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Estimating Parameters in the Rasch Model:

Removing the Effects of Random Gueasing ]

Abstract

A method of estimating the parameters of the Rasch Model
removing the effect of random guessing is prevented., The pro~
cedure is an application of the ARRG model recently developed
for two parameter latent trait models. Under the Rasch model
ARRG provides for estimation of abilities, removing the effects
of random guessing, without requiring the use of a computer.

Monté Carlo simulations are employed to examine the accuracy of

g b

the resulting ability estimates.




l, Introduction

This paper presents a method of estimating the parameters of
the Rasch model removing the effects of random guessing. The
methnd used is an application of the ARRG (Abilities Removing Random
Guessing) model or procedure developed recently for two parameter
latent trait models by Qaller (1973, 1974a). Application to the
Rasch model 18 more or less straightforward, and the xaison d'efre
of the present work 1s to present a modified version which under
the Rasch model becomes computer free. This is possible because
one chargcteriscic which the one parameter Rasch model possesses

and which the two and three parameter logistic latent trait models

do—mot—is—that—the—raw -score- is a-sufficlent~statistic-for—estimation
of ability. Consequently, conce the item difficulties in 4 test have
been estimated, a user may simply add up an examinee's raw score and
look up the examinee's ability in a table developed during estimation
of item difficulties. The method presented here provides the same
facility while concomitantly removing the effects of random guessing.
The underlying assumption of the ARRG procedure is that examinees
who guéss in an essentially random manner, do so on those items
which are too difficult for them. Latent trailt models such as Rasch
possess two characteristics which enable us to app%y this assumption
when estimating an examinee's ability. First, these models may be
stated in a form which enables us to obtain an estimate of the probabi-
lity of a correct answer for each examinee's response to each item.
This allows us to ildentify items which are too difficult for a given

examinee, and to identify examinees for which a given item 18 too

difficult. 4




Second, once a set of items i;_calibrsted, i.e., scaled
difficulties have been determined, any subset of items may be
used to estimate an examinee's ability. This allow; us to remove
any number of items in a given test and indeed different sets for
different examinees while still allowing us to estimate every
examinee on the same scale (Bock and Wood, 1971).

Given this assumption and these two characteristics of latent
trait models one may obtain estimates of difficulties and of
abilities removing random guessing by removing from the estimation
Procedure those ltem-person interactions in which a person responds
to an item estimated to be very difficult for him. Sections 2 to 4
describe the models, calibration of the items, and ability estimation

by two methods. One methoimziflds maximum likelihood estim%&gs and

requires the continual use of a computer} the other method ylelds
a table from which estimates of abilities may be taken directly.
The last section examines the accuracy of these ability estimates

through a Monte Carlo simulation.
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2. The Rasch and ARRG Models
Suppose that each of N subjects respond to M multiple choice
items, each item containing Ai alternatives, i=1,...,M. For the

response of person n to item 1, let:

1 denote a correct response
a =
ni

0 denote an incorrect response,

Then the probability that person n responds correctly to item 1
may be strated in Rasch model as:

ebn-di
(1) P, = Pria_,=1) = y = =SI0_2_
ni ni ni I+ePn~91

where bn is the ability of person n and di is the difficulty of

item 1. This probability in the ARRG model becomes:

< P

5 { ¢ni
(2 P =
nl
qJn:l. c

llAi
In (2) Pc-ia some small probability which is estimated during
calibration of the test; the same value of Pc i8 used for all
subjects and items.
Equation (2) reveals that the ARRG model divides the items

into 2 sets:

bn = (Items such that ¢ni > Pc]

S, = {Items such that bog < Pc] .

Only items in Sn are used during abili:ry estimation.

6




The ARRG procedure makes the assumption cthat Pc represents
the probability below which some subjects answer randomly. While
other subjects may choose to omit items rather than guess, the
ARRG procedure allows us -to ignore all responses with a low proba-~
bility of a correct response and to do so without loss of precision
in the resulting ability estimates (Waller, 1973 or 1974a, section 61.
Oniteted 1tems in latent tralt models are treated as 1incorrect
responses for estimation of ability and difficuley, (Omitted items
may be used as an adjunct to ARRG to obtain an independent estimate
of the personality characteristic risk taking tendency as described
in Waller (1974b). The estimate of risk taking tendency uses the

items not used to estimate ability, i.,e., items in Sn.)




3. Test Calibraction

Estimation of the item parameters, that is, calibration of
the test, can be accomplished for the ARRG modification of the
Rasch model by proceeding as in Waller (1974a). However, convergence
during test calibration is found to be somewhat faster if an al-
ternative procedure is employed. In the procedure used In this
paper we aajust the re;ponées prior to calibration to reflect the
ARRG model and éroceed with a free response analysis as in Wrighe
and Panchapakesan (1969)1.

The required adjustment is obtained as follows: A preliminary
estimate of each subject's ability and each item's difficulcy 1is

obtained from a transformation ©of the raw proportion correct by

the inverse of equation (l); 1l.e.,

i e e e . i et i et A e i rr e e £ e St = mpn b

b° = In Pn ’ Pn =‘raw proportion correct;
n 17
n
(3)
4° P ) '
{ - 1n i ’ Pi = raw difficulry.
l-Pi

Then for each 1 and n, ¥ is estimated using (1). The response

ni
*
value to be used during ARRG calibration, say a is obtained from
(&) a:i - { ®n1 Yoz 2 Pe
0 wni < Pc .

: 1 :
]ERJ(: .The author wishes to thank Benjamin Wright for suggesting this
: method of calibration.




As described in Wright and Panchapakesan (1969) an estimate
of ability is produced'for each raw scoie as a part of the free
response calibration process. 1In the ARRG procedure these estimates,.
based on the adjusted responses a:i s are used only as starting.
points for the estimation of each subject's ability as described
in the next section.

The proper value for Pc is obtained as follows: A cutoff
probabilicty, Pc' is chosen at the beginning of a calibration run
and remains constant during “he run. A x2 goodness .of fit statistic
(see e.g. Wright and Panchapakesan, 1969) is calculated for the test
during each run, The value of Ec is then Incremented and a second

calibration is performed. After each calibration run, the fit is

examined. ;;e x2 statistic is found to decrease, as Pc 1s increased,
to some minimum level and then increace (Waller, 1974a). The cali-~
bration run with the minimum xz identifies the valueée to be used for
Pc during estimation of ability, and the item difficulties obtained
during this run become the estimated fitem difficulties of the test.
Note that if the minimum x2 calibration occure with Pc equal to

zero this is an indication that the data are essentlially free from
random guessing, and in this case the resulting parameter estimates

are ldentical to those produced bv a standard Rasch calibration.
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the ARRG procedure can be performed in either of two ways. The

4. Abilicy Estimation

After the items are calibrated, estimation: of ability under

first mechod, here labelled MAX, produces maximum likelihood
estimates (MLEs) and requires the use of a computer. The gecond
method, here labeled TABLE, produces. approximate MLEs but after
calibration does not require a computer.

The first method ylelds maximum likelihood estimates
by means of Newton Rapheson iteration. This method is identical
to that used in free response Rasch estimation (Wright and Panchapakesan:

1969) with the exception that a subset of items refleccting the ARRG

model 18 used. This is accomplished as follows.:

Given the initial estimate of ability from (3), che set of
ltem difficulties, and the value of P determined during calibraction,
the estimate of ability for person n at the kCh iteration 1is given

in the Newton Rapheson approach by:

(k) _ (k-1) _
(5) bn bn zb/£bbf
Here £b and £bb are the first and second partial derivatives wich

respect to b of the log likelihood function, i.e.,

(k) (k-1) :2 : :E::
(6) bn - bn - [ani - qJn:l.]/ UJni{l_qJni)] .
s s .
n n _

In (6) is evaluated using cthe (k-l)sc esqiﬂace of bn; the

qJn:l.
ARRG model 1s reflected in the fact that the set Sn'consiscs of only

those items for which ¢ . > P . 10




The second method, TABLE, consists of developing a table
utilizing the estimated abilities, difficultiés and P, from the
" minimum x2 calibration run. For each raw score the table-;ontains
the estimated ability for that score together with a list of the
items for which ¢ni (as calculated using the ability associated
with that score) is greater than the cutoff probabilicy, Pc. An
examiner obtains the estimated ability by adding up the subject's
raw sche, finding the subset of items in the taﬁle associated with
that raw score, and then calculacting an adjusted raw score based only

on the items in this subset. The subject's estimated abilicty is the .

abilicty associated with ‘this ad]usted raw score.

For example, consider the two simulated response vectors, vy

and vz,_taken from the Monte Carlo simulation described later. Items

*“

in these vectors range from easy items on the left to diffiéulﬁ items
on the right. Both vectors yleld a raw. score of 14 correct out of

43,

vl-{101100001100100000000000010101010011010010000}

vz-{111111110111110000000010000000000000000000000} .

- Table 1 presents the estimated Rasch abilities from the minimum

. . . G . Sy . - -

Insert Table 1 about here

x2 calibration run on this set of simulated data, and the subset of

items for which the estimated probabilicty of a correct response 1s

greater than the cutoff point associated with this runm, Pc = 0,I2. jll

We see':ha: for a raw score of 14 this subset contains items one to

Q .
[]{U: twenty-five (underlined above); and consequently, the subset containing

IToxt Provided by ERI




these items will be used to obtain these simulated examinees'

i estimated ARRG ability, The "examinee'"™ corresponding to the first
response vector achlieved siX correct responses in this subset and
his estimated ARRG ability is the estimated Rasch ability corresponding

S

tc a vaw score of six, 61 = -3,577. The second "examinee" achileved
all fourteen correct responses in this subset and his estimated

abilicty is the gsame as the Rasch abllity corresponding to his adjusted

raw score of fourteen, 62 = -1.,677.
While the disparity between the estimated abilities might seem

unwarranted (given that both "examinees” achieved the same raw score),

the difference reflects the fact that the first response vector

simulates someone of low ability who guesses in a more or less random

U i e — e

manner at items which he doesn't know, while the second vector
simulates somzone bf a higher ability but someone who omits items
he doesn't know, omitted items being scored as incorrect. The
estimated standard error of these two ability estimates are o, = 0.538
and 0, = 0.459, Since the true ability, i.e., those used to generate
these data, are 6, = -3.41 and &, = -1.58, it's clear that 95% con-
fidence intervals placed around the estimated abilities cover the
true values.

During ability estimation with either ‘method, the original

responses of each examinee, a not a%* are ysed. An examinee's

ni ni’

response 1s never changed from right to wrong when estimating his

ability; only the number of items used to estimate an examinee's ability

may be changed. As indicated in the introduction, latent traitc
: models allow estimation of sbilitfes on the same scale using any

]ERJK? subset of calibrated items. This characteristic may be seen in equation .

12




(6) of the MAX method: responses to items not in the set used to

estimate ability, Sn, do not affect eétimation in any way,

13




-11~-

S. A Monte Carlo Simulation

Evaluation of ARRG ability estimation may be made through
8 Monte Carlo simulation. A sample of abilities of size 480 from
a logistic distribution was generated simulating both guessing and
non-guessing subjects. The simulated test was constructed to have
45 ltems ranging in difficulty from -4.4 to +4.4 Iin steps of .2,
A non-guessing response vector wWas generated by setting the value
of his ability parameter, calculating the true probability of a
correct response, wni, for each item and then compaying this value

to a random number, rni’ between zero and one: 1l.e.,

boAf gy 2 Ty
nil

0 otherwise .
A guessing subject's response vector was generated in the same
manner with the exception that whenever the calculated probability,

wni’ wag less than P the random number was used to yield a

e?
simulated correct response on one-fifth of such items (thus simulat-~
ing a five choice test). The sample contained approximately 332
guessers and the remainder non-<guessers.

The simulated test thus generated was calibrated using the
ARRG model and the free response modei. As indfcated earlier, 1if
the best fitting calibration run occurs with Pc = 0, ARRG estimates

are ldentical to free response estimates; that 1s, the free response

analysis is subsumed by the ARRG analésis.

14
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The comparison of the ARRG estimates to free response estimates
is included to highlight the effect of ignoring random guessing
¥hen 1t is present in the form nodeie& by the ARRG procedure.
When calibrating a real test, the;xz'statiatic will indicate
whether anything will be gained by employing a cutoff point
greater than zero.

The ability for each subject was estimated by the two methods
presented for the ARRG ﬁodel and by the free response modei. The
samples were then split into two subsamples, one composed of the

simulated guessers, the other, simulated non~guessers., Table 2

Insert Table 2 about here

A g S g 2 o ol b o

presents functions of the first four moments of the samples of the
estimated abilities. These are compared to the corresponding
moments of the sample of true abilities (also shown); all signi-
ficant differences are indicated.
For each subject an estimate of the asymptotic variance of
the subject's estimated ability may be calculated as
.2
(7 og = =1/ 455 = 1/ E (o (1=9_ )1,
s
waere the summation 1s again Paken over only those items for which
wni > Pc . Using (7) 95% confidence intervals may be placed

around each subject's estimated ability., Table 3 presents the

Insert Table 3 about hers

number of times, in each group of simulated subjects, such confidence

intervals fail to cover the true ability.
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Results from Tables 2 and 3 indicate that only the free re.pdn.;
analysis of data contaminated by guessing fails to adequately
estimate the tyrue abilities. As yould be expected from a frae
response analysis of data contaminated by guessing, the nmean

of the gimulated guessers 1is significantly overestimated relative

‘to ‘the true mean. Also, this psubsample is seen to contain a

posicive, though not gacistically significant, gkew relative to

the true sample of abilicies, as well as a significantly smaller
variance. Both ARRG methods produce samples of estimated
abiliecies which are statistically equivalent to the sample of
true abilicies.

While the TABLE method does not produce exact maximum like~
lihood estimates of ability (except for those subjects whose
ability estimate 18 based on the entire set of items), the ability
estimates produced by this method 1In conjunctﬁgn with thelr
estimacted errors are found to produce an accurate estimate of an
examinee's abilicy. The TABLE method also possesses the charact-
erisctic aougﬁc in chis work that after calibration Pf an instrument
by a test publisher, a user 1s not required to possess high sreed
electronic computing facilities to obtain accurate estimates of

ebility essentially uncontaminated by random guessing.
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Table 2

Moments of the Recovered Samples of Abilities

Analysis Mean Variance Skawness Kurtosis = Fit X? :
b a b D.F.>135
Free Response 0.1212 2.142 0.1030 0.6794  267.81
Guessers 0.3095° 1.191° 0.6545 1.2963
’ Hon Guessers 0.0261 2.238% -0.0849 0.3196
ARRG-MAX ~0.0171 2.301 0.1721 0.4482 1€4.ad
Guessers -0.0247 3.032 0.4938 0.6772
Non Guessers -0.0133 2.693 0.0184 0.3242
ARRG-TABLE ~0.0887 2.916 0.1758 0.4472  164.08
Guesdgers -0.0716 3.123 0.49%03 06386 - S
Non Guessers =-0.0974 2.824 0.0075 0,3369
TRUE -0.0770 2.769 0.1498 0.4674
Guessers -0.3407 2.957 0.3001 0.7382
Non Guessers -0.0604 2.692 0.2414 0.1369

Sample Size

Full Sample 477
Guessers 160
Non Guessers 377

a P« .009
b P << ,001
c P < 001

19
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Table 3

Number of Estimated Confidence Intervals
Failing to Cover the True Ability

Sanple Number Failing P
Analysis N To Cover Ability - Less Than
Free Response 477 59 .0001
Guessars 160 37 L0001 i
Non Guessers 377 22 .0776 .
ARRG. MAX 477 21 9542 H
Guessers 160 5 .9161
Non Guessers 377 16 .5205
ARRG TABLE 477 24 . 5540
Guessers 160 8 .5506
Non Guessers 377 16 .3205




