
DOCUMENT RESUME

ED 119 734 IR 003 208

AUTHOR Sullivan, Joseph E., Ed.; And Others
TITLE DOTSYS III: A Portable Program for Braille

Translation. Rev. 1.
INSTITUTION Mitre Corp., Bedford, Mass.
SPONS AGENCY Library of Congress, Washington, D.C. Div. for the

Blind and Physically Handicapped.
REPORT NO MTR-2119
PUB DATE 2 Oct 75
NOTE 75p.

EDRS PRICE MR-$0.83 HC-$3.50 Plus Postage
DESCRIPTORS *Braille; *Computer Programs; *Machine Translation;

Program Descriptiong; Programing; Programing
Languages

IDENTIFIERS Computer Translation; DOTSYS III

ABSTRACT
DOTSYS III is a COBOL program for the translation of

English text into standard English braille, also known as grade 2
braille. Text in foreign languages or English may be transliterated
as grade 1 braille or "computer" braille. The program's method of
operation together with instructions on using the program, modifying
or extending the translation heuristics, and transferring the program
to a new computer environment are presented. General understanding of
computer programing and braille translation would be helpful, but no
special knowledge in these areas is presupposed. (Author/CH)

*
*
*

Documents acquired by ERIC include many informal unpublished
materials not available from other sources. ERIC makes every effort
to obtain the best copy available. Nevertheless, items of marginal

*
*
*

* reproducibility are often encoUntved and this affects the quality *
* of the microfiche and hardcopy reproductions ERIC makes available *
* via the ERIC Document Reproduction Service (EDRS). EDRS is not *
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the original. *

MITRE Technical Report

MTR-2119

REV. 1

DOTSYS III: fl Portable Program

for Braille Translation

Joseph E. Sullivan (ed.), with contributions
by the editor, J. K. Millen & W. R. Gerhart

THE

CONTRACT SPONSOR
CONTRACT NO.

PROJECT NO.
DEPT.

MITRE
SEDFORD, MASSACHUSETTS

2 OCTOBER 1975

Library of Congress,
Div. for the Blind and
Physically Handicapped

1250
071

U.S. DEPARTMENT OF HEALTH.
EDUCATION WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO.
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT, POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-
SENT OFFICIAL NATIONAL INSTITUTE OF

EDUCATION POSITION OR POLICY.

2

Approved for public release; distribution unlimited.

Department Approval:

MITRE Project Approval:

dA&A- elArelo

3

ABSTRACT

This document describes DOTSYS III, a table-driven COBOL program
for the translation of English text into Standard English (American)
Braille, also known as grade 2 braille. Text in any of several
foreign languages and English text to be transliterated as grade 1
braille or "computer" braille may also be handled. While general
acquaintence with computer programming and the subject of braille
translation would be helpful in reading the document, no special
knowledge in these areas is presupposed. The program's method of
operation, together with detailed instructions on using the program,
on modifying or extending the translation heuristics as defined in
the tables, and on transferring the program to a new computer
environment are presented.

JES/mg

. E. Sullivan
roup Leader

Command Systems

iii

4

ACKNOWLEDGEMENTS

It is difficult to acknowledge adequately the many different
currents of direct and indirect contribution to this document, even
since publication in original form in 1970. The authors have had
the benefit of continued interest and ideas from R. A. J. Gildea,
project leader of the original DOTSYS development, and G. Dalrymple,
acting director of MIT's Sensory Aids Engineering and Development
Center. We have likewise learned much from interaction with users
of DOTSYS, including M. Boyles and others at the Atlanta Public
Schools, the first users, P. Bagley and others at Information
Engineering, Inc., J. Gill of U. Warwick, England, and D. Keeping
and B. McDonald of U. Manitoba, Canada. Our thinking has been
stimulated by contact with colleagues in Germany, France, Denmark
and other countries, as well as the United States, who are pursuing
other approaches to the problem of Braille translation as it applies
to various languages.

R. Evensen of the Library of Congress, Division for the Blind
and Physically Handicapped, was the project monitor and braille
consultant, and M. Friedman of the Library of Congress was the
computing environment consultant, for the Spanish language extensions.
G. Dalrymple conducted the live tests, and was assisted by M. Scott
of Perkins Institute who proofread the Spanish braille output..

M. Gallo typed this document and otherwise guided it into
production.

iv

5

PREFACE

This document is intended to serve the needs of many different
levels of interest. Those interested only in what the program will
do, for example, need read only the introduction. Persons with a
general interest in the subject of braille translation should add
the section on method. Those who actually wish to use the program --
transcribers, editors, and keypunchers -- will, of course, want to
read the appropriate parts of the Usage Section and may or may not
be interested in method. A systems programmer or other person whose
main interest is to get the program running in a new environment
ought to read the "Transfer" Section. Finally, a programmer who may
wish to modify the program's function should read the whole document,
including the final section on maintenance.

This first revision was occasioned by the addition of capabilities
for Spanish and other foreign languages in uncontracted form - e.g.
as text embedded in a foreign language textbook for English-speaking
students. A major change in format from the previous edition has
been the removal of the program and tables listing from the document,
and the introduction of a procedure for version control of the
program (see under "PROGRAM MAINTENANCE") and tables (see under
"USAGE"). Considerable improvement has been made in the program's
internal organization, for greater ease of comprehension.

This document corresponds to the MITRE 7/75 version of the
program, and the MITRE 7/75 tables. For subsequent versions derived
from these, comments in the program or tables themselves should
indicate in what ways those versions differ.

6

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS
Page

x

SECTION I INTRODUCTION 1

SECTION II METHOD 3

GENERAL 3

THE PRIMARY INPUT PROCESSOR 3
THE TRANSLATOR* 4

The Buffer 4
The Alphabet Table Search 4
The Contraction Table Search 4
The Buffer Shift 5
Braille Sign Output 5

The State Transition 5

The Decision Table 6
THE STACKER 6
THE BRAILLE LINE COMPOSER 8
THE FINAL OUTPUT WRITER 8

SECTION III USAGE 9

INPUT 9

Deck Setup 9
The Echo Option Card 9

The Tables 10
Table Data in General 10
Table Version Control 11

The Alphabetical Contraction List 11

The Special Symbols Card 12
The Alphabet Table 13
The Contraction Table 13
The Card Specifying the Number of 15

Right-Context Classes
The Right-Context Table 15
The Card Specifying the Number of 15
State Variables

The Card Specifying the Number of 15

Input Classes
The Transition Table 15

The Card Specifying the Number of 16

Decision Table Columns
The Decision Table 16

The Sign Table 16

vii

7

SECTION IV

SECTION V

TABLE OF CONTENTS (Cont.)

Pa e
The Run Control Cards
Text Input 19

General Keypunching Rules 19
Capitalization 19
Italics 20
Indicating Contractions in Self- 20
Checking Mode

Ordering 20
Forcing and Preventing Contractions 20
Replacement Symbols for Special Characters 21

Grade Switch ($G) 22
Foreign Languages 22
Format and Mode Control Symbols 24
Self-Checking 26
Octal Braille 28
Computer Braille 28

Notes to the Braille Editor 29
Role of the Editor 29
Letter Sign (+) 30
Division (or Null) Symbol ($/) 30

Forced-Contraction Symbols (/_, J) 30
Termination Symbol ($T) 31

OUTPUT 31

Echo Output 31

Proof Output 31

Elastomer Braille Output 32

RPQ Braille Output 33
Punched Card Output 33

MIT Braillemboss Output 33
Error Messages 33

PROGRAM TRANSFER

PROGRAM MAINTENANCE

37

39

WHEN MAINTENANCE MAY BE REQUIRED 39

PROGRAM VERSION CONTROL 39

TABLE-SIZE BOUNDS ' 39

REPLACING THE ALPHABET TABLE SEARCH BY 40
DIRECT INDEXING

CONTRACTION TABLE SEARCH ALGORITHM 42
General Rationale 42

Notation 43

viii

8

APPENDIX I

APPENDIX II

APPENDIX III

APPENDIX IV

APPENDIX V

APPENDIX VI

APPENDIX VII

APPENDIX VIII

REFERENCES

DISTRIBUTION LIST

TABLE OF CONTENTS (Conci.)

Page

47

DEFINITION OF STATE VARIABLES AND 49
INPUT CLASSES

SUMMARY OF SPECIAL SYMBOLS 51

EQUIVALENT SIGNS, SYMBOLS AND CODES 55

TRANSLATOR - STACKER SIGN CODES 57

MISCELLANEOUS CODED'VARIABLES 59

USERS OF DOTSYS III AND ITS DERIVATIVES 61

SAMPLE PROOF OUTPUT 65

67

69

ix

9

LIST OF ILLUSTRATIONS

Figure Number Page

1 Decision Table Schematic 7
2 Sample of Proof Output 32
3 Elastomer Braille Output for Line in Figure 2 33
4 Punched Card Output for Line in Figure 2 34
5 Set-Up Algorithm 44
6 Look-Up Algorithm 45

LIST OF TABLES

Table Number Page

I Alphabetical Contraction List Card Format 11

II Special Symbols Card Format 12
III Alphabet Table Card Format 13
IV Contraction Table Card Format 14
V Right-Context Class Card Format 15

VI Decision Table Card Format 16
VII Sign Table Card Format 17

VIII Suggested Number of Braille Lines Per Page 18
IX Variable Table Capacity References 39

10

SECTION I

INTRODUCTION

Braille, as it is used today in almost all contexts other than
primer textbooks, is almost a system of shorthand and not simply a
scheme for representing individual inkprint symbols in a tactile code.
This system, called Standard English Braille (American) or grade 2
braille, is defined in Reference 1. A letter-for-letter transcription
is called grade 1 braille.

The chief device used to reduce the number of braille signs in
grade 2 is the contraction. A contraction is the representation of
an inkprint letter-group or whole word by a relatively short
sequence of braille signs; for example, the word "receiving" is
represented by the four braille signs for r, c, v, and g in succession.
There are 189 letter-groups that may be contracted.

Unfortunately (at least from the standpoint of automating the
translation process), a given contractable letter-group is not
necessarily contracted wherever it appears. Moreover, the rules
governing the use of contractions frequently involve such matters as
pronunciation and meaning. For example, in the word "disease," the
"dis" and the "ea" are normally contracted. However, when this word
is used in the (now obsolete) sense "lack of ease," the "ea" should
not be contracted. This example, although admittedly farfetched,
illustrates that in some circumstances even a human transcriber might
have difficulty applying the rules. Cases routinely arise that are
easy for a human transcriber, but still difficult for a
mechanical process -- for example, distinguishing the musical note
"do" from the verb "do." For these reasons, automatic natural-
language to braille translation algorithms tend to be heuristic,
which is to say fallible.

DOTSYS III is a computer program embodying such a natural-
language-to-braille translation algorithm. As its name implies, it
is an outgrowth of an earlier program, DOTSYS II, described in
References 2 and 3.* The basic translation algorithm remains
essentially the same, but a number of new features have been added,
the translation quality has been improved, and better internal
processing methods have been introduced. These improvements in
capability have been offset by the improved methods, so that the

* In order to make the present document as self-contained as possible,
portions of Reference 2 and 3 have been incorporated with little or
no change.

1

overall,speed of DOTSYS III remains about the same as DOTSYS II
(1300 wpm on an IBM 360/50, 3330 wpm orra 360/65). DOTSYS II, in
turn, owes the fundamentals of its translation algorithm both to
previous work in the field of braille translation by computer and
to elementary concepts in the theory of automata, logic design, and
formal languages. The background references and relationships
discussed in Reference 2 are relevant to DOTSYS III also.

The source language used in coding DOTSYS III is ASA Standard
COBOL (Reference 4). The IBM 360/370 compiler for this language
(Reference 7) was used to implement later versions; nonstandard
IBM extensions were avoided where possible. This should enable
DOTSYS III, with relatively little modification, to be run on any
computer having a COBOL compiler and a modest amount of core
storage (approximately equivalent to 72,000 bytes of IBM 360 storage).

The input text is presented to DOTSYS III in the form of
80-character (punched card image) records. These can be manually
keypunched directly from inkprint or produced by another program
according to a fairly straightforward set of conventions. The
output is the sequence of braille signs equivalent to the input text.
Output can be produced in any of several forms, including "proof"
output for a sighted editor and tactile (embossed) braille.

DOTSYS III is almost completely table-driven; i.e., details of
the translation algorithm-are-deternviiied-by tabhs-read-in at
execution time rather than by the program itself. DOTSYS III, as
described in this document, comprises both the program and a standard
set of tables. In principle, with modified tables, the DOTSYS III
program would be capable of processing different kinds of text, such
as text containing mathematical or technical notation, languages
other than English*, or text containing nonstandard symbols for
format control.

*The present version has provision for "grade 1" handling of certain
foreign languages, which is standard for foreign text within basically
English-language works, and generally for literature used by
foreign language students.

2

12

SECTION II

METHOD

GENERAL

DOTSYS III comprises five cooperating processors: the primary
input section, the translator, the stacker, the braille line composer,
and the final output writer. It is the translator, as its name
implies, that does most of the work of braille translation, and in
fact, this section forms a sort of main loop or program, the others
being in the form of subprograms called by the translator to do their
work at the appropriate time. However, in order to follow the
processing of a given piece of text from inkprint form to braille
form, it is easiest to imagine the processors running sequentially,
each one in turn operating on the output, or a collection of outputs,
from the previous processor.

The following descriptions of these processors are idealized to
some extent, so that the discussion does not become hopelessly mired
in detail.

THE PRIMARY INPUT PROCESSOR

The primary input section reads the 80-characters (card-image)
records. Columns 73-80 are discarded, so that the first character
of a record logically follows' character 72 from the previous record.
This stream of characters is further collapsed by deleting all in-
stances of the vertical bar character (1)*, and by deleting all

-consecutive blanks after the second in a series following a period (.)
and all after the first in any other context. This collapsed stream
of characters, one at a time, is the output of this section.

In the "self-checking" mode (described in detail in a later
section), the primary input processor prepares the correct trans-
lation words for later comparison against the translator output.

*The vertical bar, and practically all other "distinguished" symbols
discussed in the text can be altered to some other symbol by changes
in the tables, as discussed under "USAGE" and "PROGRAM MAINTENANCE."

3

13

THE TRANSLATOR*

The Buffer

The translation section operates on the stream of characters
issued by primary input. As a first step, these are collected into
a ten-character sliding window, called the "buffer," so that a group
of characters can be examined.

The Alphabet Table Search

The leftmost character in the buffer is looked up in the alpha-
bet table. In this table, there is exactly one entry for each
symbol that may appear in the text, containing, among other things:
(a) a code denoting the braille sign for that symbol, (b) the symbol's
"input class," and (c) an index to that portion of the contraction
table which pertains to this initial letter. An input class is an
arbitrary numerical code with three distinct purposes, as will be
seen.

The Contraction Table Search

The next step is to search that section of the contraction table
indicated for this initial letter. In principle, this search may be

visualized as a simple top-to-bottom entry-by-entry sequential search,
although in fact a much faster tree-search algorithm (described in
detail under "PROGRAM MAINTENANCE") is used. An entry in the
contraction table consists of: (a) a string of up to nine characters
(ten, counting the implied initial letter); (b) a "right-context
class" designator; (c) an input class code; (d) a shift count; and
(e) a set of up to four braille sign codes.

For a match to occur on a particular entry, three conditions
must be satisfied. First, the entire string for that entry must
correspond to the buffer, or left substring thereof. Secondly, the

input class for the entry determines a set of "state variable"
conditions that mustbe satisfied. A state variable is a logical
switch, having a value "yes" or "no" according to'its meaning and the

*The translator operates essentially as desCribed in Section III of
Reference 2, except that (1) the contraction table search has been
speeded up considerably by using a modified binary search, which
affects the table ordering rules slightly, (2) the STRING field
delimiter in the contraction table has been changed from "$" to "I"
(vertical bar), and (3) the decision table permits a new decision
symbol "F" meaning "unconditional no."

4

14

text already translated. For example, a state variable whose
meaning is "after a digit" would have the value "yes" if the
character immediately preceding the one leftmost in the buffer had
been one of the digits 0-9 and would have the value "no" in all
other circumstances, including initially. "Meaning" is, strictly
speaking, defined completely by entries-in another table which
governs the setting of these switches, called the transition table.
This table will be discussed presently. The mechanism by which the
input class selects a set of state variable conditions to be tested
is called the decision table; this table is discussed in more
detail under "The Decision Table," below.

The third condition for a contraction table match to occur is
that the right-context class be correct. If the right-context
designator for the entry is blank, no right-context condition is
imposed. Otherwise, the character immediately to the right of the
matched string in the buffer is looked up in the alphabet table to
determine its input class': Another table, called the right-context
table is consulted to determine whether that input class is one of
those listed as acceptable for this designator--e.g., the designator
"P" (for "punctuation") may apply to input classes 2, 3, 13, and 14.

The contraction table search stops when a match occurs or the
end of the table section for that particular initial letter is
reached. In the latter event the shift count is taken to be 1, the
input class and braille sign code revert to those found for the
initial letter, and processing proceeds.

The Buffer Shift

The buffer is then "shifted" left by the amount of the shift
count, with new characters from the input stream entering on the
right.

Braille Sign Output

The braille sign code(s) are sent to the stacker section, con-
stituting the output of the translator. These may directly represent
braille signs, or they may be special control codes as is discussed
in the section describing the stacker.

The State Transition

Finally, the input class is used to determine a set of
transitions to ot applied to the state variables. For each variable,
the transition may be specified as "no change," "toggle" (change
"yes" to "no" and 'no" to "yes"), "set to yes" or "set to no."

5

15

After the state variable transition, the process.is repeated,
beginning with the alphabet table search.

The Decision Table

The decision table determines whether the current settings of
the state variables permit the use of a given contraction table
entry. It is best represented by a tableau in two parts, as
depicted in Figure 1. The upper, or decision portion, has a row for
each input class; the lower, or condition portion has one row per
state variable. The number of columns is the same,for both sections,
and this number will depend upon the number of independent tests
that may have to be made. The elements of the array are single
characters, as given in Figure 1.

Processing of the table for a particular input class consists
of a left-to-right scan of the associated row in the upper portion.
If a "G" ("Go") symbol is encountered, processing stops with a "yes"
decision. If an "F" ("Fail") is encountered, processing is likewise
terminated, but with a "no" decision.

If one of the symbols "Y" or "N" is reached, then the correspondin
column in the lower portion is compared against the current settings
of the state variables. A "Y" in the ith row implies that the ith
state variable must have the value "yes"; an "N" demands the value
"no" and a dash is satisfied by either setting. If the specified
conditions are satisfied for all the state variables, then processing
is terminated with a "yes" decision if the upper portion had a "Y"
symbol, and "no" if it was an "N". If one or more state variables
does not have the value specified, then scanning of the decision
section row is resumed.

Mien a dash is reached in the scan, the scan simply continues
with the next column. If the scan encounters the end of the row
without otherwise reaching a decision, then the decision becomes
"no."

THE STACKER

The stacker operates upon the braille sign codes issued by the
translator. In the simplest case, these codes are merely accumulated
until the code for the blank braille sign is received--i.e., a braille
word is finished. This word, constituting one entry in a stack, is
normally then removed from the stack and issued as output to the
braille line composer. In exceptional circumstances, two or more
words may be held in a stack before release. This may be because the

6

16

Input
Classes

State
Variables

n columns

"G", "F", "Y", "N" or "-"

"Y", "N", or H.."

Figure 1. Decision Table Schematic

7

17

Decision
Section

Condition
Section

order may have to be changed (in braille, units of measure are placed
before the associated numeric quantity), or because the overall
length of several words must be computed before issuing the first
one--as when centering headings.

All special operations by the stacker, including delayed
release and interchange of order, are directed by control codes
issued by the translator. These are distinguishable from ordinary
sign codes in that they have a value greater than 64. (See Appendix
V.)

The stacker maintains up to three distinct stacks, sharing a
common area by borrowing entry fields from a linked free storage
list. One stack is used for normal output; a second stack is used
to collect the words in a heading (such as a chapter title); the,
third is used to hold the title (running head) if it is present.

In the "self-checking" mode (described in a later section), it
is the stacker that compares each braille word against the correct
translation prepared by primary input.

THE BRAILLE LINE COMPOSER

The line composer operates on braille words (stack entries)
produced by the stacker. In each case, the length of the word will
determine whether it can fit on the current braille line, an internal
output buffer. If so, it is simply added thereto. Otherwise, the
current line is sent to the final output writer, cleared, and
started anew with the current braille word.

The line composer also concerns itself with counting lines to
determine a new page condition, page numbering and titling, and
similar matters.

THE FINAL OUTPUT WRITER

The output writer is actually a collection of processors, one
for each distinct mode of output. For each mode selected, the
associated processor produces actual output corresponding to the
current braille line set up by the line composer.

18

SECTION III

USAGE

INPUT

Deck Setup

The complete input deck read by DOTSYS III consists of four
main sections, in order:

(1) the echo option card;

(2) the tables;

(3) the run control cards; and

(4) the text.

Sections 1-3 must be sequence-numbered (in columns 73-80), in
strictly increasing order, unless "NO-SEQUENCE-CHECK" is selected
on the echo option card.

The Echo Option Card

The echo option card determines whether a literal listing of the
tables and run control cards will be printed on the SYSPRINT (normal
printer) output device, what symbols are used to flag comments in
the tables, and whether sequence checking is to be performed on the
input other than the text.

If column 1 of the echo card contains an "E," (for "echo") a
listing of the tables and run control cards is produced; if it
contains an "N", (for "no echo") it is not. For production use, the
"N" Option would be usual. The echo card itself is always printed;
printing of the text is controlled by one of the run control cards.

Columns 9-10 contain a symbol that, when it appears in
Columns 1-2 of a card within the tables or run control cards,
indicates a comment card which is printed (if "echo" is on) but
otherwise ignored. Comments may not appear in the text.

Column 16 should contain a "S" if checking of the sequence
field (Columns 73-80) should be performed for the echo, tables and
run control cards, "N" otherwise.

9

19

The Tables

Table Data in General

The tables are supplied with the DOTSYS III program and form
an integral part of the process described by this document. However,
circumstances may arise such that the user may wish to alter or
augment the tables. One such circumstance might be a word found
to be incorrectly translated by DOTSYS III, that occurs so often in
a given text that it is impractical to force the correct translation
by special treatment (see the "$/", "/2 and "J" control symbols
under "Forcing and Preventing Contractions" in 'Text Input", below).
In such a case, an addition to the contraction table is called for.

The tables and associated dimensioning cards are to be arranged
in the following order:

(1) the alphabetical contraction list;

(2) the special symbols card;

(3) the alphabet table;

(4) the contraction table;

(5) the card specifying the number of right-context classes;

(6) the right-conteit table;

(7) the card specifying the number of state variables;

(8) the card specifying the number of input classes;

(9) the transition table;

(10) the card specifying the number of decision table columns;

(11) the decision table; and

(12) the sign table.

The formats of the tables and cards listed are given in
following paragraphs. All two-column numerical fields must contain
two digits; in particular, a number less than 10 must be given a
leading zero when used in a two-column field. Numerical limitations
stated in the form; "this number may not exceed . . ." are
appropriate for the table sizes used in the version of the DOTSYS III

10

20

program mentioned in the PREFACE. Refer to "TABLE SIZE BOUNDS"
under "PROGRAM MAINTENANCE" (Section V) if changes in table sizes
are contemplated.

Table Version Control

If changes are made to a table that is shared by other
institutions, a new version has been created and it should be
labeled according to the authoring institution and date, e.g.,
"MITRE 7/75." Subsequent alterations at the same institution, prior
to any external distribution, need not be considered new versions.
If possible, a comment should be given, at the head of the tables
and following other such comments, with the version identification
and information detailing the changes from the previous version,
including the reasons for the changes and any important consequences
for a user. For versions of the table in which comments are not
permitted, it is recommended that similar information be included
in a separate sheet attached to a listing and that copies be
included with any distribution.

If this document is updated, the preface should be altered
to show the corresponding version identification.

The Alphabetical Contraction List

This table contains exactly 189 cards, one for each contraction
defined in grade 2 English braille. The order of input must be
alphabetical. The table is used in support of the self-checking
feature (described under "Text Input" below). The format is as
given in Table I.

Table I

Alphabetical Contraction List Card Format

Columns Contents

1-10 The inkprint contractable letter sequence, left-
justified.

24-31 Four 2-digit braille sign codes (Cf. Appendix IV)
representing the equivalent braille sign(s). 99's
are used for filler on the right.

32-33 Presently ignored, but reserved for a fifth sign
code.

11

21

The Special Symbols Card

This card defines certain symbols that are used in a special

way in the tables, the program, or both. These are listed in

Table II.

Column

1

Table II

Special Symbols Card Format
Usual

Contains Symbol to be used for: Symbol*

(1) contraction table entry
delimiter; (2) in "self-check"
input text, delimiter of contracted
sequences; (3) internally as an "end

of text" delimiter

2 replacing text symbols that are not
found in the alphabet table (note:
this replacement symbol must be in

the alphabet table).

3 capitalization indicator

4 italics indicator

"literal" sign

6 accent mark

7 left parenthesis

8 right parenthesis

*These symbols are generally referred to in their usual literal

form elsewhere in this document, e.g., "%" instead of "symbol

used for accent mark."

12

22.

*

(

The Alphabet Table

The alphabet table identifies all legal text input characters.
The order of input is arbitrary, but for the sake of efficiency
should normally be by decreasing frequency of occurrence of the
symbol. (Note also that the order is related to that of the
contraction table, q.v.) A dummy entry, with 99 in columns 18-19,
should follow the last actual alphabet table entry. Including this
card, the total number may not exceed 64. The card format is given
in Table III. Note that there must be an entry for "II (see "The
Special Symbols Card," above).

Table III

Alphabet Table Card Format

Columns Contents

1 The symbol being defined.

18-19 The input class (must be in the range from 01 to
the number of input classes).
Note: A card with 99 in this field signals that
the end of the alphabet table has been reached.

21-22 The sign code to use when the symbol occurs in a
computer-braille string (see "Text Input," below
and Appendix IV).

24-25 The sign code to use in normal context
(Cf. Appendix IV).

30-31 01 if the symbol may be used as a prefix to, or
as one of a pair of symbols bracketing, a letter
denoting itself (e.g., the quote marks in "f");
00 otherwise.

The Contraction Table

The contraction table contains not only contractions but many
other sequences related to the heuristics of the translation process,
and the definition of special control symbols.

Entries in the contraction table beginning with the same symbol
must be grouped together, and these groups must be arranged-in the

13

23

same order as the corresponding symbols in the alphabet table. Also,
symbols in the alphabet table that have no corresponding section in
the contraction table are grouped, in any order, at the end of the
alphabet table.

Within a section of the contraction table determined by a
common initial letter, all entries having a given second character
must also be grouped together. The order of input of these
subsections is completely arbitrary and usually will vary from
section to section as a function of conditional frequency. This
grouping scheme is continued right up to the 10th character. In

general, if two entries agree through the nth character, then all
entries between them must also agree with them through the nth
character.

A &law entry, with 99 in columns 18-19, should follow the
last actual entry. The total number of cards, including the dummy,
cannot exceed 1,200.

Table IV gives details of the contraction table card layout.

Table IV

Contraction Table Card Format

Columns Contents

1-10 Character sequence, left-justified. If the string
is shorter than 10 characters, then a vertical bar
(I) should follow the last character. (Thus blanks
are permitted in the string.)

16 Right-context class designation; may be specified
(non-blank) only if the string is shorter than 10
characters.

18-19 Input class. Note: A card with 99 in this field
signifies that the end of the table has been reached.

21-22 Shift count.

24-31 Four two-digit sign codes (Cf. Appendix IV). 99's

are used for filler on the right.

14

2.4

The Card Specifying the Number of Right-Context Classes

As its name implies, this card contains the number of right-
context classes that are to be defined. This figure is punched in
columns 18-19. It cannot exceed 05.

The Right-Context Table

This table contains one card per right-context class; i.e.,
there are as many cards as signified on "the Number of Right-Context
Classes" card, just previously described. The layout is given in
Table V.

Table V

Right-Context Class Card Format

Columns Contents

16 A single-character designator for the class being
defined--e.g., "P" for "punctuation."

24-31 Up to four input class codes. All symbols having
one of the listed input classes are implied to
have the right context class being defined. If
there are fewer than four input class codes, the
last one is simply repeated to make four.

The Card Specifying the Number of State Variables

The number of state variables is punched in columns 18-19. This
number may not exceed 15.

The Card Specifying the Number of Input Classes

The number of input classes is punched in columns 18-19. This
number may not exceed 40.

The Transition Table

This tkle contains one card per state variable. On each such
card, the i column contains a character signifying how the state
variable is to be set when input class i is processed. An "R"
signifies "reset" (set to "no"), and "S" means "set" (to "yes"), a
dash (-) means "leave," and "T" means "toggle" (change to opposite
state).

15

23

The Card Specifying the Number of Decision'Table Columns

The number of columns in the decision table is punched in
columns 18-19. This number cannot exceed 20.

The Decision Table

This table contains one card per decision table column. The
layout of each card is given in Table VI.

Table VI

Decision Table Card Format

Columns Contents

1 - nic* The ith card column contains the upper (decision)
section symbol for the input class i. It must be
G, F, Y, N or -. (See "The Decision Table.")

nic - The (nic + j)th card column contains tht_symbol
(nic+nsv)* denoting the condition imposed on the jul state

variable. It must be Y, N or -.

The Sign Table

The sign table contains exactly 64 cards, one for each
"ordinary" braille sign code. (Codes 00 and 64 both refer to
sign 64.) The ith card defines code i. The layout is given in
Table VII.

* nic is the number of input classes, nsv the number of state
variables.

16

26

Table VII

Sign Table Card Format

Columns Contents

1-6 Dots, keypunched as periods, corresponding to the
braille dots embossed for this character. The
correspondence is:

Card Columna Braille Dot No.

1 1 2 4

3 2 4 5

5 3 6 6

7-9 Three characters to,be printed on proof output,
denoting the most common meaning for this sign.

10 Symbol to be used for this sign in Braillemboss
output (see under "Run Control Cards," below).

The Run Control Cards

The run control cards select options that remain in effect
throughout the translation of the text--i.e., for the entire "run,"
or job step.*

There are eight run control cards. The first five select
the output modes (described under "output," below); any combination
is permitted. On these, only column 1 is read; it should contain
an "N" if the output mode is not wanted or a letter associated with
the mode otherwise. Specifically, the options cards are, in order:

*On the IBM 360 under OS, it is possible to use IBM Operating System
Job Control Language to run part of the text input with one set of
DOTSYS III control cards, and change control cards for a succeeding
part of the input. This could be done simply by using the IBM
utility IEBGENER to copy the tabular input onto a temporary disk
data set, say EATABLES. Then, instead of executing the catalogued
procedure COBFLG just once, do it once for each part of the text
input. The SYSIN data set to use is the concatenation of EATABLES
with a DD * data set consisting of the control cards and the text
of that part. Quite possibly, similar facilities exist on many other
systems.

17

27

(1) Proof output (P or N in column 1).

(2) "Elastomer" braille (B or N in column 1).

(3) "RPQ" braille (R or N in column 1).

(4) Punched-card output (P or N in coluW1).

(5) MIT Braillemboss output (M or N in column 1). If
selected (M), columns 16-20 should contain output
characters for the following embosser control
functions: turn on (16); turn off (17); idle (18);
carriage return (19); page (20).

The sixth and seventh control cards select the braille page
dimensions. In both cases the required number is punched in
columns 18-19:

(6), The number of braille signs per line (not less than 2
nor greater than 40).

(7) The number of lines per 11-inch page. Table VIII gives
suggested values for this item for certain kinds of
output.

Table VIII

Suggested Number of Braille Lines Per Page

Line Printer Setting
Lines/Inch

6 8 10

Proof 10 13 16

Output

Elastomer 15 20 25

Braille
Output

28

18

The last card determines whether or not automatic titling and
page numbering is to occur:

(8) If the top line of each braille page is to be reserved
for a running title and automatically produced page
number, a "P" should be punched in column 1 and the
starting page number should be punched in column 1 and
the starting page number should be punched in
columns 32-35. Otherwise, a "N" should be punched
in column 1. In this latter case, no automatic page
numbering is done and running titles, while still
permitted in the input text, will not appear on the
output.

Text Input

General Keypunching Rules

Text is punched in columns 1 72 of each text input card using
an EBCDIC keypunch (e.g., IBM 029) or the equivalent multiple punches
on another model. Letters, numbers, and punctuation are reproduced
as they appear in normal typewritten English text, with the
exception of quotation marks, accent marks,mathematical-symbols,
and brackets ([,]). However, additional symbols must be added to
the text to indicate capitalization, italics, and format controls,
to force or prevent improper translations in exceptional cases, and
to define the correct translation for self-checking purposes.

Column 72 of a card is considered to be adjacent to column 1
of the next card. In general, any number of spaces will be collapsed
automatically into a single space (.refer to the description of ttie
primary input processor), except following a period, where a number
of spaces greater than or equal to 2 will be interpreted as 2 spaces;
(e.g.:

is interpreted as

THE START. THE END.

THE START. THE END.)

Capitalization

If the first letter of the inkprint word is capitalized, the
keypunched word must be preceded immediately by an equals sign (.).
If the whole inkprint word is capitalized, the key-punched word must
be preceded immediately by two equals signs (..). When Roman

19

29

numerals are written as capital letters, a single equals sign must
be used before a single letter and two equal signs must be used
before numerals containing two or more letters.

Italics

If only one, two, or three successive inkprint words are
italicized, each of the words must be preceded immediately by an
(underline (_) when keypunched.

If four or more successive inkprint words are italicized,
the first word must be preceded immediately by two underlines (__)

and the last by one underline.

Indicating Contractions in Self-Checking Mode

If the self-checking feature of DOTSYS III is to be used, then
all contractions which should be made must be surrounded by vertical

bars (I). Refer to the section entitled "Self-Checking", below.

Ordering

When two or more special signs must be punched (e.g., an
italicized capital letter), the ordering should be:

Italic sign (_)

Capital sign(s) (=, or ==)

Accent sign (%)

Vertical bar (I)

Forcing and Preventing Contractions

The form of any contractable letter group can be forced to

occur, regardless of context, by surrounding the letter group with

the symbols " /_" and " /". For example:

a/_dd_/

would cause the "dd" contraction to be used even though otherwise

the program would not (and should not) use it at the end of a word.

A contraction that would otherwise occur can be prevented by

introducing the null replacement symbol $/ (see below). For example,

20

30

DISE$ /ASE

will prevent the "EA" contraction.

Replacement Symbols for Special Characters

DOTSYS Reserved and Special Literal Symbols. DOTSYS uses
certain symbols in a special way or as the first character of a
class of special control symbols. Any one of these, viz. $, %, /, &
and #, may be forced in any particular instance to translate as
itself, regardless of context, by preceding the symbol with "$:,"
e.g.

$:$ for $
$:& for &

In cases where it is necessary to emphasize that the special symbol
itself is intended (e.g. & is indistinguishable in braille from
"and" - see Reference 1, rule VIII, Paragraph 31.a) the control
$SYM should be entered prior to the symbol, $: combination, or
spelling-out, e.g.:

$SYM:& for &
$SYMAT for @
$SYM# or SYM:# for #

Mathematical Symbols. .Symbols such as + (plus), - (minus),
(equal), > (greater than), and < (less than) must be spelled out

as words, even though they appear on the keypunch.

Quotation. Marks. The single quote character on the keypunch (1)
is always taken to mean an apostrophe; thus, special symbols must be
used for single quotes.

$' is punched for a left single quote.

$'R is punched for a right single quote.

Ordinarily, the double quote (") on the keypunch may be used for
both left and right double quotes. However, double quotes within
the scope of another pair of double quotes must be represented by
special symbols.

$" is punched for a left double quote within quoted text.

$"R is punched for a right double quote within quoted text.

21

31

Accent Marks. Any accent or other diacritical mark used with
a letter (such as e, 6, 6, a, 0 is represented by preceding the
keypunched letter with a percent sign (%). For example, Abbe is
keypunched =ABM. However, see the section entitled "Foreign
Languages" for proper handling of passages in foreign languages,
other than anglicized words or proper names.

Brackets.

< is punched for a left bracket (E).

> is punched for a right bracket a).

Short Syllable Sign. To insert a short syllable sign, the
special symbol $SV is used.

Long Syllable Sign. To insert a long syllable sign, the
special symbol $LV is used.

End of Poetry Foot Sign. To insert an end of poetry foot
sign, the special symbol $FT is used.

Caesura Sign. To insert a caesura sign, the special symbol
$CS is used.

Forced Blanks. To produce multiple blanks or otherwise control
their placement, the symbol $B is provided. One blank is produced
for each occurrence of the symbol (e.g., ABB$BC produces A C).

Letter Sign, Division (or Null) Symbol, and Termination Sign.
These are discussed under "Notes to the Braille Editor," below.

Grade Switch ($G)

An occurrence of the grade switch, $G, changes the mode of
translation from grade 2 to grade 1 or vice versa. It must precede
and follow any sequence of characters in which no contractions are
to be used, such as a foreign word. $GON (grade 1 on) and $GOF

(grade 1 off) may be used as more perspicuous alternatives to $G,
but caution should be used that they occur in pairs for they are
merely synonyms to $G.

Foreign Languages

General. Works incorporating passages of foreign language text
must be translated uncontracted and using special braille signs for

22

32

special symbols such as accented letters (Reference 1, Rule V,
Paragraph 24-26 and Appendix B).

Mode and Grade Switches. The class of language to be so
translated must be declared in advance by use of a "$FL" (foreign
language) mode switch. The two presently available are:

$FL-SPAN
$FL -LIFG

Spanish
Latin, Italian, French, and German

The mode switch need be entered only once in the text, unless the
class is to change in the midst of the text, and may be placed'any-
where before the foreign language passage(s). If no switch is
present, $FL -LIFG is assumed.

Note that a mode switch is required not only because more
abbreviated input symbols were chosen for Spanish,,as discussed
below, but also because one inkprint symbol, viz. e, is brailled
differently in the two language classes and so a unified set of
input symbols was not possible.

A switch into grade 1 mode ($G. . .$G or $GON. . .$GOF) should
be made for the entirety of each foreign language passage.

Latin, Italian, French and German Symbols. For vowels with
accents, enter "&" followed by the vowel followed by:

A for an acute accent C.)
G for a grave accent (1
C for a circumflex accent (")
D for a diaresis or umlaut (-)

For example, &EA is input for 4. For other special symbols:

enter for

&CC 9 (cedilla)
&AE ae (diphthong)
&OE oe (diphthong)
$LV long vowel sign (before affected letter)
$SV short vowel sign (before affected

letter)

Spanish Symbols. For vowels with accents, enter "&" followed
by the vowel for all acute (') accents. Enter &D for U. For

other symbols:

23

33

enter for

&N

&? I, or ?

&I i or I

- - (preferred) or $- opening conversation sign (--)
- - (preferred) or $-R closing conversation sign (--)

The conversation signs should be entered before the first quoted word
or after the last with spacing conforming to inkprint.

Format and Mode Control Symbols

Keypunching Rule for Spaces Around Format Controls. Unlike
replacement symbols where spaces before or after the symbol are
interpreted as spaces (i.e., word dividers), any spaces before or
after format symbols are ignored. However, the general rule is to
provide spaces around each format symbol to avoid possible ambiguity
(e.g., $LVOICE would be interpreted as $LV OICE even though $L VOICE
may have been intended). Otherwise, the control symbols will
usually operate properly regardless of the presence or absence of
blanks.

Paragraphs. The symbol $P must be keypunched to indicate the
beginning of a new paragraph. The text following the $P is started
on the next line after two spaces (that is, starting in the third
cell position). Use $P" to start a paragraph within a quotation.

New Line. The symbol $L may be used to begin a new output
line. Caution: at most one line will be skipped, even if the
$L symbol is repeated. To skip more than one line, see "Skip
Multiple Lines."

Skip Multiple Lines. The symbol $SLnnb, where'b is a blank
and nn is a two digit number (with a leading zero, if necessary)
will skip the number of lines indicated, and output will continue
from the left margin.

New Page. The symbol $PG may be used to begin a new page.

One-Time Tabulation. If the symbol $TABnnb is punched, where
n's represent digits and b represents a blank, the text beginning
immediately after the blank will be started at column nn.
Tabulation is implemented by the automatic insertion of spaces into
the output and will therefore proceed to the next line if nn is
less than or equal to the present column number. A leading zero
must be supplied if the column number is 9 or less.

24

34

Permanent Tabs. Numbered tabs can be set so that the user can
right, left, or decimal point justify a word or number on any column.
For example, the symbol $STB4L03 means set tab 4 to left justify on
column 3. The symbol $STB means to set tab, followed by the one
digit number of the tab to be set, followed by an L for left
justification (alignment of the left most character), R for right
justification or a D for decimal justification. The last two digit
numbers are the column on which justification is to take place. After
a tab has been set, it may be executed any number of times by
inserting the symbol $# followed by the one digit number of the tab
to be executed. (Example: $STB4L03 $#4 LEFT--will left-justify the
word LEFT on column 3. The symbol $#4 can be used any number of
times.) If a tab is called in a cell position less than or equal
to the present position, output will begin on the next line.

The definition of a given tab number may be changed as often
as desirable in the text. Initially, all tabs are set to left-
justify on column (5 x tab number).

Titles. Titles are placed between the symbols $TLS (Title
STARTTia$TLE (Title END), (e.g., $TLS THIS IS A SAMPLE TITLE $TLE.)
After a title has been inserted, each subsequent page has a centered
title as its first line (the same line which contains the page number).
Pagination must be turned on for titles to appear on output (see
"The Run Control Cards"). If a new title is entered, it takes the
place of the old on all future pages. Entering the title does not
automatically turn to a new page.

Headings. These are similar to titles except that the control
symbols are $HDS and $HDE and that headings are a one time occurence.
Headings are centered on the next line with subsequent input
beginning in column 1 of the line after the heading. Headings that
overflow begin in Column 4 of successive lines.

Poetry. The symbols $PTYS (Poetry START) and $PTYE (Poetry
END) are placed before and after all poetry text input. In this

mode, the mrltinuations of all poetry lines which exceed the
physical length of the output line will be indented two spaces.

Turning the Self-Checking Mode On or Off. The symbol
$SCON$/$/$/$/$/ is used to turn self-checking on and $SCOFF is used
to turn self-checking off. (See "Self-Checking" below.)

25

35

Self-Checking

Self-checking is a feature that allows DOTSYS III to be used to
check itself (and the contraction table) against a text specially
marked to indicate the correct translation. This is accomplished
by automatically comparing the results of two translations:

(1) the normal process, ignoring the special markings, and

(2) a trivial special process, wherein the markings are
used to determine where contractions occur.

Discrepancies are flagged on the output, so that the clerical effort
required to check the program's correctness is greatly reduced.

A deck containing 5,808 typical and problem words and phrases,
taken from the Transcribers' Guide to English Braille (Reference 6),
has been prepared with the special markings necessary for self-
checking.

In order to turn on self-checking, a control symbol
($SCON$/$/$/$/$/) must be included in the text. The text following
this symbol is punched normally except that vertical bars (I) should
immediately surround any sequence of letters that should be
contracted in a word. For example,

ever v Shfine

should be punched IEVERIYITHIIINGI

Note: A vertical bar at the end of the word and followed by a blank
may be omitted; i.e.,

IEVERIYITHIIING is an acceptable variation.

Those braille words not passing the comparison test are output
as they ordinarily would be but flagged by appending two braille
"for" symbols (all dots). In the proof output, the comment "TSK nnn"
appears to the right of any line containing a flagged word. (If the
first word in a line is in error, the TSK appears on the preceding
line. In this context, a word is any sequence of non-blank braille
symbols.) The nn is simply a sequence counter, incremented by one
for each discrepancy.

*Throughout this report, an underlined sequence of two or more
letters in an example denotes a group contractable in braille.
Adjacent contractable letter groups are separated by a slash. This
is consistent with common practice (Refs. 1 and 6).

36

There is only one known situation where, assuming correct
input, the program will fail to flag a word that is incorrectly
translated. That is when a letter sign should be added by the
translator and is not; for example, the "ab" of

punched

ab initio (italicized),

INIITIO,

should be preceded by a letter sign in braille. These cases are
indicated by an asterisk in the Transcribers' Guide, so that manual
checking of these is fairly easy.

More commonly, words are flagged as wrong that are in fact
correct. There are two situations where this can occur.

(1) Synchronization: When, for whatever reason, the
correspondence between inkprint (punched) words (sequences of non-
blanks) and braille words is not one-for-one, a possibly spurious
error due to synchronization will be flagged. For example, the first
space in the phrase "by. the by" is reoed in braille; the word
will not compare withhe bythem,

v

causing a synchronization

error. Control inputs (STAB, etc.) also cause spurious errors of this
class, but controls are not normally used in problem word lists.
Typically, the word where the synchronization failed and the one
after it are flagged before proper synchronization is reestablished.

(2) "Perceiving": For the sake of saving space, only the
first four braille sign codes are read into the alphabetical
contraction table, even though five are punched on the table input

card. This means that "perceiving," the only 5-sign contraction, is
not properly represented in the list and so words containing this
contraction will be improperly flagged.

All of the spurious error flagging (or failing to flag),
except possibly for the synchronization errors, could be corrected
with somewhat more logic and/or storage cost in the program. At

least in the case of the 5,808 problem words, these problems have
not been sufficiently bothersome to warrant the expenditure.

27

37

Octal Braille
At

Octal braille permits the user to generate
arbitrary braille cells directly. A particular
selected by a two-digit code. This code is the
associated with the dots in the cell, according
association scheme:

ak.e

Braille
Cell

Dots

10 1

20 . 2

40 4

a sequence of
braille cell is
sum of the numbers
to the following

The codes for the desired braille cells are placed in sequence,
following the special sign $OCT. The first blank after $OCT
terminates the sequence.

The code is actually an octal representation of the braille
cell. Example:

S0CT521163107000307270

will translate into
0

0

1

OCTAL B R L

Computer Braille

Computer braille is similar to octal braille except that it is
driven by characters rather than two-digit numbers and is initiated
by the special sign $CPB. When using computer braille, a character
is represented by the two-digit braille sign code punched in columns
21-22 of the corresponding alphabet table input card. This two-
digit number is determined by the sum of the numbers associated with
each braille dot in the table:

1 . .8
2..16
4 . . 32

28

38

Example:

Entry in alphabet table:

Column 1
if

18

+
21

01 41

+
24

15

30

00

Text Input:

$CPB%%%%

will cause output

fi

Notes to the Braille Editor

Role of the Editor

This section indicates where the intervention of the editor is
required and presents the tools available to the editor to implement
his intervention. Generally speaking, the nineteen problem situations
listed in the Memorandum on Braille translation (Reference 5) by
R. L. Haynes summarize where the intervention of the braille editor
is needed.

There are basically two ways in which the editor can ensure
proper translation in problem situations: (1) instructing the keypunch
operator to add certain symbols to the input text; and (2) modifying
the tables which control DOTSYS III. Modification of tables is
explained under "Tables" above; the only time it would be done under
normal circumstances would be when a problem word occurs often in a
particular body of text; in that case, its correct translation would
be added to the contraction table.

In the remainder of this section we shall discuss the special
symbols which can be inserted in the input text and the situations
in which they are helpful or necessary. These symbols are the
letter sign (+), the division symbol ($/), the forced-contraction
symbols (/_, .1), and the termination symbol ($T). The editor's
attention is also directed to the sections on the grade switch,
octal braille, computer braille and the self-checking feature.

29

Letter Sign (-9

The editor must insert the letter sign when:

(1) a letter which means a letter stands alone and is not
followed by a period indicating an abbreviation and is not italicized
or surrounded by double quotes or parentheses.

(2) the capitalized or uncapitalized letter "a", "i", or "0"
requires a letter sign in the braille, except when used after a
number or as a word.

(3) combinations of letters that could be confused with short-
form words appear in the input text. (It is suggested that a con-
traction table entry be used to insert the letter sign if such a
letter combination occurs frequently. The tables already contain a
number of frequently used abbreviations.)

In other situations the program inserts the letter sign auto-
matically where necessary (where one has not already been inserted
in the input).

Division (or Null) Symbol ($/)

The division symbol is a useful and versatile tool of the
braille editor, although its operation is simple: it merely prevents
contraction of a letter group which crosses it. For example, for
the lisped word "thentury", the "the" contraction is avoided by
inserting the division symbol after the "th", thus: TH$ /ENTURY. It
may be placed between the parts of compound words, such as NUTS/HATCH.
It may be placed between prefixes and stems, as in BI$ /NOMIAL, or
indicate syllable division, as in PERITO$ /NEUM and SKI$ /DADDLE.

The division symbol may also be used in cases where the symbols
to be translated are coincidentally DOTSYS III control symbols. For
example, $$/TAB22 will be translated as "$TAB22" literally, avoiding
the control tunction "tab to column 22." Even "$/" may be generated
for output by supplying "$$//" as input.

Forced-Contraction Symbols (/_, _/)

These symbols are used to force a contractible letter group to
be contracted. See "Text Input" for a complete description.

30

40

Termination Symbol ($T)

This translates into the double sign dot-6, dot-3, in the output
where required (Reference 1, Rule II.11a).

OUTPUT

Echo Output

When selected by the echo card (q.v.), a literal listing of the
table input and run control cards is produced following the image of
the echo card itself, which is always printed. This printout is
placed on the SYSPRINT logical device, preceding the proof output
(q.v.), if any. Error messages (q.v.) may be interspersed with the
echo output.

Proof Output

Though proof output is optional (see "Run Control Cards"), it
is normally called for except, perhaps, in final production runs.
It is essentially a printout for the use of a sighted braille editor;
the braille signs are represented as printed dots. This printout
occurs on the same logical device (SYSPRINT) as the echo output and
error messages (q.v.); error messages may be interspersed with the
normal proof output.

The first three pages of proof output display the contents of
the right context table, the decision table, and the transition table
in a form much easier to read than the literal echo listing.

The remainder of the output is primarily a page-by-page, line-
' by-line representation of the braille output, using periods for
- braille dots. Below the braille signs are up to three characters

intended to help identify the sign. If the sign represents a letter,
for example, the letter itself is printed below the sign. The
identification characters depend only on the sign (as determined by
the sign table, q.v.) and not its context. For example, the sign for
"K" has the identification character "K" even when it represents the
word "knowledge." Below the identification characters is printed the
braille sign code in the range 0 through 63, which may be used to
check the punched output. Figure 2 contains a sample of proof output.

31

41

A literal listing of the text input cards, as read, is also
produced between the lines of braille output (where a "braille output
line" is actually a group of five printed lines). These card images

will generally occur somewhat sporadically, with two or more occurring
together at times and none between pairs of braille lines in other
cases. (For separation, a blank line is printed in the latter case.)
Typically, a given input word and the corresponding output are
separated by about two braille lines.

If self-checking is in effect, the word TSK with a number
immediately under it may appear on the far right of the page, to call
attention to mistranslations. See the section entitled "Self-

Checking."

Appendix VIII contains a full page example of proof output.

Elastomer Braille Output

Elastomer braille output consists of the braille signs (dots)
only, with each line produced in mirror-image. This output is suit-
able for a form of embossing on a line printer which has been modified
by placing an elastic band between the print hammers and the paper.
The elastic band might be a rubber band, soft polyurethane, a garter
belt, or whatever the user's ingenuity can provide. It can be held
on by tape or wire at the ends, or, on an IBM 1403 line printer, by
hooks obtainable free of charge from IBM if requested under the
number RPQ 818047. The number of lines per inch should be set as
close as possible to ten.

This output, if selected, is placed on logical device SYSBRL.
Figure 3 contains a sample of Elastomer braille as it would appear
on the printed, or depressed dot (as opposed to raised dot) side.

iAM PEE BRE E.IN E
32 14 01 13 15 07 17 00 03 23 07 00 07 20 17 00 00 00 00 00

Figure 2. Sample of Proof Output

32

42

Figure 3. Elastomer Braille Output for Line in Figure 2

RPQ Braille Output

RPQ braille is similar to elastomer braille (q.v.) in most
respects, with an additional modification to the print chain (IBM
RPQ F19229) so that spacing of the dots is closer to the braille
standard. This output, if selected, is placed on logical device
SYSRPQ.

Punched Card Output

Punched card output makes possible the processing of DOTSYS III's
braille output by other programs--for example, to produce tactile
braille on a computer system which can drive an embosser but cannot
support a suitability modified DOTSYS III.

Each card represents one braille line; page boundaries are not
represented. Forty two-digit braille sign codes are punched on each
card, with 00's filling out the line on the right. Figure 4 illustrates
part of a card containing punched output.

Punched output is placed on logical device SYSPUNCH. Of course',

on systems supporting a logical file concept, this device need not
be physically a card punch but could be, for instance, a tape con-
taining equivalent card images.

MIT Braillemboss Output

This is a sequence of characters that is usually put out
through a teletype directly attached to a Braillemboss. Alternatively,
a paper tape may be punched as an intermediary. The lines of outpgt
in this mode contain padding (idles) and other controls suitable for
this device.

Error Messages

Error messages are unconditionally printed on SYSPRINT, thereby
appearing intermixed with echo and proof output, if any. The

33

.43

following is a list of the possible messages. For each entry, "A"
is an explanation, "B" is the program's automatic action, and "C" is
the suggested user response.

(1) NEW CHAR X

A. The character printed (X) has appeared in the input
text but does not have an alphabet table entry.

B. The character is replaced by "*" and processing
proceeds. (Note: processing stops if asterisk
is not in the alphabet table.)

C. Correct the text input or provide an alphabet
table entry.

3214011315071700032307000720170000000000000000000000000000000

Figure 4. Punched Card Output for Line in Figure 2

(2) **TABLE SEQUENCE ERROR

A. A contraction table section is out-of-sequence with
respect to the alphabet table order.

B. The "echo" option is turned on, if it is not on
already, so that at least the remainder of the
tables will be printed. Reading of the tables is
continued but processing of the text is suppressed.

C. Refer to "Input" for a discussion of the
relationship between the alphabet table arrangement
and that of the contraction table, and rearrange
accordingly.

(3) **FOLLOWING CARD(S) OUT OF SEQUENCE

A. An out-of-order card was found in the section of
the input containing the echo card, the tables and
the run control cards.

B. Processing of this section is continued but
processing of the text is suppressed.

C. Reestablish correct order or correct the sequence
number.

35

4 5

SECTION IV

PROGRAM TRANSFER

This section contains a checklist of steps required to bring
DOTSY I into operation on any computer having a Standard COBOL
compi erandfsufficient core storage to execute DOTSYS III. 'Standard
COBOL' COBOL according to Reference 4 having the level 1

nucleus, table handling, and sequential access. The core storage
required depends on the compiler and on the size of the contraction
table. With the IBM 360 level F compiler and 1,200 contraction table
entries, about 72,000 bytes are required.

. The program can be made about fifteen per cent faster, without
affecting its translation capability, by replacing the alphabet
search by a machine-dependent indexing scheme, at the expense of
reducing further transferability and increasing the program size.
The method of doing this is explained under "Maintenance."

Here is the checklist of steps to transfer DOTSYS III:

(1) Rewrite the environment division of the program in
accordance with the COBOL manual for your computer and peripheral
units. Keep in mind that SYSINPUT is the input file, and SYSPRINT,
SYSPUNCH, SYSBRL, SYSRPQ and SYSMEMB are output files. Other
information about them is in the file description (Fb) entries in
the data division.

(2) Check the file description entries (in the file section of
the data division) to ensure that the block size and label records
are specified correctly for your installation.

Punched output records may or may not begin with a control
character (for pocket selecting), and the control character, if
present, varies with the installation. DOTSYS III is set up to place
a control character in the beginning of each punched output record;
the control character used is the value of the data item POCKET-
SELECT in the working storage section. If no control character is
to he used, remove the 02-level data item FILLER in CODED-OUTPUT,
and change the sentence

WRITE CODED-OUTPUT AFTER POCKET-SELECT

in the BREAK41 paragraph of the OUT-OUT section to

WRITE CODED-OUTPUT

37

46

(3) Check the COBOL character set at your installation against
the characters in the program. Some characters, such as the single
quote (s), greater than (>), less than (<), and equals (=), may have
to be replaced by other characters or expressions.

(4) Check the character set of your computer and keypunch
against the characters in the tables. Remove or replace table
entries containing illegal characters. Inkprint characters having
no single-character machine-readable form may be represented by
multiple-character symbols, just as in the case of single quotation
marks. They are implemented via contraction table entries. Be sure
to inform the keypunch operator of your choices in this matter.

(5) If your COBOL does not permit the COMPUTE verb, replace
each occurrence of it by an equivalent sequence of individual
arithmetic operations. For example, the sentence "COMPUTE I = N *
M + J." may be replaced by the two sentences

MULTIPLY N BY M GIVING I.

ADD J TO I.

(6) Update the comments in the tables or program, as
appropriate, to label and describe the new version. (See PROGRAM
VERSION CONTROL in the next section and "Table Version Control" in
the USAGE section.)

(7) Compile the program to obtain an object deck. If the
object program is too large, try leaving out the table display
routine in INITIALIZATION, from TABLE-DISPLAY through SKIP-DISPLAY.
If the self-checking feature is not to be used, another possibility
would be to shorten the alphabetic contraction table, or even to
remove it and all associated code. As a last resort, decrease the
contraction table bound (and shorten the table input accordingly).

(8) Execute the program, using standard test case input if
possible.

38

47

SECTION V

PROGRAM MAINTENANCE

WHEN MAINTENANCE MAY BE REQUIRED

This section presents certain details of the COBOL implementation
of DOTSYS III. It is for use in making changes in the tabular
input, and in the program itself, that may be made necessary Or
desirable by the transfer of DOTSYS IIIitranother installation, a
change in peripheral units, a change in the braille translation rules,
or a desire to improve the conformity of the translation with the
braille ideal.

PROGRAM VERSION CONTROL

When any change is made to a version of the program that is
shared by other institutions, a new version has been created and it
should be labeled according to the authoring institution and data, and
information on the change should be incorporated in a comment at the
head of the program, just as is done for the tables. See "Table
Version Control" under "INPUT," above.

TABLE-SIZE BOUNDS

The maximum capacities for a number of tables are conceptually
variable, in that only a few OCCURS clauses or other references
need be changed and the program recompiled, to effect an increase
or decrease. These items are listed in Table IX.

Table IX

Variable Table Capacity References

Table Item or (Paragraph) Name

Alphabetic Contraction LIST-ENTRY, (LOOP2A), (LKUP-CC)

Alphabet ALPHABETIC-ENTRY

Contraction TABLE-ENTRY

Right Context RIGHT-CONTEXT-TABLE-ENTRY

39

48

Table IX (Concl.).

Variable Table Capacity References

Table Item or (Paragraph) Name

State Variables TRANSITION-TABLE-COLUMN, CONDITION

Input Classes DECISION, TRANSITION

Decision Table (width) DECISION-TABLE-COLUMN

Stacks (no. of entries) STACK, (LOOP1-twice)

Stack (entry width) ELEMENT, (ORD-CHAR-OUT),
(CARRIAGE-CONTROL),(MOVE-ERROR-
PARAGRAPH)

Self-Checking Ring (entry width) ELEMENT-TRANS, (NOT-IN-CONTRACT),
(C-L-NOT-FOUND), (BRL-E-MOVE)

Note that increasing the size of a table in such a way that the
number of digits required to index it is increased (e.g., a change
from 99 to 101) may require that the PICTURE clause for data items
used as indices (subscripts) to that table may have to be changed
(e.g., from S99 to S999). Note also that in some cases a dummy
(terminator) entry is actually stored in the table.

REPLACING THE ALPHABET TABLE SEARCH BY DIRECT INDEXING

The first step in translating the current contents of the
buffer is to find the alphabet table entry for the leftmost character
in the buffer. In order to preserve machine-independence, DOTSYS III
does this by searching the alphabet table linearly from the top for
a match with the leftmost character in the buffer. If the alphabet
table has been ordered with the higher-frequency items nearer the
top, an average of about nine entries is tested. On the IBM 360/50,
that takes about one millisecond, or roughly fifteen per cent of the
average time spent per character.

On some machines, including the IBM 360, it is possible to
reduce drastically the time required to find the appropriate alphabet
table entry, by using the test character itself as an index. This is
done by moving the character to a data item defined as USAGE DISPLAY
(the default case) but redefined as USAGE COMPUTATIONAL. For example,

40

.49.

on the IBM 360, the data item below describes a half-word integer
whose value is determined by the character moved into its right-
hand byte; its left-hand byte is binary zeroes.

01 CHARACTER-INDEX.

02 LEFT

02 RIGHT

PICTURE X, VALUE LOW-VALUE

PICTURE X.

01 N REDEFINES CHARACTER-INDEX,

PICTURE S999, USAGE COMPUTATIONAL.

Thus, if a character is moved to RIGHT, then N is a number
determined by that character, and can be used as an index into an
array of pointers to the appropriate places in the alphabet table.
For example, suppose the array of pointers is called ARRAY-OF-POINTERS
and the left most character in the buffer is a space, whose
alphabet table entry comes first. Moving the space to RIGHT gives N
a value of hexadecimal 40 or decimal 64; the 64th entry in ARRAY-OF-
POINTERS should be 1 since the space entry is first in the alphabet
table. Thus, the two sentences,

MOVE RL1 TO RIGHT.

MOVE ARRAY-OF-POINTERS (N) TO LETTER.

replace the alphabet table search, provided that ARRAY-OF-POINTERS
has been properly initialized, which takes only two sentences in the
READ-ALPHABET loop during initialization. The same thing can be done
to replace the search occurring in the paragraphs following TEST-NON-
TERMINAL (which check right context) in the translation section.

Note that with indexing, there is no longer any need to order
the alphabet table according to frequency; however, the order of
contraction table sections must still match the order of the
associated alphabet table entries.

The price paid for the reduced search time is an increased
storage requirement, since ARRAY-OF-POINTERS must have 2K entries,
where k is the number of bits in 2 character. On the IBM 360,
ARRAY-OF-POINTERS would take up 20x2 = 512 bytes.

41

50

CONTRACTION TABLE SEARCH ALGORITHM

General Rationale

A form of tree search has been implemented for comparison of a
string against the contraction table. This algorithm is inherently
much more efficient than a linear search for any size table.
Moreover, the proportionate cost (in time) for new entries is reduced:
the time increases only logarithmically, rather than directly.

The method takes advantage of the fact that often a comparison
failure on, say, the third character implies that quite a few
additional entries (with the identical first three characters) can be
skipped around. The method also conserves space in that only one
numeric field must be added to each table entry to support the
algorithm.

The basic idea is quite simple. In a given initial-letter section
of the table, all the entries which start a new subsection (wherein
the first two letters are identical) are chained together, using the
added "branch" field as a forward link. This forms the "level 1"
chain; a level 2 chain may be formed and so forth. The implicit
structure is that of a binary tree. During search, one either follows
the branch (continues on the current chain) if comparison failure
occurs at the character whose index equals the current level, or else
goes to the next entry and one level higher.

The main complication with this process is that, having reached
the highest point in the tree and still not having found a match, it
still may be necessary to return to the lower level. For example,
"AB" may be at level 2 and would probably follow "ABCDE"--at, say,
level 4--in the table. The key "ABCDF" would thus reach at least
level 4 and yet may not actually match until the "AB" is encountered.
The handling of this situation in the algorithm is facilitated by
indicating the level of the next entry whenever the current level
chain ends. This level is entered in the brinch field, in negative
form so as not to be confused with a forward pointer and also to
indicate that the forward pointer is null.

It should be noted that the table must be properly ordered on
input in order for the algorithm to work. The proper ordering
condition is that entries whose first p letters correspond must be
together in the table; formally, using the notation defined below:
if there exist two entries, with indices q and r (q < r) and an
integer p > 0 such that Cqj = Cr for all j in the range 15 j p,

then for all t in the range q < t < r it is also true that Cqj = Ctj
for all j in the range 1 5 j p.

42

Notation

The notation used in the flow charts (Figures 5 and 6) is as
follows:

LET

C.
th .thbe the j character in the entry of the contraction

table.

thbi be the value of the branch field for the

s
k

be the index of the first entry in the contraction
table for the kth initial letter.

e
k

be the index of the last entry for the kth initial letter.

L be the index for the lowest entry to be considered at
the current level.

H be the index for the highest entry to be considered at
the current level.

V be the highest index for the current initial letter.

n be the current level.

A
n

be the upper index bound for the n
th

level.

m be the number of entries in the contraction table, not
counting the extra "end of table" entry.

M be the number of initial letters.

.be the j th
character in the current input string (stringwj

being looked up).

43

52

Start

For i = 11 (1) m + 1: b1 .0--0

k 4 1
n 4-- 1

L 4 s
k

H ek

no i = L + 1?
bL4--(-bi)

LL+ 1
b.i 4n

V 4 H

i 1-.4 L + 1
Yes i > H?

CLn = I? Yes

Yes ii.> H?

C
Ln in= C ? No

,....' i .-- i 4. 1

An

5
L

bi

n

An

n n + 1

b
L

(-n)

L 4 L + 1

L 4 L + 1
H i - 1

LL~> H? No

n --- n - 1

n = 0? Yes

An-1-1 n > 1

H.-

V n < 1
1

1

k4 k + 1

K > M? No

Dolne

Figure 5. Set-Up Algorithm

44

5

Start

1

i 4
sk

i > m?---- Yes "not found" exit

n-- 1
I

C
ij

= 'I'? ----Yes -. Test right context &
decision table:

wj = Cij? No 1

j 4-- j + 1

j > 9? ---- Yes---
I

i

b.
1

> 0? Yes

j= n? ---- No

1

Flunk Pass

(-bi) < n? Yes

i 4-- i + 1

No ----- b.
1

> 0?

i 4-- b.
1

n 4-- (-bi)

n > 1? No

i 4 i + 1
I

1

"found" exit

1
Yes j----- n?

i41 b
1

.
bi = i + 1? No

i 4-- i + 1

n41-n+ 1

Figure 6. Look-Up Algorithm

45

54

APPENDIX I

DOTSYS III
(TABLES 10/70)

Holin/sh/ed
hornblende
hyaena
in/en/arrable
inglenook

TRANSCRIBERS'
GUIDE

Holinshed
hornblende
hyaena
inenarrable

DOTSYS III
(TABLES 10/70)

pandemonism

TRANSCRIBERS'
GUIDE

pandemonism

R24PmetSS.
Persephone
persever/ance

pedometer
Persephone
persever/ance

inglenook
insofar
lone

pigheaded
poke root
potherb

pigheaded
pokeroot
potherb
praenomen
pronephros
pros and cons

insof/ar
Zone
Iredell
isinglass
jibboom
krone

Iredell
isinglass
jibboom
krone

Letter/er
Letterman
Lever

lineage
lingerie
Littleton
locoweed
Loffler
maenad
Maugham
men/ingeal
mesitylene
Micronesian
midwifery
minestrone
mistitled
More's

praenomen
pronephros
pros and cons
protonema protonema

rareripe
rawhide
Reno
rer/edos
retroflex
riboflavin
ropedancer

salatagle
sawhorse
Sheean
shorthand
shorthorn
Shoshone
skedaddle
snakeroot
so

Somes
Soong
sou
spathose
speakeasy
spikenard

stirabout

staghound

stiereoisomer

::rednLdo

Letter/er rar/eripe
rawhide
Reno
reredos
retroflex
riboflavin
roped/ancer

Letterman
Lever (bros.)
lin/eage (alignment)
ling/erie

Littleton
locoweed
Loffler
maenad
Maugham
men/ingeal
mesitylene

saintonge
sawhorse
Sheean
shorthand
shorthorn

Shosh/one
skedaddle
snakeroot
so (musical note)*
Somes

Micronesian
midwifery
minestrone
mistitled
More's (name)
muraena
nea/therd

muraena
neatherd
newsletter

SR2a&
sou'ea/st/er
spathosenewsletter

nuthatch
Oenone

nuthatch '

Oenone
oerst/ed
optime
Osgood
ou/ghtlins
outhaul
padrone
paleaceous

speakeasy
spikenard
spumoneoer/st/ed

optime stagh/ound

Osgood st/ereoisomer
oughtlins stirabout

ou/thaul
padrone

stringendo
suede

super/erogatory
suede

supererogatorypaleaceous

*misspelled

47

55

DOTSYS III
(TABLES 10/70)

auprar/enal
awastikaed
taenia
tearoom
tearose
teleran
'Theresa

lh iourea

loadeater
tonelada
transmental
treenail
trenal
treponema
tuberose
tufthunter
tweedledee
tweedledum
'Wouldn't
Undenomin/ational
UnaiOgating
Us'n
Vainglorious
Vandyke
V iolone

wakerife
Wenceslaus
Whadlaza
Wingate
wired/ancer

Wiseacre

APPENDIX I (Conci.)

TRANSCRIBERS'
GUIDE

suprarenal
swastikaed
taenia
tearoom
tearose
teleran
Theresa
thiourea
toadeater
tonelada
transmental
treenail
trenal
treponema
tuberose
tufthunter
tweedledee
tweedledum
'twouldn't

undenomin/ational
underogating
us'd
vainglorious
Vandyke
violone
wakerife
Wenceslaus
Whaddaya
Wingate
wiredancer
wiredrawn
wiseacre

APPENDIX II

DEFINITION OF STATE VARIABLES AND INPUT CLASSES

State Variable 1 after the start of a number

2 after the start of a word

3 grade 1 translation

4 in a quotation

5 in italicized text

6 not at the start of a prefix or stem

7 part way through a word or phrase too long
for one entry

8 just after a space (or A-J), following a number

9 Foreign language passages are Spanish

Input Class 1 contractions always used in grade 2

2 digits

3 most punctuation and control ($) symbols

4 contractions used after the start of a word

5 $G (grade switch)

6 contractions used at the start of a word

7 isolated full-word contractions

8 $P" (start paragraph in quotation)

9 $P (start paragraph in italics)

10 " (left quote)

11 " (right quote)

12 (begin italics)

49

57

Input Class 13 (last word of italics)

14 (space), certain control ($) symbols

15 A to J or space occurring in a number

16 contractions always used in grade 2 containing
terminal punctuation

17 prefix or first word of compound word

18 non-prefix beginning of word

19 first enA of double entry

20 second entry of double entry

21 "forced" contraction begin sign (L)

22 units of measure and numbers following numbers

23 Foreign language special symbols

24 Spanish special symbols

25 $FL-SPAN

26 $FL-LIFG

27 Decimal point (.) within a number

50

58

APPENDIX III

SUMMARY OF SPECIAL SYMBOLS

Symbol Input Representation Text Reference Paqe(s)

capitalize letter

capitalize word

italicize word

italics start

left single quote

right single quote

left double quote

right double quote

left conversation
(Spanish-old form)

right conversation
(Spanish-old form)

dash or conversation mark

accent marks

left bracket ([)

right bracket (J)

start paragraph

begin new line

begin new page

skip to column nn

letter sign

= 12, 19, 20

== 12, 19, 20

12, 20

12, 20

$I 21

$'R 21

$" 21

$"R 21

$- 24

$-R 24

..... 24

% 12, 20, 22

< 22

> 22

$P 24

$L 24

$PG 24

$TABnn 24

+ 12, 30

51

59

Symbol Input Representation Text Reference Pagehl

change grade

divide word

termination sign

long vowel iign

start poetry

end poetry

start paragraph
within quotation

start title

end title

forced blank

start heading

end heading

skip lines

short vowel sign

set tab t to col. nn

turn self-checking on

turn self-checking off

end of poetry foot sign

computer braille

caesura sign

special literal symbol

symbol $

symbol %

$G, $GON or $GOF 22, 23

$/ 20, 30

$T 31

$LV 22, 23

$PTYS 25

$PTYE 25

V" 24

$TLS 25

$TLE 25

$B 22

$HDS 25

$HDE 25

$SLnn 24

$SV 22, 23

$STBt[L,R or D]nn 25

$SCON$/$/$/$/$/

$SCOFF

25,

25,

26

26

$FT 22

$CPB 28

$CS 22

$SYM 21

$:$ 21

$:% 21

52

60

Symbol Input Representation Text Reference Page(s)

symbol / $:/

symbol & $:&

symbol # $:#

call (permanent) tab t $#t

octal braille $OCT

Latin, Italian, $FL -LIFG

French or German
language mode

Spanish language mode $FL-SPAN

special foreign &x or &xx
language symbols

start forced contraction /

end forced contraction 1
contraction indicator

1

for self-checking
(also general delimiter)

53

61

21

21

21

25

28

23

23

23,

20,

20,

12,

24

30

30

14, 20, 26, 27

APPENDIX IV

EQUIVALENT SIGNS, SYMBOLS AND CODES

0 1 2 3 4 5 6 7

0

00

%
08

5

16

45

24

m

32 40 48

456

56

1 A

01

00

C

09

L

17

100

D

25

CH

33

SH

41

WH

49

TM

57

2

02

I

10

:

18

J

26

EN

34

OW

42

0
1

.

50

O
.

W

58

3 1

03

00

F

11

11

19

C

27

GH

35

:"

ED

43

OU

51

ER

59

4

04

ST

12

IN

20

AR

28 36

0
ING

44

:
52 60

5 X

05

1

13

.

.

0

21

.
.

U

29

..

U

37

..

X

45

Z

53.

..

I'

61

6

06

S

14

TO

22

SO

30 38

THE)(

54

WTH

62

7 L

07

00

t

15

R

23

Q

31

V

39

AND

47

OF

55

FOR

63

first
octal
digit

second octal digit

Braille si=n

Proof character(*)

Sign code

FORMAT

55

62

APPENDIX V

TRANSLATOR - STACKER SIGN CODES

Code Meaning

00 required blank

01-63 braille sign codes

64 end of braille word (blank or end of line)

65 new line

66 unused

67 paragraph start

68 one-time tab (skip to col. nn)

69 new page

70 unused

71 skip (multiple) lines

72 tab (skip according to permanent tab)

73-80 unused

81 start heading input

82 end heading input

83 unused

84 set continuous text stacking mode

85 idle (reserved for: reset continuous text
stacking mode)

86 unit of measure

87 unused

57

63

Code Meaning

88 start running title input

89 end of running title input

90 unused

91 self-checking mode off

92 self-checking mode on

93 set tab

94 start octal braille

95 start poetry mode

96 end poetry mode

97 start computer-braille

98 end of run

99 (filler in contraction table)

APPENDIX VI

MISCELLANEOUS CODED VARIABLES

Variable Code Meaning

STACK-INDICATOR 2 Normal text; clear stack after each entry
4 Continuous stacking of title or heading
5 Continuous stacking of normal text

CURRENT-TYPE 1 Normal text or heading stack
2 Title stack

Note: logical indicator variables are generally coded according
to the convention 0 = "off" "no" "false", 1 = "on"
"yes" = "true".

59

APPENDIX VII

USERS OF DOTSYS III AND ITS DERIVATIVES

Since its original release in August of 1970, DOTSYS III has
been widely distributed and in the process has been considerably
improved upon to suit various needs. It has been recast in at least
two other languages, PL/I and FORTRAN, in each case with considerable
performance improvement. It has been cut in two, so that the time-
consuming table interpretation and assembly in internal form need
not be repeated each run. The program and tables have been altered
and augmented to improve the English translation, to process Nemeth
Code and some foreign languages, and to allow additional kinds of
formatting. All of these changes are consistent with the original
purpose of DOTSYS, which was to be a widely portable working
prototype, a basic starter system and standard that would be
adaptable to local needs.

The following is a list of all institutions that are known to
have received DOTSYS or its derivatives. Most use it in its native
IBM 360-370 environment. In some cases the program is not presently
in active use. 'There additional pertinent information is available,
it is listed under "Notes."

Institution and
Cognizant Individual(s)*

Argonne National Laboratory
9700 S. Cass Ave.
Argonne, Illinois 60439
- Arnold Grunwald

Arkansas Enterprises for the
Blind, Inc.

2811 Fair Park Blvd.
Little Rock, Arkansas 72204
- Elmo Knoch

Notes**

Transferred to CDC 3300; also
using Hatfield Polytechnic's
PDP-10 version.

*This list is derived for the most part from a memorandum by
G. Dalrymple of MIT.

**Based in part on a user survey taken in August 1973, and in part
on other informally received information.

61

63

Institution and
Cognizant Individual(s)

Atlanta Public Schools
210 Pryor Street, S.W.
Atlanta, Georgia 30303
- Dr. Marion P. Boyles

Bell Telephone Co. of Philadelphia
One Parkway, 11th Floor
Philadelphia, Pennsylvania 19103
- Frank Benner

Bell Telephone Labs
Whippany Rd.
Uhippany, New Jersey 07981
- G. L. Calesso

Board of Education
Nassau County, N.Y., via
Bradford Computer & Systems Inc.
220 E. 42nd Street
Mew York, New York 10017
- Richard Snipas (now of

Triformation Systems)

Canadian National Institute for
the Blind

1929 Bayview Avenue
Toronto, Ontario
Canada M4G 3E8
- David Brown

Dartmouth College
Kiewit Computation Center
Hanover, New Hampshire
- R. F. Hargraves

Duxbury Systems
49 Soule Avenue
Duxbury, Massachusetts
- Dr. Steven M. Simpson, Jr.

62

'67

Notes

Rewrote in PL/I (program
called BRAILLEMASTER). Added
preprocessor for IBM's ATMS
text editing system, and text-
book formatting features.

Transferred to GE-635

Planning to reimplement on
a minicomputer

Institution and
Cognizant Individual(s)

The Hatfield Polytechnic
Computer Science
P.O. Box 109
Hatfield, Hartfordshire
AL10 9AB
England
- J. M. Jenken

Honeywell, Inc.
200 South Street
Waltham, Massachusetts

Information Engineering
3401 Market Street
Philadelphia, Pennsylvania 19104
- Philip R. Bagley, President

Library of Congress
Division for the Blind and
Physically Handicapped
1921 Taylor Street, N.N.
Washington, D.C. 20542
- Morton Friedman

Ohio State University
Mechanized Information Center
1827 Neil Avenue
Columbus, Ohio 43210'
- Ronald J. Beaton

Southern Illinois University
Computer Sciences Dept.
Carbondale, Illinois 62901
- Peter Baum

State Services for the Blind (Minn.)

Communication Center
1745 University Avenue
St. Paul, Minnesota 55104
- Robert D. Watson

63

68

Notes

Transferred program to a
PDP-10

Transferred to H-3200

For production, using
Atlanta's BRAILLEMASTER

Institution and
Cognizant Individual(s)

University of Connecticut
Social Science Data Center
U-164
Storrs, Connecticut
- William D. Slysz

University of Manitoba
Computer Center
624 Engineering Building
Winnepeg, Manitoba
Canada
- Donald Keeping
- Bonnie MacDonald

University of Warwick
Coventry, Warwickshire CV47AL
England
- John M. Gill

Worcester Polytechnic Institute
Worcester, Massachusetts
- William Swiger.,

Xerox Corporation
Xerox Square, -128
Rochester, New York 14644
- David B. Coblitz

64

69

Notes

Improvement to program and
tables; handle Nemeth Code
and grade 1 French

Rewrote in FORTRAN

Transferred to PDP-10

APPENDIX VIII

SAMPLE PROOF OUTPUT

The following page contains a sample of output, corresponding
to a page of braille, in "proof" form. Note that original input
lines, characterized by sequence numbers 1312 - 1317 at the right
end of each line, are interspersed with the braille output. Note
also that each cell on a line of braille is expressed in three
forms: a dot configuration, a "mnemonic" for the configuration
that may or may not express the meaning in a particular context
(e.g., "THE" after "45" means "THESE"), and a numeric code. The
output generally lags the associated input by up to several lines.

65

70

0i#

C

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

6
0

0
9

00
 0

O
 0

00
 0

0
0.

1.
00

S
E

A
C
H

:
T

A
I
N

S

F
E

M
.
.

.
.
.

B

O
S
S
I
N
G

P
I
N

S

I
N

T
H
E

1
4

4
4

0
0

1
5

2
0

1
4

0
0

2
0

0
0

4
6

I
II

I
I

1
.1

0
0

00
 0

00
00

00
 0

0
00

00
 0

0
0

00
8

R
L

C
E
L
L

:
F
I
G
U
R

=

N

A
N
D

A
N

I
N

T

E
R

P

0
S

E
R

P
I
N

:
N

0
3

2
3

0
7

0
0

0
9

1
7

0
7

0
7

0
0

1
8

1
1

1
0

2
7

3
7

2
3

3
2

2
9

0
0

4
7

0
0

0
1

2
9

0
0

2
0

3
0

5
9

1
5

2
1

1
4

5
9

0
0

1
5

2
0

0
0

0
6

2
9

0
0

0
0

P
I
N
.

=
T
H
E
S
E

H
E
A
D
S

A
R
E

F
A
S
T
E
N
E
D

T
O

A

C
H
A
I
N

A
N
D

S
O

1
3
1
2

W
R
R
A
N
G
E
D

S
U
C
H

T
H
A
T

O
N
E

H
E
A
D

I
S

A
L
W
A
Y
S

S
U
P
P
O
R
T
E
D

U
N
D
E
R

1
3
1
3

00
00

00
00

00
0

,
,
E
A
C
N

E
M
B
O
S
S
I
N
G

P
I
N

.

=

4
5

T
H
E

H
,

D
S

A
R

E

F
A

S
T

E
N

E
D

T
O

A

1
7

0
1

3
3

0
0

1
7

1
3

0
3

2
1

1
4

1
4

4
4

0
0

1
5

2
0

5
0

0
0

0
0

3
2

2
4

4
6

0
0

1
9

0
2

2
5

1
4
0
0

2
8

1
7

0
0

1
1

0
1

1
2

3
4

4
3

0
0

2
2

0
1

0
0

T
H
E

P
L
A
T
E
N
,

A

S
T
E
E
L

F
E
M
A
L
E

D
I
E

C
O
N
T
A
I
N
I
N
G

3
8

B
R
A
I
L
L
E

C
E
L
L
S
.

1
3
1
4

00
00

 0
0

00
00

00
0.

00
%

C
H

A

I
N

A
N
D

S
A
R
R
A
N
G
E
D

S
C
H

T
5

0

H
D

I
S

A
L

W
3
3

0
1

2
0

0
0

4
7

0
0

1
4

0
0

2
8

2
3

0
1

2
9

2
7

4
3

0
0

1
4

3
3

0
0

3
0

0
0

1
6

2
1

0
0

1
9

0
2

2
5

0
0

1
0

1
4

0
0

0
1

0
7

s
e

0
0

0
0

0
0

0
0

0
0

00
 S

O
00

00
 0

0
00

00
.

00
O
O
O
O
O

.
.

.
.

.
.

S
U
P
P
O
R
T

E
D

5

U

T
H
E

P
L
A
T
E
N

,

A
S
T

E

E
L

F
E
M
A
L
E

D
I

E

1
4

3
7

1
5

1
5

2
1

2
3

3
0

4
3

0
0

1
6

3
7

0
0

4
6

0
0

1
5

0
7

0
1

3
0

3
4

0
2

0
0

0
1

0
0

1
2

1
7

1
7

O
f

0
0

1
1

1
1

1
3

0
1

O
f

1
7

0
0

2
5

1
U

I
f

S
F
L
S
P
A
N

=
T
H
I
S

I
S

A
N

E
X
A
M
P
L
E

O
F

=

S
P
A
N
I
S
H
:

S
G
O
N

S
=
M
E

A
L
A
R
M
C
E
S
R

1
3
1
5

.
.
.

.
.

.

.
.
.

.
0
0
0

0

.
0

0
0

0
0
0

0
0

0
0

0

0
00

00
0

0
0

.
.

.
.

.
.

.

:
T

A
I
N

I
N
G

A

C

H
8

R
L

C
E
L
L
S
.

=

T
N

I
S

A
4

E
X
A
M
P
L
E

1
8

3
0

0
1

2
0

4
4

0
0

6
0

0
9

1
9

0
0

0
3

2
3

O
f

0
0

0
9

1
1

O
f

U
f

1
4

5
0

0
0

0
0

3
Z

5
1

0
0

1
0
.

.
4

0
0

0
1

Z
Y

0
0

1
7

4
5

0
1
-
1
3

1
5

U
r

1
7

S
M
U
G

D
I
C
I
E
N
D
O

S
-
P
O
R
O
U
E

S
E

N
E
M
O

I
N
N
S
O
V
I
L

Y

F
R
E
I
A
.

S
W
F

1
3
1
6

.
.

.
.

.
.

.

.
.

O
O
O
O
O

.

.

.
.

.

.

00
00

00
00

00
0

.
.

.
.

.
.

O
F

=
S
P
A
N
I
S
H

:

=
=

M

E
A
L
A
R
M
T
H
E

=

S
I
G
U
I
I
N
G

5
5

0
0

3
2

1
4

1
5

0
1

2
9

1
0

4
1

1
8

0
0

0
0

3
2

3
6

3
Z

1
3

1
7

0
0

0
1

0
7

O
I

2
3

1
3

4
6

3
6

3
1

0
0

1
4

1
0

l
f

3
7

1
0

4
4

0
0

0
0

0
0

U
0

0
0

S
L

=
F
R
E
N
C
H
,

=
G
E
R
M
A
N
,

=
I
T
A
L
I
A
N
.
A
N
D

=
L
A
T
I
N

A
R
E

A
L
S
O

S
U
P
P
O
R
T
E
D
.

F
O
R

1
3
1
7

. 0
00

00
 0

0
0

00
00

00
00

SO
 0

0
00

0
0

.
.

.
.

.
.

.
.

.
.

D
I
C
I
E
N
D
O

=

P
O
R
O
U
E

S
E

O
U
E
D
I
N
G

I
N
M
/
N
G
Y
I
L

r
Z
5

1
0

0
9

1
0

1
7

2
9

Z
b

2
1

0
0

3
2

3
6

1
5

2
1

2
3

3
1

3
7

1
7

u
u

1
4

1
7

0
0

3
1

3
/

F
r

2
5

4
4

0
0

1
0

Z
9

1
3

4
4

3
9

1
0

O
f

0
0

6
1

0
0

0
0

REFERENCES

1. English' Braille, American Edition, 1959 (Revised 1972),
American Printing House for the Blind, Louisville, Kentucky.

2. J. K. Millen, DOTSYS II: Finite-State Syntax-Directed Braille
Translation, MTR-1829, The MITRE Corporation, (1970).

3. J. K. Millen, DOTSYS II: User's Guide and Transfer and Maintenance
Manual, MTR-1853, The MITRE Corporation, (1970).

4. U.S.A. Standard COBOL, American National Standards Institute
X3.23-1968.

5. R. L. Haynes, "Computer Translation of Grade II Braille",
Proceedings Conference on New Processes for Braille Manufacture,
1968, American Printing House for'the Blind, Louisville, Kentucky, -
pp. 1-4.

6. B. M. Krebs, Transcribers' Guide to English Braille, The Jewish
Guild for the Blind, New York, 1967.

7. IBM System/360 Operating System, Full American National Standard
COBOL. IBM document.No. GC28-6396-2 (June 1970).

DISTRIBUTION LIST

INTERNAL

D-71

F. Chess
J. A. Clapp
R. A. J. Gildea (10)
A. D. McKersie
J. E. Sullivan (20)

D-73
N. W. Anschuetz
W. R. Gerhart
J. K. Millen

W-50
K. J. Stetten

PROJECT

G. Dalrymple, MIT/SAEDC (40)
R. Evensen, L.O.C. (60)

EXTERNAL

P. R. Bagley
President
Information Engineering
3401 Market Street
Philadelphia, Pennsylvania 19104

Dr. M. P. Boyles
Director, Computer-Braille Project
Instructional Services Center
Atlanta Public Schools
2930 Forrest Hill Drive, S. W.
Atlanta, Georgia 30315

L. L. Clark
Director, IRIS
American Foundation for the Blind
15 West 16th Street
New York, New York 10011

E. L. Glaser
Computation Center
Case Western Reserve University
University Circle
Cleveland, Ohio 44106

Dr. C. E. Hallenbeck
Department of Psychology
University of Kansas
Lawrence, Kansas 66044

R. Haynes
American Printing House for
the.Blind
1839 Frankfort Avenue
Louisville, Kentucky 40206

Dr. K. R. Ingham
American Systems, Inc.
123 Watertown Avenue
Watertown, Massachusetts 02172

E. Knoch
Arkansas Enterprises for
the Blind, Inc.
2811 Fair Park Blvd.
Little Rock, Arkansas 72204

R. E. LaGrone
M Corporation

Federal Systems Division
Depattment PC4, Room 2P25
18100 Frederick Pike
Gaithersburg, Maryland 20760

Dr. L. Leffler
3001 St. Mary's
Midland, Michigan 48640

69

73

EXTERNAL (Concluded)

Prof. A. Nemeth
Mathematics Department
University of Detroit
4001 W. McNichols
Detroit, Michigan 48821

A. Schack
Schack Associates
127 West 12th Street
New York, New York 10011

J. Siems
American Printing House for
the Blind
1839 Frankfort Avenue
Louisville, Kentucky 40206

R. Snipas
Triformation Systems, Inc.
P. O. Box 127
Wall Street Station
New York, New York 10005

Dr. E. J. Waterhouse
Director
Perkins School for the Blind
175 North Beacon Street
Watertown, Massachusetts 02172

V. Zickle
1150 Standford Avenue
Louisville, Kentucky 40206

FOREIGN

S. Becker
KTH

Fack 10.044
Stockholm 70

Sweden

P. W. F. Coleman
University of Warwick
Coventry, Warwickshire, CV4 7AL
United Kingdom

C. W. Garland
Royal National Institute for
the Blind
224-6 Great Portland Street
London, W. 1

United Kingdom

J. M. Gill

University of Warwick
Coventry, Warwickshire, CV4 7AL
United Kingdom

J. J. Jenken
The Hatfield Polytechnic
Computer Science
P. O. Box 109

Hatfield, Hartfordshire, AL10 9AB
United Kingdom

Hans Karlgren
Research Group for Quantitative
Linguistics
Sodermalmstorg 8,
11645 Stockholm
Sweden

D. Keeping
University of Manitoba
Computer Center
624 Engineering Building
Winnepeg, Manitoba
Canada

B. Lindqvist
De Blindas Forening
Utvechlingsavdelningen
Gotlandsgatan 46
116 65 Stockholm
Sweden

70

74

FOREIGN (Concluded)

J. Lindstrom
Handikappinstitutet
Pa Iach, 161 03 Bromma 3
Sweden

V. Mokleby
Husby OFF Skole for Blinde
Hovseterveien 3
Oslo 7
Norway

Prof. Dr. H. Werner
Rechenzentrum der Universidt
MUnster
4400 MUnster
Roxeler Strasse 60
GFR

W. Slaby
Rechenzentrum der Universitat Munster
4400 MUnster
Roxeler Strasse 60
GFR

W. Sorke
Deutsche Blindenstudienanstalt
355 Marburg/Lahn
Am Schlag 8
GFR

M.M.M. Truquet.
9, Rue Alain Lesage
Residence SEMIRAMIS
31400 Toulouse
France

J. Vinding
Christian Rovsing A/S
Marielundvey 46B
2730 Herlev
Denmark

M. J. Vliegenhart
Philips Gloeilampenfabriken
Research Lab.
Building WAA
Eindhaven
Netherlands

71

75

