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FOREWORD

Concordia, res parvae crescunt a posse ad esse.

Summer is ending now; the local farmers are gathering the seeds in pre-
paration for next years growth.

This publication terminates the activities of the Fall 1974 ATMNE Con-
ference. It is the first time in ATMNE's history that such a publication
project has been attempted; comments addressed to your ATMNE repre-
sentatives concerning your interest or lack of it for a continuation of this
procedure will strongly influence future decisions.

At a regional conference of the size of the ATMNE conference there is
always such a multitude of speakers and of workshops and such frenetic
activity that the participant senses he may have missed at least as much as
he has gained. These proceedings open an opportunity to reflect upon the
thoughts of speakers you may have heard or of speakers whom you missed.
By this instrument, the seeds of their thoughts are broadcast; what is reaped
depends, as always, upon the quality of the seed. and of the earth receiving
them as well as on the climatic conditions which prevail. This is a non-juried
publication containing the substance of all papers which were submitted. .

I would like to express my sincere thanks to all who worked to make
the 1974 Conference a success: every speaker and presider at the confer-
ence, and especially the contributors to these proceedings;_ the Program
Committee members, Richard Evans, chairman, Russell J. Call, William
Driscoll, Richard 0. Kratzer, Norton Levy, Dorothy Meserve, Patricia Nolan,
Edward Roth, James Swenson; the Registration Committee members,
Donna Hurley, chairman, Jane Brandt, George Chase, Ronald Clark, Wil-
liam Faulkner, Bess Goodwin, Bev Guinessd, Warren Hulser, Roberta Kier-
onski, Gene Ladlev, George Smith, Mary Vachon; for Hospitality and Ex-
hibits affairs, Malcolm Murray; for program distribution, Thomas Arm-
strong; for sale of NCTM Materials, Sara McNeil, chairman, Geraldine
Phelps, Kenetha Marshall; Stanley Brown, president of ATMNE for his
efforts in publishing the proceedings; Tom Goulart and Wally Stuart of the
Plymouth State College AV Department for their invaluable assistance dur-
ing the conference and during the publication of the proceedings; Janis
MacDonald, Maude Stiles for their help in typing; Andrea Kroll, for typ-
ing the entire manuscript of the proceedings; Betsy Cheney, Jerry Deneau,
for their kind advise, the editors of the CLOCK for use of their equipment;
the many who gave a hand when it was most needed. Special mention should
be made for the help and encouragement received by the administration
of Plymouth State College of the University System of New Hampshire,

Normand H. Cote
Plymouth State College
General Chairman - Editor
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APPLICATIONS: A HISTORICAL PERSPECTIVE

By Morris Kline, Courant Institute, N. Y. U., and Visiting
Distinguished Professor Brooklyn College of C.U.N.Y.

1.1.11.1.1t.1.1;1.'111.1=1ITligila

It is always neat and satisfying if one can present the essence of what
he is trying to explain in a one-sentence definition. One that has been of-
fered is that applied mathematics is that science of which pure mathema-
tics is a minor branch. A more sober definition is that applied mathematics
is the science which attempts to study some phenomenon or class of phen-
omena in the real world with the tools provided by mathematics. It is a sus-
tained attempt to discover the structures that underlie our preceptions of
the universe. It strives to lay bare the hidden structures behind classes of
phenomena. Historically the phenomena have been almost entirely those of
the physical sciences but there is no reason to limit the class of phenomena.
The domain of applied mathematics is the real world.

One could ask, how can we be sure that there are patterns in nature's be-
havior? Perhaps the effort to discover them is a vain one. Fortunately the
Greeks believed that nature is mathematically designed. This belief is epi-
tomized in the Pythagorean saying that "everything is number" and Plato's
statement that "God eternally geometrizes." Because the Greeks acting on
their beliefs did create some mathematical structures that describe nature's
ways, the chief ones were Euclidean geometry as the science of physical
space and Ptolemaic astronomy, the successors of the Greeks continued the
search for patterns and enjoyed further successes. Today the successes have
been so numerus and so valuable to mankind that we are convinced of the
applicability of mathematics. Unfortunately mathematics is not emblazon-
ed on the face of nature and so the task of applying mathematics is a for-
midable one. I should like to describe the stages in the work of applying
mathe matics.

The first task is that which I call idealization. I can illustrate this readily.
When one seeks the area of a field and he decides on the basis of observa
tion or measurement that the shape is a rectangle, he has idealized. No ac-
tual field is a mathematical rectangle but one ignores minor irregularities
in the shape of the boundaries and possibly in the rightness of the right
angles and he proceeds on the basis that he has a rectangle. A slightly more
complicated task of idealization is presented in the following problem. A
man wishes to calculate the height of a flagpole and he measures the angle
of elevation of the top and the distance from his feet to the base of the pole
with the intention of applying the trigonometry of right triangles. Before
applying the trigonometry he regards the flagpole as a line segment and he
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may even regard himself as a point on the ground some number of feet
from the base of the pole. Having thus idealized he is prepared to apply
trigonometry. He nriay idealize in a slightly different way. He may take his
own height into account and replace himself by a line segment as long as
the distance from the ground to his eye-level. The latter idealization will
give a more accurate result than the former one because he measures the
angle of elevation of the top of the pole at his eye-level. Treating the earth
as a sphere is another idealization.

Beyond idealizing a problem the applied mathematician often deliber-
ately simplifies a problem by omitting factors that ought to be taken into
account but which complicate the problem so much that he takes the chance
that the simplification will not introduce significant error. Thus in deter-
mining the motion of a planet around the sun, many simplifications are in-
troduced. The planet and sun are treated as point masses because their
sizes are small compared to the distances involved. The effect of the other
planets on the one whose motion is being studied is ignored (at least in
the basic problem). And one assumes that the planet moves in a vacuum so
that there is no drag arising from motion in a medium. The use of point
masses would not do in studying the motion of the moon around the earth,
in studying the effect of the moon do the tides on the earth, or in study-
ing eclipses of the earth. Just how far one can go in simplifying a problem
is a major question and I shall come back to it. One can see that some in-
sight into the physical phenomenon is necessary:

The third task of the applied mathematician is to make a mathematical
model. The efforts of Newton in dynamics, of Euler in acoustics, of Euler,
Lagrange and others in fluid dynamics, of Cauchy, Poisson, Navier and
Stokes in elasticity and of Maxwell in electromagnetic theory, produced the
fine models for the respective fields. However new models are constantly
required as new phenomena are investigated. The newer fields of quantum
theory, relativity, magnetohydrodynamics, statistical mechanics and infor-
mation theory have acquired models only recently.Solid state physical and
molecular chemistry are struggling with their models. The social sciences
are still seeking significant models.

In this third task, too, the applied mathematician must be deeply in-
formed in the physical field and he may even have to create the mathema-
tical concepts and technique just as the entire subject of the calculus and
differential equations'had to be created to provide mathematical models.

The fourth task of the applied mathematician and the one which most
people think of in connection with such work is the manipulation of the
mathematics itself to produce the mathematical conclusion. What mathe-
matics is involved? Of course all of the elementary branches and especially
the calculus are used. But the heart of the mathematics used in this phase
of applied mathematics is differential equations, ordinary and partial, and
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the reason for the concentration on this field is simply that the laws of na-
ture seem to be most amenable to differential equations. One need only
think of Newton's second law, the formulations of Lagrange and Hamilton,
the linear and non-linear equations of acoustics, the equations of fluid dyn-
namics, The Navier-Stokes equations of elasticity, Maxwell's equations, and
Schrodinger's equation to appreciate how much of physics is embodied in
differential equations.

However the mathematics proper which is used in applied problems ex-
tends far beyond differential equations. Prominent today are the calculus
of variations - one need only recall the many variational principles (Least
time, Least Action, etc.) to see the uses that subject - differential geometry
including Riemannian geometry, complex function theory (conformal map-
ping in the solution of Laplace's equation and evaluation of integrals), in-
tegral equations (as a reformulation of differential equations and even as
the natural starting point for many problems as Hilbert pointed out), mat-
rix theory (for transformations and solution of equations), probability
theory (for quantum mechanics, statistical mechanics and information
theory), special functions (for solution of all sorts of differential equations),
spectral theory (eigenvalues and eigenfunctions), transform theory (La-
place, Fourier, Hankel and others) for solution of differential equations,
and other branches.

There is a fifth major task, to get useful answers. Since very few applied
problems can be solved exactly it is the task of the applied mathematician
to get results by hook or crook. One necessary measure is the use of appro-
ximations. Ignoring a minor term in a differential equation, perturbation
methods (Picard method of solving ji = f(x,y) is a prototype), series, asymp-
totic expansions, and the numerical solution of differential and integral
equations (finite difference methods) which lean squarely today on the use
of computers are approximation methods, In making the right approxima-
tions physical knowledge of what the quantities neglected mean is indis-
pensable.

After his flight into the abstract the applied mathematician must return
to earth to face a sixth task, the interpretation of the results. What does the
mathematics say about the physical phenomenon? Interpretation is a ma-
jor task and a crucial one. Idealization, simplification, the erection of a mo-
del, and approximation are all sources of error and the test of whether all
the mathematical work is significant is whether it tells us something use-
ful and reasonably accurate about the phenomenon. In fact even experi-
mental check on the results is often called for.

There is one more characteristic of applied mathematics which to some
extent distinguishes it from pure mathematics and this is the matter of
rigor. There is of course no such thing as absolute rigor. This is one of the
sad facts of our times. But beyond this the applied mathematician is some-

8
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what more indifferent to rigor than the pure mathematician. I have pointed
out that even after the applied mathematician sets up his model he makes
approximations to get useful answers. It is usually very difficult and some-
times impossible to estimate the error introduced by these approximations.
When the applied mathematician uses perturbation methods or series and
stops short with a few steps or a few terms he usually cannot estimate the
error-. He may use integrals which are known to be divergent as in the case
of quantum field theory. He uses series whose convergence is not even pro-
vable. (This was always the case in astronomy and is still true today.) When
the applied mathematician is quite certain of his steps on intuitive or phy-
sical grounds he does not bother with mathematical rigor. The pure mathe-
matician would insist on estimation of error, on knowing that his series
converges, that his integrals converge, and so forth.

Insofar as rigor is concerned the applied mathematician has employed
concepts and techniques lich horrify the pure mathematician. In the
eighteenth century before a satisfactory theory of convergence was made
available by Balzano and Cauchy, great debates took place on the useof
series. In our nuir introduced and used infinite series and
fractional powers of d/dx and /ix with no logical basis at all and Dirac
used the 6-function and its derivatives even though these are not legitimate
functions. Of course the pure mathematicians declaim against such work and
Heaviside, for example, was subject to personal attack. Some of his answers
are famous. He said "Shall I refuse my dinner because I do not fully under-
stand the process of digestion?" "Logic can be patient for it is eternal."
"Ha, the series diverges. Now we can do something with it." He became
contemptuous of the logic-choppers, as he called them. The proofs mathe-
maticians demanded, he called whimsical fancies. With respect to rigor the
applied mathematician boasts that he can find the solution to any diffi-
culty whereas the pure mathematician seeks only to find the difficulty in
any solution.

It may be clear from this description of the work of the applied mathe-
matician that he faces formidable tasks. He must be a highly skilled ma-
thematician in numerous branches of mathematics and he must be deeply
versed in the branches of physics to which he applies mathematics. He
might also have to know some engineering. The problems of aerodynamics,
for example, were initiated by engineers. The applied mathematincian's role
lies somewhere between those of the pure mathematician and the theoreti-
cal physicist. The theoretical physicist is largely concerned with the induc-
tive process of generalizing to laws from observations, experiments, intui-
tive arguments, and even pure guess as to what might or must happen. The
applied mathematician is more concerned with the deductive process of ob-
taining conclusions about real phenomena by employing the basic laws
produced by the theoretical physicist and applying to them all the methods

9
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and techniques produced by mathematicians. Of course, there is no sharp
dividing line at either end. The applied mathematician may create the ma-
thematics himself and often has to and he may also discover fundamental
physical principles as did Newton, Euler, Lagrange, Hamilton, Gauss and in
fact most great .mathematicians of the past.

Though applied mathematics, to use modern terminology, has been the
major concern of mathematicians of all centuries through the nineteenth,
a sharp split has arisen between those who would continue to devote them-
selves to the study of real phenomenon and thus who seek sustenance in
problems arising within mathematics itself.' These "pure" mathematicians
have concentrated in fields such as topology, functional analysis, abstract
algebra and mathematical logic. They raise and answer questions which have
no connection with the use of mathematics in real problems. What is the
motivation of these people and _why do they concentrate in the fields just
mentioned?

As to motivation one possible answer is intellectual challenge. But this
challenge is surely present in problems arising from real phenomena and in-
deed more so because, as I indicated above, there are several difficult tasks
in the work over and above mathematics proper. Moreover the challenge
of applied work and of questions bearing on applied work is no idle one.

Another possible motivation is beauty. A man states that he finds such
and such a topic beautiful and does not find another equally beautiful.
There can,be no argument about tastes. But I would venture an opinion.
Very little mathematics is really beautiful and in my opinion the search for
beauty in mathematics is much overrated. I worked among the greatest
mathematicians when I spent two years at the Institute for Advanced stu-
dy and I have worked among some very good ones for the past twenty-five
years at N.Y.U. I would say that beauty plays very little role. Challenge,
personal gratification in accomplishment, and satisfaction in doing some
good for society are certainly there but the term beautiful is only rarely
applied to a theorem or a proof. As a matter of fact I have heard almost
continually dissatisfaction with ugly proofs that must be accepted because
they do the job. Some of the ugliest proofs I have seen are in topology
and I dare anyone to tell me that the proofs in Russell and Whitehead's
Principia Mathematica are beautiful. Even when a mathematician sincerely
asserts that something he has done is beautiful - the other fellow's wgrk
never is - my suspicion is that the man is an egotist (most mathematicians
are anyway) and so he thinks that what he produces must be beautiful.
Moreover today the pure fields are so heavily burdened with terminology
and definitions that even expert research workers.in these fields are com-
plaining of their inability to keep up with the language. One must read these
works with a dictionary in hand but unfortunately the dictionary does not
exist.

0
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Despite the absence of any pervasive, sound motivation for the creation
of the so-called pure mathematics, the mathematics having no connection
with reality, the fact is that most mathematicians are concocting pure ma-
thematics and in the fields mentioned above. Why? May I give you my own
analysis and answer? This country has become research conscious in the
last thirty years or so arid mathematicians wish to do research in order to
earn their spurs. They choose the easy way out. To do applied mathematics
calls for an extensive background in mathematics because this brand of
mathematics is now over 200 years old and has been explored by the great-
est mathematicians we have had. Applied mathematics also calls for an ex-
tensive knowledge of at least one major domain of science and each of these
is 100 to 200 years old. In addition to the task of combining the two in
the manner applied work calls for mastering major difficulties of other
sorts as indicated above. It is far easier to concentrate on some isolated
topic which requires no knowledge of science, raise questions of one's own
choosing that one may, have some chance of answering, rather thanquestions
about nature, and then write papers. The pure mathematician can confine
himself to one neat limited field and prove what he can. The applied mathe-
matician must call upon numerous branches of mathematics and science
and his results must yield knowledge of the physical phenomenon he is
studying. Applied mathematics is pure mathematics with many more dif-
ficulties, requirements and obligations.

This analysis is borne out by the choice of subjects in which the pure
mathematicians work. They have selected new fields which are already ab-
stract and in which seemingly the only requisite is the knowledge of a few
axioms and a few definitions. This accounts for the concentration on topo-
logy, abstract algebra, mathematical logic, and functional analysis. Of course
to do sound work in these fields one should know the intimate connections
with the solid core of mathematics, know what the real problems are, and
treat those in the abstract domains. But merely to write papers one can
pick any old problems. Asa matter of fact the question of why the problems
are tackled is rarely raised.

In further support of my analysis, I ask you to note that there is no con-
centration of pure mathematicians in say partial differential equations. This
is a difficult field and one must have considerable background and consid-
erable ability to make progress in it.

Let me give another example. Between the first and second world wars,
the Polish mathematicians decided to build up mathematical research. What
did they select? They chose point set theory for which no background was
needed, at least to write papers. Of course there were good mathematicians
among them and since point set theory is a legitimate field some good work
was done.

It seems to me that the distinction with which the mathematical world

1i
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should be concerned is not that between pure and applied mathematics, be-
cause this distinction cannot be made solely on the basis of subjects involv-
ed, but the distinction between mathematics that is undertaken with sound
objectives and mathematics that is undertaken to satisfy personal whims
and goals, between pointed mathematics and pointless mathematics, be-
tween significant and insignificant mathematics, between vital mathematics
and inert, bloodless mathematics.

The pure mathematicians, emboldened by the number of their cohorts,
no longer hide the fact that they work on problems that merely satisfy
their own tastes and goals. Quite aware of their abandonment of the true
obligation of mathematicians, they have tried to defend their activities by
giving their own interpretation of history. They claim, for example, that
non-Euclidean geometry was created by men who were engaging in an in-
tellectual pastime and yet 75 years later non-Euclidean geometry proved
useful in the theory of relativity. Their conclusion is then that purely intel-
lectual investigations having no ties to the real world prove as useful as those
which do start from real problems.

But the pure mathematicians do not know their history. The centuries of
effort on the parallel axiom were made by men who were deeply concern-
ed as to whether the axioms of geometry fit physical space. Euclidean geome-
try was always meant to be an accurate representation of physical space
and the mathematicians sought to insure it. It was in fact an overconcern
if anything with the physical correctness of Euclidean geometry which
brought about non-Euclidean geometry. There is an oft-repeated assertion
that Gauss, the creator of non-Euclidean geometry, went as far as to meas-
ure the sum of the angles of a triangle in order to decide whether Euclidean
geometry is the proper description of physical space. (This -story is not
substantiated by history but it does represent Gauss's concern");

I do agree that good mathematicians have often carried a development
far beyond the immediate physical needs and that sometimes these exten-
sions have found new applications. But they found new applications be-
cause they were sound developments to start with. There is no example in
the history of mathematics of a major purely speculative development which
has later proved useful.

Since history does not recommend or justify their work, the pure mathe-
maticians have adopted another maneuver. They have tried to take the bull
by the horns and brazen out their willfulness. Let us listen to Marshall
Stone in his American Mathematical Monthly article of October 1961 en-
titled "The Revolution in Mathematics".

"While several important changes have taken place since 1900 in our
conception of mathematics or in our points of view concerning it, the one
which truly involves a revolution in ideas is the discovery that mathematics
is entirely independent of the physical world...but we should also not fail

12



to observe how closely this development has been involved with an emphas-
is on abstraction and an increasing concern with the perception and analy-
sis of broad mathematical patterns. Indeed, upon closer examination we
see that this new orientation, made possibla only by the divorce of mathe-
matics from its applications, has been the true source of its tremendous vit-
ality and growth during the present century." Vitality and growth there has
been; the flood of papers has swamped the journals but the worth of this
material is another matter. Stone continues, "A modern Mathematician
would prefer the positive characterization of his subject as the study of
general abstract systems, each one of which is an edifice built of specified
abstract elements and structured by the presence or arbitrary but unam-
biguously specified relations among them." This statement, like the ab-
stract mathematics he defends, is so vague that it is hard to know what he
means. Further, "For it is only to the extent that mathematics is freed from
the bonds which have attached it in the past to particular aspects of reality
that it can become the extremely flexible and powerful instrument we need
to break into areas beyond our ken. The examples which buttress this ar-
gument are already numerous..." And then Stone mentions genetics, game
theory, and the mathematical theory of communication. But these advances
have come about by applying good sound classical mathematics and not
from homological algebra or the study of abstract structures.

Thus Stone dares to proclaim a thesis which is contradicted by the en-
tire history of mathematics. One can say, as the pure mathematicians con-
fidently do, that their work will prove valuable 50 years hence but I would
say that we need some evidence beyond the confidence of these men in the
value of their work.

Unfortunately Stone does reflect the work and the position of the great
majority of the mathematicians. Mathematics is now dominated by abstrac-
tion and formalism. It is form at the expense of substance and reminiscent
of medieval Scholasticism. The professional mathematician, generally speak-
ing, is a specialist in logical systems and rigor. His narrowness and lack of
flexibility make him incapable of exercising the essential functions of math-
ematics in science and engineering, which is to separate the relevant from
the irrelevant, to simplify the formulation of complex phenomena, to syn-
thesize and to unify substances rather than form. Rigor and abstract form-
alism are purely technical contributions and impede invention.

Of course there is some value in abstraction and structural insight. Math-
ematical ideas such as complex numbers, matrices and operations are not
descriptions of physical substance. But abstractions and abstract structures
are valuable only insofar as they shed light on mathematics of proven worth.
On the other hand, to emphasize just abstraction and independence of
physical relationships is a misinterpretation of what is important in mathe-
matics. The life blood of mathematics rises through roots which are deeply

13
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imbedded in reality. The nourishing soil is the physical sciences and engin-
eering. Moreover abstraction and generalization are not more vital than in-
dividual phenoMena or than induction from intuitive situations. It is the
interplay of the matheinatization of real problems and abstraction and
generalization that keeps mathematics alive. Mathematics must not be al-
lowed to split into a pure and applied variety. It must remain a unified vital
strand in the broad stream of science and not a brittle film that is all gloss
and no substance. Abstract structures created in and for themselves are
empty shells, peanut shells.

Topologists who do not know the connection of their subject with ana-
lysis or know it but ignorethe:contribution which topology should make to
analysis will produce trivia. Croup theorists who do not know Ga lois theory
or the use of group theory in quantum mechanics will not produce mater-
ial worth the paper on which it is printed.

The idea that there can he a pure mathematics distinct from applied
mathematics is a threat to the life of mathematics. Many wise men have
seen this danger and have warned against it. As far back as 1890 when Can-
tor declared in good faith that "the essence of mathematics is its freedom",
Felix Klein rejoined that the privilege of freedom carries with it the obliga-
tion of responsibility. More recently John Von Neumann in his essay "Th-e
Mathematician" warned "As a mathematical discipline travels far from its
empirical source, or still more, if it is a second and third generation only in-
directly inspired by ideas coming from 'reality', it is beset with grave dan-
ger that the subject will develop along the line of least resistance, that the
stream, so far from its source, will separate into a multitude on insignifi-
cant branches, and that the discipline will become a disorganized mass of
details and complexities. En other words, at a great distance from its empiri-
cal source, or after much 'abstract' inbreeding, a mathematical subject is in
chnger of degeneration".

A still more dismal prophecy was made by Richard Courant in the Math-
ematische Anna len of 1957. He said, "There exists the danger that the `ap-
plied', Ihe meant all real] ,mathematics of the future will be developed by
physicists and engineers and professional mathematicians of rank will have
no connection with this new development." There is no question of the
, ttt ,,,, of the mathematics designed for the sciences but there is considerable
question about the future of purely speculative creations.

The attitude of the pure mathematicians is reflected in the teaching of
mathematics on the high school and college levels and is poisoning the at-
mosphere there. Even if there were some reason to create mathematics
which is independent of reality,. this type of mathematics should not be
presented to novitiates.

Mathematics presented as a subject which exists in and for itself has no
motivation, no meaning and no purpose. The possible values such as beauty
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and in telle'ctual challenge do not serve as motivation. The beauty does not
serve because very little of what we teach on the high school and college
levels is beautiful. Witness the quadratic formula. Intellectual challenge does
motivate a very small percentage of the students but even many of these
ask after a while, what good is all this?

The meaning of mathematics is not found in mathematics per se until
one has reached a rather high level of ability of grasp abstractions. All the
elementary branches arose in response to physical problems and the con-
cepts adopted have meaning only in terms of the physical objects or rela-
tionships they represent. The properties of numbers and the axioms of geo-
metry were adopted because they fit reality and enable us to work with real
phenomena. The meaning of all this mathematics lies outside of mathema-
tics.

And as far as purpose is concerned, the one purpose that will attract
most students is to see how mathematics helps in the understanding and
mastery of nature.

Moreover, who constitute the audience in high school and college class-
es? Those who will use mathematics later are mostly engineers and physical
scientists. Surely they should be taught how mathematics is used in physical
studies and what mathematics means in physical terms.

This is, of course, what should be the case. But what have the curriculum
makers, who are dominated by the pure mathematicians, done? They offer
a sophisticated, abstract, rigorous mathematics which stresses deductive
structure and axiomatics. They have eroded the substance; they present un-
inspiring and pointless abstractions; they have isolated the subject from
other bodies of knowledge; and they offer dogmatic presentation of final
versions of branches of mathematics. Formalism, whether of the present
axiomatic variety or of the older manipulative variety, can lead only to a
decline in vitality and to authoritarianism.

The pure mathematicians, aware of their neglect of science, defend what
they have incorporated in the curriculum by saying that they are teaching
mathematics as the language of science. But they have invented a totally
new vocabulary which certainly has not been used in science and just as
surely will not be, They have wallowed in vocabulary as though new words
will solve problems. They also talk about the need to teach students abstract
structure, such as groups and fields, as if structure will teach them how to
make models of scientific phenomena. Beyond that, what they really teach
are some of the most artificial structures mathematics possesses, the devel-
opment of the real number system from Peano's axioms and Hilbert's foun-
dation of Euclidean geometry. In fact all logical structures are artificial re-
organizations of real mathematics, reorganizations that strip the subjects
of any indication of how they arose, why anybody wanted them, and what
one does with them. These canned highly artificial structures have about as
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little to do with true model building as child's play has to do with real en-
gineering. Moreover what mathematicians really stress in these structures is
hair-splitting rigor.

There is, I believe, but one road to pedagogy in mathematics and this is
the road which mathematics itself took during the centuries and the road
which applied mathematicians necessarily take in their work. The mathe-
matics must arise out of and be built up for the sake of real problems. More-
over, the students must create the mathematics that is needed and their very
participation in the creative act will enable them to perceive the life and
spirit which true mathematics possesses. The students must introduce the
concepts and methods and apply the mathematics, of course, with the
guidance of the teacher. The students must learn to think like physicists
while concentrating on the role which mathematics plays in the study of
nature. What I am saying, in short, is that insofar as pedagogy is concerned,
the approach of the applied mathematicians is the only one that should be
considered,

If I may summarize, the function of mathematics, the life of mathema-
tics, the needs of society and government, and wise pedagogy point to only
one kind of mathematics, the mathematics that is clearly and unmistake-
able devoted to the study of reality and the mathematics that operates in
partnership with the sciences. The glory of mathematics, the true apprecia-
tion of its power, and its claim to being a significant body of human know-
ledge all rest squarely on the value of the subject for the study of nature
and real problems generally.

I congratulate the Association of Teachers of Mathematics in New Eng-
land for recognizing the importance of applications of mathematics and for
devoting this meeting to furthering the teaching of applications.

Postscript

The idea that mathematics should be taught in . lose conjunction with
applications is not new. It was advocated by the British engineer John Per-
ry and by the American mathematician E. H. Moore as far back as 1902.
Unfortunately the educational leaders of this country were not sufficiently
prepared at that time to appreciate Perry's and Moore's ideas. Instead, es-
pecially in the recent so-called reform, the new mathematics, the country
turned in the precisely opposite direction of isolating mathematics from
reality. It is because of this turn of events that I ventured to reopen an old
theme and to encourage the members of this Association. Air
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THE WORLD OF BUCKMINSTER FULLER

By Ernest R. Banned, SUNY at Albany andO.A.S. Fellow
at Universidad de Costa Rica

1:11=1:021==
The difficulty in writing a definitive statement about the work of Bucky

Fuller is that you never know when to stop. The man is eighty years old.
,..He still tosses off brilliant insights, still circles the globe on an apparently

non-stop basis, still numbs his listeners and disciples with the length, breadth
and height of his visions, the scope of his global concerns and indestructible
fundamental optimism about man and his-sorry lot on this earth. When you
try to write about this man - a living legend in his day - he refuses to stay
put. He's quicksilver in motion. You just can't toss off blithely some pat
statement about the Leonardo da Vinci of the twentieth century.

The man is known to most teachers of mathematics as the inventor of the
geodesic dome. This, alone, would be insufficient grounds for the statement
made yb more than one writer: it's not whether or riot he'll get the Nobel
Prize, but when he'll be so recognized. In a world preoccupied with prob-
lems: overpopulation, insufficient food, droughts, shortage of energy-pro-
ducing sources, his was a preoccupation which goes back forty years or
more. Perhaps it would be better to merely enumerate reasons why teachers
of mathematics ought to know something about the man. Statements made
by two men are worth noting with regard to the monumental achievements
of Buckminster Fuller. Robert Marks, in his book, "The Dymaxion World
of Buckminster Fuller", has this to say:

It is a difficult matter to interpret Bucky. He has the genius' constant
onrush of dream flow and dream logic. And he is graced with the quality
now known, in cybernetic circles, as positive feedback - mirror multi-
plication of the information communicated. Each thought that Bucky
expresses feeds back into his mind, there to generate families of fresher
thoughts, broader in scope and more intense.

Bucky has never been easy to understand - even by those best equip-
ped to grasp his meanings, and those who know him best and love him
most. The reason is both psychological and semantic. He overloads the
channels of communication. He is ever ready to give too much of him-
self too spontaneously, too richly, and too quickly. The simplest ques-
tion evokes a torrent of insights. And these he expresses in an incisive,
private argot, resplendent with word coinages, hyphenated Latinisms
and tropes,

Although his cardinal ideas have about them the skeletal simplicity
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we associate with the best Greek thought, they sometimes'come through
to the casual listener as a cascade of ambiguities. And this only because
there is too much. You would not expect to take in the first,six books
of Euclid at a single hearing, nor without a reduction of text language to
conversional level. Yet, with Bucky, the equivalent of this technical
richness is offered untranslated, at each meeting. His conversation, thus,
is always a subtle form of flattery. It implies that he believes you are at
ease in all the areas of his talk, and that you can with equal agility go
"second powering", "tetrahedroning", "inwardly-outwardly-to-and-fro-
ing", or go bouncing on a four-dimensional pogo stick down the slopes
of Parnassus.

While the Marks book takes the reader up to the year 1960 and no farther,
it is the best single source I know of for Fuller fans. The pictures and draw-
ings are stunning and the writing style is graceful and lucid.

The comments of world-reknowned architect Frank Lloyd Wright, on
the occasion of the emergence of Fuller's book: "Nine Chains to the Moon"
(1938) throw additional light on our nian Fuller:

Buckminsfer Fuller - you are the most sensible nian in New York -

truly sensitive. Nature gave you antennae, longrange finders you have
learned to use. I find almost all your prognosticating nearly right - much
of it dead right, and I love you for the way you prognosticate. To ad-
dress you directly will be a hell of a way of reviewing your book - I
know. I should write all around you, take you apart, and put you to-
gether again to show - between the lines - how much bigger my own mind
is than yours and how much smarter than you I can be with it and leave
the essence of your thought untouched.

But I couldn't do it if I would and I wouldn't if I could. To say that
you have now a good style of your own in saying very important things
is only admitting something unexpected. To say you are the`-most sensir
ble man in New York isn't saying much for you - in that pack of caged
fools. And everybody who knows you knows you are extraordinarily
sensitive...

Faithfully, your admirer and friend, more power to you - you valu-
able 'unit'.

FRANK LLOYD WRIGHT
Taliesen
Spring Green, Wisconsin
August 8th, 1938.
Fundamental to an appreciation of the overall Fuller Philosophy is his

Dymaxion Principle. It permeates much of what he did and is still doing
today:.

In its simplest form, Fuller's Dymaxion concept is that rational ac-
tion in a rational world, in every social and industrial operation, demands
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the most efficient overall performance per units of imput. A Dymaxion
structure, thus, would be one whose performance yielded the greatest
possible efficiency in terms of the available technology (Marks).
The importance of the principle lies in the universality of its application

to diverse problems. Fuller used it to advantage in such apparently unrelat-
ed structures as: a house that hung from a pole, a new type of automobile,
a new system of map projection and, of course, geodesic domes.

Certain basic principles permeate the work of Fuller. It is here that the
teacher of mathematics can latch on to intriguing ideas and materials suited
to everyday teaching.

Regular solids constantly emerge in the work of Buckminster Fuller.
This intrigues me greatly since the Greeks studied much of their geometry
in order to cast light on the five regular polyhedrons. The virtual demise of
the teaching of solid geometry in the secondary schools, a minor crime - in
the opinion of one teacher who has been at it for forty-two years - has re-
sulted in a generation of young teachers who are, at times, less than literate
in this 'field. The regular solid permeates the structures of such diverse fields
as bacteriology, atomic structures and architecture. With respect to just
one of the applications of regular solids, Drs. Klug and Finck of Birbeck
College, London, England wrote to Fuller in June of 1959 confirming the
fact that the polio virus had a structure quite like that of the regular icosa-
hedron.

The altered regular icosahedron and other of the regular and semi-regu-
lar solids, are basic to an understanding of the structure of geodesic domes.
The term "altered" is used advisedly, and needs explanation. A geodesic
dome in the form of a complete regular icosahedron (as in a radar dome)
would have, for its vital statistics: 30 equal edges, 12 vertices and 20 congru-
ent equilateral triangles as faces. At each of the vertices would emanate
five equal segments, forming five equal face angles of the solid angle en-.
countered. The sum of these face angles would be 300° (60 x 5); this mere-
ly affirms the fact that the sum of the face angles of a polyhedral angle is
always less than 360°. In actual practice, geodesic domes are usually con-
venient fractional parts of the complete geodesic sphere. If large-scale
domes were to be constructed according to the basic statistics quoted, sheer
dead weight would snap the long struts required for support. In actual prac-
tice the basic triangle involved - the essential face of the regular icosahedron
- is subdivided into smaller units. In a two frequency basic structure, figure
1; triangle ABC represents one of the original faces of the icosahedron. On

A
C

FIG.1.
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each of the equal edges project two equal chords. Triangulation is carried
out as indicated. The resulting skeletal structure will appear on each of the
twenty faces. In the eventual geodesic dome which would emerge, AB, BC
and AC would not even appear. Each of the substructures would mesh with
its three neighbors. In a three-frequency dome, figure 2, AB and the other
original edges would be replaced by three chords. It is difficult to general-

ize. In a dome such as the one which appeared at EXPO in Canada, you
might find that a sixteen-frequency dome might be involved. In essence,
Fuller was the pioneer in inventing a triangulation device for constructing
a structure which used linear elements to approximate the curvilinear fea-
tures of a sphere. Phenomenal strength results. What is more, the elements
which go together are quite short. Yet tremendous structures evolve. To
cite one, not the largest in the world, the Union Tank Car Company had a
dome 384 feet in diameter and 11.6 feet high constructed in Baton Rouge
Louisiana. It was, at least in 1958, the largest structure in the world of a
clear-span type. It was built, fundamentally, as a roundhouse for the re-
building of railroad cars. The lack of internal supports was, obviously, itsstrongest feature.

Before I got interested in the construction of geodesic domes I was quite
confused by one particular element. Every teacher of mathematics knowsthat if six congruent equilateral triangles have one vertex in common, a re-
gular hexagon emerges. Teachers also know that the elements of a regular
hexagon are coplanar. I would look at some of the pictures of complex
geodesic structures and see what appeared to be congruent regular hexa--gons. If this were so, how could a three-dimensionality (Fuller is not the
only one who can invent new words) result? If we place three congruentregular hexagons in juxtaposition with each other,the resulting structure is
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still coplanar. Further ratiocination, however, revealed that you seldom see
a pure regular hexagon in geodesic structures. The hexagons are always
subtle relatives of the regular hexagon, adjusted in such a manner that three-
dimensionality results. The original calculations for these elements were
carried out manually by Fuller and an assistant early in the inventive stages.
Now, complicated tables are available. These resulted from programming
of the problem, by computer.

Before we move on to other Fullerisms, I wish to interject a personal
note. Buckminster Fuller is, at present, the God of the grass-roots aficion-
ados in the United States. The geodesic dome has sprung up as a personal
dwelling in many parts of the United States, particularly in arid parts of the
United States. There may be a reason for this (my source is that indispen-
sible compendium of man's knowledge - The Last Whole Earth Catalog).
Geodesic domes, when constructed with machine-made elements, is one
thing. When smaller ones are constructed by the hammer-saw method, er-
rors, small as they may be at the outset, have a tendency to aggravate them-
selves. When it rains ... you might do well if your name were Noah. Curious-
ly, the old post-beam construction, verticals with horizontal roof supports,
is still one of the easiest ways of achieving some protection from the ele-
ments. The moral, if there is one, may well be: it's not necessarily bad if it's
old and it certainly is not necessarily good if it's new. Reformers of mathe-
matics education, kindly note ...

One of the vital features of even a surface-knowledge of Fuller demands
some understanding of what Fuller calls: tetrahedronizing. In the two-di-
mensional realm, a set of discrete points can be joined in such a manner
that nothing but triangles emerge. With such a structure, rigidity would be
assured since the triangle is the fundamental building block of plane geo-
metry. A quadrilateral with four components for edges has no rigidity. It
wiggles and wobbles unless diagonals are added for triangulation. If both
diagonals are added, then bolted at their intersection, strength results.
Eight triangles. contribute to the strength of the basic quadrilateral. In a
similar manner, the tetrahedron is the fundamental building block in three-
dimensions. The use of modern machinery makes the reproduction of iden-
tical components in a system ridiculously simple. Thus, in two-dimensions,
repeated equilateral triangles would be an ideal way of covering a plane. It
used to bother me back in my work in high school mathematics (it was
during this centuiy) that repeated, congruent, regular tetrahedrons could
not be used to completely fill space. We know that repeated cubes - as in
the case of baby's blocks - will fill three-dimensional space, but not regular
tetrahedrons. The angle formed by adjoining faces of a regular tetrahedron
contains 70°31'44" (I just happen to know it). Since this value is not an
integral divisor of 360°, space-filling in three dimensions is an impossibility
with repeated regular tetrahedrons. When the regular tetrahedron is com-
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bined with the regular octahedron, intriguing results ensue - specifically
the Fuller Octet Truss. In actuality, the geometric basis for the F.O.T. has
been known for centuries; nevertheless, give Fuller credit for making it an
integral part of certain of his structures. The arithmetic basis for the mar-
riage of the regular tetrahedron-regular octahedron rests in the values of
the plane angles of adjacent faces of the tetrahedron-octahedron. TheTlane
angle for the regular octahedron is: 109°28'16". A little Euclidean bird
told me so. The plane angle is the basic measure which indicates the angle
at which two planes meet. It is formed by taking a point on the edge com-
mon to two intersecting plane and constructing perpendiculars, one lying
in each plane. The measure of this angle is the angle at which these planes
meet (figure 3).Study figure 4; the sum of: 109/28/16, 109/28/16, 70/31/44

.and 70/31/44 is 360°. Actually this calculation is nothing but a parallel to

FIG. 3

FIG. 4

the well-known homily: how come the seashore is always so close to the
ocean? It is the spatial fact that repetitions of regular octahedrons and re-
gular tetrahedrons will fill three-space that results in this specious bit of
arithmetic. When equal struts are joined in the manner suggested by fig-
ure 4, a fantastically strong structure emerges. Fuller used this basis idea
in the construction of the Ford Rotunda building in Dearborn, Michigan
(1953). The construction of this particular dome seems to have given Buck-
y Fuller a particular pleasure - it just about fulfilled his prediction, made in
1927, that it would take a quarter of a century before certain of his prin-
ciples would make it. He refers to his first customer as: "Mr. Industry
himself". The Octet-Truss caused quite a furore when it was used in an ex-
hibition of certain of the Fuller structures at the Museum of Modern Art
in New York in 1959. This particular construction was 100 feet long, 35
feet wide and 4 feet deep. The one-layered Octet-Truss (Marks p. 282 for
a picture) can be extended above and below by a judicious addition of
struts. In essence, when a regular tetrahedron is affixed to each of the faces
of a regular octahedron - they share certain of the linear components - new
openings emerge for the addition of new layers of regular octahedrons. This
is difficult to visualize and to draw but quite simple if construction sets
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like D-Stix or Geodestix are used. You'll have to combine rubber connec-
tors to accommodate the complex nodes which arise - some of which re-
quire twelve struts. Remarkable constructions can be designed with the Oc-
tet-Truss principle. The horizontal coverage suggested by the drawing
(Marks p. 282) would make it possible to cover a tremendous flat space.
What is not at all obvious - it requires that a different orientation of the
Octet-Truss bt observed - is the fact that proper repetitions of the unit
will result in the formation of a regular tetrahedron. I can't do justice to
this concept in the space alloted to me. All I can say is: look at pages 232
and 233 of the Marks-Fuller book.

No discussion of Fuller, however brief, could fail to mention his forays
into cartography. He finds that the Mercator Projection, which still de-
faces the front Ilvalls of many of our schools, quite unsuited to the needs of
20th century navigation. There are many versions of Fuller's Dymaxion
Map (how he lo'ves the world). The original map, since superseded by other
versions, was invented in 1943. It caused quite a stir when It appeared in
the now defunct magazine LIFE in the issue of March the 22nd, 1943.
This issue is a collector's item. If you can get hold of it, treasure it. If you
can get two, get one for me. The original Dymaxion Map, since superseded
by other versions, is drawn on p. 152 of Mark's book. If the corners of a
cube are lopped off as shown in figure 5, a cuboctahedron results. Fuller
imagined that a sphere was inscribed within the solid. Boundaries of earth
masses were projected on to the faces of the solid - either equilateral tri-
angles of squares. Judicious arrangements of the fourteen faces resulted in a
fairly true picture of the relations of the earth land and sea measures. This
picture is certainly more amenable to the use of maps at a time when plane
travel is such a common means of transportation. The Dymaxion Map:
"... provides global information with negligible distortion of magnitudes"
and "it is the only flatsurface plot of the earth which presents all the true
geographic scale areas in a single, comprehensive picture without any
breaks in any of the continental contours, or any visible distortion of the
relative shapes or sizes of these whole land masses." (Marks) On the original
Dymaxion Map it is possible to locate a. Dymaxion Equator - a great circle -
which passes through Cape Kennedy, Florida, across the United States,
throughCape Mendocino, California thence completely around the globeand
back again. This great circle has the unusual distinction of intersecting no

23

F G. 5"



19

other land mass than North America. Thus, such a path violates no air space
of any other power. Fuller also points out that the 50-50 point on the
earth - Lat. 50 No., Long. 50°E. is in Russia, at the foot of the Ural Moun-
tains where Russia, at the time of Marks' book, maintained launching sta-
tions. This is the pole of a hemisphere which contains 93% of the earth's
population. ThuS' you can sense its importance in this era of rocketry and
its intimations of world domination.

The Buckminster Fuller I have cited briefly, takes us up to the year 1960.
During the years 1960-1975, Fuller hasn't been exactly dormant. Peripate-
tic Fuller, a truly global figure (he used to carry three wristwatches; one
which carried the local time, one which carried the time where he was yes-
terday and one where he carried the time as of the place where he would
be tomorrow) is recognized for the genius he is, all over the world. It was
not always this way.

P.S. Fuller's most ambitious project has been, and still is, the accumula-
tion of global information on a truly staggering scale. It all flows into a
central repository in the United States and is part of a Fuller Foundation
activity. He would hope that global concerns - man caring for man - could
best be handled when total information is available.

P.P.S. I am writing this article in San Jose, Costa Rica and lack a blow-
by-blow description of the details of the project. I do know that the New
York Times ran a comprehensive article about it. The best of the Fuller
information pertinent to the now of 1975 comes from the periodicals. I
suggest use of the Reader's Guide.

P.P.P.S. The following story, which I take from Marks, is too delicious
and I repeat it in detail:

He learned at an early age that the teachers lacked satisfactory ans-
wers to all the questions he had to ask. One day, for example, the geo-
metry teacher attempted to explain the basic definitions. She put a point
on the blackboard, then rubbed it out. "A point", she said, "does not
exist - it has no dimensions." She then drew a line. "A line," she con-
tinued, "is made up of points but there are no lines." Bucky looked at
her wide-eyed as she defined a plane in terms of parallel lines. His eyes
opened wider when she announced that no planes exist. The final blow
was her presentation of the cube. "A cube," she said, "is a solid stack of
square planes whose edges are equal."

"I have some questions," Fuller said, raising his hand. "How long has
the cube been there? How long is it going to be there? How much does it
weigh? And what is its temperature?"
... All of which suggests the Buckminster Fuller who was to emerge and

which also suggests the beautiful little poem of J. A. Linden: POINTS have
parts or joints, How then can they combine to form a line?
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DEVELOPING THE FUNCTION CONCEPT IN THE
INTERMEDIATE GRADES

by Bruce A. Allen, University of Maine

Many authors of elementary school mathematics textbooks have includ-
ed lessons on developing the concept of a function in their current editions.
The rationale for a more explicit treatment of the function concept is pro-
bably different for each author, but. the following reasons might be cited
to support the introduction of what was formerly thought of as a second-
ary school concept: 1) The idea of a function is a major concept in mathe-
matics 2) Discovery, pattern hunting, and organizing data are all learning
strategies currently being promoted in the elementary grades, and functions
can be easily developed using these strategies, and 3) lessons promoting
function type thinking can be readily designed in mathematics laboratory
settings where the pupils are actively involved in their own learning. The
eleMentary school teacher should become more familiar with the function
concept, and should explore techniques to present this idea to children in
an interesting way.

Arithmetic isessentially a study of number systems which may be thought
of as an investigation of different sets of numbers, operations on sets of
numbers, rules governing these operations, and relations that exist within
sets of numbers. It is in the study of relations that the idea of a function
emerges.

Relations may be thought of in many ways. Usually children think of
family associations such as mother, father, brother, or sister, when think-
ing about relations. Later, the idea of a relation as an association may have
more general meaning. Children feel the warmth that usually exists between
the appearance of the sun and the temperature of the air. There is a quanti-
ty association that exists between the amount of candy that they can buy
and the amountof money they have. There is a distance association that is
experienced between the force used in throwing a ball and how far the ball
will travel. A'relation, then, may be thought of as an association between
two objects or ideas.

A mathematical concept of a relation is developed in school when the
learner grays the meaning of equality in dealing with numbers or of con-
gruence when studying geometry. As children refine their understanding of
a mathematical relation they can begin to perceive special types of rela-
tions.

The particular characteristic that distinguishes a function as a special
type of relation is the uniqueness of the outcome in an association between
two mathematical ideas. For example, whenever any number is multiplied
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by four, a single-valued product is the outcome. Many compound associa-
tions may also yield single-valued outcomes. For example, multiplying
any number by three and then adding seven to the product will result in a
single-valued solution. The following example illustrates a numerical asso-
ciat;On found in elementary school textbooks.

2n + 4 I 4 1

1
6 8 10 I ...

n I 01 2 3

Example A
The association that exists between each pair of numbers is indicated below
the line in the example. Since there is only one value that is paitedwithany
number in this particular example the association can be thought of as a
function.

The numerical associations found in the pupils textbooks may be thought
of as descriptions, rules, or forriluias. These 'associations, or functions as
they are mathematically called, may be represented with a picture of a func-
tion machine, a table of number pairs, or a graph. In a classroom what func-
tions are called and how they are represented, of course, depends on the
mathematical sophistication of the pupils.

A tunction machine, or magic boxas they are called in the primary grades,
is simply a picture of a device which has been "programmed" to do special
arithmetical manipulations. The machine in Figure 1 has been "program-
med" to add six to any number dropped into the machine.

VI 111

6.6
Figure 1 °" Figure 2

A function machine can be "programmed" by the teacher or a pupil to
perform arithmetical operation or any combination of these operations such
as the function machine in Figure 2.

A table of number pairs is simply a way of organizing data to aid in ex-
.

posing any pattern that may exist in the data. Table 1 is an example organ-
izing data to expose the relation that exists between the length of the side
of a square and the area of that same square.

Length of side of square

I
2L34 I 5 ... n

Area of Square 1 4 9 16 1 25 ... (n)(n)

Table I

The graphing technique for representing functions is more appropriate for
the upper elementary grades. With this technique, a geometric interpreta-
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tion of the data can be developed on graph paper, the pupils then can be
guided to gather more data from the given information (by interpolating
and extrapolating).

There are many activities that children enjoy doing that will promote
hunting for patterns and trying to discover the relationship (function) that
exists between sets of numbers. The following "experiments" have proven
to be good introductory activities with intermediate grade children.
Patterns in Polygons

This activity involves partitioning polygons into triangles. Have the pu-
pils draw several polygons using a straight edge; 3-sided, 4-sided, 5-sided, ...
8-sided polygons that are convex (corners pointing outward) would be ideal.
After the polygons are drawn, pose the question, "What is the least number
of triangles into which a polygon can be divided?" When all the polygons
have been partitioned into triangles, the pupils can be directed to record
their results in a table like the one drawn below.

Summary of Angle Measure of Polygons

Number of
sides

Minimum No. of
al in polygon

1 Sum of angle
measures of 45.

Sum of angle measures
of polygon

3

4

5

A few questions .celated to the activity might also be presented the
pupils. "What drawing technique will ensure the production of the mini-
mum number of triangles?" (Always start from the same vertex.) "Why are
the numbers 1 and 2 omitted from the first column of the table ?" (The
minimum number of sides of a polygon is three.) "If the tab:; were extend-
ed to include a 14-sided polygon, what would be the minimum number of
triangles into which the polygon could be partitioned?" "How about a
39-sided polygon?" "A 100-sided polygon?"

The last two columns of the table should be used only if the pupils have
had considerable experience with a protractor. Completing these two col-
umns is another activity in and of itself and is probably more appropriate-
ly used in the junior high school.
Building Pyramids

A bag of marbles and a small amount of clay are all the materials need-
ed to generate interesting number patterns. The clay can be shaped into a
platform into which marbles can then be stacked on different shaped bases
in a pyramidal shape.
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Consider building pyramids with triangular bases as described above.
How many marbles in a pyramid with a triangular base that is two marbles
wide? Three marbles wide? Four marbles wide? Ten marbles wide?

Marbles on side of
triangular base

Total number of
warbles 1213 \ \s 1617 819

similar activity can be done with pyramids built with square bases.
Marbles on side of

square base 1 4 5.16 7 8 9 10 ...

Total number of
marbles

How Many Squares?
A. How many squares are enclosed in a checkerboard?

Consider those squares that may overlap with other squares.
B. You may want to simplify the problem by beginning with first al x l

square, then a 2 x 2 square, then a 3 x 3 square, etc.

C. Organizing your information in the following chart may be helpful.
Length of

side l 2 3 4 5 6 7 8

Number of
squares 1 30

The generalization of the numerical data into a formula has been pur
posely avoided because the prime purpose of the activities in the elemen-
tary grades is to involve the pupils in organizing information, exploring for
patterns, and discovering any association that may exist between sets of
numbers. If the pupils are able to predict outcomes based on their observa-
tions the lessons should be considered successful. Later, as they become
more sophisticated in their mathematical knowledge, techniques for gen-
eralizing to the symbolic stage may be developed. When lessons are pur-
sued to the stage of abstract thinking, and the children are not capable of
working at that level, very often an element of frustration may be intro-
duced into the class that would diminish the enthusiasm which may have
been created with "hands-on" mathematics.

There are many activiaes which will generate interesting number patterns.
Mathematics enrichment bookS and laboratory manuals written specifically
for mathematics classes are excellent sources for these activities. Children
enjoy "doing" mathematics, and their interest in thinking quantitatively
will be enhanced if they are provided with activities similar to those des-
cribed in this paper.
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MATHEMATICAL MODELING FOR ELECTION
DECISIONS

by Earl M. L. Beard, University of Maine
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What I intend to do is to illustrate, with some examples, how mathema-
s can be used to construct a model for an election process. Before I do
I should point out (as all speakers do) the advantages or payoffs that

e mathematics teacher might expect from introducing this topic to the
ass.

First: This is relevent! Elections and ways to rig or manipulate the deci-
sion process appeal to both liberal and conservative students.

Second: The rating of Candidates by individuals is a relation. It has all
the properties of a mathematical relation and the- instructor can
investigate properties of relations in a "real life" context.

Now let's look at the basic problems involved in an election - namely
deciding who has won the election. When there are only two candidates the
decision procedure is easy. One of the candidates must have a majority of
the votes cast. Look at figure I. In this case candidate A has a majority of

# of votes candidate # of votes candidate

51. A
40 A

30 B49

Figure

B

I

30

Figure

C

2
the votes. In case the candidates are tied with 50% of the votes for each
candidate any decision will not elect a candidate opposed by a majority of
the voters.

The decision process becomes a problem when there are more than two
candidates. In all my examples the total number of voters will be 100. Even
though this is unrealistic it makes the total number of votes for any one
candidate equal to his percentage of the vote. I also limit my examples to
three candidates. This is the smallest number of candidates that present
decision problems. The same problems presented by three candidates exist
for four, five, six or more candidates. The models for election decisions
involving three candidates are easily modified for four or more candidates.
In the classroom situation, I would assign the problems for four or more
candidates as exercises.

In figure 2 we see an election result where candidate A receives more
votes than either of his opponents, but does not receive a majority of the
votes cast. The question is: Is A the most popular (or desired) candidate or

2
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do a majority of the voters prefer either B or C? That is, has A received a
plurality because two more favored candidates divided a majority of the
vote. To answer this question we must look at who the individual voters
would choose were their first choice of candidate not available. It is ap-

0 of votes choice of voters

It 2nd

30

30 C B

60% of the voters prefer either B or C

to A.

'The plurality winner - A is opposed by

60% of the voter!.

Figure 3

Parent that'in this election the plurality winner, A, is opposed by 60% of
the voters. That is, if a runoff election were held between A and B or be-
tween A and C, A would be soundly beaten 40%-60%.

In order to make such a decision it is necessary that the decision maker
have more information from the voter than just the voter's first choice of
candidates. Thus in modeling our voting procedure we require the voter to
rate all the candidates in order of preference. Requiring the voter to rank
all the candidates enables the decision procedure to hold run-off election
without recasting the ballots.

Now we must model the voter, i.e. we must model his rating possibilities.

SOME POSSIBLE VOTER PREPERENCES

Voter Schedules
V

Si S2 53 s S5 5 6
t
e 1st

A A B B C Cr
-.net4 B C C A A B

a ,rd
t B A C

n

Voter preference assumptions

I) Voter preference is a transitive
relation.

2) If a candidate were removed,

voters would note their pre-
ferences as indicated.

Figure 4

30)
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Figure 4 shows some of the possible ways in which the voter can indi-
cate his preference of _candidates. A voter whose first choice is A, second
choice is B and third choice is C would vote schedule SI. If his choices
were B, then A, and then C he would vote schedule S4.

These are certain things to note about figure 4.
First: The number of voter schedules are simply the number of order-

ings of three objects or 3!
Second: The voter schedules of figure 4 are not the whole story. The

ordering of candidates is a non-transitive relation. That is, a voter
may prefer candidate A to candidate B and may prefer candidate
B to candidate C, blit also prefer candidate C to candidate A.

To illustrate this last remark consider the problem of a young lady who
has three suitors. In order to decide which would make the best husband
she- 77.:::'them accrditig to wealth; good-looks (Set iit-
ure 5). Since A ranks higher than B on two of the three criteria, it is clear

Rating of suitor

1 2

C Wealth A

r
i Looks B C A

e Person-
ality C A

1
a

A rates higher than B on 2 of 3

criteria

B rates higher than C on 2 of 3

criteria

C rates higher than A on 2 of 3

criteria

Figure 5

that A is "better" than B. But B ranks higher than C on two of the three
criteria so that the young lady should choose B before C. When she makes
the comparison between A and C she sees that C is "better" than A on two
of three counts. On these three criteria there is no best suitor.

In evaluating candidates on a number of criteria, voters often run into
exactly the same problem. Thus whenever a voter must rate candidates
based on several criteria, he may be faced with a non-transith,2 relation.

Thus a complete listing of voter schedules should also contain sched-
ules like:

1st A A-B A-B-C
2nd B-C C A-C
3rd
From the above, for time (and space) considerations, we will make two:

postulates concerning the voter.

3.1
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Postulate 1: Voter preference is a transitive relation, i.e. we limit our-
selves to the schedules of figure 4.

Postulate 2: If a candidate were removed, voters would vote their pre-
ference as indicated.

Now we are ready to model the election decision procedure. We saw
earlier (figure 1 and 2) an election where the plurality winner might have
been the least popular candidate. Let us look at an election where complete
voter preference is known. (See figure 6). In this election A is the obvious

VCNOR

A

C

of ooto 25

PRISIERINCR

A

D

C

19

C

A

SCHIDULIS

a
A

C

21

Tome merzsacs SCHEDULD3

lab AlICC
C 2411CCAD
A 3r4BABA

ft or voles 38 33 10 19
16

Plurality: A-36, 1-33, C-24

A wine.
Plurality: Al 25 + 19 44 first plates

voter Run or A-48, 8-52

DI 9 r 21 30 first plan
voter s wins.

Cj 26 first place
voter

Condorcet: A vs. C - C wins

Run Orr between A and

AI 25 r 19 4 votes

Di 9 r 21 56 votes

A-3a, C-62

8 we. C - C wins

D-33, c-67

C will. past :tither A ors in any 2 way
mos.

Figure 6 Figure 7
plurality winner with 44% of the votes. However, in a run-off election (om-itting C because he had the fewest number of votes) we see that B wins.Thus we see a clear voter preference for B over A.

On the other hand, since we have complete voter schedules why be sat-isfied with just a run-off between the two candidates with the highest plur-ality counts? Why not look at all possible run-offs? i.e. A vs. B, A vs. C, Bvs. C. This method of looking at all possible two way elections to choosethe winner is called the Condorcet count. According to Condorcet thewinner of an election should be the one who would win against every othercandidate. Although we might expect the Condorcet count winner to bethe same as the winner using the run-off system, figure 7 shows that this isnot always true.
In this election we see that while A is the plurality winner and B is the

run-off winner, candidate C will beat either A or B with ease in any two
man elections. Thus it seems we now have a good decision process. Namely,
if there is no majority winner, look at the Condorcet count.

Before we become too confident, let's look at one more example. (See
figure 8). In this election A is the plurality winner with 43% of the votes. B

t, Fv
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Figure 8 Figure 9
is th:-..7.1.-u-off winner-rf,7%-to .4316 foA . But look at the Condoreet
We see that B beats A, A beats C and C beats B.

Thus our decision procedure has non-transitivity of choice even though
we postulated transitivity of individual voter preference. This non-transi-
tivity was first discovered by Condorcet in 1785. Lewis Carroll rediscover-
ed it. It is worth nothing that it was virtually ignored by politicians and
political theorists until the 1940's when Duncan Black brought it to light
for the third time.

From this somewhat unhappy state of affairs there is little that we-can
salvage except to assign weights to the voter ratings. In this procedure one
point is given to a candidate for every candidate rated loiter on a voter's
schedule. The winner is the candidate with the highest point count. The
number of points that each candidate receives is called the Borda count.
Figure 9 shows the determination of the Borda count for the election of
the last example. The Rorda count winner is C with 107 points, the Con-
dorcet winner is B and the plurality winner is A.

Any student who wishes to "rig" an election will enjoy using the Borda
count because the relative weighs assigned determine the rating of candi-
dates. If we assign weight w1 to first choice, w2 to second choice, w3 to
third choice on a rating schedule we have the general Borda count as illus-
trated in figure 10. GENERAL BORDA COUNT

is t
1

Ai 43w1 + 12w3 + 19W2 + 26w3

*42ndw2 Bi 43w
3 + 12w

1
+ 19w

1
+ 26w

2

3rd23 C) 43w2 + 12w2 + 19w3 + 26w1

Figure 10
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The problems of voting are very relevant to any student of the political
process - they occur in committees in legislatures especially when both are
voted on in pairs. This method of voting compares the bills pairWise until
all but one are eliminated. From the non-transitivity that occurs when the
Condorcet method is used it, should be apparent that the later a bill is pre-
sented, the better is its chance of being chosen.

The problem of formulating an election procedure as outlined here have
been neatly sdmmarized by an economist named Kenneth Arrow. Arrow
set four criteria for any decision system S. That is, we would like a decision
procedure to satisfy the following:

1. S should work, i.e. S should determine a ranking of candidates for any
collection of schedules submitted by the voters.

2. If every voter prefers A to B, then S should determine a ranking in
which is prgered to B.

3. There is no dictator. This means that there is no outside decision maker.
4. The relative ranking of A and B depends only upon the relative rank-

ing of A and B on the voter schedules.
This last criteria might need a little more elucidation. Look at figures

1 la and 1 lb.

A B E C

B CDA
C A A B

D DCD
E EBE

35 20 15 30

Figure lla

Voter Preference Schedule

ABCE
B D E A

D AABCEDC
E CBD

35 20 15 -3o

Figure llb

In both of these elections, the same number of voters rated A and B the
same relative to each other. Criteria 4 demands that the decision system, S,
rate A relative to B the same in both these elections. That is, the rating of
candidate C, D and E shOuld not affect the relative ranking of A and B by
S.

As reasonable as the 4 criteria for S may seem, Arrow showed that there
is no system S that will satisfl, all theSe criteria. This work of Arrow's not
only won him a nobel prize, but initiated a new field of study called Theory
of Social Choice. What this means to the student is that given any decisipriR.,
procedure he can discover an election in which at least one of these criteria'
is violated.



30

MEASUREMENT AND THE METRIC SYSTEM

by James E. Bierden, Rhode Island College

There are obviously many reasons for talking about the metric system.
The fact that it represents -an- application of mathematics - the theme of this
conference -.is one of the best reasons. However, I would like to take a
somewhat different view of the metric system' and its relation to mathema-
tics and the teaching of mathematics. This paper will focus on the topic:
the United States conversion to the metric system is a good thing because it
gives teachers an opportunity to look at measurement in a fresh light,

A fresh look at measurement certainly will not hurt any of us. In many
instances today, the study of measurement in scnoornas'become a'series of
paper and pencil exercises dealing with conversions and formulas. Very
little of this gets at the important concepts of measurement which students
should be learning.

The overall theme of this paper is directed toward the need for any stu-
dy of measurement to be activity-based. The paper will consider two speci-
fic questions:

1. What are the important measurement concepts we should,be. teaching?

2. What are appropriate activities associated with these concepts?
The answers to theSe questions will be illustrated using concepts from the
metric system of measurement. To help carry out the activity :based theme,
you will be given some tasks to help you review measurement and under-

stand the metric system.
Measurement is Comparing an Object to a Unit

This initial measurement concept is seen in most elementary school pro-
grams today. Children are introduced to measurement using such non-
standard units as books, fingers, paper clips, and their own bodies. Using
these units, they measure a variety of objects, from desks to corridors. In
this way the childrens' measurement experiences are active and related to
their environment.

Measurement activities using non-standard units have a dual purpose.
First, they give students many experiences with the comparison aspect of
measuring. Second, the lack of any standardization or system ensures ex-
posure to the problems of utility and communication which create the
need for standard units of measure.
Choice of Appropriate Units

Before children will be able to choose appropriate units for measuring,
they have to have experiences which give them a thorough understanding
of the units most often used. The "size" of these units, as well as the types
of units used, are both very necessary.
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This important concept is often overlooked by many adults. They have
become such sophisticated measurers that this concept is no longer opera-
tional for them. For example, an appropriate unit of measure for finding
the area of a rectangular region - such as the floor of a room - is an area un-
it, usually a square unit. Adult measurers often use a linear unit to measure
the length and width of the region and then convert these linear measures
to an area measure using the formula

. area = length x width.
All of this is pretty sophisticated for children, especially if it has not

been preceded by many activities which acquaint them with units of
length, area, and '-volume (perhaps even weight and temperature), with the
use of these units, and with the relationships between them.

The metric system provides many opportunities for developing this con-
cept with children. The appropriate Metric unit of length frit- initial activi:
ties with children is the centimeter. A 20 centimeter or 30 centimeter ruler
is just the right size for children to measure many objects they are familiar
with. The list below illustrates appropriate experiences in developing an
understanding of linear measure. Try them.

MEASURE (to the nearest cm):
1. The length of your middle finger.
2: The width of your thumb nail.
3. The length of this paper.
4. The length of your shoe.
5. The length of your smile.

NOW ESTIMATE (to the nearest cm):
6. The length of the diagonal of this paper.
7. The length of an unsharpened pencil.
8. The width of a telephone book.

For initial activities with the meter, a flexible meter-stick is best. Child-
ren can easily construct one out of heavy cloth or by taping together 10 cm
strips of tagboard, and then use it to measure a variety of lengtas. The flex-
ibility comes in handy for measuring waists, chests or other circumferences,
as well as usual linear distances.

To gain experience with other measurement units, children should use
square centimeters, square decimeters and square meters to measure regions.
The latter can be made from newsprint. Again, try it.

Somewhere in their metric education, children should be introduced to
a model of a cubic meter - easily made with twelve lath strips and masking
tape. An ambitious class might fill their cubic meter with cubic decimeters
- but remember, it takes 1000 of them! Other uses include a "quiet place"
for reading, a storage area or, with paper sides, a "computer" for input -
output games. If you have never seen a cubic meter model, make one of
your own.
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All of the above activities with units are designed to develop the child's
ability to choose the appropriate unit (by size or by type) when confronted
with a measurement problem.
All Measurement is Approximate

We use approximation in most of the measurement we do.Children should
have experiences which help them understand why measurement is approx-
imate and how approximations are used. This understanding can only come
if the child is an active measurer.

Along with approximation, students should be given a feel for estima-
tion. Measurement activities should regularly begin with children estimat-
ing the measurements they are about to make.

It's not a bad idea for adults to follow this procedure too, as they learn
the metric system. Using common references such as

meter: a little longer than a yard,
liter: a little larger than a quart,
Kilogram: a little more than two pounds,

we _should take the opportunity to estimate lengths, distances, amounts,
sizes, and weights whenever and wherever we can. After all, we too are
going to have to live in a metric world.
Need for a Standard Unit.

The realization that standard measurement units are necessary for such
things as reference, duplication and communication can be achieved in
children through a variety of activities. One favorite method uses parts of
the body (hands, arms, feet) from different children making the same
measurement.

Work on this concept should also include some exposure to the history
of the metric system, since it is the history of man's most extensive attempt
to standardize measurement. This history has been treated extensively in

recent articles in The Arithmetic Teacher, as well as many other profession-
al journals.

While many of the facts related to the history of metrication are inter-
esting - such as the fact that the metric system was legally adopted as the
official United States system of measure in 1893 - what should be of most
interest is the history of the process we have gone through to arrive at the
metric system. It is a fascinating story.
Relationships Between Units

This major part of measurement is not one concept but a series of con-
cepts, all of which are important for the child's understanding of the mea-
surement process. The metric system provides a golden opportunity for
emphasizing these concepts. Indeed, many people say that the systematic
relationship between metric units is the most important aspect in its favor.

3 7
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Mere are two main relationships between units in the metric system.
The first concerns the decimal base of the system. Multiples and subdivisions
'or a given metric unit are related to each other the same way as the place
values of our base-ten numeration system. This is illustrated by the units of
length listed below.

kilometer = 1000 meters
hectometer = 100 meters
decameter = 10 meters

METER
decimeter = .1 meter
centimeter = .01 meter
millimeter = .001 meter

An activity-based approach to measurement should also be in evidence
in the development of these concepts. The units, their relative sizes and
.their relationshipsare assimilated through-varied use over a iong'periokit5f " "-
time. For a change of pace from actualsmeasuring, these relationships can
also be reinforced using games and puzzles, such as the tic-tac-toe game
shown in Figure 1.

HETRIC T10-21.0.-TOS

10Ma 1 000 m

mm

10 ha

j 1 du

1 0 a 10 cm 109

0001 g 1 kg 1000 mg

1 00, dg 1 00 C 1000 g

1014 1 hg 100 dag

Figure 1

There is another relationship between the meter - basic unit of length,
the liter - basic unit of capacity, and the kilogram - basic unit of mass or

38
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weight. The relationship is easily shown. Construct a cubic decimeter (.1

meter). This box has a capacity of I liter. When the box is filled with very
cold water (4°C), you have a good model of a kilogram. Using cardboard,
tape and plastic bags, students can construct these measuring standard them-
selves giving them opportunity for some insights into the relationships in-
volved. The stan:iards can then be used for other measuring activities.
Conclusion

We have discussed five major concepts related to measurement and ex-
amples of these concepts in the metric system. A further discussion of these
areas can be found in the article "Metric, not if, but how" by the NCTM
Metric Implementation Committee in the May, 1974 issue of The Arith-
metic Teacher.

One final thought for teachers who are hesitant about learning and teach-
ing the metric system. You will find it the same as other topics you teach:
the metric system is easy if you understand it, hard if you do not. Mean-
ing and understand - through activities - must come before formalism and
structure. It will be best understood and used if it spiralled throughout the
curriculum. So, be of good heart, take that first step, and always - THINK
METRIC.

3'3
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APPLICATIONS OF MATHEMATICS TO MUSIC AND ART

by Clifford Boatner, Quincy (Mass.) High School

0:81113112=1:11
Having taught mathematics at various levels for over ten years, I have

found what I consider a serious problem common to these various levels --
namely, retention of skills. Students seem to be able to manipulate arith-
metic skills while taking arithmetic, but as soon as they go.into algebra, they
forget arithmetic. Students seem to be able to handle algebra while taking
the course but as soon as they hit a geometry course, algebra fades away.

This should not be the case because algebra is arithmetic using letters
and practically all algebra can be expressed geometrically.

For the most part I am referring to the so-called "standard" mathema-
tics student -- the student who is college bound but is not particularly fond
of mathematics but is taking the courses only because he has to. Naturally,
being dis-interested in mathematics makes it very easy for him to cast it out
of his mind after the final examination is over.

Though the honor and advanced placement students seem to be more self
motivated, they too have problems with retention. These "gifted" students
are sometimes neglected as far as making various subjects fit into their own
individual talents, hobbies, interests, etc.

So, as I see it, two important things should be investigated: the effec-
tiveness of integrated or parallel learning within the structure of mathema-
tics and a more concerted effort to relate, as much as possible, required
mathematics to the interests of students. I have already experienced some
success with students by constantly seeking ways to present mathematics
as a living, useful, beautiful subject.

Some of the methods that I have found useful to me in the teaching of
mathematics have led me to develop materials for classroom instruction.

Geometry Anu Art
Formal plane geometry is one of the most hated mathematics courses in

the high school college course curriculum. Thus the teaching of it is a great
challenge for any teacher desiring every student in his classes to get some-
thing pleasurable out of the course.

Unfortunately, many of the teachers care little for the subject and con-
stantly refer back to the time when they took geometry and because of the
dull, drab, approach along with their lack of understanding of the subject,
ended up memorizing axiom after axiom, postulate after postulate, theorem
after theorem, in agony. Some teachers have even admitted that geometry
almost stopped them from becoming mathematics majors. Naturally, this
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attitude is bound to affect the attitude of the pupils. Heads of mathematics
departments aware of this attitude, have jokingly threatened to give teachers
geometry to teach, if they don't "behave".

There is the mathematics teacher who positively adores geometry and
cannot understand why' some students in his class do not "dig" geometry.
"How can anyone not see the beauty of abstract thinking, inductive and
deductive reasoning?" So they continue shoving one concept after another
down the throats of students who would prefer to be anywhere else but in
the geometry class.

It is my desire to introduce. geometry in such a way that every student
in my classes can leave the course with not only enough background to tack-
le the next mathematics course and the College Boards, but with a feeling
that there was something in the course worth remembering. One way is to
relate geometrical problems and concepts to everyday items, having the stu-
dents make drawings in which geometrical forms are dominant.

Musimatics And Mathemusic
Musimatics and Mathemusic (the use of music symbols in place of frac-

tions in the study of arithmetic, algebra, geometry, and trigonometry.) can
be used in both music and mathematics classes with students who have some
background with rational numbers (fractions), or who are in the process of
learning fractions. The most ideal situation, however, would be to have a
mathematics teacher working together with a music teacher, using classes
that they both have (if this is junior high school). In an elementary school
where a music specialist comes to teach a class, the same interdisciplinary
technique can be used. At the high school level, it can be used on an indivi-
dualized basis.

Many musicians are not fully aware of the reliance they have on mathe-
matics while starting, continuing, and perfecting their art.

Mathematics is related in some way, to almost everything in life. Every-
one needs mathematics. Some can get by with a little mathematical skill,
while others need more, and' still others much more.

It is the belief of the author that if musically inclined students, or stu-
dents who dislike mathematics in general, are given a mathematical system
based on symbols that they are familiar with and feel at home with, they can
not only develop a greater skill in mathematics but a greater understanding
of music, and perhaps an appreciation for mathematics, as well.

It must be noted that though there is a parallel between the fractional
value of music notation and common fractions of arithmetic. Certain as-
pects of music meter, from a musician's standpoint, must be considered.
For example: Three-fourths time is not the same as six-eighths time: six-
eighths time is a compound time, two beats to a measure. Also, from the
mathematician's point of view, three-fourths is not equal to six-eighths, but
rather three - fourths is proportional to six-eighths in the strictest sense.

41'



37

Because there are many fine methods of teaching mathematics and be-.
cause there is no one way to teach or learn mathematics, these exercises are
to be done under the direction of the instructor or instructors involved, or,
if permitted, done the way the student understands best, The main thing to
realize is that mathematics and music are both abstract, and there are
many concepts that we learn but may not immediately see their usefulness.

All of this has results in helping students to "take a second look" at
mathematics,and they have found pleasure in the subject that many of them
hated previously. ...I.

GROCERY STORE ARITHMETIC

by Russell J. Call , Northeastern University

The title I have chosen, "Grocery Store Arithmetic," may evoke differ-
ent mental images from each of you. A "grocery store" to some may be a
"super market" to others. The intent is both to refer to "grocery stores" as
well as to so-called "applications" that are indeed "under our noses".

What I hope to do is to suggest to you and to share with you some points
of view. You should take what you want with you and discard the rest.
What you take should, of course, be worked into your own respective life
styles.

The assumption used is that you all accept the fact that mathematics is
very important but that there are also other things that are important too!
In short, while mathematics is a discipline in its own right, in the spirit of
the fall, 1974 NCTM-ATMNE conference, mathematics must have some
"... perspectives on applications ..,"

Before any meaningful discussion can take place on any topic, all of the
participants of the discussion must have a common framework. Even
though we are all acquainted with mathematics we are still a heterogeneous
group.

First of all we need to have a common framework about the word "ap-
plications." We need to look at Benjamin Bloom's Taxonomy of the "Cog-
nitive Domain": Evaluation, Synthesis, Analysis, Application, Comprehen-
sion, Knowledge.

Most of you knew already that "application" is a middle-level element
in this six element list.

Consider now the eight types of learning as developed by Robert Gagne:
I. Signal Learning, 2. Stimulus-Response Learning, 3. Chaining, 4. Verbal

4
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Association, 5. Multiple Discrimination 6. Concept Learning, 7. Principle
Learning, 8: Problem Solving:

Clearly, "problem solving" is the goal of all education, and it surely in-
volves many "applications," but perhaps beginning with "concept learning"
comes some type of "application," if we use the meaning of "application"
similar to that suggested by Bloom.

While "grocery store arithmetic" may sound rather innocent and/or
childish, it is neither! The complaints of society indicate that what we once
called "consumer" math has once again become important. In the mid-
1970's when the "energy crisis" and what some have called "inflation,"
others "depression," and others "recession," the topic to "applications"
has, in the words of Piaget, found a "readiness" on the part of students
and teachers alike.

If we were to search for a common experience among students and
teachers, perhaps the grocery store is it! To survive, one must visit the gro-
cery store.

Consider the simple operation of the collection of the money for the
groceries purchased. Each of the prices of the items would be recorded on
the adding machine and that total would be collected. The cash register
would be used just for the total amount of the items. Let's say that the
groceries totaled $1 1.37 on the adding machine. The purchaser might hand
the grocer a ten dollar bill and a five dollar bill. What does the grocer do?
Assuming that the cash register does not do the subtracting, the grocer
probably counts as follows:

Remum from Cash_Drawer Says something like this
3 pennies $11.37 and 3 are $11.40
1 dime and a dime is $11.50
1 fifty-cent piece and fifty is $12.00
3 one-dollar bills and three dollars is $15.00
Notice the.built-in review of elementary arithmetic and how we "count"

to the next denomination. Does it not remind you of the addition process
of 8 + 7 where we count to 10 with 5 more than ten?

There are some cash registers which even do the subtracting. In the ear-
lier illustration, the total would have shown $11.37 and when the shopper
handed the register operator a ten dollar bill and a five dollar bill, the regis-
ter operator would have recorded a $15.00 as the amount receiyed and up-
on depressing another button the amount of change would have appeared
as $3.63. In fact, some registers would actually have returned the 63 cents
automatically.

These illustrations may sound far too basic. Yet, there are some profound
mathematic principles illustrated. Also, the more complex the cash register
the more practice the. operator needs. But the skills he needs are of a differ-
ent sort. If the register does the computing, the operator is left only to re-
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turn the amount of change directed by the cash register. But a higher level
operation is needed - not "knowledge" but perhaps "evaluation" for the
ability to judge whether or not the register is correct.

While we are still visualizing the cash register operation, consider the sit-
uation whereby three cans of soup were purchased butwhen the groceries
were placed on the cash register cointer the three cans got separated from
one another. Thus, the cash register operator saw a can with the price "3 for
25" labeled on it. The decision made at that time probably was to punch
9 cents for the single can. A while later another can appeared and 9 cents
was again punched. Finally, the third can appeared and if the cash register
operatorremembered the other two, he may have explained to the customer
that since the three cans were purchased and were to be sold at "three for
twenty-five" and since eighteen cents had already been rung-up, he would
only ring up 7 cents for the third can.

But there is some important mathematics involved here! The concepts
of "error" and "correction" are but illustrative. There are also some funda-
mental ideas we need to explore related to "learning theory." In the ele-
mentary school and later we teach "rounding" and the general "rule" is to
round to the nearest whole number, or when it is in the middle, to round
to the even whole number. Using this "rule," the cost of one item in a 3
for 25 situation would be 8 cents, since 8 1/3 rounds to 8. But, alas, we
need to use the "grocery store" "rule" which requires that anything over
the whole number goes to the next highest whole number. Thus 8 1/3
rounds to 9. Note also that we are able to develop the concept of "error"
here. For if we round to the nearest whole number we see that the error is
only 1. Thus, 8 1/3 rounded to 8 and 3 times 8 = 24, and 24 is 1 away from
25. If we round up to the next highest, we get 8 1/3 = 9 and 3 times 9 =
27 or 2 away from the 25.

If we carried that simple example - 3 for 25 - to a further sophistication,
we could carry it into the field of "logic" and maintain that a single item
could be sold for any amount the grocer decided. A listing of "3 for 25"
means exactly that and nothing more! That three will be sold for a certain
price does not mean that one or two will be sold for any specific price.
Principles of "logic" would say that the information "3 for 25" in no way
suggests what "one" would cost. In fact, if you go to Fenway Park in Bos-
ton the peanut man advertises his peanuts as "10 cents a bag - three for a
quarter.

When I reamed to "learning theory," I meant the concept of "interfer-
ence." For there surely is a chance for "overteaching" the concept of
"rounding." If so, some students may have difficulty in using the "rounding
up" concept in grocery store arithmetic for it conflicts with the usual "rule."
Then, you know you need to cope with these inconsistencies which are
forms of "interference."

4 4
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The determination of the cost of more than one but for less than the
multiple cost is computed in more than one way. For'example, consider a
multiple price as follows: "7 for 64." The price of a Single item is comput-
ed then to be 9.14.

For five items, one way is to multiply the computed unit price by five.
Thus, the unit price when rounded is ten cents and five items would be fif-
ty cents.

Another approach is to multiply the computed unit price before round-
ing. Thus 5 x 9.14 = 45.70. 45.70 would be rounded to 46 cents.

Think about the concept of "spoilage" in grocery store arithmetic.
When a store purchases perishables it must build in a cost for spoilage. Un-
like soap powder, for example, many items of produce and of meat must
carry a greater margin of profit to offset the loss caused by spoilage. There
is an enormous number of math topics here - profit, markup, etc.

Have you ever noticed how coupons are redeemed? Sometimes, you
must pay the full grocery bill and then you will receive the cash in ex-
change for the coupons. In other stores, the amount of the coupons is sub-
tracted from the item to which the specific coupons were related. In still
other stores the amount of the coupons is deducted from the grocery store
bill. Notice that the next amount of money spent for groceries is the same
regardless of which of these procedures is used.

One of the most fascinating things in a grocery store is the "express"
line. The purpose of an "express" line is to prevent the necessity for a cus-
tomer with only a few items to stand in a line behind some persons with
huge orders. The "variable" (a good math word) is the "number of items"
and this is said to affect the thing we are interested in saving - "time!"

Listen to the following statements that appear at check-out counters:
Express line 8 or fewer items, Express line less than 8 items, Express line
12 or fewer items, Express line less than 12 items, Express line 10 items or
less.

From a mathematical standpoint, "8 or fewer items' does not mean the
same as "less than 8 items."

The terms "continuous" and "discrete" are involved here. With respect
to the topic of "items," we would have to admit that "item" suggests "dis-
creteness." In other words, there is a next item to item "twelve" and it is
called item "thirteen."

On the other hand, "continuous" when referring to something mathe-
matical and relating to grocery store arithmetic could be "weight." In
other words, weight does not immediately jump from three pounds to
four pounds - there is increasing weight between three and four pounds.

"Eight or fewer items," since "items" are "discrete," would suggest the
following: 1, 2, 3, 4, 5, 6, 7 or 8 items; while "less than8items" refers to:
1, 2, 3, 4, 5, 6 or 7 items. "Less than 8 items" would identify the same
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thing as would "7 or fewer items," but the condition is that we treat
"items" as "discrete."

The rather interesting thing is how 8 items, 10 items, or 12 items is ar-
rived at. Quite obviously, the purpose is to make it possible for people to be
served well. Would, for example, the use of 18 items as the cutoff ite up
the express line to the detriment of those with 10 items? Perhaps 18 items
belong in the regular line. But the question is a mathematical one and can
be a very enjoyable one.

What is being considered here is mathematics in its most practical form.
We are attempting to define a cut-off point which separates the fast-moving
express orders from the slower-moving large grocery orders.

That suggests, of course, that the human being actually running the cash
register is a "function" of the degree of "express." With that in mind and
knowing that the person running the register is a member of a set of "vari-
ables," it is often faster to go through a non-express line!

Still another consideration is the fact that the grocer needs to serve all
his customers. He cannot tie up a register for express orders if in fact all of
his regular lines are already too long. Thus, the mathematics of economics
comes into play. If a steady stream of "express customers is using the ex-
press line, that is one thing - but if the very existence of the express line is
too expensive because of too little use, that is something else again!

If we were to talk in terms of "calculus," we would consider what
things need to be "maximized" and what needs to be "minimized." For
example, one item we desire to be"maximized" is the speed through which
customers can go through the check-out lines. An example of an item need-
ing to be "minimized" is the cost of operating the check-out line of the
express type.

Let's change to another topic for a moment. Consider the topic of deter-
mining how much help the grocer needs and when. He wants enough help
at any one time - but not too much! He wants the maximum help when the
maximum business is taking place.

It is, initially, often not possible to compute these facts accurately.
Experience is necessary! That experience does not have to be the experi-
ence of that grocer - he can use data collected by other grocers. There is
plenty of applicable mathematics here!

Another maxima/minima application involves packaging. The producers
of cereals, for example, want to maximize the volume of boxes while mini-
mizing the cardboard needed to construct the boxes. The grocer, on the
other hand, wants to maximize the number of types of cereal he can dis-
play which means minimizing the width of the boxes.

Still another topic in grocery store arithmetic can be named "the best
bargain" which would be essentially the collecting of data and performing
some divisions. Here is an example: A 49-ounce package of soap powder
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was listed at 81 cents. The same brand of soap powder was listed at $4.69
for a 20-pound box. The price per ounce in the first instance turns out to
be 1.653 cents while in the second instance it turns out to be 1.465 cents
an ounce.

I'm sure you already know that there is ample opportunity for applica-
tions in the grocery story. I have but reminded you of a few! I do want to
touch briefly on the concept of "application" as it relates to teaching. Clear-
ly, we live in a pragmatic world - but then again, we always have! So we
cannot appropriately say that our theme of this conference is "new." It is
"timely," however! And I want to indicate very briefly how good teachers
have always behaved and all the literature written by the "romanticists"
does not change what we know to be so about good teaching.

One of the speakers at this conference, Dr. Vincent Glennon, has written
and spoken about good teaching and I have adapted it. He maintains that
goodteachers need to know their content, to have a good cultural founda-
tion of their field, and to make use of the knowledge of learning and teach-
ing theories as they relate to the characteristics of the students of the parti-
cular age we are teaching. Good teaching comes about during the times
when these three factors "intersect."

I also want to refresh your memories of what good teaching was in the
nineteenth century according to Herbart. His five teaching steps were as
follows: 1) Preparation, 2) Presentation, 3)"Association or Comparison,
4) Generalization, or Abstraction, 5) Application. Thus, the fifth Herbar-
tian step made use of what we know about learning theory. While we do
not necessarily need an immediate use for our knowledge, if we practice a
skill by applying the knowledge, it tends to stick with us better.

Now, it is very important that we make certain that we bring our teach-
ing skills into the twentieth century. Therefore, we look to the 1970 list
(Marks, Purdy, and Kinney): 1) Preparation, 2) Exploration and Discovery
(we no longer present; we allow our students to discover), 3) Abstraction and
Organization, 4) Fixing Skills, 5) Application. We find "application" still
there - holding an important place in the field of "good teaching."

Hopefully, some questions have been raised in your minds. applica-
tion" is not a basis, low-level activity. It is vital to the process of teaching
for it "puts it all together." It helps in the process of synthesis.

"Application: does not answer the question of your student, "How do
I use it?" Rather it should provide the appropriate experience for your stu-
dents to utilize knowledge and comprehension in new and different situa-
tions. And that is an important characteristic of a well-educatedperson!
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MATHEMATICS AND FLUID POWER TECHNOLOGY

by Richard H. Carter, University of Maine1=1
I. Introduction

The conference theme "Mathematics: Perspectives 'on Applications"
really has much appeal and is most appropriate in today's quest for rele-
vant education. The theme reminds me of my initial impression of Algebra,
which I regret was negative. I am sure my-instructor felt that he motivated
everyone, by proving algebraically that the weight of a mouse equalled the
weight of an elephant. While seeing is believingt,the approach and justifica-
tion for such a course left me cold as I was looking for more practical ap-
plications of mathematics.

The topic "Mathematics and Fluid Power Technology" assumes that this
audience has a limited knowledge of technology, and in particular of fluid
power technology, which' will compensate for the speaker's limited know-
ledge of mathematics. Hopefully it will prove that Technology needs Math-
ematics and that Mathematics needs Technology.
II. Fluid Power Defined

Fluid power -- the science and technology of power transmission by
means of potential energy changes in a fluid medium. Fluid Power may be
defined as the transmission of power, energy or force by means of a fluid,
like air or oil under pressure.
III. History and Growth of Fluid Power

Fluid power is one of three major means of transmitting power (other
means being mechanical and electrical) and has been known for many
years. In fact the first known use was by the Egyptians in building the pyra-
mids and it Was used to split stone. Its refinement and application evolved
very slowly, however, and it was not until World War I, with its demand for
increased production That fluid power came into its own.

In the past two decades, however, its growth and development, because
of its many inherent advantages and flexibility, has been rapid and signifi-
cant. In fact, its growth rate in sales dollars has been over 1000%.
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IV. Fluid Power Systems
Since the Systems Concept in education and technology is the in-thing

it might be helpful to review a basic systems model and then apply it to a
basic fluid power system.

With the systems concept in mind a fluid power system may be develop-
ed tomeet a practical requirement. It will identify parameters for design
criteria and-allow for the optimum selection of sub-systems and their relat-
ed components.

For this purpose, let's assume:
1. You have a work requirement that you must accomplish (this is an out-

put of the system). The requirements are to lift a load (weight) of 1000
pounds a distance of 12". You must have the capability of stopping and
holding this load at any point in the 12" lift. You must be able to con-
trol the speed at which the load is returned or lowered.
An examination of the system requirements will be invaluable in the

selection of components to complete the system and to determine mathe-
matical considerations. The mathematical requirements and considerations
for this system will include:

Output -- Force (load), Speed (work rate), Direction.
Process and Control -- Pressure requirements, Flow requirements (velo-

city) Reynolds Numbers, Flow direction.
Input -- Flow (volume and capacity) G.P.M., Fluid conditioning (temp-

erature and quality),Prime mover -- type and size (horsepower), Tank
storage -- capacity.

Total System -- Efficiency INPUT OUTPUT
V. Efficiency and Economics

Today like never before in our history we are demanding technology to
become more efficient. Proper design, maintenance and operation of fluid
power systems can and will make this possible.

"Technology needs mathematics to achieve this goal. Mathematics needs
technology to be relevant." Let's get together.
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ENERGY: AN INTERDISCIPLINARY APPROACH TO
MATHEMATICAL APPLICATIONS

by Paul L. Estes, Department of Mathematics and
William J, Taffe,Department of Natural Science
Plymouth State College

1.1='141ii I=T-

Introduction
Mathematics teaching may be approached from several viewpoints. One

instructor might present mathematics as symbolic logic, rigorous thinking,
proof, emphasizing relationship and language. Another might concentrate
on structures or systems. The theme of these proceedings is yet another ap-
proach to mathematics, a route via applications. Within the application-
oriented route, however, there are different paths. One is to introduce new
mathematics by means of example, developing the mathematics while con-
currently showing its use in a particular physical problem; new problems are
chosen to illustrate each new bit of mathematics. But, as Morris Kline
stated, "Mathematics is not an isolated, self-sufficient body of knowledge.
It exists primarily to help man understand and master the physical, the ec-
onomic and the social worlds."' So, a second applied approach might go
one step further than the first. An extended, broad-scope problem might
be examined and as the problem is unfolded, the mathematics needed for
each new aspect is introduced. The goal is the solution of a human prob-
lem; mathematics becomes an interdisciplinary part of a problem-oriented
study, not seen in naked isolation but as part of human learning.

We opted for this latter approach and designed an experimental courseto test the id9. Mathematics became "objective-oriented rather than sub-
ject-oriented", It was encountered while analyzing and solving a real
problem. Understanding the problem, its solutions, their meanings and im-
plications, was the primary objective. But it was often necessary, and there-
fore a secondary objective, to find and understand methods to reach the
goal, to learn the mathematics necessary to analyze the problem and reach
a solution.

The problem we chose was energy. We examined man's energy demand
and nature's energy supply. We studied the ways man taps the storehouse
of energy and the transformations it must undergo before it is in directly
useable form. We unraveled the pathways by which energy flows from
source to user. As we sought to comprehend energy supply and demand,
students learned and utilized some mathematics, physics, chemistry, bio-
logy, geology, meteorology, engineering, social science and tapped any other
body of knowledge which aided an attack on the problem.

But how does mathematics fit into this problem? Briefly stated, it is be-
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cause the problem is quantitative. How many people will require how
much energy from a finite source variable in space and time? Quantitative
formulations are needed to answer quantitative questions. So we built
mathematical models of populations and their growth, of percapita energy
demand and its growth, of energy flow networks and other aspects of the
problem. The goal was to understand the energy problem. Mathematics was

an indispensible element in the fully interdisciplinary formulation of this
applied problem.
An Overview of the Program

The National Science Foundation offered support for such an approach
through a Student Science Training Program grant. We accepted a group of
twenty-seven students from several states with cities, suburbs and rural re-

gions all represented. We intentionally sought students who had high po-
tential and above average motivation, but whose local schools, through lack
of facilities, staff, etc., were unable to allow them to unleash those abilities.

The program fully occupied the middle six weeks of the summer, an in-
tensive experience yet within the capability of a motivated student. The
daily format varied as the program proceeded. Lecture, seminar, discussion,
problem sessions, each was used when it fit the immediate objective. The
first weeks leaned toward lecture, but as the students developed greater
understanding of basic principles, discussion assumed greater importance.

As discussed earlier, the energy problem is a most interdisciplinary top-

ic. Most of the physical sciences, some biological science, mathematics,
engineering, computer usage, and the social sciences of economics, sociolo-
gy and politics must be utilized to offer viable solutions. In an approach of
this nature, with such wide scope, the problem must be intentionally lim-
ited. So, while recognizing that any solution is required to be economically
competitive, socially acceptable and politically feasible (high school stu-
dents are wonderfully optimistic on this last point), we concentrated our
efforts on the scientific and mathematical analyses of the problem.

The studies began with a consideration of man's energy demand due both
to population increases and to the growth in per capita energy use. This was
pursued mathematically as the students wereintroduced to graphical me-

thods of data representation, exponential growth of populations, logar-
ithmic graphs, etc. The basic concepts of energy were examined from a
physical, chemical, biological, and ecological approach. Energy transfer
mechanisms and the balance of energy on the globe and in the biosphere

followed.
The sources of society's present energy supply, both continuous and de-

pletable were then examined. The geology of coal and petroleum, their
chemistry and combustion, led to the analysis of the present energy sup-
ply for various economic sectors and energy uses. The finitude of these de-
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pletable supplies led to estimates of the time scale available before new
energy sources are needed.

Simultaneously, the mathematical projections of energy demand devel-
oped as algorithmic thinking, flowcharting, and BASIC programming were
learned and applied to the extrapolation of present into future conditions.
The models of various authors (for example, John Fisher in "Energy Crises
in Perspective"3) were examined for underlying assumptions.

The discussion of energy use generated two additional mathematical
needs. The consideration of rates led to the concept of a derivative. Thus,
a brief introduction to differential calculus was begun. But since the rate of
energy use has varied in time, to understand the total consumption, integral
calculus was also needed. Both topics were introduced in a manner such
that the student could grasp their physical (geometric) interpretation and
were developed in response to a problem. Differential calculus was also
used to develop regression line techniques which were used to analyze both
population growth and energy per capita growth rates. Integral calculus
was further extended to energy problems such as hydrostatics problems
presented by hydroelectric power stations.

The matheinatical techniques allowed students to make their own com-
puter-based projections of the total energy demand and to examine the ef-
fects of various alternative assumptions in their own models.

While the students were developing their energy demand models, they
began a series of seminars which were designed to elucidate some of the
newer techniques for meeting that demand.

Student groups prepared reports on topics such as breeder reactors,
fusion, geothermal power, solar power, MHD, and others. The discussions
considered the basic methods of each source, its advantages, disadvantages,
side effects, economic potential and other features. When necessary, the in-
structors preceeded the seminars by introducing basic science concepts. A
guest lecturer presented the effects of the various pollutants (particulate,
thermal, radioactive) on the biosphere.

The energy demand made by transportation systems was then consider-
ed. The students recognized that, as fossil fuels diminish, an oil economy
will be replaced by an alternate, and the possibilities of the hydrogen and
electric economies were examined.

A last topic was the analysis of energy transmission. Electric grids, such
as New England Power Exchange, as well as the need for new transmission
capabilities (superconducting transmission lines, etc.), and other technolo-
gy were presented in student seminars. The basic mathematics of net-
work analysis was developed and applied to the problem, such as laying a
minimal-cost network of natural gas pipelines from the Gulf of Mexico to
the consumer.

The final -week was devoted to one goal. In teams of four, the students
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. .

were asked to deVelop and present a proposal for the energy demand and'
supply for the United States for the next 50 years. The proposal was to be
quantitative. It was to consider the demand for energy (on a regional basis)

d what methods were feasible for meeting that demand. Students con-
tiered the source types most available to a region, the stresses each source

would place on the environment,and the distribution of energy. Under con-
sideration were such topics as the technological possibility of introducing
a new source at an economic par with other sources, the social alterations
involved, and the political difficulties raised in developing new tehcnologies.
The students were not expected to face the energy problem in its totality
but to be as detailed as time permitted. They experienced the frustration
of quantitative planning based on uncertain assumptions, the vagaries pre-
sented by developing but yet unproved technology, the interplay between
scientific-technological and social factors encountered wherever the problem
solver is involved in issues with social implications, and the realization that
simplistic solutions usually need to be rethought in a more critical light.
Moreover, they learned something about how to attack a problem, how to
use a systems approach to its solution, and how to employ quantitative
reasoning, precise statements of relationship and mathematical models in
the. solution of a real problem.
Mathematics.. To pics, Sequence, and Examples

Specifically, what Mathematical topics can be used and how can they
be 'integrated into a study of the energy problem? The possibilities are un-
limited; almost any branch of Mathematics can be integrated into a study of
some aspect of the energy problem. The magnitude and complexity of the
energy problem present us with tremendous quantities of raw data which
must be organized, analyzed, and interpreted. This calls for both graphic
and statistical techniques. Various types of graphs (for example linear,
semi-logarithmic, full logarithmic) must be well understood so that each
can be used in the appropriate circumstances. A complete arsenal of statis-
tical techniques can be used to full advantage: regression and correlation,
hypothesis testing, probabilistic analysis applied to governmental and busi-
ness decision-making. One of, the first major uses of linear programming
was to the classical blending problem: in what quantities to mix various
grades of gasoline to obtain an optimum blend. The following are some of
the mathematical topics we dreW on in our institute: exponential functions,
least squares fitting of straight lines, calculus, and network analysis. In ad-
dition to these mathematical topics, the computer language BASIC, used
on the college's time-sharing computer facilities, proved to be invaluable.

Exponential functions enter early into the discussion of the energy
problem whenever one asks: How did we get into our present predicament?
The answer, from a purely mathematical point of view, is extremely simple:
energy use has been growing exponentially, not only in the United States,
but worldwide.
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EXPONENTIAL GROWTH OF ENERGY USE
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The annual growth rate of energy use, r, enables us to express the growthby an exponential function

A = Aoert

Where A is the amount after t years starting with A = Ao when t = o. Usingthis general exponential function, it is easy to derive (after a discussion ofthe irrational number e, logarithms, and the concept of a limit) the rule of
thumb for calculating doublingtimes: td = .Thus, from an annual growth

. rate of 7% for electrical energy production, we know that productiondoubles every ten years.
Later in the program, in studying nuclear energy, we are confrontedwith the problem of radioactive wastes. Since these wastes decay exponen-tially,we have another use for the exponential function. But now the growthrate is negative, doubling times are replaced by half-lives,and the character-istic rising exponential growth curve is replaced by a declining decay curveas shown in figure 3.

One of the major objectives in studying the energy problem is to try topredict, as accurately as possible, the energy needs for the years ahead. Invarious references one sees different projections, many of which are con-structed quite glibly. The most frequent type of projection is a simple ex-trapolation of past exponential growth. It is instructive to carry out such aprojection just to see where it leads and as an exercise in preparation formore refined projections.
How should we carry out a more refined projection? One that might firstcome to mind is to project the demand for oil, for coal, for gas, for nuclearenergy, etc. and then add up the separate projections. This method is fullof uncertainties, especially when we consider that' the separate demands aremutually dependent. For example, the demand for oil is dependent upon itscost relative to the cost of the alternatives.
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The method we employed for arriving at energy demand projections re-
quires a further analysis of past energy consumption. Figure 4 shows how
per capita energy, consumption in the United States has increased since
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1850. It has slightly more than doubled.
Figure 5 shows U.S. population growth during the same period. It has in-
creased nine-fold. Thus the total growth in U.S. energy consumption has
been the result of two factors: more people and more consumption per
capita with the population increase clearly being the predominant factor.
If we can project the percapita growth of energy consumption and the pop-
ulation growth, we can combine our figures and get a projection of total
energy consumption for the years to come. This was our approach.

To project per capita consumption we fitted a regression l'r,by the
method of least squares. See Figure 6.

REGRESSION-LINE PROJECTION
OF US. PER CAPITA ENERGY CONSUMPTION

MILLIONS
OF STU 13

Figure 6

Then with a linear,equation in hand, it was a simple matter to project the
per capita consumption for the year 2000 or any other year we might choose.

The need for fitting a regression line motivates quite a bit of Mathema-
tics. First, the student must be thoroughly experienced in ordinary graph-ing of straight lines. Then, the problem at hand raises the question of howto find a straight line which best fits a set of graphed raw data points. Afterthe usually preliminary discussion of crude eyeballing techniques and a con-sideration of what is meant by a line of "best" fit, the student is guidedto the least squares criterion: The line of best fit is defined to be that linefor which the sum of the squared devia' )ns of the data points from theline are a minimum.

To find the least squares formulas for the unknown slope and Y-inter-cept of the regression line, we must now apply differential calculus to solvethe above minimization problem. In our program, we had at this point al-ready introduced some differential calculus in connection with previousdiscussions of rates of change (of moving objects, of growing populations,etc.) Thus, the calculus foundation which had already been laid merely
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had to be built upon a little further to complete the task of deriving the
method of least squares. As is often the case, the consideration of a single
problem has taken us on an extended mathematical journey: from the pro-
blem of predicting future per capita energy consumption to straight line
graphing to a search for a line of best fit to differential calculus to a deriva-
tion of the method of least squares and finally back to the solution of the
problem that motivated it all.

The above journey in search of the solution to one problem has given
the student tools with which to tackle additional problems. Described a
few paragraphs below are our techniques for predicting population. The
method of least squares is needed again but this time the student is already
prepared. Before we delve into these population predictions however, let us
first observe that other seeds have been planted which will later bear fruit.

The student has been unknowingly getting ready to learn some integral
calculus and apply it to the solution of other energy-related problems.

He has been exposed to the concept of a limit; and while developing the
machinery for regression. analysis, has encountered summation notation.
Thus, he is prepared to look at the limit of a Riemann sum. The need for
evaluating such things has arisen in the discussion of energy usage. From a
graph showing the rate of energy consumption as a function of time, we
can find the total consumption over a period of years by computing the
area under the graph.
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Whenever the graph is a continuous curve, we have a need to evaluate the
limit of a sum of areas of rectangles, or in other words, the limit of a Rie-
mann sum. Thus, we have discovered integral calculus as a necessary tool

jot proceeding with our investigation of the energy problem.
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After working a bit with integrals, the student is equipped to solve some
of the problems which arise in the consideration of hydroelectricity. For
example, in designing the dam for a new hydroelectric plant, the engineer
must know the total force on the face of the dam of the water which is
backed up behind the dam. This force is calculated by evaluating a definite
integral. As a second example, suppose a utility wants to store energy for
periods of peak demand by pumping water up to a reservoir on a nearby
hill. How much energy is required to do the pumping? This question too is
answered by evaluating a definite integral.

Let us return to the task of predicting population growth. We first ob-
serve that although U.S. population has been growing, the growth rate,
which is graphed in figure 8, has been declining.
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Since there is a growing consensus that the growth rate should decline to
zero and in fact a conscious effort is underway to make this occur, it seems
likely that the trend will continue. Hence we felt justified in fitting a re-
gression line to this data to obtain an equation which could then be used to
predict the growth rates atitlithus in 'turn the growth itself. From our re-
gression equation, we estimate that the U.S. population growth rate will
reach zero about 2040 A.D. with the population then stabilizing at around
286 million people. The projected growth curve is shown in figure 9.
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We are finally ready to project total energy demand for any year we
choose. To predict total demand in the year 2000, say, we multiply the
projected population for that year times the previously calculated figure for
per capita demand. To get an overall demand picture of the decades ahead,
we performed these calculations for the years 1980, 1990, ..., 2040.

Our methods of projection are clearly not the only ones possible, but
they seem to us to be at least as reasonable as the methods utilized by other
authors. Furthermore, they require no high-level Mathematics and hence can
be incorporated into the curriculum as early as the twelfth grade.

Another branch of Mathematics which we found useful in studying en-
ergy is network analysis. For tnrisniission of energy, goods, and services in
our society, we have networks of roads, transmission lines, pipelines, rail-
roads, airline routes, television relay stations, routes of ocean-going vessels,
etc. For purposes of constructing minimal-cost connecting networks, all of
these possess the same, or similar, abstract structure. Each can be regarded
as a system of vertices and connecting arcs such as the one in figure 10.
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To construct a minimal-cost network, there is a very simple algorithm
due to Kruskal by which one proceeds as follows: First, build a table of
costs for all possible connecting links. Choose the cheapest link to begin
the network. Then, at each successive step, add the cheapest link provided
that the new link does not complete a circuit together with the previous
links. The proof that this rule does in fact give a minimal-cost network is
suitable for presentation to high school students. It requires no advanced
Mathematics.

Kruskal's algorithm is a powerful one in that it can be used to solve a
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large class of network problems. However, many network problems are be-
yond its reach because of their extreme complexity. Frank and Frisch4 dis-
cuss the use of network analysis in designing a minimal-cost system of pipe-
lines to collect natural gas from wellheads in the Gulf of Mexico, Because
of constraints on the allowable pressure of the gas, the pipes had varying
diameters - seven different sizes in all; and changing the diameter of one
pipe would affect the pressure of the gas elsewhere in the system. The com-
plete solution of this particular problem is a little too advanced for presen-
tation at the secondary level. However, the introduction of the problem, es-
pecially when one mentions the savings which were effected (ten million
dollars!), provides excellent motivation for further study of network analy-
sis.

To handle the extensive calculations involved in our investigations, es-
pecially in the population and energy demand projections, we used time-
sharing computer facilities (teletype terminals at our Plymouth campus
linked by telephone to the IBM 360 at Durham). Our students enjoyed
working at these terminals and interacting with the computer.

The calculations required were extensive in the sense that they were long,
tedious, and repetitive; they were not especially deep. For example, to ex-
trapolate the exponential growth of a population, one uses the same ex-
ponential function repeatedly with only the time variable changing by
taking on successively larger values. This is the sort of calculation which is
ideally suited to a computer. The computer is performing the boring tasks
quickly which the student's interest is heightened by an introduction to the
exciting world of computers.

The use of teletype terminals has two advantages over entry of data via
punched cards. First, the student can interact with the computer; he gets
immediate answers or error messages. There is no need to wait hours or
days for his results. Secondly, there is no need for a lengthy introduction
to FORTRAN. The usual language for terminal use is BASIC (Beginner's
All-purpose Symbolic Instruction Code). BASIC, being much closer to con-
versational English than FORTRAN, is very easy. Our students were quite
proficient after only a few hours of instruction. Yet in spite of its simpli-
city, the BASIC language is sufficiently powerful for the programming of
fairly complex problems. Hence, it is an easy and effective means of com-
municating with the computer.

All of the above mathematical topics arose naturally in the course of our
analysis of the energy problem. We never were asked that question that stu-
dents so frequently ask: "Why do we have to learn this?" Each topic was
introduced because it was needed to help solve some energy-related problem.
As a result, we had no problem in motivating students. They were able to
see good reasons for learning what they were studying and therefore went
about their work with a rare enthusiasm. Also, partly because of their high
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motivation, we were able to cover much more material than could normally
be done in six weeks: the mathematics of exponential growth, a fair amount
of statistics, a modest introduction to differential and integral calculus, a
bit of network analysis, and an introduction to computer programming.
Summary

How far can this approach be pushed? What levels of mathematics can
be taught in this manner? As we indicated previously, the possibilities seem
unlimited and our investigations thus far have proven very rewarding and
successful. We intend to pursue the energy problem further. But many other
topics will also lend themselves to this approach, some more so than others.
Precisely which problems and how much mathematics they require are
"left as an exercise for the reader."
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THE MOVE TOWARD APPLICATIONS:
WHERE DOES RESEARCH FIT OR DOES IT?

By William E. Geeslin, University of New Hampshire

L.L.1116111111:01tILLil 1..1q12tIelALTLe:

At present there is evidence of concern over the mathematics curricu-
lum. In particular, "modern" mathematics curricula are confronted with
increasing criticisms and some proposed changes. One change, requested by
Kline (1958) and others, is to include more applications and/or applied
mathematics in curricula. Kline requests that we sequence mathematics cur-
ricula in a manner similar to the historical development of mathematics.
He suggests that we use applications as both motivational devices and goals
of mathematical learning. The purpose of this paper is to convince educa-
tors that opportunities for research exist in this area and that now is the
time to conduct this research.

Consider a historical example of reform in mathematics education. Over
fifteen years ago the Russians launched Sputnik. A great public outcry arose
against the mathematics and science curricula. Mathematicians, mathema-
tics educators and others claimed we need "modern mathematics." This
new curricula (actually a new approach to the same mathematics) would
produce more and better mathematicians, scientists, and technologists thus
allowing us "to catch" the Russians. Although the effect of the new curri-
cula is unclear, we did overtake the Russians and are presently over-suppli-
ed with mathematicians. Of course, some of these effects are due to varia-
tions in government spending, etc. A massive change of curricula occurred
due to forces outside education. Little or no research was done on the ef-
fects of the new curricula. We are in much the same position today. That is,
we have a call for reform, namely applications but we do not have empiri-
cal information on the effect or direction of the proposed reform.

An examination of the last reform is revealing. Although forces outside
education allowed reform to take place by providing money, support, and
demands for change, educators made many claims concerning the new cur-
ricula: knowledge of structure is required for full understanding of subject-
matter (Begle, in preparation); enhances retention (Bruner, 1960); facili-
tates problem solving (Wilson, 1971); leads to transfer to similar and per-
haps even new situations (Schwab, 1962); results in intellectual excitement
(Schwab, 1962); leads to an aptitude for learning (Klopfer, 1971); allows
the solution of problems not solvable by computational methods (Begle,
1971); contains something more than rote algorithms and skills (Bruner,
1960; Report of the Cambridge Conference, 1963); and is a prerequisite to
problem solving and principle learning (Gagne, 1965). That is, modern
mathematics with its emphasis on structure and understanding would solve
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all our teaching problems: it is exciting, motivating, produces better prob-
lem solvers (both pure and-applied), produces better understanding, more
advanced knowledge, etc. The difficulty is that these claims were supposi-
tions and assumptions, i.e. not based on empirical fact. As will be pointed
out later, these claims are very similar to claims made concerning applica-
tions.

The original evaluations of modern curricula, if any, were teacher op-
inions during tryouts of material already written. Effects on students were
not considered except in a second-hand manner using information from
persons convinced that the new curricula were inherently good. After adop-
tion of new curricula was well underway, a few systematic evaluations were
conducted. For example, in 1963-1968 SMSG (SLSMA) performed a five
year longitudinal study comparing modern and conventional curricula.
Among the results of this study were: students learned what they were
taught, did not learn what they were not taught, students using modern
texts fared better on understanding and problem solving, and students using
conventional texts were better on computation (Begle, 1973). These results
are nontrivial but they appeared in print over ten years after curricula
changes were made. This was certainly too late for schools to use the infor-
mation in selecting texts. Our move toward applications is in the stage of
supposition. Thus we should proceed with research now if we are to accept
or reject the inclusion of applications in mathematics curricula in a know-
ledgable manner.

Before proceeding with a discussion of necessary research concerning
applications, we will examine a study that illustrates the type of research,
difficulties, and methods which could provide useful information to teach-
ers. The most publicized claims of the new mathematics concern its empha-
sis on structure. In fact, structure and its effect on student understanding is
a major reason for the existence of modern mathematics. Yet, only recent-
ly has anyone attempted to examine learning of mathematical structure
(cf. Branca & Kilpatrick, 1972; Geeslin, 1974a; Geeslin & Shavelson, 1975a,
1975b; Scand Lira-, 1971). Consider briefly a study by Geeslin (1974b; cf.
Geeslin & Shavelson 1975a) concerning the learning of mathematical struc-
ture. Although this study indicates the rather large difficulties in assessing
empirically the claims made by curriculum makers, it indicates that progress
can be made.

One of the first steps in determining whether students learn mathemati-
cal structure is to define mathematical structure. With the exception of
Begle (in preparation), I was unable to find a definition of structure in the
mathematics literature. That is, claims were being made without even de-
fining major terms, For the purposes of Geeslin's study (Geeslin & Shavel-
son, 1975a), mathematical structure was defined as the relationships be-
tween concepts within a set of abstract systems. Content structure is the
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web of concepts and their interrelations in a body of instructional material
(Shavelson, 1971, 1972). Cognitive structure is a "hypothetical construct
referring to the organization (interrelationships) of concepts in long-term
memory [Shave lson, 1971, p. 9] ." The purpose of the study was to com-
pare content structure and cognitive structures in students to determine if
students learn structure and to see if this learning was correlated with atti-
tudes or achievement (i.e. ability to solve problems). Since the details of
the study are published elsewhere (Geeslin & Shavelson, 1975a), only a
summary will be reprinted here.

The study investigated learning of mathematical structure. Eighth grade
students (N = 87) were assigned randomly to read either a programmed text
on probability (experimental group) or one on prime numbers (control
group). The subject matter structure of the probability text was mapped
with the method of directed graphs. Structure in students' memories, cog-
nitive structures, was investigated using a word association technique. Cog-
nitive structure and achievement data were gathered at pretest, posttest,
and retention test. The directed graphs provided an interpretable map of
subject matter structure. Experimental students learned and retained the
content structure but the conlrol students did not. A comparison of word
association, achievement, and attitude data indicated that learning of struc-
ture may differ from learning measured by achievement tests.

Although the results of such a study are not definitive, they are useful.
However, studies such as this are being done approximately fifteen years
after the implementation of modern curricula and several future studies
are necessary to ascertain the effects of learning structure on other desired
student behaviors. This research is coming much too late. In fact, several
curricula changes may occur prior to our knowing much about the effect of
current curricula. Classroom teachers generally have not participated in
such research and thus it has had little impact in the classroom.

Adoption of new curricula with more emphasis on applications may cc-
cur also with no empirical foundation. However, if we begin now we can
gather enough information to make knowledgable curricula changes. We
are presently beseiged by cries for new curricula. Distinguished persons
such as Morris Kline are calling on mathematics educators to add more ap-
plications to the mathematics curriculum, to emphasize applications, and
to present mathematics in a manner comparable to its historical develop-
ment. Research probably will not be able to control this new movement,
but it can be used to establish the validity (or lack of validity) of many of
the claims. Although monetary support is necessary to change curricula,
empirical studies can give us information necessary to concentrate on
changes most likely to improve curricula. Now is the time to examine
claims of those advocating reform, not after changes have already occurred.

A cursory examination of recent issues of The Mathematics Teacher
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alone produces a sizable list of claims concerning applications. Among the
more common are: applications might provide motivation (Bell, 1971);
build a student's intuition (Wilder, 1973); reinforce concepts (Mizrahi &
Sullivan, 1973); make mathematics more enjoyable (Adler, 1972); make
mathematics more interesting (Fremont, 1974); cause more efficient learn-
ing (Fremont, 1974); contribute to problem solving (Fremont, 1974); aid
student reasoning even after the student is in the formal operations stage
(Bell, 1971); and provide anchors for mathematical ideas (Fremont, 1974).
In summary, applications will solve all our teaching problems (just like
modern mathematics did).

Hopefully, few educators actually believe random introduction of ap-
plications into present curricula will correct all the problems in mathemat-
ics education. Nonetheless, proper use of applications may correct particu-
lar difficulties or significantly improve the pretent situation. The claims
concerning applications definitely suggest important and practical research
studies. It is not our intent to discourage the use of applications, but rather
to encourage systematic investigations which will determine those applica-
tions of benefit to the student, and when and where to present these appli-
cations for the most effective results.

A rather simple study could determine whether inclusion of applica-
tions promotes student facility with word problems as opposed to instruc-
tion only on necessary skills for solving the problems. (One should make
certain the included application is not simply a practice element for the set
of problems.) A similar study could determine if use of applications increas-
es performance on achievement tests (i.e., reinforces conceptS) or retention
tests. Attitude scales concerning motivation, interest, and enjoyment could
be used to ascertain the effect of applications on these variables. (Such
scales are in existence although improvements could be made.) These stu-
dies would be quick and easy to conduct, even for the classroom teacher,
and would satisfy the "publish or perish" need as well as serve to refine our
methods and intuitions concerning important variables.

Let us turn to some more difficult but more significant studies. We have
carefully avoided defining application. Results of the above studies might
change drastically according to: 1) what is considered an application; 2)
which applications are used, i.e. what types of applications; 3) how many
applications are presented; and 4) the type of student. An operational de-
finition of application must be developed and consideration must be given
to the important variants of applications. Given this, a serie,.. of systematic
studies similar to those mentioned above could be conducted.

Having established what an application is and what the important char-
acteristics are, we may proceed to another question. Where in the instruc-
tional sequence should an application(s) be placed? Does an application
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create a need/relevancy/motivation for a new topic and thus increase learn-
ing or efficiency by preceeding the mathematics? Perhaps applications func-
tion as advance organizers. Or, 'should applications be placed after mastery
of prerequisite skills to show usefulness, provide practice, or as a connector
between concepts? Maybe applications should be placed at both the begin-

ning and end of an instructional sequence. One would describe several ele-
ments that can be manipulated in an instructional sequence (teaching mo-
del) and systematically vary these elements to ascertain the most effective
strategy.

We are now better able to proceed with the investigation of the connec-
tion between the inclusion of applications in curricula and variables such
as problem solving, insight, intuition, cognitive structure, and attitude.
Studies with a design similar to the studies concerning structure would be
appropriate. Naturally, or perhaps unfortunately it is necessary to define
terms such as insight. In fact, these definitions alone would represent a sig-
nificant contribution (and effort) to mathematics education.

Several other assertions could be investigated. Inclusion of applications
increases the stress on thinking and decreases the stress on memory. Appli-
cations are a prerequisite (aid) to mathematical intuition. Applications aid
discovery. Applications (models) increase achievement even after the stu-
dent is in Piaget's formal operations stage. Applications provide concrete
anchorage in cognitive structure, allowing students to organize mathema-
tics better. Applications produce students who focus on techniques alone
at the expense of their analytical abilities. (Conversely, modern curricula
force students to analyze statements and assumptions and this transfers to
other areas.) Rigor does not make mathematical ideas more clear and thus
is not necessary, perhaps even harmful. Obviously, no one person can inves-
tigate all these assertions in' a' reasonable time span. Thus we should attempt
to coordinate our efforts and disseminate our ideas. Classroom teachers
who need assistance in conducting research should make use of their col-
leagues in colleges, universities, and state departments of education. Most
researchers are happy to help in the conducting of experiments. In fact,
the "publish or perish" syndrome requires they do some research and the
classroom teacher can provide the "laboratory" for research. Some initiative
and desire are probably the only prerequisites for beginning the examina-
tion of applications.

For those who are not overjoyed by the difficulties in acquiring empiri-
cal data on learning, I suggest some different activities which are significant
also. Has the development of mathematics preceeded or followed physical
problems? In looking at various articles, anecdotal evidence was presented
for both cases. A serious historical analysis could prove quite valuable. What
types of applications and/or mathematical models are used in ordinary life?
What applications fit well in curricula and where? The previous two ques-
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tions are concerned with locating applications that are "mathematically
correct," that can be stated easily, that can be understood with a minimal
background in the application discipline, and dissemination of these find-
ings to classroom teachers. We need further examination of the relation-
ship between mathematics and cultural development, including value judge-
ments concerning "good experiences" for students to have in mathematics
as it relates to our cultural development. Given various applications, one
could produce a task analysis (Gagne, 1965) for each application indicating
the prerequisite skills and thus indicate where it is possible to place the ap-
plication in the curricula. This type of analysis would be very beneficial to
teachers.

In summary, we should attempt to benefit from lessons of the last re-
form in mathematics education. Claims concerning applications are similar
to claims concerning modern mathematics. Theseclaims are based on assump-
tions, prejudice, hunches, and hope for some magical answer to the diffi-
culties encountered in the teaching of mathematics. A blind rush toward
applications will do little to help mathematics educatic7 and may, in fact,
harm it. On the other hand systematic experimentation with decisions based
on empirical evidence concerning the learner would likely uncover many
aspects of applications that would be beneficial. If we move now, future
curricula changes could be based on hard evidence. This would probably
save both time and money in the long run, and could lead to continuous
systematic improvement of the curricula. In fact, it might increase the rate
of change. If we pass up this opportunity to begin research now, then I sus-
pect in another ten to fifteen years we will again become disatisfied, find
discouraging results, and be in much the same position as we are today.
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MAXES, MINS, AND OTHER CRITICAL POINTS

by T. A. Ciebutowski, Plymouth State College

Although most calculus teachers, in both college and senior high school,
draw their motivating examples from classical physics, there are many use-
ful examples from the "softer" sciences (economics, sociology, etc.), that
are easily accessible to the student. I see by the program that a fair number
of the spoakers here will concern themselves with economics, using mathe-
matics of the Von Neuman-Morgenstern persuasion, i.e., Game Theory and
Linear Programming. In this room, however, let us bypass the modern super-
highway of the new economics and take for a while the cracked and grass-
encroached macadam, the classical approach, that the new way tries to
keep in sight.

One purpose of this talk is to present to you a specific use of classical
analysis in economics, and to give an example which can (with some expla-
nation and a little hand-waving) be presented to high school students in an
advanced math class. Another purpose is to show how, if our problem gets
a little tougher, a little bit heavier analysis can be used. Lastly, perhaps you
will leave with a little better insight into the interplay of calculus and
(horrors!) linear algebra.

First, a quick review:
Recall that the derivative of a function of one variable at a point repre-

sents the slope of the tangent line to the graph at that point. You all remem-
ber this picture:

Fig. I. The slope of the tangent line at (anan, Is f.(x.I.

Figure 1
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Now it is very little trouble to go to a function z = f(x,y) of two variables

being represented as a nice surface in 3-space:

Fig. 2. Graph of a function : f(x,y).

Figure 2

Pick a point in the domain (x0,y0) and ask what happens when you con-
sider only those points of the domain on the straight line y = yo. If you
now move your z-axis over to yo on they -axis, this generates a plane which
cuts the surface of our function z = f(x,y). Now, if we lift that plane right
out of there, complete with locus of points of its intersection with our sur-
face z = f(x,y), we get a picture like:

(x, ao,x0 f(x00.0))

'lope fx(xo,y0)

Fig. 3. Plane y yo as it intersects surface of Fig 2

with tangent.

Figure 3
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Now, the slope of that tangent line at that point is the partial derivative
of our function with respect to x at (xo, yo). Recall the notation:

f or z or fx(x0,y0).
x 0' o x (xo,yo)(x Y )

You can illustrate the same idea at (x0,yo) using the line x = xo, with
the z-axis moved to xoon the x-axis in a parallel way. Here is that picture:

Fig. 4. f(x0) showing intersocting plan x

ombaddad.tangent.

and

Figure 4
It should be fairly evident, that working symbolically, this corresponds

If you want fx, hold y constant and differentiate with respect to x, forf
Y' hold x constant, and differentiate with respect to y, which gives you,

since it can be done at any point (x,y) interior to the domain, two new
functions z = fx(x,y), and z = c(x,y). Of course, as with a function of one
variable, you can go through these processes for fx and fy again, getting

= (fi)x, fxv = (fx)v fyv = (f )Y and fvx= (fv),
thin we all "We de this picture for a bit', we will recall that maxi-

mums, minimums, and horizontal points of inflection (a curious termino-
logy at best!) occur mostly where (x) = 0.
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Fig. S. f(x) with (relative) maximum Et a herIcentel

point of inflection :t xi, End m (relative) minimum

Figure 5
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Switching to functions of two variables, we can see that a maximum for
the function (see figure 6) will (`nice' functions only!) have the property
that et the point (xo,y0) in the domain where the function f(x,y) has a
maximum, both fx and f are zero. A similar statement holds for mini-
mums (turn figure 6 over):

Slope U

I Inturecting planu, .1

I'11,0)

Figure 6

Of course, as we see next, fx = 0 and fy = 0 can occur at what we call a
saddle point:

Fig. 7. Profile of tnpont lines at the sochlle point of
function t f(x.y).

Figure 7

All of the above can be presented to an advanced math class which has
gotten past max-min problems of a single variable, without necessarily
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writing down the definitions of the partial derivatives (of course, if you
have the time, it wouldn't hurt!). Now, we move to a theorem that they will
just have to take on faith.

First, a critical point is a point of the domain of a function, where all
partial derivatives are zero.

Theorem: Classification of critical points ofz=f(x,y):
I. lf, at (xo,y0) (a critical point), (fxy)2 thenf 0 indi-

cates a relative minimurQ; < 0 indicates a relative maximum.
II. If fxx fyy < xy)4, then (x0,y0) is a saddle point.
Now to economics.
Suppose a firm sells two products, let x (measured in, say, 100,000

item lots) be the amount produced of one, y the amount of the other, and,
suppose we have the following relation between the price P1 charged for
the first product, and x the amount sold: P1 = 12 - 2x (you see, the more
they have to sell, the lower the price must be, the old supply-demand idea).
And for the second product: P2 = 32 - 4y.

Suppose also that it costs: C(x,y) = x2 + 2xy + y2 to produce these
items.

Find the price and output which will maximize profits.
Now, before we begin the solution, it should be mentioned that the for-

mulation of those functions for a particular industry is`in itself a formid-
able task involving gathering data, market surveys, cost analyzing, curve
fitting, etc., and that the functions we have here are greatly simplified as
opposed to any actual situation. But from this point, the general ideas co-
incide.

t%We know: Profit =Revenue - Cost, and that Revenue = P X + P Y =12x - 2x2 + 32y 4y2, so profit:
f(x,y) = 12 x - 2x2 + 32y - 4y2 - (x2 + 2xy + y2) =
12x - 3x2 + 32y - 5y2 - 2xy
is what we want to "maximize".

First, set: fx = 12 - 6x - 2y = 0
f = 32 - 10y - 2x = 0

Solve for (xoSn), get (1,3). ,a

Now f, (1,3) = -6, fyy(l ,3) = -10, fxy(1,3)= -2, says, (fxy)- = (-2)2
(-6) (-10) = fxx fyy at (1,3), so we see, since this is true, and fxx(1,3) =
-6 < 0, by our criterion, 100,000 of the first item and 300,000 of the sec-
ond will produce maximum profit:

f(1,3) = 12 -'3 +'32(3) 5(9) - 2(3) = 54, and the price that should be
charged: P1 = 12 - 2 = 10, P2 = 32 4(3) = 20.

I reiterate that this is an oversimplification of what an actual situation
would produce, but it does give the idea, that the underlying structure of
economics and business problems can be taken to be a highly mathematical
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model which assumes continuity, differentiability, etc.
But let's look at what's wrong with the formulation of this problem and

see what might be involved in correcting it. First, the price functions (in
actuality) will rarely be linear, and there probably would be more than two
items being produced. In addition, there may be unmentioned constraints
on production (in which case linear programming or the method of La-
grange multipliers might be employed). But let's expand the problem along
the lines of our first objections, so that after to figuring out cost
functions and price functions for a company which produces some n differ-
ent items, we arrive at a profit function z = f(xl, x9, x3,..., xn), a function
of n variables. How do we handle this expanded' problem?

First recall that a partial derivative of a function of more than two vari-
ables is found by holding all the variables other than the chosen one fixed
and proceeding with a differentiation. Example,

If f(x 1, x2, x3) = xix9 - x22 + xix3, and you want to find of = f
Dx1 x

you would treat x2, x3 as constants and take the derivative with respect to
x1: fx = x2 + x3. And a critical point is again where all the partials.equal

zero.'o test these critical points for max-mins, we need the following
matrix:

fxi:xi fxi x2 _. fx 1 x

. .
A= .

fxnxl fx
nx2 ' fxnxn

each 2nd partial fx.x. is being evaluated at a critical point (x y ).o, o
I i

With that small bit of information, and relying on your fond remem-
brances of linear algebra and matrices, let me now simply quote some
theorems necessary to our goal.

Theorem 1. If f(xi , x2,..., xn) is twice continuously differentiable (i.e.,

all mixed 2nd partial derivatives are continuous functions), then f =xixi

fx.J x-
1

(This means A is a symmetric matrix with like rows and columns.)

Theorem 2. (Canonical form) A a symmetric matrix implies there is a

nonsingular matrix P such that PTAP is a matrix with possibly ones, minus

ones and zeros down the ,cliagonal and zeros elsewhere.
Definition: Let AI = P AP as above, then A is:

positive definite if M has only ones down the diagonal
negative definite if A' has only minus ones down the diagonal,
and indefinite if Al has at least one one and one minus one,
but no zeros down the diagonal.

75



Theorem 3. For f(xi , x2,..., xn) as above, xo = (x , x ,...,x on) aoi 02, oncritical point of f,
if A is positive definite, f has a relative minimum at it
if A is negative definite, f has a relative maximum at x0.
and if A is indefinite, f has a saddle,point at Tc7).

Now, in practice, the effect of P and PT can be obtained by performing
successive paired elementary row and column operations, as you 17/ill see in
our example.

Suppose we wlsh to analyze the function:
v +f(x 0(2, x3) x + 3x2 2 A,

- "2 Q- -

To find critical points, we set f
xl

= f
x2

= f
X3

= 0, as in:

fx =2x1 - 4x2 + 2x 3 - 2 = 0

fx2 = 6x2 4x1 - 8x3 + 4 = 0

4x2 - 2x3.

fx3 = 2x3 + 2x1 - 8x2 - 2 = 0

If you solve this system of equations, you find xo = (2/3 0, 1/3) as a criti-
cal point (again, things are not usually this easy!), then calculating all of
the mixed second partial derivatives, we get our matrix:

A =

2

-4

2

-4

6.

-8

2

8

2

(See, it's symmetric!)

Recall how if we wish to perform a column elementary operation on a
matrix, we post multiply by the identity matrix adjusted by the operation
and to perform a row elementary operation, we prenuiltiply the row adjust-
ed identity matrix, so that:

1 0 0 -4 2 1...0
= 1 0 6 -8 1

1/2 1 2 -8 2 0 0
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0 -4 0

1/ . 6 -5

1 -5 -9/2

and this equivalent matrix has zeros in the corners, now let's make
a12 = a21 =0: Form

0

1

0

0

0

1

2

4
0

4
6

-5

0

-9/2

1

0

0

2

1

0

0 2

0= 0

1 0

0 0

-2 -5

-5 -9/2
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Now let

A = PTA P =3 3 2 3

and finally,

A1 = PTA,P4 .3 4

1

0

0

flier
0

0

0

1

-5/2

0

1/12

0

0

0

1

0

0

ei

0 0

0 -5 -9/ 0 0 1 12 0

0 -2 -5 0 1 -5/2 10 -2 0

0-\r2. 0 0

16/2

2

0

0 0 1 / r 0

-2 0 to 1/I2

0 16/ 0

0 1 0 0

0= 0 -1 0

ri 0 1

Now, by Theorem 3, Al an indefinite matrix implies, the critical point
is neither a max nor. a min, but a saddle point, and our analysis of this
(mathematical) max -min problem is complete.

I have tried in this hour to present to. you an example of a "different"
application (i.e., a non physics oriented one) of the calculus, which, if you
have a little time, you could reasonably show your advanced math students
in high school (or your business calculus freshman in college). Perhaps the

second example, analyzing these critical points for functions of several
variables, has shown you yet another powerful applicarion of linear algebra
to analysis. But the overlying idea here, is that we are sending our students
out into an increasingly mathematicized society. Even in the world of busi-
ness, the need for quite sophisticated mathematics is being felt. The M.B.A.
Master's in Business Administration, program in many schools requires a
course in calculus. Many graduate schools in economics, psychology, etc.,
actually prefer applicants who choose mathematics for an undergraduate
major.

On the other hand, if remembering bits and pieces of this talk gives you
one more answer to THAT question: "What's all.this stuff goad for?", I'll
be happy.

References:
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EUCLID MUST GO

By Jay Graening, University of Arkansas

kb:111=1212011=EMEMEnffaim

During the past decade there has been renewed interest in the curriculum
question "How should we teach high school geometry?" Unfortunately,
the questions of "Why, what, and when should we teach geometry ? "- have
not nearly received the same amount of attention.

In practice, the primary goal of high school geometry has been "to dev-
elop the entire body of traditional content as a unified, abstract mathema-
tical system - a geometry of ideas - based on undefined terms and reasonable
assumptions from which the remaining information is obtained by proper
application of rules of inference." (Forbes, 336) This objective has been so
dominating and influential that many other worthwhile goals for geometry
have received little or no attention. Some of these less emphasized but de-
sirable goals for geometry are to develop inductive and creative thinking, to
transmit important information about space, to develop an understanding
of the nature of a mathematical model, to develop the ability to think criti-
cally, to develop an understanding of an axiomatic structure, to develop skill
in applying the several methods of geometric development to the solution
of original problems, to develop within students an appreciation for both
the intellectual strength and the intrinsic beauty of working with abstrac-
tions, to provide students with the opportunity for original investigation
and the construction of valid arguments within the context of geometric
content, to exhibit the unity of mathematical ideas through an integration
of arithmetic, algebraic, and geometric concepts, to build the students'
geometric intuition so that geometric models can be used in further mathe-
matics instruction, and to introduce and extend those mainstream mathe-
matical ideas that arise most naturally within the content ofgeometry. The
attainment of such worthwhile goals for geometry is severely limited by
the pervasive,. current, primary goal of developing the entire body of tradi-
tional geometric content as a unified, abstract mathematical system.

Since an increased amount of geometry is being taught at the elemen-

tary and junior high school levels, much of the present tenth-gradegeome-
tric content is not new for students. (Forbes, 336)

Furthermore, the present day course in geometry has failed to take ad-
vantage of the fantastic advancements made in geometry since the time of
Euclid. (Eccles, 103, 165)

Steven Szabo also has commented on this existing estrangement between
geometry and algebra.

For the most part, the studies of algebra and geothetry iii the high school
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curriculum are not at all related. In fact, it is the case in many instances
that the study of geometry turns out to be merely a strange interlude
between the study of algebra in the ninth grade and the continued study
of algebra in the eleventh grade. (Szabo, 218)
Even deductive reasoning, the sacred cow of high school geometry, has

come under attack from many quarters during the last decade. Irving Adler
is one who feels, as I do, that there has been too much emphasis given to
formal, deductive reasoning. (Adler, 229)

Not only can we de-emphasize deductive reasoning profitable, but we
can also eliminate many of the obvious proofs by assuming them. (Will-
oughby, 306)

Stewart Moredock has suggested that we need a careful balance between
what we assume and what we prove. (Moredock, 221)

What then should be the content of high school geometry? Willoughby
has suggested that a high school geometry course'should "emphasize mathe-
matical creativity and insight on the part of the pupil rather than formalism
and form of proofs. It should give the pupil a feeling for deductive reason-
ing without so much rigor that rigor mortis sets in." (Willoughby, 306).
Coxeter has argued that the intuitive 'interest' approach through problems
significant to the student is more appropriate than the axiomatic approach
with rules and definitions. "The systematic use of axioms in geometry is
admissible only after the students have already had several years of experi-
ence with simple deductions. Actually, for exercises in deductive reasoning,
algebra is probably more suitable than geometry. Geometry should be taught
rather for its interesting results and as an exercise in informal reasoning."
(Coxeter, 9)

Meserve has probably come closest to my point of view. He feels that in-
formal approaches are appropriate first. Then, he says,

The emphasis on informal approaches can now be shifted from provid-
ing a basis for the recognition of assumptions to providing a basis for
the observations (conjectures) that are to be proved or disproved. For
these proofs a wide variety of approaches will be sought - direct synthet-
ic proofs, indirect proofs, disproofs by counterexample, coordinate
proofs, vector proofs. Such a broadening of the discussion of proof
strengthens the emphasis on proofs in a deductive system while remov-
ing much of the tedium of seemingly endless synthetic proofs. Syn-
thetic proofs have a major role but become one approach rather than
the approach to a proof. (Meserve, 178)
It is my thesis that high school geometry should be a blend of Euclidean

(synthetic), coordinate, vector, and transformation approaches that emph-
asize proof and deductive reasoning but in a much more informal way than
we have had traditionally.



Rather than beginning with the ultimate abstractions of points,lines,
and planes, the point of departure for a tenth-grade geometry course should
be the familiar behavior of rigid objects in the physical world. Three-dime0
sional objects and the geometric figures they suggest should be explored.
Thenthe box or rectangular solid can be given special attention, since it is
one of the shapes most familiar to students. This investigation can lead to
such topics -as cubes, rectangles, squares, line segments, parallel line seg-
inents, parallel line segments, vertices, nets of cubes and rectangular solids,etc.

The focus can then be switched to two-dimensional tiling patterns inorder to begin intuitively the study of symmetry; some shapes have line
symmetry while others have haifturn or point symmetry. Metric units
should be used along with American (English) units of measurement through-out the course. Angles should be explored from several points of view: asthe shape of a corner, as an amount of turning, and as the union of two
concurrent rays. Coordinates should be introduced early and used as a
unifying thread. Rectangular, polar, and other coordinate systems shouldbe considered.

With these preliminary background experiences, students can begin a
sequential investigation of shapes that simultaneously builds up some im-
portant notions of informal deductive arguments. Some four-sides shapes
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fit their outlines in one way; others fit in two, three, four or as many as
eight ways. The rectangle and the rhombus are the only quadrilaterals that
fit their outlines in exactly four ways. Shape-fitting suggests one important
distinction between a rhombus and a rectangle. A rectangle has every cor-
ner change positions from one-fitting to another; this is not true for a
rhombus. Incidentally, investigating the rhombus provides a unifying focus
for studying several basic constructions.

At this stage, students should be ready for a more detailed and more
mathematical description of line reflections and rotations. Coordinate ideas
can be particularly useful here in extending and reinforcing the concepts.

Some vector ideas can then be studied,beginningagain informally, through
the ideas of displacements and trips. This leads to a discussion of directed
line segments and translations.

The course can continue with an investigation of similarity and circles.
Then more direct attention should be focused on deductive reasoning and
proof by examining statements, counterexamples, implications, converses
of implications, and equivalent sentences. Attention should also be given to
theorems and their converses, minimum conditions, direct proof, indirect
proof, and contrapositives.

Finally, the previous work can be expanded to include vector geometry
and its related proofs, dilations (similarity transformations), and the compo-
sition of various types of transformations.

In summary, the content of tenth-grade high school geometry should be
a blend of Euclidean (synthetic), coordinate, vector, and transformation
geometries. The study of symmetry, motion, and shapes should be funda-
mental in the development. Coordinates should be a unifying thread run-
ning throughout' the entire course. The content should meaningfully relate

to everyday experiences and the physical world. There should be a balance
between theoretical and applied geometry. There should be strong inter-
play between geometric and algebraic ideas throughout the course. Proof
and deductive reasoning should play a central role but be less formal than
in the past.

The starting point for the development of concepts in high school geo-
metry should be physical models and real-world situations. Students should
be ,encouraged to use their intuition, to manipulate models, to make
conjectures, and to explore and study shapes. Obvious properties such as
betweenness and plane separation should be assumed. Proof, Iiike`dffiefi.!'6-
cepts, should be developed in stages which increase in difficulty and com-
plexity. Initially, proofs should be informal and intuitive within simple
axiom systems. In short, students should learn geometry thrOugh student-
centered activities that encourage them to think mathematically about their
experiences in the real world. This approach should provide students with
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greater motivation and meaning in their study of geometry.
The blend is the best approach for revitalizing the high school geome-

try course and for bringing geometry back into the mainstream of mathe-
matics. Euclid may stay, but the present, formal, tenth-grade geometry
course must go.
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MUSICAL MATHEMATICS

by Henry P. Gui Rolle, Rhode Island College=11
The title "Musical Mathematics". is the title of a workshop the author

conducted at Salve Regina College in Newport, R.I. during the summer of
1974. The title is used only because it sounds better than "Mathematical
M usic."

In order to put the subject under discussion in the proper perspective
consider the following:

There are composers whose works can be distinguished even by the non-
music student, for instance many people recognize works by Bach even
though they might not know the names of the compositions. Other familiar
composers - Beethoven, Mozart - also have a quality in their works, a proper-
ty, and here we are getting mathematical, about their works that make them
identifiable. The identification however is done by listening to the composi-
tion. This consideration leads quite naturally to the following question: Is
it possible that a composer's works might have an identifiable mathematical
structure so that his compositions would be recognized mathematically
rather than musically? Although that question was not answered in the
workshop, a foundation was laid for the investigation of the qUestion.

To look at how mathematical structures might be imposed on musical
compositions, one needs to look first at the fundamental elements of mu-
sic. Only three of these will be discussed in this paper:

1. Melody: a horizontal sequence of pitches sounded successively
2. Harmony: a vertical sequence of pitches sounded together
3. Rhythm: a duration of pitches, silence, meter, tempo.
One of the building blocks of melody is the scale. The rule of a major

scale is that there be 1 full tone between the first note and the second; 1.
full tone between the second and third notes; 1/2 tone between the third
and fourth notes; 1 full tone between the fourth and fifth, fifth and sixth,
and sixth and seventh; and 1/2 tone between the seventh and eighth. This
rule applies no matter what note is used as a starting note.

0.

Figure 1
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Figure 1 is a sketch of part of a piano keyboard. There is a full tone in-
terval between adjacent white notes except E, F and B, C which are 1/2
tone intervals. There is a 1/2 tone interval between adjacent white and
black notes; for example between C and C *and between F#and G.

Using the rule and the keyboard one can develop the C Major Scale, so
named because its starting note is C: C,D,E,F,G,A,B,C. Figure 2 illustrates
the C Major Scale written on a musical staff.

C Ala Joe

Figure 2

The task of finding the notes of the F Major Scale is not difficult. By
the rule these are: F,G,A,A$ or B , C,D,E,F. However, placing these notes
on the staff poses somewhat of a problem. If one chooses AVas the fourth
note then one is faced with representing two different notes, A and A #, in
the same space. The problem can be avoided by choosing Bk instead of A*
and in order to avoid constant use of the " p", this symbol is placed at the
beginning of the staff to indicate that the B is flatted. Thus the key signa-
ture of F major is p' placed on the middle line. See figure 3.

fletjar

Figure 3

Consider the problem of finding the key signature of the scale which be-
gins with the note D#or E0. The rule generates the notes: D$or Ek, F,
G, G# or A k, A$ or Bk , C, D, D1tor Et+. The staff can be made 'clean'
by choosing E F, G, Ap, Bp, C, D, and Ep, and placing the p symbols
on the third line and in the first and second spaces to indicate that B, E, and
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A,respectively are flatted. Thus the E p Major Scale leads to the key signa-
ture of three flats. See figure 4.

F Pit 6.1 C ()

Figure 4

There is a pattern for finding the various key signatures. Start at C, see
figure 5, and count clockwise five notes. F, the fifth note has one flat. Con-
tinue clockwise. The next note, has two flats so Bk is chosen rather than
A#. This pattern gives F-1)1 B to-2 , E 1-30 , AP , D p -5 0 , G0 -6 ,

Cr -70 . A counterclockwise movementTroduces in turn the keys which are
sharped: G-I., D-2 IF, A-311, E-4*, B-511 , F*-611, C*-7*.

C c

V.zc,1

Figure 5

The pattern of tone intervals for the major scales, I , 1, 1 /2, 1, 1, I, 1/2,
is not the only pattern used. Various minor scales have different patterns.
The minor natural has the rule: I, 1/2, I , 1, 1/2, I , I. The minor harmonic
has the rule: 1, 1/2, I, 1, 1/2, I , 1 /2, 1 /2'. The minor melodic has the rule:
1,1/2,1,1,1,1,1/2.

One natural kind of mathematical structure which can be imposed on zi
piece of music is a sequence of numbers. The very simplest of these is the
sequence of natural numbers I to 8 with the eight tones of a scale. The first
few bars of the melody of Old McDonald by the scheme above would pro-

eb
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duce the sequence: 8,8,8,5,6,6,5,10,10,9,9,8,5,8,8,8,5,6,6,5,10,10,9,9,8.
This numbering system works only in cases where all the melody is played
with the major tones of the given scale. A 'numbering system to avoid this
restriction will be shown below.

The vertical aspect of music, namely harmony, involves many different
kinds of chords. A major chord involves the 1st, 3rd, and 5th notes of the
major scale. The minor, (1, 30 , 5); the major 6th, (1, 3, 5, 6); the minor
6th, (1, 30, 5, 6); and the 7th, (1, 3, 5, 7 0) ..examples of some of the
different sounds which can be sounded together either by one instrument
such as the piano or a combination of instruments.

An obvious mathematical structure which can be imposed on the notes
of a.chord is an n-tuple and on a sequence of chords such as the first bar of
Chopin's Polonaise, see figure 6, the beginnings of a matrix. Observation of
the range of notes indicates that a simple I to 8 is no longer appropriate.
Rather, one imposes the numbers 1 to 88 on the notes of the complete
keybo:!rd. Such an allocation gives for the first eight notes of the Polonaise
the 8 rows of the matrix:
(13,25,37,41,49)
(25,32,37,41,44)
(25,32,37,41,44)
(25,32,37,41,44)
(25,32,39,42,46)
(25,32,39,42,48)
(25,32,39,42,49)
(25,32,39,42,51)

MIMI.1=11=1M5EIlldgEnliall11
IMIMMIIIMME-IMMIIMINWIIMMINF
11111PAMMEM-

.111UMENCIPMainaliiiMINI

IMWIMMUMNWIr
NM

Figure 6
The last aspect of the elements of music which will be discussed is

rhythm. One aspect of rhythm is time duration of the notes. Choosing one
kind of notessay the whole note as the unit, then some of the combinations
of other notes induce the numbers 1/2, 1/4, 1/8, 3/8, 3/4, 1/16. This allo-
cation of numbers to the melody of Old McDonald gives the following se-
quence: 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/2, 1/4, 1/4, 1/4, 1/4, 1/2,
1/2, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/2, 1/4, 1/4, 1/4, 1/4, 1.

Although there are other mathematical.structures which can be imposed
on a musical composition, some of which will be discussed in a subsequent
paper, it might be well at this point to look at the other side of the coin, a
mathematics which is musical.

If we take part or the expansion for ir Z1.414213562387237184425
and associate with 1 the note C, with 2 the note D, with 3 the note -E, etc.,
one is able to write and listen to a simple composition Square Root of Two.
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See Figure 7. However if one wishes to rewrite 4/1 in base twelve one gets
the following sequence: 1.4e79170t08t2-5879t24e5, which translated to
music by assigning the note C to 1, C# to 2, the note D to 3, etc., one gets
the different composition illustrated in figure 8. The striking thing

Figure 7

.5.1l A re il4.lt , ,

about the two compositions is that not only can one see the difference be-
tween the two different numerals, one is now able to hear the difference.
To indicate how limitless are the possibilities in this direction, figure 9 is
the composition of Square Root of Two in Three-quarter Time. If a com-
poser were to concentrate upon irrational numbers set to music, then the
`unfinished symphony' would really apply.

Figure 9

As a final example of the kind of analysis which can be made, consider
Beethoven's-Minuet in G which was analyzed for the frequency of 1/2-tone
intervals for the successive notes of the melody. The meaning here is that
the amounts of change between the first note and the second, between the
second and third, between the third and fourth, etc., were recorded. The
graph in figure 10 is the result of this analysis. As an indication of how one
is to interpret the graph, note that there were 75 occurrences of moving up
1/2 tone, for example from E to F or A to A t

The reader is left with the following questions: Would other composi-
tions by Beethoven produce similar graphs or would one have to look at
triples rather than pairs before one noted similarities? Is searching for simi-
larities like searching for a needle in a haystack? Needle anyone?
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DESIGNING AUDIO-TUTORIAL INSTRUCTION:
A CASE STUDY IN MATHEMATICS

by Harry 0. Haakonsen and Robert M. Washburn, Southern
Connecticut State College

1. wrilo1.111.1.1.1 [.1-1-1.111ifilr-11".1.1

Why Individualize?
What is Audio-Tutotial instruction? That's not an easy question to ans-

wer. For starters, it is a way of individualizing instruction. Perhaps that is
wliere we should begin, with a brief discussion of individualized instruc-
tion itself. Why would anyone want to individualize 'instruction by any
means? What have we learned about the learning process that suggests the
desirability of individbalk instruction?iistruction? If several people were asked to

'Make lisle of reasons for individualizing instruction, it is highly likely that
many of these lists would contain three very fundamental ideas.

One fact which has been well supported by research studies concerns it-
self with readiness...We .are_toldthat_thelearning olmost-concepts-requires
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the prior licquisition of a set of skills and related concepts. For example, it
would seem senseless to teach the concept of addition of whole numbers
before one has acquired the concept of whole numbers themselves and is
able to perform, the related skill of counting. It would be equallysilly to at-
tempt to teach the concept of addition of fractions before one has learned
how to add whole numbers. If one plans a lesson on the addition of frac-
tions, he bases the lesson plan on the assumption that his students already
know how to add whole. numbers. These concepts upon which the teach-
ing of new concepts are based are called the pre-concepts of the lesson.
When one exposes a class of students to.a particular lesson, he is assuming
that every student has the necessary pre-concepts for that lesson; that is, he
is assuming that all students in the class have arrived at the same degree of
readiness. As we all know, this frequently is not a valid assumption. Seldom,
if ever, are all students ready to learn the same concepts at the same time.
We may have tried to remedy this through homogeneous grouping, but this
does not really solve the problem of readiness. Even if one assumes that the
grouping has succeeded in placing students according to their degree of
readineSs according to one concept, what is the chance that they will then
possess the same degree of readiness for some other concept? Readiness,
then, is one important reason for individualizing instruction, to permit the
learner to learn a new concept when he is ready to do so.

When one watches any kind of race, whether it is a foot race or a horse
race, no one expects all the participants to reach the finish line at the same
time - in fact, such an occurrence would seem incredible. It would be hard
to believe that all of the runners could run at the same rate. In the same
sense, it is illogical that all people learn the same concept at the same rate,
even though they may have been exposed to the same set of learning exper-
iences. Most of us are aware that no matter how well we teach a lesson.
there will be some who become bored because we gd 'too slow and others
who become lost because we go too fast. Again, it has been proposed that
homogeneous grouping would also solve this problem but it was no more
successful at this than it was with the problem of readiness. Thus, it is de-
sirable to adjust one's teaching pace to each student's learning rate. Only
through a mode of individualized instruction can we do this.

One would not attempt to teach a blind person using pictures nor would
one ask a deaf person to listen to a tape recording. In these extreme cases,
we are aware that a person'who loses one of his senses learns to use his other
senses more acutely. Thus a blind person relies more heavily on his senses
of hearing and touch and a deaf person becomes able to learn through his
senses of sight and touch. What research has revealed is that even persons
who possess all five of their senses in a so-called "normal" range differ
from one another in the degree to which they rely on their senses to learn
concepts and skills. Some people rely very heavily on their sense of hearing
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to learn new ideas. Such persons have an audio strength. Others rely more
heavily on their sense of sight. Such people are said to have a good visual
strength. Such familiar phrases as "seeing is believing" or "a picture is worth
a thousand words" express the need of people who rely very much on their
visual strengths. Research indicates that each of us requires an interplay be-
tween our five senses to maximize our learning efficiency. Such interplay
varies with the individual. Thus, what one must see to learn, another must
hear and yet another must see and touch. To further illustrate this point,
Figure 1 summarizes a study in which the same concept was taught in three
different ways. One presentation was entirely visual, one audio, and the
third was a combination of audio and visual. The amount of retention
after three hours and three days was dramatically higher for the group who
learns through the audio-visual presentation.

Methods of Instruction
Recall.

3 Hours 3 Days

A. Audio 70% 10%

B. Visual 72% 20%

C. Audio and Visual 85% 65%

Figure 1

Thus, through individualization of instruction one can attempt to com-
municate to the learner utilizing as many of the learner's senses as seems
feasible.

Among others, there are three very fundamental reasons why we should
consider the possibility of individualizing instruction - first, in order to al-
low students to begin a particular lesson when they possess the desired de-
gree of readiness in terms of the pre-concepts and skills required to maxi-
mize learning; second, in order to allow students to prog,r.ess through a
learning sequence at their own rates; and, third, in order to match more
closely instruction with the sensory requirements of the learner. The degree
to which an instructional technique accommodates these three requirements
can be a measure of the success of that technique towards the achievement
of individualization.
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Why AT?
Now that we,bave explored the major reasons for individualizing instruc-

tion, it seems appropriate to ask why one should consider individualization
using audio-tutorial techniques. The reasons center on two points - students
enjoy audio-tutorial instruction and find it an efficient and effective ap-
proach to learning; furthermore, audio-tutorial instruction systemsare gen-
erally built upon sound principles of learning espoused by educational
theorists and psychologists such as Bruner, Gagne, Skinner, Ausubal, Cron-
bach and Mager.

IA analyzing the literature on instructional systems, there appears to be
six major areas of concern. It would seem that if learning-teaching systems
are to be effective, they must:

1. Clearly state the goals of instruction in .behavioral terms so they may
be evaluated [1.1 ;

2. Structure the learning environment so that students are exposed to
fundamental concepts that can be used in future learning and prob-
lem solving [I 4,9] ;

3. Match effective educational media with a specific learning event [3] ;
4. Facilitate the development of a proper attitude toward learning and

make students increasingly responsible for their own intellectual
development [7];

5. Provide for evaluation that keeps the learner informed of his progress
and helps the teacher judge the_'adequacy of his teaching methods
[4,5] ;

6. Make allowance for aptitudinal, attitudinal, and personality variabili-
ty among students [6, I 0] .

Audio-tutorial systems are designed with these parameters in mind. In an
A-T system, careful attention is given to the statement of objectives, the
selection of modes of instruction, and the kinds of learning involved in
achieving stated objectives. Ideas are presented in an orderly sequence and
students are able to proceed at their own rate of speed. If the sequence is
right and the learner is inforined about the goals of his learning, the moti-
vation for, learning will be built in [81.

Cronbach [61 has suggested that it is the task of educators to devise or
select instructional methods that will interact with differences in learners
so that the achievement of all students working toward a given educational
objective will be significantly better than it would be if only a single "best"
method of instruction were used. To be effective, we as teachers must be-
come designers and managers of dynamic, diversified instructional Mater-
ials. We must remember that it is the interaction of the learner and his ap-
titudes with the instructional environment and its stimulus materials
which will determine what is learned, Students in A-T courses set their,own
pace for learning. They are free to repeat materials until they are - confident
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of their understanding. Then, when the student is ready, he can proceed to
the evaluation stage, where he measures his success in terms of behavior-
ally-stated objectives. If instructional materials are creatively designed and
comply with learning theory recommendations, they stand an excellent
chance of maximizing student potential for learning.
A Procedure for A-T Unit Development

Audio-Tutorial units are designed to. assist students in mastering specific
cognate materials or developing specific psychomotor skills while simul-
taneously developing a positive attitude toward learning. The materials are
designed following a flow chart outlined in Figure H.

!DEVELOP ADD I o-TiiTo It I Al. UNITS

STATE OBJECT IVES IN
REIL\\'I ORAL TERMS

DLTENEI ISE MIL,. or I
ii;ARN I NG INVOLVED

117NN A mi.-ph% st.

1
SI LF GT AIIIIROpit ATE

NED IA IN ACCORDANCE VI TII
I FANNING riuTAY

111'51 IS GC! DE ',HEFT

iiitootcr Till A-T UNIT
I NTECILAT INC CONTENT AND mEn

IN 'Fur All) I o-TAIII FORMAT

GVALLIATI, AND IONISE Ti'
o- ruToit I Al UNIT,

Figure II

In order to properly design the material the goals of instruction must be
clearly stated, preferably in behavioral terms, The behavioral objectives are
studied to determine what type of learning they involve. If psychomotor
skills are to be developed, then the instructional program should include
activities that foster psychomotor skill development. If the objectives fall
into the cognative domain, then they should be scrutinized to see irthey
re presenfmastery of knowledge, comprehension, application, analysis, syn-
thesis, or evaluation. If the objectives all deal with the lower items in the
hierarchy in the 'cognitive domain, a reevaluation of the objectives of in-
struction may be appropriate,

Once the objectives have been written out and evaluated, a media sched-
ule is developed.
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In general, a media schedule consists of a list of instructional goals and
all the possible instructional media that can be utilized in helping students
master the goal. Brainstorming sessions with colleagues often uncover new
innovative and effective approaches to mastering specific behavioral objec-
tives. When a thorough media schedule has been developed, it is time to be-
gin writing script.

There are many alternative scripting formats that may prove effective.
For our purposes, we develop script using the format in Figure III.

Scrip[ Medt'n

Figure 111

The script is developed as a tutorial narrative. As the writing progresses,
imagine that you are tutoring an individual through an instructional se-
quence. In the left margin jot down information on music or sound effects
that might be appropriate. In the right column sketch out the guide sheets,
slides or other materials which you will be integrating into the sequence.
As the scripting progresses, integrate slides, guide sheets, laboratories, read-
ings and "pauses where they become important in the instructional flow.
Select the best media from your media schedule and integrate them into
the script where they are most appropriate.

When the script and guide sheets are completed, read through the script
and make necessary editorial modifications. Then record the script and as-
semble the A-T instructional package integrating all the instruction media,
including the guide sheets.

When the package has been assembled, have a few students listen to the
unit and evaluate it for you. The scripts, guide sheets, laboratories, demon-
strations, readings, and supplementary materials should be constantly re-
vised on the basis of student evaluation.
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An Example
To illustrate the procedures for developing an A-T lesson which have

been described, let us suppose that we wish to design a lesson' yor eighth
grade students concerning the area of a circle.
'Preparing Behavioral Objectives

The first questions to consider are "What are the objectives of the lesson?"
and "What is to be accomplished?" Perhaps an initial response to these
questions might be that we want the student to understand the formula for
the area of a circle. But what does one mean by "understanding the formu-
la for the area of a circle "? This phrase is too vague, general and ambiguous.
It is subject to too many interpretations. To avoid this problem, we beha-
vio ra lize the objectives. There could be several beha-

vioral objectives which relate to understanding the formula for the area of
a circle. For-the purposes of this paper, let us accept the following:

Objectives
After completiOn of all activities related to this lesson, you should be

able to:
I. Recall the formula for the area of a circle;
2. Sketch a diagram to demonstrate how a circle may be rearranged to

approximate the shape of a parallelogram;
3. With the aid of the diagram above, explain how theformula for the

area of a circle can be derived from the formula for the area of a
parallelogram;

4. Calculate the area of a circle given the measure of its radius of diame-
ter at a performance level of 80%.

Media Scheduling
Now that we have identified the objectives for the lesson, we can begin

to consider the appropriate media for the lesson. We could begin to investi-
gate the availability of various types of media. From this, we begin to select
the specific media which seems to be most appropriate for the students be-
ing taught and for the objectives to be accomplished. The media which was
selected for this particular lesson was: a cassette recording, a series of
slides, a wooden model of a circle, a set of worksheets, a record with the
song "All the World's a Circle."
Script Writing

We now begin to coordinate the various media selected and determine a
sequence of learning activities. The final outcome is a script. A portion of
the script for this lesson follows below.

Script

In this lesson, you are going to do some ex- -A .portion of the
perimentat ion which may help you to discoveT.- song. "All the

Media
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and understand how to find the area of a circle.
In order to do this lesson, it is necessary that
you already know certain ideas ab,out area and
about circles. To see if you are ready to begin
this lesson, take the worksheet which is on the
table behind the recorder.

Try to answer the questions and then check
your answers with those on the second page. If
you are not able to answer all of these questions
correctly, you probably should not yet try this
lesson. On the other hand, if you can answer
these questions, you are ready to continue
with this lesson. Turn off the recorder now and
answer the questions. When you are ready to
continue, turn the recorder back on.

OK, now are you ready to learn how to find
the area of a circle? (pause) In front of you,
you should see a model of a circle. Pick it up
and examine it. (10 second pause) Notice that
it is cut in half. We call each half a semi-
circle, Each semi-circle is cut into several
pieces, which are joined by a leather strap
around the outside of the circle. If you wish,
you may take some time now to experiment
with this model. For example, you may want
to take it apart and put it back together a dif-
ferent way to make different shapes anu de-
signs. Turn off the recorder while you do this
and when you are ready to continue, turn it
back on

[More of the script continues here but is
left out foi this article. Here begins and -

ther excerpt of the script.]
... Now look at the second picture. Do you
see that when you arrange the pieces this way
the figure looks like a parallelogram? If your
pieces are 'not already arranged to look like
the figure in the picture, doit now.

Now obviously the figure is not really a
parallelogram because the sides are not straight.
But what would happen if we were to cut the
circle into more and more pieces? What

9

World's a Circle" is
played - gradually
fades out.

Worksheet with a
short pre-test to de-
termine readiness
(Figure Iv)

A wooden mouel of
a circle

Student is asked to
look at slide 1 and
manipulate model.

Slide 2, picture of
model assembled to
resemble a parallelo-
gram. (See Figure V)



would happen to these sides? Look at pic-
ture number 3 to help you ... notice that as
the number of pieces increases,.the sides
seem to appear straighter and the figure looks
more and more like a parallelogram.

Suppose we pretend that this figure is a
parallelogram. If we find its area, we will also
be finding the area of the circle because the
circle is simply rearranged to form this para-
llelogram.

[The script continues in a similar fashion
but is not included in this article.]

It Ign!LI
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1. !trawls far tla ono .t pa,altalegras i.

1. 'ha Urals far th elresferaat at elects i.

Slide 3 [Sec Vigule
VIA

_

4011WMI are a tY aat 141 It rta at.. Yrfart.
as may Y antione vita the not e1 *la Inana llama taws IAN 1.110MAl

halt w Ma are ready.

Figure IV

Figure V
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Figure VI

Once the script has been prepared it is often a good idea to design a
guide sheet which is available for the student. It summarizes the purpose of
the lesson, the materials if there seems to be an arrangement which would
optimize the effectiveness of the instruction. The guide sheet for this parti-
cular lesson follows.

GUIDE 'SHEET

Topic: Area of a Circle
Materials: one cassette tape recorder and headset

one cassette tape labelled "Area of Circle"
one slide viewer
one envelope containing seven slides
one set of worksheets
one wooden model of a circle

Objectives:
After completion of all activities related to this lesson, you should be

able to:
1. Recall the formula for the area of a circle;
2. Sketch a diagram to demonstrate how a circle may be rearranged to

approximate the shape of a parallelogram;
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3. With the aid of the diagram above, explain how the fAmula for the
area of a circle can be derived from the formula for the area of a par-
allelogram;

4. Calculate the area of acircle given the measure of its radius or diame-
ter at a performance level of 80%.

Carrel Arrangement:
Please arrange your carrel as indicated by the diagram below.

Worksheets

Tape Recorder

/ \
/ Circle
1 Model

)

; Slide Viewer ;
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ON THE COMPUTATION OF PI

By Warren H. Hill, Westfield State College=i1
One of the common misconceptions that students bring to a high school

Euclidean Geometry class is the belief that a value for PI Must be known
before the circuniference or area of a circle can be computed. In reality
this belief places the cart before the horse. Actually the geometric defini-
tion of the value of PI is expressed in terms of a ratio between the circum-
ference of a circle and its diameter. Consequently, to avoid a circular argu-
nient (no pun intended!) the teacher should have at his disposal some pro-
cedure for determining the circumference of a circle prior to the introduc-
tion of the constant PI. Once some method for approximating the circum-
ference r <i a circle has been employed, an approximation for PI can then be
easily computed. One viable approach to this predicament is through the
computation of the perimeters of certain inscribed and circumscribed
polygons relative to a given circle.

The proceeding sequence of activities which are employed to determine
an approximation of PI will use the following inscribed and circumscribed
regular polygons: square, hexagon, and octagon. After completing these ac-
tivities, the students (and teacher) may desire to attempt a similar activity
with a regular dodecagon and a regular 16-gon.

It should be mentioned, parenthetically, that in addition to the valuable
experience of placing PI in a proper perspective, several other positive by-
products are derived from these exercises. 1.ti particular, the activities w'Ach
are employed in the following exercises require the application of certain
elementary geometry constructions, use of congruence theorems of tri-
angles, properties of the equilateral triangle and 30° - 60° - 90° triangle,
and the Pythagorean Theorem.

The Square
Beginning with a circle having a radius of one unit, a square is inscribed

by first drawing an arbitrary diameter and constructing the perpendicular
bisector of that diameter. The endpoints of the diameters are tken joined
to form the square (figure 1).
To circumscribe a square about the circle perpendicular diameters are again
constructed and perpendiculars are then constructed to the endpoints of
the diameters. Note that, by a geometric theorem, these perpendiculars are
tangent to the circle (figure 2).

Turning again to the inscribed square it can be observed that since the
diameters are perpendicular and the measures of the radii of a circle are
equal, then the resulting four triangles are right isosceles triangles. An ap-
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Figure 1 Figure 2
plication of the Pythagorean Theorem 'yields a hypotenuse of length "r2and, consequently, the par;1,-;ter of the inscribed square is 41r 26 5.656.Finally, it can he seen that rf C is the circumference of the circle then5.656 <C.

Returning to the circumscribed square, these diameters are also perpen-cicular and the tangents to the circles are perpendicular to these diameters.Mt resulting four squares have sides of length f and hence the perimeterof the circumscribed square is 8 units. The conclusion relative to the cir-cumference, C, of the circle is: C < 8.
Combining the two bits of information obtained thus far, the conclusionis:

5.656 < C <8.00.
Since the diameter of the circle is 2 units the resulting ratio C/D yields:2.828 C/D <4.00.
If an average is computed (realizing the hazard that the perimeter of onesquare might be a better. approximation of the circumference of the circlethan the other) the resulting approximation of PI is 3.414.

It should, however, be obvious that the perimeters of the squares arenot a close approximation of the circumference. To obtain a betterapprox-imation a polygon with a greater number of sides should be used.The Hexagon
To inscribe a hexagon in a circle, begin by constructing a circle with ra-dius of 1 unit. Maintaining the length of the radius between the endpointsof the compass, the compass point is then placed on any arbitrary point onthe circle and an arc is swung. The procedure is repeated until the circle hasbeen divided into six equal arcs. The resulting six points are joined consecu-tively to form an inscribed regular hexagon. Finally, to complete the con-struction, three diameters are drawn (figure, 3).

100
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Figure 3 Figure 4
The construction of a circumscribed hexagon begins in an analogous

manner. After the six points have been located, three diameters are con-
structed and tangents to the circles are constructed at the endpoints of
these diameters (figure 4).

The computation of the perimeter of the inscribed hexagon is straight-
forward. The six triangles formed by the diameters are equilateral (chords
are equal in length to the radius of the circle by construction) and congru-
ent (s.s.s.) and hence the perimeter of the hexagon is 6 units. It is, there-
fore, established that 6 < C, where C is the circumference of the circle.

The computation of the perimeter of the circumscribed hexagon re-
quires an additional construction. A line is drawn from the center of the
circle to a vertex of the hexagon creating two right triangles. It can be
shown that the two triangles are congruent (hypotenuse-leg) and conse-
quently each triangle is a 30° - 60° - 90° triangle.

If the length of the hypotenuse is defined as x then the length of the
side opposite the 30° angle is x/2. Applying the Pythagorean Theorem

x2 tx_12 +(1)2 or x = 24/r
/

It can also be shown that x is also equal to the length of one side of the
hexagon and hence the perimeter of the hexagon is equal to 6(2413 /3)
or 44'3* 6.928.
Thus C 4 6.928. Combining the information concerning the inscribed and
circumscribed hexagon:

6 L C <6.928
3 G CAD < 3.464.
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F
Figure 5

Figure 6
The construction of a circumscribed octagon begins in a similar manner.

After the four diameters have been drawn, tangents to the circle are con-
structed to the endpoints of these diameters (figure 6).
Using an averaging technique again with its inherent dangers, the following
approximation is. obtained: PI 3.232. The observation can again be madethat, although the perimeter of a hexagon is a better approximation of thecircumference of a circle than the perimeter of a square, a polygon with agreater number of sides will yield a closer approximation.

The Octagon
After constructing a circle with radius of one unit, an octagon is inscrib-ed in the circle by first constructing perpendicular, diameter and then bi-secting the resulting right angles. The endpoints of four diameters are thenjoined to form an inscribed regular octagon (figure 5).
As in the computation of the perimeter of the circumscribed hexagon,an additional construction is needed in order to compute the perimeter ofthe inscribed octagon. A line is first drawn connecting the endpoints oftwo adjacent sides of the octagon as seen in figure 6.
Upon examining an enlargement of this construction (figure 7), it is ap-parent that 4AOD E ABOD (S.A.S.)and,consequently, ADC la ABDC(S.A.S.).
Since A BOD is an isosceles right triangle with a hypotenuse of length 1,the sides OD and BD must both have lengths equal to the 1T/2. Further-

more OC is a radius of the given circle and hence 17 = 1 - 47/2. Realizing
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Figure 7

thatABDC is a right triangle an application of the Pythagorean Theorem
is in order.

n2 + y n2 x2 where x is the hypotenuse of BDC.

2/ 1-27
Solving this equality yields: x2 AO .586 or x 0.766,
The value .766 represents the approximate length of one side of the octa-
gon and the perimeter is, therefore, 8(.766) or 6.128. Thus 6.128 C

where C is the circumference of the given circle.
Turning to the circumscribed octagon, the solution for the perimeter be-

comes somewhat easier. With the additional construction in Figure 6 it is
apparent that a square is formed with sides Of length 1 and a diagonal of
length 4r T.

Using the information that the diagonal bisects the angles of the square,
it is discovered that not only is A ADB 2 L1 CDB (A.S.A.) but also that
the two triasles are right isosceles triangles. Furthermore since BD =

- 1 then AD = 1 and AC = 2 (VT - 1).
Hence the perimeter of the octagon is 16 (4/2 - 1) x 6.624. The conclu-

sion is that C < 6.624. Combining information the following inequalities
are obtained:

6.1284 C < 6.624
3.064 < C/D < 3.312.

If the midpoint between the two values is computed then 3.188 is obtain-
ed as an approximation of P1.

Conclusions
-. Using the preceding activities which admittedly employed polygons
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which were coarse approximations of a circle, it is possible to derive an ap-
proximation of PI which is accurate to one decimal place. In addition sev-
eral important mathematical ideas can be presented at an intuitive level by
making observations about the sequence of values which are obtained.

Compilation of Results
5.656 <.0 < 8.00 2.828 < C/D <4.000 PI %%13.414
6.000 .e C -4 6.928 3.000 '4 C/D < 3.464 PI x3.232
6.126 < C -e 6.624 3.064 -'-C/D < 3.312 PI 23.188
First note that the sequence of perimeters of inscribed polygons form amontonic increasing sequence and the sequence of perimeters of circum-

scribed polygons form a monotonic decreasing sequence. A justification of
this assertation can be offered based upon a geometric interpretation of
what occurs as the number of sides of the polygons is increased. In particu-
lar consider the relationship between the inscribed square and the inscribedoctagon.

Furthermore, upon examining the two sequences, it should alsb be,at
least intuitively,apparent that the value of PI is a Least Upper Bound for
the ratio of inscribed perimeter to diameters and a Greatest Lower Bound
for the ratio of circumscribed polygons to diameters.

A final observation reveals that several additional avenues of investiga-
tions are apparent. For example:

1. Are the perimeters of the inscribed polygons a better approximation
of the circumference of the circle than the perimeters of the circum-
scribed polygons (or vice versa)?

2. Is it possible to compute the area of the preceding inscribed and cir-
cumscribed polygons? If so, do these ultimately yield a closer appro-
ximation of PI than the perimeters?

3. Is it possible to compute the perimeters of inscribed (and circum-
scribed) dodecagons or 16-gons within the realm of high school
Euclidean Geometry? (Is it necessary to resort to trigonometric
functions to determine these perimeters?)
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MATHEMATICS: ITS APPLICATION IN THE
VOC.-TECH. SCHOOL

by Frank J. Levanti

Aims - Mathematics has always been an integral part of the curriculum in
Connecticut Vocational- Technical Schools. Even though the curricula and
methodology of mathematics have varied through the years there has always
been agreement as to its need in a program of training skilled tradesmen. As
a result of advances in industrial and scientific knowledge, this conviction
is stronger than ever. Therefore, it is imperative that a program of mathema-
tics be so designed and administered as to fulfill the broad aims of voca-

tional education and the following specific objectives:
1. To meet the needs of the specific trade area;
2. To develop in students an understanding of fundamental mathemati-

cal principles and an ability to use them;
3. To develop in students the'ability to think and organize effectively

in the changing technology and society of our times; and
4. Develop each student for the fullness of his capabilities.

Preparation of Outline - To ascertain the content of mathematics in the
Connecticut Vocational-Technical Schools trade instructors in specific areas
working with their school directors prepared a list of mathematical skills
and knowledge which is essential for a student to possess at a specific time
if the student is to progress satisfactorily through the established training
program.

The Mathematics Curriculum Committee prepared a list of minimum
skills and knowledge in mathematics which should be required of all gradu-
ates of Connecticut Vocational-Technical Schools.

This lists the following knowledge and skills as essential:
1. Fundamental operations of whole numbers;
2. Any arithmetic process involving decimals, fractions, percentage, ra-

tio proportion or denominate numbers;
3. Square root;
4. Mensuration including angle measurement, areas and volumes arid si-

milar triangles following solution of simple literary equations and
formulae;

5. The techniques of problem solving;
6. Basic geometrical constructions;
7. Definitions of geometric terms;
8. Facts concerning relationshipsexisting between geometric figures;
9. Elementary, right triangle, trigonometry; and
10: Logarithms.

1 0 b
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Furthermore, programs of mathematics of various academic and techni-
cal schools were surveyed and evaluated.

As a result of these reports and investigations the content of the prog-
ram was determined.
General Plan Since it is recognized that the ninth grade program is that of
exploration the mathematics in this grade is of general nature and so nam-
ed - General Mathematics.

It cannot be over-emphasized that this phase of the mathematics prog-
ram must be presented most constructively. It is not intended to be a mere
review or exercise type of program, teaching for understanding and accuracy
must be stressed constantly, in fact, it is probable that a great deal of time
may be spent on the remedial aspects of mathematics. The subject matter
for general mathematics approximates very nearly the standard ninth grade
junior high school mathematics program.

The program for mathematics for grades ten through twelve - Related
Mathematics - is an integrated program based on the elements of algebra,
geometry and trigonometry essential to trade mastery. It is arranged in a
sequence of logical teaching order and also more accurately and immediate-
ly to meet the needs of both trade training and related science education.
It is hoped that this arrangement of the content will fulfill our specific
objectives.
Basic Assumptions - It must be assumed that students in the technical
schools have the ability to learn mathematics. Since it has been agreed by
shop and relatt.,u instructors and the supervisors of instruction that this bas-
ic program is either needed by the student to successfully complete his
trade training or as a basic need for a secondary school education, it fol-
lows that every student should successfully complete the mathematics pro-
gram.
Teaching Procedure - A student to be able to relate his experience in mathe-
matics to his trade program must have a thorough understanding of the
fundamentals involved. He must be able to analyze and solve problems and
to think effectively. Therefore, it is important in teaching mathematics
that considerable time be spent on teaching for understanding and not just
the manipulative skills of mathematics. It is very evident that to encourage,
stimulate and challenge the student applications of mathematics to the
trade plays a very important part. Therefore, wherever possible these appli-
cations should be made evident to the pupil by the instructor.

Furthermore, it, is felt that the sequence is so arranged as to afford the
best possible avenue of instruction. However, if for some reason an instruc-
tor needs to change the order or add to it, he should feel free to do so, but
it must be remembered that the achievement level set forth at each year
should be attained. It is expected that group instruction will prevail in all
classes with individual attention given to students in keeping with sound
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teaching procedures.
Related Mathematics Grade Nine - In the mathematics department, we are
preparing students to enter their chosen trade with a background of mathe-
matics to enable them to function adequately. By this we mean, the stu-
dent should be able to figure\for specifics. These specifics may be measur-
ing or estimating in the trade of his choice.

For years we have been getting students who are not prepared in the
fundamentals of arithmetic. For this reason the ninth grade mathematics is
of a general nature to insure a familiarity with fundamentals. These funda-
mentals must be taught to insure accuracy and understanding. In many
cases there is much work to be done for the student who just doesn't un-
derstand figures. Where time allows remedial work has to be done.

The technical school ninth grade parallels somewhat the ninth grade
general mathematics in high school. The only difference may be that we
use problems which are of a vocational nature. The problems are related to
things he is doing or that he shall do in the future. Information that is given
with preliminaries of a lesson should refer to the usefulness of the problem
in question. This is something that may be lacking in his previous educa-
tional experiences.

The student should be made conscious that the mathematics he is learn-
ing is a tool, and that it has practical application in his trade work. He should
be brought face to face with the need to think out the processes so that he
understands what he is doing. This is more important than a particular
answer to a specific problem. Understanding principles, and their aims are
the important factors. There is more than the "how" of a problem to learn.
He must learn "where", "when" and "why" these general principles are
important. He must learn "what" the general benefit of the whole sub-
ject is to him. Learning by rote gives the students no reason to learn. If a
student knows where he is going he is more apt to go. To accomplish this,
the instructor should use every means to illustrate vividly to this end. The
result should be a student who will learn to think by means of the orderly
mathematical process.

To get down to specifics, the ninth grade should teach the students whole
numbers, fractions, decimals, addition, subtraction, multiplication of these
numbers, graphs, mensuration, ratio and proportion and the fundamentals
of algebra. The algebra depends upon the-ability of the particular group.
These basic principles should be instilled. We should work to have the stu-
dents see the need to acquire these skills, and we should use every means
available to reach this objective.
Related Mathematics - Grade Ten At the beginning of the school year the
student (according to the approved mathematics outline) reviews denomi-
nate numbers, ratio and proportion and measurement of line and angle to
be followed by the elements of algebra.
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Grade ten classes begin the school year studying the elements of algebra,
so the students will be acquainted with the processes involved in solving a
simple equation or formula. This skill is needed in grade ten science (phys-
ics) classes and in grade ten electrical trade theory.

At this point the algebra books are put aside and the class applies these
principles to ratio and proportion. In studying ratio and proportion, deno-
minate numbers (English and Metric) are used. This section is related to var-
ious shop problems and each class member, regardless of sLtop, participates
in each trade area. For example;

Auto Shop Gearing versus speed
Carpentry Paint versus Square Foot
Electrical Transformers Wire Length versus

Resistance
Machine & Machine Drafting Gearing-belting, Wire Area versus

Load
Plumbing Pipe Diameter versus Capacity
Sheettneral Area versus Air Flow
The principles or elements of algebra are continued until the student is

able to transpose, solve and primarily understand a formula or equation.
This is the principle goal of the tenth grade program, and also the basic
achievement level, although some advanced groups study quadratic and
simultaneous equations.

It should be understood that in this area some algebraic principles must
be treated from an academic viewpoint, although wherever possible we use
and point out trade applications. Presently I am working on a project' to
expand our present mathematics outline, taking each topic and listing
possible teaching activities, assignments, references, trade applications
(Delmar workbooks) and for example -- teaching aids.

In-all cases we try to teach for an understanding of the topic so "Think-
ers" will result, not "Parrots".
Related Mathematics Grade Eleven - The beginning of the eleventh grade
is given over to the review of fundamentals of algebra. This is done both to
aid retention of these fundamentals and to insure that the student has the
necessary base for the year's work. For the most part, this review is devot-
ed to formula and equation solving.

After the review a short unit in numerical trigonometry is studied. This
unit is so placed not because it is necessary in the development of the
mathematics program, but rather as an aid to the machine area depart-
ments. The purpose of this unit is threefold:

to acquaint the student with the trigonometric functions;
to enable him to read a table; and
to develop an ability to solve simple problems.
This unit is designed to be related to the needs of the trade. This does
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not mean that it is necessary to demonstrate numerous trade applications.
Time does not permit such depth; furthermore, it can be more effectively
handled during the twelfth grade,

This brings us to the beginning of the geometry course. The first few
weeks are devoted to terminology and constructions. To bring in trade ap-
plications of constructions seem artificial and not to the best interests of
the student. First of all the student does not understand why the construc-
tion work...this can come only after a study of geometry. The main advan-
tage of construction work at this point is not actual knowledge of the con-
structions for this i5 soon forgotten, rather it is the terminology involved:
After a week's work with construction problems, such terms: arc,bisect,
perpendicular and parallel have become firmly established in the vocabul-
ary of the student.

In order to better understand our geometry course, it might be well to
take a brief look at the history and development of geometry and then to
contrast our course to that of the academic high school.

Practically all the geometry taught in the secondary school today is can-
tallied in Euclid's Elements, written about 300 B.C.

Nothing could be further from our needs and objectives than to teach
geometry in the traditional methods(with which so many of us are familiar
from our own student days), This method consisted of memorizing the
proof of theorem after theorem and, it seemed, never getting to any practi-
cal applications. We must bear in mind that this logical development of a
system of geometry which was given to us by Euclid was not considered as
an exercise in practical mathematics. Euclid was not a mathematician, but
a philosopher. Geometry, as he developed it, was intended to serve as an in-
troduction to logic and general philosophical Studies; therefore, he emphas-
ized logical structure rather than mathematical insight, neglected practical
applications completely and carefully selected the subject matter in the
light of his philosophical orientation. "He wrote for scholars, not for
schoolboys" -- and especially not for tradesmen. And yet if we take almost
any academic geometry Textbook written more than ten years ago and fol-
low it religioulsy, we would be following the course outline set up by Eu-
clid. Very recently there have been sweeping changes in the academic geo-
metry course, but these are designed for the college preparatory student
and would not be of great benefit to us.

How do we teach geometry? What makes our course related mathematics?
Both the method and the content differ greatly from the academic course.
METHOD: Emphasis is not placed upon the formal deductive proof, The
theorems are arrived at, for the most part, by informal discussion and ex-
perimentation. In cases where this is not possible, the theorems ore simply
postulated. The main emphasis of the course is placed upon problem solv-
ing. The student learns the mathematical approach to a problem not by
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strict formula rules, but rather by being confronted with numerous practi-
cal problems. Until this point in the mathematics program, there have been

set rules to follow and usually only one way to arrive at the correct answer.
It is very gratifying to watch them discover that there may be many differ-
ent ways to solve the Sahib problem. Different approaches are encouraged,
and the student soon lea-ms tha Cas long as he has a legitimate reason for
each step, he will arrive at the correct answer. Such an approach provides

a real opportunity for creative thinking. The student also\ learns that a
large part of the mathematical approach is trial and error.
CONTENT: Time does not allow us to cover as much material as in the ac-
ademic geometry course; therefore, we concentrate on those theorems which
have the greatest practical value. For instance, theorems dealing with con-
gruent triangles, so necessary in the development of Euclidean geometry,
serve little purpose in our course. On the other hand, the theorems dealing
With tangents to circles receive great emphasis because of the numerous
practical applications involving measurement of dovetails and angle-cuts.
The main criterion used in selecting the theorems to be covered is the prac-
ticability of the theorem for trade applications. Thus, the geometry course
is truly related mathematics.

This completes the basic requirements for the eleventh grade as defined
by the outline. We then spend a few weeks working on the algebra which
was not completed in the advanced section of grade ten.

The next topic is the slide rule. We cover only multiplication, division,
squares, square roots and proportions. While this unit has no specific trade
applications, we try to point out both the advantages and the limitations of
the slide rule for the tradesman.

If time allows we attempt to combine the entire year's work in one unit.
Using handbooks and slide rules, we cover the sections on mensuration in
workbooks. This unit involves the knowledge of geometrical facts, the
manipulation of algebraic formulas and the ability to use a slide rule. It also
provides an opportunity, in the machine trades, to become more familiar
with the handbook. The greatest benefit of this unit is that it shows the
student why he studied each of the topics involved, and it allows him to
take these new mathematical tools and use them in solving a practical

trade problem.
Related Mathematics - Grade Twelve - The seniors begin the year with a re-
view of the Pythagorean Theorem and square root. Writing and learning the
rules accompanied by practice work is followed by such topics as work
methods, arrangement, accuracy, use of diagrams, tables, formulas, approx-
imate numbers, significant digits, rounding off, errors in computation,
short methods and checking. The use of square root and cube root tables
is included,

The course then continues with a review of examples. At the board sim-
-
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pie work with triangles is illustrated to show the concept of constant ratios,
using angles of 300, 45°, and 60° in triangles where the length of sides
change, but not the angle. This is really an introduction to the useof the
tables of natural functions. Herein the students are shown how to obtain
the function when the "angle is given, and the reverse. Some experience
much difficulty learning to interpolate and anti-interpolate; thus, plenty
of practice is required. The students are now ready. for the solution of right
triangles.

Thus far, the students have been working with triangles, each having
two values given. They have had no practice with word problems requiring
interpretation and visualization of the trig situation. Such applications are
now explored. As complete a variety as possible, representative of all trades,
is presented for practice. This is the end of the basic achievement level.
Continuing, beyond the achievement level with the better groups, treat-
ment of oblique triangles is similar to that of right triangles, i.e., explana-
tion and illustration of the laws of sines and cosines, practice examples ineach of the four cases, Areas.of triangles by means of trigonometry are in-
cluded. Again, application to the trade situations by means of word prob-lems is employed.

Graphs and logarithms follow the trigonometry section, and if time per-mits, a general review is conducted.
Some Deviations Although vocational-technical schools have many siniilaf-
ities there ate some recognizable differences Some of the basic differences
are the three and four year programs.

As a result of these program differences there are some deviations in the
mathematics curriculum. Thus, at the technical schools which conduct athree year program, grades ten through twelve, the four year mathematics
outline is covered in three years.
Teaching Technique - The school director should observe whether or not avariety of teaching techniques is employed by the instructor. Specifically,
students should be encouraged to participate in discussions, demonstrate
their achievements at the board, be free to question the instructor, be en-
couraged to experiment and be shown concrete practical applications of
the basic principles under study.
Major Problem - "Related" Mathematics - Many people feel the term relat-
ed mathematics simply means that the student in a given trade shop should
solve abumber of typical problems found in the trade. This was being done
approximately fifteen to twenty years ago when the mathematics instructor
passed out the blocks of practical mathematics problems and From that
point on everyone was on his own.

No doubt, everyone can see the many shortcomings in that type of ap-
proach. Needless to say, there were some few benefits.

Today, we find isolated, and to some extent obstinate, instructors using
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this approach. On the other hand, many instructors are being rightly criti-
cized for using a college preparatory approach.

It is hoped that the basic course in the vocational-technical schools will
be found somewhere between these two extremes. This course will provide
the student with mathematical skills and understandings which he needs in
order to make satisfactory progress in his trade training program.

The troublesome task comes in implementation. Thus, in observing the
mathematics instructor one will find these various means of implementation
being employed:

I. The specific trade application made, after understanding has been
established.

2. Illustrating the principle by using problems taken from a variety of
trades. _

3. Devoting one period per week to solving specific trade problems.
4. Devoting a marking period to trade problems.
5. Devoting part of the senior year to trade problems.
6. Use of trade problems from a variety of trades and the use of trade

problems in the theory program.
From informal and standardized tests no program proved better than

the other. What should our futureapproach be?
Perhaps this could only be answered in the hope that more classroom or

action research be undertaken to help solve this problem. -gm.

Center for the Improvement of Mathematics Education
In-service Training Workshop

TANGR.AMS
by Samuel M. Lipman

The tangram puzzle is cut from a square as illrstrated below. Use this as
a pattern (but don't peek when you are trying to put it back together).
Please, please ask children to cut their own. Then it truly is their puzzle -
and at least they should be convinced that it actually does go back into a
square. The suggestions listed below develop some-mathematical concepts
for which the tangram puzzle serves as a model.
1, Put all 7 pieces back together to make a square. If this gets too frustrat-
ing, don't sneak a glance at your neighbor's. Skip this and come back later,

or hope in the meantime the pieces will fall together when you're trying
something else. Don't rob yourself or your students of the joy of discover-
ing the answer.
2. Put all 7 pieces together to form a rectangle. (I think there are two dif-
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ferent ways of doing this.) Now, by moving only I piece from the rectangle,
you can change it to be a triangle, a parallelogram, and a trapezoid.
3. Can you make a square from just 1 yiece of your puzzle? from 2 pieces?
from 3? 4? 5? 6? 7? Do the same investigation for triangles, rectangles, par-
allelograms, and trapezoids.
4. One way to organize this as a class activity is to eNplain the problem with
the square, and then put a large chart on the board .

When a child discovers one, he can go up and mark yes or no on the
chart, and put his name also so others can either challenge him or see if
their results are the same. Encourage dialogue among the students - they
often seem to explain things to each other as well as or better than teachers
do.
5. Take the square, the parallelogram, anu the middle-sized triangle. Com-
pare their areas. Can you convince your friends why what you think is true?
Which of these three has the smallest perimeter? (Or ask the question in
another way: If I were to plant a garden, and needed a fence to keep the
dog out, which of the three shapes needs the shortest fence?) How do you
know?
6. Suppose I say the square piece has an area of I square unit. How much is
the area of each of the other pieces? What is the area of the big square made
of all 7 pieces?

Suppose I change my mind and say the big square made of all 7 pieces
has the value of 1 square unit. Now figure the area of all the other pieces.

Choose any number to represent the number of square units in the big
square (like 5 or 11 or your age or your favorite number) and then figure
the area of the others. Children need some facility with fractions to do
this.
AND NICEST OF ALL -- whenever someone puts all 7 pieces together to
make an interesting shape, he should trace it on tagboard, name it, sign it,
and put it in the class tangram box so others can try to fit their pieces in
the shape.
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APPLICATIONS OF LINEAR PROGRAMMING
IN ECONOMICS

by Ken McCaffrey, Brattleboro Union High School, Vt.

Prologue:
The Simplex Method of linear programming was originally developed in1947 by George Danzig who first recognized the widespread applicabilityof a process of maximizing a linear function. The Simplex Tableau was laterrefined by, among others, Professor A.W. Tucker.
After developing the arithmetical basis of the Simplex Method, we pre-sent the application of this method to a specific problem of maximizing aprofit function which is constrained by a system of linear inequalities.Section 1, The Simplex Tableau and Pivot:

Consider the following system of three equations in five variables:x+ y+ s + s2 + (-I)s3 + (-22) = 0
(-7)x + (-1)y + 2si + (-1)52 + (-2)53 + 46 = 0

3 x + 2y + (-3)s I + (-2)s2 + 4s3 + (-12) = 0
and an equivalent system:

(-I)x + (-4)y + 40 = st

(-3)x + (-I)y + 30 = s2 (2)
(-3)x + (-4)y + 48 = s3

(1)

In this form si, s2 and s3 are dependent variables while x and y are in-
dependent variables. A system which has been expressed in terms of de-
pendent and independent variables is said to be in canonical form. If we set
the independent variables equal to zero, and if the system then has a unique
solution, this solution is called a basic solution. In the above case let x = y0 and sl = 40, s2 = 30 and sl = 48 is a basic solution.

Clearly, (2) is not the only canonical form. We could solve for x, substi-tute, and arrive at a canonical form in which sl, x and s3 are dependent
while s-7 and y are independent; as follows:
(1 /3)s2 + (1 /3)y + (-I 0) + (-4)y + 40 = (1 /3)s2 + (-1`1 /3)y + 30= si

21'
(i)x+ (4)y + 40 = si
(-3)x + (-1)y + 30 = s2 (-I /3)s2 + ( -I /3)y + 10 = x (3).(-3)x + (-4)y + 48 = s3

2,

s2+ y + (-30) + (-4)y + 48 = s2 + (-3)y + 18 = s3
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System (3), also in canonical form, was derived from system (2) and dif-
fers from it in that x and s2 have exchanged roles: x is now a dependent
and s2 an independent variable. This operation, in Tableau format is the

Simplex Pivot.
To write system (2) in Simplex Tableau format we first rewrite it as:

1 ( -x) + 4(-y) + 40(1) = sL

3(-x) + 1 (-y) + 30(1) = s2

3(-x) + 4(-y) + 48(1) = 53

Now writing the independent variables and '1' as column multipliers we

have:
-x y 1

1 4 40 =s1

3*3 1 30 = s2 (2)

3 4 48 = s3

To interchange x and s2 we pivot on the 3* which is in the column under
(-x) and the row of s2. Details of the pivot operation follow:

-w -v

u

=z

p = pivot element
r = element in row or pivot
c = element in column of pivot
e = any other 'off axis' element. ,

In the resulting Tableau the w and the u will exchange places. Each of the
elements noted above will be replaced with:

-u -v

1/P r/P

c/-p

=w

Z
where E - cr

P
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The following are the calculations for Tableau (2) above:
element replacement result
the pivot 1/p

3* 1/3 1/3
row elements r/p

1 1/3 1/3
30 30/3 10

column elements c/-p
1 1/-3 -1/3
3 3/-3 -1

other elements pe - cr
p

4 4(3) 1(1) 11/3
3

40 40(4) - I (10) 30
3

4 4(3) 3(1) 3
3

48 48(3) - 3(30) 18
3

System (2) has been transformed into system (3):
-s2 -y 1

(3)

-1/3

1/3

-1

11/3

1/3

3

30

10

18

=s1

1-- X

I = 53
The following sequence of pivots illustrates the original system (1) can

be transformed into equivalent systems and finally to a canonical form,
system (2). The zeros are interchanged in the same way as variables,how-
ever, when they become column multipliers the column can be eliminated
since multiplication by zero gives zero.
-x -y -s1 -s2 -s3 1

(1)

-1

7

-3

-1

1

-2

-1*

-2

3

-1

1

2

1

2

-4

-22

46

-12

= 0

= 0

= 0
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-x

1 4 si

3 1 30 =s2
(2)

3 4 48 =s3

Section 2: A System of Inequalities:
The following system of inequalities in two variables and its graphical re-

presentation will be referred to throughout the remainder of this paper.
The graph is intended to aid the reader in visualizing the concepts present-
ed in the next four sections, however, the numerical methods discussed are
not restricted to two dimensional systems.

1. x+ 4y 4. 40
2. 3x + y 11 30
3. 3x + 4y 1648
4.x 0
5. y>0
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In the following diagram the arrows indicate the direction of each in-
equality. That set of points which satisfies all five inequalities is called thefeasible region. The coordinates of the points of intersection have also beennoted.

si

Figure 1

Section 3: Rewriting an Inequality as an Equality:
Using Slack Variables:
Consider the first inequality of Section 2: x + 4y NC 40. Since the expre-ssion (x + 4y) is constrained to be less than or equal to 40, we can add a

non-negative variable, si, to (x + 4y) so that it is equal to 40. Thus:
x + 4y + s = 40 s a, 0.

Now solving for s1 gives:

(-1)x + (-4)y + 40 = si.
By doing this to the first three inequalities we obtain system (2), a systemof equalities, subject to the constraint that all variables be non-negative.Thus:

(-1)x + (-4)y + 40 = si
s al

(-3)x + (-1)y + 30 = s2 sty 0
(-3)x + (-4)y + 48 = s3 s32 0

x ar. 0
y > 0

18!.
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Section 4: Pivoting Through the Canonical Forms:
As was noted above, there are several canonical forms (5C3 = 10),

which we will now examine more closely. Consider the following:
I. In canonical form, if the independent variables of a system (the two

at the top of the Tableau) are set equal to zero, the right hand column con-
tains the values of the dependent variables for a basic solution;

2. Each variable, when equal to zero, represents the boundary line of a
constraining inequality;

3. The non-slack variables, x and y, are the axes of the graph (see fig. 1)
and whether independent or dependent their values are the coordinates of
a point;

4. Graphically, the solution set of two linear equations is the point of
intersection.

In each canonical form, the values of x and y in the basic solution are
the coordinates of the point of intersection of the two boundary lines re-
presented by the independent variables.

Please refer to fig. I while considering the following sequence of pivots:

-x 1 (x,y)-Y

1 4 40 = si

3 1 30 = S2

3 4 48 =53

.42 -y 1

(0,0)

-1 3* 18

10 1 = x (10,0)

-1/3 11/3 30 = si
1/3 1/3

=s3

-S2 -53 1

8/9* -11/9

4/9 -1/9

-1/3 1/3

-si.

8

8

6 1

9/8 -11/8 9

-1/2 1/2 4

3/8 -1/8 9

= S
I

=x
=y

2
sx

=y

'119

(8,6)

(4,9)



115

Pivoting through the canonical forms produces points of intersection.
Sectioiti-5: Maintaining Feasibility:

I have perhaps mislead the reader, in the preceelding section, into think-
ing that the points of intersection denoted by the canonical forms are cor-
ner points of the feasible region. Without the consideration of two rules to
be developed in this section, they are not necessarily such points. Consider
the following pivot:

A -s
1

-s3 1

9/8 -11/8 9 = s2

-1/2* 1/2 4 =x (4,9)
3/8 -1/8 9 =.y

B -x -s3 1

9/4 1/4 18 = s2

-2 -1 si (0,12)
3/4 1/4 12 =y

Referring to fig. 1, note that this point (0,12) is not an element of the
feasible region; also that this point is on the wrong side of inequality no. 1,
into which the slack variable s1 was introduced, in Tableau B notice that a
basic solution gives s1 = (-8); but, all variables were constrained to be non-
negative. To realize how we could have avoided this loss of a feasible can-
onical form, notice that in Tableau A we pivoted on (-1/2). The algorithm
of the Simplex Pivot requires that the elements in the row of the pivot
(except the pivot itself) be divided by the pivot. Dividinga positive 4 by a
negative 1/2 will surely give a negative result. In this paper we are restrict-
ing the discussion to canonical forms which are already feasible. That is,
the column under the '1' in any tableau will contain only non-negative ele-
ments. Therefore, to maintain feasibility: pivot on a positive element.

But this is not enough. Referring to Tableau A again pivot now on 3/8
in the first column to obtain:
-y -s3 1

=s2
= x

=s1

(16,0)

-3

4/3

8/3

-1

1/3

-1/3

-18

16

24

The point (16,0) is on the wrong side of inequality no. 2, and s2 --4 (-18).
Since the (-18) appeared as an 'off axis" element of the pivot, we consider
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the following skeletal tableau:

ep

ec

P*

We already have feasibility so e and ec are non-negative. We must pivot

on a positive element, p. Again recalling the algorithm of the Simplex Pivot,
the element ec will be replaced with:

pec -cep

p

which we desire to be non-negative. If c is either negative or zero, then the
expression above will be positive. If c is positive we need: pec - cep 20 0.
Transforming this into:

c

we see that feasibility will be maintained if, in a given column, we divide
each positive element into the constant teim on that row, and pivot on
the element which produces the smallest quotient.

When these two rules are followed, those canonical forms which are
generated by successive pivots will yield basic solutions of which the x and
y values are coordinates of the corner points of the feasible region.

It is shown in Glicksman [1] , Kemeny [2] and many algebra textbooks
that a linear function which is constrained by a system of inequalities
takes on a maximum value at a corner point of the feasible region. It is for
this reason that we are especially interested in the basic solutions of the
canonical forms.

We have now covered the basics of the Simplex Pivot and are ready to
solve a linear programming problem.
Section 6: Maximizing a Linear Function:

Zxy Musik Kompanie makes two instruments, a xylophone and an auto-
matic yodeler. Three processes are involved in their manufacture: part pro-
duction, polishing and final assembly. The union which represents the skill-
ed production workers and the polishers demands a work week of no more
than 40 hours. The polishers must spend 10 hours a week on machine main-
tenance so a maximum of 30 hours is available for the polishing process.
The semi-skilled assembly workers can put in overtime, but up to no more
than 48 hours a week.
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It requires 1 hour to produce the parts for a xylophone and 4.hours for
a yodeler. 3 hours of polishing are needed for a xyloplitine, only 1 hour
for a yodeler. It takes 3 hours to assemble a xylophone, 4 hours to assemble
a yodeler.

' A xylophone sells for $1000 while a yodeler sells for $2000. How many
Of each should Zxy Musik Kompanie make to realize a maximum weekly
income?

To summarize the problem:
let x = number of xylophones produced

y = number of yodelers produced .

Thus:
xylophone yodeler constraint

part prod

polishing

assembly

selling

lx

3x

3x

4y

ly

4y

, 40

4 30
4 48

price

thousand $

lx 2y z Income (I:

_

This is the system of inequalities noted in Section 2 with the additional
function: I x + 2y = I to be maximized. We now rewrite the inequalities as
equalities by the addition of slack variables si, s2 and s3; include the func-
tion I to be maximized; write the problem in the format of the Simplex
Tableau and pivot to its solution,. Thus:

-x -y 1 ratios

1 4 40 si 40/1 = 40
3* 1 30 = s2 30/3 = 10
3 4 48 s3 48/3 = 16

-1 -2 0 =1

The basic solution in this canonical form is: x = y = 0 and I = 0. We are
producing zero products and income is zero, but it is feasible. Noting that:
1 x + 2y + 0 = 1, especially that the coefficients of x and y are positive
(negative in tableau format). Of course Zxy Musik Kompanie should pro-
duce more than zero instruments if it wishes to have some income; the
tableau indicates that x and y should not be independent variables and set
equal to zero. We must pivot x and y to be dependent variables. Since both
x and y have negative coefficients in the tableau, let us arbitrarily pivot in
the column of -x. Observe the calculations for the least ratio and pivot on
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3*. Thus:

"s2
-y

1

-1/3 11/3 30 = s1 30/(11/3) = 8+
1/3 1/3 10 =x 10/(1/3) = 30
-1 3* 18 = s3 18/3 = 6 4---
1/3 -5/3 10 =1

We are now producing zero yodelers, 10 xylophones and realizing an
income of 10 thousand dollars. In this canonical form we have: (-1/3)s2 +(5/3)y + 10 = I. The solution I = 10, will be improved by pivoting so that y
be comes.2 flepan,dent.vatiab/e.,Agaics, -examine the ratios and pivot on 3*
gives:

'S2 -53 1

8/9* -11/9

4/9 -1/9

-1/3 1/3

-2/9 5/9 20

SI

=x
=y

=1

8/(8/9) = 9 4-
8/(4/9) = 18
negative

There is still a negative entry in the last row indicating that s2 shouldbe pivoted into the solution. Thus:

-Si -S3

9/8 -11/8
-1/2 1/2

3/8 -1/8

4

= s2

=x
=y

(4,9)

1/4 1/4 22 = I .

Now we have: (-1/4)S1 + (-1/4)s3 + 22 = I and can do no better. If either si
or si is given a non-zero (of course positive) value, the 22 thousand dollars
will be decreased Zxy Musik Kompanie will do best to manufacture 4 xylo-
phones and 9 yodelers and will have a gross income of $22,000 per week.
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Notice that in the original function to be maximized:

1(x) + 2(y) + 0 = I

1(4) + 2 (9) + 0 = I

22 =1

Part of the final solution is s, = 9. This was the slack variable originally
introduced into the inequality constraining the total polishing time:

y + = 30

3(4) + 9 + = 30

21 + s2 = 30

= 9

The polishing department will use 21 hours per Week leavine-9 hours as un-
used 'slack' time.
Section 7: Summary of the Simplex Algorithm for Maximizing a Linear

Function:
1. Slack variables are introduced to rewrite the constraining inequalities as

equalities. All variables are constrained to be non-negative.
2. The equations are written in Tableau format with the function to be

maximized as the bottom row.
3. Feasibility is maintained by pivoting on a positive element. If there are

more than one positive elements in a given column, pivot on the one
which as a divisor gives the smallest quotient with the element in the
right hand column.

4. The function is maximized when the bottom row contains only non-
negative elements. If there are negative elements in the bottom row,
pivot in one of these columns. Several pivots are usually necessary to
complete a problem.

Final note: the procedures discussed in this paper apply to maximizing a
linear function. Further considerations are necessary to solve a minimizing
problem.
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NEW UICSM MATERIALS INTRODUCTION TO ALGEBRA
AND GEOMETRY AND PROBABILITY

by Robert G, McLean, Northeastern University

1:11=1:1=1=
In 1958 I made a study of teachers' attitudes toward integrated algebra-

geometry courses for-college preparatory students who were not going on
in mathematics. The almost universal reaction was "These subjects cannot
be integrated. It is mixing oranges and apples." Since the simile is from
"old math" perhaps teachers of the "new math" which can handle mixing
sets of apples and sets of oranges, are ready to accept a mixture of .algebr.
and geometry in the same course. Historically, algebra and geometry were
mixed in a branch of mathematics called analytic geometry. Thus, mathe-
matically the problem has been solved. Is there an educational solution to
the problem?

The responses I received to my questionnaire reflected more than the
respondents' lack of recognition of the existence of a mathematical solu-
tion to the problem. It reflected the educational solutions to the problem
which were then being offered. At that time, integrated algebra geometry
courses might be classified into two large categories. One consisted of teach-
ing a chapter from an algebra book, a chapter from a geometry book, a sec-
ond chapter from the algebra book, and so forth. These were a set of alter-
nate units in geometry and algebra. Some of these mixtures probably still
exist today. In fact, most books written specifically for integrated algebra
and geometry courses consist of alternating chapters. The content of the
chapters is more closely correlated than are chapters of different books,
but the structure is very much the same.

The second method of constructing courses of study that mix algebra
and geometry is to teach them on alternate days. They may even have two
different teachers. Mr. A may teach algebra periods 1 and 2 on Monday for
two classes while Miss B is teaching geometry periods 1 and 2 on Monday
to two other classes. On Tuesday Mr. A's algebra students go to Miss B for
for geometry , and Miss B's geometry students go to Mr. A for algebra. Some
of you may be acquainted with this technique. I have heard of its still be-
ing tried in some school systems in this region.

Both of these methods of mixing algebra and geometry accomplish, to a
greater or lesser degree one of the major purposes of such programs. It re-
duces the memory gap between first year algebra and second year algebra.
inserting a year of geometry between the two years of algebra has a bad ef-
fect on the student's ability to recall first year algebra concepts when they
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enter the second year algebra class.
A second, more important, argument for developing integrated algebra-

geometry programs, however, is very poorly served by simple chronological
mixing of the subjects. This argument says that it is a desirable end for the
students to recognize the close relationship that exists between algebra and
geometry and that they should be seen as branches of the general field of
mathematics which are mutually supportive. At the lowest level, such sup-
port consists of using geometry as a source of "applications" for algebra,
and of pointing out each time it is used how algebra is a tool for solving
many geometric problems. In a specially designed integrated algebra-geo-
metry textbook, this last function can be served, very well. A program which
uses two different textbooks may not only fail to serve this function, it may
be counterproductive. That_is, the algebra textbook may chose geometry
problems.,,a s applications' before they appear in the geometry part of the
course, and the geometry textbook may call'upon the use of certain alge-
braic techniques before they have been developed in the algebra textbook.
Neither method of designing a curriculum, however, seems to support the
idea that algebra and geometry are different manifestations of the same dis-
cipline. Or, more correctly, are different views of the same manifestation,
and that it is sometimes advantageous to take one view and sometimes ad-
vantageous to take the other. Thus, they are not competing subjects but
complementary subjects.

Considerations of the educational problem, as roughly outlined above,
leads to the proposal that a program which drew upon the mathematical
solution to the problem might be the best one. If we accept this point of
view, then our.problem can be restated. How do you design a course in co-
ordinate geometry for students who have not had a course in algebra or in
geometry?

The designers of these materials, in fact, presented themselves with an
even more challenging problem. They knew that most of high school mathe-
matics was invented to solve real problems. It was not thought up in some-
one's head as an exercise in pure logic. Thus, they reasoned should it not be
possible to present mathematics in a similar manner, that is, as an invention
of man that grew out of his need to solve certain problems. You must care-
fully,-note the difference between this use of applications and the common
use of them. In the common use, the applications are used to illustrate the
mathematics. In this program, the applications are used as the reason for
the very existence of the mathematical materials being studied. The prob-
lem is presented before the mathematical mechanism has been developed
for solving it. The mathematical mechanism is developed in the process of
solving the problem.

If we include this second purpose in our consideration of the design of
the course, we will find that geometry is not the only source of problems.
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In fact, it is the least appropriate source. Many of the problems come from
mechanics, that area of physics that deals with motion, Newtonian mech-
anics, to be exact.

This source of problems does not mean this is a course in physics. It
certainly is not. The methods of attacking problems is not that of the phy-
sicist, but of the mathematician. This is, truly, a mathematics 'course. Your
friendly colleague in physics would not want to substitute it for his own
course, but he would certainly encourage you to substitute it for yours. I
will take an example from this program to illustrate why this last statement
is valid.

Physics teachers are prone to ask this particularly annoying question of
mathematics teachers, "Don't you teach these kids any algebra?" If you ask
for it, he can even give you an illustration. For example, he may claim that
his students cannot solve simple uniform motion problems using the formu-
la d = rt, given distance and time or given,distance,and rate., They,u.sii-gily
Can solve it given the rate and time -- but not always.

One very probable reason for this failure on the part ofyour former (or
current) students to recognize a "physics problem" as an "algebra problem"
is because the physics teacher refuses to tell them it is. However, it may be
because of our love of x and y in mathematics classes.

Is d = rt the same equation as y = ax? Not exactly, but the method of
solving it is the same. Can your students solve ay = x? How about 3x = 9?
All of these are equations in which one number is shown to be the product
of two other numbers. It is one of the most common types of equations
found in applications. A = 1w is another example. C =1rd is a third. I = PR
is still another.

Recognizing the frequency of such equations in applications, how much
time do you give to solving them -- for any one of the three numbers?

Do you give your students equations such as x = yz or a = bc, then as-
sign values to different pairs of these variables and ask the students to find
the value of the third one? This is what the physics teacher wants his stu-
dents to be able to do with d = rt.

Of course, the physics teacher could help bridge the symbol-gap by try-
ing to find out how his students read algebra or what kind of notation they
can read. He could then recast his physical formulaS in "algebraic" dress
appropriate for the readiness of his students. Finally, he could lead themfrom that notation to the one with which he wants them t() deal. Let me
give you an example of such a change of appearance,

Problem: Using the formula d = rt, find the time necessary to travel 20
miles at a constant rate of 5 miles per hour.

Let x = time d = rt
20 = distance 20 = 5x
5 = rate
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Somehow, doesn't your brain relax when it sees that familar form, 20 =
5x? Isn't it easier for you to read than 20 = St? Don't be hasty to say, `No!"
You are letting your mind rule your heart. Deep, down inside of you, all
of your mathematical training has prepared for you to handle equations
stated in terms of x. You can handle T's, but you do not like to.

I want to take this illustration one step further to a point which may or
may not be reached in a high-school physics class. d = rt is not the most gen-
eral form of this law for motion at a uniform speed. This is the more gen-
eral one.

d = rt + do

What is do?' The distance from the origin at time o. In terms of coordi-
nate systems, what does this mean? It means that the occurrences of d = o
and of t = o are not simultaneous. Let us take the local turnpike as an ex-
ample. Distances on it are marked by mileposts which begin with o at, the
M'aksachiasettE iorder. tee us say that the milepost out here reads 15. Let
us say that we also begin from here and travel at a speed of 50 miles per
hour. Can we write an equation to describe our location on the turnpike?
How about this one?

d = 50t + 15
Look at this equation very carefully. It is, supposedly, pure physics. Do

you have a geometric interpretation for it? Do you want to see it in x's and
y's?

y = 50x + 15
It is a linear equation in two variables. It is in what form? The slope-inter-
cept form. What is 50? The slope. What is 15? The y-intercept. What have
we illustrated? Is it a translation between the distance formula in physics and
the slope-intercept form of a linear equation from analytic geometry? In
fact, can we emphasize this a little by interpreting the slope of the line as a
rate of change? The rate of change of the y-coordinate with respect to the
x-coordinate. In physics, it is the rate of change of the distance-coordinate
with respect to the time-coordinate, is it not?

Notice how the algebra, the geometry, and the physics get intertwined
in a natural manner. There is no forced marriage. By learning to think in
terms of coordinate systems, many such relationships can be quickly iden-
tified.

This initial example from the new UICSM materials was chosen to illus-
trate this close relationship which is established among algebra, geometry,and motion. This is true integration of subject matter. It is not a mixtureof discrete elements. It is, in the language of the new mathematics, a con-tinuous set of elements too closely allied to be separable.

12
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DEVELOPING MATHEMATICAL PROCESSES

by Nancy R. Martin, University of Maine

11:11=1111=0=2
A mathematics program, designed for children must include material

which children find fun and exciting to use. It must provide the foundation
necessary to understand most strands of mathematics. It must recognize
and deal with each student according to his needs, ability, and learning
style. One must do more than promote this as the ideal, accomplished on
rare occasionsby a "super teacher". A new program was needed which pro-
vided a useable format and the necessary tools which would enable all
teacMrs to deal more adequately with the vast array of individual differ-
ences and group needs in our classrooms.

dewit5pmes-Aal edition of such a program (see bibliography) was
field tested beginning in 1971. During that time the team of investigators
from, the Wisconsin Research & Development Center for Cognitive Learn-
ing consistently asked three questions while children interracted with the
materials: "How do children like to learn?", "What should children learn?",
and "flow do children learn?". When using the materials with children at
the Madison and Chicago field-sights, reactions of teachers and students
were carefully considered to insure that activities included in the final pro-
gram would be fun and exciting for children. To be a significant compon-
ent of a mathematics program, the activity should build on an overall se-
quential approach in which the learner develops the ability to use each of
the basic strands as a valuable tool in problem solving. To be a pedigogical-
ly sound program, it must recognize that no one approach meets the needs
of all children. Each child has his own special strengths and weaknesses and
within a class many learning styles and developmental levels will be present.
Therefore, a sound program includes the variety of approaches necessary
when introducing any given concept.

All too often, teachers (and published programs as well) pay lip service
to manipulative materials at best. The manipulatives are given casual atten-
tion in the teacher's guide and the teacher quickly uses them to demonstrate
to the whole class or the children are invited to use the materials at a learn-
ing station during their spare time - assuming that the children who need the
materials the most will even have the spare time. Observation and question-
ing of an individual student as he interracts with the materials are not util-
ized to discover the child's thought processes. This approach ignores the
research of leading psychologists who state that the child will progress
through various stages of development, beginning with the preoperational
stage, then the concrete operational stage, and reaching the stage of formal



operations at approximately twelve years of age. It is only then that a child
can easily attach 'meaning to formal, abstract operations. If a child fails to
acquire a specific skill, it is usually cemediated by more practice via another
dittoed work sheet. Unfortunately, there are many ills which the purple
plague has failed to cure.

Many children do not readily attach meaning to abstract symbols. Even
extensive use of manipulative materials can be of limited value if the teach-
er does not provide an approach utilizing a gradual transition from the use
of objects to the use of symbols.

I was recently working with a fourth grade child whose achievement in

math appeared to be significantly lower than his ability in other areas.
John's class was learning to regroup in addition and subtraction using the
following method:

339 . = 300 + 30 + 9 = 200 +130 +Q
-165 100+ 60+ 5 100+ 60+ 5

100 + 70 + 4 = 174
At one of our first sessions, he proudly demonstrated his ability to solve
the above correctly. Shortly after this I laid six blocks on the table. I then
removed two of them and asked John to write a mathematical sentence
which would tell us what had just happened. He immediately asked, "Is
that plus, minus, times, or division?" Because of our constant tendency to
question students only when they get the wrong answer and because of
our tendency to give them formal approaches at a very early stage of their
development, I fear that their are many other such students in our class-
room who can easily go undiscovered. If one cannot picture.what is hap-
pening and apply this to new situations, memorized formulas and facts are
of little long term value.

The chart below (Figure 1) illustrates the mathematical content includ-
ed in this program. Note that applied mathematics, i.e. problem, solving is
the central strand. Problem solving and measurement will be interwoven
with all other strands. Children will be encouraged to develop their own
method to solve a problem not to think always of there being only one
correct way.
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Activities in this program seek to develop the child's skills when work-
ing with the nine basic processes identified below (Figure 2). They must
work with each of these processes at various levels of sophistication (super-
processes) which include the physical, pictorial, and symbolic representa-
tion. This is followed by validation in which the student begins with the

4ASIC
PItOCES,ES .. ..15;Wfal---71ctorlal

PI PREST.ffrTil A 'A. '

Symbolic Physical Pictorial Symbolic

DESCRI1IN3 4
TIAS'IFT:NG

:TYPARING 4
ORDERI!Z

E-vALIZINa

JOI1I4a &
SEPERATI1G

.

f.IRCUPI1G 4

PART:TIO:=!:a

A

Figure 2
>t,

symbolic approach but then demonstrates that his thinking processes were
appropriate and his solution accurate using physical or pictorial representa-
tion. Processes are best understood when experienced. Try some of the fol-
lowing activities to acquaint yourself with the materials and the nine basic
processes.

This is Silly Sylvester, one of the DMP
characters. How many attributes of
Silly could you list when DESCRIB-
ING him to your friend?

Some of the possibilities which you
might have listed are thin legs, a spot-
ted hat, a fuzzy body, or striped shoes.

When describing an object, the number
of possible attributes is limited only by
the child's imagination - there is always
more than one correct answer.

Classifying is the process of sorting objects on the basis on one or more
attributes. Look at the lines below and circle the one which you think be-
long together.

131



Some of you might have chosen to concentrate on "short lines", others
on "wavy lines", and still others on "long, straight lines". Notice that once
again there is no one correct answer! The emphasis is upon the child's abili-
ty to, think independently and to find a logical solution. Children at one
stage of development will focus ou only one attribute while others might
observe and sort according to two or more attributes simultaneously. Those
attributes most commonly encouraged in the program are those related to
shape, length, weight, numerousness, and capacity.

Closely related to the processes of describing and classifying are the pro-
cesses comparing and ordering. When comparing, the child is asked to look
at only one attribute and to determine if two objects or sets of objects are
the same or different. (For example, are both of your shoes the same
weight?) When ordering the signs <, =, and > are introduced. Children
first focus on "greater than" and "less .than" using a character named

'C'Teedy -Duck who is-always hungry and therefore, always opens his''liil],
ready to eat the greater amount. A first grade teacher who used this prog-
ram as a pilot program in Chicago reported that at the beginning of a sec-
ond grade there was almost 100% retention of the meaning of < =, and

which to me is proof of Greedy Duck's effectiveness as an activity des-
igned to give meaning to abstract symbols normally very confusing to most
children.

Equalizing is the process of making two objects the same on a given attri
bate. This is accomplished either through adding on or taking away. (Note
that in equalizing you begin with two objects, do something to one of them,
and end with two objects.)

For example, place the loose change which you have in your pocket on
one side of the scale and the loose change which your friend has on the
other. What would you have to do to make the weight of both sides the
sa me?

Joining and separating are two processes closely related to equalizing.
When joining you combine two objects on the basis of a common attribute
(i.e., the area of the triangle formed when you combine triangle P with
another triangle P will be equal to the area of triangle Q). Separating is the
process of taking apart an object or set having a specified at tribute to make
two objects or sets, each with that attribute. (i.e., make a chain using lots
of links. Now separate that chain into two smaller chains.)
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Grouping is the process of arranging a set of objects into groups of a
specified size. For example, given a collection of unifix cubes, how many
groups of ten can you make? Will there be any cubes left over?

a al
gaol) Ei ED

63E0 ts, a a

OVIAWIIta.awasr4
111.111WEIMISIIINEWIl

at 63 6, EP
Grouping is used extensively to build the foundations needed for an un-

derstanding of place value and for conversion from one unit to another in
measurement.

Partitioning exists when you know the number of groups which you
must make from a set of objects but do not know the number of objects
which will be in each group. When asked to deal a deck of cards to "x"
players you are partitioning. Partitioning is used to build an understanding,
of division and fractions.

Overriding the development of the nine basic processes just described,
are the processes of representing and validating. AS John's disabilities have
shown us, using physical materials ddes not always insure that the child
will be capable of drawing the conclusions necessary to use meaningfully
abstract symbols. As you follow a child through a given sequence of activi-
ties in the program you will find that he moves very gradually from using
physical representations, pictorial representations, and finally, symbolic-re-
presentations to help him comprehend the process. (See Figure 3.)

(lots of links or
unifix cubes)

3 (graphs) (tallies)

2 111 + Ill

Physical Representation Pictorial Representation

2 + 3 = 5

Symbolic Representation

Figure 3

During the validating process the child begins with the symbolic repre-
sentation, and then moves to the pictorial representation and/or the physi-
cal representation. (See Figure 4.)
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+ 4

0
10 X 20 4

X 10

Figure 4

(The child validates
two-digit multiplication
by finding the area of
sub-parts of a 24 X 14
unit rectangle.)

This is significant both because of the immediate feedback which it pro-
vides, and because when errors are made the child can begin to analyze the
erroneous aspects of his own thinking and learn from his mistakes. Children
validate all work when learning a concept. It is important that a teacher
questions both the wrong answers and the right answers because a right
answer doesn't always insure a thorough understanding of the processes in-
volved in achieving the correct answer. Careful observation of the child's
method of validating help you as a teacher understand the child's thinking.

Children must be viewed as individuals. They learn in many ways. They
learn through interraction with the teacher, interraction with peers, and
interraction with materials. Individualization of mathematics implies more
than individualization of pacing. Materials have been provided which permit
varied approaches to achieve the same objective. Some children will need
to use all approaches but most children or groups of children will find that
one of the alternatives will be sufficient and will master a given objective
without needing to utilize the options available. Concepts are developed
through the use of games, stories, inquiry-discovery activities at learning
stations, and independent work.

Rarely is there only one way to solve legitimately a given problem. Each
child is encouraged to choose a method which makes sense to him. Some
children learn best when working alone. Others learn best when interract-
ing with peers. Some provide their own structure and others must rely up-
on the teacher for the structure. Some need the physical representation far
longer while others function easily using only pictorial representation and/
or abstract representation. A teacher should be willing to accept this philo-
sophy and should not only allow but encourage children to use their own
initiative to solving problems.

When comparing this program with other primary mathematics prog-
rams currently in use teachers will observe that children reach the abstract
level of many processes at a later age. It is the philosophy of this program
that one should not look at what concepts a child can be taught, but at the

1 3 4'
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age at which a concept is learned with ease. A spiral approach implies that
concepts taught at one level are repeated at another level not for the pur-
pose of reteaching but only for maintenance skills. Although a child is not
hurried to use the abstract representation, when he reaches that point, he
hits it hard, soon leaving the other approaches behind. This is possible only
when the proper foundations have been laid.

Charlotte Junge states, "A slow learner is not helped by mere repetition,
an enlarged view, carefully developed, is better for him than endless repe-
tition." As objects ,are manipulated the pupil tells what he sees, what rela-
tionships he observes, and chooses a logical approach to solve a given prob-
lem. The teacher plays a key role in the selection of materials which are ap-
propriate for the given objective and the student's learning style. The teach-
er must encourage the pupil to think for himself, but ask the questions
which call critical points to the pupils' attention, Objects are manipulated
and the students then use pictures or symbols to record what has happen-
ed. Pre- and post-assessment through informal observation and formal in-
ventories combined with individual group record keeping permit each teach-
er to assess both the individual and group needs of her class and to provide
for them. The use of a variety of objects and activities continually encour-
ages the child to see how mathematics relates to his total world.
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GRAPH NETWORKS - APPLIED TO COMMUNICATIONS,
ECOLOGY AND TRAFFIC FLOW

by Frances C. Pascale, Albertus Magnus College

Which one of us has escaped the following challenges: The object of each
is to start at a corner and to trace the entire figure with one continuous
line without lifting the pencil from the paper, without tracing over any
part of a line segment more than once, and without crossing over any seg-
ment,
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After "going through the motions" we conclude that (a) and (b) are possi-
ble and that (c) is not. Even with this conclusion safely in tow, we feel that
there is also some difference between (a) and (b).

Students react most favorably when asked: "What if I were to say that
there is a way to tell without ever tracing the diagram. This method would
allow us to make up our own puzzles of this type as well. Would you be in-
terested?" But first some history.

The Konigsberg Bridge Problem
There was in Germany (actually East Prussia) a town called KOnigsberg.

Now, the River Pregel passed through KOnigsberg in a rather peculiar way.

Fit. re 2

P,'1.

To get around town,.-the people of Kbnigsberg built seven bridges. Thus be-
gan what is now commonly called "The KOnigsberg Bridge Problem." Each
Sunday when the weather permitted, the people of Konigsberg were accus-
tomed to take an afternoon stroll. This, of course, was before autos, air
pollution and gasoline shortages! They were challenged with the following
problem: "Is it possible for a person to leave home, walk crossing all seven
bridges continuously withoutrecrossing any of them, and to end up back
at home?"

In 1735, Leonhard Euler , a Swiss mathematician, settled the question and
at the same time set the foundation for what has come to be called Graph

.1 3
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Theory (a branch of topology). Euler proceeded by replacing land areas with
points (vertices) and bridges with lines (edges) come tang these points.

Ntc.J
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FFigure 3 Figure 4
By such a conversion, the problem reduces to that of starting anywhere

and traversing the "graph" with one continuous "sweep" of a pencil with-
out lifting the pencil from the paper. Euler realized that this could only be
done if all the vertices of the graph are what we shall call "even." He also
showed that if a graph contained no more than two "odd" vertices, it may
be traversed in one journey, but it is impossible to return to the starting
point. But first let us consider some terms.

Basic Terms and Theorems (Cf. Roberts)
Graph: A graph s a figure in the plane or space which consists of a set

of points called vertices, and a set of line segments or curves called edges.
An edge cannot have any intersection with itself, except possibly at its
two endpoints.

Path: A path is a sequence of different edges in a graph that can be tra-
versed continuously without retracing any edge.

Even Vertex: A vertex is even, if the number of edges ending at it is even.
Odd Vertex: A vertex is'odd, if the number of edges ending at it is odd.
We are interested in the number of even and number of odd vertices for

each graph. It is here that I suggest construction of the following table where
students may record results from many puzzles:

Puzzle Traceable Number of Number of
Even Vertices Odd Vertices

(a) Yes 5 0

(b) Yes 3 2

(c) No 1 4

Kimigsberg No 0 4

13'



Given a sufficient number of puzzles the students have little or no diffi-
culty arriving at the following results:

Theorem 1. In any graph the total number of odd vertices is even.
Theorem 2. If a graph has more than two odd vertices, it can't be tra-

versed by a single path.
Theorem 3. If a graph has no odd vertices then it can be traversed by a

single path. Moreover, we can start from any vertex in our route.
Theorem 4. If a graph has exactly two odd vertices, it can be traversed

by a path which starts from one odd vertex and ends at the other (but you
can't get back to where you started.)

These theorems demonstrate Euler's results in solving the KOnigsberg
Bridge Problem. In particular, from Theorem 2 we learn that the bridge
problem cannot be solved by a single path since it contains 4 odd vertices.
We can now handle all puzzles of the type originally posed. Students May
find it interesting to take a map of their immediate locality and apply the
above examination. For example, consider the New Haven area.
This graph has exactly two odd vertices, N and W. It can be traversed by a
path which starts from one odd vertex and ends at the other.

Graph Theory Develops
It was here that graph theory remained for quite some time - just useful

for solving puzzles. In 1847, Kirchhoff used it, however, in working with
an electric networks problem. Ten years later, Cayley applied it to a chemi-
cal. isomers problem. It was also applied by Sir William Hamilton to his
"Around the World Game." Certainly many have applied it to the Four
Color Conjecture. (See Harary for discussion of these applications.)

However, it was not until our own twentieth century that graph theory
was extended and enthusiastically received to handle problems in such di-
verse areas as communications, ecology, transportation, sociology (a study
of group dynamics and cliques), psychology (a study of preference), and
game theory (in which category I include such studies as that of war stra-
tegies.)

General Examples: Before we can show some examples we need another
new term:

Directed Graph or Digraph (Cf. Roberts): A digraph is a graph in which
a direction may be specified along a given edge. Thus A--40--B or A -4 B
or A 440 B.

We can see that paths are going to be harder to find since we can't go
"against" the given direction. Examples of digraphs are plentiful. If X, Y
are vertices, X Y, the digraph, we might have the following interpre-
tation in: (a) Communications: "X can communicate with Y." (b) Tourna-
ments: "X beats Y." (c) Psychology: a person "prefers alternative X to al-
ternative Y." (d) Food Webs in Ecology: "X preys on Y." (e) Games: "It is
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a legal move to go from position X to position Y." (I) Transportation:
"There is a direct link from location X to Y."

We have mentioned some areas where applications can be found. Let us

look at some applications in greater detail.
Application in Communication Networks: Suppose we have four indivi-

AN duals: Al, Betty, Carol and Don who can communicate with one another
in the way represented by digraph D.

A

O

a
i

c
I

0I\
A: I 0 0 1

0 0 0 I

I 0 0 0 /
Figure 5 Figure 6

(note: uRv if u can communicate directly with v.) Now, these digraphs get
rather cunbersdniec so we introduce an algebraic device known as the adja-
cency matrix of the digraph.

Adjacency Matrix: Let D be a digraph. Suppose we list its vertices as
u2,.., un. The adjacency matrix A associated with D is the matrix (aii)

defined by a..
ij

= 1, if u.Ru. i.e. u. ...1P--n' and a.. = 0, otherwise.

Now the above digraph has the adjacency matrix A.
There is a very useful theorem in graph theory that would be a delight

to any student who might be studying multiplication of matrices:
Theorem: If D is a digraph with adjacency matrix A = (ail), then the i, j

entry of At gives the number of sequences of length tin D Which lead from
ui to u.j. (Cf. Roberts)

0 0

I

o 0 0

0 2\
3

0 I I I

. 0 0 a
Figure 7
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Thus a simple matrix multiplication would answer, "In how many ways
can Betty get a message to Carol in three steps." The answer is in just one
way. One might also mention that as the adjacency matrices become large,
we might prefer to have a computer do our computation for us.

Application in Sociology: One aspect of a study of structure within a
group of people is determination 3f all possible cliques.

Clique: A clique of a communication network is a subset C of individu-
als containing at least three members, with the following two properties:

(1) Every pair of members of the clique has two-way communication.
(2)The subset C is as large as possible with every pair of members having

property (1). (Cf. Kemeny, Snell)
Consider the following: You are observing a nursery school play yard

as part of a study of group interaction. During the first week, your records
show that Laura played with everyone except Eileen, Gretschen has played
with all the boys, David has played with all the boys, May and Jeannette
have played only with each other and with Laura, and Steve has played with
Harvey. (Cf. Harary et al.) Let G and A be the corresponding graph and
adjacency matrix respectively.

L E & 0 in 3" S

L (0 0 1 1 I I I

E 0 ° o o 0 a 0

G I o 0 I o o i

D Io 1 o o 0
m

1 o o 0 0 I 0
3 1 o 0 0 1 0 0
S \1 0 i % 0 0
H t 0 I. 1 0 0 I

Figure 8

O

O

O

Cliques are going to be those submatrices which are of largest size and
which contain l's everywhere except on the main diagonal. Thus our
cliques are [L, M, J] and [L, G, D, S, H]

Traffic Planning Example
Reachability Matrix: Associated with a digraph D is its reachability

matrix R = (r..) defined by r.. = I ifu. is reachable from u. (no limit to the..

14 ti
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number of steps) rij = 0, otherwise.
Strongly Connected Digraph: A digraph D is strongly connected if for

every pair of vertices u and v, v is reachable from u and u is reachable from
v. Thus R has 1 in .each position.

We have the following very useful theorem. (It helps to have a compu-
ter for the computations.)

Theorem: Suppose D is a digraph of n vertices witlydjacency rnatrix A
and reachability matrix R. Then R = B (I + A + A- +...+ An-1) where
B(x)= 0 if x = 0 and B(x) = 1 if x 0.

I have been told that at times Boston has not been strongly connected.
fet,i,isconsideP an `example. Suppose that there are 5 landmarks in Boston:
A, B, C, D and E connected by a series of one-way streets as described in
figure 9 by digraph D and adjacency matrix A.

Figure 9

B i)

u 0

c °
t

p °
0 I

0 0 0

We ask is D strongly connected? In ordez to answer this we find the reach-
ability matrix R, which is shown in figure 10.

O 0IU
C I 0

0 I 0
0 0 0

o °

I C 0
0 3. 0 I

U 1 0 to
O 0 I J I

I 2.

e- A pi` 2 y
a a 3 3xt 1 It

AAen

R: t-Li At R',A1«r1),te
I

Figure 10

A -
4

I 0
t

I

Since R is composed entirely of l's we conclude that D is strongly connected.



137

But what if we, or the Boston Traffic Authority, decide to change just
one of these one-way streets, resulting in the situation depicted in figure 11.

A kl C

II I

I

I t

(tC. lilt
D\ I I I I

L 0 0 u

Figure 11

f
Alas, D is no longer strongly ainnecled. So, if our hapless

f
tourist

0

is
f
located

at point E when the change takes place, it will be impossible to leave!
Applications to Ecology and Food Webs
Another example of a use for digraphs can be seen in ecology, especially

in the construction and investigation of food webs. A food web for an eco-
logical community is a digraph whose vertex set is the set of all species
being 'considered. An arc is drawn from species u to species v if u preys
upon v. From the food web, we can define the corresponding competition
graph. This graph has as vertex set the set of all species, and two species
are joined by an edge if and only if they are in competition, i.e. they have
a common prey. An example of a food web and its corresponding competi-
tion graph are shown in figure 12.

F000 WEd Com'ET I 1 roN GRAeti

Figure 12

Many ecological questions are now being phrased, discussed and in some
cases solved using these graph theoretic techniques.

Conclusion
Simple graph (or digraph) notions are being extended to allow for signs

(positive or negative) on the edges. This leads to a discussion of balance in
the graph or system described by the digraph. Another natural extension
puts various weights or probabilities on the edges of our graphs.

I have attempted to give some flavor of applications in this rapidly grow-
ing field of graph theory. If I have succeeded in wheting your interest, may
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I recommend those books mentioned in the bibliography. My experience
has been that students are very receptive to these notions and that there is
some graph theory that can be done at almost any level.

Footnotes:
1F. Roberts, Finite and Discrete Mathematics as Applied to the Social and Environ-

mental Sciences, (title subject to change) Mimeographed notes to be pub-
lished as a text.

2lbid

31bid
4J. G. Kemeny and J.L. Snell, Mathematical Models in the Social Sciences, Blaisdell,

New York, 1962.
5F. Harary, R.Z. Norman and D. Cartwright Structural Models: An Introduction to

the_Theory of Directed Graphs. Wiley, New York, 1965.

Bibliography

Arrow, K.J. Social Choice and Individual Values. J. Wiley: New York, 1951.
Busacker and Saaty, Finite Graphs and Networks. My0ravv-H ill Book Company; New

York, 1957.
Chen, W., Applied Graph Theory. American Elsevier: New York, 1971.
Coombs, C.H., R.M. Dawes, and A. Tversky, Mathematical Psychology: An Elemen-

tary Introduction. Prentice-Hall: Englewood Cliffs, New Jersey, 1970.
Flament, C., Applications of Graph Theory to Group Structure. Prentice-Hall: Engle-

wood Cliffs, New Jersey, 1963.
Forrester, J.W., Urban Dynamics. M.I.T. Press: Cambridge, 1969.
Forrester, J.W., World Dynamics. Wright-Allen Press: Cambridge, 1971.
Harary, F., Graph Theory. Addison Wesley: Reading, Ma., 1969.
Harary, Frank editor, A Seminar on Graph Theory, Holt, Rinehart and Winston:

New York, 1967.
Harary, F., R.Z. Norman and D. Cartwright, Structural Models: An Introduction to

the Theory of Directed Graphs. Wiley: New York, 1965.
Kemeny, J.G. and J.L. Snell, Mathematical Models in the Social Sciences. Blaisdell:

New York, 1962.
Kemeny, J.G., J.L. Snell and G.L. Thompson, Introduction to Finite Mathematics

(Second Edition). Prentice-Hall: Englewood Cliffs, New Jersey, 1S.'56.
Ore, 0., Theory of Graphs. American Mathematical Society Colloquium Publishers:

Vol. 38, Providence, 1962.
Roberts, F., Finite and Discrete Mathematics as Applied to the Social and Environ-

mental Sciences. (title subject to change) Mimeographed notes to be published
as a text.

Taylor, H.F., Etalance in Small Groups. Van Nostrand R heinhold: New York, 1970.
Wilson, E.O. and W.H. Bossert, A Primer of Population Biology, Sinauer Associates:

Stamford, Ct., 1971. 'ow.

143'



139

USEFUL COMPUTER APPROXIMATIONS IN
ELEMENTARY FUNCTIONS

by Ann Waterhouse

**.WWW.W1*WW11.W.W.-.1.11.1..e:

I always enjoy teaching elementary analysis because the computer can
be used effectively to build intuitive notions of limit, slope and extreme
values without calculus. Also, for the first time in high school mathematics
the computer becomes an indispensable tool; the programs, although quite
simple, involve iterative processes which defy long-hand calculation.

I have chosen three different problems to illustrate ways in which the
computer can enhance the study of functions. First, let's consider a typical
polynomial in factored form,

f(x) = (x + 3) (x + 1)L (x - 1) (x 1, 2)3 (A)
Sketching the graph is a simple exercise. As a polynomial of odd degree, it
"enters" through quadrant III and "leaves" through quadrant I. The zeros,
-3, -1, 1 and 2, are obvious. Furthermore, a quick check of the signs of the
individual factors over the open intervals determined by the zeros enables
us to conclude that

f(x) is negative over (-02 , -3);
f(x) is positive over (-3, -1);
f(x) is positive over (-1, 1);
f(x) is negative over (1, 2); and
f(x) is positive over (2, 02 ).

Using these results one can sketch a graph which exhibits the general char-
acteristics IA the function. See Figure 1.
My initial homework assignment requires the student to make rough sketches
of the graphs of six polynomials in factored form using the above outlined
techniques. Sample polynoAniajs might be

f(x) = (x + 3),fx + 2)` x (x 1),
f(x) = (x + (x + 1)2 (x - 1) (x - 3)2, and
f(x) = (x + 2) (x - 1)2 (x - 4).

Once these sketches are completed the logical question is, "What can we
do to make these graphs more precise?" Most students readily agree that
we should determine the actual locations of the various turning points since
nothing has been drawn to scale. Together we design a computer search for
maximum and minimum values. A detailed flowchart of the procedure is
given in Figure 2
The user has the-option of finding either a maximum or minimum. His
choice is stored as YS. The initial search interval is [A,13]. Divide this inter-
val into 10 subintervals of width H = (B A)/10 as indicated in Figure 3.
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Assume temporarily that the largest (or smallest as the case may be) func-
tion value on the search interval is f(A). Store this value as L. Now com-
pare the function value at each of the 10 abscissas greater than A with L.
If the function value is larger (or smaller), save it as L and its abscissa as X1.
At the end of this search X1 and L will contain the coordinates of the ord-
ered pair with the largest (smallest) ordinate of the selected points on the
interval [A,13] . To refine our search further, let A = X1 - H and B = X1 + H,
subdivide the new closed interval [A,B] into 10 parts, set L equal to F(A),
and repeat the comparisons. Continue this reduction process until the de-
sired accuracy is obtained. Figure 4 contains a LIST and RUN of this pro-
gram for the original polynomial function (A).
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LIST
IN NI FAIII2/5031IX.11.2IX-1,(A-21,3
ISO DE/ FD1010,1211(A1 ,51/111
1ST PRINT TAll OR /110,,INUT Vs

MOT .LEFT 111aNT ENUPTS 01 SEARCH INTERVAL,
ISO INPUT A.
IN LET 0.411A4fl
140 LIT L112FIAI
IN FOR 00 TO II STOP 21
IN LIT N110/101
IN IF TSTp, GO TO IN10 IF LNS
IN GO TO ISS
IN I F NL TIPS 211
ISO LET L11
IN LET 010
200 NOT A
2I IF MA .11101 11100
220 LET A.0011
231 LET OAF) 14

211 00 TO IN
2N PRINT FRI.. or ..1/21RIL11 ".1CCIIRS AT "I FMRIAII
2211 DID

READY

RUN

MN OR MINT m00
LEFT MID SIGHT [NEWTS OF SEARCH INTERVAL, -3,.
MAX OF 302226 OCCURS AT .2.5015

REAP(

RUN

4. OR 1120 IN
LEFT AND RIGHT ENOPTS or strncr INTERVAL, -1.1
'TAO or 24.136 OCCURS 01 -.0425

REAM'

RUN

NAM OR MINT :ism
LOOT MO MONT ENDPTS OF SEARCH INTERVAL' 1.2
.MIN or -2.3422 occurs 01 1.3011

READY

Figure 4
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Figure 5

After the program MAXMIN has been written each student determines
the proper maximum and minimum values for two of the original six
graphs and makes new sketches with accurate turning points. Figure 5
shows the polynomial (A) drawn to scale.

Are there additional improvements which could be made to the sketch-
es? Checking the graph of polynomial (A) we notice a tangency at -1, which
corresponds to the only squared factor in (A). This suggests that it might
be fruitful to investigate the behavior of the graph at each of the zeros, in
particular to compute the slope of the curve at each zero by a sequence of
approximations f(x t h) f(x, as h approaches 0. A sample program with

h
RUNS for the zeros of polynomial (A) is shown -in Figure 6. Note that for
this exercise the slope is computed accurate to the nearest 1000th; slopes
tend to be large for factored polynomials (2000 at -3) and round-off error
can play havoc with the output if you retain too many decimal places.

For the final assignment the students determine the slopes of their parti-
cular curves at the zeros using SLOPE and modify the graphs once more to
indicate the true behavior of the functions at these points. By comparing
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results they confirm the tangencies which occur for squared factors of the
functions and discover those factors which give terrace points. In fact, our
original polynomial (A) has a terrace point at x = 1 as indicated by the cu-
bic term, and the graph in Figure 5 should be changed to show this.

OLD PIPONAH WAHt..SLOPIO

NAN'

LIST
IN NW INIX.IX.DPIX011.2PIX-11xIX-2,13
IN PANT "WHAT IS X COORDINATE"!
IN INPUT C
IN LIT H.S
IN LIT HIIPINIC.11,-IIIPIC/1/11
IN 1I ASSI011,04.0111 00TO IN
IN LS, AA1
IN LIT 1111/2

TN OOTO Ile
IN PLAINT "THE SLOP, IS "I IMTIA1.100,57/111!

RN St

INAI71

SUN

_Wo WHAT IS X COORDIMATE, -7
TN SLOPE IS 2I!!

READY

Run

NAT IS X COORDINATES
TIN SLOPE 15 P

!main

RUM

NAT IS X COORDINASE
THE SLOPS. IS

RUM,'

RUN

WWAT IS X COORDINATE, 2
Tilt SLOPE IS

READY

Figure 6 Figure 7

As a second application of the computer may I suggest Newton's method
for approximating irrational zeros of polynomial functions. Perhaps you
have been like me, teaching bisection techniques to avoid introducing deri-
vatives. How unnecessary! If we must approximate the curve by a tangent
line to use Newton's method, why not use a "good" secant line instead! In
Figure 7, X1 is an approximate zero of y = f(x). Choose a second point,
X2 on the graph, say 1/100 units from XI. The secant line through (Xl,
f(X1)) and (X2, f(X2)) is an excellent approximation for the actual tangent
line to the curve at (Xl, f(X1)); use its x-intercept as a second approxima-
tion for the zero and repeat the above procedure to obtain more accurate
approximations.

A sample program is given in Figure 8. For demonstration purposes the
user can select the distance between X1 and X2. With a difference as large
as .1 only 6 interations are required to give the zero accurate to 6 decimal
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OLD

OLD PROORAM 4.01E- -11E270N

READY

L ST
Al Ott FRY( X /.X.3-XX-310.2
IP nun H
21 DATA .1
31 PRINT -,'l ST APPROXIMAT10N../
40 INPUT XI
SIP LET /12XIH
Mt LET mcror(x2)-rwr(x;),.1x2 -x11
71 LET XX -MY( X I //M
AR PRINT XI
00 LET XI.%

200 DO TO I SO
210 Du,

READY

RUN

FIRST APROX !NATION! A.3
. 561546
.561512
. 561551
.361553
5615535

1E

READY

RON

/1437 APPROXIMATION} .

373057
.314037
/084454

.314471
431,1472
3114472

31172
1C

READY

Figure 8
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Figure 10

Figure 9
Li 57
Ill LET 1.3.14150
III INPUT n

121 LET C.P.N. 2
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READY

RUN

1 2

III 11.7337 k 12.34436
21 12.36167 12.54034
40 12.91475 12.511634
82 12.55345 12.56634
161 12.54313 12.544 16
328 12.54555 12.56636
6411 11. 56616 11.54636
1248 12.56631 12.5163.
256.1 12.56635 12.54436
512. 12.56636 12.56636

1E

READY

places. The standard number of interations using bisection techniques is
about 201

My final application concerns the epsilon-delta definition of limit. In
recent years I have proceded the formal study of limits in AP Calculus with
an "exploration assignment" using the computer. This assignment has been
so successful in helping the students understand the definition of limit that
I recommend it to yell as a good pre-calculus project.

The notion of limit arose early in mathematics in the calculation of the
area inside a circle. Suppose this region is cut into a large number (n) of
congruent rie- shaped segments, as shown in Figure 9. Each segment is ap-

e
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proximately a triangle with base b and height h. Since the number of pie-
shaped pieces is n, the total area of the circle is approximately n x 'Abh.
Let's rewrite this as

A -(n)n = hb (1)
We recognize bn as the perimeter of the regular inscribed polygon of n sides
and we feel intuitively that this perimeter should be very nearly equal to
the circumference C of the circle. Also the height h should be close to the
radius r of the circle. Thus,

An ,%,_f C (2)

The students' first assignment is to choose a radius r for a circle and write
a computer program which will print n, A (equation 1) and the limiting
valuer _ C for increasing values of n. Figure Po shows a sample program and
outpul. Note that the number of sides is doubled each time. Let the stu-
dents choose their own formulas for increasing n. Someone always incre-
ments by 1; others use 10 or 50. The varied choices are especially impor-
tant for the second part of this exploration exercise.

By comparing entries in the program print-out it is apparent to the stu-
dent that An approaches -E- C when n is large. Can we show this result in
another way? Why not measure the difference between An and L C. If An

2truly approachesi- C, the difference measured by

C (3)

should approach 0. This observation is the basis of the second assignment
which follows:

Imagine that you are playing a game against an opponent who chal-
lenges you to make the difference in (3) less than .001, or .0002, or any
small positive number E. Modify your first program so that it will print
out the number of segments n necessary to make the difference less than
E. Try a few runs. Given enough computer time do you think it is al-
ways possible to find a suitable n for any positive number E?
A sample RUN is shown in Figure 11.

Since the students originally incremented n in various ways, Line 200 will
vary from program to program and the value of n will not be unique for a
given E as shown in Figure 12. By sharing their results, the students can ob-
serve that there is a smallest value of n which will work (obtained by the
fellow who plods upward by 1 !) but that any larger value is certainly
suitable within the framework of the problem. Acceptance of this is so
fundamental in understanding the formal definition of limit and its applica-
tion in epsilon-delta proofs.

14 9
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A TASTE OF PI

by Eugene Wermer, Norwich University

11:113:113=3=11131183=1:11111:1

The title of this paper is a bit misleading. In fact we want to talk about
Monte Carlo methods, i.e. the method of statistical trials, in an effort to
stimulate the use of our computers in similar applications. The material us-
ed herein was taken, in large part, from the subject matter of a course called
"Computer Simulation of Systems" which was offered to NSF participants
at the University of Massachusetts during the Ammer of 1967. Though
the reference list appended cites the sources, Dr. Val Punga's Lectures were
the foundation of this paper. We wish to introduce the subject by consid-
ering the number 111. In Eves' Introduction to the History of Mathematics
we learn that though there were early approximations of the value of the
first real attempt to compute T was done by Archimedes about 240 B.C.
He used the classical4nethod of computing the perimeter of regular inscrib-
ed and circumscribed polygons and found 223/71 AC 74 22/7. Eves goes
on to give a chronology of IT and refers to a more complete list in The
Mathematics Magazine, January - June 1950. We now turn to a probability

_1 5
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method of finding a value for T.
The'first example of a Monte Carlo method applied to computation was

described by Buffon in a paper published in 1777. The Monte Carlo proce-
dure consisted of dropping a needle onto a surface upon which are ruled
parallel lines and counting the number of times the needle touched a line.
As described below, if the lines are spaced properly, it is possible to obtain
a numerical approximation of P' In 1850, Volser used Buffon's method
and obtained a value of I' = 3.1596 and in '1901 it is reported that Lazzer-
ini got a value correct to six decimal places using 3408 tosses, (but a little
computation indicates the result is contrived.)

Refer now to Figure I, let D = distance between two adjacent lines. Let

1

I-

Figure 1

the needle have length L < D so that L/2 < D/2. The needle will, of course
have some inclination with respect to the lines. Let 0 = angle of inclination.
It is clear 0 4 04 N. Finally let x = distance from the center of the needle
to the lower line shown. Thus 0 S x < D. The projection of half the needle
on a vertical line is given by L/2 sin 0. There are therefore two conditions
that determine if the needle touches a line:

(1) x 4 L/2 sin 0
(2) D-x * L/2 sin 0 or x i D-L/2 sin 0

It appears that x and 0 are uniformly distributed in their domains, hence
we have a sample space of ordered pairs (0, x). Those pairs that satisfy the
inequalities (1) and (2) indicate the event, N, "The needle touches a line".
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The probability of the event, H, is given by the ratio of the area of the e-
vent to the area of the sample space as shown in the diagram.

Area of sample space = V D f 1r r
Area of event H = 2 i L/2 sin Ad 0= L i

0
sin Ad A= 2L

0
Probability of H = 2L/IrD
Hence if D P(H) = 1/T or ir= 1/P(H)
We can now approximate P(H) by actually tossing a needle and counting
the number of hits (on a line) we obtain. P(H) Hits or T.., Trials

Trials its
We can simulate the needle tossing process by using a computer. 8 and x

are chosen by a random process. The constraint inequalities (1) and (2) are
tasted and the number of hits is recorded. Figure 2 gives a program with
results for 10,000 needle tosses. You will note D = 1, L/2 = .25 in the
program.

Two runs of the program are shown in Figure 3, and an average of the
results gives the value 3.1481.

A problem similar to the preceeding one is this: Suppose a square with
side equal to 1 ft. is set up and darts are randomly thrown at it. What is the
probability that the square of the distance of a dart from a specified corner
is less than A?

point (x,y) must satisfy (3): x + y` <

in t. e unit square. P(H) = 14)

For the required event, H, to happe,n, a

fr

P(H) = area of the qu,arter circle

4
= .1

0
Here again we may use the computer to select x and y randomly in the
unit interval and then we test the ordered pair in inequality (3). Figure 3

1 rod
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shows the result of such an experiment.
A third application of the Monte Carlo method is in evaluating definite

integrals. The only requirement on a function, f(x), is that it be bounded

and measureable. Suppose we are to find jab f(x) dx. Let p(x) be the uni-

form probability density function so that p(x) = --I for x Cs [a,b ] and
b-a

p(x) = 0 otherwise. Then the expected value of f(x) is

E(f(x)) = f(x) p(x) dx = 1 f(x) dx
a b-a fa

Now if values of x are selected

E(f(x))31f(xi)

b
Hence j4 f(x)

a

randomly in [a,b] and f(x) is computed,

if the number of trials is large

dx x (b-a) f(xj).
N i=1
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A generally poorer procedure is one that uses the ratio of two areas in the
probability sense of the dart game previously described. Here let 0 4 f(x)
c for x in [a,b] . Then b

f(x) dx is the area, A, under the curve bounded
by x = a, x = b, y = 0. A is a portion of the rectangle with base b-a and
height c. Hence points chosen randomly in the rectangle should fall in A
with a relative frequency approximately the same as the ratio A-- Hc(b-4) .
counts the number of such points in N trials, we have a and

c(b-a) N
j'b

f(x) dx 2 c(b-a). Programs for both of these cases are easily written
a

by following the method of the three illustrated programs presented earlier.
A fourth application of the method of stochastic trials is in the solution

of certain systems of linear equations. Though we wish to solve A x = b
where A is an n x n matrix, x is the column vector of the variables xl, x2,

xn, and b is the column vector of constants b , b2, bn, we shall in-
stead-show the theory for a 3 x 3 case so that the details are clear. The ap-
plication to the n x n case is essentially the same.

Consider the equation
J =

for ): x,.= a12x2 "a13x3 + bl
al 1 al 1 a 1 1

Similarly for x2, x3. We might replace the coefficients with new symbols
pig. Hence

(10):

a. x, = b
1,

i = 1, 2, 3.

xl P12 x2 +1313 x3 + bl

x2 P21 xl + P23 x3 + b2
x3 = p3i x1 + p32 x 2 + b3

This system can be solved by Monte Carlo methods if (1)4
J

i =

1, 2, 3 and (2) pij 0. 1#i

First, split the bi's into two factors pi Bi = bi such that pi + Z pi) = 1.
That is: b1 = pl I B1

b2 p22 B2

PI + P12 + P13= I

P2 + P21 + P23 I

P3 + P31 + P32
The system (10) now reads

(I I): xl =P12 x2 + P13 x3 + PI 1 B1

x2 P2I xl + P23 x3 + P22 B2
x3 = p31 + p32 x2 + p33 B3

1 54

b3 =
1333 B3

or
xl =P11 B1 + P12 x2 + P13 x3

x2 = P21 xl + P 22 B 2 + P23 x3
x3 = p3I x1 + p32 x2 + p33 B3
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1 SO

If we detach the p..
li to form their matrix, we see we have a Markov or sto-

chastic matrix.

(12):

SI S2 S3

(S23 p31 p32 p33

S Pll P12 PI3

P21 p22 p23

S3
Each row can be thought of as describing the probability of some system
changing from state Si to state Si. Thus p23 is the probability of S2 chang-
ing to S3. pi is probability of Si staying in Si. Let capital be the pro-

bability that the system move,; from state Si to state Si in some number of
steps and remains there. We are thinking, as an example, of a set of urns
with certain balls in the urns marked STOP and other balls marked with
numbers of other urns. One would pick balls and move from urn to urn
until a STOP ball is selected. Then there are nine equations

Pll =p11 + P12 P21 + P13 P31

P12= P12 P22 + Pl3P32

P13 p12 P23 + P13 P33

P21 P21 PI I + P23 P31

P22 P21 P12 + p.22 + P23 P32

(13):

Now suppose a payoff is made of amount B when the system stops at Si.
Thusif we start at S.

1, N.
1

times and let n 1 1 be the number of times Si is fin-

ish point (i.e. payoff B1 is had), n12 be the number of times B2 is the pay-

off, and ni3 the number of times B3 is the payoff, then the average payoff
= n11 B1 + n12 B2 + n13 B-

3 or more generally yi = Bi if we
NI J Ni "

start at S
1.

However by the Law of Large Numbers, lim
ac

n.. = P..

N Ni

Therefore we may write yi =PtiB.i or in the illustration,

yi =Pi I BI + P12B2 + P13B3.

1 5 5
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Now suppose in (13) we multiply by

PI1B1 P12P21B1 P13P31B1
(14):

P I 2P22 B2 + P 1 3P32B2

P13P23B3 P13P33B3
Adding these nine equations in groups of three and factoring we have

(P11B1 P12B2 PI3B3)=1311 B.1 + P12(P21B1 P22B2 P23B3)+

P13(P31B1 P32B2 P33B3)
But the expressions in parentheses are yl, y2, y3 respectively, so

(15):

y1 =P12Y2 P13Y2+ P1B1

y2 P2 I Y1 + p23y3 p2B2

y3 p31y1 p32y2 p3B3
Note we have the same system as (11)! All we have to do then is find the
average values y and we have the required solution!
Since we have the matrix (12) we simply program the computer to follow
the procedure we have outlined. To be more concrete, let us take the equa-
tions

and similarly for y2 and y3,

36x1 - 18x2 - 12x3 = 23

(16): -I 8x1 +,90x2 - 60x3 = 7

15x1 + 12x2 - 60x3 = 1

We put these in the form (11)
x1 = 1/2x2 + 1/3x3 + 23/36

x2 = 1/5x1 + 2/3x3 + 7/90

x3 = 1/4 x1 + 1/5)(2 - 1/60

Now we see we have a system that meets our conditions for solution. Then

and p11,

23/36 = pi 1B1 = 1/6 23/6 where p11 = 1/6

7/90 P2282 2/15
7/12

P22= 2/15

-1/60 = p33B3 = 11/20 (-1/33) p33 = 11/20

P22, p33
have been chosen so

1/2+ 1/3 + 1/6 = 1;1/5 + 2/3 + 2/15 = 1;1/4 + 1/5 + 11/20 = 1

our matrix (12) now is

12*

1/6

1/5

1/4

1/2

2/15

1/5

1/3

2/3

11/20

Suppose we wish to find x1.

We now set up the following scheme: For row 1, set up intervals on [0,11

Ir_1 00
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to correspond with the values of o-113131231313:
[0, .16667) [.16667, .66667) [.66667, I ]
Similarly for row 2: [0, .2) [.2, .33333) [.33333, I]

row 3: [0, .25) [.25, .45) [.45, I]
Now choose a random number on [0,1]. If it falls in the p11 interval
[0,.166667)tally a count for B1 since the system will remain in state Si.
If the number is in the pl2 interval. [.16667, .66667) we proceed from
state Si to state S2, that is we move to row 2.

We draw a new random number, tally a count for B2 if it is in the "stop"
interval (i.e. the p22 interval). We then begin again with row I as at the
very beginning. However, if we were not stopped, we proceed to the row
indicated (for instance p.71 would send us back to row 1) and continue the
process. Whenever a "stop} reached, we start anew at row I. On the other
hand if we were finding x3, all new starts would be at row 3. After N trials
we compute x1 = (n1 /N) (23/6) + (n2/N) (7/12) (n3/N) (1/33). Attached

is a computer program to solve this problem and we see the results are
quite good. This method has an advantage in that one can solve for one un-
known without being required to find the other unknowns.

Instead of the computer, we could have used three urns, as mentioned
1/0 73 leae
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Figure 5

previously, to solve this problem. The attached sheet shows the number of
balls in each urn. In urn 1, one ball is marked STOP, three balls are marked
2, and two balls are marked 3.Theyact respectively as D I I p12, p13 and
dictate whether one tallies B1 or moves to urn 2 or urn 3 to continue draw-
ing balls, similarly for the other urns.

In closing it should be mentioned that the Monte Carlo method is suf-
ficiently accurate for many practical applications. Improvements in results
is related to N where N is the number of trials, so there are limitations to
this method. Reference No. 2 discusses this and similar questions in great
detail.
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TEACHING THE "OLD" DIVISION ALGORITHM
USING OBJECT MANIPULATION

By Peter H. Williams, University of Maine at Farmington

A great deal has recently been written and spoken about the importance
of object manipulation in teaching mathematical concepts. In this country
the increased use of math lab materials and activity cards is but one exam-
ple of a growing trend. Object manipulation is also an important compon-
ent of the math material being developed in England and Canada. My ex-
perience in working with students from the lower elementary through the
graduate level has convinced me that people of all ages who lack a concept
(i.e. place value) are much more effectively taught the concept if they are
provided with manipulative material as a starting point for a sequence of
activities leading from objects to symbols.

For the past few years I have devoted a considerable amount of time to
two questions: 1) How does one explain each of the whole number and
fraction algorithms using object manipulation; and 2) What is an appro-
priate sequence of activities for moving from the objects to the symbols?
The sequencing of activities is very important and, in my opinion, would
be basically the same for any topic. Although the discussion of sequencing
cannot be covered extensively here, I would like to develop it enough to
provide more meaning to the material which will follow.

It seems there are at least four basic levels of communication involved in
the instructional process. These four levels are object, verbal, picture and
symbol, each of which can be used by both the teacher and the child. These
levels are displayed in the following four-by-four communications model.
It is a deductive model based on the assumptions: a) that the levels object,
verbal, picture and symbol increase in their degree of abstractness; thus,
the levels are progressively more 'difficult for the child to deal with when
learning a concept; b) that the teacher should introduce and use each new
level first and the child should progress from the object level, the child's
easiest, to the point where the child uses the new medium.

The easiest communication is the situation where the teacher represents
a concept in object form and the student does the same. This communica-
tion is denoted object-object, where the teacher is first and the child sec-
ond. An example of another type of communication is symbol-picture:
the teacher presents a concept in symbol form (using a worksheet or the
blackboard) and the child represents the concept in picture form. The se-
quence of communications beginning with object-object communication
(i.e. 1) and ending with symbol-symbol communication (i.e. 16) can be re-
presented in a four-by-four table where the numbers in the cells indicate
the order of the activities.

1 5 '3
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4 x 4 Communications Model

Child
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object 1 3 7 13

verbal 2 4 8 14

picture 5 6 9 15

symbol 10 11 12 16

Figure 1

The data that I have gathered to date indicates that this model is signi-
ficantly more effective than the usual textbook approach. My experience
indicates that the omission of one of the levels, such as the picture level,
greatly reduces the effectiveness of the model. For example, teachers who
jump from using objects to using symbols experience much less success
than do teachers who use most or all of the sixteen steps in the model.

Because of my belief in the model and the need to explain each of the
traditional algorithms through the use of object manipulation, the follow-
ing material on division was developed. Before being taught the material on
division children should be given a review of the topics of place value, addi-
tion, and subtraction using the place value charts. The activities could in-
volve such things as:

a) Show me 124 on your place value chart.
b) Near the top of your board put 257; near the bottom put 465; now

combine the two sets starting at the right and regrouping where pos-
sible.

c) Show me 403 that is what you have; you owe me 135 how would
you pay me?

Having done activities of this type one could progress to the following
problem.

You have 433 dollars in the appropriate denominations (i.e. 4 hundreds,
3 tens and 3 ones). You are asked to distribute the money equally

1 GO
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among three people. How would you do it? Most people did the follow-
ing:

The number of people (3

Amount of money

111 I LI 1 I 11111

W.

11 111111 1-1'1

111

""I

Remainder 1

I t I IIII 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1

Each person gets 144 and there 1e a remainder of 1

Figure 2

The way the participants worked the problem and others like it is pro-
bably the most "natural" way to solve the problem.

Each of the steps in Figure 2 can be described by using symbols:
Amount each gets

No. of people 3 J 4 I 3 I 3t Denomination of the
money

Step 1. There were four one hundred dollar bills and three people, so
each person got one which used up three and left one.

1

3 1- 4 \ 3 \ 3

-3

1

The one hundred dollar bill needs to be exchanged for ten tens
which is denoted by "bringing down".

IGI
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3 ! 4 1 3 ( 3

3)
H. 3

Step 2. There are now thirteen tens to distribute among the three people
so each person gets Four and one is left over.

1 4

3' 4 I 3 3

-3 :

1 3

1

The one ten is regrouped into the ones place by "bringing down".

1 4

3 r 4 3 3

-3

1

1 3

There are now thirteen ones to distribute so each person gets
four and one is left as a "remainder".

Amount each gets I 4 4

No. of people 3 I 4 3 3 Amount of money
-3

1

-1 2

L 3

: -1 2
Figure 3

1 R
Thus, the numbers presented in Figure 3 describe the steps invoivea

solving the problem on the place value chart.
The sequence of activities can progress from the use of the place value

charts to the picture sequence as presented in Figure 2 and then to the sym-
bol sequence as presented in Figure 3.
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In applying the model it is often helpful to list the Four types of activi-
ties: object - place value chart activities; verbal - explaining the process of
distributing the counters; picture - Figure 2; symbol figure 3. Then the six-
teen steps can be implemented by matching the Four types of activities in
pairs in the order described in the model (Figure I). In my opinion, the
"old" division algorithm is still an efficient computational technique which
can be taught to children in a meaningful way by beginning with object
manipulation on the-place value chart and progressing through the four-by-,
four communications model.

The activities presented here are but a sample of the activities done in
the workshop session. A copy of the individualized module will be pro-
vided by writing the author.

The place value charts were constructed of a piece of poster board (9" x
22") divided into three sections. Each person was also provided about 30
counters (I" x 3").

It is interesting to note that in solving the problem with counters no one
swapped all his counters to the ones place to start and then made piles of
three with all 433 counters. This is the process suggested by the "guess
method" algorithm which is being taught to many children today. -

WHAT YOU HAVE ALWAYS WANTED TO KNOW ABOUT
GRAPHING BUT WERE AFRAID TO ASK!

By Elclwin A. Wixson, Plymouth State College

Graph the statement; x = 3. This is really an unfair request because you
could have a variety of solutions.

it -4 6
=3

>X

three. mo,e. axes /f you. kJ's 4 !

Figure I

Thus, certain ground rules are Followed.
G.R.1. A placeholder For the name of a thing is a variable.
G.R.2. A sentence containing at least one variable is an open sentence.
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Thus, fl + ca= 12 is an open sentence with {=3 as the variable. Now,
what can we put in the variable spots? G.R.3. The set of things that may be
put in place of the variable in an open sentence to be tested as to whether
or not the sentence is then true is called the domain of the variable.

G.R.4. The set of elements (from the domain) that make an open sen-
tence true is the solution set.

Note that someone must establish the domain of the variable before
testing of an open sentence may begin. If no domain is specified, it is assum-
ed that the domain of the variable is the set of all the numbers on the num-
ber line, i.e., all real numbers.

Now consider again c7I + = 12. If the domain is the set of real
numbers, the solution set is 161:- If the domain is the set of odd counting
numbers, the solution set is empty.

If the problem is restated as CZ + A = 12 and the domain of both
variables is the counting numbers, then the solution set in table form is:

( 10 9 8 7 6 54
A

I 2 3 4 5 6 7 8 9; 10

H

1 11

Notice the difference in results when we change the domain or when we
change the sentence from a one variable sentence to a two variable sentence.

Finally, if we consider C.1 + = 12 with the domain of all real
numbers for both variables, then the solution set is lots and lots of pairs of
numbers! How, then, can we display this infinite solution set?

Before we pursue the solution to this question we need a few more
ground rules.

G.R.5. An open sentence whose verb is = is an equation.
G.R.6. An open Sentence whose verb is < or > or or > or t is an

inequality.
G.R.7. A line consisting of points each of which corresponds to a direr.-

ted. number is..tt. number line. .Each point is the graph of the corresponding
directed number and each directed number is the coordinate of the corres-
ponding point.

G.R.8. The graph of a solution set of an equation or inequality is called
the locus of the equation or inequality.

Thus, our notation says U.) to mean "the set of all x such that...".
This solves the unfair request at the onset. We should have written ixix = 3j,
if we wished to consider the one-axis problem and the first diagram in fig-
ure I is the appropriate graph. Graph the following:
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In order to answer our question of CI + A = 12 in two variables,
we will need to extend our ground rules.

G.R.9. The Cartesian Product of set A times set B, denoted A X B,
means to form all possible ordered pairs in which the first element comes
from set A and the second element comes from set B. In set notation -

A X B = ga,b)la f A and b 131.

For example, let A = (I, 2, 3), B = 11), and C = (2, 4, 6, 8 }. Then
A X B= t(1,1), (2,1), (3,1)). B X A =1(1,1),(1,2),(1,3)1. A X C {(1,2),
(1 ,4), (1,6), (1 ,8), (2,2), (2,4), (2,6), (2,8), (3,2), (3,4), (3,6), (3,8)}. No-
tice that if the number of elements in each of A and B is finite, then A X B
will have common ordered the product of these two numbers.

When plotting A X B on a graph, we almost always use two number lines
as axes, placing them perpendicular to each other and intersecting them at
the zero pOirits. We then associate the firS1 element of an ordered pair with
a horizontal coordinate and the second element with a vertical coordinate.
Hence, the "order" in ordered pair.

You, the reader, should consider what the graph of R X R would be like
where R is the set of real numbers.

We are now ready to extend our ground rules again in order to graph
solution sets with two variables.

C.R.10. If A is a set, then a subset of A X A is called a relation in A.
Let A = { -4, -3, -2, -1, 0, 1, 2,3, 4}. Graph the following relations in A.

(Remember, we seek the ordered pairs that make the statement true!).
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Graph the following:

Figure 3
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/ 1

Figure 4

Again, let us assume that A = R, the set of real numbers. How would each
of the graphs of the relations in Figure 4 be changed? With the answer to
this question the reader is ready to graph 1=1 + a!l = 12, or if you
would rather x + y = 12.

Now that we have completed the theory portion of the topic, let us con-
sider its application.

Assume that a car starts from rest and accelerates smoothly to 45 m.p.h.
in 11 seconds. Find the following:

1. The graph of velocity versus time
2. The graph of acceleration versus time
3. The graph of displacement versus time
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Figure 6
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4. The algebraic statement showing the relation between velocity, v, and
time, 1.

5. The algebraic statement showing the relation between acceleration,
a, and time.

6 'Thd algebraic statement .shoWing the relation between displacement,
s, and time.

Once again we must extend our ground rules.
G.R.1 1. In a graph involving non-pure number quantities, each quantity

may have its own scale and its own units associated with its number line.
G.R.12. Units used in an applied problem must be compatible.
The answers to the six questions are displayed in Figure 6. The reader

may be interested in calculating the area between the velocity and the hori-
zontal axis. What does this area represent?
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