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Canonical Analysis as a Generalized Regression T dmigue for
Multivariate Analysis

John D. Williams
The University of North Dakota

The use of characteristic coding (dummy coding) is made in showing
solutions to four multivariate problems using canonical analysis. The
canonical variates ran ue analyzed by the use of multiple linear regression.
When the canonical variates are used as criteria in a multiple linear
regression, the R4 values are equal to 0, where 0 is the squared canonical
correlation coefficient. Several different methods exist for testing
multivariate hypotheses. Where the interest is in a two-way disproportionate
multivariate analysis of variance, the trace criterion (Da.) seems particularly

1
applicable.

Characteristic (dummy) coding has been used in multiple linear regression

to analyze univariate analysis of variance problems; the same coding scheme

can be extended to multiple criteria. While the resulting data are analyzed

through canonical analysis, the design matrix conforms to the usual multiple

linear regression design matrices. Thus, the utilization of multiple

criteria can be pursued in a logical sequence without necessitating cone

tinuously changing the entire terminology.

In the present paper, four multivariate research designs are examined

in a canonical analysis framework: a multivariate two-group situation,

sometimes referred to as Hotelling's T
2

test; a multivariate multiple group

situation; a multivariate twoway analysis; and a multivariate two-way

analysis with disproportionate cell frequencies.

Tests of Significance in Canonical Analysis

In multivariate analysis, several different tests of significance

are used. Typically, the multivariate analysis of variance has focused

on solving the following equation for Ai:
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whereas canonical analysis has focused on solving

IS12S-22521 t6111=

where $-= Rc2 and-01 = Ai ; also,

1 + Ai

511, 512, S21 and 522 are variance - covariance matrices.

Roy's (1957) largest root criterion tests the significance of the largest

characteristic root. Hotelling's (1951) trace criterion tests the overall

multivariate hypotheses for all dimensions simultaneously and is given

by trace = ni. Tables for testing either of these two tests have been

given by Pillai (1960). A trace criterion using Pillai's tables wherein

the trace is E$ is useful in testing the significance of the overall

set of canonical correlations and is analogous to Hotelling's trace

criterion.

Wilks A also provides a test of the overall hypothesis. All

necessary tables for testing these hypotheses can be found in Timm (1975).

Typically, in canonical analysis simultaneous tests of each characteristic

root using Roy's approach is used. On the other hand, multivariate analysis

of variance programs usually employ an overall test (either the trace

criterion or A). Harris (1975) has argued that the use of the largest root

criterion is more sensible in that if either the trace criterion or A

shows significance but the largest root criterion does not, then the

differences among the groups cannot be pinpointed by any single linear

combination of variables. Harris would see the use of the overall hypotheses

as being more useful in only those cases where Ai and A2 are close to the

same value.



A Multivariate Two'Group Situation (Motelling's T2 Test)

The simplest multivariate analysis of variance situation is the multi-

variate analog to the usual t test; here, several criteria are observed for

two groups and an overall test for group d4fferences can be made. As an

example, suppose four criteria (Y1, Y2, Y3 and Y4) are observed for two

groups as indicated in Table 1.

Table 1

Four Criteria Y1, Y2, Y3, and Y

for the Multivariate Two-Group Situation

Y
1

Group 1
Y
2

Y
3

Y4 Y
1

Group 2

Y
2

Y
3

20 17 17 25 15 26 13

22 19 16 28 19 25 15

24 14 18 23 23 21 17

26 16 17 17 24 17 22
28
30

18

20
16

15

29
32-

25
266

19

144
16

-
8

32 22 14 35 27 22 14

34 16 16 42 28 20 . 18

36 9 18 38 30 17 21

Y

16

15

17

18

22

-n-
24

20
18

To accomplish a canonical analysis with the data in Table 1, it Is

necessary to define a first-set and a second-set. For convenience, the

criteria will constitute the first set and the predictors (group membership

variables) will constitute the second set. Actually, only a single group

membership variable is necessary:

Xi = 1 if a member of Group One; 0 otherwise.

Table 2 contains the criteria and design matrix necessary to accomplish

this analysis.
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Table 2

Criteria and Design Matrix
for a Two-Group Multivariate Analysis

Y
1

Y
2

Y
3

Y
4

X
1

20 17 17 25 1

22 19 16 28 1

24 14 18 23. 1

26 16 17 17 1

28 18 16 29 1

30 20 15 32 1

32 22 14 35 1

34 16 16 42 1

36 9 18 38 1

15 26 13 16 0
19 25 15 15 0

23 21 17 17 0

24 17 22 18 0

25 19 16 22 0

26 14 8 23 0

27 22 14 24 0

28 20 18 20 0

30 17 21 18 0

Using canonical analysis to find the relationship between the left

set and the right set, the following results are obtained:

6-= .60066; canonical Rc .1F. .77502;

Wilk's A = .39934, with p < .01. Also, the trace = .60066; in every
case, p < .01.

The coefficients for the first set are

First root

Y1
-.65403

Y
2

-.32522 -

Y3 .24849

Y
4

1.26372.

The coefficient for the Xi variable is of course 1.000.

Also,

= 26.0556, syl = 5.3189;

7.2 = 18.4444, 5
y2

4.0905;
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V.3 = 16.1667, sy = 3.0534; and
3

74 . 24.5556, sy4 = 7.9648.

If a new variable, Y5, is formed as

Y
5
= -.65403(Y, - .32522(Y2 V2)/sy2 + .24849(Y3 - Vs

3 Y3

+ 1.26372(Y. - vs
it 4 Y4,

then a regression equation can be formed as

Y5 = be b1X1 + el. (1)

If a regression is completed with the formulation in equation 1, then

R = .77502,

R2 = .60066, and

1-R2 = .39934.

This ifif0fmation is identical to that' found irthe use of the canonical

analysis; the relationship is, for the two-group situation:

R .1rir = Rc;

R
2

.0-and A= 1-R
2

.

The use of equation 1 shows that a composite variable, Y5, is a linear composite

of variables Y1, Y2, Y3 and Y4 such that the relationship with Xi remains

maximized.

Because there is only one group membership variable involved, an in-

teresting reversal of the roles of the criteria and predictor can be made:

Xi = be 4. blY1 b2Y2 b3Y3 b4Y4 e2. (2)
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If equation 2.is utilized in a multiple regression frzlework,

R . .77502, R2 = .60066, 1-R2 = .39934 and F = 4.888.

The first three results were obtained in the prior two analyses.

There are some differences between the two analyses, however. For

the use of equation 2, bi b4 are different from the coefficients for

the first set given previously; this, of course, was to be accepted. The

beta coefficients also differ from the coefficients given earlier;

01 2 -.50688,

02 = -.25206,

03 . .19259,

04 . .97940.

If some thought is given to it, this difference comes as no surprise

either. In a canonical analysis, each canonical variate has a mean of

zero and standard deviation of one. In a regression analysis, the beta

coefficients are such that for every predictor variable, there is aiean Of

zero and standard deviation of one. The difference is that in canonical

analysis, the new variate is created with mean zero and standard deviation

of one.

Finally if a multivariate analysis of variance pregram is executed,

A = .39934 and F = 4.888, results that were obtained earlier. Thtis, if

the interest is in comparing two groups on several criteria simultaneously,

several different strategies allow equivalent.solutions. In this special

case, the execution of equation 2 (using the group membership variable

as the criterion and the Y variables as predictors) is perhaps the

easiest solution to employ. The use of canonical analysis and subsequent

formation of a composite variable would also seem to be of some value.



A Multivariate Multiple Group Situation

If several groups are involved in the analysis with multiple criteria,

then the usual one-way multivariate analysis of variance is often employed.

As an example of such a situation, suppose three criteria are available

. for three grown of subjects. Such a situation is encountered in Table 3.

Table 3

Criteria and Design Matrix for Multivariate Analysis
of Variance Through Regression

Y1 Y
2

Y
3

X1 X
2

17 23 1 1 0

22 28 .2 1 0
14 22 3 1 0

18 27 .4 1 0
29 25 .5 1 0

22 32 6 0 1

24 34 8 0 1

26 36 10 0 1

28 42 12 0 1

25 11 34 0. 1, ..

26 23 15 0 0

29 32 16 0 P
32 29 17 0 0

35 42 18 0 n

33 23 19 0 0

Two group. membership variables are used:

X
1
= 1 if a member of Group 1; 0 otherwise, and

X2 = 1 if a member of Group 2; 0 otherwise.

Using the data in Table 3, a canonical analysis is performed with

the Y scores (criteria) as the first set and the X variables (predictors)

as the second set. Several useful items are typically available from a

canonical analysis. Either the canonical roots or canonical correlations

(or both) will be available. For the data in Table 3, 411 = .89286, and

0.2 ..43602. The first canonical correlation islific= .94491, and the
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second canonical correlation islik . .66032, The weights for the Y

side and X side are:

Y side weights 1 2 3

1 .09556 -,01807 -1.07322

2 -.79902 1.10739 .27948

X side weights 1 2

1 1.15457 .56235
2 ,01725 1,00851

It is interesting to form variables to correspond to those suggested by

the Y side and X side weights and investigate these transformed variables using

ordinary.multiple regression. To utilize the weights, it is first necessary

to transform all the data in Table 1 into z scores. As X1 = .3333,

= .3333, Y1 = 25.3333, Y2 = 29.9333, Y3 = 10.0, sx1 = .4880, sx2 = .4880,

s = 6.0198, s = 6.5407 and sv = 6.2678, the transformation equations
Yl Y2
are:

7
1
= E09556(Y1-25.3333l6.01981 E.01807(Y2-29.9333)/6.540

E-1.:07322(-Y3-101/6:26781

72 = E-.79902(Y1-25.3333)/6.0198 [1.10739(Y2-29.9333)/6.54073

[.27938(Y3-10.)/6.2678]

Z3 . li.15457(X1-.3333)/.4888 E56235(X2-.3333)/.488

74 .[01725(X1-.3333)/.4880.] b.00851(X2-.3333)/.4880]

Using Z1 as the criterion and Xi and Xi as predictors, R2 = .89286,

R = .94491, identically the same results as found for the first canonical

root, Similarly, using Z2 as the criterion and Xi and X2 as predictors,

R2 = .43602 and R . .66032. If Y1, Y2, and Y3 are used as predictors of

23 and tnen Z4, again the canonical correlations appear as multiple correlations.



.

Also the following correlations are of interest:

rZ
1

z
2
= 0

rz1z3 = .94491

r = 0
Zizil

r = 0
2223

r = .66032
Z2Z4

y4 = 0

If a traditional multivariate analysis of variance is performed, the

test for H
2

(overall difference among all groups) yields A = .06042.

While some canonical printouts (such as Cooley and Lohnes, 1971) include

this value as part of the output, A can be found as Hk. (1 -0. ) where the
1 i .

are the canonical roots. For this particular data, A = (1-.89286)(1-.43602).

.06042. Because*1 : = R.
2

, this result can be written as A = Hik (1-Ri2 ). The

trace criterion yields Tr = .89286 + .43602 = 1.2888.

Also, from the multivariate analysis printout, an F = 10.227 (p. <.01)

tests the overall group differences among the three groups.

The use of the canonical variates found through the use of the canonical

vectors should Present an attractive alternative to thosi researchers who

wish to complete multiple comparisons after the rejection of the overall

null hypothesis. One suggestion, made by Hummel and Sligo (1971) is to

compare the groups on univariate tests on each variable after the rejection

of the overall null hypothesis. An alternative is to use the first

canonical variate for the criteria set and run an analysis among the groups

with this (and subsequent) canonical variates from the criteria set. Scheffe's

test would seem appropriate as a multiple comparison method.
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A Two-Way Multivariate Situation

The two-way multivariate analysis of variance is not quite as available

as the one-way multivariate analysis of variance, but several programs

are available, including Cramer (1974), Finn (1974), Ondrack (1974), and

Cooley and Lohnes (1971). Suppose three criteria are measured in a 2X3

design. The design matrix is given in Table 4.

Table 4

Criteria and Design Matrix For Two-Way
Analysis of Variance Through Regression

Yi Y2 Y3 Xi X2 X3 X4 X5 X6 X7 X8

13 18 16 1 0 0 0 0 1 1 0

14 19 17 1 0 0 0 0 1 1 0

15 18 22 1 0 0 0 0 1 1 0

16 15 27 1 0 0 0 0 1 1 0

14 19 20 1 0 0 0 0 1 1 0
17 18 23 1 0 0 0 0 1 1 0
15 9 13 0 1 0 0 0 1 0 1

17 13 21 0 1 0 0 0 1 0 1

16 16 12 0 1 0 0 0 1 0 1

17 18 22 0 1 0 0 0 1 0 1

14 13 17 0 1 0 O.- 0 1- V "1--

15 11 18 0 1 0 0 0 1 0 1

16 17 27 0 0 1 0 0 1 0 0

16 14 21 0 0 1 0 0 1 0 0

17 16 23 0 0 1 0 0 1 0 0
18 15 24 0 0 1 0 0 1 0 0
20 13 22 0 0 1 0 0 1 0 0
22 9 18 0 0 1 0 0 1 0 0
17 15 16 0 0 0 1 0 0 1 0
18 17 15 0 0 0 1 0 0 1 0
19 19 14 0 0 0 1 0 0 1 0
20 21 14 0 0 0 1 0 0 1 0
21 23 18 0 0 0 1 0 0 1 0
22 25 19 0 0 0 1 0 0 1 0
13 17 22 0 0 0 0 1 0 0 1

15 13 22 0 0 0 0 1 0 0 1

13 16 21 0 0 0 0 1 0 0 1

12 12 17 0 0 0 0 1 0 0 1

11 11 19 0 0 0 0 1 0 0 1

11 17 18 0 0 0 0 1 0 0 1

17 15 9 0 0 0 0 0 0 0 0
18 17 8 0 0 0 0 0 0 0 0
20 15 7 0 0 0 0 0 0 0 0
19 17 6 0 0 0 0 0 0 0 0
17 19 5 0 0 0 0 0 0 0 0
16 22 4 0 0 0 0 0 0 C 0



where
X
1

1 for a member of Row 1 and Column 1, 0 otherwise;

X
2

. 1 for a member of Row 1 and Column 2, 0 otherwise;

X3 = 1 for a member of Row 1 and Column 3, 0 otherwise;

X4 . I for a member of Row 2 and Column I, 0 otherwise;

X6 . 1 for a member of Row 2 and Column 2, 0 otherwise;

X
6
. 1 for a member of Row 1, 0 otherwise;

X
7

= 1 for a member of Column 1, 0 otherwise and

X
8

= 1 for a member of Column 2, 0 otherwise,

An analysis of the data in Table 5 is necessarily complex. Four

sets of canonical relationships are possible; the Y1, Y2 and Y3 variables

can be related to Xi - X5, then X6 and X7, then X8 and finally X6, X7 and X8.

In the univariate situation these relationships correspond to the full

model, the rows, the columns and the rows and columns as predictors.

Table 5 contains the various canonical relationships from these four

different sets of predictors.

12



Table 5

Eigenvalues, Canonical Correlations and Wilks Lambda For
Two-Way Multivariate Analysis of Variance by Regression

Preditors:X1' X2, X3, X4, X5 (Full Hodel)

R2, . Canonical R A

First Root .86535' .93024 .03594 **

Second Root .58716 .76626 .26692 **

Third Root .35345 .59452 .64655 **

Predictors: X6 (Rows)

First Root .32400 .56921 .65600 **

Predictors: X
7'

X
8

(Columns)

First Root .45924 .67767 .40033 **

Second Root .25968 .50959 .74032

Predictors: X6, X7, X8 (Rows and Columns)

First Root .54326 .73706 .25558 **

Second Root .30626 .55341 .55957 **

Third Root .19340 .43977 .80660 **

** significant at .01 level

Corresponding to each canonical root are the weights to create the canonical

variables; they can be found (for the Y side only) in Table 6.



Table 6

Canonical Weights for Canonical Variates from Table 5

Predictors:

Variate

XI - Xs

Y-Weights

1 2 3

2
1

-.44831 -.20691 .73004

2
2

-.85876 -.05983 -.68227

2
3

.40964 -1.02427 -.23006

Predictor: X6

Variate
24 .16443 -.45391 .85726

Predictors: X7, X8

25 .62240 .65303 .10464

26 -.62870 .69649 .59305

Predictors: X6, X7, X8

27
.

-.46410 -.62886 .32592

28 .00110 -.58279 -.91247

29 .94386 -.60035 .33548

If Z1 -
9

are used as criteria in a multiple linear regression .

layout, then when Xi - X6 are used as predictors of LI, R2 = .86535 .4.01;

similar findings will occur with the Z variates that correspond to the

X predictors used in the original canonical analysis. If the trace

(sum of the squared canonical correlations) of the four models are found

Tr (Full) . .86535 + .58716 .35345 = 1.80596

Tr (Rows) = .32400

Tr (Columns) . .44924 + .25968 .4 .71892

14



Tr (Rows and Columns) . .54326 + .30626 + .19340 = 1.04292-

also,

Tr (Rows) + Tr (Columns) = Tr (Rows & Columns)

The interaction can be defined as

Tr (Full) - Tr (Rows & Columns) = 1.80596 - 1.04292 = .76304.

The sum of the squared canonical correlations can be broken down into

the separate R
c

2
values through the use of orthogonal coefficients, as

there are an equal number of entries in each of the six cells. If five

new variables are defined as follows

X9 = 1 if a member of Row 1,-1 if a member of Row 2;

X10 = 1 if a member of Column 1, 0 if a member of Column 2, -1 if

a member of Column a;

X
11

= 1 if a member of either Column 1 or Column 3, -2 if a member

of Column 2;

X12 . X9(10 and

X13 2 X011

Using X9 as the predictor of the three criteria, Rc
2

= .32400, the same

result as found in Table 6 for rows. When X10 and X11 are used as predictors,

R
cl

2
.45924 and R2 = .25968, the same result as found in Table 5 for

c2

columns. If X9, X10, X11, X12 and.X18 are used as predictors, R2c . .86535,

1
R
c

2
.58716 and R

2

c3
= .35345, the same results as found for the full

2

model. If X9, X
10

and X
11

were used as predictors, the results would

duplicate those found by using X6, X7 and X8 as predictors.
If X12

and X
13

are used as predictors, the f011owing results are found:

2

Rci

R
C2

2
=

.42305

.33999

Rci . .65042

c2
= .58309

Al = .38079,

A2 = .66001,

p k.01;

p < .01.

and



Finding the interaction directly through the use of orthogonal polynomials

appears to be limited to those cases in which the cell entries are either

equal or proportional. The last problem to be discussed considers the

multivariate disproportional case.

A Two-Way Disproportionate Multivariate Analysis

An analysis similar to the one employed for the two-way equal cell

case shown in Table 4 can be considered. In fact, the same 36 "subjects"

are reconsidered, after deliberately creating a disproportionate situation.

The first 3 subjects are, for the disproportionate case, in cell 1 (Row 1 and

Column 1); the next four subjects are in Cell 2 (Row 1 and Column 2);

the next 10 scores are in Cell 3 (Row 1 and Column 3; the next 9 subjects

are in Cell 4 (Row 2 and Column 1); the next 7 subjects are in Cell 5

.(Row 2 and Column 2); finally, the last 3 subjects are in Cell 6 (Row 2 and

Column 3). The number of entries in each cell for the 2X3 layout is as

given in Table 7.

Table 7

Frequencies for 2X3 Multivariate Analysis with
Disproportionate Cells

Column 1 Column 2 Column 3
Row 1 3 4 10

Row 2 9 7 3

The design matrix is as before with Xi - X8 having the same meaning.

The results of the canonical analysis are found in Table 8.



Table 8

Eigenvalues, Canonical Correlations and bilks Lambda for
Two-Way Disproportionate Cell Frequencies

Predictors:X1, X2' X3, X4, X5X" (Full Model)

R2
ci

First Root .61960

Second Root .31954
Third Root .12824

Predictors: (Rows)

First Root .27262

Canonical R

.78715

.56528

.35811

.52213

A

.22565**

.59320*

.87176

.72738*

Predictors: X7, X
8

(Columns)

First Root .21675 .46557 :76287

Second Root .02601 .16127 .97399

Predictors: X6, X7, X
8

(Rows and Columns)

First Root .34802 .58993 .49760**

Second Root .21674 ..46555 .76322

Third Root .02559 .15998 .97441

*significant at .05 level
**significant at .01 level

Interpretation of the data in Table 8 may be made, but the lack of

consensus on interpreting univariate disproportionate situations will only

be increased as the situation becomes multivariate. Many authors prefer

the "fitting constants" solution (see Anderson & Bancroft, 1952, Overall

and Spiegel, 1969, and Rao, 1965). Cohen (1968) describes a partioning

solution called the hierarchical model. An unadjusted main effects

solutfon is shown in Williams (1972). Searle (1971) and Appelbaum and

Cramer (1974) prefer a multiple step decision making process that combines

17



the fitting constants solution and the unadjusted main effects solution.

The multivariate situation is complicated by the existence of several

criteria for judging the significance of an experiment. The approach taken

here is to describe both the fitting constants solution and the unad-

justed main effects solution; those who prefer the decision rules given

in Searle could easily employ them with the information given.

The Unadjusted Main Effects Solution

The unadjusted main effects solution follows in a manner very similar

to the one presented in regard to the equal cell case. In fact, the data

in Table 8 can be interpreted (except for the interaction) as being

an unadjusted main effects solution. The interaction can be found as

the difference between the trace of the full model and the trace of the

rows and columns model:

(.61960 + .31954 + .12824) - (.34802 + .21674 + .02559) = .47703.

The only available method to test the interaction hypothesis is Pillai's

trace criterion; p < .05.

A hultivariate Analog to the Fitting Constants Solution

Because of the disproportionality of the data, the direct calculation

of the R
c

2 terms is precluded; the traces can be found in a manner similar

to finding the trace for the interaction, however. The trace for rows

(after removing the effect for columns) can be found as the trace for rows

and columns minus the trace for columns:

(.34802 + .21674 + .02559) - (.21675 + .02601) = .34759, p <.01.

The trace for columns can be found as the trace for rows and columns minus

the trace for rows:

(.34802 + .21674 + .02559) - (.27262) = .31773, p >.05.

The interaction is the same as given for the unadjusted main effects model.
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Discussion

While Harris's argument for the use of the greatest characteristic root

criterion as a measure for multivariate analysis is noteworthy, the trace

criterion MO is particularly useful with disproportionate cell frequencies.

If the focus of the greatest characteristic root and the corresponding canonical

variates are made on the full model (cell model, or full rank model) then

either criterion is applicable, and perhaps Harris's suggestion is appropriate.

If the intent is on producing a two-way MANOVA with disproportionate cells

and there is interest in the row, column and interactions effects, then

Pillai's trace criterion is most appropriate. Even where there is

interest in the usual effects, the most likely canonical variate to be

of interest is the variate associate with the greatest characteristic root

from the full model.

Four different multivariate applications have been shown herein.

Other applications (multivariate trend analysis, multivariate analysis of

covariance and other analogs to univariate designs) are possible through a

canonical approach. Also, the univariate analyses that can be performed

by multiple linear regression can be conceptualized as a canonical problem.

That the canonical analyses and multiple regression analyses would yield

quite similar results is not quite the same as saying that the analyses

are identical for the univariate situation. As was shown in Hotelling's

T
2
test, some differences in weighting coefficients occur. The overall

results (R2' s) are identical, however.
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