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FOREWORD

. The Army Research Institute for the Behavioral and Social Sciences (ARI) has develobed a
wide range of statistical models to test hypotheses generated in relation to an equally wide range
of measurement and evaluation, situations. The powerful Randomized Block (RBY design has
traditionally been a preferred model for much psychological research. The RB design has the
stringent requirement, however, that the sample population be strictly defined and stratified
beforehand, a requirement more appropriate in a controlled laboratory environment than in many
Army field situations. This Technical Paper describes the development of an alternative statistical
design which provides the advantages of the classic RB method without its operational
disadvantages, and which will be useful not only in the Individual Training and Performance
Evaluation Technical Area in which it was developed but in other areas of behavioral science
research,

The entire research is responsive to requirements of RDTE Project 2Q0762717A745, Selection
and Individual Training Research, FY 1975;Work Program, and to special requirements of the
Deputy Chief of Staff for Personnel.

J. E. UHLANER,
Technical Director
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A MODEL FOR USING QUALITATIVE VARIABLES AS COVARIATES IN THE
ANALYSIS OF COVARIANCE

BRIEF

Requirement:. X

To develop, as an alternative to the traditional Randomized Block (RB) two-way analysis of
variance design, an equally efficient statistical mode! that will eliminate the RB’s requirement for a
priori stratification and sampling and, at the same time, retain the RB's ability to handle
categorical concomitant variables. That is, to develop a statistical design with the advantages of the
classic RB method without its operational disadvantages. °

Procedure:

The statistical model selected for comparison and test was a modified analysis of covariance
(ANCOVA) design that does not require previously selected stratified samples and? does
incorporate the ability to handle categorical variables--the Categorical Analysis of Covariance
{CANCOVA). The powers of fixed effects RB and CANCOVA using qualitative {categorical)
concomitant variables were analytically and empirically compared. A Monte Carlo program
simulated fixed effects analysis with two levels of treatment, one criterion variable, and a
qualitative concomitant variable with three design types. The parameters which varied for each
design type were sample size, ratio of numbers of row observations, eta, and magnitude of

" treatment effects.

Findings:

With relatively large samples, the RB and the CANCOV A designs yielded the same information
in terms of component sums of squares. With small samples, the power relationship is a function of
sample size, .design type, and amount of heterogeneity. Empirically, no practical difference ‘was
found between the power of RB and CANCOV A when the samples are large.

Utilization of Findings:

Where the.population cannot be well def_ined or stratified because of necessary administrative
and/or physical constraints, practical field experimentation can be undertaken with a precision
comparable to the more expensive and labarious traditional-RB design. The CANCOVA requires
only that the subjects be sampled directly from the populatlon and randomly assigned to the
different experlmental treatments.

o
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A MODEL FOR USING QUALITATIVE VARIABLES AS COVARIATES IN THE
ANALYSIS OF COVARIANCE
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Experimental results are not only affected by treatments but by
extraneous variation which often tends to mask the primary effects of
experimental treatments. The effect of extraneous varlatlun on experi-
mental results.is referred to as experimental error varianpe. In the
behavioral sciences experimental error variance can be relatively large
and influence the results-of an experiment in such a manner that only -
large treatment effects can be detected, and even these may be subject
to uncertainty. By the careful design of experiments, it is possible
to control sources of extraneous variation, reducing experimental error
variance and increasing the precision of the experiment (precision
refers to the power or ability of. a design to detect treatment effects).

One way of controlling experimental error variance is by capitalizing
on relationships between the experimental or dependent variables and
external concomitant variahles. External concomitant variables are
variables which are measured prior to experimentation and "are not
affected by the experimental treatment. For example, IQ could be used
as an external concomitant variable to control for error variance due to
difference in innate abilities. Two designs which employ external
concomitant variables to control error variance are: (}Eu Randomized
Block (RB), and (2) Analysis of Covariance (ANCOVA)., The RB experi-
mentally controls error variance by using the external concemitant
variable to stratify the samples assigned to the treatment categories
into homogeneous groups called blocks, while the ANCOVA statistically,
controls error variance by using the linear regression of the dependent
experimental variable on the external concomitant variable,

Several researchers have compared the precision of RB and ANCOVA
designs. Cochran’ found precision was directly related to the correlation
of the concomitant and dependent variables. For correlations of less
than 0.3, the use of RB or ANCOVA to increase the precision of the
experiment was inconsequential, but as the correlation increases towards’
unity, sizeable increases in precision are obtained. For large sample
sizes, Cochran concluded that for experimental designs in which the
relationship betwe®n the experimental and concomitant variables was lineat,
the'precisions of the RB and ANCOVA are about the same. Cox® found that

Cochran, W. G. Analysis of covariance: Its nature and uses.
Biometrika, 1957, Lk, 261-281.

Cox, D. R. The ﬁsa of a concomitant *variable in selecting an expefi-
mental design. Biometrika, 1957, Lk, 150-158.




RB provided greater precision when the correlation between the variables
was less than 0./ &nd ANCOVA provided greater precision only when the
correlation was greater than 0.¥. Cox's conclusion applies to designs

with relatively small sample s12es and blecking levels aSSlgned on the .
basis of an underlying Contlnuum, i.e., a rank orderlng of the categorles
of the blocklng,variable. Feldt 3 studied designs in which each cell -had

at least two observations. (Cox's designs only had one observation per
cell.) Feldt concluded that for correlations less than 0.4, RB resulted
_in approximately equal or greater precision than ANCOVA; for correlations
greater than 0.c ANCOVA was ''superior.”

The findings of the above studies are only applicable to designs in
which the concomitant variable is continuous, i.e., a variable which can
take on any valee within a specified range. For exgmple, weight is a
continuous variable; it can take on any value within the possible range
of values applicable to the object being weighed.” The* results of these
studies do not apply to designs in which thé concomitant variable is
qualitative, i.e., a variable which is categorical, in that it cate~
gorizes or names; for example, different modes of instructiom, racial
differences, differences in geographic origin, or social clat. differences
are all qualitative variables. When the concomitant variables ase
qualitative, it is traditionmal to use the RB technique. In the RB de.ign
the population is stratified into homogenous groups based on the cate-
gories of the qualitative concomltant variable. Once the population has
been stratified, random samples of subjects are selected from each strata
and assigned to the different experimental treatments. In a laboratory
setting, with a well-defined population, a priori stratification of and
random selection of subjects from the entire population is easily ac-
complisned. However, in field experimentation, where the population is
not well defined and a priori stratification of the entire population
is difficult due to administrative and physxcal restrictions, eﬁployment
of RB designs can be difficult or impossible. 1In many ,situations the
possible gain in precision is far outwelghed by the necessary effort
and expense of employing the RB design.

vThewANCOVA offers a possible alternative to the RB design. ANCOVA
does not require a priori stratification and sampling; the subjects are
sampled directly from the total populatlon and randomly assigned to
the different experimental treatmants, However, the traditional ANCOVA
model was developed under the assumption that the concomitant variables
were random and continuous; as such, the traditional ANCOVA is not .
applicable in situations where the concomitant variables are qualitative '
and therefore categorlcal The purpose of this research is to develop a
categorical ANCOVA' (CANCOVA), i.e., an ANCOVA whichwill allow the use
of categorical variables, °and to compare the precision of the CANULOVA
with the traditional RB. ‘

3 Feldt, L. S. A comparison cf the precision of® three experimental
designs employlng a concomitant variable. Psychometrika, 1958, 23,

535353 ‘
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- REVIEWOF RELATED LITERATURE

) Two of the tmost widely used techniques for increasing the precision
of randomized experiments.are: - {1) stratification ov blocking of
experimental samples (RB), and (2) analysis of covariance (ANCOVA). This
review is dimited to studies in which the precisions of RB and ANCOVA
were compared, ‘ )

Cochran® showed that; for both RB and ANCOVA  the galn in precision
over completely randomized designs was a functlon of the size of the '

" correlation coefficient p between the criterion variable Y and the

. S 2 .. .
concomitant variable X. If o¢. iIs the-experimental error variance when
' y

no adjustment is employed} then the adjustment by covariance reduces
this variance to: ’

[

’oi-(l - piy) { 1 +.E;}:_§ }f o : (1)

where f is error degrees of freedom. The: factor involving f is needed

to take into, account errors in the estimated regression coeff1c1ent for

“the bivariate sample. The adjustment by blocklng reduces 02 to:

- . ': . - . ' i -
- ( 0?, (l - ,O}Sy),; - (2)

-
a

From equacions 1 and 2 if is clear that for small values” of pxy (px§ <.Q0. 3)

the galn in preclsion‘afforded by using either RB or ANCOVA is likely to
be inconsequential, but as pxy 1ncreases towards unlty 51zeab1e 1ncreases

49n precision are obtained, Cochran concluded that for eXperlmental.n,vf-
designs in which the relatlonshlp between X and Y is linear, the precisions
of the RB and ANCOVA are about the same (for large sample SLZes).

Cox ® used two measures of imprecision as a basis for comparing the
relative efficiency of RB and ANCOVA. The first 6 true imprecision was
based on the population value of the average error variance for the
difference between two treatment means (ddjusted for covariance when
appropriate)., The second, apparent impreécision was defined as the

4 Cochran,yl957, op. cit.

5 Cox, 1957, op. cit. .

[y
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product of the true imprecision and an adjustment factor® based on error
degrees of freedom. . The adjustment factor allows for a more meaningful
comparison of the relative efficiency of two techniques which use the
same number of observations but have different error degrees of freedom,
Symbolically,6 these two indices are:

E)

= G2 -
I 7, -7, / [20 (1 p )/n]
. j
‘ fe + 3
a t fF-+1
e

where 53 - ? is "the variance of the estimated difference between a pair
. i i ) °
o of treatment means averaged over all pairs of treatment means , fe is the

error degrees of freedom, n is the number of observatlons per treatment
group, Uy is the varlance of Y within each treatment populatlon p is

the linear correlation coefficient between X and Y, and [20 (1 - p )/n]

is the minimum variance of the difference between treatment means averaged
over all pairs of treatment means. For any pair of designs based on the
gsame total sample size, ‘comparison of the respective values of Ia will

indicate which of the two desgigns ls more efficient.

Cox evaluated I and Ia for RB and ANCOVA using several combinations
of total,sample size, pxy’ and numbers of levels of treatment (t). Cok
concluded that RB provided greater precision when pxy < 0.6, and ANCOVA

provided greater precision only when piy > 0.8, S
It should be noted that designs used by. Cox were not fixed effects.

Cox assumed that the blocking levels were seletted randomly by ranking

sub jects on.the blocking variable X . subdividing the ranked subjects

into t groups, and assigning one subject per block at random to each of

the t levels of treatment. Thus, the interaction of blocks and treat-

ment provides an appropriate error term. On the other hand 6 designs -
used in behavioral research are typically fixed-effects models w1th '

. more than one observatlon per cell.
" ® Fisher, R. A. The design of experiments. London: Oliver and Boyd, o
1949, 1 ‘ . ' R

Q . e -4 - _ .
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Feldt’ cxtended Cox's study to designs in which the main and inter-
action effects were fixed and each cell had at least two observations.
All designs considered by Feldt were completely randomized having t
levels of treatment with an equal number of observations. The samples
were assumed to have been drawn from t normally distributed populations
with constant variance and a normally distributed concomitant X, linearly
related to Y. The treatment population means and variances of the X
variable and the within tredtment correlation coefficients between X and
Y were assumed to be equal across all treatment levels. . -

Feldt used the same indices of imprecision as Cox; however, they

‘were modified to account for moré than one observation per cell FeL&t

councluded that for pxy < 0.4 RB resulted in approximately equal or

greater precision than ANCOVA; for pxy > 0.6 ANCOVA was ''superior." For

relatively.high values of p and relatively small total sample size v
. xy . )

the difference in precision in favor of ANCOVA was appreciéble. This
difference was attributed to the relatively small sample size not
permitting the experimenter to employ a sufficiently large number of
blocking levels to exploit fully the value of the concomitant variable
in RB. Feldt noted that for pxy < 0.2 and small sample sizes neither

ANCOVA nor RB yielded%appfeciably greater precision than a completely
randomized design.

In all articles reviewedA the concomitant varlable X, was assumed

to be normally distributed. Further none of the articles was addressed

to the cituatign in which the concomltant variable was qualitative,

- Feldt's and Cox's indices of imprecision assume that the control variable

had an underlying continuous distribution and that each category of the
control variable had a definable variance, ,When X is qualitative the
within-block variance of X is zero; therefore, these indices cannot be
used to compare the precision of RB and ANCOVA when the concomitant
variable is qualitative. : o

L]

METHODOLOGY |

The methodology-discussiodvis divided into two sections, analytical
and empirical. The analytical section involyes;a comparlson of the
power of RB and CANCOVA in which the number-of observations (n ) withid

each of the I categories of the concomitant variable is constant. The

empirical section compares the power of CANCOVA in whichrni is a random
variable (RCANCOVA) with 'RB in which n,-is a constant; sample size is

held constant for both designs. This comparison simulates the practical

7 Feldt, 195f  op. cit.
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.circumstances surrounding the probakt.e implementation of these designs,
The introduction of n, as a random variable complicates the mathematicagl
models making it only 'feasible to compare the power of the RB and RCANCOVA
de31gqs by Monte Carlo methods.

- 3

. Analytic_al.

Development of the analytical models is based on the General Linear

+ Model (GLM).- Structural models for RB and CANCOVA were developed and
appropriate parameter and design matrices were defined. Functional
relationships were established between the RB and CANCOVA model components
by comparing the parameter and design matrices of the respective models,
Mathematical functions were developed for the RB and CANCOVA treatment
effect F ratios. The power of the two models was compared by examlnlng
the relationship between the mathematical functions defining the respec-
tive treatment effect F probability distributions.

°

_' Empirical

The Generation of Random Normal Samples. The generation of random
normal samples for RB and RCANCOVA was accomplished by using RANDN.Z
RANDN was called separately to generate sets of observations for each
cell of a design. Each set of observations was generated from a popu~-
lation with-a specified mean and standard deviation of 1. Cell means
were computed from row mean values (row means are.a function of the
correlation coefficient eta, for the specific design being run) and.
treatment effect dlfferences. A FORTRAN program was used to compute
the values of row means for each of the possible design ccmblnatlons
run; program documentation'and a table of the row means used for each
'value of eta are presented in Appendix A, ( ‘ .

N ;Goodness-df-Fit‘Tests. The randomness and goodness of fit to .
normality of the samples generated by RANDN are dependent on the initia-
tion number used in the generatiné_piocegs. Several starting numbers .
were tested for the fit of the numbers they generated to a hypothetical
normal distribution by means of a chi-square goodness-of-fit test,
Documentation for the chi-square program is presented in Appendix B,
In addition to these tests, data were generated based on 3,000 samples
using each starting number, 6 for the 12 possible design comblnatlons in
which eta and treatment effect were both 0. The goodness of fit of the -
empirical frequency of rejection of the null hypothesis of no treatment
effect to the expected. frequency of rejection under the central F ¢
distribution was determired for six nominal alpha levels .01, .05, .10,

5. .50, .75 using a S-degree-of-freedom chi-square goodness~-of-fit test.

8 University of Maryland UNIVAC 1108 EXEC & MathsPack users' guide. -

College Park, Md.: Computer Science Center University of Maryland,
< laro. - . 4 e . ' :
v ] | :




Empirical Power Comparisons. Only designs in which'I was equal to
2, 3, and UL were studied. Several combinations of parameters were used
with each of these three design types (''design type' refers to the
number of categories in the concomitant variable). The parameters which
were varied for each design type were: (1) sample size, (2) ratio of
number of row observations, (3) eta, and (4) magnitude of treatment
effect. Table 1 lists the values assigned teo each parameter for each
of the three design types. a

]

Table 4

. PARAMETERS FOR EACH OF THE THREE DESIGN TYPES

15d

Design Type

Two-Category Three-Category Four-Category

Parameter ° Variable Variable Variable
Design ' Design ' Design
Sample Size - 20 36 56
‘ . €0 o 1kk 22
Marginal Ratio
“equal n 1:1 1:1:1 1:1:1:1
unequal n bkl 1.1 h:1:1:1
Eta 0.0 0.0 0.0
0.3 0.3 0.3
- 0.9 0.9 0.9
Magnitude of 0.0 0.0 0.0
Treatment Effect 0.2 0.2 0.2
0.5 0.5 0.5

Two sets of 3,000 sample data generations were run for each of the
L8 design combinations in which the values for eta and the treatment -
effect were non-zero. One set of data generations was analyzed by the
RB subroutine and the other by the RCANCOVA subroutine of the Monte
Carlo program (Appendix C). For each run, empirical F ratios for
treatment, interaction (RB), and heterogeneity of regression (RCANCOVA)
were computed along with their respective probabilifies under the
null hypotheses of no treatment effect, no interactidn effect, and
homogeneity of regression. Each of the computed probabilities for the
treatment effect F ratios was compared to the 6 nominal alpha levels,
and rejection rates were tabulated for each alpha level. For each
sample generated, the computed probability for interaction and
heterogeneity of regression F ratios was compared to the .0l and .05
alpha levels; those samples with interaction or heterogeneity of

17 -7 - S
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regression significant at the .0l and .05 levels were tabulated as sub-
groups. The empirical rejection . rate for the treatment effect F ratios
in. each subgroup was tabulated in the same manner as déscribed for the
© total set of samples,

The empirical power of a given design combination for a specified
alpha level is equal to the proportion of times the null hypothesis of

no treatment effect is rejected. The empirical powers of RB and RCANCOVA

were compared at each of the six nominal alpha levels. The statistical
-significance of the ‘comparisons was determined by using either of two
statistics; the first is a z statistic defined by Walker and Lev:®

P, - B
Npq /N, Ny o

where N,-is the number of cases in population 1 for which the observed
proportlon of rejection is p,, Ny is the number of cases in population .
2 for which the observed proportion of reJectlons is p3, P = py + Pg,
q=1-p,and N=1N, + Ng, the second is a z’ statistic defined by
Haight:’° ' :

y - X

Ny + x
where y is the frequency of rejections in population 1 and x is the

frequency of rejections in population 2, The. z statlstlc is approx1mate1y
a random variable with a normal distribution and the z’ statistic is

/
VA =

approximately a random variable with a Poisson distribution. Since the

binomial test becomes skewed and the normal approximation is inaccurate
for proportions close to 0 or 1, the.z statistic was used- for comparlsons
in which the’ population proportlons were close to .5, and the z’ .statistic
- was used for -comparisons in which the populatlon proportions were close

to 1 or Q.

-RESULTS

Analytical

~

The followihg. hanentlons were used in developing the analytlcal
arguments : >

7
N

\

® Walker, H. M., and Lev, J. Statistical inference. New York: Holt,
. Rinehart and Winston, 1953,

10

ﬁaight, F. A. Handbook of the Poisson distribution. New York:-
Wiley, 1967. :

rl
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1. Superscripts: designate the model or design type ‘f = full model,
r = reduced model, ¢ = CANCOVA 6 and b = RB.

2. Subscripts index a variable within a specific design: 1i =
category of control variable, j = level of the treatment dimension, and
k = individual within an 1ij comblnation. R

5. Matrix notation is condensed by writing a column vector as -its
transpose row vector; for matrices involving repetltlon of elements
the following column vector notatlon is used: An, is a columm vector
of nj Als; e.g., L 1is a column vector of 9 1's,

__g

The RB model is a two-way analysis of variance design in which lhe
levels of the blocking variable correspond to the categories of the

_qualitative control variable, 1In the CANCOVA model the categoried of

the qualitative control variable are translated into sets of dichotomous

covariables."" If X (m=1, 2, ..., I-1) is the mth covariable score in

J
the ith (i =1, 2, ..., 1I) category of the qualitative control variable
then the value of X for m = 1 is d and the value of X for m # i is g,

the values of d # g are arbitrary e.g.,d =1and g = 0 or d = -1 and
g =1, etc. Table 2 schematlcally represents the covariable allocation
or blocking-strategy for a designh in which: the qualitative control

varlable has I.categories,

ANOVA designs can be represented as Spec1al forms of the general .

-

linear model (GLM) '?  The matrix form for a sample of n scores based A

on a model with ° p<n parameters is

o

Y=X9+e,
where Y is an (nxl) vector of random observations, X*is an (nxp) design
matrix of known quantities K 0 is a (px1) vector of “unknown parameters,
and e is an (nxl) vector of unobserved random errors, normally distrib-
uted with E(e) =0 and E(e e’) = I¢°, where I is the (nxn) identity matrix
and ca is the variance. Y and X represent observable data whereas 6 and
e are unknown. The least squares estimator of 6 is def1ned guch that

4 P
€ € = mlnimum,

. . N

m Suits, D. B. Use of dummy variables in egression equations. Journal

of the American Statigtical Associatiop, December 1962, 548-551:

12 Dayton C. M. An introduction to the genera_gllnear model. University
of Maryland Department of Measurement and Sdatistics Monograph
College Park Maryland, 1969.

4
i9
-9 -

-




Table 2

. SCHEMATIC OF RB (Ix2) OR CANCOVA (Ix2 WITH I-1 COVARIABLES)

Dichotomous Dummy

_Covariables
(Xm) Treatment
Xl X2 . XI-l Blocks - 1 ’ 2
1 0 ...0 Ylll Y121
. cee 1 . . Y. ..
- Yl
1 0 ...0 Y
llnl l2r1:L
00 ...l YI-l,ll,’ YI—l, 21 ‘
. . ] . I-l . » ,YI-'l..
o 0 ...1 Y Y
i Ifl,;nl_l .I-l,2nI_l ‘
0 0 ...0 . Y111 Yo,
R .e . . I ] . . YI"
o 0 ... 0 Y i b4
IlnI l2nI
Y'l" Y.2.




c.

The value of é which minimizes g/g is found by the solution of

3 (e'e)

ECA ,
where t =1, 2, ... p. The éolution results in a system of normal
cquations: .

xx'8 - xy '

-

If X is nonsingular, then (z'z)-l exists and there is a unique solution

A -
8= (x'0) k'Y

! The model for a score in the RB analysis is

. 1 £b) £b)
Y = u<fb’ + ag o+ Rgfb) + y(fb) +

(fb)
{ik €

ij ijk

where the superscript {fb) denotes full model for RB, u(fb) is an

. J) is the effect
) i=12,

. . .th (fb) '
ve., I) is the effect of being in the i blocking level, vy is the

o ()

interaction effect of being in the ijth cell of the design, and eijk

. [

b
additive constant or grand mean, agf-) (i=1,2

of being in the jth level of the treatment dimension, Bg

) th . .
is the error effect associated with the k gbservatlon in the

ijth'cellvof the design. If the parameter and design matrices are
defined using this model, the design matrix will be singular with

column rank JI. Since the smaller order of this design matrix is (J+1)
(#+1), in order &o remove.the singularity a total of (J+I+l) restrictions
is needed. These restrictions can be generated from three classes of
linear restrictions: ’

J - .
‘T o, =0 ) (3)
=1 | -
. I n
. b2 Bl =0 (4)
i=1 .
“ - I‘ J

T 5 =0

- i1 gep i (5)




o

Under these restrictions, appropriate parameter and design-matri‘ces»are:’3

(£b)_ [ (£b) (£b) _(fb) (fb) (b ( b
o) = E%( ,ag W ,Bé ~""B§-1) Ygl 52 "'b*\l I)l]

N

i, Ly L, o e gy i, e, EEI Sy
11, 11 11 11 11 11 11 11
i, ' 2 i, =ee 9 L, L, AT S
21 21 21 21 21 21 21 »Ng1
L, i, 9, o, see 1 9, o, e Ay o
1-1,1 "1-1,1 P1-1,1 "1-1,1 1-1,1 "r-1,1 "1-1,1 1-1,1
Lol & & e g T 0 e o
() Tl 11 11 11 11 Il 11 Il
J e N e L
12 12 12 12 12 12 12 12
1 -1 0 1. cee O 0. -1 L eee O
TMa2  TPag My My M2 “Maa “Map Y
. . :
i L, o L, T g, Rl
1-1,2 "1-1,2 1-1,2 "I-1,2 1.1,2  P1-1,2 11,2 I-1,2
i, ~Ln 9 9, e 9 L % e 9
12 12 . P12 12 12 12 . P12 12

.
-

'3 To conserve space the design and parameter matrices illustrated through~
out the rest of this paper are ‘restricted to designs in which the )
treatment dimension has two levels} this restriction does not preclude’
generalization of the results to designs with more than two levels.of

the treatment dimension. .
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The model for the same ‘score under the CANCOVA ahalysis using
separate within-cell regression is

I-1

'he) (hc) , (he)
Y, =W + o, + o b, X + e}
k¥ « (o1 13 Tiik ik

-where (hc) is a superécript denoting a CANCOVA design using separate

(hc)

effect of being in the jth leﬁel of the treatment dimension, bi' is the

Co s L, ., he
within-cell regression_ ® is an additive comstant, ¢ is the
g 13 p‘ 3 _]

. .. ‘ . th . A
regression coefficient due to the regression of the i covariable within
.th ' . th
the j treatment level on the Y scores within the j treatment level

Xijk is the value of the jth covariable score for the kth‘observation
t ' —— ( —
within the " j h treatment level,K and GEQC)
t - ' ;

k h observation within‘;be'jth level of treatment. The design matrix

- using this model will be singular with column rank JI. Since the ,
smaller order of the design matrix is JI+l to remove the singularity 1
restriction is needed:

is: the random error for the

. - i
. T ow, =0 L
. A =1 ]

Under this restriction, appropriate parameter and design matrices are:

(he)’ = [ (he) (he) : .
at = . )
£ e L SR LR AL PR PRRRRL Sy
T 1 0 .0 . . .
M ! l"’11 1 M1 . : .
1 1 0 1 cen O
21 P21 a1 Pz - TMaa
. . . . - 0 e
1 0 0 e 1 .
'l’lx-l,l Pr-1,1 Mr-l,a Mr-1,1 TTr-1,1 ..
l O O L ] O . L] -
x(he)_ l“xl o "m ™ R 3 T : .
_l . . _l._n _Q_n Xl _Q_n
12 M2 . : M2 12 12
-
- = o ' o
JL“22 l'“zz IRy ln22 M2
. .e 0 vee o . e
ol L S NS L ™
Pra1;2 Mr-1,2 . 1-1,2 “1-1,2 I-1,2
"1 -1 . B .0 0 ... 0
P12 P12 . : S ¥ P12 P12 -




=l

' fb (he) ' ' :
Both §( ) and X ° ¢ are nonsingular matrices with column rank JI. Since
both are based on full-rank models, they account for the same amount of
the total variance and ssifb) = ssihc),""15

An alternative to the {hc) CANCOVA is a model in which the pooled

within-cell regression coefficient is used instead of separate within-
cell regression coefficients. The model for a score is

1-1
(ey . (e) . -
= + + = b, X, +
Tk = @y g b iik T Sk

where (c) denotes the CANCOVA model in which the pooled within-cell
regression coefficient is used, u(c)'is an additive constant, a{c) is the
‘effect of being in the jth level of the treatment dimension, biJis the

- pooled within-cell regression coefficient due to the regression of the

ith covariable on the Y scores, X"k is the value of the ith covariable
. ij . -

score for the kth individual in the jth level.of the treatment, and ejk

t th )

is the random error for the k h observation within the j treatment

level. The design matrix for this model will be singular with column

rank J+I+l, Since the smaller order of this design matrix is J+I, in

order to remove the singularity, 1 restriction is needed:

-

’ A

A

o * Under this restriction the appropriate parameter and design matrices
are:

E(C)/ N [M(C)’agc)’bl.bé;...,bl_il

Z

4 gcheffé, H. The analysis of variance. New York: John Wiley & Sons,
']_r‘)rf/“) . i . ’ .

b

.

5 Graybill, F. A. An introduction to linmear statistical models. New

York: McGraw-Hill_ 176l. Pp. 10¢-145. ‘
| 24 .
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Lo Ll % g
11 11 11 11 11
L,oooL o L g
21 21 21 21 21
S T SISy
I-1,1 I-1,1 I-1,1 I-1,1 Ij},l
S T WU SR
<@ o 1 11, 11 11
S A, Lo g
- M2 12 12 12 12
b R O el
22 22 22 22 22
Lo oha % % ek
I-l,2 1-1,2 "1-1,2 '1-1,2 I-1,2
*3 - (4] 0 e O
1“12 1“12 "M My P
- th’ o
If the data are such that for the i~ 'covariable b, = b, for'j = 1
ij i,j+1 e ’

,J=1, then the (c) and the (he)* CANCOVA models are 1dent1cal ‘and

o th
accourit for the same amount of total varlance, however - if for the i

£ b, i 541 for some value of j

3 >
‘will be greater than the column rapk of X( "and the difference in the
amount of total variance accounted for by the*two models will be reflected
in the difference between their respective error sum of squares. In
general  .the difference between the error sum of squareé for the two
models is

(he)

covariable b then the column rank of X

s

ss(¢) _ gs
e

1

(he) -

o “

h

where SS, is the sum of squares due to heterogeneity.

h

A similar approach can be used with the RB model to defime the sum

of squares for interaction (Sssrb)).» If Ay
o

appropriate parameter and design matrices for this reduced mgdel are:

E(rb) } [u‘(rb),agrb) Bgrb ’Bgrb). ’E?W(:f:) ]

=0 for all i, j, then the

'8 Graybill, cit,

191,

op.

|

f




Rl
T N - N
11 11 11 11 11
1 i 0 1 e O
21 21 21 21 21
i .1 o o Lol
1-1,1 1-1,1 "1-1,1 "1-1,1 1-1,1
’ -ln -l-n ..Q.n _n "‘__n .
(rb) _ "11 11 ° "1 11 11
1, —ln i, 2 - 8,
12 12 12 2 12
[
1 -1 0 1 )
Nao Na2 N2 N2 Ny2
- - L] - Q " I
1 -1 0 0 eee 1
Pta1,2 Pr-1,2 Proa,2 -1,2 Rza,2
ln 1ln ‘gn 'gn “** =n
12 12 12 12 12

0

The difference in column rank between the full amd reduced RB models 1is
(J-1) (1-1). This differénce in column rank is due to the elimination
_of the interaction component‘(yij = Q) in the reduced model; therefore,

-

-the difference between the reduced and full models' error sum of squares
is due to interaction

. ssérb) - sséfb) =kss$fb) .; ” .(7)

Functional relationshlps can be established between the sum of squares’
components for the RB.and CANCOVA models by examining the least squares « -
estimators for thelr respective parameter vectors '

40 o (gl @) dylery

——

A(xb) _ (ﬁgrb)'&(rb))—% )y

= x(™®) e

Since Y is the same score vector for both models and 5( )
least squares estimators are equal:

e | n




M T ﬁ ¥... ‘
(c) . (rb) -
Qlﬂ fY-l.
~{c) _ . o (rb) - s
8 - b1 » - é B Bl B Yl- i . 2
Yo s, | e
bI"i o ﬁI-l YI—l,.. ’

From equation S it can be shown that

(xb) _ gole) _ go(£0) _ gq(he)
l ss, ' =88, =857 =88 " . (9)
B ssérb) =__ssl()C> ='sséfb)'= sséhc) o . (l0)

By substltutlng the appropriate equalltles from equatlons 9 and 10
into equations 6 and 7 it can be shown that

- sslf) '
58, = SS, o (11)

(c) _ 4(rb)

.and since X = ) , ' : o . //~

ssirb) = sséc) (12)

Table 3 lists all the- component sums of squares for each modelk along w1th
their respective degrees of freedom,

The difference in the power of the RB and CANCOVA analyses taq detect
treatment effects is dependent on both the amount of interactioh (hetero-
geneity) present in the data and the' difference in degrees of freedom
associated with the mean square-error term (MSe) under each mode}. For

 the (fh) RB with I levels of Blocking aud J levels of treatment:
. | £b ' |
Lo e MS(A-fb) = _SS(—) S o (15):
e "ML -JI EE '

o \ .”. ‘. 2'7
o l7 i

A




SUM OF SQUARES AND DEGREES OF FREEDOM FOR -

Ta

ble 3 -

RB AND CANCOVA ANALYSES

~RB CANCOVA
Sum of Degrees of Sum of Degrees of
Squares Freedom Squares Freedom
f : '

. 88 J-1 'S8 J-1

o o
_ SSB I-1 88, (regression) I-1
) ssY (J-1) (1-1) SS . n..-J-T+1

sS n..-J1 ss(he) n..-J1
e e
\
\ SS, (J-1) (1-1)

. . ., K
Note. The S§, for CANCOVA can Bé partitioned into ‘sséh") which is the error sum of squares using separate within-cell
regression coefticients, and S8y which is the sum of squdres for heterogenity of regression. ™

and for the (
treatment

T e

-

«

c) CANCOVA analysis with I-1 covariables and J levels of

us(e) -
e

SSe
Do =J=T1+1L

3

(£b)

The F ratio for the treatment effect iﬁ the (fﬂ) RB is

()
(4

. MS {n..-JI)MS
- 44 : . 4
Ms(fb) ﬂss(fb)

e Le

(14)

(15)

and the ¥ ratio for treatment effect in tﬁe (c) CANCOVA analysis is

3

o) _
(4

MS
8

(n. .—J—:Zg+l)MSa

us{®) )

ss(®)

(16)

&




For sufficiently large sample sizes,

() 0 )
o o .

where P(F } is the probability that F 2 Fa uhder the central F distri--

bution when the sum of squares for 1ntefactton (heterogeneity) is equal -

to 0. When the sum of squares for interaction (heterogeneity) is not

~equal to O, the following relationships held:

[ (£b) /() - '
P (Fa a‘) < P (Fa ) when F, FY > 1, (17)
where F "is the F ratio for testing the null hypothes1s of homogenelty

of regre551on and\F§~1s the F ratio for testlng the null hypothesis of

no interaction.

i

P (F(fb) > > P <F(C)> when F, = F_ < 1, - (18)
o a h o :
Given that'Féfb) > Féc) the prdof of equapioﬁs 17 and 18 is
CoeJTMS.(B..-J-THL)MS
(n WS, N (n S,
ss(fP) ss'¢) .
e -e

[

Since ssgc) = ssihc} + SS. . then

h!
(n..~JI)MS (n..-J-T+L)MS
' & > = (19)
i gs(f) 7 gglhe) o
e e h :

Dividing by MSa, expandiﬁguand cqmbihing like terms:

ss, (3-1) (1-1) . _
SS(hC) > (n..-J1) | . (20)

dividing both sides by (J-1) (I-1) / (n..-JI):

(n..—JI)ssh

o - (21)
(3-1)(1-1)88 P g (
Since | 4 .'
(n..-J1)88, _ us, .
o | (J-l)(I-l)ggghC) ] Msihc) h?
29 |
- ]_9' - 4 4 -

-

&
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P (F(fb) > < P (FQC)> when F, = F > 1,
N Y - I o h Y

From.equatjons 17 and 18 it is clear that when F, = FY = 1 the power

h
-of the RB (Pw(RB)) is equal to the power of the CANCOVA (Pw(C)), when F, =
F, > 1, Pw(RB) > Pu(C), and when F, = F, <1, P(C) > Pu(RB). ’
\ .
The above relationships® only apply when the sample size is sufficiently

large to negate any degrees of freedom differences in the distribution

of the treatment effect F ratios for the RB and CANCOVA analyses. When

the sample sjze is relatively small, the degrees of freedom difference
between the two techniques, along w1th the level of heterogeneity

(interaction) in the samples plays an important part in determlnlng the S
relative power of the two technlques. ‘

- The following arguments are used to define the functlonal relation-
ship between the amount of heterogeneity (interaction) in small samples
and the relative power of the RB and CANCOVA techniques.  If the critical

values at a given alpha level are known for gifb) and F( ), and SS( C)

SSifb) is defined as a constant equal to 1, then the value of the

S‘Sh - Ss(fb) can be Computed as a pr0port10n of SS(hC) = SSéfb);

value of this proportion when Pw(RB) = Pw(C) is defined as a pivot
point value (PV) for the power function, When the ratlo SS /SS(hC)
(fb / SS(fb > PV, Pw(RB) > Pw(C), but when.chls ratio is less than
PVT then Pw(RB)'< Pw(C). ‘ o V
Table t lists the PV values.for‘alpha levels of .01 and .05 for two-,
three~ and four-category control variables with sample sizes varying

from (J-1-2) to (J-I-6) observations per cell. The algebraic argument
used to compute the listed PV values is: :

"

I Given that Ssifb) = sséh?) =1, then ' -
k MS S
Lo \ ( fb) = 04 N
ot "’*L/i«um—« ,'w' ; \" FO{ B n.. "JI ' (22) o,
and .. b ¥ ’ ' . \ '
(c) M5y ‘ \
o 71 + 88, /.. -T-I+L - (23)

30
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Table 4.

" PIVOT POINT VALUE FOR THE .0l AND .05 ALPHA LEVELS

. Alpha
DesigR'Type . Total Sample Size _
' .01 PV .05 BV
| 8 5899 . .4583
Two-~Category 12 .1994 .1890
Variable Design - 16 4 .1139 - .lolg
20 - , .0791 .0728
24 ' .0604 .0566
12 ) L8277 .5013
Three-Category 18 ‘ .2283 " .2040
Variable Design 24 1371 L1270
o 30 0977 .0923
Lo ’ . 36 0770 .0729
R SUR 16 . 6350 5093
Four-Category ; 24 L2377 .2183
Variable Design 32 -.1382 .1301
. _ 40 .0997 .0982
¢ ’ 48 .0791 .0761
(e6) o () " -
where Fa_ and ﬁx are the critical values, at a given ulpha level

of the treatment effect F ratios for the RB and CANCOVA designs re-

. Spectively, and n.. is the total sample size. MSa can be computed a

(£b)

function of the known constants ﬂx n..,J, and I using the relati

ship defined in Equation 22: :
()
Msa T h..-Jl K7

Substitution of K for MSa in Equation 25_resu1ts in

o(e) _ X .
- l+SSh/n..-J—I+l 2

transposing gives

>

8 a

on-

(24).

(25)




L

fb) _ (hc)

Since PV =SS, /sst(hc) and ss( = 1. then PV = SS

| ’ h
Equatlon 2% can be used to compute PV yalues for different des1gns
Table 4 only lists PV values for designs with sample sizes up to a maximum

therefore

" of (J+I-6). Total sample sizes greater than (J-I.6) are sufficiently

large that the differences in the distributions of the treatment effect F
ratios for the RB and CANCOVA techniques are negligiblé and the PV values
can be computed directly from Equation 20. :

Empirical

None of the 12 null design combinations (eta =0 and treatment effect =
0) produced significant lack of fit using a chi-square goodness-of-fit

- test. Table 5 contains summary data for the power comparisons between -

RB and CANCOVA for all 48 design combinations in which eta and the

- treatment effect were non-zeto. The empirical power for each analysis
is expressed as the proportion of samples in which the null hypothesis -
of no treatment effect was rejected. The empirigal powers for both the
RB and RCANCOVA analyses -are given for-the .0l, .05, and .10 nominal
alpha levels for each of the 48 design comblnatlons.~ The power comi~
parisons are d1v1ded into three groupings: (1) comparisons for .the ,
total number of samples generated (3,000), (2) comparisons for those
samples in which interaction and heterogeneity were significant at the
.01 level, and (3) comparisons for those samples in which interaction
and heterogeneity were gignificant at the .09 level.

DISCUSSION ' -

Analytical Results

If there is no interaction or heterogenelty of regression, the least-
square estlmators of parameters and error terms for RB and CANCOVA are
identical. Tn situations where there is interaction or heterogeneity
of regression, the error sum of squares for CANCOVA can be partltloned'
into a sum of squares for heterogeneity which equals the sum of squares
for interaction under RB analysis, and an error sum of squares due to
the use of separate within-cell ‘Tegression coefficients which equals
the error sum of gquares under RB analysis. Given the situation where
sample size is fixed and the number of observations per level of the
control variable is a constant RB and CANCOVA provide the same infor-
mation. - ' o ,

" Even though the two techniques can provide the same information im
terms of component sums of squares, the relative powers of the two
techniques are not necessarily equal. The power relationship was shown
to be a function of sample size, design type, and amount of heterogeneity
(interaction). For situations in which the heterogeneity (interaction)

»is equal tu zero‘tﬂsgc) < Msgfb); thefefore, P (EiC)> < P (Fﬁfb)> méking'

- 22~
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. ' Table 5

EMPIRICAL POWER LEVELS FOR THE 48 DESIGN COMBINATIONS IN WHICH
ETA AND THE TREATMENT EFFECT WERE NON-ZERO :

s
1

‘ Two-Category -Dekigns
Sample Size 20

. Marginal Ratio . equal ' unegual
Treatment Effect .2 . .5 .2 5
Eta 3 -9 .3 .9 ° .3 .9 .3 .9
Model Power Comparisons
: RB/RC .
o1 RB .0187 .0203 L0973 .0617 L0113 0147 . .0613 .05%0-
o RC .0193 L0117 .0560 .0660 0153  .0197 L0613 0613
Nominal ., RS 0707 .0683  .1813 .1317 . .0520, .0755  .18%  .1697
Alpha : RC ..0723 L0637 1693 L1700 . . 0675 L0693 .1703 .1793
10 RB .1233 .1280 .2900 .2810 .1100, .1303 .2923,  .2787
. : RC L3571 . L1213 .2790 .2773 .1280 .1313 .2690 .2860
RBO1/RCO1 - .
o1 RB .0000 .0000- .1k29 L1795 .0000 .0370 .1250 L0690 ..
’ ~ RC .0000 . .0000 10938 .0000 0k55 0313 .0968 071
. Nominal .. RB .1111 .0508  .L286 3077 O35 L1111 4688,  .2069
Alpha T RC L0833 L0294 .1875 L1071 .1818  .0938 .1935 .2857
10 RB - .2222 1765 L4286 L1103 .1379 - L1481 - L7188, - .2069
’ RC .1667 0588 <3438 .21h3 2727 .1563 L1k L2897
RBO5/RCO5 ' .
_ o1 RB w0126 L0301  .0725  .1L4¥ .07 .0%25 L0621  .1269
- : RC* - .006k 0126 0361  .0857 L0164 .0145 .0k05 .0970 . -
Nominal 05 RB .1282 L0977 .1884 .2357 .0809 .0976 27954y 2687 ~.
Alpha ’ RC L0641 ~.0kko .1325 L1657 .0656' .0870 .1216 .2388
\ <10 RB - 1731 0 L1729 275 3357 .1838  .1870 Lo37,,  .3060°
RC L1hh L1132 .2590 .251% L1311 1522 .1959 L2761

Sample Size 80 .

RB/RC
o1 RB .0380,  .O4T3 3207 L3413 L0397  .0%03 . 3307 3507
: RC L0507 .04 80 L3407 . 3390 .0k20  .0k43 L3453 <3410
‘Nominal o RB .1183,, .1k43  .5603,, .6050 L1397 L1510 L5787 L5917
Alpha .RC 1600 LIk17 .6083 5983 Tou13T L1%0: L5960 5897
1 o' RB - .2103,, .2337  .6710,, .T120 .2180 .23y .6813% .7110
’ RC .2510 .2210 .7220 7080 .eeht L2213 6920  5.7073
RBO1/RCO1 0 .
o1 RB .0789  .0000  .2903  .5000 . .0870  .0800  .7T500,y .F769,,
RC L1111 035 .Log1 4333 L0278 .1000 2069 .1739
Kominal 05 RB 1579 Nogpt 5806,  .6905 L1739 L2000 1.0000,, 3769
Alpha : RC .2222 L1034 TERT L6667 B £ =" TR oo o) .5172 428
10 RB .2%68 - .1k2g 677X * L6905 217k L3200 1.0000,, .7692
, ‘ RC 2222 241k 8182  .7667 .2t78 4500 0 .7Ehl L6087
RBO5/RCO5 , s
o1 RB .0l 26 0274 .2933 .3803 L0507 .0816 362 3643
: ‘ RC L0643 L0432 .315: L3431 .0k05  .0kg6 L4118 . 3660
: Nominal 05 RE .1560 L1438 .5333 .62 J1%04 2109 .5897 621k
‘ Alpha ’ RC L2071 L1481 617k 15693 L1486 L1631 .59k8 .752
, 10 RB C 2057 .2808 .6200 .6913 . 957 L2925 5897, .72k
: : RC 271k =Tl L7114 .6788 . .27 .2199 .7190 L6667

) - 23
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Table 5 ~ Continued

Marginal Ratio

Three-Category Designs

Sample Size i

34

‘equal unequal
‘Treatment Effect .2 °.5 .2 ! .
TEta : .2 .3 .9~ .3 .9 .3 .9
Model APower' Compar.isgns
RB/RC
o1 RB 0155 0177 b3 L1210 L0207 .0250  .1197 . 148D,
e RC .0200 .01k7 .1307 L1180 .0170  .0190 .1203 .1310
Nominal .. RB .0763 L0747 L3453 L2923 .0827  .0823 . 3077 L3110
Alpha H RC .0=63 L0763 3277 . 2980 .0790  .0887 .2953 L3035
1o . RB .1520 L1527 L83 L 4183 21523 1510 - .Lh223 L4377
S RC 1537 107 4500 Le117 L1493 1487 © L4153 L1233
RBO1/RCO1 ' )
,. : o) RB 0667 . L1176 .3000  .0833 15 L1579, L0690 .5000,,
Z ) RC .0000 .0000 .1500 .0370 0345 0263 .1333 L1143
Nominal 4.  RB L2000,  .17€5  .5500 L2083 .1923 1579 .34h8 .5000,,,
Alpha - RC 208L5 L0952 .3500 .1852 L1720 L1316 L3333 L1714
10 RB . %000 RN .6500 .2500 2692 15719 L3793 5000
) RC L0 L1h2y 4000 2593 ¢ L2759 L1842 L1333 .329
o RBOS/RCOS i
o1 RB 0301 .0567 .ok, 1293 0556 .0b60 2418,  .2690,
. ’ RC 20136 .020L L3370 - L1020 .0252  .0291 kg7 1523
Nominal RB L1566, L1277 bbby .3265 (1528 103 61k, .3655
Alpha 05 Re 0X16 088 .%38 L2517 0881 L1067 .3293 " L3113
10 RB 239 JuE2, 57O . 3946 L2431 L1667 1320, .5172
- Y, RC L1565 L1361 4500 L3197 .;572 .2035 ~4551 Lz
. . .
' Samplé Size 1bh
. RB/RC ; . .
o1 RB Nolsi g LOEEO L6400 .6373 0847 L0793 <6550 o 6277
e RC L0750 L0817 L6600 ek 27 L0873  .0853 L6160 6357
Nominal .  RB L2240 .2210 L33 837 2230  .2120 8563 8430
Alpha - RC 22h7 .2237 8400 L8313 .225%0  .2180 8577 8123
i0 RB 522y L3173 L9040 .9Es57 L3243 3193 L9140 .9123
’ RC .33232 .3267 9077 .9080 3331 .3273 9177 9073
RBO1/RCOZ - . .
ol RB L0000 L1667 .55 L6800 L1379 L0841 .5152 . 5000
s ' RC L0000 L0%70 6522 L7333 .1818. 0750 L3115 .6585
Nominal o RB .0556, L4333 L9091 .7200 L1k 7 L1802 .7576 7368
Alpha 90 e 3600 .217hk 7609 LE667 3182 2500 7075 .8573
10 RB L1111 . 5000 L9845 L8400 2759 L2973 .9697 L9737
: RC . 3600 3043 T8 .9333 .363%6  ,3%00 .8537 .97%6
RBOS/RCOS
5, RB 0682 L0701 L6395  .7105 .1500, .0588 L6017 L6493
) RC - .0511 L0612 L6187 6954 L06ET .0965 .5633 LEh 3
Nominal 05 RB 1RO, 2739 LH5T7L. 2750 L7929  .18% .8559 .8861
Alpha ) RC L2117 .25¢5 L7937 L8675 2977 L24bh. .8608 . L8601
] 10 RB 2197, 3ROk .9252 .9211 3786 2876 L9237 L9776
5 > N RC L3431 .3333 JSE12 G470 L37H0 L3556 .91k L9kl
Q. ’
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Table 5 - Continued

Four~Category Designs

Sample Size .
Marginal Ratio - equal unequal
- Treatment Effect . o 5 . .9
. Eta .3 .9 .3 .9 L3 .9 .3 .9
Modé€l Power Comparisons b3
RB/RC
1 RB 0317 0290 L2353 .2193 . 0320  .0%00 .2173 2247
-~ RC .0297 L0303 .2097 . 2107 .0323  .0280 .2220 .2240
Nominal  _  RB JA113 L1k3 LL757, k6o 1130 L1183, WuShT 66T
Alpha 05 ke J1070 L1130 Wh3800 k290 1055 .1020° .30 4503
10 RB L1863 1983 L6020, 5647 1750 L1917 LT3 . 5900
: RC L1820 .1&93 .5720 .5%03 .1780 ~.1817 .5703 L5733
RBO1/RCOL - B ’ -
o1 RB .0500 L0667 .3200 L3636, .2222, .1290 '.heil** 3793
: RC .0000 .0000 ", 3000 .12%0 .0000  .0%03 L1143 .2897
Nominal 5 RB .2000 .1333 .5200 .55 Joh, L1290 L5769 L5862
Alpha =~ > RC .0625 L1000 - .5000 . 3000 .0870 .1212 4000 1286
;o RB . 7.2500 .2000 .6800 TT27 v x .5185,  .1613 615 L7586,
. RC .093& .2000 L6000~ .k2%0 L217h L2hoh L5714 .5000 .
RBO%/RCO5 :
01 RB L0268 L0526 .3116 2727 oy 0671  .0657 L2U63 .2%00 -
’ RC .0192 .0129 .2553 .1355 .0355  .0311 L1667 L2171
Nominal .o  RB L1332 1362 .5072 L5035 . .22% 1168 5075 .5405,
Alpha ’ RC .1026 .0839 4610 L3871 - L1560 .O7h5 4058 . 3953
’ 0 RB .20%1 .2039 .6522 636, .2988  ,1606 5896 RIS
’ RC 11923 L1871 .6099 .1903 482 .1739 .5362 L5116
i Sample Size 22
RB/RC
o1 RB . 133 D TRaner LW L8727 J12%7 L1387 .87%0 .8693
~ RC 1363 ..1h20 L8740 8717 .12%0  .1387 8633 .8683
Nominal .-  RB - L3160 0 L3340 .9637 . 9660 .32%0  .3173 .9640 .9633
“Alpha ) RC L3323 L3267 - L9583 9630 3180 L3313 .9%93  .96ko ¢
: 10 RB Ah13 0 Lb617 L83 .98k0 L5730 bkt .9823 .9837
: RC L4550 Ahgy L9790 .9810 Ah53 kbS53 .9833 .9813
K  RBO1/RCO1 :
o1 RB L1765 L0690 871 .9355 2083  .1379 .T917 L7241
) RC Ok 17 L1003 .8333 8788 1538 1563 7727 8371 ,
Nominal” 0;5 RB L2941 .2069  1.0000 1.0000 L3333 21k .9583 .9310
Alpha e RC_ L2083 1379  1.0000 .9697 Jh62 L2500 L9545 .9286
’ .}6' RB .3235 L3U8  1.0000 1.0000 - 4583 4138 1.0000  1.0000
. RC .3333 JBLE  1,0000 .9697, L6615 L3750 .95%5 1.0000
RBO%/RCOS . ' .
o1 RB L1500 679 8599 L9167 1799 .1kl L8767 ..8553
: RC - .0800 L1678 .9091 .9006 L1221 L1594 LBk .813%0
Nominal 05 RB . 2400 L3212 .9682 '.981;8 .32%7°  ,3378 .9521 .962%
Alpha ' RC . 2560 L3221 L0805 . .9752 3500 .3623 L9517 .9512
1o RB 3333 4380 .9809° .99 L4676 4257 L9795 98T
’ RC . 3680 L1698 .9935 .9876 4286 .ko28 .9862 .9837

* Powar comparison significantly differant at .06 leval.
* ¢ Power comparison significantiy differant at .01 leval,

Note: RC = RCANCOVA,

RBAO1 = RAB analyyis in whl@rlnmr.ctlon is sigrtiticant at the .01 levwl.

. RBOS = RAB analyyis In which Interaction is significant at the .05 favel. *
RCO1 = ACAMNCOVA anslysis in which hatarogensity is significant at the .01 Juvsl,
ACOS = RCANCOV A snalysls In which hetsrogensity Is significant at the .05 lsvel.
/ = Compared with,
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the CANCOVA technique uniformly more powerful ander these conditions.
This relationship does not hold, however K for condltlons 1n which

SSh = SSY is not equal to.O A value equal to the ratlo / SS( C)

PV, was defined for situations in which Pw(RB) = Pw(C). W was shown to
be a monotonic decreasing function of sample size. The smaller sample
sizes, ?thln any design type, allow for the greatest amounts of hétero-
geneity interaction) before Pw(RB) > Pw(C); in addition, the degrees of
freedom difference between RB and CANCOVA techniques [df( ) > df(b)]
provides a higher probability for fejection of the null hypothegis of
‘no treatment effect under CANCOVA. These combined factors provide
CANCOVA with a power advantage when the sample size is relatively small
and heterogeneity (interaction) is minimal. As the sample size increases,
‘PY approaches 0 and at the same time the degrees of freedom advantage

of CANCOVA over RB becomes negligible. Under these conditions the power
advantage tends to shift in favor of RB. The relatively small PV of the
larger sample size does not permit very high levels of heterogeneity
(interaction) to be present before Pw(RB)-becomes greater than Pw(C).

Another aspect of the analytical results invelves the implications
regardlng the relationship between power and the correlation between
the concomitant variable and the’ criterion variable. For RB and ANCOVA
designs in which the concomitant variables are continuous, the relative
power of each design is dependent on the value of the linear correlation
coefficient (p) between the concomitant and criterion variables. When~
p < 0.%, the RB technique tends to be more powerful; when p 3 O. 6, the
~ ANCOVA technlque tends to be moxe powerful.'” However K these results do

not generallze to the case when the concomitant var1ab1e is mot continuous.

In RB, the qualitative concomitant variable is used as a blocking variable
and the amount of -error reduction is equal to the sum of squares for
.blocking, SS5 in CANCOVA K the qualitative concomitant variable is used

" to generate a set of dichotomous dummy covariables and the amount of error

reduction is equal to the sum of squares for the pooled within-cell

regressibn SSb It was shown that SSB SSb, since the amount of error

variability explained by the correlation between the qualitative concomi-
tant and criterion variables for both the RB and CANCOVA analyses is

the same, the power difference between the RB or CANGOVA techniques is
not a functlon of the value of eta.

Empirical Results

Goodness-of-fit. Using chi-square goodness-of-fit tests it was
shown that all 12 null design c¢ombinations produced chi-square statistics
which fell within 95% confidence intervals for chance occurrences. These
sample runs were used to establish the adequacy of the random number
generators and to empirically validate the computational subroutines

" within the Monte Carlo program.

-

17

Cox, 1957, op. cit.; Feldt 1958, op. cit.
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Empirical Power Comgarisons.' The empirical data showed no inter-

pretahle differences, either in magnitude and direction,.between'the -,

power of the RB and RCANCOVA. At nominal alpha levels of..0l, .05,

.10 the number of significantly different power ~comparisons for the
two-, three-, and four-category design.types fell within 95% confidence
intervals for chance occurrences. Empirically there is no difference
in power between the two techniques; however 6 caution must be exercised
in interpreting these results to an applied sltuatlon. RCANCOVA was
designed as.a post-hoc CANCOVA in which the a priori fixed number of
observations per category of the concomitant variable (n ) becqmes a

post hoc random variable. Since CANCOVA. and RB were shown to be
analytically equivalent , RCANCOVA could be viewed as a post hoc blocking
technique; however; in,actual practice post hoc blocking is a technique
in which the a priori fixed number of observations per cell of the
design (nij) becomes a post hoc random variable. Since n, . # nij; the
RCANCOVA is not equivalent to a post hoc blocking technique; further
investigation using more realistic poétﬂhoc models is necessary before
inferences can be drawn regarding the relative power of RB and post

hoc RB designs. '

A
SUMMARY

The powers of fixed-effects randomized block (RB) and analysis of
covariance (CANCOVA). using qualitative concomitant variables were
analytically and empirically compared. Analytical comparisons were made
of the powers of RB and CANCOVA in which the number of ‘observations (n,)
within each of the I categories. of the concomitant variable was a *
constant. Empirical comparisons were made of the power of CANCOVA in
which n, ‘was a random variable (RCANCOVA) with RB in which n, was a

constant. A Monte Carlo program simulated fixed-effects analyses with
two levels of treatment one criterion variable, and a qualitative
concemitant variable with I categories. Three design types in which

I was equal to 2, 3, and 4 were studied. The parameters varied for
each design type were: (1) total sample size (n..) (I=2, n..=20, 80;
I=5, n..=3%,, 1445 I=4 ! n..=56, 224), (2) ratio of number of row
observations (I=2, 1:1, 1:1; I=3, 1:1:1 4:1:1; I=4 1:1:1:1, 41:1:1:1),
(3) eta (0.0, 0.3, 0:9§ and {4) magnltude of treatment\effect (0.0,
0.2, 0.9).

lytically, the RB and CANCOVA provided the same’ information_in
terms oPNcomponent sums of squares. However, the power relatlonshlp was
shown to bé a function of sample size, dasign type, and amount of
heterogeneity (interactiorr) present. Empirically no interpretable
differences were found, either in magnitude and direction, between the
power of .the RB and RCANCOVA for any of the design type and parameter
combinations studied.
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APPENDIX A

-
/.'

DOCUMENTATION FOR PROGRAM WHICH COMPUTES ETA
FROM MARGINAL ROW MEANS N

. &

A 51ng1e parameter card is used for each comblnatlon of marglnal
“means tested. ~ -

e 5

L

_Col Information

1 number of categories in the control variable (2, 5; or 4)
2=4 . ~ value of marginal mean for first blookiﬁg level (F3.2)

5=7 : value of marginal mean for second blocking level (FB.é)
18-10 value of marginal mean for third blocking level (f5;2)
11-13 - value of marginal mean for fourth blocking level (F3.2) °

(Card contains only as many means as there are categories i.e., a three cate-

gory control variable design has only thrée marginal mean values punched.)

) The program reads in the marglnal mean values and computes the value
" of eta based on the following rélationship: :

‘ a I .

. 1l =
. T = (b, = )2 ‘
: . Ig- i=1 ' o s
. T ’ :

=

where I = number of rows = row mean, L= grand mean, g% is the

y » My,
total variance and is set equal to gne.

-
<

Output-consists of the values of the row meang and the computed'eta;

. PR
Table A- 1 shows- the TOwW means for each eta used in the Monte-Carlo
analyses.
: : Table A-1 ; ‘
ROW MEAN VALUES FOR EACH DESIGN TYPE - |
Control Varlable’De51gns
val Two Category ' -Three Category . o Fourbcategbry -~
of “ Row - ' Row , , Row o
Eta 1 2 "L 2 T3 1 2 3 4
oy . ’ ‘
.3 l.og .l.60  l.o0 1l.30 1l.70 l.00 1.20° 1l.40 " 1.80
9 . 1.00 280 - 100 1.60 3.75,-.1.00 1.60 2.20 = 3.4Q

PR
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RO
“

_ ’ ~ The row means in Table A-1 were used to compute the actuzl cell
’ . means for each cell in 3 specific design. The computed cell means were
' used by 'RANDN to generate the observations within that cell. For
example,-if the value of eta was .3 and the treatment effect was .2 for
a two category design, then cell (11)'s population mean would be 0.90,
cell (12)'s population mean would be 1.10, cell (21)'s population mean
would be 1.%50, and cell (22)'s population mean would be 1.70.%
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~ APPENDIX B

DOCUMENTATION FOR THE CHI-SQUARE
GOODNESS-OF-FIT TEST

A single parameter card was used for each starting number to be
tested.

Col " Information

- 1-8 six-digit starting number read in under F format (F6.0)
_ . The program read in the starting .number and called up the subroutine
RANDN to generatg,l,000 numbers, with a mean of 0.0 and standard deviation

of one. The program divides the empirical frequeacy distribution into
16 intervals of .4 standard deviations each. Observed frequencies are
compared with the expected for each interval and chi squares for each
interval as well as an overall chi square are computed.

Output consists of the overall chi square,'observed frequencies for
each of the 16 intervals and chi squares for each interval.

“.
o
%)




- APPENDIX C

DOCUMENTATION FOR MONTE CARLO PROGRAM

The following parameterfcards are used By the Monte Carlo program:

ftl) Starting Number Card
~ . .

i 4

Col - Information

1-6 six digit start1ng number for RANDN (F6. 0)
7-12 . six.digit stgrting number for RANDU (F6.0) -

- 13-16 four digit field for number of sample generations to be run
for each design combination read in on the following parameter
cards (I4) ¢

@) .
’ Col
.” ~1 . 0 stop program
l read in parameters and run
2 one d1g1t F field for thé value of eta, (Fl.l) . :
3-5 . three digit F field for treatment effect d1fference, (F3. 2)
6 one digit I field for number of cells in the RB ana1y818 L,
' 6, or 8 ' ]
7-8 two d1g1t I field defining number of observatlons to be .

generated by RANDN in cell (11)

9-11 " three d1git F f1e1d defining the value of the population mean
under which the observations in cell (11) will be generated
by ‘RANDN, - (F3.2)

12-13 two digit I field def1n1ng number of observatlons to be
generated by RANDN in cell (21)
14-16 three digit F field defining the value of the population
- . mean under which the observations in cell (21) will be
: " generated by RANDN, (F3.2) "
Col

.
o -

~ gepeat until parameters for all cells involved in the particular design
" are punched. The maximum allowed is for a 4 x 2 design with 8 cells.

-

11




The program reads in the parameter cards; card (1) is read only once
for each set of runs. There is no limit .to the number aof type (2) cards
which may be read using a single .set of starting numbers. If it is
desirable to use different sets of starting numbers for each desigg -
combination, then the program must be terminated after each run and a
new set of parameter cards, both- (1) and (2), used to start a new run.

RANDN is called up to génerate data for each cell of the design.
The data generated are analyzed by the RB subroutine. A new set of data
is generated by RANDN under subroutine RCANCOVA. This set hag the same
nuniber of observations as the RB analysis, but the number of observations
per control variable category is determined by,a subroutine which randomly .
assigns category classifications to each observation generated by RANDN. = :+ '} ,
The probability of assigning a set of covariable scores corresponding to
a given category of the concomitant variable is the ratio of the number
of observations in that category to the total. number of. ohservations
- for the design. RCANCOVA produces a set of data in which the number of
observations in each category of the control variable.is a random '
variable and is representative of the population defined in the parameter
card. Each observation within a category is assigned the proper set of

covariable scores and the set of data generated under RCANCOVA is ‘analyzed
as if it were a one-way ANCOVA. ., ‘ '

b
1.

Y

3

Output consists of a table containing the following:

The design parameters

a.. - The dimensidns of the design
b. Eta
¢. Treatment effect difference

d. Cell sizes, treatment level sizes, blocking level sizes, and
the. total sample gize ' :

Total sample data--summary data for all 6,000 samples generated "

a. Frequency of rejection, proportion of rejection, ‘z andfé’
statistics at all six nominal ‘alpha levels for the RB and
RCANCOVA analyses

b. A total‘frequenéy count’ for each analytical technique

Interaction and heterogeneity at the .01 levels-data for all

samples out of the.6,QOQ_with interaction in the RB analysis

significant at the .0l level and heterogeneity in the RCANCOVA

analyses significant at the ,0l1 level

a% Same as 2a above

b. Same 28 2b above




. o
L. Same as 5 above except for interaction and heterogeneity which
was significant at the .05 level.
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