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SUMMARY

Problem

The problem was to develop and implement standardized techniques for deriving and validating
measures of operator performance. Traditional techniques involve hand-selecting measures which appear to
have content validity, then testing the measures against other validation criteria using operator performance
data. This usually results in a resource-consuming iterative research process that is often unsuccessful,
because: (1) it is never known at the onset whether or not the most useful measures have been overlooked,
(2) the number and potential validity of measures investigated are limited by and vary with the researcher's
ingenuity and the time he has available for the study; and (3) the research process and all associated manual
effort must be repeated for each new measurement task.

Approach

The approach was to develop and implement computer-aided techniques for deriving and validating
operator performance measures. A "universal" set of potential measures was defined which possesses
characteristics encompassing many traditionally selected measures. The set also inherently contains a
myriad of other measures whose characteristics render them reasonable candidates. Vectors were then
identified which constitute generators for the set of measures (i.e., the vectors span the defined measure
space). Computational algorithms were developed which generate and operate on the constituent vectors
Using multiple regression techniques. Several empirical validation methods were developed for testing
candidate measures thereby generated. All techniques were implemented in a computer-aided measurement
processor which: (1) accepts sample performance data and various user inputs, and (2) generates and tests
candidate measures, computes' statistics for assessing their validity likelihood, and prints results for user
analysis.

Results

The developed measurement processor was successfully implemented on a Sigma 5 computer.
Demonstrations of the operation of the software were performed using a limited amount of pilot
performance data recorded on a T-37B aircraft. The processor performed necessary data smoothing,
automatically segmented the flight maneuvers for measurement, and developed criterion functions, from the
skilled operator data provided. Actual generation and validation of measures was not demonstrable due to
nonavailability of originally anticipated data. However, correct software performance of all parts of the
processor was verified.

Conclusions

The theoretical concepts and computational techniques underlying the developed measurement
processor are unique and have great potential for operator performance measurement research. The applied
concept of developing a set of vectors which span a conceived measure space and operating on it with
regression techniques to generate candidate measures is itself suggestive of a new and extremely powerful
measurement tool. The processor operation can be largely independent of user intervention; however, it is
also capable of accepting user inputs reflecting his knowledge about specific measurement problems. It
represents a truly interactive research system wherein user tasks as distinguished from processor tasks are
logically defined, and the outcomes of each are integrated.

Evaluation of the adequacy of the spanned measure set, the generating vectors, and the computational
mechanisms for generating and testing measures could not be performed as originally planned due to
nontechnical problems which prevented the collection of required data. This was extremely detrimental to
the study because: (1) many of the techniques could not even receive preliminary test prior to their
incorporation in the processor, and (2) the contributions made by this study to the general technology can
only be suggested instead of exemplified.

Follow-up research should include derivation of the basis of the defined measure set using the
implemented processor as an aid to empirical studies. This is, in essence, the real crux of the operator
performance measurement problem.



PREFACE

This study was initiated by the Advanced Systems Division, Air Force Human Resources Laboratory
(AFSC), Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. The research was conducted
by Quest Research Corporation, McLean, Virginia, under Contract F33615-72-C-2094. The work is in
support of Project 6114, Simulation Techniques for Aerospace Crew Training, with Mr. Carl F. McNulty
serving as Project Scientist; and Task 611412, Automated Simulator Instruction and Performance
Evaluation in Air Force Training, with Miss. Pat Knoop as Task Scientist.

Quest's principal investigator was Mr. E. M. Connelly. Mr. F. J. Bourne was chief programmer and
Mrs. Diane G. Loental contributed significantly to the analysis and documentation work on the program.
Other Quest personnel contributing to this program were Mr. D. E. Gausvik, Mr. J. E. Whelchel, Jr., and
Mrs. Joanne C. Oliver.

Miss. Patricia A. Knoop was Project Engineer for the Air Force and participated in the program in an
active and significant manner. The work performed by Mr: Steve Hogue, formerly of the Advanced Systems
Division, is gratefully ackriowledged. Mr. Hogue developed and performed initial tests of the applied data
smoothing techniques.

The authors thank the personnel of the Resources and Instrumentation Branch, Advanced Systems
Division, for their support during the preliminary data collection and software implementation phases of
this effcrt. This Branch operates the Simulation and Training Advanced Research System (STARS) facility
on which the extensive software developed in this study was debugged and implemented and without which
much of the work relying on preliminary data calibration and smoothing could not have been performed. In
particular, the authors thank Mr. Robert Cameron for his effective management of the facility and
procurement of special purpose data calibration hardware; Mr. William Schelker for his professional
interface and consultation with contractor personnel on systems analysis problems, and frequent long hours
devoted to their solution; and Mr. Robert Roettele for his technical support of the STARS hardware during
the debug and implementation phases of the program.

Finally, the authors sincerely thank Mr. William Welde of the Personnel and Training Requirements
Branch, Advanced Systems Division, for his dedicated and capable management of the aircraft
instrumentation and data collection effort designed in part to support this program. It is putting it mildly
to say it is unfortunate that the bulk of the data collection effort did not materialize as planned. However,
the cause was nontechnical, and the development work performed by Mr. Welde is commendable for having
provided at least some preliminary data for use in this effort, and a reliable, first-of-it's-kind technique for
objective in-flight data acquisition in Air Force undergraduate pilot training.

This report documents research work performed from July 1972 to August 1974,



TABLE OF CONTENTS

Page

I. Introduction 7

A Tale to Illustrate Basic Concepts 7

II. Approach 9

Measure Set Summary 10

Introductory Example 10

Summary 12

III. Background and Study Objectives 12

Scope of Study 12

IV. Computer-Aided Processing Techniques and Subsystems 13

Data Management 15

Data Smoothing 15

Maneuver Sectoring 17

Regression Analysis 79
Adaptive Math. Models 38

Validation Tests 52

V. Summary and Concluding Remarks 53

References 56

Appendix A: Results of Regression Analysis 57

LIST OF ILLUSTRATIONS

Figure Page

1 Hypothetical performances 8

2 Flow diagram of processor 14

3 Smoothing operation 16

4 Examples of logic notation 19

5 Logic plot of one leaf of a cloverleaf 25

6 Logic plot of a split S 26

8
3



List of Illustrations (Continued)

Figure Page

7 Logic plot of one-half of a lazy 8 27

8 Logic plot for a normal landing 28

9 Logic plot for a barrel roll 30

10 Generation of a reference function by a least squares regression analysis 31

11 Performance discrimination by a reference function 35

12 Block diagram of adaptive math model search process 39

13 Amplitude test bands for boolean function construction 41

14 Methods of pattern search 43

IS Deviation between actual data and reference path 45

16 Representative roll/pitch state space 51

LIST OF TABLES

Table

1 Some Possible Criterion and Performance Measure Factors
Page

15

2 State Representation Notation 18

3 Boolean Functions 21

4 Summary of Segmentation Logic 22

5 Maneuver State Logic for a Cloverleaf 22

Maneuver State Logic for a Split S 23

Maneuver State Logic for a Lazy 8 23

8 Maneuver State Logic for a Normal Landing

9 Maneuver State Logic for a Barrel Roll 24

10 Independent Variable Selected for Each Maneuver Sector 36

9



List of Tables (Continued)

Table Page

11 Regression Analysis Results, for Sector of the Cloverleaf 36

10 Maneuver Identification code for Computer Processor Printouts

13 Rank Sum Critical Values 54

14 Summary of Measure Spaces 55

1 0
5



COMPUTER-AIDED TECHNIQUES FOR PROVIDING
OPERATOR PERFORMANCE MEASURES

I. INTRODUCTION

This report describes underlying theoretical concepts and computer-implemented techniques for
deriving valid and objective operator performance measures. The original impetus for the work came from
requirements for measures of pilot performance; however the techniques and development-concepts are
equally applicable to general assessment of operator performance on continuous control tasks. Therefore,
the basic mathematical and computer techniques will be described in a general context, while (limited)
example data are presented for selected.pilot performance tasks.

A Tale to Illustrate Basic Concepts

Suppose we are faced with the relatively simple task of deriving and validating measures of
performance on the terminal portions of a ground controlled approach (GCA). Let us further simplify the
problem by restricting it to measurement of the pilot's ability to maintain proper altitude during descent to
the runway. Following a typically employed course of action, we might begin by specifying an intuitive
(accepted) notion of "ideal" performance and perhaps sketch some hypothetical performance profiles, such
as those shown in Figure 1.

The next step would typically be to identify candidate measures which, singly or in combination, and
in whole or in part, we expect will solve the problem. Thus, we might logically pick: (1) RMS Glides lope
deviation, (2) Maximum glideslope deviation, and (3) Time in tolerance (glideslope ± A) as measures to
compute and examine for validity.

We would then probably perform some initial data collection, and study the behavior of these
selected measures for various pilots (perhaps some novice and some at various other stages in the range from
novice to experienced). We might discover (again assuming a typical case) that one of the selected measures
tends to discriminate between some of the novice and highly experienced performers, but not in all cases;
and that none of the measures say anything conclusive or consistent about performers whose experience
level (and/or subjectively judged skill level) lies between the two extremes.

"Aha!" says our colleague. "The reason your RMS doesn't work well is because glideslope deviations
close to the ground are more critical than deviations at higher altitudes. You need to take altitude into
consideration and weight the deviations accordingly."

"And I know why maximum deviation didn't work out," says another. "The deviation doesn't matter
as much if it is above the glideslope as if it is below. You should take deviation direction into account."

"Your time in tolerance looks like it might be OK if you would just change the tolerance value to be
more in line with the way our good pilots actually perform. And maybe the tolerance should be
variable perhaps a function of altitude because tighter control is critical as you near the threshold."

Well, no wonder things looked so bad on the initial study! As a result of this first iteration, we might
be well advised to plot some of the actual performances and reconsider the problem altogether. We could
discover, for instance, that one thing unique about the 5 least experienced pilots for whom we have some
data is that they oscillate about the glideslope considerably more than the skilled performers do. (Maybe
the number of glideslope crossings would be a good measure!) We might also observe that tlt more
experienced pilots, when they do deviate significantly from the glideslope, make very gradual corrections,
whereas the novice performers tend to correct more rapidly, and they often overshoot. (Maybe rate of error
correction would work!) Finally, we may see that the good pilots (except for 3) never descend below the
glideslope, even though deviations above it are sometimes rather large. (Maybe whether or not descents
below the glideslope occur at all would provide at least part of the answer .... or might this just be a
characteristic of a cautious pilot?)

At this point, our original list of 3 potential measures has tripled. We have now identified the
following 9 measures for investigation:

I. RMS glideslope deviation unweighted

it
7



...
...

...

G
ild

es
lo

pe

S
am

pl
e 

P
er

fo
rm

an
ce

s

-D
ep

en
ds

 o
n 

ap
pr

oa
ch

 fo
r 

ai
rp

or
t o

f i
nt

er
es

t

.D
is

ta
nc

e 
fr

om
 R

un
w

ay
 (

fe
et

)

F
ig

ur
e 

1.
H

yp
ot

he
tic

al
 p

er
fo

rm
an

ce
s



2. RMS glideslope deviation weighted by altitude

3. Maximum glideslope deviation unweighted

4. Maximum glideslope deviation weighted by direction of deviation

5. Time in tolerance (Tol. = ± A)

6. Time in tolerance (Tol. = f (altitude))

7. No. of glideslope crossings

8. Rate of error correction

9. Whether or not descents below the glideslope occur

Iterations 2 through K of the study would be similar in natureto that described above, and typically,

the number of candidate measures would vary and grow multiplicatively in direct proportion to the number

of iterations we are able or willing to conduct. The concluding actions of the study, again if typical, would

be one or more of the following:

(a) Documentation of the work performed and a recommendation that further study be conducted.

(b) Determined selection and use of a few of the best-looking measures, with reluctant acceptance of

the fact that they lack sensitivity and reliability (but by golly they have to work because they have content

validity!)

(c) Reconsider whether we really need performance measurement techniques at all.

(d) Use some other method of assessing performance, perhaps one that seemed to work OK in the

1940's or '50's (although if it really did work, there would have been no need for this ground controlled
apprOach (GCA) study in the first place!).

The purpose of the preceding tale was twofold. First (although certainly not enlightening to the
readers experienced in this area), it illustrates on a comprehensible scale some of the complexities and
problems inherent in measurement work, at least as it is commonly approached. To put it simply, the
researcher is faced with assessing the performance of the most incredibly complex "black box" conceivable,

and many times without even the benefit of knowing the standards that should be expected of it as
distinguished from those that appear, in practice, to be expected of it. (Certainly, much progress has been
made in rendering the human black box white; however considerably more is required before measurement

of human performance on real-world tasks can be considered straightforward.)

The second purpose was to lay the groundwork for a description of the concepts underlying the work

reported herein.

Why attempt to identify and laboriously investigate a few hand-selected candidate measures,

repeating the process for each new measurement problem, and never knowing whether or not the measures
most suitable have been simply overlooked or unconceived? Why not, instead, define a "universal"
measure-set which encompasses at least the characteristics represented by the so-called classical measures
(and then some), and assign to computers the task which are logically theirs; i.e:, information search and
retrieval? In other terms, what is suggested is that a measure-set be designed which is, in effect, inclusive of

measures we typically select for investigation, and, moreover, contains the power to generate a myriad of
other potential measures which have either not yet been conceived and/or are too numerous to list for

purposes of hand-selecting those that seem appealing. This is feasible, and the measures in such a set are
reasonable to investigate if the characteristics of the set are defined rationally.

H. APPROACH

The approach is to develop a trial measure-set encompassing characteristics common to many of the

classical measures; and to develop a computer program which generates candidate measures from the set,

executes various empirical validation tests, and prints results for analysis.

13
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Measure Set Summary

The devised measure set is partitioned into three subsets, 'each of which represents measures with
different characteristics_ One subset generates candidate measures which assess performance as
characterized by unique patterns of performance variables and their frequency characteristics ("Absolute"
measures). The second generates measures that assess performance as characterized by simultaneous (or
non-simultaneous) occurrence of unique events ("Relative" measures). The third generates measures that
assess performance as characterized by unique successions of events or system states ("State Transfer"
measures) and deviations from standards (state frequency measures), where the standards are either defined
by the user or computed from user-provided performance data.

Introductory Example

In way of example, each of the above mentioned types of measures will be illustrated, using where
possible the previous example of a GCA approach. An attempt will be made to demonstrate that the three
types of measures comprising the defined set not only encompass the specific measures of the previous
example, but conceivably most other measures commonly (or uncommonly) selected for pursuit in
measurement efforts as well as a host of previously untried ones.

First it is necessary to mention (with details presented later in the report) that the measures
computed are based on a discrete representation of the performance data, derived through a transformation
process. The transformation results in a representation of the data in terms of the number of units by which
the value of each variable (e.g., roll, pitch, altitude) is displaced from some reference level or reference
function. (The size of the unit-displacements is deterinined partly as a function of performance range and
variance.) Thus altitude, in the GCA example, may be represented by several Boolean functions, each of
which denotes whether or not altitude lies in a specific band around the glideslope (e.g.,' a band 30' wide
located 100' above (or below) the glideslope may be represented by one Boolean function).

States of the (pilot/vehicle) system are represented by the collective states of the various Boolean
functions over time and, in turn, are represented simply by numbers. Thus the number 6 (binary 110),
depending on the Boolean functions tieing investigated, may tell us that at that sampling instant, the pilots
altitude was 100' -±-- 15' above the glideslope (first binary digit (1)), his airspeed was 120 knots ± 3 knots
(second binary digit (1)), and his roll angle was not equal to zero ± 2° (3rd binary digit (0)).

It is this state representation which allows us to efficiently generate and test measures of the 3 types
described. Any measures of deviation from the reference function (including time in tolerance, for instance)
are inherent in the collective frequencies with which the various defined states are acquired in performance
of the maneuver. Any measures of error correction or its rate are inherent in the transfers that occur
between various states over time. Measures of frequency content of the data (including the number of
glideslope crossings in the previous example) are inherent in the state transfers that occur and/or in the
"absolute" type of measure that is investigated. Finally, measures which relate various key events (e.g.,'
smaller glideslope deviations at lower altitudes) are inherent in the "relative" type of measure that is
explored.

Consider, first, the measures of RMS glideslope deviation in the previous GCA example.
Mathematically, this is represented as

RMS = n ((1_yi)2
i-1

where X is the actual altitude and Y the glideslope altitude. Equivalently this relationship may be

correlatively represented by mean square
1

RMS2 f.D.2).

i=1

where Di are specific deviations from the glideslope and fi are the frequencies with which the
associated deviations are encountered. Similarly, a weighted mean square error would be

RM.S2
n

W.W. Fi D.2); where W. are weights assigned to each deviation. In the measure-subset based
i=1

- 1 4
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on state frequencies and state transitions, the Di are represented by the number of units displacement from
the glideslope associated with the Boolean functions representing altitude. The Fi values are the computed
state frequencies depicting the number of observed samples in which the respective Boolean function is true

(1).
Since the referenced -measure-subset encompasses Fi, D., and related vectors, it may be viewed as a

vector set which spans the space of measures represented by RMS glideslope deviations, weighted or
unweighted, in addition to any other conceivable measures attending to deviations from a reference

function (i.e., average deviation, maximum deviation, integrated error, etc). Therefore, the referenced

measure-subset contains a basis for the space of measures of this type, and any measure of the type
mentioned may be approximated by some linear combination of the vectors of the defined subset. It is
maintained that since this is true, all measures of the type spanned by this subset may be explored by a
computational mechanism which can generate the defined vectors and perform multiple regression analyses.

Next, consider the time in tolerance measures and the measure of whether or not descents below the
glideslope occur. The former is represented simply by the frequency of occurrence or one or more states,
formed by Boolean functions involving the desired tolerance value. A variable tolerance value is

automatically included in the analysis because the different Boolean functions themselves (and associated
states) represent different tolerances. The latter is also represented by state frequencies, in that states
representing descents below the glideslope would all be zero if no descents below the glideslope occurred,

and non-zero otherwise. Therefore, these two types of measures are included in the computational
mechanism that explores the measure-subset based on state frequencies and state transitions.

Finally, consider the measures (in the GCA example) of number of glideslope crossings and rate of

error correction. The first is represented by the number of transitions that occur between states
corresponding to aircraft positions below and above the glideslope. The second is also represented by state

transitions which; (I) distinguish error growth from decay by the identity of the states between which
transitions are occurring, and (2) assess the rate of growth or decay by the relative frequencies of
between-state transitions and within-state transitions. Therefore, these types of measures, too, are included

in the state frequency and state transition measure subset and related computational mechanism.

This single measure-subset therefore covers.alj of the specific measures "selected" in the previous
GCA example and much more it covers the general types of measures that are suggested by any
considerations of deviation from a reference function, steady-state or transitive positions with respect to it,
and movement or rate of movement toward or away from it. The potential power, flexibility, and utility of

a computational mechanism exploring this variety of measures is significant. A recent unique application of
the state transition concept in measurement and analysis of performance is described in Connelly and

Loental (1974).

We have yet to discuss the other two measure-subsets ("Absolute" and "Relative"). The "Absolute"

subset and its respective computational mechanism assesses performance characteristics 'elated to the
repetative frequencies, periodicities, and associated patterns of changes between various states. This is

accomplished in an overall manner similar to that described previously; i.e., vectors which span these types
of measures are generated and various measures are explored using regression analyses. Examples of
measures that would be included here are the extent and type of "control diddle" used by an operator;
frequency characteristics of an operator's ballistic response to, say, a step input; and measures related to the
number of control reversals used in performing a segment of some task.

The "relative" subset and computational mechanism fills an identifiable void in the system as thus far

described. It takes into consideration the proximity in time with which various events take place and the
conditional probabilities of certain events occurring, given that others have occurred. Again, the approach is

to generate vectors which span these types of measures and employ regression analysis. Examples of
measures thereby addressed are whether or not a pilot achieves and maintains straight and level flight
whenever he is within a specified distance from the threshold on a GCA approach; whether or not he begins

.1.-t)
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to roll at the same time (not before or after) he acquires maximum pitch in an aerobatic maneuver; and
whether or not he characteristically achieves a specific (criterion) airspeed at key points in performance of,
say, a lazy 8 maneuver.

Summary

The preceding subsections describe the fundamental concepts of the approach. The intent is to define
a "universal" set of measures, not by enumerating all measures in the set, but by defining their
characteristics. Three major characteristics have been defined, and the evolved measure set is represented
acct. :& 1y by three subsets. It has been shown that measures generated from these various subsets
encm; iss a host of typically selected measures (e.g., those of the GCA example) as well as many others
possessing the subset characteristics. Mathematically, this may be viewed as developing vectors which span
various measure-spaces, and it is proposed that the measures thereby spanned may be explored using
multiple regression analysis.

III. BACKGROUND AND STUDY OBJECTIVES

Many of tfie basic concepts and mathematical techniques fundamental to this study were explored on
a trial basis in previous feasibility studies and are documented in the references (Connelly, Schuler, &
Knoop, 1969; Connelly, Schuler, Bourne, & Knoop, 1971). However, efficient computer techniques for
exploring the various types of measure-subsets were never fully developed in previous efforts; and the data
transformation techniques as well as the measure subsets themselves have been altered and refined for this
study on the basis of earlier experience with the approach.

The purpose of the present study was originally to: (1) refine the previously explored technqiues, (2)
develop efficient computer implementation methods, (3) validate and demonstrate performance of the
software, and (4) apply the techniques thereby implemented to derive and validate performance measures
for five training maneuvers flown in T-37B aircraft as part of the Air Force UPT program. Due to
non-technical difficulties encountered in collecting the required student and instructor-pilot data, part 4 of
the original objectives had to be abandoned, and the objective substituted in its place was to implement and
demonstrate the developed software on the Simulation and Training Advanced Research System (STARS).
(The STARS system is located at the Advanced Systems Division, Air Force Human Resources Laboratory
(AFSC) Wright-Patterson Air Force Base, Ohio. The associated digital computer is a Xerox Data Systems
(XDS) Sigma 5.) Therefore, this report documents the computer software developed and the related
computational algorithms implemented for exploring selected types of measure-subsets; however, since only
.a very small amount of data was able to be collected for the study, it was not possible to develop and
validate any specific measures. The extensive data collection and reduction machinery developed for use
(but unfortunately not applied in this study) is dez-cribed in Knoop and Welde (1973) and Gregory and
Cavanagh (1973).

Scope of Study

The study includes the development and implementation of 3 different computational mechanisms
for generating car,didate measures from the defined subsets. These are the relative, absolute, and state
transfer measures previously discussed. A separate computational mechanism for state frequency measures
was not included, partly because the state transfer mechanism itself generates the state frequency data that
is needed. Original plans were to develop and independently test a separate state frequency mechanism
using this generated data and then, depending on results, interface it with the other elements of the
processor. Due to the previously mentioned change in program objectives and associated lack of
performance data, however, this was not able to be pursued beyond the planning stage. Emphasis in the
study, therefore, was on developing and implementing efficient computer techniques for the 3 developed
computational mechanisms and the overall computer-aided processor as described next.

1
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IV. COMPUTER -AIDED PROCESSING TECHNIQUES AND SUBSYSTEMS

The computer-aided automated pilot performance measurement processor is a FORTRAN IV

program which generates candidate performance measures through various operations on actual
performance data. These operations include:

a. Develop performance criteria,

b. Determine the significance of deviations from criteria,

c. Transform sample performance data into a compact form for processing,

d. Conduct a systematic standardized search for candidate performance measures,

e. Perform validation tests, and

f. Provide data management processes.

A generalized flow diagram of the processor appears in Figure 2.

A primary task in developing performance measures is the determination of standards or reference

functions. Performance standards should define the unique manner in which the operator should perform

the task. Often, however, there are a number of satisfactory ways to properly accomplish a task and there

may exist a family of reference functions representing criterion performance. As a result, the reference
function forms employed by the processor may accept parameters provided by the user or estimated from

sample performance data.

Multi-variable regression is used in formulation of reference functions from sample data. The idea is

to extract from demonstrations of superior performance functions which uniquely represent that
performance. Evaluation of the function fit is accomplished through analysis of residues. A small residue
value indicates a convenient clustering of all superior performance data, while a large residue value indicates

that the regression formulation is not appropriate or that other parameters are required.

An additional test of the candidate functions is made by comparing residues obtained from the
superior performance category data with those obtained from other performance category data such as
good, fair, and poor. The difference between the residues obtained is an indication of the potential
performance discrimination capability of a measure developed from that criterion.

A second important step in the development of performance metrics is the determination of the
relevance of deviations from the reference performance. It should be noted that the importance of operator
errors is generally not constant over the entire problem state space. Thus, some systematic means must be

provided to test various types of deviations and patterns of deviations as to their relevance to performance
measurement. Table 1 shows various ways that deviations from the criterion or reference might be related
to performance measurement. The processor's capability to assess the significance of a wide variety of
relationships such as these is automatically assured due to the types of performance measures it is designed
to generate and test.

The processor has four main portions:

1. Input and preparation of data, including

a. Data management

b. Smoothing

c. Maneuver Sectoring

2. Generation of criterion functions via regression analysis

3. Processing of data by adaptive mathematical models

4. Testing and specification of performance measures.
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Table I. Some Possible Criterion and Performance Measure Factors

Type of Criterion
Possible Ways Deviation (Error)

is Related to Performance

Functions Relating Problem
Variables (Reference Path)

Differential Reference (where criterion
is specified by differential or difference
equations)

Fixed (variable) tolerance at a specific -

time or at a specific value of another
variable

Sequence of Operation

o Amount of deviation from path
o Max deviation
o Time in a tolerance band
o Convergence/divergence
o Similarity to reference path
o Shape of deviation
o Time significant deviation occurs
o Frequency of significant deviations
o Rate of error correction
o Way error is corrected
o Number of errors that occur simultaneously

o Error in differential
o Critical variable values exceeded
o Time critical variables values are exceeded
o Convergence/divergence to reference point on

path trajectories
o Shape of trajectory

o Variable out of tolerance
o Amount variable is out of tolerance
o Time variable is out of tolerance

o Number of errors in sequence
o Number of critical errors in sequence

Data ManageMent

Due to the great volume of data that must be handled by the processor, systematic data management
is of great importance. This is basically a housekeeping operation which controls the coding of data and its
efficient storage and retrieval.

Data Smoothing

Examination of recorded flight data shows occasional noise "glitches" on the data samples. These
glitches occur at random times and must be removed prior to pr. ,cessing. Noise glitches are assumed to be
pulses applied to the filters that smooth data prior to sampling. Thus, the noise pulse appears as a pulse
with an exponential-decay as shown in Figure 3. The resulting sampled values show a large sample to sample
delta change between the samples before and after the noise pulse.

Detection of the noise is accomplished by comparing the sample to sample (delta) change with a
pre-established criterion value as follows:

I ai+1 ail c, i = 1,2, ... n

where ai is a sample value and c is a delta criterion value. If the inequality is not satisfied, a noise pulse is
assumed to exist.

Once a noise pulse is detected, the time duration of the disturbance must be determined. Experience
has shown that the nominal disturbance duration can be expected to be .1 seconds (10 samples at a
sampling rate of 100 /sec.) for the recorded T-37 flight data. The duration of the disturbance is computed
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by examining the value of future samples one-by-one to determine which sample value first falls within the

acceptable region. The test is given by the inequality:

I a.
1

1 c*j, j=1,2, M (2)

The smallest value of j for which the above inecality is true, is one greater than the number of samples

included in the glitch.

When the samples included in the noise glitch have been determined, those sample values are replaced

by interpolated values. These values are determined by:

a i÷j = a. +

ai+n ai

n
*j, j=1,2, n-1

where n is the value of j for which inequality 2 is true.

(3)

Maneuver Sectoring

a. Introduction. Automatic performance assessment normally involves the computation of several

different measures, each of which corresponds to different aspects of (or skills used in) the task of interest.

In most flight maneuvers, the skills required (and measured) vary from segment to segment of the
maneuver. For example, different skills (and measures) are required during the downwind portion of an

approach and landing than are required during the turn to final or during the flare and touchdown.
Therefore, it is necessary to segment the maneuver by identifying natural breakpoints which delineate
portions requiring computation of different measures. Once these breakpoints have been identified,
algorithms and computer techniques are needed for automatically detecting them on the basis of recorded
pilot performance data. This section describes the development of such techniques for inclusion in the
processor and their trial application to several undergraduate pilot training flight maneuvers. It is

appropriate to point out that automatic segmentation of performance also has utility in a number of
advanced simulator training capabilities. For example, an increasing number of requirements for and
applications of automatic malfunction insertion are emerging in recent and current flight simulator
developments. To automatically insert a malfunction at the point in a mission that is realistic for the
malfunction and at which the highest training value is expected, it is first necessary to automatically detect

the desired point (thus, the utility of automatic segmentation). Other advanced training capabilities such as

reinitialization of the simulator and subsequent playback of a portion of the performance also can make use

of segmentation techniques (for automatically detecting the point from which playback is desired). Finally,
the distinct trend toward the use of cathode ray tube (CRT) displays (rather than or in addition to aircraft
repeater instruments) at simulator instructor stations suggests another application of automatic
segmentation. Present display techniques are to: (1) always display everything the instructor/operator may
ever need to see during the entire mission, or (2) allow various CRT "pages" to be manually selected. The
first technique is objectionable due to the number of displays required and subsequent load cn the
instructor/operator information sorting and processing requirements. The second is equally objectionable
due to the instructor/operator information retrieval load. Automatic segmentation techniques could be
used to assure that display contents always suit the instructor/operator needs based on what the student is
practicing. The techniques described herein could be usefully employed for any of the above applications.

b. Approach. The approach was to develop techniques for generating a mathematical representation
of the state of pilot/aircraft performance which could be applied to any maneuver. Using this
state-representation, segmentation logic was developed for detecting specific states corresponding to the
desired breakpoints within each maneuver. (The breakpoints themselves were identified largely on the basis
of maneuver analyses performed as a part of other performance measurement studies (Connelly, Bourne,
Loental, Migliaccio, Burchick, & Knoop, 1974). This section describes the state representation techniques
and the basic segmentation logic that was developed.

(1) Maneuver State Representation

The technique for representing maneuver-performance states was to model significant aspects ofthe

various performances using Boolean functions. The specific Boolean functions used differed from maneuver
to maneuver as applied in various combinations to represent desired states: However, since many of the

I
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functions were found to be applicable to more than one maneuver, the approach used was to develop a
universal function-set and associated Boolean notation which could be computer-implemented and,
collectively, would satisfy state-representation requirements for all the maneuvers.

The devised Boolean functions and the associated notations included indications that a specific
condition (Boolean Function) is presently true or that the condition was previously true at least once.'
Furthermore, functions and notations were developed to indicate when a condition is first true, last true
(i.e., when it becomes false), and the interval of time during which the condition is true.

The notation used for representation of states is summarized in Table 2. As shown in the table, the
Boolean notation "A = 1" is used to indicate that condition A is presently true, and "A = 0" is used to
indicate that condition A is presently false. In addition, "A' indicates whether or not A has been true
during the maneuver. Initially, A is set equal to zero; if condition A becomes true at least once during the
maneuver, then A is set equal to 1 for the remainder of that maneuver. This provides Boolean notation with
a "memory" and allows a logic function to be written in terms of present, as well as, previous events.

Table 2. State Representation Notation

Notation

A = 1 Condition A is presently true.
A = 0 Condition A is presently false.
A = 0 Condition A is not and has not been true

during this maneuver.
X = 1 Condition A is, or has been true during this

maneuver.
t(A) Time A became true.
t(X) Time A first became true.
t(A) Time A became false.

A=X<Z/ Defines logic variable as
A = 1 if X< Z
A = 0 if X Z

The time that events take place is also important. Thus, t(A) represents the time that condition A
became true, and t(A) is the time that condition A became false. This is illustrated in Figure 4 where
condition A is true for a period of time and then false. Note that the symbol t(A) indicates the time that
condition A first became true and is always equal to some corresponding t(A). However t(A) itself may vary
over the maneuver if the associated condition (A) changes from false to true more than once.

The devised functions and notation can be used to detect the sequence in which events occur.
Consider the time plots of two aircraft variables, pitch (3) and roll (0), shown in Figure 4. In plot 1 in the
figure, pitch reaches zero first, whereas in plot 2 roll reaches zero first. In cases I and 3, accordingly, the
Boolean conditions B and C indicate when the two variables of interest are zero. In case 2 and 4, the
Boolean conditions with "memory" (6 and Z.) remain true for the subsequent time samples after they first
become true. (In cases 5 through 8 and 9 through 12, AND/OR combinations of the Boolean variables are
illustrated, respectively.)

This notation provided a concise and easily applied framework within which all desired states could
be defined, logically manipulated, and tested. Although simple in appearance (Table 2), the notation is
powerful enough for use in developing logic which detects the nature as well as the sequence of various
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pilot actions, as observed through their affect on aircraft performance. The following paragraphs describe
the Boolean function set that was developed and the segmentation logic used for five flight maneuvers.

(2) Segmentation Logic

Table 3 lists the set of individual Boolean functions identified for use in developing the segmentation
logic. The function numbers shown in Table 3 are used in Table 4 to summarize the segmentation logic
developed for each of five maneuvers. Note that only 17 of the Boolean functions were required for the five
maneuvers that were investigated. Based on this-Observation and the representativeness of the maneuvers
tested, it appears that the Boolean function set is more than adequate for developing segmentation logic for
conceivably any basic flight training maneuver.

Tables 5 through 9 present the segmentation logic for each maneuver separately, including a
descriptive title of each segment and the Boolean functions used for detecting the states determining the
desired breakpoints between segments.

c. Trial Applications. To perform initial tests of the logic, sample pilot performance data recorded
on a T37B aircraft were used. (The basic data acquisition system is described in (Knoop & Welde, 1973).
For this data colIntion effort, some revisions were incorporated including the addition of stick force
sensors and the increase of both range and reliability of aircraft attitude sensing. Revisions made to the
original data acquisition system are documented in (Gregory & Cavanagh, 1973).) The performances were
flown by instructor pilots who purposely demonstrated examples of how a novice might perform each
maneuver as well as examples of skilled maneuver performance. Four flights of each of the 5 maneuver
types were used, two of which were rated excellent by the performing pilot and two rated poor. This
provided examples of both performance extremes for testing the segmentation logic.

(I) Cloverleaf

The cloverleaf maneuver consists of a pattern of four consecutive loops, or leaves, all identical except
for heading. For purposes of explanation, only the.first leaf is discussed.

The leaf is begun after the start condition (level flight) is satisfied. Figure 5 is the computer printout
of one leaf of an excellent cloverleaf as processed by the logic (segmentation) program. Sector 2 begins
when the pilot pitches up above T2. He then begins to roll (sector 3) until he reaches a maximum roll value
(CMI). Although excellent pilots generally roll to 180°, poor pilots often do not achieve 1800; hence, roll
maximum is used to trigger the start of sector 4 because the logic must work on all types of flights. In
sector 4, the pilot rolls back and pitches down until lie reaches a minimum pitch (BM2). Most pilots,
regardless of their proficiency, begin to roll out before a pitch of 90° is attained; therefore, sector 5
triggers on minimum pitch. The pilot" levels off his pitch (sector 6) prior to entering the next leaf, then
begins the leaf by pitching up again (sector 2).

(2) Split S

The split s is an evasive type maneuver in which the pilot effects a 180° heading change by pitching
up, rolling over, and pulling out. The plot from the logic program is shown in Figure 6. Initially, sector 5
triggered on pitch = 90°. However, as with the cloverleaf, most pilots, excellent and poor alike, roll out as
they pitch down and never reach 90°. Therefore the condition was changed to minimum pitch (0M2).

(3) Lazy 8

This maneuver consists of two halves, each of which are identical except for heading and direction of
roll. The start condition (level flight) is a function of pitch and roll, while the subsequent sectors are
identified solely on pitch angle. Figure 7 shows logic program output for the first half (sectors 1-5) of a
lazy 8.

(4) Normal Landing

The landing maneuver is made up of five sectors. A sample logic program output is shown in Figure 8.
On the sample flights examined in this study, the pilot did not land; instead he performed a touch and go
maneuver. In either case, the maneuver is logically terminated when the touch down condition is detected.
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Table 3. Boolean Functions

No. Function No. Function

0

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

B, C,

B, = 0 =01±-1'11-
82 = 0 > 1.2 1
B3 = 0 < T3 I.
B4 = 0 = +45° ± T4 }
B5 = 10 = -90° ± T5 1

Bm1 =i° -°1111 }
Brn2 = 0 =Orn2 t
Brn3 = 0 =0m3}

Bm4 ° --'8m4 1
Brn 5 = 0 = 0 m5
C1 = =0.±1i
C2= ¢ >12}

q5<13}
C4 = +180° ±s14}

= +90° ± Is t
C6 = = 90° ± 16 }

Cml 10"mli
Cm 2 Om 21

Cm3 0m3
D1 = itis< Tas,
E1 = Rs = Neutral ± R1

Notes: 1 TAS Tn, and In, arc

22 E2 ,= Rs = Full left }
23 E3 = Rs = Full right /
24 E4 = Rs = Reversed}

= -1E2 E3 E3 E2}
25 F1 = Dt = Neutral ± S1 }
26 F2 = Dt = Full forward }
27 GI = T = Idle }
28-32 Future Expansion
33

34-39 Future Expansion
40 C2 +C3
41 B1 CI
42 B2 +C2 +C3
43 BI + CI
44 CM1 CI.

45 CM2 Cl
46 CM3 CI
47 C5 + C6
48 E2 + 17,3

49 Future Expansion
50 B1 Cl Stop Condition

tolerance factors defined as follows for the five maneuvers:

Cloverleaf Split S Lazy Landing Barrel Roll

TAS, 0 0 0 90 0
7 7 5 4 10

12 5 5 8 0 25 0 8 0 5
14 5 5 0 0 5

5 5 0 0 5
11 5 5 5 8 5

10 9 8 10 10
13 10 9 8 10 10

5 5 5 5 5
Is 5 5 5 5 1

16 5 5 5 5 1

2,
...omputation of successive maximum or minimum values such as Omx and mx-+1 requires that

an intermediate null condition (B1) be true. Thus the following sequences must occur in order for successive
extreme values to be established: BMX, B1, Omx+1, B1, OMX+2,

-

OMY C1, OMY+1, C OMY+2,3R1 = general tolerance on rudder position
Si = general tolerance on stick position

40 - pitch
_ roll

Omb EMI - ith local maxima
As airspeed
Rs - rudder position
Dt longitudinal stick position
T - throttle position r
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Table 4. Summary of Segmentation Logic

Segments

1 2 3 4 5 6 7 8 9 10 :1 12 13 14 15 16 17 1i 19 20 21 22

Cloverleaf 1 0 2 40 17 7. 1 50
2 2 40 17 7 1 50
3 2 40 17 7 1 50
4 2 40 17 7 1 50

Split S 1 0 2 40 3 7 50

Lazy 8 1 0 42 6 1 7
2 43 8 1 9 50

Normal
Landing 1 0 40 44 40 45 20

Barrel Roll 1 0 3 2 47 43 50

Table 5. Maneuver State Logic for a Cloverkaf

Sector
Number

Sector
Name Condition

Boolean
Fur:tion

Function *
Number

1 Entry Pitch = 0° ± T1 and 0
Roll = 0° ± II

2 Climb Pitch > T2 B2 2
3 Roll Roll < 13 (Left) or C2 + C3 40

Roll > 12 (Right)
4 Pitch to 90° Roll Omi CM

1
17

5 Pull Thru Pitch = °M2 BM
2 7

6 Final (entry to
next leaf)

Pitch = 0° ± T1 B1 1

* From Table 3.

2 g
22



Table 6. Maneuver State Logic for a Split S

Sector
Number

Sector
Name Condition

Boolean
Function

Function*
Number

I Start Pitch = 0° ± T and B1 CI 0

Roll = 0° ± II
2 Entry Pitch > T2 B2

3 Inversion Roll > 12 or C2 + C3 40
Roll < 13

4 Pull thru to 90° Pitch < T3 B3 3

5 Pull thru to 0° Pitch . BM2 BM2 7

Stop Pitch = 0° ± Ti. and B1 C1 50

Roll = 0° ± II

*From Table 3.

Table Z. Maneuver State Logic for a Lazy 8

Sector
Number

Sector
Name Condition

Boolean
Function

Function*
Number

1 Entry Pitch = 0° ± T1 and
Roll = 0° ±

B1 C, 0

2 1st Quarter Pitch> T2 or B2 + C2 + C3 42
Roll > 12 or
Roll < 13

3 2nd Quarter Pitch = Omi BM 1 6

4 3rd Quarter Pitch = 0° ± B1 1

5 4th Quarter Pitch = BM2 BM2 7

6 1st Quarter Pitch = 0° ± T1 or 131 4: CI 43
Roll = 0° ±

7 2nd Quarter Pitch =01,43 BM3 8

8 3rd Quarter Pitch = 0° ± Ti B1 1

9 4th Quarter Pitch =01,44 BM 4 9
Stop End Pitch = 0° ± T1 and B1 :CI 50

Roll = 0° ±11

From Table 3.
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Table 8. Maneuver State Logic for a Normal Landing

Sector
Number

1

2

3

4

5

Stop

Sector Boolean Function*
Name Condition Function Number

Start Pitch = 0° ± T1 and B1 CI 0
Roll = 0° ± II

Pitch Out Roll >12 or C2 + C3 40
Roll <I3

Downwind Roll = 0° ± Cmi C1 44
after Roll = q1m1

Final Turn Roll > 12 01 C2 + C3 40
Roll < 13

Final Approach Roll = 0° ± 11 45
after Roll = 01,42

(Touch Down or Airspeed < TAsi D1 20
Touch and Go)

*From Table 3.

Table 9. Maneuver State Logic for a Barrel Roll

Sector Sector
Number Na me Condition

1 Start Pitch = 0° ± Ti and
Roll = 0° ± li

2 Entry Pitch <T3
3 1st Quarter Pitch > T2
4 2nd Quarter Roll = 90° ± 15 or

Roll = 90° ± 16
5 3rd Quarter Roll = 180° ± 14
6 4th Quarter Roll = 90° ± 16 or

Roll = 90° ± 15
7 End -Fitch = 0° ± T1 Or

Roll = 0° ± 11
Stop Pitch = 0° ± Ti and

Roll = 0° ± II

Boolean
Function

Function*
Number

B1 el 0

B3 3

B2 2

C5 + C6 47

C4 14

C5 + C6 47

B1 -i. C, 43

cl,

B1 ^ CI 50

*See Table 3.
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(5) Barrel Roll

This is an acrobatic maneuver in which the pilot rolls through 360°. A sample logic program plot

appears in Figure 9. The sample data indicates that inexperienced pilots have difficulty attaining level Right

(B1 C1) 'at the end of the 4th quarter (sector 6); consequently, sector 6 contained a long tail of data not
representative of the specific pilot task we were trying to isolate. A seventh sector was added to allow

termination of sector 6 if either pitch or roll is level (B1 + C1). The maneuver terminates when the pilot

attains level flight.

Regression Analysis

a. Introduction. A major purpose of the regression analysis is to generate reference functions which

are representative of excellent performances. These reference functions are automatically generated by the

processor for use in deriving performance measures.

A number of reference functions are constructed fcir each sector of each maneuver type. Each

function is a mathematical representation of certain parameter relationships characteristic of that sector.
Deviations of an actual flight from this function are computed. A standard set of operations on these

deviations are performed, and results are tested for performance discrimination content. The techniques of
measuring and interpreting these deviations are discussed in detail in later sections of this report.

A useful reference function must be consistent, in that it produces small deviations with data from

excellent performances; at the same time, it must be able to provide discrimination in tests among various
performance levels. In the processor, reference functions are generated, then tested for consistency and
discrimination capability. This procedure is discussed in the following sections.

b. Theory. Several reference functions are generated for each sector of each maneuver by performing

a least squares regression analysis on selected skilled performance data for the specified sector. In our initial
analysis, four candidate reference functions are generated for each maneuver sector by using data from two
available excellent-rated flights of each maneuver type. The technique is illustrated in Figure 10.

(1) Regression Computation Method

In applications, many sample flights of several performance categories will be used to form the
reference functions and update them. The data are initially arranged on tape by maneuver type and it is not

feasible to store all data or to reread the tape for each maneuver sector. Therefore, it is desirable to use a

technique which allows updating of the regression coefficients without having to store all previous raw data.

The method, discussed in detail in Connelly et al., (1969, pp. 179-181), represents the data in a compact
summary form. Briefly, the problem is stated as:

Y = A + BiXi

l=1

(3)

where Y is a factor of interest (dependent variable) and Xj is a combination of the system variables

(independent variables). Given T samples or experiments, the method of least squares minimizes P:

T N

P = (Yi + A + BiXii)2

i=1 j =1

and gives solution values for the coefficients:

T T N T T T N
Y. Xki + BiXiiXki + E xki (1/T Yi 1/T E BjXii) = 0

1=1 j=1 i=1 i=1 i=1 j=1

33
29

(4)
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Figure 10. Generation of a reference function by a least squares regression analysis.
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where

K =1, N (5)

T N
A. = 1./T (E Yi 2 E ej Xii ) (6)

i=1 i=1

Defining the following sums:

SUMYX(K) = Yi Xki
i=1

SUMXX(J, K) Xki
i=1

SUMX(K) = E Xki
i=1

SUMY = E Yi

i=1

allows representation of the problem as:

where

(7)

(8)

(9)

(10)

N N

0 = SUMYX(K) + B SUMXX(J, K) + SLIMY * SUMX(K)/T SUMX(K)/T * E B SUMX(J)
j=1 j=1

K = 1, N
(11)

Solving for the B's is done via a matrix approach:

B(1)
B(2)Let B = ) (12)

R=

B(N)

SUMYX(1) SUMY * SUMX(1)/T
SUMYX(2) SLIMY * SUMX(2)/T

.

SUMYX(N) SUMY * SUMX(N)/T

3G.
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Q(J,K) = SUMXX(J,K) SUMX(K) * SUMX(J)/T (14)

(known as correlation coefficients)

SUM =

Q(2, 1)
Q(2, 2)

Q(2, N)

(an NxN matrix)

The problem is now written as:

(15)

SUM IT= R (16)

and the solution4;

B = SUM-1 g

Now A can be computed from equation 6:

N

A = 1/T (SUMY B(J) SUMX(J)
j=1

For ease in programming, the matrices SUM and R can be further broken down:

[SUMXX(1, 1) SUMXX(2, 1) SUMXX(N, 1)

SUMXX =

SUMXX(1,N) SUMXX(2,N) ' SUMXX(N, N)

SUMXJ = [SUMX() SUMX(2) . . SUMX(N)]

SUMX()
SUMX(2)

SUMXK = .

SUMX(N)

Then SUM = SUMXX 111* SUMXK * SUMXJ

Let SUMYX()

SUMYX = .

SUMYX(N)

Then R =SUMYX SUMY IT * SUMXK

33
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(18)

(20)

(21)

(22)

(23)

(24)



Therefore

B = [SUMXX 1/T SUMXK * SUMXJ ]4 [SUMYX SUMY IT SCIAIX4 (25)

This technique provides, for efficient computer usage by compact storage of all previous data that is needed
for updating of the regression coefficients.

(2) Candidate Reference Functions

In the processor, reference functions are based on data from several excellent maneuvers: Initially,
one excellent maneuver sector is read, and a least squares regression is performed on it. The data are read
sector by sector and maneuver by maneuver from tape; when another excellent maneuver sector is
encountered it is used to update the regression.

Four candidate reference functions are generated for each maneuver sector:

h F. (X,
OM ax)

= Flp (X, °M ax' °M ax)
AS FAS (X, °Max' °Max)

= F0 (X, Max' Max)
F(X, Om ' °Max) B0 + B1 X + B2 X2 + B3OM B4(Pm

The above variables are: Om = maximum pitch in the sector, rpm = maxit.mum roll, h = altitude, 4./ = heading,
AS = airspeed, 0 = pitch, and the "A" means "estimate". X, the independent variable, can be roll, pitch or
normalized time. Roll (0) is always selected first if roll is monotonic in that sector. If roll data is not
monotonic over the sector, pitch (0) is selected; and the fourth reference equation then becomes:

cl) = Bo + B10 + 13202 + B3 Om + B4 OM

If neither pitch nor roll is monotonic, normalized time (t) is selected as the independent variable, and in
that case the fourth reference function can have either 0 or (/) as the dependent variable.

(3) Performance Discrimination

The purnose of a reference function is to specify a standard flight path for use in developing
performance'rneasures. It is necessary, therefore, forrrefence function to give consistent results for all
excellent performances, and at the same time provide a basis for discriminating performance that are other
than excellent. The measure used for a preliminary test is the mean absolute residual error:

e = 1/T lYi Yi;

i=1

whe \T is the number of samples in the maneuver sector; Yi is the actual value of the dependent variable;
and Yi is the prediction of Yi by the reference function. The value of e gives an indication of how much a
sample flight deviates from the reference function. If the reference function possesses good performance
discrimination capabilities, then E would be expected to be small for excellent flights, and to increase as the
performance level worsens. A graphical interpretation of e appears in Figure 11.

In the processor, candidate reference functions are generated from several excellent maneuvers. These
maneuvers can be considered to be a "training set" for the processor and this set possesses some mean
residual error, eT, with respect to each reference function. As a test of the consistency and discrimination
ability of the reference function, "test sets" are formed consisting of one set of excellent maneuvers not
included in the training set, and one set of "poor" maneuvers. The test sets also have a mean residual error,
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Table 10. Independent Variable Selected for Each Maneuver Sector

Maneuver Type

Sector

2 3 4 5 6 7

Cloverleaf Time Pitch Roll Pitch Pitch
Split S Time Time Roll Roll Pitch .

Lazy 8 Time Roll Roll Pitch Roll
Normal Landing Time Time Time Time Time
Barrel Roll Time Time Roll Roll Roll Roll Time

Table 11. Regre%ion Analysis Results for Sector I of the Cloverleaf

Dependent
Variable

Excellent

ec 125(L)

h 25.44 25.05
\If 0.49 .09

AS 1.11 1.14
0 0.87 .79
0 0.34 .36

Errors

Poor

124(R) 127(L) 12$(R)

#/samples 17
Om -7.0
Om -6.0

25.73 3794.50 3478.60
0.79 .68 2.79
1.09 3122.40 2730.00
.93 170.35 146.99
.32 17.32 15.76

23
-7.7 5.4 6.3
-1.6 -.4 3.1

FUNCTIONAL FORM: DV = Bo + Bi t B2 t2 + B3 Om + B4 OM

Reference Functions
Variable Bo B1 B2 B3 B4

h 2240.00 -631.20
41 -.40 .44
AS 1890.00 28.70
0 90.58 -23.55

10.22 -2.81

220.50 318.10 -141.80
0.08 -0.02 -.29

-11.78 254.90 -175.70
30.65 14.05 -8.48
2.56 1.37 -0.09
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Es, with respect to the reference function. If the reference function a suitable basis for performance
discrimination, then Es should be approximately equal to ET for a test set comprising excellent maneuvers,
and significantly greater than ET for a test set made up of poor maneuvers. A simple test is to compare the
distribution of residuals, eTi, from the training set to the distribution of residuals, esi, froM the test set via
the rank sum statistic (see Rank Sum Statistic section). This statistic tests the hypothesis that the two sets
(training and test) are equal; i.e., that the reference function in question produces similar results for two
different sets of maneuvers. The rank sum test is used because it requires no knowledge about the
distribution of residuals, and it can compare two data sets of different lengths.

c. Results. A total of 19 maneuvers were run. The independent variables chosen for each maneuver
sector, as discussed in Regression Analysis section, are shown in Table 10. Table 11 shows the actual
reference functions for sector 1 of a cloverleaf. The functions are written in the bottom table below the
functional form. The residual errors (E) appear in the top table. Column 1 is the combined error of the two
excellent maneuvers and is computed as follows:

E =
N1 N2

Ni + N2 e,

where NI and N2 are the number of samples in the two excellent maneuvers and El and E2 are their
associated errors. Columns 4 and 5 show the errors for the two poor maneuvers.

Regression functions for other cloverleaf sectors and other maneuvers appear in Appendix A.
(The three digit numbers for the maneuvers were assigned for maneuver identification. A summary of
maneuvers used is shown in Table 12.) Some sectors contained too few data points to obtain a significant
regression; consequently, no data appears for them.

Table 12 Maneuver Identification Code for
Computer Processor Printouts

Maneuver Mode Proficiency Rating ID Code

Cloverleaf Right Excellent ' 124
Left Excellent 125
Left Poor 127
Right Poor 128

Split S Left Excellent 126
Left Poor 129
Left Poor 130

Lazy 8 Right Good Plus 102
Right Poor 106
Left Excellent 108
Left Pooir 113

Normal Landing Excellent 121
Excellent 122
Poor 123
Poor 124

Barrel Roll Left Excellent 101
Left Excellent 107
Left Poor 110
Left Poor 114'
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On certain maneuvers, very small differences in °max and Max0 seem to cause large differences in the
residual errors. For example, in sector 6 of the normal landings (Appendix A), the coefficient of Max for
the heading regression is extremely large (B4 = 7990). Although OM of maneuver 124 differs from 4.4 of
the excellents by only about two degrees, the difference in E's is huge. Based on the processing of four
maneuvers, it would appear that an excellent maneuver with a slightly different 4.4 could significantly
increase the E's for the excellent maneuvers.

Further processing is required to determine if this is true in general. If so, one alternative would be to
change the form of the regression; e.g., Y = Bo + B1 X + 82 X2. However, lacking the necessary data to test
many more maneuvers, as required, the regression functions in the processor were implemented as
documented in this report.

Adaptive Math Models

This section describes the experimental techniques for generating candidate measures for subsequent
validation-testing. The models for so doing are called adaptive mathematical models because the candidate
measures which they generate are derived recursively and adaptively in accordance with the success
encountered with various measure-types. Since much of the underlying mathematics has been documented
in earlier referenced studies, emphasis here will be on a brief description of each model and those areas
where refinements were incorporated as a part of this study.

The purpose of the adaptive math models (AMM) is to systematically search Boolean time sequences
(BTS) for various characteristics and determine if the characteristics are related to performance
measurement. A block diagram of this process is shown in Figure 12. Smoothed flight data is directed to
Boolean logic which processes the data and develops Boolean functions designed to succinctly represent
critical performance-related information contained in the data. The output from the Boolean logic is a set
of Boolean time sequences which are directed to three processes: relative, absolute, and state transfer. Each
of these processes searches for different types of measures, as discussed in the Data Smoothing section. The
processes are two-step operations in which first, the Boolean time sequences are systematically searched for
characteristics and relationships potentially related to performance measurement. When useful
characteristics are detected, a test is conducted to deterininetheir significance to measurement. Finally, the
outputs of each of the three processes, which are intermediate performance measures, are combined in a
weighted sum to provide an overall performance measure for evaluation.

To establish the notation used in following sections, consider a Boolean time sequence where a single

bit of the sequence is represented by BTSilc. The first subscript (i) represents the Boolean function which
generates the BTS, and the second subscript (j) identifies the jth element of that sequence. Thus, Boolean
time sequence i is given by:

k
BTS ..;j = I

,
M k

where Mk is the number of elements in the sequence. The superscript (k) is used to indicate the flight
event or flight maneuver number associated with the Boolean sequence. It is seen that Mk is a function of k
only and not i, because every Boolean sequence generated with data from flight event k has the same
length. When reference is made to a total BTS for a specified flight event, the notation BTSki is used.

a. Boolean Function Data Representation. A special transformation of the data is performed to
simplify its analysis and to permit the user to interact with the processor by adding to it his knowledge of
the problem. The transformation results in representation of the data in the form of BTS produced by
applying a sequence of performance demonstration data samples to Boolean functions (BF). Two types of
BF are constructed and will be discussed in turn:
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Functions representing the raw data itself,*as expressed in terms of discretized deviations from
criterion (or reference) functions; and

Functions which are demanded by the user and reflect his knowledge about features of the
performance that are considered by him to be relevant to measurement.

(1) Functions Representing the Raw Data

Without relying on guidance from the user, BF are constructed by modeling the deviation of the
various parameters from standard profiles or time-histories. This is accomplished by, first, spanning the
envelope of performance with amplitude test bands, as illustrated in Figure 13. The test bands (labeled 1
through 5 in Figure 13) are determined empirically and consist of multiples of standard deviations around
the reference function, computed using performances of skilled subjects. BF are constructed to represent
activity in each test band. The BF are set true only when the actual performance data sample is within the
limits of the respective test bands.

(2) Functions Demanded by the User

The user may construct special BF by asking pertinent yes-or-no questions about the performance.
The answers (1 or (P) then form the values of the associated BTS. For instance. the user may have reason to
believe that whether or not a pilot's turns are consistently coordinated is particularly relevant to measuring
Ns performance on a given maneuver. Therefore, he may ask whether

Roll = f(pitch, rate-of-turn, . ..) ± 8

where the function f is designed to model a coordinated turn. If indeed this information is relevant to
measurement, then the level of activity (percentage of time true) of the associated BTS would probably be
a good performance measure.

As a second example, there may be reason to believe that performance at critical points in the
maneuver is particularly relevant. To augment the processor with this information, the user might pose the
question, is the performance currently at a critical point (like Pitch = Max Pitch ± 10°)?" The resulting BF
then identifies that point in the maneuver. In this particular case, the associated BTS itself may not be
relevant; rather, its logical relationship with other BTS (i.e.: what is happening at the critical point) would
probably be of most value.

b. Absolute Measures The absolute computation mechanism consists of a correlation of each BTS
against a fixed set of functions or sequences (MacDonald Codes). This results in the transformation of a
long sequence (BTS) into a new set of non-Boolean variables which in turn can be examined to. determine if
they are relevant to performance evaluation.

Correlation against an absolute reference allows a search for measurement-significance of particular
sequences or patterns as they are generated by the Boolean functions. If it is found that some BTS pattern
is likely to be predictive of skilled operator performance, this information can serve as a basis for
specification of automatic scoring systems as well as provide clues about the operator techniques used in
achieving superior performance. The absolute measure also allows analysis employing multiple BTS as well
as a single BTS via a regression computation. This provides the tools required for a systematic study of
which Boolean function and combinations thereof are relevant to measurement.

The absolute computation is defined as:

N2

1

C k =fi .2 BTS x Zt: N2 Ntkific
N2 j--111

where Zfi is an element in a reference sequence. The subscript (f) indicates which reference sequence is
being used. Note that the summation is not conducted over the total length of the BTS; rather, it is

computed over a short interval of the BTS. There are two factors that lead to this approach. First, every
performance does not require the same length of time and as a result Mk is not a constant. Thus, the

4 4
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summation must not be over an interval greater than the smallest value of Mk. Second, and far more
important, is that the set of reverences fj should be a set of orthogonal binary sequences in order io have an
efficient reference set. (It can be shown that there are N such sequences N elements long; i.e., fj is a square
matrix.) The absolute measure can also operate on threshold variables (see Adaptive Mathametrical Models
section) instead of the BTS. In that case, the computation is defined as:

N2

Cfi k N2 NI Rk X Z N2 NI < Mk
j=N1

The process implemented in the computer program uses a Hadamard transform producing Coefficients
from all reference sequences in one efficient operation rather than N operations. However, the process is
described by the equivalent correlation operation with a reference sequence.

The length of the reference sequence (and therefore the number of reference sequences) is taken as a
varaible 2M, M = 2, 3, 4, 5, 6, in order to facilitate generation of the Hadamard transform. As stated
previously, the reference sequence length must be adjusted to accommodate the length of the BTS;
however, the length of the BTS is not the only factor of interest. The optimum length of the reference
sequence required to produce sensitive performance measures is not known. It is known that the- BTS
pattern can be searched in several ways. Two possible ways are shown in Figure 14. Method A shown in the
figure requires a correlation of the 4 bit reference sequence to 4 bits (in general 2M) of the BTS followed
by correlation of, the reference sequence with BTS bits 5-8, etc., until all BTS bits have been processed..
Since there are 4 reference sequences (of 4 bits each) the process is a multi-pass operation. The equivalent
transform operation requires one pass. It can be shown that the values of the 4 coefficients for each shift
uniquely specify the BTS and no information is lost by the correlation (transform) operation. (Preservation
of information may or may not be necessary or a sufficient requirement in performance measurement. In
fact, it is easily seen that performance measurement is an operation in which information is discarded
systematically, thus reducing a great volume of data to a few variable values representing performance.)

Method B employs a correlation (transform) operation followed by a shift of one bit, followed by a
second correlation, etc. This method allows examination of each sequence of 2M bits and for that reason is
preferred. Various, length reference sequences can be processed without risk of an incomplete correlation at
the end, due to a BTS length not equal to a multiple of 2m. Thus, the processor is designed to employ refer-
ence lengths 2m, M = 2, 3, 4, 5, 6, and use the shift pattern shown as Method B in Figure 14.

Each correlation operation produces one value of the correlation coefficient and there are N + 1
correlations, where N is the number of shifts. If the BTS has L bits and the length of the reference sequence
is 2M, there are L-2m + 1 correlation coefficients (C) for each BTS and reference sequence combination.

Detection of "patterns" in each BTS is accomplished by analysis of the distribution of the correlation.
coefficient (C) values obtained from each channel (BTS and reference sequence combination). A
fundamental question is determining the C distribution that might result from a random BTS (i.e., without
consistent patterns). Consider a random BTS where "ach bit of the sequence has a probability of 0.5 of
being a I or 1. This population has a mean and variance of:

= 0

a2 1 )2 x .5 + 12 x .5 = I

The correlation operation can be considered as a summation of N elements of that population and the
distribution of summation has a mean and variance

IIN Nil °
U 2 = Na2 = N
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The distribution of aN2 is of specific interest since a computed sample variance from flight data is to be
used to detect the existence of data patterns. Thus, the .90 and .95 probability points of the cumulative
distribution for aN2 are desired for an automatic decision threshold so that the number of false pattern
detections (Type I error) can be controlled. Analysis of this problem resulted in the identification of
appropriate decision thresholds for incorporation in the processor.

c- Method of Constructing System States for State Transfer Measures. Previous efforts in

constructing Boolean functions for the purpose of proficiency measurement, employed one or more
threshold states. for each flight variable (Connelly et al., 1969 & 1971). It was observed in those studies that
improved results could be obtained using a new variable derived from deviations from reference functions.
For example, in the lazy 8 maneuver, a function relating pitch and roll angles was used to provide a
reference. Threshold states were constructed as KO displacements (i.e., multiples of standard deviations)
from this reference function. These threshold states, sequences of threshold states, and patterns of
threshold states are used to obtain estimates of the system performance.

While this method works well, it is desirable to extend the method such that threshold states for more
than one reference function can be considered collectively. For example, a state transition measure should
be more effective where the states reflect collective deviations from more than one reference. However, the
number of combinations of threshold states can be large which leads to problems in computation, data
storage, and data collection.

It is possible to combine several threshold state combinations into performance states with what is
believed to be a reasonable way. Benefits from such an approach include simplified computation while
maintaining a "physical" interpretation of the performance states. It is necessary to compare each sector of
actual data to this reference path to obtain an indication of how much deviation exists between the two
(Figure 15). Instead of listing the sequence of the residuals (ei = Oi A0i) for each sample, a new sequence
can be written as follows. If led is less than la, define Re = 0. If ei is between to and 2o, let Re = 1, etc.
Now, the sequence of residuals is reduced to a sequence which contains values 0-4 which are states. The
sequence Ro can be considered as a function state since it shows the progression of states followed by the
flight. This process can be generalized as follows:

Consider a set of reference functions as follows:

8 = fo (4), °Max, 4)Max)

AS = fAS (4), °Max, 4)Max)

fh 0), °Max, 4)Max)

= f (4), Max, 4)Max)

where

4) is roll angle

is pitch angle

AS is airspeed

h is altitude

is heading
A

ix s the estimate of variable x.

The error function for 0 is given by:

E0 = 8 fo = Eo (0, 4), 0 Max, 4)Maz)

E00 = E00 (0, °Max, 4)Max)
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Sequence of residuals:
el, e9, e3, e4 eT

SequenCe I : 1, 1, 1, 2, 2, 3, 3, 4,-4, 3, 1,

Boolean Time Sequence:

BTS =

{1 R > 2

R < 2

= 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, so,

Figure 15. Deviation etween actual data and reference path.
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where the value of Eva is one sigma deviation function for the distribution of 0 given (0, 0 Max, 0Max).

In a similar way, additional error and one sigma deviation functions can be formed

EAS (AS, 0, 0Max, 0Max)

EASa 0Max, 0Max)

Eh (h, OMax, 0Max)

Eh a (0, OMax, 0Max)

Eip (0, 0, 0Max, 0Max)

Eipa (0, 0 Max, 0Max)

Define threshold variables as:

Rx = 0 when 1 Ex 1 < k Exa

Rx = 1 when KExci S 'Ex' <2k Exa

Rx = 2 when /kE (1E I.< 3k Exa x xa

Rx = 3 when 3kEXo IE X l< 4k EX 0

Rx = 4 when 4kE xa <1Ex 1

where X = 0, AS, h,

A system state can be formulated as:

S = Re + RAs + + Rtp

Thus, S values range from 0 to 16. The following diagram illustrates the translation between threshold
regions activity and the system state representation.

S RAS

0 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

2 1 1 0 0
2 0 1 1 0
2 0 0 1 1

2 2 0 0 0

16 4 4 4 4

This method provides a summary performance state which renders several individual threshold states
equivalent. The method allows a compact 17 state representation of a system that contains many more
states.

In summary, there are several types of system states available. These are:

Binary Threshold states

A binary threshold state is defined by a binary valued function indicating if the present BTS
sample (residual) exceeds a specified level, i.e.,
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BTS. . = 1 if R.. > k.
I

= 0 if .Rij ki

where Rij is the threshold variable and k is the associated threshold factor.

Threshold states

A threshold state is the value of the threshold variable Rx = 0, 1, 2, ...

System states

A performance state is the value of the system variable(s) given by the sum of the threshold
variables S = R + RAS + Rh + Rp

The BTS is a sequence with 1/0 valued elements. In a strict sense, only binary threshold states can be
represented in a BTS; however, for computation of transition measures threshold and system variables are
useful. In the state transfer computational mechanism, the multi-valued variables R and S are used to
replace the binary valued BTS.

d. State Transfer Measures. The state transfer computation mechanism is a means for determining if
performance (or score) information is related to the sequence of operator actions. It may be that operator's
performance is partially or totally a function of how he corrects for errors, where he may or may not have
caused the errors initially.

In order to implement this computation and also provide a convenient means for compactly
representing long Boolean time sequences, a transition matrix is formed which identifies how the sequence
moves from state to state. Also, a composite transition matrix can be formed to represent transition
patterns from all demonstration data sets (DDS) of a given performance level.

A Boolean state is defined by the set of binary values associated with the set of selected BTS as
described in the previous section. Each DDS can be viewed as a sequence of Boolean states or, alternatively,
as a sequence of state transitions termed "transtates." The state transition measure seeks to relate the
frequency of use of each transtate to perforthance measurement. This is accomplished by associating with
each transtate a score value stored in an incremental score matrix (ISM). A performance measure value is
produced by summing the score values from the element of the ISM corresponding to each transtate used in
the DDS. The final performance measure value is obtained by dividing the sum by the number of
transitions. The transition matrix is fomied using the system state values

S = 0, 1,2, ... , 16

A 17 x 17 transition matrix is required to store all transition probabilities.

If we assume that the DDS state sequence can be described as a Markov Process, the sequence can be
represented by its transition matrix. Under this assumption, the performance measure can be computed in
another way. A fundamental theorem for Markov Chain processes states that if 7r0 is the initial probability
vector (probability distribution density), then 7rn (the probability vector after n trials) is given by

7r =7r T"
0 0

where T is the process transition matrix. Proof of the results given here can be found in Connelly et al.,
1969.

Now, we assume that the process is a regular Markov process. Such a process is identified by a
transition matrix (T) where for some value of n, Tn has no zero elements. This implies that the system
could be in any state after N trials, independent of the initial state.
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The assumption that the system is a regular Markov process lets us state that there exists a unique
probability vector (a) such that

as n limit in = a (2)

Elements of this probability vector correspond to the probability of the system being in the associated
state.

Furthermore, it is seen that

aT = a (3)

must hold due to Equations (1) and (2). This limiting probability vector gives the first state distribution
desired. Note that a is the probability distribution of finding the process in each state, given that we have
not observed the process previously.

The distribution of transtates can be determined by imagining an ensemble of many adjustment
systems with first states distributed according to a.. The second states for each system are determined
according to the transition matrix T. This yields new states, also with a distribution a (according to
Equation 3). The probability that transition i-j is used in the operation is the probability of the transition
(TO given the first state times the probability of being in state i (ai).

Let a' be an N by N matrix with zero value elements off the main diagonal. Also, the elements (a'ii)
of a' are given by

_a'.. a.
11 1

A new N x N matrix (D) is defined as

D = T

Elements of D (a; Tij) are the probabilities of the system being in each transtate assuming the first (or any
other) state is not known.

The probability matrix (D) can be used to establish the equivalent population statistics. Elements of
D (i,j) may be considered normalized weighting factors, and elements of ISM (i,j) provide the population
values. The population mean (P) is

N

P = D (ij) 1SM(i,j)
i=1 j=1

P is equivalent to the performance measure computed from state transition as described previously. In
addition, we now have the tools for computing values for the ISM. The method is to form a representative
transition matrix for two or more performance levels of the DDS. In this way, one transition matrix
represents excellent performance and another represents another performance level, etc. Once these
composite transition matrices are available, the elements of ISM can be adjusted (trained) to improve the
performance measure discrimination capability between (or among) the demonstrated performance
categories. The method is to sequentially adjust the ISM using one transition matrix at a time and to
continue the process until a measure with stable discrimination capability is obtained. There are alternative
methods of adjusting the ISM, but this iterative method converges rapidly and allows introduction of new
data as it is obtained. The iterative method requires computation of the amount each element in ISM
should be changed in order to modify the score (measure value) by a specified amount.

The probability matrix D OD can be used to compute the expected value of score change by means
of the adjustment process. For each transition, the probability that transtate (i,j) is used (assuming we do

t
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not know the present state) is D (i,j). Thus, the expected change in the associated incremental score, ISM
j), at each transition is the product

A DOD

where A is the amount added to the ISM increment. Since n2 transitions are used in the sequence, the total
expected change is given by:

n2 A D(i,j)

If we use ISM (i,j)' to represent the expected updated incremental score matrix, we see that:

ISM (i j)' = ISM (i,j) + nz A D(i,j)

The expected mean score is

= E DOD ISM(i,j) + nz A (D(i i))2
i j

and the expected change in mean score (CM) is

CM = n2 A E E (DOB2

The summation term can be considered as the system gain C, such that

C= EE (D(i,j))2
i j

(Note that C will be less than one.)

Thus, the amount that must be added to each element of ISM is-2 A D(i ,j) in order to change the
measure value by amount CM.

e. Relative Measures. The relative computation technique operates on up to four Boolean functions
simultaneously to determine if logical relationships exist and, if so, how the relationships are associated
with performance. Thus, as opposed to the absolute computation where operations are performed on a
single BTS, the relative computational technique uses a "trainable logic" concept to detect possible
relationships among BTS. The approach is to select a set of base BF channels and form all combinations of
these sequences for each data sample. For example, if three base BF channels are selected, eight
combinations can be produced. Only one combination is true for each sample. Correlation of one
combination (say combination j) with an additional BF channel (say BF;) yields the conditional probability
that BF; is true given that combination j is true.

Each combination can be expressed as :

CrnO) = (BTScki BTSbkj Mki)

where the first subscript indicates the BTS, and the superscript indicates the DDS. The second subscript (j)
indicates the element in the sequence. The AND operation is conducted on a bit-by-bit basis. Therefore, the
combination Cm(j) has a binary value corresponding to each element in the BTS; i.e., Cm(j) is a Boolean
sequence itself.

As an example, we determine combination 5. It is convenient to represent m (or 5 in this case) by its
binary form (101). Thus, using the binary form of m to code the combination, we find
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Cs (j) = BTS BTS k. BTSaj
cj bj

where BTS is the NOT function. Note that the second subscript need not be the same for each term; i.e., we
can compute using relative time positioning by selecting (for example) second subscripts (j, j+2, j+3, j-1).
While this flexibility is available it has not been extensively explored to date.

The analysis consists of the following operations. First, a number, SUMN, is computed which is a
count of the number of times each combination occurs during the flight event under study. Thus,

Mk

Sl7 ,iN = Cn(j).
j =1

A second count is formed which represents the number of times a BTS variable is true, given that
combination Cn is true. Thus,

Mk

SUMS = Cn(j) BTSekj

1=1

Normally, the first subscript e would have a different value than those of the base variables. Next, the

conditional probability that BTS is true given that combination n has occurred is determined as

UMc h

13c(n)

SUMN

This conditional probability identifies the relationship between each combination of the base variables and

the predicted variable. These conditional probabilities are candidate performance measurement variables
and are tested for validity, as described in Validation Tests section.

f. Summary Description of Measures. Figure 16 illustrates a 2-dimensional state-space defined by roll
and pitch angles, and the approximate trajectory outline of one quarter of a lazy 8 maneuver. The small
arrows in the figure depict alternative directiOns in which a roll/pitch trajectory might move in a given
performance. The State Transfer type of measure is based on probabilistic assessments of this direction of
movement. To compute the probability values, the state-space is gridded into discrete states. (For instance,
each cell or rectangle in Figure 16 may be considered an individual state.) By computing the frequency with
which each state is acquired and the state sequence, the probability of transfer from state to state is
calculated.

The State Transfer computational mechanism can operate on up to four flight variables at a time. To
minimize the number of states to be handled simultaneously and the associated computational complexity
of the problem, threshold states are used which represent the sum of the deviation units from each criterion
function. For example, in Figure 16 the shaded cells might be recorded as threshold state, number 1
(depending on computed performance variance and resulting cell sizes used to model each performance),
because they are located one deviation unit from the reference trajectory. This state representation not
only reduces problem complexity, but permits ready interpretation and assessment of divergence from or
convergence on criterion terminal performance.

The Relative measure is based on conditional probabilities of various states being acquired
simultaneously with the acquisition of other states. For instance, consider the user-defined BTF's of (1)
Pitch = maximum pitch ±A1, and (2) airspeed = AK ± A2, where AK is a criterion airspeed value. Analyzing
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sz,

Boll

Figure 16. Representative roll/pitch state space.

these BTF's along with the information in Figure 16, the Relative computational mechanism would
examine as a potential measure the probability that pith is; maximum whenever airspeed AK and state X
in Figure 16 is active. (This is precisely a significant factor of criterion lazy 8 performance as suggested by
Air Training Command flight manuals and as substantiated empirically in previous studies (Knoop & Weide,
1973)), This is only one example of hundreds where simultaneity of significant events bears on successful
performance, and the role of the Relative computational mechanism is to explore the relevance to
performance measurement of conditional probabilities, When one considers the plausible theory that much
of performance on continuous control tasks can be modeled by discrete successive acquisitions of key
states, the value of the Relative type of measure and its role in the processor becomes clear.

The Absolute computational mechanism essentially amounts to computing a discrete version
(Hadamard Transform) of the Fourier Transform, wherein the power of various frequency components of
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the signal (BTS) is assessed. Each transform operation produces a number of coefficients (correlation
values), which are summarized by their mean and variance. Previous work (Connelly, et. al., 1969) has
shown that the variance of the Hadamard coefficients is most useful in discriminating performances of
various skill levels. The Absolute mechanism generates these variances for subsequent validation testing,
described next.

Validation Tests

a. Description. For the vast majority of performance tasks, there is no single necessary and sufficient
test that can be applied to candidate measures to assess their validity. Measures which appear to have
content validity often fail to reliably discriminate even between novice and highly experienced performers.
Measures which appear to have concurrent validity may or may not satisfy other validation criteria,
depending on the reliability and sensitivity of the metric used as a basis of comparison.

The approach in this study was to develop three empirically-based-validation tests to be applied by
the measurement processor. Collectively, the tests are used to determine the likelihood that each cvdidate
measure is valid. Final analysis and assurance of the measure's content validity is performed by the user of
the processor, based on the evidence accrued by it and printed out for his consideration.

The first test assesses the measure's potential contribution to discriminating between performances at
opposite ends of the skill continuum. The data employed for this test are selected by the user. For the
T-37 pilot performance tasks that were to have been addressed here, the following two types of data would
have been investigated:

(1) Flights flown by instructor pilots to demonstrate their best performances and simulated novice
performances of each maneuver.

(2) Flights flown by students at the neophyte stage and at the successful completion of training.

The techniques implemented to apply this first test include: (a) comparison of residues from regression
analyses, and (b) the rank sum statistic (see Validation Tests section).

The second test assesses the measure's functional relationships with variables such as number of trials
and time in training. A measure which demonstrates that learning has occurred from neophyte to
experienced levels of performance would posses a higher likelihood of validity than one which consistently
does not, for example. Again, the data to be employed for this test are specifiable by the user. For the T-37
pilot tasks, the following data would have been experimented with: (1) time in training, (2) Number of
practice sorties on the maneuver, and (3) number of practice trials on the maneuver. The technique used to
apply this test consists of developing and analyzing a multi-variable regression function. (An alternative
technique based on the use of Markov learning models was conceived, but due to lack of data, has not yet
been developed to the point of implementation.)

The third test assesses the measure's functional relationships with subjectively derived ordinal scale
measures of performance. Measures which tend to reinforce the subjective ordering of performances are
considered more likely to be valid than those which consistently fail to do so. The data employed for this
test, as with the other tests, are specified by the user. For the T-37 tasks, instructor pilot ratings would have
been investigated for use. The technique for applying the test is to develop and analyze multi-variable
regression functions, as in the second test described in the preceding paragraph.

The regression techniques used for applying some of the above validation tests were described
previously. The rank sum test is.described next.

b. Rank Sum Statistic. The computer-aided generation of performance measures requires the
systematic generation and evaluation of many candidate measures. It is necessary to assess these measures'
potential contribution to overall performance measurement. One Aid in accomplishing this using the rank
sum statistic was developed for investigation in this study.

Consider a process where data are available from two performance classes (e.g., flights produced by
instructor pilots and flights produced by neophyte student pilots). Candidate proficiency measures will
yield two sets of quantitative variable values when applied to the data from these two performance classes.
It is possible to test these sets to determine if they come from different parent distributions. If they do
come from different parent distributions and there is little overlap in the distribution functions, then the
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candidate measures are highly likely to be useful in proficiency assessment; i.e., there is a high probability
that the tested measures will satisfy other validation 'criteria. On the other hand, if these two distributions
have considerable overlap, then the measures would probably not be very useful.

A test for determining the degree of similarity of the two parent distributions can be selected from
statistical analysis hypothesis testing where one can initially assert that the two distributions are the same
(null hypothesis). One method of testing the hypothesis that distributions F, (X) and F2(X) are equal is the
rank sum test. This is a simple non-parametric test which indicates the likelihood that two sets of data,
which may be of different sizes, come from the same distribution.

Tekt,of the hypothesis that F1(X) is equal to F2 (X) is developed as follows:

Let X, , X2 . . Xn and Yi Y2 , . . ,

denote random samples of two sizes, n, and n2, taken from populations with continuous density functions
F1(X) and F2(X), respectively. Let these two sets of samples be ordered in increasing magnitude and
combined to a single ordered set where a possible arrangement might be as follows:

Y1, Y2, X1, Y3, X2, Y4, etc.

Of special interest is the sum of the ranks of the smaller set n1 (where n1 < n2). (For example, the ranks of
the X's are 3, 5, etc.) The sum of these ranks is a statistic of known distribution for given values of n, and
n2. Therefore, the statistic value can be used as an indicator that the hypothesis F, (X) = F2(X) is valid.
Table 13 gives the critical values or limits of a 95 percent confidence interval for small values of n1 and' n2.
(The significance level of the rank sum test is not preserved if the two populations differ in dispersion or
shape. Whether or not they differ in this way is expected to depend on the measure under test. Plans to
analyze this empirically for the various measures on the T-37 problem and, as required, develop techniques
to account for observed effects did not materialize due to inability to collect required data.) This table is
taken from (Hoel, 1962) and applies for values of n1 and n2 less than 10. For larger sample sizes the
distribution is approximated closely by the normal distribution with a mean and variance given as follows:

Mean = n, (n1 + n2 + 1)/2

ni n2 (n, + n2 + 1)
Variance

12

V. SUMMARY AND CONCLUDING REMARKS

A computer-aided system has been developed and implemented for use in deriving and validating
measures of operator performance. Its uniqueness is characterized by: (1) a logical division of human and
computer-processor functions, integrated through an interactive manimachine systems approach to
measurement research; (2) an experimental approach to deriving measures by generating vectors which span
various conceivable measure spaces and operating on the vectors using multiple regression analysis; and (3) a
systematic empirical approach to validation-testing of candidate measures to assess their likelihood of
contributing to overall performance measurement.

One of the most important features desired in the processor is its ability to automatically generate
and test candidate performance measures with a miniumum of inputs from the user. The processor
successfully implements this desired feature in that it reads in raw performance data and prints out tested
performance measures. To do this, it first automatically performs data smoothing; i.e., removal of noise in
the data. It then performs logical sectoring in which maneuvers are automatically divided into sectors that
can be conveniently analyzed in subsequent processing. Next, the processor automatically applies a
regression analysis procedure to establish criterion performance in the form of simple regression functions.
The independent variables for each function were selected based on their being monotonic over the
maneuver sector of interest. Finally, the processor applies adaptive mathematical models to the data, and
based on types of deviations (BTS) from the criterion performance functions, generates and tests for
validity a variety of performance measures. It is truly an automatic processor.
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Table 13. Rank Sum Critical Values*

The sample sizes are shown in parentheses (ni, n2). The probability
associated Nith a pair of critical values is the probability that R < smaller
value, or emmlly, it is. the probability that R > larger value. These prob.
abilities ate the clnset ones to .025 and .05 that exist for integer values of R.
The appro\ imate .025 values should be used for a two-sided test with a
and the approximate .05 values for a one-sided test.

(2, 4) (4, 4) (6, 7)
3 11 .067 11 25 .029 28 56 .026

(2, 5) 12 24 .057 30 54 .051
3 13 .017 (4, 5) (6, 8)

(2, 6) 12 28 .032 29 61 .021
3 15 .036 13 27 .056 32 58 .054
4 14 .071 (4, 6) (6, 9)

(2, 7) 12 32 .019 31 65 .025
3 17 .02S 14 30 .057 33 63 .044
4 16 .056 (4, 7) (6, 10)

(2, S) 13 35 .021 33 69 .028
3 19 .022 15 33 .055 35 67 .047
4 18 .044 (4, 8) (7, 7)

(2, 9) 14 38 .024 37 68 .027
3 21 .01S 16 36 .055 39 66 .049
4 20 .036 (4, 9) (7, 8)

(2, 10) 15 41 .025 39 73 .027
4 22 .030 17 39 .053 41 71 .047
5 21 .061 (4, 10) (7, 9)

(3, 3) 16 44 .026 41 78 .027
6 15 .050 IS 42 .053 43 76 .045

(3, .1) (5, 5) (7, 10)
6 1 S .028 IS 37 .028 43 S3 .028
7 17 .057 19 36 .018 46 SO .054

(3, 5) (5, 6) (8, 8)
6 21 .018 19 41 .026 49 87 .025
7 20 .036 20 40 .041 52 84 .052

(3, 6) (5, 7) (8, 9)
7 23 .024 20 45 .024 51 93 ,023
8 22 .048 22 43 .053 54 90 .046

(3, 7) (5, 8) (8, 10)
8 25 .033 21 49 .023 54 98 .027
9 24 .058 23 47 .047 57 95 .051

(3, Si (5, 9) (9, 9)
S 28 .024 22 53 .021 63 103 ..025
9 27 .012 25 50 .056 66 105 .047

(3, 9) (5, 10) (9, 10)
9 30 .032 24 56 .02S 66 114 .027

10 29 .050 26 54 .050 69 111 .047
(3, 10) (6, 6) (10, 10)

9 33 .024 26 52 .021 79 131 .026
31 .056 28 50 .047 83 127 < .053

This table \\ as extracted from a more complete table (A-20) in inceoducrion
Statistical Analysis, 2nd edition. by \V. 3. Dixon anti Massey, with perMission from
the publishers, the McGraw-11in Book Company.
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The types of measures generated and tested were defined a priori in terms of underlying
characteristics which render them suitable candidates. One type (Relative) represents probability measures
related to significant event proximities. Another (Absolute) represents measures of system variable
frequencies and periodicities. A ithird (State Transfer) represents measures of state transitions that occur
over time, including system divergence from or convergence upon criterion terminal performance. A fourth
type (State Frequency) that was identified but not specifically addressed in this effort uses data generated
by the State Transfer computational mechanism to address measures of reference function deviations.

To investigate the above measures, vectors were identified which constitute generators of the measure
spaces corresponding to each measure-type. The measures thereby spanned are explored by the various
computational mechanisms using regression analysis and a number of empirical validation tests. Table 14
summarizes the measure spaces, the components of vectors by which they are spanned, and the basic
functions performed by each computational mechanism.

Table 14. Summary of Measure Space,

No. of BTS
Processed Per

Iteration

Major Function of
Measure Computational

Subspace Mechanism

Components of
Generating

Vectors

Types of
Measures
Spanned

4 Relative Compute Conditional Probability of
Conditional Probabilities Simultaneous
Probabilities Occurrence of

Significant Events
Or System States

1 Absolute Perform I ladamard State Variable
Hadamard Coefficients; Periodicities
Transform Coefficient and Response

Distribution Frequency
Parameters (4,a) Characteristics

4 State Generate Transtate Operator/System
Transfer State Frequencies; State Transitions;

Frequencies, State Transfer Transitive and
Transtate Measures Steady State
Frequencies, Derived Via Movements Relative
and Transition To Criterion
Transition Matrix Model Terminal Performance
Matrices

State State Reference
Frequency* Frequencies and Function

Corresponding Deviations*
Deviation
Units*

+Separate computational mechanism not yet implemented in processor.

The success of the automatic maneuver sectoring is a main factor in processor effectiveness. It allows
use of simple regression functions for describing criterion performance since small portions of the
maneuvers can be treated separately. Had this automatic sectoring not been feasible, then a considerably
more complicated regression function would have been required; i.e., it would have been necessary to
attempt to model the entire maneuver or large portions thereof with a single regression function.
Preliminary evaluation of the automatic sectoring using two excellent and two poor maneuvers, as rated and
flown by IP's, indicates that the sectoring will work in a satisfactory way over a range of maneuver
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demonstrations. However, since the beginning of each sector is detected when a specific variable amplitude
exceeds a threshold limit, it is possible that some maneuver demonstrations (especially those produced by
neophyte students) presented to the processor will not be processed properly. Thus, before the evaluation
of the automatic sectoring can be considered complete, distributions of these key variable values are
required over the range of expected performance demonstrations; i.e., student demonstrations from
neophyte to skilled.

Another key area in the development of the processor is the use of a simple regression function that
uses the "five sums approach" (Connelly et al, 1969, pp. 179-181), so that additional information can be
simply added to the processor as it becomes available. Initial evaluation using two excellent and two poor
demonstrations of each maneuver type indicates that the mechanism for developing the satisfactory
criterion function is available. It should be noted, however, that although the mechanisms for producing the
criterion functions exist in the processor, the data itself must be studied using additional demonstrations of
flight performance in order to determine if excellent performance data is clustered about the criterion
functions. Such clustering is necessary for establishing useful criterion functions. Should clustering of
excellent performance data fail to materialize, as evidenced by a large residual value, maneuver parameters
such as Om ax and (Amax may have to be included in the regression functions.

The adaptive mathematical models developed and experimented with in earlier studies have now been
refined and adapted to use in an automatic processor. Future refinements beyond those now implemented
may be easily invoked as required due to the modular design of the software. Whether or not further
refinements are necessary or desirable could not be determined in this effort due to the previously
mentioned unavailability of sample performance data. However, the central features of what is believed to
be powerful and highly useful measurement research tool have been successfully implemented; and
hopefully the underlying theoretical concepts and the implementation techniques that were developed and
documented herein will, as a minimum, serve to inspire further measurement work along these lines. .

REFERENCES

Connelly, E.M., Bourne, F.J., Loental, D.C., Migliaccio, J.S., Burchick, D.A., & Knoop, P.A. Candidate
T-37 pilot performance measures for five contact maneuvers. AFHRL-TR-74-88. Wright-Patterson
AFB , OH.: Advanced Systems Division, 1975, in press.

Connelly, E.M., & Loental, D.G. A performance measurement model for non-linear man-machine control
problems. Proceeding of the 10th Annual Conference on Manual Control, 9-11 April 1974.

Connelly, E.M., Schuler, A.R., Bourne, F.J., & Knoop, P.A. Application of adaptive mathematical models
to a T-37 pilot performance measurement problem. AFHRL-TR-70-45, AD-726 632.
Wright-Patterson AFB, OH.: Advanced Systems Division, Air Force Human Resources Laboratory,
March 1971.

Connelly, E.M., Schuler, A.R., & Knoop, P.A. Study of adaptive mathematical models for deriving
automated pilot performance measurement techniques. AFHRL-TR-69-7, Volumes I and II, AD-704
597 and AD-704 115. Wright-Patterson AFB, OH.: Air Force Human Resources Laboratory, October
1969.

Gregory, F.D., & Cavanagh, R.A. Student pilot performance measurement system. Flight Test Report No.
ENE FTR 73-37. Wright-Patterson AFB, OH.: Aeronautical Systems Division, 1973.

Hahn, G.J., & Shapiro, S.S. Statistical models in engineering. New York: John Wiley and Sons, Inc., 1968.

Hoel, P.C. Introduction to mathematical statistics. New York: John Wiley and Sons, Inc., 1962.

Kemeny, J.G., & Snell, J.L. Finite markov chains. New York: D. Van Nostrand Co., Inc., 1960.

Knoop, P.A., & Welde, W.L. Automated pilot performance assessment in the T-37: A feasibility study.
AFHRL -TR -72.6, AD-766 446. Wright-Patterson AFB, OH.: Advanced Systems Division, Air Force
Human Resources Laboratory, April 1973.

G
56



APPENDIX A: RESULTS OF REGRESSION ANALYSIS

MANEUVER TYPE Cloverleaf

ERRORS

SECTOR 2

Dcpcndcnt
Variable

1:::cellc.nt Poor

EC 125(L) 124(R) 127(,) 128(R)

h 10.63 9.74 11.72 374.66 315.94

41 0.77 .59 .0.99 1.89 1.25

AS .82 2.40 53.31

0

0 2.95 1.68 4.51 3.06 7.38

#/samples 11.0 9.0
0M 44.4 40.4 41.6 22.5

0M 5.6 9.5 8.9 8.3

FUNCTIONAL FORM: DV = B0 4 B le + B202 B3 OM + B
4

OM

REFERENCE FUNCTIONS

Variable
B
o

B
1

B
2

B
3

B
4

h 782.40 3.60 0.31 -14.19 -69.44

41'
-3.24 .19 -0.00 -0.05 0.44

AS 72.30 .32 -.01 2.96 4.09

0

0.09 0.00 0.22 1.44
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MANEUVER TYPE Cloverleaf

ERRORS

SECTOR 3

Dependent
Variable

Excellent Poor

EC 125(L) 124(R) 12701 128(R)

h 31.90 32.22 31.76 1143.00 9074.90

41 38.52 559.62 4751,90

AS 2.16 6.22 211.48

0 1,00 .88 1.11 3.03 122.09

0

#/samples 17 19

0M 62.9 60.1 49.6 -52.4

0m 178.0 181.0 179.0 166.0

FUNCTIONAL FORM: DV = BO + B10 + B 24)2 + B
3
0 + BM 4 M

REFERENCE FUNCTIONS

Variable
B
o

B
1

B
2

B
3

B
4

h -2588.00 D2.03 -.02 77.96 -10.04

1111
1668.00 0.57 0.00 -42.86 5.45

AS 150.70 .70 0.00 -2.07 2.89

0 -21.68 070 -.00 1,34 -0.12

0 .
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MANEUVER TYPE Cloverleaf

ERRORS

SECTOR 4

Excellent Poor

Dependent
Variable

t
C 12(1) 124(R) 127(I) 12801

h 16.64 17.81 15.35 348.85 2926.30

0 14.20 13.99 14.60 79.20 332.24

AS 1.14 1.25 1.02 69.60 57.72

0

0 6.98 7.74 6.1.3 5.58 11.51

4f/samples 11 10 9 4

Om -86.9 -81.7 -81.2 -86.9

179.0 178.0 178.0 166.0
Ivl

FUNCTIONAL FORM: DV = B
0

+ 8,0 + B902 + B3

REFERENCE FUNCTIONS

B4 Om

Variable
B
c

B
1

8
2

8
3

B
4

h -29680.00 -2.68 -0.11 78.01 214.20

0 -2687.00 -2.45 -0.03 8.08 19.48

AS 980.30 0.13 0.00 -3.62 -6.71

0

0 336.3 -1.12 -0.01 -0.81. -1.37
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MANEUVER TYPE Cloverleaf

ERRORS

SECTOR 5

Dependent
Variable

E>:cellent Poor

C 125(L) 124(R) 127(L) 128(R)

h 38.28 35.74 41.72 303.15 718.86

0 1.51 1.18 1.97 101.35 23.40

AS 1.80 1.71. 1.91 54.19 19.66

0

0 6.24 5.73 66.93 5.91 8.25

#/samples 19 14 9 14

°M
Om

-79.9

68.5

-80.9
75.7

-78.2
66.5

-82.4
92.0

FUNCTIONAL FORM: DV = B
0

B10 + B
2
02 + B3 0M +

B4 0M

REFERENCE FUNCTIONS

Variable
B
o B1

B
2

B
3

B
4

h 3806.00 -18.33 -.00 34.14 -22.27

0 -2355.00 0.25 -0.00 -20.21 8.37

AS -161.8 0.80 -0.00 -5.13 -0.43

0

0 -71.71 7.25 0.02 -0.20 0.15

60
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MANEUVER TYPE Split S

ERRORS

SECTOR 1

Dependent
Variable

Exer.,11ront Poor

h

a

VI

AS

4)

#/samples
0M

/5M _

1

6.44
0.01

.

FUNCTIONAL FORM:

REFERENCE FUNCTIONS---

Variable Bo B1 B2 B3

.

B4

h

'p

AS

v

61
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MANEUVER: TYPE Split S

ERRORS

SECTOR 2

Dependent
Variable

Excellent Poor

126(L)

,

129(L) 130(I,)

h 20.41 1271.30 178.71

0.17 17.95 5.04

AS 1.14 1132.50 140.58

6 0.57 243.35 35.12

ct,
.72 5.38 1.31

4/samples 28 31 18

°Ili' 28.4 23.3 26.2

Om -5.6 6.9 -3.9

FUNCTIONAL FORM: DV =B
0

+ B1 "
"j2

t +t2+ B3 OM + B40M

REFERENCE FUNCTIONS

Variable
Bo B1 B2 B3 B4

h -1251.00 , 1680.00 12.18 19.61 -105.00

111
-8.67 -1.33 -5.85 0.02 -1.41

AS -357.20 -82.27 -16.46 2.16 -90.56

8 -123.00 62.83 -44.86 0.69 -19.43

0 7.91 -18.50 18.84 -0.12 0.65

62
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MANEUVER TYPE Split S

ERRORS

SECTOR 3

Dependent
Variable

Excollf-nt Pcyx.

1.26(L) 129(L)

, 1.38 137.79 373.67

0 2.62 9.69 61.01

AS .59 36.63 26.35

0 .31 5.63 11.05

4'r/samples 7 9 9

0M 26.3 19.6 27.2

°N1 161.0 110.0 118.0

FUNCTIONAL FORM: DV = BO + B10 + B202 +
3 OM + B44,M

REFERENCE FUNCTIONS

Variable
Bo B1 B2 B

3
B
4

h -235.70 , 2.34. -0.00 45.07 3.77

-6.38 0.60 0.01 -4.25 0.73

AS -3.61 0.16 .00 1.07 0.61

6 5.23 0.14 -0.00 1.48 -.12

0

63
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MANEUVER TYPE Split S

ERRORS

SECTOR 4

Dependent
Variable

F,xellent Poor

126(L) 129(L) 130(L)

h 49.47 381.73 342.84

41 2.83 86.61 105.01

AS 4.32 18.96 45.27

A 10.48 16.80. 99.70

0

4/samples 12 11 12

ON/ -76.6 -57.3 -64.7

Om 178.0 172.0 159.0

FUNCTIONAL FORM: DV = BO + B14 + B2°2 +
30M

+ B 40M

REFERENCE FUNCTIONS

Variable Bo B
1

B2 B3 B4

h -4173.00 -20.70 0.11 30.61 47.07

1,11
-372.30 -6.16 0.01 0.96 6.34

AS 4/3.10 1.57 -0.00 -2.79 -3.34

0 -628.00 -3.60 0.01 3.99 5.87

64
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MANEUVER TYPE Split S

ERRORS

SECTOR 5

Dependnt
Viiriable

Excellent Poor

126(L) 129M 130W

h 3.83 45.92 394.26

IP 5.52 435.99 58.71

AS .77 73.78 84.06

0

45 2.38 11.24 11.88

Vsarniples 12 10 11

Om -73.2 -56.0
'60.2

-64.1

cl)M
52.7 73.3 '

FUNCTIONAL. FORM: DV = B
0

+ B10 0 + B202 + B3
OM

+ B 44)M

REFERENCE FUNCTIONS

Variable
Bo

B11
B4

h -2036.60 -4.83 0.15 12.38 5.50

ti, -3.53 -1.42 -0.02 -4.99 1.05

AS 9.41 0.05 -0.00 -4.58 -2.32

8

(15 -3.82 0.63 0.01 0.21 0.60
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MNEUVER TYPE Lazy 8

ERRORS

SECTOR 1

Dependent
Variable

(
Excennnt Poor

EC
Good Plus

102
1001) 113(0 1000

h 4.44 3.18 7.20 18.98 26.24

lk
0.11 0.08 0.18 0.14 .35

AS 0.40 0.42 0.37 13.83 91.07

0 0.64 0.48 .98 1.17 19.01

0 0.62 0.48 .93 .68 7.07

4f/samples 11 5 13 8

°M 7.0 7.3 6.9 10.8

(75M
6.80 4.10 3.3 -3.9

FUNCTIONAL FORM: DV = BO + Blt + B
2
t
2

+
B3
0M +

B4 'M

REFERENCE FUNCTIONS

Variable
B
o

B
B1

32
B3 B4

h 250.10 -120.60 150.80 -21.94 -13.55

V/ .85 .99 1.61 -.09 -.01

AS 398.00 5.18 -7.50 -25.05 -2.52

0 -24.03 5.44 3.12 3.82 -.81

0 -5.38 0.55 5.80 0.68 .00

66
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MANEUVER TYPE Lazy 8

ERRORS

SECTOR 2

Dependent
VVariable

ExecU,nt Poor

E
C

Good Plus
102

108 113(L) 106(R)

h 63.88 64.96 63.06 483.84 820.75

II'
0.89 0.81 .96 '9.32 11.76

AS 1.42 1.21 1.59 27.81 37.23

0 0.31 0.27 0.34 6.44 3.20

4)

4k /sampl2s 19- 25 19 25

9M

4'14

27.6
44.4

31.4

45.8
26.6

40.6
43.1

56.5

FUNCTIONAL FORM: DV =B
0

+81 0+B
2

952 + B
30M + B44)M

REFERENCE FUNCTIONS

Variable
Bo B1 B2 B3 B4

h -4410.00 32.47 -0.02 53.69 58.31

ik -7.80 0.46 0.00 .02 0.08

AS 387.7 -1.18 -0.00 0.26 -4.08

0 -53.07 1.27 -0.01 .75 .69

67
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MANEUVER TYPE Lazy 8

ERRORS

SECTOR 3

Dependent
Vanabl e

Poor,Excciknt

,

Good Plus
102

128N 113(0 106(R)

h 14.83 17.65 11.78 526.14 3010.40

111/
3.30 3.93 2.63 37.07 42.26

AS 1.63 1.94 1.29 32.04 173.65

0 1.80 2.03 1.54 12.41 84.63

4/samples 14 13 12 13

0M 27.4 31.3 26.2 40.9

. 15M 73.9 89.1 76.7 84.9

FUNCTIONAL FORM: DV = BO + B + B202 +BO+BM 4
()M

REFERENCE FUNCTIONS

Variable
Bo B

1 B2
B3 B4

h -4848.00 38.43 -0.18 328.9 -61.06

111 -3.68 2.47 -.00 3.03 -1.81

AS 402.00
1

-2.94 0.01 -17.70 4.49

8 -1-4.20 0.91 -0.01 8.50 -1.61

0

68
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MANEUVER TYPE La zy 8

ERRORS

SECTOR 4

Dependent
Variable

Excellent Poor

C
Good Plus

102
108(L)

.

113(I) 106(R)

h 29.65 28.18 31.46 325.76 1912.90

0 3.65 .2.83 4.43 33.30 318,12

AS 2,14 2.12 2.17 3.03 602.64

6

(1) 2.82 2.47 3.24 7.96 249.63

41-/samples 16 13 14 17

0M -27.2 -25.0 -26.8 -50.7
c'SM

75.9 90.0 82.6 84.7

FUNCTIONAL FORM: DV = BO + B10 + B202 + B
3

0M + B
40M

REFERENCE FUNCTIONS
(

Variable B
o B

1

,

B
2

B
4

h 390.50 -8.05 -0.51 32.63 26.75

0 -394.10 .78 0.03 -13.25 1.65

AS -732.2 0.48 0.06 -21.96 3.31

0

0 331.80 .57 -0.05 7.52 -.64
69
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MANEUVER TYPE. I.z.izy 8

ERRORS

.SECTOR 5

Dependent
Variable

Exc:c.,.11c.nt Poor

C
Good Plus

102
108(L) 113(L) 106(R)

h 24.66 32.17 19.02 563.96 2892.20

41 0.35 .40 .31 17.80 22.28

AS 1.65 2.11 1.30 22.98 60.16

0.96 1.30 .69 1.30 7.26

4)

4/samples 18 24 21 19

Om. -27.1 -24.7 -26.1 -47.6
4)M 48.6 50.6 50.6 44.7

FUNCTIONAL FORM: DV = BO + B14 + B 242 + B
30M

+ B
4

OM

REFERENCE FUNCTIONS

Variable go
B1 B

2
B3 B4

h -2083.00 13.86 0.14 151.60 126.00

4 159.70 0.08 -0.01 -2.07 5.83

AS -35.85 0.73 -0.00 -3.99 2.88

0 -14.89 0.68 0.00 0.16 0.34

d) ,
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MANEUVER TYPE Normal Landing

ERRORS

SEC ;TOR 1

Dependent
Variable

Excellent Poor

EC 122 121 123 124

h 57.17 39.85 78.58 120.03 100.33

II' 0.75 .70 .80 50.68 18.20

AS 2.52 2.41 2.66 49.49 29,34

0 0.65 0.77 .51 1.02 .83

4 1.40 1.22 1.62 1.48 2.24

1/samples 42 34 33 39

0M -2.2 -2.9 -3.2 -2.4

°M 7.3 -12.7 -6.0 7.7

FUNCTIONAL FORM: DV = BO + Blt + B2t2 +
B3 OM

+ B 410M

REFERENCE FUNCTIONS
.

Variable
Bo B

1

,

B
2

B
3

34

h -128.20 351.40 -452.60 12.65 1.64

Ifr -5.47 -12.69 9.28 -92.43 3.10

AS 5.24 -16.54 11.02 -82.86 2.90

8 -1.28 -2.85 2.22 -0.27 0.05

0 -3.85 8.62 -1.37 .56 .13

71
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MANEUVER TYPE Normal Landing

ERRORS

SECTOR 2

Excellrmt Poor

Dependent
Variable EC 122 121 123 124

h 6.57 8.56 4.50 390.63 1687.60

1 7.92 8.51 7.30 28.28 252.81

AS 0.98 .99 ,97 39.20 306.01

0 0.82 .91 .73 1.47 1.84

0 6.46 7.08 5.80 11.09 104.93

/samples 24 23 18 29.

©M 2.4 1.6 3.5 -4.7

Om 64.5 57.6 70.4 57.8

FUNCTIONAL FORM: DV = B
0

+ B
1
t B2t2 B3 OM B 40M

REFERENCE FUNCTIONS

Variable Bo
B
1

B
2

B
3

B
4

h -584.50 154.20 -88.40 256.60 -4.39

310.20 147 20 34.72 30.41 -2.45

AS 313.90 -56.10 10.35 47.17 -3.29

0 -.66 2.84 -3.53 -0.05 0.01

0 -59.34 142.6 -125.00 -15.52 1.85
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MANEUVER TYPE Normal Landing

ERRORS

SECTOR 3

Dependent
E-:collrnt Poor

Variable C 122 121 123 124-1
,

h 32.64 28.67 37.71 943.50 503.05

qi
0.83 0.73 0.95 1606.30 465.32

AS 1.80 1.76 1.86 1365.00 387.16

0 0.82 .61 1.10 13.03 1.09

0 1.77 1.77 1.85 71.38 24.31

Vsamplcs 23 18 26 37

Om -1.91 4.44 5.26 -3.93

°M
8.07 17.90 28.6 7,7

FUNCTIONAL FORM: DV = BO + B1t + B2t2 + B
3
0 + BM 4 4M

REFERENCE FUNCTIONS

Variable
B
o

B1 B
2

B
3

B
4

h

,

-1445.00 22.47 -35.08 -169.40

.

108.50

2278.00 -6.14 3.62 260.60 -169.30

AS 1758.00 -28.66 -3.45 221.60 -144.40

-13.81 0.85 -0.03 -1.31 1.25

0 92.24
_

-35.60
.

32.43 12.44 -7.75

73
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MANEUVER TYPE Normal Landing

ERRORS

SEC;TOR 4

Dependent
Variable

E-:cc,llent Poor

CC 122 121 123 124

h 12.03 14.36 9.70 912.02 593.75

IP 3.08 3.02 3,15 39.75 41.51

AS 3.21 3.74 2.67 28.68 24.70

0 0.98 1.08 .89 1.60 2.00

0 4.12 4.42 3.83 13.97 9.58

#/samples 40 40 42 47

0M -6.69 -5.96 -10.6 -6.14

C6M
32.5 32.3 37.5 27.0

FUNCTIONAL FORM: DV = B0 + Bit + B2t
2
+ B3OM + B40m

REFERENCE FUNCTIONS

Variable Bo B
1

B
2 B3

B
4

h 2759.00 -639.10 38.91 181.90 -56.04

ili 165.90 130.40 32.90 -2.53 7.11

AS 263.00 -40.75 31.79 1.17 -3.86

0 12.59 -12.33 10.93 0.56 -0.32

0 56.93 13.35 -9.62 1.99 -0.75
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MAN} UVEr: TYPE Normal. I.amling

ERRORS

SECTOR 5

Dependent
Vorldble

Y.-J.-11,1U Pnor

EC 122 121 123 124

h 4.65 5.77 3.26 1032.30 1009.30

Itli 1.25 1.42 1.04 106.64 137.91

AS 2.85 3.47 2.09 309.46 411.38

0 0.61 6.66 10.61

0 1.72 17.95 24.68

-#-/samples 31 25 25 32
0M 6.6 4.9. -5.1 -6.6

0M 6.9 -8.4 -7.3
t

9.7

FUNCTIONAL FORM: DV = BO + B1t B
2
t
2

B3 OM + B 40M

REFERENCE FUNCTIONS

Variable B
Bo

B
1

B2 B3 B4

h -507.90 -319.10 314.40 -51.31 -4.59

II/ 520.70 0.51 5.04 10.34 -1.17

AS -62.60 5.44 -26.42 30.57 -3.38

0 0.84 1.53 5.99 -0.58 0.07

0 -G.62 -22.68 18.85 1.87 -0.14

75
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MANEUVER TYPE Normal Landing

ERRORS

SECTOR 6

Dependent
Variable

F::cellr,nt Poor

122 121 123 124

h 8.59 854.85 18160.00

0 ,76 216.71 12365.00

AS 1.44 2.10 249.33

0
.22 0.53 27.51

0 .13 0.12 2.88

4 /samples 12 8 8 14

0 IVI
5.5 3.6 3.8 8.9

°N,1
-0.5 -0.3 -0.3 -2.4

FUNCTIONAL FORM: DV = B0 + Bit + B7t2 + B3 BM + B Om/

REFERENCE FUNCTIONS

Variable
B
o B11

84

h -96.22 141.10 -19.52 1117.00 11920.00

. 0 266.40 -6.45 7.08 -782.4 -7990.00

AS 90.57 -11.15 7.98 -16.94 -159.00

0 -1.84 0.66 -0.85 -0.37 -15.69

0 0.04 -1.02 0.46 0.34 2.77
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MANEUVER TYPE Barrel Roll

ER RORS

SECTOR 1

Dependent
Vanable

E.-c-P11, nt Poor

EC 101 107 114(L) 110(L)

h

lt/

0.20 .25 0.10 7126.60 62614.00

AS 0.04 0.00 0.04 23.60 120.92

0 0.02 0.00 0.02 2.95 7.78

0 0.03 0.00 0.04 .75 4.24

#/samplcs 1 4 8 32

0M -9.8 -9.5 -9.1 -9.5

4)14

1.4 2.4 5.2 -10.3

FUNCTIONAL FORM: DV = B
0

B
1
t B2t2 + B3 OM B 40M

REFERENCE FUNCTIONS

Variable
. Bo B1 B

2
B
3

B
4

h

tk

184.40 -89.60 16.00 -3.53 -81.04

AS 275.00 -2.09 4.39 3.48 -11.17

8 5.28 -2.26 -.40 1.25 -0.06

46 2.30 -2.32 1.60 3.12 0.74
. .
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MANEUVER TYPE Barrel Roll

ERRORS

SECTOR2

Dependent
Variable

1, :c,-- llent Poor

,

101 107 114(L) 110(L)

h 46.60 37.67 54.45 198.03 298.18

tl
1.77 2.37 1.24 8.26 8.55

AS 2.62 2.31 2.89 34.87 17.56

0
0.81 0.89 .74 2.67 6.76

0 4.79 4.94 4.65 11.77 5.51

4 /samples 29 33 32 26

em' -13.1 -14.7 -18.7 -10.1

f °1\4

-44.9 -37.7 -37.5 -41.8

FUNCTIONAL FORM: DV = B + B t + _t
2

+ B 0 B
0 1

13.,z 3 M 4 M

REFERENCE' FUNCTIONS-

Variable
Bo

-
B
2

B3

-

B4

,
h -1559.00 -1987.00 758.90 -21.96 -32.10

5.75 5.73 -35.52 -0.00 0.12

AS 60.18 87.77 -46.18 -6.51 -1.62

8 -8.89 -41.90 56.58 0.09 0.07

0 -12.73 -214.70 202.10 -2.66 0.05

_ .._
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MANEUVER TYPE Barrcq Roll

ERRORS

SECTOR 3

Dependent
Variable

E:-cellent Poor

EC 101 107 114(9)

h 15.54 16.66 14.49 620.28 229.42

4111
3.03 3.22 2.85 7.14 20.24

AS 2.08 2.25 1.92 70.79 13.95

6

q5

0.65 .71 .60 2.48 4.70

#4f/samples 14 15 15 17

Om 34.2 38.1 38.4 26.4

83.9 85.0 81.3 84.5
M

FUNCTIONAL FORM: DV B + B ct + 13202 B3 OM + B4 Om
0 1

REFERENCE FUNCTIONS

Variable
B
o

B
1

B
2 B3

B
4

h 7751.00 22.03 -.07 -23.32 -95.66

V 117.40 0.10 0.00 -1.51 -1.03

AS 1579.00 -1.02 0.00 3.90 -17.28

0 14.89 0.95 -0.00 0.94 -.51

.

I (1)
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MANEUVER TYPE Barrel Roll

ERRORS

SECTOR 4

Dependent
Variable

Excolkmt Poor

,

101 107 1140) 110W

h 6.02 6.05" 5.99 250.00 1644.00

%/1
3.32 3.36 3.27 80.01

AS 0.69 .77 .61 1.33

0 0.23 0.17 0.29 7.28

0

/samples 9 9 11 12

OM 31.2 34.6 34.9 -24.5

4M 169.0 170.0 172.0 168.0

FUNCTIONAL FORM: DV = B0 + B10 + B202 + B
3
0M + B

4
OM

REFERENCE FUNCTIONS

Variable
B
o

B
1

B
2

B
3

B
4

h - 169.4 2O.30 -.05 -31.13 0.34

11/
848,5 2.18 -0.00 -13.08 -3.25

AS 801.50 -1.33 0.00 -2.87 -2.53

8

(f)

-147.00 .01 0.00 0.83 0.95

J



MAN EUVER TYPE i?,arrol

ERRORS

SECTOR 5

Dependent
Vnriable

Ncr'llr.nt Poor

fC 101 107(L) 114(L)

h 3.40 3.79 3.01 251.04

ill
3.58 3.50 3.66 129.45

AS 0.77 .88 0.65 7.90

0 0.85 0.44 1.26 15.19

0

/samples 9 9 7

eNI
-35.1 -35.2 -41.3

C6M
268.0 263.0 260.0

FUNCTIONAL FORM: DV =B
0

+ B1 +B2 O +B3 OM + B
44)M

REFERENCE FUNCTIONS

Variable Bo
B
1

B2 B
3-

B
4

h -3178.00 18.06 -0.05 18.64 10.96

III'

-2158.00 2.83 -0.00 6.50 8.28

AS -509.90 -1.01 0.05 -0.57 2.80

0 73.60 0.87 0.00 -0.89 0.05

0

81
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MANEUVER TYPE Bnrrel Roll

ERRORS

SECTOR 6

Dependent
Variable

F,:coll,,nt ifoor

EC 101 107 114 (L)

h 21.48 26.47 16.48 100.83

3.07 3,32 2.83 192.91

AS 1.10 1.51 .70 210.67

0 0.69 .46 .42 135.99

0

Vsamples 11 11 6

0M -36.5 -37.6 -44.2

°M 349,0 353.0 348.0

FUNCTIONAL FORM: DV = BO + B10 + B202 + B 0M +
B44 M

REFERENCE FUNCTIONS

Variable
B
o

B
1

B2 B3 B4

,-

h -676.90 -5.60 -0.01 14.63 10.55

V/ -311.70 -4.22 0.00 21.86 5.28

AS -118.50 0.58 0.00 29.96 4.18

0 -289.90 -4.36 0.00 18.90 4.53

0

82

86


