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FOREWORD

These three papers all concern the bearing of projective
geometry on the perceptual processes by which pictures are.
"read' for spatial information. The first of these appeared
in slightly different form some years ago, and described a
human inclination to interpret pictures as representing recti-
linear forms when from a geometric standpoint they miqht repre-
sent non-rectilinear forms. The critical qualification was
that'such "reading in" appear, 1 to take place only when the
picture could be geometrically an image of a rectilinear object;
geometric possibility served as a necessary condition.. Some
time passed before this natal work could be pursued further -

the other two papers are recent efforts. One of these applies
the conclusions of the original article to a consideration of
how the visual system deals with pictures seen at an oblique
angle, rather than perpendicularly. The other incorporates
the early conclusions into a much broader thenry of the percep-
tion of line drawings of simple geometric forms. Throughout
these papers, the logical ambiguity of line drawings - their
lack of distinctive three-dimensional information - is stressed,
together with the active role cif the Visual system in making
logically arbitrary but ecologically useful assumptions to
resolve this ambiguity. Although the papers themselves are
based on theoretical considerations and informal observation,
there are many testable predictions, and currently a series of
experiments based on these is underway.

David Perkins
September, 1971

David Perkins received a 1970 Ph.D. in Mathematics - specializing
in artificial intelligence - from M.I.T. He is Assistant Director
of Project Zero. His special interests include visual perception
by human and computer; the perception of rhythm; and problem-
solving and planning behavior in the arts.
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Cubic Corners

Abstract

Many line drawings are interpreted as representing spatial
forms, and frequently the forms are rectilinear, containing "cubic
corners" - vertices with three radiating edges at right angles to
one another, like the corner of a cube. Experimenting with a
number of drawings determines the range of pictured vertices which
viewers will accept as representing cubic corners. This range is:
if the two smaller angles between the pictured edges are a and b,
then either a + b is greater than or equal to 90 degrees and a is
less ifian or equal to 90 degrees and b is less than or equal to
90 degrees or all three angles are each greater than or equal to
90 degrees.

The range of angles which geometrically could be projections
of cubic corners can be determined mathematically. The condition
is the same as above, except that no angle can equal 90 degrees,
so "greater than" replaces "greater than or equal", etc. Thus
the two ranges agree except for certain borderline cases. The
human perceiver is very sensitive to the geometric conditions for
a three ray vertex to represent a cubic corner.
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CUBIC CORNERS
1

'

2

Psychologists have studied a variety of cues which inform the observer
about the spatial layout, form, and orientation of his environment. Among
these are binocular disparity, interposition, texture gradients, perspective
convergence, blueing with distance, and shading. In some cases, e.g., studies
of texture and perspective, a central role is assigned to projective geometry
and the mathematical relations between the image formed in the eye and its
three dimensional origins. The subject here is another sort of cue to
spatial shape and orientation in that tradition.

One structure that comes frequently before our eyes in this urban world
is the cubic corner. This is simply any corner of a cube, of a desk or box,
or in general 3 planes meeting at right angles. The simplest line drawing
of a cubic corner consists of a point with 3 radiating straight lines of in-
definite length. For easy reference, such a drawing will be called a 3-star.

The fact is that 3-stars tend to look like cubic corners. That is, the
visual system tends to interpret them as the projections of cubic corners.
This is not so under all conditions. Not only the 3-star itself, but any
larger scene in which a 3-star is imbedded may influence its interpretation.
Moreover, it is likely that our urban experience contributes to this pro-
pensity; the Watusi might not join the trend at all.

1
I would like to thank Drs. Howard Gardner, Nelson Goodman, and Paul
Kolers, for their helpful comments on the first draft of this paper.

2
Essentially this same material appeared in QuarterlyProgress Report No.
89, April 15, 1968, Research Laboratory of Electronics, M.I.T., Cambridge,
Massachusetts. The figures are copied directly from that publication.
The work was supported in part by Project MAC, an M.T.T. research program
sponsored by the Advanced Research Project Agency, Department of Defense,
under Office of Naval Research Contract Nonr - 4102- (01).



2

In Figure 1 there are some 3-stars that look like cubic corners. In
Figure 2 there are some that do not.

Figure 1.

(a)

Figure 2.

(a)

(b)

(b)

(c)

(c)
Figure 3 exemplifies how context can influence interpretation. The

3-star of Figure 3a appears in Figure 3b and 3c in places indicated by stars
(*). Figure 3a may look like a cubic llorner to the reader, as it does to
the author. At any rate, Figure 3b contains the 3-star in a context that
certainly makes it appear cubic. Figure 3c, on the other hand, contains the
3-star in such a way that it looks like a wedge of not too wide an angle.
The circular arc on the left of Figure 3c suggests a wedge of cheese.

000(15.



/ Figure 3.

( a ) ( b ) c
,One might suspect that the interpretation of a 3-star is just' a matter

of context and has nothing to do with the 3-star itself. In Figure 3b, a
drawing looking like a rectangular solid was constructed about the-3-star
by putting the sides of the 3-star into parallelograms and completing thefigure. Try this procedure with the 3-star in Figure 4a; the results are
hardly analogous. Figure 4b does not look rectangular at all.

( a )

(000()9

(b)



4

The orientation as well as the context of a 3-star can influence its
interpretation. The 3-star in Figure 5a can readily be seen as a cubic
corner. Yet in Figure 5b where the figure is rotated 90°, the smallest
angle no longer appears to be right, but rather acute. Figure 5c speculates
on one of the common scenes in our experience which might lie behind such an
orientation dependency.

(a)

Figure 5.

(b)

(c)

Three-stars are most likely
to look like cubic corners when
ora of the rays points directly
dt,wnward. Most cubic corners
\that one sees on buildings,boxes,
and such things are oriented with
their planes perpendicular or
parallel to the ground, and con-
sequently have one vertical edge.
Probably a down-pointing ray in
a 3-star invokes these experiences.

Still there is the question,
how does the structure of the
3-star itself influence its inter-
pretation? One can determine
mathematically which 3-stars can
be perspective projections of
cubic corners. We shall illustrate
this a bit later. The diagrams
already presented show that the
visual system will not accept that
certain 3-stars look like cubic
corners. The question then is,
how critical is our visual system?

Does one reject 3-stars that could be cubic corners? Does one accept 3-stars
as cubic corners when they could not possibly represent them geometrically?
HOW well does the visual system align itself with the requirements of geometryand perspective?

Figures 6 and 7 contain two series of 3-stars for the judgment of the eye.
All have rays pointing straight down to enhance the seeing of cubic corners.
In the series of Figure 6 the 3-stars b through d and j through 1 are acceptable
to the eye as cubic corners (if in doubt, construct parallelograms around them),
and these cubic corners have two faces in view. In Figure 7 only d through g
are seen as cubic corners, and these cubic corners have three faces in view.

000 iiO



Figure 6.

5

) (b)

(d)

(g

(j)

(e)

(h

(k)

(m)
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Figure 7.

6

(a) (b) (c)

(g) (h)
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is:
The empirical generalization suggested by Figure 6 and other sketches

A 3-star is acceptable to the visual system as a 2-faced
cubic corner if and only if it contains 2 angles less than or
equal to 9u0, whose sum is greater than or equal to 900.

The generalization suggested ,>y Figure 7 and other sketches is:

A 3 star can appear to be a 3-faced cubic corner only if
all 3 angles are greater than or equal to 900.

Now that there is some empirically derived notion of what the visual
system interprets as a cubic corner, the problem is to determine which
3-stars are perspective views of cubic corners.

At first thought,. it would'seem necessary to calculate an arbitrary
perspective projection of an arbitrarily oriented cubic corner. This is not
the case for two reasons. In the first place, the eye is assumed to be
focused on the vertex of the cubic corner; in.the second place, only the
angles between the projected rays, and not their length in projection, are of
concern. Underthese conditions, perspective can be ignored and the pro-,
jection of a cubic corner in X Y Z space will simply be its orthogonal pro-
jection on the X Y plane.

Suppose that some 3-star has angles between its rays a, b, c, and also
that the rays are represented by unit vectors P, Q; R in the X Y plane. The
question is, are there 3 vectors in X Y Z space which are mutually orthogonal
and project, respectively, to P, Q, k?

Since projection is accomplished merely by dropping the Z component, any
3 such vectors must have the form:

P + pZ Q +qZ R +.rZ, (1)

where Z is the unit vector in the Z direction, p, q, r scalars. Requiring
mutual orthogonality is requiring that the dot products of these vectors in
pairs be zero. Using distributivity of the dot product and remembering that
P, Q, R are unit vectors yields (2), and similarly for the pairs Q, R and R, P.

. (Q+qZ) = 0 P . Q pq cos a -I- pq 0. (2)

001.01.3



This produces three equations:

pq = cos a

8

qr = - cos b rp = - cos c

Solving for p, q, r, we obtain

p =
(cos a)(co..--; c)

(cos b)
q =t

(cos a)(coS b)

(cos c)

r = ±

(3)

(cos c) (cos b)

(cos. a)

(4)

Hence solutions exist and are given by these formulas, provided that (cos a),
(cos b), (cos c) # 0, and (so that the numbers under the radicals will be positive)
either one or three of cos a, cos b, cos .c are negative.

The solutions in (4) have singularities where cos a, cos b, or cos c = 0; that
is, where a, b, or c = 90 °. To what do these singularities correspond in the sit-
uation under study?

If there is only one 90° or 270° angle, this represents the situation in which
one ray of-a cubic corner is pointed directly away from or toward the observer, and
hence only 2 edges (not a 3-star) are visible.

If there are two 90
o

angles, the solutions to (4) contain the indeterminate
farm 0/0. This situation occurs when one plane of the cubic corner is oriented
edgewise to the viewer. This is the only case when a 3-star that is a projection
of a cubic corner can contain a right angle. Any other combination is impossible,
since a + b + c = 180°.

Aside from the singularities, what does the requirement that either one or.
three of cos a, cos b, cos c be negative represent? If, say, onlg cos c is
negative, this Implies that a is less than.90 , b is less than 90 , and a + b is

. greater than 90 °. If all three, cos a, cos b, and c, are negative, this im
plies that a, b, c, are all greater than.90 .

The rules derived mathematically agree with the rules derived empirically,
except for the 3-stars containing one right angle! To rephrase'the conclusion:

00014
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Given a 3-star in favorable conditions of orientation and context and
not containing one right angle, the visual aystem will accept that 3-star
as a cubic corner if and only if it could in geometric fact be a projection
of a cubic corner*.

Figure 8.

A 3-star that does have one right angle cannot be the geometric pro-
jection of a cubic corner. Yet the visual system will often accept such
a 3-star as a cubic corner (Figure 8).

*
Preliminary results from an experiment now in progress (July, 1971)

viveal that all subjects exhibit considerable, and some high, sensitivity
to the discrimination.
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Oblique Views of Pictures

Abstract

Pictures, normally thought of as viewed perpendicularly, are
often viewed obliquely so that a foreshortened image is projected
to the eye. In what respects does the viewer adjust to,or fail
to adjust to, this foreshortening distortion in interpreting the
picture as representing a spatial layout? This paper concerns two
particulcr phenomena associated with this complex issue. On the
one hand, proportion of sides in a pictured box changes with viewing
angle; in this respect oblique views are not compensated for, or
at least not entirely. But judgments of rectilinearity provide
an example of compensation. Some drawings of pdrallelepipeds
normally appear rectilinear, whereas others appear slanted or
"skew". From certain oblique viewpoints, drawings normally appear-
ing rectilinear will present images which, according to their
foreshortened shape, should seem non-rectilinear, and other draw-
ings normally appearing non-rectilinear will present images which
according to their foreshortened shape, should seem rectilinear.
Does the viewer respond only to the projected image, or compensate
and report its "normal" appearance? For many viewpoints, the
visual system does compensate; the figure appears rectilinear or
non-rectilinear not according to the projection, but as though it
were perpendicularly viewed. This compensation seems a specific
adaptation to the viewing of pictures, as it would be entirely
non-functional in a pictureless world.
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OBLIQUE VIEWS OF PICTURES
1

1. The Problem of Oblique Views

This paper deals with a certain puzzle in the viewing of pictures.
Such viewing and interpreting is commonly imagined to take place with
the observer directly in front of the pictur_, so that his lini of
sight is approximately perpendicular to the plane of the picture. Indeed
an oblique viewpoint considerably alters the shape of the image pro-
jected to the observer's eye. In a view from one side, the image is
laterally foreshortened relative to its vertical extent. The questions
here approached are: 1) to what extent and 2) in what respects does the
observer tolerate or compensate for oblique viewpoints. The real aim
of this raper, however, is not to treat this total issue, which is com-
plex indeed, but to draw attention to a few phenomena of compensation
and noncompensation.

To what extent does the human visual apparatus cope with this fore-
shortening distortion? Common experience,gives a rough answer. Surely
taking a side seat at the cinema causes no drastic breakdown in visual
function. Neither does one feel particularly uncomfortable viewing
paintings or reading a book at slightly less.than square on. But con-
trariwise, most people shun extremely oblique views (the front rows of

. the theater). The lesson seems to be that mildly oblique views cause
little trouble but extremely oblique views cause a good deal of trouble
and are avoided.

The problem of oblique views has of course been considered by others.
Artists have in fact played with the phenomenon. Gombrich (1961, p. 252)
offers an illustration of an "anamorphic" painting. The artist has pro-

, duced a portrait which, elongated from a perpendicular view, assumes
proper proportions when the line of sight is sufficiently oblique. Cer-
tainly in this case, the eye is happy to surrender any reconstruction of
the perpendicular but disproportionate interpretation, and to accept the
oblique, but humanly proportioned, projection. However, with normal
pictures, Gombrich stresses (p. 277) that the viewer generally maintains
an appropriate interpretation in spite of an oblique view.

More,recently, Pirenne has elaborated much the same conclusion in
Chapter 11 of Optics, Painting and Photography (1970). This work, which
highlights effects of wide angle perspective projection not treated here,
is throughout most relevant to the general problem of oblique views.

1.
The author would like- to thank OrsHoward Gardner, Nelson Goodman, and
Paul Kolers, for their helpful comments on an earlier draft of this article.
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Pirenne underscores the importance of cues that inform the observer of
the "pictoriality" of the display and the orientation of its surface
(texture, frame, binocular disparity are relevant). Such cues may be
weak or absent, as with a distant painting integrated into the
architecture of a building so as to seem an extension of it. Under these
conditions, the pictured spatial layout appears to distort as the ob-
server moves from the intended viewpoint. Lacking data, he cannot adjust
for the oblique view of the picture. Gregory in a related context (1963)
has written of the "paradoxical" depth of pictures, which are usually
quite apparently flat surfaces and yet just as apparently represent
spatial organizations of forms. Polyani (1970), referring to Pirenne's
work, has commented further on this, stressing the role of "subsidiary
awareness" of the picture surface.

These general observations invite a close study of particular as-
pects of the phenomenon. A little hypothesizing is in order. How does
the human visual system cope with the oblique view? Three sorts of ways
come to mind (and these may not be exhaustive of course):

1. Indifference. Some visual means or heuristics may be indifferent
to the oblique view in that the information they utilize (their input) is
simply not affected by the foreshortening. For example, a contour inter-
rupting another in a "T" configuration often leads the viewer to judge
that one object is behind.another. In pictures, this evidence of oc-
clusion is independent of the foreshortening distortion because the "T"
is just as much there when viewed obliquely as when viewed perpendicularly.
Pirenne (1970 pp 160-161) offers further examples related to perspective.
The prediction accordingly is: aspects of the interpretation dependent
on indifferent heuristics appear the same in oblique and perpendicular
views.

2. Compensation. For heuristics not indifferent to the oblique
view, active compensation for the foreshortening might be involved in
their operation. The prediction: again, aspects of the interpretation
dependent on such heuristics would appear the same in oblique and per-
pendicular views. Thus "indifference" and "compensation" involve
identical predictions, and must be differentiated by an assessment of
the cues in the picture tapped by the heuristic under consideration.

3. Continuitz. For some visual means, there might be no compen-
sation. But certain of these might construct interpretations which
depend continuously, in the mathematical sense, on the shape of the
projected figure. Accordingly, a small shift in the projection to the
eye would produce a small variation in the spatial interpretation.
This would yield distortions unimportant in slightly oblique views, but
serious for extremely oblique views. The prediction: aspects of the
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interpretation dependent on continuous heuristics would always appear
somewhat, and continuously, different in oblique and perpendicular views.

These hypotheses are inevitably somewhat, vague, and beg for the
explicitness of examples. Indeed, such was offered to accompany
"indifference". aow the concern is to present examples of both the
other hypotheses.

2. An Example of Continuity

Figure 1 displays a rectangular prism; the faces are seen as meeting
at right angles along the edges and at the corners. To introduce a term
useful later, the figure is perceived as having "cubic corners", dis-
playing rectilinearity as does a cube.

FIGURE 1

Now the reader is invited to view this figure not perpendicularly,
but obliquely from the direction indicated by the arrow.. A rectangular

-prism is still perceived, but with different lengths of sides. The
effect is apparent with binocular viewing, and even more pronounced if
the picture is viewed monocularly. In particular, take note of the
apparent relative space lengths of the edges marked A and B. In the
perpendicular view, A seems longer than B. But in a sufficiently oblique

00019
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view from the direction indicated by the arrow, A appears shorter than
B. Between these states is a continuous transition, and the observer
can readily see the prism deform as he shifts his viewpoint smoothly
from one position to the other. This, then, is an instance of
"continuity" as defined in Section 1.'

What seems to be happening here, particularly with monocular view-
ing, is that the visual system is compensating little if any for the
oblique view. Further, the figure is interpreted as rectilinear. This
suffices to fix the figure's apparent orientation in space (Perkins,
1968), which taken with the projected length of lines determines their
apparent length. In binocular viewing, there is competition between
this and the information of stereopsis as to the edges' true lengths,
and a consequence is a lessened but still definite effect.

3. Cubic Corners

The phenomenon of "cubic corners" (Perkins, 1968) proves a means to
uncover an example of compensation. The cubic corners phenomenon, de-
scribed briefly, is this: people often interpret a corner with three
edges radiating from it, a picture of such a corner, as a "cubic cor-
ner", that is as a space form like the corner of a cube where three
edges meet at right angles. But, in the image projected to the eye,
1) only certain combinations of angles between the image edges can
geometrically,, really represent cubic corners and 2) the human viewer
is quite sensitive to this geometric condition and usually will interpret
only a vertex meeting these conditions as a cubic corner.

For perpendicularly viewed pictures of vertices, the. angles between
image segments are the same as the angles between the lines on the
picture, and the cubic corner condition can be applied to these. The
cubic corner condition is that either 1) there are two angles between
the segments each less than 90 degrees, whose sum is greater than 90
degrees, or 2) all three angles are greater than 90 degrees. The border-
line case where one angle is exactly 90 degrees requires special dis-
cussion (Perkins, 1968), but will not be of concern here.

For example, figure 2 seems rectilinear (i.e., having cubic corners)
and indeed its vertices satisfy the cubic corner condition. On the
other nand, figures 3 and 4 insist on appearing nonrectilinear, that is
seem to have oblique rather than cubic corners. The vertices of these
figures do not meet the cubic corner conditions.

000'40
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FIGURE 2

The effect is less extreme with figure 3 than with figure 4. These

figures have a further role, and in general figure 3 will serve as the

less dramatic example, but the example closer to the normal circum-

stances of viewing pictures.

FIGURE 3

15v
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There are three common ways to interpret figures3 and 4 as convex
solids (not concave half shells): these are with angles A and B (in
figure 4, and analogously in 3) perceived as right but C not, B and C
right but A not, and C and A right but .B not. It is possible to shift
among these three states by acts of will or spontaneously as with the
decker cube. The three states are further evidence of the partiality
of the human perceiver (or at least, the perceiver from an urban or
"carpentered" background - Segall et al. 1966) for right angles. When
unable to see a fully cubic corner he settles for any of alternative
combinations of two right angles. But in the case of figure 2 the eye
almost always insists on a cubic corner, and can only rarely be enticed
to see such a figure as nonrectilinear. Perkins (1971) elaborates this
and discusses several similar instances.

In summary, these examples suggest two general principles:

1. The visual system generally interprets as cubic only
vertices meeting the geometric cubic corner conditions.

2. The visual system has a strong tendency to interpret
pictured angles as right angles, subject to condition 1.

4. An Instance of Compensation

Now to the point. An oblique view of a picture may result in a set
of angles between the projected segments very different from the angles
between the projected segments in a perpendicular view. In particular,
in an oblique view, these angles may not satisfy the cubic corner con-
dition, when-in a perpendicular view they do so. Non-conipensation for
oblique views would predict that in such a case the prism would not be
perceived as rectilinear'. Rather, an oblique prism would be perceived,
as in perpendicular views of figures 3 and 4. But this prediction is
not fulfilled!

Figure 2, viewed obliquely from the direction indicated and at an
angle of about 30 degrees or more to the perpendicular will violate the
cubic corner condition. But the prism nevertheless tends to be seen
as cubic. Even at 60 degrees the prism still may look rectilinear al-
though the violations are now large indeed.

But in both these cases the three oblique states, described above
as natural to a case of violation of the cubic corner condition, can
also be seen.
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Figures 3 and 4 emphasize what is happening. Figure 3, viewed per-
pendicularly, yields a projection of the same shape as figure 2, viewed
obliquely at 30 degrees as indicated. Figure 4, viewed perpendicularly,
yields a projection of the same shape as figure 2 viewed at 60 degrees.
Only the non-rectilinear states are perceived. Yet in obliquely viewing
figure 2, a rectilinear state is seen as well as the non-rectilinear
states. The projected configuration is the same. The only difference
is the obliqueness of the view, known to the viewer through various
other visual cues.

Both binocular viewing, and the fact that some edges of figure 2
parallel the sides of the page, appear to assist a rectilinear inter-
pretation when the figure is seen obliquely. The visual system is in
part informed about the obliqueness of the view by means of these factors.
A like figure, differently oriented on the page and viewed monocularly,
sometimes, but less often, seems rectilinear. Other methods of obscur-
ing information about the page orientation have a similar effect. This
is in keeping with the findings of Pirenne (1970) mentioned earlier.

This, then, is an example of compensation. In the oblique views,
the condition for cubic corners is suspended (in contradiction to
principle 1, section 3) and the strong impulse to see cubic corners wins
out over the violation of the cubic corner condition, as it does not in
perpendicular views. But this victory is somewhat ambivalent. For,
counter to principle 2, section 3, nonrectilinear states of the figure
can also readily be seen; whereas in perpendicular viewing, when a cubic
corner can be seen,nonrectilinear states generally do not also appear.

here a pause to remark on a possible objection: Let it be quite
clear that when a figure, viewed obliquely, is "seen as a cube", this
does not mean simply that the viewer, knowing of his peculiar viewpoint
calls it a cube. Rather, he sees it as a rectilinear spatial configura-
tion of edges. The point can be emphasized by adding extra lines to
figure 2, to render it as a Necker cube (figure 5).

FIGURE 5
000
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Here the figure viewed either obliquely or straight on, seems especially
"spatial" and the reverses typical of Necker cubes take place readily in
oblique views, with a vivid sense of the prism reorienting in.space, and
with both alternatives distinctly rectilinear. Also shifts between
rectiliniear states and oblique states may be seen.

5. Ramifications

The situation as so far presented invites further el:ploration. It
might be the case that in oblique views the visual system simply some-
times suspends application of the cubic corner condition altogether. If

this were so, not only figures appearing rectilinear when viewed
perpendicularly, but also figures appearing non-rectilinear would appear
rectilinear when viewed obliquely. What in fact happens?

Consider a figure not obeying the cubic corner conditions from a
perpendicular view. Consider oblique viewpoints from which the figure
still does not obey the cubic corner condition. Examples are figure 3
and figure 4 viewed obliquely from the direction of the arrows marked
"A", at any angle. The intriguing result is that they do not seem
rectilinear! As with figure 2, stereo viewing and orientation of the
figure on the page are important. With monocular viewing and an adjust-
ment of orientation sometimes figure 3 will seem rectilinear, but even

. then not figure 4.

In another relevant case, figures as seen obliquely obey the cubic
corner condition (but again not when viewed perpendicularly). Here it
would seem certain that they would appear rectilinear. Not always..
The entire range', from nearly perpendicular to extremely oblique views,
must be considered. The directions marked "ti" on figures 3 and 4 pro-
vide a case in point. If the view is sufficiently oblique, indeed the
figures appear rectilinear. But throughout much of the range, the pro-
jection does satisfy the cubic corner condition, but the figure does
not appear rectilinear. In particular, with a viewing angle to the
perpendicular of any more than about 35° for figure 3 or 60° for
figure 4, the projection satisfies the cubic corner condition. But the
figures do not commence to look rectilinear until the angles are sub-
stantially greater than these. Steps to obscure information about the
slant of the page and figures, steps such as monocular viewing, looking
through a peephole concealing the edges of the paper, and defocusing
the eye to eliminate texture information, result in the figures appearing
rectilinear as soon as the cubic corner condition is satisfied.

Both these demonstrations have a common implication. In oblique
views, the checking of the cubic corner condition is not simply sus-
pended. .Rather, the actual orientation of the figure and page is taken
into account. Viewing at an angle, the eye in effect to some extent
discriminates whether the figure would appear rectilinear if seen per-
pendicularly. An analogous discrimination for spherical and cylindrical
objects results in a "failure" of the laws of perspective projection at
wide angles (Pirenne, 1970, Chapter 9).
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6. The Import

Above was presented one instance of failure to compensate (a case
of "continuity"), and several of compensation for oblique views. Con-
sider for a moment these latter phenomena. The tentative conclusion must
be that these reflect a specific adaptation to the'viewing of pictures.
The reasoning is straightforward. In a world without pictures, there
would be no occasion to interpret as a cubic corner a verteA not satisfy-
ing the cubic corner conditions. Only in pictures, viewed obliquely,
does a vertex representing a cubic corner yield a projection not sat-
isfying the cubic corner condition. The conclusion is that this remark-
able adjustment of the cubic corner condition for oblique views is
specifically aimed at maintaining a rectilinear interpretation of the
picture, in spite of a distorted projection.

This seems justified as an at least tentative inference. But the
phenomena presented raise two rather puzzling problems. First of all,
if there is compensation to maintain rectilinearity, why not compen-
sation to maintain the proportion of edges of figures? Why one and not
the other? Three related considerations may underlie the difference.
First of all, rectilinearity may be a central category in the perceptual
coding process, a dominant aspect of the "look" of a scene. Without
compensation of any kind, a slight change in viewpoint, causing an
unimportant adjustment in apparent proportion of sides, might further
result in violation of the cubic corners condition and thus an abrupt
and drastic visual reappraisal of the nature of the scene. Such
qualitative shifts would not be in keeping with the general trend toward
perceptual "constancies", toward maintaining a relatively stable inter-
pretation against perturbations in the stimulus. Second, rectilinearity
often plays the role of a working hypothesis in the visual process, and
indeed an hypothesis which permits proportion of sides to be inferred.
The discussion of figure 1, and articles by the author (1968, 1971)
explicate this point further. Thirdly, rectilinearity is a persistent
feature of objects in our "carpentered" urban environment (Segall, et al.
1966), and such is certainly not true of any particular proportion of
sides. Considerations one and two gain plausibility in this light;
rectilinearity is appropriate to our world as a central perceptual
category and as a working hypothesis from which other spatial proper-
ties are inferred. Thus the special status of rectilinearity in oblique
views may perhaps be ascribed to its special status as characterized by
these three factors. This is speculation of course.

In any case, another puzzle. remains. It is surprising that the
cubic corner condition could be suspended under any circumstances.
When the cubic corner condition is violated, this means that there
is no geometrically possible solution. That is, no space con-
figuration of edges meeting at right angles could project to yield the
angles in fact given in the stimulus. Then what space form is seen?
Is the space configuration indeed rectilinear or is this somehow an
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illusion? On what criterion is the particular configuration, rather
than another, selected, since the normal determinant of a configuration
both rectilinear and projecting to the stimulusbimage, has no solution
in this case? The form seen is certainly not the same that a
perpendicula view would yield; the-distortion of proportion of sides,
discussed earlier, ensures that.

In conclusion, it may be useful to summarize the major points of
this small study. The intent was to explore some of the ways in which
the eye coped with pictures seen obliquely. All three of the means out-
lined in section 1, "indifference", "compensation", and "continuity",
are active in certain circumstances. Discussion centered on the third,
compensation, and in particular as this related to the cubic corner
phenomenon. When a figure is viewed perpendicularly, the visual system
is very sensitive to whether the figure could, geometrically, be the
projection of a rectilinear form. A figure which when viewed perpen-
dicularly could be rectilinear will often seem rectilinear when viewed
obliquely. This is so even when the angle is such that the image pro-
jected to the eye could not come from a rectilinear object.

Thus the visual systen sets aside its normal geometric standard
and makes allowance for the oblique view. Further, figures which could
not, when viewed perpendicularly, be rectilinear, also would often not
appear rectilinear when viewed obliquely. That is, the geometric
criterion for rectilinearity is not, simply "turned off", but is to some
extent adjusted to take into account the peculiar oblique viewpoint.
These phenomena appear to be specific adaptations for the viewing of
pictures, as they would be entirely non-functional in a pictureless
world.

The puzzle remain& that proportion of sides does vary with oblique-
ness of viewpoint, even though perception of rectilinearity is adjusted
for viewpoint. The first phenomenon is reminiscent of the anamorphic
picture referred to by Gombrich and situations where the picture surface
is difficult to detect emphasized' by Pirenne. The second accords to
the general stress in the writings of both Gombrich and Pirenne on
tolerance of oblique views. Certainly failures to compensate are ,not
confined to cases where the pictoriality of the display is concealed.
Both compensation and failure to compensate are involved in the oblique
viewing of ordinary pictures. Why the visual system resorts to such varied
tactics on the same occasion remains obscure. The reasons may involve
the special status of rectilinearity, as a prominent property of our
environment, as a central perceptual category, and as a working hypothe-
sis used in many circumstances by the visual system.
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The Perception of Line Drawings of Simple Space Forms

Abstract

The "reading" of pictures for spatial information has long
been a process of special interest to psychologists. The flat
picture could be the projection or image of any number of spatial
configurations, but the observer somehow selects an appropriate
configuration from among the infinity of logical alternatives.
Viewers readily and consistently interpret simple line drawings
as space forms, even, though conventional depth cues such as per-
spective, occlusion or "familiarity", may.be absent. One expla-
nation of these troublesome cases is to model the visual system
as imposing geometric constraints on the space form, constraints
of rectilinearity, symmetry, parallelness and collinearity of
edges, and perhaps others. Often such constraints, taken toqeiher
with the requirement that the form "project" ti the picture, com-
pletely determine the proportion and orientation of the apparent
form. Accordingly, the theory predicts 1) what constraints' a

subject will report a picture as displaying, and 2) what his judg-
ments will be of apparent proportion and slant. The theory accom-
odates "reversible" figures.such as the Necker cube, predicting
the maximum number of alternative interpetations (sometimes more
than two) that they will display. The text, discusses this theory
as it applies to a number of pictured examples.
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THE PERCEPTION OF LINE'DRAWINGS OF SIMPLE. SPACE FORMS1

1. A Problem of Ambiguity

Line drawings of simple geometric forms have long posed a special
. puzzle for theories of visual perception. They are not intended, nor

interpreted, as flat configurations of lines lying in the plane of the
paper. The viewer takes them as representing spatial configurations --
cubes, prisms, tetrahedra and the like. The problem is that various con-
ventional cues of depth are absent from these drawings, cues such as
stereo, shading, texture, and often even, it must be said, familiarity
of particular forms. Familiarity hardly applies generally,since it is
easy to:devise figures representing forms the viewer has never seen be-
fore. Perhaps Figure 1 will do. Indeed one might view figures such as
this as assemblies of familiar parts or "local cues" (Hochberg, 1960,
but the laws and processes of combination remain to be specified.

Figure 1

Thus, the real puzzle about such figures is not that the viewer
interprets them spatially, but in how he selects his Tairpretation.
From a geometrical standpoint, any such figure is extremely ambiguous.
There are innumerable space forms whose edges might appear, if viewed
from the proper location, coincident with the lines of the figure. Yet
the experfence of the viewer is by no means an experience of slippery
ambiguity, the form he sees shifting through hundreds of alternatives
as the seconds pass. Neither does he find his interpretation idiosyn-

1

I would like to thank Drs. Howard Gardner, Nelson Goodman, and Paul
Kolers for their insightful comments on the first draft of this paper.
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cratic; other viewers may make what seems, on the basis of verbal reports,
to be the "same" interpretation'. On the other 'hand, limited ambiguity
is quite commonplace. Such figures will often lend themselves to alter-
native interpretations, 2 (as with the Necker cube), 3, 4 or even more.

In summary, a theory of the perception of such figures must account
for two phenomena;. (1) the extreme reduction in ambiguity; that is, the
selection of a few interpretations out of the infinite set of geometri-
cally possible interpretations, and (2) the ambiguity that remains, the
shifting among a few alternative interpretations in certain cases.

2. A Theory

The proposal made here offers a rather complete account of (1) and
(2) above for a wide range of figures. Certain other finures expose
limitations in the theory, althougn even in these cases it remains quite
revealing. The theory hinges on the observation that the space.forms
viewers see exhibit several tynes of geometrical renularities. For ex-
ample, in both interpretations of the'Necker cube the form annears recti-
linear, or that is appears to be formed of ednes meeting at rinht annles.
A rinht angle between ednes is thus one neometric constraint of interest.
Another constraint which will prove relevant:is symmetric equality of
angles, as in an isosceles triangle.

The theory depends on a chosen set Of such neonetric constraints, and
varying this set pwoduces variations of the theory. For now just the
above two relations, right angle, and equal rymmetric angles; will suffice.
Later, the further relations "collinear in space", and "parallel in space",
will be added for a particular example. Treatment of earlier examnles
would be unaffected by the presence of these constraints; deferring their
inclusion emphasizes the economy of the theory. In general the set might
be adjusted or expanded as cases beyond the scone of this paper are examined.
It is recognized, for instance, that the imnortance of rectilinearity might
be a consequence of the "carpentered world" (Senall, et. al., 1966) we
live in.

The theory is simply this: given a finure composed of straight lines
the space interpretation made tends to be a snace form which (1) has
Planar (not curved) faces, (2) projects to the figure, and (3) satisfies
a geometrically maximal combination of constraints from the set of con-
straints.

This rlrt statement undoubtedly invites some explanation. Condition
1, concerning planar faces, seems clear enough, but not so the term "pro-
ject". A space form-is said to project to a figure seen from some view-
point when that space form is so shaped and located that its edges would
appear coincident with the seaments in the finure, were the paper transpa-
rent. In a strict sense none of the figures in this article qualify as
projections of any of the space forms discussed; none of these figures
are drawn in perspective. But clearly the eye does not object, and neither
does geometry very much. Perspective convergence is very slight in any
form so shaped and located that its various dimensions are small cem-
pared to its distance from the eye'. Also there is a certain tolerance for
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lack of perspective: Gregory (1963) speaks-of the "paradoxical depth" of
pictures. The general scheme presented here can and will - so the author

,intends - be applied to perspective drawings in due course. But there are
a few anomalies in the perception of pictures with strong perspective that
will call for some qualifications in the theory (Pirenne, 1970). The mathe-
matics underlying this paper is generally that of orthogonal projection
(toward a plane perpendicular to the line of projection), an appropriate
approximation to perspective projection (toward a point) in the cases con-
sidered. This leaves the most mysterious of the conditions, #3, to be
explained in the following section.

3. An Explication by Example

Figure 2 may be seen as a convex solid, the central vertex lying
closest to the eye. An alternate interpretation is that the three
surface:panels form a concave shell, the central vertex lying furthest
from the eye. For the moment, solid interpretations are the concern. A

later section will show that the account of the hollow cases parallels
that of the solid.

Figure 2

Even as a convex solid, the figure is ambiguous. There are three easily

achieved solid interpretations of it. These are: (1) the solid is box-
shaped at the near end; that is, angles A, B, and C are right angles; the
far end iswedge-shaped with D not right but obtuse, although F and E are
right; (2) just the reverse; the far end is box-shaped with angles D,
E,and F right; the near end is wedge-shaped with A obtuse, but C and B
still right; (3) in this case the solid appears to be symmetric; angles
A and D are obtuse and are equal to one another; both ends'are wedge-shaped,
neither box-shaped; angles C, B, E and F are right angles, as also in
cases 1 and 2.

This outlines the perceptual situation. How does this conform to the

theory proposed above? The three alternative interpretations have al-
ready been described in terms of three different sets of geometric constraints:
Not only are these sets of constraints different, they are also geometrically
incompatible. For example, if the nearer end is boxlike (case 1), the
further end cannot be boxlike, for if A is a right angle D cannot be. The

reasoning is straightforward. Condition 1 of the theory, that all faces
are planar, plus the right angularity of A and D in space, together imply

that the far and near top edges of the figure are parallel in space. But

these,edges are not parallel in the figure. This is a contradiction,

given the,remarks on perspective earlier. Similar arguments show that the
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constraints of i and 3 are incompatible, as well as those of 2 and 3.

Furthermore, each of these three sets of constraints is maximal in
a certain sense. For example, take interpretation 1. The requirement that
A, B and C are all right angles in fact mathematically determines the ori-
entation of that corner in space (Perkins, 1968). This in turn, together
with conditions 1 and 2 of the theory determines the orientation and shape
of the entire space form. Thus no further constraints from the list, not
already implied, can be required. To put it another way, if an additiT
constraint not already implied were required, there would be no space form
meeting all the conditions. In just the same sense, the constraints for
interpretation 2 and interpretation 3 are also maximal.

One further point. In fact, the three sets of maximal constraints
for interpretations 1, 2 and 3 represent the only three maximal sets for
this figure. This follows from a bit of geometry. The details (which the
reader might well skip) are as follows. The two constraints available are
symmetry and rectilinearity. The only relevant place for a symmetric angles
condition is the top face of the figure;] an assumption of symmetry on
the other, parallelogram, faces amounts to rectilinearity. Thus either
the top face is symmetric or not. If so, then all other angles not on the
top face may be rectilinear; this yields one maximal set. If not, then
there is no symmetry constraint at all. A rectilinearity constraint on
any angle amounts to such a condition on one of the angles A, B, C, D,
E, or F. But all angles cannot be right angles; in particular as men-
tioned above, A and D cannot both be right at once. This competition
yields two alternative maximal sets, one with,A right and 0 obtuse, one
with D right and A obtuse. In both cases, all other angles not on the
top face are right.

Thus the conclusions are two. First, the perceptual selection from the
utter ambiguity of the-figure is accounted for by the imposition of various
maximal sets of constraints. Secondly, the remaining ambiguity, the three
alternatives seen, corresponds to all the alternative maximal sets of con-
straints.

Perhaps this example has clarified the meaning of "maximal set of
geometric constraints". Against this background, a general formulation
will be attempted. A geometric constraint in this work is one of a list
of conditions -- rectilinearity, equal symmetric angles, etc. -- as-
sociated with appropriate parts of a figure. Given a figure and a set of
constraints, there may or may not be a space form which has planar faces
(condition 1 of the theory), projects to the figure (condition 2) and satis-
fies all the constraints. If there is such a space form, there may
be further constraints already implicit in those given. For instance,
if one angle of a parallelogram is assumed right, it follows that the
other angles are also right. That is, further constraints may be im-
plied according to geometry. Now what is a maximal set of constraints?
If a set is maximal, first there does exist a space form satisfying the
constraints and the other conditions of the theory. Second, any further
constraint either (1) is already implicit and not genuinely more res-
tricting, or (2) restricts too much, so there is no space form satisfying
this further constraint as well as all the others.
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4. Dimensions of Ambiguity

The account of the foregoing example has ignored an issue for the sake
of initial clarity. From a geometric standpoint, even these maximal sets
of constraints leave this figure and others like it infinitely ambiguous
in certain ways. What are these remaining geometric ambiguities, and
are there corresponding perceptual ambiguities?

Not in the above example, nor in any to be presented here later, do the
geometric constraints determine the apparent size or the apparent distance
of the space form. The constraints suffice in the above example to fix
the space form and its orientation. But the figure could equally well
represent a small close form, or a large remote form. There is an in-
finite range of forms of different sizes and distances, each of which satis-
fies the same set of geometric constraints. But given any choice of size,
the distance is determined, and given any choice of distance, the size is
determined. This situation will be called "size-distance ambiguity".

This reciprocity of size and distance is of course derived from
geometry. The question remains whether the human perceptual apparatus
utilizes this principle precisely, for example, to judge the distance of
objects of known size or to judge the size of objects when distance is
given by other cues. Woodworth and Schlosberg (1961,.pages 480-486)
review evidence suggesting that the human viewer utilizes the size-distance
reciprocity with considerable accuracy. Hochberg (1964, pages 76,81),while
accepting these results, offers a more complex explanation, questioning
the relevance of,,absolute size and absolute distance of the target
object from the viewer. Rather, he proposes that ratios of distances
and ratios of sizes are the perceptually significant variables. Such
a view of course still involves the same reciprocity rule between size
and distance, though the mathematics of using the rule is more complex.

However,-Epstien, et.al.'s review of the size-distance literature
(1961) casts some doubt on whethtr the relation is obeyed by the human
perceptual apparatus. Recent experimental work by Epstein and Landauer
(1969), Stanley (1968), and various other investigators, emphasizes
these uncertainties. Rump (1969) stresses the methodological problems
in getting meaningful reports of size and distance, and employs a rein-
terpretation of the size-distance relation (Cook, 1966) which in some
cases does better than the simplest formulation.

The resolution of such issues is not critical here. The geometric
constraints that are a part of the theory being explained have no bearing
on either size or distance. If precise reciprocity holds in some form,
that would be very much in keeping with the spirit of this work. But
whatever rules relate size perception to distance perception in'the
human visual system are not under study here.

Figures.3a and 3b will demonstrate another infinite dimension of
ambiguity, a dimension involving a relation between shape and slant
(Beck and Gibson, 1955). Figure 3a is an easily seen, and eas17377inder-
stood, example. The ambiguity of figure 3b is harder to see and harder
to conceptualize. As the viewer beholds figure 3a, the pennant some-
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Figure 3a Figure 3b

times seems to come forward or to recede and at varying angles.
Of course, the more the pennant slants backward or forward, the long-
ger it must be.' The same figure, that is, lends itself to interpre
tations with different shapes (here elongation of the triangle) and
slants.

Figure 3b may be interpreted as a rectangle floating in space. This
corresponds to the only maximal set of constraints for this figure: that
all ;our angles are right. With Figure 2, the constraints sufficed to fix
the orientation of the space form. Here this is not-so, and the resul-
tant ambiguity can be seen.

First of all, the rectangle may appear to be oriented face upward
or face downward. The next section will further discuss this difference.
But moreover, even within face-up interpretations there is an infinite
range of variation. Imagine that the rectangle is as horizontal as
possible, lying on the ground, so to speak, with side B furthest away. With
this in mind, examine the sides A and B and note their apparent relative
lengths. A seems longer than B. Now imagine that the rectangle is as
vertical as possible, with the side opposite A furthest away. Again judge
the relative lengths of sides. Now A will appear shorter than B. This
difference in side lengths demonstrates that with two different preconcep-
tions, one sees different rectangles in different orientations. Both of
these alternatives of course satisfy the same geometric constraints, and
these are in fact just two of an infinitude of rectangular interpretations
exhibiting various proportions and orientations. .

Such situations, where the shape and orientation of the form continuously
vary together, will be called instances of "shape-slant" ambiguity. The
examples used simple figures consisting of only one "panel", but the term
can apply as well to each panel of a more complex figure representing
a solid object. As with size-distance ambiguity, if the orientation of
a panel is entirely specified the shape is determined. If the shape is
entirely specified, there may be no, one, or two corresponding orienta-
tions (section ..5 will expand upon this) but there is no continuous range
of alternative orientations. Only when shape and slant can vary continuously
will the term "shape-slant ambiguity" be used. Partially constraining the
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shape, by requiring a right angle for instance, may still allow both
shape and slantoto vary continuously within the constraint, as with
Figure 3b..

Size-distance ambiguity applies to all maximally constrained figures
simply because the constraints currently part of the theory do not bear
on either shape or distance. But shape-slant ambiguity applies only
to some, including Figures 3a and 3b but not Figure 2. It seems strange
that a form can be shape-slant ambiguous and yet at the same time maximally
constrained. But "constrained" in this context means constrained by the
conditions of rectilinparity, symmetry, and so forth, that are part of
the theory. Sometimes as in Figures 3a and 3b, such conditions simply
do not suffice to fix all the degrees of freedom involved.

Again the geometry has been described; again the question is raised:
does the human visual system act according to this geometry.. After brief
discussion, the analogous question for size-distance ambiguity was dis-
missed as not germane. Here such a move is inappropriate. The constraints
of rectilinearity, symmetric angles, etc., are relevant to shape and
orientation, though they were not to size and distance.

The psychological literature offers a good deal on the shape-slant
issue. According to Kaiser (1967), Beck and Gibson (1955) first proposed
the strict geometric relation between apparent shape and apparent slant
discussed here. They termed this relation the shape-slant invariance
hypothesis. Unfortunately, the numerous experiments performed since
the explicit formulation of Beck and Gibson have led to no firm conclu-
sions. Some have offered evidence in favor (e.g., Kaiser, 1967) though
more often the evidence has been, negative (e.g., Eriksson, 1967. Both
these papers refer to various other research findings pro and con. A
detailed review of these studies has no place here, but some general
remarks are in order. First of all, much of the confusion has derived
from questions of methodology. Various means for the observer to report
shape or slant or both have been tried; most have come under attack. (See
for example Kaiser, 1967, Willey and Gyr, 1969). Kaiser claims to have
devised an especially appropriate technique, but the uncertainties endure.

Second, it is important to point out that most experiments have
dealt with isolated plane figures offering such slant cues as texture
gradients, perspective and form ratios (Braunstein and Payne, 1969, Flock
et. al, 1967, Flock, 1965, Freeman, 1966). But here shape and,orientation
are considered largely in relation to solid forms, and as affected by
constraints of symmetry and rectilinearity, constraints largely unstudied
experimentally. Thus the bearing of all the research, pro or con, is open
to question.

Finally, the relevance of the theory here offered does not really
turn on whether the geometric shape-slant relation is precisely followed
by tht human visual system. On the one hand, the theory remains a des-
cription of the geometric constraints such as rectilinearity, symmetry,
etc., that a viewer sees, whether or not the viewer makes an accurate
orientation judgment according to the shape-slant relation from those
constraints) On the other, even very moderate accuracy would provide
important support. Indeed, it would be surprising if the human visual
system, subject as it is to a variety of illusions involving metric dis-
torions, should perform with perfection here.

1-Bujt see footnote on the last pane of this_paper.
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Of course, whatever deviations there may be are not to be dismissed.
They deserve detection and explanation. Perhaps the mathematics involved
can be adjusted to reflect the deviations. In any case, if there are
moderate differences, the theory may stand nicely as an idealized des-
cription of an aspect of form perception.

5. Continuous Families of Space Forms

The lesson of the foregoing section is that sets of constraints, even
if maximal, must be viewed as specifying not a space form of particular
size, shape, location and orientation, but as specifying a range of pos-
sibilities. However, further distinction is, possible within this range.
Typically, the range of alternatives splits in a natural way into two dis-
tinct families of forms which are disjoint from one another.

Figure 4

Figure 4 represents another parallelogram which the eye can inter-
pret as a rectangle floating in space. This rectangle takes two general
attitudes, analogous to the "face-up" and "face=down" of Figure 3b. But
to stress the point, this figure is so arranged that both alternatives are
readily seen ("face-up" tends to dominate in Figure 3b). First, the rectan-
gle may float in space "face-left", with the right edge closer than the
left edge. On the other hand, it may float "face-right" so that the left
edge is closer than the right. The viewer will experience spontaneous
shifts between these two ranges, rather like the shifts between alternate
interpretations of the Necker cube.

Of course, "face-left" and "face-right" as designations are accidents
of the orientation of the page and figure. But the two ranges, however
referred to, correspond to a geometric reality. The space forms satisfying
the geometric constraints indeed fall mathematically into two continuous
and usually disjoint families) That is, within each family there is a

1
Let the angle of a corner of the parallelogram be p. If the parallelogram
is interpreted as rectangle in space, the sides of that rectangle corres-
ponding to the sides of angle p will make certain angles with the plane of
the paper. Let these angles be a and b. Then the trigonometric equation
tan a tan b = - cos p , must hold for the figure to indeed be a rectangle.
The solutions to this equation fall into two disjoint continuous families,
except for the case where p is 90°. There the two families touch.

0.00,;16
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continuous shape-slant and size-distance variation of space forms.
But the two families do not touch except in the special case footnoted..

Figure 5

Another example of this two family phenomenon is Figure 5, the
Necker "cube" (the edges need not be of equal length). Here again the
viewer sees this figure in two distinct orientations. Again, both these
interpretations satisfy one maximal set of geometric constraints, here,
that all angles are right angles. The Necker cube case is less ambi-
guous than the prior, in that there is no shape-slant variability. The
geometric constraints suffice to limit the shape and orientation to just
two discrete possibilities. Thus there are two size-distance ambiguous
families of "cubes". Perceptual reversal of the Necker cube is a jump
between members of these two families.

Figure 6

This same phenomenon occurs with opaque rectangular prisms as well
as with transparent ones. Figure 6 may be interpreted as a convex solid or
as a concave shell. These versions are analogous to the two versions of the
Necker cube. Again there is only one maximal set of constraints involved,
the requirement that all angles are right. But there are alternative size-
distance families of solutions, the convex family and the concave family.
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In section 3, only solid forms were considered for the discussion of
Figure 2. There it was stated that the concave forms would be treated later.
Now accounting for these is easy. The three alternative convex interpreta-
tions of the figure were found to correspond to three alternative maximal
sets of constraints. But each of these sets also permits a concave form.
Thus there are really six size-distance families involved, two for each
of three sets of constraints.

The existence of two solution families is quite general. For any
maximal set of geometric constraints there will be two families of solutions.
Generally these will be non-overlapping, but in special cases they may touch
one another, as in a figure which is itself a rectangle (see previous foot-
note). Why is this duality so persistently found ? - The explication lies
in a sort of mirror symmetry in the geometry of the situation.

Consider a configuration of edges or wires satisfying any geometric
constraint on the list -- right angle, equal symmetric angles, or
parallelness or collinarity, (these two will be important to a later ex-
ample). Imagine this form reflected in a mirror parallel to the plane of
the page. Further, imagine that the reflected form is then picked out of
the mirror and moved, without changing its orientation, to the location of
the original unreflected form, to replace it. Then this reflected form has
two remarkable properties. First, it satisfies exactly the same geo-
metric constraints as the original. Second, it presents the same image to
the eye of the viewer. The reflected form thus matches the original in
its obedience to the conditions 1, 2 and 3 of the theory.

This symmetry always exists geometrically, but there may be no cor-
responding perceptual ambiguity. How is the extra geometric alternative
eliminated in such cases? In general, the eye seems to favor convex over
concave interpretations, but not to the exclusion of concave interpreta-
tions. Figures 7'and 8 offer some further explanation. Figure 7 readily
reverses from a concave form to a. convex form.

Figure 7

00 0;if3

But especially for an un-
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practised observer Figure 8 reverses much less easily, and reversals
so achieved are unstable. Geometrically, of course, Figure 8 has a hol-,
low form. But the line marked "e" is drawn to suggest that it disappears
behind the edge of the figure. The convex form is compatable with this,
but the concave is not. Because of this discrepancy, the eye generally re-
jects the concave interpretation. Figure 1 also resists concave interpre-
tation for much the same reasons. Sometimes, though, the concave version
of Figure 8 may be seen, with a wire running between a corner and an edge
of the form. Figure 1 may be takeh as concave with a bent wirer There is
nothing inherently wrong with these interpretations, but the eye favors them
less. In a complex scene,influences of convexity, occlusion, and of other
sorts generally combine to completely suppress inter=family ambiguity.

6. Further Examples

Figure 9

Now two further examples will be analyzed in terms of alternate maxi-
mal sets of constraints and alternate families for the same set of constraints.

Figure 9 is drawn much as a box would be; it is comprised of three
parallelograms meeting "along common edges. But something is different.
The figure does not seem rectilinear at all, but rather appears slanted
or oblique. Some angles are not right angles. In fact, there are three
distinct ways of interpreting this figure as a convex form (and three cor-
responding concave interpretations). These are with angles A and B right
angles, but C obtuse, with angles B and C right but A acute, or with angles
A and C right and B obtuse.

What is the situation with regard to the theory? The odd thing about
this figure is that a wholly rectilinear interpretation is not allowed geo-
metrically. That is, there is no rectilinear space form that will project
to this figure.1 The requirement that all three of A, B and C be right

11n a figure, a vertex with three radiating segments can be the projection
along some line of sight perpendicular to the page of a space corner with
three right angles if and only if either (1) there are two angles between
segments each less than 90° , with sum greater than 90° , or (2) all three
angles are greater than 90'0 (Perkins, 1968). Preliminary results from
an experiment now in progress (Jul 1971) support the view that the human
visual system is sometimes highly s sitive to these geometric requirements,
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angles cannot be satisfied. But any two angles can be right, and the
alternative pairs of right angles, A and B, B and C, or C and A, define max-
imal sets of geometric constraints that yield the three interpretations
of the figure discussed above. Each interpretatiOn has shape-slant am-
biguity, though this is characteristically difficult to observe (see
Section 7). When, however, a completely rectilinear interpretation is
possible, as in Figure 6, no oblique states are seen. Neither are they
any longer maximal, however. The requirement of three right angles, when
admissible, subsumes all the pairs of right angles, and becomes the only
geometrically maximal set of constraints.

All examples so far have been of single objects. Yet the concepts de-
veloped here are also applicable to at least some cases of more than one
object, as Figure 10 illustrates. Only interpretations in which both ob-
jects appear convex will be considered. The status of concave forms has
already been explained. Here there is the added complexity that one form
may appear hollow, and the other solid; such combinations are..difficult
to study, being quite unstable.

Figure 10

The key to this example is that lines already parallel or collinear
in the flat figure tend to be seen as parallel or collinear in space. This
link.; the space interpretation of the two parts together, even though they
represent separate objects! Accordingly, the constraints "parallel in
space" and "collinear in space" must be added to the list of allowable con-
straints.

The possible parallelisms and collinearities fall naturally into two
families. There are parallel edges in both figures running between the
lower left and upper right. They will be named family P for parallel,
and may sometimes be interpreted as parallel in space. Secondly, there
is a family of parallel edges, some pairs wnich are collinear, running
from the lower right upward to the left. These will be termea ramily C
for collinear. In some interpretations, the edges collinear in the figure
all appear collinear in space. In others, all cannot be collinear at
once, and there are alternative collinearities. There will be no enumer-
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ation of these; rather such situations will simply be labeled as "col-
linear alternatives".

The following chart lists various seeings of Figure 10i describing
these in terms of maximal geometric constraints. There may be other-seeings
and sets of constraints not listed here. Some of those given are much
harder to see than others, but all are possible. One us'eful trick is that
of rotating the figure so that edges of one object are vertical, which pro-
motes that object appearing rectilinear,.

Both objects rectilinear, no space parallels or collinearities

Left object rectilinear, right non-rectilinear

front face of right object oblique, other faces rectangles,
family C collinear, family P parallel

side face of right object oblique, rest rectangles, collinear
alternatives in C, P parallel

top face of right object oblique, rest rectangles, collinear
alternatives in C, P not parallel

Right object rectilinear, left non-rectilinear.

alternatives symmetric to those listed above for left object
rectilinear

Neither object rectilinear

front faces of both objects oblique, others rectilinear, equal
symmetric angles between the two front faces (rather than as
part of the same face as in one interpretation of Figure 2)
C collinear, P parallel

side faces of both objects oblique, others rectilinear, equal
symmetric angles between side faces, collinear alternatives
in C, P parallel

This thus :lists nice different convex interpretations of the figure, not
counting variability due to collinear alternatives. Such variability is
only relevant to the relative distance, not to the shapes or orientations
of the forms. In all nine cases shape and orientation are entirely de-
termined; there is no shape-slant ambiguity as there was in the prior
example. Even though in some of the listed cases one or both of the ob-
jects appears oblique, as with the prior example, the shape-slant ambi-
guity usually associated with such obliqueness is eliminated by geometric
relations of collinearity,parallelness or symmetry between the two objects

A notable feature of this example is that, in the last two cases listed,
the symmetric equal angles constraint operates across space between two
disconnected objects. Right angle constraints may do likewise in appropriate
circumstances. For example, in Figure 11 the two parallelograms generally
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Figure 11

suggest rectangles which are perpendicular to one another.. The whole
domain of inter-object constraints invites extensive investigation..

7. Remnants of Ambiguity.

The prime analytical tool introduced at the beginning of this work was
the concept of maximal sets of geometric constraints. The claim was that the
viewer tends to interpret line drawings of simple geometric forms as max-
imally constrained space forms, forms which also would project to the given,,
figure. (The qualification implicit in this "tends to" rather than a
direct "does" has not been relevant so far, but will be confronted in
the next section.) The eye's selection from the extreme geometric am-
biguity of the given figure was characterized as a process of imposing
geometric constrain$s.

The concept of makimal sets of constraints also served to define
several sorts of remaining geometric ambiguity. There is cross-constraint
ambiguity, when a pair of alternative interpretations differs in the set
of geometric constraints involved. Cross-family ambiguity occurs when
two alternatives are members of the two distinct and generally disjoint
continuous families of forms satisfying the same maximal set of constraints.
Finally, intra-family ambiguity is simply some combination of size-distance
and shape-slant ambiguity, since a family is made up of a continuous vari-
ation of space forms along the size-distance and sometimes shape-slant
dimensions.

Again these categories describe the geometric ambiguity. The per-
ceptual situation is another matter. Almost all examples of perceptual
ambiguity presented have been instances of cross-constraint or cross-
family ambiguity. There were few examples of intra-family shifts. This
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was not a consequence of the author's selection policy; clear examples of
intra-family shifts seem much harder to invent. But with reference to
geometry, ambiguity within a family is no less ambiguity than ambiguity
across families. Indeed, if number Of alternatives were any measure,
the infinite variability of intra-family size-distance and shape-slant
alternatives would surely be-the central phenomenon. But perceptually,
it is just such intra-family shifts that-are uncommon, or at least un-
commonly noticed.

No firm explanation can be offered here; forthe time.being specu-
lation must serve. "Uncommonly noticed" may indeed be at least a partial
solution to this enigma. Porhzp5 if,trm-family shifts are quite common,
but the viewer does not notice that this has happened. One reison.for
such lapses may be the lack of categoriet in terms of which to identify
the shift. This paper discussed examples in such words as "right angle"
"equal symmetric angles", "convex" versus "concave", "face-up" versus
"face-down", "closer than" versus "further than". When the viewer,con-
ceptualizes successive seeings in such terms, he can easily convince
himself-that a shift has indeed taken place.

These categories do not generally apply to cases of intra-family
shifts. The observation that intra-family shifts are less often, noticed
might then be accounted for by a lack of.categcries with which to notice
them. The discussion above of Figure 3b is a case in point. There the
viewer was asked to attend to the comparative lengths of-edges to ob-
serve shape-slant ambiguity. If the figure'is contemplated without such
deliberate attention, the fgure's shifts seem far less discernible.

V.;

In proposing that certain categories may be important to discriminating
shifts, the author does not mean to propose that the viewer must necessarily
verbally encode in terms of these categories. Furthermore, categories
aside, there are forces which work in various circumstances to restrict
size-distance and shape-slant shilts. For instance, although none of
the figures have been drawn in perspective, perspective nevertheless exer-
cises an influence. A viewer will not interpret as extremely foreshortened
many figures with shape-slant ambiguity precisely because the anticipated
perspective convergence of lines is not there. This factor thus narrows
the range of shape-slant shifting.

Further suggestions in the same vein derive from the observati=on
that alternatives defined by different maximal sets and/or families are
generally differentially easy to see. Sometimes a shift to a given al-
ternative may occur spontaneously, sometimes only if forced by the viewer,
and sometimes not at all. Lack of categories is no account of such dif-
ferences, since these are cases where the categories are available, and in.
deed where, when shifts occur, they are most distinct. The "seeability" of
such alternatives is often markedly influenced by rotating the page or
fixating on a different part of the figure. Perspective, mentioned above,
and page orientation suggest an analysis in terms of additional geometric
constraints. Fixation effects suggest influences of the particular se-
quence in which the eye gathers information and of the details of the com-
putational' process by which the visual system searches for maximally con-
strained forms.
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Both these factors probably bear on size-distance and shape-slant
ambiguity as well. A more thorough analysis of such considerations may
reveal something of the principles by which, in perception, selections
are made along the infinite size-distance and shape-slant dimensions.
At least in the examples offered here, these dimensions are the only
vestiges of the indeterninacy puzzle posed by line drawings of simple
geometric objects.

8. Some Reservations

This theory of maximal sets of geometric constraints, which has been
so boldly presented, must now be qualified a bit. It is simply not the
case that the viewer always interprets line drawings of simple geometric
shapes, as maximally constrained space forms. In the course of the in-
vestigation reported here, the author has discovered several instances
where the viewer typically imposes a less-than-maximal set'of'constraints.
Thus a "tends to" rather than a "does" occurs in the statement of the
theory in section 2. Leeway must be allowed for these cases; but of
course there is little merit in simply allowing leeway. The ultimate
aim must be an account of these special cases, some explanation as to
why the visual system, so persistently striving for maximality in some
situations, stops short of maximality in others. But for the moment all
that can be offered are some examples and speculations.

The first example is Figure 12, similar to Figures 6 and 9. But this
case is peculiarly different from these prior ones. First of all, this
figure geometrically can renresent a rectilinear form, unlike Figure 9
but like Figure 6. Also indeed the viewer may see it as rectilinear.
He may also, however, see it as an oblique non-rectilinear form, much
like Figure 9. This oblique interpretation is, of '6ourse, less than
maximally constrained, the maximally constrained case being the recti-
linear interpretation.

Figure 12

The orientation of the figure relative to the viewer is important;
rotating the page so that the sides of the figure are vertical tends to
suppress the oblique interpretation, without however eliminating it.
This orientation sensitivity suggests that perhaps the visual system is
imposing a horizontality requirement, or, so to speak, projecting a "floor"
into the scene and requiring the form to sit flat on the floor. When
the page is held upright, the rectilinear interpretation is markedly
tilted but the oblique interpretation sits on the "floor" and is thus
encouraged. But when the page is held tilted as suggested, the recti-
linear interpretation is upright, and the oblique atilt and accordingly
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discouraged.

In so far as this explanation is valid, it would restore a sort of
geometric maximality to the oblique interpretation. Horizontality would
appear as a new geometric constraint, usually depending on the orienta-
tion of the page relative to the viewer, a constraint which could com-
pete with the other geometric constraints on the list. This explanation
is marred, though perhaps not destroyed, by the fact that the oblique
form can be seen with other orientations of the page, though not nearly
as readily. The saving factor may be that the visual system, necessarily
adapted to occasional peculiar positions of the head, must be able to
accept any angle relative to its own axes as the real horizontal. In

any case, if horizontality is a competiba geometric relation, it seems
a weaker one, less often dominating over rectilinearity, except for
Particular fiaures viewed with particular page orientations.

Further counterexamples are plentifully supplied by a large and
familiar class of fiaures: triangles. A triangle on a Page can readily
be seen as a triangle floating in space (Figure 13).

Figure 13

The interpretation is ambiguous: there are alternative shapes and orienta-
tions and shifts between them. Sets of geometric constraints account
well for the ambiguity and the shifts. There are twelve continuous
families of alternatives, corresponding in pairs to six different con-
straints. These are : angle A right, or angle B right, or C right, or
angles A and B equal (an isosceles triangle), B and C equal, or C and
A equal;

It is gratifying that geometric constraints account for this ambi-
guity. The problem is that none of these sets is maximal! Geometrically,
there is room for both a right angle and an equal symmetric annles con-

, straint at once, as, e.g.., requiring A to be right, and B and C to be
equal. Also a triangle with all three angles equal could be required.
Yet these combinations are not generally seen. A consequence here of
only one constraigtteing imposed is that the families display shape-
slant ambiguity. This is readily observed in the figure. The viewer
can persuade the triangle of Figure 13, seen say with angle A right, to
appear to be quite horizontal, or much more vertical.
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Ine truly maximal states are difficult to see even deliberately.
This relectance of the visual system is suggestive. Perhaps there are
certain combinations of constraints not readily imposed, in other cir-
cumstances as well as this. Seeing a triangle as isoceles may involve
establishing a perceptual axis of symmetry cutting the triangle. This
may in turn interfere with discernment of, or imposition of, right
angles not having sides parallel with this axis.

A final point on triangles: these are important not just as ex-
ceptions to perceiving maximally constrained forms. Also they show
that the concepts of geometric constraint, shape-slant ambiguity, and so
on, are useful in enumerating alternative seeings and classifying shifts
between them even when the sets of constraints involved are non-maximal.
These concepts thus have a relevance beyond the particular issue of
maximality.

The search for less-than-maximal cases has .a natural complement: the
search for cases where more constraints appear to hold, than is geometri-
cally possible. So far, examples of maximal and less-than-maximal geo-
metric constraints have been discussed. But in none of these cases did
the viewer find more constraints than the geometric maximum. How is it
that the viewer knows when to stop imposing? Perhaps it is permissible
to speak of the eye's "concept", "model" or "theory" of Euclidean space,
or that is, the principles embodied in the visual system by which the visual
system evaluates the geometric possibility of a given set of constraints,
Such terms in effect propose an entire area of inquiry: the investi-
gation of the range and limits, the powers and weaknesses of visual
space.

Figure 14

(Figures 14 and 15'after Penrose and Penrose (1958), who also refer to like
effects in the art of Escher.)
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Figure 15

Sometimes the visual system is not so successful in limiting itself
to the geometrically possible. As the gaze ranges from corner to cor-
ner of the "Penrose triangle", Figure 14 (Penrose and Penrose, 1958),
there are dramatic reversals of its apparent orientation.' These occur
when the intarpretation carried over from the prior fixation meets
with incompatible evidence on the latest fixation. Furthermore, such
geometric impossibility is sometimes not even so-noticeable, much
less avoided. Figure 15 (Penrose and Penrose, 1958) does not yield the
striking reversals of Figure 14. Yet it is just as impossible, being
an alwayscbscending stairway when traversed clockwise. Of course,
neither of these figures is impossible in the sense that there is no
geometric form that projects to them. Indeed, models have been con-
structed that when properly viewed yield such images (Gregory, 1968 ,

Penrose and Penrose, 1958). They seem impossible only because the eye
insists in taking the corners as rectilinear, the faces as flat and
connected with one another even though such conditions taken.together
are geoMetrically inconsistent, and even though the eye notices this
at least in the case of-the Penrose triangle. Thus here is limitation
to the sense of the geometrically possible built into the visual system,
though generally this work has stressed its powers. What the eye's model
of space is, so that both these powers and limitations follow, remains
to be discovered.

9. Conclusion

This paper has offered a theory about the interpretations a viewer
makes of line drawings of simple space forms. The theory addresses a
particular puzzle: that such drawings might be expected to be highly
ambiguous, as they offer few conventional depth cues; yet the visual ex-
perience is of one, or a few, distinct space forms. The theory pro-
poses that the figures are interpreted as representing forms which (a)
are geometrically "possible" - i.e., the figure could be a projection
of that space form,. and (b) which obey as many constraints of rectilinear-
ity, symmetry, and so on, as is geometrically possible.
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The theory makes testable predictions. First, space interpretations
of particular figures should have certain combinations of symmetries
and perpendicularities. Figures can be ambiguous, but each alterna-
tive seen should be one permitted by the theory. However, there is no
prediction that all alternatives permitted by the theory can be seen,
although in many cases all can. Second, the interpretations should
have a specific rigid shape and orientation in space, in those cases
where there is no remaining shape-slant ambiguity. Prediction one might
hold without two holding: the viewer might perceive combinations of
symmetries and rectilinearities as expected, without being able to
draw accurately on their quantitative implications.

For a wide range of figures, this paper has presented casual evidence
for prediction one. No evidence has been offered for prediction two.1 And
certainly no careful expetimental evidence has been presentee at all. The
general success of the theory with regard to predictionsone and two
was tempered by a few aberrant examples. Section 8 presented two instances
in which the visual system did not impose as many constraints as was geo-
metrically possible. In two examples of "impossible figures" the visual
system persisted in attempting to impose a combination of constraints
that was geometrically impossible. With both sorts of counter-examples,
the language of geometric constraints still proved effective for listing
alternative seeings and discussing the phenomena. The general theme
that the operation of the visual system in these cases could be character-
ized as a process of imposing geometric constraints remained valid.

It must be stressed that this paper presents a theory about the con-
clusions the visual system reaches, not about the processes by which it
comes to those conclusions. But the text may be suggestive of certain pro-
cesses. Usually, the tone of the discussion would accord with the process
being one of finding local depth cues and combining them into a coherent
schema (Hochberg, 1968). Another compatible view is that the visual system
imposes a spatial framework or coordinate system on the figure (a frame-
work of course appropriate to the clues in the figure) and that in the
spatial interpretation the edges of the figure and/or axes of symmetry
align themselves with this coordinate system's axes (Attneave, 1968). This
interpretation seems especially natural in the context of section 7; the
cases of less-than-maximal constraints might be described in these terms.
This paper is'not genuinely committed to either view, or to any other.
Neither are the two views necessarily contradictory. It seems likely in
fact that the two emphasize different aspects of the processes involved, and
that both will play their part in any fine articulation of these processes.

This theory has been presented in a rather narrow context, that of
line drawings of simple space forms. However, its relevance perhaps
reaches substantially further, bearing both on the interpretation of
normal photographs and paintings, and on the everyday perception of the
real world. First of all, both pictures and the environment generally
are replete with geometric forms, such as tables, chairs, buildings,
books, roofs, stairs, arches, and so on. It seems natural to expect
that processes revealed here in an austere context find their practical
applications in the perception of more realistic targets such as these.

1But see footnote on next page. 00048
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Second, much more irregular objects, such as an automobile or the
human form, nevertheless offer symmetries which might be utilized
by the visual system just as in simpler cases. Thus this theory
may contribute to understanding the psychological process of inter-
preting pictures, may offer an analytical tool with which to trace the
development of Western representational art, as well as the art of
other cultures, and might provide a technique for artists analogous to
perspective drawing, which they could employ, deliberately flout, or
ignore according to their needs. Further,-the theory may clarify
the perceptual processes involved in apprehending the everyday
environment. Exploring the range of these possiblities, as well as
seeking rigorous support for the ideas presented here are the tasks
at hand.

A last minute addition: Attneave and Frost (1969) report an experiment
testing subjects' judgments of apparent slant of pictured rectilinear
parallelepipeds. 'Results corresponded closely to their prediction from
projective aeometry, which supports the theory presented here. Attneave
and Frost framed their prediction and interpreted their results in terms
of figural 'simplicity and redundancy, an account reasonably compatible
with the present formulation.
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PROJECT ZERO

Harvard Project Zero is a basic research program at the Harvard
Graduate School of Education investigating creation and comprehension
in the arts and means toward better arts education. Four years ago,-
Project Zero commenced its search for communicable general nrinciples
that could provide some guidance in the design irid evaluation of pro-
grams for artist and audience education. Such ririnciples, we felt,
should be based on a fundamental study of the nature of human abilities
important to the various arts, a study investigatIWIT-relationships of
transfer or inhibition among those abilities and seeking means for
fostering such abilities. Our effort has involved conceptual analyses,
the survey of relevant experimentation and literature in Psychology and
other fields, design and sometimes execution of experiments, and visits
to institutions engaged in art education.

One starting point of our study was the systematic analysis of types
of symbolism and symbol processing in Languages of Art, by Project Irrec-
tor Nelson Goodman, Professor of Philosophy and Research Associate in
Education at Harvard University. We have considered such other subjects
as the differential impairment of abilities under various types of brain
damage, the role of problem solving in artistic endeavor, relations be-
tween the psychology of vision and the visual arts, perception of rhythm
in music, and style recognition in various media. Though the development
of actual curricula in arts education is not a primary concern, the Project
does contribute to the field of practical education by responding when
possible to requests for consultation and by suggesting needed programs.
The Harvard Summer School Institute in Arts Administration was established
at the recommendation and with the cooperation of the Project.

The Project sponsors a series of lecture-performances in various
media, designed to give the general public and prospective public school
teachers and administrators better insight into and attitude toward
artists and the arts. As the series title, "Art in the Making" suggests,
the purpose of the-lecture-demonstrations is to reveal something of the
artist's way of working, rather than to display his products. This work
with artists in an educational context also brings our theoretical research
into constant contact with practical and artistic realities.

00052



PROJECT ZERO TECHNICAL REPORTS

I. V.A. Howard, Harvard Project Zero: A Fresh Look at Art Education

2. Barbara Leondar, The Arts in Alternative Schools: Some Observations

3. Howard Gardner, The Development of Sensitivity to FigLral and Stylistic
Aspects of Paintings

4. Howard Gardner, Three Studies of Perception of Artistic Styles

5. David Perkins, Geometry and the Perception of Pictures: Three Studies

The following reports are forthcominn:

6. V.A. Howard, On Musical Expression
On Musical Denoting

7. Frank L. Dent, The Lecture-Demonstration as a Teaching Method

PROJECT ZERO STAFF

Dr. Nelson Goodman, Director
Professor of Philosophy
Harvard University

Dr. David Perkins
Assistant Director

Frank L. Dent
Manager

Jeanne Bamberger
Lecturer and Research Associate
Educatton Research Center
Massachusettsinstitute of Technology

Dr. Howard Gardner
Post Doctoral Fellow
Social Science Research Council

00053

Dr. V.A. Howard
Department of Philosophy
Althouse School of Education
University of Western Ontario

Dr. John M. Kennedy
Department of Social Relations
Harvar University

Dr. Paul A. Kolers
Department of Psychology
University of Toronto

Dr. Barbara Leondar
Graduate School of Education
Harvard University .

Graham Roupas
Department of Philosophy
University of Connecticut


