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Canonical Analysis as a Generalized Regression T chnigue for
Multivariate Analysis :

John D. Williams .
The University of North Dakota
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The use of characteristic coding (dumy coding) is made in showing
solutions to four multivariate problems using canonical analysis. The
canonical variates rz, ve analyzed by the use of multiple 1inear regression.
When the canonica} variates are used as criteria in a multiple linear
regression, the R values are equal to 0, where 8-is the squared canonical
correlation coefficient. Several different methods exist for testing
multivariate hypotheses. Where the interest is in a two-way disproportionate
multivariate analysis of variance, the trace criterion (Z8.) seems particularly
applicable.
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Characteristic (dummy) coding has been used in multiple linear regression
to analyze univariate analysis of variance problems; the same coding scheme
can be ertended to multiple criteria. While the resulting data are analyzed
through canonical analysis, the design matrix conforms to the usual multiple
Yinear regression design matrices. Thus, the utilization of multiple
criteria can-be ﬁursued in a logical sequence witﬁout necéséftafing Con-
tinuously chaﬂging the entire terminology.

In the present paper, four multivariate research designs are examined

in a canonical analysis framework: a multivariate two~group situation,

sometimes referred to as Hotelling's T2 test; a multivariate multiple group
situation; a multivariate two-way analysis; and a multivariate two-way

analysis with disproportionate cell frequencies.

Tests of Significance in Canonical Analysis
In multivariatle analysis, several different tests of significance
are used. Typically, the multivariate analysis of variance has focused

on solving the following equation for Ay
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-1 -1 ]
| 51552071521 - M(s31 =855 "500) | = 0,

whereas canonical analysis has focused on solving
-1 _
Is125725521 - 87| = 0

where 9= Rgi and-8; = A, ; also,

]‘l‘k.i

S11» Sy2s Sp7 and Sy, are variance - covariance matrices.

Roy's (1957) largest root criterion tests the significance of the largest
characteristic root. Hotelling's (1951) trace criterion tests the overall )
multivariate hypotheses for all dimensions simultaneously and is given
by trace = zzi. Tables for testing either of these two tests have been
given by Pi11al (1960). A trace criterion using Pillai's tables wherein
the trace is Eﬂ} is useful 1n testing the significance of the overall
set of canonical correlations and is analogous to Hotelling's trace
criterion.

Wilks A also provides a test of the overall hypothesis. All
necessary tables for testing these hypotheses can be found in Timm {1975).

Typically, in canonical analysis simultaneous tests of each characteristic

" yoot using Roy's approach is used. On the other hand, multivariate analysis
of variance programs usually employ an overall test (either the trace
criterion or A). Harris (1975) has argued that the use of the largest root
criterion is more sensible in that if either the trace criterion or A

shows significance but the largest root criterion does not, then the
differences among the groups cannot be pinpointed by any singleé linear
combination of variables. Harris would see the use of the overall hypotheses

as being more useful in only those cases where Ay and A, are close to the

same value.
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A Multivariate Two'Group Situation (Hotelling's T° Test)

The simplest multivariate analysis of variance situation is the multi-
variate analog to the usual t test; here, several criteria are observed for
two groups and an overall test for group d*fferences can be made. As an
example, suppose four criteria (Y], Y2, Y5 and Y4) are observed for two

groups as indicated in Table 1.

Table 1
Four Criteria Y], Y2’ Y3, and Y4

for the Multivariate Two-Group Situation

Group 1 Group 2
Y] Y2 ¥s Y4 Y] Y2 Y3 Y4
20 17 17 25 15 26 13 16
22 19 16 28 19 25 15 15
24 14 18 23 23 21 17 17
26 16 17 17 24 17 22 18
28 18 16 29 25 19 1w 22
30 20 15 2 1 26 1w 8 23
32 22 14 35 27 22 14 24
34 16 16 42 28 20 . 18 20
36 9 18 38 30 17 21 18

To accomplish a canonical analysis with the data in Table 1; it 1s
necessary to define a first-set and a gecond~set. For convenience, the
criteria will constitute the first set and the predictors {group membership
variables} will constitute the second set. Actually, only a single group
membership variable is necessary:

Xy = 1 if a member of Group One; 0 otherwise.

Table 2 contains the criteria and.design matrix necessary to accomplish

this analysis.




Table 2
Criteria and Design Matrix
for a Two-Group Multivariate Mnalysis
Y.l Y2 Y3 Yy X
20 7 17 " 25 )
22 19 16 28 ]
24 14 18 23 )
26 16 17 17 )
28 18 16 29 )
30 20 15 32 )
32 22 14 35 )
34 16 16 42 )
36 9 18 38 )
15 26 13 16 0
19 25 15 15 0
23 21 17 17 0
24 17 22 18 0
25 19 16 22 0
26 14 8 23 0
27 22 14 24 0
28 20 18 20 0
30 17 21 18 0
Using canonical analysis to find the relationship between the left
set and the right set, the following results are obtained:
@<= .60066; canonical R, =9/& = .77502;

Wilk's A = .39934, with p < .0}. Also, the trace = .60066; in every

case, R <.0l. | )
The coefficients for the first set are

First root

Y, -.65403

Y2 -.32522

¥y .24849

Yy 1.26372.
The coefficient for the Xy variable is of course 1.000.
Also,

Yy = 26.0556, SY] = 5.3189;

To = 18.4444, sY2 = 4,0905;




Y, = 16.1667, sy = 3.0534; and
3 - 3
¥y = 24.5556, sy, = 7.9648.

If a new variable, Yy, is formed as

Ye = -.65403(Y1 - )/SY'I - .32522(Y2 - 72)/SY2 + .24849(Y3 - Y3)/5Y3

5

+ '!.26372(Y4 - 7;)/5Y4

3
then a regression equation can be formed as

Y5=bo+b}X-| + ey, (1}

If a regression is completed with the formulation in eauation 1, then

R = ,77502,

R% = .60066, and

1-R% = 39934, —
This information is identical to that found in the use of the canonical
analysis; the relationship is, for the two-group situation:

R=VE = R.;

RS = frand A 1-R

The use of equation 1 shows that a composite variable, Y5, is a Tinear composite

of variables Yy, Y, Y3 and Y4 such that the relationship with X remains

maximized.

Because there is only one group membership variahle involved, an in-
teresting reversal of the roles of the criteria and predictor can be made:

X = by + by¥q + byY, + baVs + by¥y + ep. (2)




If equation 2 is utilized in a multiple regression framework,

R = 77502, R = 60066, 1-R® = ,30934 and F = 4.888.
The first three results were obtained in the prior two analyses.

There are some differences between the two analyses, however, For
the use of equation 2, b1 - b4 are different from the coefficients for
the first set given previously; this, of course, was to be accepted. The

beta coefficients also differ from the coefficients given earlier;

8, = -.50688,
B, = -.25206,
g3 = 19259,
By = 97940,

If some thought is given to it, this difference comes 3¢ no surprise
either. 1In a canonical analysis, each canonical variate has a mean of

zero and standard deviation of one. In a regression analysis, the beta

coefficients are such that for every predictor variable, there 15 a mean of

zero and standard deviation 0f one. The difference is that in canonical
analysis, the new variate is created with mean zero and standard deviation
of one.

Finally if a multivariate analysis of variance program is executed,
A= .30034 and F = 4.888, results that were obtained earlier. Thus, if
the interest is in comparing two groups on several criteria simultaneously,
several different strategies allow equivalent.solutions. In this special
case, the execution of equation 2 (using the group membership variable
as the criterion and the Y variables as predictors) is perhaps the
easiest solution to employ. The use of canonical analysis and subsequent

formation of a composite variable would also seem to be of some value.

N I iy




A Multivariate Hultipie Group Situation

If several groups are involved in the analysis w{th multiple criteria,
then the usual one-way multivariate analysis of variance is often employed.
As an example of such a situation, suppose three criteria are availabie

for three grouns of subiects. Such a situation is encountered in Table 3.

Table 3

Criteria and Design Matrix for ﬂultivariate Analysis
of Variance Through Regression

Y

1 Y2 Y3 X] X2
17 23 1 1 0
22 28 2 1 0
14 22 3 ) 0
18 27 4 ) 0
29 25 5 1 0
22 32 H 0 1
24 34 8 0 1
26 36 10 0 1
28 42 12 0 1

_____ 25 3 14 0 1. e
26 23 15 0 0
29 32 16 0 L
32 29 17 0 0
35 42 18 0 {
33 23 19 0 0

Two group membership variables are used:
%
X
Using the data in Table 3, a canonical analysis is performed with

1 if a member of Group }; O otherwise, and

1 if a member of Group 2; 0 otherwise.

the Y scores {criteria) as the first set and the X variables (predictors)
as the second set. Several useful items are tynically available from a
canonical analysis. Either the canonical roots or canonical correlations
(or both) will be available. For the data in Table 3, &y = .89286, and
B, = .43602. The first canonfcal correlation is'vqﬁ-= .94491, and the




second canonical correlation 1s*¢§§ = ,66032, The weights for the Y

$ide and X side are:

Y side weights ] 2 3
) . 09556 -,01807 ~1,07322
2 ~.79902 1.1073% . 27948
X side weights ] 2
1 1.18487 . 56235
2 01725 1,00851

It is interesting to form variables to correspond to those suggested by
the Y side and X side weights and investigate these transformed variables using
ordinary.multiple regression. To utilize the weights, it is first necessary
to transform all the data in Table 1 into z scores. As ?} = .3333,

. 3333, Y} = 25.3333, ?é 29.9333, ? 10.0, Sx} = 4880, sxz = .4880,

sy = 6.0198, sy = 6.5407 and s, = 6.2678, the transformation equations
1 2 "3

are:

2y = [ooss6(y,-25.33336.0198 ] + |-, 01307(\(2-29 9333)/6. 5407_]
[=1:07322(,-10.976.26787] - s o

7,= |- .79902(Y,-25.3333)/6.0198] + [1.10739(1,-29.9333)/6.5407 ] +
[27938(Y,-10.)/6.2678]

2, = [1.18457(x;-.3333)/.4880] + [56235(x,-.3333)/ . 4880

2, = [01725(x;-.3333)/ .4880] + [1.00851(x,-.3333)/.4880]

-

Using Zy as the criterion and Xy and Xy as predictors, RZ = 89286,
R = ,54451, identically the same results as found for the first canonical
root, Similarly, using Z2 as the criterion and x} and x2 as predictors,
R2 = 43602 and R = ,66032. If Y}, Yp, and Y3 are used as predictors of

23 and tnen 24, again the canonical correlations appear as multiple correlations.




Also the following correlations are of interest:

r =0 r =
44, Zp13

ry o = 9449 . = .66032
24 2p24

r =0 r =
12 2324

If a traditional multivariate analysis of variance is performed, the
test for H2 {overall difference among all groups) yields A = .N6042,
While some canonical printouts (such as Cooley and Lohnes, 1971} include
this value as part of the output, A can be found as n? (I-B}) where the
&, are the canonical roots. For this particular data, A = (1-.89286)(1-,43602)=
06042, BecauSe-ﬁ; = R?, this resulf can be written as A = H¥(1-R$). The
trace criterion yields Tr = ,89286 + ,436nN2 = 1.2888.
Also, from the multivariate analysis printout, an F = 10,227 (b <.01)

tests the overall group differences among the three groups.

e e maee —a ——— e e e - Y

The use of the canonlcal var1ates found through the use ot the canon1ca1
vectors should present an attractive alternative to those researchers who
wish to complete multiple comparisons after the rejection of the overall
null hypothesis. One suggestfoh, made by Hummel and Sligo {1971) is to
compare the groups on unjvariate tests on each variable after the rejection
of the overall null hypothesis. An alternative is to use the first
canonical variate for the criteria set and run an analysis among the groups

with this {(and subsequent) canonical variates from the criteria set. Scheffé's

test would seem appropriate as a multiple comparison method.




15 9 13
17 13 21
16 16 12
1718 22
14 13 17
15 1 18
16 17 27
16 14 21
17 16 23
18 15 24
20 13 22
22 9 18
17 15 16
18

A Two-Way Multivariate Situation

The two-way multivariate analysis of variance is not quite as available
as the one-way multivariate analysis of variance, but several programs
are available, including Cramer (1974), Finn (1974), Ondrack {1974), and
Cooley and Lohnes (1971). Suppose three criteria are measured in a 2X3

design. The design matrix is given in Table 4,

Table 4

Criteria and Design Matrix For Two-Way
Analysis of Variance Through Regression

Y Yo Y3 X X2

13 18 16
14 19 17
15 18 22
16 15 27
14 19 20
17 18 23

19 19 14
20 21 14
21 23 18
22 25 19
13 17 22
15 13 22
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Xy =1 for a member of Row 1 and Column 1, O otherwise;

= 1 for a member of Row 1 and Column 2, 0 otherwise;

9 =
X3 = 1 for a member of Row 1 and Column 3, 0 otherwise;
X4 = 1 for a member of Row 2 and Column 1, 0 otherwise;
Xg = 1 for a member of Row 2 and Column 2, 0 otherwise;
Xg = 1 for a member of Row 1, 0 otherwise;

x7 = 1 for a member of Column 1, 0 otherwise and

Xg = 1 for a member of Column 2, 0 otherwise.

An analysis of the data in Table 5 is necessarily complex. Four
sets of canonical relationships are possible; the Y, Y, and Y3 variahles
can be related to x] - X5, then Xg and X7, then Xg and finally Xg, X; and Xg.
In the univariate situation these relationships correspond to the full
model, the rows, the columns and the rows and columns as predictors.
Table 5 contains the various cqnpnical relationships from these four

different sets of predictors.
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Table 5

Eigenvalues, Cancnical Correlations and Wilks Lambda For
Two-Way Hultivariate Analysis of Variance by Regression

Preditors: X}, X0 X3, Xg» Xg (Full Hodel)

R2 i Canonical R A

First Root 86535 93024 .03594 **
. Second Root 58716 . 76626 26692 **

Third Poot . 35345 .59452 64655 **

Predictors: Xs {Rows )

First Root +32400 .56921 65600 **

Predictors: Xy, Xg (Columns)

First Roct .45924 67767 40033 **

Second Rooi . 25968 50959 74032

Predictors: X, ¥y, Xg (Rows and Columns)

First Poot .54326 73706 . 25558 **
Second Root 30626 .55341 556957 **
Third Root .19340 43977 80660 **

** significant at .01 level

Corresponding to each canonical root are the weights to create the canonical

variables; they can be found (for the Y side only) in Table 6.
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_ Table 6
Canonical Weights for Canonical Variates from Table 5

Predictors: Xy - XS

Y-Weights
Variate 1 2 3
Z, -.44831 -, 20691 .73004
Z, -.85876 -.05983 -.68227
14 . 40964 -1.02427 . 23006
Predictor: Xg
Variate
24 . 16443 ~.45391 .85726
Predictors: X9, Xg
Z .62240 .65303 .10464
Ze -.62870 .69649 .59305
Predictors: Xg, X9, Xg
2y ¥ -, 46410 - . 62886 . 32592
g .00110 -.58279 -.91247
Zg . 94386 -.60035 .33548

If Z] - Zg are used as criteria in a multiple linear regression
layout, then when X, - Xg are used as predictors of Z,, R = 86535 =0
similar findings will occur with the Z variates that correspond to the
X predictors used in the original canonical analysis. If the trace
(sum of the squared canonical correlations) of the four models are found
Tr (Full) = ,86535 + ,58716 + .35345 = 1.80596
Tr (Rows)} = ,32400

Tr (Columns) = .44924 + .25968 = ,71892

Q 14




Tr (Rows and Columns) = .54326 + .30626 + .19340 = 1.04292 -
also,

Tr (Rows) + Tr {Columns) = Tr (Rows & Columns) .
The interaction can be defined as

Tr {Full) - Tr {Rows & Columns) = 1.80596 - 1.04292 = .76304.
The sum of the squared canonical correlations can be hroken down into
the separate Ri values through the use of orthogonal coefficients, as
there are an equal number of entries in each of the six cells. If five

new variables are defined as follows

g = 1 if a member of Row 1, -1 if a member of Row 2;
X10 = 1 if a member of Column 1, O if a member of Column 2, -1 if
a member of Column 3;
XI] = 1 if a membeyr of either Column 1 or Column 3, -2 if a member

of Column 23
x]2 = XQ°x]0 and
13 = X9°Xn .

Using Xg as the predictor of the three criteria, RE = ,32400, the same

result as found in Table 6 for rows. When Xjg9 and Xj7 are used as predictors,
22
“1
columns, If Xg, xlO’ X]], X]Z and-X]3 are used as predictors, RE] = ,86535,

RE = 58716 and RE = ,35345, the same results as found for the full

R® = ,45024 and RE = .25968, the same result as found in Table 5 for
2

model. If X4, Xyq and X]] were used as predictors, the results would

duplicate those found by usina XG’ X7 and X4 as predictors. If X]2

and X]3 are used as predictors, the following results are found:

2

R.. = .42305 RC] = ,65042 A

. .38079, p <.01; and

1

14

RZ =.33999 R: = .58309 A, = .66001, p <.0l.

€2 2
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Finding the interaction directly through the use of orthogonal polynomials
appear< to be limited to those cases in which the cell entries are either

equal or proportional. The last problem to be discussed considers the

multivariate disproportional case.

A Two-UWay Disproportionate Multivariate Analysis

An analysis similar to the one employed for the two-way equal cell
case shown in Table 4 can be considered. 1In fact, the same 36 "subjects"
are reconsidered, after deliberately creating a disproportionate situation.
The first 3 subjects are, for the disproportionate case, in cell 1 (Row 1 and
Column 1); the next four subjects are in Cell 2 (Row 1 and Column 2);
the next 10 scores are in Cell 3 (Row ) and Column 3; the next 9 subjects
are in Cell 4 (Row 2 and Column 1); the next 7 subjects are in Cell 5
(Row 2 and Column 2); finally, the last 3 subjects are in Cell 6 (Row 2 and
Column 3). The number of entries in each cell for the 2X3 layout is as

given in Table 7.

Table 7

Frequencies for 2X3 Multivariate Analysis with
Disproportionate Cells

Column 1 Column 2 Column 3
Row 1 3 4 10
Row 2 9 7 3

The design matrix is as before with X] - X8 having the same meaning.

The results of the canonical analysis are found in Table 8.

16 |
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Table 8

Eigenvalues, Canonical Correlations and Wilks Lambda for
Two-¥ay Disproportionate Cell Freauencies

Predictors: Xq, X5, X5, Xq, Xe (Full todel)

Rg. Canonical R A

;

First Root .61960 78715 . 22565 %*
Second Root .31954 .5€528 .59320*
Third Root . 12824 .368N 87176
Predictors: XG {Rows }

First Root 27262 52213 .72738*

Predictors: X7, X8 (Columns )

First Root .21675 46557 176287
Second Root . 02601 16127 . 97399

Predictors: Xg, X7, Xg (Rows and Columns)

First Root . 34802 58993 .49760%*
Second Root 21674 .46555 . 76322
Third Root . 02559 » 15998 . 97441

*significant at ,05 level
**significant at .01 Tevel

Interpretation of the data in Table 8 may be made, but the lack of
consensus on interpreting univariate disproportionate situations will only

be increased as the situation becomes multivariate. Many authors prefer

the "fitting constants” solution {see Anderson & Bancroft, 1952, OQverall
and Spiegel, 1969, and Rao, 1966). Cohen (1968) describes a partioning
solution called the hierarchical model. An unadjusted main effects

solution is shown in Williams (1972). Searle {1971) and Appelbaum and

Cramer (1974) prefer a multiple step decision making process that combines

17




the fitting constants solution and the unadjusted main effects solution.
The multivariate situation is complicated by the existence Of several
criteria for judging the significance of an experiment. The approach taken
here is to describe both the fitting constants solution and the unad-
justed main effects solution; those who prefer the decision rules given

in Searle could easily employ them with the information given.

The Unadjusted Main Effects Solution

The unadjusted main effects solution follows in a manner very similar
to the one presented in regard to the equal cell case. In fact, the data
in Table 8 can be interpreted {except for the interaction) as being
an unadjusted main effects solution. The interaction can be found as
the difference between the trace of the full model and the trace Of the

rows and columns model:

(.61960 + ,31954 + .12824) -~ (.34802 + ,21674 + .02558) = ,47703.
The only available method to test the interaction hypothesis is Pillai's

trace criterion; p < .08.

A Multivariate Analog to the Fitting Constants Solution

Because of the disproportionality of the data, the direct calculation
of the RE terms is precluded; the traces can be found in a manner similar
to finding the trace for the interaction, however. The trace for rows
{(after removing the effect for columns) can be found as the trace for rows

and columns minus the trace for columns:
(.34802 + ,21674 + .02559) - (.21675 + .02601) = .34759, p <.01.

The trace for columns can be found as the trace for rows and columns minus

the trace for rows:

(.34802 + ,21674 + ,02659) - (.27262) = 31773, p >.065.

The interaction is the same as given for the unadjusted main effects model.

18’




Discussion

While Harris's argument for the use of the greatest characteristic root
criterion as a measure for multivariate analysis is noteworthy, the trace
criterion (zei) is particularly useful with disproportionate cell frequencies.
If the focus of the greatest characteristic root and the corresponding canonical
variates are made on the full model (cell model, or full rank model) then
either criterion is applicable, and perhaps Harris's suggestion is appropriate.
If the intent is on producing a two-way MANOVA with disproportionate cells
and there is interest in the row, column and interactions effects, then
Pitlai's trace criterion is most appropriate. Even where there is
interest in the usual effects, the most Tikely canonical variate to be
of interest is the variate associate with the greatest characteristic root
from the full model.

Four different multivariate applications have been shown herein.
Other applications (multivariate trend analysis, multivariate analysis of
covariance and other analogs to univariate designs) are possible through a
canonical approach. Also, the univariate analyses that can be performed
by multiple linear regression can be conceptualized as a canonical probiem.
That the canonical analyses and muitiple regression analyses would yield
quite similar results is not quite the same as saying that the analyses
are identical for the univariate situation. As was shown in Hotelling's
T2 test, some differences in weighting coefficients occur. The overall

results (Rz's) are identical, however.
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