. ', DOCUNENT RESUNE ’ T &

ED 118 368 L " sE-019 898
ADTHQR o Goldstein, Ira; And Others o ‘ |
TITLE : ' LLOGO: An Implementation of LOGO in LISP. Art1f1C1al
o A Intelligence Memo Number 307.
. INSTITUTION Massachusetts Inst, of Tech., Cambridge: Art1f1c1al
K , . Intélligence Lab.
SPONS AGENCY ' - Advanced Research Projects Agency (DOD), Washlngton,
. D.C.3 Natlonal Science Foundation, Washington, -
‘ ~ . D.C. . , : .
'REFORT RO " L0GO-11 “
PUB DATE , 27 Jun T4
NOTE , 77p.i For related documents, see ED 077 236, 240-243,
‘ : SE 019ﬂ893 894, and 896-900
' EDRS-PRICE =~ - MF—$0.83 HC-$4.67 Plus Postage ;

DESCRIPTORS Artificial Intelligence; *Computer- Programs.
' - *Computers; *Computer Science Education; Instruction;
" *Manuals; Mathematics Education; Problem Solving;
. *Prograulng Languages .

ABSTRACT. . : ‘ ’ ©

"LISP LOGO is a conputer language invented for the
beginning student of man-machine interaction. The language has the
advantages of simplicity and naturalness as well as that of
emphasizing the difference between programs and data. The language is
based on the LOGO language and uses mnemonic syllables as coimands.
‘It can be used in conjunction with character—orlented display
terminals, graphic display systems, and music gereration. This
document provides a discussion of the merits of LISP LOGO, as vell. as
a user's nanual for the language. (sD)

+ . .
3 L

v

4

P

Docunments acgulred,hy ERIC include many informal unpublished
materials not available from other sources. ERIC makes every effort
to obtain the best copy available. Nevertheless, items of marginal
reproduc1b111ty are often encountered and this affects the quality
of the microfiche and hardcopy reproductlons ERIC makes available
via the ERIC Document Reproduct;on Service (EDRS). EDRS is not
responsible for the quality of the original document. Reproductions
.supplied by EDRS are the best tkat can be made from the original. ¥ _
** .

- Lo . . - ‘

EEEEEERR"
*-*ag* ® % *

e * - i A ;
. ‘:) E _ ’ . . . v) U.S. DEPARTMENT OF HEALTH,
‘ o _ o . : EDUCATION & WELFARE
| ' x . -) . 7 NATIONAL INSTITUTE OF
v ‘ \ S ' - . THIS DOCUM:&?‘:JC:ZISONBEEN REPRO
v i -) - DUCED EXACTLY AS RECEIVED FROM -
- | MASSACHUSETTS INSTITUTE OF TECHNOLOGY | Ao RORTIOEVIE oF Seraions
R ARTIFICIAL INTELLIGENCE LABORATORY T oP AL ATIONA N T oo
o , : o " June 27, 1974
NN A !
= A. 1. MEMO 307 R e - LOGO MEMO 11
Pa § \‘;:; y . : ' =
il . ®
- -7 LLOGO: - | o .
Co An Implementation of LOGO in LISP - |
N " , ‘
Ira Goldstein ;
b ¥ . -
‘ \ Henry Lieberman o _ ' \
- . Harry Bochner ')
Mark Miller
- /:‘ . - ‘/ . ' .) "
Absh'act- ! . .
This paper describes LLOGO, an implementation of the LOGO langua;e written in v
MACLISP for ‘the ITS, TENSO and TENEX PDP-10 systems, and MULTICS. The relative -
. merits of LOGO and LISP as educational languages are discussed. Design decisions in the -
) - - LISP. implementation of LOGO are contrasted with those of two other implementations: S
CLOGO for the PDP-10 and 11LOGO for the PDP-11, both written in assembler language.
LLOGO’s special facilities for character-oriented- display hrminals. graphic display
“turtles”, and music generation are also described. £
This work was supportedlin_part by the National Science Foundation under grant ‘
number GJ-1049 and conducted at the Artificial |nhlligonco Laboratory, a Massachusetts
~ Institute of Technology research program supported in part by the Advanced Research
- Projects Agency of the Department of Defense and monitored by the Office of Naval
Research under Contract Number NO00014-70-A-0362-0005. Reproduction of this
document in whole or in part is permitted for any purpose of the Umted States
Government. _) , e d
QQ ’ ‘ PEHMIGGION TO REPAONUCE THIS copy- . b -
0\ ' . ;) AIGHTED MATERIAL MAS DEEN GRANTED BY
0 L MITS Betitieial Lkt Jeqca > .
. . : “)60 €
0\\ o Yo%lé frm ORGANIZAYIOP:".%?%‘:?;I":S 5 .
O : o L ATION FUnTHER. REPRO , , : |

DUCTION OUTSIDE THE ERIC GYSTEM AE- |
GUIRES PEAMIGSION OF THE COFVF“(:HT
OWNER ™

-

} ~ . : e ' ‘ . .
>. , . . .
K LISP.L0GO MEMD Pt mezm
L) . . i V 3 o . . »
~ TABLE OF CONTENTS
- J - .
2 . ~ Page
Section 1 Why implement LOGO in LiSP 1
. . ‘§ection 2 ~ Differences between LOGO ahd LISP 2
21 " Simplicity <2
- 22 Naturainess 4
23 - Disparity ! 6
Sectian 3 Overview of the fmplementation 8
3 Reader 8
¢ . 3.2 Parser 9
33 Evaluation 9
3.4 " Printing | 9
3.5 Error Analysis 10
Section q : Porforiﬁahcq 11
41 " Size o 11
4.2 Computation Time 11
o ‘ 43 Use 11
e 4.4 Availability 12 .
Section 5 - Getting Started 13
Section 6 Parsing LOGO .16 .
6.1 Infix Expressions 16
6.2 Minus Sign 18
6.3 Homonyms M 18
6.4 Abbreviations 19/
Section 7 Defining and Editing Functions - 20
7.1 , Control Character Editing 20n
7.2 Printing Function Definitions . 21 RS
7.3 Erasing . 22 2
Section 8 Error Handling and Debugging 24
8.1 Parsing Errors 24
82 Run Time Errors \ - 24
83 Breakpoints : 25
‘- 84 Wrong Number of Inputs Erroys 28
85 Garbage Collector Errors 28
° 86 Tracing 29
_) 8.7 Interaction with LISP 29 .
) T‘* of Uunhnh
, ;} | . » 3 o
ERIC N
. HEEEENET th

LISP LOGOGMEMO s T pageit 0 0 Y June 1974 R
. . ‘1 . o - ~» . . . P . A . 3 | .
Sectiond ~ Compiling LLOGO User Procedures 30 v
. ' - ’ —
LN ‘ : T .
*Section 10 d " " Using Files in LLOGO | o 32,
' 10.1 » Saving and Reading Files , 32
. . 10.2 Other File Commands . 33
’ Section 11 - _ Differences between 11LOGO and LLOGO ‘ . 34 K
Section 12 _ Using LLOGO on MULTICS - - | <: SR
: ! ' . - N = w .
! 12.1 Where To Find it . 38 - >
] ’ 122 - File Naming Conventions o 38 .
‘ 123 .- Terminalogy ! ' 39
Sect"ao_hk;a ©* Using LLOGO on TENSO0 and TENEX systems a0
v . £ . X . ,
Section 14 « GERMLAND a
141 . Starting Up | a1
142 ' . Toplevel Primitives . a
143 : Grid Primitives : 42 A
14.4 Property Primitives . a3 o -
. 145 Multiple Germ Primitives . . 44 . '
‘ . 146 o Turtie Primitives - v ‘ 44 -
’ ' 14.7 . . Touch Primitives ' . . 45 '
) 14.8 ' Global Variables .) - a5
' 149 ImplemeRtation - e - 46
Section 15 : Display Turtle Primiti\;es S 47 -
> 151 Starting The Display . B 47 .
15:2 : + The Turtle _ " . 47
15.3 "' Moving the Turtle = - - a8
15.4 * \Erasing the Screen . » 49
. 155 Turning the Turtle | a9
: 15.6 Examining the Turtle'’s State . 49
15.7 The Pen B * 50
158 Global Navigation) ’ .51
, 199 Trigonometry ’) |
_ 15.10 Text 51 o~
SN 15.11 Manipulating Scenes 52 .
1512 - Plotter . ‘ ‘ 53 -
15.13 Pots _ | .54 :
1518 . Points™ . . 50 . | .
.. .15.15 ‘ Global State of the Turtle’s World ' ' 54 '
~ Section 16 " The Music Box b
¢ 's [| .)) : ’
‘ ' -~ s - \
v : > Table’of Contents '
\‘1 . { .

1

(\ LISP LOGD MEMO

)

{161 -
162
16.3

Page iii June 27,1974
Plugging In o, . 56 f
Turning On - . 56
Music Primitives 57 .

+ . . -
L} .
i . .

"
1

Table of Contents

<

-

LISP LOGO MEMO . Pagele " Jure 27, 1974
: ~° Section 1. Why Implement LOGO in LISP

° 4

. LISP has’ proved itself to be a powerful i\nguaga for representing complex

information processing tasks. This power stems from:
0 5

1. The uhiform repreﬁentation of programs and data.

. 2. The ability to build arbitrarily complex data structures in the form of s-expressions.

3. Recursion, < . -

Power, however, is not pecessarily good pedagogy. LOGO is s computer language
designed especially for the beginner. Its purpose is to introduce the fundamental ideas,
of computation as clearly as possible. o) .

; LISP LOGO is an implementation of LOGO in LISP. It has been designed for several
reasons. The first is that these two languages share a fundamental ¢Pre in common,

_ Both are time shared, interpretive languages capable of full recursion. Variable and

procedure names may be any string of letters and digits. Sub-procedure definitions are
independent of super-procedures. Both numerical and list-structured information can be
manipulated with equal facility. Thus, the LOGO systems programmer is freed of the
necessity of re-developing various facilities already available in LISP (lists, recursion,
garbage collection, error service traps, interrupts). He can concentrate on additions
(better error analysis) and modifications (pedagogical simplifications) to LISP. LLOGO
unifies language development across a broad spectrum ranging from PLANNER and
CONMIVER through LISP to (OGO, o

A éecond reason for this implementation is to provide a natural transition to the

“more powerful cdputational world-of LISP as the student grows more sophisticated.

When desired, the student has access to all of the capabilities of LISP including:

o

Arrays

' Functions of arbitriry number ‘of inputs . : . ~

. Functions that do not evaluate their inputs

- MICRO-PLANNER and CONNIVER '
Interrupts
LISP compiler

. Property lists ' Lo Y

" Floating point numbers -) \ ,
Character display cursor manipulation e .
Infinite precision fixed point arithmetic*

@ -

WLy Implement LOOD in LISP .' Section 1

P

LISP LOGO MEMO ‘ | Page 2 | June 27, 1974

| . o
Section 2. Differences between LOGO and LISP

¢

The dnfforoncos betwun LOGO and LISP can be dnénbod on the basus of three

educational goals: .

Simglicitz of both the computatloml and oxplanatory kind.

Naturalness wherein the overhead for ‘a naive user is minimized by followmg
standard English conventions. "

Disparity which emphasizes the- distinction betwaen various modes such as
defining versus running programs, . : .

it shoulci be noted, however, that there can be no one unique solution to the-
"best” educational language: These three goals can conflict. Furthermore,-they cannot be

$0 amphaslzed that important ideas of computation are completely eliminated from the
language. For students of different backgrounds, simplicity and naturainess may have
very different meanings. * Hence, alternatives to the particular choices made in designing

CLOGO and 11L0GO are also described. This section may be viewed as presenting a "

spectrum of possibilites “from which a tnchor can build a computationasl world tailored to
_ his own pedagogical purposes.

°

2.1 Simplicity
Lists versus Sentences

Lists have a simple recursive definition. A list.is either

1. NIL, the empty list ,
2. (wordl word2...), a dequence of words (= atoms)
- 3. A list of lists. 7 . !

This definition is confusing when the student is étlll ha\:rm; trouble with the concept of
recursion, CLOGO limits itself to lists built from only the_first two of theso three cluusos.
"Such lists are called "sentences”.

>

Alternative visw: the c¢ncept of recursion is too important to be eliminated

~from LOGO. Recursive programs are allowed. Educationally, the more examples
of recursion avsilable, the easier it is to understand. Hence, lists should be
allowed.

‘ Computational power is not always in conflict with educational simplicity. In
addition to the standard list operations of FIRST (CAR) and BUTFIRST (CDR), LOGO
provifies LAST and BUTLAST. Furthermore, all four of those operahons work on words
as w s sentences. The fact that word manipulation is more costly _than list
* manipulation for LISP, or that taking the LAST of a list is more expensive than computing
its FIRST is not of interest to the beginner. The natural symmatry of having all of those
operations is to ‘be preferred.

Alternative view: LOGO introduces two data types - words and sentences.

Differences between LOGO and LISP /0 setena

7

" LISPLOGO MEMD . Page 3 ; June 27, 1974

There is both an empty word and an empty sentence, LISP’s world. is easier to
- understand. There is only one type of data, s-expressions. Primitives like C/AR

are list operahons only; they do not operate on words by mampulahng the
_word's print name, as LOGO's FIRST does. . . r

Repeatedly BUTF IRSTing a sentence in LOGO always termmates in the empty list,
In LISP, with its more general list structure built from "dotled pairs™ and CONSing, this is -
not always so. Thé result is the pdsslblluty of "slip-through” bugs for EMPTY P endtests
of recursive procedures. Thus, LOGO eliminates a common source of error without
significantly limiting computational power.

. Alternative view: Allowing an atom to be the CDR of an s-expression
sometimes allows for economy of storage. Also, the symmetry of CAR and CDR
'in LISP make the data structure easier to explain, although they are symmetric
as list operations only for the particular representation of lists used in LISP.

ngld program form

LISP allows programs to be lists of any form Editing and debuggmg consequently
become awkward due to-the difficulty in naming parts of the program. LOGO simplifies
program structure by requiring that a program be a series of numbered lines. The
|ocahons of bugs and intended edits are then far easier to describe. - &

Criticism: LOGO' wolates this assumphon by ellowmg fhe user to create lines of
unlimited complexity. It would be preferable to limit.a line to a single top level
call. This does not prohibit nesting, a fundamental idea in computation. But it
does prohibit defeating the entire point of line numbers with such code as:

1

>10 FD 100 RT 90 FD 100 RT 90

~ An alternative scheme might be to adopt a "DDT" like convention. Lines are
identified by offsets from user-defined location symbols. This has ' IL;'
advantage of encouraging the use of mriemonic names for portions of the user's
program, rather than line numbers, which have no mnemonic value, while

. retaining the virtue of having a name for every part of the program. The user

" would not have to renumber lines if he wanted to insert more lines between
two lines of code than the ditferenee belween their line numbers,

|n.|eger' Arithmetic N : » .

The initial CLOGO world limits the user to integer arithmetic. The rationale behind
this is to avoid the complexity of decimal fractions. This is clearly a simplification whose
value depends on the background of the students.

" Criticism: ever/ for elementary school children, this snmplmcehon may cause
. constipn. st beginners are troubled with

1 v
/7
Propone'nts of fixed point arithmetic might.reply that t'his is no,worse t‘han
- 999999 "
i
Ditterences between LOGO and LISP - Section 2.1

=N

<
.

LISP LOGO MEMO Paged June 27, 1974

However, a decimal printer can be clever in performing rpundoff.
)) f.' N

Other alternatives are to limit arithmetic to rational numbaers, or to use the
following LISP convention: Numbsérs are fixed point unless ending in a decimal
fraction. Operations only return fixed point if both operands are fixed point.

Another virtue of LISP is that fixed point numbers can be infinitely large.
Arbitrary limitations due to the finite size of the computer’s word do not exist to confuse
the beginner.

v
o

Conditionals

B

LOGO allows the following. type of branching:

>10 TEST <predicate>
>20 IFTRUE -
. - >30 IFFALSE

TEST 3ets a flag which subsequent IF TRUE's and IFFALSE's access. This avoids the
necessity of the entire conditional appearing on a single line of the procedure. The
student has explicit names in the form of line numbers for aach branch.

Criticism: This_prevents nesting of conditionals. A second conditional wipes out
the results of the first. In LLOGO, the flag set by TEST is simply a LISP
varisble. Since it is global, TEST’s in sub-procecures can affect JIFTRUE’s in .
theduper-procedure. This introduces a non-local nature to control structure.

"LOGO’s lack of canned loops such as DO and MAPCAR can be criticized as
encouraging bad programming practice, such as excessive use of G0. This obscures the
logical structure of programs. Also, it may be significantly confusing to the beginner, and
the source of many bugs. A child might understand quite -well a cantrol structure concept
like "do this part of the program three times®, or “do this part of the program for each
element of the list”, but may be unable to open-code that control structure in terms of
jumps and conditionals. LOGO programs can't be "pretty printed” to reveal their logical
structure as can programs written in LISP or a block structured langusge.

[

2.2 Naturalness

* Mnemonic Names . -

An obvious virtue of any computer language is to use procedure names whose
English meaning suggests_their purpose. Consequently, LISP's primmvas CAR and CDR
are renamed FIRST and BUTFIRST,

Note: Everyone remembers how un-mnemonic- CAR and CDR are. However,
most LISP pnm:twes are mmed after their Englush counterparts.

CLOGO syntax allows the use of certain "noise words", words which appear in the
user’s code, but have no effect beyond making the code read more like English sentences.
For example, in the following lines of LOGO code, the AND, OR, THEN, and-TO. sre
permitted but serve no computational purpose. They do not designate procedures, as is,
the us ual case with words not beginning with a colon.

o

"Differences between L0OO and LISP | | * Section 22

i\,,,/

Vo

LISP LOGO MEMD ‘ © 'PageS . " June 27,1974

’

?BOTH <predicate 1> AND <predicate 2>
?EITHER <predxccto 1> OR <predwcu >
?IF <predicete 1> THEN 5.
60T10.....

However, as the student gains more insight into LOGO, noise words become a
burden. They complicate the task of the parser, preventm; the student from feeling that
he really understands the language. Most of the noise words have been eliminated in
both PDP11 LOGO and LISP LOGO. [LLOGO will tolerate THEN in c0nd|t|onals, and 70 in
transfers, however, because they are so commonly used]

Matching English vocabulary to computer functmns can be dlmcull English words
rarely have a single meaning. Following are some examples where CLOGO may have made
the wrong choice. ¢

1. CLOGO uses IS instead of EQUAL for its equality predicate. The rationale is that IS
will be more familiar to a non-mathematical beginner. However, the omnipresent naturo
of this English verb results in such LOGO code as:

'TEST IS :THIS.NUMBER GREATERP :THAT.NUMBER

thus, it might be better for LOGO to use EQUAL.

2. Another example where LOGO may have chosen the. wrong word is in dehmng
procedures This is done via:s ,

?TO PROCEDURE.NAME :INPUTI :INPUT2 . . -t

The English word "to™ can imply executmn For example, "ho is to run hls program”. A
better choice would be "define™ .

Parsing .

LISP avoids the ne(kesslty of parsmg through the use of parentheses. This might

- be considered well worth emulating in LOGO for its oxplanatory simplicity. However,
_simplicity must be contrasted with naturainess. A beginner is used to using English

where verbs and modifiers are connected by grammar, context and meaning rather than
explicit parenthesmng This naturalness can be preserved for procedures that take a

fixed number of inputs. This allows such lines of code to be understood by anyone

without any special programming knowledge. . >
?FORW/IRD 100 RIGHT %0

Thus, a ygmner can express himself with no extra burden of paunthoslzmg when his
pro are still very slmp

Parsmg can be usedto permut infix notatmn Again it is simpler to demand that all
functional calls be in prefix notation, However, a beginner is far more famllar with
FORWARD :SIDE+10 than with (FORW ARD (SUM SIDE 10)).

Eventually, as- one’s code becomes more . complex, parentheses become a
simplifying tool. One does’ 'not have to guess how the parser will work. LLOGO allows
this. If desired, parentheses are permitted and interpreted in the standard way. -

iilferences between LOGO and LISP L Section 2.2

LISP LOGO MEMO : Page 6 . June 27, 1974

Criticism: LOGO complicates its parsing algorithm in several ways, making it
difficult to explain to a student. For example, the language does not insist that
all primitives take a fixed number of inputs. In some cases such as the title
lines of definitions, this is reasonable. On the other hand, it is somewhat
confusing to limit such primitives as SUM to only 2 inputs if ot parenthesized
but any number of inputs if parenthesized. Equally bad is the fact that
primitives like 11L0GO’s PRINTOUT for printing definitions do not evaluate
their mputs It would be more consistent for

"PRINTOUT "PROCRAM"

" to be reduired. C ‘ . ¢

2.3 Disparity

Program Versus Data o . -

Both programs and data are,information structures. The difference betw=en the
two is solely a matter of yse. LISP preserves this elegant view by allowing programs to
be passed as‘input and, '#ndeed, fo even redefine themselves. This power, for all its
simplicity, can confuse the beginner. For the novice, the difference between defining and
running a procedure is unclear. LOGO provides clarification by forcmg a complete
distinction between the processes of defining and of evaluation.

Criticism: LOGO violates this idea. ‘A program can be executed inside a
definition if-not preceded by a line number. This is a mistake. The typical case
is for the user to have intended to type the line number. In its wistful desire
for more computational power, LOGO has forgotten its epistemological
foundations.

Homonyms .) .

. LISP has the ability for a word to be the name of both a procedure: and a
variable. The position of the word in a list then determines how it is used. Homonyms,
however, can be confusing. How should a word which is both a procedure and a varisble
be treated when it is the first element in a list? The choice is arbitrary.

LOGO ;;revents such homonyms. Words evaluate as variables only when preceded
by ") ‘

,e

° .o X .. causes X to evaluate as a procad}ure call.
:X .. returns the value of the variable X. ~

thus; LOGO and LISP share the power of allowing any string of letters to be either a
procedure or a variable name. But LOGO insists on dn unambiguous "ocal” distinction,
independent of position, between these two uses.

Another example of the clever ways LISP takes advantage of homonyms is NIL.
LISP uses this word to name both the empty list and the logical truth value FALSE. This
can result in more economical procedures. The convenience, however, has no canceptual
basis. Hence, it can confuse the user who does not yet understand either list
manipulgtion or logical analysis well. This is similar to the situation in APL, where the

©

Differences between LOGO and LISP S Section 2.3

11

S

« ° LISPL0GOD MEMD " Page7# June 27,1974

L] * - i
. .

_ logica! constants are the integers 0 and 1, and condlhomls are acco:nphshod by numerical -
L rnampulahon It can lead to obscuring tho purposo of a gwen pwcu of code.

[

Llne oriented input , . o s

LISP evaluates an expression when parentheses balance. Thus it cannot catch Y
errors caused by typing too many right parentheses. LOGO waits for a carriage return. '
. Hence it is capable of recogmzmg this probiem. Furthormore, a user can write several
: #3ls on a line. Execution is delayed until a carriage return is typed. This has the virtue
of separating the tasks of forming grammatical expressions from sxecuting programs. . _ ‘

f\ . 9

 Difierences between LOOO and LISP. N - Sectien 23

£ : '

7 ugweMmo 4T rges 2 memmwa -

7 Sectipn ‘3. Gverview of the Implementation” =~ o T o ¢

: Lisp LOGO is desagned 50 that the user need hever know that he is co:hmumcatmg L
' with other than a standard LOGO. However, if desired, he can insert parenthesi-zed LlSP S
code anywhere in his LOGO' program.. - o .

¢ s

: LlSFV’L(f)GO is baslcally a compder it converts LOGO input to LlSP programs The
o result is that - running most prccedures hkes less time smce the code need not be
. 3 repettedly,mterneﬂ andparsed. o

RS . (The followrng pages provide an overview “of the major parts of lhe system. . . e
These are its reader, parser, evaluatqr, printer, and '‘error handler. More detailed. . e i
", explanations -of these will follow in later sections of this memo.. For implementafion .

d: s dehuls. LisP’ LOGO is avmlable in well-commented mterpretive code : S |

.. Code for, the LOGO display tartle i d:scussed in Section 15, and code for the ~ . -+ . *
~ music _box in Sectmn 16. “The- "LOGO' project™.is ‘concerned with more than the o) -
deVelopment of a “tomputer language.. Of major interest is the design of various - : '
.«computer-driven devices which provide® a rich problem solving environment for the '
" 'student. However, spebaal purpose:primitives for driving these devices are independent of - <
. -LOGD, versus LISP issues and must.ba added individually. A LISP-bassd implementation SR e
. . does have one special victue. For those devices. like the music box which are driven by -
ASClIi- characters, the primitives can be written in LISP or LOGO lnd then compnled It is ‘
mt necessary to create tode at the machme level. : ‘ ‘ .
31 Reader .
e TR The LOGO reader is baslcally a linesonented LISP reader. |t reh:rns a: hst of !
- -atoms read between cartiage returns. . The fundamental tasks of interning atoms and .
bunldmg list structure are handled by LISP. Conflicts in- charecter syntax and |denhﬁers
~between LISP and LOGO present the only subtieties. A _ S
o . .
Certam ‘characters such as the infi operalors + = %, and / do nol requure spaces
Ol to be set off as atoms. This is equivalent to being a smgle character ob;ect" in LISP.
Other characters such as "" in dotted pairs are special in LISP but not in LOGO. The
soluhon to these cOnfhcts IS found in usmg separate reedtable s for 1060 and LISP. '
e Conflicts in names also occur. The LOGO user has access to ali the ordmary LlSP . :
proceduresu, but must be. prevented from accessmg LISP procedures which are internal to ' S,
- LLOGO." This is accomplished by using two obarrﬁys When - the -usér types in :n' ' '
|dentrfler with the same name as an mternal procedure, he accesses a dlﬂerent atom
. MACLISP aIIows any number of separate readtable s and obarray s, Thus
permits multiple worlds - PLANNER CONNIVER, LISP, LOGO - to co-exist with no conflict:
Switching worlds is computationally fast. Al that is necessary is to rebind. the -
"-READTABLE and OBARRAY variables to.the desired world. On the other hand, the -
. naive user is prot?cted cOmpIetely from ogher environments and need not even know of

“their existence. e . . - g
’ [J) : o . -

- . . - » : Lo

4

\ R - . Y

S] Y

| .Overview of the linpleméntaton - . Seten3I

¥t . LISPL0G0 MEMO o Puged . JwmeZn, 1974

- v 3 - N - [4

A4

. 3.2 Parser

e - parentheses ‘is—a trivial compufation for procedurasfwdh a fixed number of mputs
. ' - However, camplexnhes arewntroduced into-the LOGO parser by:

A
- 1, Having |nf|x as well as' prehx oper.ztors

in parentheses (SUM, SENTENCE, who . .

.

.3 anlhves ||ke T0 that do not parse thelr mput ' . .

)

s T a HomOnyms~ Functions which have the same name in n LISP and LOGO, but have dlfferentn' '
‘ meanings, These are. handled by having the parser detect the names of LOGO primitives
which conflict wnth LISP, and c0nver| them to funchons with dlfterent names that do not -

confllct

L]
.

_ 'Thls makes lhe parser the most complucated part of the sumulahon

7 ' .
Parsung information’is stored on- the property ||st of a function. The major sub-

. procedures are concerned with prefix, infix, and ‘user-typed parentheses. S'becul '

PI’IMI'WQS are parsed by storlng a pr0cedure as the parsing property
. " 38 Evaluation , ' > . A L'

- . . ' .

The bas lc OGO functions that do the user’s computation - j.e. the . anthmohc. list,

"and logical-primitives ~ are the simplest part of the simulation. These functions all occur.

: : in LISP, usually in a somewhat:more general form. Hence, this part of the implementation
B - " is little. more than renaming. For many primitives, LLOGO provides more argument type
o checknng and mformahve -error messages than are supplied by their LlSP counterparts

program -in parsed form is simply a LISP PROC. The line numbers are tags in the PROG.

\ . - . . ‘ ¢ - " ') ”) .v', , ,(ra] .) . . . Q
' 34 Printing e T : .
, OGO procedures could be represented as hsts of unparspd lines infernally. In

" this case, a line must be interned and parsed each time it is.run. However, the problems

- . of printing the definition and editing a function are simplified. The internal format is
|denhcal to the format in which the user originally typed the expression.

\

' An ilternatwe solution is to represent LOGO programs in parsed, i.e, LISP form. -A
LOGO program internally is a LISP program. This maximizes run time speed and simplifies
building program undershnders. it has the dlsadvantsge of complncahng the parser and

prnnter - a

i
-

.l. The parser must vhandle ‘functions that have not yet been defined. This can be
accomplished, however, by reverting to the solution of parsing at run time those lines
wwhich contain unknown functions. This run-time parsing can alter the program s definition
as well so it only need occur once. .

]

&

" Gebview of the lmplemenleliar B v Sectien34

- N

The parser converts a LOGO line to ||s|-s|ruc|ured form. Thls requures that' Y
information on the number of inputs used by a procedure be available.: Inserting -

' 2, Changung the number of mputs dependlng upon whether thg user embedded the form

Parsed code is executed dlrectly by the LlSP evaluator. Indeed, l’ user—dehned

- . o

. USPLOGOMEMO . " T o imﬂ,l!ﬂ | R

"0' '2 Pr’nhng definitions and editing: lines roquuros an. invarse parser or “unparser” which : .
, - returns the LISP-ified code to its original form. This is possible providing there is no.. T
. information lost in parsing. Such is the case if the parser makes special provision for - = o |

distinguishing user-typed parenthosu from parser-generated plrcnlhosos One way to.
. sccomplish this is by beginning usor—luts with a do-nothln; mmlion USER-PARBN :
e deﬁned as: . L.

¢ - S '
A

SR R usnn-mnmx)x) SN |
s" , " 3. Editing hile |mes is made more complex. The editor must reparse thgi |mes of super- e o
: ~ procedures in which the edited function - sppears. This can be accovnphshod by e
maintaining a super-proceduro tree, althou;h LLOGO dd'qs not currcnlly dp this. S -
L] ! . .
& These complocahons can be avotdid by stormg both rcprmnhhuns of the
~ procedure.. This is an excellent sxample of a space versus eoudloxity tradc-aﬂ. LISP
' LOGO curreptly does not storo both representations. .

: L 35ErrorAnalysls . S

gince LOGO is a language whoch is dosi;ned lu be usoc? by beginning
programmers, it is- important to provide informative error messages. Consequently, all -
. LOGO primitives do extensive type chockin; on their inputs. LLOGO: will try to print out
the form which d the error, and gixe the line number if the error occurred inside & »
procedure. Aft simple mistyping error which'can be detected by the parser, the user ~ °
is given an immediate opportunity to correct the line. For run time errors, he is given
the option- of causing breakpoints. Facilities for oxploﬂm the stack from inside a - :
breakpoint loop are avsilable. ‘Since LOGO procedures are represented internally as LISP R -
procedures, the standard LISP TRACE packau canbeused. o . -

R These facilities are implemented using LISP error’ mtom:pt handlers and_
‘ - EVALFRAME. it the sophisticated user wishu to provide his own error handiers, he can
o - sccess the LisP hcullties directly.

»

~ Overview uf the Implementation o | o Sldioﬂ!.'.i
| | ' 3 | R

 LISPL0GO MEMO Pagell Jute 27, 1874

Section 4. Performance

N .
o
’ . - - ¥ A) -)
LY R B . -
N

7 -
4.1 Size :
LISP , 26 Blocks (1024 36 bit words)
LLOGO (compuled) 7 Binary program : :
‘ 5 List strutture : -
N ° S 2 Numbers, Atomic symbols, etc. B o .
~ Total space . a0 " '

= - '

These tlgures do not mclude space for user programs, or loading the’ dlsplay
turtle, music, or GERMLAND packages. Between 5 and 10K beyond the amount of storage
.mentioned above would provide.a reasonable amount of workspace for user programs
and data; this- would correspond roughly to programs of perhaps 'teW'pages In the
current MACLISP, storage expands as needed. LLOGO takes advantage of this feature -- If
programs grow beyond a certain size the user is asked.whether he wishes the allocation
to be increased. Storage is expanded automatlcally on loading special packages such as
the display turtie. Of the 14 blocks whuch comprise the LLOGO system, all but 3 are’pure, ;
and can’ be shared among users,

- PN A - -t

4.2 Computation Time

o . I] <

For most _processing, LLOGO enjoys a speed-up over CLOGO and llt.OGO due to
the fact that parsing and interning occur only once at define time. Further, LLOGO makes
it possible to compile LOGD source programs into.machine code using the MACLISP .
*compiler for increased efficiency [See Section 9] Workspaces can be stored on the 24
disk in internal LISP format. [See Section 10.1] Consequently, re-reading files has no :

.overhead. CLOGO has an advaritage, howsver, in mampulatm; words, as its internal data

structure is string rather than list oriented.

4.3 Use R . |
. Almost all of the primitives of CLOGO and 11LOGO, (including the music box,
display turtle for the PDP-6 and GT40) are implemented. Hence, LISP LOGO is capable of
reading, parsing and running most files saved under CLOGO or 11LOGO [perhaps
necessitating minor modutncatton}

It can also be used real-tlme by ‘an mdwudual familiar only ~ wuth LOGO no :
knowledge of LISP is required. On the other hand, all of LISP’s facilities are available. »
Programs can be written in LISP, or in machine |anguage using LAP, and can be made
callable from LOGO. The special . packagés for the display turtle, music box and
GERMLAND can also be used from an ordinary LISP. Some other f s of LLOGO, such
as the breakpoint and stack manipulating functlons, are also_available for use in LISP.
LISP users can take advantage of these facilities”without intaraction with LOGO simply by
loading the appropnata files of LISP tunctuons

s o

Performance ‘ } - .) v Seetnim 43

[isPLoGOMEMD . P2 Jwe 27,194
4.4 Availabllity - B - S

\ The implementation is written comphtoly in inhrprctivo codo it runs compilod
_‘Under the MACLISP currently in use st the Artificial ntelligence Laborstory. LLOGO has
alsa been implemented on standard DEC PDP-10"s under the TENSO and TENEX systems,
a’r:d on MULTICS. Thou mplcmntahom are discussed in Section 13 and Section 12 of
this memo, .

)
N

o).
. K L]
kY
.
3 ~ ': o
]
. o '
- '
RN
-
. o
& A} .
‘, .
7 t .
S
. .
L i
g P
: o
-
o ~ 3 ’
-~ s
. R
- .
N - .
N n
. 9.
o B
b
.
'
' =
'.< o
o
P
< -
' .
L}
' 0
. a
-
&
»
- a
P

l'lrhnnm ’ : ‘ ’ . Section 4.4

AT
T
e
———
a
v
v
-
/’va
. i
i
i
|
-
&
—
)
")
-
]

- \
’ LISP LOGO MEMO) : * Page 13 June 27, 1574
. Section 5. Getting Started ‘ . |
. P

In the' following sections, we will go" intd - more dot;?l\' concerning the
implementation of LISP LOGO, and provide some practical information for using it. We will
not attempt to provide the reader with an introduction to the LOGD: language; several *
excellen). sources for this already exist, such as the LOGO Primer, and the 11LOGO User’s
manual {LOGO memo 7] We will assume that the reader has read these, or is already
familiar_with CLOGO or 11LOGO, the other implementations of the LOGO language available
at the Allab. Instead, we will concentrate on pointing qut differences between LLOGO and
other implementations of LOGO, and describing features unique to our implementation. It is
not “necessary “to know' LISP to understand most of what follaws, although some
¢ knowledge of LISP would be helpful in gaining insight into the implementation. For more

" information on LJSP, see the MACLISP Reference Manusl by Dave Moon, and the Interim
"LISP User’s Guide [Al memo 190] . :
. . .) A f .) s WO

e .

1]

B N AN

. Notational conventions: Throughout this memo, USER TYPEIN and LOCO CODE

scill appear in.a font like this. SYSTEM TYPEOUT will appear in a fant like this. Control

.- characters are denoted by A followed by the character. You type a control’character by
, holding dowA - the control key while you are typing the character, $ means escape or -
altmodi.. not dollar-sign, except’ where otherwise noted. Angle brackets < > mean -

something of the .appropriate type suggested within: the brackets; for instance, if your

user name.is HENRY, <user name> means your user name, e.g. HENRY. Except for control
characters, which usually take immediate effect, and except where otherwise noted, end .

; 8l lines of typein with a carrisge return.” »
! The following procedure is intended.to help very naive users of ITS to get logged
) in, and to_obtain LISP LOGO, See Al memo \215, How To Get On the System, for more
q details, : g ‘

w

L. Find a fres console. A console which is free shows, . .
‘ ALITS <version> consm.g <number> FAEE, <time>.

2. A console which is free understands only one command. It is AZ. The éomputir will
respond with the following messages: ’ oL _

»

' AL ITS <version>, DDT <versien>, - ‘ T
<number> USERS. : : '
¥ <news> °
3. Wheri it stops printing, login as follows: type |
LOGiN <user name>
. If there are any messages for you,

--MAIL~~

o

Getting Started . o : : * Sectim 5

. y
LISPLOGOMEMO Pope 14 . June 27,1974

* - will be printed. You can type a space to recsive it or any other character to- postpone it. ...,

‘ A = will be typed at the end. s ' -

'4 Now you have completed Ioumg in to the Al syshm. LLOGO is o :ubsystem of Al ITS.
To get LLOGO started,

w“ a N ¢

- 5. Decido which version of LISP LOGO you want. Chooss from:
. LLOGO - Standard version of LISP LOGO. Vocabulary is compatible with CLOGO.

11L0GO - A version which uses a vocabulary whsch is compatible with PDPII LOGO S A E : ‘
- Sectian 11 for detalls e ‘ N

. /

. _M.LOGO ~The very latest version of LISP LOGO. This is oxporlmontal s0 we make

promises. al’
Whon you decide which you ylant typo) e . , v, . \}
/ . <name of promm) ' ‘) . . | ;o \

for example, :LLOCO .

-

6. Then LLOGO will print out some initial messages, mcludm. its version number andv
LISP and will ask you some queshons .

. " mvoummmussmmwmmm"l

k |
it you want to define and edit a procoduro whichi containe turtlo dcsplay commmdf. you : _
_should answer YES lo this question. It is not necessary that you have the 340 display o
scope, of' the GT40 display, to do just dofmim and editing.. You can even run the

procedure if you do not mind not being able o see whot the prouduro does. Soo Section
15 for more information. "

S . GERMLAND?

It you want to play with GERM.AM), the duplay turtlo f0r chauctor dnsplays such as .
DATAPOINT términals, answer YES. This has a prompter which will run some

_ demonstrations and provide help if you need: it. Again, if you intend to define or edit

. procedures designed to run in GERMLAND, you must answer YES. See Section 14,

MUSIC BOX? A,
* . 'Y . . .,
If you want to use LOGO music box primitives, answer YES. This will inquire further, as to
which music box, etc. See Section 16. In case you have answered YES to any of these
questions you have to wait for a while, because it takes some time to load in the files, If
you want to interrupt loading4in type AX , not AG. If you have a file named ‘Lroco . .
(INIT) on your directory or there is a file ‘named <user neme> .LLOGO. on the (INIT) ’ e
directory, 'LLOGO will read it as an initislization file, executing LOGO code conteined ' :
therein. When all this'is finished, LLOGO will indicate its resdiness with ;-

v

Gatting Started o A - Section 5

v N

&
.

LISP LOGD MEMO o Pagels ‘Jun%mm,

LLOGO LISTENING
’

»

‘7. If you m'id yourself in fhe unfortunate situation of meetmg"a bug in LISP~LOGO, you
may report- it by using the function BUG. The input to -BUG should be a messuo
descnbmg ‘the dnffnculty, enclosed in dollar signs. For example,

BUC § .
THE TURTLE ESCAPED rnou THE - : :

. DISPLAY SCREEN... B
br . g
;THANK YOU.

K

8. You can logout when you aré finished by typmg COODBYE Uo LOGO. The terminal
should then say, .

L)

AND A PLEASANT DAY TO YOU! ')
Al ITS <vemon> CONSOLE <number> I'HEB <hnn> R

9. Hayve fun! . L. B -,

¥

~Betting Started ‘\@:“ ‘ Section 5

 LSPLOGOMEMO - | Pe® o

Section 6. Parsing LOCO

This section will dwcuss a few of the more comphx issues in parsing LOGO into
LlSP and discuss how they are handled by LLOGO. LISP is trivial to parse, as its syntax -
is totally unambiguous. The application of a function to its inputs always happens in’
prefix notation, and the precise syntactic extent of a form is siways clearly delineated by)
parentheses. LOGO syntax affords the bo;mfun; programmer some conveniences over ., ;
LISP syntax, while retsining much of the expressive power of LISP. Parentheses can be '’
omitted surrounding every form, and the more customary infix notation for arithmetic
“sxpressions can be arbitrarily intermingled with prefix notation. These conveniences are
- bought at the cost of complicating the parser, and introducing some cases where *
N ambiguity results regarding the uurs intent for. some of the lmuues syntactic
‘ constructs,

- : -
Ly -

. 6.1 Infix Expressions

LLOGO allows infix notation to be used ss well s prefix functions: in srithmetic
« @xpressions,'Most LOGO arithmetic functions_exists in both pnhx and infix flavers, and
the user is frn to use whichever he desires. . v

v vrnmr m«msuu FIRST :X DIFFERENCE 17 2 | | -

is the same as - o o ~n | _
- . YPRINT (TIMES 3 4}(EXPT :A (FIRST XOWTIMES C17-2) -~
~ LLOGO observes the usual precedence and sssociativity of .rim;o'ﬁc operators. o

Note that a complication of the LOGO syntax is that all !unctuons, not t infix
operators, are required to have precodonco levels. Is 7

*FIRST :Ax 17
the same as‘) :) - ’)
ITIMES (FIRST :A) 17 or* *FIRST (TIMES:A17) ?

The sifuatioh is further complicated by the user's probat;l- expectation that functions . o S
P which manipulate logicsl values have lower precedence than comparison operators like <, . . = »,
> and =, So, . ' - :
*TEST :NUMBER < :PI
is taken to mean, |

N ITEST (LESSP :NUMBER :P1). and not TLESSP (TKST :NUMBER) ;P

r . =

Parsing’LOC0 | ~ Section 61

R 2l

LISP LOGO MEMO | N N2 . June 27, 1974

. CLOGO gives all arithmetic operators the same precedence on the grounds that
precedence would be difficult to explain clearly to children. However, this. has the -
drawback of deviating from the customary mathematical convention. Since the motivation
for mtroducung infix notation into LOGO syntax is so that arithmetic expressions can’be
written in the infix form in common use, LLOGO has been designed. %o obey the usual
precedence conventions. -

. LLOGO tnes fo please ovorybody. if you feel that tho procodenco schcmo which
has been implemented does not agree with your intuition, you are free to redefine the
precedence levels as you. wish. LLOGO also prowdas tho capability of defining new mfix
operdtors '

The :mlul default’ pr‘tcedencog sre ‘identical to those of 11LOGO and are o
follows:

700 A [exponentmhon]
600: + - [prefix]
500:x 7\

400: + - [infix]

300: [defau prgcodonco for systom and user functions) M
‘ 200 <> a
NOT BOT" EITHER AND OR TEST .

[M AKE]

|mt|al|y, operators of: |ovo|s 50 and 700 are n;ht associative, and the rest afe |eﬂ
‘associative, which is the default. Logical functions should have precedence lower than '
comparison operators, so if the user defines a logical function he should set the
precedence himself, otherwise it will receive the dofault precedence. The user can
chnnge things by usmg the following functions:

PRECEDENCE <op>
' Returns the precedence level of <op>.

PRECEDENCE <op> <level> i -

Sets <op>'s precedence level to the specified ?lovo|> which ma;' sither be a -

number, or another operator, which means that <op> is to be given the same p;occdcnco
as that operator.

PRECEDENCE NIL <level>

¥

Sets, the default precedence for functions to <level>. All funcfions ‘which are not

in the sbove list of infix functions, or have not besn sssigned a precedence by the user,
‘recmvo the default precodtnco

" ASSOCIATE <number> <which-way>

' Doclaros that all functions of precedence Iovol <numbor> will associate <which-
way>, which is either *LEFT or *RIGHT.

INFIX <op> <level> -

3 -

Parsing LOGO - SR : Section 6.1

Y

e

the default precederce} Makes LISP LOGO lock like CLOGO [well, simost..]

>

LISP LOGO MEMO . Ppn June 77, 1974

i
]

-~ Defines <op> to be -an_ infix operator of precedepce <level>, Specifying a
precedence is optional, - S

- NOPRECEDENCE o -

k3 ' 5 . « w .
Forces all infix operators to the same precedence leve! [this. will be higher than

-

:ANFIX - \ ‘ |
This variible contains a list of all ‘i:t‘;rfont infix operators. Look, but don't to-ucﬁ.'

Use INFIX to add new infix operators. e

6.2 Minus Sign -
There is some ambiguity in the handling of minus sign. For #xample, consider
| NSENTENCE 3 -:A) ' |

't the minus sign s interpreted as an infix differance operafor, this will result in a st of
one element. Iif the minus sign is interpreted as prefix negation, it will result in a list of -

two elements. -CLOGO uses the spaces in the line to disambiguate this case. If there is a
space between the minus sign and ghe :A, it is interpreted as infix, Otherwise, it is
interpreted as prefix. in 11LOGO, spaces are not semantically significant except to delimit

- words, so this is interpreted as' (SENTENCE (DIFFERENCE 3 :A)) regardiess of the

occurrence of spaces. LLOGO treats minus. sign.as does 11L0G0. One would obtain the
result of the other interpretation by using Lo

HSENTENCE 3 (-:A) | - .
The preceding discussion applies only to the parsing fof infix oxpressiori't: So, /-4]

is & list"of one slement, a negative number, but /--4] is a list of two elements, minus sign
and 4. o °;)

t

6.3 Honiohyms

Lo

LLOGO makes allsthe functions of LISP directly’ accessible to. the LOGO user, in

- exactly the same way ss LOGO primitives. This runs.into difficulty when a LISP function

and a LOGO function have the same name but different meanings. These are currently
handled by the parser, which converts them into innocuous atoms which do not conflict
with LISP, and are reconverted upon Unparsing. Currently the following functions are
homonyms: ot S TR o

PRINT, RANDOM, LAST, EDIT, SAVE {in-MULTICS only]

When the user types in one of thess, it is converted by the parser to an internal
representation consisting of a different function name [LOCO-PRINT, LOCO-LAST

'LOGO-EDIT LOGO-RANDOM or LOGO-SAVE, ss sppropriste]l When the User réquasts

that the line be printed out or edited the unparser converts it back to the way it was
originally typed in. In the CLOGO-compatible version of LLOGO, when :CAREFUI, is set to
non-NIL the following primitives which conflict with CLOGO are #iso changed by the

Parsing LOGD - S . SetienB3

.
5 I

L4 & L

-

LISP L0GD MEMO o v P.g‘e n | June 27, 1974

Ca

parser: LIST is changed to’ PRINTOUT DISPLHY !o STARTDISPLAY, GET and READ
to READFILE, and DO to RUN. Warning mossagos are also printed in these cases,

There is one pitfall in the current method' of handling homonyms: sometimes, as

" with passing functional arguments, the parser does not get a chance to do its thing, so
"~ the user may find an unexpected function called. APPLY 'PRINT calls LISP’s .

PR\IN'I' function, not LOGO’s.

6.4 Ahb’uviatlon£ P

Abbreviations are accomplished in LLOGO by putting the name of the function

which is abbreviated on the property list of thé abbreviation as an EXPR or FEXPR
property, as appropriate. Abbreviations are expanded into their full form on parsing, and

_are left-that way. The user has the capability of creating his own abbreviations by

"ﬂBBREV'HTE <new name> <old name>

- and erasmg them by . |

?ERASE ABBREVIATION <name>;

ABBREVIATE evaluates its mputs, but ERASE doesnt. A complete listing of
ubbrevuhons can be obtained by doing . .

’PRI NTOUT HBBREV IATIONS '

*Parsing 10GO : : I ‘ ~ Section 6.4

LN

\

LISP LOGD MEMO | mem ez

. Section 7. Defining and Editing Functions

- o

* . In LOGO, when the user defines a procedure using T0, or EDITs a procedure he
has previously defined, LOGO enters an “edit mode”, whers lines beginning with a number
. are inserted into the procedure under modification. LOGO prompts with ">" rather than ™" .
to indicate this. The intent of having. a separate mode for editing prodedures is to stress
“the distinction between defining procedures and executing them. This distinction is nat »
strictly maintained; if the line does not begin with a number, the commands are executed
. @s they would be ordinarily, with a few exceptions [the user is prevented from doing -
another TO or EDIT for instance]. Occasionally, tiis leads to errors, for instance if the
user forgot to type the fine number at the beginning of a line intended for-insertion. -

The defauit state of LLOGO is to retain the separatipn of edit mode from ordinary
mode as in 11LOGO and CLOGO. The slightly more sophisticated user, however, might find
himself in an unnecessary loop of continually typing EDIT’s and END's while working on
the same procedure. Since the lines typed by the user for insertion into & procedure are
inserted - immediately when the user finishes typing the line, END does not cause
anything to happen other than the termination of edit mode. The system siways

‘remembers the name of the last function mentioned by TO, EDIT, PRINTOUT, etc. as a
. default for thess functions, so when working on a single function, EDIT serves only to
enter edit ‘mode. The user has an option of turning off the separate edit mode by sefting
the variable :EDITMODE to NIL. This will cause lines beginning with a number to be
inserted into the default procedure at any time. in this mode, it is hever necessary to use
- END, and EDIT will only change the name of the default procedure if given an input.
The prompter will not be ¢ od. :

-

In LLOGO, it is not necessary to be in edit mode to use EDITLINE or EDITTITLE
on a line of the default procedure, and the editing control characters are available even
when not in edit mode. ' ‘ . E v

v .
v +

7.1 Control Character Editing

’

LLOGO has a control-character line editor similar to those in CLOGO and 11LOGO.
This makes: it particularly convenient to correct minor typing errors, by providing a
means of recycling portions of the line typed previously, instead of requiring retyping of
the entire line. The editor keeps track of two lines: an old line which you are editing, and
& new line, which LLOGO is to use as the next line of input. The old line is always the last’
line you typed at LLOGO, except immediately after a parsing error, when the offending
line will be typed out at you, and it may be edited. You can also set the old line yourself
to be a line in the current default procedure by doing EDITLINE <line number>, or the
title of » procedure by calling EDITTITLE. Everything you type after the prompter, or .
cause ta appear using the control characters, is included in the new line, until you type’

- carriage return, which terminates editing for that line. You may use parts of the old line
in constructing th(new line by using the following editor commands:

AE - Get the next word irom the front of the old line, and put it on the end of the new
line. - ' : '

AR - Put-the rest of the old line at the end of the new’line, This is like doing AE’s until
- there-is nothing left in the old line. ' .

]

Defining and Editing Functions . ,,' “ Section 7.1 ’

Do
am

\-\\{/‘7,,

— LISP LOGO MEMD - <\J : Page 2l . T Jume . 1974 _ '“

[. °

4

AS-deleteo'word'fromthefrontofthooldlino” B L L R J .

AP ~ Delete a_word from the end of the new.ime Like, rubout, except rubs out a word

mstead of K character. . . |
- .

LLOGO uses different charactors than llLOGO and CLOGO do bccauso LlSP uses = - L.
most of the control char%cters for mterrupts and i/o. . . a <y '

7.2 Prlntmg Function Definitlons ' o

° . »

The function PRINTOUT can be. used'to look at definitions of user procedures In
addition, it has other options for examining the state of your LLOGO PRINTOUT docsn’t
evaluate its mputs .

PRINTOUT <procedure-name> [Abbreviation PO)

will print out {ag, definition of the specified procedure. if the name is Omatted it
will assume the last tuntlion that was defined, edited, or prlnted

PRINTOUT LINE <number> [POL) .
i Prints out only the specified Ii“m"n in the default procedure. ‘
" PRINTOUT TITLE <procedwre> [POT] - .

Prints the just the title of the procodurl given. f the lnput is omitted, prints the o
titie of the current default procedure This is useful if you forget which proccduro is the '
default. ,

¥

PRINTOUT TITLES [POTS] B N | o '

-

Prints the titles 51 alt current user proctduros ignores buried procedures [see . qn
~ Section 10.1} : ' C

PRINTOUT PROCEDURES {POPR]

)

Prints out the definitions of all currentiy dofmed user procedures. Wil not print
the definitions of procedures that are bumd [son’ Scctron 10.1}. e

PRINTOUT NAMES [PON] - | :

JoH

Prints the names and values of all user ‘vui‘bks. S ' .

" PRINTOUT ALL [POA) ‘7

' Doss PRINTOUT PROCEDURES and PRINTOUT NANES. 1

 PRINTOUT SNAPS , - - \
Prints a list of saved display turtle scenes. See Section 1511, \\ '

PRINTOUT FILE, PRINTOUT INDEX " | ' R

-

Defining and Editing Punctions .~ 'F | Section 7.2

;-

+
-~

usrwa'uumn ;' U e

June 27, 1974

See Section 102!
PRINTOUT ABBREVIATI NS

‘ ~Prints & list of all: currcnt abbremﬁonc, md th. nm: of the procodurn whlc!‘i;
each abbrevutes LR

szvmurpmmmzs T :
Prmts a complcte ltst of il IJ.OGO pnmtm;,

Another useful command is LINEPRIM’, whoch causes a listing, sumlar to the -

omput of PRINTOUT ALL, to-appear on the fine printer It takes an optional tnpuf s

word to be used as a tttle to n name thq hstm(;onentod. ‘-

") o
- : .) - . o

735rnsing R L T

" The command ERA§E will removs. unwanted porhom of your LOGO Tho inpuu'to,'_

ERI!SE are’not evaluated. The ophons available are:

ERHSE <pracc¢lun, variable or ane r/)nm> ‘)

4/

L The LLBGO prumhve given as mput will be cusqd. You mhl use tlws, for
example. if you wanted to use a name usad by LOGO for one of your own functuons i -
- you. define a name using TO which conflicts with a LOGO primitive, it will mquire if you

- want the definition of the prumtwe to b- srased. .

, smsr LINE <m.mlm> IERL[_ o
| Erases line <number> of the default procaduro o ‘of. E
ERASE NAMES IERNI e '

Unbmds all uur vambles

ERHSEPROCEDURES[ERP[o o e e
S Erascs all mierpretwe user funct:onc, Does - not iffpct compiled or buried
'procedures : . , v . : : ,
’ ERASE coumu:n

Erases all complled user functlons

snnsuumnal | T

Mhb.nd&lﬂin.fmfhm e Section 7.3

-~ and if 50, inquires whether you want the old definition ERASEd. Tbis is to; prem! you_
- - from accidentally overwriting dofimhom of functionc . - o
Enasz PRIMITIVE <primhiw meme> e

A -

. Cause thc definition of ‘the specified object to vanish. Nuh' thn you define a -
function using TO, it checks to see if there already exists a procedure of the same name, -

L LISPLOGOMEMD. Pl J‘uuz?,’ 1974
t . : .) .o . TS ’ : 3
lee domz ERASE PROCEDURES. ERHSE COMPILED and ERASF NHMES .
e - ERASE ABBREVIATION <abbrui¢mu>
: "Erases the abbravuhon given as mput Doo% not affoct th: procedurt that it
. abbreviates. -) .
ERASE EILE <file spec> [ERF] - B
~ See Section 102 L | , g
- . . © ERASE TRACE <Junction> [ERTR]
| ‘Removes trace from <function>. See Section 86: o | et
' ERASE BURY <functions> [ERB/ | e
The functions mll no Ionger be buried. For a discussvon on buned procedures. see |
Section 10.1. e
' BT : - C
' a\b : * ')
) b}
.5/
w F
. P a v . [y

" Defining and Editing Punctions I - Sedtion 7.3

LISP LOGO MEMO = . Paged June 27, 1974

% Section 8._Error Handling and Debugging

The philosophy of the LISP LOGO error handling system is to try to be as
forgiving #s possible; the system will give you an opportunity to recover from almost any
“type of error [except a bug in LLOGO!] There are two types of errors which can occur:

81 Parsigng Errofs

If for some reason, LLOGO cannot parse the line you typed [for example, 'you may

- have typed mismatched parentheses], this causes a parsing error. When this happens, o

+ LLOGO will print a message telling you why it was _unhappy, retype the offending line at
_ . " you, and type the editor prompt character. You now have a chance to redeem yourself
- ¥ by correcting the line -- you may use any of the editing ‘control characlers [see Section
7.11 When you -are satisfied that the line is correct, type carriage return, and LLOGO will
resume evaluaﬁon, using the corrected |mo in place of the one which was m error.

‘82 Run Time Errirs

; .
‘_ When a run hme error occurs, a mcssage will be printed. if the error occurs
instde & LOGO user defmed funchon, the message will say somothm; like: '

;ERROR IN LINE <number> OF <procedurs>
;LINE <number>1S:
¢ b ;<reason for error>

If the error occured inside a LOGO primitiv, the mﬁsago will look like:

.

, e " COULDN'T EVALUATE <bed form>
S ;BECAUSE _

;<resson for error>

. where <bad form> is what LLOGO-was trying to evaluate when the error occurred.
Usually, this will gwe you enough information to figure out where the error occurred,
although <bad form> is sometimes uninformative. Usually, LLOGO will simply return to the
top level loop when such an error occurs. However, if you SETQ the variable
:ERRBREAK to something other than NIL, [or MAKE 'ERRBREAK . ..] a run time
“error will cause a LOGO break loop to be entered after the message is prmted Setting
the variable :LISPBREAK to non-NIL will cause a LISP style breakpoint'to occur when

i an error ohappens [For -a detailed discussion of breakpoints, see below, Section 8.3.] .

You can resume execution of your program from°the point at which the error occurred,
_ by CONTINUEing with something to be used in place of the piéce of data which caused
the error. If the error was an undefined function, you may CONTINUE with the name of
a function which has a definition. If the error was- an unbound variable, CONTINUE with

a value for that variable. If the error was a wrong type of input to a LOGO primitive,
CONTINUF with some appropriate value for an input to that function, etc. Usually it will
" be’obvious from the context what sort of item is required. Computation will be resumed

"from where the error occurred, with the returned item' substituted for the one which -

caused the error. [Note: the usual LISP interrupt handier functions expect a list of the
“ new item to be returned, while LLOGO’s expect simply the item). The LISP LOGO run-time

Error Handling and Debugging P Sechion 82

A

'-usrumnmo LT Pl - lue27,197

" error handling works by atilizing the’ LISP error intarrupt fwhty It you don’t like the
way LLOGO handles any of the error conditions, you are free to dessgn your own error -.

mtermpt handlers, evfher in LISP or in LOGO

8.3 Breakpoin;s

A po\vsrful debugging aid is the ability to cause breakpoints Stopping a program

in the process of being evaluated allows the user to examine and modity its state, and
exfe the history of evaluation which led up to the breakpoint, LISP provides excellent
facflities for doing this, including automatic generation of breakpoints when an error
occurs. Whenever LISP starts to evaluate a form, it'first pushes the form on a stack; from
a breakpoint one can examine the stack to determine what forms were in the process of

being evaluated, and perform evaluations relative to a particular stack frame, LISP LOGO -
“attempts to make these features easily available to the user, from either LISP or LOGO.

Versions of these breakpoint functions are also available: which can run in_an ordinary
LISP, without the rest of the LOGO environment. The followmg facilities are available for
causmg breakpomts

LOCOBRFIIK <?mna(e> <condition> <return-value> I Ilblmmalum P/lUSF]

The inputs are all optional, and are not evaluated Unless <cond|t|on> is: gwen and

eviluates to NIL, LOGOBREAK causes the user to enter a loop where LOGO commands

can be typed and the results printed. This is similar to the top level loop except that 7 is_

printed as a prompter rather than % it is very much like repeatedly evaluating PRINT
RUN REQUEST. If <message> is present, it will be printed out upon entry to the break

point. It also prmts the form in the ‘current stack frame,. which will be the call to.
.LOGOBREAK if called explicitly by the user, If the breakpoint happened because of an

error, the. initial stack frame will be the ane containing the form which caused the error.

LOGOBREAK tries wherever possible to print out the current form as LOGQ code before .

it enters a LOGO break point. However, the current version is not always smart enough

to distinguish between LISP and LOGO frames on the stack, so you might occasionally see

what looks like internal LISP garbage there. If you g0 up far enough, you are sure to find
the LOGO code. A smarter version could recognize the LISP frames and ignore them, The

third input is a default value- for LOGOBREAK to return if it is CONTINUEd. [See

description of CONTINUE, ‘below] Caution: the breakpoint functions described in this
section use LISP’s CATCH and THROW. Unlabelled THROW's from inside a breakpom(

‘ !oop are highly discouraged.

[4

AA

It controI-A is typed at any time, even while a program is runnmg, it will cause an

interrupt and a LOGO break pomt will be en(ered
LISPBREAK <meua‘e> <condition> <murn value> /Abb. BREAK]

This is like LOGOBREAK, except that the loop is a LISP (PRINT-(EV/L (READ)))
loop. This is especially useful when debugging a set of LISP functions designed to run in
LOGO. To access your LOGO variables and user functions from inside a LISP break loop,
prefix them with a sharp sign ["¢"] LISP users note: you can interact with this break
loop as with the standard LISP BREAK function, except that it is set up to allow use of
the stack hacking functions described below. If $P is ‘typed, or (CONTINUE) invoked, the
<return value> will be the value of the call to LISPBREAK. '

Error Hendling and Debugging . I Section 8.3

30

4 .
-

LISP LOGO MEMO Page 26 . June 27, 1574

A‘",’ . ’ , .. ~ - L .)

~ As in LISP, AH typed at any time will interrupt and cause s LISP breakpoint to be
entered. o B A \

:ERRBREAK -

- [.

. If this variable is not NIL, when -a run time error happens, LOGOBREAK will be
called automatically. This gives you a chance to find. out what went wrong, and recover
by CONTINUEing with a new piece of data to replace the one that caused the error. Ittis
initially set to NIL. - ﬁs

:LISPBREAK

Like :ERRBREAK, excapt that if set to something other than NIE, when an error
happens, LISPBREAK rather than LOGOBREAK will be called. Initially set to NIL.

The following functioits can be called from inside & breakpoint ta examine and manipulate
- the stack: , ' . . ‘ S
v e

Moves the breakpoint up one frame in the stack, printing out the form which was
about {o be evaluated in that frame. This will be the form which cilled the one which was
last typed out by any of the functions mentioned in this section. Evaluation now takes
Place in the new stack frame. This means that all focal and input variables will have the
values they did when that form was about to be evaluated. However, side effects such as
assignment of global variables are not undone. Frames are numbered for the user’s
convenience, from O increasing up to top level. o _ .

UP <rumber> }
 Goes <number> vframes up the stack. Like doing UP, <number> times. The.
<number> may be negative, in which case, the breakpoint is moved down the stack rather .
than up. ' - .))
UP <atom> .
Goes up the stack until a call to the function whose name is <atom> is found.
UP <atom> <number> -

Goes up the stack _until the' <umber>th call to <stoms is found. Searches
downward for the <number>th call to the s,ponciﬂod function if <number> is negative. .

DOWN <atom> <number> ;

_ Like UP, except that it proceeds down the stack instead of up. Both inputs are
optional, and default as for UP, except that <number> defsults to -1 instead of +1. If
<number> is given it is equivalent to UP ... (~<mumber>).

PRINTUP <atom> <number>

Ercor Handing and Debogging ' Section 83

. usPLoeoMEMD O Pagem . June 27, 1974

‘ ' Accepts mputs as does UP, but instead of moving the breakpo;nt up thefsm
, the desired frame, all frames between the current one and the one specified are printed
d _ out. This function is good for getting a quuck view of the stack in the immediate vicinity of

: the breakpoint. The breakpoint remains in the same frame as before. The two inputs are
optional, and defauit as for UP. .

PRINTDOWN <atom> <number> : (

S - Like PRINTUP, except that the inputs ‘are intérpreted as for DOWN rather than
as for UP, that is, it prints frames going down the stack.

EXIT <return-value> | ' \

Causes the current stack frame to return with the value <return-value>, That is,
the computation continues as if the form in the current frame had returned with <return-
ve!ue> The input is optional, and defaults to NIL. o

. CONTINUE <return-value> [Abbreviations CO, SPI) .
Causes the frame of the ongma"y invoked brnprmt to return with the specified |

value. The input is optional. Use CONTINUE to return a new item of data from inside an |

error breakpoint; for instance a new function name to use in place of ong which was

~~ -undefined. Note that in many situations, for example from a user-invoked breakpoint or
from an error breakpoint which expects ani'ifem to be returned as the value of the form
which caused the error, if you haven't moved the breakpoint around the stack,
CONTINUE will -be identical to EXIT. If the input to CONTINUE is omitted, thé defauit

return value specified by a third input to LISPBREAK or LOGOBREAK will be returned

as the va!ue of the breakpoint. If no such default return value was ;wen, NIL will be

|
returned
" |
Here s an example: _ , ' . i
’ ?MAKE 'ERRBREAK T o ‘ K1 |
. tAssure LOGO break happens!
* . twhen an error occurs! 3 ? P
{CHANGING A SYSTEM NAME . .
T
27TO SCREWUP :N Define our losing procedure.! ‘ ‘
>1 IF :N=0 THEN OUTPUT UNBOUND : i
¥ » Count down to 0, then!] i
>2 OUTPUT SCREWUP :N-1 0 : ' . ' -
' 0 . 'eval variable which has no value! ‘ : :
>END) ' , '
;SCREWUP DEFINED » _ ‘ ‘
?SCREWUP 3 : |

;ERROR IN LINE 1 OF SCREWUP

;LINE 1 1S: IF :N=8 THEN OUTPUT :UNBOUND
;:UNBOUND IS AN UNBOUND VARIABLE
BRBAHPUIN:I‘ FRAME 8: :UNBOUND

\

\

N Frame O is the variable. Eval was! |
] ’ : . lworking on this when we bombed!. |
. 'We can do any command! . : |

twhile in the breakpoint.! - : |

WP . Going up a frame. :UNBOUND! -

" * Error Handling and Debugging y | Section B3 e

‘ .

&

;anmpmm"mms 1: GUTPUT :UNBOUND

'LISP L0GO MEMD- reem Y Jeem A

" ‘was the input to OUTPUT!
' 72DOWN ' fgoing down a frame'! '
;BREAKPOINT FRAME 8. UNNUND . :

ZUP 'SCREWUP v

.BREAKFOINT FRAME 4-SCAEWUP N-1 = - .
. . - ‘we arrive at recursive invocation!

* %N, ' ‘where :N had the value it ,
1 _

- P 'SCREW UP 2 we rise put 2calls to SQ!FWUP'
;BREAKPOINT FRAME 18: SCREWUP :N-1
=N, &N was 3!
-3 ' - :

- ZEXIT 'SCREW ED We decide for some reason!

SCREWED fthat SCREWUP of 2 is ! :
? o, . %o return the value 'SCREW F D!

tand all the previous invocations ! ‘
tof SCREWUP return with the value!
YSCREWED and we are at fop level!
Wasn't that fun"

8.4 Wrong Number of lnputs Errors .

o

. Since LOGO syntax requires that the parser know how many inpbts a function
requires, and LLOGO parses your input ss you type it in, errors may be generated if you .

change the number of inputs a function takes by redefining the function, or by calling
EDITTITLE. Calls to that function which you typed previously are now -incorrectly
‘parsed. LLOGO will catch most occurrences of this whOn the function is called, and print a
‘message like: _

;AEPARSING LINE <number> OF <pracedurs> AS: <new parse>

and attempt to recover. LLOGO always attempts to robafu a line which caused a wrong *
" number of inputs error. it is not always possible to \vm, homver, as Side effccts may

have occurred before the error wn detected.

8.5 Garbage Collector Errors - -
‘ N

. Versions of LLOGO runnm; in BIBOP LISP [LISPs with the capability ot dynamically
: allocatmg storage] have special handlers for garbage collector interrupls. It it decides
'you have used too much storage space of a particular type, or too much stack space, it
will stop and pohtely #sK if you wish more to be added. If you see these questions
~ repeated many times in a short span of time while running one program you should give
serious consideration to the possibility that your pro;ram is doing inhmto CONSing or
recursing mﬁmhly

e

LISP LOGO MEMO’ Page 28

- 8.6 Tracing -+ 4
. . B .

The standard LISP TRACE package may be used to trace LLOGO primitives or
user functions. The tracer is not normally resident, but is loaded in when you first

reference it. See the LISP manusl for details on the syntax of its use and the various
* options available. . -

8.7 Interaction with LISP .

In debugging functions written in LISP for use in LLOGO, it is often useful to be
able to switch back and forth between LOGO and LISP top level loops. You can leave the
LOGO top level loop and enter a LISP READ-EVAL-PRINT loop by using the LLOGO
function LISP. From this mode, executing (LOGO) [remember to type the parentheses,
you're in LISP!] will return to LOGO. Typing control-atsign [A@] at any time will cause an
interrupt and switch worlds; you will enter LISP if you typed Aa from LOGO, or enter
LOGO it you-jyped it from LISP. The LISP loop gives you access to all intergal LLOGO
functions a
on a different obarray. LLOGO primitives and system variables are on both obarrays, so
they will be accessible fram both LISP and LOGO, but LOGO user functions and variables
are on the LOGO obarray only. The character sharp sign ["#"] is an obarray-switching
macro; to access LOGO user functions and variables from tho LISP loop, prefix them with a
sharp slgn.

Erroc Handling and Delnmiu Section 8.7

June 27, 1974 -

global variables, which are normally inaccessible from LOGO since* they are -

NS

LISP LOGO MEMD - " Page38 : June 27, 1974

L Section 9. Compiling LLOGO User Procedures

LISP LOGO compiles a LOGO 3ource program into LISP and it is stored internally
only as LISP code. Since this is the case, the LOGO user has the capability of using the
LISP compiler directly on his LOGO programs, and obtairi a substantial gain in efficiency,
once his programs are thoroughly debugged. LISP LOGO provides an interface to the LISP
compilet which should make it unnecessary for the user to worry about interacting with a
separate program, ' : '

To compile all of the functions currently in the'workspace, the function COMPILE
is available. [This does not include buried procedures -- see Section 10.1.] It expects
one word as inpul, to name the file which will contain the compiled code. The names of
the functions which are being compiled will be printed out. A temporary optput file
[named .LOCO. QUTPUT] will be written on the current directory and deleted ‘after the .
compilation is complete. The output file will have as first name the input to COMPILE,
and second file hame FASL. [In the MULTICS implementation, the temporary file will be
named logo_output and placed in the current directory. The output file will appear in the
working directory, with one name, the input t6 COMPILE.] Since the. LISP compiler must-
be called up as s separate program, be careful about interrupting the compilation befare
it is finished [for instance, by AG] as you will not find yourself.in LLOGO amymore.

To load a compiled tile into LLOGO, say READFILE <name> FASI. This will load
all the compiled functions_which were compiled by COMPILE <name>, and also restore
the values of variables that were defined at that time. The names of compiled functions
will be kept on a list called :COMPILED and not on :CONTENTS. For debugging
purposes, you might want to read in both the compiled and interpreted definitions of the
same functions, and you can use the functions FLUSHCOMPILED and
FLUSHINTERPRETED to switch back and forth between compiled and interpreted
definitions, ; '

The LOGO COMPILE function supplies declarations for LOGO primitives, Some of
the declarations include LISP macros which replace calls to LOGO primitives with calls to -
their faster LISP counterparts for, efficiency, and some optimization is done. For safety’s
sake, 4l variables are automatically declared SPECIAL. However, the sophisticated user
is free to include in his program DECLARESs to UNSPECIAL input or local variables .
which he knows will not be referenced globally, or provide declarations which will make
use of the fast-arithmetic (ISISP compiler.

A tew warnings about compiling LOGO procedures: First, remember that LOGO
syntax requires that it be known how many inputs a function expects, before a decision
can be made as to how to parse a line of LOGO code. If, when defining a procedure, you
include a call to a procgdure which is not yet defined, parsing is delayed until run time
[see Section 6 and Section 3.2 of this memo for more details]. The compiler, of course,
cannot do anything reasonable with an unparsed line of LOGO code, so all parsing must
be completed by the time the definition of any procedure is compiled, The COMPILE
function attempts to make sure this is the case. Therefore, it is an error to attempt to
dompile a procedure which contains a cill to a procedure which is not a LOGO primitive
and has not yet been defined.

~ Also, it must be remembered that compilation of LOGO procedures, like those of
LISP, is not "foolproof™. It is not always the case that a procedure which rtf:{ correctly

Compiling LLOOO User Pmedurgs

30

- Section 9
‘ .

-

»

LISP LOGO MEMO - Pagedt | Tune 27, 1974

when interpreted, will be guaranteed to run correctly when compiled. Self-modifying
procedures, weird control structures, and in general procedures which depend heavily on -
maintaining the dynamic environment of the interpreter may fail to compile correctly - :
without modification. '

-/

Compiling LLOGO User Procedures : . Section 9

3 -

LISP LOGO MEMO Pegem . June 77,1974 e

Section 10, Using Files in LLOGO

A file specification on ITS-has four components. Each file is named by two words,
of up.to six characters esch, a device [almost siways DSK], and a directory name [usually
the same as the user’z name]. You can refer to a file in LOGO by using anywhere from O
to 4 words. If you leave out the name altogether, it will be sssumed that you are .
referring to the last file name mentioned. One word will be teken as the first file name, ' -
and the second will default to >, which mwans the highest numbered second file.mame - ‘
which gurrently exists if you are reading, or one higher if you are writing. Two words

. will be™{aken as the two file names, and the directory: and device will be defaulted. If
" three names are given, the third will be assumed as the directory name, and the device

will be DSK, Iif four words are given, the third is device and fourth is the dlrectory Here
are some examples: A .

[Assume that the current user name is ESG, and F003 is the hu(host numbered file with

FOO as its first filename] - . -
LOGO | ITS [<fnl> <tn2> <day>:<gir>;))
YREADFILE FOO ~ F00>DSK:ESC; [FOO3] o - !
SAVE FOO S ~ FOO > DSK:BSG; [FOO 4] S i
?READFILE FOO BAR ~ FO0 BAR DSK:ESG; - e

?READFILE FOO BAR HENRY - FOO BAR DSK:HENRY;

TREADFILE FOO BAR DSK HENRY FOO BAR DSK:HENRY;

' Ses Section 12.2 and Section 13 for information about file specifications on the
MULTICS and TEN50 implementations. File specifications are accepted by LOGO in. the
same format as on ITS, so it may not be mcnsary to change any code to'run on other
nmplemonhhom.) . ‘ '

10.1 Saving and Reading Files - - . -

There are, two ways of storing LOGO programs on. the disk for later use. To store
the contents of the current workspace [all user functions and variables currently defined]
on the disk in the form of LOGO source code, use SAVE. It expects as input a file
specification, as discussed above. The file created will contain the contents of the user’s
workspace, function definitions and MAKEs for variables, oxoctly in the form that he
would ser: if he did a PRINTOUT ALL. . .

Workspaces can also be saved in LISP format, as they are represented internally
by LOGO. This is accomplished by the function WRITE which takes its inputs as does
SAVE. Aithough the file created will not be so pretty to look at if you print it, using

~ WRITE produces files which are considerably faster to reload, since the program does. .

not have to be reparsed. For long-term storsge of programs, however, it is recommended
that you use SAVE rather than WRITE. Changes in the implementation of LISP LOGO may
resuit in changing the internsl format of LOGO programs, in which case, files created by
WRITE would not remain compatible, but files created by SAVE would remain so,

. 1 LU -
Using Piles in LLOGO g : Section 18

S~

LISP LOGO MEMO . Pl June 27,1974

&

To relosd a file from the disk, use the function READFILE. This sccepts
standard file specification, and reads it in, printing the name of the. file. READFILE does

not care whether the filé is in SAVEd or WRITten form. If the file was created by SAVE,

lines of code will be printed out as they come in from the disk. For written files, only the
names of functions and ‘values of variables will appear. If you get annioyed at all this

output, you can shut it up with AW. LOGO will return with a question mark when the 1
loading is complete. - . : e B &

o
A o

It is often convenient to treat a set of functions as a "package” or "subsystem™.
For instance, you may have a set of your favorite functions which you place.in your
initialization file, or a set of functions designed for a specific purpose. When this is the
case, it is inconvenient to have all these functions written out when you are working on
additional procedures, or have to see their definitions when you do a PRINTOUT ALL.

- That is, one would like a method of having the package of functions available, but.not

considered as part of the workspace by certain commands. You can do this by using the
function BURY. It takes unevaluated procedure names as input,.and will assure that the

“function is ignored by the following commands: PRINTOUT PROCEDURES, PRINTOUT

ALL, PRINTOUT TITLES, ERASE PROCEDURES, ERASE ALL, SAVE, WRITE and
COMPILE. Otherwise the function is unaffected, and can be invoked, printed, edited, etc.
A list of the names of buried proceduress kept as the value of the variable :BURIED.
BURY ALL wilt BURY all curreotly defined procedures, and ERASE BURY will undo the

 effect of a BURY. .

S

10.2 Other File Commands

PRI FILE [abbreviated POF] will print out the contents ‘of a file. ERASE
FILE will cajse the specified file to vanish [This has a safety check to make sure you
don’t do apfthing you'll be sorry about]l These take file names as above, except that if
only onednput is given to ERASE it defaults to <, the least numbered second file name,
again for safety reasons. PRINTOUT INDEX [POI] will print out all the file names in

the directory specified by one word. USE will change the name of the default directory.

4
: P

T

Using Files in LL0GO 4 | | Section 10.2

WO MEMD o T 2

£

Section 11. Differences between 11LOCO and LLOCO
[N . ‘- - ‘ ’

LISP LOGO was originally written to bé compatible with CLOGO, a version of LOGO
ritten in PDP10 assembler language. There now exists a version of LLOGQ which' we
lieve to be "semantically compatible™ with the PDP11 version. By this we mean that the
sbutary is the same -- any primitive in 11L0GO also exists in LLOGO and will
pefully) have the seme meaning. LLOGO in fact has many primitives which do not exist
11LOGO, as well as offering the user access to the full capabilities of LISP. There are
stantial differences between LLOGO and 11L0GO with regerd to file systems and error
ndling, and somewhat less subttantial differsnces In the editor, turtle and, music |
‘ qus. These are described in detall in other sections of this document. There are also , 1
re saveral less substantial differences, not mentioned in the preceding discussions, and - S g
what follows is an attempt to provide @ ressonsbly complete Het of the knowledge thet an B ‘
experienced 11L0GO user would ned to use LLOGO. - ; : ' -
. . : : ') {

In 11L0GO, the double quote charichr'kuud,tdnpodfythﬂ the atom following '
it is not to be evaluated- o

'PRINT "FOO
P00

_h

'u

s like LISP’s single quote, except that it slso affects the LOGO reader’s decision sbout
when to stop including successive characters in forming the neme of an atom. In .

*PRINT :FO0+3 .

1 - the pﬁn sign is a separator character; it signets the end of the stom :FOO just as if there
was a space following :FOO. However, folowing a double quote, the only seperstor
characters recognized are space, carrisge return, and squere brackets. Thus, in 11L0GO, v
PRINT "FO0+3 | ' e
F00+3 - . ’ :

in LLOGO, the user may use the LISP single éuoh to spacify that an atom or
parenthesized list following the single quote is not to be evalusted. The presence of the
single quote does not change the way LLOGO decides when an atom ends. in LLOGO,

*PRINT 'F00+3 : : s ‘_
STHE INPUT "P00 TO + IS OF THE WAGNG TYPE

:)
because the plus sign is still a separator character. LLOGO uews the double quotes &
CLOGO does; they sre siways matched. ¥ one s-sxpression (stom or list) occurs in
betwesn double quotes, it is quoted. ¥ more than one occurs, the list containing them is
quoted. The correspondence between LLOGO double quoted expressions and LISP g-
expressions is as follows: ' ,' ’ :

" ww3> NIL) - 4
“<atom>" ww> (QUOTE <atom>) ¥ ’
"al> , ., ON>" wed (QUOTE (<sl> <sN>))
(<al> . NS mm> (QUOTE (<al> . ., <aN>))

.
. ‘ . v:

batween 11L000 snd LLOGO -

Q . - §

L Suctien 1
3

e

msrmmMn'Mo S me® o June 27, 1974

Square brackets in llLOGO specufy quoted hsts Parentheses are never used
around lists as in LISP, but are only used to delimit forms. LLOGO recognizes square
brackets as. well as ‘LISP’s parentheses in denoting lists. The difference between brackets
and parentheses. in LLOGO is that the brackets always denote list conshn(s, and not

. forms, and that the outer level of brackets is implicitly quohd

IIF'OO IMR]] mm> (OUOTE ((FOO BARJ))

mplactﬂy quote the list; interior ones do not. This does not always work, for mshnce
when using RUN one may expect mtenor lists also to remain unevaluated:

"PRINT [PRINT /Flﬂ) BﬂR]] - (PRINT ’(PRINT (FOO BAR»)
PRINT (FOO BAR)
~ ?RUN [PRINT [FOO BAR]] ==> (RUN *(PRINT (¥00 BIIR))}

prints the value of the function FOO applied to mput BAR.

BTN
‘/

Squere brackets in 11LOGO also:sHare with double quotes the propertyt descnbed
above of affecting the LOGO reader’s decision on ending the names of atoms. Within a

_'square bracketed list in 11LOGO, an atom is terminated only by a space, carriage return
ar bracket. This property is not true of square brackets in LLOGO. In LLOGO, /FOQ+3} is

a list containing three elements, but in 11LOGO, it contains only one element.

String quoting in LLOGO is accomphshed using the dollar sign character, $. LLOGO
will treat anything appearing between dollar signs literally, with special characters devoid
of any special meaning. Within such a string, two consecutive dollar signs will be,
interpreted as a single-dollar sign. So, $$$$ would be the word whose name is a smgle
dollar sngn $$ is the empty word. Rubout, editing and interrupt characters cannot be
quoted in this manner, Use the /lSCll function of LISP if you reelly need them.

The character sharp sign ("] in 11L0GO is used as a prefix macro character
which takes one mput which must be a word, and executes it as a procedure. It is used
where one wants to Use a weird name for & procedure, or a name already used by the

system. Sharp sign is used as an escape to eall that procedure. Thus, a procedure

defined in 11LOGO by TO "PRINT . .. would be called by #"PRINT, T0 "3. .. would be
called by #"3, efc. In LLOGO, sharp sign is used as a macro character which causes the
fiext s-expression to be interned as if it were read in LISP if you are in LOGO, or as if it
was read by LOGO if you are in LISP. If you are in the LISP mode of LLOGO and want to
access your LOGO variables, you can say #:F00), etc. The conflict may be changed in the
near future by altering LISP LOGO's macro character to one that does not conflict with
11LQGO. Suggestions welcome,

o The Boolean [Ioglcal] canstants in 11LOGO are TRUE and FALSE, while in LLOGO, .
they are T and NIL, as in LISP. .

The llLOGO function LEVEl., which retums the current procedure depth is not

"implemented.

4

llLOGO forms, are duwded into two categories: those that output [return a value]
and those which do not. In LLOGO, as in LISP, every form returns a value. To simulate
11L0GO and CLOGO in this respect, as a special hack, forms which return a question mark
do not have their values printed by LLOGO's top level function. However, LLOGO cannot

Differences between 111000 and LLOGO | Section 11

B T

'There is & minor pmall in the current implementation: noie thet top level. perentheses

o

- e mmim

4
)

-

) us?muuﬁaun L Fage 36 - 'junezv.1975

L ’ : X <> & -
. g '
f‘ .

- catch t error of such 2 torm hiding inside parentheses, as can llLOGO Most ot the :

primitives which. do not return 2 value in, tlLOGO return ?in L‘LOGO ,

" The character : in"11LOGO is treated as a macro “the velue of .".if Ais bennd to

.'B and B.is bound to C, then ::A is-C. in LLOGO, variables set by MAKE are just LISP

. ators begmnmg wrth\the character :, so =:A will be the value of the variable set by
MAKE “:A" <whatever>, étc: We are seriously consideting chengmg this, ‘eliminating the

B incompatibility. The present setup requires MAKE to do ‘an expensive EXPLODE on the ‘ A

variable name, in order to create the word whvch begins with a calon.

| LLOGO expects to hnd only one form mﬂde plrentheses. constructs hke

’(FD 100 FD 50 SUM 45)

' N)] R . . B . ‘ .{j t
are prohibited. 11LOGO allows more than one form mslde parentheses under certam o

restrictions.

,.‘J

'The liLOGO procedure TEXT ‘which returns‘ a list of lrsts wtireh are the lines of
" a procedure whose name is given.as mput is not implemented in LLOGO. Howevet, you

- can access the dehmtmn of a function in uts parsed LISP form on the property fist {CDR})

.ottheatom“ .. o

Comments: LLOGO understands two comment conyentmns- LlSP’s conventron ot-

treating .as a comment anything between a semicolon and the next carriage return, and

LOGOs of treetlng as a comment anything in' between excltmatuon points. [The

x M%)r: points must be matched, and comments can be- continued past the end ot the
1 Any ing after exctamatnon pomts ona lme is rgnored. i}

The top level toop in LISP LOGO is a REAEEVHL—PRINT |uop whereas PDPll

LOGO is a READ-EVAL loop. This means that 11LOGO prints out only when you ask it to

v vg;mt t(‘mhke LLOGO which prints out velues after every evaluation of » LOGO"form.
% In11L0GO: T B
R SUM-4 8 :
) YOtl DONT SAY WHAT T0 DO wrm 12 .
' InLLOGOF e
’Sﬁ‘ M48
'12J :

£

Lme numbers can be any mteger msrde the tNUM hmrt Flo:tmg pomt negatwe

numbers and zero are ellowed also.

Percent sign (%) does not echo”es spece Cemage returns within squere- "

" bracketed lists print out~as such, not as spaces, as in 11L0GO. oo

‘ EMPTY is the empty lrst which is LISP’s NIL. EMPTYW is the e‘}mpty word
o whlch is the LISP atom whose prlnt name is. (HSCII oL .
-
4 The character controM' [AT) is converted to double quote ["] when ut is read in..
Thrs is for emnpetnbulrty wrth CLOGO. l.haven't the faintest |dee of why CLOGO doés it.

LISP, LOGO and 11LOGO differ on the syntax for arrays. l.lSP LOGO uses the LISP
errey faculuty, to define an’ erray use: Ce

7’

Ditferences between llMlnd LLOGO R o Section 11

R a

;usrm’m’-pimu | S Pee® . June2, 1978

,‘number is rounded to an integer, otherwise |t5 X

-

B 8

‘ "ARRAY <nem¢> T <linmuion l> - “zmenmn N>
Values can be stored by , '
"STORE <array name> <subscnpl 1> <« <subscript N> <velue>

Values are accessed as |f the: array were a funchqn. whuch expected lhe same number ol
mputs as lhe number of dimensions in the array. ‘.

, The LLOGO function RANDOM, of no mpuls, relurns a random - lloall‘ng poml
number, which is between zero and one. If given two arguments,. it returns. a random-
number between its first and second argument, inclusive, If- both its inputs are fixed .
point, it returns a fixed point number, otherwise it returns a floahng poml number, ..
(RANDOM 0 9) behaves as 11L0GO RANDOM S - ’

.

LLOGO has only ‘one global lesl box. When a subprocedure performs a TEST the

. result replaces the result prodiuced by any TEST’s prior to the subprocedure call in its

superprOcedure. IFTRUE's and IFFALSE's after the subprocedure call in the .
superprocedure will be conditional on the last TEST which ‘was performed regardless of
what procedure it was:in. . . . _ _

ROUNDOFF in LLOGO takes either one dr two mputs if gwen one mpul the
: }ounded to as many places lo the right
of the decimal point as speclhed by lhe sec Aihput.”

R
V‘ '

LOCAL varlables are handled dlfferenlly ih LLOGO than in 11LOGO. Regardless of

‘ where a LOCAL statement is placed in a procedure, the variables declared will be local to . -

the-entire procedure. This corresponds to a. PROG virlable in LISP, LOCIII. accepts any
number of varlable names as input. -

. inserting Tines into procedures under program conlrol should be done using the
funchon INSERTLINE. In_ uLOGO, the followmg will insert a line into BLETCH when)
MUNG is execuled‘ .

- = . L I

?TO MUNG & . . :
. >10 EDIT BLETCH - -
- »20 10 PRINTF [NEW LINE /mm:n TO BLETCII] / ¢
' >END

This will hot work in LLOGO. Instead replace line 20 with: * ~ ' '
>20 INSERTLINE 10 PRINT [NEII_' LINE ADDED TO BLETCH I

There is a memo by Wade W'llums whuch explems some of the finer pmnls of

11L0GO syntax, and should ‘be consulted for further mlormlhon. The 11LOGO User’s -

Manual should also be of asslstence

N

‘Differences between 110000 and LLOGD:" e Section 11

@

LY

LSPLOGOMENO ~ Pae3 lmeaniwa

H

- .

© Section 12 Using LLOGO on MULTICS . -

°

LISP LOGO has now been implemented on MULTICS, and this is the only version of
LOGO available for that system. Below are instructions for using it, and a list of
differences belween the MULTICS and ITS versions. Except for the differences in file
naming ‘conventions, and limitations imposed by the operating system, source language
programs should be entirely compatible. For more information on MULTICS LISP, see the
MACLISP Reference Manual by Dave Moon, “ o R

-

. The LISP LOGO music package is wlilablé for use on M.I.TICS See Sectioﬁ 16 for

_-more details. The display turtle and GERMLAND packages are not available in ghe"Ml.TICS
implementation. MULTICS does not have adequate facilities for using displays such as the A
340 and the GT40. it probably would be possible to implement a rudimentary turtle

package for the storage type displays on MULTICS such. as the ARDS and TEKTRONIX

terminals, but we have no plans to do o at present. We do hope to have available soon,

however, facilities for using the mechanicel floor turties [controfied by the Thornton Box]

~ on both ITS and MULTICS.

12.1 Where To Find It

" To obtain LISP LOGO, you must first creale a link to the necessary files. After
you fog in, type D . | ;
C hmkowddepliblege -

PN

b

: 'This 'nécds'toibc done only once for each user. Subsequently, you can tof LLOGO simply

by typing

- lego

ITS, and the alloca
your directory named atart uplege it will be read in as an initialization file.

' You should fﬁemz&t&: message indicating the version numb;rs of LISP and LOGO, as on

122 File Naming Conventions = .«

%

. An ITS file specification consists of two file‘names of up to six characters each, a
devite and directory name. A file specification on MULTICS is called a "pathname”, and

. consists of arbitrarily many components each naming a hode in & tree structure of

directories and segments [files] The components of a MULTICS pathname are separated
by ">" characters. Any pathname beginning with "> is considered to be a full pathname,
i-e. start at the root of the tree, atherwise, it is considered to be relative to the directory

- which is currently the default. This will usually be something like “udd>your-project-
name>your-user-name”. Fila names are assumed also to have two components as on ITS

and you type them into to LOGO the same way, as two words, except that esch word is

" not limited to six characters. The default second file name is “logo", not *>", to be

consistent with MULTICS conventions. In your directory, the two file names will. appear

" separated by a “". Files whose second names are "fasl” are assumed to contain object’

code produced by the LISP compiles. This will correspond to the file with only the first

Using LLOGO on MULTICS =~ . S Setewi2z

will ask you if you want to use the music box. if you have a file in _

‘LISP LOGO MEMO - - "Page 33 . June 27. 1974

name [no second component] in your dlrectory Haro are some examples: [assume your
name is "person” and your project is propct"]

LOGO file name - MJLTICS file name .
?readfilo Joo : . ' >udd>projoel>p¢rhn>loo.loxo
7readfile foo bar ‘ B >udd>pro ject>person>foo bar p
“?readfile foo fasl ‘ >udd>pro ject>person>foo
" ?readfile foo bar mumble : >udd>projecl>pcnon>mumble>[oo.bar
?readfile foo bar >udd>llogo : >udd>llogo>foo.bar
12.3 Terminalogy)

On MULTICS, control characters are entered to-LISP by first hittinﬁ the break or

attn key [if you have one] and LISP should type CTRL/, then typing the ordinary non- -
control character, then a carriage return. MULTICS has no other way of atknowledging

your existence before you hit a return, which is the reason for this kludge. Because of
this the control-character line oriented editor which exists in the ITS implementation,
does not exist in the MULTICS implementation. MULTICS uses # to rub out the previous
character, and ® to, rub out the enture line. To enter these characths to LLOGO, ‘precede
them wuth \ , .

;\ If you should have to use an IBM 2741 terminal, remember that certain characters

must be escaped. The worst offenders are [and [(type <cemi-sign> <less-than> for [

_ and <cent-sign> <greater-than> for J), type <not-sign> for A, <cent-sign> <cent-sign> for
*. "\, and type a <cent-sign> before # and @. Upper and lower cases are distinguished on
MULTICS, and all of the system functlons, both MULTICS’s and LLOGO'S, have |gwor case

. names. _
v To use LISP LOGO on MLT'CS over the ARPANET from ITS, it is recommended that
' Dave Moon's program. TN6 be used rather than TELNET. See DSK..!M-'O ;TN6 INFO for more
details.

3

Using LLOGO o' MULTICS - ‘ o Section 123

T 44

<

LISP LOGD MEMO ‘ Page 48 R June 27, 1574

Section 13. Using LLOGO on TENS0 and TENEX systems

The ‘version of LLOGO for TENS0 runs in a version of MACLISP that is nearly
compatible with that used at MIT-Al. The TENSO version can also be used on TENEX
systems. Most of the incompatibilities are those necessitated by the difference in
: openting systems Specmcally, the follawing commands are not lmplomonted

A
. PRINTOUT INDEX (alias POI, LIST FILES)
- LOGOUT (BYE) K
COMPILE . '
LINEPRINT
BUG

Also, the special packages for LLOGO (the turtle primitives, the music primitjves, and

GERMLAND) are unavailable, o

Another difference between TENSO [LOGO and LLOGO on ITS is in the typing of
control characters (such as AG, AH, and all the editing characters - AR AE etc.). on ITS
these characters may be typed at any time. Those specifying an interrupt action (AG, AH)
will always take effect immediately. Unfortunately, this is not true in the TENSO
implementation, because TENSO allows a running grogram to be interrupted only by the
character AC. As a result of this, if the user wants to interrupt the LLOGO system while
it is running (e. g. executing a user defined function), he must first type AC. This. will
interrupt the program, and cause it to print ?A, indicating that it is waiting to read a
control-character. The user may then type the desired control-character, and it will be
acted upon. Note that typing AC is not necessary if the LLOGO system is not running, but
rather waiting for input. Therefore the edutmg characters may be used wulhout difficulty,
even on the TENSO system.

Another minor dmerencé between the two operating systems js in the notation
for file names. This ditference is minimized by the syntax used by the LLOGO file
~ commands. For instance, the command

?RE/IDFILE PROCRM LGO DSK USER

" will read the file DSK:USER; PROGRM LGO on ITS, while on TENSO the file read will be
DSK:PROGRM.LGO/USER]. Thus most user programs will be able to run with little or
no modification to their input/output operations. (Note that the default second file name

is > on ITS, while on TENSO it is LGO.) If you want to use a LLOGO initialization. file with
. the TENS0 implementation, the name of the file should be INIT.LCO on your user

directory .

-

A version of TENSO L2660 is currently avaulable at Carnegie-Mellon (CW—IOB) it
may bedoaded theré by means of the follc’wmg command:

.RUN DSK:LOGO/[A4801.G99)]

]

«

Using LLOGO on TENS@ and TENEK systems N Section 154

LISP LOGD MEMO | . Paem

. Section 4. GERMLAND

'The GERMLAND package is designed to provide the user with a display

- environment in which interesting nontrivial questions can easily be investigated, without
the need for sophisticated display equipment. The current implementation runs on any of -

the character display consoles in use at the Al laboratory.

Conceptually, GERMLAND consists of a squaré grid, on which may "ive" as miny
as 10 "germs”. Each°germ may have an arbitrary LOGO program associated with it; this
program determines the germ’s movements, as well as whether it eats any of the “food"

present at its position of the grid. For a discusston of some of the problems that can be:
- investigated in this environment, see LOGO working paper 7.

14.1 Starting Up

i A . . o...,_.'_._'.'..-_.. .
The GERMLAND package may be loaded automatically at the ‘start of an LLOGO

~ run, When started, LLOGO will ask which of the special packages you want. Simply type
YES, followed by a carrisge return, when it asks whether you want GERMLAND. The

GERMLAND package will then be |oaded, and give you instructions for further help. Note

that if the grid becomes garbled, b&cause of a transmission enror for instance, you can at

any tithe cause it to be redisplayed by typing the character A\ {control-backslash]}

kS

14.2 Toplevel Primitives _ | :
RUNGERM
invokes prompter. Asks questions necessary to ggt shrfod and offers help.

GERMDEMOS
g

4

Runs a series of demos, leaving the demo programs available for the user to play
with.) o ' '

TOPGERM |
Starts up a GERVLAND READ-EVAL-PRINT loop, wsing the' grid set up by the

most recent call to RUNGERM.

UNGRID '
Exits from TOPGERM, back to LLOGO. °

REPEAT <programl> <program2> .
o . “y
" Each program defines one creature. A round consists of executing each program
in turn. After each round, ‘tb(iwgram waits for input. If the user types a space, one

- round is performed; if the user types a number, that many rounds are done. This is

repeated indefinitely until an error occurs. REPEAT is not subtle with respect to
parallel processing. No effort is made to try each program and see whether any conflicts

g

GERMLAND * : ,) Section 14.2

o

46

June 27, 1974 -

LISP LOGO MEMO , Poge 12 et

occur. Howevor, cvontua!ly 2 more elsborate
sensitive to synchronizing the lives of the ger
it attempts to use the programs sesociated

be designed that was
, to REPEAT,
each gorm by RUNCERM. :

+ 14.3 Grid Primitives

islizes GERMLAND. A square grid h created with <number> aquoru in a side. .
_PRINTGRID

Clear scresn and redisplay GERMLAND grid. Typing A\ #iso causes this 10

" happen. If there is a germ on the square, the cheracter which represents thet germ is
printed in the square’s position. ¥ the square is an obetacle, an "X" ls printed. ¥ there is

food on the square, the number of parlicles is printed. i the squere is empty, 2 “" is

. printed,
CRIDP <positien>
v A predicate which outputs T iff the position s » logitimate grid squsre.
. AP R |
\ Go into "wraparound” mode, in which germs are sowsd fo go acroes the
- aries of the grid.
NOWRAP

Leave “wraparound” mode. :

1}

L

Note that WRAP and NOWRAP affect the veriable :'RAPMND. See Page 46. .
MOVE <position>

The germ is movod to the specified grid square, <position> is a sentence of the x

and y coordinates of the square. Typicel use is: MOVE NORTH. ¥ the germ moves to a
square which is already inhabited, the former inhabitant is kiked. NOVE prints an error
message if an attempt is made to MOVE to a square with an obstacle on it, or 8 squere
outside the grid. The <position> does not have to be adjacent to the current location of
iho germ. Hence, MOVE sllows non-local movement to sny grid square,

STEP <direction> \ _ .K

*<direction> is interpreted as a heading. It must be either 0, 90, 180 or 270 (mod
360). STEP sliows more elegance in the description of a germ program. H the same
“structure is used for all directions, then the program can cell a subprocedure whose input
is cycled through the four directions.

" GEAMLAND . 4,!,‘ | Section 143

o LISP L0G0 MEMO P o Tue 70,1974 3

14.4 Property Primitives L . o .
» PUTSQUARE <position> <information> <property> | ’

For. the specified grid square, the data stored under the given property is set to -
‘<information>, ' o

GETSQUARE <position> <property>
- The information stored under the <property> is returned. Typical uses lI;O: o
(CETSQUARE <position> *FOOD) returns food at <position>. | /

(GETSQUARE <position> "INHABITANT) returns the number ob ihe germ
currentlx living there, NIL if unoccupied. ‘ . .

(GETSQUARE <position> "0BSTACLE) returns T iff the square is an obstacle.
REMSQUARE. <position> <property>

" Removes information stored under <proberty_>.\

|
| i
WHAT <position> , 5 | : R {
Outputs all of the information stored for the given position. V ‘ ‘

|

FOOD <position> -

: Outputs the number of food particles' at the given position. FOOD returns O, not - 1
NIL, when there is no food. : _ o
\

FOODP <position>

Predicate which returns number of food particles it any at the given position; NIL
it none, :

FILLFOOD <n>
Puts <n> morsels of food on each square of GERMLAND.

EllT <numbcr> A

error if <number> is larger than the total food available. There are two types of germs
-- those that are-hungry and those that are not. Each hungry germ has a food supply
associated with it. The food supply is increased every time he eats by that number of
particles, and decreased by one for each generation. If it ever reaches zero, the germ
. dies. So, if he eats only one particle of food on a turn, he must eat again on the next
turn; if he eats 2, he can skip a turn without eating, elc.
AN

|
|
l
Subtracts <number> of food particles from the current square. Generates an _ |
|
|
|
|
|
|
|

GERMLAND o Section 14.4

o ¢ | 4F

-

LISPLOGO MEMO " PepeM C leen,tam T

145 Multiple Germ Primitives N
WHERE <:germ> ' |

Returns the coordinates of the squere that :germ Is currently inhabiting.
- NORTHP <:germ> |

. Returns true only if the x coordinate of germ is greater then the x@m& of
the germ whose program is currently being exscuted by REPEAT. '

SOUTHP, WESTP, EASTP . .
© Analogous to NORTHP. '
KILL <:germ>
A&sassimtes <:germ> and prints'wlo;y. . . e
GERM <:germ> <square> | |

. Initislizes :germ 1o start out located ot <equere>, xerm is sn infeger between 1
and 10, . v o : .

FOODSUPPLY <.-,."§v
Returns the smount of food that the germ hes.
ACCESSIBLE <square> <:germ> 4
" True if and only if <germ> can get to <square> on his next move.

3

14.6 Turtle Primitives
HEADING <:germ>

Returns the current heading of the germ. {
FORW AIRD <mumber> |
Move <number> spaces in the direction of the current hesding. Abbrevistes to

FD <number>. <number> may be negative.
BACK <mumber>

Ve

Move <number> spaces opposite to the current hesding, Abbrevistes to BK
<number>, , A
NEXT <direciion>

Returns the coordinates of the next square in the current direction.

GERMLAND : Sectien 146

LISP L0G0 MEMO | Page 45 a June 27, 1574

RIGHT <number>

Turn right <number> degress--<number> should be a multiple of 90, This may be
A abbreviated as RT <number> .,

LEFT <number> |
Equivalent to RIGHT -<number>. Abbreviates ss LT <number>.
FRONT | |
Returns coordinates of the square in front of the turtle.
RlGllTSl‘DE.-REnR. LEFTSIDE
Analogous to FRONT.
FSIDE, RSIDE, BSIDE, LSIDE
' Abbreviations for FROI;IT etc.

14.7 Touch Primitives

TOUCH <position>
:) (.
Outputs NIL if <position> does not contain something that can be touched.
- _Otherwise it outputs an atom describing the toychable object, eg. BORDER or
OBSTACLE. Typical use is: TOUCH FRONT. :

OBSTRUCT <square> 4
Puts an obstacle at <square>. Germs cannot move onto squares with obstacles.
" DESTRUCT <square>

&
Removes obstacle at <square>.

14.8 Global Variables R
:dERM ‘
The number of the germ whose program is being executed by REPE/IT; '
:CRIDSIZE |
Size of the GERMLAND grid set by the GRID function,
:HUNGRY

T => Germs are killed if their foodsupply goes to 0.
NIL =» A germ’s foodsupply is ignored by REPEAT.

GERAMLAND | | Nection 148
o0 -

LISP L00D MEMO : “Tupts s Jume 27, 1974

- WRAPAROUND ._ L | L
T => Motion across borders is permitted, ‘ ! : ‘
. N
NIL => Motion across borders is an error)
The user shoud never change WRAPARGUND directly. ke WRAP and
NOWRAP to change modes. R ‘ :
14.9 Implementation - ' L : ¥ '
GERMLAND uses an array to.represent the grid, snd sdditional arrays for easy -
access to information about a particular germ. The individual primitives are, for the most
part, straightforwardly implementable, given this data representation. Some care is taken
in interfacing with the standerd LLOGO snvirionment, so thet sl the usual debugging
features of LLOGO may be used in the development of germ programs, without
intorforom. with the display of the grid.
/)
: L.
) ‘
L J
1, |
1 < . o
A

BERMLAND 01 ' Section 143

'STARTDISPLAY [SD] - . ’

o rqsot, deposit 0 in 40 and 41 and then start,

LISP LOGO MEMO O Pagew | June 77,174

. Section ‘15. Display }antle' Primitives

The display turtle package for the 340 and GT40 is also usable from an ordinary

" LISP as well as from LLOGO. Do (FASIOAD TURTLE FASL DSK LIOGO) to get the -
~ simple display commands like FORWARD, RIGHT, etc. and (FASLOAD DISPLAY F ﬂSL _

DSK LLOGO) for the fancier snap-manipulating commands. = ﬂ

_ Abbreviahons for the' following primitives are noted in square brackets.

-

15.1 Starting The Display

Initializes the screen. The turtle is displayed. at its home, the center of the

. screen. This command is also useful for restarting everything when things get fouled up,

the PDP6 loses, etc. STARTDISPLAY GT40 uses the GT40 display rather than the 340
dusplay If you are using the GT40 as a display for the LOGO turtle, it must not be Iouod ,
in to ITS as a console. . _ » _ ‘

NODISPLAY [ND] o o
- Says you want 1o stop using the display. Flushes the display slave.

If the display slave for the PDP-6 dies, check that the run |||ht is on, If not, stop. -
% .
LISP has three control tharacters for the display: NG

AN
Turns off display.

AY . \ |
Display prints ;ike tty.

AF ‘
Turns on display for turtle, assuming a priof catl to STARTDISPLAY.

152 The Turtle | X
HIDETURTLE [HT]

Makes the turtle disappear. . |
SHOWTURTLE [ST] | - N - 1
Brings the turtle back to lfe. ~ * o -

Insylay Turtle Primitives _ ’ ' Section 152 -
' . Y

. 3‘) Lt
.]] .

~ LISP L0GO MEMO Page 48 © June 27,1574 5
‘ ‘ - v’ ’) R | i ‘

TURTLESTATE

Reténs 0 if the turtle is not displayed, else returns the value of :TURTLE.
:TURTLE is the number of the display item which is the current turtle.

M AKTURTLE <code>
.. The current turtle is replaced by the picture drawn by <code>. Provides
» Capability to rotate pictures. Subsequent turtle commands, like FORWARD, RICHT, etc.
will make the picture drawn by <code> move as if it were the original turtle [triangle]} ‘
'OLDTURTLE v

Restores the original LLOGO turtle.
x ,

15.3 Moving the Tirtle - : ‘\3 ®
[} . 3 .

FORWARD :steps [FD)

Moves the turtle :steps in the diroct’itrm it is cufrontlyvpointqd.
BACK :uteps [BK] |
’) Moves the turtle :steps opposite to t.ho direction in which it js pointed.
~ SETX:= | | o o~
Moves the. turtle to (:x, fﬁOR). . o . | *
SETY :y | |
Moves the turtle to (XCOR, :y). ‘ o
SETXY :x:y ' .
Moves the turtle to (:x, y).
DELX dx
Moves turtle to (XCOR+:dx, YCOR).
DELY :d | | |
Moves turtle to (XCOR, YCORdy). \
DELXY ":dx :dy
Moves turtle to (XCOR+:dx, YCOR+«dy).
HOME [H] -
‘ Moves turtle home to its starting state.

)

Display Turtle Primitives - . ' - Section 153

/

LISP L0GO MEMO . : Page 49 . w2, 19743

N PR
’ L

15.4 Erasing the Screen
WIPE ”

Erases the pncture on the screen. Does not amct the turtlo, or any snaps.

WIPECLEAN [WC] .
Like WIPE, except hides snapé slso. _ - R
CLEARSCREEN [CS] | o Ty
Equivalent to WIPE HOME.
: . 4 2
15.5 Turning thé Turtle
RIGHT :angle [RT] /-
Turns the turtle clockvnse :angle de;roo: :
. — ‘G" 7 [
LEKT :angle [LT] f ’géf . . .
. Turns the turtle counter-clockwise :angle degress.
. . . ' : 3 ,
SETHEAD :angle : Lt o
, i N

' The turtle is turned to a heading of :angle.

15.6 Examining the Turtle's State

Note: The turtle’s home is (0, 0) and a heading of O corresponds to pointing straight up.
The variables :XCOR, :YCOR and :HEADING describe the state of the turtle in floating
point. These variables should not be changed explicitly by the user. The following .
functions return components of \he turtle’s state rounded to the nearest integer.

xcos' .
Outputs the X coordinate of the turtle.
YCOR | oo
Outpul the ¥ coordinate of the turtle. ,
HEADING

Qutputs the heading of the turtle.

XHOME -~

" Outputs the X coordinate of the turtle’s home in absolute scope coordmatos (u
reiative to lower left-hand corner of the screen)
.

:

iy

Displsy Turtle Primitives - - Sectien 15.6
53 '1 » LN

(S5

LISP LOGO MEMD R pmsa S » June 27, 1974
YHOME T i ‘ . 3
" Outputs the ¥ cdordinate of the turtle’s home,in absolute scope coordinates. '&'
157 ThePen .~ -, .. . ol |
_.PENDOWN 27 o o
Pen lowered to' paper. Turtle Ieaves a track when moved ‘ J
CewwPe; - 4
Pen raised from paper. 't'urtte does not leave a track when moved. -
PENS_THTE L | : —') R "7‘; .
Returns +1 = penup or -1 = pendown : ‘i ' -
PENSTATE <l or -1> ~ I '\ - S,
- Bets the penstate A common use for this primltwe is to. make a sub-procedure 3 :
: transparent to pen state. ' | . e o, e | -
. PENP ~ - ’ e RS
.- T it pen is down, elseleL. : | .
HERE " | . ,, .
‘ 0utputs %ENTENCE XCOR YCOR HEADING) Usefut for rememberlng Iocatlon
via MAKE "P" HERE. . i
SETTURTLE wtate [SETT] * 3 e
Sets the state of the turtle to state state is a sentence of X coordinate, Y I
* coordinate, and heading. The headlng may be Omltted m whlch case it is not affected. S
R/!NGE tp | :
Dlstance from the turtle’s current location:to vp p isvvav ‘éoint__specifiec't'by] .
sentence of X and Y coordinates. © : | T : ,;
- BEARING :p | B
0utputs absolute dlrechon of .p from turtle < -
TOWARDS - LT e
Outputs relative direction of :p from turtle. © \\ .
i '
Display ‘Turtle Primitivee e o "\\(,’ - . ’ : Section 157 '«

v) =

e t.'lspwuu‘m-:m'. ...+ Pues S e e

N 158 Global Navigation | ,Q | " jﬁ;
T Note- These prlmmves return ﬂoahng pomt if aither of thcir inputs sre floating pomt N
Kl RANGE iz iy | DR | e
'Outputs dustance of turtle from the point (x, .y) | ' o

~

BE/)RI NG x iy

.

, Outputs absolute durechon of (xx, zy) from turtle. (SETHEHD (BF/lRING £ y)) .
~"points the turtle in the direction of (x,y). .

TOW ARDS :» iy . o o -
. . i Outputs relative direction of (:x, <y) from turtle (RIGHT (TOIWIRDS iz iy))
- points the turtle in the dlreclhn of (:x, 1y). § .

1‘5_.9 Trigonometry ‘ o - S e

- COSINE angle S I
- Cosine of angle degrees “ o
' SINE :anglc e
| Sine of :angle degrees.
ﬂrhzvcmw x.ty
Angle who;e tangent is- .xl'y - . -
- ‘ [SIN COS, and ATHN are the correspOndlrfg funchom whlch input or output in radllns] ' , o \
. 15.10 Text)
" SHOWTEXT

Subsequent printing is moved on the screen. Initially, prinfing begins in the upper I
~ left corner.” .

o

_ HIDETEXT

= v
-

* Subsequent printing is no longer displayed. Text currently on the ‘scr‘een. remains.
REMTEXT '
) Any text on .the screen is é'ra'sed and subsequent printing is not displayed.

:SHOW

mspiay Turtle Primitives ‘ ' L Section 15.18

K o IR 31 & .

.usr‘wuunmofﬁ' o p.,esz | ‘,Junc.-'27,1974 B

N a

R SHOWTEX'I' HIDETEXT, lnd REMTBXT Don’t set it yoursalf

o

",'_'n:xr e S

Vamblo contalnlng tho number of the d|sp|ay item which is the text dlsplayed by »
e SHOWTEX'I‘ etc. :

: k

CMARKx T e

(TYPE. X) is placed at the turﬂe’s curront locatron. SNAP “title” M/)RK text”
“creates a snap of the word "text”. Thus allows the word to be manupuhted ie, Moved to e

any part of the screen, efc.

TEXTXHOME, TEXTYHOME ~~ - S

Variables containing coordlnates of text to bo displayed on the screen. -
Changeable by user. Initially :-TEXTXHOME= 0., TEXTYHOMEﬁ 1000 These are in- .-

absolute scope coordmates i A'f

»15'11 Manipulating Scenes L T 'if. ST

Note: :PICTURE is fhe name of the turtle’s track. Does ot include any snaps- dlsplayed' R
via SHOW, S”OWSNAP, etc. :TURTLE is the name of the turtle, :TEXT is the name Of o

any text dlsplayed via SHOWTEXT. N
SHOW iscene’ - , ., , i

iscene is moved to the current posutlon of the turtle and drsplayed It is not‘ ‘
o :copied , .
I"DE :scene

:scene is hidden but not destroyed
.PIIOTO tcena [SNAP] ¢{

[

"The current\pucture is copwd and named :scene. Any old snap of thus name is

destroyed .

PHOTO "scene” éﬂﬁv (SNHP]

The plcture drawn by <line> |s?amed :scene,

- "ENTERSNAP " scene”

“PICTURE is rebound to s fresh drsphy |hm. Tho imhal state of this item hides
the turtle. Subsequent co:nmands refer to this new ihm.

ENDSNAP
> k The original :PICTURE is restoreu.

R

Display Turtle Primitives | ' 5:7 © Section 1511

) R

A vamble ‘which i$ T it printing is boma dlsplaycd, NIL if not Set by"

PICTURF <duplny commum:h> -

£xcept that scene is not edded to ftwlust of snaps.

_> o " IDESN/IP :scene

 PLOTTER |

- -NOPLOT .

' “ - A q
Cowl o e -

' LISPLOGOMEMD Page 53 . Juné 27,1974

LI 4

RESNAP “scene” .

' iscene is made the current picture. The onty dlfterence between tﬁis and Ce e S
ENTERSNAP "scene” is that a new display item is not created, and the turtle-is not S S

B hudden, ENDSNAP also restores the oruguna| PIC’I'URE

RESNAP scene” <lme>

The picture drawn by <|me> is added to sscene. The <||ne> is executed reterrlng L
to the turtie residing in :scene, Subsequent commands will refer to the old turtle. - o '

.

. :PICTURE is bound to a new display item while the commands are executed. The :
orngmat :PICTURE is restored following execution of the commands. Similar to' SN/IP - B
"scene” <commands> except that no name is given to the new |tem Instead, the number. ,

, ot the |tem is returned Thus, the same effect is achisved by:

. \SN/IP lcene <commandl> or - - .
- MIIKF :cene PICTURE <commanls> .

[

L

SHOWSNAP iscene

A copy‘ot scene is dusp|ayed at the turtle (] current o8

. IS
" —y

Altcopues ot scene erehrdden T '; R

' ~mmsza iscene. < T

A|tcop|esot scenearedestrOyed o S

o SNAPS

A list containing all current snaps.

*151-2?1‘0&&: I
PLOTTER T e ;

" The dusplay Is plotted on a new p|otter page. PLOTTER will "ask if arrays trom

- previous .plot should be erased. The user should type YES if his preceding plot is

complete. -

Disp,lay plotted on current plotter page. S | l
|

insplay Turtle Primitives Section 15,12

LSPLOGOMEMOD - PueS - - JuneZ,1974
The plotter is rolnsed ' ' B S
Q\’rﬁw ~—

pIsPAGE - S | | ' a
o Outline of 7x11 page displayed as :PAGE. | ”

BB T
o DIALS : x‘. S T ' ‘
| Outputs the value of pot -as a decimal fraction between 0 and 1. Careful: the - L.

numbers on the pots are: marked in octal, but LLOGO normally expects decimal numbers as
‘mput g o S

. i

15.14 Points
[Points are displayed whether or not thé peris down)~ - -~ . _ _
porNr -
R Djepieye a point at the turtle’s current location.
o Displays a point at ip. |
. POINT°tnap'p o '_ ; S ,; C -b A~) -’ .o,k‘ . o
Displays a point in :snap at :p. i o
"pomr.mcp way " SR

Displays a point in snap at (:x, :y)

- -1545 Global State of the Turtle's World

For all of these functions, the first input "scene” is optlonal |f !eﬂ out the command o
N _refers to PICTURE by default

SETHOME :scene

Resets turtle’s home o current position. \/\ | e

SETHOME :scene :x :y ’
a
" Resets the turtle’s home to the absolute scope coordma#es of (:x, :y). Takes
e"ect immediately by moving the current :PICTURE to the new home. (SETHOME :scene
512. 512.) restores the home to the center of the screen,

MOTION :scene

" Display Turtle Primitives - 8G : Section 15.15

.

<J

.

" LISP LOGO MEMO | | Page 55 - Juwne27,1974

7/

Moves :scene under the control of space war console 1. Button terminates
movement. The new home is returned, expressed in absolute scope coordinates. If the
current home is returned immediately and the space war console is ignored, check that all -
switches on the color scope data switch extension are in the middle position. . \

)
[} . -

BLINK cene -

Blinks :scene. "

UNBLINK iscene - . 4 SR
Terminates blinking. D | L
. BRIGHT :scene ' , ' R :'~.?._'Z-~ T "\ C |

© "+ ~Returns cl'.ur_rer.!t brightness of :scene as a number from 1 f_(dimﬁiesf) to 8
(brightest). Ordinarily, ‘TURTLE and :PICTURE are at maximum brightnﬂss.‘ ' :

“BRIGHT :scene :lel;e't ' , ,7 "

Sets brightness of :scene to :!qvb!, v)h&e :Iévql is an integer from 1 to- 8.

o SC/_!LE_:_u_:enc ‘ ' .

SCALE :scene :ai;é R

_ Refurns current scale of :scene. Scale is an integer from 1 (standard s_.ca!&) to 4

(16 times standard scale).

S -

a

-Séts- scale of iscene to size, ,wbqre isize is an integer from 1 to 4. size is a

. multiplicative scale factor. Hence; SCALE 2 doubles the size of an ordinary picture, " 7

SCALE 3 quadruples it and SCALE 4 multiplies the size by 8. SCALE 1 restores picture
to standard size. This is a hardware scaling and affects the cprrent gjisplay as well as -

- future. displayage. .

DSCALE :scale

" =" The length of ‘a turtle step is reset to :scale. :scale may be any Uré'al number.
- Reselting the scale with DSCALE rather than SCALE has the advantage that the scale

factor may be any real number. However, DSCALE applies only to future display and not
the current picture. =~ - : ') e

o

¢

Display Turtle Primitives Section 15.15

6O

LISP L0GO MEMD P C . lue?7, 19

Section 16. The Music Box

~ The music box is a tone generator for from one to four simultaneous voices,
having & range of five octaves. Because of the timesharing environment, music is
compiled into a buffer, and then shipped to the music box all at once, for smooth timing.
Wherever possible, these primitives have been made compatible with both those of
. PDP11 LOGO and PDP10 CLOGO. They made be used with the “old" (Mmsky) music box,
or the "new” (Thornton box compahb!o) music box. »

16.1 PJL!IE m

~ To plug in-the old music box. fmd an EXEClPORT terminal, Plug it into a 300 baud
ITS line, using the phorio ‘type plug on the top right of the EXECUPORT back, or the
acouslic couplér. Make sure the terminal is turned off, and plug the musit box into the
IEft back of the EXECUPORT. (Or find this all set up in lho music room on the third floor.)
Turn off the music box and attachod percussion box, and put the EXECUPORT switches
into the "line" and "uppercase” posutvom Turn on the terminal, type AZ and log into ITS,
- The panic procedure. for the old music box (symptom: keyboard dead but ITS not down) is
to swutch to local lowercue mode, turn off the music box, and type b.. Then type $P. '

* When using the music box from M.I.TICS. remember that bath carriage return and

line feed must be typed to end a Ima, when using an EXECUPORT. The termina) should be

_in "half duplex” and "lower case” modes. The paric procedure described above is not

" recommended, since putting the terminal into local mode will have the effect of loum;
you out of MULTICS..

" Plugging in the new music box is a bif more of a problem due to limitations of
" present hardware. The critical item is a small piece of electronics known as the "terminal
controller card®, to be had fram Gsneral Turtle in the basement of 545 Tech Square. This.
.card is to be inserted in the correct orientation in port 4 of a Thornton box. (If you have
never done this, ask! Putling it in backwards will burn out the card.) The music. box

should be plugged into port 1, 2, or 3, “depending upon which has the music box card. (It~ °

- shouldl_be labelled.) Then, plug the interface connector of the Thorton box into & 300
.baud ITS Ilno, a terminal into port 4, and log into ITS. The panic procedure for the new
music box is to get your terminal to-echo "AQ " (control-Q space). Since the normal print
routines will actually send, <uparrow Q> for <control-(2, this is most easily done with the
"echo” gadget of the Thorton Box, a small connector which makas the Thorton Box look
like a full duplex computer line. (If you want to make yourself one, see General Turtle or
~ Mark Miller; you probably won't need it.)

162 Turning On

Assuming you are plugged in and logged into ITS, you may now run either music

box in LISP or LLOGO. LLOGO will ask you if you want the music box; if so, it will ask you
which one; if the new one, it will ask you which port it is plugged into. After answering
sll questions, type STARTMUSIC, It wul tell you to turn on the music box (the old*one
~ will make a lot of noise), and then type OK. Then, the noise (if any) will stop, and you
asre ready to go. LLOGO behaves much like other LOGOs, and undorstands the anmves
below.

t

The Music Box o o Section 16.2

. LISP LOGO MEMO | Page June 27, 1974

L3

16.3 Music Primitives

A great deal of effort has gone into ensuring upward cpw(p)ahbllity with CLOGO
and 11LOGO. If you have programs for either of these which no longer work on LLOGO,
please let me know.. Notice that many “intermediate” level functions such as CHORUS,
which had been written in LOGO code, are supplied as LISP primitives for efficiency. In
addition, new facilities have been added which should be helpful. in the following, all
such situations have been indicated. Occasionally, a single function replaces several
LOGO functions; the others are still available, but may print a message recommending the
newer function for future code. Since most music functions are executed for effect,
unless otherwise indicated, the value of a function is the atom (word) 2.

BOOM

Returns the number which COrrespOnds to a drum beat. Using DRUM is more
efficient. No inputs,

1

‘ BRUS" <duration Im>

Takes 1 input, a list of duratmns Plays (i.e. stores in the music buffer for the
current voice) a sequence of brush notes (see GRITCIHI) and rests. A duration of n
means 1 brush followed by n-1 rests.

CHORUS <form 1> <form 4>

s

3 , Takes from one to:four inputs,'\qwhich should be forms [procedures with
arguments, or constants}. CHORUS evaluates each argument in turn, and then goes on to
the next voice, in cyclic order, and evaluates the next argument. Example:

PCHORUS SING 1 10 SING 5 10 SING 8 10
PM |

If the number of inputs is the same as :NVOICES, sequential calls to CHORUS or
SING will do the expected thing; if the number of voices used by the arguments is equal
to :NVOICES, recursive calls will alsa work. For other situations, just remember that

:VOICE is updated after evaluating each argument. For example, if :NVOICES = 3 and
yau CHORUS two calls to SING, the next call to CHORUS will affect voice 3.

C"ORUS2 <form 1> <form 2>

Version of CHORUS which takes exactly two argumenis For upward
compatibility only. o . .

CHORUS3 <form 1> <form 2> <form 3>

Analogous to CHORUS2.

Al v

1 e Music Box R Section 16.3

_ The’ music box can also be run from a pure LISP. Type (FASLOAD MUSIC FASL

. DSK LLOGO), and answer the questions. Type (STARTMUSIC) and the following’
* primitives will behave like LISP SUBRS or FSUBRS (If you do ERRLIST hacking, see Mark
Miller,)

/

" The Music Box ©~ - | - Section 163

LISP LOGD MEMO | 7 PageS June 77,1974

CHORUS$ <form 1> <form 2> <form 3> <ferm #> . .
Analdgous to CHORUS?. |
'DRUH <list of durations> |
" Analogous to BRUSH for drum notes (ses BOOM).
GRIT(;'" , , , *J

Returns th@ number corresponding to the brush sound of the percussion speaker.
More efficient to use BRUSH.

MAKETUNE <wune name>

Takes as input a name, like LOGO MAKE or LISP SET. It mulliplexes the buffer
and saves it as the "thing" of the name. That is, it stores the tune as data, as opposed to
procedures. This allows faster playing (see PLAYTUNE) and easy storage (SAVEd with
other LOGO variables.) Since MAKETUNE does not clear the buffer, allows saving and
playing incrementally larger portions of a long piece. Tunes made on one music box can
be played on the other, with the exception that tunes with exactly three voices can
never be played on the new music box (see NVOICES). MAKETUNE did not exist in
CLOGO or 11LOGO.

MBUFCLEAR

No inputs. Clears the music buffer, and starts at voice 1. This should be done for .
example, after typing AG to kill an unplessant song, or after MAKETUNEing the final -
version of a song, before starting a new one. :

M BUFCOUNT

. o T'\% 7}
Same as VLEN. ' , ford aﬁ%
MBUFINIT

No-op. Prints message to let you know you tried to use this relic of the past.
MBUFNEXT ‘

No-op. (See MBUFINIT)
MBUFPUT

No-op. (See MBUFINIT)

MBUFOUT
- No in'puts.l Plays the music buffer. Does not clear it. ¥ f
MCLEAR ’
Same as MBUFCLEAR. R - \\

LISP LOGO MEMO | : Page 59 " June 27, 1974

MLEN

Returns the duration of the longest :VOICE created so far (since the last
MBUFCEAR). Useful for building procedures such as«percusslon accbmpaniments for
arbitrary length tunes. (see VLEN, :MAX)

MODMUSIC <T or NIL>. -

Takes one input, NIL or otherwise. If non-NIL, puts music in a mode where
numbering is from O to 59, and note 60. is the same as note 0. (i.e., (note mod 60)), so
that one need not worry about exceeding the range of the music box.

NEWMUSIC

No inputs. Informs system that you wish to use the new music box. Asks which
port music box is plugged into. Normally user will not need to call NFWMUSIC as the
questionnaire at load time suffices. See: OLDMUSIC,

NOMUSIC ;

No-op. See MBUFPUT. This function may be reinstated as a way to excise the
music package, for example, when one wants to load the turtle package instead.

)

NOTE <pitech> <duration>

Unfortunately, (through no fault of LLOGO), there are minor variations between
11LOGO and CLOGO. The difference between NOTE and SING is one such problem.
-According to LOGO memo 7 (8/10/73), NOTE is the basic 11L0GO music command. It
takes two inputs, a pitch and a duration. It numbers pitches chromatically from -24. to
36. with O being middle C. There are also three special pitches, as follows:

~28. is arest
-27. is a boom
~26. is a gritch
=25, is illegal.

11LOGO NOTE can also take multiple inputs. LLOGO music has implemented all of this for
NOTE, except the multiple inputs. The numbering is slightly different from CLOGO SING.
which is also implemented in LLOGO. (see: SING).

NVOICES <1, 2, 3, or 4>

Takes one input, hopefully a number between 1 and 4. Sets :NVOICES to that
number, clears the buffer, and sets :VOICE to 1. Remember that 3 voices is illegal on the
new music system, and will generate an error. It is generally better to use four voices, -
one blank, 5o that tunes will play on either music box. In MODMUSIC T mode, (normally
not the case), calling NVOICES with a number outside of [1,4.] will not cause an error,
but seems crazy. The 1+ input mod 4 will be used instead. SETing :NVOICES or
MAKEing "NVOICES® cannot be prevented, but is considered a faux pas. Accessing
:NVOICES is welcomed. Calls MBUFCLEAR and resets :VOICE to 1. See: :NVOICES,
VO!(.E. VOICES, MODMUSIC. .

OLDMUSIC

‘It Music Box ‘ . Section 16.3

LISP LOGO MEMO Pope 88 June 27, 1874

X

No inputs. Puts system in mode for old musi€ box. Normally not needed by user,
as questionnaire at load time suffices. Might ba’used, for example, if you made a mistake
answymg the questions. See: NEI'MUSI » . ,

PFRFORH [Abbreviatien PN I

' No mputs. Outputs the music buffer, ‘and then does an HBUFCLN!R Su
HBUFOUT MBUFCLEAR, PLJYTUNI

PLAYTUNE <tune» i ' , &)

Takes one input, which must evaluate to a tune created by MAKETUNE. It plays
the tune. Does not clear or otherwise siter the current music buffer. PLAYTUNE is
transparent to the current number of voices, even if the tune uses a different number.
See: MAKETUNE, PM.

REST

No inputs. Returns the number of the note which generates silence on the music
box. (Like BOOM and GRITCH, this will win independently of whether 11LOGO or CLOGO
primitives are being used; likewise, it will be the correct number for MODMUSIC T or
normal state, even for different scalebases.) Neturatly this checking is less efficlant than
just calling SING -25. or NOTE -28. for the sppropriste duration. See: SING, NOTE,
MODMUSIC, :SCALEBASE.

RESTARTMUSIC

No inputs. Like STARTMUSIC, except re-initislizes all system variables, and runs
questionnaire as far back as asking which music box. Useful in situations of total loss
after panic procedure. Usually tunes created by MAKETUNE, and user procedures will
be intact. Buffer will be wiped out. In cases of paculiar behavior at login or load time,
guarantees that everybody thinks they have the device you think they do. If this does
not work, go to "PLUGGING IN".

SING ?pilchﬂ' <durstion>

Basic CLOGO and LLOGO music command. Takes two inputs, a pitch number, and a
duration. it is highly recommended that durations be Integers greater than 0! Very large
durations (each unit corresponds to a character atom in LISP) are spt to slow down the
system a lot, 50 small integers are highly advised. Pitches are from -25. to 39, with 0
being middle C. (But see the remarks sbout 11LOGO's variant, NOTE, and also
:SCGALEBASE and MODMUSIC)) Pitch 25, is a rest, ~24, a boom, ~23. a gritch, -22,
ignored. (But see REST, BOOM, GRITCH) Durations are normally broken down into N-1
beats of pitch and 1 beat of rest, to avoid slurring the music. However, it the SPECIAL
variable :INSTRUMENT is "STACCATO", 1 beat of note followsd by N-1 beats of rest
will be sung. (i.e, stored in the music butfer under the current voice). If other phrasing
is desired, it may be added later.

SOFVG <pitchus> <durations> .
Takes two inputs, a list of pitches and a list of durations. Calls SINC, pairing

pitches with durations until the shorter list is exhausted. In other LOGOS, this was not a
vpnmntwo. but was written s a recursive LOGO procedure.

The Music Bex : , . Section 16.3

op)
»y

@

LISP LOGO MEMO T bt June 27, 1974

stARTMUSIC) s

No inputs.. Should be called to turn on the music box. Unlike CLOGO, it pauses to
let you turn on the box, to minimize the unpleasant noise generation on the old music

box. (PERFORM alone will suffice). Clears the. music puffer and sets V’OICE to 1.~

Probably unnecessary with wew music box.

VLEN
No inpuls. Returns duration of current buffer. See: MBUFCOUNT, :MAX,

MLEN Useful when chorusing a tune with an accompaniment. if the accompamment is

the last argument to CHORUS and contains a stop rule like,
IF VLEN = MLEN' THEN S1"0P

" ,
the accompaniment can be used with arbitrarily long tunes.

VOICE <poice> . L ¥ '

Sets :VOICE to its one input, provided that input is a positive integer dess than 5.
If greater than the current number of voices, NVOICES is called to increase the number.
All music from now until the next call to VOICE (or a primitive like CIIORUS which calls
VOICE) will go into this voice. All the voices in use will be multiplexed prior to
PERFORMing the buffer. In MODMUSIC T mode inputs greater than 4. do not cause
errors, but are simply cycled through the allowed voices. MAKEing (LLOGO) or SFTm;
(LISP) :VOICE is not nice. '

-

VOICES < ' : . o

w

No-op. See NOMUSIC. If anyone has a use for this which is reasonable, e;,
synonym for NVOICES, | will be glad to implement it.

:INSTRUMENT

Special ;ystem variable which is user settai:le. Its value determines the behavior
of NOTE and SING as above. Current meaningful modes are LEGATO and STACCATO.
Anything else is considered STACCATO for now.
:MAX

This pseudo variable is actually a call to MLEN, above. It exists: for cmp?fnldy
with CLOGO. ,

:NVOICES

Special system variable, not to be changed except by calling NVOICES. 1t tells
you the number of voices being filled or played at present. Default is 2.

:VOICE
Special system variable, to be changed only by calling VOICE. Tells you the

current voice that is being filled. MBUFCLEAR resets to I. Always initialized to 1. Can
be changed by call to CHORUS. ‘

8
s

‘Fhe Music Box o ‘ '] Section 16.3

) _ .
. / - -

LISP LOGOD MEMD ~ : Poge Jure 27,1974 .
:SCALEBASE - _ ’ ' @' o
Special system variable which may be chin;od by user. It tells the offset from. ... eressd | ;
middle C to be used in renumbering notes to ones taste. Defauit is zero. |
N

J’ , R

67 . Sectien 163 -

. ¢ LSPLOGOMEMO . PageB3. | June 27, 1974

11L0GO 2,11, 13,37
~ 11LOGO User’s manual . 13, 37

. 300 14,38, 47

|
o | u i
" Abbreviation 19, 22,23 . .
© . altmode., 13 .

ambiguity 16

Angle brackets - 13 : s L

arithmetic 3, 16,17 .

ARPANET 39

Array 1,36

ASCll 8 i

associativity 16

re

BIBOP 28
. brackets 35 _
~ breakpoint 10, 24, 25
buried procedures 21, 22, 23,30

canned loop 4 7
T v 1, carriage return -7, 8, 13, 20, 24, 35, 36, 39, 41
. ' Character display. 1,14, 41 : ¢
character syntax 8 _
CLOGO 2,3,4,5,11,13,18
cMU 80
, ' colon 36 -
/‘ . comments 36
' comparison 16, 17
compile 22, 30.
’ Conditionals 4,5
Moo COMMVER 1,8
, Control character 13, 20, 21, 24, 39, 40
control structure 4, 31 e
* control-atsign 29

DATAPOINT terminals 14
. defining 5, 14, 20

device 32 .

devices 8

directory 32,38

t’m Disparity 2 : .
° j dollar 35 .
A dotted pair 3,8 - ' _
double quote 34, 36 - .

)

he"d'n‘ CL0
homonym 6 9, 18, 190
How Td Get On’ tho Systom 13

. implementation
" infix
- initralization file
. inputs

line number '3, 4, 6, 9,36 - R BRI -
“Line oriented input -7 ‘ ' ST e
line-oriented LISP rudor 8. A
ifnk . 38 o

lists .2

logic 6, 16,17, 35 ’

|o;out 15

MACUSP Refsrence Manual B ,)
‘minus sign 18 . R A oo 5
. mistyping lo et o7 o _ ' .
mnemonic 3,4 - ’ : A o
o MOLTICS lzy18,30.32,38.39 T
< L0 femusic 8,11 14,34,38,40 '© . o co -

- Page 64 June 27,1574 . . o
aadnt mode 20 : o . ‘ -
Ednting 3 9, 10; 14.20 35,40 . - S :)
© English-' 2,48 . . : .

". . error. handlmg 24, 34 ’
' error mterrupf % S,
. error mterruptzhlndlars T107 -
- error mesnges 9, 10 : - .
-evaluator. - 9 L e ’
7 exclamation poinfs :;,;36’? T
. exponeqhation S
. VAR
: \ fule speciﬁcatuon 32,38 /
" fixgd point " 1,3,4,37 .
wFloatm; point l i ,
foodsupply o o : R
© fedction. 3- R ' ’ L LR
funchonal ur;umenls 19 I o R
garbm collector 28 ° . i
wi . generation 43 6 oo
- GERMLAND - .11, 14,38,40, 41
" global variables .29

 GT40 -11,1438,47

IQM2741 :;39 ce U o |
identifiers 8 . ' Lo ST

8,12 . . '

' 5,89,16,17, 18 . ‘ ’ o '
14,38,80 S T
!'J,(:'v,928~~ e ‘
Interim LISP User’s Guide :
“internibg 8, 11 : - L . : .
Interrupt l 2,1,35 5 - N e 7

(S

13,38

LY

LISP LOGO MEMO

«

. stack

‘Page 63

" Naturainess 2

negative number . 18
NLLOGO 14 '
noise words 4,5

_ E
obarray 8.
obstacle 42
output 35

parentheses 5, 7, 9, 16, 36
parser 5, 9,16, 18,19, 28
parsing property . . 9
pathname = 38 :

BpP-6 11,47
'ercent sign 36
PLANNER - 1,8
precedence = " 16, 17
prefix 5,9, 16,18
_pretty print 4
* primitives: 8,9, 22, 30, 34

printing 9,10

- -program lorm '3
© program understanders 9

prompter 20, 41
Property list l % 19 36

_pure 1I° C L .
reader 8

readtable 8

recursion 1,2
roundoff& - 4 -
rubout 21,35

run time error . 10, 24 E

Self-modifying procedures 371

semicolon 36 N

sentences - 2 i
,-sharp sign - 25,;29, 35

side effects. ~ 28 0

. Simplicity 2 -
, single character objecl 8
: sangle quoté 34 .

size 11
snap 47 :
speed 9, 117"
‘ 10, 25, 28
~ string

11,35 %
super-procedure lree 1

TENSO 12, 32, 40

TENEX ~ 12

Thornton box- - :56'

- TN6 * 39

top level 29,36

Index

-

-~ June 27, 1974 i
[} ?. ‘~<
T
Y B c (\

Py

LISP LOGO MEMO

type checking 9, 10
typing errors 20

unparser - 10,18 .
varisbles 6, 21,29,33
words 2 =

wrong number of input 28

turtle 8, 11, 14, 21,38, 40, 47 -

. LISP L0GD MEMO . Page 67 Jure 27, 1974

\ ’ . A\ 41’ 42 - . "
Al 25 :
AC 40 ’ o N
. A AE 20 S
' AF 47 .
AG 14,30, 40,58
AH 26 :
AN 47
AP 2t
AR 20
AS 21
AT 36
AW 33
AX 14
AY 47
AZ 13,56

P 25,27

:CAREFUL 18
:COMPILED 30
:CONTENTS 30
<:EDITMODE 20
:EMPTY 36
:EMPTYW 36
:ERRBREAK 24, 26

, ' : «CERM 45 .
:GRIDSIZE 45
:HEADING = 49
:HUNGRY 45
JANFIX 18
:INSTRUMENT 61
:LISPBREAK 26
~:MAX 6L
" :NVOICES 6%
:SCALEBASE 62
SHOW 51
:SNAPS 53 ' '
:TEXTXHOME 52
:TEXTYHOME 52

, ' :TURTLE 48
. | ‘ VOICE 61
o S :WRAPAROUND 46 .
: :XCOR 49
:2YCOR 49
. . Y
Index to LLOGO Primitives
"{E“ N S o T2

Page 68 ' June 27, 1974 ‘ e

ABBREVIATE 19
ACCESSIBLE 44 : - "~
AND 4,5,17 ' : :
“ARRAY 37

ASCII 36

"ASSOCIATE 17

ATANGENT 51

BACK 44,48
BEARING 50
BK 44,48
BLINK 55
BOOM 57 '
Born 5,17 - © s
BREAK 25
BRIGHT 55 '
BRUSH' 57 ’
BSIDE . 45

' BUG 15,40
BURY 33
BUTFIRST 2,3,4
BUTLAST 2

CAR 2,3,4

cATCH 25 '

CDR 2,3,4,36

CIHIORUS © 57 : o
CHORUS2 57 : . -
CHORUS3 57 . -

CHORUS4 58 >

CLEARSCREEN 49 ‘

o 27 : '

COMPILE 0,33, 40

CONS 3,28

CONTINUE 24,25, 26, 27

COSINE 51

cs 49

DECLARE 30 . L o
DELX 48 T
DELXY 48

DELY 48 :

DESTRUCT 45 | B -

DIALS 54 _

DISPACE 54 e

DISPLAY 19 | .

DO - 4,19 -

DOWN 26,28 ~

DRUM 58

DSCALE 55

Index to LLOGD Primitives
73

. LISP LOGD MEMO

~ PageB3
EASTP a4
EAT 43
EDIT 18 20

EDITLINE 20
EDITTITLE 20, 28
EITHER 5,17
END 20 -
ENDSNAP 52 -
ENTERSNAP . 52
EQUAL 5

ERASE 19,22;23,33,53 . |
10 e

EVALFRAME
EXIT 27
EXPLODE 36

FALSE 6,35

FD 44,38

FILLFOOD 43

FIRST 2,3,4

FLUSIHICOMPILED 30 - -t
FLUSHINTERPRETED 30

FOOD 43

FOODP 43

FOODSUPPLY 44

FORWARD 44,48

FRONT 45-

FSIDE 45°

GERM 44 ;
CERMDEMOS 41 .
CET 19 .
CETSQUARE 43 |

GO 4,5 .
COODBYE - 15

CRID 42°

CRIDP 42

I as

. HEADING 44, 49

HERE 50
HIDE 52
HIDESNAP 53

HIDETEXT 51

HIDETURTLE 47
HOME 48,49

‘0T 47 | 0
IF 517 ' .

IFFALSE 4,37
IFTRUE 4,37
INFIX 17,18
INSERTLINE 37
IS 5

Index to LLOGO Primitives

71
)

June 27, 1974

a3

u* T .

b

KILL a4

LAST 2,18
LEFT 45,49
LEFTSIDE 45

- LEVEL 35

LINEPRINT 22,40

. LISPBREAK 25,27 ~

LIST 19
LLOCO (INIT) 14
LocaL 37 :
LOCOBREAK - 25,26, 27
Locour ‘20

LSIDE 45

IT 45,49

MAKE 17,32,3
MAKETUNE 58
MAKTURTLE 48
MAPCAR 4
MARK 52 '
MBUFCLEAR 58
MBUFCOUNT 58
MBUFINIT 58
MBUFNEXT 58
MBUFOUT . 58
MBUFPUT %8

- MCLEAR 58

MLEN - 59 :
MODMUSIC - 59
MOTION 54
MOVE 42

NEWMUSIC 59
NEXT 44

NIL, 6,35,36
NODISPLAY A7

- NOMUSIC 59

NOPLOT 53

- NOPRECEDENCE 18

NORTHP 44
NT 17

NOTE 59
NOWRAP 42,46
NVOICES 59

OBSTRICT &5
OLDMUSIC 59
OLDTURTLE A8
OR 45,17

i]

75
Index: to LLOGD Prismitives

g

June 27, 1974

Page 71

PAUSE 25

PD 50
PENDOWN 50
PENP 50
PENSTATE 50
PENUP 50
PERFORM 60
PHOTO 52
PICTURE 53
PLAYTUNE 60
PLOTTER 53
POINT 54
PRECEDENCE 17
PRINT 18
PRINTDOWN 27
PRINTGRID 42

PRINTOUT 6, 19, 20, 21, 22, 32, 33, 40

PRINTUP - 26
PROG 9,37
PU 50

PUTSQUARE 43 ,

RANDOM 18,37
RANGE 50

READ 19
READFILE 19, 30,33
REAR 45
REMSQUARE 43
REMTEXT 51
REPEAT 4l
RESNAP 53

REST 60 #
RESTARTMUSIC 60,
RICHT 45,49
RIGHTSIDE 45
ROUNDOFF 37
RSIDE 45

RT 45,49

RUN 19
RUNGERM 41

SAVE 18,32,33
SCALE = 55

SD 47
SETHEAD 49
SETHOME 54
SETT 50
SETTURTLE 50
SETX 48
SETXY 48
SETY 48
siow 52
SHOWSNAP 53
SHOWTEXT 51,52

Index to LLOGO Primitives

76

June 27, 1974

LISP LOGO MEMO

Poge 72

SHOWTURTLE 47
SINE 51
SING 60
SONG 60 .
SOUTHP 44
SPECIAL X
ST 47
STARTDISPLAY 19,47
STARTNUSIC 61
STEP 42 '
STORE 37
SUM ¢

T 35 ‘
TEST 417,37
TEXT 36
THEN A5
THROW 25
11:3 :,' 5, 20,422
PG 1
TOUCHMJQ :
TOWARDS %0
TRACE 10,23,29
TRUE 35
TURTLESTATE A8
TYPE 52

UNBLINK %5
UNCRID 41

UNSPECIAL 30
UP 26,2728
USE 33

- USER-PAREN 10

VOICE 61
VOICES 61

wC 49

WESTP 44

wIAT &3
WHERE 44
WIPE 49 .
WIPECLEAN 49 -
WRAP 42, 46
WRITE 32,33

XCOR - 49
XHOME 49

YCOR 49
YHOME 50

by

ph

Index te LLOGO Priovitifie

Ga

