2)(t - 2.00 x 10™ )% + 2200 §
and
t, 3.4 x 1073 s - a5
J ' Fat= é 3 [(-9.78 x 107 K/s®)(t - 2.00 x 107~ )~ + 2200 Kldt
t; .50 x 1073 s :
-3
3.4 x10" s -
= (-9.78 x 10° Ws?) | (t - 2.00 x 1073 )2 dt
-3
0.80 x10 " s .
3.4x1073 s

+ (Z20 ) é 50 x 1073 s .
.50 x 10.7

A change of variable will simplify the first integral. Let t - 2.00 x 107 s = 1.

KA
100N |

T_;I- e

0.20X10"3g

Figure 12
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STUDY GUIDE: Impulse and ¥omentun 12

Then dt = dt, and changing the 1imits of integration gives us
3

-3 1% dt + 2200 H __
0.50 x 10

3
3 dt = 4.38 H s.

5, 1.4 % 10 3.4 x 10
)

-1.50 x 10

Fdt=(-9.78x10° N s

Hote here that this value is a bit more than the one obtainad from square count-
ing. Possibly the assumption that the graph was a Parabola symmetric about
2 x 10 ® s was not correct. As before,

Ve = 4.38 N s/0.50 kg = 8.76 m/s = 8.8 m/s:

D(2). A child runs and 1eaps into a stationary wagon. The wagon can roll
without friction on the level, rough driveway, but it is not headed in
the direction the child was running. The wagon and child move in the
direction the wagon was pointed.

(a) Is the linear momentum of the child-wagon system conserved in this
process? Explain why.

(b) Are any linear-momentum components of this system conserved?
Explain why.
jution

(a) #omentum is conserved if the total linear momentum of the system does not
change. Before the child jumps on the wagon she aJone has some 1inear momentum.
The total 1inear momentum of the system then is in the direction the child is
running. When the child is aboard the rolling wagon the total 1inear-momentum
vector of the system points in the direction the wagon is rolling. This is

not the direction in which the child was running, and thus the 1inear momentum
of the system cannot be the same before and after the child jumped on. the

wagon. It is impossible for two vectors to be equal if they are not in the

same direction. The 1inear momentum of the system has not been conserved.

(b) Another way to identify momentum-conservation is by the use of the eGuation

t
f _
{_ F,,. dt = 8.
i

. - . =+
If ?éxt is zZero, then so will be Ap.

Furthermore, if there is any direction in which some component of oxt 1S
zZero, the component of AP in that direction will also be zero. In your
problem the wWagon rolls with friction in the direction it is pointed. There
cen be no external forces acting on the system in this direction, and the com-
ponent of the system’s linear momentum in this direction is conserved. You
should realize that there is a ¢onsiderable -external force on the system when

the child lands in the wagon: the frictional force. between the wheels and. the

¥
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rough driveway. This is the force that causes the momentum of the system
to change.

An often overlooked, but not always trivial, direction in which momentum
might be conserved is the vertical. The external vertical forces acting on
tie child-wagon system add to zero {assuming the child’s c.m. moves hori-
zontally); and the system's change in momentum in the vertical direction is
thus also zero. The system's linear-momentum component in the vertical
direction remains zero during the process.

PRACTICE TEST

1. Exg}ain how conservation of momentum applies to a handball bouncing off a
wall.

2. Three particles floating in space are attached to one another with springs.
Their masses are 5.0 kg, 7.3 kg, and 12.2 kg, respectively. One of the
particles is. hit by a meteorite. The force-time graph of this coliision
is shown in Figure 13. Calculate the change fn momentum of the three-
particle system.

3. (a) Write the formula for the center of mass of any system. Eip]ain what
you would need to know about the system in order to calculate it.

(b} Write the formula for the linear momentum of any system whose parts
are moving in straight 1ines and not rotating. Explain what you would
need to know about the system in order to calculate it.

F(N
4
3 F
1
T s s e T

Figure 13
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Practice Test Answers

1. The linear momentum of the ball is certainly not conserved. The ball's
momentum -has flipped direction owing to the force from the wall. If you include
the wall and everything it is attached to in your systam then moméntum must

be conserved: no external forces act. It is not easy to visualize the wall's
momentum changing during the collision, but it does. Its great mass permits

a very small velocity change.

t

il
2. dse [T E_. dt = 4P,
ti ext

The system is the three masses and the springs. The spring forces are inter-
nal. The only external force is provided by the meteorite.

F dt = 3.00 A s.
Thus, 4% = 3.00 § s in the direction of the external force.

e > " -~
3. () Fem. “Xem FYemd ¥ zc.m.k’ where
N N n
Xe.m. =L xm/ IZm+ I (f xdm/S dm),
e q4=1 3= i=1
N N n
Yem. =.F yw/ Im+ L (fydmn/S dn),
9=l s i=1
H N n ’
=Lzm/ Zm+ L (f2zdm/Sf dm)
i=l  i=1 i=] ’

zc .m.

for particles and extended bodies. You must know all the masses and positions
of the particles; and the positions, shapes, and density distributions of
the extended bodies: i

N n
(b) ¥ = I mv+ I omv
i= j=1 C-M-
particles extended
bodies

You must know the masses and velocities of the particles; and tke masses
and velocities {of any_pdrtion) of the extended bodies.
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THPULSE AND MOMENTUM

Date L
pass recycle
Mastery Test Form A 1 2 3 4
Name TJutor _
1.

(a) Write the formulas for the center of mass of any system. Explain all
the terms.

(b) Write the formulas for the 1inear momentum of any system that has no-
rotation. Explain all the terms.

Two particles are moving apart as shown in the figure above. The mass m

is 5.0 kg and m, is 3.00 kg; at the instant shown they are 6.0 m apart.
Each has a speed of 15.0 m/s.

- (a) Find the centér of mass of this system at the instant shown.
(b) Find the total linear momentum of this system at the instant shown.

{c) Find the velocity of the center of mass of this system.at the instant
shown. ‘

3. A 2.0-kg ball falls at a constant speed-of 0.100 m/s through.a viscous fluid.
What is the force of the fluid on- the ball?

4. Attack or defend the following statement: If a system is.made large endugh
its linear momentum is always conserved.
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pass recycle
Mastery Test  Form B 1 2 3 4
Hame _ Tutor

1. (a) You are shown a system of particles and larger bodies in motion. What
would you have to know about the system to calculate its center of mass?
How would you calculate the center of mass of this system?

(b) Hone of the bodies in the above system is rotating. What would you
have to know about the system to calculate its 1inear momentum? How would
you calculate the 1inear momentum of the system?

2. (a) Starting with a statement for the conservation of linear momentum,
show that it takes an external force to accelerate the center of mass of
a system with constant mass.

(b) You are a prisoner in a 4.0-m-long boxcar whose frictionless wheels are
1.50- m from the top of a downhiil grade {see Figure 1). If you can get
the car to start rolling downhill, you can escape to friendly territory.
The end of the car nearest the grade is stacked directly over the wheels
with 1000 50-kg gold bars. The car has a mass of 40 000 kg. How many _
pars must you move to escape? Assume you can move the gold the full 4.0 m
and ignore your mass. .

3. A vertical rod is connected to a 40-kg particle (see Figure 2}. The rod
exerts a time-varying force on the particle, which can be calculated from
the function

-

% = (200 + 300t)j A.
(a) what 'is the force on the particie at 0 s? Do not neglect gravity.

{(b) Calculate the particle's change of Jinear momentum beiween the first
and second seconds.

(c) Is there a time when the 1inear momentum of the particle is not changing?
If so, calculate this time.

(d) Is there any component of the particle’s linear momentum that is always
conserved? If so, what is it and why is it always conserved?

‘(F- particle
‘(/- rod

Figure 1
Figure 2
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pass ‘recycie—
Mastery Test Form C 1 2 3 4
Name i _ Tutor _

1. (a) Hrite the formula for the center of mass of any system. Explain what
you vould need to know about the system ir order to calculate it.

(b) Hrite the formula for the 1inear momentum of any system of nonrotating
masses mOV1ng in straight 1ines. Explain what you would need to know about
the system in order to calculate it.

2. A 30.0-kg particle is suspended by a string. The string is pulled upward
and exerts a time-varying force on the particle. The magnitude of this
force is given by the function

F = (350 + 150t%) H.

(a) what is the force on the particle at 0 s?

{b) Calculate the change in the 1inear momentum of ‘the particle between
the second and third seconds.

{c) Is the change of the particie’s linear momentum per second constant?
Why?
3. For which of the following systems {underlined} is 1ipear momentum conserved?
Justify your answers.
(a) Two colliding billiard balls, rolling on a pool table.

(b} A canoe with tiree nonpaddling occupants on a ‘smoothly flowing river.
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MASTERY TEST GRADING. KEY - Form A

¥hat To took For _Solutions .

1. System includes part- 1. (a) The ansver nust comb1ne the c.m. coord1nates
icles and extended bodies. for all the masses into a S1ng]e set of
The student-must shoWw some coordinates: either xc_m s c m.? Zc L

realization that the

locatjon of the c.m, is " N
with respect to a set of - : ,
axes. Two- or three= xc.m. .iE]X]m1/§1m. * f; (X dm/sdm},
dimensionai ans?eg.

If in part (b) the : -
student introduces the for Y o and-Z ., or

troubles with nonrigid

bodies, you must make a > = z S.4 3 o
comrient to him that this Ve “ Xem ¥ ¥ Yend? Zc.m.k'
is too advanced for this N
course,. (b) '5‘ = ( ¥ m ) ( z HV
i= ] i’ particles j=1 A extended bodies.

Other forms and an answer in components are OK.

2. The student's choice  2.(a)
of coordinates. Comment

on an awkward choice,

and 'suggest a better one.
However;, a poor -choice

will not inake- the problem

wrong. Directions should

be given for all vector
guantities.

Ve * 0; placemént of coordinate system.

X . = (0-+ mle/(mT *'mél
= (3.00 kg) (6.0 m}/8.0 kg = 2.3 m.
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A-2

- (myy - mav,)3

= [(5.0 kg)(15.0 m/s) - (3.00 kg)}(15.0 m/s)]J

P _ 3.005.kg /5 _ 5 4c3
CCEmT _E%_kg—- 3.75) mfs.

. 17
; 1
e gp— P
X
l+
| MR _
pe=P P, =""1-)1‘”'“2—)2
= my 131 223
= 30 jfkg mfs.
(c)P=w ?E.m. and
3.

The velocity of the ball is constant, and thus.
so is fts linear momentum. Thé total external
force on the ball is zéro. There are two-

externdl forces acting on the ball: its weight.

and the force from the diguid.
F=Temg = (2.00)(9.8)F ka n/s® = 19.65 N,

The statement s true. By 1ncreas1ng ‘the
size of the system, more and more of the -
forces -become internal forces. Some:-students
aré clever enough to attack the statement
successfully. You must be equally clever

in analyzing their arguments. .For-example,.
if it §s argued that very small-external-
forces will cause- unmeasurab]e momen tum-
changes to large masses, and therefore: all
the forces--do not have-to be -intérnal. forces,
you must accept this, However, you might,

‘mention that an. fmprovement. in- the téchnology-

of momentumometers. might make théir argument.
wrong. . Do _not accept arguments. based oft ‘one-

particle universes

— _i;,, gD ;J__:
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MASTERY TEST GRADING KEY - Form B

Hhat.ib Look for . . .. Solutions SR .
] 1. System includes 1.(2) The answer must combine the c.m. coordinates

particles and extended for all the masses ihto-a.51ng]e set of

bodies. The Student must coordinates: -either Xc‘m;, e Z m O Tem

show some realization that e e

the location of the c.m. N N i

is with respect to an axis. _ _ S Py ‘ ]

Two= or three-dimensional xc.m. "iﬁiximi/if]mi ¥ izlljx dn/fdm) 5

answer. If in part (b) the -

student introduces the -fbr-Yc i, and Zc m.> or

troubles with nonrigid e e

bodies, you must make: a = - 3 3 e

comment to him that this is Tem. xc.m it Y cmd ? anm.k' -

too advanced for this course.
You must know -mass and. position of all particles;
) and position, -shape, -and density distribution of
the extended bodies.

)

*extended bod1es.

(b)ﬁ—(zmﬂ’j) +(2MTT

=] particles j=i c.m.

You must. know mass and: velocity of all particles.
For extended bodies you-only need to know the
total mass..and the velocity of any part .of theé
body.

2.(a) Start with
?ext'é'"'(dvﬁ.m;/dt? or
f? dt = ﬁ-p = ﬁ(Mv i )s

and: argue: that if the ]e 't hand sides of these
equations are not zero,, feither will the right-
hand sides be zero. Recogn1ze ‘that the right-
hand-sides, whith:all hiave a change- in ye]oc1ty,
contain. the acceleration. .of the center of -mass.

2.(b) The student (b) The ¢:m. of the system does not move. A
should realize that here the bars are moved to- the left the car must roll
" §s -a case where ‘the to the right.

center of mass will-not y " WX/ + W)

- accelerate. Since it is 2 - T T ML) (ML ,

A initially at rest it widl c.m. ‘Fxc 66 e 6

. continue to be at rest R Y AR CAY T
relative to $some -place X C.m. . (ﬂCXC, Hghe + x"’(”c MG M)

- outside the system. Of

) ;Efﬁi' -
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r
o
'
! 3
1
arll

W fiabn

What To Lok For

course, once the front
wheels move Gver the
edge of the incline a
net external force acis,
and the center of mass
accelerates.

Solutions
i > *s. f&-
- '
4 [
¢ &,
P I
ommmmEol
E'-- b i
= =
; I
k — a T+ >4
CM;"eia
Qi E B o
+) ! +)
P
k x*l} zl

Neglect prisoner’s. mass.

Aem. = xc.m,’ X, =a/2+b,

Xa = b, Xc = af2, XG + 0,

”~

X =a, MM =M oM M

c
Me (a/2 +b) + Uch = M. (a/2) + 0 + Ha.
Solving for M :

M = (Mb + Mcb)/a = 33 750 kg,
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¥hat To took For . Solutions
- Humber of blocks moved is

_ 31 250 kg _
I —sm%k = 575 blocks.

3. Magnitudes and 3.(a) Two forces: vy
directions of vectors.
Recegnition that this is
mainly an impulse
problem. In part (c)
there will be an instant
vhen the particle's g
momentum change is zero. | S|
It is poor practice to
-say that momentum is - -
-conserved then. Att=0,F= 2003 N, W= mg(-3).

muiﬁme=?+ﬁ=-wén.

>
* F

t- .
(b) Use , [T Fat=ap,
“i

2 s - -
: [ [(-192 + 300t)3] dt = 2585 kg m/s.
X

(c) Yes, when F =0, F = [(-192 # 300t)]3 =0
when t = 192/300 = 0.64 s.

(d) There are no horizontal forces acting on
the particle. Thus the horizontal components.
of the linear momentum remain constant.

JF dt = 4P
and if F =0, of ~ 0.
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MASTERY TEST GRADING KEY - Form €

Yhat To Look For Solutions _

1. System includes 1.(a) The answer myst combine the c.m.
particles and -extended coordinates for all the masses 1nto a sindle
bodies. The student must set_of coordmateS' Either x . s L

show some realization that or r c.m.

the location: of the c.m.
is with respect {0 an axis. i H
Two- or three-dimensional X = IXm/ Zmg+ z (sX dm/sdm)

c.m.

answer. If in part (b) Cle 4o i=1 i=1

the student introduces

the troubles with: nonrigid for ¥ .. and Z, o » OF

bodies,. you must make a - - - "
comment to. him. that this rem = xc;m.a + Yc.m.a +-Zc.m_k.

is too- advanced for this

course. You nust know mass and position of all
particles; and position, shape, and denmsity
distribution of the extended bodies.

(b)r=(zmv) sz )
part1c]es §=1 ©*M extended bodies

You must know mass and velocity of all particies.
For extended bodies you need only know- the total
mass and the velocity of any part of the body.

2. Magnitudes and 2.(a) Two forces:
directions of veciors.
Recognition that this

is mainly an impulse
problem. ®
At t =0, ¥ = 3503 H, W =mg(3).
&ﬁa?4ﬁ¢5ﬁﬂ;
b
(b) Use [ 'F dt = &P,
t.
1
3s 2. * _ -
f (56 + 150t°)3] dt = [(56. + 950} 1)
2's = 1006 kg m/s.
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IMPULSE AND MOMENTUM

c-2

Solutions

Hha; To Look for

3. The student must
understand that his answer
will depend on the existence
of external forces acting

on the system.

3. Depending on the viewpoint, both yes and no
can be justified:

(a) Yes - internal forces between the balls are
involved and dominate at the moment of
collision; external forces are comparatively
small.

Ho - over & slightly longer time interval, the
interaction of the balls with the fable must be
considered; since -the collision will result in
some slippage of the bhalls on the table, they
are subject to a friction force that may change
the momentum of the two-bzll system.

(b) Yes - the net force is zero, vertical
forces of water and gravity cancel, no paddling
means zero horizontal force; motion of river is
smootn, does not give rise to force.

Ho - if river flows around curve.
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Module . 1
STUDY GUIDE

ROTATIONAL MOTION

INTROBUCTION

There is a motion of a system of masses that is as simple as the motion of a point
mass on- & straight line. It is the rotation of a rigid body about a fixed axis.
For example, we live on a rotating earth, use rotating devices such as a potter’s
wheel or & phonograph turntable, and test our luck with a spinning roulette wheel.
A1l of these are objecis whose motion is described by the time dependence of a
single variable, the angle of rotaticn. WHe shall study the angular equivalent

of -uniformly accelerated motion for some rotating objecis.

This module also begins the study of rotational dynamics by introducing the dy-
namical quantities torque and angular momentum for a point mass moving in a plane.

PREREQUISITES

Before yod. begin this module, - - Lbcation of

you should be able to: _ o Prerequisite an’;en_t
*Calculate the vector product -of two ;;iven ve&om o Vector Mu]ti‘p]:i cation
{needed for Objectives 1 and 2 of this module) - Module
*Pescribe the motion of a body in uniform circular Planar Motion
motion {needed for Objectives 1 and 2 of this module)
*Mathematically describe the change of 1inear momentun Impulse and
of a particle or system of particles as a function Momentum
of time {needed for-Objective 3 of this module) Hodule
*Apply Hewton's second law to the solution of mechanical Newion's Laws
problems (hgéqed_ for Objecti ve_.‘i_—qf ,this module) _ _ 'H;:ic_l_l_ﬂg _

LEARRING OBJECTIVES
Aftér you have mastered the content of this module, you will be able to:

1. Rotational kinematics - Define angular displacement, velocity;, and accelera-
tion for the case of rotation of a rigid body about a fixed axis; for the
case of ‘constant angular acceleration, use the relation among these quan-
tities to solve problems in rotational motion. '

2. An?u]ar—]'iﬂean: relation - Using the solution of a problem in angular vari-
ables, ‘determine the iinear displacement, velocity, and acceleration of
a point on the rotating body.

3. Rotational dynamics - Define torque- and angular momentum and apply them
te a point mass moving in a plane. For some specific éxamples, calculate
torque and angular momentum from force and velocity; show in such examples
that the time rate of change of -angular momentum is equal to the torque.
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STUDY GUIDE: Rotational Hotion 2(8 1)

TEXT: Frederick 3. Bueche, Introduction to Physics for Scientists and Enginsers
{FicGraw-Hi11, Hew York, 1975), secend edition

SUGCESTED STUDY PROCEDURE

Read the General Comments. Then read Chapter 10; be sure you understand the
definition of angle measured in radians as introduced in Section 10.1 and used

in Eq. (10.8) and Figure 10.6. Section 10.2 is interesting but not relevant, since
we 1imit this module to rotations about a single fixed axis. The relations of
angular kinematics are summarized in Eqs. (10.2), (10.4), and (10.6). ITlustra-
tions 10.1 and 10.2 show how these equations are used, as do Problems A and €

of this module. Sections 10.5 and 10.6 show how to determine 1inear accelera-
tions from the angular quantities. This completes Objectives 1 and 2.

Section 11.1 in Chapter 11 introduces the dynamic relation between torque and
angular acceleration. As noted in the General Comments, mrla is just the time
rate of change of angular momentum if r is constant. Section 11.2 reminds you

of the vector product; with this in _l;_andéjyou can then go to Sec‘_Eion 12.5 in
Chapter 12 where the basic relation 1 = dJ/dt is developed (3 =L = angular momen-
tum}. See Problems B and D for applicatjens of their result. Remember that if

¥, F, V are all in the same plane, then T and J{(L) are perpendicular to that
plane. WYork the problem below before taking the Practice Test.

Problem

A 3.00-kg particle is at x = 3.00 m, y = 8.0 mwith a velocity of V = 35.-011 - 6.03)
m/s. It is acted on:by a 7.0-K force in the negative X direction. (a) What is

the angular momentum of the particle about the origin? (b) What torque about the
origin acts on the particle? Ec) At what rate is the angular momentum of the
particle changing with time? (See Answer below.)

BUECHE o
Objective Problems with Assigned Problems  Additional
Number Readings Solutions Problems
Study Text* Study Text
Guide _ Guide _
1 Secs. 10.1 A Illus.  C Chap. 10, Chap. 10,
to 10.4 ]0-]9 Probs. Probs. ], 29
10.2 3-5 6
2 Secs. 10.5, A C Chap. 10,
10.6 Probs .
7, 8
3 Secs. 11.1, 8 D Chap. 11,
11.2, 12.5 Probs.
1, 23
Chap. 3,
Prob. 16

F1lus. = 111ustration(s).

oS/ BY W5 (9) W N A9G# () TS/ w By ApLi- (o) d3msuy
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STUDY GUIDE: Rotational ¥otion 2(HR 1)

TEXT: David Halliday and Robert Resnick, Fundamentals of Physics (Wiley, Hew York,
1970; revised printing, 1974)

SUSGESTED. STUDY PROCEDURE

Read"the General Comments. Then read Chapter 10; be sure you understznd the
definition of 9 in radians, and remember that our relations between linear and
angular quantities are true only for 8, w, ¢ in radian measure. Tablz 10-1
summarizes the relations between kinematical variables, but beware of

£qs. (3-14) and {10-4); v and & are functions of time, as you see in Eqs. {3-12)
and (10-3). Example 1 illustrates the use of these eguations. Section 10-4
relates the linear velocity and acceleration to the appropriate angular quantities.
Figure 10-5 and Example 2 should make these relations clear. How do Problems A
zzmd C, and the assignea problems in Chapter 10. This completes Objectives 1 and

Before starting Chapter 11, you may want to review the definitions of vector
(cross) product in Section 2-4,(pp. 19, 20). As you read Sections 11-2 and,
11-3, keep in mind that if ¥, r, and v all 1ie in a plane, then the torgue =

and angular momentum L are always perpendicular to that plane. See Figures 11-1
and 11-3. Example 1 illustrates these concepts in a nontrivial case {same as
Problem-8). Also work through Problem D and the assigned problems of Chapter 11.
Take the Practice Test.

HALLYDAY AND RESHICK

Dbjective ' Problems with  Assigned Problems  Additional
Number Readings Solutions _ Problems
Study  Text*  Study Text
_ Guide Guide
1 Secs. 10-1 A Chap. ¢  Chap.  Chap. 10,
to 10-3 10, Ex. 10, Probs. 7, 11,
1 Probs. 15, 16
9, 10,
13
2 Sec. 10-4 A Chap. C Chap. Chap. 10,
10, 10, Probs. 16, 19,
Ex. 2 Probs. 20
1, 4
3 Secs., 11-1 B Chap. D Chap. Chap. 11,
to 11-3 1, 1, Probs. 2, -4-6
Ex. 1 Probs.
1, 3,
7
*£x. = Example(s).
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STUDY GUIDE: Rotational Motion 2(sz 1)

TEXT: Francis Weston Sears and Hark Y. Zemansky, University Physics {Addison-
Wesley, Reading, Mass., 1970), fourth edition.

SUGGESTED STUDY PROCEDURE

Read the General Comments. Then read Sections 9-1 through 9-4 in Chapter 9.
Be sure you understand the definition of angular measure in radians; the
relations found in Section 9-5 are true only for & measured in radians. The
relations between the kinematic variables are derived in Section 9-4. The
example in Section 9-4 illustrates their use, as do Problems A and C of this
module. The relation between linear accelerations of a point on a rotating
body and the angular variables is developed in Section 9-5. This completes
Objectives 1 and 2.

Torque s defined in Section 3-1 of Chapter 3, and applied to the rotational
dynamics of a point mass m, in a rotating body in Section 9-6. We shall defer
discussion of an extended body and the moment of inertia I until the module
Rotational Dynamics. For a point mass, I is mRz. Angular momentum and torque
are discussed for a point mass in Section 9-9. MNotice that if ¥, F, and v all
1ie in the same plane, then the torque and angular momentum are parallel to
each other and perpendicular to the plane. Problems 8 and D illustrate these
ideas. Work the problems below before taking the Practice Test.

SEARS AND ZEMANSKY

Cbjective Problems with Assianed ProB]ems Additional

Number Readings Solutions . _ Problems
Study  Text Study Text
Guide Guide
1 Secs. 9-1 A Sec. c 9-2to  9-1
to 9-4 9-4, 9-4
Example
2 Séc. 9-5 A C 9-6, 9-5, 9-7,
9-9 9-8
3 Secs. 3-1, B D 3-1,
9-6, 9-9 9-42
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STUDY GUIDE: Rotational Motion 2{SZ 2)
Problems
1. A 2.00-kg particle is initially at the locationx = 4.0mand y = 0 m.

The particle is subject to a constant force of 6.0 N in the negative y direc-
tion. Relative to the point (10.0 m, 0 m): (a) What is the particle’s
angular momentum, and (b) the torgue on the particle, both as functions of
time? (c) Show for this particular example that torque equals time rate

of change of angular momentum. MNotice that this is just 1ike Problem B

in the Problem Set.

A 3.00-kg partiE]e is at x = 3.00 m, ¥y = 8.0 mwith a velocity of

Vv = (5.0 - 6.0i) mfs. It is acted on by a 7.0-N force in the negative
x direction. (a) #hat is the angular momentum of the particle?

(b) #hat torgue acts on the particle? (c) At what rate is the angular
momentum of the particle changing with time?

"SI M 6 Y96+ (2) “w N o5+ (9) s/ 6y 74 (®) -2
WK g (q) s/ B A(30¢) (2) 1 SIMSy
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STUDY GUIPE: Rotational Motion 2{¥s 1)

TEXT: Richard T. Weidner and Robert L. Sells, Elementary Classical Physics
(Al11yn and Bacon, Boston, 1973), second edition, Yol. }

SUGGESTED STUDY PROCEDURE

Read the General Comments. Then go to Section 4-5 in Chapter 4 for the defini-
tions of angle and angular speed. Section 12-1 in Chapter 12 discusses linear and
angular motion with constant acceleration. Remember that the equat1ons that
relate linear and angular quantities (e.g., s = R8) must have angles in radians.
Fquations (12-8) and (4-16) relate the components of linear acceleration to

the angular variables and radius. This is & good place to go over Problems

A and C, and work the problems in Chapters 4 and 12. This completes Objectives

1 and 2.

Sections 11-1 and 11-2 of Chapter 11 give a general discussion of angular veloc-
ity and angular momentum. You will probably want to review the definition of
the vector (cross) product in Sections 2-6 and 2-7 before trying Sections 11-3
and 11-4. Remember that for the case of a particle moving in a plane, the
angular momentum about a point in the same plane is always normal to the plane.
The same is true of torque if the force 1ies in the plane; figures 11-9 and
11-10 illustrate this point. At this point, study Example 11-1 and: Problems

B and- D. Try the Practice Test.

WEIDNER AND SELLS

Objective Problems with Assigned Problems Addi tional

Number Readings Sojutions : Problems
Study Text* Study Text
Guide Guide-
1 Secs. 4-5, A c 12-1, 12-4
12-1 12-3
2 Secs. 4-4 A C 4-23 12-2, 12-6
to 4-6,
12-1
3 Secs. 11-1 B =&%. 11-1 D 11-1, 11-2, 11-4,

to 11-4 11-3 _ 11-8, 11-9
*£x. = Example(s). '
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STUDY GUIDE: Rotational Motion 3

GENERAL COMMENTS.

For rotation about .a fixed axis, each point in a body moves in a circle con-
centric with the axis of rotation (see Fig. 1). This radius R of the circle is
the perpendicuiar distance of the point from the axis. The linear and angular
motion have a simple relationship: -

= RO, ds/dt =v =Re=Rde/dt, dv/dt =a = Ra= R dw/dt,

where s, v, and a are tangential linear distance, velocity, and acceleration,
respectively; 8, w, a are the -corresponding _angular guantities. The above
equations imply that angles © are weasured in radians; other common- units for
angle are degrees (e.g.,#45°) or revolutions {e.g., 10 r). They are related by
2w rad = 360° = 1 r. You may wish to réview the relations for linear motion
given in Rectilinear Motion. Because of the above relationships ‘between linear
and angular variables, one can make the table {constant acceleration):

Linear ___Angular
= vt + (a/2)t° 0 = ugt + (o/2)t?
ds/dt = v = vg tat do/dt = 0w = wy + ot
v = VO? + 2as m2_= ubz + 208
Note that a is tangetial acée]eration. A pérficie-mnving-oﬁua circle of radius
R also has a radial acceleration a, =<V /R = -mzR In either the linear

or angular case, the first two equations arise by integration of dzs/dt
{const) or d2/dt' = g{const}. The last equation is obtained by e]1m1nating
T from the first two; it also follows from -conservation of energy.

In order to -discuss dynamics, i.e., the relation between forces and accelera-
tion, we start from Newton's second law:

F = (d/dt)nv = dp/dt
for a point mass m. In discussing rotations, we note that a force F is most
effective in producing an angular acceleration if it is applied far from
the axis of rotation, and is directed perpendicular to both a 1ine from the
axis of rotation and the axis of rotation. For example, .2 door is most
easily opened if the knob is as far from the hinge as possible, and the force
is perpendicular to the plane of the door.
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STUDY GUIDE: Rotational Motion 4

The mathematical quantity that has those properties is r xF, which is called
torque. The vector ?'is measured from the axis of rotation or from an origin.
The vector product rxFis largest when * and F are perpendicular, and the _
direction of r x ?'is along the axis of the rotation caused by F. We can intro-
duce torque into the equation of motion of a point mass as follows (see Fig 2).
Start with Newton's second law:

¥ = ma = m(dv/dt).
Form the vector product of ¥ with each side:
¥ x F= ¥ x n(dV/dt).
Now introduce the angular momentum L defined by L =% xmv, and notice that

dLydt = (d/dt)(¥ x mv) = (dF/dt) x mv + ¥ x m(dv/dt), dT/dt = ¥ x m(dv/dt).

The l1ast eguation follows from the fact that
(d¥/dt) x v = V x mv = 0.
(The vector product of parallel vectors is zero.) We can thus write
¥ x F = (d/dt)(¥ x wv) = dl/dt, TORGUE = (d/dt)(ANGULAR MOMENTUM).

For the case of motion and forces in a plane, torgque and angular momentum are
always perpendicular to the plane; the angular momentum can be expressed simply
in terms of angular velocity as follows:

* = (r cos e)? + (r sin o‘i,
v = [(dr/dt)(cos 8) - (de7dt)(r sin 8)]i + [(dr/dt)(sin @) + (de/dt)(r cos 8)1i,
-4

tadx W )
= [(r cos 8)7 + (r sin 8)3] x m{[(dr/dt)(cos 8). -_ (do/dt)(r sin 8)1i
+ [(dr/dt)(sin 8) + (de/dt)(r cos 8)1i}-
A11 terms with dr/dt add to zero because the radial component of v is parallel
to ¥ (see Fig. 3):
L= [m$2 cos? a(de/dt) + mr

2 sinZ e(de/dt)]ﬁ = (mrzw)g.

Figure 1 Figure 2 Figure 3




STUDY GUIDE: Rotational Motion 5

This result is very important and is used in the following module Rotat1ona]

Dynamics. In the special case that r is constant, we get

= dL/dt = o 2(du/dt) = mrla.

This result for a point mass m moving in a circle of radius r is the basis for
the treatment of an extended rigid body in Rotational Bynamics. It says that
the angular acceleration depends not only on the torque and mass, buf also on
the distribution of mass (distance from the axis of rotation). The term mr?
is the rotational inertia, or moment of inertia (I) for a point mass.

PROBLEM SET HifH'SOLQlIONS

A(1,2). A phonograph turntable is turning at 3.49 rad/s (33 1/3 r/min) and has
a radius of 0.150 m. A friction brake brings it to rest with uniform
acceleration in 15.0 s.

(a) What is the angular acceleration of the turntable?
(b} In how many revolutions does it stop?

(¢c) At © = 3.00 rad/s while slowing down, what are the radial and: tang-
ential accelerations of a point on the turntable rim?

Solution
(a) v = wg + ot has- the right variables.
- . e = 0 - 3.49 rad/s _
o= (o wb)/t T -0.233 rad/s L

(b) 6 = ayt + (o/2)t2 = (3.49 rad/s)(15.0 s) + (1/2)(-0.233 rad/s2)(15.0 s)2
= 26.1 rad = 26.1 rad (1 /27 rad) = 4.16 r.

(c) a_= -or = -(3.00 rad/s)2(0.150 m) = -1.35 m/s°.

a, = ar = (-0.233 rad/s2)(0.150 m) = -0.035 m/s2.

t

B(3). A mass m falls under gravity as shown in Figure 4. The motion is given by
X =5,

y=-(9/2), v, = dy/dt = gt.
Calculate the torgue and angular momentum about 0 and show that
TORQUE = (d/dt)(ANGULAR MOMENTUM).

A
-l bl
0 s _
-9 X
R
{x,Y) )
.~ Figure § )
Figure 4 69 Figure 6




STUDY GUIDE: Rotational Motion 5

Solution
Since the motion is in a plane all torgues and angular -momenta are normal to
the p]ane, let k be a un1t vector out of the paper. Then

T=7Fx ? = (Si * yj) x (—mgj) = -mgSk,

T=FxP=(si+yj) x (-gti)m = -mgstk.
Notice that [ is just t multiplied by a constant. Differentiate with respect
to time:

dt/dt = (d/dt)(-mgStg) = -mgsk = 7.
Notice that we can write £ in terms of angular variables. From Figure 4, we
see that

y=stne, V =dy/dt= (dyde)(de/dt) = sw/cos® 0.

Subst1tut1ng, we f1nd R
f = mV sk = m(s /cos B)R mszk.

This is a genera] result mentioned in the General Comments.

Problems

€{1,2). You live on a disk-shaped asteroid of radius 200 m {see Figure 5).

(a) If the radial acceleration at the edge is 9.8 m/sz, what is
the angular velocity?

{(b) The acceleration to the above velocity from rest is done with a
tangential linear acceleration of 0.50 m/s How 1ong does it take?

B(3). A point mass m moving on a circle of constant radius R is accelerated
from rest (s = v =0 at t = 0) by a force whose tangential component F

is constant. See Figure 6.

(a) ¥nat is the torque about O.

(b) What is the angular momentum about 0 .at time t?
(c) Show that 7 = dL/dt.

Solutions

¢1,2). (a)a, = -o°R,
o = (-a_-r/R)Vz? (9.8 m/s27200 m)V/2 = 0.221 rad/s.
(b) 2, = aRs @ = 0.0025 rad/s?, = at,

t = g_= 0.221 vad/s _ . gg .

0.0025 rad/s
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STUDY GUIDE: Rotational Fotion 7

D{3). (a) Notice that whereas there is usually a radial component of the
force it does not contribute to the torque. Only the component
perpendicular to R contributes, so T = kRFt.

(b) Use Newton's second law to get a:
‘?t = ma, as (Ft/m)t, then ¥ = at = (thm)t.
T=Fxmv= Rm(Ft/m)tk = RFttk.
(c) As in the last example, notice that T is just a constant multiplied
by t:
.

d/dt = -(&/dt)ﬁa::tt = RFk = 7.
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STUDY GUIDE: Rotational Motion -8

PRACTICE TEST

1. While waiting to board .a helicopter, you notice that the rotor angular
velocity went from 300 r/min to 225 r/min with constant acceleration in
one minute. The rotor radius is 5.0 m.

(a) What is the angular acceleration?

(b) Assuming constant angular acceleration, how long will it take to
stop from 225 r/min? )

(c) How many revolutions will it make in this time?

(d) At 225 r/min, what are the radial and tangential accelerations at the
rotor tip?

2. A planet of mass m-moves in a circular orbit about the sun at constant
speed v. The orbit has radius R, and a constant magnitude force F is
directed toward: the sun (see Figure 7).

(a) What is the torgue about the sun?
(b) Yhat is the angular momentum of
the planet about the sun?
(c) Show that T = di/dt.
Figure 7
. A
’ZSIW gz = e
5 g0 = e (p)
19/ =0 =213} 8 = grieE = 0 (9)
fyau = 7 (9) "$ 08L = ups-00°¢ = ¥ (9)
"1aL[eaed dde J ¢4 'zsf?PJ'le'O- =P
asnedaq 0 = (i’x 2) ‘0= 1 ® -2 | ' ‘zugmfa G~ =0 (8) °|

SIAMSUY 3551 99139844
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ROTATIOHAL MOTION Bate

Mastery Test Form A pass recycle
1 2 3
Hame . _ R Tutor

1. The spin drier of a washing machine initially turning at 20.0 rad/s
slows down uniformly to 10.0 rad/s in 50 revolutions. The drier is
a cylinder 0.300 m in radjus.

{a) What is the angular acceleration?
(b) What is the time required for the 50 revolutions?

{c) 4hat are the radial and tangentia} accelerations on the side
of the drier as it begins to slow down?

2. Apo‘intmassmat r=xi +y3 has avelomtyv-v i+v,3 and is
acce‘lenated by a force F-= Fi. 1fT and 1 are referred o the origin,

(a) cCalculate the torque't “about the origin.
(b) Calculate the angular momentun T about the origin.

{c) Show that T = dl/dt. Remember that vV = dr/dt and F =

. Y

Figure T
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ROTATICKAL MOTION Date . _
Mastery Test Form B ‘pass recycle

1 2 3
Hame B Tutor
1. According to measurements made by cesium clocks, the earth is slowing down at

a ratea= -3 % ]0"9 r/d yr. If this rate is constant,.
(a) How many days (of current length) will it take to stop? 1 d = 85 406 s.
(b) How many revolutions (sidereal days) will it make in stopping?

(c) What is the present radial acceleration of a point on the earth's
equator?

(R=6.4x10°m, 1d=86400s.)

A pendulum has a mass m on the end of a massless rod of length R and moves
under gravity. Using @ as a coordinate, and the resuilt

A x8] = A - )B] sin e,
{a) Calculate torque about J-.
(b) Calculate angular momentwm about Q.
(c) Show that d29/dt2 = -(g/R) sin e.

mg

Figure 1
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ROTATIONAL HOTION Date

Hastery Test form € pass recycle
1 2 3
Rame Tutor

1.

A particle of mass 8.0 kg E0ves through the point T= (-4 01 - 6 03) o with
the velocity ¥ = (6.01 + 4.0§) m/s. A force T = (2.00i - 3.003) M acts on
the particie.

(a} What is the torgue on the particle with respect to the origin?

(b} ¥Khat is the angular momentum of the particle with respect to the origin
at this time?

(c) 4hat is the rate of change of the particle angular momentum?

Astronaut training can include work in a centrifuge (rotating cylinder} of

6.0 m radius that spins with an anguiar velocity w = 2.00 rad/s.

(a) What is the radial acceleration at R = 6.0 m?

(b) The angular velocity is increased to 3.00 rad/s in 15 r.
What is the angular acceleration, and how long does it take?

Figure 1

ol
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ROTATIONAL MOTION
MASTERY TEST GRADING XEY - Form A

¥hat To Look Fo_r

_ Solutions

1. thoose correct egquation. 1.
Convert & to radians.
Correct units and signs.

2. Definitions of 7, L. 2.
Evaiuation of cross sroduct.

Use ‘Jx = dx/dt,
Fx = m(—dvx/dt).

(a)

(b)
(c)

(a)

(b)

(c)

&= (o - mzo) /20,

w = 10.0 rad/s, &y = 20.0.rad/s,

o = 100r rad, = -0.48 rad/s2.

t=(v - mo)/a = 20.96 s. _
a.= w’r=-120 /5%, o =or=-0.143 /s .

%=?x?¥(x$+y3)x F:]:, 7 = xFk.

T=% xab = (xi +yj) x m(’fx? * "',3-)'
T (- Ik
dy
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ROTATIONAL MOTION _

¥hat To Look For

_ Solutigns
1. Choose correct equation. 1. (a) t = (o - uy)/cs
Convert to SI units or carry
¢ = 1.00 r/d

given units through equation.

(b)
(¢} o must be in radians {c}
per second to calculate
a.
2. (a) Definition of 7. 2. (a)
(b) Definition of L, (b)
| (c)

3.00 x 107 r/d yr

3.30 x 16% yr = 1.20 x 104,

]

6 =uyt + (]/2)&1:2 = 1.00 r/d x ]Oa-yr
-3.00 x 10~ r/d yr, 8 12
= 5 {3.30 x 10° yr)
= 6.1 %100 r,
2 -
o =8—-6-g—00—s— =7.3x10 5 rad/s,
a. = -u’r = -0.034 m/s”.
T=FxF=mRsine (into paper),
T=Fxnml= mRz(c_lefdt') (out of paper).
'd'f/'dt = '{, mRz(dzefdt-z) = -mgR sin 6,

d®oydt? = -(g/R) sin 6.
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ROTATIORAL MOTIOH €-1
MASTERY TEST GRADING KEY - Form €

What To Look For . Solutions

¥ x F= (-4.01 - 6.03) x (2.001 - 3.003)
(12.0 + 12.0)k . m = 24.0k N m.

1.(a)} Definition of T. 1.(a) T
Evaluation of vector
product. Units.

(b) Definition of L. (YT =7 xa¥ = (-4. 01 - 6.03) % S(o 07 + 4.03)
(c)‘df/dt =% = 24.0k N-m.

2.(a) Choose correct 2.(a) a, = —wlp = -(2.00 rad/S)z'(ﬁ.O m)

equation. = 2240 m/sz

(b) Choose correct (b) o = (wz = wg)/ZB,

equation. 6y =200 rad/s,  ®=3.00 rad/s,

8 is in radians, not 6 = 15.0 r = 30.07 rad, a = 0.0265 rad/sz,

revolutions.

t= (- mo)/a = 37.7 s = 38 s.
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