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AN INTRODUCTION TO SPATIAL

ALLOCATION ANALYSIS

PREFATORY NOTE

In the following report use is made of some elementary mathematics, if only in the sense that certain of
the expository material contained in the report is presented in terms of formal symbols. This may cause
consternation to some students. However, there is in this respect no real justification for any diffidence on
the part of the student. Every effort has been made to ensure that this material is fully self-explanatory and
self-contained. Moreover, those mathematical processes which have been employed are reduced to their
most basic and simple form. Any conscientious student should therefore be fully capable of pursuing the
main argument which is developed in succeeding pages. For the rest, some knowledge of elementary
economics is assumed, as well as familiarity with the most common conventions of mathematical notation.
In addition, studentS"ard r ongly encouraged to work with pencil and paper through the exemplary
problem which is discussed Section II.

Several individuals have read and criticized various early drafts of this report. In particular, thanks are
Cie to Drs. L. J. King, F. Kenneth Hare, and Ross MacKinnon for their many helpful suggestions. Most of
these suggestions have been incorporated in some way in the main text, and, as a consequence, the report
has been much strengthened and improved.

A. J. S.



I. GENERAL CHARACTERISTICS OF SPATIAL
ALLOCATION MODELS

Introduction

The term spatial allocation analysis is here defined to
mean the study of the distrily1!nn of economic flows and
transactions over geographical &lace. Here, attention is
focussed on those partir flfAvs and transactions which
can be identified t ,d'icing simple patterns of trade in
specified economic comnodities. These patterns are thus
assumed to posses., a concrete character and to be suscep-
tible to cartographic representation. In addition, considera-
tion is largely limited in this report to those special kinds of
patterns whose geographical conformation is determined by
the operation of various sorts of optimizing processes. The
full meaning of this latter term will become apparent in due
course.

Spatial allocation processes are of central importance in
economic geography, spatial economics, and regional
science. Their operation may be discerned in a great variety
of different kinds of transactions which occur over geo-
graphical space, and they are of particular relevance to the
study not only of simple commodity flow systems but also
of those production, transformation, and consumption
processes which are usually associated with such systems. In
addition, spatial allocation processes are readily amenable
to generalization, so that they can be applied to an
exceptionally wide assortment and range of problems.

The account which follows represents a general intro-
duction to spatial allocation analysis and to its applications
in geographical enquiry. In particular, the account largely
proceeds by examination of a series of models of spatial
allocation systems, where the term model signifies simply
an idealized representation. This account moreover is
especially concerned with the basic properties of a funda-
mental spatial allocation model designated the transpor-
tation problem, and with the various major extensions of
this particular problem.

This transportation problem is an especially versatile
mechanism. In its most simple and essential form it involves
basically the definition of a simple economic system
composed of the foilowing ingredients: a) A set of geo-
graphically distinct points or regions which produce some

1

11

commodity, b) a set of geographically distinct points or
regions which consume the same commodity, and c) a given
unit cost for transportation of the commodity from any
producer to any consumer. The transportation model then
animates this system by applying to it a kind of vital
principle which optimizes the entire system. In short, the
model designates an assignment of flows of the commodity
from producers to consumers so that the total costs of
transportation within the system are minimized. In doing
this the constraints are observed that no supplier's total
productive capacity must be exceeded and that all con-
sumers' demands must be met. The generalizations of this
kind of model are now discernible, and they extend into a
series of models of increasing complexity involving trans-
shipment processes, transformation processes, multi-
commodity flows, and the like.

Basic Assumptions for Spatial Allocation
Analysis

A variety of basic assumptions must usually be satisfied
before the transportation model can be said to be in any
sense a satisfactory model of some economic system,
however simple that system might be. These assumptions
relate to the nature of the operating principles which
govern the economic system represented by the model.
Such principles are of two main types, and they correspond
on the one hand to a system of complete centralization of
decision-making, and on the other to complete decentraliza-
tion of decision-making.

In the first place, then, the transportation model is an
appropriate tool of analysis where the economic system
under consideration is characterized by pure centralized
control (or monopoly). Such a system might be controlled
by a planning agency concerned with public or social
benefits, or by a private organization concerned with purely
private profit. In any case, it is in the nature of such
systems to attempt to seek out cost minimizing solutions,
(equivalent to benefit maximizing solutions), just as is done
by the transportation model.

In the second place, the model is appropriate for the



analysis of systems characterized by perfect competition in
the classical sense. The reasons for this are fairly complex,
and discussion of these reasons forms the major substance
of Section III of this report. For the moment the assertion
must be taken on faith. Nevertheless, it is an easy matter to
specify the conditions for a regime of perfect competition
in the context of the transportation problem. These
conditions are: a) There must be many suppliers of the
given commodity so that no supplier can gain control of the
market, b) similarly, there must be many consumers, c)
information about the market must be perfectly and freely
available to all, d) sellers must be perfect profit maximizers,
e) buyers must always buy at the lowest available price, and
lastly f) the commodity in question must be sufficiently
homogeneous that (price considerations apart) consumers
are indifferent as to their source of supply.

These two major types of principles governing the
validity and applicability of the transportation model in
any given situation are in practice fairly general. Needless to
say they are rarely completely satisfied in actuality.
However, most real systems are sufficiently close to one or
other of these two sets of conditions to make the
transportation model reasonably valid and workable with
respect to those systems. Only the most extreme cases of
the development of special interest groups (as in inter-
national trade or oligopoly) would seem to be entirely
resistant to analysis by the method of the transportation
model. In any case, the model is a purely normative
mechanism. That is, the model seeks not so much to
describe real systems, as to represent an optimized ideal
state to which real systems (whether centralized or decen-
tralized) aspire. To the extent that any real system is less
than purely monopolistically centralized or less than purely
competitively decentralized, then to that extent may the
system be expected to depart from the normative structure
suggested by the transportation model.

The Transportation Model: Symbolic Presentation

Definition of System Elements

Suppose that there exists an economic system involving
the production and consumption of a single homogeneous
good as described above. Let there be n sources of this good,
with the individual sources designated i = 1, 2, ..., n. Let
there: be m demand points or destinations for the same
good, with the individual destinations designated j = 1, 2,

m. Now, the commodity will flow from sources to
destinations. Let the magnitude of total flow from i to j be
designated xii. In addition let the unit cost of transportation
of the commodity from i to j be designated tij. Therefore,
the total transport cost incurred by the flow xij will be

2

tijxij. Additionally, let Si denote the supply capacity of the
ith source, and let Dj denote the total demand at the jth
destination. These capacity and demand values are, for
present purposes, taken to be perfectly inelastic; that is,
they will never vary under any circumstance (such as a
change in prices or, costs).

Bearing these assumptions and definitions in mind, it is
now possible to specify in a rigorous manner the general
structure of the transportation model.

Basic Structures

Recall that the basic operating principle of the trans-
portation model is to minimize the total costs of com-
modity flow. This principle can be written symbolically as
an objectii;e function as follows:

Minimize:
n m

1) Z = E Etkpci;
i=i j =1

This objective function is now subject to a set of
constraints, as follows:

2)
i=i

which states that the total shipments out of the ith source
must always be less than or equal to the supply capacity of
that source; and

3) Exii=D;

which states that total shipments into the jth destination
must exactly equal the total demand at that destination. An
additional constraint, or side-condition, also applies,
namely,

4) xij >0

for it is clearly not permissible to specify the magnitude of
any flow as being equal to a negative number. The
expressions (1)(4) collectively are designated a program.
More specifically they are also designated a linear program
since the algebraic relations within each expression are all
perfectly linear. This particular linear program is of course
also the transportation problem.

Note that the program contained in the expressions
(1)(4) is written in extremely compact notation. The
system can be re-expressed by writing out each supply and
demand condition in full and this makes explicit the entire
structure of the program. Thus, for simplicity, assume that
n = 4 and that m = 5. For such a system a complete
program may be written out as in Table 1. All variables are
appropriately labelled along the top row of Table 1, and all



Table 1. Matrix representation of the transportation problem

Variablesxxxxxxxxxxxxxxxxxxxx
11 12 13 14 15 21 22. 23 24 25 31 32 33 34 35 41 42 43 44 45
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Transport
costs
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constraint constants are shown in the right-hand stub of the
Table. Then, the full system is expressed in matrix form in
the main body of the Table, where the occurrence of the
digit, one, in any column or row indicates that the
corresponding variable occurs in the corresponding con-
straint. Any column-row intersection in the Table which is
left blink is considered to be occupied by a zero.

In the matrix form typified by Table I, the transporta-
tion problem is suitable for numerical solution by the
somewhat involved computational procedure known as the
simplex method. This method is a general solution proce-
dure for all types of linear programming problems. How
ever, the transportation model is, in addition, soluble by a
simpler procedure which is especially designed to take
advantage of the specific structural properties of this
model. This procedure or algorithm is examined at length in
Section II of this report.

Applications and Generalizations of the
Transportation Model

Over the last twenty years there have been many
successful applications of the transportation model and
derivative models to the study of geographical problems.
These applications have been concerned largely with the
analysis anJ planning of commodity flow systems. How-
everthere have also been significant applications of these
models to such'questions as the provision of public housing,
the location of industry, and even to the scheduling of
disaster relief operations.

An outstanding series of early studies concerned with

3
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the application of the transportation model was accom-
plished by Henderson (1955a, 1955b, and 1958). In these
studies Henderson applied the transportation model to the
analysis of coal production and distribution in the United
States. By means of the transportation model, Henderson
computed a sequence of normative representations of the
United States coal industry for different periods of time.
Then, by comparison of the actual coal trade in the United
States against these normative solutions, he was able to
isolate significant factors influencing the dynamic structure
of the industry. In a similar study, Land (1957) has applied
the transportation model to the study of coking coal
movements over the British railway system.

The transportation problem has been applied further in
the study of the organization and spatial structure of public
facility systems. Yeates (1963), for example, has examined
the spatial allocation of students to high schools in a part of
Wisconsin. By means of the transportation problem, Yeates
was able to draw up a set of optimal school district
boundaries such that the total costs of transporting the
students between home and school were minimized. Gould
and Leinbach (1966) have applied the transportation model
to the optimal organization of hospital service areas, and
Garrison et al. (1959) have used the model to determine
least cost allocations of patients to physicians.

One of the most important theoretical generalizations
which emerges out of the transportation problem is the
whole question cf the equilibrium pricing of commodities
and the spatial variations of these equilibrium prices. These
theoretical notions have been most successfully applied in
empirical cases to the study of agricultural commodities.



Thus Fox and Taeuber (1955) have studied the spatial
structure of the livestock-feed economy of the United
States and have shown how this spatial structure relates to
the interdependencies in an interregional context among
prices, supplies, and demands. Similar studies have been
undertaken by Fox (1953) and Judge and Wallace (1958).
In particular, in many of these studies of agricultural
systems exhaustive and searching sensitivity analyses have
been undertaken. Thus Morrill and Garrison (1960) have
considered the problem of the regional stability of trade in
wheat and flour across the United States, and they have
shown for example what effects a hypothetical drought in
the Great Plains would have upon this system.

A further important set of generalizations extending
from the transportation model concerns the role of
transshipment and commodity transformation processes in
interregional trade. Here, Casetti (1966) has contributed an
empirical study of great interest and significance. Casetti's
problem was to study the geographical organization of the
steel industry of Quebec and southern Ontario. This part of
eastern Canada is linked together by the Great LakesSt.
Lawrence waterway system. The problem as formulated by
Casetti is then to schedule a cost-minimizing program of
shipping movements over this waterway system so that all
steel plants are adequately supplied with coal and iron ore,
and so that all finished steel is then taken to final markets.
In addition, Casetti's model takes into account the input-
output processes governing the transformation of the coal
and ore into steel, and it also takes fully into account any

costs on the movement of empty ships from one location to
another.

These transshipment problems have been even further
extended into an enormous variety of geographically-
structured network problems. Here, the applications have
been multifarious, though perhaps two such applications
might be mentioned briefly for their relevance to geographi-
cal analysis. First, Gauthier (1968) has studied commodity
'lows in Brazil in relation to the carrying capacity of the
Brazilian transportation system. In this study, Gauthier has
applied the so-called "capacitated transportation problem,"
which is essentially a combination of the transportation
problem with a simple network system. Second, Ridley
(1969) has studied the problem of traffic flow through road
networks and has devised a program for the optimal
assignment of new investments to traffic-bearing networks,
taking into account their flow characteristics.

This brief discussion of some of the applications and
applied generalizations of the transportation problem pro-
vides a backdrop for the discussion which follows. This
discussion now largely neglects the problems of direct
emphical analysis and related questions of policy, and

Inzentration is focussed upon computational procedures
and formal theory. However, by occasional reconsideration
of the material discussed in the preceding paragraphs this
discussion of procedures and theory may be illuminated
and made concrete. It should be especially kept in mind
throughout all that follows that spatial allocation models
are indeed normative rather than descriptive mechanisms.

4
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II. THE TRANSPORTATION PROBLEM:
COMPUTATIONAL PROCEDURES

In this section an algorithm (or set of repetitive
computational rules) for solution of the transportation
problem is developed. This algorithm proceeds by working
in an iterative fashion from some arbitrary initial solution
of the transportation problem through a series of inter-
mediate solutions to the final optimal solution. The al-
gorithm converges progressively on this optimal solution and
the objective function value of the problem always di-
minishes as the solution process continues. At all stages of
the computational process, feasibility of the program is
rigidly maintained. Here feasibility is defined as that state
where all the constraining conditions which apply to the
problem are fully satisfied.

A Sample Problem

Rather than attempt to describe the transportation
problem algorithm as a set of abstract principles, in this
account the algorithm is described and developed with

respect to a specific sample problem. This helps to make
the computational process more immediately meaningful.

Suppose that a problem as shown in Figure 1 is given. In
this Figure there are four points (designated by squares)
which supply some commodity, and five other points
(designated by circles) which consume that commodity.
Transportation of the commodity from any source to any
destination incurs a transportation cost, and a set of
hypothetical transportation costs for this sample problem is
shown in Table 2. These transportation costs are very
roughly proportional to the actual distance separating
source and destination points in Figure I. Table 2 indicates
the supply capacity of each source point and the demand
requirement of each destination point. Thus supply capaci-
ties (shown in the right-hand stub of the Table) are, for Si ,
S2, S3, and S4 respectively, 7, 3, 5 and 15. In the same way
demand requirements (shown in the bottom stub of the
Table) are, for Di , D2, D3, D4, and D5 respectively, 1, 8, 8,

S3

S2

S4

S,

Figure 1. Supply and demand points for pample problem

5
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Table 2. Transport costs, supply capacities, demands

To

From
1 2 3 4 5 Supply

,

1 9 4 3 7 5 7

2 4 2 7 2 5 3

3 3 7 12 4 9 5

4 9 4 3 5 1 15

Demand 1 8 8 9 4 30

9, and 4. Observe that global supply is made to equal global
demand (30 units in each case) so that there is in this
sample problem no slack capacity and no excess demand.

In addition, Table 2 provides a kind of tableau represen-
tation of the transportation problem, and this representa-
tion of the problem is notably more compact and easy to
interpret than the matrix representation as given in Table 1.
Indeed the computational procedure which is described
below takes this tableau as a basic working statement of the
problem. It is now required to find feasible numerical
values, xij, for all flows from sources to destinations and
such that all transport costs are a minimum.

The First Feasible Solution

Initiation of the transportation algorithm is dependent
upon finding a first feasible solution. Usually, this solution
will be quite far from optimality. Various methods are
available for deriving some initial feasible solution, but an
especially simple method will be demonstrated here. This
method makes use of a basic operating principle known as
the north-west corner rule. Essentially this rule involves
assigning shipments to source-destination pairs by working
through a tableau representation of the transportation
problem. starting in the upper left-hand (or northwest)
corner of the tableau and working progressively towards the
lower right-hand corner. At each stage in this process as
large a commodity shipment as possible is assigned.

For examPli, consider Table 3, (note that for ease of
reference all transportation costs have been relegated to the
corners of the cells of Table 3). At the outset take the
upper left-hand cell of this Table. This is the cell [1, 1]
representing a shipment from the first source to the first
destination. Assign as large a value as possible to this
shipment. Clearly this value must be 1 unit of the commod-
ity, for whereas the supply point 1 can supply up to 7 units

6

Table 3. First feasible solution

To

From
1 2 3 4 5 SupplyMEW

7

2 Mar 3flagglir
5

4
FFWFP W © 15

Demand 1 8 8 9 4 30

(9 X 1) + (4 X 6) + (2 X 2) + (7 X 1) + (12 X 5) +

(3 X 2) + (5 X 9) + (1 X 4) 159

of the commodity, the destination point 1 requires only 1
unit, and this demand should not be exceeded. The supply
point 1 now has a surplus of 6 units, while the demand of the
destination point 1 is entirely satisfied. Therefore continue
consideration of supply point 1, but now take cell [1, 2]
which lies immediately to the right of cell [1, 1].
Destination point 2 has a total demand of 8 units. But
supply point 1 can meet this demand only to the extent of
6 units. Therefore assign all of these 6 units to destination
point 2. All of the commodity produced at the first supply
point is now, assigned to consumers, though destination
point 2 has a demand deficit of 2 units. Therefore continue
consideration of destination point 2, but move on to the
cell [2, 2] which lies immediately below the cell [1, 2] .
Clearly supply point 2 can now make up the entire deficit
in the demand of destination point 2. Thus, assigit 2 units
to the cell [2, 2] . This still leaves supply point 2 with a
surplus of 1 unit. Thus, consider cell [2, 3] to which that 1
unit can now be assigned. Now proceed on in this fashion,
moving in an orderly fashion to the right and downwards
through the Table, and always assigning as much as possible
to each cell which is considered, while taking care not to
contravene any supply or demand condition. Hence, con-
tinuing the allocation process, the quantities 5, 2, 9, and 4
are assigned in sequence to the cells [3, 3] , [4, 3] , [4, 4] ,
and 5] .

These operations, then, lead to a complete first feasible
solution of the sample problem, and this solution is shown
in Table 3. That this solution is indeed feasible can easily be
verified by summing up shipment values in any row or any
column and observing that they do in fact conform to the
appropriate constraint values. Note that the total cost of
this first feasible solution is



5) Z= tiixii ti2x12 t2 2 X2 2 + t2 3X2 3
+ t3 3X3 3 t43X43 t44X44 + t4 S X4 S

and this value of Z is 159, which, as will emerge in due
course, is very far from optimal.

The First Iteration

With a first feasible solution of the problem now
available it is possible to begin the iterative solution
algorithm. This iterative algorithm begins by taking the first
feasible solution as a starting point and then working out a
set of successive program improvements. Each program
improvement is itself accomplished after a series of compu-
tational steps, and these steps are nuw described in order.

Computation of shadow prices

The first stage in securing a program improvement
involves the computation of a set of what for want of a
better term will be designated shadow prices. In Section III
of this report the physical meaning of these shadow prices
will be made clear. For the moment, it is sufficient to
accept them as purely computational devices.

A shadow price is computed for each source and each
destination. This is the same as saying that there is a
shadow price on each row and each column of the
transportation problem tableau. Moreover, the shadow
prices are computed only in relation to those given
source-destination shipments which occur at some positive,
non-zero level. Such shipments (from the first feasible
solution) are designated symbolically in Table 4a by large
solid circles. Let U1 be the shadow price on the ith source
or row, and let Vj be the shadow prke on the jth
destination or column. Now for any intersection of row i
and column j in Table 4a which contains a solid circle, the
following conditions on the prices, U1 and Vj, must be
made to hold:

6)

7)

8)

Vj tij, or

Vj = tij + U1, or

= Vj tij

where the conditions (6), (7), and (8) are of course all
algebraically equivalent. These conditions may or may not
hold for any row and column intersection which does not
contain a solid circle. In addition, some one shadow price is
always arbitrarily assigned a value of zero, and for conve-
nience of reference it will here be assumed that this rule
applies to the shadow price U1. Therefore, by definition,
the following condition also holds,

9) U1 = 0.

Bearing these various conditions in mind a set of shadow
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Tables 4a - 4c. First iteration
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prices relating to Table 4a can at this point be numerically
determined. Hence, in conformity with (9) first set U1
equal to zero. This permits calculation of V1 which from
(7) is equal to 9 + 0 =9. In the same way, the value of V2 is
computed as 4 + 0 =4. With this value of V2 it is now
possible to find U2 , which, from (8), is equal to V2 t2 2
or 4 2 = 2. Recall that the operations generating these
shadow prices apply only to row and column intersections
which coincide with cells containing a non-zero shipment.
Thus it is not permissible for example to compute U2 by
the operation V1 t21 ,, for the cell [2, 11 contains no
positive shipment. By repeated application of the principles
for deriving shadm prices on rows and columns it. is
possible to arrive at a fully identified set of 1.1; and Vj. FOr
the case of Table 4a, these shadow prices are, in complete
order, 0, 2, 3, and 6 for the lib and 9, 4, 9, 11, and 7 for
the Vj.

The shadow prices are now used to compute an
opportunity cost for every cell which lacks a positive
non-zero shipment, and the-prOperties of these opportunity
costs are now considered.

Opportunity costs
Again, as was the case with the shadow prices, the

notion of an opportunity cost will be defined here in terms
of its purely computational role within the transportation.
algorithm, and its physical economic interpretation will be
deferred until Section

Every cell of the transportation tableau which does not
contain a positive shipment has associated with it an
opportunity cost, denoted 'N. This opportunity cost is
defined as

10) Eii = Ui



and with the strict proviso that there is no shipment from
the source labelled i to the destination labelled j. These op-
portunity costs are now computed for all cells which lack a
positive shipment, and the results are shown in Table 4a,
where the opportunity costs are shown numerically in the
main body of the Table.

Improvement of the basic solution

At this stage, Table 4a is scrutinized to determine
whether any opportunity cost, Cij, is greater than the
corresponding transport cost, tij. If no such is found then
the existing program of shipments is optimal, and the
computational algorithm is ended. However, in Table 4a,
there are several instances of cells where -Cu exceeds tij. This
being so, isolate that one cell where the difference between
Zij and tij is the greatest. This is the cell [3, 4] where the
difference is equal to 14 4 = 10.

The cell [3, 4] is now used as a pivot or point of
reference with respect to which improvements in the
existing program of shipments are made. It is now required,
in short, to assign some positive shipment to the cell [3, 4] ,
and in doing this, the valuei of other shipments are
readjusted so as to maintain program feasibility. This
re-adjustment is accomplished in two stages: first by setting
up a general pattern of shipment increments and decre-
ments, and second, by, numerical resolution of these
increments and decrements.

Search for a generalized pattern of improvements. The
objective of the present computational stage of the first
iteration is to assign as large a shipment as possible from
source 3 to destination 4. At the outset, then, locate a plus
sign in the cell [3, 4] , (see Table 4b), thereby indicating
that this increment is eventually to be numerically effected.
Obviously, however, if this shipment is made, then part if
not all of the commodity which is shipped from source 3 to
other destinations will have to be diverted so as not to
exceed the supply capacity of source 3. Thus, search along
row 3 for any cell which c,a tains a positive shipment.
There is only one such cell, and this is the cell [3, 3] . Place
a minus sign in this cell, signifying that the corresponding
shipment must be reduced. However, if this shipment is
reduced then all of the demands of destination 3 will not
now be sufficiently met. Therefore, search along column 3
for some other cell containing a positive shipment. Here
there are two possible candidates for selection, either cell
[2, 3] or cell [4, 3] . Suppose that cell [4, 3] is selected.
Place a plus sign in this cell to indicate that the deficit in
the demand at destination 3 is to be made up by increasing
this shipment. An increase in the value of the shipment in
the cell [4, 3] necessitates reducing the magnitude of other
flows emanating out of source 4. Thus, search along row 4
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for a cell containing a positive shipment. Such a cell is
found at [4, 4] . Now insert a minus sign in the cell [4, 4]
to indicate shipment reduction. As it happens this minus
sign is located in the same column as the original plus sign
in cell [3, 4] . This is a desired result, for it signifies that the
search for a general pattern of shipment improvement is
brought to a close. This search process may now be
recapitulated in general as the following set of rules and
procedures:

1) Insert a plus sign in that (empty) cell where the
opportunity cost positively and maximally exceeds the
transport cost.

2) Initiate an orthogonal pattern of search based upon this
pivot cell. Here, to use an analogy with chess, the term
orthogonal means that the pattern can be traced out
through a tableau by the movements of a rook (which
must move horizontally or vertically) but not by the
movements of a bishop (which must move diagonally).

3) Let the search pattern extend in alternation over a row, a
column, a row, a column, and so on.

4) The articulations in the orthogonal pattern of search are
allowed to coincide only with cells which contain some
positive non-zero shipment, (with the exception of the
pivot cell which is empty).

5) At each articulation in the search pattern, insert either a
plus sign or a minus sign so that the plus and minus signs
form an alternating series around the search circuit.

6) The pattern of search is brought to a close whenever a
minus sign is successfully located in the same column as
the pivot cell.

Notice that during the search procedure it is often
possible to make a decision which leads to an impasse. For
example, in the case of the problem shown in Table 4b, the
orthogonal search pattern could have proceeded after
consideration of cell [3, 3] to cell [2, 3] (in which a plus



sign would have been located) then on to cell [2, 2] (a
minus sign), then to cell [1 , 2] (a plus sign), and finally to
cell [1, 1] (a minus sign). But from cell [1, 1] it is impos-
sible to continue the search according to the rules laid out
above. In this case, it would be necessary to re-trace the
pattern back to some cell (in fact cell [3, 3] ) from which
the search can be continued and pursued to a successful
close.

Implementation of the designated improvements. With
the aid of the pattern of increments and decrements
designated in Table 4b it is finally possible to improve upon
the structure of the program as established in the first
feasible solution. Remark that it is required to assign as
large a shipment as possible from source 3 to destination 4.
This meads that the total shipment in one of the cells which
contains a minus sign must be driven to zero, though not to
less than zero, of course, because of the non-negativity
side-conditions on the problem at large. In fact, the
magnitude of that shipment which is driven to zero
identifies the value of a constant which is then added to or
subtracted from each cell according as that cell contains a
plus sign or a minus sign. Denote this constant value by Ax.
The specific numerical value of this constant, then, is set at
the value of the smallest shipment from among those cells
which contain a minus sign. In the present case (cf. Tables
3 and 4b) this value is 5 units. Now, actually carry out the
series of additions and subtractions designated in Table 4b,
i.e.,

x34 < Or X3 4 <- 5

X33 <- X33 Ax, or X33 <- 0

x43 <- x43 + AX, or X43 <- 7

x44 <- x44 Ax, or x44 <- 4

where the backward-pointing arrow, <-, denotes the opera-
tion "is changed to." Note that in this process the shipment
in the cell [3, 3] is driven to zero, but that the non-
negativity condition on all variables is preserved.

This is the final stage of the first iteration. Now take
those new shipments as determined above together with
those original shipments in Table 3 which remain un-
changed, and construct a new tableau around them. This
operation gives Table 4c which is a new and improved and
feasible solution. The total cost of this new program is 109
units of money which is an improvement of 50 units of
money over the total cost of the first feasible solution. This
new program is used as the basic input to the second
iteration which is now initiated and which seeks also to
secure systematic program improvements. The computa-
tional procedures followed in the second iteration, as well
as in all subsequent iterations, are identical to those
followed in the first iteration.

Table 4c.
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Z (9 X 1) + (4 X 6) + (2 X 2) + (7 X 1) + (3 X 7) +

(4 X 5) + (5 X 4) + (1 X 4) = 109

Continuation of the Iterative Algorithm

The second iteration: R6sume of
the main computational steps

The second iteration may be expressed as a résumé of the
main steps in the transportation algorithm:

1)

2)

3)

4)

5)

6)

9

1 9

Compute the shadow prices U; and Vj, (Table 5a). U1 is
as usual and by definition set equal to zero. All other
shadow prices are computed only in relation to ship-
ments which lave a non-zero value.
Compute all opportunity costs, Eij = Vj Ui, for cells
which have no positive shipment.
Out of those cells any) which have an opportunity
cost greater than the corresponding transport cost isolate
that one cell (which is now designated the pivot cell)
where the difference between -oij and tij is greatest.
Observe that if no Tij is found to be greater than the
corresponding tij then the program is optimal and the
iterative algorithm is brought to a close.
Take the pivot cell isolated in the prevLms step and
locate a plus sign in it to denote that the cell is to be
assigned a positive shipment. In the present instance
(Table 5b) the pivot cell is cell [2, 4] .

Trace out from the pivot cell an orthogonal circuit of
alternating plus and minus signs and such that a) the plus
and minus signs are located only in cells which have
non-zero shipments (with exception of the pivot cell),
and b) the circuit is always finally closed by locating a
minus sign in the same column as the pivot cell.
Of all those cells in which a minus sign occurs, take that
one such cell with the smallest shipment and set the



constant value Lx equal to that shipment. In Table 5a,
this cell is [2, 3] , and its shipment value is 1.

7) Increase shipments by the amount Ax in all those cells
where a plus sign is located, and decrease shipments by
the amount Lx in all those cells where a minus sign is
located.

This ends the iteration, and the program currently
developed is the new improved solution. For the second
iteration of the sample problem under consideration here
the new improved solution is shown in Table 5c, and this
program is associated with an objective function value of
102 units of money.

Tables 5a - 5c. Second iteration

Table 5a.
Shadow 9 4 9 11 7
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The third to the final iterations

Succeeding iterations are now computed in exactly the
same manner. Thus the algorithm proceeds 'through a third
iteration (Tables 6a to 6c), a fourth iteration (Tables 7a to
7c), and finally on to the beginning of a fifth iteration
(Table 8) at which point the solution as shown in Table 7c
is found to be optimal. The optimality of the program in
Table 7c is indicated by the fact that the derivative
opportunity costs (Table 8) are all less than their corre-
sponding transportation costs. This final optimal solution
has an objective function value of 95. The geographical
structure of the solution is depicted in Figure 2 where all
optimal source-destination flows are appropriately shown.

This completes the description of the principal features
of the iterative algorithm for solution of the transportation
problem.

Additional Computational Considerations

Number of non-zero variables in the solution

It may have been observed during the computational
process discussed above that the number of non-zero
variables (or positive shipments) in any program stage
remained constant at eight. This feature in fact represents a
kind of system stability and parsimony which is highly
characteristic of the transportation problem. In more
general terms, it can be shown mathematically that the
number of non-zero variables in any solution of the
transportation problem will usually be equal to n + m 1,
where n and m are defined as above. In particular, the
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Tables 6a - 6c. Third iteration
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Tables 7a - 7c. Fourth iteration
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number of non-zero variables will never exceed n + m 1,

though it may occasionally be less than n + m 1. This
latter condition is known as a state of degeneracy, and
degeneracy can lead to minor computational difficulties.

Degeneracy problems and their resolution

Degeneracy as defined above leads to apparent program
breakdown so that it appears to be impossible either to
compute a full set of shadow prices or, often, to make any
systematic improvements in the program structure. More-
over, any given program may be degenerate to the extent

that it lacks only one positive variable, or two, or three, and
so on up. In the following remarks the first, and simplest,
case only will be explicitly dealt with. However, these
remarks are easily generalizable to more complex cases.

The degeneracy problem is countered by selecting some
cell which is entirely blank and treating it as if it contained
a positive shipment. Designate that blank cell which is to be
treated as though it contained a positive shipment a 0-cell.
As the computational algorithm proceeds this 0-cell plays a
role analogous to any cell containing a positive shipment.
Thus row and column shadow prices are computed in the
usual way in relation to this cell. The only complication
occurs during the stage of program re-adjustment. Suppose
in the first place that the 0-cell receives a plus sign during
the orthogonal shipment re-allocation process. Then, the
cell is simply assigned a value equal to the re-allocation
constant Ax, and the degeneracy problem is automatically
overcome. However, suppose in the second place that the
0-cell receives a minus sign during the re-allocation process.
In this case there would be no physical re-allocation of
shipments. Rather the 0-cell would now be relegated to its
former status as simply a blank cell while the pivot cell
would now be designated as the 0-cell.

These assertions may be exemplified by examination of
Tables 9a to 9d. For simplicity neither transport costs nor
supplies nor demands are shown in these Tables. In Table
9a a non-degenerate solution is shown together with a
suggested re-adjustment pattern. In Table 9b these re-
adjustments have been effected leaving 'a degenerate solu-
tion in which the cell [3, 3] is designated a 0-cell. Also in

Figure 2. Optimal solution
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Tables 9a - 9d. Illustrations of various degeneracy problems
Table 9a. Table 9b.
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Table 9c.
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Table 9d.
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Table 9b a further re-adjustment pattern is shown where a
minus sign falls in the 0-cell. In effecting the re-adjustment,
the cell [3, 3j becomes simply a blank cell while the pivot
cell, [1, 31, now becomes the new 0-cell, (Table 9c). A final
set of program re-adjustments called for in Table 9c causes
a plus sign to be placed in the 0-cell. Thus, in Table 9d the
re-adjusted program is once more non-degenerate.

Extension of the Elementary Tableau Forina4

Introduction of more complex cost functions

In real spatial allocation problems it would generally be
rather unrealistic to minimize simply the costs of trans-
portation. Producers at different locations will usually have
different unit production costs, and these differences will
be apparent in delivered commodity prices. Thus consumers
may buy from a relatively distant producer providingthat
the additional transport cost incurred is offset by a
concomitantly lower production cost. For this reason it is
often desirable to minimize over a joint function of
production costs and transport costs. The objective func-
tion corresponding to this joint cost structure would be

n m
II) Z = z E(c,+tipx,i

1.1
which obviously should be a minimum, and where the term
ci is the unit production cost at source i. The usual supply,
demand, and non - negativity conditions would apply to this
problem.

Solution of this extended problem can be readily
accommodated within the frame of reference of the
transportation algorithm. This is accomplished simply by
treating the sum ci tij as an ordinary transportation cost.
The problem is then manipulated in tableau format in the
normal fashion.

Use of slack variables

The transportation model may further be signific antly
and realistically extended by defining slack variables which
then identify levels of unused capacity at various sources. A
corollary of this extension is that global supply capacity
would now be greater than global demand. 4

,7.9pnose in fact that the sample problem considered in
Table 2 is extended to include a slack capacity variable for
every source. In particular, let capacity at all four sources
be increased by two units. Thus, in this'extended problem,

12) Si = 9, S2 = 5, S3 = 7, S4 = 17.

The complete problem is represented in tableau format in
Table 10. Note that a new column containing the slack
variables has been added to the tableau. The cells in this
column represent purely fictitious shipments which in turn
indicate the total quantity of unused capacity at any
source. In addition, the cost attached to every cell in the
slack column is zero, for it would normally be assumed that
it costs nothing not to produce some commodity. Since
the total siack capacity throughout the entire system is 8

== units, the total demand indicated for the slack column is
also 8 units.

The system is now ready for solution by the usual

Table 10. Transport problem with slack variables
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Figure 3. Optimal solution with slack variables

procedures of the transportation algorithm. An optimal
solution for this specific problem is indicated in Table 10,
and its graphical representation is shown in Figure 3. In this
optimal solution sources 1 and 4 are seen to have slack
capacity of 1 and 7 units respectively. This condition
reflects the economically marginal position of these sources
with respect to the total system. On the other hand sources

14

2 and 3 are left without any slack capacity whatever. The
value of the objective function associated with this solution
is 89. The wider economic meaning of these program
changes due to capacity increases is of considerable interest.
This question is dealt with in the succeeding Section where
the varicus economic and theoretical ramifications under-
lying the transportation model are explored.



HI. THE DUAL PROBLEM AND SPATIAL
PRICE EQUILIBRIUM

The Dual Problem: Initial Definitions and
Derivation

All linear programming problems are associated with a
so-called dual problem, and the dual problem always bears a
constant mathematical relationship to the original or primal
problem. Examination of the general nature of this relation-
ship is beyond the scope of the present report, but is deal*
with at length in many standard texts on linear progran.
ming (e.g. Dantzig (1963), Dorfman et al. (1958), Hillier
and Lieberman (1967)). Of immediate interest for present
purposes however are the formal structure and theoretical
implications of the particular dual program which is
associated with the transportation problem.

At the outset, this dual can be specified in programmatic
form as follows:

Maximize:

13)

subject to:

14)

15)

Z= Div; siui
=1. i =1

Vj U1 tij

Vj..>30, U;>0

where the terms Si, Dj and tij are defined as in Section II,
and where LI; and Vj itre dual variables whose physical
interpretation forms the major substance of the present
section. Indeed, the dual variables LI; and Vj will be
immediately recognized as the shadow prices discussed in
Section II. In additionthe constraint (14) will readily be
recognized as no more than an explicit statement of the
criterion for optimality of the primal problem; for, recall,
first, that by definition V.j U1= tij for any i j shipment
which is made at some positive level, and second, that for
the program as a whole to be optimal then the condition Vj

LI; ( = "du) < tij must obtain for all i -+ j source-
destination pairs where no shipment is in fact made. Notice
that since the primal problem is a minimization problem
then the dual problem is therefore typically a maximization
problem. In the succeeding account no attempt will be
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made to interpret directly the meaning of the dual objective
function (13), though the constraining condition (14) will
be considered at length.

The LI; and Vj are at this point defined explicitly and
then interpreted at length below. Thus, assume that there is
given some solution to a primal transportation problem in
which a given commodity is shipped from a set of sources
to a set of destinations. Then, any Vj represents the
equilibrium market price of the commodity at destination j.
Any LI; represents a location rent incurred at source i. Here
the term rent is used in a special sense whose meaning will
become apparent shortly. These specific definitions of the
shadow prices will be illustrated and illuminated in the first
instance by means of a simple example consisting of one
destination. or buyer and four sources or sellers. This simple
system will then be generalized. The argument which
follows is taken almost exclusively from Stevens (1961).

Economic Interpretation of the Dual

Case of one buyer and four sellers

Consider the spatial distribution of one buyer and four
sellers as shown in Figure 4. Suppose that the buyer has a
perfectly inelastic demand for Q units of some commodity.
Suppose further that the four sellers can, collectively,
supply more than Q units of the commodity so that after
all of the buyer's demand has been met there will still
remain some overall capacity. In additif..a, let it be
supposed that all unit slack pre-transportation supply costs,
cl , c2 , c3, c4 (which would include a normal profit) are
equal. Therefore, without any loss of generality, these costs
can be neglected in the following analysis. This latter
supposition also means that the only variations in delivered
prices will be produced by differences in the costs of trans-
portation, and these differences are in turn directly a func-
tion of locational variations among the four sellers.

A simple allocation process. In seeking to acquire the
quantity Q of the given commodity the buyer would first
address himself to seller 1, for, being closer to the buyer
than any other seller, seller 1 can supply at the cheapest



Figure 4. A hypothetical problem with one buyer and four sellers

price, t1 , (equating all ci to zero). But suppose that seller
l's maximum supply capacity, S1, is less than Q, (cf.
Figure 5). The buyer will therefore attempt to make up the
deficit, Q SI, in his total demand by purchasing from the
next least expensive seller, seller 2, who can, supply at the

t
3

delivered price t2 . Again, however, let it be supposed that
supplies are limited and that seller 2 can supply only up to
S2 . Q S1 units of the commodity. Continuing the same
process, then, of always trying to make the best buy, the
buyer will now turn to seller 3, even though seller 3's

Q

Si S2 S3

Q

Figure 5. A pricing system for one buyer and four sellers
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delivered price, t3, is comparatively high. Suppose that
seller 3 can more than meet the remaining deficit in the
buyer's demand. Thus seller 3 delivers Q Si S2 units of
the commodity to the buyer, and is left with S3
(Q Si S2) units of slack capacity. Seller 4 is forced
from the system entirely, and produces nothing.

Development of a market system. The problem at this
point is what price or prices would now prevail at the
market represented by the buyer, for it is by no t wans
certain that once sellers have transported the commodity to
the market they ''ill be content to sell it simply at the
prices t1 t2, and t3, respectively, for sellers 1, 2, and 3. In
fact, there will always be a tendency for any seller to try to
increase his price to the greatest extent possible. Moreover
this tendency leads to an equilibrium in which the
commodity, whatever its source, is sold at a constant
market price. The difference between this equilibrium
price, say V, and the pre-equilibrium price, is precisely
the location rent U.

Take, for example, the case of seller 3. Seller 3 can sell
the commodity at a delivered price of t3 and just make a
normal profit. Suppose seller 3 experimentally raises his
price by some arbitrarily small amount, say to the level t3 +
U3. Providing the price t3 + U3 is not more than the
minimum price, t4, of the idle seller 4; seller 3 will still
ma- age to sell the amount Q SI S2 (since demand is
completely inelastic) but with correspondingly increased
total revenue. However, if the magnitude t3 + U3 exceeds
the magnitude t4 then seller 4 will immediately enter the
market and undercut seller 3. For this reason, seller 3 will
sell just at the level t4 , and this guarantees seller 3 a level of
sales equal to Q Si S2 at the maximum unit price of t3
+ U3 = t4 , (cf. Figure 5). By the same arguments, seller
2 will raise his price to t2 ÷ U2 = t4, and seller 1 will
raise his price to t1 + U1 = t4 . At this point it may appear
that seller 3 would now lower his price just slightly, thereby
undercutting sellers 1 and 2 and thus simultaneously
increasing his sales and bringing some of his excess capacity
into productive use. However, in any price war, sellers 1

and 2 can always ultimately win out over seller 3 (just as
seller I can over seller 2) for, if necessary, sellers 1 and 2
can always sell at below seller 3's minimum delivered price,
t3. Therefore, the condition where sellers 1, 2, and 3,
respectively, sell the quantities Si , S2, and Q S 1 S2 at
the single market price, t4, is a steady and sustainable
equilibrium.

The meaning of the shadow price, V, should now be
somewhat more clear. V is the equilibrium market price, in
this case equal to t4. In addition, the meaning of the
shadow prices U1, U2, and U3 is now entirely clear. The Uj
are excess profits or rents on every unit of commodity sold.

and they are generated by the process, equivalent to the
conditions (8) and.(14):

16)

17)

18)

U1 = V - ti

U2 = V - t2

U3 = V - t3.

And these values are specially designated location rents
because they result entirely from differences in sellers'
locations.

The marginal seller. In any problem of the type
discussed above, there is always a marginal seller. In the
present instance the marginal seller is seller 3. This
particular seller is marginal in the sense that given any
reduction in total consumption, seller 3 would always be
the first to suffer any loss of sales. Now, in most theoretical
expoSitions of the structure of spatial market systems it is
normally directly assumed that the marginal seller always
earns a location rent of zero. But in the exemplary problem
considered above, the marginal seller is shown to earn the
non-zero rent, U3 = V t3. Nevertheless, it is possible to
reconcile this apparent discrepancy, and this can be done
by demonstrating that the case where the marginal seller
earns a zero rent is a kind of final limiting case. Thus, in
any perfectly competitive system there would be not only a
large number of actual sellers but also a large number of
potential sellers, the latter ready to enter the market at any
time when prices should be favourable to entry. If this is so,
then the marginal seller's rent will always be effectively
zero, for obvious reasons. This, then represents the limiting
case of the simple (essentially oligipolistic) problem de-
scribed in the preceding paragraph. In the succeeding
account it will now be consistently assumed that the
conditions of perfect competition are met, and that the
marginal seller always earns a location rent of zero.

This assumption is, in addition, of direct relevance to the
computational algorithm discussed in Section II. Thus, in
this algorithm, instead of always arbitrarily setting
U1 equal to zero, it would be more meaningful from an
economic point of view to equate to zero that Uji which
relates to the marginal seller. If this is done then all other
Uj (as well as the Vi) will always be greater than or equal to
zero, as they should be given their physical interpretation.
This, then accounts for the non-negativity condition (15) in
the dual program. On the other hand, for purely computa-
tional purposes, the-shadow prices Uj and Vj may be of any
magnitude, and hence the condition (15) is not enforced in
the primal computational algorithm. Note however that the
Uj and Vj are always in constant proportional relationship
to one another whatever their base of reference.

Effect of capacity changes on rents. One further
important point about the location rents is in order. It
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should be remarked that if there is any change in any
seller's supply capacity then there is also some likelihood
that the set of Ui will also be changed. Indeed, these rents
should properly be seen not simply as functions of location
but rather as functions of location in relation to productive
capacity. This point can be easily illustrated by reference to
Figure 5. Suppose seller 2 invests in new capacity to the
extent where he can entirely supply the buyer's demand
deficit after seller 1 has supplied the amount SI . Seller 2
will therefore force seller 3 from market. The new equi-
librium price is now reduced to V = t3, and the values U1
and U2 are also reduced accordingly. Mutatis mutandis,
decreases in capacity will tend to cause an increase in
system location rents.

These various assertions may now be geneittlized, and
established with more solidity.

Case of many buyers and many sellers

Imagine that there is some general system consisting of n
sellers and m buyers or markets, and characterized by some
actual program of trade, which need not for the moment be
optimal. On each 'market, j, there will be an equilibrium
price Vj. By minor extension of the arguments given above,
the price Vj can be seen as a function of the delivered price
of the marginal or least competitive seller with access to
that market. Every seller, i, will earn a location rent Ui. In
addition, that seller who is marginal with respect to the
entire system will earn a location rent which is equal to
zero.

General criterion of equilibium. Let it be assumed that
the system is not in fact optimal, so that commodity
allocations are in a process of re-adjustment. This means
that there will be at least one seller, i, and at least one
market, j, for which xij = 0, and

19) Vj Ui > tij, (or "Cij > tij).

If this condition holds then it will always seem to be
advantageous' for seller i to sell at the market j (thus
apparently improving his location rent), just as it will seem
to be advantageous for the buyer or buyers at j to buy from
i (thus apparently reducing delivered prices). The real end
result however may not be as anticipated. The equilibrium
delivered price, Vj, may indeed be reduced but in this case
the seller will lose the anticipated increment to his rent. Or,
the value of Vj may remain as it was so that the buyer is in
the end no better off. In terms of the general system-wide
program of trade however the net result is always beneficial,
namely, reduction in the total real costs of the system by
increasing the amount of flow over some comparatively
cheap shipment route, and compensating for this by a
reduction in flow over some comparatively expensive route.

The meaning of the opportunity cost, Vij is especially
well illustrated by the condition (19). Obviously, the
opportunity cost cij is a measure of what fhe seller i

apparently would lose by not selling at the market j.
Whenever the condition Eij tij > 0 is found, then, there is
always some positive advantage to increasing shipments
from i to j. By contrast whenever the condition Zij tij < 0
is found then there is no advantage whatever in making a
shipment from i to j. Moreover, this latter condition is, as
has already been indicated, the criterion of final program
optimality. Thus it is, that the computational procedures
already established in the description of the transportation
algorithm correspond to elementary economic notions of
the structure of a spatial trading system.

An interlocking system of rents and prices. With n sellers
and m buyers, :re always emerges in a competitive trading
system an inter-connected and interdependent system of
rents and prices. This system is such that if any seller earns
a rent Ui in any market, j, then he always passes this rent
on to all other markets in which he sells. As in the case of
the simpler problem with one buyer considered above, this
complete system of rents and prices ultimately relates back
to the marginal seller who of course earns a rent of zero. In
addition, in this more complex problem with many buyers
and many sellers, the marginal seller is marginal with
respect to the entire system.

These remarks may once more be clarified by means of a
simple illustrative example. Thus, consider a simple market
system extended along a line as shown in Figure 6. In this
system there are four sellers and three buyers. Seller 2 is
taken to be the marginal seller who therefore earns a rent of
zero. This marginal seller sells to buyer 1 at a price of t21,
and he sells to buyer 2 at a price, of t22. Thus, the
equilibrium prices which prevail at buyers 1 and 2 are V1 =
t21 and V2 = t22 respectively. As it happens, seller 1 also
sells to buyer 1. Moreover, since tli is less than V1 this
means that seller 1 earns a location rent U1 which is equal
to V1 t1 1 . In the same way, seller 3 who sells to buyer 2
earns a rent of U3 = V2 - t32 . Since seller 3 also sells to
buyer 3, the rent U3 is therefore passed on to buyer 3. The
equilibrium price at buyer 3 is then V3 = t33 + U3 . Finally,
seller 4 sells to buyer 3 and thus seller 4 earns a rent of U4
= V3 t43. Alternatively, this last relationship may be
expressed,

20).
U4 = U3 +t33 - t43 , or,
U4 = V2 -t32 t33 - t43 , or,
U4 = t22 t32 t33 t43.

From this last expression, which is no more than an
exercise in simple algebraic substitution, it can readily be
determined that all rents and equilibrium prices form an
inter-connected network which finally can be traced back
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distance
Figure 6. Rents and prices in a linear spatial system

to the marginal seller, whatever his location with respect to
the system at large.

Spatial Price Equilibrium
The exceedingly simplified spatial economic theory

developed above can, without too much difficulty, be
extended to certain more general and realistic cases. These
cases are centred upon the notion of spatial price
equilibrium, whose relations to the transportation problem
were first described by Samuelson (1952). The following
account is very largely drawn from Samuelson, and refer-
ence must be made to his original paper for a more
complete treatment of problem of spatial price equilibrium:

Briefly, the notion of spatial price equilibrium involves
generalization of the transportation problem by assuming
that supply and demand behaviour is governed. by prices,
just as prices themselves.will in turn be affected by the level
of supply and demand. Consider, for example a simple
two-region case. This can be done without any loss of
generality while, at the same time, the properties of the
problem can be elucidated by graphical methods, (Figure',
and 8). Each of the two regions, then, may be assumed
both to supply and to consume some commodity. Suppose
for the moment that the two regions are entirely isolated
from one another so that no trade may occur between
them. The internal supply and demand situation in each
region will therefore be as in Figure 7. This Figure has been
constructed in such a way that the supply and demand
diagram for the first region has been placed back-to-back

19

with that for the second region. Note that region 1

consumes the quantity Q1 at the price pi , and region 2
consumes the quantity Q2 at the price p2.

Now let the former isolation of the two regions be
broken. In fact, suppose that a transport link is constructed
between the two regions thus permitting interregional
trade. Let tij denote as usual the unit transport cost from
region i to region j. Observe from Figure 7 that

21) p2> p, + ti2, or, p2 p, > ti2

This relation is precisely the relation (19) though in slightly
different terms. In short, this is the mime condition for
commodity flow from region 1 to .egion 2, for it signifies
that even after discounting the cost of transportation,
producers in region 1 can increase their total revenue by
selling in region 2. Two immediate corollaries of this flow
are, first, higher prices leading to lower consumption and
higher supply in region 1, and second, lower prices leading
to higher consumption and lower supply in region 2.
Moreover flow will occur from region 1 to region 2 until
that point of equilibrium where the excess of supply over
demand (ES) in region 1 just exactly equals the excess of
demand over supply (ED) in region 2. This point of
equilibrium also coincides with the establishment of the
identity
22) at = a2 tl 2

where rr; is the equilibrium after trade price in region 1
and 7r4` is the equilibrium after trade price in region 2.



Price

Region I Region 2

Figure 7. Before trade situation

These relations are shown graphically in Figure 8. In this
Figure, the displacement of the supply-demand diagram for
region 1 by t" units up the price axis in relation to the
supply-demand diagram for region 2, permits graphical
correlation of the entire after trade situation. Notice in
particular from Figure 8 that ES ,= ED, as it must for an

20

equilibrium to exist. Now, consumption in region 1 has
contracted to Qr by comparison with the before trade
situation, while demand in region 2 has increased to QT.
In the same way, total supply in region 1 has now increased
to Sr units, while supply in region 2 has contracted to SI
units. There is at this stage no further incentive for
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Figure 8. After trade situation

additional trade between the two regions, and the system as
shown in Figure 8 is in stationary equilibrium.

This analysis can easily be generalized conceptually to
the. case of many regions, though no attempt to do this will
be made here. In addition, it is possible to think of such a
multi-region system as a special case of the transportation
problem, but where the boundary supply and demand

21

Quantity

conditions are no longer constant but are subject to
price-elastic schedules. In turn, prices will vary depending
on the particular configuration of the trading pattern
established in any solution.

In the next Section of the report a further and successive
series of extensions and generalizations of the transporta-
tion problem will be considered.



IV. EXTENSIONS. OF THE PRIMAL
TRANSPORTATION PROBLEM

The total number and variety rf extensions of the primal
transportation problem are exceedingly great, and these
extensions ramify throughout the whole of economic
geography. Here an attempt will be made only to charac-
terize a few of the most important of these extensions, and
this will be done by consideration of a limited number of
generic models. In particular the following three major
extensions are considered in turn: a) The transshipment
problem, b) the so-called Beckmann-Marschak problem, and
c) a series of closely interrelated network problems.

The Transshipment Problem
The transshipment problem was developed originally by

Orden (1956). Just like the transportation problem, the
transshipment problem is concerned with the optimal
pattern of flow of a single homogeneous commodity from n
sources to m destinations. However, the transshipment
problem further assumes the existence of a given number of
transshipment points. These transshipment points function
as purely intermediate nodes through which the commodity
is passed on its way from the set of sources to the set of
destinations. In practical temis, the transshipment points
might for example be warehouses through which some
commodity is shipped on its way from producers to final
consumers.

Now, any degree of overlap between the set of sources,
the set of destinations, and the set of transshipment points
can in. practice be accommodated without the slightest
difficulty by the transshipment problem. For present
expository purposes; however, it is convenient to permit
the m destinations (and only the m destinations) to
function as transshipment points. Then, the following
conservation condition should always be preserved at these
consumption-transshipment points: That total commodity
flow into any such point must always equal total flow out
of the same point plus whatever is retained at that point for
purely local consumption. Symbolically, this condition may
be expressed,

n+m
23) E xi; = E xjk + Dj

1=1 k=1

where the summation over n + m in the first set of terms
signifies that the commodity may eater any point, j, either
from one of the original n sources, or from one of the m
transshipment points.

Symbolic representation of the
transshipment problem

The transshipment problem can at this stage be written
in symbolic representation as an objective function and a
set of constraining conditions analogous to those already
defined for the transportation problem. Thus, the objective ,

function for the transshipment problem is
Minimize:

n + m m
24) Z = E E tog

i=1
subject to:

25) E xusi
1=1

which states simply that total exports out of source i may
not exceed the supply capacity of that source;

n + m
26) E xi; Xj Di

i = 1 kZ1

which is a' re-statement of the conservation culdition (23),
and which ensures that all demands at destination j are met
while all transshipment inflows and outflows di that point
are perfectly balanced. Lastly, the usual mgt i,egativity
side-condition app.Mes,

27) xij Z 0.

In the programmatic form as given by the expressions
(24) (27), the transshipment problem may be solved by
the simplex method of linear programming. In addition,
however, the transshipment problem can be solved by the
method of the transportation algorithm, which provides a
simple and compact means of numerical analysis of the
problem. This is accomplished by initially setting up the
transshipment problem in standard tableau format.
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Table 11. Tableau representation of the transshipment problem

From

1

2

3

A*

B*

D*

E*

A B C D E A* B* C* D* E*

EIMINIMIIMINV
gragiffrarIOW

ME 8 4

11111Er W HEW
MITIMI100 War
latrallairr94 11,
Na l l a n t a r l i n7Wr71,7,77

100 100

Tableau representation and solution
of the transshipment problem

Consider some specific sample problem such as that
whose principal statistical and cartographic features are
shown in Table 11 and in Figure 9, respectively. In this
sample problem there are assumed to be three sources
labelled, in turn, 1, 2, and 3. In addition, there are five
destination-transshipment points, labelled A, B, C, D, and E.
When these latter points are to be designated purely as
transshipment points they are further differentiated as,
respectively, A*, B*, C*, D*, and E*.

Consider now Table 11 which will be seen to have
exactly the same general structure as any ordinary tableau
for representation of the simple transportation problem.
Transportation' costs between any row and any column
element are shown in the top left-hand corner of the cell

corresponding to the intersection of that row and column.
In addition, supply capacities are shown as usual in the
right-hand stub of the Table while demands are shown as
usual in the bottom stub of the Table. The detailed
structure of the main body of the Table, however, is
characterized by certain special features. In particular, the
structure of the tableau can be divided off into four main
quadrants describable as follows: First, the upper left-hand
quadrant of Table 11; this quadrant represents a 3 X5
commodity shipment matrix indicating connections be-
tween sources 1, 2, and 3, and direct destinations A, B, C,
D, and E. Second, the upper right-hand quadrant which
again is of dimensions 3 X 5 and which represents a matrix
of shipments from the three sources to the points A*, B*,
C*, D*, and E*, specifically for transshipment. Third, a
lower right-hand quadrant of dimensions 5 X 5 which
indicates shipment connections between transshipment
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3

Figure 9. A transshipment problem

points and other transshipment points. Fourth, a lower
left-hand quadrant of dimensions 5 X 5 which indicates
shipments from transshipment points to final destinations.

In addition to these special features it should also be
noted that in Table 11 a set of supply capacities and a set
of demand requirements are specified for transshipment
points. In all cases these elements are set equal to 100 units.
These transshipment point capacities and requirements
are of course entirely artificial since transshipment
points are assumed neither to have upper limits on their
activities, nor to have consumption requirements. However,
these artificial quantities provide a basic mechanism which
drives the transshipment system forward. They give rise to
the development of purely fictitious stockpiles into which
inflows for transshipment are added, and from which
corresponding outflows are substracted. This also explains
why the relativoly high value pf 100 has been assigned to
these artificial capacities and requirements, for they must

be such as to give rise to apparent stockpiles which will
always exceed any conceivable transshipment flow through
any point. These stockpiles may be thought of as being
located in the cells [A*, Al , [B*, B*], [C*, C*] , [D*,
D*] , and [Po, E *] of Table 11. Moreover, because it
obviously costs nothing to maintain a purely fictitious
stockpile, the transport costs in these particular cells are
automatically equated to zero.

A numerical example. A solution for the sample problem
discussed above can be obtained directly by now treating
Table 11 exactly as though it represented an ordinary
transportation problem. Table 11 in fact designates the
optimal solution of this problem, and Figure 9 shows the
main graphical features of the solution. The role of the
apparent stockpiles in the transshipment process can now
readily be demonstrated. For example, in Table 11 it will
be observed that a shipment of 4 units is made from source
3. to transshipment point D*. This forces the stockpile at
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[D*, D*] down to a level of 96 units so as to maintain the
sum of the elements in column D* at 100. In the same way,
the elements in row D* must also sum to 100, so that 4
units must make their appearance in some cell in row D*
other than [D*, D*] . These units finally appear in the cell
[D*, El . In summary, this entire sequence of events repre-
sents a shipment of 4 units from source 3 to final destina-
tion E via the transshipment point D*.

Observe, in addition, that the solution shown in Table
11 is degenerate. Degeneracy is rather a common phenom-
enon in transshipment problems, though it can be overcome
in precisely the usual way. Thus, the cells [2, B*] and [2,
E *] are in the present case identified as 0-cells.

Lastly, it is evident from the structure of the solution of
this sample problem that transshipment chains of any
length can make an appearance in the transshipment
problem. Thus, the chain 2 -3. C* -3 A* -.3B, which contains
two transshipment elements, can be identified in Table 11.

The transshipment problem in its turn has many
applications and generalizations, kie of the more important
of these being the Beckmann-Marschak problem which is
now considered directly. _

The Beckmann-Marschak Problem

The particular spatial allocation problem considered here
was initially described (and with eponymous results) by
Beckmann and Marschak (1955). This problem is essentially
a transshipment problem; however, the transshipment
points in this particular expression of the, problem also
represent transformation or manuf? cturing centres where
some commodity passes through an industrial process
before being sent on to final consumers. For example, the
set of sources might represent production points for a raw
material such as iron ore; this would then be shipped to
various industrial centres where it would be manufactured
into steel; the finished steel would then be shipped out
from the industrial centres to final consumers. A graphical
representation of such a system is shown in Figure 10. The
main point to note here is that two entirely new elements
have been brought into the discussion, namely, in the first
place, a transformation or input-output process and in the
second place, a two-commodity spatial allocation process.
As a result of these new elements, the Beckmann - Marschak
problem is not susceptible to numerical solution by the
conventional transportation algorithm. Rather, except in
certain very special cases, the problem can only be solved
by the simplex method of linear programming. Thus, in the
present case, all computational aspects of the problem will
be neglected, and the discussion will concentrate instead on
the formal and structural properties of the problem.
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Formal structure of the Beckmann-
Marschak problem

Let there be n sources of some given raw material, and m
destinations for some derivative commodity which is
manufactured out of that raw material. Let there' be s
centres of manufacturing or transformation. Let be the
unit cost of production of the raw material at i, and let ct
be the cost of transforming one unit of that raw material
into the derivative commodity at transformation centre j.
The term to is the cost of transporting one unit of the raw
material from source i to transformation centre j, and the
term tjk is the cost of transporting one unit of the finished

commodity from transformation centre j to final consumers
at k. Finally, let xo represent the magnitude of flow of the
raw material from i to j, and let x represent the magnitude
of flow of the finished commodity from j to k.

The Beckmann-Marschak problem now represents a
normative program which extends over the following cost
elements: a) The cost of producing the raw material, b) the
cost of transporting the raw material to manufacturing
centres, c) the cost of transforming the raw material into
the finished product, d) the cost of transporting the
finished product from manufacturing centres to final desti-
nations. The objective function corresponding to such a
program is

n s n s

28) Z = E E + toxii + E E cl xi;
i=1 j=1 1=1 j=1

s m

+ E E ttk xrk.
=1 k=1

This objective function is subject to a series,of constraining
conditions. These conditions are

.29) E xi; si
j = 1

which is the familiar supply capacity condition;

30) E xik = Dk
j=1

which is the familiar demand condition. In addition, a
balance or' conservation condition applies to the problem
ensuring that all outputs at the transformation point j are
exactly matched by a corresponding set of inputs. This
conservation condition is

31) crj E xi; E xtk 0
i =1 k =1

where the term. aj is an input-output coefficient which
indicates how many units of output of the finished product
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Figure 10. A Beckmann-Marschak problem

are obtained at the jth transformation centre for each input
of one unit of the raw material. A capacity constraint on
any transformation centre may also be appropriately
appended to the Beckmann-Marschak problem, giving,

32) Exii Kj
i = 1

where Kj is the total transformation capacity (in terms of
raw material inputs) available at j. The non-negativity
conditions on all variables necessarily apply:

33) xij > n j'1` > 0xk .

The output of such a program is an optimal plan of
production, transformation, and trade. In addition, there
would be available from the dual program for the
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Beckmann-Marschak problem a set of equilibrium rents and
prices extending over the entire system. In the case of the
Beckmann-Marschak problem, these rents are in part a
function of locational variations both among the set of raw
material sources and the set of transformation centres; but
they are also in part a function of the differential cost
structures at the sources and transformation points.

Network Problems

In their most basic form, 'network problems are
generally representable as either transportation or trans-
shipment problems with the special characteristic that
source-destination flows are explicitly aligned along a set of
links or arcs. Of this class of spatial allocation problems
there are two major types: Network flow problems on the
one hand, and network structure problems on the other
hand, though there is also a very great variety of additional
network problems which do not fall readily into this
categorization. All of these problems, however, have the
almost invariant characteristic that they are structured
around a kernel comprising either the transportation
problem or the transshipment problem. For ease of
exposition, the network systems to be discussed below
will be built up entirely around the transportation problem.
It should be borne in mind however that it is always
possible and usually more realistic to embed a pure
transshipment problem into these network systems.

A simple network problem: The
capacitated transportation problem

As soon as the characteristic flows of the transportation
problem are thought of as being restricted to the arcs of a
network, the question of the carrying capacity of those arcs
is brought into prominence. This question is dealt with
explicitly by a linear programming problem known as the
capacitated transportation problem. This linear program
may be written immediately:

Minimize:
n m

34) Z =E E
= 1 J=1

subject to:

35) Ext, <Si
j = 1

Jt1J..x1..

36)
II

E x,i =Di
i =1
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Table 12a. Optimal solution uncapacitated network

To

From
1 2 3 4 5 Supply

1

3

4

jj
7

31

7

3

5

15

1 4

21
8

_Si

3

2..... i

4

Demand 1 8 8 9 4 30

(4 X 7) +(2 X 1) + (2 X 2) + (3 X 1) + (4 X 4) +

(3 X 8) + (5 X 3) + (1 X 4) -96

x. < K.

38) xij -> 0

where Kij is the maximum carrying capacity of the arc ij.
Thus, all flows in this special version of the transportation
problem are limited by upper bounds which are expressions
of the capacity of the network over which those flows are
carried.

Some of the features of this particular linear program are
demonstrated by a sample problem as shown in Tables 12a
and 12b and in Figure 11. The Figure 11 (which is derived

Table 12b. Optimal solution capacitated network

To

From
1 2 3 4 5 Supply

4

4) 21
1. 7

3

5

15

4) 9
2

9
J 42

7

9
4

9
4

Demand 1 8 8 9 4 30

Z (4 X 6) + (3 X 1) + (4 X 1) + (2 X 2) + (4 X 5) +

(3 X 7) + X 4) + (1 X 4) 100



Figure 11. Network and arc capacities

from the exemplary problem discussed in Section II of this
report) shows an elementary network with associated arc
capacities. If any source-destination pair in Figure 11 is not
directly connected by an arc then the corresponding cell in
both Tables 12a and 12b is blocked out. Suppose now that
some commodity is required to be sent from source nodes
to destination nodes, but with the restriction that flow is
rigidly confined to existing network arcs. Let all supply
capacities, demand requirements, and transport costs for
allowable source-destination connections be as they were in
the sample problem discussed in Section II.Then, neglecting
for the moment all arc capacity limitations, a first optimal
solution for this system may be computed by the method
of the simple transportation algorithm. During the compu-
tational process, shipments are kept off routes which lack a
direct network connection by simply not considering
tableau cells which correspond to those routes. This first
solution is shown in Table 12a. A second optimal solution
is now computed for the case where all arc capacity
contraints are rigidly enforced. This new solution is shown
in Table 12b, and it betrays a perceptible deterioration in
the value of the objective function as compared with the
solution shown in Table I 2a. A special variation of the
transportation algorithm may be used to compute solutions
to this second, capacitated problem (cf. Wagner (1959)),
though the simplex method would usually be more reliable:

From this sample problem, it is immediately evident that
the arc capacity constraints greatly limit the total efficiency
of any flow program. It is therefore of considerable interest
to speculate as to the possibilities of extending the
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capacitated transportation problem in such a way that
investment in new capacity on binding arcs may be
possible, thus securing improved flow efficiencies. Some
simple extensions of this type are now considered.

Someelementary network flow-investment models

Two main strategies are always available in any kind of
investment problerri. The first of these strategies is to assign
a fixed budget to the problem and then to search out tit-
best possible improvements in the structure of the problem
while not exceeding the total available budget, 'his kind of
strategy seems often to be adopted by public agencies,
especially in cases where there has been a prior appropria-
tion of public funds to some program. The second of these
strategies is to attempt to trade off capital investment costs
against concomitant savings in system operating costs pro-
duced by efficiency improvements. This second strategy,
then, attempts to strike an economical balance between
capital costs and operating costs. In economic terms, this
strategy is therefore generally preferable to the former,
though it presupposes great flexibility of the budget and it
also leads to certain problems of definition, as will appear
below. Both of these strategies will be exemplified in two
parallel network flow-investment problems considered
below.

Case of an inflexible budget. Suppose' that some capaci-
tated network is given, together with a set of sources and
destinations. Further suppose that investments are to be
made in new network capacity thus improving the total
performance of the system. In cases where the total
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investment budget is given exogenously and is then to be
applied to the problem of gaining the maximum improve-
ment possible in system operating costs, the appropriate
corresponding linear program is:

Minimize:

n m

39) Z = E E 1J 1.1

i = 1 j =1

subject to:

40)

41)

42)

E xi; si
j =1

E xi; = Di
i =1

xi; yij Kij

43) cijyij .4B

44) xij> 0, yij > 0

where yij is a solution variable specifying the total increase
in the capacity of the arc i,j, cii is the cost of increasing the
capacity of the arc i,j by one unit, and B is the total budget
available for investment in the network. After solution of
this system, the total capacity of the arc i,j will be Kij + yij,
and the constraint (42) effectively prevents xij from
becoming larger than this amount. In addition, the con-
straint (43) prevents total new investments from exceeding
the available budget.

The total result of the program (39)-(44) is both an
improved network structure and a new improved pattern of
commodity shipments.

Case of a flexible budget and a joint cost minimizing
program. In the case where the investment budget is
flexible and r,here the only criterion limiting new invest-
ment is that it should be such as to minimize joint
operating and capital costs, an appropriate linear program
may be expressed,

Minimize:

n m n m

45) Z cijyij
i=1 j=1 , i=1 j=1

subject to:

46)

47)

48)

E xi; s,
=1

E xi; = Di
=

xij yij <Kij

49) xij > 0, yij > 0

where all terms are defined as before.
Quandt (1960) has examined the economic properties

of this particular network investment problem in some
detail. The important point to notice for the
moment is that the appearance of both the operating
costs, tij, and the capital costs, cij, in the same objective
function produces a number of problems of definition and
accounting. Normally, the two costs, tij and cij, would be
considered to belong to quite different dimensions of time.
The former would usually be thought of as recurrent costs
extending over some entirely short-run period, whereas the
latter would usually be thought of as strictly non-recurrent,
and extending over a reasonably long-run period. Thus, in
order to make the objective function (45) realistic and
meaningful it is essential that these two types of costs be
reduced to a similar order of magnitude. This, at least in
part, would involve re-definition of the capital costs into
constant costs per unit of time, where this unit of time
would correspond to the period of recurrence of the
operating costs. To accomplish this difficult accounting
problem it would be necessary' to take into consideration
such other time-dependent elements of the capital costs as
interest rates, discounts, inflation, and the like.

Additional miscellaneous network problems

In addition to the simplified prototype problems con-
sidered in the preceding paragraphs, there is a further
miscellaneous group of network problems with relevance to
the general problem of spatial allocation. These additional
problems are merely mentioned here in passing (with'
appropriate references), for they tend to represent special-
ized issues and to require somewhat esoteric mathematical
techniques for their proper solution. Thus, among the more
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important of these problems are the following: The
maximal network flow problem (Ford and Fuikerson
(1962) ), the minimal spanning tree problem (Scott
(1969) ), the shortest path problem (Dantzig (1963) ), the
travelling salesman problem (Scott (1969) ), and a variety of
quite complex network flow-investment problems (e.g.
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Garrison and Marble (1958), Quandt (1960), and Ridley
(1969) ). In particular, Quandt has considered at length
certain dual problems in relation to network flow and
investment programs, and his work should be consulted for
an analysis of many of the basic theoretical economic issues
which underlie these problems.
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In the preceding account an attempt nas been made to
develop a few introductory notions about the basic
workings of spatial allocation systems. This account has
stressed the elementary methods, theory, and geographical
applications of spatial allocation analysis. Thus, attention
was focussed first on the purely computational properties
of the simple transportation model, then on the theoretical
underpinnings of the mode', and lastly, on a variety of
important formal generalizations of the transportation
model. Throughout this account it has been evident, both
by direct assertion and by implicit connotation, that the
topic of §patial allocation has enormous ramifications,
extending as it does throughout economic geography and
the cognate disciplines of spatial economics and regional.
science. For this reason, the entire account above should be
seen as no more than an elementary initiation into a small
number of central issues.

Nevertheless, in spite of its apparent range and hetero-
geneity, spatial allocation analysis represents in fact a
remarkably coherent frame of reference. This results in part
from the purely formal similarities among spatial allocation
models, and it results in part from the normative operating
principle of those models. In particular, in spatial allocation
analysis, geographical space is seen as a limiting factor in
the teleological tendency to efficiency in real allocation
systems. The problem then is to define final normative
states for those systems so that the dissonant effects of
geographical space are minimized.

Of course, spatial allocation analysis is not without
certain limitations, and these limitations can often be
serious. In the entire preceding discussion two limitations
in particular have been consistently glossed over, and it now
seems apposite to deal with these directly. These limitations
concern the implicit assumptions of divisibility and lin-
earity which ,'nderlie much of spatial allocation analysis. In
the first placed, most spatial allocation models take it for
granted that all variables are infinitely divisible. For certain
special reasons this happens not to be the case so far as the
transportation model is concerned, though it is largely the
case in most extensions of the transportation model. But
this condition of infinite divisibility is often not valid in
empirical cases. To take just one example, increments to
network capacity are surely not arbitrarily divisible as was

V. CONCLUSION

assumed in the preceding section, but rather are composed
of integral and irreducible elements, (see Scott (1971) ). In
the second place, and probably even more serious, the
linearity assumption underlying most spatial allocation
models is rarely satisfied in practice. Thus, to exemplify
again, the Beckmann-Marschak model assumes complete
linearity. of all finished product -outputs with respect, to
all raw material inputs at manufacturing centres. This
is patently an infringement on the nature. of real manu-
facturing processes where technical economies of scale
are almost always obtainable. In addition, it may be
noted that spatial allocation analysis as described above
is virtually useless as a description of international trading
situations for the geography of international trade is as
much a political process as it is a normative spatial process
in the narrow sense:

Doubtless, however, the advantage of spatial allocation
analysis will frequently be found to outweigh the limita-
tions. Above all, there are two outstanding advantages to
spatial allocation models: as applied policy mechanisms,
and as tools for theoretical analysis. These are substantial
qualities. For policy purposes, these models have been
found to be of prime pragmatic importance in the
organization of planned economies. They have in particular
been widely applied by Soviet Iconomic geographers and
regional scientists to the problems of industrial organization
and integration over the vast geographical extent of the
U.S.S.R. Elsewhere, these models have been applied to the
planning of public facility systems, such as schools,
hospitals, and road transport networks.

In addition, spatial allocation models yield significant
theoretical insights into the workings of spatial economic
systems. These insights emanate especially from the dual
problem with its offshoots into classical rent and price
theory. In turn, these issues lead on to the consideration of
questions of geographic distribution and location a la Von
Thfmen and Liisch, (see Garrison (1959, 1960), and Isard
(1960) ). Moreover, spatial allocation analysis clearly dem-
onstrates Pareto's subtle principle, which is at first appar-
ently self-contradictory and then finally entirely reason-
able, that competitive allocation systems tend to produce
short run patterns of allocation which are similar to
those produced by monopolistic or general welfare
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systems. Of course, this assertion does not mean also
that long-run goals will be the same in each case. More-
over, in welfare situations there is always a natural
tendency to make special provision for special cases.
However, the assertion has a very general validity, for from
all that has gone before, it is clear that each of these types
of systems tends to produce cost minimizing (or, equiva-
lently, benefit maximizing) solutions. At least, Pareto's
principle applies to the kinds of simple systems typified by
the transportation problem. The principle does not always
apply in certain more complex cases, though it is a remark-
able result even so, and spatial allocation analysis clarifies
it entirely.

Finally, the generalizations of spatial allocation analysis
are such as to incorporate virtually the whole of economic
geography. Indeed, significant conceptual generalizations of
this order of magnitude have been accomplished, (cf. Isard
(1958, 1960), Moses (1960), and Stevens (1958) ). The
generalizations have succeeded in extending the kinds of

simple models already considered to large interregional
systems producing and consuming many different com-
modities, and where the commodities are subject to
multifarious processes of exchange and transformation.
These generalized models represent, in short, virtually
complete economic systems. It is doubtful if at this point in
time there can be much possibility of applying such models.
Their importance, however, is that they provide an intellec-
tually efficient way of thinking about an enormously
complicated and important set of processes and phe-
nomena. Indeed, the elemental components of these models
lie at the basis of all economic life, and hence, ultimately,
impinge upon all geographical problems.

The present account may be taken as a preface to the
study and applied analysis of these wider issues. Concomi-
tantly, spatial allocation analysis should be seen as one of
the key conceptual frameworks in modern geographical
enquiry.
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