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FOREWORD

. The Army Resiarch Institute for the Behavioral and Social Sciences (ARI) has developed a
wide range of statistical models to test hypotheses generated in relation to an equally wide range
of measurement and evaluation. situations. The powerful Randomized. Block (RB)' design has
traditionally been a preferred model for much psychological research. The RB design has the
stringent requirement, however, that the sample population be strictly defined and stratified
beforehand, a requirement more appropriate in a controlled laboratory environment than in many
Army field situations. Tills Technical Paper describes the development of an alternative statistical
design which provides the advantages of the classic RB method without its operational
disadvantages, and which will be useful not only in the Individual Training and Performance
Evaluation Technical Apa in which it was developed but in other areas of behavioral science
research.

The entire research is responsive to requirements of RDTE Project 20762717A745, Selection
and Individual Training Research, FY 1975 Work Program, and to special requirements of the
Deputy Chief of Staff for Personnel.
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J. E. UHLANER,
Technical Director



A MODEL FOR USING QUALITATIVE VARIABLES AS COVARIATES IN THE
ANALYSIS OF COVARIANCE

BRIEF

Requirement:

To develop, as an alternative to the traditional Randomized Block (RB) two-way analysis of
variance design, an equally efficient statistical model that will eliminate the RB's requirement for a
priori stratification and sampling and, at the same time, retain the RB's ability to handle
categorical concomitant variables. That is, to develop a statistical design with the advantages of the
classic RB method without its operational disadvantages.

Procedure:

The statistical model selected for comparison and test was a modified analysis of covariance
(ANCOVA) design that does not require previously selected stratified samples and, does
incorporate the ability to handle categorical variables--the Categorical Analysis of Covariance
(CANCOVA). The powers of fixed effects RB and CANCOVA using qualitative (categorical)
concomitant variables were analytically and empirically compared. A Monte Carlo program
simulated fixed effects analysis with two levels of treatment, one criterion variable, and a
qualitative concomitant variable with three design types. The parameters which varied for each
design type were sample size, ratio, of numbers of row observations, eta, and magnitude of
treatment effects.

Findings:

With relatively large samples, the RB and the CANCOVA designs yielded the same information
in terms of component sums of squares. With small samples, the power relationship is a function of
sample size, design type, and amount of heterogeneity. Empirically, no practical difference Ives
found between the power of RB and CANCOVA when the samples are large.

Utilization of Findings:

Where the.populatiori cannot be well defined or stratified because of necessary administrative
and/or physical constraints, practical field experimentation can be undertaken with a precision
comparable to the more expensive and laborious traditional RB design. The CANCOVA requires
only that the subjects be sampled directly from the population and randomly assigned to the
different experimental treatments.
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A MODEL FOR USING QUALITATIVE VARIABLES AS COVARIATES IN THE
ANALYSIS OF COVARIANCE

Experimental results are not only affected by treatments but by

extraneous variation which often tends to mask the primary effects of
experimental treatments. The effect of extraneous variation on experi-
dental results.is referred to as experimental error T.raria4e. In the
behavioral sciences experimental error variance can be relatively large
and influence the results of an experiment in such a manner that only
large treatment effects can be detected, and even these may be subject
to uncertainty. By the careful.design of experiments, it is possible
to control sources of extraneous variation, reducing experimental error
variance and increasing the precision of the experiment (precision
refers to the power or ability of ..a design to detect treatment effects).

One way of controlling experimental error variance is by capitalizing
on relationships between the experimental or dependent variables and
external concomitant variables. External, concomitant variables are
variables which are measured prior to experimentation and'are not
affected by the experimental treatment. For example, IQ could be used
as an external concomitant variable to control for error variance due to
difference in innate abilities. Two designs which employ external
concomitant variables to control error variance are: (1!)f. Randomized.
Block (RB), and (2) Analysis of Covariance (ANCOVA). The RB experi-
mentally controls error variance by using the external concomitant
variable to stratify the samples assigned to the treatment categories
into homogeneous groups called blocks, while the ANCOVA statistically,
controls error variance by using the linear regression of the dependent
experimental variable on the external concomitant variable.

Several researchers have compared the precision of RB and ANCOVA
designs. Cochranl found precision was directly related to the correlation
of the concomitant and dependent variables. For correlations of less
than 0.3, the use of RB or ANCOVA to increase the precision of the
experiment was inconsequential, but as the correlation increases towards
unity, sizeable increases in precision are obtained. For, large sample
sizes, Cochran concluded that for experimental designs in which the
relationship between the experimental and concomitant variables was linear,
the'precisions of the RB and ANCOVA are about the same. Cox 2

found that

1 Cochran, W. G. Analysis of covariance: Its nature and uses.
Biometrika, 1957, 44, 261-281.

2
Cox, D. R. The use of a concomitant'variable in selecting an experi-
mental design. Biometrika, 1957, 44, 150-158.



RB provided greater precision when the correlation between the variables
was less than 0.G dnd ANCOVA provided greater precision only when the
correlation was greater than 0.t. Cox's conclusion applies to designs
with relatively small sample sizes and blacking levels assigned on the
basis of an underlying continuum, i.e., a rank ordering of the Categories
of the blocking.variable. Feldt3 studied designs in which each cell had
at least two observations. (Cox's designs only had one observation per
cell.) Feldt concluded that for correlations less than 0.4, RB resulted
in approximately equal or greater precision than ANCOVA; for correlations
greater than 0.6 ANCOVA was "superior."

The findings of the above studies are only applicable to designs in
which the concomitant variable is continuous, i.e., a variable which can
take on any value within a specified range. For exgmple, weight is a
continuous variable; it can take on any value within the possible range
of values applicable to the object being weighed.' The-results of these
studies do not apply to designs in which the concomitant variable is
qualitative, i.e., a variable which is categorical, in that it cate-
gorizes or names; for example, different modes of instruction, racial
differences, differences in geographic origin, or social clay, differences
are all qualitative variables. When the concomitant variables ate
qualitative, it is traditional to use the RB technique. In the RB
the population is stratified into homogenous groups.based on the cate-
gories of the qualitative concomitant variable. Once the population has
been stratified, random samples of subjects are selected from each strata
and assigned to the different experimental treatments. In a laboratory
setting, with a well-defined population, a priori stratification of and
random selection of subjects from the entire population is easily ac-
complisned. However, in field experimentation, where the population is
not well defined and a priori stratification of the entire population
is difficult due to administrative and physical restrictions, dploythent
of RB designs can be difficult or impossible. In many, situations the
possible gain in precision is far outweighed by the necessary effort
and expense of employing the RB design.

The.ANCOVA offers a possible alternative to the RB design. ANCOVA
does not require a priori stratification and sampling; the subjects are
sampled directly from the total ))opulation and randomly assigned to
the different experimental treatMatts. However, the traditional ANCOVA
model was developed under the assumption that the concomitant variables
were random and continuous; as such, the traditional ANCOVA is not
applicable in situations where the concomitant variables are qualitative
and therefore categoFical. The purpose of this research is to develop a
categorical ANCOVA' (CANCOVA), i.e., an ANCOVA which ;will allow the use

of categorical variables, 'and to compare the precision of the CANLOVA
with the traditional RB.

3 Feldt, L. S. A comparison of the precision of'three experimental
designs employing a concomitant variable. Psychometrika, 1958, 21,

555-355.
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REVIEW OF RELATED LITERATURE

Two of the most widely used techniques for increasing the precision
of randomized experiments are: :(1) stratification ov blocking of
experimental samples (RB), and (2) analysis of covariance (ANCOVA). This
review is 4imited to studies in which the precisions of RB and ANCOVA
were compared.

Cochran 4 showed that, for both RB and ANCOVA, the gain in precision
over completely randomised designs was a function of the size of the
correlation coefficient p between the criterion variable Y and the

xy
concomitant variable X. If a is the experimental error variance when

Y.
no adjustment is employed, then the adjustment by covariance reduces
this variance to:

ay
(1 - p

xy
) 1

1

. e

(1)

where f
e

is error degrees of freedom. The factor involving f
e

is needed

to take into,account errors in the estimated regression coeffi'cient for

the bivariate sample. The adjustment by blocking reduces a to:
Y.

(2)

From equations, 1 and 2 it is clear that for small valuegJof p
xY

(p .o.3),

the gain in precision-afforded by using either RB or ANCOVA is likely to
be inconsequential, but as p increases towards unity, sizeable increasesxy
ln precision are obtained, Cochran concluded' that for' experimental
designs in which the relationship between X and Y is linear, the precisions
of the RB and ANCOVA are about the same (for large sample sizes).

Cox sused two measures of imprecision as a basis for comparing the
relative efficiency of RB and ANCOVA. The first, true imprecision was

based on the population value of the average error variance for the
difference _between two treatment means (adjusted for covariance when
appropriate). The second apparent tmprecision was defined as the

4 Cochran, 1957, op. cit.

5 COX, 197, op.. cit.

i 5
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product of the true imprecision and an adjustment factors based on error
degrees of frecdom.-. The adjustment factor allows for amore meaningful
comparison of the relative efficiency of two techniques which use the
same number of observations but haVe different error degrees of freedom.
Symbolically, these two indices are:

g2 / F20.2 (1 ,2

t - y. L Y

/f
e
+ 3\

= I
t f + 1/

/

where S_2 is the variance of the estimated difference between a pair
Y
i

9)

of treatment means averaged over all pairs of treatment means, f
e

is the

error derees of freedom, n is the number of observations per treatment
group, a is the variance of Y within each treatment population p is

the linear correlation coefficient between X and Y, and [2o2 (1 - p )/n]
xy

is the minimum variance of the difference between treatment means averaged
over all pairs of treatment means. For any pair of designs based on the
same total sample size, comparison of the respective values of I

a
will

indicate which of the two designs Ls more efficient.

Cox evaluated I
t

and I
a

for RB and ANCOVA using several combinations

of toal_samplesize,p,and numbers of levels of treatment (t). Cox
xy

concluded that RB provided greater precision when pry < 0.6,,and ANCOVA

providedgreaterprecisiononlywhen pxy >0.8.

It should be noted that designs used by Cox were not fixed effects.
Cox assumed that the blocking levels were seletted randomly by ranking
subjects on,the blocking variable X, subdividing the ranked subjects
into t groups, and assigning one subject per block at random to each of
the t levels of treatment. Thus, the interaction of blocks and treat-
ment provides an, appropriate error term. On the other hand, designs
used in behavioral research are typically fixed-effects models with
more than one observation per cell.

6 Fisher, R. A. The design of experiments. London: Oliver and Boyd,
1949,

11
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Feldt' extended Cox's study to designs in which the main and inter-
action effects were fixed and each cell had at least two observations.
All designs considered by Feldt were completely randomized having t
levels of treatment with an equal number of observations. The satples
were assumed to have been drawn from t normally distributed populations
with constant variance and a normally distributed concomitant X, linearly
related to y. The treatment population means and variances of the X
variable and the within treatment correlation coefficients between X and
Y were assumed to be equal across all treatment levels.

Feldt used the same indices of imprecision as Cox; however, they
were modified to account for more than one observation per cell. Feldt
coacluded that for p < 0.4 RB resulted in approximately equal or

xY
greater precision than ANCOVA; for p > 0.6 ANCOVA was "superior." For

xy
relatively high values of p and relatively small total sample size,

xy

the difference in precision in favor of ANCOVA was appreciSble. This
difference was attributed to the relatively small sample size not
permitting the experimenter to employ°a sufficiently large number of
blocking levels to exploit fully the valu.e of the concomitant variable
in RB. Feldt noted that for p < 0.2 and small sample sizes neither

xy

ANCOVA nor RB yielded 'pppreciably greater precision than a completely .

randomized design.

In all articles reviewed, the concomitant variable, X, was assumed
to be normally distributed. Further, none of the articles was addressed
to the tituation in which the concomitant variable was qualitative.
Feldt's and Cox's indices of imprecision assume that the control variable
had an underlying continuous distribution and that each'category of the
control variable had a definable variance. ,When X is qualitative the
within-block variance of X is zero; therefore, these- indices cannot be
used to compare the precision of RB and ANCOVA when the concomitant
variable is qualitative.

METHODOLOGY

The methodology discuslaiois divided Into two sections, analytical
and empirical. The analytical section invplyes,a comparison of the
power of RB and CANCOVA in_which the number-of obserVitions (ni) withid

each of the I categories.of the concomitant variable is constant. The
empirical. section compares the power of CANCOVA in which n. is a random

variable (RCANCOVA) with RB in which ni:is a constant; sample size is

held constant for both designs. This comparison simulates the practical.

Feldt, 19-P, o . cit.
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.circumstances surrounding the probab.e implementation of these designs.
The introduction of n. as a random variable complicates the mathematical
models making it onlyifeasible to compare the power of the RB and ROANCOVA
designs by Monte Carlo methods.

Analytical.

Development of the analytical models is based on the General Linear
Model (GLM).- Structural models for RB and CANCOVA were developed and
appropriate parameter and design matrices were defined. Functional
relationships were established between the RB and CANCOVA model components
by comparing the parameter and design matrices of the respective models.
Mathematical functions were developed for the RB and CANCOVA treatment
effect F ratios. The power of the two models was compared by examining
the relationship between the mathematical functions defining the respec-
tive treatment effect F probability distributions.

Empirical

The Generation of Random Normal Samples. The generation of random
normal samples for RB and RCANCOVA was accomplished by using RANDN.8
RANDN was called separately to generate sets of observations for each
cell of a design. Each set of observations was generated from a popu-
lation with-a specified mean and standard deviation of 1. Cell means
were computed from row mean values (row means' are.a function of the
correlation coefficient,, eta, for the specific design being run) and_
treatment effect differences. A FORTRAN program was used to compute
the values of row means for each of the possitle design combinatiOns
run; program documentation and a table of the row means used for each
Value of eta are presented in Appendix A:

,,Goodness-of-Fit Tests. The randomness and goodness of fit to
normality of the samples generated by RANDN are dependent on the initia-
tion number used in the generating process. Several starting numbers;
were tested for the fit of the numbers they generated to a hypothetical
normal distribution by means of a chi-square goodness-of-fit test.
Documentation for the chi-square program is presented in Appendix B.
In addition to these tests, data were generated based on 3,000 samples,
using each starting number, for the 12 possible design combinations in
which eta and treatment effect were both 0. The goodness of fit of the
empirical:frequency of rejection of the null hypothesis of no treatment'
effect to the expected. frequency of rejection under the central F
distribution was determihed for six naminal alpha levels .01;..05, .10,
.25,. .50, .75 using a 5-degree-of-freedom chi-square goodness-of-fit test.

University of Maryland UNIVAC 1108 EXEC 8 Math.TPack users' guide.
College Park, Md.: Computer Science Center, University of Maryland,
1970.

i
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Empirical Power Comparisons. Only designs in which I was equal to
2, 3, and 4 were studied. Several combinations of parameters were used
with each of these three design types ("design type"'refers to the
number of categories in the concomitant variable). The parameters which
were varied for each design type were: (1) sample size, (2) ratio of
number of row observations, (3) eta, and (4) magnitude of treatment
effect. Table 1 lists the values assigned to each parameter for each
of the three design types.

Table L

PARAMETERS FOR EACH OF THE THREE DESIGN TYPES

Design Type

Two-Category Three-Category Four-Category
Parameter Variable Variable Variable

Design Design Design.

Sample Size 20

80
56 56

14-4 224

Marginal Ratio
equal n
unequal n

1:1
4:1

1:1:1
4:1:1

1:1:1:1
4:1:1:1

Eta 0.0 0.0 0.0
0.3 0.3 0.3
'0.9 0.9 0.9

Magnitude of 0.0 '0.0 0.'0

Treatment Effect 0.2 0.2 0.2

0.5 0.5 0.5

Two sets of 3,000 sample data generations were run for each of the
48 design combinations in which the values for eta and the treatment
effect were non-zero. One set of data generations was analyzed by the
RB subroutine and the other by the.RCANCOVA subroutine of the Monte
Carlo program (Appendix C). For each run, empirical F ratios for
treatments interaction (RB), and heterogeneity of regression ( RCANCOVA)
were computed along with tPieir respective probabilities under the
null hypotheses of no treatment effect, no interaction effect, and
homogeneity of regression. Each of the computed probabilities for the
treatment effect F ratios was compared to the 6 nominal alpha levels,
and rejection rates were tabulated for each alpha level. For each
sample generated, the computed probability for interaction and
heterogeneity of regression F ratios was compared to-the..01 and .05
alpha levels; those samples with interaction or heterogeneity of

17 -7



regression significant at the .01 and .05 levels were tabulated as sub-
groups. The empirical rejection rate for the treatment effect F ratios
in. each sutgroup was tabulated in the same manner as described for the
total set of samples.

The empirical power of a given design combination for a specified
alpha level is equal to the proportion of times the null hypothesis of
no treatment effect is rejected. The empirical powers of RB and RCANCOVA
were compared at each of the six nominal alpha levels. The statistical
significance of the'comparisons was determined by using either of two
statistics; the first is a z statistic defined by Walker and Lev:9

z
P1 -

JNpq /N1 N2

where N1 is the number of cases in population 1 for which the observed
proportion of rejection is 1)1, N2 is the number of cases in population
2 for which the observed proportion of rejections is p2, p = p1 + p2,
q = 1 - p, and N = N1 + N2; the second is a z' statistic defined by
Haight:1°

Z

y - x

\13-77-1-x

where y is the frequency of rejections' in population 1 and x is the
frequency. of rejections in population 2. The z statistic is approximately
a random variable with a normal distribution and the z' statistic is
approXimately a random variable with a Poisson distribution. Since the----
binomial test becomes skewed and the normal approximation is inaccurate
for proportions close to Oor 1, the-z statistic was used'for comparisons
in which the population proportions were close to .5, and the z'atatistic
was used for 'comparisons in which the population proportions were close
to 1 or O.

RESULTS

Analytical

The followthg,4nVention- were used in developing the analytical
arguments:

9 Walker, H. M., and Lev, J. Statistical inference. New York: Holt,
Rinehart and Winston, 1953.

10 Haight, F. A. Handbook of the Poisson distribution. New York:
Wiley, 1967.
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1. Superscripts. designate the model or design type: f = full model,
r = reduced model, c = CANCOVA, and b = RB.

2. Subscripts index a variable within a specific design: i =
category of control variable, j = level of the treatment dimension, and
k = individual within an ij combination.

3. Matrix notation is condensed by writing a column vector as its
transpose raw vector; for matrices involving repetition of elements,
the following column vector notation is used: An, is a column vector

41 .

of nj A's; e. . YA'sg 1-9 is a column vector of 9 l's.

The RB model is a two-way analysis of variance design in which the
levels of the blocking variable correspond to the categories of the
qualitative control variable. In the CANCOVA model the categories of
the qualitative control variable are translated into sets of dichotomous

covariables." If X
m

(m = 1, 2, I-1) is the m
th

covariable score, in

the i
th

(i = 1, 2, ..., I) category of the qualitative control variable,
then the value of X

m
for m = i is d and the value of X

m
for m i is g;

the values of d / g are arbitrary, e.g., d = 1 and g = 0, or d = -1 and
g = 1, etc. Table 2 schematically represents the covariable allocation
or blocking strategy for a design in which the qualitative control
variable has (,categories.

ANOVA designs can be represented as spqcial forms of the general
linear model (GLM). The matrix form fore sample of n scores based
on a model with 'p < n parameters is

Y = X 0 + e

where Y is an .4(nxl) vector of random observations, & is an (nxp) design
matrix of known quantities, 0 is a (px1\ vector of unknown parameters,
and e is an (nxl) vector of unobserved random errors, normally distrib-
uted with E(e) = 0 and E(e e') = Ica, where I is the (nxn) identity matrix_ --
and 0

2
is the variance. Y and X represent observable data, whereas 0. and

e are unknown. The least Squares estimator of 0 is defined such that

e e = minimum._

" Suits, D. B. Use of dummy variables in egression equations. Journal
of the American Statistical Association, 'December 1962, 548-551:

t2 Dayton, C. M. An. irktroduction to the gener 1 linear model. University
of Maryland, Department pf Measurement and S atistics Monograph,
College Park, Maryland, 1969.

19
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Table 2

SCHEMATIC OF RB (Ix2) OR CANCOVA (Ix2 WITH I-1 COVARIABLES)

Dichotomous Dummy
Covariables

(Xm)

X
1

X
2

... X
I-1

Blocks

Treatment

1 2

1 0 0

1 0 . 0

Y
111

Y
121

Y
lln

1

0 0 ... 1

I-1
.

0 0 1

,0 0 ... 0

0 0 ...

YI-1,11 YI-1, 21

YI
-1..

Y
I-1,1n -

Y
I-1

I-1,2n
I-1

YL11 YIL)1

YIlnI Y 1 2n
I

20
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The value of 6 which minimizes e e is found by the solution of

a (ede)

0a

where t = 1, 2, p. The solution results in a system of normal
equations:

X = X'Y

If X is nonsingular, then (X/X) -1 exists and there is a unique solution

A

= (X/X) 1X'Y

The model for a score in the RB analysis is

-(fb) (fb) (fb)
ilk =+a, / y(fb) e(fb)

ij ijk

where the superscript (fb) denotes full model for RB, 1.1

(n)
is an

additive constant or grand mean,
(fb)

(j = 1, 2, ..:, J) is the effect

of being in the j
th

level of the treatment dimension, p ( fb (i 7 12.

,I)istheeffectofbeingintheithblockinglevel,is the
. (fb)interaction effect of being in the
th

cell of the design, and e.,
134

is the error effect associated with the k
th

lobservation in the
th...

13 cell'of the design. If the parameter and design matrices are
defined using this model; the design matrix will be singular with
column rank JI. Since the smaller order of this design matrix is (J +1)
(t+1), in order 6o remove the singularity a total of (J+I+1).restriCtions
is needed. These restrictions can'be generated from three classes of
linear restrictions:

J

'7

j=1

i=1

7
i=1

= 0

E. = 0

J

7 y.,
j=1 1-1

= 0

(3)

( 4 )

(5)

O



Under these restrictions, appropriate parameter and design-matrices are:1 3

e
(fb)/ fb) (fb) (fb) (fb) (fb) (fb) (fb) y(fb)

'al ' 1 '

B
2 ''"' I-1 'Yll °x'12 ''''1,I -1

NN

1 1 0
-n

11 4111 -n11 -n11

1 1 0 1

-n21 -n21 X21 -n21

0 1 0 0

-n11 -n11 -n11 -n11

... 0 0 1. A 0
-n21 -n21 -n21 7n21-

IN

1 1 0 0 . 1 0 0 1
-n

--nI -1,1 -nI -1,1 -nI -1,1 I-1,1 -nI -1,1
-n

I 1,1
..

0 0 ... 0 0 0 ... 0
-n

II
-n

II(fb) lnil Inil -nil -nil -nil -nil
X ,

1 -1 1 0 -1 0 ... 0

12 12 12
-n

12
-n

12 12
n
12 12

1 -1 0 1 ... 0 0 -1 , . 0
-n22 -n22 X22 X22 -n

22
-n

22
-n

22
-n

22

1 -1 0 0 ... 0 0 .. -1

-ni-1,2 -nI -1,2 -nI -1,2 -nI -1,2 -1-1, 2 -nI -1, 2 7h1-1, 2 -ni
-1,2

-nI2
-nI2 -nI2

-n
I2

-n
I2

-n
I2 QIII2

-nI21 -1 0 0 . 0 0 0-

13 To conserve space the design and parameter matrices illustrated through-
out the rest of this paper are 'restricted to designs in which the
treatment' dimension has two levels; this restriction does not preclude
generalization of the results to designs with More than two levels,of

the treatment drinension.

22
- 12 - .



The model for the same.score under the CANCOVA analysis using
separate within-cell regression is

Y
I-1

jk
=

(hc)
+

a(he) e)
+

i=1

b x + e(hc)
ij ijk jk

. where (hc) is a superscript denoting a CANCOVA design using separate

within-cell regression,%,
(hc)

is an additive constant, aj
(hc)

effect of being in the j
th

level of the treatment dimension,

is the

, b
ij

is the

regression coefficient due to the regression of the ith covariable within

the j
th

treatment level on the Y scores within the j
th

treatment level,

X. is the value of the it 1 ovariable score for the kth observation

within the.j
th

reatment level, and e
(c)

isthe random error for the
jk

k
th

observation within the j
th

level of.treatment. The design matrix
using this model will be singular with column rank JI. Since the, _-

smaller order of the design matrix is JI+1 to remove the singularity 1
restriction is needed:

a. = 0
j=1

Under this restriction, appropriate parameter and design matrices are:

?(hc)'

11

1
. 21

111

.1-1,1

1

-n11

1

-n21

.

"I

(hc) (hc) .b b b b,
,U1 ' 11' 21' I-1' 12' 22Y."' I-1

. 0

-1111 -n1111

0 . 0
-n21 n21 -n21

. . .. 0
.

0 0

-1,1 -nI-1,a "I -1,1 -nI -1,1

x(hC). InIi

1

-n12

4122

1

-nI-1

1
nI2

2

1n Ii 1

-1
71
12

-422

-1

7nI-1,2

-1
n
12

0 0
n I1 -71

1 1

.

.

,

0

n 1 1

.

01

.

1

n12

-n22
0

0

-nI-1,2

OnI2

.

o
-71

12

22

s

0.
-n/-1,2

On
/2

7

-1112

22

1

1-1,2

nI2

2t

- 13 -



Both X
(fb) (hcl

and X are nonsingular matrices with column rank JI. Since

both are based on full-rank models, they account for the same amount of

the total variance and SS
(fb)

=
SS(hc) 14.15

e e

An alternative to the (hc) CANCOVA is a model in which the pooled
within-cell regression coefficient is used instead of separate within-
cell regression coefficients. The model for a score is

I-1
(c) (c)

Yjk = p + iy. + 7 b. X.
jk

+ e

i=1
i jk

where (c) denotes the CANCOVA model in which the pooled within-cell

regression coefficient is used, p
(c).

is an additive constant, a
(c)

is the

'effect of being in the jt
h

level of the treatment dimension, bi is the

pooled within-cell regression coefficient due to the regression of the

i
th

covariable on the Y scores, X is the value of the i
th

covariable
ijk.th

score for the k
th

individual 3in the level.of the treatment, and e.
3k.

is the random error for the k
th

observatitm within the j
th

treatment

level. The design matrix for this model will be singular with column
rank J+I+1. Since the smaller order of this design matrix is J+I, in
order to remove the singularity, 1 restriction is needed:

J

2) IX. = 0
j=1 3

Under this restriction the appropriate parameter and design matrices

are:

e(c)
/ (c) (c)

John Wiley & Sons,14 Scheffe, H. The analysis of variance. New York:

1W).

15 Graybill, F. A. An introduction to linear statistical models. New

York: McGraw-Hill. 11E1. Pp. 106-145.

2=1
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1 1 1 0 ... 0

-n11 X11 n11 n11 -n11

1 0 1 ...

-n21 -n21 -n21 -n21 -n21

. .. ..

1 1 . 0 0 ... 1

-n1-1,1 -nI -1,1 -DI -1,1
-71I

-1,1 -n1-1,1

(c)
=
-n11

1

-n12

1

-n22

1
-1-1

I-14

111
12

2

-n11

-1
-n12,

-1
-n22

-1
-1-1

I-1,2

-1n
12

-n11 -n11

'1 ' 0

-1112 -n12

0 1
-71 -71

22 . 22

0 0
-71

I-1,2 -nI -1,2

9.7)
0

12
-n12

...

...

...

0

-n11

0

-n12

0

-n22

1

-nI -1,2

0
-n

12

tf'r'

th
If the data are such that for the

.

covariable b
ij

= b
i j+1

for.) = 1,

,J-1, then the (c) and the (hc)'CANCOVA models are identical and

account for the same amount of total variance; howeveri if for the i
th

covariable b.. b
i

for some value of j then the column rank of X
(hc)

lj
,

will be greater than the column rank of X
(C)

and the difference in the
amount of total variance accounted for by the'two models will be reflected
in the difference between their respective error sum of squares. In

general,,the difference between the error sum of squareB for the two
models is

SS
(c)

- SS(hc) = SS
h

where SS
h

is the sum of squares due to heterogeneity.

(6)

A similar approach can be used with the RB model to define the sum

of squares for interaction (SS
(rb)

). If y
ij

= 0 for all i j, then the
Y 0

appropriate parameter and design matrices for this reduced qidel are:

(rb) prb),ceirb),4rbArb),...,,..(rb)
n-1

16 Graybill, op. cit.
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o 0

in
11

in
1

11
0
--n

11
-11

...

-n11 11

ln
21

0 1 ...
n-n21 -n21 121 21

.

. . .. . .

1n
3. 0 2n

... 1
I-1,1

-n
I-1,1 -n1-1,1 I-1,1 -DI-1,1

1 0 0

n11
... 0

n11(rb) -n11 -n11X =

12
n
12

-in
12

-9-n12 -0n12

in
22

1n22 2n22 -in
22

.. On
22

0
0 ' 6

. 0 4 1

2 1 4 .
0

-9-n
... 1

I-1,2 1-1,2 1-1,2 1-1,2 n
1-1,2

ill
12

-..1n
12

-9'n
12

9n
12

... -9-n
12

The difference in column rank between the full and reduced RB models is
(J-1) (I-1). This difference in column rank is due to the elimination
of the interaction component (Yid = 0) in the reduced model; therefore,

the difference between the reduced and full models' error sum of squares
is due to interaction

SS - SS
(rb) (fb) (fb)
e e

= SS
( 7 )

Functional relationships can be established between the sum of squares'
components for the RBand CANCOVA models by examining the least squares
estimators for their respective parameter vectors

15(C) (x(C)Ix(C)I lx(C)Iy 6

f!,(rb) (,(rb)/._X (rb)) x(rb)/y

Since Y is the same score vector for both models and X(c) = X
(rb)

the
least squares estimators are equal:

26



n(c)

b
I -1

From equation 8 it can be shol4h that

(rb) (c) (fb (hc)
SS- = SS SS = SS. a

ss(rb)
S
(c)

= SS =
(fb) (hc)

SS
b

%

?

- (8)

.

By substituting the appropriate equalities from equations 9 and 10

into equations S and 7 it can be shown that

and since X
(c)

= X
(rb)

(

SS
h

= SS
fb)

ss(rb)
= SS(c) (12)

Table 3 lists all the-component sums of squares for each model- along with
their respective degrees of freedom.

The difference in the tower of the RB and CANCOVA analyses to detect
treatment effects is dependent on both the amount of interaction (hetero-
geneity) present in the data and the difference in degrees of freedom
associated with the mean square-error term (MS

e
) under each model:. For

the (fb) RB with I levels of blocking and J levels of treatment:

cc(fb)
\ "j(-fbe

MS e

) (13)-
-

- 17 -



Table 3

SUM OF SQUARES AND DEGREES OF FREEDOM FOR-
RB AND CANCOVA ANALYSES

RB CANCOVA

Sum of Degrees of Sum of Degrees opk,f

Squares Freedom Squares Freedom

SS J-1 SS J-1
a a

SSA I-1 SS1, regression) I-1

SS (J-1) (I-1) SS
e

SS
e

, -JI SS(hc)

SS
h

(J -1) (I-1)

Note. The SS, for CANCOVA can 66 partitioned into SSelci which is the error sum of squares using separate within-cell
regression coefficients, and SSh which is the sum of squires for heterogenity of regression.

and for the (c) CANCOVA analysis with I-1 covariables and J levels of
treatment

S(fb)f

MSe /

The F ratio for the treatment effect iu the (fb) RB is

F
(fb)

.MSa
-

.-JI)M.Sice

-
a MS SS

(fb) (fb)

e 'e

(14)

(15)

and the F ratio for treatment effect in the (c) CANCOVA analysis is ,

MS (n..-J-I+1)MSa
F

(a c)
=

a (16)7 ssMS c) (')
e



For sufficiently large sample sizes,

P (F(fh).)
a

F (t")

a

where P(F ) is the probability that F F under the central F distri-
a .a a

bution when the sum of squares for interaction (heterogeneity) is equal

to 0. When the sum of squarei for interaction (heterogeneity) is not .

equal to 0, the following relationships held:

fb)
P when Fh = Fy > 1' (17)

where Is the F ratio for testing the null hypothesis of homogeneity

of regression ankF is the F ratio for testing the null hypothesis of

no interaction.

(p((jefb)) (p((ec))
when Fh = Fa < 1.

Given that F ( ) > F
(c)

the pr6of of equations-17 and 18 is

(n..-JI)MSou

SS(fh) SS(c)
e .e

Since SS( c) = SS(hc> + SSh, then

(n..-J-I+1)MSa

(fb)
SS

e
SS(hc) + SS

h

Dividing by MS expanding and combining like terms:

SS
h CJ-1) (I-1)

SS
(he) > (n..-JI)
e

dividing both sides by (J-1) (I-1) / (n.,-JI):

since

(J-1)('I-1)SS(hc)

> 1

(n..-JI)SSh MSh

(J-1)(I-1)S(hc)
ms(hc) Fh5

29

- -

(18)

(19)

(20)

(21)



F(
fb) Gc)

P ) when F = F > 1.
a h y

From equations 17 and 18 it is clear that when Fh = FY = 1 the power

. of the RB (Pw(RB)) is equal to the power of the CANCOVA (Pw(C)), when Fo
h

=

F > 1,Pw(RB) > Pw(C), and when Fh = FY < 1, Pw(C) > Pw(RB).

ti

The above relationships- only apply when the sample size is sufficiently
large to negate any degrees of freedom differences in the distribution
of the treatment effect F ratios for the RB and CANCOVA analyses. When
the sample size is relatively small, the'degrees of freedom difference
between the two techniques, along with the level of heterogeneity
(interaction) in the samples, plays an important part in determining the
relative power of the two techniques.

The following arguments are used to define the functional relation-
ship between the amount of heterogeneity (interaction) in small samples
and the relative power of the RB and CANCOVA techniques. If the critical

values at a given alpha level are known for F
(fb)

and F
(c)

SS
e

(fb) a a '

and SS
(hc)

=

is defined as a constant equal to 1, then the value of the

SS
(fb) /. (hc) (fb)

; thecan be computed as a proportion of SS
e

= SS
eh

= SS (fb)

value of this proportion when Pw(RB) = Pw(C) is defined as a pivot

point value (PV) for the powei. function. When the ratio SSh/SS(bc) ..-

SS(fb) / SS(fb) > PV, Pw(RB) > Pw(C), but When this ratio is less than
Y e

PV, then Pw(RD) < Pw(C).

Table 1 lists the PV values, for alpha levels of .01 and .05 for two-,
three-, and four-categOry control variables with sample sizes varying
from (JI.2) to (JIE) observations per cell. The algebraic argument
used to compute the listed PV values is:

; Given that SS
e
(fb) = SS(bc) = 1 then

e ,

and

(fb)
MS

IX
F (22)a n..-JI

(c) a
F

MS

a 1 + SS
h
/n..-T-I+1

30
- 20 -
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Table 4

PIVOT POINT VALUE FOR THE .01 AND .05 ALPHA LEVELS

Desig Type Total Sample Size
Alpha

,01 PV .05 PV

8 .5899 .4583

) Two-Category 12 .1994 .1690
Variable Design 16 .1139 .1019

20 .0791 .0728
24 .0604 .0566

Three-Category
Variable Design

12 .6277 .5013
18 .2283 .2040
24 .1371 .1270

30 .0977 .0923

36 .0770 .0729

, 16- .6350 .5093
Four-Category 24 .2377 .2183

Variable Design 32 .1382 .1301

40 .0997 .0982
48 .0791 .0761

where F(fb) and F(c) are the critical values at a given\alpha level,
Ot

of the treatment effect F ratios for the RE and CANCOVA designs re-
Spectively, and n.. is the total sample size. MS can be computed as a

a
function of the known constants F

(fb)

'
n..

'

J, and I using the relation-

ship defined in Equation 22:

MSa
F
(f)

n..-JI

Substitution of K for MS in Equation 23 results in
a

transposing gives

F(c)
ry 1+SS

h
/n.. -J -I+1

SS
h cF -a

31
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(24).
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>

Since PV = SS /SS-(hc) and SS(
h e e

fb) = SS(hc) = 1, then PV = SS
h'

therefore,

Equation 25 can be used to compute PV yalues for different designs.,
Table 4 only lists PV values for designs with sample sizes up to a maximum
of (JI.6). Total samfile sizes greater than (JI.6) are sufficiently
large that the differences in the distributions of the treatment. effect F
ratios for the RB and CANCOVA techniques are negligible and the PV values
can be computed directly from Equation 20..

Empirical

None of the 12 null design combinations (eta =.0 and treatment effect =
0) produced significant lack of fit using a chi-square goodness-of-fit
-test. Table 5 contains summary data for the power comparisons between-
RB and CANCOVA for all 48 design combinations in which eta and the
treatment effect were non-zero. The empirical power for each analysis,
is expressed as the.proportion of samples in which the null hypothesis
of. no treatment effect was rejected. The empirical powers for both the
RB and RCANCOVA analyses are givenfor-the .01, .05, and .10 nominal
alpha levels for each of the 48 design combinations. The power card=
parisons are divided into three groupings: (1) comparisons for.the
total number of samples generated (3,000), (2) comparisons for those
samples in which interaction and heterogeneity were significant at the
.01 level, and (3) comparisons for those samples in Which interaction
and heterogeneity were dignificant at the .05 level.

DISCUSSION

Analytical Results

If there is no interaction or heterogeneity of regression, the least-
square estimators of parameters and error terms for RB and dANCOVA are
identical. situations where there is interaction or heterogeneity
of regression, the error sum of squares for CANCOVA can be partitioned
into a sum of squares for heterogeneity which equals the sum of squares
for interaction under RB analysis, and an error sum of squares due to
the use of separate within -cell regression.coefficients which equals
the error sum of squares under RB analysis. Given the situation where
sample size, is fixed and the number of observations per level of the
control"variable is a constant, RB and CANCOVA provide the same infor-
mation.

Even though the two techniques can provide the same information in
terms of component sums of squares, the relative powers of the two
techniques are not necessarily equal. The power relationship was shown
to be a function of sample size, design type, and amount of heterogeneity
(interaction). For situations in which the heterogeneity (interaction)

--,is equal to zero ..MS
()

< MS ( fb )
; therefore, P (F

(c)
) < P (F

(fb))

r
making

e e

32
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Table 5

EMPIRICAL POWER LEVELS FOR THE 48 DESIGN COMBINATIONS IN WHICH
ETA AND THE TREATMENT EFFECT WERE NON-ZERO

Two-CategoryDetigps

Mar,ginal Ratio
Treatment Effect
ti

Sample Size 20
equal unequal

.2 .5 .2

.3 .9 . 3 9 .3 .9 .3 .4
,-;

Model Power Comparisons

RB/RC

RB
01

RC

Nominal
. 05

RE
Alpha RC

. 10
RB
RC

RB01/RCO1

RB
01

RC

Nominal
. 05

RB
Alpha RC

10
RB
RC

RBO5 /RCO5

01
RB
RC'

NomInal RB
Alpha

.05
RC

RB
RC

.0187

.0193

.0707

. .0723

.1233
_1357

.0000

.0000

.1111

.0833

.2222

.1667

.0128

.0064

.1282

.0641

.1731

.1474

.0203

.0117

.0683

.0637

.1280

.1213

.0000

.0000

.0508

.0294

.1765

.0588

.0301

.0126

.0977

.0440

.1729

.1132

.0573 .0617

.0560 .0660

.1813 .1317

.1693 ..1750

.2900 .2810

.2790 .2773

.1429 .1795
:0938 .0000

.4286 .3077

.1875 .1071

.4286 .4103

.3438 .2111.3

.0725 .1143"

.0561 .0857

.1884 .2357

.1325 .1657

.2754 .3357

.2590 .2514

.0113

.0153

.0520*

.0675

.1100*

.1280

.0000

.0455

.0345

.1818

.1379

.2727

.0111.7

.0164

.0809

.0656

.1838

.1311

.0147

.0157

.0753

.0693

.1303

.1313

.0370

.0313

.1111

.0938

.1481

.1563

.0325

.0145

.0976

.0870

.1870

.1522

.0613

.0613

.1850

.1703

.2923*

.2690

.1250

.0968

.4688*

.1935

.7188*

.4194

.0621

.0405

.2795

.1216

.4037**

.1959

.0550-

%0613

.1657

.1793

.2787

.2860

.0690

.0714

.2069

.2857

.2069

.2857

.1269

.0970

.2687

.2388

.3060.

.2761

Sample Size 80:

RB/RC

. 01
RB
RC

'Nominal
. 05

RB
Alpha RC

. 10
RB
RC

RB01/RCO1

. 01
RB
RC

Nominal
. 05

RB

Alpha RC

.10
RB
RC

R505/RCO5

.01
RB.

RC

Nominal 05
RB

Alpha RC

.10
RB
RC

.0580*

.0507

.1183,,

.1600

.2103**

.2510

.0789

.1111

.1579

.2222

.2568

.2222

.0426

.0643

.1560

.2071

'.2057
.2714

.0473

.0480

.1443

.1417

.2337

.2210

.0000

.0345

.0714

.1034

.1429

.2414

.0274

.0432

.1438

.1481

.2808

.2407

.3207 .3413

.3407 .3390

.5603** .6050

.6083 :5983

.6710 .7120

.7220 .7080

.2903 .5000

.4091 .4333

.5806* .6905

.77-27 .6667

.67746 .6905

.8182 .7667

.2933 .3893

.3154 .3431

.5333 .6211.2

.6174 :5693

.6200 .6913

.7114 .6788

.0397

.0420

.1397

.1347

.2180

.2247

.0870

.0278

.1739

.1944

.2174

.2778

.0507

.0405

.1304

.1486

.1957

.2027

.0503

.0443

.1510

.1340:

.2347

.2213

.0800

.1000

.2000

.4000

.3200

.4500

.0816

.0496

.2109

.1631

.2925

.2199

.3307

.3453

.5787

.5960

.6813

.6920

.7500,*

.2969

1.0000**
.5172

1.0000**
.7241

.3462

.4118

.5897

.5948

.5897*

.7190

.3507

.3410

.5917

.5857

.7110

,.7073

.5769

.1739

.3769

.4348

.7692
..6087

.3643

.366o

.6214

.5752

.7214

.6667
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Table 5 - Continued

Marginal Ratio
`Treatment Effect
Eta

Model Power Comparisons

Three=Category Designs
Sample Size JO

equal
.2

unequal
-.5 .2

.9 .9 .3 .9

Nominal
Alpha

Nominal
Alpha

Nominal
Alpha

RB/RC

RB.01
RC

RB.05
RC

to RB
RC

11)301/RCO1

RB
. 01

RC

RB

RC

. 10 RB

RC

111405/RC05

01 RB

RC

RB.03
RC

10
RB

RC

.0163

.0200

.0763

.0-63

.1520
.1537

.0667

.0000

.2000*

.0645

.3)00

.09$ )-

.0301
.0136

.1586*
.0816
.2349
.1563

.0177

.0147

.0747
.0763

.1527

.1407

.1176

.0000

.17E5

.0952

.4118

.142)

.0367
.0204

.1277

.0884

.2482,

.136r

.1443

.1307

.3453
.3277
.484 3"
.4500

.3000

.1500

5500
.3500

.6500

.4000

.2444*
.1437 .

.4444

.3438

:57o4
.4500

.1210

.1180

.2923
.2960

.4183

.4117

.0E33

.0370

.2083

.1852

.2500

.2395

.1293
.1020

.3265

.23r7

.3946

.3197

i

.0207

.0170

.0827

.0790

.1523

.1493

.1154

.03145

.1923

.1724

.2692

.2759

.0556
.0252

.1528

.0881

.2431

.1572

.0240

.0190

.0823

.0887

.1510

.1487

.1579
.0263

.1579

.1316

.1579

.1842

.0460

.0291

.1034

.1047

.1667

.2035

.1197

.1203

.3077

.2953
.4223
.4153

.0690

.1333

.3448

.3333

.3793

.4333

.2418*
.1497

.6144

.3293

.7320**
-.4551

.1480,
.1310

.3110

.3035

.4377

.4233

.5000

.1143

.30O0**

.1714

.5000

.3429

.2696*

.152,3

.3655

.3113

.5172

.4437

Sample Size 144

Nominal
Alpha

Nominal
Alpha

Nominal
Alpha

RB/RC

RB.01
RC

RB33 RC

RB.10
RC

RB01/RCO1

31 RB
RC

RB05
RC

. 10 RB

RC

R1305/Rco3

01 Rt
RC

RB. 05
RC

10
RB

RC

'.2247

.oe47

.0^'.50

.2240

.3227

.3325

.0000
.0000

.0556*
.3600

.1111

.3600

.0682

.0511

.1894

.2117

. 2197

.3431

.0860

.0E17

.2210

.2237

-. 3173
.3267

.1667

.0-170

.4333

.2174

.5000

.3043

.0701

.0612

.2739

. 25- 5

.369L

.3333

.6400

.6600

.8433

.8400

.9040

.9077

.54-55

.6322

.9091

.7609

.9545

.478

.6395

.6187

.-371

.7937

.3252

.8812

.6373

.6427

.8347

.8313

.9857

.9060

.6800

.7333

.7200

.8667

.8400

.9333

.7105

.69%

.8750

.8675

.9211

.947o

.
.0847
.0873

.2230

.2250

.3243

.3337

.1379

.1818

.2414
.3182

ar59
.3636

.1500*

.0687

.7929

.2977

3786
.374o

.0793
.0833

.2120

.2180

.3193

.3273

.0541

.075o

.1892

.2500

297 3
.3500

.0588

.0963

.1830

.2444

.2876

.3556

...6550 ^

.646o

.8563

.8577

.9140

.9177

.5152

.3415

.7576
.7073

.9697

.8537

.6017
5633
.8559
.8608

./

.9237

.9110+

.6277

.6357

.8430

.8423

.9123

.9073

.5000
.6585

.7368

.8573

9737
.9756

.6493

.6434

.8881

.8601

.9776

.9441
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Table 5'- Continued

Four-Category Designs =e

Sample Size

Marginal Ratio. equal unequal

Treatment Effect .2 .5 . .2

Eta .3 .9 .3 .9 .5 .9 .3 .9

Model Power Comparisons

RB/RC

RB
. 0 1

RC

Nominal
.

RB

Alpha RC

. 10
RB
RC

RBOI/RCO1

01
RB
RC

Nominal RB0 5
Alpha RC

10-
RB

RC

RB05/RCO5

01
RB

RC

Nominal
. 05

RB

Alpha RC

. 10
RB
RC

.0517

.0297

.1113

.1070

.1863

.1820

.0500

.0000

.2000

.0625

'.2500

.0938

.0268

.0192

.1342

.1026

.2081

.1923

.0290

.0303

.1143

.1130

.1983

.1893

.0667

.0000

.1333

.1000

.2000

.2000

.0526

.0129

.1382

.0839

.2039

.1871

t

.2353 .2193

.2097 .2107

.4757* .446o

.4380 .4290

.6020* .5647

.5720 .5503

.3200 .3636.

3000 .1250

.5200 .5455

.5000 .3000

.68o0 .7727*

.6000 .4250

.3116 .2727

.2553 .1355

.5072 .5035

.4610 .3871

.6522 .6364*

.6099 .1903

.0320

.0323

.1130

.1053

.1750

.1780

.2222*

.0000

.4074*

.0870

.5185*

.2174

.0671

.0355

.2256

.1560

.2988

.2482

.0300

.0280

.1183*

.1020

.1917
-.1817

.1290

.0303

.1290

.1212

.1613

.2424

..0657

.0311

.1168

.0745

.1606

.1739

.2173

.2220

.4547

.4540

.5743

.5703

.4231

.1143

.5769

.4000

.6154

.5714

;2463
.1667

.5075

.4058

.5896

5362

.2247

.2240

.4667

.4503

.5900

.5733

.3793

.2857

.5862

.4286

.7586*

.5000.

.2500

.2171

.5405*

.3953

.6484*

.5116

Sample Size 224

Nominal
Alpha

Nominal'
Alpha

Nominal
Alpha

\
RB/RC

RB
,01

RC

RB
. 05

RC

. 10
RB
RC

RBO1 /RCO1

. 01
RB
RC

.05
RB

RC

10
RB
RC

RB05/m05

. 01
RB

Rr'

RB
o5

RC

RB
10

RC

.
:1337..

.1363

.3180

.3323

.4413

.4550

.1765

.0417

.2941

.2083

.3235

.3333

.1400

.0800

.2400

.2560

.3333

.3680

-.".1 .
:.%,14.07

-1420

.3340

.3267

.4617

.4497

.0690

.1034r

.2069

.1379

3448
.3448

.679

.1678

.3212

.3221

.4380

.4698

.8743 .8727

.8740 .8717

.9637 .9660

.9583 .9630

.9843 .9840

.9790 .9810

.8571 .9355

.8333 .8788

1.0000 1.0000

1.0000 .9697

1.0000 1.0000

1.0000 .9697

.8599 .9167

.9091 .90o6

.9682 .9848

.9805 .9752
.

.9809' .9924

.9933 .9876

.1237

.1230

.3230

.3180

.4573

.4453

.2083

4538

.3333

.3462

.4583

.4615

.1799

.1214

.3237

.3500

.4676

.4286

.1387

.1387

.3173

3313

.4417

.4453

.1379

.1563

.2414

.2500

.4138

.3750

.1419
-.1594

3578
.3623

.4257

.4928

.8730

.8633

.9640

.9593

.9823

9833

.7917

.7727

.9583

.9545

1.0000
.9545

.8767

.8414

.9521

.9517

9795
.9862

.8693

.8683

.9633

.9640

.9837

.9813

.7241

.8571

.9510

.9286

1.0000
1.0000

_8553
.8130

.9623

.9512

.9874

.9837

Power comparison significantly different at .06 larval.
** Poster somPorison significantly different at .01 Iowal.

Note: RC RCANCOVA.
RB01 - RB analysis In wh interaction Is significant et the .01 Weill.

. REM FIB analysis In which Interaction Is eirliffeint at the .05 larval.
RC01 RCANCOVA analysis in which hstorogerrolty Is significant at the .01 level.
RC05 RCANCOVA analysis In which heterogeneity Is significant at the .05 Intl.

/ Compared with.
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the CANCOVA technique uniformly more powerful under these conditions.
This relationship does not hold, however, for conditions in which
SS

h
= SS is not equal to 0. A value equal to the ratio

'

SS
h

/ SS(lc)

PV, was defined for situations in which Pw(RB) = Pw(C). FV was shown to
be a monotonic decreasing function of sample size. The smaller sample
sizes wfthin any design type, allow for the greateSt amounts of hetero-
geneity (interaction) before Pw(RB) > Pw(C); in addition, the degrees of
freedom difference between RB and CANCOVA techniques [df(c) > df(b)]
provides a higher probability for rejection of the null hypothegis of
no treatment effect under CANCOVA. These combined factors provide
CANCOVA with a power advantage when the sample size is relatively small
and heterogeneity (interaction) is minimal. As the sample size increases,
TV approaches 0 and at the same time the degrees of freedom advantage
of CANCOVA over RB becomes negligible. Under these conditions the power
advantage tends to shift in favor of RB. The relatively small PV of the
larger sample size dyes not permit very high levels of heterogeneity
(interaction) to be present before Pw(RB) becomes greater than Pw(C).

Another aspect of the analytical results involves the implications
regarding the relationship between power and the correlation between
the concomitant variable and the'criterion variable. For RB and ANCOVA
designs in which the concomitant,variables are continuous; the relative
power of each design is dependent on the value of the linear correlation
coefficient (p) between the concomitant and criterion variables. When
p < 0.1, the RB technique tends to be more powerful; when p 0.6, the
ANCOVA technique tends to be more powerful.17 However, these results do
not generalize to the case when the concomitant variable is not continuous.
In RB, the qualitative conclamitant variable is used as a blocking variable
and the amount of,error reduction is equal to the sum of squares for
_blocking, SS

5
; in CANCOVA, the qualitative concomitant variable is used

to generate a set of dichotomous dummy covariables and the amount of error
reduction is equal to the sum of squares for the pooled within-cell
regression, SSb. It was shown that SSA = SSb; since the amount of error

variability explained by the correlation between the qualitative concomi-
tant and criterion variables for both the RB and CANCOVA analyses is
the same, the power difference between the RB or CANCOVA techniqUes is
not a function of the value of eta.

Empirical Results

Goodness-of-fit. Using chi-square goodness-of-fit tests, it was
shown that all 12 null design Combinations produced chi-square statistics
which fell within 95% confidence intervals for chance occurrences. These
sample runs were used to establish the adequacy of the random number
generators and to empirically validate the computational subroutines
within the Monte Carlo program.

17
Cox, 1057, op. cit.; Feldt, 1958, op. cit.
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Empirical Power Comparisons. The empirical data showed no inter-
.

pretabie differences, either in magnitude and direction,ebetween the -,

power of the RB and RCANCOVA. At nominal alpha levels of..01, .05, and
.10 the number of significantly different power comparisons for the
two-, three-, and four-category design.types fell within 95% confidence

intervals for chance occurrences. Empirically there is no difference
in power, between the two techniques; however, caution must be exercised
in interpreting these results to an applied situation. RCANCOVA was
designed as.a post-hoc CANCOVA in which the a priori fixed number of
observations per category of the concomitant variable (n..) becomes a

post, hoc random variable. Since CANCOVA.and RB were shown to be
analytically equivalent, RCANCOVA could be viewed as a post hoc blocking
technique; however; in.actual practice post hoc blocking is a technique
in which the a priori fixed number of observations per cell of the
design (n,.) becomes a post hoc random variable. Since n.. n. the

RCANCOVA is not equivalent to a post hoc blocking technique; further
investigation using more realistic post..,hoc models is necessary before
inferences can, be drawn regarding the relative power of RB and post

hoc RB designs.

SUMMARY

The powers of fixed-effects randomized block (RB) and analysis of
covariance (CANCOVA).using qualitative concomitant variables were
analytically and empirically compared. Analytical comparisons were made

Jf the powers of RB and CANCOVA in which the number of'observations (n.)

within each of the I categories. of the concomitant variable was a
constant. Empirical comparisons were made of the power of CANCOVA in
whichnc...Tasarandomvariable(RCANCOyA)withRBinwhichn.was a

constant. A Monte Carlo ,program simulated fixed-effects analyses with
two levels of treatment, one criterion variable, and a qualitative
concomitant variable with I categories. Three design types in which

I. was equal to 2, 3, and 4 were studied. The parameters varied for

each design type Were: (1) total, sample size (n..) (I=2, ni.=20 80;

1=5, n..=--5f;, 144; 1=4,',.n..=56, 224), (2) ratio of number of raw

observations (1=2, 1:1, 1:1; 1=3, 1 :1:1, 4:1:1; 1=4, 1:1:1:1, 4:1:1:1),
meta (0.0, 0.3. 0.'9), and {4) magnitude of treatment effect (0.0,
0.2, 0.5).

A lytically, the RB and CANCOVA provided the same'information,in
terms o component sums of squares. However, the power relationship was
shown to be a function of sample size, design type, and amount of
heterogeneity (interaction), present. Empirically no interpretable
differences were found, either in magnitude and direction, between the
power of the RB and RCANCOVA for any of the design type and parameter
combinations studied.

37
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APPENDIX A

7o

DOCUMENTATION FOR PROGRAM WHICH COMPUTES ETA -'
FROM MARGINAL ROW MEANS .

A single parameter card is used for each combination of marginal
means tested..

Col

1

Information

number of categories in the control variable (2, 3, or 4)

2-4 value of marginal mean for first blocking level (F3.2)

5-7 value of marginal mean for second blocking level (F3.2)

'8-10 valve of marginal mean for third blocking level (F3.2)

11-13 value of marginal mean, for fourth blocking level (F3.2)

(Card contains only as many means as there are categories, r.e., a three cate-
gory control variable design has only three marginal mean values punched.)

The program reads in the marginal mean values and computes the value
of eta based on the following relatioriship:

I

11

2 1=
(11.1.

P )2

Io i=1

where I A number of rows, p = row mean, = grand mean, p',2r is the.

total variancevariance and is set equal to pne.

Output-consists of the values of the row means and the computed eta.
#

Table A-1 shows the row weans for-each eta used in the Monte-Carlo
analyses.

Table A-1

ROW MEAN VALUES FOR EACH DESIGN TYPE

Control Variable Designs

Value
TwO Category' -Three Category Four Category

of Row Row Row
Eta 1 2 1 2 3 1 2 3 4

or

.3 1.09 .1.60 1.00 1.30 1.70 1.00 1.20 1.40 1.8o

.9 , 1.00 2.8o 1.00 1.60 3.75 1.00 1.60 2.20 3.40
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The row means in Table A-1 were used to compute the actual cell
means for each cell in a specific design. The computed cell means were
used by.RANDN to generate the observations within that cell. For
example, 1_1 the value of eta was and the treatment effect was .2 for
a two category design, then cell (11)'s population mean would he 0.90,
cell (121's population mean would be 1.10, cell (21)'s population mean
would be 1.'":0, and cell (22)'s population mean would be 1.70..Y
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APPENDIX B

DOCUMENTATION FOR THE CHI-SQUARE
GOODNESS-OF-FIT TEST

A single parameter card was used for each starting number to be
tested.

Col Information

1-6 s.ix-digit starting number read in under F format (F6.0)

The program read in the starting.number and called up the subroutine
RANDN to generatqr1,000 numbers, with a mean of 0.0 and standard deviation
of one. The program divides the empirical frequency distribution into

, 16 intervals of .4 standard' deviations each. Observed frequencies are
compared with the expected for each interval and chi squares for each
interval as well as an overall chi square are computed.

Output consists of the overall chi square, observed frequencies for
each o.f the 16 intervals and chi squares for each interval

43
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APPENDIX C

DOCUMENTATION FOR MONTE CARLO PROGRAM

The following parameter cards are used by the Monte Carlo program:

(1) Starting Number Card

Col. Information

1-6 six digit starting number for RANDN (F6.0)
7-12 six digit sorting number for RANDU (F6.9)
13-16 fOUr digit field for number of sample generations to be run

for each design combination read in on the following parameter
cards (I4)

(2)

Col

1 0 stop. program
1 read in parameters and run

2 one digit F field for the value of eta, (F1.1)

3-5 three digit F field for treatment effecX difference, (F3.2)

6 one digit I field for number of cells in the RE analysis 4,
6, or 8

7-8 two digit I field defining number of observations to be
generated by RANDN in cell (11)

9-11 three digit F field defining the value of the population mean
under which the obserVations in cell (11) will be generated
by RANDN, (F3.2)

12-13 two digit I field defining number of observations to be
generated by RANDN in cell (21)

14-16 three digit F field defining the value of the popplation
mean under which the observations in cell (21) will be
generated by RANDN, (F3.2)

Col

repeat until parameters for all .cells involved in the particular design
are punched. The maximum allowed is for a4+ x 2 design with 8 cells.
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The program reads in the parameter cards; card (1) is read only oncefor each set of runs. There is no limit ,to the number of type (2) cards
which may be read using a single set of starting numbers. If it is
desirable to use different sets of starting numbers for each desigq
combination, then the' program must be terminated after each run and a
new set of parameter cards, both (1) and (2), used to start a new run.

RANDN is called up to generate data for each cell af the design.The data generated are analyzed by the RB subroutine. A new set of data
is generated by RANDN under subroutine RCANCOVA. This set ha§ the samenumber of observations as the RB analysis, but the number of observations
per control variable category is determined by,a subroutine which randomlyassigns category classifications to each observation_ generated by RANDN.
The probability of assigning a set of covariable scores corresponding to
a given categOry of the concomitant variable is the ratio of the number
of observations in that category to the total. number of observationsfor the design. RCANCOVA produces a set of data in which the number of
observations in each category of the control variableAs a random
variable and is representative of the population defined in the parameter

.card. Each observation within a category is assigned the proper set of
covariable scores and the set,of data generated under RCANCOVA .is `analyzed
as if it were a one -way ANCOVA.

Output consists of a table containing the following:

1. The design parameters

a,. The dimensions of the design

b. Eta

c. Treatment effect difference

d. Cell sizes, treatment level sizes, blocking level sizes, and
the, total sample size

2'. Total sample data--summary data for all 6,000 samples generated

a. Frequency of rejection, proportion of rejection, z and z'
statistics at all six nominal alpha levels for the RB and
RCANCOVA analyses

b. A total frequency count' for each analytical technique

3. Interaction and heterogeneity at the .01 level,;.-data for all
samples out of the 6,000 with interaction in the RB analysis
significant at the .01 level and heterogeneity in the RCANCOVA
analyses significant at the .01 level

a4, Same as 2a above

b. Same as 2b above
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4. Same as 1, above except for interaction and heterogeneity which
was significant at the .05 level.
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i.

'4 6
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