
,

ED 118 368

AUTHOR
TiT;p

INSTITUTION

SPONS AGENCY°

REPORT NO
PUB DATE

EDRS-PRICE.

DOCUM!IT RESUME

SE ,'019 898

Goldstein,. Ira; And Others
LLOGO: An Implementatibn of LOGO in LISP. Artificial
Intelligence Memo Number 307.
Massachusetts Inst. of Tech., Cambridge: Artificial
Intelligence Lab.
Advanced Research projects Agency (DOD), Washington,
D.C.; National

0
Science Foundation, Washington,

D.C.
LOGO-11
27 Jun 74
77p.;" For related documents, see ED 077 236 240 -243,
SE 019 893-.894, and 896-900

MF-10.83 HC-$4.67 Plus Postave
DESCRIPTORS Artificial Intelligence; *ComputerPrograms;

*Computers; *Computer Science Education; Instruction;
*Manuals; Mathematics Education; Problem Solving;
*Programing Lan4uages

ABSTRACT
LISP LOGO is a computer .language invented for the

beginning student of man-machine interaction. The language has the
Advantages of simplicity and naturalness as well as that of
emphasizing the difference between - programs and data. The language is
based on the LOGO language and uses mnemonic syllables as commands.
It can be used in conjunction with character-oriented display
terminals, graphic display systems, and music generation. This
document provides a discussion of the meritsof LISP LOGO, as well.as
a user's manual, for the language. (SD)

********************4**
* Documents acquired,by ERIC include many informal unpublished
* materials not available from other sources. ERIC makes; very effort *
* to obtain the best copy available. Nevertheless, items of marginal *

.1* reproducibility are often encountered and this affects the quality *

* of the microfiche and hardcopy reproductions ERIC makes available *.

* via the ERIC Document Reproduction Service (EDITS) . EDRS is not
* responsible for the quality of the original document. Reproductions *
* .supplied by EDRS are the best that can be made from the original. ,*

**************************************44*******************************

A. I. MEMO 307

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

L L 0 G 0 :

An Implementation of LOCO in. LISP
. -

Ira Goldstein

k Henry Lieberman

Harry Bochner

Mark Miller

(

U.S. DEPARTMENT OF HEALTH.
EDUCATION g WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION DRIGIN
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF o
EDUCATION POSITION OR POLICY

June 27, 1974

LOGO MEMO 11

r/e

Abstract:

This paper describes LLOGO, in impleMentation of the LOGO language written in
MACLISP for the ITS, TEM° and TENEX POP -10 systems, and MULTICS. The relative
merits of LOGO and LISP as educational languages are discussed. Design decisions in the
LISP, implementation of LOGO are contrasted with those of two other implementations:
CLOGO for the PDP-10 and 11LOGO for the PDP-1,1, both written in assembler language.
LLOGO's special facilities for character-oriented display terminals, graphic display
"turtles", and music generation are also described.

This work was supported impart by the National Science Foundation under grant
number GJ-1049 and conducted at the Artificial Intelligence Laboratory, a Massachusetts
Inititute of Technology research program supported in part by the Advanced Research
Projects Agency of the Department of Defense and monitored by the Office of Naval
Research under Contract Number N00014-70-A-0362-0005. Reproduction of this
document in whole or in part is permitted for any purpose of the United States
Government.

PERMISSION TO REPRODUCE THIS COPY
MOWED MATERIAL HAS BEEN GRANTED DY

44-1;"-kcial -L.AVe4ce.
Lahl .40G0 Atiec 74

TO ERIC AND OFIGANI7ATIONS OPERATING
UNDER AGREEMENTS WITH THE NATIONAL IN

STITUTE OF EDUCATION FURTHER REPRO-

DUCTION OUTSIDE THE ERIC SYSTEM nE-

01.1111E53
PERMISSION OF THE COPYRIGHT

OWNER

LISP-L000 MEMO
Page< °

TABLE OF CONTENTS

lama V, 1874

Page
Section 1 Why Implement LOGO in.LISP 1

11.

_Oection 2
Differences between LOGO and LISP 2

2.1 Simplicity a' 2.2.2 Nituralness 42.3 Disparity ' 6

Section 3 Overview of the Implementation 8
3.1 Reader 8.3.2 Parser '-- 93.3 Evaluation 93.4 Printing 93.5 Error Analysis 10

Section 4
1

Performance 11

4.1 Size
114.2 Computation Time 114.3 . Use
114.4 Availability 12

Section 5 Getting Started 13

Section 6 Parsing LOGO 16 .

6.1 Infix Expressions 166.2 Minus Sign 186.3 Homonyms ,
186.4 Abbreviations 19

Section 7
\.,

Defining and 'Editing Functions 20
7.1 , Control Character Editing

21:l7.2 Printing Function Definitions . 21 .. N 1 17.3 Erasing 22
Section 8 Error Handling and Debugging 24'

8.1 Parsing Errors 248.2 Run Time Errors
1 - 24 . g8.3 Breakpoints 25a 8.4 Wrong Number of Inputs Errofs 288.5 Garbage Collector Errors 288.6 Tracing 298.7 Interaction with LISP 29 ,t

Table of Contents

LISP 1.00014EMO

Section 9

-41

Pape ii
, . ..

Compiling LLOGO User Procedures

o

June 27, 1974

n ..

30

c-r

i,
.,

''Section 10 d Using Files in LLOGO 32

10.1 Saving and Reading Files 32
10.2 Other File Commands 33

Section 11 Differences between 11LOGO and LLOGO 34

Section 12 Using LLOGO on MULTICS 38

12.1 Where To Find It/ 38,
12.2 File Naming Conventions 38
12.3 Terminalogy 39

Section 13 Using LLOGO onTEN50 and TEND(systems 40

.3

Section 14 - GERMLAND 41

14.1 Starting Up 41
14.2 Top level Primitives - 4,1

14.3 Grid Primitives 42
14.4 Property Primitives 43
14.5 Multiple Germ Primitives 44
14.6 Turtle Primitives 44
14.7 Touch Primitives 45
14.8 Global Variables 45
14.9 impleniettation 46

Section 15 Display Turtle Primitives 47

15.1 Starting The Display . 47
15:2 , The Turtle 47
15.3 MM.Moving the Turtle 48
15.4 %Erasing the Screen 49
15.5 the Turtle 49
15.6

.Turning
Examining the Turtle's State 49

15.7 The Pen 50
1,5.8 Global Navigation 51
15.9 Trigonometry 51
15.10 Text 51
15.11 Manipulating Scenes 52

.15.12 Plotter 53
15.13 Pots 54
15.14 Points' 54
15.15 Global State of the Turtle's World 54

Section 16 The Music Box bo

e

Table., Contents

4
LISP L000 MEMO

16.1 Plugging In
16.2 Turning On
163 Music Primitives

yr

er

Page HI

A

Table of Cotten%

c40

June 27, 1374

. 56
56
57

a

LISP L000 MEMO Page 1 June 27,1374

Section I. Why Imp learnt LOGO in LISP
.

J

, LISP has' proved itself to be a powerful iimguage for representing complex
information processing tasks. This power stems from:

3
I. The uniform representation of programs and data.

2. The ability to build'arbitrarily complex data structures in the form of s-expressions.

3. Reeursion.

Power, however, is not necessarily good pedigogy. LOGO is a computer language
designed especially for the beginner. Its purpose is to introduce the fundamental ideas,
of computation as clearly as possible.

LISP LOGO is an implementation of LOGO in LISP. It has been designed for several
reasons. The first is that these two languages share a fundamental tre in common.
Both are time shared, interpretive languages capable of full recursion. Variable and
procedure names may be any string of letters and digits. Sub-procedure definitions are
independent of super-procedures. Both numerical and list-structured information can be
manipulated with equal facility. Thus, the LOGO systems programmer is freed of the
necessity of re-developing various facilities already available in LISP (lists, `recursion,
garbage collection, error service traps, interrupts). He can concentrate on additions
(better error analysis) and modifications (pedagogical simplifications) to LISP. LLOGO
unifs language development across a broad spectrum ranging from PLANNER and
CONNIVER through- LISP to LOGO;

A second reason for this implementation is to provide a natural transition to the
More powerful canputational world 'of LISP as the student grows more sophisticated.
When desired, the student has access to all of the capabilities of LISP including:

Arrays
Functions of arbitrary number 'of inputs
Functions that do not evaluate their inputs
MICRO-PLANNER and CONNIVER
Interrupts
LISP compiler

e, Property lists
Floating point numbers
Character display cursor manipulation
Infinite precision fixed point arithmetic

VfLy Implement L000. in LISP Section 1

100

LISP L000 MEMO rage 2 Awe 27, lf/4

Section 2. ,Differences between LOCO. and LISP

Q

The differences between LOGO and LISP can be destribed on the basis of. three
educational goals:

ti

Simplicity of both the computational and explanatory kihd.

Naturalness wherein the overhead for a naive use,. is minimized by following
standard English conventions.

Disparity which emphasizes the distinction between various modes such as
defining versus running programs.

It should be noted, however, that there can be no one unique solution to the
"best" educational language: These three goals can conflict. Furthermore,:they cannot be
so emphasized that important ideas of computation are completely eliminated from the
language. For students of different backgrounds, simplicity and naturalness may have
very different meanings. *Hence, alternatives to the particular choices made in designing
CLOGO and 11.LOGO are also described. This section may be viewed as presenting a
spectrum of possibilites"from which a teacher can build a computational world tailored to
his own pedagogical purposes.

2.1 Simplicity

Lists versus Sentences

Lists have a simple recursive definition. A list is either

1. NIL, the empty list
2. (wordl word2 ...) , a sequence of words (atoms),
3. A list of lists.

This definition is confusing when the student is still having trouble with the concept of
recursion. CLOGO limits itself to lists built from only the irst two of these three clauses.
Such lists are called "sentences".

Ya

Alternative view: the concept of recursion is too important to be eliminated
',from LOGO. Recursive programs are allowed. Educationally, the more examples

of recursion available, the easier it is to understand. Hence, lists should be
allowed.

Computational power is not always in conflgt with educational simplicity. In
addition to the standard list operations of FIRST (CAR) and BUTFIRST (CDR), LOGO
provi s LAST and BlITLAST. Furthermore, all four of these operations work on words
as w s sentences. The. fact that word manipulation is more costly than list
merlin tion for LISP, or that taking the LAST of a list is more expensive than computing
its FIRST is not of interest to the beginner. The natural symmetry of having all of these
operations is to

.
be preferred.

Alternative view: LOGO introduces two data types - words and sentences.

ilifferences between LOCO and LISP Section at

4

LISP Loco MEMO Page 3 June 27, 1974

There is both an empty word and an empty sentence. LISP's world, is easier to
understand. There is only one type of data, i-expressions. Primitives like CAR
are .list operations only; they do not operate on words by manipulating the
word's print name, as LOGO's FIRST does.

Repeited ly BUTFIRSTIng a sentence in LOGO always terminates in the empty list.
In LISP, with its more general list structure built from "dotted pairs" and CONSing, this is
not always so. The result is the passibility of "slip-through" bugs for EMPTY P endtests
of recursive procedures. Thus, LOGO eliminates a common source of error without
significantly limiting computational power.

Alternative view; Allowing an atom to be the CDR, of an s-expression
sometimes allows for economy of storage. Also, the symmetry of CAR and CDR
In LISP make the data structure easier to explain, although they are symmetric
as list operations only for the particular representation of lists used in LISP.

Rigid program form

LISP allows programs to be lists of any form. Editing and debugging conseqUently
become awkward due to the difficulty in naming parts of the program. LOGO simplifies
program structure by requiring that a program be a series of numbered lines. The
locations of bugs and intended edits are then far easier to describe.

Criticism: LOGO violates this assumption by allowing fhe user to create lines of
unlimited complexity. It would be preferable to limit.a tine to a single top level
call. Thii does not prohibit nesting, a fundamental idea in computation. But it
does prohibit defeating the entire point of line numbers with such code as:

>10 FD .100 RT 90 FD 100 RT 90 ...

An alternative scheme might be to adopt a "DOT" like convention. Lines are
identified by offsets from user-defined location symbols. This has tip
advantage of encouraging the use of mnemonic names for portions of the user's
program, rather than line numbers, which have no mnemonic value, while

. retaining the virtue of having a name for every part of the program. The user
would not have to renumber lines if he wanted to insert more lines between
two lines of code than the difference between their line numbers.

Integer: Arithmetic

The initial CLOGO World limits the user to integer arithmetic. The rationale behind
this is to avoid the complexity of decimal fractions. This is clearly a simplification whose
value depends on the background of the students.

Criticism: eve for elementary school children, this simplification may cause
confusion. st beginners are troubled with

1

0

Proponents of fixed "point arithmetic might reply that this is no.worse than

.1.999999
1

Differences between L000 and LISP Section 2.1

LISP L000 MEMO Page 4 June 27,1974

However, a decimal printer can be clever in performing roundoff.

Other alternatives are to limit arithmetic to rational numbers, or to use the
following LISP convention: Numtsrs are fixed point unless ending in a decimal
fraction. Operations only return fixed point if both operands are fixed point.

Another virtue of LISP is that fixed point numbers can be infinitely large.
Arbitrary limitations due to the finite size of the computer's word do not exist to confuse
the beginner.

.4

Conditionals

LOGO allows the following, type of branching:

>10 TEST <predicate>
>20 IFTRUF
>30 IFF/1,SE

TEST bets a flag which subsequent IFTRUA"s and IFF4LSE"s access. This avoids the
necessity of the entire conditional appearing on a single line of the procedure. The
student has explicit names in the form of line numbers for,esch,branch:

Criticism: This prevents, nesting of conditionals. A second conditional wipes out
the results of the first. In LLOGO, the flag set by TEST is simply a LISP
variable. Since it is global, TEST's in sub-procedures can affect IFTRUE's in
thollbper-procedure. This introduces a non-local nature to control structure.

LOGO's lack of canned loops such as DO and MAPC/IR can be criticized as
encouraging bad programming practice, such as excessive use of CO. This obscures the
logical structure of programs. Also, it may be significantly confusing' to the beginner, and
the source of many bugs. A child might understand quite .well a control structure concept
like "do this part of the program three times", or "do this part of the program for each
element of the list", but may be unable to open-code that control structure in terms of
jumps and conditionals. LOGO programs can't be "pretty printed" to reveal their logical
structure as can programs written in LISP or a block structured language.

2.2 Naturalness

° Mnemonic Names

An obvious virtue of any computer language is to use procedure names whose
English meaning suggests_their purpose. Consequently, LISP's, primitives CM and CDR
are renamed FIRST and surrmsr:

Note: Everyone remembers how un-mnemonic- CAR and CDR are. However,
most LISP primitives are named after their English counterparts.

CLOGO syntax allows the use of certain "noise words", words which appear in the
user's code, but have no effect beyond making the code read more like English sentences.
For example, in the, following lines of LOGO code, the AND, OR THEN. and TO_ are
permitted but serve, no computational purpose. They do not designate procedures, as is
the usual case with words not beginning with a colon.

'Differences between LOCIO and LISP Section 2.2

fif

LISP L000 MEMO Page 5
e June 27,1574

?ROTH <predicate 1> AND <predicate 2>
?EITHER <predicate 1> OR <predicate 2>
?IF <predicate 1> THEN %
?GO TO

However, as The student gains more insight into LOGO, noise words become a
burden. They complicate the task of the parser, preventing the student from feeling that
he really understands the language. Most of the noise words have been eliminated in
both POP11 LOGO and LISP LOGO. [LLOGO will tolerate THEN in conditionals, and TO in
transfers, however, because they are so commonly used.]

Matching English vocabulary to computer functions can be difficult.' English words
rarely have a single meaning. Following are some examples where CLOGO may have made
the wrong choice. 4

1. CLOGO uses IS instead of EQUAL for its equality predicate. The rationale is that IS
will be more familiar to a non-mathematical beginner. However, the omnipresent nature
of this English verb results in such LOGO code as:

?TEST IS :THIS.NUMBER GREATERP :THAT.UMRER

thus, it might be better for LOGO to use EQUAL.

2. Another example where LOGO may have chosen the wrong word is in defining
procedures. ThM is done vim,.

?TO PROCEDURE.NAME :INPUT! :INPUT2

The English word "to" can imply execution. For example, "he is to run his program". A
better choice would be "define".

Parsing

LISP avoids the necessity of parsing through the use of parentheses. This might
be considered well worth emulating in LOGO for its explanatory simplicity. However,
simplicity must be contrasted with naturalness. A beginner is used to using English
where verbs and modifiers are connected by grammar, context and meaning rather than
explicit parenthesizing. This naturalness can be preserved for procedures that take a
fixed number of inputs. This allows such lines of code to be understood by anyone
without any special programming knowledge.

?FORWARD 100 RIGHT 90

Thus, a ginner can express himself with no extra burden of parenthesizing when his
progra#a are still very simp

Parsing can be use to permit infix notation. Again it is simpler to demand that all
functional calls be in prefix notation. However, a beginner is far more familar with
FORWARD :SIDE+10 than with (FORWARD (SUM :SIDE 10)).

Eventually, as, one's code becomes more , complex, parentheses 'become a
simplifying tool. One dogs 'hot have to guess how the parser will work. LLOGO allows
this. If desired, parentheses are permitted and interpreted in the standard way.

IA !trowel betwien WOO and LISP Section 2.2

10

LISP WOO MEMO Page 6 June 27,1374

Criticism: LOGO complicates its parsing algorithm in several ways, making it
difficult to explain to a student. For example, the language does not insist that
all primitives take a fixed number of inputs. in some cases such as the title
lines of definitions, this is reasonable. On the other hand, it is somewhat
confusing to limit such primitives as SUM to only 2 inputs if not parenthesized
but any number of inputs if parenthesized. Equally bad is the fact that
primitives like 11LOGO's PRINTOUT for printing definitions do not evaluate
their inputs. It would be more consistent for

?PRINTOUT "PROGRAM"

to be required.

2.3 Disparity .

Program Versus Data

Both programs and data are, information structures. The difference between the
two is solely a matter of, ise. LISP preserves this elegant view by allowing programs to
be passed as input and *Weed, to even redefine 1hemselves. This power, for all its
simplicity, can confuse the beginner. For the novice, the difference between defining and
running a procedure is unclear. LOGO provides clarification by forcing a complete
distinction between the processes of defining and of evaluation.

Criticism: LOGO violates this idea. A program can be executed inside a
definition ifnot preceded by a line number. This is a mistake. The typical case
is for the user to have intended to type the line number. In its wistful desire
for more computational power, LOGO has forgotten its epistemological
foundations.

Homonyms

LISP has the ability for a word to be the name of both a procedure and a
variable: The position of the word in a list then determines how it is used. Homonyms,
however, can be contusing. How should a word which is both a procedure and a variable
be treated when it is the first element in a list? The choice is arbitrary. '

LOGO prevents such homonyms. Words evaluate as variables only when preceded
by ":".

... X .. causes X to evaluate as a procedure call.

... :X .. returns the value of the variable X.

thus; LOGO and LISP share the power of allowing any string of letters to be either a
procedure or a variable name. But LOGO insists on in unambiguous "local" distinction,
independent of position, between these two uses.

Another example of the clever ways LISP takes advantage of homonyms is NIL
LISP uses this word to name both the empty list and the logical truth value FALSE. This
can result in more economical prKedures. The convenience, however, has no conceptual
basis. Hence, it can confuse the user who does not yet understand either list
manipulation or logical analysis well. This is similar to the situation in API, where the

Differences between WOO and LISP Section 2.3

11

LISP MEMO Page 71 June 27,1974

logical constants are the integers 0 and It, and condltiotials are accomplished by numerical
manipulation. It can lead to obscuring the purpose of a given piece of code.

Line oriented input 4 u

LISP evaluates an expression when parentheses balance. Thus it cannot catch
errors caused by typing too many right parentheses. LOGO waits for a carriage return.
Hence it is capable of recognizing this problem. Furthermore, a user can write several

pHs on a line. Execution is delayed until a carriage return is typed. This has the virtue
of separating the tasks of forming grammatical expressions from executing programs.

O

Difierences between WOO and LISP.

t'^

Section 2.3

11,

LISP LIII) memo, I'.

Secticn 3. Overview °tithe Impkinentation

LISP LOGO is designedso that the user need never know that he is coestriunititing
with'other than s. standard,LOGO. However, if desired, hi can insert parerithesized,LISP
code anywhere in his LOGO program

LISKLOGO is basically a compiler. It converts LOGO input to'LISP, program& The
result is That 'running most proceduretlages less time since the code need not be .

repeatedlyeinterned and wrsed.

The following Pages provide an overview 'of the major parts-of the system.
The4 are its reader; parser, (Valuator, printer, and error handler. More detailed

,explanationsoof these will follow in later sections of this memo. For implementation
details, LISPLOGO is available in well-commented interpretive code. ' I

Code for, the LOGO display turtle it discussed in Section 15, and code for the
music box in Section k6.. The "LOGO projecr.is 'concerned with more than the
developnient of a 'Computer language. Of major interest is the design of various
compOter-driven devices which provide a rich problem solving environment for the
'student. However, Spetiatpurpose,primitives for driving these devices are independent of
LOGO, versus LISP issues and must bik added individually. A LISP-based implementation
dots have one special hiatus. For those devices, like the music box which are driven by
ASCII-characters; the primitives can be written in LISP or LOGOand Then compiled. It is
not necessary to create tode at the "machine

a..

fhe LOGO reader is basically a line-oriented LISP reader. It returns a list, of- .

atoms read between .tarriage returns. The fundamental tasks of interning atoms and
building list structure are handled by LISP. Conflicts in character syntax and identifiers
betWeen LISP and LOGO present the only subtleties.

Certain characters such as the infil operators +, a, and / do not require spaces
to be set off as atoms. This is equivatetil to being a "single character object" in LISP.
Other characters such as "." in' dotted pairi are special in LISP but, not in LOGO. The
solution to these conflicts is found in using separate "readtables for `LOGO and LISP.

Conflicts in names also occur. The LOGO user his access to all *the ordinary LISP
. procedures,_ but must be prevented from accessing LISP procedures which are internal to

11oG0.- This is accomplished by using two Hobartiys". When the user types in an
identifier with the same name as an internal procedure, he accesses a different .atom

MACtISP allows any number of separate "readtables and "obarray's.' This
permits multiple worlds - PLANNER, CONNIVER, LISP, LOGO - to co-exist with no conflict
Switching worlds is computationally fast All that is necessary is to rebind the
RRADTABLE and OBARRAY variables to the desired world. On the other hand, the
naive user is prottcted, completely from other environments and need not even know of

'their existence.

o. Overview of, the linplemtotation Section 3.1

13
(1

LISP L000 MEMO Page 9 . June 27,1974

3.2 Parser

The parser converts a LOGO line to list-structured form. This .requires ,that
,information on the number of inputs used by a procedure be available. , Inserting
parentheses is- a trivial computation for procedures with a fixed number of inputs.
However, complexities are introduced into jhe LOGO parser by:

N.. -
1. Having infix as well as prefix operators. .' 7-7'.---

. -

2. Changing the number of inputs depending upon whether the user embedded the form. .
in parentheses (SUM, SENTENCE,,...). 0

1IL

. 3. Primitives like TO that do not parse their input.,
r,,,,,

4- Homonyms: Functions which have the same name in LISP and LOGO,tut have different
meanings. These are handled by having the, parser detect the names of LOGO primitives
which conflict with LISP, and convert them to functions with different names that do not
conflict.

t

This makes the parser the most complicated part of the simulation.
, , . ,

Pariing infoimation'is stored on the property Hit Of a function. The major sub-
, procedures are concerned witt prefix, infix, and user-typed parentheses. *cull

primitives are parsed by storing a procedure as the parsing property. .*

3.3 Evaluation

The basic OGO funCtions that do user's computation - i.e. the arithmetic, list,
and logical-pri Ives - are the simplest art of the simulation. These functions all occur

tcd.

in LISP, usually in a somewhat..more general form. Hence, this part of the implementation
is little. more than renaming. For many primitives, LLOG6 provides more argument type
checking, and infonnative:error messages than are supplied by their LISP counterparts.

.

Parsed code is executed directly by the LISP evaluator. Indeed, a user-defined
programin parsed form is simply a LISP PROC. The line numbers.are tags in the PROC.

3.4 Printing o

LOGO procedures could be, represented as lists of unparsed lines infernally. In
this case, a line must be interned end parsed each time it is run. However, the problems
of printing the definition and editing a funition are simplified. The internal format is
identical to the format in which the user originally typed the expression.

An alternative solution is to represent LOGO programs in parsed, i.e. LISP form. .A
LOGO program internally is a LISP program. This maximizes run time speed and simplifies
building program understanders -It has the disadvantage of complicating the parser and

printer. . .
. .

1. The parser must handle 'functions that have not yet been defined. This can be
accomplished, however, by reverting to the solution of parsing at run time Those lines

which. contain unknown functions. This run -time' parsing can alter the program's definition
as well so it only need occur once.

fhceiview of HP implementation

1 4

sew 3.4

LISP LOUD MEMO Page II Jena 27,1574

, s
.

2. Printing definitions and editing lines requires an inverse parser or unparser" which
returns the LISP-ified code to its original form. This is possible providing there is no.
information lost in parsing., Such is the case if the parser makes special provision for
distinguishing user-typed parentheses from parser-generated Parentheses. One way to
accomplish this is by beginning user-lists with a do-nothing function USER-PAREN
defined as:

. _

(DEFU1V USISR-PARNN (X) X)

3. Editing title lines is made more complex. The editor _must ropers* 04 lines of super-
procedures in which the edited function appears. This can be accomplished by
maintaining a super-procedure tree, although LLOGO dares not currently dp this.

,

These complications can be avoided by storing, both representations of the
procedure.. This is an excellent example of a space versus complexity trade-off. LISP
LOGO currently does not store both representations. ,

3.5 Error Analysis

Since LOGO is a language which is designed to be use by beginning
programmers, it is important to provide 'informative error messages. Consequently, all
LOGO primitives do extensive type checking on their inputs. U.OGO will try to print out
the form which .d the error, and g:Ne the line number if the error occurred inside a
procedure. AfteWimpl* mistyping error whitican be detected by the parser, the user
is given an immediate opportunity to correct the line. For run time errors, he is given
the option, of causing breakpoints. Facilities for exploring the stack from inside a
breakpoint loop are available. Since LOGO procedures are repreeented internally as USP
procedures, thestandard LISP TRACE package can be- used

These facilities are implemented using LISP error' interrupt handlers and
RV ALFRAME. If the sophisticated user wishes to provide his own error handlers, he can
access the LISP facilities directly.

LISP L000 MEMO

4.1 Size

Page 11

Section 4. Performance

EISP 26 Blocks.(024 36 bit words)
LLOGO (compiled) 7 Binary program

5 List structure
2 Numbers, Atomic symbols, etc.

June 27,1374

Total space 40
0

These figdres do not include space for user programs, or loading the display
turtle, music, or GERMLAND packages. BetWeen 5 and 10l .beyond the amount of storage

.mentioned above would provide.a reasonable amount of workspace for user programs
and data; this- would correspond roughly' to programs of perhaps a Ifevrpages. In the
current MACLISP, storage expands as needed. LOGO takes advantage of this feature -- If .

programs grow beyond a certain size the user is asked.whether he wishes the allocation
to be increased. Storage is expanded automatically on loading special packages such as
the display turtle. Of the 14 blocks which comprise the LLOGO system, all but 3 are/pure,
and .can be shared among users.

4.2 Computatiiin Time

For most processing, LLOG(i enjoys a speed-up over CLOGO and 11LOGO due to
the fact that pariing and interning occur only once at define time. Further, LLOGO makes
it possible to compile LOGO source programs into. machine code using the MACLISP
compiler for increased efficiency [See Section 9]. Workspaces can be stored on the
disk in internal LISP format. Dee Section 10.11 Consequently, re-reading files has no
,overhead. CLOGO has an advaOtage, however, in manipulating words, as its internal data
structure is string rather than list oriented.

4.3 Use

Almost all of the primitives of CLOGO and I1LOGO, (including the music box,
display turtle for the PDP-6 and GT40) are implemented. Hence, LISP LOGO is capable of
reading, parsing and running most files saved under CLOGO or 11LOGO [perhaps
necessitating minor modificationl

It can also be used real-time by an individual familiar only-with LOGO: no
knowledge of LISP is required. On the other hand,, all of LISP's facilities are available.
Programs can be written in LISP, or in machine language using LAP, and can be made
callable from LOGO. The special parcl letg(i° for the display turtle, music box and
GERMLAND can also be used from an o inary LISP. Some other ff,ilitie's of LLOGO, such
as the breakpoint and stick manipulating functionsoire also available for use in LISP.
LISP users can take advantage of these facilities without interaction with LOGO simply by
loading the appropriate files of LISP functions.

a

Performance Section 4.3

16 -o

a.

A

&SP LOW MEMO

4.4 Availability

"N The implementation is written completely in interpretive code. it runs compiled
tinder the MACLISP currently in use at the Artificial Intelligence Laboratory. LLOGO has
also been implemented on standard DEC PDP-10's under the TEN50 and TENEX systems,
and on MULTICS. These implementations are discussed in Section 13 and Section 12 of
this memo.

Jon 27, 1374

on.

U

Sadie. 4.4

f

USP LOUD MEMO Page 13

Section 5. Getting Started

T. I

June,27, 1374

In the following sections, we will go- into, more detA concerning the
implementation of LISP LOGO, and provide some practical information for using it. We will
not attempt, to provide the reader with an introduction to the 1.093t language; several
excellen sources for this already exist, such as the LOGO Primer, and the 111.003 User's
mantis, (LOGO memo, 7]. We will assume that the reader has read these, or is already
familiar ith CLOGO or I ILOGO, the other implementations of the LOGO language available
at the Al at% Instead, we will concentrate on pointing out differences between LLOGO and
other implementations of LOGO, and describing feakires unique to our implementation. It is
not necessary to know' LISP to understand most of What follows, although some
knowledge of LISP would be helpful in gaining insight into the implementation. For more
information or LJSP, see the MACLISP Reference Manual by Dave Moon, and the Interim
LISP User's Guide (Al memo 1901.

Notational conventions: Throughout ,this, memo, USER TYPEIN and LOGO CODE
toil(appear in a font like this. SYSTEM TYPE= will appear in a jinni like this. Control

. characters are denoted by A followed by the character. You type a control character by
bolding., down the control key while you are typing the character. 11 means escape or
alt mode, not dollar-sign, except' where otherwise noted. Angle brackets. < > mean
something of the .appropriate type suggested within the brackets; for instance, if your
user name. is HENRY, <user name> means your user name, e.g. HENRY. Except for control
characters, which usually take immediate effect, and except where otherwise noted, end
all lines of typein with a carriage return.

The following procedure is into to help very naive users of ITS to get logged
In and to, obtain LISP LOGO See Al memo 15, How To Get On the System, for more
details.

1. Find a free console. A console which is free show:,

Al ITS <version> CONSOLE <nember>171EE. <time>.

2. A console which is free understands only one command. It is AZ. The computer will
respond with the following messages:

AI ITS <version>. DDT <version>.
<number> USERS.
<news>

3. When it stops printing, login as follows: type

:LOGIN <user mime

If there are any messages for you,

--MAIL--

Getting Steriell A

18
a

Seem 5

0

LISP 1000 MEMO Page 14 June 77,1974

will be printed. You can type a space to'receive it or any other character to'postponeit.
A * will be typed at the end.

4. Now you have completed logging in to the Al system. LLOGO is a subsystem of Al ITS.
To get LLOGO started,

5. Decide which version of LISP LOGO you want. Choose from:

LLOGO - Standard version of LISP LOGO. Vocabulary is compatible with CLOGO..

i 1 LOGO - A version which uses a vocabulary which is compatible with PDP11 LOGO. S
Section if for details.

NLLOGO -The very8litest version of LISP LOGO. This is experimental, so we make
promises.

When you decide which you yiant,"type

:<neete er preerene>

for example, :LIMO

I

6. Then LLOGO will print out some initial messages, including its version number, and
LISP's and will ask you some questions.

DO YOU WANT TO USE THE DISPLAY TURTLE?' I

V\
If you want to define and edit a procedure which contains turtle display commind6", you
should answer YES to this question. It is not necessary that You have the 340 display
scope, Or' the- GT40 display, to do just defining and editing... You can even run the
procedure if you do not, mind not being able to lee what the procedure does. See Section
15 for more information. I

IIERMLAND?

If you want to play with GERMLAND, the display turtle for character displays such as
DATAPOINT terminals, answer YES. This has a prompter which will run some
demonstrations and provide help if you needs it. Again, if you intend to define or edit
procedures designed to run in GERMLAND, you must answer YU. See Section 14.

MUSIC DOX?

If you want to use LOGO music box primitives, answer YES. This will inquire further, as to
which music boi, etc. ,See Section 16, In case you have answered YES to any of these
questions you have to wait for a while, because it takes some time to toed in the files. If
you want to interrupt loading /in type AX , not AC. If you have a file named cELOCO
(INIT) on your directory or there is a file named <user new> .1200O. on the (INIT)
directory,' LLOGO will read it as an initialization file, executing LOGO code contained
therein. When ill this is finished; LLOGO will indicate its Tidiness with /

Clotting Starbel Section 5

It

LISP L000 MEMO Page 15 June 27, irm

LIMO LISTENING

'7. If you fi;vd yourself in the unfortunate situation of meeting a bug in LISMOG0,- you
may report. it by using the function BUG. The input to BUG should be a message
describing'the difficulty, enclosed in dollar signs. For example,

?BUG $
THE TURTLE ESCAPED FROM THE
DISPLAY SCREEN ...
$
;THANK YOU.

8. You can logout when you are finished by, typing GOODBYE Po LOGO. The terminal
should then say,

AND A PLEASANT DAY TO YOU!
AI ITS <version> CONSOLE <number> FREE <time> .

9. Hay. fun!

'Betting Started

20

0

Section 5

LISP Load MEMO Page XI Jim 27,1V4

Section I. Parsing LOGO

ci

This section will discuss a few of the more complex issues in parsing LOGO into
LISP, and discuss how they are handled by LLOGO. LISP is trivial to parse, as its syntax
is totally unambiguOus. The application of a function to it inputs always happens in
prefix notation, and the precise syntactic extent of a form is always clearly delineated by
parentheses. LOGO syntax affords the beginning programmer some conveniences over
LISP syntax, while retaining much of the expressive power of LISP. Parentheses can be
omitted surrounding every form, and the more customary infix notation for arithmetic
expressions can be arbitrarily intermingled with prefix notation. These conveniences are
bought at the cost of complicating the parser, and introducing some cases where
ambiguity results regarding the user's intent ior. some of the language's syntactic
constructs.

6.1 Infix Expressions

LLOGO allows infix notation to be used as well as prefix functions~ in arithmetic
expressions:Most LOGO arithmetic functionkexists In both prefix and infix flavors, and
the user is free to use whichever he desires.

?PRINT 3*41+1AASUM FIRST :x DIFFEREACE KN:17 2

is the same as

?PRINT (TIMES 3 4)*(EXPT :A ((FIRST :X).(TINIES :C.17)-2))

.40

LLOGO observes the usual precedence- and associativity of arithmetic operators.

Note that a complication of the LOGO syntax is that alt functions, not j t infix
operators, are required to have precedence levels. Is

?FIRST :A * 17

the same as

?TIMES (FIRST :A) 17 or° ?FIRST (TINES :A 17)

The situation is further complicated by thejuser's probable expectation that functions .

which manipulaielogical values have lower precedence than comparison operators like <, 1.. 4

and So,

?TEST :NUMBER < :PI

is taken to mean,

?TEST (LESSP :NUMBER :PI) and not ?LESS, (TEST :NUMBER) :PI

AW

reraing1A00 Section 6.1

21

LISP LOCO MEMO rage 17 Jrhe 27,1574

CLOGO gives all arithmetic operators the same precedence on the grounds that
precedence would be difficult to explain clearly to children. However, this has the
drawback of deviating from the customary mathematical convention. Since the motivation
for introducing infix notation into LOGO syntax is so that arithmetic expressions can'be
written in the infix form in common use, LLOGO his been designed. to obey the usual
precedence conventions.

LLOGO tries to please everybody. If you feel that theprecedenci scheme which
has been implemented does not agree with your intuition, you are free to redefine the
precedence levels as you. wish. LLOGO also provides the capability of defining new infix
operators.

follows:
The inihal default firlecedencek are Identical to those of ilLOGO and are et

700: n [exponentiation]
600: - [prefix]
500:* / \
400: - [infix]
300: [defau precedence for system and user functions]
200: <>
100: NOT BOTH EITHER AND OR TEST
50: [MAKE]

Initially, operators of levels 50 and 700 are right associative, and the rest are left
associative, which is the default. Logical functions should have precedence lower than
comparison operators, so if the user defines a logical function he should set the
precedence himself, otherwise it will receive the default precedence. The user can
change things by using the following functions:

434

PRECEDENCE <op>

Returns the precedence level of <op >.

PRECEDENCE <op> <howl>

Sets kop>'s precedence level to the specified <level>, which may either be a
number, or another operator, which means that <op> is to be given the same precedence
as that operator.

PRECEDENCE NIL <level>

Sets.the default precedence for functions to *mil>. All funcftens :which are not
in the above list of infix functions, or have not been assigned a precedence by the user,
receive the default precedence.

ASSOCIATE <Nsimbei> <aikkh-wey>

Declares that all functions of precedence level <number> will associate <which-
way>, which is either 'LEFT or 'RICHT.

INFIX <op> <level>.

Parsing WOO Section 6.1

22

LISP L000 MEMO Jane 27, 1574

Defines <op> to be .sn infix operator of precedence <level>. Specifying a
precedence is optional.

NOPRECEDENCE

Forces all infix operators to the same precedence level [this Will be higher than
the default precedence]. Makes LISP LOGO loOk like CLOG [well, almost...].

:INFJX

This variable contains a list of all 'current infix operators. Look, but don't touch.
Use INVX to acid new infix operators.

6.2 Minus Sign

There is some ambiguity in the handling of minus sign. For example, consider

'(SENTENCE 3 -:A)

'If the minus sign is interpteted as an infix difference operator, this will result in a list of
one element. If the minus sign is interpreted as prefix negation, it will result in a list of
two elements'. -CLOGO uses the spaces in the line to disambiguale this case. If there is a
space between the minus sign and (he A, it is interpreted as infix, Otherwise, it is
interpreted as prefix. In 11LOGO, spaces are not semantically signifkant except to delimit
words, so this is interpreted as' SENTENCE (DIFFERENCE, :11)) regardless of the
occurrence of spaces. LLOGO treats minus_ sign .as does 1ILOG0. One would obtain the
result of the other interpretation by using

MISIVTENCE 3 (-:An

The preceding discussion applies only to the parsing' of infix expressions. So, f-41
is a list of one elemintInegative number, but (-'4/ is a list of two elements, minus sign
and 4.

6.5 Homonyms

11000 makes allsthe functions of LISP directly accessible to. the LOGO user in
exactly the same way as LOGO prlmitives..This runs into difficulty when a LISP function
and a LOGO function have the same name but different meanings. These are currently
handled by the parser, which converts.them into innocuous atoms which do not conflict
with LISP, and are reconverted upon unparsing. Currently the following functions are
homonyms:

PRINT, RANDOM. LAST, EDIT, SAVE [in'MULTICS only]

When the user types in one of. these, it is converted by the parser to an internal
representation consisting of a different function name [LOCO - PRIM', Loco-LAST
Loco-EDIT LOCO-RANDOMor LOCO-SAPE, as appropriate]. When the User riquasts
that the line be printed out or edited the unparser converts'it back to the way it was
originally typed in. In the CLOGO-compatible version of LLOGO, when :CAREFUL is set to
non-NIL the following primitives which conflict with CL000 are also changed by the

Parsing L000 Section 03

LISP LOGO MEMO Page 19 Juno 27,1974

parser: LIST is changed to'PRINTOUT, DISPLAY to STARTDISPLAY, GET and READ
to READFILE, and DO to RUN. Warning messages ire also printed in these cases.

There is one pitfall in the current method' of handling homonyms: sometimes, as
with passing functional arguments, the parser does not get a chance to do its thing, so
the user may find an unexpected function called; APPLY 'PRINT calls LISP's
PRINT function, not LOGO's.

6.4 Abbreviations

Abbreviations are accomplished in LLOGO by putting the name of the function
which is abbreviated on the property list of the abbreviation is an EXPR or FEXPR
property, as appropriate. Abbreviations are expanded into their full form on parsing, and
are left'that way. The user has the capability of creating his own abbreviations by

?ABBREVIATE <new name> <old name>

and erasing them by ,

?ERASE ABBREVIATION <nente>v

ABBREVIATE evaluates its inputs, but ERASE 'doesn't. A complete listing of
abbreviations can be obtained by doing

?PRINTOUT ABBREVIATIONS

'Parsing WOO

or

o

24
Section 6.4

f

LISP U100 MEMO rage

Section 7. Defining and Editing Functions

Jane 27,1374

In LOGO, when the user defines a procedure using TO, or EDITs a procedure he
has previodsly defined, LOGO enters an "edit.mode", where lines beginning with a nuMber
are inserted into the procedure under modification. LOGO prompts with ">'! rather than "?" -

to indicate this. The intent of having a separate mode for editing proshedures is to stress
the distinction between defining procedures and executing them. This distinction is not
strictly maintained; if the line does not begin with a number, the commands are executed
as they would be ordinarily, With a few exceptions [the user is prevented from doing
another TO or ED/T for instance]. Occasionally, this leads to errors, for instance if 'the,.
user forgot to type the line number at the beginning of a line intended for insertion.

The default state of. LLOGO is to retain the separatipn of edit mode from ordinary
mode as in I ILOGO and CLOGO. The slightly more sophisticated user, however, might find
himself in an unnecessary loop of continually typing airs and END's while working on
the same procedure. Since, the lines typed by the user for insertion into a procedure are
inserted immediately when the user finishes typing the line END does not cause
anything to happen other than the termination of edit mode. The system always
remembers the name of the last function mentioned by TO, EDIT, PRINTOUT, etc. as a
default for these functions, so when working on a single function, EDIT serves only to
enter edit'mode. The user has an option of turning off the separate edit mode by setting
the variable :EDITMODE to NIL. This will cause lines beginning with a number to be
inserted into the default procedure at any time. In this mode, it is hover necessary to use
END, and EDIT will only charge the name of the default procedure if given an input.
The prompter will not be cht4ed.

In LLOGO, it is not necessary to be in edit mode to use AMINE or EDITTITLE
on a line of the default procedure, and the editing control characters are available even
when not in edit mode.

Editing

LLOGO has a control-character line editor similar to those in CLOGO and 11LOGO.
This makes it particularly convenient to correct minor typing errors, by providing a
means of recycling portions of the line typed previously, instead of requiring retyping of
the entire line. The editor keeps track of two lines: an old line which you arc editing; and
a new line, which LLOGO is to use as the next line of input. The old line is always the last
line you typed at LLOGO, except immediately after a parsing error, when the offending
line will be typed out at you, and it may be edited. You can also set the old line yourself
to be a line in the current default procedure by doing EDMINE <line number>, or the
title of a procedure by calling EDITTITLE. Everything you type after the prompter, or
cause to appear using the control characters, is included in the 'new line, until you type
carriage return, which terminates editing for that line. You may use parts of the old line
in constructing tht new line by using the following editor commands:

AE - Get the next word from the front of the old line, and put it on the end of the new
line.

AR - Put the rest of the old line at the end of the !towline. This is like doing AE's until
thereis nothing left in the old line.

Defining and Editing Functions Section 7.1

8

LISP L000 MEMO Page 21 June 27,1374

AS - Delete a word 'from the front of the old line.

AP Delete a word from the end of the newiline: Like,rubout, except rubs out a word
instead of a character.,

LLOGO uses different characters than 11LOGO and CLOGO do because-LISP uses
most of the control characters for interrupts and i/o.

C.

7.2 Printing Function Definitions

The function PRINTOUT can be.usedtoiNk at definitions of user procedures. In
addition, it has other options for examining the state of your LLOGO. PRINTOUT dolin't
evaluate its inputs.

PRINTOUT <procedure-nante> !Abbreviation P0/

Will print out gm definition of the specified procedure. If the name is omitted, it
will assume the last fun ion that was defined, edited, or printed.

PRINTOUT LINE <number> /POL/

Prints out only the specified line in the default procedure.

V*1

PRINTOUT TITLE <procetlexe> /POT/

Prints the Just the title of the procedure given. If the Input is omitted, prints the
title of the current default procedure. This is useful if you forget which procedure is the
default.

PRINTOUT TITLES !POTS/

Prints" the titles of all current user procedures. Ignores buried procedures site
Section 10.1].

PRINTOUT PROCEDURES I POPR/

Prints out the definitions of all currently defined user procedures. Will not print
the definitions of procedures that are buried (see Section 10.11

PRINTOUT NAMES /POND

. Prints the names and values of all user variables.

PRINTOUT ALL /P0 4/

Does PRINTOUT PROCEDURES and PRINTOUT NAMES.
(1,

PRINTOUT SNAPS

Prints a list of saved display turtle scenes. Ss. Section .15.11.

PRINTOUT FILE, PRINTOUT INDEX

Defining an Editing Function's Suction 7.2

Jane V

..See Section 10.2

,,PRINTOUT ABBREVIATINS

-Prints a list of all current abbreviations, and the names of the procedures wNcli
each abbreviates.

PRINTOUT PRIMITIVES'

'Prints a complete list of all LLOGO primitives.

Another useful command is LINEPRINT, which causes a listing, similar to the
output of PRINTOUT ALL to appear on the line printer. It takes an optional input, a'word to be used as a title to name the listitig generated.

7 .3 Erasing

The command BRAfif will remove unwanted portions of your um The inpubeto
ERASE are not evaluated. The options available are

,ERASE <procedure, variable or assy9 tante>

Cause the definition of the specified object to vanish. Note: When you define a
function using TO, it checks to see if there already exists a procedure of thi sane name,
and if Ao, inquires whether you want the old difinitioh ERASEd. This is to prevent you
from accidentally overwriting definitions of function..

'41

ERASE PRIMITIVE <primitive Nome>

The LLOGO, primitive given as input will be erased. You might use this, for
example,- if you wanted to use a name used by LOGO kw one of your own functions. If
jci define a name using TO which conflicts with a LOGO priniitive, it will inquire if you
want the definitiori orthe primitive to be erased.

ERASE LINE 4rtuntbor> IERLJ

Erases line <number> of the default procedure.

ERASE NAMES /ERNI

unbinds all user -variables.

ERASE PROCEDURES (ERPI

Erases all interpretive user functions. Does not affect compiled or buried
procedures.

ERASE COMPILED

Erases all compiled user functions.

ERASE ALL fERAI

Defining awl Editing Functions &Wee 7.3

LISP L000 MEMO. Page 23 Jon 27,1974

Like doing ERASE PROCEDURES, ERASE.COMPILED and ERASE NAMES,

ERASE ABBREVIATION <abbreviation>

.Erases the abbreviation given es, input. Does not affect the proceduFe that it
abbreviates.

ERASE FOX <file spec>.[ERF1

See Section 10.2.

ERASE TRACE <junction> fiRTRI

'Removes trace from <function. See Section .

ERASE BURY <11inctions> (ERB/

The functions will no longer be buried. For a discussion on buried procedures, see
Section 10.1.

a

Defining end Editing I/unctions Section 7.3

28

LISP LOOII MEMO Pap 24 June 27,1374

Section 8. Error Handling and Debugging

The philosophy of the LISP LOGO error handling system is to try to be as
forgiving, es, possible; the system will give you an opportunity to recover from almost any
type of error [except a bug in LLOGOI. There are two types of errors which can occur:

8.1 Parsing Errors

If for some reason, LLOGO cannot parse the line you typed [for example, you may
have typed mismatched parentheses], this causes a parsing error. When this happens,
LLOGO will print a message telling you why it was unhappy, retype the offending line at

. you, and type the editor prompt character. You now have. a chance to redeem yourself
by correcting the line -- you may use Any of the editing' control characters [see Section
7.1] When you Are satisfied that the line is correct, type carriage return, and LLOGO will
resume evaluatron, using the corrected line in place of the one which was in error.

8.2. Run Time Errors

When a run time error occurs, a message will be printed. If the error occurs
inside a LOGO user defined function, the message will say something like:

;ERROR IN LINE <number> OP <premiere>
;LINE <number> IS :
;<reason for error>

If the error occured inside a LOGO primitive, the message will look like:

;COULDN'T EVALUATE <bed farm>
;EIEAUSE
;<resson hir error>

where <bad form> is what LLOGO-was trying to evaluate when the error occurred.
Usually, this will give you enough information to figure out where the error occurred,
although <bad form> is sometimes uninformative. Usually, LLOGO will simply return to the
top level loop when such an error occurs. However, if you SETA the variable
:ERRBREAK to something other than NIL, [or MAKE 'EREBREAK . . a rya time
error will cause a LOGO break loop to be entered after the message is printed. Setting
the variable :LISPBREAK to non-NIL will cause a LISP style breakpointio occur when
an error ,happens. [For 'a detailed discussion of breakpoints, see below, Section 8.3.)
You can resume execution of your program fromlhe point at which the error occurred,
by COIS(TINUEing with something to be used in place of the piece of data which caused
the error. If the error was an undefined function, you may CONTINUE with the name of
a function which has a definition. If the error was an unbound variable, CONTINUE with
.a value for that variable. If the error was a wrong type of input to a LOGO primitive,
CONTINUE with some appropriate value for an input to that function, etc. Usually it will
be obvious from the context what sort of Hen; is required. computation will be resumed
from where the error occurred, with the returned item' substituted for the one which
caused the error. [Note: the usual LISP interrupt handler functions expect a list of the
new item to be returned, while LLOGO's expect simply the item]. The LISP LOGO run-time

Ewer Handbag and Debugging Seam L2

LISP L000 MEMO Page 25 .June 27, 1974

error handling works by Utilizing the LISP error interrupt fetrOlity. If you don't like the
way LLOGO handles any of the error conditions, you are free to design your own error
interrupt handlers, either in LISP or in LOGO.

&3 Breakpoints

A powerful debugging aid is the ability to cause breakpoints. Stopping a program
in the process of being evaluated allows the user to examine and modify its state, and
exclke the history of evaluation which led up to the breakpoint. LISP provides excellent
factlities for doing this, including automatic generation of breakpoints when an error
occurs. Whenever LISP starts to evaluate a form, iifirst pushes the form on a stack; from
a breakpoint one can examine the stack to determine what forms were in the process of
being evaluated, and perform evaluations relative to a particular stack frame. LISP 10G0

'attempts to make these features easily available' to the user, from either LISP or LOGO.
Versions of these breakpoint functions are also available which can run in an ordinary
LISP, without the rest of the LOGO environment The following facilities are available for
causing breakpoints:

LOCOBREAK <message> <condition> <retura-value> f Abbreviation PAUSE/

The inputs are all optional, and are not evaluated. Unless <condition> is given and
evaluates to NIL, LOCOBREAK causes the user to enter a loop where LOGO commands
can be typed and the results printed. This is similar to the top level loop except that 7. is
printed as a prompter rather thin ?; it is very much like repeatedly evaluating PRINT
RUN REQUEST. If <message> is present, it will be printed out upon entry to the break
point. It also prints the form in the current stack frame, which will be the call to
LOCOBREAK if called explicitly by the user. If the breakpoint happened because of an
error, the. initial stack frame will be the one containing the form which caused the error.
LOCOBREAK tries wherever possible to print out the current form as LOGO code before .

it enters a LOGO'break point. However, the current version is not always smart enough
to distinguish between LISP and LOGO frames on the stack, so you might occasionally see
what looks like internal LISP garbage there. If you go up far enough, you are sure to find
the LOGO code. A smarter version could recognize the LISP frames and ignore them. The
third input is a default value for LOCOBREAK to return if it is CONTINUEd. [See
description of CONTINUE, below] Caution: the breakpoint functions described in this
section use LISP's CATCH and THROW. Unlabelled THROWs from inside a breakpoint
loop are highly discouraged.

AA

If control-A is typed at any time, even while a program is running, it will cause an
interrupt and a LOGO break point will be entered.

LISPBREAK <message> <condition> <nouns value> (AU. BREAK/

This is like LOCOBREAK, except that the loop is a LISP (PRINTEVAL (READ)))
loop. This is especially useful when debugging a Set of LISP functions designed to run in
LOGO. To access your LOGO variables and user functions from inside a LISP break loop,
prefix them with a sharp sign rel. LISP users note: you can interact with this break
loop as with the standard LISP BREAK function, except that it is set up to allow use of
the stack hacking functions described below. If SP islyped, or (CONTINUE) invoked, the
<return value> will be the value of the call to LISPBREAK.

Error Handling and Debugging . Section 9.3

LISP L000 MEMO. Page 28 June 77,1574

As in LISP, All typed at any time will interrupt and cause a LISP breakpoint to be
entered.

:ERRBREAK

If this variable is not NIL, when a run time error happens, LOGORREAK will be
called automatically. Thit gives you a chance to find out what went wrong, and recover
by CONTINUEing with a new piece of data to replace the one that caused the error. Itis
initially set to NIL.

:LISPBREAK

Like :ERRBREAK, except that if set to something other than NIL, when an error
happens, LISPBREAK rather than LOGOBREAK will be called. Initially set to NIL.

The following functions can be called from inside a breakpoint to examine and manipulate
the stack:

UP

Moves the breakpoint up one frame in the stack, printing out, the form which was
about to be evaluated in that frame. This will be the form which called the one which was
last typed out by any of the functions mentioned in this section. Evaluation now takes
place in the new stack frame. This means that all local and input variables will have the
values they did when that form was about to be evaluated. However, side effects such as
assignment of global variables are not undone. Frames are numbered for the user's
convenience, from 0 increasing up to top level.

UP <number>

Goes <number> frames up the stack. Like doing UP, <number> times.. The
<number> may be negative, in which case, the breakpoint is moved down the stack rather
than up.

UP <atom>

Goes up the stack until a tall to the function whose name is <atom> is found.

UP <atom> <Plumber>

Goes up the stack _ until the <nurnber>th call to <atom> is found. Searches
downward for the <number>th call to the specified function if <number> is negative.

DOWN <atom> <number>

Like UP, except that it proceeds down the stack instead of up. Both inputs are
optional, and default as for UP, except that <number> defaults to -1 instead of +1. If
<number> is given it is equivalent to UP 6-<rosadoor>1.

PRIMP <atom> <number>

Error Handling and Debugging Section 8.3

31

LISP L000 MEMO Page 27 June 27, 1974

Accepts inputs as does UP, but instead of moving the breakpoint up the-stl----ck to
the desired frame, all frames between the current one and the one specified are printed
out. This function is good for getting a quick view of the stack in the immediate vicinity of
the breakpoint. The breakpoint remains in the same frame as before. The two inputs are
optional, and default as for UP.

PRINTDOWN <atom> <nuntber>

Like PRINTUP, except that the inputs are interpreted as for DOWN rather than
as for UP, that is, it prints frames going down the stack.

EXIT <return-value>

Causes the current stack frame to return with the value <return-value>. That is,
the computation continues as if the `form in the current frame had returned with <return-
value>. The input is optional, and defaults to NIL.

CONTINUE <return-value> (Abbreviations CO, $P1

Causes the frame of the originally invoked breakpoint to return with the specified
value. The input is optional. Use CONTINUE to return a new item of data from inside an
error breakpoint; for instance a new function name to use in place of ont which was
undefined. Note that in many situations, for example from a user-invoked breakpoint or
from an error breakpoint which expects an'itern to be returned as the value of the form
which caused the error, if you haven't moved the breakpoint around the stack,
CONTINUE will be identical to EXIT. If the input to CONTINUE is omitted, thi default
return value specified by a third input to LISPBREAX or IACOBREAK will be returned
as the value of the breakpoint. If no such default return value was given, NIL will be
returned.

Here's an example:

?HAKE 'ERRBREAK T
!Assure LOGO break happens!
!when an error occurs!

CHANO1NO A SYSTEM NAME
T
?TO SCREWUP :N !Define our losing procedure.!
>1 IF :N.,0 THEN OUTPUT :UNBOUND

!Count down to 0, then!
>2 OUTPUT SCREWUP :N-I

>END
;SCREWUP DEFINED
?SCREWUP 3
;ERROR IN LINE 1 OF SCREWUP
;LINE 1 IS: IF :N -8 THEN OUTPUT ;UNBOUND
;:UNBOUND I$ AN UNBOUND VARIABLE
;BREAKPOINT FRAME 0: :UNBOUND

%UP

!oval variable which has no value!

!frame 0 is the variable. Eval was!
!working on this when we bombed!
!We can do any command!
!while in the breakpoint.!
!Going up a frame. :UNBOUND!

Error Handling and Debugging Section 8.3

32

LISP L000 MEMO

OIREAKPOINTIPRAME 1: OUTPUT :UNBOUND

%DOWN
;BREAKPOINT FRAME 8: :UNBOUND
2UP 'SCREWUP
;BREAKPOINT FRAME 4:4SCKEWUP 44.1

7.:N\
1

7.UP 'SCREWUP 2
;BREAKPOINT FRAME 18: SCREWUP :11-1

3
%EXIT 'SCREWED
SCREWED

Page a

!was the input to OUTPUT!
!going down a frame

June 27,1874

we arrive at recursive invocation!
!where :N had the value 1!

!If we rise past 2 calls to SVEWUP,!

!:N was 3.!

!We decide for some reason!
that SCREWUP of 2 is !
!to return the value 'SCREWED!
!and all the previous Invocations !
!of SCREWUP return with the value!
"SCREWED and we are at top level!
!Wasn't that fun?!

8.4 Wrong Number of Inputs Errors

Since LOGO syntax requires that the parser know how many inputs a function
requires, and LLOGO parses your input as you type it in, errors may be generated if you ,

change the number of inputs a function takes by redefining the function, or by calling
EDITTITLE. Calls to that function which you typed previously are now incorrectly
parsed. LLOGO will catch most occurrences of this when the function is called, and print a
message like:

;REPANSINO LINE <number> OP <procedure> AS: <new purse>

and attempt to recover. LLOGO always attempts to worse a line which caused a wrong
number of inputs error. It is not always possible to win, however, as side effects may
have occurred before the error was detected.

8.5 Garbage Collector Errors

Versions of LLOGO running in MOP LISP [LISPS with the capability oP dynamically
allocating storage] have special handlers for garbage collector interrupts. If it decides
you have used too much storage space of a particular type, or too much stack space, it
will stop and politely ask if you wish more to be added. If you see these questions
repeated many times in a short span of time while running one program you should give
serious consideration to the possibility that your program is doing Infinite CONSing or
recursing infinitely.

Emir Handling and

3;3
Section 8.5

LISP WOO MEMO June 27,1974

8.6 Tracing
2

ti
The standard LISP TWICE package may be used to trace LLOGO primitives or

user functions. The tracer is not normally resident, but is loaded .in When you first
reference it. See the LISP manual for details on the syntax of its use and the various
options available.

8.7 Interaction with LISP

In debugging functions written in LISP for useln LLOGO, it is often usefurto be
able to switch back and forth between LOGO and LISP top level loops. You can leave the
LOGO top level loop and enter a LISP READ-EV/It-PRINT loop by using the LLOGO
function LISP. From this mode, executing (LOGO) [remember to type the parentheses,
you're in LISP!] will return to LOGO. Typing control-atsign [no] at any time will cause an
interrupt and switch worlds; you will enter LISP if you typed AO from LOGO, or enter
LOGO if yintlyped it from LISP: The LISP loop gives you access to all internal LLOGO
functions andglobal variables, which are normally inaccessible from LOGO sincelthey are
on a different obarray. LLOGO primitives and system variables are on both obarrays, so
they will be accessible from both LISP and LOGO, but LOGO user functiOns and variables
are on the LOGO obarray only. The character sharp sign ral is an obarray-switching
macro; to access LOGO user functions and variables from the LISP loop, prefix them with a
sharp sign.

a

Error Handling and Debugging Section 82

34

LISP 1000 MEMO Page 38 June 27,1'974

Section 9. Compiling LLOGO User Procedures

LISP LOGO compiles a LOGO %mime program into LISP and it is stored internally
only as LISP code. Since this is the case, the LOGO user has the capability of using the
LISP compiler directly on his LOGO programs, and obtain a substantial gain in efficiency,
once his programs are thoroughly debugged. LISP LOGO provides an interface to the LISP
compiler which should maker it unnecessary fOr the user to worry about interacting with a
separate program.

To compile all of the functions currently in thivorkspace, the function COMPILE
is available. [This does not include buried procedures -- see Section 10.1.] It expects
one word as input, to name the file which will contain the compiled code. The names of
the functions which are being compiled will be printed out. A temporary clitput file
[named .LOGO. OUTPUT] will be written on the current directory and deleted after the
compilation is complete. The output file will have as first name 0* input to COMPILE,
and second file name FASL [In the MUSICS implementation, the temporary file will be
named logo output and placed in the current directory. The output file will appear in the
working dirictory; with one name, the input t6 COMPILE.] Since the LISP compiler must
be called up as a separate program, be careful about interrupting the compilation before
it is finished [for instance, by AC] as you will not find yourself in IL* anymore.

To load a compiled file into LLOGO, say READFILE <name> FASL. This will load
all the compiled functions which were compiled by COMPILE <name>, and also restore
the values of variables that were defined at that time. The names of compiled functions
will be kept on a list called :COMPILED and not on :CONTENTS. For debugging
purposes, you might want to read in both the compiled and interpreted definitions of the
same functions, and you can use the functions FWSIICOMPILED and
FLUSIIINTERPRETED to switch back and forth between compiled and interpreted
definitions.

The LOGO COMPILE function supplies declarations for LOGO primitives. Some of
the declarations include LISP macros which replace calls to LOGO primitives with calls to
their faster LISP counterparts for, efficiency, and some optimization is done. For safety's
sake,- dll variables are automatically declaied SPECIAL. However, the sophisticated user
is free to include in his program DECLAREs. to UNSPECIAL input or local variables
which he knows will not be referenced globally, or provide declarations which wilt make
use of the fast-arithmetic LISP compiler.

A few warnings about compiling LOGO procedures: First, remember that LOGO
syntax requires that it be known how many inputs a function expects, before a decision
can be made as to how to parse a line of LOGO code. If, when defining a procedure, you
include a call to a procedure which is not yet defined, parsing is delayed until run time
[see Section 6 and Section 3.2 of this memo for more details]. The compiler, of course,
cannot do anything reasonable with an unparsed line of LOGO code, so all parsing must
be completed by the time the definition of any procedure is compiled. The COMPILE
function attempts to make sure this is the case. Therefore, It is en error to attempt to
dompile a procedure which contains a call to a procedure which is not a LOGO primitive
and has not yet been defined.

Also, it must be remembered that compilation of LOGO procedures, like those of
LISP, is not "foolproof". It is not always the case that a procedure which runt correctly.

Compiling 11.000 User Procedures
8 5 Section 3

sof

LISP LOCO MEMO Page 31 June 27, 1374

when interpreted, will be guaranteed to run correctly when compiled. Self-modifying
procedures, weird control structures, and in general procedures which depend heavily on
maintaining the dynamic environment of the interpreter may fail to compile correctly
without modification.

ego

Compiling 1.1.000 User Procedures v Section 3

LISP LOW MEMO

Section 10. Using Files in LLOGO

?ago 32 , is 27,1374

A file specification on ITS,,has four components. Each file is named by two words,
of up. to six charecter, each, a device [almost always DSK], and a directory name [usually
the same as the 'seri name]. You can refer to a file in LOGO by using anywhere from 0
to 4 words. If you leave out the name altogether, it will be assumed that you are
referring to the last file name mentioned. One word will 'be taken as the first file name,
and the second will default to >, which moans the highest numbered second file4rame
Which prAntly exists if you are reading, or one higher if you are writing, Two words
will betaken as the two file names, and the directory and devke will be defaulted. If
three names are given, the third will be assumed as the directory name, and the device
will be DSK. If four words are given, the third is devke and fourth is the directory. Here
are some examples:

[Assume that the current user name is ESG, and F00 3 is the highest numbered file with
FOO-as its first filename]

Lax)

!READFLE FOO
?SAVE FOO
?RBADFILE FOO BAR
?RBADFILE FOO BAR MENA?
MEN:WILE FOO BAR DESK HENRY

ITS [gni> <1n2> <dey>lir>4

FOO > DSK:KW; /F00 3/
100> DSK:BSC; (100 4/
FOO OAR MK:BSC;
FOO MR DSK :HENRY;
100 BAR DSIC:HENRY;

See Section 12.2 and Section 13 for information about file specifications on. the
MULTICS and TEN50 implementations. File specifications are accepted by LOGO in the
same format as on ITS, so it may not be nicessary to change any code torun on other
implemenlations.

10.1. Saving ReattingI Files

There are two ways of storing LOGO programs on. the disk for later use. To store
the contents of the current workipace [all user functions and variables currently defined]
on the disk in the form of LOGO source code, use SAYS. It expects as input a file
specification, as discussed above. The file created will contain the contents of the user's
workspace, function definitions and MAKE: for variables, exactly in the form that he
would sete if he did a 'PRINTOUT ALL .

Workspaces can slab. saved in LISP format, as they are represented internally
by LOGO. This is accomplished by the function WRITE which takes its inputs as does
SAVE. Although the file created will not. be so pretty to look at if you print it, using
WRITE produces files which are considerably faster to reload, since the program does,
not have to be roper:ed. For long-term storage of programs, however, it is recommended
that you use SAVE rather than rms. Changes in the implementation of LISP LOGO may
result in changing the internal format of LOGO programs, in which case, files created by
WRITE. would not remain compatible, but files created by SAVE would remain so.

t r
Using Flies-in =OD Sadism 10

LISP. WOO MEMO Page 33 June 27,1574

To reload a file from the disk, use the function READFILE. This accepts a
standard file specificptiOn, and reads it in, printing the name of the.file. REauFILE does
not care whether the file is in SAVEd or WRITten form. If the file was created by SAVE,
lines of code will be printed out as they come in from the disk. For written files, only the
names of functions and 'values of variables will appear. If you get annoyed at all this
output, you can shut it up with nip. LOGO will return with a question mark when the

.loading Is complete.

It is often convenient to treat a set of functions as a "package" or "Subsystem".
For instance, you 'may have's set of your favorite functions which you place, in your
'initialization file, or a set of functions designed fora specific purpose. When this is the
case, it is inconvenient to have all these functions written out when you are working on
additional procedures, or have to see their definitions when you do, a PRINTOUT ALL.
That is, one would like a method of having the package of functions available, but_not
considered as part of the workspace by certain commands. Ydu can do this by using the
functio-n BURY. It takes unevaluated procedure names as input e,and will assure that -the
function is ignored by the following commands: PRINTOUT PROCEDURES, PRINTOUT
ALL, PRINTOUT TITLES, ERASE PROCEDURES, ERASE ALL, SAVE, WRITE and
COMPILE. Otherwise the function is unaffected, and can be invoked, printed, edited, etc.
A list of the names of buried proceduresAs kept as the value of the variable :BURIED.
BURY ALL will BURY all currently defined procedures, and ERASE BURY will undo the
effect of a BURY.

10.2 Other File Commands

PRI FILE [abbreviated POF] will print out the contents'of a file. ERASE
FILE will ca se the specified file to vanish [This has a safety check to make sure you
don't do a hing you'll be sorry about]. These take file names as above, except that if
only on.'" nput is given to ERASE it defaults to <, the least numbered second file name,
again for safety reasons. PRINTOUT INDEX (POI) will print out all the file names in
the directory specified by one word. USE will change the name of the default directory.

1

,Usingt Pike in LIMO Section 18.2

36

ROO MEMO Page 14 ieee 27,674

Section IL Differences between 111.000 sad LLOCO

LISP LOGO was originally written to be compatible with GLOM a version of LOGO
ritten in POP10 assembler language. There now exists a version of LOGO which' we
lieve to be "semantically compatible" with the PDP11 version.ly this we mean that the
ebulary is the same -- any primitive, in 111000 also exists in LLOGO and will
pefully) have the same meaning. LLOGO in fact has many primitives which do not exist
111000, as well as offering the user access to the full capabilities of LISP. There ere

tantial differences between L1000 and 111000 with regard to file systems and error
ndling, and somewhat less substantial differences in the editor, turtle and, music

packages. These are described in detail in other sections of this document. There we also
are several less substantial differences, not mentioned in the preceding discussions, and
what follows is an attempt to provide a reasonably complete Nit of the knowledge that an
experienced 111000 user. would Ted to use 1.1000.

In 111000, the double quote character " is used to specify that the atom following
it is not to be evaluated-

?PRINT "100
POO

It is like LISP": single quote, except that it also affects the LOGO reader's decision about
when to stop including successive characters in forming the name of an atom. In

?PRINT :100+3

the plus sign is a separator character; it signals the end of the atom :100 just, as if there
was a space following :100. However, following a double quote,, the only separator
characters recognized are space, carriage return, and square brackets. Thus, in 111000,

?PRINT "100+3
F00+3

In LLOGO, the user may uss the LISP single quote to specify that an atom or
parenthesized list following the single quote is not to be evaluated. The presence of the
single. quote does not change the way LLOGO decides when an atom ends. In LLOGO,

?PRINT '700.3
;THE INPUT 100 TO + IS or Two moo TYPE

because the plus sign is still a separator character. LLOGO uses the double quotes as
CL000 does; they are always matched. If one s-expression (atom or list) occurs in
between double quotes, it is quoted. If more than one occurs, the list containing them is
quoted. The correspondence between LLOGO double quoted expressions and LISP :-
expressions is as follows:

"" ..0> NIL
"<*tine>" mo, worm <41.10)
,csi .(stil>" onb> wan oso
Nos') . ,coon (QUOTE NI> . . .

Nyco hawses 111000 end 110110 Oectlea 11

LISP LOGO MEMO Page 35 Fl June 27,1974

'Square brackets in 11L0G0 specify quoted fists. Parentheses are never used
around lists as in LISP, but are only used to delimit forms. LLOGO recognizes square
brackets as Well as-USP's parentheses in denoting lists. The difference between brackets
and parentheses. LLOGO is that the brackets always denote list constants, and not
fornis, and that the outer level of brackets is implicitly quoted:

fir00 ff,ARJJ am> (QUOTE ((POO BAR)))

There is a minor pitfall in the current implementation: nob, that top level parentheses
implicitly quote the list, interior ones do not. This does not always work, for instance
when using RUN one may expect interiorlists also to remain unevaluated:

?PRINT /PRINT /RIO BARB ..7> (PRINT '(PRINT (F00 BAR)))
PRINT (BAR)
?RUN /PRINT iF00 BAR)/ (RUN '(PRINT (Poo BARDY

prints the value of the function FOO applied to input BAR.

Square' brackets in 11LOGO also: Wire with double, quotes the propertit'described
above of affecting the LOGO reader's decision on ending the names of atoms. Within a
'square bracketed list in I1LO00, an atom is terminated only by a space, carriage return
or bracket. This property is not true of square brackets in LLOGO. In LLOGO, /F00.3/ is
a list containing three elements, but in 11LOGO, it contains only one element.

String quoting in LLOGO is accomplished using the dollar sign character, 5. LLOGO
wilt treat anything appearing between dollar signs literally, with special characters devoid
of any special meaning, Within such a string, two consecutive dollar signs will be,
interpreted as a single-dollar sign. So, 5555 would be the word whose name is a single
dollar sign. 55 is the empty word. Rubout, editing and interrupt characters cannot be
quoted in this manner. Use the ASCII function of LISP if you really need them.

The character sharp sign ral in 11LOGO is used as a prefix macro character
which takes one input which must be a word, and executes it as a procedure. It is used
where one wants to use a weird name for A procedure, or a name already used by the
system. Sharp sign is used as an escape to tall that procedure. Thus, a procedure
defined in 11LOGO by TO "PRINT . . . would'be called by ?PRINT, TO "3 ... would be
called by sw3, etc. In. LLOGO, sharp sign is used as a macro character which causes the
next s expression to be interned as if it were read in LISP if you are in LOGO, or as if it
was read by LOGO if you are in LISP. If you are in the LISP mode of LLOGO and want to

° access your LOGO variables, you can say *4'00, etc. The conflict may be changed in the
near future by altering LISP LOGO's. macro character to one that does not conflict with
1119GO. Suggestions welcome.

The Boolean [logical] constants in 11LOGO are TRUE and FALSE, while in LLOGO,
they are T and NIL, as in LISP.

The 11LOGO function LEVEL, which returns the current procedure depth, is not
implemented.

11LOGO forms, are divided into two categories: those that output [return a value]
and those which do not. In LLOGO, as in LISP, every form returns a value. To simulate
11LOGO and CLOGO in this respect, as a special hack, forms which return a question mark
do not have their values printed by LLOGO's top level function. However, LLOGO cannot

Differences between I1L000 and LIMO

4

Section 11

LISP LOUD MEMO Page 36 June 27, 1974

catch thtk error of such a form hiding inside parentheses, as can 1 ILOGO. Most of the
primitives which do not return a value in I ILOGO return' in 110GO.

The character : in-IILOGO is treated as a macro "the value of ..."..if A is boOnd to
B and B,is bound to C,. then ::A iv-C. In LLOGO, variables set by MAKE are just LISP
atorbs beginning willi the character y so ::A will be the value of the variable set by
MAKE ":A" <whatever>, etc: We are seriously considering changing this, eliminating the
incompatibility. The present setup requires MAKE to do' an expensive EXPLODE on the
variable name, in order to create the word which-begins with a cOlon.

LLOGO expects to find only one form inside parentheses; constructs. like
/

?(FO 100 FD 50 SUM. 4 5)
°

are prohibited. I ILOGO allows more than one form inside parentheses under certain
restrictions.

The I ILOGO procedure TEXT, .which returns a list of lists which are the lines of
a procedure whose name is givenas input, is not implemented in LLOGO. Howevet, you
can access the definition of a function in its parsed LISP form on the property list [CDR]
of the atom.

Comments: LLOGO. understands two comment conventions: LISP's convention of
treating as a comment anything between a semicolon and the next carriage return, and

..
LOGO's of treating as a comment anything in between exclamation points. [The
ex n points must be matched, and comments can be continued past the end of the

.

I y ing after exclamation points on aline is ignored.

The top' level loop in LISP LOGO is a READ-EVAL-PRINT loop whereas PCIPI. I
LOGO is a READ-Et/AL loop. This means that IlLOGO prints out only when you ask it to
piint finlike LLOGO which prints out values after every evaluation of a LOGOeform.
& ,

In 111060:
?SUM- 4 8
yop DONT SAY WHAT TO DO WITH 12

In LLOGO
?St/M 4 8
12

Line numbers can be any integer inside the INUM limit. Floating point, negative
numbers and zero are allowed also.

. ,
Percent sign (%) does not echo as a space. Carriage returns within square-

bracketed lists print out-as such, not as spaces, as in 1110GO. ,/
:EMPTY is the empty list, which is LISP's NIL. :EMPTYW is the empty word;

which is the LISP atom whose, print name is (ASCII 0):

The character control -T' [AT] is converted to double quote ri when it is read in.
This is for compatibility with CIOGO. !haven't the faintest idea of why CLOGO does it.

LISP,LOGO and 11LOGO differ on the syntax for array's. LISP LOGO uses the LISP
array 'facility; to define an ;array use:

Differences between 11L000 and LLOGO '1 Section 11

0

-

LISP IX DO' MEMO Page i7 June 27,1974

?ARRAY <mantis> T <iineeneion 1> !dimension N>
J.

Values can be stored by

.STORE <array name> <subscript 1> . . <subscript N> <value>

Values are accessed as if the array were a functir, which expected the sane number of
inputs as the number of dimenSions in the array.

The LLOGO function RANDOM, of no inputs, returns a random floating point
number, which is between zero and one. If given two arguments,..it returns a random
number between its first and second argument, inclusive. If both its inputs are fixed
point, it returns a fixed point number, otherwise it returns a floating point number.
(RANDOM 0 9) behaves as 11 LOGO RANDOM.

LLOGO has only one global test box. When a subprocedure performs a TEST the
result replaces the result produced by any TEST's prior to the subprocedure call in its
superprocedure. IFTRUE's and IFFALSE's after the subprocedure call in the
superprocedure will be conditional on the last TEST which Was performed, regardless of
what procedure it was in. ,

ROUNDOFF in LLOGO takes either one br two inputs. If given one input, the
number is rounded to an integer, otherwise rounded to as many places to the right
of the decimal point as specified by the secor,OPut.-

LOCAL'variables are handled differently ih LLOGO than in 1 ILOGO. Regardless of
Where a LOCAL statement is placed in a procedure, the variables declared will be local to
the- entire piocedure. This corresponds Jo a. PROC variable in LISP. LOCAL accepts any
number of variable names as input.

Inserting lines into procedures under program control should be done using the
function INSERTLINE. In I ILOGO, the following will insert a line into RI,E7t11 when

MUNC is executed:

?TO MUM 42.
>10 EDIT RLETCII
>20 10 PRINT (NEW LINE ADDED TO BLETC1I/
>END

This will hot work in LLOGO. Instead replace line 20 with:

>20 INSERTLINE 10 PRINT (NEW LINE ADDED TO RLETCM

There is a memo by Wade Williams which explains some of the finer points of
1.ILOGO Syntsx, and should be consulted for further information. The I ILOGO User's.

Manual should also be of assistance.

Differences between 1114100and LL000 Section 11

42

LISP 1000 MEMO Page 38 Awe 27,1874

Section 12. Using LLOGO on MULTICS

LISP LOGO has now been implemented on MULTICS, and this is the only version of
LOGO available for that system. Below are instructions for using it, and .a list of
differences between the MULTICS and ITS versions. Except' for the differences in file
naming conventions, and limitations imposed by the operating system, source language
programs should be entirely compatible. For more information on MULTICS LISP, see the
MACLISP Reference Manual by Dave Moon.

The LISP LOGO Music package is available for use on MULTICS. See Section 16 for
more details. The display turtle and GERMLAND packages are not available in the MULTICS
implementation. MULTICS does not have adequate facilities for using displays such as the
340 and the GT40. if probably would be possible to implement a rudimentary turtle
package for the storage type displays on MULTICS such as the ARDS and TEKTRONIX
terminals, but we have no plans to do so at present. We do hope to have available soon,
however, facilities for using the mechanical floor turtles [controlled by the Thornton Box]
on both ITS and MULTICS.

12.1 Where To Find'It

To obtain LISP LOGO, yOu must first create a link to the necessary files. After
you log in, type

>4441>ep>14>1410

This needs to be done only once for each user. Subsequently, you can get LLOGO simply
by typing

- logo

You should Ihen-sk message indicating the version numbers of LISP and LOGO, as on
ITS, and the alloca will ask you if you want to use the music box. If you have a file in
your directory named start up.lego it will be read in as an initialization file.

12:2 File Naming Conventions

An ITS file .specification consists of two filenames of up to six characters each, a
device and directory name. A file specification on MULTICS(lis called a "pathname", and
consists of arbitrarily many components each naming a hode in a tree structure of
directories and segments [files). The components of a MIMICS pathname are separated
by ">" characters. Any pathname beginning with ">" is considered to be a full pathriame,
i.e. start at the root of the tree, otherwise, it is considered to be relative to the directory
which is currently the default. This will usually be something like "xudd>your-project-
name>your-user-name". File names are assumed also to have two components as on ITS
and you type them into to LOGO the same way, as two words, except that each word is,
not limited to six character& The default second file name is logo", not ">", to be
consistent with MULTICS conventions. In your directory, the two file names will. appear
separated by a s.". Files 'whose second names are "fast" are assumed to contain object
code produced by the LISP compiler. This will correspond to the file with only the first

Using 4.000 ea MUMS Section 122

43

LISP L000 MEMO 'Page 39 June 27,1974

name [no second component] in your directory. Hero are some examples: [assume your
name is "person" and youi project is "project "]

LOGO file name

?read file foo
?read file foo bar
?read file foo fast
?read file foo bar mumble
?read file foo bar >udd>llogo

12.3 Terminaiogy

MULTICS file name

>udd>project>person>foologo
>udd>project>person>foo.bar
>udd>project>person>foo
>udd>project>person>mumble>foo.bar
>udd>llogo>foo.bar

On MULTICS, control characters are entered to by first hitting the break or
aim key [if you have one] and LISP should type CTRL/, then typing the ordinary non-
control character, then a carriage return. MULTICS has no other way of acknowledging
your existence before you hit a return, which is the reason for this kludge. Because of
this the control-character line oriented editor which exists in the ITS implementation,
does not exist in the MULTICS implementation. MULTICS uses s to rub out the previous
character, and IR to, rub out the entire line. To enter these characters to LLOGO,precede
them with \.

If you should have to use an IBM 2741 terminal, remember that certain characters
must be escaped. The worst offenders are J and I (type <cent-sign> <leis-than> for f
and <cent-sign> <greater-than> for J), type <not-sign> for A, <cent-sign> <cent-sign> for
\, and type a <cent,sign> before a and O. Upper and lower cases are distinguished on
MULTICS, and all of the system function's, both MULTICS's and LLOGO'S, have 12wer case
names.

To use LISP LOGO on MULTICS over the ARPANET from ITS, it is recommended that
Dave Moon's program TN6 be used rather than TELNET. See DSKLINFO.;TN6 INFO for more
details.

Using 11000 on MULTICS Section 12.3

44

LISP L000 MEMO Page 48 June 27,1374

Gb

Section 13. Using LLOCO on TEN50 and TENEX systems

The 'version of LLOGO for TEN50 runs in a version of. MACLISP that is nearly
compatible with that used at MIT-Al. The TEtro0 version can also be used on TENEX
systems. Most of the incompatibilities are those necessitated by the difference in
operating systems. Specifically, the following commands are not implemented:

PRINTOUT INDEX (alias P_ OI, LIST FILES)
LOCOUT (BYE)
COMPILE
LI NEPRI NT
RUG .

Also, the special packages for LLOGO (the turtle primitives, the music primitives, and
GERMLAND) are unavailable. 0

Another difference between TEN50 flOGO and LLOGO on ITS is in the typing of
control characters (such as AC, All, and all the editing characters - AR AR etc.). on ITS
these characters may be typed at any time. Those specifying an interrupt action (AC, AH)
will always take effect immediately. Unfortunately, this is not true in the TEN50
implementation, because TEN50 allows a running program to, be interrupted only by the
character AC. As a result of this, if the user wants to interrupt the LOGO system while
it is running (e. g. executing a user defined function), he must fikt type AC. This will
interrupt the program, and cause it to print ?A, indicating that it is waiting to read a
control-character. The user may then type the desired control-character, and it will be
acted upon. Note that typing AC is not necessary if the LLOGO system is not running, biit
rather waiting for input. Therefore the editing characters may be used without difficulty,
even on the TEN50 system.

Another minor difference between the two operating systems is in the notation
for file names. This difference is minimized by the syntax used by the LLOGO file
commands. For instance, the command

TRE/IDFILE PROGRM LGO DSK USER

will read the file DSK:USER; PROCRM LCO on ITS, while on TEN50 the file read will be
DSK:PROGRM.WOIUSERJ. Thus most user programs will be able to run with little or
no modification to their input/output operations. (Note that the default second file name
is > on ITS, while on TEN50 it is LGO.) If you want to use a LLOGO initialization file with
the TEN50 implementation, the name of the file should be INIT.LCO on your user
directory

A version of TEN50 LL6G0 is currently available at Carnegie-Mellon (CMU-1013). It
may beloaded, there by means of the follciwing command:

.RUN DSK:LOG0/114801.099/

Using LIMO on TEN58 and TENEX systems Section 13 A

4i)

1.1SP LOBO MEMO. Page 41 I June 27,1974

Section 14.. CERMLAND.

The GERMLAND package is designed to provide the user with a display
environment in which interesting nontrivial questions can easily be investigated, without
the need for sophisticated display equipment. The current implementation runs on any of
the character display consoles in use at the A.I. laboratory.

Conceptually, GERMLANDconsists of a square grid, on which may live" as many
as 10 "germs". Eachgerm may have an arbitrary LOGO program associated with it; this
program determines the germ's movements, as well as whether it eats any of the "food"
present at its position of the grid. For a discusstone some of the problems that can be
investigated in this environment, see LOGO working paper 7.

14.1 Starting Up

The GERMLAND package may be loaded automatically at the start of an LLOGO
run. When started, LLOGO will ask which of the special packages you want. Simply type
YES, followed by a carriage return, when it asks whether you want GERMLAND. The

GERMLAND package will then be loaded, and give you instructions for further help. Note
that if the grid becomes garbled, because of a iransmission ebror for instance, you can at
any tithe cause it to be redisplayed by typing the character n\ icontrolrbackslashj.

14.2 Top1evel Primitives

RUNGERM

Invokes prompter. Asks questions necessary to get started and offers help.

GERMDEMOS
o

Runs a series of demos, leaving the demo programs available for the user to play
with.

TOPGERM

Starts up a GERMLAND READ-EVAL-PRINT loop, using the grid set 'up by the
most recent call to RUNGERM.

UIVGRID

Exitt from TOPGERM, back to LLOGO.

REPEAT <program)). <progrand>

Each program defines one creature. A round consists of executing each program
in turn. After each round, tikrogram waits for input. If the user types a space, one
round is performed; if the user types a number, that many rounds are done. This is
repeated indefinitely until an error occurs. REPEAT is not subtle with respect to
parallel processing. No effort is made to try each program and see whether any conflicts

0111iMLAND Section 142

41

r

LISP L000 MEMO Jane 27,11174

occur. However, eventually a more elaborate be designed that was
sensitive to synchronizing the lives of the ger If no programs to REPEAT,
it attempts to use the programs associated each germ by RUNGERM.

14.1 Grid Primitives

GRID <samba.

'Avis GERMANO. A square grid is crested with <number> squares in a side.

PRINTGRID

Clear screen and redisplay GERMANO grid. Typing A% also causes this to
happen. If there is a germ on the square, the character which represents that germ is
printed in the square's position. If the square is an obstacle, an "X" is printed. If there is
food on the square, the number of particles is printed. If the square is empty, a "." is
printed.

GRIDP <position>

A predicate which outputs T iff the position is a legitimate grid square.

11/AP

Go into "wraparound" mode, in which germs are allowed to go across the
aries of the grid.

NOWRAP.

Leave "wraparound" mode.

Note that WRAP and NOYRAP affect the variable :WRAPAROUND. See Page 46.

MOVE <position>

The germ is moved to the specified grid square. <position> is a sentence of the x
and y coordinates of the square. Typical use is: MOVE NORTH. If the germ moves to a
square which is already inhabited, the former inhabitant is killed. MOVE prints an error
message if an attempt is made to MOVE to a square with an obstacle on it, or a square
outside the grid. The <position> does not have to be adjacent to the current location of
the germ. Hence, MOVE allows non-local movement to any grid.square.

STEP <diroction>

'<direction> is interpreted as a heading. It mGst be either 0, 90, 180 or 270 (mod
360). STEP allows more elegance in the description of a germ program. if the same
structure is used for all directions, then the program can call a subprocedtwe whose input
is cycled through the four directions.

GEEMLAND

47
&dim 14.1

LISP LOOD MEMO Page 43 lune 27, 1974

14.4 Property Primitives

PUTSQUARE <position> <information>. <property>

For. the specified grid square, the data stored under the given property is set to

<information>.

GETSQUARE <position> <property>

The information stored under the <property> is returned. Typical uses are:

(CETSQUARE <position>100D) returns food at <position>.

(GETSQUARE <position> 'INHABITANT) returns the number ob the germ
currently living there, NIL if unoccupied.

(CETSQUARE <position> 'OBSTACLE) returns T iff the square is an obstacle.

REMSQUARF; <position> <property>

Removes information stored under <property>.

WHAT <position>

Outputs all of the information stored for the given position.

FOOD <position>

Outputs the number of food particles at the given position. FOOD returns 0, not

NIL, when there is no food.

FOODP <position>

Predicate which returns number of food particles if any at the given position; NIL

if none.

FILLFOOD <n>

Puts <n> morsels of food on each square of GERMLAND.

EAT <number>

Subtracts <number> of food particles from the current square. Generates an

error if <number> is larger than the total food available. There are two types of germs
-- those that are-hungry and those that are not. Each hungry germ has a food supply

associated with it. The food supply is increased every time he eats by that number of
particles, and decreased by one for each generation. If it ever reaches zero, the germ

dies. So, if he eats only one particle of food on a turn, he must eat arin on the next

turn; it We eats 2, he can skip a turn without eating, etc.

UERMLANO
Section 14.4

LISP Loci MEMO

14.5 Multiple Germ Primitives

Pap 44 home 2701174

WHERE <:gerns>

Returns the coordinates of the square that germ is currently Inhabiting.

NORTH P <:girrne>

Returns true only if the x coordinate of :germ is greeter than the X coordinate of
the germ whose program is currently being executed by RIpE/iT.

SOL/MP, WESTP, EASTP

Analogous to NORTHP.

KILL < :germ>

Assassinates <:germ> and prints eulogy..

GERM <:germ> <squart>

initializes germ to start out located at <square>. form is an integer between 1
and 10.

FOODSIOPLY 4:pranti/

Returns the amount of food that the germ hes.

ACCESSIBLE <squirm> 4:gsrus>

True if and only if <:germ> can pt to <square) on hie next move.

14.6 Turtle Primitives

HEADING <40mr>

Returns the current heading of the germ.

FORWARD <ssmber>

Move <number> spaces in the direction of the current heading. Abbreviates to
Fb <number>. <number> may be negative.

BACK <liumirer>

Move <number> spaces opposite to the current heading. Abbreviates to BK
<number>.

NEXT <directiN>

Returns the coordinates of the next square in the current direction.

0111114LAND Section 14.6

4 'tt

LISP 1000 MEMO Page 45 7 June 27,1574

RIGHT <number>

Turn right <number> degrees--<number> should be a multiple of 90. This may be
abbreviated as RT <number> .

LEFT <number>

Equivalent to RIGHT -<number>. Abbreviates as LT <number>.

FRONT

Returns coordinates of the square in front of the turtle.

RIGHTSIDE. REAR. LEFTSIDE

Analogous to FRONT.

FSIDE, RSIDE, BSIDE, LSIDE

Abbreviations for FRONT etc.

14.7 Touch Primitives

TOUCH <position>
(.

Outputs NIL if <position> does not contain something that can be touched.
Otherwise it outputs an atom describing the touchable object, e.g. BORDER or
OBSTACLE. Typical use is: TOUCH FRONT.

OBSTRUCT <square>

Puts an obstacle at <square>. Germs cannot move onto squares with obstacles.

DESTRUCT <square>

Removes obstacle at <square>.

14.8 Global Variables

:GERM

The number of the germ whose program is being executed by REPEAT.

:GRIDSIZE

Size of the GERMLANO grid set by the GRID function.

:HUNGRY

T Germs are killed if their foodsupply goes to 0.

NIL A germ's foodsupply is ignored by REPEAT.

ut:RMLAND \SOON. 14.0

LW WOO NOV hp 41 Jam 17,174

:WRAPAROUND

T al> Motion across borders is permitted.

NIL Motion across borders is an error)

The user should never change :WRAPAROUND directly. Use WRAP and
NOWRAP to change mock's.

14.! Implementation

GERMLAND uses an array to-represent the grid, and additional arrays for easy
access to information about a particular germ. The individual primitives are, for the most
part, straightforwardly implomentable, given this data representation. Some care is taken
in interfacing with the standard 1.1000 envirionment, so that all the usual debugging
features of LLOGO may be used in the development of germ programs, without
interference with the display of the grid.

a

ti

LISP WOO MEMO Page 47 June ?!,1574

Section 15. Display Turtle Primitives

The display turtle package for the 340 and GT40 is also usable from an ordinary
LISP as well as from LLOGO. Do (FASLOAD.TURTLE FASL DSK LLOGO)to get the
simple display commands like FORWARD, RIGHT,etc. and (FASLOAD DISPLAY FASL
DSK LLOGO) for the fancier snap-manipulating commands.

Abbreviations for thifollowing primitives are noted in square brackets.

15.1 Starting The Display, ,

STARTDISPLAY (SD/

Initializes the screen. The turtle is displayed, at its horns, the center of the
screen. This command is also useful for restarting everything when things get fouled up,
the POPS loses, etc. STARTDISPLAY GT40 uses the GT40 display rather than the 340
display. If you are using the GT40 as a display for the LOGO turtle, it must not be logged
in to ITS as a console.

NODIS PLAY (ND!

Says you want to stop using, the display. Flushes the display slave.

If the display slave for the PDP-6 dies, check that the run light is on. If not stop, io
reset, deposit 0 in 40 and 41 and then start.

LISP has three control characters for the display:

AN

Al

AF

Turns off display.

Display prints like tty.

Turns on display for turtle, assuming a prior call to STARTDISPLAY.

15.2 The Turtle

I DliTURTLE (HT/

Makes the turtle disappear.

SHOWTURTLE 1ST/

Brings the turtle back to life.

IasMlay Turtle Primitives Section 152

52

A

LISP L000 MEMO Page 48 June 77,1974

TURTLESTATE

Ret&ns 0 if the turtle is not displayed, else returns the value of :TURTLE.
:TURTLE is the number of the display item which is the current turtle.

MAKTURTLE <code>

The current turtle is ,replaced by the picture drawn by <code>. Provides
capability to rotate pictures. Subsequent turtle commands, like FORWARD, RIOT, etc.
will make the picture drawn by <code> move as if it wire the original turtle [triangle].

OLDTURTLE

Restores the original LIOGO turtle.

15.3 Movin

FORWARD :steps (FD/

Moves the turtle :steps in the direction it is currently pointed.

BACK :steps IRK/

8

Moves the turtle :steps opposite to the direction in which it js pointed.

SETX :x

Moves the turtle to (:x, Yemo.

SETY :y

Moves the turtle to (XCOR, :y).

SITXY :x :y

Moves the turtle to (:x, :y).

DELX :dx

Moves turtle to (XCOR+:dx, YCOR).

DELY

Moves turtle to (XCOR, YCOR+:dy).

DELXY :dy

Moves turtle to (XCOR+:dx, YCOR+:dy).

HOME f11/

Moves turtle home to its starting state.

Display Turtle Primitives Section 15,3

LISP L000 MEMO

15.4 Erasing the Screen

WIPE

Page 43 Jane 27,1574

Erases the picture on the screen. Does not affect the turtle, or any snaps.

WIPECLEAN [WC/

Like WIPE, except hides snaps also.

CLEARkREEN (CS/

Equivalent to WIPE HOME.

15.5 'Furnin the Turtle

RIGHT :angle /RV

Turns the turtle clockwise :al& degrees.
,

tr

LEFT :angle fLTJ

Turns the turtle counter-clockwiii :angle degrees.

SETHEAD :angle

The turtle is turned to a heading of :angle.

15.6 Examining the Turtle's State

Note: The turtle's home is (0, 0) and a heading of 0 corresponds to pointing straight up.
The variables :XCOR, :YCOR and :HEADING describe the state of the turtle in floating
point. These variables should not be changed explicitly by the user. The following
functions return components of the turtle's state rounded to the nearest integer.

XCOR

Outputs Die X coordinate of the turtle.

YCOR

Outpl the Y coordinate of the turtle.

II EADI NG

Outputs the heading of the turtle.

XHOME

Outputs the X coordinate of the turtle's home in absolute scope coordinates (i.e.
relative to lower left-hand corner of the screen)

Displev Turtle Primitives

9

Section 15.0

LISP LOOp MEMO

YIIOhIE

June 27, 1974

Outputs the .Y coordinate of the turtle's horne.irt absolute scope coordinates.
w.

15.7 The 'Pen

PENDOWN tPlY

Pen lowered to'paper. Turtle leaves a track when moved.

PENUP fPUJ

Pen raiped from paper. Turtle does not leave a track When moved.

PENSTATE

Returns +1 penup or -1 pendown

PENSTATE <I or -1>

Sets the penstate. A common use for this primitive Is to make a sub- procedure
transparent to pen state.

.

ANEW

T if pen is down, else NIL.

HERE

Output; (ENTENCE XCOR YeAR HEADING). Useful for remembering location
via MAKE "P" H 411E.

SETTURTLE tate /SETT/

Sets the state of the turtle to :state. :state is a sentence of X coordinate, Y
* coordinate, and heading. The heading may be omitted, in which case it is not affected.

RANGEm

Distance frOm the turtle's current location- to :p is a point specified. by a
sentence of X and Y coordinates.

BEARING :p

Outputs absolute direction of :p from turtle:

TOWARDS :p

Outputs relative direction of :p from turtle.

Display Turtle Primitives Section 15.7

LISP LOGO MEMO Page 51 June 27,1974 ,

15.8 Global. Navigation

Note: These primitives return floating point if either of their inputs are floating point. \

RANCE ex:y

Outputs distance of turtle from'the point (:x,
1

BEARING :x :y

Outputs absolute direction of (:x, :y) from turtle. (SETHEAD (REARING :y))
points the*turtle in the direction of (:x,:y).

TOWARDS :r":y

Outputs relative direction of (:x, -:y) from turtle. (RIGHT (TOWARDS :x :0
points the turtle in the directtn of (:x, :y).

15.9 Trigonometry

COSINE :angle

Cosine of :angle degrees.

SINE :angle

Sine of :angle degrees.

ITANCE NT :r,:y

Angle whose tangent is :x/:y. 44).

[SIN, COS, and MAN are the correspondirfg functions which input or output in radians]

15.10 Text

SHOWTEXT

Subsequent printing is Moved on the screen. Initially, printing begins in the upper
left corner."'

HIDETEXT

Subsequent printing is no longei displayed. Text currently on the screen remains.

REMTEXT

Any text on the screen is erased and subsequent printing is not displayed.

:SHOW

Dispiay Turtle Primitives Section 15.18

,58

a

LISP WOO MEMO Page 52 rune 27,1974

A .variable which it T if printing is being displayed, NIL if not. Set by
SHOWTEXT, HIDETEXT, and REMTEXT. Don't sit it yourself.

:TEXT

Variable containing the number of the display item which is the text displayed by
SHOWTEXT, etc.

-.MARK :x

(TY PE in is placed at the turtle's current location. SNAP °title" M ARK *ten"
creates a snap of the word "text*. This allows the word to be manipulated, Le, Moved to
any part of the screen, etc.

. ,

:TEXTX HOM E. :TEX7'Y HOME

Variables containing coordinates , of text to be displayed on the screen.
Changeable by user. Initially :TEXTXHONE 0., 2TEXTYMOWN 1000. These are in
absolute scope coordinates.

Mil Manipulating Scenes

Note: :PICTURE is Ole name of the turtle's track Does not include any shipt displayed-
via SHOW, SHOWSNAP, etc. :TURTLE is the name of the turtle. :TEXT is the name of
any text displayed via SHOWTEXT.

SHOW :scene'

:scene is
copied.

HIDE :scene

moved to the current position of the turtle and displayed. It is not

:scene is hidden but not destroyed.

. PHOTO "scene" /SNAP/

The current \picture is copied and named :scene. Any old snap of this name is
destroyed.

PHOTO "scenes' .41sig> (SNAP/

The picture drawn by <line> is)amed :scene.

ENTERSNAP "scene"

'.P/ICTURE is rebound to a fresh display item. The initial state of this item hides
the turtle. Subsequent commands refer to this new item.

ENDSNAP

The original :PICTURE is restored.

Display Turtle Primitives Section 15.11

. -

LISP L000 MEMO

RESNAP "scene"

:scene is made the current picture. The only difference between this and.
ENTERSNAP "scene" is that a new display item is not created, and the turtle is not
hidden. ENDSNAP also restores the original :PICTURE.

RESNAP "scene" <line>

Page 53 Juni 27,1974

The picture drawn by <line> is added to :scene. The <line> is executed, referring
to the turtle residing in :scene. Subsequent commands will refer to the old turtle.

PICTURE <disptay commands>

:PICTURE is bound to a new display item while the commands are executed. The
original :PICTURE is restored following execution of the commands. Similar to-SNAP
"scene" <commands> except that no name is given to the new item. Instead, the number
of the item is returned. Thus, the same effect is achieved by:

SNAP "scene" <commands> or
MAKE "scene" PICTURE <commands>

.Exceptthat.:Scene is not added t5 the list Of snaps.

SHOWSNAP :scene

A copy_of :scene is displayed at. the tin-flee Current

IDESNAP amte

All copies of :scene are hidden.

ERASE

Alt copies of :scene are destroyed.

:SNAPS'

A list containing all current snaps.

15.12- Plotter

PLOTTER

The display is plotted on a new plotter page. PLOTTER will 'ask if 'arrays from
previous plot should be erased. The user should type YES if his preceding plot is
complete.

PLOTTER 1

Display plotted on current plotter page.

NOPLOT

thsplay Turtle Primitives

5 8

Section 15.12

use, woo MEMO Ng 54

The plotter is released.

DISP/1GE

Outline of 7x11 page displayed as :PAGE.

15.13 Pots

DIALS :x

Outputs the value of pot :x as a decimal fraction between 0 and 1. Careful:- the
numbers on the pots are marked in octal, but LLOGO normally expects decimal numbers as
input.

June V, 1574

15.14 Points
.

[Points are displayed whether or not-thi Oeffit down]

POINT

Displays a point at the turtle's current location.

POINT :p

Displays a point at ip.

POINT :snap :p

Displays a point in :snap at :p.

POINT :snap :x

Displays a point in :snap at (:x, :y)

-15.15 Global State of the.Turtle's World

For all of these functions, the first input ":scene' is optional. If left out, the command
refers to :PICTURE by default.

SETHOUE :scene

Resets turtle's home to current position.-

SFTIIOME :scene :x

Resets the turtle's home to the absolute scope coordinates of (:x, :y). Takes
effect immediately by moving the current :PICTURE to the new home. (SETHOME :scene
512. 512.) restores the home to the center of the screen'.

MOTION :scene

Display Turtle Primitives Section 15.15

LISP LOGO MEMO Page 55 June 27, 1974

Moves :scene under the control of space war console 1. Button terminates
movement. The new home is returned, expressed in absolute scope coordinates. If the.
current home is returned immediately,and the space war console is ignored, check that all
switches on the color scope data switch extension are in the middle position.

BLINK :scene

Blinks :scene.

UNBLINK :scene

Terminates blinking.

BRIGHT :scene

Returns current brightness of :scene as a number from 1 (dimmest) to 8
(brightest). Ordinarily, :TURTLE and :PICTURE are at maximum brightness.

'BRIGHT :scene :level

Sets brightness of :scene to :level, where :level is an integer from 1 to 8.

SCALE :scene

Returns current scale of :scene. Scale is an integer from 1 (standard scale) to 4
(16 times standard scale),

SCALE :scene :sip

Sets scale of :scene- to :size, where :size is an integer from 1 to 4. :size is a
multiplicative scale factor. Hence, SCALE I doubles the size of an ordinary picture,
SCALE 3 quadruples it and SCALE 4 multiplies the size by 8. SCALE I restores picture
to standard size. This is a hardware scaling and affects the current display as well as

future dsqleYage.

DSCALE :scale

The length of a turtle step is reset to :scale. :scale may be any real number.
Resetting the scale with DSCALE rather than SCALE has the advantage that the scale
factor may be any real number. However, DSCALE applies only to future display and not
the current picture.

Display Turtle Primitives

CO

Section 15.15

LISP Woo molo

Section 16. The Music Box

June 27,1574

The music box is a tone generator for from one to four simultaneous voices,
having a range of five octaves. Because of the timesharing environment, music is
compiled into a buffer, and then shipped to the music box all at once, for smooth timing.
Wherever possible, these primitives have been made compatible with both those of
PDPII LOGO and PDPIO CLOGO. They made be used with the "old" (Minsky) music box,
or the "new" (Thornton box compatible) music box.

16.1 Plugging' In

To plug in the old,music box, find an EXECUPORT terminal. Plug it into a 300 baud
ITS line, using the phorio 'type plug on the top right of the EXECUPORT back, or the
acoustic coupler. Make sure the terminal is turned off, and plug the must box into the

back of the EXECUPORT. (Or find this all set up in the music room on the third floor.)
Turn off the music box and attached percussion box, and put the EXECUPORT switches
into the line" and "uppercase" positions. Turn on the terminal, typo AZ and log into ITS.
The panic procedure for the old music box (symptom: keyboard dead but ITS not down) is
to switch to local lowercase mode, turn off the music box, and type b.. Then type $1).

When using the music box from MULTICS, remember that both carriage return and
line feed must be typed to end .a line, when using an EXECUPORT. The terminal should be
in "half duplex" and "lower case" modes. The panic procedure described above is not
recommended, since putting the terminal into local mode-will have the effect of logging
you out of MULTICS.

Plbgging in the new music box is a bit More of a problem due to limitations of
present hardware. The critical item is a small piece of electronics known as the "terminal
controller card ", to be had from General Turtle in the basement of 545 Tech Square. This
card is to be inserted in the correct orientation in port 4 of a Thornton box. (If you have
never done this, ask! Putting it in backwards will burn out the card.) The ;music. box
should be plugged into o-port .1, 2, or-3,-depending upon which has the music box card. (It
should, be labelled.) Then, plug the interface connector of the Thorton box into a 300
baud ITS line, I terminal into port 4, and log into ITS. The panic procedure for, the new
music box is to get your terminal to echo "no " (control-Q space). Since the normal print
routines will actually sendr<uparrow Q> for <control-Q>, this is most easily done with the
"echo" gadget of the Thorton Box, a small connector which makes the Thorton Box look,
like a full duplex computer line. (If you want to make yourself one, see General 'Turtle or
Mark Miller; you probably won't need it.)

16.2 Turning On

Assuming you are plugged in and logged into ITS, you may now run either music
box in LISP or LLOGO. LLOGO will ask you if you want the music box; if so, it will ask you
which one; if the new or*, it will ask you which port it is plugged into. After answering
all questions, type .srmirmusic. It will tell you to turn on the music box (the old 'one
will make a lot of noise), and then typeOK. Then, the noise (if any) will stop, and you
are ready to go. LLOGO behaves much like other LOGOs, and understands the primitives
below.

The Music Box
O

Section 16,2

LISP LOGE MEMO Page 57 June 27,1974

The music box can also be run from a pure LISP. Type (F/ISLO/1D MUSIC FIISL
0.51(LIMO), and answer the questions. Type (STARTMUSIC) and the following"
primitives will behave like LISP SUBRS or FSUBRS. (If you do ERRLIST hacking, see Mark
Miller.)

16.3 Music Primitives

A great deal of effort has gone into ensuring upward cpr4ipatibility with CLOGO
and 1 1LOGO. If you have programs for either of these which no longer work on LLOGO,
please let me know. Notice that many Intermediate" level functions such as CHORUS,
which had been written in LOGO code, are supplied as LISP primitives for efficiency. In

addition, new facilities have been added which should be helpful. In the following, all
such situations haVe been indicated. Occasionally, a single function replaces several
LOGO functions; the others are still available, but may print a message recommending the
newer function for future code. Since most music functions are executed for effect,
unless otherwise indicated, the value of a function is the atom (word) ?.

BOOM

Returns the number which corresponds to a drum beat. Using DRUM is more
efficient. No inputs.

BRUSH <duration list>

Takes 1 input, a list of durations. Plays (i.e. stores in the music buffer for the
current voice) a sequence of brush notes (see GRITCH) and rests. A duration of n
means 1 brush followed by n-1 rests.

CHORUS <form I> .. <form 4>

Takes from one to four inputs, which should be forms (procedures with
arguments, or constants]. CHORUS evaluates each argument in turn, and then goes on to
the next voice, in cyclic order, and evaluates the next argument. Example:

?CHORUS SING 1 10 SING 5 10 SING 8 10
?PM

If the number of inputs is the same as :NVOICES, sequential calls to CHORUS or
SING will do the expected thing; if the number of voices used by the arguments is equal
to :NVOICES, recursive calls will also work. For other situations, just remember that
:VOICE is updated after evaluating each argument. For example, if :NVOICES 3 and
you CHORUS two calls to SING, the next call to CHORUS will affect voice 3.

CHORUS2 <form 1> <form 2>

Version of CHORUS which takes exactly two arguments. For upward
compatibility only.

CHORUS3 <form 1> <form 2> <form 3>

Analogous to CHORUS2.

Ng*

9 fit Music Box Section 16.3

LISP WOO MEMO June 27,1374

CHORUS4 <form l> <form 2> <form 3> <form 4>

Analogous to CHORUS3.

DRUM <list of durations>

Analogous to BRUSH for drum notes (ies BOOM).

CRITCH ')
Returns the number corresponding to the brush sound of the percussion speaker.

More efficient to use BRUSH.

A AKETUNE <tune name>

Takes as input a name, like LOGO MAKE or LISP SET. It multiplexes the buffer
and saves it as the "thing" of the name. That is, it stores the tune as data, as opposed to
procedures. This allows faster playing (see PLAYTIME) and easy storage (S/WEd with
other LOGO variables.) Since MAKETUNE does not clear the buffer, allows saving and
playing incrementally larger portions of a long piece. Tunes made on one music box can
be played on the other, with the exception that tunes with exactly three voices can
never be played on the new music box (se. NVOICES). MAKETUNE did not exist in
CLOGO or 1 1LOGO.

Al IMMIX AR

No inputs. Clears the music buffer, and starts at voice 1. This should be done for
example, after typing AC to kill an unpleasant song, or after MAKETIMEing the final
version of a song, before starting a new one.

MBUFCOUNT

Same as KEN.

MBIJFIN IT

No-op. Prints message to let you know you tried to use this relic of the past.

UBUFNEXT

No-op. (See MBUFINIT)

M !RIF PlIT

No-op. (See MBUFINM

Ai BUYOUT

No inputs. Plays the music buffer. Does not clear it.

MCLEAR

Same as MBUFCLEAR.

The Music Box
Section 16.3

a.

LISP L000 MEMO Page 59 June 27,1974

M LEN

Returns the duration of the longest :VOICE created so far (since the last
MBUFCEAR). Useful for building procedures such asl.percussion acdbmpaniments for
arbitrary length tunes. (see V LEN, :MAX)

MODMUSIC <7" or NIL>

Takes one input, NIL or otherwise. If non -NIL, puts music in a mode where
numbering is from 0 to 59., and note 60. is the same as note 0. (i.e., (note mod 60)), so
that one need not worry about exceeding the range of the music box.

NEW 4WSIC

No inputs. Informs system that you wish to use the new music box. Asks which
port music box is plugged into. Normally user will not need to call NEW MUSIC, as the
questionnaire at load time suffices. See: OLDMUSIC.

NOMUSIC

No-op. See MBUFPUT. This function may be reinstated as a way to excise the
music package, for example, when one wants to load the turtle package instead.

NOTE <pitch> <duration>

Unfortunately, (through no fault of LLOGO), there are minor variations between
11LOGO and CLOGO. The difference between NOTE and SING is one such problem.

According to LOGO memo 7 (8/10/73), NOTE is the basic 11LOGO music command. It
takes two inputs, a pitch and a duration. It numbers pitches chromatically from -24. to
36. with 0 being middle L. There are also three special pitches, as follows:

-28. is a rest
-27. is a boom
-26. is a gritch
-25. is illegal.

11LOGO NOTE can also take multiple inputs. LLOGO music has implemented all of this for
NOTE, except the multiple inputs. The numbering is slightly different from CLOGO SING,
which is also implemented in LLOGO. (see: SING).

NVOICES <1, 2, 3, or 4>

Takes one input, hopefully a number between 1 and 4. Sets :NVOICES to that
number, clears the buffer, and sets :VOICE to 1. Remember that 3 voices is illegal on the
new music system, and will generate an.error. It is generally better to use four voices,
one blank, so that tunes will play on either music box. In MODMUSIC 7' mode, (normally
not the case), calling NVOICES with a number outside of [1,43 will not cause an error,
but seems crazy. The 1+ input mod 4 will be used instead. SETing :NVOICES or
MilKEing " NVOICES" cannot be prevented, but is considered a faux pas. Accessing
:NVOICES is welcomed. Calls MBUFCLE/IR and resets :VOICE to 1. See: :NVOICES,
:VOICE, VOICES, MODMUSIC

OLDMUSIC

1ht Music Box Section 16.3

(iIi

LISP 1000 MEMO June 27,1'974

Na inputs. Puts system in mode for old box. Normally not needed by user,
as questionnaire at toed time suffices. Mi ht used, for example, if you made a mistake
answering the questions. See: NEWMUSI

PERFORM f Abbreviation PM!

No inputs. Outputi.' the music buffer, and then does an MRUFCLEAR. See:
MBUFOU7', MBUFCLBAR, PLAYTUNE.

PLAYTUNE <tine>

Takes one input, which must evaluate to a tune created by INAKAITINE. It plays
the tune. Does not clear or otherwise atter the current music buffer. PLAYTUNE is
transparent to the current number of voices, even if the tune uses a different number.
See: MAKETUNE, PM.

REST

No inputs. Returns the number of the note which generates silence on the music
box. (Like ROOM and GRITCH, this will win independently of whether 11LOGO or CLOGO
primitives are being used; likewise, it will be the correct number for MODMUSIC T or
normal state, even for different scalebases.) Naturally this checking is less efficient than
just calling SING 45. or NOTE -28. for the appropriate duration. See: SING, NOTE,
MODMUSIC, :SCALEBASE.

RESTARTMUSIC

No inputs. Like srmirmusic, except re-initializes all system variables, and runs
questionnaire as far back as asking which music box. Useful in situations of total loss
after panic procedure. Usually tunes created by MAKETUNE, and user procedures will
be intact. Buffer will be wiped out, In cases of peculiar behavior at login or load time,
guarantees that everybody thinks they have the device you think they do. If this does
not work, go to "PLUGGING IN".

SING <pitch> <thitration>

Basic CLOGO and LLOGO music command. Takes two inputs, a pitch number, and a
duration. It is highly recommended that durations be Integers greater than 0! Very large
durations (each unit corresponds to a character atom in LISP) are apt to slow down the
system a lot, so small integers are highly advised. Pitches are from -25. to 39., with 0
being middle C. (But see the remarks about 11LO00's variant, NOTE, and also
:SCAT M/1SE and MODMUSIC.) Pitch -25. is a rest, -24. a boom, -23. a gritch, -22.
ignored. (But see REST, ROOM, GRITCH) Durations are normally broken down into N-1
beats of pitch and 1 beat of rest, to avoid slurring the music. However, if the SPECIAL
variable INSTRUMENT is "STACCATO", 1 beat of note followed by N-1 beats of rest
will be sung. (i.e., stored in the music buffer under the current voice). If other phrasing
is desired, it may be added later.

SONG <pitches) <durations>

Takes two inputs, a list of pitches and a list of durations. Calls SING, pairing
pitches with durations until the shorter list is exhausted. In other LOGOs, this was not a
primitive, but was written as a recursive LOGO prOcodure.

The Meek flex Section 113.3

LISP LOGO MEMO Page St June 27,1974

STARTMUSIG

No inputs. Should be called to turn on the music box. Unlike CLOGO, it pauses to
let you turn on the box, to minimize the unpleasant noise generation on the old music
box. (PERFORM alone will suffice). Clears the music puffer and sets :VOICE to 1.

Probably unnecessary with stew music box.

VLEN

No inputs. Rpturns duration of current buffer. See: MBUFC0U1VT, :MAX,
MLEN. Useful when chorusing a tune with an accompaniment. If the accompaniment is
the last argument to CHORUS and contains a stop rule like,

IF VLEN MLEN THEN STOP

the accompaniment can be used with arbitrarily long tunes.

VOICE <voice>

Sets :VOICE to its one input, provided that input is a positive integer less than 5.
If greater thin the current number of voices, NVO ICES is called to increase the number.
All music from now until the next call to VOICE (or a primitive like CHORUS which calls
VOICE) will go into this voice. All the voices in use will be multiplexed prior to
PERFORMing the buffer. In MODMUSIC T mode inputs greater than 4. do not cause
errors, but are simply cycled through the allowed voices. MilKEing (LLOGO) or SETing
(LISP) :VOICE is not nice.

VOICES

No-op. See NOMUSIG If anyone has a use for this which is reasonable, e.g.,
synonym for NVOICES, I will be glad to implement it.

:INSTRUMENT

Special system variable which is user settable. Its value determines the behavior
of NOTE and SINC as above. Current meaningful modes are LEGATO and STACCATO.
Anything else is considered STACCATO for now.

:MAX

This pseudo variable is actually a call to MLEN, above. It exists for compati ility
with CLOGO.

:NVOICES

Special system variable, not to be changed except by calling NVOICES. It tells
you the number of voices being filled or played at present. Default is 2.

:VOICE

Special system variable, to be changed only by calling VOICE. Tells you the
current voice that is being filled. MRUFCLEAR resets to L Always initialized to 1. Can
be changed by call to CHORUS.

Ito Music Box a Section 16.3

LISP WOO MEMO Ng 62 June 27,1874

:SCALER/LSE

Special system variable which may be changed by user. It tells the offset from
middle C to be used in renumbering notes to ones taste. Default is zero.

C.

The Music Box

0

Section 16.3

4.0

LIST L000. MEMO Page 63

Index

11 LOCO 2, 11, 13, 37
11LOGO User's manual 13, 37

340 14, 38, 47

Abbreviation 19, 22, 23 .

altrnode., 13
ambiguity 16
Angle brackets
APL 6

13,

arithmetic 3, 16, 17
ARPANET 39 .

Array 1, 36
ASCII 8
associativity 16

MOP 28
brackets 35
breakpoint 10, 24, 25
buried procedures 21, 22, 23, 30

canned loop 4
carriage return 7, 8, 13, 20, 24, 35, 36, 39, 41
Character display I, 14, 41
character syntax 8

3, 4, 5, 11, 13, 18

comments 36
comparison 16, 17
compile 22, 30
Conditionals 4, 5
CONNIVER 1, 8
Control character 13, 20, 21, 24, 39, 40
control structure 4, 31
control-atsign 29

CLOGO 2,
CMU 40
colon 36

DATAPOINT terminals 14
defining 5, 14, 20
device 32
devices 8
directory 32, 38
Disparity 2
dollar 35 .

dotted pair 3, 8
double quote 34, 36

June 27,1574

II

'Mb

edit mode 20
Editing 3, 9,' 10; 14, 20 35, 40
English 2, 4, 5 ,3
error. handling 24, 34
error intirrppt 25
error interruptghandlers
error messages 9 10
evaluator" 9
exclamation. points ,,36
exponentiation 47'

-file specification 32, 38
fixed point 1,3, 4, 37
Floating point 1

food supply 43'
fraction 3
functional arguments 19

. garble' collector 28
generation 43
GERMLAND . 11, 14, 38, 40, 41
global iiariables -29
GT40 11, 14,38, 47

heading . 42
homonYmi 6, 9, 18, 19
How To Gift On the System 13
hungry 43

IEIM 2741 :19
identifiers 8
implementation 8, 12
infix 5,8, 9, 16, 17, 18
initialization file 44, 38, 40
inputs 5; 6, 6, 28.
Interim LISP tiser's Guide 13
internihg 8, 11
Interrupt 1, 21, 35, 40

line number '3, 4, 6, 9, 36
Line oriented input 7
line-oriented LISP reader 8
link 38
lists 2
logic 6, 16, 17; 35
login. 13
logout 15

MACLISP Reference Manual 13, 38
minus sign 18
mistyping 10-
mnemonic 3, 4
MULTICS 1 2, 18,10, 32,3$,.39'
.music -8, 14, 14,34, 38, 40

LISP L000 MEMO

w

r

Page 69 June 27, 1974

Naturalness 2
negative number 18
NLLOGO 14
noise words 4, 5

obarray 8
obstacle 42
output 35

pirentheses 5, 7, 9, 16, 36
parser 5, 9, 16, 18, 19, 28
parsing property 9
pathname 38
PpP-6 11, 47
I5ercent sign 36
PLANNER 1, 8
precedence 16, 17
'prefix 5, 9, 16, 18
pretty print 4
primitives 8,,9, 22, 30, 34
printing 9, 10
program: form 1.3
program understaridirs 9
prompter 20, 41
Property list 1,-9$1 19, 36
pure 11'

reader 8
readtable 8'
recursion 1, 2,
roundoff s 4
rubout 21, 35
run time error 10, 24

Self-modifying procedures
semicolon 36
sentences 2
sharp sign 25,29, 35
side effects 28, J,c,
Simplicity 2
single character object
single quote a4
size 11

snap 47
speed 9, 11`°'°
stack 10, 25, 28
;string 11, 35
super-procedure tree

TEN50 12, 32, 40
TENEX
Thornton box 56
-TN6 39
top level 29, 36

31

Index0

LISP LOOS MEMO Pegs ES Joni 27,1874

turns 8, 11, 14, 21, 38, 40, 47
type checking 9, 10
typing errors 20

unparser 10, 18

varisbits 6, 21, 29, 33

words 2
wrong number of inputs 28

LISP WOO MEMO Page 67. June 27, 1974

Index to LLOCO Primitives

A

AR
AC
AE
AF
AC
An
AN
AP
AR
AS
AT
AW
AX
AY
AZ

SP

41,42
25
40
20
47
14, 30,
26
47
21
20
21
36
33
14
47
13, 56

25, 27

40, 58

:CAREFUL 18
:COMPILED 30
:CONTENTS 30
:EDITMODE 20
:EMPTY
:EMPTYW
:ERRBREAK 24, 26
:GERM 45
:CRIDSIZE 45
:HEADING 49
:HUNGRY 45
:INFIX 18
:INSTRUMENT 61
:LISPBREAK 26
:MAX 6t
:NVOICES 61
:SCALEBASE 62
:SHOW 51
:SNAPS 53
:TEXTXJIOME 52
:TEXTY HOME 52
:TURTLE 48
:VOICE 61
:WRAPAROUND 46
:XCOR 49
:YCOR 49

Index to LL000 Primitives

72

LISP L000 MEMO Page 65 June 27,1974

ABBREVIATE 19
ACCESSIBLE 44
AND 4, 5, 17
ARRAY 37
ASCU 36
ASSOCIATE 17
ATANGENT. 51

BACK 44, 48
BEARING 50
BK 44, 48
BLINK 55
BOOM 57
BOTH 5, 17
BREAK 25
BRIGHT 55
BRUSH' 57
BSI DE 45
BUG 15, 40
BURY 33
BUTFIRST 2, 3, 4
BUTLAST 2

CAR 2, 3, 4
CATCH 25
CDR 2, 3, 4, 36
CHORUS 57
CHORUS2 57
CIIORUS3 57
CHORUS4 58
CLEARSCREEN 49
CO 27
COMPILE 30, 33, 40
CONS 3, 28
CONTINUE 24, 25, 26, 27
COSINE 51
CS. 49

DECLARE 30
DELX 48
DELXY 48
DELY 48
DESTRUCT 45
DIALS 54
DISP/IGE 54
DISPLAY 19
DO 4,19
DOWN 26, 28
'DRUM 58
IJSCALE 55

Index te LIMO Primitives

LISP 1.000 MEMO Page 69 June 27,1574

EASTP 44
EAT 43
EDIT 18, 20
EDITLI NE 20
EDITTITLE 20, 28
EITHER 5, 17
END 20
ENDSNAP 52
ENTERSNAP 52
EQUAL 5
ERASE 19, 22,'23, 33, 53
EV ALFRAME 10
EXIT 27
EXPLODE 36

FALSE 6, 35
FD 44, 48
FILL FOOD 43
FIRST 2, 3, 4
F WS IICOM PILED 30
FLUSH INTERPRETED 30
FOOD 43
FOODP 43
FOODSUPPLY 44
FORWARD 44, 48
FRONT 45
FSIDE 45

GERM 44
GERM DEMOS 41
GET 19
GETSQUARE 43
GO 4, 5
GOODBYE 15
GRID 42°
GRIDP 42

II 48
HEADING 44, 49
HERE 50
HIDE 52st.
H IDESNAP 53
IIIDETEXT 51
H IDETURTLE 47
HOME 48, 49

-/IT 47

IF 5;17
I FFALSE 4,37
I FTRUE 4,37
INFIX 17, 18
I NSERTLINE 37
IS 5

Index to LL000 Primitives

¶,

LISP L000 148/40

I

KILL 44

LAST 2, 18
LEFT 45, 49
LEFTSDE 45
LEVEL 35
LINEPRINT 22, 40
LISPBREAK 25,27
LIST 19
LLOCO war) 14
LOCAL 37
LOCOBREAK 25, 26, 27
LOGOUT 40
LSIDE 45
LT 45, 49

MAKE 17, 32, 36
M AK ETUNE 58
MAKTURTLE 48
M APCAR 4
MARK 52
MBUFCLEAR 58
MBUFCOUNT 58
MBUFINIT 58
MBUFNEXT 58
MBUFOUT ..58
MBUFOUT 58
MCLEAR 58
M LEN 59
MODMUSIC 59
MOTION 54
MOVE 42 4,

NEW MUSIC 59
NEXT 44
NIL 6, 35, 36
NODISPLAY 47
NOMUSIC 59
NOPLOT 53
NOPRECEDENCE 18
NORTH P 44
NOT 17
NOTE 59
NOWRAP 42, 46
NVOICES 59

OBSTRUCT 45
OLDMUSIC 59
OLDTURTLE 48
OR 4, 5, 17

fain to LL000 Primitivis

JIM 27,1974
w 4

LISP LOOS MEMO Page 71 June 27,1574

PAUSE 25
PD 50
PENDOWN 50
PENP 50
PENSTATE 50
PENUP 50
PERFORM 60
PHOTO 52
PICTURE 53
PLAYTUNE 60
PLOTTER 53
POINT 54
PRECEDENCE 17
PRINT 18
PRINTDOWN 27
PRINTGRID 42
PRINTOUT 6, 19, 20, 21, 22, 32, 33, 40
PRINTUP 26
PROC 9, 37
PU 50.
PUTSQUARE 43

RANDOM 18, 37
RANCE 50
READ 19
READFILE 19, 30, 33
REAR 45
REMSQUARE 43
REMTEXT 51
REPEAT 41
RESNAP 53
REST 60
RESTARTMUSIC 60
RIGHT 45, 49
RIGHTSIDE 45
ROUNDOFF 37
RSIDE 45
RT 45, 49
RUN 19
RUNGERM 41

SAVE 18, 32, 33
SCALE 55
SD 47
SETHEAD 49
SETIIOME 54
SETT 50
SETTURTLE 50
SETX 48
SETXY 48
SETT 48
SHOW 52
SflOWSNAP 53
SHOW TEXT 51, 52

Index to LL000 Primitive.

LISP 1.000 MEMO

A

INge 73 hoe 27,1974

SHOWTURTLE 47
SINE 51 .
SING 60
SONG 60
SOUTH P 44
SPECIAL 30
ST 47
STARTDISPLAY 19, 47
STARTMUSIC 61
STEP 42
STORE 37
SUM 6

7' 35
TEST 4, 17, 37
TEXT 36
THEN 4, 5
THROW 25
TO 4; 5, 20, 22
TOPGElt_ 41
TOUCH 45
TOWARDS SO
TRACE 10, 23, 29
TRUE 35
TURTLESTATE 48
TYPE 52

UNBLINK 55
UNGRID 41
UNSPECI AL 30
UP 26, 27, 28
USE 33
USER-PAREN 10

VOICE 61
VOICES 61

WC 49
.WESTP 44
WHAT 43
WHERE 44
WIPE 49
W ITOECLEAN 49
WRAP 42, 46
WRITE 32, 33

XCOR 49
X HOME 49

YCOR 49
Y HOME 50

77
Index Is LUGO Prinsides

A

