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An "u“'ndes1gned” ‘expemment is one in which the ‘predictor var1ab1es

‘are correlated, e1ther due to a-failure to complete a‘d’es1gn or"because the

.

1nvest1gator was unable to select or ‘control relevant exper1menta.1 cond1t1ons
The-traditional method of analyzmg th1s class of exper1ment 7= mu1t1p1e '
‘regressmn analys1s based on a lkedst squares criterion -- g1ves rise to anum-
ber of 1nterpretat1on problems when the eff"ects of 1nd1v1dua1 pred1ctors ate to
be assessed Some d1ff1cu1t1es and their effects on the quahty of 1nformat1on

/ . { . .
are ﬁlscussed . - T

Two methods are descr1bed in-‘this’ report: for 1mprovmg the 1nforma-

3

't1on obtained from the undesigned human factors experiment. One is to eollect

more information at a few data points selected t locations that 1mprove the

orthogonahty of this non- orthpgonal design. THhe other is to use Aa ridge

in
wh1ch a sl1ght(b1as is introduced into. the data in uch a way that the combmed
b1as and variance error 1.s smaller than the variance error of ‘the unb1ased
est1mates from the 1east squares a'nalysm. The r1dge analys1s proﬁiuces more
stable and meanuggful regress1on coeff1c1ents

2N
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While th“é "undes1gned” exp,ern'r&nt is used extenswely in personnel

‘-

' selectu?i\tf research, it has been v1rtually 1gnored as a v1a’ble approach 1n o
equ1pment des1gn and training research. Trad1t1ona~lly, in these latter prob-
lem areas, systemat1c designs have been used in wh1ch the pr1mary exper1-

" mental variables are all controlled .As a result va1‘1ables that are difficult
or 1mposs1ble to control.are often excluded from the. exper1mental plan even
when they are relevant and have an 1mportant effe¢t on performance - Conse-
quently, much of the performance variability 1n the exper1ment rema1ns ' >

unexpla1ned and the data is of limited value when applied to real world

'
PR R T

problems

- L

e

’
e

Unmapageahle sources of variance; however, ‘can be accounted for if Y

-they aré treated. as variables of an "undesigned" experirnent. Thus a most
o effeawe use of‘tbe methods described in this report to enhance ”undes1gned"

exper1£nents #s to combiné them with the ""advanced methodologies'” descr1bed

in prev1ous reports (e g “Econom1cal Mult1falctor Des1gns“‘;and ""Methods
.., of; Handl1ng Sequence Effects..." (S1mon 1973" 1974)). By properly using

b

these methods in combination, we become capable of doing exper1ments that

N\

L 4

will account for most of the varjance associated with the performance of a
_ real-world task and to eliminate major sources of irrelévant ,variance.

Y
to

I would be mterested in he]a'r1ng about applications of these techn1ques
by behav1oral sc1ent1sts and am'w1ll1ng to discuss efforts in th1§\regard

» Comments and' criticisms are always welcomed

‘ - ¢
o ’ ‘ o Lharles W. Simion /
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‘This report descr1bes two methods of improving the 1nformatlon obtamed

from the "undes1gned" exper1ment In the f1rst approach addltlonal data’is -
collected in order’to fac111tate the 1nterpretatlbn of data’ alre"ady collected.”
The second approach is a re1at1vely new technique of data analysls that pro-

vides better, solut1ons than does the trad1t10na1 least squares analys s,

[y

)

DEFIKIITION

LI

~

R xd .’,V't)

"An. "unde51gned" exper1ment is one in- wh1c‘h some exper1menta1 var1ab1es
cannot.be oT are not co; trolled by the experlnyenter To be included in an

experiment therefore t level of each var1able must be known or measured

Under theSe c1rcurn-

R -

at the tlme each perfora'n ice measurement is. made.

‘ stanees var1ables 1n an undes1gned exp’érlment are correlated mathemat1ca11y

to some de‘gree a condrtlon which ma.rkedly comphcates the interpretation of

the' res lts .. o y
o P ;o

EXAMPLESQ}_%‘ UN’DEsff’GN‘EDIEXPER-IMENTS - o i

oo i KL.; f : - : o

The' followr,ng f1ct1tlo§1s situations are examples of undes1gned experlments

m human factors eng1neex(1ig research
x b ¢

The. Army has rewritten its ma1ntenance manuals in a style that w111
° enable; the ord1nary technician to uhderstand and use the 1nfo;;mat1,on
better, They are 1nterested 1n measurmg the 1mpact of this Fevision
on system performance Old and- new manuals are made avarlable at

“a number of malntenance depots where the technicians d1ffer in train-

| ~ing levels and exper1ence with the particular equ1pment

6 'depot's

At the

d1fferences also exist in the ava11ab111ty of critical parts, the

maintenance phllosophy and schedules

the unit morale 1¢avel§ and

other factors that could concewably affect the quahty of*‘inamtenance
Since it is 1mpos51p1e to control these assoc1ated factors to any '
degree, A daily ‘rgcordﬁs kept on.each of them along with several
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data talkken a:s‘a ‘whole can be treated as an undes1gned exper1ment

) . .
2"“ The Air Force w1shes to determlne the optn'ﬁum pararneters for the
5, manual control conf1gu1’at10n of a migsile-delivery system. Th:eY
.'; - wishto reaoh a soldluon der1ved from emp1r1ca1 data collected under
o opefatmnal cond1t1ons A Ihght test is Planned :n ‘wh1ch the strike
accuracy of a dummy air- to-ground nnssﬂe 15 to be studled asa
- function of c.hanges in control parameters. There is 11tt1e opp.ortun1ty
. to make a great many flights to offset the effects of such uncontrolled
but critical factors as visibility, tdgbulence, and variations in the '
target itself, , However these variables can be measured a:tthEé t1me
each missile is fired. Wh11e the control parameters can be syste-
mat1cally varied, »thaexmtence of the other uncontrolled but pre-

sumably cr1t1ca1 factors make th1s‘a part1ally undes1gned exper1ment
¢ . ' -
3. . The Navy has bujlt a research or1ented pllot tra1n1ng simulator. A

»

study rs conducted to determine the 1east ‘expensive s:.mulator con-
f1gura‘t1on that will result 1n the greatest transfer 1n pilot perform-
ancé from simulator to a1rcraft Téo groups of p1lots arée selected
for the-study ~» those with Iess than 2000 f1y1ng‘ hours and those with
more than 50030 fl;’ring hours It is recognized that flying time per se

is not sufficient to character:.ze p1lot sk111 and that such things as the

. e
., criteria of ma1ntenance performance over.a sm-monthapermd ’I‘hw(

type of aircraft, the nature of the f1y1ng experience (military or -

'c1V111an, war-time or peace-time), andvrecency of this’experience
also shoul‘d be'tahen into consideration.‘v Since it is \necessary to use
p~a11 available p;lots as subjects w1thout an opportun;ty to control these

other factors;, @11@4; ~character1st1cs must be included in the analysis |

and haerled as ava,nable%»of an unde s1gned experiment.
. ' nd‘"u

Over a twelve year ﬁemx%’ a research organ1zat1on has ‘conducted.

ey

%,
exper1ment‘s ‘relating equipment parameters to success in acqu1r1ng

‘ground targets on an airborne display. Dur1ng th1s time the effects

’ Y
3

! - of over f}fteengjr1ables associated with the senlsor the display,
. : B 4 .
J
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~ andthé briefing information have been exam1ned but in a ser1es of-
o small expe iments of two and threé var1al>1es each, Since x{o over-
‘all'research strategy wa 8¢ ever planned the frequency with which
.certain variables and leveld of var1ab1es occur in this data Vyanes
considerably. The resultrhg lack of a balanced design leaved pre-
 dictor variables c:.ort;lelatf.a"c.lﬁ Thus this belated effort to combine the

results of several experlments to de@elop a s1ng1e pred1ct1on €dua -

tion takes on the, characterlstms and pro’olems of an undes1gned
experiment. - : oLy A 4 ‘

\ s . " -
- v . .

5 ‘ Thé levels of a factor1a1 des1gﬁ areused s'the data collect1on plan .
in a drug-therapy exper1ment While- the study\is be1ng run it '
. becomes apparent that two of the extreme con(:11t1ons. cannot be
measured at a11 because they exceed phtyslologmal safety 11m1ts

'.'_‘ Thys:.destroys the orthogona1_1ty of the design. The data that rema1ns

“to be analyzed takes on the characteristics of'an unde%gned .
experiment. ' ‘
. 2 . < - . 4
. DESIGNED VERSUS UNDESIGNED EXPERIMENTS : .

1
/ ’ v

The goals of a goo‘d experiment should.be to obtain ne;;‘;z 'relevant
1mportant and lasting information which is capab'le of explaining 'rnost of the
_ performance variability asgsociated with a part1cu1ar real.-world task. In t\he
behav1ora1 sciences, unlike the phys1ca1 sciences, performance canngt be
. examined or evaluated 1ndependent1y of the context in which it occurs-and can.
only be descyibed or predlcted as a function of this context The more

‘generahza‘hle data therefore will be derlved from éxpenments in which

critical context factors are varied rather than held constant.

If, however an 1nvest1gator decides. to study behavior in a rea]/lstm

context he may f1nd himself in c1rcumstances where his ab111ty to control
and adjust the levels of critical parameters is sorely limited.” This means
that he can no longer pldn and carry out a totally designed experiment and
must:uther limit the questlons he can sk or resort to another approach
The undesigned experiment -- alone or in conJunct1on w1th a balanced design --

offers a v1ab1e a1ternat1ve

3 . ' o . =4
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Characteristics of Desiéned Experiments : S o o ' Yo
' ., _ . ] L
/'f? ot . The value of a des1gned exper1me'nt rests on the fact that the exper1m@ntal
~ ) cond1t1ons are selected in such a way that critical’ effectls_ can be 1ssLolated and .

the 1nterpretat1on of the- results simplified. However, there'is a price to be =

. c,pa.1d for these advantages \fof' the r1g1d1ty of tﬁe design fofces the experimenter .

- S .
) g - -

e anticipateé in advance the variables he wilI include in his s'tudy'; _

©°
-

. f o be. able to control the exact levels of any. var1ables that will be
o . . . .
. i i to 1ncludqd in the study»,. ) *. _ ) S - T
”» el . fl . ~ -
[ J
\ . I~ e 1nclude cond1t1ons that may be unreal1ét1c or other\mse undes1rable
y . ‘. . ' 3 . ‘ » ) - ) ) .
. Positive Features of Undesigned Experiments .. ;
2 > K . '. ' T . . ) . vt . z\ ’
B * T . ‘ . . ) - ’ . - °
The undesigned experiment because it generally accepts as the exp“éri- ‘.
mental conditions those which exist gt the moment a performance meaisure- "
' ment is made does not face the same problems "THe very lack of control of .
= _ the cond1t1ons under which performance data must be acqulred yields the i
: ) following advantages for the undes1gned exper1ment- P
| 1. The costs of cAollegtmg performance data are no longer as rigidly .
{ ] related to the number of factors being investigated. As many vari-
] : - L . ' :
i ables as desired can be confidéred as long as the level of each can
‘ be ascerta1ned at the time performance data is be1ng collected
. 2, It is‘not always necessary to ant1c1pate critical variables 1n advance
/g -
of the data collection phase If appropriate records are ava1lable
s these may be used later to 1ntro,duce more variables into the analys1s
. r . . . '
A . . v » - N ‘ \ ' [} @ 3
. ’ e - - - * J ) ’ " ‘-
- . It is by definition that these advantages fall to the undesigned rather than the
N designed experiment, Obviously a number of these advantages could ex1sg\
’ for experiments that are planned by an experimenter who intends to use

_ some analysis of covariance desigd. However, to ldcu..;fy the class of prob-
. lems that will bexﬁeﬁt from the tec niques di cussed in this report; any situ-
ation in which variables are includéd in which the, level sélection is not under
the’ 1nvest1gator 8 complete controlig considered an undesigned experiment.>
- . . R
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3. Part1cu1ar1y in f1e1d studles there is Q\grea r hkehhood the
_— i » majority of; critical variables w;ll be preQen(jalthough not necessa»rlly

. | : _-identified) and that the- valuas that are used will laemmore representa- %
. tive of re}hty S ta : A R

-
. R . - . -

SO ' 4. The regression approach perm1ts an 1terat1on in the search for the
_ >more cr1t1ea\‘1 var1ab1es. If the proport1on of var1ance accounted for
2 - o . by the ri’ réssmn is low, ‘other var1ab1es may be. tried to’ see if they.

X fit the data bett?r, provided 4he necess,ary measures are ava11ab1e.
N .

o 1« Thus the undes1gned’*>exper1ment has the advantage of allow1ng (or forcmg)
the expe&'n'nenter to‘study the world as. it really is. Mf the-levels of exper1- 3
. mentaL variables are ‘ot selected artificially ‘but a?re allowed to vary naturally, ..
“the chances are h1gher that performance will be measured under moreé repre-
) /\J sentative c1rcumsta’nces with the relevant .and cr1t;ca1 var1ab1es ope rat1ng,
: ' . . S : : 3N s

> : . o ; R »"'

. Méasurement Sources. The only. a1ternat1ve to controllrnw levels of

variables to be 1nc1uded in an exper1ment is to measure their lavels as-they
exist at the t1me performance is- measured The following are the most

. common %ources from wh1ch these measurements can be obta1ned . s .

, . »

° Concurrert meaesurements. ‘As an event unfolds and performance is -

measured, concomittant variables of 1mportance are also measured, ,

. (Exam 1€ Measur1n air turbulence in a fli ht test, )
. P g gl

e Histbrical measuremegts 'The-data is obtained from past records o f
-7 a that can in some w%be asgociated w1th the cond1t1ons occurring at

the time performance is be1ng measured, (Example- Using subject

aptitude scores from tests“ljaken pr1or to h1s entering the pllOt -

- L
‘ tra.1n1ng course, ) , e o
o . ® 1ncomp1ete neasurements. The]:'ay.l-s of each variable are already
- . “known, having been assign)ed as Jevels of/a designed experiment -
- wh1ch became degraded when certa1n conditions were omitted by

v cho1ce or by. acc1dent (Example. A factorial des1gn is planned and-
0 / : data is collected at all but two corner points when a data recorder <

failed to operate, )

1 -
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s"a%-\_ In practice, all or some of these sources may be usecf in & smgle’&, ‘.‘
o experiment;, . . o : , oL
, ) . @ . . s
: s L. : . s v
“ - Difficulties with Undesigned Experiments - . .
= * \ . . ) -
.There are penalties, howgver, associated with the' freedom of data - e

collect1on for the undesigned experiment!’ The imbalance among combinations

of variables" that is bound to occur when no systemat1c exper1menta1 desigm
is used 1eavses pred1ctor var1ab1es correlated ‘As a result the derived equa-~ -y

t1ons are subJect to greater error and.information beComes scrambled nd

difﬁcult to 1solate ' - ' . .

.
.

+ ~ o

- In the nefxt se‘ctloh some roblems of 1nten> ret1n the results of the
. X P PT g

esigned exper1ment are_ descr1bed along ‘with general concepts and’ termlnology
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/_4a.nd undes1gned eprnments ‘can 'be orgamzed info a matrlx forngtat such as
. L]

- * | + Predictér Variables (X))
Observation ‘Subj |- Co X : Obtained (Y)
‘ # # X1 X2 X3 - X4 ’erformance
1 1 1 25.6 0 27% 3
oz 14 | 1. 7.8 0 18%
- 3 ‘. 3,4 2 14.} -1 81%
or LAY .
af' SRR S 8@ 1 3.0° 0 52%,
. o e/ .
.5 ) 1 2 22.9 O- ©15% . © ©
B T 4 1 0 389
N T 5 1 7% :
j '.> ' m

- o SECTION IF. L
. ANALYSIS AND ) INTERWRETATION -- PRO].J?LEMS |
, CONCEPTS, AND TERMIN@OGY ' o -
oL . E T ‘ /. > ‘o

In this sectmn bas1c concepth and termgnology ‘relevant to mu1t1p1e

'regreselon analysm will be rev1ewed and problems in 1nterpret1ng‘t¢1e res )

e V\from undes1gned experlments 1dent1f1ed The discussdon is 51mp11s¢1c andw}%_
-@ntended only to supply the minimum detail .requ1red for a reader to apprem-h

» \ ate the ,Value oi,;the alternate technlques deécnbed in subsequeht se¥t1ons

i'“or an in depth explanation of mu1t1p1e regressmn analys1s the reader i%*

. encouraged to read the excellent bmoks and: papef)s that are ava11ab1e on this:

topic (e g., Draper and Sm1th 1968° Darlmgton 1‘)68' Kerhnger and

Pedhazur, 1973). -

L ,
,&Aw 'DATA VMA"I’RIC-)ES‘ . |
~ i . w .
4 . &‘9 ° . ' '
The exper1menta1 COndrtmns and reLa.ted performance in both desugned »

shown in. table T.1. S e : . j : : . .

%




v

Each line represents one observat1on i.e., the cond1t1ons X;s phder

ul
wh1ch performance was" measured and the performance Y, that was ‘obtained.

There could of courge be more than’ one performance me sure for an?vobser-
vation™, e, g5 speed and a.;/elaracy, and, subJect‘characte istics could be

1ncluded as factors among the pred1ctor variables,
L ' . * -

s

A pr1mary d,1fference between raw data matr1ces of d s;1gned and unde—
s1§ned exper1ments lieg i the arrangement of the levels o ‘the predictor
variables, In the des1gned experiment, these levels ‘being systemat1callyr
con'trolled by the exper1menter are generally sechted in balanced fashion

\so that thé main effects of the d1cter varllables ate orthogonal (i. e
uncorrelated The factor1al d s1gn is one ‘of the mote fam Har examples in.

‘which the lev'léls of each var1able are comb1ned equally often with every other ‘\ '
var1able to.achteve this orthogonal1ty As a reSult the analys1s~and inter- .

i pretat1on of the results are s1mpl1f1ed In the undes1gned exper1rnent this . . o

balance }s ‘not achieved because the expe.r1menter is unable (or fa1ls to) -
sele‘ct or control the levels of the exppnmental cond1t1ons As a result,u main .,
effects&bs'qf pred1ctor var1ables are, correlated with one another, a condition

that rrtakes the': analys1s and 1nter£)rétataon of'the ‘results more difficult. .This

;Eorrelatutn is a mathemat;cal dependen¢e a ha penstanee of the evels that
?/écurreel? at the time the measures were taken,, and does not necessar1ly

o

1mply a cauﬁal relat1onsh1p between the pa1r of var1ables
y . ) _ E .
4 ~

CORRELATION_MATRICES' L T poooE ”

L

©
o’

. : i
The d1st1nct1on between a.designed and undesigned. e:%penmenty is easier

to illustrate 1fﬁthe raw data matrix is, transforrhcd intosa correlat1on matr1x

=

composed of the l1near; (Pearson product moment) correlat1ons among all-
var1ables ) . .

-

7 c . - .
» . . %

Conx}entmnal regi"’essmn analysis handles onl'y a single performanceovar1able
* _per analysis’™Kerlinger and Pedhazur (1973, 376-381) degcribe a method of
do1ng multivariate regression analysis with two ‘dependent variables at the
same time, illugtrating how the combined analysis provides a clearer inter-.
pretation of the data than two arfa‘lyses each with single and different dependent
" variables. | - . o -

T
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* For a de51gned experlment a f1ct1t1ous correlation matrix for three .
Q P

predlctor variables and a performance varlable .might look like table T.2. //,
s ,/”;. . ) . - L
e Linear : » R SZ{PredictorrVeriablea- Performince .
Helati - p 7 .
; (johﬁela.tlons ~— S X2 X3 (Y) : <1
| . . ~ ' ‘ o
1 I .- }\ 0. 342 ( ..
o t
Predictor . ) ‘ L
Variables X2 -0. 167 [T.2.
, N <) 0. 523 -
. ' T <

The talfle of 1ntercorrelat1ons can ye broken 1nto WO pa.rts. one, the er"Q
» dlctor matr1x of cornelatmns among ‘each predictor variable and every
pred1ctor var1ab1e 1nc1ud1ng itself, -and tWo .the performance célumn vector ‘o

of correlatlons between each;predmtor var1ab1e and performanc9
- ' . hd \

. Note that since each Qjpredi.ci:or varia‘tﬂe correlates perfectly and‘ p;ositively
. with itself, the diagonal values are all one. Note further that with- the
. designed exper1ment all off- diagonal values are zéﬁ'o; show1ng‘!:hat ,t:he linear ' ° .
Fomponents of the predictors are all orthégonal to one another. A matr1x with

only zeros off the d1agona1 is referred to as a d1ag3na1 matrix. When,the

- /numbers on the d1agona1 are all ones, the matrlx is called a un1t matrix.
: : ¢

. . In the undesigned experiment, the intercorrelation thatrix for the predictor
variables is'not likely to have zero correlations in the off- diagonal poéitions
Instead, for the undes1gned~exper1ment the correlatl\n table might look like
table T.3. . '
’ . ' . B » . -t P
Linear T Predictor Viriables : Performance
Correlations -l © X1 X2 - X3 oYy - ;
\\\ ’ 2 J ; ( "\) .
' X1 . - 0. 145 0. 352 0.674 )
vl Predictor” i I ) ' | 3.
| Variables X2 .| 0.14>% 2 . 0.532 K P
. X3 [0,352 %ozz 1,00 e 0.348 ’
‘ . | . .
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When the off- dg,agonal elements are non-zero, the predictor varxables are
correlated/ In that case, the matrix is said to he ill-conditioned and the
;or1g1na1 experu'nental desxgn said to be non- orthogonnl o ‘
i ‘ . \ - : . . . .
Note that in Both tables T.2 and T.3,
"about the diagonal,

\ -

-

J N “\ -
To be able to analyze this data by regression analysis, the matrix must

g@ non- smgular This means that each row (c}r column) of the matrix inust be

lmearly 1ndependent of every other row (or colurnn)

No row Jfor column) is

produced from any linear combxnatlon of others in the matr1x :
N ‘Z , A S " X ;‘ N 2 .
MULTIPLE REGRESSION ANALYSIS°, o s o
! » " 4
vaen the information in raw data.’ or correlatxonal form, the 1nves’t1gator

ordxnarxly subjects it to an analysxs that reduces it to a linear pol@rnomxal

) equat1on t?at will provide the ''best'’ estimate of performance under SpeC.I.fl.C

©

conditions of the predxctor ariables.

® ' *
:E %h 11ne of thé raw0data or. correlatxon matrix- represents an equatlon

Perfox‘mmg a multiple regression analysxs on the data is'the same as finding

- *-the common’solution to a set of simultaneous equatxons.

< . o ’ : s .,
The equa,,txon derlved from an analysis of the raw data will be written
%
in the folowing form: - ‘ <ot

<

bX +bX

| , by 1+b2x2+.vﬂb'

N = [E.1]

1 through Nj are regressxo: coefflcxenﬁs ,
X, =1 through)&l), respectively. In
practice, the X terms can represent main effects or transgeneratmns of
main’ effects, such as cross-products (X, XJ) or hxgher order terms (X )

each treated in the analysis as if it were 'another variable. A regressm_n

- N

where bOXO

for the N independent variables,

is a constant and b, (i =

*

the predxctor matrix is symmetrxcal

In' some texts, only half of the rna.trxx (above or below the
-dlagonal) will be wrxtten out,

\




- « particular values of the pred1ctdr var1ab1es,

™ l

' coefficient, b., is the average change in

%

each unit change in tite part1cu1ar var1ab1e,’fthxs change may be p051t1ve or

. negative, The value, Y,

= ' !
, .

.Least @quare s Fit

: i ' LR AR NN
The coefficients der1ved by qxulnple regressmn analys1s are the ones

used in the polynomial to prov1de the '"best" f,it of the data " The cr1ter1%n for-

>

&%

<

a '"best' fit is.met when the sum of the squares of thre. d1ffererrces between the

observed and the estimated performs:nce values is at:’ ,m1n1mum ‘The dif-

ference between the observed and the- est1mated performa[nge values is ca11ed

the residual;. thus the ''best" fit is obtained from thp equat1on ‘that m1n1m1zes

4.,:

the residual sum of squares (RSS) - ey ——

= ; 7 : e
Standard Regression Equation . L

e

riables are commonly measured in different units and on different
b . . . R

Sealés. In order to compare the coefficients of. these’ variables,' the values -

1n the raw data table can be converted to standard measures o7r Z scores.

Th1s is. done Yor each var1ab1e as follows:.

- - +

‘ and o is the standard deviation. If these standarﬁ ss:ore :'a.re subjected to a
mu1t1p1e regressmn analysﬁ\kt]::n the resu1t1ng polynomlal is referred to as

a standard regressmn equation the fol'lowmg form.
4 f

4
LY

There are other criteria for Ju ging the merits of an equat1on Kiefer (1959)
discussesla number of these in detail. Later on in‘this paper, -some weak-
nesses of a least squares solution of data obtained from non-orthogonal
exper1menta1 designs will be discussed and a1terpat1ve cr1ter1a proposed.

11

D . - ‘,‘ , e F A ; . -
’ | " plz?t +. ’pzzz t 'B3Zgy ... BZyn = Zy [E.2] .



>
whe rein the“re gre ssion coeffxcxents

by, of Equ;atlon E.lare replaced b'y beta
: coeff1c1ents

By, and there is no donger a constant term. A re—gressmn ana:ly-
. 8is of the data in a correlation matrigx results in a standard regression’ -
: " . ~ -, e : ' =
: quatlon. '

. ]
v v, '

- - 0 ﬁ . "
If e1ther the ordmary regres,smn equation orJ'\e standard regressmn has ‘

‘Been caleulated the other can be derived. accorduig to the followmg
relat1pr)§.h1ps: ) “ ' ‘

" The constant, b0 0 for the m\ivlti'p]}'e regressvio"h equation is found~a{”fcr>1‘low5°
. . B v . . . ) " ‘ t }, ' N
X0 * YMean " (blleean P2X2Mean -7 * PN®NMean) -

»

o

Interpreting Multiple Re’gressien Analysis

\

From his regress‘ion analysls,/ an 1nvest1gator ord1nar11y is 1nterested in ,
- i N
btalpmg the followmg 1nformat1on' i . ‘ L
"An equation to be used to esf:imai:e‘perfonrn_lance at specific coordi-
‘nates of‘the exper1menta1 space,

q .
] ‘Measures of the relat1ve importance of the exper1menta1 varla,bles

This information is generally easy to obtain when orthogonal des1gns a,re
used However, this is not the case when results from undes1gned (non-

orthogonal)’ exper1ments are to be 1nterpreted Let us examine both cases.
v/ .

v

Orthogonal Designs., The equatmn derived from a mu1t1p1e regression

v
analys1s m1ght appear as in the case of ‘this f1ct1t1ous exampli

. v
a -

Y = 0.45 + 153X, -8.49X, + 0.67X,

.




v

" Variable 2 (in terms of their standard scores, Z).  However, it is questionable -’

. targets wé’re found on t}’xe average. It is unders”tood ag.in all regressmn analy-

- & . ) ® »

» * M ' Fl ¢ - -
' -~ r _ ot ‘

n " LY —~ - - a A

. ., ¥

. r". -
'/ » ) \ . « - e
where Y 1s the estimated number of#argets found as’a funct1on of X, - .

&ynamlc range of the display in log foot lamberts "XZ’ sensor resolut1on in
10-foot umts and X3, d18play size (diameter) in 1rlches With an orthogonal
de51gn, the coeff1c1ents in the equation can be 1nte1'preted as follqws. ‘Each
“time the dynamlc' ramge on the dlsplay 1ncreased one log foot- lambert 1,53 -
mor@ targets were found on the average. 'Each time, t]:re resolut1on of the
sensor was 1ncreased by 10- feet 8. 49 féwer targets on the average were

‘found Each time the d1ameter of the d1splay Was 1ncreased an 1nc'h 0. =é?7 more -

2

ses, that these relatlonshlps hold only within the boundarles set by the data S

collectlon mnnts in the or1g1nay experlment R T g ° ' ©

14 J ' . ' A} . -
[ s .

Iy h

3

In equlpment des1gn problems this'lnforrnation may be enongh to com- = %

‘.pare the relative importance 6f the d1fferent pred1ctor variables. Since ‘the
levels of all three vavridbles can be converted to a common scale of eng1neer- S e
1ng costs (to achieve a part1cular resolutlon, dynam1c range orL* s1ze) no ‘

refmement of the e%uatmn is actually requ1red to declde the1r relative 1mpor- ‘ R ’

! tance in the applied sifuation, This is not often the case: in other f1elds of .

psychology where no common base among var1ables exists. Thus it would be -
quite d1ff1cult to know wh1ch contr1buted more to s/hccess in school by study-

ing the raw score coefficients in an equation that relates school success to . \
scores oma reading test and a math test. "There is no common base to work
with, In that cage, to compare ‘the, relative 1mportance of the 1nd§v1dual var1-, . Y
ables on the performance, the predictor variables must be changed“toustandard,

'scores and the equation written in a standard regression form. o ",

v

For example, a multiple regression analysis of the correlation_table,

T.2, wauld yield the following’standard regression equation: e .

.- . A ’ /

ve Y = 0.34&-0.1672 ¥ 0.523 Z;
_ . z ‘ » 2 ! 3

.

” . - . i

The effect of Variable 1 on performance is twice as large as the effect of

- whether or nét the use of standard coefficients is as meaningful for an applied

A

i
. ;a;:
Ui
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‘vidually interpreted to show the re1at1ve importance of the variables. .The

!

.

.problem that gan be rela\ad to a comrnon cost scale a(s the coeff1C1ents of

the ordinary regressmn equatlon would be. '

. s

-
e e G

Calculat1ons however can be made from the coeff1c1ents of‘ the sta.ndard

regression equat1on that m1ght add to the understa.ndlng of the data Whe.n

derived from fully orthogonal des1gns ’ T : LT
s

. - 4
*, Il. These coeff1c1ents are the same as the 11near t:orrelat1on between -,
i ,
e XY coLumn of the
' ' - Q’ . A »v

- . RS

L
¥ v eaqh pred1ctor and performande, as séen in tF

-

table of 1ntercorre1 1o.n.» L
s . C e
2, The squa—re bf each coeff1c1ent shows the proport1on of the total

var1ab111ty ih performance that each pred1ctor accounts for

’

3 : The sum of the squared coeff1c1ents shOWs the proport1on of the total
| performance var1a”b111gy that can be exp1a1ned by the total standar‘d
. regl.‘es sion equat1on and one m;Lnus that value shows the proport1on
that' is not explanged ¢ ' . A ,;; S

A")‘ . - b @ o

Non-Orthogonal Designs, While regression kequations'ﬁf-rom undesigned o

(predictor correlated) experim’{énts are mathematically the same as those
“from Qrthogonallyjes1gned eXper1ments, pragmat1ca11y they are not. Although
A

in both cases the overall equation does represent the best fit of the data

-(according to the least squares_criterion), in the case of data from undeslgned/

experiments , the beta coefficients of’ individual terms should not be tonsi-

’

dered independently. ‘However tempting it ma.y be to do so, when pre-dictor S

variables are markedly correlated the beta coeff1c1ents should not be, 1nd1—

relative magn1tude of these’ coeff1c1ents are the @esult in part of arbitrary -

decisions made by the xnvestlgator during the analysis. This can best be

LY

'exp1a1ned by example. R v o

In figure F.1, two factors, X, and X, accountfor 25 and 36 ‘percent, e

A

respect1ve1y, of the total variability in performance {Y). “A standalrd

regresslon equatlon based on these two factors alone, ‘would be-

) © )

ZY = 0.5,ZXl Jr"O.E)ZXZ

s -
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.- PROPORTIONOF:
PERFORMANCE VARJANCE, Y,
ACCOUNTED FOR BY TWO

CORRELATED PREDICTOR
VARIABLES, X,°AND X,

[F.2]

=y

Interpretation in this case is straight-forward. The relative contributions of

.each variable can be estimated; thirty-nine percent of the performance vari-

ability is still left unexplained. .- _ : o
v . : L -, R
In figure F.2, the two factors, X, and Xz again overlap Y by 25 and

36 perceht,. respectively. This time, however, they are also correlated

# 0,60 with one another. It is no longer a siinplé matter to decide how much o

o

5 -
14

. @




of an effect each variable has on performance,. Whe;‘e’j X, ovend.ps X and
Y, how can one determme whether ‘the effect on Y is due to X1 or Xz If the
“effect on Y in the overlap portion is due to Xl, ‘then X, does not have as '
much of an effect as the simple correlation between X‘2 and Y suggests. If
the effect on Y in the overlap portion is actually due to XZ’ then X1 does .
not ha.ve as much effect as its corﬁelatmn with Y suggests. Because the

data 1tse1f does not directly suggest wh1ch alternative is correct using’
regres;amn analysis on data with correlated pred1ctors can g1ve a number of
“solutions, depending on the order in which variables are introduced into the )
analy513. ‘ ‘ ’ .

7’ -
-

In the above example, if the effect of X ‘(including the Xl X, overlap)
were ‘removed first, only 14 percent of Xz would be left (excluding the X1X2
overlap) to affect Y. In that case, the equation would be written:

-

L  Zy = 0.52

. q x1 * 03752y,

On the other hand, had the bt:ubll 'effect of X‘Z been rﬂ:}loveﬁ first, then the o

effect of X, that remained after taking into consideration the X1X2 overlap

would have been reduced.and the equation 'would have been:
7N |

+ 0. F75 72

A - o ZY = 0:6 Zx1 Xz . / ' L
Both equations would estimate -ZY— equally we11' each accoynti or 0.39 of '
~ the total variance. In both equations, the first beta coefficient co responds ‘

to the full correlation between that variable and performance the second

' beta. coeff1c1ent how,ever corresponds te a sem1 part1a1 correlation after the
effect of all prior yarmbl&s has been removed from the predictor under con-
sideration, As the number (N) of ‘correlated varl.ables increases, the number
of ways in which they can be ordered into the equat1on (R ) illustrates the

numerous solutions that are possible and why 1nterpret1ng the 1nd1v dual

coefficients is a meanmgless exerc1se.
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Because of this,. there are somg like Darling‘ton (1968, p.’ 169)t, who >

Y

g
after reV1ewmg the problem at gome length, concludes:  ''It would be better
to simply concede tha.t the notion of 'independent contribution to variance' ]

© —HAT o meaging when p\rejctor variables, are.intercorrelated, "

¢ .

»
\‘

v i ’
T2

.Eigenvalues - ) - 54

C‘:ivenv a correlation matrix A, such as table T.3 (or any realfsymmetmc’
rnatnx), there exists a set of e1genva1ues A, such that:

[+]

- |>~I -l

ey

,For a four- varla.‘éle study, the determinant of the correla.tlon (a. ) matrix

in the above expressmn could bF written as follows:

A-aqy - 12 "3 . "2

. ¥ : :
"y M2 ja3 3y,

S . %13 .'az§~j5‘333 834 }
214 Rpq gy Mgy

’equatlon,q;(),»_)v .= 0,is called thle characterlstlc equat1on [ A and its roots

Mo Mo e An= 4 are called the character1st1c roots (or elgenvalues) of A,

\ For the purposes "of this report it is not necessary for the reader to under-

stand the mathematics requ1red to calculate e1genva1ues since even for a

matr1x of modest size, a computer ould be required to perform the calcu- -
» latmns It ie important though that the reader be aware of some of the ways
they can be used to facilitate the mterpretatmn "of data from the undes1gned

expe.rlment . . - . ‘ 4 e
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@ The set of eigenvalues, Agy for an orthqgonal matrix (e. g. , T.Z) would
all be equal to one. This should be obvious from the above explé.nation

since an orthogonal correlatmn matrix is a unit matrix with all ones in the

| >~diagonal which would yleld a determmant equal to zero only if the (}»I) were

g ~

also all ones.

B - N o
-, )

4 ’ .
For a non-orthogonal matrix, however, the €igenvalues are no longer
1]

either equal or necessarily one.

ahd some smaller than one.

" the greater the range of values.

Inst.ea.d,‘ some of them are larger than one

1 W .
The more non-vrthogonal the design matrix,

For example, the eigenvalues for a fictitious

moderately non-orthogonal design of eight variables might'be as follows:

[~ .
i Y
"o . M = Ls5 ' )
: S )\2' = 1,36
X 7\3 = 1.15 -
7\4 = 1.03 '
N, = 0.97 [T.4]
. . M = 0.85 :
‘)\7 = 0,64
A=
8 0. 45 |
while the eigenvalues for a fictitious more severely non- orthogonal design
" -of eight variables might be as follows: ~
v Ay = 3220
N )\2 = 2. 18 -
) Ny = 1.30 ’
) Ny = 0.74
° ‘ Mg = 0,31 : [T.5]
)\6 = 0.18,
=, )\7 = 0,05
] A, = 0,02
N ‘ ) ‘8 ‘ e
Note how the range has increased in the second case, T.5, and how small A
séme of the eigenvalues are. " Both sets sum to 8.,00. o ’ ' >

Given the set.of eigenvalues for a matrix, however, -an investigator can r

use them as a means of better understanding his data, The following appli-

»

cations can be made.

P
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‘The sum of the eigenvalues will e.lwaye equal N, the number of predictor

variables in the experiment, whether the matrix be from a designed or unde-"
gigned experiment, However with undesigned experiments, since some of ~
"the eigenvalueg can be very ‘small fractions, less than the total number-of |
. e1genvalues may be needed to.almost sum to N. This can provide a clue as‘
to how many cr1t1&wva.r1ah1es are actually influencing performance. For
example, in the set of eigenvalues for a severely non-orthogonal design, T. 5,
99 percent of the v’ar1at1on i8 explained by the f1rst six e1genvalues. Although
the fact that no eigenvalue is zero indieates that all eight variables have
some effect on performance, but for all uracticTal purposes, ) only six are
probably really c¢ritical.’” This could be nrfportant to kpom if an 1nvest1gator
wished to eliminate some of the terms in an equation. (Note- There is no
one-to-dne relationship between the numerical order1ng of eigenvalues andx

variables.) _ 2

L]

"The sum of the remprocals of the=e1genva1ues is an 1nd1cat1on of the

degree of matrix non’- orthogonahty This- value for a completely orthogonal
design, of coutse, equals to the number of preémtors N. The more corre-
lated the pred1ctor var1ables however, the smaller some eigenvalues w111‘
~ become and therefore the larger f:he sum of their reciprocals. This sum
- divided by N shows how many times g‘reater the aquared distance is between
5"samgle (est1ma’ted) ‘and population (true) beta coefficients for the non-

orthogonal design than’it would have been for an oxthogonal,“desig%

_The product of the eigenvalues enuals the determinent of the ‘matrix, QThe,

large: the determ1nant (up to N for a.n orthogonal matr1x) the more orthog- o
Qpal the des1gn. Later in th1s report the determinant will be used as a
criterion for selecting the coormn%tea of data collection po1nts which when
added to the conditions of an undes1gned exper1ment will ma.ke 1t more

a

orthogonal,

=
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IMPROVED METHODS OF HANDLING DATA FROM NON:ORTHOGONAL .
-DESIGNS ™ ™~ B 1

- To extract the rn‘ost 1nformatlon from the undes1gned expenment full
. advantage x;r,;;;lst be taken of any technique that can offset the problems associ-
" ated with'thisiclags of experiment. In the last two sections of this report,
two approacbes w111 be desctibed that are superior to the more conventmnal

techmques in popular use today, These a\pproaches involve:

° Collect1j add1t1ona1 data at specific coordinates of tbe exper1menta1u

space to 1mprove the orthogona:hty of the design..; - .

-

“_ e Using ''ridge regression' analysis to provide more stable.and

meaningful regressmn coeff1c1ents with which to f1t‘the data frorn

non-orthogonal exper1menta1 designs,

- . =4
v

"

Conceptually, thesektee&ﬁn_iques are relatively easy to i.mdei'stand, Impl,e; S

., menting them, however, will require the talents of the investigater "a com-
puter prograrnmer and possibly-a statistician. In ‘all cases the only pract1ca1
viay in wh1ch these techmques will be employed is w1th the aid of a high- speed
‘computer. "In the:body of this report,. no detailed dis¢usgion of the. computa-
tions re‘qiuired for the a‘nalyses will be giyen. waever, i;x;th“e appendices :
- both general and specific Feferences regarding the computational efforts are -

supphed along ‘with listings, of complete programs. When these are not ‘

sufficient, the reader‘is encouraged to refer to the or1g1na1 papers.

-
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. %W« SECTIONII . ° |
 COLLECTING ADDITIONAL DATA TJ ORTHOGONALIZE THE
Lo UNDESIGNED EXPERIMENT - [

\

A
. The non- orthogonal1ty of the undes1g ned experiment complicates the .

° interpretatlon of results. In this aect10n methods of collecting additional
, data that w1ll alleviate this .situation are proposed Spdcifically, information

. w1ll be prov1ded here to tell the reader: - o o o
R -~ t ’

e ,How te® select the "coordinates of new data po1n‘1%;§s, that will improve

e How to. haxidle 1rreleva:nt shifts in performance that may occur

the orthogonal1ty of the or1g1nal desugn

’between the time when data 1sa collected on or:gmal ahd.subsequent ,

runs. . ' .« : o B,
e, - . . v ) . o

lad) - L L : M ‘

" PRACTICAISCONSIDERATIONS . - - :
— : 5 ) |

Since most undesigned expe_\riments are those in which the experimenter ' .

s

has little or no control over the le‘vels%f his variables, it-may appear pre- ]
sumptuous to suggest an approach that requires just such control. The pomt

i . in fact is thdt there are circumstances when this approach can be used and )

5 an inve;"igaftor should be aware that such an approach ex1sts and be prepared

to use it should the occasion arise. Sometimes, if only adew additional

pomts are needed, an 1nvest1gator can make a c¢oncertsd effort to set up the e
requ1red conditions in a way that would not be Just1f1ed for an entire experi-

‘ment. * At other t1mes once the principles involved in adding points are

understood, exper1mental conditions"that are hot located optimally can be .

considered which will still improve the orthogonality"of the design and the
1nterpretab1l1ty ofTh\e{ata All in all, the knowledge ‘of how to properly add

o data points is a useful\expenmental tool that has appl1cations bey0nd the '

L 1mmed1ate probletn,

. oo . . o
° Es ’ ’ ) . ’ N .

(<)

Other useful appl1cat10ns of these techniques for the design of experiments
‘are qated in Append1x E. v,



-

3 .

7

k.:' Other factors that must be taken 1nto cons1de§ation before this technique

%

4

. iF
is employed 1nclude' .

-

e Computer fac1],1t1es must be available’ because of the amount and  *

°

.

complex1ty of the computatlons requ1red

¢ e Variables should bé measurable on quantitative and“gontinuous

e scales. - .
V . o [} N

° The added costs of data collectlon must be weighed against any

antlc1pated 1mprover§ent in data Jnterpretablhty .

. Little effort is/made in this report to. he1p an 1nvest1gator select-which

4

awlternatwe method he should yse f’r his particular problem. Nor is more *®

‘ than a superficial effort made to identify and handle spe01a1§problems that

might arise uniquely in behavioral reseﬁrch.

° ]
s o

- y a.
SELECTING NEW DATA POINTS TG JMPROVE DESIGN ORTHOGONALITY

o
e
@

Adding additional experimental copditions at the proper coordinates /
within the experimental space can reduce the non- ortho‘gonalit\y of an 'unde- |
signed experiment. When an ill-conditioned design can be repaired this Way
suf iciently, the data. may be mterpreted with the finesse ordinarily reserved
for data obtained from orthogonal des1gns Improved ortnogonahty depends
solely, on the location of the experimental conditions and is 1ndependent of
the responses obtained under those cond1t1ons s

Two methods ‘of selecting these additional data points have been proposed.

These are:

N

Ct
' Search the entire region of 1nterest in the exper1mentaI space to_
. f1nd one.or more pomts that sat1sfy the selectlon cr1terlon »

LY

A A T Examme a group of "cand1date" points to see which one best meets

the selection cr1ter10n, s 9

1
-y e, 3 . . -

The first.will be called thé "random.search approach" and the second, the
'""candidate selection approach',: )

"‘«a - o 4
: , A\

- -
. . o v . . - .
N . - X . . « .
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The Selection Criterion’

. With either approach, given an initial set of non-orthogonal conditions,

-

. the orthogonality of an e¥perimental design will be ° g
- improved if thé next condition is chosen at the point . ‘ ,
in the region of interest where the variance of the . .
fitted response, V(y), is largest. 3 '

4 -

9
Whewn data has Qeen c‘ollbected within the experimental space in,some
non- systemat1c fash1on the precision of the data throughout the continuous
response surface ‘will be irreguiap with greater prec1s1on naturall ly lymg in
9 the v1c1n1ty of where the greatest amount of data wa's collected 'and vice _
. versa:* The selection criterion says that to 1mprove orthogonahty add1t1ona1
| data should be collected at the point‘or pomts in the response surface where
*  the prec1s1on is poorest, i.e., the var1ance is h1ghest In Appendlx A,
- methods ¢f discovering and measuring this point of max1mdm variance will
be d1scussed : ' ' - ’ [;.

-

When a data pomt is added to the non- orthogonal design at the point on‘ '

the responSe surface where variance 1s highest, the followmg occur: _ .
ER - . . .

‘ o' The non_-orthogonal désign becomes more orthogonal. N
e The variance at that point is reduced.
T e The des1gn be¢omes more "rotatable” over,a spher1ca1 region of

interest. (A rotatable desxgp is one in which the var1ances of
estimated values equidistant frgm the center of the design will be
L -equal. See Box and Hunter, 1958, 1, 167.) o R

P

y o The averall variance of the polynom;Lal is reduced

- The confidence regions about the regression coefficients are -
.o reduced. T

.

"Mathematically, adding a new data point in the region of interest where the
* variance is largest also maximally increasés the determinant of the rev1sed -
old\phxs new points — experimental design.matrix. All of the effects-cited

above will also occur as a consequence of maximizing the detérminant, : .

» .
Ve . . a
¢ . - .

. . R 2




_ Theref@re if it is pract1ca1 to do so, ‘selecting the point that w1ll max1m1ze
the determmant ¢f the revised matr1x could be subst1tuted for the cr1tergon
of selectlng th.e point on the response surface where var1ance is highest.

Computer programs for ca1culat1ng determlnants are cited in Appendlx A

e o

v

Rafidom Seaych Approach

N 7 R
Hebble and Mitchell (1972) pPropose. thz& a computer be used to randomly

.search the ex1st1ng experimental Space (of the or1g1nal unde51gned experiment).
to find where the variance of the estimated reponse is maximum. When' found,
that point would be the next condition to add to the experlmental design. The
‘process is then repeated seek1ng the point where the Variance is maximum
within the space now defined by the original plan p‘lus the f1rst addltlonal point.
A th1rd point will be added where the variance is maximum w1th1n the space
def1ned by the or1g1nal and two add1tlonal points. This process cont1r1ues

unt11 the 1n'vest1gator is satisfied with the degree of coxrrection obta1ned Once !
a sufficient numper of data points have been selected the performance data

can be collected v . .

)
o

i Hebble and Mitchell- (1972, p. 768) state;. '"When there are not more than
two 1ndependent variables, ... we use a grid search procedure. When the
factor space is of higher dlmensron SERER L fanr a random search techn1que.
We chose random seafch in preference to more soph1st1cated opt1m1zatlon
-ﬁpérocedures for the following reasons: (i) The random search technique is
easier to use,” especially when the region of interest R is constrained in
strange ways. (ii) We feel that the random search'technlque can be most

easily extended to the s1multaneous cons1derat10ns of several cr1ter1a "

Exam mple. Hebble and: M1tchell (1972, p. 776) show how the1r srandom
gearch approach can ))e applied to repair the non- -orthogonal design used in a
chem1ca1 problem. - Four predictor varlables were involved. They had
planned to use a th1rd order rotatable des1gn requ1r1ng 81 runs, but during
the exper1ment some combinations were never ruh bécause of equipment

limitations. As a result, the orthogonallty of the design was destroyed




g - : Q.
Pl . ) . ’ ) -
To repair the design, they added five new design: points using the random

search approach, The ‘change in the "infdrmation contour" of two dimensions -
. of the response surface before and after the extra data pomﬁs were added is
l shown in f1gure)F .3.’ THis contour of constant 1nfoz:mat1on, I‘ is inversely
related to the'variance contour, i.e., I= G'Z/V(y) The 1mp1:ovement in
rotatablhty after the points had been added is v1sua1‘1y obv1-ous. There was
: a correSpondmg 1mprovement in the other qua11t1es affected by addmg pomts

~at’ th_e,.maxnrmr_n-.V(y) which also ma:;_u_rnzes the determinant of the augmented’

design. . 7
' . ’ -
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. Precaution.‘ The original purpose for adding more data points to the
original undeS1gned experiment was to improve the orthogonahty of the design,
‘which in turn could fac111tate the interpretation of the results, It should be
noted however that although using the maximum variance criterion does
improve the design for th,at purpose, it does not necessa;rily provlide an
optimum design, Hebbie and Mitchell (1972, p. 778) recognized this when
they wrote: .. .in mahy cases, 'bias' caused by fittirig an i'nadequaxte model
will be a more important source of error in the flttetgresponse than will

: var1ance. /" Bias error can be present, for example, if a higher order
relatlonsh1p exists in fact between variables and performanoe but these

" effects cannot be isolated by’ the existing exper1men$:a1 design., Because the
blals cr1ter1on would be a more difficult one to meet, Hebb1e and M1tche11

1gnore the problem. In the next section, Dykstra suggests some ways of .

meeting 11:.

Candidate Selection Approach

D;rkstra (1971) proposes that instead of searching randomly through the
region of interest for the point where the estimated respomse variance, V(?f),
is rrfaximum, a’'group of candidate points should be selected on some rational
basis. Then the V(¥) of the #& candidate points would be Calculated for the
existing de31gn and the ong with the largest V(y) would be used for the next

run, Cand1dates would continue to be evaluated thls way for each succgessive run,
/

Of coursg, none of the candidater points will/necessar'ily be located

prec1se1y at he#pomt on the response surface where the V(y) is maximum,

This makes the result;s somewhat less accurate 1n1t1a11y than the random

search approach, However when a series of runs is made, the app.roach

becomes self-correcting., One advantage of this approach over the random
4

search approacn'h is the reductlon in computer t1rne.

. p : o t

©
-\

Des1gns that satlsfy both b1as and random error criteria have been proposed
" by Box and Hunter (1958). Tests of the goodness of fit- of a specific model
.. -are applied. If the fit is found inadequate, data points that will enable a
‘higher-order to be fit are added to the original design, (See Simon, 1970

2

and 1973) ) g . : .
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Selecting a Set of Candidate Points. There are a.number of ;practical

 considerationggaffecting the ra_.tionail selection of a set of candidate points,
For example, the investigator would a@oid selec‘tin“g points:

e  Thatare not feasible to run. *

¢

®. - Where no response is likely to occui‘.

:Thus unlike the random search technique, the use of rationally selected *
candidates permits tha experimenter to i'znpose his judgment onto the
mathematical criteria by sélecting points of practical interest as well, -
'This ehables the numbe‘r of different levels of each fe.ctor to be kept
reasonably low, an important consideration when chang1ng veb{peru‘nental

cond1t10ns is difficult or tunhe con%umlng. *:" ' o, L, .. -

s

. Dykstra (1971), by choosmg candldate po1nts, {s more able to attack the

problem of equatmn bias that Hebbie and Mitehell 1gnored The cand1date '- '
pomts should be selected ina way that not only 1mprov§s orthogonallty and B |

- the associated reduction 1n variance but also develops ﬁ"lto a design of a model

that will adequately fit the datas ,He suggests the followmg oo
a ‘ "In choos:Lng spec1f1c combinations, however, one should be
. guided by the model. For a first-order model the procedure -
T will select points at the extremes of the experimental space, :
so that only corner points need be specifiéd as candidates.,
For a sécond-order mddel the list of candidates should |
include the axial points and a center point, in addition to‘ - E v R
corner points, A cubic model should have the candldates at e
_four levels of the controllable variables, and so,on.' (p. 684). ' . o ‘

v

Selecting the Point for the Next Run. leen a set of candidate experi~

mental conditions, the one selected to run\(next is the one that g1ves the ‘

'highest variance for the estimated resPonsé at that po1nt, i.e,, where the
lvalug of V() is greatest, or when added to the existing design, maximizes

the determinant for the augmented matr1x. Each additional cénd}*date po1nt is ' 7

ry

selected sequentially in the same way until there is a decision to stop: The

number of candid te\pomts to be- dsed nlilethe discre’cion of the - .
experimehter, may he based part1al/ly on the number required to meet the '

h\aracterlstlcs of éhe médel and partlally on the 1mprovement needed in the

prec1s1on of the equation,’ . o . .




v

- will optlmlze (almost) the determ1nant of the X'X matrix,

After 26 points had been added,

original 20 points,

Mitchell (10974) pro?aoses his own algorit:hm ”DETMAX“ for design
augmentation which searches £or com plete subsets of candidate points that
He states that th1s.
method will g1ve higher values of the lX'Xl than Dykstra s one- polnt at-a-
time approach but admits ‘that the latter "is seldom far off, and takes - ‘ .
When the

much less-time on the computer. In*many practical sityations,

-, object is to find-a good-(not necessarily opt1ma1') des1gn quickly, the

sequential procedure will be qpite satisfadtory." (p.%Oé). A Coy
. ’ ' <] '

Example. Dykstra (1971) improved the orthogonality of a 20-Tun s,
‘''undesigned" experirnent with two correlated predictors by sequentlally
addmg six out of nine candidates needed to 1mprove a, second- order des1gn.
The nine candidate points were the four corners of a square, the four
extremes of the axes, and one center po1nt with the non-center points

- placed equ1d1stant from the center of the space. The changes in the variance
contour beforeand after several degrees of augmentation are shown in fxg-‘
urelF 4, The‘ shift toward a more rotatable de51gn is wvisibly obvious.

for the 26 points is <3.39 x 10° times larger than it had been for the

5
- o, o \

HANDLING PERFORMANCE SHIFTS BETWEEN ORIGINAL AND ADDED
POINTS - KE

: Chara'cteristically?}n human performance resea;ch,
ditions are measured sequentially, changes in performance may be observed.
that are not due to the experimental variables. ' If there is a cons1derab1e

1nterva1 between'the time the performance, data are collected from the or1g1na.1

the de“cerminant of the augmented design .

if experimental con-

undesigned experiment and from the additional points,

unexp1a1ned and

undesired performance shifts may occur.

This'can be due to changes' in the‘

subject, in the environment, in the equipment, or any number of unknown -
- factors, In any ca{s»e unless this sh1ft in performance between blocks of

data is dea1t with properly, it will d1stort the 1nfo;;ma.tlon of interest,
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2 - 1 VARIANCE CONTOLRS FOR N = 265 FG.3 -
' Original
. points

Added
‘points

Candidate
points never
selected

. Vl
' CHANGE IN VARIANCE CONthi~Rs FROM ORIGINAL 20 EXPERI-
)

*  ~ MENTAL CONDITIONS (FIG. 1) AS TWO (FIG. 2) AND SIX (FIG. 3)
DATA POINTS ARE ADDED @ .

1, 2, and 3 in the paper by Dykstra (1971))]
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_This blocking problem can be handled in two ways,

tr

Y L ]

° By including a blockmg term in the regressmn model..

° By adding data points in balanced pairs. . . \\
AN

] Y

, Adding Ia Blacking Term S T . .

Hebble and Mitchell @, 72, p. 771) suggest that 2 a blocking term be
P

CRE, - P

_ 1nc1uded in the regression m@ael to account for a posmble dlfference in

overall response level betweer%’t‘fue initial des1gn ‘and the runs that are chosen
to augment it. They say (pi+771)¢ R .when a constant B is zlready in the
model, we can account for a poss1b1e block effect s1mpIy by.introducing a
'dummy variable', which takes the value of 0 for each run in the initial
design and a value of 1 for each‘addltmnal run, When this is done, the model

for the original design is unchanged by the 1ntroduct1on of the blockmg

'variable, Thus, the first new point in the de51gn can be selected without

introducing a blocking variable, To select further new points, .the blocking

variable should be included, and.a 1 should appear in the blocking column of

~ the. X matrix in every row which is part of the additional bloék of runs., " They

note that different data po1nts will be selected when a blocking term is, and is

not included (See figure F.5), Generally, it i wiser to include a blockmg '

term. - Procedural precautions against sequence effects (Slmon, 1974) a\\lﬁgg

should be employed whénever possibile,
% ’ 2

Adding Data Points in Pairs

P

Dykstra (1966 p. 279) suggests that another way of handling th1s problem

is to augment the design with pairs of data pointgg Orthogonal blocking will

be obtained if pairs of data points are selected so that the averages of the

coordinates of these new pairs equal the average of the corres'pondmgcoordb

nates of all conditions in the or1g1na1 de51gn For example, if the original

®
2

N
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’ FOR BLOCKING
q—-l_.e—:as. u_._,...__é__ 1
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[{ . R 3 -
! POINTS SELECTEDI

WIZNOUT PROVISIONS

-

SELECTED

1 POINTS
WITH PROVISIONS
FOR BLOCKING

———t - _...4;___
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|

|

I

| 0
| .
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- 0 R

%

© « Original points - S

o Selected points

ILLUSTRATING HOW FOUR CANDIDATE POINTS ARE SELECTED

IS (B) OR IS NOT (A) INCLUDED

[Adapted from Figure 5 in the paper’

DIFFERENTLY DEPENDING ON WHETHER A BLOCKING TERM

™~ - N
by Hebble and Mitchell (1972).]°

v

. i . \
desig/n of three variables had/be/e.n nnade up of data points at! tK following

. coordinates:

]

o

Variable

Data Points I II III

No. 1 3/
No. 2 ‘1 :

No.3 4
No., 4 . 2
Average: 2.5 3.5 3.

to be orthogo‘:?al, the two new data points would have to be selected at points

N ‘ -
# e
N .
. , . .

31
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4. [

Variable levels (or .coordinategs)

, Original design composed of
four data points
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where then' meah coordmates equal the averages,\of the pomts already in the

degign, for example: , o ' _ -
‘No.5 -4 5. 2 ,
Wot6 1. 2 4 | |
* Average: 2.5 3.5 3.0 o . >

[}
LI

. Dykstra in his 1971 article did not discuss this blocking method wben he

- used the maximum V(}Ar) criteriBn to find the coordinatgs where the next data®

point is to'be added}’ However, it could still be used if ca.nd1da.te pomts were
designated’ in pairs and the criteriop for selectmg the\proper pa1r would be
that which maximizes the determinant of the augmented design, Mitchell's

(1974) DETMAX, for example, might be used for this application,
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SECTION IV . y

4 . - RIDGE REGRESSION ANALYSIS v

v \
: z

The purpose of regression analysis is to obtain a set'of coefficients for

&

an equation that will fit the existi_ng data without bias and with a minimum
amount of variable.error., The conventional "criterion of a.best equatien jis
one in which the sum pf the errors Nr“ed between estimated and observed

o

responses will be at a minimum, = , .

~

When an orthogonal des1gn has been- employed (1 e\, the predlctozr
var1ables are mathemat1cally mdependent), the estunated beta coefficients
are reasonable representations’of the true beta coeff1c1ents, within the limits "’
"sef, by the error estimate. When a non-orthogonal design has been employed,
the individual betas calculated on the basis of the-lea'st‘ quuares criterion are
often unsatisfactory. While the overall equation may be adequate for pre-
diction, the relative effects of individual terms cannot be evaluated. With
non-orthogonal designs beta coeff1c1ents deri\_r_er/)d/‘from a least squares f1t

may not make sense in the real world, . ' .

Hoerl and Kennard (1970a, b) cite the followmg character1st1cs %f

coefficients estimated from ill- cond1t1oned exper1mental deS1gns., ..

g \ t ) ) LN
- @ ¢ The coefficients become too large in absolute value. ' ?2 TN e

.

. ° Some coeff1c1ents may have the wrong sign. - T ‘ .

e Collectwefy the coefficients are unstable another set of performance

) | data}would be unllkely to give the same beta values, . .
° Individual coeff1c1ents may be over or under estlmateys of the

A{

strength. of a pawticular factor., | _ Ao ..
s o) | o
The more non-orthogonal 'the original design, the poorer the equation is ¢

likely to be,.

-

-
» . .
“« . - .

. ALl of rthese cond1t1ons stem from the correlations among | the predﬁ,ctor .
' s
variables. ‘In the past, xcp order te untangle the relat1onsh1p among the factors

it has either been necessary to drop those predlctors that correlate the

- ) “
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highest with the others or to treat the total equation as a black box.® However
some of the power of the regression model is lost by either of these approaches.

As an alternative’ to‘iconventmnal mu1t1p1e regression (least squares) .eg‘ .
analysm with non- orthogonal data, Hoerl and, Kennard propose ''ridge regres- :

sion"; This analysis, they suggest, will obtain a better-‘prediction equatmn
- X

! . . . A Y

in which:

[y

. }y .
.® The estimated coefficients will be closer to the true coefficients

.
on the average; - - = = - . e s ,

e . The signs will be more meaningful;

° _’\ point estimate of a response can be madg with a smaller mean -

square error; - ‘ . N .
o The coefficients will Be more stable and likely to be repeated if Yoo ook

t

new data is taken, 4 — ’ - -
VMATI'-IEMATIC'AL' BASIS FOR RIDGE REGRESSION
< | ‘ | >
Hoerl and Kennard (1 970a, b) supply the mathematical baS1s for ridge S

regressmn analys1s. Only the rudiments of their exPlanatmn will be supphed
here. The reader should refe;r to the or1g1na1 papers if more details are
desired. Marquardt (1970) also deals with the mathematics of ridge regres-
sion as part of a broader class of biased linear estu’natoré employmg

generahzed inverses,

Essentially,’ Hoerl and Kenh_ard (1971a) show that in conventional naultiple'
regression analysis, the average value of the squared distance, E-(LZ),

between the estimated, 'é, and the true, B, Reta coefficients is equai to the \

error variance, o’z, of the data multiplied by the sum of the reciprocals of, .
‘the .eigenvalues,‘ i.e,, | | .?5 ] Q 'n .
’ 2 A A n L 2 : ’
- E(LT) = (B - 57' B-B)=¢ 2 (I/Xi) . - - [E.3]
. _ . d : , / .

When the predictor variables are uncorrelated the eigenvalues, \, j» are each
equal to one. In that case, the average squared distance bejtvﬁéen est1mated

anda true beta coeff1c1ents will be equal to ‘the error variance of the data
- ! \ .
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rﬁultip].ied by the number of variables, p; involved., Howeyer Wh'ep the
pred.igtorsvare 'corx;el’ated, as in tl'{xe case of the undesgigned experiment, éome
of the eigenvalues become very small and their reciprocals very large. This
increasés the average ”squared distance between the estimated and true beta
coefficients. least squareS’ fit of data from a non-orthogonal experimental -
demgn also produces coeff1c1ents that are too large in their absolute value,

To compensa.te for these large positive coefficients, other coefficients are
est1mated that are too negative which often may be the incorrect sign, The
_more, ill- conditiondd the des1gn matrlx, the WOI‘Se these conditions are 11ke1y
“to be. '

-

LS

M N : , 3 ~ . . R
. To correct for this, Hoerl and Kennard propose to 4dd a small positive
quantity, k, to the unit diagonal of the intercorrelation matrix of the pre-

dictor vanables. For example, if the or1g1na1 intercorrelation matrix @vere~

-
i

¥ . Variables ] ' ”
o B i W S SO LS |
k , X2 0.23 '1.0 0,15 Correlations g b
¥4 Variables -0 ., between XXJ .
X, 0.45 0,15 1.0 " or X;Y :
3 .
. ‘ \ = T
X4 . 0. 67 0. 36 0, 89 . ' . .
thenjhe new matrix would be, for exg;mple, 1fk = 0,2, Would Ee~ - R T s
© . @ ) ‘.'-“ ) ' )
%5 X %5 XY .
X, 1.2 0,23 0.45 0.67 0,14, o \
. I :
. ! "X, .0.23 1.2 0,15 Q. 36 0.26
: , 4 .
' , Xy 0.45 0,15 1.2 0. &9 0 54 . o
£ X, 0,67 0.36 0,80 1.2 0.22 | £ -
| _ _— - N | & ow
Note that the k = 0,2 has been added to tl'_xe 1's in theydiagonal., Next, a : o v

conventiohql least squares fit is -dopé‘using' the perturbed matrix, The results

. T4 - A N ¥ .
produce what 'Hoerl and Kennard call ''ridge coefficients, " %, .The distinction

-

. S
o i . S ,
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between the conventional beta, B, coeffic1ents and the r1dge coeff1c1ents,

eﬁpressed in matr1x algebra, is: ' 4 - S
E R
‘ = (X'X)" X'Y
o P o= (K'X) XY, w
and . -

) A. . , -1
: ) L B¥Is (XX + KD IX"Y.

‘Valued of K between 0 tor 0.9 may be subst1tuted with finer. 1ncrements be1ng
,‘} used at the lower end of the scale below 0.1 where change/s in the estimated -
! r1dge coeff1c1ents are greater. Whereas the betas estimated from the con-
Lo vent1ona1 least squares are unb1as%£1 with m1n1mum variance, the ridge ‘
. coefficients conta.m both abias and a variable error ‘These two error com-
T ponents are present in the equation (wr1tten in matr1x algebra) for the -
Y average squared distance between values of the ridge coeff1c1ents and the

true coeff1c 1ents thus:

-
P

E[L] (0] %= o2/ + 10° + 1% (XX + 1) "%, . [E.4]

- The first component represents the variance and the se cond/the b1as.
Note that when k = 0, the second component d1sap4§earsA leaving the unbiased’
est1mates of the coeff1c1ents found by a conventional least squares fit., As k

1ncr.eases, so does the bias error,
LI S 4

-7

: o . |
However, Hoerl and Kennard dembnstg:a'te that as k increases, the

+

variance error decreases more rapidly than the bias error’increases. This
means that at some value of k, the mean square error —the combination bf
~bias and error variance — for the ridge coefficients will be smaller than it

- would be for the conventional coefficients, -

¢ >




K.

illustrate how a.dding the bias can actually reduce the mean square error,

Exactly what has happened in this 'pi'ovcess" is simple‘to understand if

equations E.3 and E.4 are referred to. In equation .3, it can be seen that

.the small elgenva.lues have the ‘greatest impact on the estlmatlons. The _

smaller some of the e1genva1ues get (as a result of a non- orthogona.l design},

* «the larger their’ rec1prqca.ls and the greater the squared distance between,

estimated and true beta coefficients becomes In equatﬁ)n E. 4,‘, it can be
seen that adding a constant k to the correla.tlon matrix d1a.gona.1 has the
effect of adding k to the eigenvalues of the variance cpmpdnent. For the
very srna.ll eigenvalues the a.ddition of even a small k ce.n do much to
decrease the size of the rec1proca.ls of the elgenva.lues and to decrea.se the
squared distance between &stimated and true- beta. coeff1c1ents. .
o ' - A | o T

- This phenomenon is 111ustra.ted in figure F.6. Ih this figure, both the bias

squa.red and the varlancé of the ridge regressmn coeff1c1egts have been

standardized by dividing each by the res1dua.1 error variance of the

'respoxise data, The least squares variance (normalized) of the estimated

beta cdefficients is represented by the horizontal line (a consta.nt) across the
top of the graph. When k equals 0, of course, the variance > of the ridge
coefficients is identical to the variarnce of the 'e;tirna.ted beta ceeffiqients,
and the.bias Squa.red (normalized) is zero. As k increases, howevei', it
can be seen tha.t the variance decrea.ses and the bias squa.red 1?1crea.ses,

each ina monotonlc function. The sum of these two effects, the mean squa.re |
error (as represented by the dashe& ''ridge'' line), drops initially only to rise

later on. There will always be for -some value of k a portion of the ridge -

.+ trace where the mean square error is smaller than it would be' had no dis-

tortion been introduced. In this exa.mple, the mean square error is at a
inimum for k = 0. 05, .nearly half the magnitude of the original variable ‘
error. While there are other criteria than the minimum ridge value for

selecting the k where the i'idge coefficients would be found, this figure dees‘

and thereby improve the estimates of the coefficients.'

9

Two computer prégfams for performing ridge ‘regressien"ana.lysis are
listed in Appendices B and C, a print-out of the latter is given' in, '
Appendixf'D,‘ and some discuesion on both programs is held in'App'endiva.

L . ' ’ _
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RIDGE REGRESSION MEAN SQUARE ERROR FUNCTIONS

[From Figure 1 in Hoerl and Kennard's (1970a) paper. ]

i

INTERPRETING RIDGE TRACES I <

' One of the advantages of r1dge regression analys1s over conventmnal
least squares is the ab111ty to portray the sensitivity of the beta estimates
graphigally. A two-dimensional ridge trace of the ridge coefficients is

obtained by plotting the estimated. ridge coefficients against the values of k.
< ' o

" This is illustrated in figure F.7.
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complete, for all coeffxcxents would be equal to zero.
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value of K
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RIDGE TRACE: TEN FACTOR EXAMPLE

.{From Figure 1 in Hoerl and I'{epnard‘vU)?Ob) paper.]

The plot of solid L\rsles illustrates how, as k increases, the rldge

- to go to infinity (ad absurdum), of course, the abdve processes woulé be

From figure F 7, it

is @pparent that long before that pdifit is reached the distance between the

estimated and true coeff1c1ents would be too large to be of practlcal value.

Quite obvmusly, therefore, it is necessary to select a minimum value of k

Jthat will adequately provxde an improved set of coefficients, ones that are

more meaningful and will result in more acdurate predlctlons.

The dashed line at the bo‘ttom of figure F.7 is a plot of the residual sum of

v

3

-3

squares as a,function"of k. It is normal that%;‘s bias is introduced into the -
’.

design matrix, the lack of fit of the original data would become poorer

.

-
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h in absolute magnitude and begm to stabﬂlze If k were
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: r . (i.e.', SSE bécome l'arger) Jt is only when the equa.t1on with the ridge
coeff1c1ents is used to est1ma.te performance on new data that the estimation N

- has been' 1r_nproved .

. . N .
- ) . . N . . [ , .

. Hoerl andl\Kenna.rd did not feel tha.t an a.utoma.t1c - ma.thema.t1ca.l -
N solutmn for . select1ng the best k w>s Just1f1ed “They stated. (l970a, P. 64)

' "The inherent boundedness a.ss’umptmns in usmg p* make it
~ clear that it will not be possible to construct a clear- cut,
a.utoma.t1c estimation procedure to produce a point estimate
, (a )s1ng1e value of k or a specific value for each k), as can
P ' ‘be constructed to prdduce [3 However, this is no drawback

. . to its use because with any gwengset of data it is not T _
‘ ~d1£f1cult to’ select a p* tha.t is. better tha.naé *
- H / i

Tiney prOpose tlgg.t instead of seek1ng a ma.thema.t1ca.l solution for k, the ',
r1dge regress1on chart h;e exa.mlned visually, The follow1ng\cond1t1ons should

be looked for when select1ng the ‘value of k' - y )
“

N .
- 1. . The beta values and part1cularly their orders of magmtude have

: begun to sta.b1l1ze. S . S I

te oty

S 2. The coe‘ff1e1ents no Ioﬁger have unreal1st1oa.lly la.rge a.bsolute

- —

.Va.lues.r R * -
P 3. ‘I'he coeff1c1ﬁents W1tl(log1ca.lly incorrect sxgns a.re a.pproa.chmg or
T . “havé rea.c‘lfed the proper s1gn. a R
. ’ .- y ‘ . P
-7 - 4," The res1dua.l sum of squares is not unreasonably rnflated

"5, The r1dge tra.ce (represent1ng tne méan square error) is smaller

tha.n the unb1a.sed lea.st squdre va.r1a.nce.

, In the analys1s 1llustrated by f1gure F.7, Hoeérl a.n,d Kennard (l970b) selected .
‘. +° akbetween 0, 2.ahd 0.3, Note how the coefflc“ients have begun to stabllee, '
K , how variables 6 a.nd 7 have reduced cons1dera.bly in 'Hnagmtude (with 7 losmg
., its effect1veness a.lmost completely), and how variable 5 has begun (but not

) _ cornpleted) a shift from a la.rge nega,twe to a low pos1t1ve coefficient, °
B "At k= 015’, the ,res1du7a.1 sum of Squares (SSE) has 1ncrea.sed approx1mately(

'60 percent from 0. lO to0-0, 16 while” the expected squared d1sta.nce between

9 . - N !
T - . -] .h . b
Ed + .
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3 . .

of the coeff1c1ent estimate from true coefficient values has reduced to

26 percen‘t of 1ts or1g1na1 value .

< - 4

¥

ALTERNAIE METHODS OiT‘"SELECTING K . T

»
-

A Techniqués other than Hoerl and Kennax\e s have been proposed for
&electmg the Yesired k value. Several 1nvest1gators reanalyzed the data
Jfrom Gorman and Toman's (1 966) 10-variable study that Hoerl and Kennard
. had used for th%nalysxs shown Ln figure F.,7 in this report, For the same
data, using different criteria, the 1nd1v1dua1s cited below . se1ected the

following k values: oo ‘ ,
) : : e .

S o ' Basis of '
Hoerl andKennard (1970b, p. 7\2) © oo 2500 "~ Inspection”
Lindley -and Sm1th (1972, p. 17) ©70.0390 ) - Bayesian’
- "Mallows (1973, p 672) ‘ 1 .0.0200 " C_ plot’
- Farebrother (1975, p. 128) ' '°' 0.0029 - Min. MSE
- R - e . A

Lindley and Sndith (1972) argue that since there is usually prxor infor -
mation about the parameters re1at1rrg pred1ctors to performance this infor-
mation should be exploited to find improved estimates of the parameters. .

" They apply Bayes1an methods to linear regres‘sxon analysis arg\:un that in
the case,of non-orthogonal data, the Bayesian method reaches «Hé same
. conclusion as the ridge method but has the added advantage of dispensing
with the rather arbitrary choxce of k and allows the data fo mate it.
Using Gorman and Toman's (1966) data, they compare the c:%ientsq

obtz\med by the .three methods — least-squares, Bayes, and ridge. They

.'note that the Bavyes approach hke ridge gets rid-of the three major pom-
plaints agamst betas obtamed from least-squares —1arge absolute values,
incorrect signs, and 1nstab111ty. Comparing the- results of the Bayesxan
versus the r1dge approach, they note that all the est1mated coefficients are
pu11ed towards zerq with, those from the ridge being sma11er since "a ©

‘consxderably larger value of k than the dafa suggest” (p. 17) was used.

’
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Farebrother (1975, p.~128) concludes from his own data and from a
reexam1nat1on of Mallow's k value — which he thought should have® *been -

smaller — that '"Hoerl and Kennard's\que st for stab1l1ty has led them too

far from the unb1ased est1mator. S

~

v

It is appropr1ate to remind the reader that each of the.above’ investi-
gators was applying a different cr1ter10n when he sglecteds-the optimum k
value, and what may be best for one purpose may not be best for another,
For example Mallow's (1972) C cr1ter1on ("standardized total squared e
error")v '1s a,measure that combines both bias and vaxniable error and he o
selects the k value where C_ is minimum, This could conceivably correspond

to the m1n1mum r1dge value considered by Hoerl and Kennard in figure F.6

: but which was not used in sele°ct1ng the k in the analysis shown in figyre F.7.

Wh1ch is better? The difference m1ght be in whether one is more 1nterested
in a good pred1ct1on without too great an ‘increase in RSS, in wh1ch case the '
mean square error or C should be m1n1m1zed or’ if one-is more interested

in comparing 1nd1v1dual terms, in wh1ch case the stability of the 1nd1v1dual

coefficients becemes mol‘e 1mportant Only exper1ence is go1ng to dec1de

v
how the numerous cr1ter1a must be traded off aga1nst one another

McDonald and Schwing ’(1973) used ridge regres sion analysis on a. prob-
lem relating air pollutlon to mortality.. They selected their value of, k (wh1ch
was not necessar1ly opt1mal in so far as the mean square error was con-

cerned) accord1ng to three cr1ter1a i.e., at the point where:

° The order of magnitude of the coefficients had stabilized; - -
o The residpal sum of squares and coefficient of determination hado,

values consistent with problems of'that type; '

-

e The ridge coeff1c1ents are within the 95 percent confidence ellipsoid

AS

for the unknown true coeff1c1ents assuming normally distributed .

»

errors, .

- »

P [l

Newhous'e and Oman (1971) propose several methods_ of choosing a k value
to use 1n ridge regression and investigate® the1r properties using Monte GCarlo
exper1ments with two predictors, It appears that an optimal choice of k

: : - .

—~—— . . v . ’

‘\ - . : *
.z«. T e 42 1
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(or interval of k values) ig' an open question at thls"time unless one has

pr1or knowledge about the length-and/or d1rect1on of the unknown coefficient

ve ctor .

*

Although the problem of how and where to select the best value of k
has not yet been resolved the overall super1or1ty of r1dge regress1on over
least squares regreSs1on in the analys1s of non- orthogonal data has not been

seriously questioned,

Theobald (1972) independentl‘y dgmonst’rated that provided

| T w<actipp o \\

the mean square, error. of the ridge coefficients will always be smaller than N ‘
_ the least squares value of the conventional regression coefficients., For thig :
to be true the values of the ridge coefficients must be bounded a realistic ._ |
condition. Theobald does not attempt to precisely locate the optrmum value
o " of k within the limits set by the equation. - o . . , ‘
. S : - : ' ( . N
Banerjee and Carr (1‘571)' suggestra different and ''more meaningful'' - L
criterion against which to assess the accuracy of the biased estimator,’ ﬁ*, -
that Hoerl and Kennard used. Hoerl ‘and Kennar‘d*__oompared the size
of the mean square error of the b1as est1mators (where k > 0) ggainst the
var1ance of the unbiased coeff1c1ents frong the conventional lealt square fit
(k = 0) to show there always e:Z}sts a k at which the new mean square error
would be less than the original variance. Banerjee and Carr however argue
that it would be more meaningful to, compare the mean square error of the

biased estimators against a modified variance, N

' /
£
A 5 , o |
E (B - B)” squared bias = ¢ ? I:l/()\i + k)]
s . o ) . . ’ d? Q .
e .

rather than the one Hoerl and Kennard used,

°

o : . P
2
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error, althou-gh;the effect ig' less pronounced. Banerjee and Carr suggsst

)

< : vb

However, they also show.that even against this modified criterion, there

still exists a k where the biased estimators have a smaller mean gquare

#

that the "gaip in accuracy may better be exhibited in relative terms, that is

in terms of percentages (or, fract1ons) of the variance’ BA or {3, rather than
A

in absolute terms" (p 898). BA as used here refers to th;a\‘ndge coefficients.

7 Goldstein and Smith (1974, p. 288) propoee a mod1f1cat1on of the ridge

approach "wh1ch might be appropriate if one were especially interested 1n
e part1cu1ar [3 s, or were worried that the R1dge estimate might d1stort

the est1mat1on of those [3 s which could be estimated accurately anyway "
They suggest the poss1b111ty of choosing d1fferent values of k for d1fferent
predictor components. They disagree with Hoer] and Kennard-that this pro-’ |
cedure would offer little improvement oirer the use of a constant k. It _WOuld
depend, they claim, on what the optimum k would be for each component; if
it differed widely, then an improvement in the mean square error could be
expected, - . ¢

:
a

- ,

' IDE NTIFYING CRITICAL VARIABLES

o .
When an equation is except1onally }ong dnd if many of its terms are

found to be inconsequential, some inve stigators will want to drop the terms,

~ Inthe case of the designed experiment in which variables are orthogonal to

>
one another dropping terms of Ln&1§n1f1cant effects is a straight- forward

process, In the case of the undesigned experimecnt, traditionally ( be\cause

of the intercorrelation among the variables) dropping a term just because a
coefficient is small would be unwise. However, singe a shortened equation *
is simpler and‘more convenient and economical to use, a variety of algorithms -
havé been dev1sed to find the ''best' subset of variables out of theltotal con-

sidered in the unde signed experiment that will fit the data about as well ast

the complete equation.
. k]

)

-Techniques for selecting the 'best" subset regression equations have
beén primarily of two types: ome, those that literally compare all possible

(or all reasonable) éubsets of regression equations against some criterion of

4 4 ‘j ' 1’




"mnnmum total (bias and va:mance) error, with minor var1at1ons 1n the

- N , :

-
.

goodness, or two, those with no exact criterion of goodnese. but which depend
upon a heuristic algorithm that will supply a group of potent1a,lly good candi-
dates from which the investigator will select the "'best", Mathematmal
criteria for comparing subset regressions have traditiona.lly been either the
m1n1mum error variance (whlch is the least squares f1t cr1ter1on) ora

exact form 1nvolved Hoclung (1972), Allen (1971), Helms (1974) and Beale
(191;; grrtxcally revi ew these criteria., Since there can be (ki - 1) poss1ble
subsete ofcan original equation with k variables, the mﬁa_.m emphasis in .
developing selection techmques that compare ma.ny subset. regressmns has
been to redu%/the computa.tmn time required for the analysis, Some recent
efforts in this regard are those of Furmva.l and Wilson (1974) and LaMotte
and Hocking (1970). Among the techmques employing the less exact criterion
for select1on, the stépwise regression algorithm ha.s been perhaps the one
usek&d most f’requently by. behav1oral scientists a.nalyzmg nonorthogona.l data.
This and related techniques are discussed by Draper and Smith (1966),
Chapter 6, by Beale (1970),Ta.nd Kerlinger and Pedhazur (1973, pp 289-295).

1 : - .
‘Ridge regression provides an alternative solution to thg subset selec- 5
tion problem. By stabilizing the coefficients, it enables the relative 1mportffé‘)

ance of predictor variables to be a.ssessed more directly. Home:we»r., in

e
.

N

1

v 2

bther techniqués, such as comcal equatlons, factor analysis, and so forth
have been proposed for isolating subsets of variables. While these are
undoubtedly useful for certain purposes, they may be’of limited value for .
tertain equipment design problems. The reason for this is that solutions
from these techniques result in composite variables, Thdt is, a2 solution
will provide a set of mathematically 1ndependent variablés wh1ch are
mathematical mixtures of the original variables. Such solutions, while .
probably useful in test co¥truction or personality assessment, will
ordinarily not be adequate™for problems of equipment design. While any-
techniqué that aids in intetrpretirig data should be considered, beware of
relying on techniques that don't fit the oartmular problem under
1nvest1ga,t1on. :
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spite of tl;i.s, Hoerl and-Kennard (1970b) specifically recommend that factors

with small cbeffi_cients not be dropped from the equation, = Instead they
recommend the following procedure when some variables have small
coefficients and are believed to have small effects: . '
"To 'discard' a factor, set it at its.averagve valye for all
predictions, which is the equivalent of setting the

coefficient equal to zero. But do not delete and
reestimate . . . ." (p. 75).

v

The average value for any predictor is the mean of a.li levels of that .
predictor used in the experiment. They dem?nétrate how, eliminating

low effect predictors completebi@n result in an even more unstable solution
than when a%ql' predictors are retained. o o

¥

APPLYING RIDGE REGRESSION ANALYSIS TO A TARGET ACQUISITION
PROBLEM ' &p - ' s

A

Zaitzeff (1971) at the Boeing Comppany, Seattle, perflorrhed an gndesigrfed
experi;nent to discover the function relating fifteen selected target and back-
ground characteristics (table T.6) to the probability of acqu'}ring far‘gets.
Observers were requirec‘ to find a variety of targets ,visual-’fir in a- dynamically‘
changing scene. The empirical data thus obtained was, subjected to regres-

sion analysis, : e

¢ S,

First a\ §tepw'ise regression was carried out on the data without stopping
until all of the variables had been entered into the equation, The order in
“which they were entered into (or delf_éted'from) the equaﬁon corresponds to

the order in whicl?they gre listed in table T.6. The first variable, 'proba- -

~ bility of finding a static target', accounted for more than 80 percent of the
}l . . wv}'i‘

"This recommendation must assume that the variables in th;Eomplete
equation are there because of some rational variable selection and not
merely on the whim of an investigator who'd '"just like to se® what would

- happen'' if they were included. As Hays (1963, p. 577) says: "Tracing
relationships among variables is the legitimate business of the scientist,
but simply asking if anything relates linearly to anything ejse in a large
set of variables is a pretty crude way. to do business, " This point is dis-
cussed further in the paragraphs-on '"Data Selection' in Appendix A,

S8
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' / : VARIABLES INTARGET ACQUISITION STUDY IN
s+ ORDER OF THEIR APPEARANCE IN STEP-WISE REGRESSION EQUATION
1 : ‘ -, , , }
Order . ko , : : ‘- Vatriable
" _No. - o . " ~=1D No.,
1. Prebé.bility of finding a static target '(P§TA§I") S (11)
2. .Number of filtered brightness eleme%ts in scene (NAVG)‘ (15)
" 3. . .Nur@nber of confusion areasK in scene (AMBIG) 'V% - (10)
¢ 4,. ‘Small dimension (LIT DM) =~ -~ " (3) ~
5.  Target width (LIT DC) = - . “ . oo a (9)
6.  Detail contrast (DCONTR); L 7)) u
: " % o B . T6]"
. 7. .Target length (BIG DC) , o ' o (8] [T-
8. - Area 1 variance (VARARI) S . (14) .
9.  Target area (TGAREA) . ‘ \ 5 v (4) R &
. 10,  Target contrast’ (TCONTR) - , L (6)
B .v . o . I . . v h “ .
o117 Heterogeneity (HETERO) . _ (12)
/12. Scan variance (VARAVG) . o _ S (16)
. b v - ) ' N .
13. ‘Large dimebsion (BIG DM) ' , - (2) -
14, Detail size (DETSIZ) , (5)
N . ) E’ . . . ' . *
5. Area 1 count (NAREA1) o (13)
g »
¥ .
‘ — L4 < ‘

. . . .
- 4 q
N .

In the step wise process "Target Contrast' or1g1nally entered the
equation in the step follozémg the entry of '"Number of confusion Freas,in
scene'', was later deleted in step following entry of "Target length", and

, f1na11y reentered in position indicated. (From Zaitzeff, 1971)

-
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t?tal performance variance. All 15 varidbles accounted for 93 percent of the

variance, Seven voariables\- would have accounted: for 90 percent of the variance,
. - o -t

In examining the coefficients from the stepwise reg,réssions, Zaitzeff

4

 commented on the 'unsai:is_fact'ory results: '

. "Thus, it is diseoncerting to see relé.tively large negdtive
coeffigients assigned to such variables a3 Target Area, -

M Detail Size, Target Contrast, and Target Width, when

the factor analysis has shown them to be positively

"correlated with dynamic acquisition probability! (p. 51).

He also cites ot_he_r limitations’ of equations developed with the lgast squares
criterion, ’ . 9 Co.
Né‘xt a ridge fégbression analysis was carried out on the same éata.
The ridge trace of the 15 target-bagkground variable;are_ sh.ownbin\ -
figure E‘S The instability of a number of the variables is ‘immediately
evident. For example, 'Little Dimension' (#3) changed from having the
largest posit;ive coeffic‘i'ent to one \tha,t'ranké sixth,: ’énd "Target A’rea"}#-’i)
changed from having the largest negative coefficient to a slight positive one.
Zaitze;ff decided on the basis of vis.ual inspection that the coefficients
v//ére r?asonablyvstable atd = 0.7. In addiii;)n to-”'I;:arget Area', #4, Both
"Detail Size'" (#5) and "Target Contrast' (#6) show a sign change that

- appears more meaningful in the light of what is known about visual

perceptioh, ¢ v

Variable Elimination. Zaitzeff eliminated variables that had'stabl'e

coefficients but low predicting power (a coefficient fess than 0. 05)"and R .
those wit}ﬁ?'st‘able coefficients that failed to hold their predictive value.

He also. eli ‘irnated two other variables, ''Big Dirr;ension" (#2) and "Area 1‘5
Count'" (#13), which correlated highly positive with two other variables and
were considered fedundan_t. In addition, although "Static ~A¢quisition
Probability!' (#11), is shown to be the single best o;f.eérall predictor of tt‘iynamitz7
acquisition probabilif:y, it was elimi'nate:d because it was ah unwieldy value

to acquire and because Zaitzeff felt that it was actually a function of the

other physical and psychophysicﬂ variables rather than a distinct tar-get- -

background variable in and of itself, ) -
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A ridgp regression was run on the remaining seven vari"able__s resulting
in the new ridge regression pattern shown in figure F.9. T Zaitzeff selected
k = 0.4 as the place where the coefficients appear to stabilize, This reduced

' set of variables accounted for 79 percent of the observed variance (as

opposed to 96 percent when all variables“are used). However, in the 1igl‘it
: LS

of what we know about shrinkage and the instabiiity'of the original coefficient‘s,k :

the drop is not disturbing. Zaitzeff also noted that by reducing the number
"to, only four easily attainable physical measurés: "Detail.Colﬁtrast",- "Target %
Contrast', and '""Target Length'' and "Width'!, 66 percer;t of the observed
variance could still bg accounted for. ‘"Target Length' and "Target
Contrast' alone accounted for 48 percent of the variance.\éeveral attempf;.s to

include interaction or tran®generated terms peoved less effective and were

'%aborted. .Zaitzeff'did' not follow the g.rocedure for eliminating variables

recommended by Hoerl and Kennard.

2
» This study is one of the hetter ones attempting to relate target and

background characteristics to target acquisition performance and illustrates

the advantages of ridge regression over stepwise regression analysis.

=]

*The ridge pattern in-figure F.9, showing priniarily a relatively orderly
compression of coefficient valuefs, is similar to the pattern found when
the bias is introduced in an orthogonal design.

. o
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APPENDIX A . .

SOURCES OF COMPUTER PROGRAMS NEEDED TO IMPLEMENT

- C THE TECHNIQUES DESCRIBED IN- THIS REPORT |

Computations used in thetechr_ri"‘ques in this report - fo be implemented -
will require the aid of a high-speed "computer. Presumably the talents of the
experimenter, a computer programmer, and poss1b1y a stat1st1C1an must :
be combined to provide the software reqyured for the computatmns. In this
apperldix, references a_re given to sources of computer programs and sub-
routines needed to support the techniqies, along witl some ‘general references
on the mathematics involved. - The original pepere are'an eXCellent place to

. begin to understand the computational requirements of these techniques.
7 ' N . ‘ |
GENERAL REFERENCES

Some general reference51 on statistical techniques, mathematlcs and

computer programs felevant to this report are: ,

-+ -

Regres sion analysis : . >

e Darlington (1968). Multiple regression in psychological research
and practice . . ) . . -

‘Draper and Smith (1966). -Applied regression analysis

® Hader and Grandage (1958). Simple and multiple regress{on R
ana is ‘

e Kerlinger and Pedhazur (1973). Multiple regression in
behavioral research ; .

Matrix mathematics . : Y

e Ayres, Jr., (1942). Theory and problems of mattices -

e Draper and Smith, Applied regres¥ion analysis

e Kerlinger and Pedhazur (1973). Multiple reg‘ressmn in
: behavioral research. Appendix A.’

1]

13

Complete references can be found in the Reference list at the end of the
complete report. “
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Computer progamS' . s . : ' o,

. ! e
° Dixon, (197Q). BMD: Biomedical computer programs,.

e JUG Computer programs directory*¥

] Ke‘rl\\'knger and Pedhazur (1973). Multiple regression in L
behayioral research. Appendices B and C.’ B /. '

Kuo (1972). Computer applications of nume.rical methods,

~® Nie, Bent, and Hull (1970). Statistical package for the social
sciences. o - i i

e NASA Computer program abstracts®, )

4
- o

= 4

COMPUTER PROGRAMS FOR ADDING DATA POINTS.

[y

Computer routines will be need;ed to calculate the variance of ‘;he
estimated response at a poiht or thev determinant of the X'X matrix (e.g.,
Table T.2), Random search or optimization routines are also required for
that method of- adding data points to improve orthogonality of the undésigned /
experiment, ' | N - ) \

*

Variance Criterion

@

If the variance of the estimated response,; V(g\r) at Eoint X on a response

surface,is to be used as the criterion, it can be cafculated using the ei;uation

A}

2,

"Computer Program Abstracts is an indexed abstract -journal listigg docu-
mented computer programs developed by or for the National Aeronautics
"and Space Administration and the Department of Defenfe, which are
offered for sale through .NASA-sponsored Industrial Applications Centers
and the Computer Software Management and.Information Center (COSMIC).
. . I’ v

»

Computer Program Abstracts is available to the public on subscription or
by individual issues from the Superintendent of Documents, United States
Government Printing Office, Washington, D.C. 20402, USA., Rates as of
August 1975 for an annual subscription were: $3, 30 domestic; $4.15
foreign. ‘ . ' .

“*Joint User Group (JUG) of the Association for Computer Machinery
Computer Programs Directory was begun in 1971 and updated several times
since then. Its purpose is to exchange pr;?gram documeéntatioh amang com-

puter user groups. It is published by CCM Information ‘Corp., subsidiary of

Crowell Collier and' Macmillan, Inc., 909 Third Ave., NY, NY 10022, &
: 54
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‘employed by Dykstra (1971, p. 683), Drapér'and Smith (1968, p. 56) and

others- o -

4 ¥ - -
i - . v

A -
V(y) XO =0 Zx;A Xo o .
¥ P

This expression, in #atrix algebra, reduires thﬁi following operations and

computer subroutines to perform the operations:. N i
* : ! :
Al X'X-l, ' i Masprix X Mu1t1p11cat1on, .
XX = A"l‘ : . v- St
) ' ¢ *Matrix A inversion, Atl o
' x  to 38 _ ' . Vectar x transposition, !
. s ;  horizontdl to vertical®* R

xéA-lxo I » Matrix /vector ) -

£ Multiplicatipn:

-

Sihce the 0’2 in the above equation (i.e,, the error variance) is a constant, 'it
need not be 1nc1uded if the equation is to be used only to compare various
data pomts.

‘e - » o y

Determinant Criterion

Computer programs for caléula’ting‘ determinants can be found in the
general references cited above. Also most computer manufactur’ers supply- -
ing subroutine packages with .the'ir systems'aincleude programs for calculating
the determinant of a matrix and eigenvalues. [t must be remembered that

the product of the eigenvalues of a matrix equals thg"determinant, The main

- problem of-selecting a program is not whether it calculates the desired .

values but does it do it most effiéiently. .

&
X as used here is the matrix formed by the elements of the 1ndependent ,
var1ab1es, such as in tables T.2 and T.3 in the text,
sk S ’
Xo is a vector of values, e.g. 4, 6,3, 7, which represents the levels or
coordinates of four variables, A,_B, C, D, which thus describes the data
point (experimental condition)}. ’

05 - .
56 o




The determ1nant is calculated and pr1nted out in the ridge regressmn
analysm program provided in Append1x C. HoWever, it ordinarily would not

be economical to use it to calculate the determinant as a criterion for select-
¢+ ing data points to repair an undes1gned experiment, '

Random search routines

- . .

X

No general purpose search program is recommended here,.” However
M1tchell and Miller (1970) employ t e same pr1nc1ples to construct D- opt1mal
experlmental designs as would be needed to add data: points to the»matrix of ,
an undes1gned experimerit us1ng the \determmant cr1terron. D- opt1Eﬁl‘
deS1gns are those for which thé determinant of the X'X nfatrix is maximum, ’
where.X is the matr1x of 1ndependent variables. in the usual linear regress1on
model Mitchell (1974) descr1bes appllycatmn of the .@lgonthm DETMAX to
construct D-optimal des1gns. ~In his paper, ‘Mitch#éll S’tates (p. 209) _
FORTRAN listing of DETMAX is available on request to the Computer Sc1ences ..
Div., Math, and Stat Research Staff, Union Carbide Corp. Nuclear D1V1smn '
P, O, BoxY Bu1ld1ng 9704 1, Oak Ridge, Tennessee. - » g’

® .

Box and Draper (1971) ment1on an optimization rout1ne due to Powell
(1964) of the direct search type, that maximizes the determ1nant However
in the1r application it was only su1table for relatively small des1gns (np less
than 30) Hebble and Mitchell (1972, p. 768) refer to a paper by Spang (1962)_

~
for a general d1scuss1on of random search procedures.

ot

9.

If the candidate approach is used to add data points, then there is no

%

need for a random searcl’ﬁrogram.-_ Instead the variance at the~ cand1date
po1nts or the determinant 6f the new matrix when each point is aﬁded to the

original design can be determined and compared- Z which” ig the. largest?

Losdd




. regress1on analys1s can be btajned by mod1fy1ng a ,convenflonal mult1ple

" lacation of stab1l1ty‘ mean1ngfulness, and so forth

N . ) . "..v - : A : %:g
COMPUTER PROGRAMS FOR RIDGE REGRESSION ANALYSIS .

; A convenient method ofédevelopmg a computer program Afor ridge

.regression program. The blas k, is introduced by adding a constant k,

to the unit diagonal of the correlation matrix and doing a least squares fit

“on the modified matrix. This protess is iterated using different-k values

until enough ridge coeff1c1ents are obtained to plot the data and select the-

-
v

éa' If the Un1‘vers1ty of Callforma B1omed1cal Data Proces sing (BMDP) :
ManuaL' is, ava1lable, then-a modific ation of the BMD&ZR (Stepwise regres-

L sm.n) program, developed by Maryann Hill (1975) of the UCLA Health Sc1ences
K 3
o Computmg Fac1l1ty, can be used. for a r1dge regress1on analys1s. The com-

' plete art;1cle d,e scr1b1ng thts mod1f1cat1on has been reproduced in Append1x BY

o ..
A more complete computer program for r1dge regress1on w;s\prepared
by Mary G. Gallegos of the Display Systems and Human Factors Department,
Hughes Aircraft Company,Culver City, Cal1forn1a This is reproduced in =
Append1x C'along with a sample problem in Append1x D. The program, how-
ever, was written for a particular problem and, as l1sted has difmension

,statements and other features spec1f1c to that problem. With relatively little
‘effort a competent programmer could use 1t as a gu1de to fit other parameters

. and other computers

*

PRELIMINARY PREPARATIONS FOR THE DATA ANALYSIS

[

» .
J »

There is no such thing as a completely automated data analys1s, only

‘automated a1ds to dataanalys1s. The computers are available to handle, the

. routine manipulation of numbe rs, but they are not intended to decide what

~man1pulat1ons*are requ1red what as sumpt1ons are ta be made what data ¥s

to, be-fed 1nto them, nor<how to 1nterpret the output. These are the 3 ~

\
P

respon,\s1b1l1t1es of the investigator,

Voo .
- . Al T 8
\ . . . . - e
. -

v

The BMDP Manual of s‘tat1st1cal computer programs is ava1lable from
University of Cal1forn1a Press, 2223 Fulton Street Berkeley, California ’
94720 at $lO 00 per copy." AN
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.valria'Bles included,by an overclirious investigator should be avoided. A pre-

. " f ' '
Without sufficient background himself, the investigator — to employ the

techniqués proposed in this report — will need the help of,a competent com- ‘\
puter specialist and stati'stician, However, while their technical aid can be

of cons1derab1e value, the investigator must understand exactly what is be1ng
.done by a computer pérformmg an analys1s and Why and must not allow

critical decisions to beymade for him. He is the only one who knows the

intended use of the data, its sources, and other critical factors. Aﬁy employ- -
ment of outside talent should be a part of a tea‘lrfn' effort,” with the experimenter

in complete control,

IS

Data Selection . . ; -
3 . '
Before any computations are begun, a pre11m1nary analysis of all of the
available data should be made to be assured that all should be included in the
- formal an\a.lys1s. Part1cu1ar1y with the undeSLgned exper1ment‘ﬁvhere var1ab1e

upon variable can be added b S}mply making more measurements (some-

times after the fact), the danggrs of a superabundance of incohsequential,

ana.lysis ought to consider seriously the relevance of the variables under RN
consideration, and even an examination of a table of intercorrelations could
suggest which variables are mathematically identical and should not be

e
included twice,
b : v

Anscombe (1967, p. 38) has this to say about this matte;r: .

"In considering mu1t1p1e regression with large numbers of
potential 'explanatory' variables, I would like to echo armd,
" extend Dr, Yates's remark on the value of understanding

the x-variables first, before seeking to relate any of them
to the y-variable. Put very briefly, I have never come.
across an occasion where one wanted to construct a multi-
variate relationship without already knowing enough about
the x's not to have to do a formal search' operation of the
multiple regression. form. \One must be extraordinarily

S uninformed about one's subject-matter slmply to wish to
put all 'possible' variables into a multiple-»€gression
black-box and trust to least squares to sg#t them out.
Modern technology may now facilitate almost incompre-
hensibly vast multiple regression analyses at almost

?

€
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incredible speeds, | but this can o‘nly ser%‘ to verify the
the dictum that the computer shows things to be unnecessary
which were previously 1mpoSS1ble "

Gorman a.nd Toman (1966, p. '27) dfs@ﬁ"é’s the idea of a preliminaryn

examination of the data in a slightly different way, thus:

'"Before variables are selected the data must be exammed
carefully for statistical difficulties such as split plotting,
serious departures from normal distributionfof residuals,
serial correlation of residuals, and outliers, and for func-
tional difficulties such as the improper cho1ce of X's in the
complete equation, Statistical defects are usually spotted
by a careful examination of residuals after the equation has
been fitted with all k variables present (1, 2, 3)., The choice »
- ‘of the X's and theit functional forms (i. e, , Xl =1/T,
X5 = log (SV), etc.) 4s really a matter of technical judgment
by experts in the fié¥d from which the data are drawn.. Here -
again, careful examipation of residuals can expose improper ’

choices of functional forms. " .

.Thereis just no substitute for the early app11cat1on of intuitive judgment by

an investigator who knows his business, o B 7

'Input Accuracy . . .

(Ve

Before data 1&ed to the computer, it should be carefully checked for
accuracy. When a great deal of data must be key punched it is alf too easy
for m1stakes to be made. Much frustration can be avoided if the investigatpr
takes the extra time at the beginning to inspect a print-out of the input cards
himself, It is amazing how eas;lr it is }or a person who knows how the infor-
mation should appear to spot errors that would never be evident to a key-

punch operator nor a less-informed technician, ..
1) o T

)

Program Precision

F‘&or handling large multiple 1é‘g\re-s sion analyses, it is wise to request -
the computer be programmed to handle double precision arithmetic, The -
problem of rounding errors, with serious conseq{ilen'ce‘s to the results, in

analyses i‘okf this type lga\s/been discussed by Draper and Smith (1968, pp 144-145)

ot
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-and by Freund (1963). Neither of the ridge analysis programs listed in
Appendices B and C is written in double precision. - It has been pointed out.
that although the consequences of imprecision increasid’vgith ill-conditioned

]

matrices, the very process of ridge analysis corrects the sensitive condition.

,Then, too before the consequences of single and double prec1e1on can be !
estimated, it is necessary to know how many bits per word are involved, and
this depends on the pa.rtmular computer Single precision for one computer

may be more precise than double precision for a smaller ane,

Draper and Smith (1968, p. 148) point out/thke value of working from the
correlatibn matrix. They say: "Transforming the regression problem into a
.form in which it involves correlations is good in general because it makes all
of the numbers in the calctilations lie between -1 and 1.. When numbers are
all of this'oll'der the adverse effects of roundoff error are minimized, "
Certainly avoidfng sources of imprecision is a matter of prudence. However,
the value of double precxﬁ&on for the part1cular set of data must be weighed
against the requlrement for a larger computer memory and a possible limita -

tion on the amount of data that could be analyzéd ' @ -

N\
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o » : APPENDIX B~
RIDGE REGRESSION USING BMDP2R

S
‘Maryann Hill

in BMD COMMUNICATIONS, Heaﬁth Sciences

Computing .Facility, University of Ca.hforma.
Los Angeles, February 1975, No. 3

In-a regression analysis when the independent variables are highly
the "data are often said to be ill conditioned. The
resulting regression coetficients may be quite unstable and not
useful for future predictive purposes on a new sample. Ridge
regres@®n is a technique that is used to “‘tane™ the estimates of
regression coetlicients, to portray sensitivity of the estimates to the
particular st of data being used, and to obtatn point estimites with
smnllcr mean square error (although the cstimates will be bl.m.d)

!&gthc regression. model Y =276 +e, the ridge cstimate of the
coctficient »ﬁmr 818

N

fr=(zz+ a2y

where Z is the matrix (n cases by p variables) of the standardized
independent variables and Y a5 the vector of the standardized
dupunﬁcul variable. The usual least squares estimate s obtamned
when A=0.

.
Plotting the resulting coefficients for a number of values of X uives
an indication of the stability of the coefficients. You hope to rind
the valuc of A where the coelticients begin to smooth oul und no

longer make sudden changes (e.g., switching snp? The estinuites gf
the coefficients eventually nppronch zero as A gues to mhmty

By adding “dt;mmy" cases to the end of the standardized data tile
and using the zero intercept option (TYPE=0): you can try this
technique with your own data using BMDP2R. The “‘dummy"” cases
determing the amount added to the diagonul of the Z'2Z matrix. Add
one “dummy" gase for each of the p independent variables with
\/(n-l)h as the value of the carresponding variable and zeros for the
remaining variables. Note that the Z'Z matrix is (n-1) times the
correlation ratrix. It is useful to think of ridge fegression in terms
of the correlation matrix: the size of the value added to the diegonal
elements of the correlation matrix is then comparable from problem

_ to problem. I this context yalues of A less than one are of most

interest.

»

Example: Hoer] (1962) discussed a ridge technique in an article
dealing with the measurement of the performance of a chemical
proress. He specified a relntlomhm ‘between three highly correlated
process variables and a response variable, added random noise to the
tesponse varizble and tlien analyzed the data. Althoug,h the specified
relationship had all positive coefficients, the usual lcast squares
solution produced inflated coefficients — one of which was negative.

Q

ERIC

Aruitoxt provided by Eic:

He then applied a ridge technique to these data showing the taming
effect on the coefficients and producing solutions closer to the
*“‘true’’ values.

: ‘ S

To see the effect of A =.16 on the regrcsalon coefficients for the

Hoerl duta, we compute /(n-1)A = \/Ox. 16 = 1.2 and submit thc
following cards for the HSCF system:

/| EXEC BIMEDT;PROG=BMDP2R
/ITRANSF DD *
IF(KASE.GT.10)GO TO |
X(1)=(X(1)-1.82)/.4022
X(2)=(¥12)-1.86)/.4088
X(3)=(X(3)-1.88)/.4492
X(4)=(X(4)-28.9)/4 02l3 dependent variable, \(4)
| I CONTINUE L for 10 cases

* .

//GO.SYSIN DD * )

PROBLEM TITLLE 1S RIDGL/

INPUT VARIABLES ARE 4.

IFORMATIS *(4F4.1)"./

REGRESSION DIFPIFNDENT IS4, «

ENTLER 1S .001. REMOVE 1S 0.
TYPE IS ZERO./ :

END/ B
PO 11223 )
14 15 11 223 .
17 18 20 292 '
1717 18 270
18 19 18 285
18 18 19 304
19 18 20 311
20 21 21
23 24 25 328
25 25 24 340
i2 00 0
012 0 O
0 012 0

Using the sample X and s
to standardize the in- -
dependent vanables,
X(1).X(2),X(3) and the

} 10 cuses of raw data

$oo

3 dummy cases

)

Inserting different values of \/tn-1)X and }crunning the program. we
obtain and plot ridge estimates of the coetficient: for each A (see
figure). (Note: A number of problems cun be run together and the
BIMEDT procedure can be used to change the values of the dummy
cases in each problem.) '

/*
H

8

5

.
.
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ey,

O

ERIC

Aruitoxt provided by Eic

PLOT OF RIDGE COEFFICIENTS.
for different values of A

The deck setup above produced this result for-
A=.06 (B,=.293, B,=.155, B,=.479). The lcast
squares solution is marked at A=0 (B, =.827,
B,=-.561,B,=.713).

< ~
<
®
L]
62
: 73
AN VA

You will also want to plot the residual suin of squdrc\ versus A, The
most desirable coefficients hopefully will correspond to that value
of A wherre the residuals have not started to incteuse rapidly, but yet
the values of the coefficients have scttled down.




APPENDIX C /N'

A SAMPLE PROGRAM FOR RIDGE REGRESSION ANALYSIS

Programmer' Mary G. Gallegos

(Original program was written by Charles Bahun for a GE-635 machine in
The Basic program was converted to FORTRAN IV for a Xerox
Sigma V machine, with subsequent modifications. Final program size is

Basic,

11 8 thousand words, 32 bits per word.)

\1.
20
kD

Y
- 5B

Be

7

8e

Se

- 10

.11

12

mi3e

Y
15

160
17,
18.
419

20 |

21
22
23

2he

25
260
27+
28
29
30
31
32

33,

LT
35.
36
37
38
39,

© 400
bl
420
43

b
485

“H6e

47

a

C"i&&&&li&*RIDGE REGRESSIBN PREGRAMussdsnuw

-

;-

BNE MAIN = BNE SUBRBUTINE « MAXIMUM MATRIX' bIMENSIBNS ARE IN THE

"MAIN, VARIABILITY IN THE DIMENSIONS IS ACCOMPLISHED THRBUGH THE

SUBRBUTINE CALLey SUBRBUTINE DBNT DOES ALL THE WORK, SUBRBUTINES
USED F®R MATRIX BRERATIGNS AND EIGENVALUES ARE CALLED FROM THE
USER LIBRARY, THESE RBUTINES ARE PART OF THE XERBX NUMERICAL -
SUBRBUTIME PACKAGE ‘

t

FUNCTION ee T8 08 A RIDGE REGRESSIBN ANALYSIS BN A GIVEN STUDY,

-COMPUTES ¢

MEAN VALUE FER EACH COLUMN IN MATRIX X

MEAN VALUE FBR EACH CALWMN IN MATRIX Y

STANDARD. DEVIATIAN FOR EACH CALUMN IN MATRIX X

STANDARD NDEVIATIIN FOR EACKH CBLUMN IN MATRIX Y

TABLE 6F INTERCBRRELATIANS

EIGEN VALUES FBR TABLE ®F INTERCBRRELATIONS

DETERMINANTS FOR TABLE OF INTERCORRELATIONS N -
LEAST SAUARES AND RIDGF CBEFFICIENTS FBR TABLE aF
IVTERCSPQELATIBNa

ﬁvmm:wm»

THE RIDGF REGRESSIBN PROGRAM CAN HANDLE Tw@ KINDS BF DATA FBR THE
TABLE BF INTERCBRRELATIONS?
1 RAW DATA ea THE X AND Y MATRICES ARE -READ [N AND THE TABLE
AF INTERCPRRELATIBNS (MATRIX R) 1S COMPUTED
2 MATRIX R IS READ IN STRAIGHT FROM CARDS = THE TABLE oF
INTERCORRELATIBNS "ALREADY COMPUTED.

”
¢

IF DESIRFD, CERTAIN CELUMAS READ INT3 MATRIX X CAN 3E SINGLED
AUT BF THE CAMPUTATION FO9R THE TABLE 8F INTERCOBRRELATIONS, THIS IS
ONLY AVAILABLE IF THE. DATA FBR THE TABLE ©F IVTERCBRRELATIBNS IS 1o

'BE CGMPUTED WITHIN THE PRBGRAM,

VARTABLES

X » INDEPENDENT VARIABLE IN FUNCTION
Y « DEPENDENT VARIABLE :
R = TABLE B8F INTERCBRRELATIBNS (X) . « -

. RL e EIGEN VALUES . , :

i DETER « DETERMINANTS o . g

' 2 = TABLE BF INTERCORRELATIONS (V)
g» STANDARD DEVIATIEBNS FOAR Y
G » STANDARD DEVIATION FOR X
MEAN = MEAN VALUE (USED FBR-BBTH X AND 'Yy =~ ., - \

¥
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K§ s ERROR FACTQRS ' S

e R T S T

64 (.

48 C
49, C N = NUMBER 8F RAWS IN MATRIX X (OR NUMBER 8F DATA SETS)
50 c IX = NUMBER BF CALUMNS 18 REMAIN IN X MATRIXoF8R COMPUTATION
51 C IN TABLE B8F INTERCORRELATI®ONS,
58, « 18"« ACYUAL NUMBER 8F COLUMNS READ IN FEBR X MATRIX :
53 ¢ 1Y o ACTUAL GIZE OF Y MATRIX (NUMBER B8F ACTUAL CALUMNSeeMAXEY)
:;. c IN o NUMBER OF“Ke'S TO BE INTRBDUCED (READ IN) . ¢
. o . . .
56 c ,
57 C!Ouuou!nuucua!a!!Quuuuo!uuo-uu!.uuuu!uuu&b&utiutﬁuﬁzibui!!!GGGOOO
- B8y c -
59, DIMENSIBON A(15,60) ‘ N
60 DIMEMNSIBY AX(1523) ) L
61 PIMENSIAN B(1523)
62 - DIMENSIAN BB(1523)
63, DIMENSLON C(15,3)
6&e - DIMENSTAN D(15415) '
65 DIMENSEEN E(3) : )
&6 NIMENSIAN F(3,15)
67 NIMEMSIAN FB(15,15)
Boe DIYMENSION FF (152165)
9 DIMENSION G(15s1)
700 DIMENSIBN P(1,15) )
71 DIMENSION G(1,3) i
72 DIMENSION R(15415)
73 DIMENSIAN. RL(19) .
'y DIMENSION RLL(15)
75 DIMENSI®N RM(3,3)
76 DIMENSION T(15,3)
77 DIMENSION U(15,1) . - '
78 ¥DIWEVSIBN W(i1521%)
75 DIMENSIBN X(60215) .
80, NIMENSTIEN Y(60,3) p
- 81 D‘MENS!BN 2015,3)
82 c
83, o VARIABLES 1X AND 1Y DETERMINE DIMENSISN wITHIN suBRoUTINE
8be C
85 READ (105,961) NslXs1Sa1Y,IN
86 CALL De~NT (AsR,BH,CHD ;E;F:F9;FF:G;P;G:R;RM:T:U:W;X:Y:Z:IX: 1v,
87, #Ns IN,BXs18S)
88, . 961 FORMAT (5(!2:2X))
89, END .
1. SUBRRUTINE D&ﬁT(A,B;BB;C,D,E,F FBsFF2G,P, d;R,RM,T,U,w,x Y,21,1%X21Y,
2 #N)IN,BX519) °
3 DIMENSION ACIX,N)
b DIMENSION B(IXs1Y)
5 DIMENSION BB(IX)1Y)
Y . D!HENS!ON BX{IXa1Y)
70 'DIMENSIBN C(IXs1Y)
8¢ DIMENSIBN D(IX,IX)
9. DIMENSION DETER{(15) . h
10 DIMENSION E(1Y) o
14, DIMENSIEON F(lY,IX) : ’ .
120 DIMENSIEN FB(IXsIX) - N : - -
13, DIMENSIBON FF (IXsIX) N ' :
14 DIMENSION G(IXa1) °
[}
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¥
g
15, DIMENSION P(1s1IX)
16 . DIMENSION Q(1s1Y)
1% DIMENSION R{IX,IX)
i8. DIMENSION RM(1Ys1Y)
19. - DIMENSIBN T(IXs1VY)
20« DIMENSION U(IXs4)
2L DIMENS]IBN X{N,IX)
28 DIMENSION W(IXs1IX)
29, . DIMENSISON. Y(N, 1Y) :
s e » i DIMENSION Z(IXs1Y) -
25. c N
26e¢ “ DIMENSION. BXX(15) : L=
! 27 DIMENSION RL(18) . . oo :
280 _ DIMENSION RLL (15) .
l 9. DIMENSION WKL(15) _ :
| 300 DIMENSION WK2(15)
31. DIMENSION LAB({8) . . . . A .
l 32, DIMENSION 1T(2) : : : .
33. DIMENSION ICH(15) . ° S
[ 31 DIMENSION §9(3) ’
35, DIMENSION VAL (15) :
36 DIMENSISN IFORM{{2)
37 DIMENSION TEMP(15)
238, c <
39. DIMENSIBN PEIG(15) ‘
400 REAL K9 .
L 1Y) REAL MEAN -
R V-1 INTEGER ANS B N
43 INTEGER ANSR
B4 INTEGER YES
45 C-
46o DATA YES:/4HYES 7/ _
NG DATA IT /QHXX::}ﬁHYYYY/ .
48 DATA BLANK /4H / L3
. 49 DATA IFBRM /4 (Xvo4H401X:4Ho' (:4HF6-3:4H:1X):uHo (s4HAYs3, N
50 » QHX)J':aHI'1314H(F60:4H311X14H)) / y '
54 c . .
] ‘BRe "C 1ANS weEITHER A YES OR A NGB« THMIS DETERMINES WHETHER THE TABLE OF
. 830 - C INTERCORRELATIONS: 1S T@ BE COMPUTED WITHIN THE PROGRAM,
Bhe C IF YES, GO TO 1111+
5 o : :
66 READ(105,957) 1ANS . . i ‘ ‘
87. IF(1ANSSEQ.YES) GB TO 11114 .
g 58 DO 830 Isi,1X
§9e¢ - DB 830 Jeisly
60e - 8R4 READ(105,980) Z(l.J) '
61 DS 890 KeisIX \ =
62+¢ 890 READ(1C5,950) R(1l,¥) - '
« 630 830 CONTINUE
64 G8 TA 998§ ; ’
65 c
. b6 C TH!S SECTIBM LETS BNE PJLL BT CERTAIV CBLJ“NS IN X MATRIX FBR
Y C BVPUTIVG THE TARLE BF INTERCORRELATIANS
680, o
69. 1111 NU“-!S-IX
70 IF (NUMeER Q) NUMm{g :
71, READ (105,965) (ICH(J):JIl:NUM)
72 NG 8n IsiaN .
. 73 READ (1652900) (_TEP"P(JHJIIIIS) . :
74 READ (1051953) (Y(12<)aKuy,1Y) -
| 65 - ﬁ ' o
76




‘e
- ~
75, —~ 4 1Xe4 ™ . - -
76e. . DB &5 Jliols - : ’
77 , DB 40 KmyaNUM® - . )
. 78 IF(JeENICHIK)) 3B TP 45 ' '
79, - 40 CBNTINUE : : o
80 X{1sIX)eTEMP () . _
HH § CONTINGE .y | ’
[ & ! .
83, C g
i B4 C COMPUTES MEAN  VALUES AND STA\DARD DEVIATIBN FAR EACH CELUMN IN THE
- © 85 c X AND Y MATRICES
86 -
87, . IXe]lxwy . C
88, DO 30 JsislX ' : ‘ °
89. 30 P(iod)lp(loJHX(hJ) ' : -
90e . DB 31 KagalY, . : : ‘
¢ 91y E(K)SE(KY4 (Y(1sK))uup 4
S2e 31 QUL nG(laKYRY (1K) . RN
93, WRITE (108,302) IT(1)s (X(laK)sKulsIx)
| - 1Y) WRITE (108+502) I1T(2)s (Y(!aK)aKugslY)
: 95, 50 CONTINUE ;
DAY CALL S004 (XaWaNsIX)
. .97¢ , CALL. S003 (AsXawalXaMaIX)
' ‘G8e : ‘ CALL "S003 (AsYaTalXaN,1V)
- 99, - WRITE (108+954) .
. 100 WRITE (108+964) IT(1) N
* 101 D331 Usi,IX . : ,
102 : MEANGP(1,J)/N
103¢ 331 WRITEY(1084950) MEAN
104 . WRITE (108,901) J
105« = WRITE (108:394) 1T(2)
1060 D8 32 Jmisl ©o
1ov.£ - MEANSG(1,J)/N o 4ﬁf\\5\\\ '
. 108¢ ¢ 32 WRITE (108,950) “EAN S 7
109¢ WRITE (108,901) \ 5 a ;
110 WRITE (108s963). IT(1) Y
114 DB 60 ‘lwiaslX N :
1120 G(ls4)eSQARTY (w(Il!)'(P(ial)'02)/N)/N) .
113 WRITE (1084950) G(1s1) : .
, 1140 60 CONTINUE , _ ‘ w
\ 115 WRITE (1n8,901) . gg; ! '
116+ WRITE (1082963) IT(2) ' -
117, DB 70 {wi,1Y . X a o
118, © E(1)eSQRT( (E (1)eQ(Ls])002) /NI/N) '
119, WRITE (108,950) E(I). . : .
120, ® 70 CONTINUE ' ‘ : .
124 c n _ ‘
;gg. g THE TABLE OF INTERCORRELATIONS, R FBR X MATRIX, Z FBR Y MATRIX,
. .
184, DO 100 lei,IX
125, DB BO Jwi,lY
126 80 Z(I:J)-(T(Ild)-P(lo!,nmtlad)/N)/N/G(Iai)/E(d)
127 . DO 90 Kui,IX
, 128, 90 R(IaK)llW(I:K)-P(i:I)npfioK)IN)/N/Gl!ai)/G(Kai)
© 129 100 CONTINUE s ‘
1300 9988 CONTINUE ' o
134 : WRITE (1084954) : : .
132, . WRITE (108,969) o —e o
133, WRITE (108s954) '

1344 READ(105,952) (LAB(K)sKn1s18)

66 I




WRITE(108,903) (LAB(K1,Kw1,18)

136 . {Hp{BwlX
137 ' DB t11 lats1X
138 IF(IHeEQeQ) WRITE (1085909) LAB(!):(R(I K)oaKngalX),
139. » (2(1aK),KulslY)) GO TO 111
1400 ENCODE(4:968:IF8RM(3)0%DUM):!X
141 : ENCBDE(“:S&BJ!FQRM(é) 10UM)Ys IH
48 . WRITE (1oa,xFeRM)LAa(1),(R(I.K).KuialX)a(BLANK.K-g.xH;a
143, ® (2(14K),Kuls1Y¥)
144 111 CONT INUE
145 WRITE (108,901) ‘
1hér €
147 - . g EIGEN VALUES AND DETERMINANTS F8R THE TABLE QF INTERC&RRELATIONS.
- 1680
*7? 149, CALL CHAMNGESS (R,FFaIX,008)
150, - 2112 CALL EJGEN (FFaFB,1IX01)
151 2113 cALL CHANGESS (FFaRLs1IXs 1229 ’
182. l RLL(1)=1/RLLT) - .
183, - DETER(1)aRL (1Y)
1540 . DB 113 ls2,1IX
- 155, . DETER(I)«DETER(I=1)auRL(1])
1564 113 RLL(1)wRLL(I=1)&1/RL(T)
157 DB 3113 lstrIx °
158, . PEIGTePEIGT#RL(I)
159, . PEIG(I)wPEIGT/IX _ - )
160 3113 CONTINUE . @ 4 . R
164+ wRITE, (108,310) , .
162 DB t14 Jels1X ‘ : ‘
4 " 163 ‘414 WRITE (108,511) _'_ RLIJI2RLL(JI2PELIG(J)2DETER(U) ,
164, WRITE (108,954) . ' : -
165 ' DO 7118 KKelolX ‘
::go c7115 IF(RL(KK)eLTo0) GB TO 999 J ) )
. . -
168, C 8PTIAN TR PAUSE AFTER EACH BETA PRINT
169 READ. (105s957) ANS
170. c “ A v
<474, C RIDGE COEFFICIENTS FOR THE TABLE @F INTERCORRELATIONS-
172, C « 'PREVISUS!' IN PRINT OUT » MATRIX BB
173, C #'CURRENT! IN PRINT BUT = MATRIX B
1740 C » 'CURRENT B! IN PRINT BUT s MATRIX BX
175¢ C # TOYAL .UNDER 'CURRENT e' . BXX
176 o ’ “
177 . DB 200 lslsIN
178 - nB 129 JsislY . : o
179 129 BXX(J)=0s - : . .
180¢ WRITE (1€%,901) - ‘
181, READ (105,951) K%
182 WRITE (108,904) X9
183 "~ DB 130 JsisIX
184 . 130 R{JaJ)al14K9
185, ‘ CALL MeClo (Rlﬁ:XXoIXIO) ‘ . v -
186 CALL INUERT(D, IX »DET,wkis)WKa) .
187 CALL S003 (D2aZsaBirIXslx,1lY)
188 IF(1,GTes) GB TO 140
189, CALL MO19% (BsCalXalYsQ)
150 CALL S004 (CaFalX,tY)
191 140 CALL Sn03 (DaDaWsIXaIxa1X)
192, CALL SC03 (wsCaTalXsIxalY)
193, CALL SCO3 (FaTsRMalY21IXalY)

194 WRITE (108,906)

67 -
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195,
196
197,
198
199,
200+
201

202 -

203,
204
205.
206
207,

2C8, .

2c9.
2100

211

212
213
214,
215
216
" 217
218,
219
220

" 221

222+
223
2240
225
226
227
228+
229
230
231,
232
233,
234
235,

236+
237
238
239,
2400
243
2420
243,
244

< 2450

246
247
2480
249
250+
251
252+
253

254

(s XelaleNalaKala]

470 CONTINUE

wd

D8 141 Ketlsly
DO 141 JeialX . -
BX(JaKIWB(JoK)#(E(K)/G(Js1)) :
BXTEMPe(B (JsK))®uD ,
141 BXX(K)eBXX(K)$BXTEMP
DO 150 JsdslX
150 WRITE (108,905) CBB(J:K)JB(J:K):BX(JJK)lKallIY)
& WRITE (1080964) fBXX(K)IKlilIY)
WRITE (108,901) -

IF(ANSeNE.YES) GB8 T8 155
WRITE (1p2,958)

READ (102,953) ANSR

IF (AMSRWNEWSYES) GO T8 999

LEAST SGUARFS FBR THF TABLE BF INTERCORRELATIONS,
# 'R SQUARED' = W

'ERRBR SQUARED' s §

TVARJANCE!' = VAR

'BIAS SAUARED! a RQ

'RIDGEY = RIDGE .

L IR O S J

155. D8 170 Jelsly
S

HaQe

Vis0, .

DB 1640 KelslIX

HaHeR (s J)#Z(KyJ)

VisV{+RL(K)/Z({RL{K)+KQ)unp) N
160 CONTINUE . :

IF(I14EQe1) SS(J)IiiH
165 Suimy

VARISS(J,'VI

BIm (KSwup)aRM(JsJ)

RIDGE®(S9(J)*V1+R9)

WRITE (108,90R) JIHISIVARI(VAR/Sg‘J,’lB9b‘BS/S9(J))IRIDGE‘

# (R]IDGE/S9(J)) ;

WRITE (108,954)
CALL Mpila ¢ BJRB;IX:IY:O) . :
200 CONTINUE : o e

¢

900 FOBRMAT (ats(F1o.u.ax>./).sxrio.n.ax;)_

- 901 FORMAT (5(1H ))

902 FARMAT (:41Xs "MATRIX 15A10/23(5(1XsF1206)2/))

- 903 FORMAT (43Xs ' XeX INTERCORRELATIONS 1, 47Xs 1 X=Y IQWERCGRRELATIBNBl,

P //7:8X215(A43X)01Xs3(AR3X))
904 FORMAYT (1Xs'K VALUEw 1,FB8e4s///)
905 FORMAT (3(2(F1243)))
906 FBRMAT (1X,'BETA CREFFICIENTS AREL '5/,1%,
.2 3('PREVIOBUS's4Xs'CURRENT 1,5xs 'CIURRENT B1s7X))
908 FORMAT (41X, 'FAR DEPENDENT VARIABLE 1412, 1sR SQUARED IS 1oF7¢34/s

1 1Xs' ERROBR SQUARED = ! F10e4s/21Xp '"VARIANCE ® 1,F100422XaF100d0

2 /51Xs 'BIASSEQUARED = 1)F1004s2XsF 10043/ 1Xs'RIDGE w 'IF10'¥:

3 2XasF100kas//) ~®
909 FBRMAT (1X0A“01X015(F60101X)l'I'J3(F60g>1X))

910 FORMAT (1X,'EIGEMN VALUES FBR MATRIX R} l/llEXI'E!GEN VALUE!,

2 05X, 'RECIPRSBCAL SyM's5X, ' PRBPORTIBN E!GEV'aax.'DETERMINANT'://)
911 FORMAT (9Xs15(  F1294s3XsF1264s9XsF1204,9XsF 12040 /) ) ,
950 FORMAT (F12e6) ) -

951, FORMAT(F 10 &)

68 ' : g




255, 953 FORMAT (A4) . ‘ +
256, 952 FORMAT (1S(A4o1X)a/:3(A411X)) : .
257 954 FORMAT (1H1) A
258, 957 FORMAT (49X1A4) 7
259, . 958 FBRMAT .(4Xs "CONTINUE 1)
2600 . 960 FORMAT (5X, 'EIGENVECTBRS FBR MATRIX R} 1,/)
261 962 FORMAT_(49Xs12)
| 262 963 FORMAT [ 1X,*STANDARD DEVIATIABN FAR EACH CBLUMN «e MATRIX. TaAL)
| 263 964 FORMAT (1X, 'MEAN VALUE FBR EACH CBLUMN == MATRIX 1,A1) 7
| 264 965 FARMAT (15(2Xs12))
\ 265 966 FORMAT (/s3(12XsF12¢6212X))
266+ 968 FORMAT (tatal2s()
267 969 FORMAT (30Xs 'RIDGE REGRESSIBN ANALYSIS'J/J
268 230Xs 'DETERMINANT v, /, : : ‘ ' s
269 330X, 'TABLE BF INTERCARRELATIBNS 15/; :
270 . #30Xs 'E1GENVALUES', /)
271, 530X, 1LEAST SQUARES AND R!DGE cosrrtcstTsvo///)

272» 999 END

. .
L]

(Questions regardmg this program should be referrecL to the Real Time
Simulation Segtion, Displays and Human Factors Department, Hughes Aircraft
Company, Culver City, California 90230, ) -

DATA SET-UP

oA 8 g : . A 1
FIRST CARD: , B '
R 4 ) A
' Col., 1-2 Number of obseérvations ()
. . » . . .
Col., 5-6 Number of predictor (X) variables to be analyzed {

(maximum = 15) (see THIRD CARD, below)

Col, 9-1q Number of predictor (X) variables in the total data set
, {maximum = 15)

Col. 13-14 Number of depéndent (Y) variables (maximum = 3)

Col. 17-18 Number of k values [k's are the constants used to bias the
diagonal of the correlation matrix and is referred to as
"k9-error factors' in the program,] (see SEVENTH CARD
below) ' ' ;

SECOND CARD:

/4

o

Col. 50-52 If you are starting the analysis by inputting the raw data
: values of the predictors and associated performance,
write YES

or . ‘ -otherwise

' ) ¢
Col. 50-51 If youare going to start by 1nputt1ng a prevmusly calculated
correlation matrix, write NO :




. v. %l -
"’I;HIRD‘&IARD: , Il"“le of the pred1ctor (X) var1ables 1nd1cated in: Col 9-10
o . of the first card are to be 1ncluded in the analysis, leave
: e this card BLANK . o o .

- b © ”-:

) If some of the pred1ctor var1ables are not to be 1ncluded in
v ' “the analys1s, then these must be identified by their <identifi-~
S cation number, i.e., the number of their position on the

DATA INPUT cards below (which also could be used as the

\ Label ID requ1red by the FOURTH card). - S
\} ;o The pred1ctor variables to be excluded from the analysis
i ' are entered: - : .

- Y

RS
%

Cols. 1-2 ~ BLANK T »
Cols. -3-4. 1D number of first pred1ctor to: be excluded

Cols. 5-6 BLANK s RS
Cols. 7-8-  (After two blank spaces the next two spaces are used to
. enter the ID numbers,. Ol to 15, of each variable to be

a . omitted from the analys1s,.‘unt1l all?re 1nd1cated .)

Y

DATA INPUT CARDS -- N ‘SETS -- )FOLLOW AT THIS POINT
ot - <

1

For each observatmn °a set of data mput cards for the values of the-
predictors and the performance is required.” The order in which the
< variables are listed on the cards is fixed and their pos1t1on can be used
as the1r identification number (see THIRD and FOURTH cards).
! - - : " For pred1ctor (X) var1ables a maximum of ‘three cards
' ' j\ " can be used with'five 1nputs on each card in a decimal-

number format. Ten columns per Jinput, with four
decimal places, right-justified. There are two ‘spaces.
between each 1nput

S o For dependent (Y) var1ables one per card, maximum of - »
‘ " . .three cards, Twelve columns per input, /w1th six decimal
v : ‘places, right-justified. Y variable cards.follow each

correspo'ndmg set of X variable cards. -




4 .
FOURTH CARD:

o

Col., 1-4
Col. 6-9 °
Col. 11-i4

‘FIFTH CARD:_

. Col. 1-4
Col.- 6-9
Col 11-14"

SiXT(H. CARD:
Col. 50-51-

S

or,

Col. 50-52

SEVENTH
CARD (SET)

Col. 5-10

EIGHTH CARD:
Col. 1-4

QOOOO

‘a.‘.

Label 1dent1f1cat1on of X predictor variables (max1mum = 15)

on Table of Data Correlations

Label ID for first X variable, gright Just1f1ﬂed

Label ID for second X variable, right Just1f1ed

(Cont1nue¢w1th four characters per ID and one space

. between unt11 all are labelled. Leave remainder BLANK,. )
Label 1dent1f1cat1on of Y dependent var1ab1es (max1mu1n = 3)

. on Table of intercorrelations. :

Label ID for first 'Y variable,

Label ID for second Y variable, right Justlfled

Label ID for Eh1rd Y variable, right justified

(If fewer than three'Y var1ab1es

BLANK )

Do you want the printer to pause after each beta printout ?

1f you do not ‘wish the printer to pause after pdg:mtmg the
beta coefficients for each k, write NO.-
will analyze and print out betas for all k values 1nd1cated

on SEVENTH card.

1f you do w1sh the pr1nter to pause after pr1nt1ng the beta
coefficients for each k.in order to inspect the values and
possibly decide to abort the program from that point on,

write YES.

the matrix,

Use decimal-number format, left Just1f1ed° beginning w1th
0, then the decimal, and then the numbers of theCk, e. g o

J0
.022¢
.06
1
5

RFIN

NN .
SR S
. . kY

che rwise

- Use one card of this set for each k factor to be added to
(Maximum =.14)

‘right justified

leave extra columns

In this case,

-




, .. | APP;MZ IX B
- - SAMPLE PRINT-OUT OF RIDGE REGRESSION PROGRAM

o .

«

L v .
These are sample print-outs of critical information in the ridge regression

"program listed in Appendix C, Included are: raw score data matrix, means

and standard deviations of all variables, correlation matrix, eigenvalﬁes

sum of eigenvalue recrprocals, cumulative proportion accounted for by elgen-
values, determinant of the matrix, and. for each value of k: R2, error

squared, normalized variance, normalized bias squared, normahzed ridge, ©
‘and ridge coefficients for standardized and raw score measures., .

RUN :
CmelIx o x < -

+0000C0 SnN00Nr000 . 14000000, 5¢000C00  8.:000000°
1000000 1.000000 1000000 - 1000000 +000Q00
24000000 - 19000000 2509000002 1000000 soeooooo

MATRIX ¥
24701340 ) ‘ . e
MATRIX X . e . .
+0C0000 , 50+00n0CO 12000000 54000000 84000000
1¢00000Q °  1+C0N000 14000000 ¢ 34000000 +000000
21000000 * 1.000000 2507+000000

. MATRIY Y,

3+33577¢

_ MATRIX X .

+00CC0Y  5n+00r000 1+0000C0

14000000 14000000 14000020 4+0000N5 +00000¢

24000000 12000027 25094390077 1+000CAN" 204300000
- 9 ?

Partialiprint out of paw score data for
"~ rfifteen predictor X) variables and
one gesponse (Y) variable, :

MATPIX Y
3.850150 S /

s MATRIX X . ] -

*+300C00 5o-oooocc 1+0900nn P-co-ako

\ o ' N o
N s & . S -

6-000000

R

MEAN VALLUE FARsFALH anuMk v- “ATPIX X
v622642
~ 31509430 . :
‘20867924 ° a
2+849056 ,
60254717 ‘ , L )
N «R63208 ,° ] 5 o
207547 N _ &
226415, ¢ . "
24000000 N
. 113208 o :
148467924
754717 -
14264415039 .
+ BReUWBR823
5-6226#1 . : s

S

Means and’ standard deviations fo
« each pred1ctof (X) and response (Y) -
variable,

MEAN VALUE FQR EACH caLuM\ e WATRIy Y ™~
2»963115 .

e
% -

MATRIY ; X |

STANDARD, DEVIATYAN FAR EACH, C"LUM“.l-
*4B4726" .
204822357 SR @%
8+956996

we T e 3 - |
e Py w . . o . . . coan . 6 . . . X o
b SN . '\( . : . ‘_L g '%§ ) ) PR . ‘ ' '

3
~ . ¢
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APPENDIX E ¢
*  OTHER APPLICATIONS IN THE DESIGN OF EXPERIMENTS FOR WHICH

THE TRCHNIQUES DESCRIBED IN THIS REPORT MIGHT BE USED

’ .2

-

Hebbie ind Mitchell (1972) illustrate how the maximum Var (9 or '
max1mum | X'X] criterion can be used for other 1mportant purposes, such as

addlng data p01nts to:

1, Expand a square region of interest in a second-order model. i
- 2, Alter the model to fit the space. o .

3,  Shift the region of interest.’

In these situations they employ candidate points much in the manner propes@ .
by Dykstra (1971). R )
- I, ‘s‘ ) . o . - - I

_ Mitchell (1974) uses the maximized |X'X]| criterion (with a specified
L Q .

linear .model'a—nd a value of n) to: h &

1. Exchange data po1nts to 1mprove a de sign.

2, Determiné Whether more data points might improve the design.

3, Selecta best design made up of a subset of candldate p01nts when
’ limits are placed on the value of n, y
. 4, Supplement "screening" fies1gns (see Simon, 1973) to isolate

two-factor interactions.

v
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