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ABSTRACT

An "uhdesigned" experiment is One in which the 'predict& !variables
are correlated,, .either'dde to a failure to complete a'eesign or-because'the
investigator was unable to select or 'control relevant experimental conditions.
Thestiaditionalfinethod of analyzing this class of experiment multiple
`regiession analysis, based on a keast squares 'criterion' -- gives rise to a mini-

. b.

ber of interpretation problems when the efie-cts of individual predictors a.'1'e to
be assessed. Some difficulties and their effects on: the quality of iriformation
are &iscussed. I

'V W° methOds are described in/this ' repprt for improving the informa-
.

tioil obtained from the undesigned human factorg experiment. One is to collect
ti

more information at a few tia.0. pointd selected t locations that improve the
orthogonality of this non-orthogonal design. The other is to use a ridge

4) regression analysis 'in place of the conventional ,east squares analysis; in
which a slightg'bias is introduced into the data in uch a way that the combined'
bias and variance error is smaller than the variance error of the unbiased
estimates from the least squares analysis. The ridge analysis proguces m re
stable and meaningful regression coefficients. Computational aids-- both
references and complete. computer programs ;44.are supplied.
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FoOlkEWORLI t.
"Wh le trie"undesigned" experinlni is'used extensively in personnel.

s4 ,. .electio7 research, it has been virtually'ignored as a viable approach in
equipment 'design and training research. Traditionally; in these, latter prob-
lem areas, systematic Resigns have been used in which the priria'ary'experi-

,

mental variables are all controlled. As a result, variables that are difficult
or impossible to control-are often excluded from the.ecperimental plan even
when they are relevant and have an important effect on performance.- Conse-
quently,` much of the performance variability in the experiment remains
unexplained ana the <data is of limited value when applied to real-world

. probleMs.
- ,

tinmarlageabre sources of variancel however, 'can be accounted for if
-they are treated.as variables of an "undesigned" experiment. This a most

. effeSi've use of'the methOds described in this report to enhance "undesigned"
'experi4Ats ii,s,to combine them with the "advanced methodologies" describeI'd

in previous reports !Economical Multifalctor Designs"iand "Methods
offlandlingSequence Effects..." (Simon, 1973'; 1974)). By properly using
the_se methods in combination, We become capable bf doing experiments that
will account for most of the variance assoc'ated with the performance of a
real-world task and to eliminate major sources of irrelevant variance.

I would be interested in Eating about applications of these techniques
by behavioral scientists and am-willing to discuss efforts in this'- regard.
Comments and, criticisms are always welcomed.

v-

-Charles W. Simon
1975
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SYMBOLOGY-

,? '
, . .

Inver,sion of matrix A where A .= X'X

Regrssion1 coefficient,of va.riable i for raw
4,

4.

score data

.True, beta (standard regression) coefficient.

. Estimatedbeta (standard regression) coefficient from least
6

squares analysis
r°

Biased estimator of ridge coeffibient from ridge regression analysis-

Statistical expectation.; Weightedtntegral of
o

Identity matrix: In a, correlation matrix, all"diagonal valuet equal
one and Off-diagonal' values.equal zero

1.
Constant used t%distori correlation matrix in-ridge regression
analysis

Eigenvalue 'n

Squared disfance between.true and estimated coefficients
:Product of - .

c
.Residua6rror variance; sigma squared, mean square error
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E- 'Surri of --- (fiom 1 to pitems)
1 . ,,.7.. ...r.

...
V(9) Variance of.an estimated response ° a

;(413
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*.Predictor variable i.1- -0 .,X'X . Sum 'of squares and cross,product matrix (of valde of 6verjr predictor

or rpultipliedby one another yielding X? and XiXi values); x vector
(X'X) : multiplied by its transpose; square root of of X'X divided

.5' by N equals correlation matrix . , .,

a, °

I xtx1 beteiminant of the (X'X) matrix
.:

. ,

XIY . Cross-product between predictor and/performance .
A , 0

y or, Y °Estimatedperformanee (from regression equation)
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SECTION I
INTRODUCTION

This report describes two methods of improving the information obtained
from the "undesigned" experiment. In the-first approach, additional 'data' is -

0

collected, in otder'to facilitate the interpreiatiOn of data'already collected.'
. - -

The second approach is a
. relatively new technique' of data analysis that pro-

., .vicles better, solutions than floes the'traditional least squares analysis.
- ,

DEFINITION

4.n "undesigned" expe riment is pane in-which some experimental' variables
.

cannot ,be or are not ca trolled by the experimenter. To be included in an
.therefore leyel of each variable must be known or inewsured

at the timeA each perfarth ce easurement is.made. Under thepe
stances, variables in an undesigned experiment are correlated Mathematically
to sortie degree, a condition' which markedly complicates the interpretation of
the results-. :

.

11.

EXAMPLES OF UNIDESIbNED.EXPERIMENTS

The following fictitious situations are examples of undesigned experiments
in human f actor& enginee4.4 research:

1, The. Army has rewritten its maintenance manuals, in a style that will
-

enable, the ordinary technician to understand and use the infoxmatioh
.0"better., They are interested,in measuring the impact of this -fevision

on system performance. Old and new manuals are made available at
a number of maintenance depots where the technicians differ in train-
ing levels and experience with, the particular equipment. At the.

S

depots, differences aldo exist in, the availability of critical parts, the
. .

maintenance philosophy and schedules,- the unit morale lfteA, and
other factors that could conceivably affect the quality Oeinaintenance.
Since it is impossible to control these associated factors to any
degree, .a daily record %s kept on. each of them along with several

o 01

n 13
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. . .

% .t I r A . 4-,...

criteria; of maintenance performance over,a six-morktWperiod. This
,.

data taken asa. whOle can be 'treated as an undesigned experiment.-

4 2." The Air Force wishes to determine, the optinium parameters for thet .

manual control configuifation of a missile-delivery- system. They
wish to reach a soliftion 'derived from dmpirical data collected under

' ... .
operational conditions. A flighetest is planned in which the strike

.

accuracy of a dummy air-to-ground missile is to be studied aia
function of changes in control parameters.. Thereis little opportunity
to make a great many flights, to offset the effects of such uncontrolled
but critical facto rs as visiblity, turbulence, and variations in the (

rtarget itself.. However, these variables can bd measured a-6-tlee time
each missile is fired. While the control parameters can be syste-
matically variesl, .the existence of the other uncontrolled but pre-
sumibly critical factors make this a partially =designed experiment.

The Navy has built a research-oriented pilot-training simulator. A
study ks conducted to determine the least expensive simulator con-

-.
figuration that will result in the greatest transfer in pilot perform -
ance' from simulator to aircraft. To groups of pilots are selected
for the study those with less thah 2000 flying hours and those with
more than 5000 flying,bours. It is recognized that flying time per se

-is not sufficient to characterike pilot skill and that such things as the
type of aircraft, the nature of the flying experience (military or
civilian; war-time or peace-time), and recency of this' experience
also should be taken into consideration. Since it is necessary to use.

,-all available pilots as subjects without an opportunity to control these
other factors,4Rot 'characteristics must be included in the analysis
and handled as varia:blekif an undesigned experiment.

.0vner a twelve year Or*, a research organization has conducted
experiments "relating eq.uipment parameters to success in acquiring
ground targets, on an airborne display. During this time thd effects
of over fifteen ,variables associated with the sensor, the display,

S.6

4
14

I



4 .

t.

anecthd brie] ing information have been examined, but in a series of-
small expez ments of two-and threb Variables each. Since rio over -

all 'research strategy wasleve'rilanned, the frequency with Which
.certain variables and levels' of variables occur in this data lyaries
considerably. !The resultiig lack of a balanced design leaved pre-

'

dictor variables corelated. Thus this belated effort to combine the
results of several experiments to de-O'elOp a single prediction equa-
tion takes on the,:ch4ractris:tics and problems of in undesigned
experiment. '4 C

,The levels of a factorial desi-Fri'sare2used as,the data collection, plan
in a drug-therapy experiment.' While the study'1s being run, it
becomes appi.rent that two of the extreme conElitions,cannotbe
measured ai all because they exceed physiological safety limits.
This.destroys the orthogonality of the design. The data that remains
to be analyzed takes on the characteristics ()fan undegned .

experime nt.

DESIGNED VERSUS 4UNDESIGNED EXPERIMENTS
.o

The goals of a good experiment should be to obtain new, relevant,
important, and lasting informati6n which is capable of explaining 'most of:the
performance variability associated with a particular realvworld task. In i\he

behavioral sciences, unlike the physical sciences, performance cannot be
examined or evaluated independently of the context in which it occurs and can.
only be described or predicted as a function of this context. The more
generalizatle data therefore will be derived from Axperimetats in which
critical context factors are varied rather than held oonstant.

however, an investigator decides. to study behavior in a reaVistic
.

context, be may find himselfin circumstances where his ability to control
and adjust the levels of critical parameters is sorely limited. This means
that he can no longer plan and carry out a totally designed experiment arld

o amust either limit the questions he can ask or resort to another approach.
The undesigned experiment -- alone or in conjunction with a balanced design --
offers a viable alternative.

3

0

t4
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CharacteriStics of Designed experiments

The value of a de-signed eiperimentsts on the fact that'the experimental
conditions are selected in such a way that critical effecta can be iAsOlated and
the interpretation of theresults simplified. However, there' is a price to be

°paid for these advantages,l.fof the rigidity of the 'design foPces the experimenter

s7

to: .>

anticipate in advance the variables he will include in his study;
( rbe.able'to control the exact levels of any variables that will b&

e'

_ include4 in ti;ie study; .
.

include conditions that.May beunreali§tic or otherwise undesirable.

,Positi e Features of Undesigneci Experiments

The undesigned experiment, because it generally accepts as the experi-
mental conditions those which existia the moment a performance meastre-,
ment is made, does not face the same problems". Tile very lack of control of
the conditions under which performance data must be acquired yields the
following advantages for the undeSignethexperiment:'

*

1. The costs of collecting perforirince data are no lqnger as rigidly
related to the number of factors being investigated. As mar-r} vari-
ables as desired can be conside'red as long as the level of each can
be ascertained at the time performance data is being collected.

2. It is-not always necessary to anticipate critical variables in advance
of the data collection phase. If appropriate records are available,
these may be used later to introduce more variables into the analysis.

X 1

It is by definition that these advantages fall to the undesigned rather than the
designed experiment, Obviously a number of these advantages could exis
for experiments that are planned by an experimenter who intends to use
some analysis of covariance desig . However, to identify the class of prob
lems that will be#efit from the tec niques di cussed in this report, any- situ-
ation in which.variables are includ d in which the, level selection is not under
the investigator's complete contro considered an undesigned experiment."
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3. Particularly in field studies, there is ..grea r likelihood t
Majority ok, critical Variables will be prelen (although;-not necessarily
identified) and that the -values that are used will be,n-iore representa-
tive of realty.

4. The regression approach permits an iteration hi the starch for the4

z
oamore critical variables. If the proportion of valiance accounted for

by the xvreission is low, other variables may be, tried tsc see itthey.
-,..4fit the data bpttr, provided the necessary measures' are Available..

:. .
1

,, o , Thus the undesignecl4xperiment hasthe advantage of allowing (or forcing)
, .

the expeximenter to4study the yvorld as it rear is-. If the - levels, of eicperi-,,
1mental variables are 'riot selected artificially' but are allowed to vary naturally,

the chances are higher that Performance4 1will be measured under more repre-
sentative thecircumstances with relevant and critical variables operating.

,
,-)..:

Olw

..

3
Measurement Sources. The only, alternative to controllingtNe levels of

Vs variables to be included in an:experiment is to measure their levels asthey
exist at the time performance is measure& The following are the most
_common tources from which these measurements can be obtained:

Concurrent Measurements. As an event unfolds and performance is
measured, concomittant variables of importance are also measured.
(Example Measuring air turbulence in a flight test. )

His tical measurements. The data is obtained from past records
that can in some Wa,41be associated with the conditions occurring at
the time performance is being measured. (Example: Using subject
aptitude scores from tests ken prior to hi's. entering the pilot
training course. )

Incomplete Measurements. The lev of each variable are already
vels of a designed experiment

which became degraded when certain conditions were omitted by
`choice or by.accident. (Example: A factorial design is planned and
data is collected at all, but two' corner points when a data recorder

known; having been assigned as

failed to operate. )



0

In pra.ctice, all or some of these sources may be used' in a single
41,experiment.

tts
.

Difficulties with Undesigned Experiments

,There are penalties, however, associated with the' freedom of data
c.011ection for the undesigned experiment: ighe imbalance among combinations
of variables that is bound to occur when no systeinatic experimental design,
is used leaves Predictor variables correlated. As a result, the derived equa-
tinns are subject to greater error andoinformation becomes scrambled(nd
difficult to isolate.

4In the mixt sectioh some problems of interpl:etind the results of the
esigned experiment are_described along with general concepts and' terminology

used in regression analysis that are useful when reading this report. '

G

O

6
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SECTION Ir.
ANALYSIS AND INTERWREIATION PROLLEMS,

CONCEPTS, AND TERM,INQLOG

. .
In this, section, basic .concepts and terminology 'relevant to multiple

regression analysig.will be -reviewed. and problems in interpreting the res
it from undesigned expeOments identified. The discussion is simplistic, and

1
`intended only to supply the minimum detail ;required for a. reader to aripreci-

,

\ ate the value ay$the alternate techniques degcribed in subsequent,s4tions,
) t'or an in depth explanation of multirile regresigion analysis, the ;eader IT:

encouraged to read the excellent books and
..,

papes'rJthat are available on this
er, 1

topic (e: g. Draper and Smith, 1968'; Darlington, 19'68; Kerlinger and '

O

ij

edhazur, 1973).

AW DATA MATRICES

The experimental conditions and related performance in both designed
undesigned exptriments caniDe organized into a matrix format such as

shown in table T.1.

Observation
#

1

2.

3

4

5

6

4,

Subj

. .

1

14

8 ,

11

4

at

Predict6r, Variables (Xi)

X3 X4 X5X1 X2

0. 23 1

0. 11 1

07 2

0.54 1

0. 27 2

0.33 1

0..1-9

25. 6 0 Hi

7..8 0 Med
14. 1 1 Med
3.0; 0 Hi.

22.'9 0 P Lo
15.6 0 Med

.7

.9

vtt

,r

fT.11

c**



Each line represents one observation, i, e., the conditions,
1

X.
9

wider ,u.

which performance was measured and the performance, Y, that was obtained.
There could of courte be nrore than'ole perfOr'mance me- sure for anz---obser-,
vation*, e. g. speed and ac racy, and, subject.characte istics could be4,

included as factors among the predictor variables.

A-primary difference between raw data matrices of d signed and trick.:
signed experiments lies. the arrangement of the 'levels o the predictor
'- ariables. rn the desigred experiment, these lev'els, 'bein systematically
controlled by thz. experimenter, are, geherally selected in balanced fashion

"so that the main effects ,of the diCter variables are' orth. gonad (i. e.

liar examples in.
1..

uncorrelated The factorial design is one of the mope fam
'which the lev is of each variable are combined equally often ,

with every other
variable to.achieve this orthogonality. As a reSult, `the analysis-arid inter-.
pretation of the results are simplified. In the -undesigned experiment, this,

balanc'e is not achieved because theexperimenter is unable (or fails to)
select Or control the levels of the eXperimentai conditions: AsaAs resultp main ,

effect ts-of predictor; variables are correlated
that rrfa.ke's the' analysis and interlibretataon of

Aor"relatign is a mathematical deipendence, a
ilurrectat the time the measures were ta.t<en,, and does not necessarily

with ,one another, a condition
the results more difficult. This
happenstance of the revels that

imply a cautysal relationShip between the pair of variables.
.c

CORRELATION MATRICES
'

0

The distinction between a designed and undeSigned.e (perimente is easier
to illustrate if -the raw data matrix.is,transforrned into,a correlation'matrix
composed of the linear. (Pearson product moment) correlations among all
variables.

Comfentional regession analysis ha'ndles only a single performanceovgriable
per analysi,s/:"Kerlinger and Pedhazur (1973, 376-381) dedcribe a methoil of'doing multivariate regression analysis with two 'dependent variables at thesame time, illustrating how the combined analysis prOvides a clearer inter-pretation of the data than two analyses each with single and different dependentvariables.
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For a designed experirrient, a fictitious correlation matrix for three
predictor variables and a performance variable might look like table T.2.

Linear
Co-rrelations

Predictor. Variables.
1 X2 X3

Performance
r (y)

".:
.

0
Predictor .

Variables

.
X

X2

X3

I

0

0

.

0

0.

1..

-- 0.342

-O. 1,67
0 A

0.523

(

C

The tattle of intercorrelations can )t broken into wo parts: one, the
dictor matrix of correlations among each predictor variable and every
predictor variable Including -Itself, and two, the performance column vector
of. correlations between eachipredictor variable'and performance.

. Note that since each predictor variable correlates perfectly and positively
with,itself, the diagonal values are an one. Note further \that with the

.(kdesigned experiment, all off-diagpnal values are zercq showing4hat the linear
Formionents of the predictors are all orthogonal to one another. A matrix with
only Zeros off the diagonal is referred to as a diagonal matrix. When,the .

numbers on the diagonal are all ones, the matrix is called a unit matrix.

.,In the undesigned experiment, the intercorrelation matrix for the predictor
variables fsnot likely to have zero correlations, in the off-diagonal positions.
Instead, for the undesignedlexperiment the correlatici table might look like
table T..3.

Linear
. :Correlations

Predictor Variables
. X1 X2 l_ X3

Performance
(Y)

.

Predictor
Variables

X1
.

.
X2

, X3

1,0

0.14

: 0.352

0.145

1.00

9- 22'

.0.352,

022

1.00 (

0.674

0.532

0.348
0

21
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P

When; the off-diagonal elements are non-zero, the predictor variables are
correlated.", In that case, the matrix is saici, to be ill-conditioned and the
origin'al experimental design said to be non-orthogonal.

Note that in both tables T.2 and T.3, the predictor matrix is symmetrical'
11about the diagonal. In some texts, only half of the matrix (above or below. the

.--diagonal) will be' written out.
C9

To be able to analyze this data by regression analysis; the matrix must
non- singular. This means that each row (o\r column) of the matrix rinust be

linearly independent of every other row- (or column). No row ifonr column),ig
produced from any linear combination of others in the matrix.

, MULTIPLE REGRESSION ANALYSIS'
ab.

Given the information in "raw data' or correlational form, the investigator
ordinarily subjects it to an analysis that reduces it to a linear polirnonlial
equation that will provide the "best" estimate of performance under specifice
conditions of the predictor variables.

'Ealh line of the raw,>data or correlation matrix represents-an equation.
Perfoi'rning'a multiple regredsion analysis on the data is the same as finding

"-the common''solution to a set of simultaneous equations.

The equation derived from an analysis of the raw data will be written
in the following form: , t

where (iboX0 is a constant and b. ( = 1 through N) are regression coefficients ,

for the N independent variables, (i 1 through), respectively. In
practice, the X; terms can represent main effects or transgenerations
main' effects, such as cross-products (Xi X.) or higher order terms (X.2) '3 i
each treated in the analysis as if it were another variable. A regression

.. ,

10
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coeffict, b., is the average change in lierfcirMance that will occur fOr
each unit change in th e particular variable; this thange may be poditive or
negative. The value, Y is the performande, estimated:by the equation for

. particular values of the predfcter variables,.

Lea st Squares, Fit
0

. )

The coefficients derived by 1ultiple regression analysis are the ones
used in the polynomial to provide the "best" fit of the data.:' The criteri8n for
a "best" fit is, met when the sum of the dquares of Ore differences between the
observed and the estimated performance values is at a minimum.'''` The dif-
ference between the observed and the-estimated perfor nOe values is called
the residual; thus the'"best" fit is obtained frornthA'equatiOn'that minimizes
,the residual sum of squares (RSS.'

Standard Regression Equation.

riables are commonly measured in different units and on different
es. In order to compare the coefficient's of fhesevariahles, the values

in the raw data table can be converted to standard measures, cir Z scores.
This is done 'for eaclf variable as follows:.

X - M
= Z

where X is the raw score to be tconverted, M is the variable mean value,
and a is the standard deViation,. If these standar il. scored are subjected,to a
multiple regression analysi then the resulting polynomial is referred to as
a standard regression equatibn of the followin-g form:'

(E.2]

- I
'-'4°

*There are other criteria fo'r judging the merits of an equation. Kiefer (1959)
discussesa number of these in detail. Later on in'this paper, -some weak-
nesses of a least, squares solution of data obtained from non-orthogonal
experimental designs will be discussed and alternative criteria proposed.

.
11
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wherein the-regression coefficients, b.
12

of Equation E.1 are replaced by beta
coefficients, (3. and there is 'no ..longei a constant term. A regression analy-
sis of the data in a correlation matrikx results in a standard regression

t .

i - If either the ordinary, regression equation or the standard regression,has.

a .
,been calculated, the other can be derived according to the following
relationships:

=b.

1

cY
i TX.

crX,
b. r

The constant, b
0

X
02

for the roultiple regression equation is found as follows:

- ( + bMean 1 1Mean 2
X2Mean

Interpreting Multiple Regressiim Analysis

b XN NMean)

From his regressflon analysis:e an investigator ordinarily is interested in
obtai ing the following information;

An equation to be used to estimate performance at specific coordi-
nates of-the experimental space.

Measures of the relative importance of the experimental variables.

This information is generally easy to obtain when orthogonal designs are
used. However, this is not the case when results from undesigned (non-
orthogonalY experiments are to be interpreted. Let us examine both cases.

Orthogonal Designs. The equation derived from a multiple regression
analysis might appear as in the case of this fictitious example,:

= 0. 45 + 1. 53 X1 - 8. 49 X2 + 0. 67 X3

12
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r

where Y is the estimated number oftargets found atioa. function of X1,
,, ..

dynamic range of the display in log foot lamberts; X21''sensor resolution in ',

10-foot Units; and X3, lldisplay size (diarne'ter) in ii plies. With an orthogonal
1

.,

. ,

a esign, the coefficients in the equation can be inteipr4ed as f011ops. Each
ii"

..!time the dynamic, rge on the display increased' one log foot-lambert, 1. 53
t

more, targets Were found on the average. , Each time, the resolution t31 the
. lc. sensor was increased by 10-feet, 8.49 fewer targets on the average were

found. Each time the diameter of the display was increased an inch, 0.47 more

kr;

targets were found on tie average, Its is underabOd, as*.in all re-gres- sion analy-
.seas, that these relationships hold only within the boundaries set by the data

collection points in the original; experiment.

In equipment design problems, this' information may be enough to com-
pare,the relative importance Ol the different predictor variables. Since the
levels of all three vainShies can be converted to a common scale of engineer-
ing costs (to achieve a particular resolution, dynamic range, ozSize),' no
refinement ofdthe ecluation is actually required to decide their relative impor-

t, tance in the applied situation. This is not often the case, in other fields of
psychology where no common base among variables exists: Thus it would be
quite difficult to know which contributed more to 4.iccess in school by study-,ing the raw score, coefficients in an equation that relates school success to
scores on a reading test and i math test There is no common base to work
with. In that case, to compare the.relative importance of the incividual vari-
ables on the performance, the predictor variables must be changedto.standard.
scores and the equation written in a standard regression form.

For example, a multiple regression analysis of the correlation table,
T.2, would yield the follow inestandard 'regression equation:

b Yz = 0.342 - 0. 167 Z2 -I= 0.523 Z
3

The effect of Variable 1 on performance is twice as large as the effect of
Variable 2 (in terms of their standard scores, Z). However, it is questio nable
whether or not the use of standard coefficients is as meaningful for an applied

0

.0

-0"

13
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problem that ean be reli\dt to a common cost- scale as the cdefficients of
the ordinary regreasioh equaiion.would be,

Calculations, however, can be made frOm the coefficients of'the standard
, l

regression equation that might add to the understanding of the data When

derivedfrom fullyaorthogonal designs, i r

./' e
1' 1. These coefficients are the same' ,t,E; the linear correlation betweenIf, , , ,,,,..------

`' each-predictor and performande as seen in t XY cohimn oft tle
-I- 1

SI,table of intercorrel ion. .:

2. The square Ipf each' coefficient shows the proportion of the total
variability iPi perfoimance'that each predictor accounts fOr..

The sum of the squared coefficients 'Shows the proportion of the total
performance variability that can be explained by the total standard'
regression equation, and one minus that value shows the proportion
that is not explained.

Non-Orthoenal Designs. While regression equations'from undesigned
(predictor-correlated) experiments are mathematically the same as those
from orthogonallulesigned experiments, pragmatically they are not. Although.
in both cases the overall equation does represent the best fit of the data
(according to the least squaies criterion), in the case of data from undesignedi
experiments the 'beta coeificients of individual terms should not be consi-
dered independently. However tempting it ma9- be to do so, when predictor
variables are markedly correlated, the beta coefficients should not be,indf-
vidually interpreted to show the relative importance of the variables. The
relative magnitude of these'coefficients are the tesult in part of arbitrary
decisions made by the investigator during the analysis. This can best be
explained by example.

In figure F.1, two factors, X1 and X2 account for 25 and 36 percent,
9,

respectively, of the total variability in performance (Y). 'A standard
regression equation based on these two factors alone would be:

= 0. 5 Z X1 + '0. 6 ZX2

14
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PROPORTION OF
PERFORMANCE VARIANCE, Y,

ACCOUNTED FOR BY TWO
INDEPENDENT PREDICTOR

VARIABLES, X1 AND X2.

PROPPRTIOU OF
PERFORMANCE VKIANCE, Y,

ACCOUNTED FOR BY TWO
CORRELATED PREDICTOR

VARIABLES, Xi.AND X2

J -

'

Interpretation in this case is straight-forward. The relative contributions of
each variable can be estimated; thirty-nine percent of the performance vari-

.

ability is still left unexplained.
r ...

In figure F.2, the two factors ' X
1

and X2 again overlap Y by 25 and

36 percent,. respectively. This time, however, they are also correlated
a

0.60 with one another. It is no longer a simple matter to decide how much
a

15
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6'
of an effect each variable has on performance. Wheie X

1
overlaps ?t2 and

k.Y, hoW can one determine whether the effect on Y is due
e
to1X

1
or If If the

effect on Y in the overlap portion is due to X1, -then X2 does not have as
much of an effect as the simple correlation between X2 and Y suggests. If
the effect on Y in the overlap portion is actually due to X2, then XI does
not have as much effect as its coralation with Y suggests. Because the
data itself does not directly suggest which alternative is correct; using
regrespion analysis on data with correlate.d predictors can give a number of
solutions, depending on the order in which variables are introduced into the
analysis.

In the above example, if the effect of XI (including the X1 X2 overlap)
were 'removed first, only .14 percent of X2 would be left (excluding the X1X2
overlap) to affect Y. In that case, the equation would be written:

= 0. 5 ZX1 + 0. 375 ZX2

On the other hand, had the full'effect of X2 been r*iove1I first, then the
effect of X1 that remained after taking into consideration the X1X2 overlap
would have been reduced_and the equation would have been:

e"' ZY = o 6 Z XI + O. Y75 72,

Both equations would estimate ly: equally well, each accovont' or 0. 39 of
the totalvariance. In both equations, the first beta coefficient co responds
to the full correlation between that variable and performance; the second
beta coefficient, how,ever, corresponds to a: semi-partial correlation after the
effect of all prior variables has been removed from the predictor under con-
sideration. As the number (N) of-correlated variables increases, the 'number
pf ways in which they can be ordered into the equation (W: ) illustrates the
numerous solutions that are possible and why interpreting the individual
coefficients is a meaningless exercise.

16
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Because of this,. there are some like Darlington (1968, p. 169), who
after re 'riewing the problem at some length, concludes: It would be betterf
to simply concede that the notion of 'independent contribution to variance'r,--rhitert5 when pre 'ctor variables, are.intezcorrelated. "

.

.Eigenvalues

10Given a correlation matrix A, such as table T.3 (Or any real,symmetric ''
a

matrix) 'there exists a set of eigenvalues X such that:
0

0IXI-Alf,--z

L

I

X-all -a12 -a13 -a
14

,*"."a22 -a 23 -a24

-a
13

-a34

-a14 4'24' -4341 X-a44

- For a four - variable study; determinant of the correlation (ai matrix
9 j. r ,in the above expression couldbr written as fbllows:

The expansion of this determinant yields a polynomial (1)(X) of a degree n in
X which is known as the cha,racteristic polynomial of the ma ix A. The
equation, CM 0, is called the characteristic equation A and its roots
Xi, X2, ?.N. are called the characteristic roots (or eigenvalues) of A.

O
-

For, the purposes'of this report it is not necessary for the reader to under-
stand the Mathematics required.to calculate eigenvalues since even for a
matrix of modest size, a computevould be required to perform the calcu-
lations. It is important though that the reader be aware of Some of the ways
they can be used to facilitate the interpretation of data from the undesigned
experiment.

17
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The set of eigenvalues, Xi, for an orthogonal matrix (e. g. , T.2) would
all be equal,to one. This should be obvious from the above explLnation,
since an orthogonal correlation matrix is a unit matrix with all ones in the

'''-'diagonal which would yield a determinant equal to zero only if the (XI) were
also all. ones.

For a non-orthogonal matrix, however, the eigenvalues are no longer
either equal or necessarily one. Instead,' some of them are larger than one
and some" smaller than one. The more non - orthogonal the design matrix,.
the greater the range of values. For example, the eigenvaluei for a fictitious
moderately non-orthogonal design of eight variables might be as follows:

t

c

= 1. 55

X12
= 1.36

, ., X = 1.15
X.3 = 1. 03
X4 = O. 97

. X5 0.85
6

X = 0. 64
X7

8
= O. 45

while the eigenvalues for a fictitious more severely non-orthogonal design
of eight variables might be as follows:

[TA].

X

X2
X3

x4

X6
X

X8

0=
=
=

=
=

=

3.22
2.18
1.30
0'

74
0.31
0. 18,
0.05
0. 02

(T.5]

' 0

Note hovi the range has increased in the second case, T.5, and how small
same of the eigenvalues are. Both sets sum to 8.4,00.

Given the set of eigenvalues for .a matrix, however, an investigator can
use them as a means of better understanding his data. The following appli-
cations can be made.

18



The sum of the eigenvalues will always equal N, the number of predictor
variables in the experiment, whether the matrix be from a designed or uncle-,
signed experiment. However, with undesigned experiments, since some of
the eigenvalues can be very small fractions, less than the total number -of
eigenv.alues may be needed to. almost sum to N. This can provide -a clue as
to how many critic 1 variables are actually influencing performance. For
example, in the Bet of eigenvalues for a severely non-orthogonal design, T.5,
99 percent of the variation is explained by the first six eigenvalues, Although
the fact that no eigenvalue is zero indicates that all eight variables have
some effect on performance, but for all practic1al purposes, only Six are
probably really critical.° This could be important to kr:ow if an investigator
wished to eliminate some of the terms in an equation. (Note: There ,is no
one -to -cane relationship between_the numerical ordering .of eigenvalues and
variables.)

The sum of the reciproca ls of they eigenvalues is an indication of the
degree of matrix non'- orthogonality. This- value for a completely orthogonal
design, of course, equals to the number of predictors,, N. The more corre-
lated the predictor variables, however, the smaller some eigenvalues will
become and, therefore the larger the gum of their reciprocals. 'his sum
divided by N shows how many times ereater the squared distance is between

:'sample (estimated.)9and population (frue) beta coefficients for the non-
orthogonal design than'it Would have been for an oxthogona.1,designt,

.The
product of the eigenvalues equals the determinant of the matrix.

c
The,

. 4
larger the determinant (up to N for an orthogonal matrix), the more orthog-

,

opal the design. Later in this report,,. the determinant will be used as a
criterion for selecting the coordinates of data collection points, which when
added to the conditions of an undesigned experiment, will

9 make it more
orthogonal.

.15
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IMPROVED METHODS OF. HANDLING DATA. FROM NON:.ORTHOGOtTAL
-DESIGNS

To extract the most inforina.tion fpm the undesigned experiment, full
advantage mist be taken of any technique that can offset the problems associ-
ated with' 11 iitclays of experixpent. In the last two sections of this report,

. .
two approaches will be described that are superior to the more conventional
techniques in popular use today. These approaches involve:

Collecting additional data at specific coordinates of tlie experimental.
space to improve the. orthogonality of the design. 4,7

Using "ridge regression" analysis to provide more stable-and
meaningful regression coefficients with which to fit-the data from
non-orthogonal experimental designs.

Conceptually, thesektechniques are relatively easy to understand, Imple-
menting them, however, will require the talents of the investigator, a com-
puter pro.grammer,,and possibly a statistician. In all cases the only practical
,v,kay in which these techniques will be employed is with the aid of a high-speed

o

computer. In thethody of this report,. no detailed discussion of the computa,
tions required for the analyses will be given. HOwever, in the appendices
both general and specific ieferences regarding the computaticmal efforts are
supplied along with listings_ of complete programs: When these arc not
sufficient, the reader is encouraged to refer to thp original papers.

20



'0 SECTION III
COLLECTING ADDITIONAL DATA TO)ORTHOGONALIZE THE

UNDESIGNED EXPERIMENT

The non-orthogonality of the undesigned experiment complicates the
interpretation of results. In this Section, methods of collecting a'dditional
data that will alleviate this situation are proposed. Sp4cifically, information
will be provided here to tell the reader:

. r)1-row td' select the coordinates of new data .poin:pl, that will improve
the orthogonality of the original design.

c6

ID How to- handle irrelevant shifts in perfoKmance that may occur, .

betweenthe time when data is, collected on original and subsequent

PRACTICAI3CONSIDERATIONS
1

Since most undesigned experiments are those in which the experimenter
has little or no control over the levels Of his variables, it may appear' pre-
sumptuoUs to suggest an approach that requires just such control. The point
in fact is that there are circumstances when this approach can be used and
an investigator should be aware that such an approach exists and be prepared
to use it should the occasion arise. Sometimes, if only' a,few additional
points are needed, an investigator can make a concerted effort to set up the
required conditions in a way that would not be justified for an entire experi-
ment. At other times, once the principles involved in adding points are
understood, experimental conditions That are not locarecf optimally can be
considered which will still improve the orthogonality of the design and flip
interpretability orth-e*ia.ta. All in all, the knowledge'of how to properly add
data points is a useful experimental tool that has applications beyond the
immediate pfbbleltr.

er-*

Other useful applications of these techniques for the design of expserimeats
are c.fited in Appendix E.
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Other factorg that must be taken into consideration before this technique
is employed include:

0

Compute-r facil,ities must be available because of the amount. and
complexity of the computations required.

Variables should be measurable on quantitative anddepontinuous
scales.

The added costs of data collection must be weighed against any
anticipated improvertentbin data interpretability.

Little effort isimade in this report to help an investigator select which
alternative method he should use filer his particular proble'rn. Nor is more
than a superficial effort made to identify and handle special.problems that
might arise uniquely in behavioral research.

SELECTING NEW DATA POINTS TOa ;MPROVF DESIGN ORTHOGONALITY

Adding additional experimental conditions at the proper coordinates
within the experimental space can reduce the non-orthogonality of an unde-
signed experiment. When a:ri ill-conditioned design can be repaired this way
sufAiciently, the data.may be interpreted with the finesSe ordinarily reserved

.1

for data obtained from orthogonal designs. Improved orthOgonality,depends
solely, on the location of the experimental conditions and is independent of
the responses obtained under those conditions.

TNkro methods of selecting these additional data points have been proposed.
These are:

Search the entire region of interest in the experimental space to
find one,or more points that satisfy the selection criterion.
Examine a group .of "candidate" points to see which one best meets
the selection criterion. 1.

The firstWill be called the rtrandorn.search approach" and the second, the
"candidate selection approach".

s'
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a

The Selection Criterion

8

Wi4. th either approach, given an initial set of non-orthogonal conditions,

the orthogonality of; an tperimental design will be
improved if the next condition is chosen at the point
in the region of interest where the variance of the
fitted response, V(y), is largest.

6

Whei data has keen collected within the experimental space in, some
non-systematic fashion, the precision of the data throughout the continuous
response surface will be irregulardwith greater precision naturally lying in
the vicinity of where the gteatest amount of data was collected and vice
versa:-' The selection criterion says that to improve orthogonality additional
data should be collected at the pointlor points in the response surface where

. ,A

the precision is poorest, i. e. , the variance is highest. In Appendix A,
methods 9f discovering and measuring this point of maximtivariance will
be disCussed.

When a data point is added to the non-orthogonal design at the point on
the response surface where variance is highest, the following occur:

The non-orthogonal design becomes more orthogonal.

The variance at that point is reduced.

The design becomes xnore 'rotatable" over,a spherical region of
interest. (A rotatable des is one in which the variances of
estimated values equidistant from the center of the design will be
equal. See Box and Hunter, 11;58, 1, 167. )

The overall variance of the polynomial is reduced.,

The Confidence regions about the regression coefficients are
reduced.

Mathematically, adding a new data point in the region of interest where the
' variance is largest also maximally increases the determinant of the revised

of s new points experimental design.matrix, All of the effectscited
above will also occur as a consequence of maximizing the determinant.

23
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TherefOre, if it is practical to do so, 'selecting the point that will maximize
the determinant pfthe revised matrix could be substituted for the criterion,
of selecting the point on the response surface where variance is highest.
Computer programs for calculating determinants are. cited in Appendix A..

Rafidom Search Approach

Hebb le'and Mitchell (1972) propose tba a computer be used to randomly
search the existing experimental space.(of the original undesigned experiment).
to find where the variance of the estimated reponse is maiimum. When found,
that point would be the next condition to add to the experimental design. The

,process is then repeated, seeking the point where the variance is maximum
within the space now defined by the original plan plus the first additional point.
A third point will pe added where the variance is maximum within the space
defined by the original and two additional points. This process continues
until the investigator is 'satisfied with the degree of correction obtained. Once :
a sufficient numj)er of data points have been selected, the performance data
can be collected.

1Hebble a,nd Mitchell-(1972, p. 768) state: When there are not more than
two independent variables, ... we use a arid search procedure. When-the
factor space is of` higher dimen,sion, -we fav9r a random search technique.

6We chose random search in preference to more 'ophisticated optimization
ocedures for the following reasons: (i) The random search technique is
easier to use,, especially when' the region of interest R is constrained in
strange ways. (ii) We feel that the random search/technique can be most
easily extended to the simultaneous considerations of several criter'ia. "

ns.

Ekarnple. Hebble and `Mitchell (1972, p. 776) show how their random
search approach can )5e applied to repair the non-orthogonal design used in a
chemical problem. - Four predictor variables were involved. They had
planned to use a third-order rotatable design requiring 81 runs, but during
the experiment, some combinations.were never ruh beicause of equipment
limitatiohs. As a result, the orthogonality of the design was destroyed.

24
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To. repair the design, they added five new designpoints using the random
search approach. The 'change in the "information contour" of two dimensions
of the response surface before and after the extra data points Were,added is

r
shown in figure)F.3.' This contour of constant_infoz-rnation, I,' is inversely

Arelated to the'variance contour, e. , I = 0- /V(y). The inapi...oVement in

rotatability after the points had been added is visually obvious. There was
a corresponding improvement in the other qualities affected by adding points
at the ma:ximum V(y) which also maximizes the,determinant of the augmented'
desigrl. -
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, Precaution. The original purpose for adding more data points to the
original undesigned experiment was to improve the orthogonality of the design,
which in turn could facilitate the interpretation of the results. It should be
noted however that although using themaximum variance criterion does
improve the design for that purpose, it does not necessarily provide an
optimum design. Hebbie and Mitchell (1972, p. 778) recognized this when
they wrote: "...in many cases, 'bias' caused by fitting an inadequate model
will be a more important source of error in the fitted response thai will
variance.," Bias error can be present, for example, if a higher order
relationship exists in fact between variables and performance but these

' effects cannot be isolated by'the,existing experimental design. Because the
bias criterion would be a more difficult one to meet, Hebbie and Mitchell,
ignore the problem. In the next section, Dykstra suggests some ways of

*meeting it.

Candidate Selection Approach

Dykstra (1971) proposes that instead of searching randomly through the
iegion of interest for the point where the estimated response variance, V(y),

is maximum, a group of candidate.points should be selected on some rational
basis. Then the V(y) of `theme candidate points would be 'Calculated for the
existing design and the one with the largest V(y) would be used for the next
run. Candidates would Continue to be evaluated this way for each successive run.

Of tours , none of the candidates points will(necessa.rily be located
Aprecisely at he?point on the response, surface where the V(y) is maximum.

This makes the results somewhat less accurate initially than the random
search,approa.ch. .HoweNwr when a series of runs' is made, the app.roach
becomes self - correcting. One a.dva.ntage of this approach Over the random
search appioalsia the reduction in computer-time.

t
* Designs that satisfy both bias and random error criteria have been proposed
1' by Box and Hunter (1958). T.ests of the goodness of fit-of a specific model

are applied. If the fit is found inadequate, data points that will enable a
higher-order to be fit are added to the original.design. (See Simon, 1970
and 1973.)
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Selecting a Set of Candidate Points. There are anumber oftpractical
considerationwffecting the rational selection of a set of candidate points;.
For example, 'the investigator would at-oid selecting points:

That are not feasible to run.

* Where no response is likely to occur.

Thus unlike the random search technique, the use of rationally selected
candidates permits the. experimenter to impose his judgment onto the
Mathematical criteria. by selecting points of practical interest as Well.
This enables the number of different levels of each factor to be kept
reasonably low, an important consideration when changing yebcperimental
conditions is difficult or time Contuming.

Dykstra (1971), by choosing candidatepoints, is more able to attack the
.

problem of equation bids that Hebbie and Mitchell ignored. The candidate
0

points should be selected in a way that not only improvqs orthogonality and r.

the associated reduction in ,variance but also develops flit° a design Of a model
tt.

that will adequately fit the datao He suggests the following:

"In choosing specific combinations, however, one should be
/guided by the model.. For a first-order model the procedure

will select points at the extremes of the experimental space,
so that only corner points need be specified as candidates.
For a second-order model the list of candidates should
include the axial points and a center point, in addition to
corner points. A .cubic model should have the candidates at
four levels of the controllable variables, and so,on." (p.. 684).

Selecting the Point for the Next Run. GiVen a set of candidate experi-
mental conditions, the one selected to run(next is the one that gives the
high st variance for the estimated response at that point, i.e., where the
valu of V(t) is greatest, or when added to the existing design, maximizes
the determinant for the augmented matrix. Each additional candidate point is
selected sequentially in the same way until there is a decision to stops, The
number of candid te,points to be used, -alth he discretion of the
experimenter, ma }r lze based partially on e number required to meet the
characteristics o f t ie model and partially on the iriaprovement needed in the
precision of the equation.

27



D,

Mitchell (1974) proposes his own algorithm "DETMAX" for design
augmentation whiCh searches for complete subsets ,of candidate points that
will optimize (almost) the determinant pf the X'X matrix. He states that this
method will give higher values of the 'IX'XI than Dykstra's one-point-at-a-
time approach, but admits 'that the latter "is seldom far off, and takes -
much less-time on the computer. In9many''practical situations, When the
object is to find,a good-(not necessarily 'optimal') design quickly, the
sequential procedure will be quite satisfadtory." (p.206).

1

Example. Dykstra (1971) improved the orthogionality of a 20-run.
"undesigned" experiment with two correlated predictors i:;3/. sequentially
adding six out of nine candidates needed to improve a,second-order design.
The nine candidate points were the four corners of a square, the four
extremes of the axes, and one center point, with the non-center points
placed equidistant from the center of the space. The changes in the variance
contour before and after several degrees of augmentation are shown in fig-
ure/I:4. The shift toward a more rotatable design is visibly obvious.
After 26 points had been added, the dciterrninant of the augmented design
for the 26 points is 3.39 x 105 times larger than it had been for the
original 20 points.

HANDLING PERFORMANCE SHIFTS BETWEEN ORIGINAL AND ADDED.
POINTS

Characteristically 4p human performance research, if experimental con-
ditions are measured sequentially, changes in performance may be observed
that are not due to the experimental variables. , If there is a considerable
interval between'the time the performance data are collected from the original
undesigned experiment and from the additional points, unexplained and
undesired performance shifts may occur. This*can be due to changes' in the
subject, in the environment, in the equipment, or any number of unknown
factors. In any dace, unless this shift in performance between blocks of
data is dealt with properly, it will distort the information of interest.
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VARIANCE CONTOURS FOR N''=1 FIG. 2
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VARIANCE CONTOURS FOR N =. 26
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FIG. 3
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Original
6 points

9 Added
-points

X Candidate
points never
selected

C

CHANGE IN VARIANCE CONTOURS FROM ORIGINAL 20 EXPERI-
MENTAL CONDITIONS (FIG. 1) AS TWO (FIG. 2) AND SIX (FIG. 3)
DATA POINTS ARE ADDED

[Adapted-fromigures 1, 2, and 3 in the paper by Dykstra (1971).]
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This blocking problem can be handled in two ways,

By including a blocking term in the regression model.

By adding data points in balanced pairs.

16Adding a Blocking Term

Hebble and Mitchell (4,972, pe 771) suggest that a blocking term be
included in the regression mgel,to account for a possible difference in
overall response level betweeCte initial Clesign.and the runs that are chosen
to augment it. They say (p'771):-.0",,-4 ...when 'a constant 10 is pilready in the
model, we can account for a possible block effect simply by. introducing a
'dummy variable', which takes the value. of 0 for each run in the initial
design and a value of 1 for each additional run. When this is done, the model
for the original design is unchanged by the introduction of the blocking
variable. Thus, the first new point in the design can be selected without
introducing a blocking variable. To select further new points, the blocking
variable should be included, and,a 1 should appear in the blocking column of
the.X matrix in every row which is part of the additidnal block of runs." They
note that different data points will be selected when a blocking term is,and is
.noi included (See figure F.5 )". Generally, it is wiser to include a blocking
term. Procedural precautions against sequence effects (Simon, 1974)
should be employed whenever possible.

Adding Data Points in Pairs

Dykstra (1966, p. 279) suggests that another way of handling this problem
is to augment the design with pairs of data points,,1 Orthogonal blocking will
be obtained if pairs of data points are selected so that the averages of the"

f coordinates of these new pairs equal the average of the corres,pondinecoordi-
. 2---nates of all conditions in the original design; For example, if the original
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ILLUSTRATING HOW FOUR CANDIDATE POINTS ARE SELECTED
DIFFERENTLY DEPENDING ON WHETKER A BLOCKING TERM
IS (B) OR IS NOT (A). INCLUDED

(Adapted from Figure 5 in the paper by Hebble and Mitchell (1972).]'

[F.4

design of three variables ha
.coordinates:

G3.

d een made up of data points at th following

Variable
Data Points I II III

No. 1 3 2 7
CT,

No. 2

Variable levels (or coordinate.$)

lyo. 3 4

No. 4 2 4 1

Average: 2.5 3.5 31(

to be orthogo,al, the two new data points would have to be selected at points
.--

Original design composed of
four data points
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where their mean coordiriates equal the averages.pf the points already in the
design, for example:

No. 5

4N016

' Average:

4 5, 2

1 2 4

2.5 3.5 3.0

a Dykstra in his 1971 article did riot discuss this blocking method when he
used the maximum V(y) criterion to find the coordinates where the next data.
point is to'be added. However, it could still be used if candidate points were
designated° in pairs and the criterio4 for selecting the proper pair Would be
that which maximizes the determinant of the augmented design. Mitchell's
(1974) DETMAX, for example, might be used for this application.

0

a, I

v.
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SECTION ITT

RIDGE REGRESSION ANALYSIS

The purpose of regression analysis is to obtain a setof coefficients for
an equation that will fit the existing data without bias and with a minimum
amount of variable..error. The conventional criterion of a,best equation is
one in which the sum pf "the errors Scied between estimated and observed
responses will be at a minimum.

When an orthogonal design has been employed (i.ets, the predictor
variables are mathematically independent), the estimated beta coefficients
are reasonable representations'of the true beta coefficients, within the limits
set, by the error estimate. When a non-orthogonal design has been employed,
the individual betas calculated on the basis of the least squares criterion are
often unsatisfactory. While the overall equation may be adequate for pre-
diction, the relative effects of individual terms cannot be evaluated. With
non-orthogonal designs, beta Coefficients derived from a least squares fit
may not make sense in the real world.

Hoerl and Kennard (1970a, b) cite the following characteristics
coefficients estimated from ill-conditioned experimental designs :,

The coefficients become too large in absolute value.
a

Some coefficients may have the wrong sign.

Collectively the coefficierits are unstable; another set of performance
dataw9,uld be unlikely to give the same beta values.

Individual coefficients may be over or under estimates of the
strength, of a particular factor.
f 1

The more non-orthogonal the original design, the poorer the equation is
likely to b&.

All ofthese conditions stem from the correlations among the predlctor .
variables. in the past, e p order to untanglethe relationship &,mong the factors,
it has either been necessary to drop those predictors that correlate the

O
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highest with the others or to treat the total equation as a black box." However
some of the power of the regression model is lost by either ofthese approaches.
As an alternative' tolconventional multiple regression (least squares)
analysis with non-orthogonal data, Hoerl and Ken.nard propose "ridge regres-
sion". This analySis, they suggest, will obtain a better `prediction equation
in which:

. The estimated coefficients will be closer to the true coefficients
on the average;

The signs will be more meaningful; %...)

point estimate of a response can be made with a smaller mean
square error;

The coefficients will be more stable and likely to be repeated if \
ne,w data is taken.

MATHEMATICAL BASIS FOR RIDGE REGRESSION
(

Hoerl and Kennard (1970a, b) supply the mathematical basiS for ridge
regression analysis. 071y the rudiments of their explanation will be supplied
here. The reader should refer to the original papers if more details are

4
desired. Marquardt .(1970) also deals with the mathematics of ridge regres-
sion as part of a broader class of biased linear estimators employing
generalized inverses.

Essentially,' Hoerl and Kennard (1971a) show that in conventional multiple
regression analysis, the average value of the squared distance, E(L2),

between the estimated, A, and the true, 13, beta coefficients is equal to the
error variance', o, of the data multiplied by the sum of the reciprocals" of
the eigenvalues, i.e.,

E(L2) = (5 (3) = 7 2
Z.,

(l
X.) [E.3)

When the predictor variables are uncorrelated, the eigenvalues, Xi, are each
equal to one. In that case, the average squared distance beveen estimated
and. true beta coefficients will be equal to the error variance of the data

46
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multiplied by the number of variables, rs,, involved. HoWeyer wh'en the
predictors. are correlated, as in the case of the undesigned experiment, some
of the eigenvalues become very small and their reciprocals very largik This
it-mi.eases the average r-E3 qu ar ed istance between the estimated and true beta
coefficients-. ileast squares fit of data from a non-orthogonal experimental

o

design also produces coefficients that are too large in their absolute value.
To compensate for these large positive coefficients, other coefficients are
estimated that are too negative which often may be the incorrect sign. The
moreill-conditiorred the design matrix, the worse these conditions are. likely
to be.

To correct for this, Hoerl and Kennard propose to add a small, positive
quantity, k, to the unit diagonal of the intercorrelation matrix of the pie-
dictor variables.. For example, if the original intercorrelation matrix (were:

Variables
X X X X4

3 , 1
X1 1.0 0.23 0.45 0.674 0.14

X
2

0.23 ' 1.0 0,.15 0. 36 0.26 Correlations
0o Variables between XiXi .

X3 0.45 0.15 1.0 0c.8 9 0.54' or XjY

X4 0.67 0.36
0

0.89 1.0 0.22

then /he new matrix would be, for example, if k; 0.2, would:lye:
-- ,

Y4'

f

X1 X2 X3 X4

1.2 0.23 0.45 0.67 0.14

X
2

0.23 1.2 0.15 Q.36 0.26

X3 0.45 0,15 1.2 0.809 0.54

4 .0.67 0.36 0.89'- 1.2 0.22

Note that the k = 0.2 has been added to the l's in the,liagonal. NeXt, a
conventional least squares fit is done using the perturbed matrix.. The results

A

produce what'Hoerl and Kennard call "ridge coefficients,'' 13*. -The distinction
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between the conventional beta, 13, coefficients and the ridge coeffibients,
eipressed in matrix algebra, is:

and

A

(X'X) -1
X'Y,

A.
13*. = (X'X + X'Y.

L.

Valued of k between 0 to 0-. 9 may be substituted with finer increments being
used at the lower end of the scale below 0.1 where changds, in the estimated

ridge coefficients are greater. Whereas the betas estimated from the con-
,

ventional least squaies are unbiasek with minimum variance, the ridge
coefficients contain both a ,bias anda variable error. These two error 'com-
ponents are present in the equation- (written in matrix algebra) for the
average. squared dis4tance between values of the ridge coefficients and the
true coefficients thus:

2P 'E [L. (k)] o- EX. /0t. + k) 2 + k2
13'(X'X + kl ) -213i [E.4]

31 he first component represents the variance and the secondythe bias.
Note that when k = 0, the second component disapearsA'leavi4g the unbiased
estimates of the coefficients found by a conventional }least squares fit. As k
t.Increases, so does tie bias error.

However, Hoerl and Kennard demonstr4ate that as k increases, the
variance error decreases more rapidly than the bias error'increases. This
means that at some value of k, the mean square error the combination bf
bias and error variance for the ridge coefficients will be smaller than it
would be for the conventional coefficients.
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Exactly what has happened in this process' is simplesto understand if
equations E.3 and E.4 are referred to. In equation tE.3, it can be seen that
the small eigenvalues have the greatest impact on the estimations. The
smaller some of the eigenvalues get (as a result of a non-orthogonal design),

-the larger their'reciprocals and the greater the squared distance between,
efrestimated and true beta coefficient's becomes. In equation E.4 17 it can be

seen that adding a constant k to the correlation matrix diagonal has the
effect of adding k to the eigenvalues of the variance compdnent. ,For the
very small eigenvalues, the addition of even a small k can do much to

6.,decrease the size of the reciprocals of the eigenvalues and to decrease the
squared distance between estimated and true beta coeffi'cients.

. This phenomenon is illustrated in figure F.6. Ifs this figure, both the bias
of the ridge regression coefficients hdve beensquared and the variance

standardised by dividing each by the residual error variance' of the
respo se data. The least squares variance (no7malized) of the estimated
beta c efficients is represented by the horizontal line (a constant) across the
top of the graph. When k equals 0, of course, the variance of the ridge
coefficients is identical to the variance of the estimated beta coefficients,
and the-bias pquared (normalized) is zero. As k increases, however, it
can be seen that the variance decreases and the bias, squared increases,
each in a monotonic. function. The-sum of these two effects, the mean square
error (as represented by the dashed "ridge" line), drops initially only to _rise
later on. There will always be for 'some value of k a portion of the ridge
trace where the mean' square error is smaller than it would be had no dis-
tortion been introduced. In this example, the mean square error is at a

inimum for k = 0.05, .nearly half the magnitude of the original variable
error. While there are other criteria tha.nthe minimum ridge value for
selecting the k where the ridge coefficients would be found, this figure does
illustrate how adding the bias scan actually reduce the mein square error,
and thereby improve the estimates of the coefficients.

Two computer programs for performing ridge regression analysis are
listed in Appendices B and C, a. print-out of the latter is given in,
Appendix D, and some discussion on both programs is held in Appendix A.
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[From Figure 1 in Hoerl and Kennard's (1970a) paper.]

INTERPRETING RIDGE TRACES

110
1.00

ft,One of the advantages of ridge regression analysis over conventional
least squares is the ability: to portray the sensitivity of the beta estimates
graphipally. A two-dimensional ridge trace of the ridge coefficients is
obtained by plotting the estimate& ridge coefficients against the values of k.
This is illustrated in figure F.7.

a. 50
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Hoerl and Kennerd used
the coefficients at this
value of K

K

RIDGE TRACE: TEN FACTOR EXAMPLE

[From Figure 1 in Hoerl and Keknard's)1970b) paper.]

The plot of solid ines illustrates hbw, as k increases, the ,ridge
A

coefficients (p) dimini h in, absolute magnitude and begin to stabilize. If k were
to gd to infinity (ad absurdum), of course, the aaw.e processes would be

complete, for all coefficients would be equal to zero. From figure F.7, it
is .:-.pparent that long before that ptifit is reached the distance between the
estimated and true coefficients would be too large to be of practical value.
Quite obviously, therefore, it is necessary to select a minimum value of k
that will adequately provide an improved set of coefficients, ones that are
more meaningful and will result in more acdurate predictions.

4

The dashed line at the bottom of figure F.7 is a plot of the residual sum of
squares as a function of k. It is normal thatlits bias is introduced into the
design matrix, the lack of fit of the original data would become poorer
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(i. e.', SSE become larger). aIt is only when the equation with the ridge
coefficients is used to estimate performance on new data that the estimation
has been` improved.

Hoerl and/Kennard did not feel that an automatic mathematical
solutiop for, selecting the best k was justified. ''They stated (1970a, p. 64):

4 A"The inherent boundedness as us"umptions in sing 13* make it
clear that it will not be possible to construct a clear-cut,
automatic estimation procedure to produce a point estimate
fa )single value of k or a specific value for each k), as can
be constructed to pr6duce p. However, this is no drawback
to i'ts use. because wIth any given,,set of dAta it is tot
-difficult to'select a tp* that is, better than W."

.

they propose that instead of seeking,a mathematical solution for k; the
ridge regression chart lie examined visually. The followingconditions should
be lo6ked for when selecting the 'value of k:

1. - The beta values and particularly' their orders, 6f magnitude have
begun to stabilize.

2. The coefficients no-IoAger haye 'unrealistioally-large .absblute
.values.. ,

The coefficients withrlogically incorrect sins are approaching or-
have rea,chedthe proper sign.

4." The residtia,1 sum of squares is not unreasonably Inflated.
.

5. The ridge trace (representing the mean square error) is- smaller
than ihe dribiased least' squdre Variance.

In the analysis-illustrated by figure F.7,, Hoerl and Kennard (1970b) selected
k.betlireen, 0. 2 and 0.:3. Note now the coefficients.have begun to stabilize,

how variables 6 and 7 have r' educed considerably inInagnitude (with 7 loling
its effeCtivez' eis'almost cornpletely)i, and how variable 5 has begun' (but not
completed) a shift from a large negative to a low positive coefficient. °

At k the residual sum of squares (SSE)has increased approximately t

60 percent, from O. 10 to .0,16 while-the expected squared distance between

O
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of the coefficient estimate from true coefficient values has reduced to
its

26 percent .of its original value.

ALTERNATE METHODS OF' SELECTING K

Techniques other than Hoerl and KennaN's have been proposed for -

electing the 'desired k value. Several investigators, reanalyzed the data
from Gorman and Toman's (1966) 10-variable study that Hoerl and Kennard
had used for the analysis shown in figure F.7 in this report. For the same
data, using different criteria, t lie individuals cited below selected the
following k values:

Basis of
Sour ce Value of k Selection

Hoerl and Kennard (r970b, p. 72)
Lindley-and Smith (1972, p. 17)

'-mallows (1973, p. 672)
Farebrother (1975, p. 1Z8)

to-r-

0.2500 Inspection'
0.0390 ", Bayes
0. 0200 Cp plot
0. 0029 Min. MSE

Lindley and SMith (1972) argue that since there is usually prior infor -

matidn about the parameters relating predictors to performance, this infor-
mation should be exploited to find impr.oved estimates of the parameters.
They apply' Bayesian methods to linear regression analysis arguin that in
ale case.of non-orthogonal i1ata, the Bayesian method reachestlfe same
conclusion as the ridge method but has the added advantage 'Oi dispensing
with the rather arbitrary choice of k and allows the data to mate it.

.
Using Gorman and Toman's (1966) data, they compare the coe ients
'obt4ined by the three methods least-squares, Bayes, and ridge. They
'note that the Bayes approach like ridge gets ridof the three major fom-
plaints against betas obtained from least-squares large absolute values,.

D

incorrect signs, and instability. Comparing the "results of the Bayesian
versus the ridge approach, they note that all the estimated coefficients are
pulled towards zero, with those from the ridge being smaller since "a
considerably larger value of k than the da:Va suggest" (p. 17) was used,

9
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Festrebrother (1975, p.-14.8.).-concludes from his own data and from a
reexamination of Mallow's k value which he thought should have/been
smaller that "Hoerl and Kennard's\quest for stability has led them too
far from the unbiased estimator. "

It is appropriate to remind the reader that each of the.above'investi-
ga.tors was applying a different criterion when he se,lectedothe optimum .k
value, and what may be best for one purpose may not be best 4or another.
For example, Mallow's (1972) C criterion ("standardized total squaired
error") is a, measure that comVines both bia4 and variable error and he
selects the k value where C is minimum. This could conceivably correspond
to the minimum ridge value considered by Hoerl and Kennard in figure F.6
but which was no used in selecting the k in the analysis shown in figure F.7.
Which is better? The difference might be, in whether one is more interested
in a good prediction without too great aeincrease in RSS, in which case the
mean square error or C should be minimized or if one-is more interested
in comparing individual terms, in which case the stability of the individual
coefficients becomes more important. Only experience is going to deCide
how the numerous criteria must be traded off against one another.

McDonald and Schwing {1973) used ridge regression analysis 'on a prob-
lem relating air pollution to mortality. They selected their value of,k (which
was not necessarily optimal, in so far as the mean square error w as con-
cerned)'according to three criteria, i, e. at the point where:

The order of magnitude of the coefficients had stabilized;

The'residgal sum of squares and coefficient of determination had a,
values consistent with problems of"that type;

The ridge coefficients are within the 95 percent confklence ellipsoid
for the unknown true coefficients, assuming normally distributed
errors.

Newhous'e and Oman (1971) propose several methods of choosing a k value
to use in ridge regression and investigate their properties using Monte Carlo
experiments with two predictors. It appears that an optimal choice of k
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(or interval of k values) an open question at thiti-time unless one has
prior knowledge about the length and /or direction of the unknown coefliCient
vector .

Although the.problem of how and where to select the best value of k
has not yet been resolved, the overall superiority of ridge regression over
least squares regression in the analysis of non-orthogonal data has not been
seriously questioned.

Theobald (1972) independently demonstrated that provided

k <2cr2/p'p

the mean square _error of the ridge coefficients will always be smaller than
5-

the least squares value sof the conventional regression coefficients. For thin,
to be true, the values of the ridge coefficients must be bounded, a realistic
condition. Theobald does not attempt to precisely locate the optimum value
of k within the limits set by the equation.

(

Banerjee and Carr (1971) suggesa, different and "more meaningful"
criterion against which to assess the accuracy of the biased estimator, t3*,

that Hoerl and Kennard used. Hoerl and Kennard compared the size
..........--

of the mean square error of the bias estimators (where k 0) gainst the .

variance of the unbiased coefficients fronf the conventional lea square fit
(k = 0) to show there always e4sts a k at which the new mean square error
would be less 'titan the original variance. Banerjee and Ca,rr however argue
that it would be more meaningful to, compare the mean square error of the
biased estimators against a modified variance,

E (p p)2 squared bias =
1

[1/(k. + k)]

rather than the one Hoerl and Kennard used,

p
ff.. `E [1 /kJ

wl
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However, they also showJilat even against this modified criterion, there
still exists a k where the biased estimators have a smaller mean square
error, although the effect is- less pronounced. Banerjee and Carr suggwot
that the "gain in accuracy may better be exhibited in relative terms, that is

Ain terrr1s of percentages (or, fractions) of the variance (3A or c3, rather than
Ain absolute terms" (p. 898). (3A as used here re Viers to th.Nridge coefficients.

Goldstein and,Smith (1974, p. 288) propose a modification of the ridge
approach "which might be appropriate if One were especially interested in

e particular (3i's, or were worried that the Ridge estimate might distort
the estimalion of those (3. 's which could be estimated accurately anyway."
They suggest the possibility of choosing different values of k for different
pr.edictor components. They disagree with Hoerl and Kennard-that this pro-.
cedure would offer little improvement over the use of a cn.sts.nt k. It would
depend, they claim, on what the optimum k would be for each component; if
it differed widely, then an improvement in the mean square error could be
expected.

IDENTIFYING CRITICAL VARIABLES to°

.When an equation is exceptionally long ind if many of its terms are
found to be inconsequential, some investigators will want to drop the terms.
In the case of the designed experiment in which variables are orthogonal to
one another, dropping terms of insignificant effects is a straight-forward
process. In the case of,the undesigried experiment, traditionally (be\cause
of the intercorrelation among the ,variables) dropping a term just because a
coefficient is small would be unwise. However, since a shortened equation
is simpler and,more convenient and economical to use, a variety of algorithms
have been devised to find the "best" subset of variables out of th&totai con-
sidered in the undesigned experiment that will fit the data about as well as
the Complete equation.

a

Techniques for selecting.the ",best" subset regression equations have
been primarily of two types: one, those that literally compare all possible
(or afl reasonable) 4ubsets of .1-egression equations against some criterion of
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goodness, or two, those with no exact criterion of goodness but which depend
upOn a heuriStic algorithm that will supply a group of potentially good candi-
dates from which the investigator will select the :'beat ". Mathematical

a

criteria for comparing subset regressions have traditionally been either the
minimum error variance (which is the least squares fit criterion) or a
'minimum total (bias and variance) error, with minor variations in the
exact form involved. Hocking (1972), Allen (1971), Helms (1974) and Beale
(1970) sritically review these criteria. Since there can be .(k1 - 1) possible
subsets ofcn original eql,ration with k variables, the main emphasis in
developing selection techtliques that compare many subset regressions has
been to redup,the computation time required for the analysis. Some recent
efforts in this regard are those of Furnival and Wilson (1974) and LaMotte
and Hocking (1970). Among the techniques employing the less exact criterion
for selection, the steepwise regression algorithm has been perhaps the one
used most fiequently by behavioral scientists analyzing nonorthogonal `data.
This and related techniques are di'cussed by Draper and Smith (1966),
Chapter '6, by Beale (1970),'and Kerlinger and Pedhazur (1973, pp 289-295).

..
Ridge regression provides an alternative solution to the subset selec-

tion problem. By stabilizing the coefficients, it enables the relative import
ance of predictor variables to be assesse.d more directly. How .ke-r, in

C

O

V

-Other techniques, such as conical equations, factor analysis, and so forth
haye been proposed for isolating subsets of variables. While these are
undoubtedly useful for certain purposes, they may be'of limited value for

9 certain equipment design problems. The reason for this is that solutions
from those techniques result in composite variables. That is, p. solution
will provide a set of mathetnatically independent variables which are
mathematical mixtures of the original va,riables. Such solutions, while
probably useful in test construction or personality assessment, will
ordinarily not be adequate for problems of equipment design. While any
technique that aids in ititetpretirig data should be considered, beware of
relying on techniques that donit fit the particular problem under
investigation.

0
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spite of this, Hoerl andKennard (1970b) specif4cally recommend that factors
with small coefficients not be dropped frrom the equation. Instead they
recommend the following procedure when some variables have small
coefficients and are believed to have small effects:

C"To 'discard' a factor, set it at its average value for all
predictions, which is the equivalent of setting the
coefficient equal to zero. But do not delete and
reestimate . . . . " (p. 75).

4The average value for any predictor is the mean of all levels of that
predictor used in the experiment. They demonstrate how eliminating
low effect predictors completen result in an even more unstable solution
than when all predictors are retained.

APPLYING RIDGE REGRESSION ANALYSIS TO A TARGET ACQUISITION
PROBLEM

Zaitzeff (1971) at the Boeing Company, Seattle, performed an undesigried
experiment to discover the function relating fifteen ,selected target and badk-
ground characteristics (table T.6) to the probability of acquiring targets.
Observers were requirel to find a variety of targets ,visually in a-dynamically
changing scene. The empirical data thus obtained was, subjected to regres-
sion analysis.

.
First a §tepwise regression was carried out on the data without stopping

until all of the variables had been entered into the eauatinn. The order in
which they were entered into (or deleted from) the equajion corresponds to
the order in whicthey are listed in table T.6. The first variable, "proba-
bility of finding a static target", accounted for more than 80 ,percent of the

This recommendation must assume that the variables in the complete
equation are there becacuse of some rational variable selection and not
merely on the whim of an investigator who'd "just like to see what would
happen" if they were included. As Hays (1963, p. 577) says: "Tracing
relationships among variables is the legitimate business of the ia e nt s t ,

t but simply p.sking if anything relates linearly to anything else in a large
set of variables is a pretty crude way. to do business." This point is dis-
cussed further in the paragraphs' on "Data Selection" in Apptndix A.
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VARIABLES IN`TARGET ACQUISITION STUDY IN
ORDER OF THEIR APPEARANCE IN STEP -WISE REGRESSION EQUATION

Order Valqable
No. ID

1. Prcib;.bility of finding a static target (PSTA) (11)

2. ..Number of filtered brightness elements in scene (NAVG) (15)

(10)3. .Number of confusion areas in scene (AMBIG)

4..

5.

6.

7.

8.

Small dimension (LIT DM) (3)

Target width (LIT DC)width (9)

Detail contrast (DCONTR) (7)

Target length (BIG DC) (8)

Area 1 variance (VARAR1) (14)

Target area (TGAREA) (4)

Target contrast (TCONTR) (6)

Heterogeneity (1-IETERO) (12)

Scan variance (VARAVG) (16)

Large dimeitsion (BIG DM) (2)

Detail size (DETSIZ) (5)

Area 1 count (NAREA1) (13)

O.

*In the step-wise process "Target Contrast" originally entered the
equation in the step following the entry of "Number of confusion ioreas4in
scene", was later deleted in step following entry of ''Target length", and
finally reentered in position indicated. (From Zaitzeff, 1971)
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F.

t7tal performance variance. All 15 vari&bles accounted for 93 percent of, the
variance. Seven variable would'hav accounted for 90 percent of the variance.

In examining the coefficients from the stepwise regressions, Zaitzeff
commented on the unsatisfactory results:

`. "Thus, it is disconcerting to see relatively large negative
coefficjients assigned to such variables as Target Area,Detail Size; Target Contrast, and Target Width, when
the factor analysis has shown them to be positively
correlated with dynamic acquisition probability!' (p. 51).

He also cites other limitations' of equations developed with the 19ast squares
criterion,

,9

Next a .ridge regression analysis was carried out on the same data.
The ridge trace 'of the 15 target-background variables are shown in

tifigure F.8. The instability of a number of the variables is immediately
evident. For example, "Little Dimension" ()(3) changed from haVing the
largest positive coefficient to one that ranks sixth, and "Target Area"

S#4)
changed from having the largest negative coefficient to a slight positive one.
Zaitzeff decided on the basis of visual inspection that the coefficients
were reasonably stable at4k = 0.7. In addition to "Target Area", #4, loth
"Detail Size" (#5) and "Target Contrast" (#6) show a sign change that
appears more meaningful in the light of what is known about visual
perceptfo

Variable Elimination. Zaitzeff eliminated variables that had stable
coefficients but low predicting power (a coefficient less than 0.05)'and
those wit unstable coefficients that failed to hold their predictive value.
He also eli inated two other variables, "Big Dimension" (#2) and "Area
Count" (#13), which correlated highly positive with two other variables and
were considered redundant. In addition, although "Static Acquisition
Probability" (#11), is shown to be the single best overall predictor of dynarnit7
acquisition probability, it was eliminated because it was an unwieldy value
to acquire and because Zaitzeff felt that it was actually a function of the
others_physical and psychophysical variables rather than a distinct target-

.

background variable, in and of itself.
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1. (NONE) ,9.
.

LIT DC
2. BIG DM 10. AMBIG
3. LIT DM PSTAT
4. TGAREA 12. HETERO
5. DETSIZ 13. NAREA1

TCONTR 14. VARAR1
7. DCONTR 15.. NAVG
8. PIG DC 16. VARA)TG

V 15

-0.60. 0

C

O.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0.9 1.0
K

RIDGE TRAFE OF FIFTEEN TARGET -BACKGROUND VARIABLES

[From Figure 5-13 in Zaitzeff's (1971) paper]
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A ridgp regression was run on the remaining seven variables resulting
in the new ridge regression pattern shown in figure F.9. , Zaitzeff selected
k = 0.4 as the place where the coefficients appear to stabilize. This reduced
set of variables accounted for 79 percent of the observed variance (as
opposed to 96 percent when all variables--ure used). However, in the light
of 'What we know about shrinkage and the instability of the original coefficients,
the dro is not disturbing. Zaitzeff also noted that by reducing the number
to, only four easily attainable physical measures: "Detail Contrast", "Target
Contrast", and "Target Length" and "Width", 66 percent of the observed
variance could still be accounted for. "Target Length" and "Target
Contrast" alone accounted for 48 percent of the variance. veral attempts to
include interaction or tranftenerated terms proved less effective and were
aborted. Zaitzeff did not follow the Procedure for eliminating variables
recommended by go e r 1 and Kennard.

This study is one of the better ones attempting to relate target and
background Characterisics to target acquisition performance and illustrates
the advantages of ridge regression over stepwise regression analysis.
)

.1t7 6

j

J.

The ridge pattern infigure F.9, showing priniarily a relatively orderly
compression of coefficient valuels, is similar to the pattern found when
the bias is introduced in an oi4hogonal design.
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DCONTR
BIG DC
NAVG
LIT DM

0 TCONTR

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -

AM BIG

RIDGE TRACE IN TARGET - BACKGROUND SVUDY FOR ONLY
SEVEN VARIABLES

[From Figure 5-14 in Zaitzeff,;s (1971)'paper]
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APPENDIX A
SOURCES OF COMPUTER PROGRAMS NEEDED TO IMPLEMENT

THE TECHNIQUES DESCRIBED IN'THIS REPORTS

Computations used in the techniques in this report - to be implemented -
will require the aid of a high-speed computer.. Presumably the talents of the

experimenter, a computer programmer, and possibly a statistician must
be combined to provide the software required for the computations. In this
appendix, references are given to source's oecomputer program-s and sub-
routines needed to support the techniques, along with some general references
on the mathematics involved. The original papers are an excellent place to
begin to understand the computational requirements of these techniques.

GENERAL REFERENCES

Some general references* on statistical techniques, mathematics, and
computer programs relevant to this report are:

Regression analysis
Darlington (1968). Multiple regression in psychological research
and practice
Draper and Smith (1966). Applied regression analysis
Hader and Grandage (1958). Simple and multiple regression
anal*sis
Kerlinger and Pedhazur (1973). .Multiple regression in
behavioral research

Matrix mathematics ,

Ayres, Jr., (14.2). Theory and problems of matrices
Draper and Smith, Applied regresn analysis
Kerlinger and Pedhazur (1973). Multiple regression in
behavioral research. Appendix A.

*Complete references can be found in the Reference list at the end of the
complete report.
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Computer prodams
Dixon, (194. BMD: Biomedical computer programs.
JUG Computer programs directory49?
Ker nger and Pedhazur (1973). Multiple regression in
iaecia 'oral research. Appendices B and C.'
Kuo (1972). Computer applications of numerical methods.
Nie, Bent and Hull (1970). Statistical package for the social
sciences.
NASA Computer program abstracts'''.

efir

COMPUTER PROGRAMS FOR ADDING DATA POINTS

Computer routines will be needed to calculate the variance of the
estimated response at a point or the determinant of the X'X matrix (e.g.,
Table.T.3). Random search or optimization routines are also required for
that method of- adding data( points to improVe orthogonality of the undasigned
experiment.

Variance Criterion

If the variance of the estimated response, V(y) at point x
o on a response

surface,is to be used as the criterion, it can be calculated using the equation

Computer Program Abstracts is an indexed abstract journal list* docu-
mented computer programs developed by or for the National Aeronautics
and Space Administration and the Department of Defense, which are
offered for sale through.NASA- sponsored Industrial Applications Centers
and the Computer Software Management and Information Center (COSMIC).
Computer Program Abstracts is available to the public on subscription or
by individual issues from the Superintendent of Documents, United States
Government Printing Office, Washington, D C. 20402, USA. Rates as of
August 1975 for an annual subscription were: $3. 30 domestic; $4.15
foreign.

Joint User Group (JUG) of the Association for Computer Machinery
Computer Programs Directory was begun in 1971 and updated several times
since then. Its purpose is to exchange p95gram docum6ntatioh ampng com-
puter user groups. It is published by CCM Information'Corp. subsidiary of
Crowell Collier and- Macmillan, Inc., 909 Third Ave. , NY, NY 10022..
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employed by Dykstra (1971, p. 683), Draper and Smith (1968, p. 56) and
others:

A
V (y) a'2x' A -lx

\gAir

This expression, in .rriatrix algebra, requires the following operations and
computer subroutines to perform the operations: \

A-1 = X'X-1 Ma4rix X Multiplication,
X'X = A*
Matrix A inversion, A

xo to x'
O

x' A-lx
o

Vector. x transposition,
horizonta?1 to vertical"

Matrix/vector
Multiplic atiipn

Sirice the cr 2 in the above equation (i.e., the error variance) is a constant, it
need not be included if the equation is to be used only to compare various
data points.

Determinant Criterion 0

Computer programs for calculating determinants can be found in the
general references cited above. Also most computer manufacturers supply-
ing subroutine packages with their systems,include programs for calculating
the determinant of a matrix and eigenvalues. it must be remembered that
the product of the eigenvalues of a matrix equals the'determinant. The main
problem ofselecting a program is not whether it calculates the de'sired
values but does it do it most efficiently.

X as used here is the matrix formed by the elements of the independent
variables, such as in tables T.2 and T.3 in the text.

**xo is a vector of values, e.g. 4, 613, 7, which represents the levels or
coordinates of four variables, A_13, C, D, which thus describes the data
point (experimental condition).



The determinant is calculated and printed out in the ridge regression
analysis program provided in Appendix C. However, it ordinarily would not

be economical to use it to calculate the determinant as a criterion for select-,

ing data pointsto repair an undesigned experiment.

Random search routines

No general purpose
Mitchell and Miller (197
experimental deSigns as

search program is recommended here.- However,
f0) employ tie same principles to construct D-optimal

would be needed to add data points to the.rnatrix of
an undesigned experiment using the' determinant criterion. D-opli al'
designs are those for which the determinant of the Xig matrix is maximum,
Where.X is the matrix of independent variables in the usual linear regression

;'`

model. Mitchell (1974) describes application of the .a.lgorithm, DETMAX, to
construct D-optimal designs. Inhis paper, Mitchell states (p. 209):. "A
FORTRAN listing of DETMAX is available on request to the Computer Sciences
Div., Math. and Stat. Research Staff, Union Carbide Corp. Nuclear Division,.
P.O. Box Y, Building 9704-1, Oak Ridge, -Tennessee.

Box and Draper (1971) mention an optimization routine due to Powell
(1964) of the direct search type, that maximizes the determinant. However °
in their application it was only, suitable for relatively small designs (npless
than 30). Hebble and Mitthell (1972, p. 768) refer to a paper by Spang (1962)
for a, general discussion of random search procedures.

If the candidate approach is used to add data points, then there is no
need for a. random searc rogram. Instead tHe variance at the candidate
points or the determinant of the new matrix When each point is aided to the
original design can be determined and comparedwhich ts the.largest?
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COMPUTER PROGRAMS FOR RIDGE REGRESSION ANALYSIS

A convenient method of eveloping a computer program-for ridgea

regression analysiecan be btaned by modifying a ,conveniionalmultiple
regression program. The bias, k, is introduced by adding a constant, k,
to the unit diagonal of the correlation matrix and doing a least squares fit
on the modified matrix. This protess is iterated using differentk values
until enough. ridge, coefficients are obtained to plot the data and select the
location of stability; meaningfulness; and so forth.

If the 'University of California Biomedical. Data Processing (BMDP)
Manual* is. available, then-a modifidation of the BMDIR2R (Stepwise regres-,

sian) prograrn, developed, by Maryann Hill (1975) of the UCLA Health Sciences
Computing - Facility,. can be uged for a xidge regression analysis. the com-

pletearticle describing ihks'mo'dification has been reproduced in Appendix B`f
, ,,.

A more complete computer program for ridge regression was repared
by Mary G. Gallegos of the Display Systems and Human Factors Department,
HugheS Aircraft Companyl,°Culver City, California. This is reproduces' in
Appendix C-along with a 'sample problem in Appendix D. The program, how-
ever, was, written for a particular -problem,and, as listed, has diinension
statements and other feitures ,specific to that ptoblem. With relatively little
effort, a competent, programmer could use it as a guide to fit other parameters

.and other computers.

PRELIMINARt PREPARATIONS FOR THE DATA ANALYSIS
,

There is no such thing as a completely automated data analysis, only
automated aids to data analysid.. The _computers are available to handle the
routine manipulation of numbers, but they ar.e not intended to decide what
manipulations-are required, what assumptions are to be made, what data is
to befed into them; norqlow to interpret the output. These are the
responsibilities of the investigator.

*The,
BMDP Manual of statistical computer programs is available from

Uniyersity of California Press, 2223 Fulton Street, Berkeley, California.'
94720 at $10.00 per copy.
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Without sufficient background himself, the investigator to employ the
techniques proposed in this report will need the help of,a competent com-
puter specialist and statistician. However, while their technical aid can be
of considerable value, the investigator Must understand exactly what is being
done by a computer performing an analysis and why and must not allow
critical decisions to be4made for him. He is the only one who knows the
intended use of the data, its sources, and other critical factors. Any employ-
ment of outside talent should be a part of a team effort, with the experimenter
in complete control.

Data Selection ,

Before any computations are begun, a preliminary analysis of all of the
available data should be made to be assured that all should be included in the
formal an 'alysis. Particularly with the undesigned eXperirnenttrhere variable

. -

upon variable can be added b simply making more measurements (some-
times after the fact), the dang rs of a superabundance of inconsequential
variables included6by an overt rious investigator should be avoided. A pre-
analysis ought to consider seriously the relevance of the variables under
consideration, and even an examination of a table-of intercorrelations could
suggest which variables are mathematically identical and should not be

o

included twice.

Anscombe:(1967, p. 38) has this to say about this matter:

"In considering multiple regression with large numbers of
potential. 'explanatory' variables, I would like to echo aritL,
extend Dr. Yates's remark on the value of understanding
the x-variables first, before seeking to relate any of them
to the y-variable. Put very briefly, I have never come,
across an occasion where one wanted to construct a multi-
variate relationghip without already knowing enough about
the x's not, to have to do a formal 'search' operation of the
multiple regression,form. One must be extraordinarily
uninformed about one's subject7matter simply to wish to
put all 'possible' variables into a multiple- egression
black-box and trust to least squares to s t them out.
Modern technology may now facilitate almost incompre-
hensibly vast multiple regression analyses at almost
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incredible speeds, but this can only serf to verify the
the dictum that the computer shows things to be unnecessary
which were previously impossible."

Gorman and Toman (1966, p. 27) disails the idea of a preliminary
examination of the data in a slightly different .way, thus:

"Before variables are selected the data must be examined
carefully for statistical difficulties such as split plotting,
serious departures from normal distribution of residuals,
serial correlation of residuals, and outliers, and for func-
tional difficulties such as the improper choice of X's in the
complete equation. Statistical defects are usually spotted
by a careful examination of residuals after the equation has
been fitted with all k. variables present (1, 2, 3). The choice o
of the X's and then- functional forms (i.e., X1 = 1/T,
X2 = log (SV), etc.) is really a matter of technical judgment
by experts in the figid from which the data are drawn. Here
again, careful examination of residuals can expose improper
choices of functional forms."

There is just no substitute for the early application of intuitive judgment by
an invest-igatof who knows his business. ;

,

Input Accuracy'

Before data i fed to the computer, it should be carefully checked for
accuracy. When a great deal of data must be key - punched, it is all too easy
for mistakes to be made. Much frustration can be avoided if the investigator
takes the, extra time at the beginning to inspect a print-out of the input cards
himself. It is amazing how easy it is for a person who knows how the infor-
mation shoiild appear to spot errors that would never be evident to a keY-

r
punch operator nor a less-informed technician.

Program Precision

For handling large multiple 3,1eg\tession analyses, it is wise to request
the computer be programmed to handle double precision arithmetic. The
problem of rounding errors, with serious conse erices to the results in
analyses of this type as been discussed by Draper and Smith (1968, pp 144 -145)
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and by Freund (1963). Neither of the ridge analysis programs listed in
Appendices B and C is written in double precision. It has been pointed out
that although the consequences of imprecision increase with ill-conditioned
matrices, the very pirocess of ridge analysis corrects the sensitive condition.

Then) too, before the Consequences of single and double precision can be ,
estimated, it is necessary to know hovi many bits per word are involved, and
this depends on the particular computer. Single precision for one computer
may be more precise than double precision for a smaller ane.

Draper and Smith (1968, p. 148) point out the value of workin &from the
correlatibn matrix. They say: "Transforming the regression problem into a
form in which it involves correlations is good in general because it makes all
of the numbers in the calculations lie between and 1.. When numbers are
all of this order the adverse effects of roundoff error are minimized."
Certainly avoiding sources of imprecision is a matter of prudence. However,
the value of double precion for the particular set of data must be weighed
against the requirem'ent for a larger computer memory and a possible
tion or the amount of data that could be analyzed.

0
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APPENDIX B
RIDGE REGRESSION USING BMDP2R

.Maryann Hill

in BMD COMMUNICATIONS, Health Sciences
Computing Facility, University of California
Los Angeles, February 1975, No. 3

In-a regression analysis when the independent variables are highly
correlated,' the data are often said to be ill conditioned. The
resultjug reOeision coefficients may be quite unstable and not
useful for future predictive purposes on a new . sample. Ridge
regresn is a technique that is used to "tame" the estimates of
regression coefficients, to portray sensitivity of the estimates to the
particular set of data being used, and to obtain point estimates with
smaller mean square error (although the estimates will be biased).

regression modt4 Y = Zii + e, the ridge estimate of the
coefficient v etorp is

11* = (7.'Z + Z'Y

where Z is the 'matrix to cases by p variables) of thestandartlivd
independent variables :aid Y is the vector of the st,indardized
depenent variable. The usual least squares estimate is obtained
when X.-0.

Plotting the resulting coefficients for a number of values of X gives
an indication of the stability of the coefficients. You hope to find
the value of X where the eoellicientS ben to smooth nut and no
longer make sudden changes (e.g., switching signij. The estimates
the coefficients eventually approach zero as X gull to infinity.

By adding "dummy" cases to the end of the standardized data tile
and using the zero intercept option frYPE=0):-, you can try this
technique with your own data using BMDP2R. The "dummy" cases
determine the amount added to the diagonal of the Z'Z matrix. Add
one "dummy" ease forfur each of the p independent variables with

IF7.7Tv as the value of the corresponding variable and zeros for the
remaining variables. Note that the Z'Z matrix is (n-1) times the
correlation matrix. It is useful to think of ridge tegression in terms
of the correlation matrix: the size of the value added to the diogonal
elements of the correlation matrix is then comparable from problem
to problem..In this context values of X less than one are of most

interest.

Example: Hoer' 0962) discussed a ridge technique in an article
dealing with the measurement Of the performance of a chemical
process. He specified a relationship between three highly correlated
process variables and a response variable, added random noise to the
response variable and then analyzed the data. Although the specified
relationship had all positive coefficients, the usual least squares
solution produced inflated coefficients one of which was negative.

N

He then applied a ridge technique to these data showing the taming
effect on the coefficients and producing solutions closer to the
"true" values.

To see the effect of A = .16 on the regression coefficients for the
Hoed data, we compute 07-Vs = NE)Ti.16 = 1.2 and submit the
following cards for the /ISCE system:

// EXEC BIMEDT:PROG=BMDP2R
//TRANS!' DD

IRKASE.GT.10)G0 TO .1
X(1)=(X(1)-1.82)/.4022
X(2)=(X12)-1.86)/.4088
X(3)=(X(31-1.88)/.4492
X(4)=(X(4)-28.9)/4.0213

1 CONTINUE

Using the sampler and s
to standardize the in-
dependent variables,
X(1),X(2),X(3) and the
dependent variable, X(4)
for 10 cases

/ /GO.SYSIN. DD
PROBLEM TITLE IS RIDGE./
INPUT VA RlABLES ARE 4.

FORMAT IS 14F4.1 Y./
REGRESSION DIATNDENT tS 4.

ENTER IS .001. REMOVE IS O.
TYPE IS ZERO./

END/
11 II II 223
14 15 11 223
17 18 20 292
17.17 18 270
18 19 18 285
18 18 19 304
19 18 20 311
20 21 214
23 24 25 328
25 25 24 340
i2 0 0 0
012 0 0
0 012

Is

10 cases of raw data

3 dummy cases

Inserting different values of Vtn-I )X and rerunning t:ie progiam. we
obtain and plot ridge estimates of the coefficient for each X (see
figure). (Note: A number of problems can be run Together and the
BIMLDT procedure can be used to change the values of the dummy
cases in each problem.)
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PLOT OF RIDGE COEFFICIENTS
for different values of

b3

bl

b
2
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The deck setup above produced this result for
Xr-.16 (B, =.293, 11,=.155, 113=.479). The least

-.6 squares solution is marked at A=0 (B,
82=a561,B,=.71.3).

1;4

e.

You will also want to plot the residual sum of squares versus A. The
most desirable coefficients hopefully will correspond to that value
of A where the-residuals have not started to inetease rapidly, but yet
the values of the coefficient% have settled down.
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APPENDIX C
A SAMPI1E 'PROGRAM FOR RIDGE REGRESSION ANALYSIS

Programmer: Mary G. Gallegos

(Original program was written by Charles Bahun for a GE-635 machine in
Basic. The Basic program was converted to FORTRAN IV for a Xerox
Sigma V machine, with subsequent modifications. Final program slize is
11.8 thousand words, 32 bits per word.)

1. C***********RIDGE REGRESSION PROGRAM********
2. C ONE MAIN ONE SUBROUTINE mAXImUM MATRIX'DIMENSIONS ARE IN THE
3. C MAIN, VARIABILITY IN THE DIMENSIONS IS ACCOMPLISHED THROUGH THE
4. C SUBROUTINE CALL. SUBROUTINE DONL DOES ALL THE WORK. SUBROUTINE,
5. C USED FOR MATRIX OPERATIONS AND EIGENVALUES ARE CALLED FROM THE
6. C USER LIBRARY. THESE ROUTINES ARE PART OF THE XEROX NUMERICAL
7. C SUBROUTINE PACKAGE,
8. C

9. C

10. C FUNCTION TO De A RIDGE REGRESSION ANALYSIS ON ',A GIVEN STUDY.
11. C-COMPUTES:

,12. C I MEAN VALUE FOR EACH COLUMN IN MATRIX X

X13 C 2 MEAN' VALUE FOR EACH ceLumN IN MATRIX Y
14. C 3 STANDARD. DEVIATION FdP EACH COLUMN IN MATRIX X
15. C ' 4 STANDARD DEVIATION FOR EACH COLUMN IN MATRIX Y

16. C 5 TABLE OF INTERCORRELATIONS
17. C ' 6 EIGEN VALUES FOR TABLE OF INTERCORRELATIONS
18. C 7 DETERMINANTS F'OR TABLE OF INTERCORRELATIONS %

19 C 'R LEAST MARES AND RIDGE COEFFICIENTS FOR TABLE OF
4

2(). C INTERCORRELATIONS
21 C

22. C

23. t
24. C THE RIDGp REGRESSION PROGRAM CAN HANDLE TWO KINDS OF DATA FOR THE
25. C TABLE OF INTEPCOPRELATIONSI
26. C 1 RAW DATA THE x AND Y MATRICES ARE READ IN AND THE TABLE
27. C IF INTERCORRELATIONS (ATRIX R) IS COMPUTED
28. C 2 MATRIX R IS READ IN STRAIGHT FROM CARDS THE TABLE OF
29 C INTERCORRELATIONS 'ALREADY COMPUTED.
30. C
31. C

32. C IF DESIRED, CERTAIN COLUmyS READ INTO MATRIX X CAN BE SINGLED
13. C OUT OF THE COMPUTATION FIR THE TABLE OF INTERCORRELATI9NS, THIS IS
34. C ONLY AVAILABLE IF THE DATA FOR THE TABLE OF INTERCORRELATIONS IS TO
35. C.B2 COMPUTED WITHIN THE PROGRAM,
36 C

37. C

38. C VARIABLES
39. C X. INDEPENDENT VARIABLE IN FUNCTION
40.
41.

C Y DEPENDENT VARIABLE
C R TABLE OF INTERCORRELATIONS (X)

42. RL EIGEN VALUES
43. C DETER DETERMINANTS
44. C Z TABLE OF INTERCORRELATIONS (Y)
45. C 5-1) STANDARD DEVIATIONS FIR Y
46. C G STANDARD DEVIATION FOR X
47 C MEAN MEAN VALUE (USED FORBOTH X ANDY)
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48. C K9 ERROR FACTORS
49. C N NUMBER OF RSWS IN MATRIX X (OR NUMBER OF DATA SETS)
5(). C. IX N,UMBER OF COLUMNS TO REMAIN IN X MArRIX,3FOR COMPUTATION
51. C IN TABLE OF INTERCORRELAT/ONSe
52 C Is ACVUAL NUMBER OF COLUMNS READ IN FOR X MATRIX
5e* C IY -ACTUAL SIZE OF Y MATRIX, (NUMBER OF ACTUAL ceLummilslAge
54, C IN NUMBER OF 3'S TO BE INTRSDUCED(READ IN)
55. C
56. C

57. C**************************************************** otio************
54. C

59. DIMENSION A(15o60)
60 DIMFSION 4X(15,31
619 DIMENSION B(15o3)
629
63.

65.
66. DIMENSION F(3o15)

.0ImENSION B6(15.3)
DiMEKS1(ON C(.15/3)

.DIMENSION D(15,15)
DIMENSION E(3)

14,

67
48.
690
70.
71.
72.
73 DImENSION.RL(15)

DIMENSION FB(15,15)
DPIENSION FF(15,15)
DIMENSION G(15/1)
DIMENSION P(1/15)
DIMENSION 0(1/3)
DI"ENS/ON 14(15411)

741
75.
76
77.
78.
79.
804,

81.
82 C

83 C VARIABLES IX ANC) IV DETERMINE DIMENSION WITHIN SUBROUTINE
84. C

85. READ (105o961) N,IX,IS,IV,IN
86. CALL DeNT (Ajoi,9B,C,D,E,FJF9JFF/G/PA/R/RM/ToU/WoX/YoZ/IX/IY/
87. *NJIN.BX/IS)
88. ,9t1 FORMAT (5(I2/2X))
89. END 4

DIMENSION RLL(15)
DIMENSION RM(3,3)
DIMENSION T(15/31
DIMENSION U(15/1)

IDIMENSIeN 01(15/1)
7DIMENSION X(61,15)
DImP'SION V(60,3)
DIMENSION Z(15/3)

1 SUBROUTINE DAT(A/BoBB/COJEJF,FB,FF,G,PjUgRoRM.T.U/WAX,YoZoIX/IY/
2. N/IN.BX/IS)
3. DIMENSION A(IX/N)
4. DIMENSION B(IX/IY)5 DIMENSION BB(1XiIY)
6 DIMENSION BX(IX/IY)
7 DIMENSION C(IX,IV)
8. DIMENSION D(IX,IX)
9o. DIMENSION DETER(15a)
10 DIMENSION E(IY)
11 DIMENSION F(IY/IX)
12. DIMENSION FSI/X/IX) .

13. DIMENSIONJT(IX/IX)
14 DIMENSION G(IX/1) '
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15. DIMENSION P(1.IX)
16. DIMENSION 0(laIY)
17. DIMENSION R(IX,IX)
16. camErateN RM(IY0IY)
19. DIMENSION T(IX.IT)
20. DIMENSION U(IX.1)
21 DIMENSION X(N,IX)
le. DIMENSION W(IX.IX)
113. DIMENSION MAY)
24. otmtwsiew EttisIT)
25. C
26. DImENSION.GXX(15)
27. DIM NSION RL(15Y
25. DIMENSION RLL(15)
U. DIMENSION WK1(15)
30. DIMENSION WK2(15)
31. DIMENSION LAB(18)

DIMENUON 1T(2)
33. DIMENSION ICH(15) ea

34, DIMENSION. S913)
35. DIMENSION VAL(15)-
36. DIMENSION /FORM(12)
37. DIMENSION TEMP(15)

238.'
39. DIMENSION PEIG(15I
40. REAL K9
41. REAL MEAN
42. INTEGER ANS
43. INTEGER ANSR.
44.- INTEGER YES
45. C

46. DATA YES.: /4HYES /

OLANK /4H /
DATA IT

48. DATA
474

49. DATA IFORM /4 (X,As4W441X.4Ws' (J4HF6.3s41.4s1X)J4Ws (s4HA4,3,
50. 4WX)..14141',3,4W(F6.4W3,1XJ41.4)) /'
51. C
'52o 'C !ANS -.4,EITHER A YES OR A NO. THIS DETERMINES WHETHER THE TABLE OF

C INTERCORRELATIONS'IS MBE COMPUTED WITHIN THE .PROGRAM.
544 C IF YES,' GO TO 1111.
55. C

56. READ(105,957) IANS
57 IF(IANSE0.YES) GO To till
56. De 830 I111,IX

DO 880 J1,IY
60. 880,READ(105,9W0) Z(I.J)
61. DS 8'40 Kg1,IX
62.' 890 READ(105,050) R(Isy/

.63. 830 CONTINUE
64. GO Te 9988
65. C
66. C THIS SECTION LETS ONE PULL OUT rERTAIN COLTImS IN X MATRIX FOR
67. C COMPUTIN1. TWE TABLE MF INTERCORRE'LATI9NS
68., C

69. 1111 NUtimitSIx
70 IF(NUM.EQ0) NUMl
71. READ (105065) (ICH(J),J1sNUM)
72. DO Fr,
73. REAC (10F000) (TEMP(J)/JlsIS)
74. READ (105.953) (Y(I4K)0.1./Y)

Af
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75o .d /X64
76

. D8 45 Jo1,15
77. D8 40 KaisNUM.
78 IF(J.E1.ICH(K)) 30 TP49
79. 40 CONTINUE 0

80. X(I,IX)8TEmP(J)
81
82. 45 CONTINUE

44083. C

-r-

84 C COMPUTES MEAN VALUES AND STANDARD DEVIATION FOR EACH COLUMN IN THE
85o C X A'ND Y MATRICES
86. C

87,
88. Da 30 Jol,IX
89 30 10(1,..))103(1,J)+X(I,J)
90. DO 31 101,IY,
91, E(K)oE(Klo. (Y(IsK))**2
92. 31 0(1,100(1,K)+Y(I,K)
93. WRITE (108002) IT.(1), (X(I,K),Kol,IXO
94 WRITE (108,902) IT(2), (Y(1,K),X8,1,IY)
95 50 CONTINUE

.7 96 CALL S004 (X,14,N,IX)
.97 CALL S003 (A,X,4,IXim,/X)
98. CALL',5003 (A,Y,T,IX,N.IY)
99. WRITE (108,954)
100i WRITE (108,964) IT(1)
101 D8331 jl,IX
102 mEANoP(1,J)/N
.103. 331 WRITE(108,950) mEAN

WRITE (108001)
105 WRITE (1080641 IT(2)
106* DO 32 Jol,IY,

mEANo0(1,J)/N
108. ,32 WRITE (108,950) 'MEAN
109. WRITE (108,901)
110 WRITE (108063), IT(1)
111* D8 601.11,1X
112 G(I,11.SGIRT( (w(I, /)(P(1,I)**2)/N)/N)
113 WRITE (108050) 0(1,1)
114 60 CONTINUE
115 YRITE (1118,901)
116. WRITE (108.963) IT(2)
117. DO 70 lel,IY
118. I(I).SORT1 (E(I)(0(1,I)0.2)/N)/N)119 WRITE (108050) E(I).
120. c' 70 CONTINUE
121 C
122. C THE TABLE OF INTERCORRELATIONS. R FOR X MATRIX, Z FOR'Y MATRIX,
123. C
124. DO 100 11110X.
125. DO 80 Je1,IY
126 80 Z(I,J)(T(IiJ)..P(1,I)*(1(1,J)/N)/N/G(1,1)/E(J)
127 . DO 90 11,IX

.

128 90 R(1,10(W(I&K) P(1,I)0(1,10/N)/N/3(I,1)/01K,1)
129. 100 CONTINUE
130
014
132
133
134. READ(105,952) (L411010.1(41.18)

9988 CONTINUE
WRITE (108,954)
WRITE (108,969)
WRITE (108054)
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135.
136.
137
138.
139.
1400
141.

143.
144.

146
147
148.
149
150.
151
152.
/530
154.
155
156.
157
158
159.
160.
161.
162.
163.
164.
165.
166.
167
168
169
170
1710
172.
173.
174.
175
176.
177
178
1/9
180
481
182.
183.
184.
185
186.
187.
188.
189.
190.
191
192
193.
194.

WRITE(106,903) (LAB(10,1011818)
IH*19IX
DO 111 I.1SIX
IF(IH.E0.0) WRITE '(1108,909) LABtI)s(R(IoK)P1.IX),

* (Z(I,K),Kl,IY); ciesTe 111
iNceDE(489081FeRm(3).1-Dum),Ix
ENceptt48961381FeRm(s).1DuNspi
WRITE (108oIFORM)LOCIWRIIJK)sK61,IX)P(BLANK aills114)s
* tZ(I,K),KalsIY)

111 CONTINUE,
WRITE (104:0901)

C EIGEN VALUES AND DETERMINANTS FOR
C

CALL CHANGESS (RAFF,IX,Ool)
2112 CALL PIGEN (FF,FOJIX,1)
2113 CALL CHANGESS(FFoRLsIX,to21

RLL(1)1/RL(1)
DETER(1)R01)
.DE1 113 I*211X
DETER(I)DETER(I.1)*RL(I)

113 RLL(I)RLL(I1)41/RL(/)
DO 3113 11*IX
PEIGToPEIGT*RL(I)
PEIG(I)*PEIGT/IX

3113 CONTINUE
WRITE. (108,310)
DB. 114 JelsIX

114 WRITE (108,911)
WRITE (108,954)
De 7115 KK*1,IX

.7115 IF(RL(KK),LT,O) GO TO 999
C
C OPTION TR PAUSE AFTER EACH BETA PRINT

T14E TABLE SF INTERCORRELATIONS,

RL(J),RLL(J),PEIG(J),DETER(J)

READ. (105,957) ANS
C
C RIDGE COEFFICIENTS FeR THE TABLE SF INTERCSRRELATISNS.,
C 'PREVIOUS' IN PRINT euT a MATRIX BB
C 'CURRENT' IN PRINT BUT MATRIX
C * 'CURRENT B' IN PRINT. BUT MATRIX BX
C TOTAL.UNDER 'CURRENT B' BXX
C

De 2p0
De 129 JoloIY

129 BXX(J)10.
WRIT! (1CR,9011
READ (105,951) K9
WRITE (108,904) K9
DO 130 JlsIX

130 R(J.J)1+K9
CALL MC19 (R.c),IX,IXAO)
CALL INERT(D,Ix ,rET,,,(1.wK2)'
CALL S003 (D,ZABAIXarx,IY)
IF(IeGT.I) GB TB 140
CALL M019 (BiCsIXAIYAO)
CALL 5004 (CAFAIWY)

140 CALL S003 (1),D,W,IX,Ix,I*)
CALL SCC3 (w.C,T,IX,IxiTY)
CALL S003 (F,T,Rm,IY,IX,IY)
WRITE (108,306)
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195. DO 141 KiloIT
196. DO 141 JltiX
197. BX(J,K)B(JoK)*(E(K)/G(Jo1))
198. RXTEMPoi(B (JoK))**2
199. 141 BXX(X)08XX(K)+BXTEMP
200. De 150 JEA,IX
201. 150 WRITE (108,905) (BB(JoK).8(JoK),SX(JoK)oKe1o/Y)
202 WRITE (108,966) (BXX(K)oKlo/Y)
203. WRITE (108,901)

'

204. C
2054 IF(ANS.NE.VES) GO TO 155
206. WRITE (102,955)
207. READ (102,953) ANSR
208. IF(AwSR.NE.TES) GO T9'999
2C9. C
210. C LEAST SQUARES FOR THE TABLE OF INTERcaRRELAT/oNs.
211. C r P SQUARED' H
212. C * 'ERROR SQUARED' S
213. C * 1VARIANCE1 VAR
214. C * 'BIAS SQUARED, BR
215. C * RID(3E
216. C
217. 155 DO 170 JlolY
218. 1110.
219. V10.
220. D9 460 KloIX
221 eqHi.no<oj)*Z(Ksj)
222 V1V1+RL(K)/((RL(K)+K9)**2)
223. 160 CONTINUE
224. If(I.E001) S9(J)10H
225. 165 SloPH
226. vARS9(J)V1
227. 1390(K9**2)*Rm(JoJ)
228. RIDGE(S9(J)*V1+R9)
229 WRITE (10008) JoH,SoVARo(VAR/S9(J)),89/189/59(J)),RIDGEo
230 , * (RID0E/S9(J))
231 170 CONTINUE ,;

232 WRITE (1r8054)
233. CALL MO19 ( BoRB/IX.ITs0)
234. 200 CONTINUE
235. C .

r

. 1

236. 900 FORMAT (2(5(F10.02X),/),51F10.02X))
237. 901 FORMAT (5(1H ))
238. 902 FORMAT (4X,MATRIX foA1,/o3(5(1X,F12416),/)) ,

.

239. 903 FORMAT (43X,'X.X INTERCORRELATIONS1,47X,IXY INTERCORRELATIONSo
240 P //o6)015(A4o3X)P1X,3(A4,3X))
241 904 FORMAT (1)01( VALUE. foF5.4o///)
242 905 FORMAT (3(2(F123)))
243. 906 FORMAT (1)(iBETA 'COEFFICIENTS ARE: 1.,,1x.
244.

. 2 3( RREVIOUSIo4X,CURRENTIo5Xo'CuRRENT Bo7X))
245. 908 FORMAT (ix#,FRP DEPENIDENT VARIABLE oI2ooR gQUARED IS oF7,31/,
246. 1 1Xol ERROR SQUARED F10.4o/o1X,IVARIANCE oF10.402X8F10o4*
247. '2 /o1X,BIA5SQUARED IoF1.0,02X,F10.44/o1WRIDGE PF104o
245. 3 2(oF10o40//) v (\.
249. 909 FORMAT (1)0A4,1)015(F6.1,1X),111,3(F614,1X))
250. 910 FORMAT (1WEIGEN VALUES FOR MATRIX RI lo/o12XPEIGEN VALUE',
251 2 05WRECIRROCAL suw.sx. fpRepoRTIeN EIGEN1.2x.,DETERNINANT.//)
222. 911 fORMAT (9X,15( F1204,3X,F12:4,9X,F12.4,9X,F12.40/) )

253. 950 FORMAT (F12.6)
254 951, FORMAT(F10.4)
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255.
256.

953 FORMAT (A4)
952 FORMAT (15(A4'.I.X)a/,3(A401X)i'

257. 954 FORMAT (1H1)
258. 957 FORMAT ( 49)0 A4)
259.
260.

958 FORMAT ( PO I-CONTINUE )

960 FORMAT (5)0 IEIGENVECTORS FOR MATRIX RI 1,/)
261. 962 FORMAT (49)0 I2 )

262. 963 FOMAT/ iXoISTANDARD DEVIATION PR EACH COLUMN MATRIX- Ion )
263. 964 FORMAT ( iXo IMEAN VALUE FOR EACH COLUMN .. MATRIX la Al)
264. 965 FORMAT (15(2)012) )

265. 966 FORMAT ( /a 3(12)0F12612X ) )
266. 968 FORMAT_ ( la IaI2a ICI )
267. 969 FORMAT (30)0 'RIDGE. REGRESSION ANALYSIS' a /a
268. 230WDETERMINANTIo/,
269. 330X,'TABLE OF INTERceRRELATIoNsW)
270. 430XalEIGENVALUESWa
271 530WLEAST SQUARES AND RIDGE COEFFICIENTS1 ///)
272. 999 END

(Questions regarding this program should be referreckto the Real Time
Simulation Section, Displays and Human Factors Department, Hughes,Aircraft
Company, Culver City, California 90230.)

FIRST CARD:

Col. 1-2
Col. 5-6

Col. 9-1S

Col. 13-14
Col. 17-.18

DATA SET-UP

Number of observations (N)
Number of predictor (X) variables to be Analyzed
(maximum = 15) (see THIRD CARD, below)
Number of predictor (X) variables in the total data set
(maximum = 15)
Number of dependent (Y) variables (maximum = 3)
Number of k values [k's are the constants used to bias the
diagonal, ofthe correlation matrix and is referred to as
"k9-error factors" in the program.] (see SEVENTH CARD
below)

SECOND CARD:

Col. 50-52 If you are starting the analysis by inputting the raw data
values of the predictors and associated performance,
write YES

Or otherwise
Col. 50-51 If you are gciing to start by inputting a previously calculated

correlation matrix; write NO.
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` THIRD CARD: of the predictor (X) variables indircated in Col. 9-10
of the first card are to be included in the analysis, leave
this card BLANK .

Cols. 1-2
Cols. 3-4.
Cols.

/4.
5-6

Cols. 7-8

If some of the predictor variables are not to be included in
the analysis, then these must be identified by their °identifi-
cation number, the number of their, position on the
DATA INPUT cards below (which also could be used as the
Label ID required by the FOURTH card).

The predictor variables to be excluded from the analysis
are entered:

o

BLANK
-'

ID number of first predictor to-be excluded.
BLANK .11

(After two blank spaces, the next two spaces are used to(., enter the ID numbers,. 01 to 15, of each variable to be
omitted from the analysis,until all are indicated,)

.1
DATA INPUT CARDS -- N`SETS FOLLOW AT THIS POINT:

N

For each 66servatidnl'a set of data input cards for the values of the
predictors and the performance is required.' The order in- which the
variables are listed on the cards is fixed and their position can be used
as their identificatd.on number (see THIRD and FOURTH cards).

For predictor (X) variables, a maximum of three cards
can be used withfive inputs on each card in a decimal-
nuinber format. Ten columns per .input, with four
decimal places, right-justified. There are two 'spaces.
between each input.

For dependent (Y) variables, one per card, maximum of
. three cards, Twelve columns per input, (with six decimal
'places, right-justified. Y variable ca'rds follow each
corresponding set of X variable cards.



0

V.
A 4

FOURTH CARD: Label identification of X predictor variables (maximum = 15)
on Table of Data Correlations

Col. 1-4 Label ID fox; first. X variable,oright justified
Col. Label ID for second X variable, right justified
Col. 11-14 (Continue,with four characters per ID and one space

between until all are labelled. Leave remainder BLANK. )

'FIFTH CARD: Label identification of Y dependent variableS' (maximum = 3)
on Table of intercorrelations.

Col. 1-4 Label ID for first Y variable, right justified
Col.- 6-9 Label ID for second Y variable, right justified
Col 11-14 Label ID for third Y variable, right justified

(If fewer than three'Y variables, leave extra columns
BLANK. )

SIXTH CARD:
Col, 50-51

Do you want the printer to pause after each beta printout ?
If you do not wish the printer to pause after perinting the
beta coefficients for each k, write NO. In this case,
will analyze and print out betas for all k values indicated
on SEVENTH card.

or, Qtherwise
d

Col. 50-52 If you do wish the printer to pause after printing the beta
_..

coefficients for each k,in order to inspect the values and
ti possibly decide to abort the prograM from that point on,

write YES.

SEVENTH Use one card of this s\et for each k factor to be added to
CARD (SE.T) the matrix; (Maximum = .14)

Col. 5-10 Use decimal-number format, left justifiedo, beginning with
0; then the decimal, and then the numbers of theck, e. g.

.

0.0
0.022
0.06
0.1
0.5

EIGHTH CARD:
Col. 1-4 RFIN

0.



APP IX D

SAMPLE PRINT-OUT OF RIDGE REGRESSION PROGRAM

,These are sample print-outs of critical information in the ridge regression
program listed in Appendix C. Included are: raw score data matrix, means
and standard deviations of all variables; correlation matrix, eigenvaltles,
sum of eigenvalue reciprocals, cumulative proportion accounted for by eigen-
values, determinant of the matrix, and. for each value of k: R2, error
squared,. normalized variance, normalized bias squared, normalized ridge,
and ridge coefficients for standardized and raw score measures.

RUN
Mk /1/4'X x'

000000 50000n000 . 10000000.
10000000 10000000 1.000000'
2.000.000 10000000 25000000000

MATRIX Y
20701360

MATRIX X
.ocoopo

i.n00000,
2.000000

50.00noco
1.con000
1.00p000

l0000no
1.000000

250o.owoo

MATRIX
3.935770

X,MATRIX
000000 5nool-Too 10000000

1.000000 4.000000 1.0000 ^0
2.000000 1.00000M 250tlcoonn

MATRIX Y
3.850150

MATRIX X
.600000 50.0000CC

5.000000 8.000000
1.000000 .000000
1.000000 5.t00000

5.000000 8.000000
3.000000 .000000

Partialiprint out of paw score data for
r fifteen predictor X) variables and

one tesponse (.Y) variable.

40000000_
t.noocoo'

1.0000nm P;00

.000000
P0.000000

6.000000

MEAN VALUE F94.EACH C4Lum. IATP/X
.622642

910505430
'20867924'

X

20849056
6.254717
.863208
P07547 cf; (
.0226415,
'20900000
'11113208
10867924
0754717

'1426.41503'9
88:452820
5.622641

Means and' standard deviations foxy
each predictor (X) and response (Y)
variable. . .

MEAN VALUE F9R-EACH mATRIy. Y

2.963115

S/ANOARO,DEXIATInN F* £ACN,CPLUM AATON/ X
847P6'

-204822357-
8.95&296

4111/11116iiliali.1.1,14/11.11.1.1111..111
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APPENDIX E
OTHER APPLICATIONS IN THE DESIGN OF EXPERIMENTS FOR WHICH

THE TECHNIQUES DESCRIBED IN THIS REPORT MIGHT BE USED

Hebbie and Mitchell (1972) illustrate how the aximum Var (9) or
maximum I X'XI criterion can be used for other important purposes, such as
adding data points to:

1. Expand a square region of interest in a second-order model.
2. Alter the model to fit the space.
3. Shift the region of interest°

In these situations they employ candidate points much in the manner proposed
by Dykstra {1971).

Mitchell (1974) uses the maximized IX'XI criterion (with a specified
linear model and a value of n) to:

1. Exchange data points to improve a design.
2. Determin& whether more data.'points might improve the design.
3. Select a best design made up of a subset of candidate points when

limits are placed on the value of n.
4; Supplement "screening" designs (see Simon, 1973) to isolate

two-factor interactions.

7786.

,
6
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