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Mathemafics Education Reports T

Mathgmatics Education Reports are being deyveloped to disseminate
information concerning mathemAtics-education.dbcumeﬂts analyzed at the
ERIC Information Analysis Center for Science, Mathematics, and Environ-

\ " r ‘/ .
© mental Educatipn. These reports fall into three broad categories.

-Reseapch reviews summarize and analyze recent research in specific
areas of matheﬁatics edupation.A Resource guides identify and analyze
materiéls and referencesyfor use by mathematics teachers at ali levels.,
Speqial bibliographies'announce the avail@bility of documents and review
the literatu:e in selected interest afeas of mathematics education.,
Reports in each of these cateéories maylélsq be targeted for specific
sub-populatiqns of the mathematicé education coﬁmhnity. Priorities
fof'the deveiopment of fUrfure Mathematics Education Reports-are estab-
lished by the advisory board of the Center, in\goopératisn with the
Natioﬁal Council of Teachers of Mafhematics, tﬁe Special Interest Groﬁp
for Research in Mathematiés Education, the Confereﬁce Board of the -
Mqthematical Sciences, and other professional groups in mathematics
education, Individual comments on pastheéorts and suégestions for
future Reﬁorﬁé dre always welcomed. |

.This publicafion was prepared pursuant to a contract with the
National Institute of Education, U.S., Department of Health, Educa-
tion and Welfare. Contractors undertaking such projects under
Government sponsorship are encouraged to express freely their
judgment in professional and technical matters. Points of view or

opinions do not, therefore, necessarily represent officinl National
Institute of Kducation position or policy o
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Algorithmic Learning: Introduction

ﬁarilyn N. Suydem

To many people, "algorithmic learning" means "the learning of
algorithms™. They think of algorithms for addition, subtraction,
multiplication, and division with whole numbers, such as:

, }

-6 ) 13
54 '
437 Ze 86 18 ) 23k
13T -145 x7g 18
11 27 7 54
80 ) 602 54

9L 679% : _ .

They think of algorithms for operations with fractions and decimals, of
a square root algorithm, of procedures in the content of algebra and
calculus and other mathematical areas, »

But algorithmic learning involves more than just the learning of
specific algorithms, . It connotes having learners generalize from
specific skills to broader process applications, It is related to

learning-how-to-learn., As Simon (1975) pointed out, teaching the algo-

rithm and teaching the characteristics of an algorithmic solution are /
two different things.

The importance of algorithmic learning is being increasingly
recognized, across other content areas as well as within mathematics,
In the past few years, it has been developed as the approach in at
least one textbook. The research interest in artificial intelligence
is built on a foundation of algorithmic learning. Several Russian
psychologists, among others, have been very much concerned with the
implications of algorithmic learning (Gerlach and Brecke, 1974; Landa,

197h).

The focus of much current writing is still on algorithms, but the
need to provide for algorithmic learning 1s becoming increasingly more
evident. The use of hand-held calculators at all leyels from the ele-~
mentary years through life has raised new questions about algorithms--




and emphasizes the need to explore ways in which algorithmic learning
can be promoted, as calculators decrease the need to focus so much of
our attention on the algorithms for calculation,

Explanation

_ This document is not intended to be all-inclusive (although we had
dreams of being comprehensive at one early point!). It.is basically the
report of a year of emphasis on algorithms and algorithmic learning in a
seminar for mathematics education doctoral students at The Ohio State
University. It doesn't include all that the seminar encompassed. But it
does present some results, both in the form of research reviews and mini-
-research studies, It is hoped that it will serve to have qthers do more
thinking .about what is lknown about algorithmic learnlng, and, even more
important, to think about what still needs to be explored and learned.,

In prop031ng the seminar, it was noted that there is a tradition of
concern for algorithms in the computational orientation of elementary
school mathematics, but new information-processing models of learning -
seem to be- stlmulatlng a new body of research problems znd studies., A
more general interest is suggested, in broadly conceived algorithmic
learning non’spedlflc to the computational needs of young children. The
relation of algorithmic learning to problem solving, loglcal ability,
creativity, and the like have not been explored, And they should be,

Our focus was indicatéd by this flow diagram for our initial discussions:

[

What is an algorithm? Definitions from texts
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" Thus, this document attempts to:

(1) review the status of some aspects of research related to
-algorithmic learning across the mathematics curriculum,
and

(2) indicate a few of the directions which research on algo-
rithmic learning and on computatlonal algorithms has
ztaken and might take, .

It is not 1ntended to be a state of -the-art paper, but only another con-
tribution to the increasing documentation con algorithms and algorlthmic
learning.

Definitions
We worked for many hours trying to find good definitions for "algo:
rithm" and "algorithmic learning'". In the course of this serarch, we
: found that algorlthms.have been defined in two ways:
- (1) By example, eSpec1ally at the elementary school level
and in elementary school mathematlcs content and method ) ) i

textbooks for teachers.

(2) By simple deflnltlons, such as:

: \
(a) "A computational procedure, especially one that
involves several steps, is often called an algo-

rithm," (Bouwsma, Corle), and Clemson, 1967, p.
Lo) :

(b) "Each arrangement of nupbers for purposes of cam-
putation was called an algorism. ., . .Many algorisms,
or ways of setting down and arranging the figures,
were tried for each of the four processes before
those we now use finally prevalled (Buckingham,

l9h7, p. 15)

(c) "The most natural algorism, or written record of
the children's thinking, . . ." (Clark and Eads,
b 195h’ De. 75) .

(4) "An algorism is both the procedure for carrying out
an operation and the arrangement of the numerals
and operational symbols for computation,” (Hollister
arnd Gunderson, 1964, p. 29) N ' ‘

(e) "An algorithr is a set of procedures for perform-
ing a computation . . ." (Kelley and Richert,
1970, p. U7)




/

general procedure, called an algorlthm !
(Muel]er, 1964, p. T1)

(g) ". . . the usual term algoritha will be used to
refer to any computational device [where 'device'
is a written procedure]." (Ohmer and Aucoin,

19669 p. 89)

(h) ". . . the advocates of the Hindu-Arabic system
L with 1ts algorithms, or procedures, for computa-
\ _bion." (Peterson and Hashisaki; 1963, p. 18)

(i) ". . . arifhmetic based on the Hindu-Arabic numer-
- als, more egpecially those that made use of the
: zero, came to be called algorism as distinct from
the theoretical work with numbers which was still
called arithmetic . . . we have the word loosely -
. used to represent any work related to computation
by modern numerals and also as synonymous with
the fundamental operations themselves and even
with that form of arithmetic which makes use of
the \abacus." (Smith, 1925, pp. 9, 10- 11)

) (j) "From a mathematical sﬁandp01nt we may characfer-
i ize an algorithm in terms of & finite alphdbe% (the o : S
digits 0 to 9 plus a few additional symbols in the
' case of arithmetic), an\infinity of words made up
of a sequence of elementary steps or rules that
are required to handle any initial work in a unique
way. The algorlthm for column addition is a good
example of such a scheme', . -."(Supges, Jerman,
and Brian, 1968, pp. 289-290) { .

/
]

We attempted to evolve a more inclusive definltlon, one naot so
spec1f1c to mathematics: »( |
algorithm: a method (e.g., for computatlon) consisting of
a finite number of steps, the;steps being taken
in a preassigned order and reproduc1ble, that
is specifically adapted to the solution of prob-
lems of & particular category.

And for
\

algorithmic learﬂing; the process of developing and/or

applying methods or procedures, i.e., algo-
rithms, with the goal of learning-how-to-learn,




Beilin (1974) summarizes the problem in discussions and explora-

tions of work on algprithms and algorithmic learning:

The difficulty over the use of algorithmic methods stems
in part from the lack of differentiation between con-
ceptual algorithms and instructional algorithms. Instrue~
tional algorithms are devices, usually symbolic, that
provide standardized ways of apprbaching the analysis or
solution of problems and are essentially pedagogical
instruments., . « .

Although practical considerations are important™in con-
sidering the value of algorithms, even more important
is the need to determine what is essential for thought
and problem solving to occur. . . .

Algorithms, thus, are not simply arbitrary devices for
solving school problems but enter into the very nature
of the processes by which cognition develops. They may
serve as instructional devices as well, but dgvelopments
in computer simulation of thinking show that algorithms
serve ‘s much more serious and necessary function in
reasoning and learning. . . . The task for mathematics
education is to develop instructional algorithms whose
structure and content will articulate most adequately"
with the structure and nature of conceptual algorithms.

(pp. 129-130)

a
-
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II. Conditions for Algorithmic Imagination




e

There is nothing either good or bad but thinking makes it so.
(Hamlet--Act 2, Scene 2, Shakespeare)

|

'n(f gonditions for Algorithmic Imagination . o /

Alan R. Osborne

Computers and small electronic calculators have recently become a
part of our culture. What was/a futuristic fantasy of science fiction
(Asimov 1957) is now a portioh of the reality requiring the thought and
attention of educators. There is a reasonable expectation that calcu-
lators and computers will become more accessible and commen in the
immediately foreseeable future., Some would argue that this decreases
the importance of teaching computation in the schools:- Others would

 remark that the concern for "Why Johnny Can't Add" 1is misplaced and
_inopportune. Although such arguments may have more credence than they

_ wotld have had even five short years ago, they are“strawmen diverting

the attention of , designers of curricula and theoreticians of. the in-
structional process from more pressing and vital questions about the
experience of children and youth with arithmetic and mathematics.

The purpose of this paper is to ‘raise some questions about the
focus of mathematical experiences in the school given the fact of ready
access to calculators and computers during the adult life of children
presently in today's schools. The questions and issues-raised by the
cormunity of scholars in mathematics education within tlie context of
philosophizing about or considering needed research within the domains-
of computational proficiency and instruction for algorithms indicate
some profound oversights in terms of the future needs of children.

A theme pervading Pirandello's plays is that reality is determined
by the thinking and feeling of an individual. In Six Characters in
Search of an Author (Pirandello, 1922), each character constructs his
own reaiEf?T “Historians of 'science hypothesize the same type of opera-

tional determination of reality for individuals contributing ideas to'»,

the evolution of science. Boring (1929) defines and documents the

concept of zeitgeist operating within the field of psychology in his
A Ristory of Experimental Psychology. The prevailing philosophical
orientation and spirit of the timeg, the zeitgeist, is a context thaﬁ
dotermines the categories of ideas.to be prized and the questions and
research important for psychologists of a given era to advance the
state of knowledge. This provides limits to the imagination in*mijﬁ
his

-the same sense of T. S. Kuhn's concept of paradigm as explicated &r

N

/
F ’
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Pelieved by practitioners in the field..
is determined by what are considered legitimate questions and problems

study of the historiography of science, The Structure of Sc1ent1fic
Revolutions (1962). Kuhn extends the concept of zeitgeist with the

concept of paradigm to encompass the model of the science held or
This paradigm determines and

in that field, allowable research procedures, the philosophical orien~
tation of the field, the type of apparatus used, and what is considered
to be known with a degree of certainty. - For Loth Boring and Kuhn, the
limitations apply to the individual scholar and to the community of
scholars as a,whole. TFor the individual, this provides the matrix of
beliefs, understandlngs and: procedures from whence develops his sense

of appropriateness for his own activitics and the delimitations of his
interests. 1Induced by his membershlp in the community of scholars in )
his field, it is a function of the nurture provided by that field which
yields both the Wellsprlng of creat1v1ty and the limits on the imagina~

tion for an 1ndrv1dual scholar.

Have the’same sorts of factors operated within the field of
mathematics? We would argue that this must be the case. Many creators
of mathematics have demonstrated keen awareness of the legitimatizing
‘chardcter of the paradlgm held by the community of scholars in
mathematics. Consider Cardan's apologies in reporting his work with
complex, non- real numbers or the hesitancy evidenced by the inventors
of non-Fuclidean geométry in publishing their studies. These two ex-
amples suggest a retarding effect on dissemination was operant if a
creator of mathematics was (or 1s) aware of the existence of a paradignm
within his discipline when his creation does not fit the paradigm. Many
other examples can be found in the history of mathematics. ’

0f greater interest for our purposes is the set of ideas and,

approaches to mathematical problems and theories which were not created
because of the existence of a paradigm. That is %o say, have paradigms
had a retarding effect (other than slowing dissemination and the spread
of ideas) on the advance of the field of mathematics? No historical
answer to this interesting question exists. One camnnot provide histori-
cal evidence for the causes of a non-event; one must limit the arguments
to supposition. ~ Some examples of such arguments do exist. For example,
Osborne (1968) argues that the Greeks' careful sense of closure con-
cerning operations with lengths, areas and volumes  prohibited their
understanding and quantification of momentum even though the writings
of Aristotle indicate that momentum was an Iimportant concept to the
Greek scientists. Understanding of this rudimentary concept of science
would await Galileo in an era in which the paradigm of Greeks' careful.
reasoning was relaxed ‘and freed by the impact of the Dark Ages and the

probable non- understandlng of the n1cet1es of Greek thought by the Arabs.

The history of modern algebra suggests the impelling force of
mathematical paradlgms or traditions. Semmlng from a Greek tradition

of geometrical algebra, 1t was ‘the mid-fifteenth century before Bombelli
would formulate algebraic arguments free of the hampering restriction of




providing a magnitudinal base for numerical arguments. Vieta, approxi-
mately 25 years later, moved algebra somewhat in the direction of its
" _own notation, yet it would be the turn of the eighteenth century before
Peacock would attempt to free algebra completely from the need to pro-
vide 'real' referents for algebraic symbols. The traditions of pro-
viding real referents for the synmbols of algebra suggest a hampered
development of quaternion algebra by Hamilton and the more- generalized
description of a vector space by Grassman. Indeed, both Hamilton and
Grassman were concerned with the question of whether a 'real' base for
their algebras existed.. One wonders what the retardation effect of the
mathematical paradigm of needing real referents was on the field of
modern algebra. '
Paradigms provide limitations on the mathematical imagination and
creativity of both an individual and for the community of users and
~doers of mathematics. On the one hand, it may be at’ the attitudinal
level for specific individuals, forcing them into a construction of
their own form of reality in the sense of a Pirandello character. On
. the other hand, it may be the more direct result of the traditions or -
- appearance of traditions in the sense of the mathematical paradigms
' "described above. In school mathematics at the elementary and secondary
levels, the traditions and perceptions of what is legltimate mathematics
is communicated through the experience of each individq&l child. The
experiences of the child determine his zeitgeist or paradigm from whence
his imagination and creativity will well. The mcdes of thought and
- processes that both limit and facilitate the child's productive use of
mathematiks are imprinted in much the same sense as the imprinting of
intuition on the very young. The thesis of this paper is that 1f the
child's experiences within the context of his school mathematics environ-
ment extablish and determine the paradigms of his thought, then mathe-
matics educators need address the problem of whether an appropriate
paradigm for our present and future ages in mathematics is being
established. : ‘

i We would argue that present school mathematics programs, and the
_associated supportive research concerning their effectiveness, does not
address the problem of whether the goals and activities of the programs
build paradigms and/or a zeitgeist fitting children's future adult
needs in mathematics. The school mathematics program at the elementary
and secondary school levels has been oriented by a need to produce
students who are computationally proficient. Throughout our history
this has been an important goal. Imagination and creativity, and the
setting up of these attributes of individual performance, has been
directed to the necessity of performing in the traditions of the existing
mathematical thought and uses. The goal of computation has been quite
appropriate. Individuals have needed to possess computational skills -
 in order to participate fully in an adult life. Further, the very
nature of the scientific and mathematical world has required computational
skill. Note that by computational skill we mean much more than the
capability of working with numbers but also are including the ability

15




to work with higher-order mathematics even through the undergraduate

level.- Computational skills have been necessary to the individual in

gaining a modicum of control over his personal environment beyond his S
application of mathematics to science or to mathematics per se. The !
‘housewife in coping with her budget the golfer computing his score,
and the home-improvement nut constructing a new patio each need & leyel
of computational proficiency in order to fulfill expected roles in
their personal life. 1In order to maximize participation in life, chil-
dren needed to build computational competence.

' Clearly computational proficiency-is still important. A student
of mathematics needs to know enough and be able to .do enough'computation
so that teachers and other individuals can communicate with him. But
it is an open question Whether the operational proficiency of the past
and present is sufficient to provide the zeitgeist or paradigm needed
for the future adult life of today's children. Does the present treat-
ment of school mathematids prepare a child for a world characterized by
ready access to electroni, calculators and to computers? Is the scope
and sequence and approach of the school mathematics program sufficient
to prepare individuals fz# intelligent application of devices capable
of carrying out complex computations with the application of pressure -
. on some buttons? Are we limiting the sort of problems which children -

can solve with the aid of machines? RS
. . N\
. : ¥,
The world of the future will be characterized by extensive use of \
the computer at many levels of our society. Individuals nsed to under- \\

stand algorlthmlc processes if they are to take maximal advantage of
computers. Although computer.programmers are presently oeing trained

on the base of present curricular orientation and content, is the
efficiency or this training impaired because of a failure to stress the
development of algorithmic thinking? Inadvertently are curriculum
designers building limits on students' future creat1v1ty in the use

and application of computers? Are habits of thlnking or mind sets
acquired during the early -childhood experiences with mathematics that
limit or retard algorlthnuc learning? Are students building appropriate
1ntu1t10ns° : ’

The advent of the machine is ‘changing the basic nature of méthe-'
matical endeavor. Algebra, number theory, and analysis are each evolving
around new processes and styles of thinking which are directly attribut- - R
able to the machine. Birkhoff's article, "Current Trends in Algexia" : ' ¥
(1973), argues persuasively that the machine orientation of mathematical ‘
research in algebra is here to stay. Not only are new processes being
used in modern algebra, but also a different style or type of problem:- .
is being considered as significant by the algebraist. The paradigm is Y
shlftlng o . ' /

Finally, the student entering college today\often encounters the
use of the computer as an instructional device. We do not refer to.
computer-monitored instruction or computer-assisted instruction thnt;




uses the power of the machine as a means” of teaching the usual mathe-
matics by controlling individualization, administering drill and
practlce, or the general administration of instruction. Rather we are
speaking of the use of the computer to exhibit and do mathematics that

an 1nd1v1dual with a pencil and paper could not accomplish. An example
of this might be the examination of the limit of a function in a
particular nelghborhood. With rudimentary programming skill the student
has access to mathematical examples unimagined in the .instructional

sense in the immediate past. An algorithmic sensibility would facilitate
a student's perception of exactly what was happening in the example and
perhaps make it real to him in a sense that 1s not available to many of
our students today. We would argue that this entails more than the
experience of programming; to know and be able to use a language is not
sufficient. We would 'question whether the desired intuitions can be
established through experience gained as late as junior high school and
whether they can be acquired simply on the base of instruction in -

© computers without attention to the mathematical orientation of algorlthmlc
thought. The modes of thought necessary to successful use of the com-
‘puter are essentially mathematical. A basic component- of this mode of
thought is algorithmic in character. 1 : :

~ Bronowski ° (1965) whose field is the foundations of mathematics,
argues persuasively that our mathematical imaginations are limited.by
what we know and do in mathematics. His supposition is that we cannot
conceive readily of scientific and mathematical ideas that do not have
a basis in the réal number system. McIuhan (1964) hypothesizes that
number concepts operaﬁ;ng within the context of printing has channeled
our imagination in dlrectlons accounting for the development of our
sc1ent1f1c-technolog1cal soc1ety Computational machines are going to-
have a comparable impact and influence on thinking. A new paradigm or
a different zeitgeist will be established with both linits and faclli-
tates our creativity in coping with our environment.

A 51gn1f1cant question for currlcular opecialists 1is suggested by

. the shift to computational machines: Does the present’ “eturricular.
experience of the child facilitate use cf the machine? "hat is. ko say,
do present materials help establish a machine. zeitgelst and creativity

that will enchance the child's future work with computational devices?

Or do presently designed mathematical experiences inadvertently establish
inhibiting paradigms and modes of thought? We would argue that the
tlatter is the case.

i .

i At the heart of productive use of computatlonal devices is a
rapability for algorithmic thought. Whether the device is a low-level,
and-held calculator or the more sophisticated, programmable computer,

hﬁfectlve power in using the machines depends.upon developing a paradigm

ot zeitgeist facilitating rather than limiting algorithmic understanding
in and or mathematics. But our thinking and research about algorithms

hat been limited for the most part to purely computational algorithms in
terms of the elementary school arithmetic program. Even when algorithms

\ _ | o -
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are implicit in the content oflthe secondary mathematics sources,’the
algorithms are seldom treated as such but examined as a means to another
content goal. At the elementary level, curricular development and
related research has been limited almost exclusively to the establish-
ment of computational competency rather than encompa381ng an understand-
ing of algorithmic processes.

The phrases'algorithmic'thinking.and algorithmic learning have been
used above. A word of explanation is in order. Textbooks at the school
level do not present algorithms as processes constructed by people which
entail evaluative decisions. .Within texts algorithms are defined
explicitly as ‘having a limited capacity of solving problems and'are
seldom considered as providing mathematical problems in and of
themselves. Rather, a mathematical context is .defined to which a
specific, previously constructed algorithm 'applies. Now it may be the
case that to this same contest more than one specific algorithm may
apply, but the texts, if they present an alternative algorithm, rein-
force the idea that no decisions are involved concerning the algorithm.
For example, given an addition problem 238 + 95, the child is taught to
use the regrouplng or carrylng algorithm:

o 238
+ 95
333

The child may encounter an éﬁternative algorithm such as

- 238"
+ 95
200
120
13
300
30
- R - 333

But this second algorithm is used with the intent of stregthening the

‘student's understanding of ‘place value and of the dinitial algorithm.

The first algorithm is the favored technigue for the addition problem.
At no point, be it the context of addition at’ the early elementary
school level or other computational contexts, is the learner let in on
the fact that he has a choice of a]gorlthms to apply. He is not allowed

to make decisions concerning the efficacy and efficiency of algorithms.

We would argue that choice decisions between alternative algorlthms
constltute an important component of algorithmic thlnklng

The .example considered above does not argue that the presentatlon
of alternative algorithms is not an effective teaching device within
the context of current curricular practices. (Tt should be remarked
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‘that researchers have amassed little firm evidence concerqing how and
when alternative algorithms should be presented or what zztcomes may.

be predicted.) Rather it is te point out, through the use of an example
from elementary.school arithmetic, a characteristic of algorithmic .
thinking.: Algorithmic thinking involves more than the application of a
decision-iree algorithm with the limited ¢apability of only treating a
single mathematical context. We argue that algorithmic thinking entails
selection and decisions concerning altermate algorithms il..ch apply to

a single problem. : '

The most common strategy for instruction concerning an algorithm
is a progression through three distinct steps:

1. The necessary, prerequisite mathematics for the.
conceptual base ;s developed carefully.

.~ 2. The algorithm is- presented, typically'with a
rationale in terms of the conceptual base.

3. Opportunity for practice is provided.

Each of these steps is developed with the learner to restablish an
algorithm whick has been constructed or borrowed for the learner by the
author of ‘the instructional materials. Students are not expected to
construct or develop an algorithm themselves even though the necessary
conceptual base has been established as the first step of the instruc-
tional strategy.

, Most ecurricular reform of the past twenty years assumed & founda-.
tional precept of the learner needing to behave like a scientist if
he were to understand the processes of science.- The exhortation leveled:
at and by mathematics teachers was, "Mathematics is not a spectator
sport." Students were expected to behave like mathematicians. But, -
curiously, this expectation did not extend to algorithms. Students
were protected from behaving like mathemathicians with respect to
algorithms. A mathematician does construct algorithms; this is a
portion of the task of being a mathematician. For the curricular
designers in mathematics of the late fifties and the sixties to pro-
claim that mathematics is not a spectator sport and then to design
materials not allowing students to create their own algorithms is at
the least ironic. ' '

‘Mathematics educators have little or no experience in elther |
allowing or expecting students to construct their own algorithms. The
effect of this type of constructivist orientation on student achivement
of computational proficiency is not known. The impact on attitudes and
values may only be conjectured. It 1s not known if or how understanding
would be extended beyound the traditional objectives which are con-
sidered important today. Would students display the confidence and
" gsense of self-competence which contributes to being creative? Do
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maturity and experience factors contribute to the child's being able
to construct algoritims? If younger children have limited capability
for creating and evaluating algorithms, then what are the limiting
constraints of their problem-solving ability which provide the
interference? These questions are important if we are to extend parti-
cipation in doing mathematics to algorithmic subject matter. A study
in this vein is being conducted by Hatfield (1974). Preliminary re-
'sults indicate that children have a capability for constructing algorithms
-as early as grade two, given an appropriate problem solving context.

Clearly some knowledge of how students cope with algorithmic
learning exists in the literature of mathematics education. ' 3ome of
" this may be suggestive of questions and problems of import. Some of
is may suggest hypotheses in need of testing. Perhaps the most com-
-parable learning in mathematics which a child experiences is the idea
of mathematical structure. This important unifying concept of mathe=-
matics is a set of ideas.which taken together possess significance far
beyond their significance taken separately. Research suggests learners
need .to acquire cognitive maturity and to have some experience with the
- separate ideas before they acquire the concept of a mathematical ‘
structure. If an algorithm is a fitting together of several processes
into a complex decision:network designed to solve each. of a specific
category of problems, .then it is very similar to the concept of
structure. Perhaps the learning of characteristics of algorithms and
the consideration of algorithmic, thinking as a process are subject to
" the same order of maturity factors. We do not presently have a research.
base which suggests when and wh&t first experiences in constructing
algorithms are most approprlate. We suspect that algorithmic learnlng
is very similar to children acquiring a feel for mathematical structure.
The child's preliminary experience with the important unifying concept
of algorithm should be informal, intuitive and early. Formal expecta-
tions of "students being able to construct algorithms probably should
follow considerable experience in construction on an informal, explora-
tory basis. The task of the teacher in the early elementary grades may
best be considered as providing foreshadowing experientes.: But the .
precise nature of these early experiences has yet to be determined 1t
seems reasonable to expect the child's experiences to’mirror the mathe-
matical judgments to be made concerning algorlthms. That is, students
should begin early to compare algorithms as to their efficiency, to
identify the types of 7 ‘oblem contexts to which they apply, to assess
their complexity, to note whether there are sub-algorithms within the
primary algorithm, and the like. These are precisely the sorts of
evaluative judgments that are needed when one shifts from one sort of
electronic calculator to. another or when one encounters a new programming
language.

Another aspect of algorithmic thlnklng is identified with the word
"awareness" A student should- expect and be aware of the pervasiveness
 of algorithmlc processes, partlcul&rly in mathematics but also in other
fields. Many topics in mathematics at the secondary-school level are



appropriately considered algorithms but are seldom treated as such in
our curriculum. For example, a student typically encounters at least
six.different algorithms for solving simultaneous linear eguations in
the college-bound track of high school mathematies. But these approaches
are seldom treated as algorithms and the algorithmic character of the
approaches are not considered. The approaches are developed around a
limited set of mathematical principles, namely substitution and the

field properties. Students need to develop an awareness of the charac-
teristics which suggest the application of each of the particular

-~ algorithms in order to become proficient in.using each of these methods;

this is precisely one of the characteristics of algcrithms which needs
to be highlighted. Indeed, one might argue that the entlre set of
proéesses-for solving simultaneous linear equations should be collapsed
. into a single algorithm with th2 student making, for example, cholces
of a subroutine of determinants or substitution, depending upon the
characteristics of the equations. This is to say, in order to make
algorithmic decisions, the student needs 2n expectatlon of finding
algorithms within the mathematics he or she is doing. ‘An awareness of
the pervasive character of algorithms in mathematics is an important
first step to acquiring the zeitgelst facilitating creativity in using
computational devices. ' '

In summary, we characterize algorithmic thinking as requiring
three components. First, we would expect the child to make decisions
concerning the efficacy and efficiency of different algorithms. Thus,
we expect the learner to acquire an ability and skill in evaluation of
algorithms. Second, we would expect a learner-to be able to construct
algorithms. He should be able to decide whether a bit of mathematics
is an algorithm or not. Finally, the learner must acquire an expectation
of finding algorithms in the mathematics that he is doing. .

Other attributes of algorithmic learning and thinking might well
be described. For other topics in mathematics, mathematics educators
are quick to label as limited and imcomplete an instructional program
which does not address the higher-order objectives of the Bloom taxonomy .
The stress on evaluation, construction, and awareness 1s an attempt to
examine the teaching of algorithms in the sense of providing a complete-
ness to the set of objectives which are typically assoclated with
‘algorithms. The curricular orientation advocated above is directed
toward expanding the teaching of algorithms from the mechanistic limita-
tions of tightly designed behavioristic hierarchial strategies. The
prospect of a future characterized by ready access to machines buillt
around use of algorithmic processes makes At incumbent on mathematics
educators to direct the curriculum and curricular research to the more
difficult levels of goals and objectivesy ‘
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Algorithmic Processes for Cognition ' .

Jesse D. Parete

Tearning theorists<;2ve contributed much to the study of strategies
used by people when solving problem tasks. Often the subjects are
unaware of the precise strategies they are applying. These strategies>/
therefore, are like internal or psychological algorithms. This paper
reviews the literature which yfelds evidence that a great desl of human

behavior in problem-solving or information processing tasks- can be

studied as applications-of internal algorithms.
Such a pointﬂoffﬁiew is compatible with Piaget’s theory of develop-
ment. Piaget theorizes schematic structures which originate out of
our motor actions, building a lattice type pyramid of more elaborate ~ -~
and sophisticated behaviors (Piaget and Inhelder, 1969). This can (:
easily be studied in terms of formulating algorithms and ﬁiecing to= °©
gether groups of simpler algorithms to form more sophisticated ones.
Scandura (1971) has taken such an approach in his work. He has kept
his theory much narrower than Plaget's and refers to it as a "partial
theory". Scandurs attempts to explain certain behaviors in problem
solving as rule-governed behaviors«—From simple rules are build more
complex behaviors by development g%:iié:%;,or rules to act on the simple
rules. He calls such a rule & highex er rule. For example, & per- . .
son may have the rules for converting yards to.feet and feet to inches.
The combination of these two rules would enable the person to convert
yards to inches. The combination of the two rules would be an applica-
tion of the higher-order rule, composition of rules. He theorizes. that
whenever a problem requires a system of higher-order rules and assoclated
simple rules for solution, a subject who possesses such a structure will
apply it to the problem. To test his theory, Scandura and his assoclates
taught a group of subjects, ages flve to eight, how to use two simple
rules comparable to those described above.. Then each subject was tested
to ascertain if he would solve a problem requiring for its solution the
composite rule. Only one of the subjects was initially successful on
this type of problem. Next, Scandura taught the subjects,”using neutral
materials, how to combine pairs of simple rules. "In short, we taught’
them a decision making capability for determining whether or not they

%ad achieved the higher order goals" (p. 40). The subjects were then

taught three new pairs of rulesland given three»corresponding problems
which required the combination of the simple rules. All subjects who
had successfully learned the skill of combining rules were successful
on the three problems. - Because the three problems were different with
respect to all attributes except that they could be solved by the com-

. bination of a pair of simple rules, it couid be argued that the subjects

acquired an algorithm (higher-order rule) for this type of problem task.

,Scandura claims "that it has been possible to analyze a number of other,
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more complicated problem situations in Qery much the same way, inéluding
problems taken from Polya's pioneéring yet atheoretical discuss;dns of -
mathematical problem-solving" (Scandura, 1971, p. Lo). s

Scandura's. approach to studying problem solving ignores many other
facets of a very complex behavior. Most noticable is the role the
heuristics play in helping people solve problems. Miller (1960),
terming heuristics as insights which lead to plans about how to go
about solving a problem, incorporates this aspect of problem-solving
into a model which paraliels Scandura's. He conceptualizes the process
in terms of plans for solutions and plans for formulating or altgring
existing plans.  This broader scope allows for insights or heuristics
to enter a model for problem solving. The typical avenue for testing
such a theory is to program a computer to ‘act as if it possesses dif-
ferent types of insights associated with the observed human behavior.'
Miller encourages research in this area. ' ’

Johnson-Iaird and Wason (1970a) present the flow-chart for the
solutions to 'a reasoning task involving the conditional rule which
incorporates insights such as Miller ‘recommends that lead to solutions
actually attained by individuais. The problem tagk was developed by
, wason (1968). Subjects were presented with a set of four (or more)

- cards with a letter on one side and a whole number on the other. The

o task was to choose cards they wished to investigate (see what was on
the face-down side) to determine whether the rule, "If there is a D on
one side then there is a 3 on the other side", correctly described the
lettering and enumeration of the cards. Showing would be a D, K, 3,.
and a 7. The correct choice was the D card and the 7 cargi.O For ease

" of interpretation, think of the rule as "If P then Q",y with D on the
face of a card a P, and a 3 as Q. Any letter other than D, such as K,

 will be termed P (not P) and any number other than 3 will be termed Q
{not Q). Thus, the correct choices are P and Q. Subjects' choices in
order of peraeri choosing it are, (1) P and Q, (2) just P, (3) P, Q,
and Q, and (4) P and §. The preference for the P and Q choice is
attributed to a preference for searching for information to verify over
searching for information to falsify. (The only way to_verify this
rule is to check all possible falsifying cases - P and Q.) The
choice of oniy F results if a subject does not assume the converse of
the rule. The model to account for these choices is given in Figure 1 -
and incorporates three levels of .insight. It also accounts for changes
of insight which were observed by Wason (1969) attempting remedial
procedures with subjects:

All Ss will begin by placing.either p and q (0,1,2)
or only p (0,1,3) on their list of items to be tested.
There are then three possible levels of insight.. (In
explaining the model, the numbers in parentheses refer
to the different elements in the flow diagram and enabie
the reader to keep track of the behavior of a hypothetical
subject.) ‘
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No insight. Ss without any insight will select only’
these values because they alone could verify the rule (4,
5,6,7,10). They will test no further cards (4,13,14,16).

. Partial insight. Ss with partial insight will go on
.7, 40 place the remaining cards on the list of items to be
tested (4,13,14,15). Regardless of the initial selection,
P will be considered irrelevant because it could neither
 verify not falsify (4,5,6,7,8,9,10). An S, who did not
initially place q on the list, will do so now and select
it because it could verify. Thus an S with partial in-
sight will ultimately select p, q, and T. -
’ Complete insight. Ss with complete insight will
select p and @ and rejeet -9 because it could not falsify
(4,5,6,7,8,12). Since the question of complete insight
arises when S encounters a card which-Verifies the rule
it can accur in two main ways.- It may be gained during
the initial tests. But if S initially rejected the
converse, it may be gained after partial insight when S
is testing q for the very first time. However, an S who
initially accepts the converse and selects both p and q
should be much less likely to galn czomplete insight after
gaining partial insight. He would have no occasion to
retest q and hence could not take the appropriate path in
the flow diagram (from 6 to 7). (Johnson-Laird and Wason
1970a; p. 1lh) : . :

As mentioned earlier the aspects of the model discussed in the last
few gentences above compare favorably with the empirical data.

\The subjects in the above study were college students assumed.-to be
of high intelligence and well into the formal stages of cognitive
ggyelbpment. This fact led Johnson-Iaird and Wason to investigate the -
naturé of their subjects' behavior further. They carried out an experi- -
ment (Johnson-Laird and Wason, 1970b) to test whether the bias for =
positive confirmation (verification of the rule) could be overcome by
an instruction to falsify the rule as opposed to an instruction to
verify|it. This procedure was successful in bringing the group who
were aékgd to falsify the rule, to the proper insight needed for solution.
The instruction to falsify the rule apparently triggers a focus on the
information value of the negated consequent. ‘ '

If the subjects' behavior in the above experiment were interpreted
as deliberate and conscious, it would seem that the discussion hed
_ strayed| from the theme of "internal algorithmic processes." But Wason *
and Shapiro (1971) presented a similar sample of subjects with the same
task using thematic rather than abstract materials. The rule was stated,
"If I gb to Manchester, then I travel by car." Cards were prepared with
destinations on one side and modes of travel on the-other. 1In this case
subjecis had little trouble realizing which cards to choose to verify

the rule. Wason (1969, 1971) speculates that the subjects working with
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the abstra::\haterial exhibit behaviors characteristic of earlier stages

of development. The implication is that the subjects rotely call upon

old strategies (in this case inadequate ones) to deal with a problem

they are unable to consciously and logically solve. Wason expands on
this notion, "regression in reasoning", in his 1969 paper:

The concept of cognitive regression is speculatiye.

It is important to be clear about what it 1s intended to
mean in the present context. It does not necessarily imply
that the subject 'goes back in-time! to a mode of thinking
characteristic of an earlier stage of development. It

- implies only that certain salient features of earlier modes
of functionlng are still available, and are substituted for
more sophisticated modes of functioning to cope with an '
unfamiliar problem (p. h80) -

This 1nappropr1ate and regressive mode was maintained by the subjects
as a reasonable strategy even in the face of contradicting evidence.
These subjects were apparently applylng an algorlthm in a very rote
manner.

Hans Furth and his associates (Furth Youniss and Ross, 1970)
demonstrate this very same phenomenon with young children in their.
experiments. In their initial experiment they analyzed school children's
responses to. $1X concepts; the children were in grades 1 to 6. The

six concepts formed ". . . can be designated S°C, 5'C, S*CT and SvC, SvC,
SVC; where S and C stand for affirmation of the two attribute classes
shape and color, respectively; = negation; ¢ conjunction; v - dis-

Junction" (pe 39) " The testing procedure consisted of the'presentation
of one concept together with a pictorial representation of the four
posgible instances; the 1nstances deplcted the presence or ‘absence of
the.two attributes "shape" and "color",

~On the basis of the chlldren's‘respouses, Furth was able to define
three distinect behavior patterns. One group of subjects consistently
answered "true" to cases where both attributes' positive values were
present in the pictorial instance pattern and false when both were
absent whether or hot they were exemplars or nonexemplars of the concept
being tested; they answered randomly with the other cases. This "level
1" group's behavior is dominated by an "attribute present factor."

The second group, 'level 2", showed a consistent type behavior
which implied that they dealt with a relation of logical truth. But in
the cases where the attributes' truth values relative to the instance
pattern and the concept were true-false (present-absent) or false-true
 (absent-present), these subjects answered randomly. Level 2 1s much like
a transitional stage; it leads to the total capacity to combine instance-
presence or absence with a truth value consistent with the concept
represented. Level 3 subjects exhibited this ability.
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" (Dodd, Kinsman, Klipp and Bourne; 1971; Bourne, 1970; Bourne and Guy,

_ tasks. To explain these transfer effects Bourne presents the followin

* . which is hest described as an intuitive version of the logical truth

Furth's next experiment was performed with the same children and two
new concepts, negation of conjunction (S¥C) and negation of disjunction.
(svC). The results revealed a dramsatic regression in performance.'
Subjects at level 3 now consistently performed at a level 2 type behavior
and subjects previously at level 2 regressed to a level 1 style of he
behavior. Thus Wason's speculation is once again demonstrated.

Tt is also quite interesting that the subjects could be sorted
into three levels of behavior. These could quite easily be taken as a
hierachy of the processes a subject must perform in dealing with such
a task. Level 1 subjects can handle only the primative first level of
this hierarchy while level 2 subjects are able to handle the next step .
in certain cases. If this were the case, manifested is a concise
developmental pattern for the acquisition of a 'psychological algorithm'.

~ The "rule learning" experiments conducted by Bourne and his col-
leagues supports the above analysis of -Furth's experimental results

1968a and 1968b; Haygood and Bourne, 1965). The four primary logical
connectives, conjunction, disjunction, conditional and biconditional,

1id

form the rules in these experiments. e

Bourne (1970) found sizable general positive intrarule and inter-
rule transfer effects in.subjects exposed to sequences of rule learning

analysis of the subjects' behavior: .

, Reléfént Truth .
Stimulus Attribute - Table ‘Conceptual
Patterns Combinations Classes Category

S, : A S R,
Sz Az ZIZZZ;> TF
. - S FT R.
. . FF

/ : : '
Sn Ay

Figure 2. An analysis of the acquisition of a truth
teble strategy (Bourne, 1970, p. 552)

"Tn the course of multiple-rule learning, Ss. acquire a mode of responding

table" (p. 552). The steps to achieving the the truth table strategy
are identical to the levels Furth defined in his study. Bourne theorizes
it is this model (Figure 2) which accounts for the intrarule learning
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/ transfer. The first step seems trivial; it is from stimulus patterns
] to recognition of the relevant attributes combination. In the Furth

A study, this step dominates the ultimate behavior of the level 1 children.
' Bower and King (1967) ‘also demonstrate that this process cannot be taken
for granted even with adult subjects. )

The follOW1ng model is presented to explain the addltlonal 1nterrule
transfer effects found in Bourne's study (1970). :

( PROPOSITIONAL CALCULUS)

R* R5 «vev Bi «eeo Rig RULE IEVEL (R)

(DlSJUNCTION)_

CLASS CONCEPT
LEVEL (C)

"OBJECT OR

4
J
s . SYSTEM,LEVEL (s) S
' EXEMPIAR ‘LEVEL

ATTRIBUTE IEVEL (a)

Figure 3. A structural, hierarchical model of
concepts (Bourne, 1970, p. 555)

In this model, Bourne breaks down the structural heirarchy to which an
individual in the rule learning task must react. The "System Level” is
one step beyond the apparent mode of responding given in Figure 2.
Given in Table 1 are the -sixteen unique bidimensional partitions of a
stimulus population formlng the calculus of propositions and the basis
for the "System Level".
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Table 1. Sixteen unique bidimensional partitions of a stimulus
- population forming the Calculus of Propositions .

i

(Bourne, 1970, p. 554) y
R . . ’ o /{1
Truth-table partitions -

" class .. A B CDUE® P ¢ HIJKXKILMDNDO
T B T T e S B R T e I
- TF L T T T T e R S
FT + + = o+ =+ =+ = - - - -
FF + =+ + 4+ = =t = dm = = 4+ -

The source of interrule transfer can be traced in part
to the acquisition of the general strategy, the truth table,
which is recognized (despite its simplicity) as a powerful
deductive problem solving device for problems.based on the
primary bidimensional rules. Rut the truth table is more.
general than that.- As seen in Table 1, it can be applied
with equal utility to all 16 rules within the calculus of
propositions. It ylelds a solution in the same number of
"steps and on the basis of the same information - one instance
‘of each truth-table class - in all cases.

This suggests that in some sense S has learned not
just the four primary rules (if he has learned them at all
as specific individual ca§es), but the full conceptual
system of rules - the entire calculus. He knows how to
solve problems based on any rule within the system. He
has encountered and solved a series of problems exemplifying
a small-set of rules, .and from that experience he has learned
a more general conceptual system. Just as the objects are .
positive instances of a‘class concept and clags concepts are
positive instances of -a rule, the rules can be sald to be
positive instances of the system. (Bourne, 1970, p. 554)

'~ The data Bourne has collected (Bourne, 1970 and Bourne and Guy,
1968s) support this theory. Performance on a new rule is a direct
function of the number of different rules encountered. during earlier

tasks. The implication 1s that subjects acquire the simple yet powerful

problem-solving strategy outlined above. The concise hierarchical
structure of this strategy suggests that a large portion of this behav-
jor is algorithmic. Subjects do not consciously formulate the calculus
of propositions. It must be acquired -through the acquisitions of the
pehaviors learned in accordance with the hierarchy model.

Much of the work in the rule learning stems from Bruner's study
of concept attainment (Brumer, Goodnow and Austin, 195€). Bruner's
experimental task allowed subjects to choose- attribute cards to dis-
cover what attributes were used to form a specified conjunctive or
disjunctive rule. He classified the subjects' behaviors into "focusing"

33

PRI it
/ (’.‘3 u_?




strated that by manipulating variables such as time for solution,
cognitive load and subject matter content, he could get the subjects
_to shift strategies depending on the situations. 1In his work there is
abundant evidence for the contention that reasoning or problem-selving
involves algorithmic strategies. v

type strategies for locating the relevant attributes. He also demon- . |
|

~ Iaughlin and Jordan (1967) further studied the focusing strategy
phenomenon discovered by Bruner.kg&y varying the number of relevant .
attributes (2 or 4) in conjunctive’; disjunctive, and biconditional
concept-attainment problems, they were able to discern systematic shifts 1
in strategies by the subjects. This then is additional evidence that -

these strategies exist as part of human psychological and mental processes.

The literature thus far concerns cognitive structures referred to
as psychological algorithms which influence thought behaviors. The
rest of this discussion will review that literature which gives evidence
that there is a separate language processing mechanism which equally
influences those behaviors in problem-solvihg tasks.- Ithas Vygotsky
(1962) who first proposed that two separate yet dependent systems of
language and logical reasoning are developed-in people.//The recent work
of the psycholinguists Chomsky (1965), Gough.(1965), Cldrk (1969), and
Sherman (1973) tend to support Vygotsky's theory. '/ .

- It is with the negative operator that researchers have found con-
siderable language-cognition interplay between development and use of
negation. Eiffermann (1961) noted that the English word "not" has both
a conmnotation of prohibition and denotation of negation: she took
advantage of a double formulation of "not" in the Hebrew language. In
Hebrew there are two forms of "mot": (1) "lo", which is used in all
contexts as the English 'not" is used; and (2) "egno", which is restricted
"to use in all contexts except to express prohibitipn. One form, "lo",-
carries the full connotative and denotative'impacﬁpof the English "not"
while "egno" is similar to the negation operation. Eiffermann's study
demonstrates that subjects processed information from sentences using
"egno" more correctly than with sentences using,"lo" to express negation.
The processing of "lo" appears to be more complicated than that of "egno".
One possible explanation is that the affirmative information in the
sentences is processed separately from the negative operator (Gough,
1965) in both cases; however, in the "lo" case an additional process
must take place to match the connotative or denotative interpretation
to the context of the sentence. The point is that a language variable
has added to the difficulty of using the negative operator.

Wason and Jones (1963) add support for the above anglysis. Two
groups of subjects were given the task of interpreting sentences using
negation. The first group used sentences constructed with.ordinary »
English using "not" for negation. The second group was trained to use
two neutral signs (MED and DAX) which stand for assertion and denial
of events. During a practice trial of the task the correct use of the
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.symbols was taught by feedback, ("That's correct/incorrect."), to con-

trol any transference of connotations attached to "not" that might have
resulted from verbal instruction.

The results were the game as those-‘obtained by Eiffermann. The
evidence supports intuit;vé claimers that linguistic usage influences
the application of & logical operation; but, more importantly, the
evidence can support the idea that there are structures which deter-
mine human reasoning behaviocr. ' : :

influences is a difficult ogeration (Bruner, 1956; Wason, 1959 and
1961; Wason and Jones, 1963j and Furth, Youniss and Ross, 1970).
Sherman. (1973) describes how this difficult-to-manage operation has
influenced the development language; he also gives additional evidence
for the theory of a linguistic processing mechanism separate from the
logic structures. His study deals with the negative prefix "un", as
in "unmenageable". Consider the following sentences: (1) He was not

It has been estaBlisheg that negation with or without extraneous

certain that she was not happy, and (2) He wag uncertain that she was

unhappy. The second sentence communicates the negative information
with less strain than does the first. Shermen's results verify such

a prediction. Reasons for the difference can be formulated by the
linguistic theories presented by Gough (1965) and Chomsky (1965). The
first and most easily interpreted semantic meaning processed by a
"hearer" ‘is the "base string" of the sentence. A basge string is made
of the syntactic variables of subject, verb, and object. There are two
base strings in the first sentence: "he was certain" end "she was
happy'. A transformation must be effected to obtain the full semantic
meaning, In the second sentence the negation is tied to the words of

_the base string: ‘"uncertain" and "unhappy'. The first sentence re-

quires a transformation which reverses the meaning of a sentence, while
the second sentence involves a word reversal meaning accomplished by
the negative prefix "un"., "The reversal of work meaning (caused by un-)
is psychologically less complex than the reversal of sentence meaning

‘{caused by not)" (p. 82). He speculates that the use of "un" was in-

vented in language to deal with the cognitive strain of megation. This
points up again the interrelationship of language and cognition. He
also points out that "the results support the view that the language-
comprehension mechanism is not a neutral device, responding with equal
facility to all inputs, but, rather, that it is 'pre-set' to process
certain inputs more quickly and accurately than others" (p. 81). Gough

. and’'Chomsky's theoretical formulations of this phenomenon were partlally
- explored above. Other researchers involved with various other aspects

of negation which lead to similar conclusions are Wason (1965), Green
(1970), and Johnson-Laird and Tridgell (1972).

Tn an application of Chomsky's linguistic theory, Clark (1969,
1970) applies the "base string" information-processing idea to give
insight into children's management of problems which involve the transi-
tive relation. He sights Piaget's discussion of children’s reactlions to
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the following problem: ° "Edith is fairer than Suzanne, and Edith is
darker than Lili." Responding to the question of which is the darkest,
children ages 8 to 10 answered "Lili". Piaget's intuition helped him
analyze the situation to come to the same conclusion as Clark using the
.linguistic theory to guide him. Both conclude that the children pro-
cessed the base strings consisting of "Edith and Suzanne are fair" and
"Edith and Lili are dark". Therefore, the children arrived at the
solution that Suzanne is fair, Lili is dark and Edith is between the
other two. Piaget (1928) states that, rather than tackle "the matter
by means of judgments of relation, i.e., by making use of such ex-
pressions ag 'fairer than' etc., the child deals simply in judgments

of membership, and tries to find out with regard to the three girls
whether they are fair or dark (speaking absolutely)." (p. 87). From
this Piaget inferred that the children were deficient in relational
thinking. The point is not whether they are deficient or not, for cer-
tainly they did not solve the problem successfully. But, rather, the
Guestion remains whether the children failed because of a lacking cogni-
tive structure or because of the domination of a linguistic processing
mechanism. Clark and other.psycholinguists, as mentioned earlier, hold
.the opinion that the base string information is the easiest and the
guickest semantic information processed by the brain (Clark, 1969;
Gough, 1965; Chomsky, 1965). Perhaps the principal. causes of the
children's use of only the class membership information was the linguistic
processing mechanism coupled with an over-load of their memory facility
which inhabited further processing.

_ The theme throughout this discussion has been to demonstrate that
there are systems of cognitive processes that act without the conscious
deliberation of the individual. The last sections present research
which shows that these systems interact with each other. This fact
complicates the study of any one of these systems. TFurther work is
certainly needed in investigating these systems, but there is even a
grea’.er need to investigate the consistent mappings from one system to
the other. This latter approach may also yield valuable information
about the individual systems which have been referred to as algorithmic
processes. ‘
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Algorithmic Learning and Hierarchies

Paul H. quniak

Introduction

- Algorithmic learning may be thought of as hierarchical in nature
in many aspects.. In a report of a study on a mathematical topic, Gagne,
(1962), perhaps the leading proponent of a "hierarchy of ‘learning",
refers to algorithmic learning as an ordered collection of specified
intellectual capabilities. Subordinate skills are prerequisites for
the final task. More specifically, some of the assumptions of his
theory are given in an earlier article (Gagne, 1967b): \

(l) Any human task may be analyzed into a set of component tasks
which are quite distinct from each other in terms of the experimental
operations needed to produce them. . S

(2) The task components are mediators of the final task perform-
ance, i.e., their presence insures positive transfer to a final perform-
~ance and their absence reduces such transfer to near zero.

(3) The basic principle of design consists of (a) identifying the
component tasks of a final performance, (b) insuring that each of these
component tasks is fully achieved, and (c) arranging the total learning
situation in a sequence which will insure optimal mediational effects
from one component to another.

The learning of algorithms has been criticized for its dependence
on memory and rote practice. In his theory, however, Gagne .clearly
makes the distinction between memory and mastery of subordinate
competencies. Briggs (1968), in a.review of the literature on hier-
archies, gives an example of memorizing the Spanish equivalent of 100
different English words. He points out that the order in which the
student memorizes the list may not matter. Whatever the sequence, the
student will need several trials to master this task. .In this case,
it is not order of presentation which is important; learning depends
on amount of practice (whole and partial list) and feedback. But if a
student is te, say, solve linear equations, presentation and sequencing
of instruction is different. Hopefully, when the student is to learn
to solve linear equations (or many other kinds of algorithms), he is
not merely presented with ‘s, nunber of completed equations to be mastered
in the hope that he will learn how to solve them. Put another way, the
student is not to memorize these equations and their solutions. Rather,
he is to master first all the subordinate competencies it takes to be
able to solve any equation of this tyvpe.
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Qagné and Paradise (1961) looked at Jjust this problem and concluded
that $ubordinate competencies, unlike the memorizing exemple above, must
be taught in a particular sequence (with options within layers of the
hierarchical structure). They are taught not necessarily by direct pre-
sentation of parts of specific equations, but by supplying certain
instructional events, materials, and exercises which lead to mastery of
subordinate skills. This kind of learning is called by Gagné and
Paradise "productive" learning to distinguish it from "reproductive"
learning like the example of memorization. . . »

Attempts at building hierarchies in different subject areas were
the focus of much research. But as Briggs, (1968, p. 12) points out,
in order to look at hierarchical structures we need to have objectives
stated in behavioral form, not content form. Hence mathematics and
science lend themselves to hierarchies, while subjects such as history

and sociology do not.

TFrom this it is clear that many of the important studies on hier-
archical learning have led naturally into the study of algorithmic
learning in mathematics. We will presently look at some of the factors
involved with building hierarchies, with variations of the process, and
with the efforts to substantiate their hierarchical nature.

Generating Hierarchies

Thg.generating of the hierarchy to achieve a final task can take
different forms: tgacher-generated, pupil-generated, or combinations
of these. A common pattern is suggested by Mechner (1967)

(1) specification of behavioral objectives

(2) analysis of the subject matter in terms of component
descrimination and generalization

{3) sequencing of those components for effective learning

The last two steps combine to form a procedure known &as task analysis.
According to Walbesser and Eisenberg (1972, p. 22), one of the best
known forms of task analysis is one described by Smith (1964). To
begin, the designer asks, "What must the learner by able to do if he

has been told to perform a task, but has been given.no specific training
in the task?" This kind of questioning organizes the given task into
components that resemble the following: '

L1
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First
Level k ‘ :
‘Components | . /

Second
Level . !
Components ' ,

In effect then, the analysis starts at the "top" of the pyramid to
determine what skill(s)-are needed to perform the final task. These
are the first-level components and are considered to be the final sub-
ordinate skills needed for attainment of the final task. The designer
of the hierarchy must ask about these first-order components to ascertain
what prerequisites are needed for their attainment. These prerequisites
form the second-level components. This process continues until a point
is reached at which- the student may begln with his present skills.

As Walbesser and Eisenberg obser"" (1972, p. 23), the application
of a task analysis procedure dees not guarantee an "effectlve" sequence;
it merely produces an hypothesized sequence that may succeed. Each task
analysis generates a "best guess" sequence with respect to the author's
‘experience. The extent to which learners are able to perform the final
‘task after the sequence is one measure of the validity of the hierarchy.

To Smith (1964), an acquisition level: of 85 per cent for the final
task is considered desirable. In the work of Gagné and his a33001ates,
a 90 per cent acquisition level is usually sought.

The task analyses described above are developed by the instructor
of the sequence. An alternative method which has been researched is

in the area of student-generated hierarchies. ?his approach can lead
to alternative algorithms appropriate for varied types of learners.

Lo
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Mager (1961) wanted to see if student-generated hierarchies would

be similar to instructor-generated sequences, and, if mnot, how would

they differ. The experiment dealt with the learning of certain aspects

. of electronics. To generate the hierarchy the instructor only responded

to those questions that the students asked. He did not initiate any
instruction. The sample consisted of six adults. Two of the findings
from the experiment were: T o :

(1) léarners start out asking questions on different toplcs
than those followed in a general text.

(2) initial interest is on the concrete (how) rather than
on the theoretical (why).

' The results tended to indicate that the sequence generated by the student
- himself is more meaningful than the sequence given by the instructor or

the text. : :

'

The findings of Magérvwere substantiated by a study by Kaplan (196H).

_The design was similar to Mager's. The subject matter was "vectors".

The teacher again only responded to pupil-generated questions. Kaplan
found that students moved from the concrete to the abstract, there was’
greater commonality of questions at the outset of instruction, ard all
students had some knowledge of the subject.area regardless of how naive

" they claimed to be.

~ A fundamental question may be asked then: Do teachers, following
textbooks, provide a sequence of instruction most meaningful to the
student? As Briggs (1968, p. 30) points out, the experiments such as
those cited above have something to say about motivation, interest,

-gelf-direction, and the importance of the student organizing information

for himself. Hence in an algorithmic learning situation it may be more
beneficial for the students tq become more involved with the actual
building of a hierarchical structure for a topic, be it a specific algo-
rithm or other concept. In térms of a specific algorithm, the teacher
may be better off to ask questions like "What would we need to know to -
do . - 7™ --instead of, _"Thi_s,\ is what to do."

Another study in this area was one by Campbell (1964) using pro-
grammed instruction. He wanted to compare the effectiveness of programmed
instruction (developed by “the instructor) with student self-direction.

He hypothesized that student self-direction was superior to programmed
instruction. Two factors were stressed: (1) meaningfulness of materials
to the learner and (2) motivation. Camrbell believed that when problem-
solving techniques are needed for highly structured material, small-step,
fixed-sequence programs could interrupt the students line of thought.
Also, he thought, the student 1s his own best judge of when an idea has
been grasped, and thils judgment is more easily exercised under self-
direction than under programmed instruction.
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of several subject-matter areas sampled in a series of experiments, T J
the only swgnlilean+ differences favoring self-dlrectlon over programmed Rk
" instruction was for mathematics and that difference occurred only after
coached practice in self-direction. The self-directed group was provided
the following materials: (1) a short basic text, (2) supplementary
examples and explanations, (3) self-testing questions, and (4) a two-
page outline of the entire lesson. The programmed group used a linear
program, self-paced. According to Briggs (1968, p. 29),. since students
benefited from coaching in the use of self-directing materials, it is
possible that more prolonged use of self-direction methods without
coaching would be needed for the superiority of the method to appear.
Those who used self-direction with most benefit tended to be the better
achievers among the students.

" Parker (1973) also looked at, as part of a study, the problem of
teachEregenerated versus learner-generated task analyses in mathematics
and science in terms of terminal objectives. Four programmed texts were
developed from two dlfferent hierarchical arrangements of the subject
matter: (1) a Cagné hierarchy and (2)'a pupil hierarchy. These two
hierarchies were then developed into two other texts which randomized
the sequence of instructional units for the Gagne and child téxts. Upon
completion of the learning materials, subjects received an immediate
posttest and weeks later a delayed posttest. The results showed no
significant differential effects in learning final terminal objectives
with dlfferent generation of hierarchies and sequencing of subordinate
tasks.

Shriner (1970) and Seldl (1971) investigated the question of whether
students of different ability levels would generate different learning
sequences. The subjects for both studies were 24 early childhood
elementary majors at the University of Maryland.. Twelve high- and 12
low=-ability students were determined by quality point average and rank.
They- were asked to build a hierarchy on the study of 2 x 2 matrices.

‘One of the conclusions was that there were no significant differences
_between the learning sequences generated by high-and low-abllity
students.

The basic hypothesis using a hierarchical scheme of .instruction is .
“that subordinate skills are prerequisites for the attainment of the
terminal task. According to Briggs (1968, p. 41-42), in one of his
- earlier works on this subject, Gagne (1967) ‘theorized that lower=order
skills serve as mediators of positive transfer from lower-level com-
petencies and effects of instruction. At the very bottom of such
hierarchies may be found either the entering relevant competencies
brought to the course from prior learning, or very basic abilities
identified as such. :

Tn reference to the abilities at the bottom of such hierarchies,
Gagne theorized that if learning programs were of perfect effectiveness,
everyone would pass all the component tests in the hierarchy; the
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variance would be zero, and all correlations of tests on the various
competencies with basic abilities would also be zero. But if learning
programs are not perfectly effective, the probability that a person will
acquire each competency,will be increased to the extent of his score

on a test of basic ability. To this critical hypothesis we now turn.

Subordinate and Final fasks

A/number of studies pertaining to the construection and testing of
behaviodral hierarchies-have been conducted by the University of Meryland
‘Mathematics Project in conjunction with Gagné. In one of these studies,
Gagné and Paradise (1961) analyzed a final behavior represented by con=-
structing solutions to linear algebraic equations. First a learning
hierarchy was constructed by a task analysis procedure. The procedure
identified three immediate subordinate behaviors.. The analysis was then
repeated on each of the three subordinate behaviors and yielded a col--
lection of subordinate behaviors to each of the three successive itera-
tions, producing a learning hierarchy of twenty-two behaviors subordinate
to the terminal behavior and arranged in five levels. The study was )
designed to test the hypothesis that the acquisition of a terminal
behavior depends upon the attainment of a hierarchy of subordinate
behaviors which mediate positive transfer from one behavior to the next
in the learning hierarchy and eventually to the terminal behavior.

A learning program was then constructed to teach. students how to
solve linear equations. The progrem was divided into elght booklets;
students were given one booklet each day for eight days. Three per-
formance measures were administeéred upon completion of the program:

(1) 10. equations similar to those in the program, (2) 10 transfer type
problems, and (3) attainment of each of the 22 behaviors in the hlerarchy.
There were a total of 118 subjects in four seventh-grade classes from

two schools. The results showed validity estimates for the hierarchy
ranging from .91 to 1.00, which supported the hypothesis that there was
positive transfer to each behavior from relevant subordinate behaviors.

Briggs (1968; p. 4k4) points out that the authors recognized that
other persons, especially proponents of "modern mathematics", might
derive quite different hierarchies. —It is not, however, a matter of
there being only one "right" analysis; rather, the purpose if to find
empirical "validation" for the method in terms of the hypothesis to be
tested. iy ‘ ' ’

: Gagne, Mayor, Garstein, and Paradise (1962) built a hierarchy
around the addition algorithm and extended the previous study to look
at another variasble besides the one on acquisition of subordinate skills.
Specifically, the purposes were (1) to find out if a final behavior
(adding integers) depended upon the attainment of a hierarchy of sub-
ordinate behaviors, and (2) to investigate the variable of recallability
of relevant subordinate behaviors and the integration of these behaviors
into the solution of a new and different task. '
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The integration variable was studied by systematically varying the
. amount of guidance provided to.the learner in leading his from one
behavior to another. Repetition of previously developed behaviors was
used to study the effects of the recallability of subordinate behaviors.

There were two tasks prescribed: - (1) the addition of integers
themselves and (2) formulating a definition of the addition of integers
for specific.numbers using the necessary properties.. Analysis of the
two tasks yielded a hierarchy of fourteen behaviors at six levels.

The study was conducted with 132 students in four seventh-grade.
classes from two schools. High- and low-ability students were identified
by previous grades of the school year. Four combinations of instruction
- were formed: high guidance - high repetition, high guidance - low
repetition, low guidance - high repetition, and low guidance =~ low
repetition. ’ s

The instructional period was four days. There was a performance
test on the addition of integers and a -transfer test on subordinate
skills of two questions on each skill. In order to pass on a particular
skill, both guestions had to be answered'correctly~ .

Validity estimates ranged from .y( to 1.00 providing support for
the initial hypothesis that acquisition of each behav1or is dependent
upon mastery of subordinate behaviors.

On the second purpose, there was no overall significance on the
four combinations of high-low, guidance-repetition. The only signifi-
cdant difference was shown on the superiority of high guidance-high
repetition over low guidance-low repetition on the task of stating a
definition for the addition of integers. However, no significant
difference was found for the task of adding the integers themselves.

' Commenting on this particular experiment, Briggs (1968, p. 45) suggested .
that these results may imply that if moderately good instruction is
provided in the proper sequence, as compared to instruction not so
.ordered, the effects of this may overshadow other qualitative features

in how material is programmed. This, he says, may account for the
frequency of "no significant differences" findings in research designed
to isolate "style" aspects of programming.

- Still another task in mathematics was analyzed into .a hierarchy
by Gagné and the staff of the University of Maryland Mathematics’
Project (1965). The task in elementary geometry consisted of "specifying
sets, 1ntersectlon of sets, and separation of sets, using points, lines,
and curves.” In this study, the importance of sequencing of topic order
was again noted in terms of the number of instances confirmed of hlgher
competency acquisition dependent upon the cquisition of those lower in’
the hierarchy. According to Briggs (1968 p. 45), however, the variables
of (1) variety of examples during learnipg and (2) passage -of time be-
tween stages of learning, had no effect jipon the learning effectiveness

of the progran,
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. Despite the above negative findings in regard to programming style
variations (e.g., variety of examples)-and their effects upon task
acquisition, it was thought desirable to measure retention of knowledge
of the same students. In a follow-up study, Gagné and Bassler (1963) -
measured the retention of students both on total task and on each com-
ponent subskill nine weeks after the learning. . The retention for the -

" entire task was Very high except for one group whichfha& previously
received a naxrow variety of examples in the learn’+g program. The
level of retention, overall, ¥anged from 108 percent to 128 percent.

In contrast, the level of retention for. subordinate competencies ranged
from 60 percent to 88 percent indicating that individual skills are

much more susceptible to forgetting than the performance on a task as

a whole. According to Briggs (1968, p. 45), this difference in retention
of the part-skills need not have been learned in the process of learning
the whole skill, because the contrary was shown to be-the case in the
original acquisition data. : )

From the practical point of view of maintaining ability to perform
this terminal task, the forgetting of the subskills which originally
aided in mastery of this task is of no importance, as. these learners
retained (or even gained) competency on the task as a whole. But if
some of these same subskills are .needed for new tasks to be learned

, - later, this loss in retertion of subskills in important and deserves

““efforts to prevent it. Hence remedial work on the subskills could im~
prove learning of related tasks later. :

Not all of the research findings are in agreement with Gagne's
point of view. Studies by Anderson (1967) , Merrill (1965), and Campbell
(1963) are some that have challenged his contentions, Anderson stated
that the notion of hierarchies as dealt with by Gagné and his assoclates
cannot yet be said to be definitely tested.. He cited two reasons for
his statement: _ T .

(1) - that the correlational type of analysis employed by’
Gegné is not sufficient evidence of the hierarchy
notion, and

(2) an experiment by Merrill (1965) had resulted in
‘ findings contrary to Gagné's hypothesis concerning
hierarchies. ‘

Merrill teésted the basic hypothesis that learning end retention of
a hierarchical task are facilitated by mastering each succesdive com-
ponents of the hierarchy before continuing in the instructional program.
Merrill insured mastery by channeling a student who erred on any partic-
"ular component into aatwo—stage'correction/review procedure. - The
results of his study seem to indicate that it is not necessary to master
one level before proceding to the next.

'Despite studies such as Merrili's, most of the research supports
Gagne's initial hypothesis on hierarchies. '
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There is also some questlon abo t ‘gequencing order. . According to
" Heimer (1969, p. 502), the research literature contains a number of
studies about the effects of scrambling "ordered" sequences, but the -
purposes of these studies have not alwa¥}s been clear and thelr overall
results have not been conclusive. :

Roe, Case, and Roe (1962) reported a comparative study in which a
Tl-item program on elementary probability wa) presented to two groups;
--one group received the program in its normal ‘ordered. form, and one
received a scrambled version of it. A criterign test was administered
to each student immediately upon completion of %{he program. There were
no significant differences repoxrted on time required for learning,
error score during learning, criterion test scorej) or time required for
criterion test. However, in a subsequent study, Roe (1962) reported
contrary results with an extended version of the probability program
mentioned above, in which a random-sequence group performed significantly
worse on learning time, errors made durlng learning, and on post learning
test scores. Roe (1962, p. 409) concluded that "careful sequencing of
items has a significant effect on student performance, at least for
- programs of some length and complexity.'

Payne Krathwohl, and Gordon (1967) hypothesized somewhat the same
thing, i.e., the larger the size of the unit, the more detrimental
" scrambling will be. They further hypothesized that the more internal
logical development a particular sequence had, the more detrimental a
" scrambled sequence would be. Their experiment consisted of three pro-.
grams which varied in logical interrelatedness from low’ to fairly high.
Both immediate and delayed retentlon tests were administered. The
hypothesis was not confirmed by the results.

. Pyatte (1969) argued that the lack of more information about the
effects of sequence changes on variables such as achievement, retention,
and transfer could be attributed in part to a neglect of clear specifi-
cation of what an ordered sequence of materials is to be, This lack
makes it impossible to decide whether a sequence purported to be ordered
does meet this condition, and whether a scrambled version of the sequence
fails to meet it. In an attempt to follow up on this idea, Pyatte (1969)
conducted a study in'which he defined an ordered sequence as structured
or hierarchical. Assuming that in the hierarchy each level provides
positive transfer to the next level, as Heimer argues (1969, p. 503),
Pyatte considered the extent to which positive transfer was acting
within & program as a measure of the extent to which the program was
hierarchical, and hence ordered. His study was designed to provide a
check on the effectiveness of the instructional materials, to provide a
check on the ordered (structured) materials by examining the differences
between these and unordered (unstructured)_materials, and finally to
test the hypothesis that no differences in achievement or transfer
would be found between students taking the structured materials and
those taking the unstructured materials:. .
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. Pyatte reported that both versions of the instructional unit were
judged effective ~ the structured unlt was judged to have the defined
structure, not; and the constructured unit was judged not to have it. No
significant differences were found between "the means on achlevement or
transfer for students taking the structured or unstructured unit.
According -to Heimer (1969, p. 50L4), among the statistically significant
findings of the study was evidence that students of high basic ability
reach higher levels of achievement and transfer knowledge than students

- of low basic ability, Tegardless of mode of program. .

In concluding his analysis of the study, Pyatte (1969) stated that:

the effects of sequence on learning measures should at
this time be abandoned in favor of attenipts to write pro-
grams which conform to a defined pattern and to develop
the appropriate tools for testing these programs.
Having batteries of such well-defined programsj one would
then be equipped with the requisite tools for answering
questions about the type of program and its effects on
such measures as achievement, retention, and transfer.
(p. 260) '

Alternative Hierarchy and Teacher Strategies

The University of Maryland Elementary Mathematics Inservice
Program (1967, 1969) continued the series of hierarchy investigations
with the analysis of an extensive learning hierarchy on arithmetic
operations. Conventional task analysis was not employed in generating
the hierarchy, according to Walbesser and Eisenberg (1972, p. 43).
Rather, an ordering of clusters of three hypothesis of  learning depen-
dency were structured by number systems moving downward from rational
rumbers, to integers, then finally to whole numbers. Diagramatically
it would look like:
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Constructing an explanation of
algorithms with field proper=

3) i ties for a given operation and
' .number system. )

- I T -
Constructing an explanation | - Demonstrating the algorithms
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ferent from the one named in
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from the other behavior. = -

'-,’*..

Demonstrating an algorithm for
1) a given operation and humber
system. ’

Demonstrating an algorithm for
a given number system different

The Demonstration Phase Report (1967, p. 4) suggesﬁs that the

"terminal task of the algorithm hierarchy is actually a triple of be-
haviors that the teacher will be able to ¢xhibit after being exposed

to the algorithm's instructional sequence. The three behaviors which
constitute this terminal task represent the de31red instructional out-
put of the. subogggggjgiﬁequence. /

As seen in the diagram, the first part of this triple (lower
portion) describes a similar activity of elementary teachers--the
literal demonstration of the procedures of an algorithm with no ex-
planation of how or why it works. Unfortunately, as is well known,
some instruction in algorithms at the elementary or even secondary
level never proceeds beyond this mechanical level.

The second part of the triple (middle portion), describes the
activity explaining how an algorithm works by relating the explanation
.of each procedure to observations of physical situations. This is
another familiar activity of the elementary teacher when teaching an
algorithm, according to the Report.

1 . - ’

from the terminal objective, -4 P .\‘NxNR




The third behavior (top porticn); explaining the procedures of an
algorithm by means of the rules of some "convincing game", represents
those behaviors more chara¢teristic of a contemporary mathematics
curriculum with its appeal; to the field properties and mathematical
structure. This third-behhvior is one which the elementary teacher has .
most likely not acquireéd and ye€t, in many weys, it is the most critical ey
to successful instruction in elementary mathematics today if learning ‘

is‘tq go beyOnd”iote memory of the algorithm presented.

The subordinate behaviors in the algorithm's hierarchy, as shown
in the diagram, reflect this same triple of constructing and demon-
strating behaviors, but are associated with a particular operation within
a specified number system. The final task -differs from the subordinate
ones in that any algorithm could be presented to the teacher and he or
she would be expected to be able to exhibit the specified behaviors
without instruction. :

Subordinate to the algorithm hierarchy behaviors are the convincing
game rule behaviors. According to. the Report, the behaviors assoclated
with the identification and naming of the field. properties are developed
in the context of game rules for two reasons. First, gémes. provide a
vehicle for identifying the properties in a setting which promotes in-
dividual investigation and immediate application of the identified rules.
And second, the weparture from ‘e’ formal mathematics presentation to a
game presentation reduces the anxiety which frequently accompanies math-
ematics instruction for the elementary teacher.

Summary and Concluding Remarks

Tt is evident that much research and study has been done on hier-
archies and their implications. In an algorithmic learning situation,
hierarchies have been looked at, first of all, from the point of view of
" how best to construct the hierarchy. Does the task analysis that an
instructor may construct differ from student-generated hierarchies?
1f it does, in what ways?

Second, what of the "validity" of such hierarchies? The basic
tenant is that learning of lower level subskills will have a positive
transfer effect on the learning of the terminal task. Sequencing of
such sub=-levels is also of interest and research on this has produced
some conflicting conclusions. Studies on retention and transfer have
also been researched from the point of view of the final task versus
subordinate behaviors.

A hierarchy for teachers in the elementary school who deal with
the teaching of algorithms, has been of interest. It has resulted. in
8 slightly different hierarchical structure to describe different levels
of teaching approaches in the classroom in regard to these basic
algorithms.
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The constructing of hierarchics for the teaching of algorithms, or
for that matter, a larger class of algorithmic learning in general, has
implications for what is happening in our schools. If they are con-
structed and used in a rote learning situation, they defeat the purpose
and work of Cagné and others. If they are constructed carefully and
used wisely, they can be of great value to both teachers and students

alike.
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., Investigations of Conceptual Bases ‘
Underlylng the Learnmng of Algorithms

-Dlane Thoma.s

For the learnlné of a computational algorithm to be meaningful,
there are prerequisite concepts that must have been mastered in order
for .the s*udent to understand the rationale behind the algorithm. _ The-

.algorithm will deal with some type of number--whole numbers, 1ntegers,

3

rational numbers, irrationals, complex numbers--and the conceptual bases
dealing with that partlcular type of number must have been developed
beforehand. The algorithm will include at least one type of operation,
probably more, and conceptual bases underlying the particular view of -

" the operations used must have been established in relation ‘to the type

of number under concern. Properties such as distributivity ofe.multipli-
cation over addition, commutativity of addition and of multiplication
but not of subtraction nor of division, and the rcle of the multipli-
cative and the additive identities should have been discussed previously
if they are to be incorporated into the rationale for the.algorithm.
Further, concepts underlying the notation used in representlng a number
(both place value notation, e.g., 35 standing for 3 tens + 5 ones, and
symbolism, e.g., 34/1k4 representing a fraction) will be involved in
understanding a particular algorithm and these need to be provided for
earlier in the child's learning process.

Defining "pure concepts" to be those dealing with numbers as such,
g

-W1th the properties of numbers, &nd with operations that can be performed

on numbers, Diéres (1960) discusses the relationship between pure con-
cepts and notational concepts

‘A Chlld may have grasped the concept that to add two
numbers you.have to count on from ‘the first number by as
many steps as the second number.. Yet he may be nowhere near
realizing the complicated structure of the task 27 + 35 in

which grouping and regrouping in tens must be achieved to "

perform the task economically. In other words, mathematical
concepts and processes have to be learnt first in the pure
form, followed by the same concepts and processes in the
notational form, i.e., with the structure of the decimal
systém superlmposed on them. (pp. 39-40)~ o !

Thus, if we are concerned with 1nvest1gat1ng and comparing the.
conceptual bases which unuerlle the learning of algorithms, it seems to
follow that our concern must center around student learning of pure
number conrcepts, pf notational concepts, and of the tie-in between the
two whlch leads to the understandlng of cemputational algorithms.

|
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Concept Learning

Iooking first to éducational'psychology to provide some éuidance in
the general area of concept learning, it is apparent that much of the

‘research of the educational psychologists has been in areas not directly '

applicable to our goal. Bruner has-defined a concept to be M. .ol WY

‘of grouping an array of objects or events in terms of those character=-

istics that distinguish this array from other objects or events in the
universe" (Bruner, Goodnow, and Austin, 1956, p.275); this idea of

“ ecategorization has been used by many other psychologists as well in

their investigations into concept learning. Much of this research, as
a result, has been aimed at identifying optimal information processing
strategies for concept attainment through manipulating task variables

" such as stimulus similarity, prompting procedures, sequence, and dif-

ficulty (Tennyson, 1972, p. 1). Another related approach is the one
taken by Klausmeier, who postulated four stages involved in the attain-

. ment of the same concept at successively higher levels of inclusiveness

and abstractness: concrete, identity, rudimentary classificatory, and
formal. However, he restricted his model to those concepts "of the kind
for which there are actual perceptible instances" and then noted that
"not all concepts have perceptible instances; for example,...signed
numbers" (Klausmeier, 1971, pp. 1-2). :

Turning from this narrow view of concept learning, we approach the
theories of mathematical concept learning as espoused by Skemp and by
Dienes. According to Fehr. (1966):

For Skemp, the fundamental related ideas (concepts) are
learned through imtuitive methods through the use of well-
chosen sensory activity situations, in proper sequence of
presentation. In this way the fundamental concepts build up
a schemata, which, acquired by the age when reflective activ-
ity of the mind has developed (age 12 years on), enable the
child to appreciate and construct formal mathematical systems,
*Thus Skemp rejected, so far as the elementary school. is con- -
cerned, any formal reflective procedures for the formation
of basic mathematical concepts, He did accept perceptory-
intuitive generalizations frofn sensory activity situations
as the means of building the basic mathematical concepts,

(po 224) : :

2

Dienes has a similar theory of mathematical learning. In An Experimental
Study of Mathematics Learning (1963) he described two of the principles
he said should be followed in helping students attain a mathematical
concept: o :

The perceptual variability principle stated that to
abstract a mathematical structure effectively, one must
meet it in a number of different situations to perceive its
purely structural properties. The -mathematical variability

o7
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principle stated that as every mathematical concept involved
essentlal variables, all these mathematical variables need
to be varied if the full generality of the mathematical con-
cept is to be achieved. The appllcatlon of the perceptual

© variability principle ensures efficient abstraction; the

- application of the mathematical variability pr1n01ple en-
sures efficient generallzatlon. (p. 158) -

‘These pr1nc1ples form the ba31s,for the "multiple embodiment" approach

to mathematics instruction, which demands that a variety of perceptually
different materials be used by the teacher in helping students to
develop a mathematical concept. However, based on reviews by Beougher,
Kieren, and Suydam and Weaver that are summarized in general by Reys in
the October 1972 issue of the Arithmetic Teacher, the research on
multiple embodiments is reported to reveal inconclusive results. Reys
found a wide range in the quality of the research, but conclu@ed:

Nevertheless, it is clear that the research does not con-
sistently support or refute a multiple-embodlment approach

to teaching mathematics. In fact, the one common thread
among these studies is that learning mathematics depends more
on the teacher than on the embodiment used. (p. 490)

Two research studies by Reys' students further confirm Reys' conclusions;
however, the subjects used in both studies were preservice elementary

school teachers and not youngsters at the elementary school level. Turek's
study (1973) compared d two instructional approaches, one based on Dienes'

~ two principles and the other using a lecture approach, for teaching

concepts about finite mathematical systems. The study was repeated
twice-~the first time significant differences were found favoring the
Dienes-based approach, the second time no significant differences were
found. Similarly, a study by Skipper (1973) compared three instructional
methods for teaching concepts of positional numeration systems; one ’
method used Dienes' Multibase Arithmetic Blocks along with variable base
abacl, a second method made use of only the Multibase Blocks, and the
third method was the lecture method. Two replications of the study
yielded different results. In one of the replications there were no
significant differences in performance by the three groups as ‘measured
by scores on an investigator-developed ‘test. In the other replication,
the students in the lecture method performed as well or better than
those. having materials presented through Dienes' approach, and those
exposed to a variety of perceptual embodiments performed as well or
better than thosge using only one embodiment. !

The idea of meaningful learning must also be taken into account
for a theory of mathematical concept learning. Brownell (1947) defined -
this aspect of instruction: . "'Meaningful' arithmetic...refers to
instruction which is deliberately planned to teach arithmetic meanings
and to make arithmetic sensible to children through its mathematical
relationships. Not all possible meanings are taught, nor are all
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meanings taught in the same degree of completeness" (p. 257). Brownell

then suggested four categories under which the meanings of arithmetic
can be roughly grouped: ' ' -

1. One group consists of a large list of basic concepts.
Here, for example, are the meanings of whole numbers,
of common fractions, of decimal fractions, of percent,’
and...of ratie and proportion....Here, too, are the
technical terms of arithmetic--addend, divisor, common
denominator, and the likeé....

L 4

2. A second group of arithmetical meanings includes .

' understanding of the fundamental operations. Children
must know when to add, when to subtract, when to
‘multiply, and when to divide. They must possess this
knowledge, and they must also know what happens to the
numbers used when a given operation is employed....

3. A third group of meanings is composed of the more
important principles, relationships, and generalizations
of arithmetic, of which the following are typical: When
0 is added to & number, the value of that number is
unchanged. The product of two abstract factors remains
the same regerdless of which_factor is used as multiplier.
The numerator and denominator of a fraction may be divided
by the same number without changing the value of the
fraction. ' . : s

4L, A fourth group of meanings relafes to the understanding
of our decimal number system and its use in rationalizing
our computational procedures and our algorisms. (pp. 257-258)

Besides meaningful learning, there are other dimensions to the
teaching-learning situation that will affect student learning of pure
and of notational number concepts. Weaver and Suydam (1972, p. U4)
point out that the rote-meaningful dimension, the reception-discovery
dimension, and the concrete-symbolic dimension may interact with each
other in an instructional situation. Fennema (1969) was concerned
primarily with the interaction between rote-meaningful instruction with
material presented in a concrete-symbolic mode. Her study was an’
attempt to determine the relative effectiveness of a meaningful concrete
model (Cuisenaire rods) and a meaningful symbolic model (a. symbolic
statement of repeated addition) in facilitating the learning of a
mothematical prineiple (multiplication). ‘Results showed that there
were no significant differences between methods in the overall learning
of the mathematical principle: "gecond grade children were able to
learn a mathematical principle by using only a symbolic or a concrete
model when that model was related to ¥nowledge the children had. This

provides evidence that making the teaching of mathematical principles—— -

: meaningful is as important as are the materials used to demonstrate
that principle” (Fennema, 1969, p. x1ii).

-\




Pure Number Conéepts

- Some of the investigations centering arouhd student. learning of

pure number concepts can be classified generally as studies looking at .

the different ideas incorporated in a specific operation on one type of

" number (usualﬂy whole numbers), perhaps also concerned with the

symbolic-concyrete mode of presentation, sometimes mentioning the
meaningful-rote dimension, and not too often specifying whether the
approach was inductive or deductive. The following five studles are
some of those that fit the above crlterla

1.

Gibb (1956) studied subtraction with whole numbers,
identifying three types of applications for
subtraction--take-away, additive-subtraction, and
comparative-subtraction-~at three levels of
abstraction (abstract, semiconcrete, and concrete).
Her results showed that second graders attained
highest on take-away problems and lowest on
comparative, that additive problems took a longer
time, and that performance was better on problems
in a semiconcrete mode than in a concrete mode and
lowest in the abstract mode.’

Van Engen and Steffe (1966) investigated first-grade
children's concept of addition of natural numbers,
when addition was defined in terms of the union of

two sets. When student responses on a test of
conservation of numerousness and on a paper-and-
pencil test of addition facts were compared, findings
showed that the student's ability to respond correctly
to an addition combination seemed to have little or no
relation to his ability to conserve numerousness. The
authors concluded that the children had not abstracted
the concept of the sum of two whole numbers from
physical situations but rather had just memorized the
addition combinations.

Hervey (1966) looked at multiplication of whole
numbers represented by equal additions-in contrast
with multiplication as a Cartesian product, finding
that equal additions multiplication problems were
less difficult to solve and conceptualize for
second-grade students than were Cartesian product
problems. ‘

Tietze (1969) compared two methods of interpreting
multiplication of whole numbers--the repeated-addition
approach using an array as a physical referent and the
ratio-to-one method using a coordinate system and
ordered pairs of numbers as the physical referent;
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lessons covered the basic facts from 1 x 1 through 9 x 9.
No significant relationship was found between the method
used and the acquisition, retention, and understanding
of multiplication for the total group of fourth-grade
subjects, but use of arrays with the repeated-addition

- method seemed better for average_and‘low’students;

4, Investigating the differences in difficulty between

partitive and measurement division problems with whole
- numbers, Zweng (1964). found that partitive division

problems were significantly more difficult than the

measurement problems forisecond-grade students.

One ‘study which investigated basic concepts about a type of number,
rather than about an operation, was Sension's-(1971). . He compared three
representations for introducing rational number concepts~--through area,
set-subset, and a combination of the two. Findings showed that all 3
‘approaches seemed to be equally effective for second-grade students,
when measured by student performance on a test using two types of
pictorial models. o : R

Since the rationale for an algorithm often is based on mathematical i

_principles, we need to be concerned with how well students understand.
these principles, and will include "principles" as part of our look at
pure number "concepts", even though authors often separate the two (see
Higgins, 1973; p. 192). 1In a study comparing the use of the distributive
property in understanding basic multiplication facts to the use of :
repeated additions and arrays, Gray (1965) found that instruction in

the distributive broperty resulted in higher achievement for third-grade
students. Knowledge of the distributive property appeared to help
children proceed independently in the solution of untaught multiplication
combinations; however, the children appeared not to develop an under-
standing of the distributive property unless it was specifically taught.
Weaver (1973) reported a study on student performance on examples
involving the distributive idea. Students ‘in grades four through seven
participated; findings showed that pupil performance level on an 8-item
test was low--at each grade level at least 90% of the students gave
criterion responses (applying distributivity without any computational
error) on fewer than 3 of the 8 items. Flournoy (1964) gave seventh
graders an 18-item test measuring ability to apply basic laws of
‘arithmetic in each operation with whole numbers; an error rate of 30
percent or greater was found on 15 items and 50 percent or greater oh'
ten items. The items most frequently missed were those related to the
distributive property. Crawford (1965) found that the order of dif-
ficulty of field axioms (from easiest to most difficult) was commutativ.-
ity, inverse, closure, identity, associativity, and distributivity, for
students in traditional-content ninth- and tenth-grade classes.




',Notational Concepts

Flournoy, Brandt, and McGregor (1963) found that on tests measuring
understanding of our numeration system, students in grades four through
seven very frequently missed items related to: (1) the additive prin-
ciple (672 means 600 + 70 + 2); (2) making "relative" interpretations,
which use varied ways of grouping rather than by individual places--for
" example, 2346 can be interpreted as 23 hundreds, 46 ones, or as 234
tens, 6 ones; (3) meaning of 1000 as 100 tens or 10 hundreds, and so on;
(4) expressing powers of ten; and (5) the 10 to 1 relationship of each
place in a numeral going to the left from the ones place, and the 1 to
10 or l/lO relationship to the previous place in going to the right in
the numeral. '

Rathmell (1973)- attempted to determine the effects of type of
grouping (multibase or base ten) and the time that base representations
-were introduced (initially, or after counting and reading and writing
numerals) on achievement. in numeration in grade one. Results showed no
significant differences between the multibase and the base-ten-only
-approach; however, low ability students achieved better- in the base ten
method. The group who had base representations introduced after counting
and working with numerals had consistently higher means and adjusted
means for the posttest and also had significantly more students with
mastery on the retention test.

~ According to Diedrich and Glennon (1970), the evidence of previous

studies (Brownell, 1964; Jackson, 1965; and Schlinsog, 1965) was not
conclusive in showing that a study of nondecimal systems 1s more effective
in enhancing student understanding of the decimal system than.1ls a study
~ of base ten alone. They further noted that -the evidence did not tell
which method is more effective in promoting increased understanding of
the rationale of computation, in promoting increased understanding of

a place value system in general, or in promoting retention of these
understandings. In their own investigation, Diedrich and Glennon com-
pared fourth-grade students studying five place value systems (bases 3,
5, 6, 10, and 12) with a group studying three different bases (3, 5,

and 10), a group studying base ten only, and a control group recelving

no instruction in numeration. Results showed that a study of the decimal
‘system alone was Jjust as effective as. a corresponding study of nondecimal
numeration in promoting understanding of the decimal system as shown on
the posttest but that no single study was more effective than the others

in promoting retention of achieved understandings. No differences among
. treatments were observed with respect to understanding computation with
decimals on either the posttest or the retention test. With respect to
understanding a place value system in general, a study of bases 3, 5,
and 10 was as effective as a study of bases 3, 4, 6, 10, and 12; also,
a study of nondecimal numeration was more effective than a study of the
decimal system alone, as shown on the posttest. However, none of the
studies was found to be more effective than the others in promoting
retention. In discussing the implications of their findings, the authors
stated: o c '

!
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If one wishes to foster, at the fourth-grade level,
understanding of the decimal system, the available evi-
dence suggests that only the decimal system need be

. taught. Also, if one wishes to fOStpr\understanding of
both decimal and nondecimal systems, the implication is
that both decimal and nondecimal systems should be
taught. (p. 171) - ,

Understanding Cdmputational Algorithms

Studies concerned with student understanding of computational
algorithms for the most part seem to deal with comparing one algorithm
with others, where different conceptual bases underlie each rationale.
For example, the relative effectiveness of two algorithms for subtracting
whole numbers was investigated by Brownell and Moser (1949). They com-
pared the achievement of third graders taught to use the decomposition
algorithm (which depends heavily on concepts of place value, grouping,
‘and regrouping) to those taught to subtract using the equal additions
algorittm (which is based on-the concept, sometimes labeled gs the "Law
of Compensation", that increasing or decreasing each of two umbers by
the same amount does not change the.difference between them (Buckingham,
1953, p. 141)). Half of each group was taught meaningfully and half
learned, the procedure mechanically. Among the conclusions were that
the equal additions algorithm appeared satisfactory for children with a
background of meaningful arithmetic, but for children with a limited
background the decomposition algorithm, taught with meaning, was
better regardless of the criteria employed; that the equal additions
algorithm was difficult to rationalize; and that some proficiency can
be produced by mechanical instruction with either of the algorithms.

Like subtraction, division has more .than one meaning. According
to Buckingham (1953), there are essentially two kinds of division:
"measurement, if you are to find the number of equal groups, knowing
the size of each; partition, if you are to find the size of the equal
groups, knowing how many groups there are" (p. 76). The following
studies investigate the effectiveness of algorithms based on different
meanings of division:

1. Van Engen and Gibb (1956) compared the use of the
distributive algorithm for division to the subtractive
form of the algorithm. Results showed that fourth-
grade. students taught the suotractive form had a better
understanding of the process or ldea of division than
did those taught the distributive method, that use of
the subtractive algorithm was especially effective with
students of low\ability, and that high ability students
used the two methods with equal effectiveness. Use of
the subtractive m&thod was more effective in enabling -
children to transfer to unfamiliar but similar situations.
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Children who used the distributive algorithm had greater
success with partition situations, while.those who used
the subtractive algorithm had greater success with
measurement situations.

2. Dilley (1970) also looked at the same two methods of
teaching long division to fourth graders. The
distributive algoritim was developed as a method of ,
keeping records of a manipulation of bundles of sticks

- and the successive subtractions method was developed in
"a manner “closely paralleling the treatments given in
popular elementary textbooks." Results showed
significant differences on only two of the seven tests
given to students.. ‘'On the applications test the
difference favored the method of successive subtractions.
On the retention power test the difference favored the
distributive method. It was concluded that there was
1little, if any, overall difference between the two
methods of teaching long division.

3. In a similar study, also with fourth-grade students,
Kratzer (1972) compared the Greemwood algorithm=--the
method of repetitive subtraction--to the distributive
algorithm, both taught with the use of a manipulative
aid (bundles of sticks again). No significant
difference was found between methods on & test of
familiar problems; however, the distributive group
scored better on both immediate and retention tests
of unfamiliar problems.

4. Rousseau (1972) defined four possible foundations of
the division algorithm as (1) mathematical, based on
the distributive law of division over addition; (2) real
world, based on the physical act of partitioning; ,
(3) real world, based on the physical act of quotitioning
(measurement); and (4) rote, based upon the memorization
of routines. Four different division algorithms were
synthesized on these foundstions and each taught to a
different group of fourth graders. No significant dif-
ferences were found for retention of the algorithm. For
extensions of the algorithm to cases of slightly greater
difficulty, the rote algorithm was found superior; as
the degree of difficulty increased the ordering of
quotitive (actually, the repeated subtraction algorithm),
distributive, rote, and partitive (the conventional
distributive algorithm) was established.

Algorithms for division of fractions, based on different underlying
concepts, were of concern in the following studies:
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1. Bidwell (1968), investigating three meaningful approaches
to division of fractions taught to sixth-grade students,
found that the inverse operation procedure was most
effective, followed by the complex fraction method and
the common denominator procedure. The complex fraction
method was better for retentiony while the common

- denominator method was poorest. N

2. Comparing the same three approaches, also with sixth
grades, Bergen (1966) found that there were no significant
differences between complex fraction and inverse operation
algorithms; but that each was significantly superior to
the common denominator method.

3. In a study comparing the common denominator and the

inversion methods, Capps (1963) found that sixth-grade

' students did not differ significantly in ability to

! divide fractions. The group taught by the inversion
method scored significantly higher in ability to
multiply fractions on the immediate posttest, but not
on the retention test; analysis of gain or loss from
posttest to retention test showed that the common
denominator group gained significantly on multiplication .
of fractions. '

Stenger (1972) compared two methods of teaching addition and sub-
traction of fractions to fifth graders: (1) a subset-ratio procedure
based on the formal definitions of addition and subtraction of rational
numbers, taught in a semiconcrete mode; and (2) the "traditional
approach based on the use of equilvalence classes to find the least com-
mon denominator, taught in a symbolic mode. Results showed that the
group taught with the subset-ratio approach did significantly better on
both immediate and retention tests, but that the "traditional" group
wrote significantly more correct answers in lowest terms.

Algorithms for operations on integers were investigated by
Sherzer and by Sawyer. Sherzer (1973) studied the effects of two
different methods of presenting instruction in adding integers to
students in grades 3 through 6. One was the number line method, the
other used the correspondence method which required matching positive
and negative ones in the addends, then counting the ummatched numbers
to get the answer (Sherzer, 1969, pp. 360-362). The following con-
clusions were reached: (1) students in grades as low as three could
be successfully taught integer addition skills by the correspondence
method, (2) the correspondence method was more effective than the number
line approach overall for both proficiency skills and concept formation,
(3) the correpsondence method appeared to work equaliy well with low
and high achievement groups, (4) neither method appeared to be effective
in imparting verbal skills (concept formation) to third graders, and
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(. (5) the number line method appeared to be. workable, although less
- effective, in the upper grades but not effective Fs low as grade three.

Sawyer (1973) compared achievement of seventhegrade students

taught subtraction of integers by three methods: (1) complement method--

a method of subtraction by adding the same number to both the minuend
and the subtrahend, taught in a symbolic mode; (2) related number facts
method, involving the relationship between subtraction and addition,
introduced through the use of a number line; and (3) systems method,
where a modular system is examined to show that x - y = x + (-y) and
then this result is generalized to the .integers; introduction was in a
semiconcrete mode. Results showed no consistent superiority of one
method over another.

All of the studies discussed above deal with student understanding
of computational algorithms by comparing one algorithm with others,
where each.of the algorithms in question springs from different con-
ceptual bases. Another way that might be used to approach the problem
would be to focus on Jjust one particular computational algorithm and
to determine the various conceptual bases underlying that algorithm.
One way to define different conceptual bases for the same algorithm
might be to consider the interaction of the concrete-symbolic dimension
with the pure and notational concepts needed for understanding the
algorithm. - In this view, Wheeler's (1972) descriptive study could be
classified as pertaining to appropriate and inapproprlate conceptual
bases. Wheeler analyzed the relationship of a child's performance in
solving multi-digit addition and subtraction problems using concrete
embodiments compared to his performance in the symbolic mode. It was
found that second~-grade children proficient in regrouping addition and
subtraction examples on three or four embodiments scored significantly
_ higher on the written tests of addition and subtraction than those !
children not proficient in using concrete materials, and significant
correlstions were found between the number of embodiments children were
able to regroup and their performances on the written test. 1In an
experimental study, care must be taken that all approaches are taught
with the same degree of meaning. For example, Fennema (1969, pp. 21-24)
cited a study by Ekman (1966) on teaching third-grade children addition
and subtraction algorithms through symbolic, semiconcrete, and concrete
modes; results showed that on a retention test, significant differences
were found in favor of students taught using concrete materials.
However, Fennema felt that the results of the study were confounded by
the concrete approach being taught meaningfully while the symbolic
approach was taught through a rote procedure.

A second possibility for defining different conceptual bases for
the same algorithm would be to look at the different interpretations
for the type of number involved, at different views of the operation
involved, or at the various combinations that can be made between the
two. For example, in Carney's (1973) study, fourth—grade students were
expected to add and subtract rational numbers by changing each of the
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two given fractions to equivalent fractions both having the same denomi-.
nator, comﬁining the fractions, and then reducing when appropriate..
Results from one group taught through the use of field prOpertiQS (the
identity element for multiplication, the commutative and associative
principles, and the distributive law) were compared to those obtained

by students taught by a standard method emphasizing equivalence ¢lasses
and using objects (rods), number lines, and unit reglons. Results ’
showed the field property course to be more effective than the standard
method; within each treatment group there were significant differences
among mean gain performance of student subgroups based on achievement.
Other studies that can be categorized as considering one algorithm and
then looking at component parts are those by Green, Trafton, and
Weinstein: . - “

1. Green (1970) compared two approaches of teaching
multiplication of fractional mumbers, along with two — "~ e
types of instructional materials for each approach.
One method was based on the area of a rectangular
region and the other on finding a fractional part of
a region or set; the instructional materials were
diagrams and cardboard strips (called "materials").
Results showed that with fifth grade students, the
ares approach was more effective than the fractional- .. : :
part-of approach; diagrams and materials seemed to be .
equally effective. The area/diagram combination was '
the most ‘successful, followed by the part-or/materials
approach, with part-or/diagram ranking last.

SR

2. Trafton (1971) looked at two approaches to two-digit
subtraction; one approach consisted of a prolonged
development of the conventional decomposition algorithm,
and the second was & more general method based on work
with concepts of subtraction and use of -the number line -’
before the decomposition algorithm was taught. The more
extensive development of the decomposition algorithm was
found to be more effective than the second approach when
used with third-grade classes. .

3. Weinstein (1973) compared the teaching of a mathematical
algorithm by four types of justification methods: a
pattern justification based on an analog to two~-dimensional
physical actions, an algebraic justification based on the
algebraic principles for rational numbers as well as on the
rules of logic, a pattern-algebraic sequence, and an

.algebraic-pattern sequence. Differences in performance
among treatment groups were examined for each of four
algorithms: multiplication of a fraction and a Tixed

number, comparison of fractions using the cross=-product
rule, conversion of a fraction to a decimal, and calcula-
tion of the square root of a fraction., ‘'The results showed
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that, for fifth-grade classes, there were no significant
differences between students taught by a strictly pattern
approach and those taught by ‘a gstrictly algebraic approach.
However, evidence indicated that students taught by an
algebraic approach, as a group, tended to do better on ex-
tension tests #Wan their pattern-taught counterparts, and
that students taught by a pattern method, as a group,. .
tended to do better on simple algorithm computation tests
than their algebraically~taught counterparts.

Summary

Studies which attempt to”investigate and compare conceptual bases
underlying the learning of algorithms have taken a variety of approaches.
In the area of concept learning in general, the questions 'of using
multiple embodiments and of attending to rote-meaningful, reception-
discovery, and concrete-symbolic dimensions have been raise3; The
learning of pure number concepts has been the concern of several research -
studies which usually concentrated either on the different ideas incor-
porated in a specific operation on one type of number, or on! student
understanding of number properties such as the distributive law.
Investigations of notational “concepts generally have centered around
comparing the study of decimal and nondecimal systems on stu?ent achieve~
ment -in numeration and computation. . L
B! . - / .

Research into studentlhnderstandiﬁg of computational algorithms
has been conducted along two lines. The majority of the stﬁdies re-
.viewed deal with the comparison of two or more algorithms, Wwhere each
of the algorithms under consideration stems from a differeﬁt conceptual
base. The second method used in setting up studies involvés the selec=~
tion of just one computational algorithm and the investigation of the
various conceptual bases underlying that algorithm. The /diagram below

illustrates the difference between the two approaches: /
‘ /

Conceptual ' Conceptual / Conceptual
Base 1 : Base 2 ;’ Base n
Method 1: VS, VS. .+ V8.
' Algorithm 1 Algorithm 2 g Algorithm n
‘ ) .
Conceptual Conceptual / Conceptual
Base 1’ Ve Base 2 V8. . eVS. Base n
Method 2% q-““‘-——~____> | '

Algorithm ‘
Relatively few studies have been done which use Method 2 as a scheme for
analyzing student understanding of computational algorithms; it would

_appear that more of the future research into learning algorithms might
be profitably extended into’ this aren. ’
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Algorithms: Interference,
Facilitation, and Comparisons

Brad& Shafer

Interference in the Laboratofy: Retroactive and Proactive

Psychologists' interest in memory -continues undiminished after
ninety years. Serving as his own subject, Ebbinghaus (1913) performed
a series of experiments in which he memorized and then attempted to
recall strings of nonsense syllables. He found that the number of
syllables remembered, after varying lengths of time, formed a decreasing
function, with nearly all forgetting teking place in the first three
hours. . .

Other investigators soon found that more was involved than mere
passage of time. Equally important in determining forgetting rate was
what the subject did during the time.: Jenkins and Dallenbach (1924)
found that when subjects slept during the retention interval, retention
was better than when they were awake and.going about their daily routines.
Miller and Pilzecker (1900) noted that when subjects learned several '
lists of words, recall on the earlier lists was decreased; it was as if
the later learnings dislodged or "interfered with" earlier learnings.

The phenomenon has been replicated in widely varying contexts and is
known as retrcactive inhibition or retroactive interference. '

A converse phenomenon has also been noted. Prior' learning some-
times makes the learning of new material more difficult. This 1is'called
proactive inhhibition or proactive interference. For example, anyone
attempting to learn the twenty-six letters of the alphabet in & new
sequencg would find the familiar a, b, c, ... intruding and making the
new memory task more difficult than if he had not known the alphabet at
all. s

In & masterful bit of scientific detective work, Underwood (1957)
showed that many researchers had inadvertently ballooned forgetting
rates by keeping the same subjects for 6, 8, 16, and 20 lists; the larger
the number of previous lists the higher the forgetting rate. Proactive
interference had been, unnoticed, at work; the nth 1list had been more
difficult for a subject precisely because of the n-1 previous ones.

But frequently, one bit of learning aids in acquiring another. One
always hopés that a child's first school experience with "two plus two"
will aid in every future meeting. Proactlve facilitation turns out to
be the familiar transfer of training; review, formal or otherwise, is
retroactive facilitatjon; and proactive interference amounts to negative
transfer. : : :
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Retroaétive and Proactive Interference in the Mathematics Classroom

‘In theutyPical retroactive/proactive interference study, the
datum of interest is the number of items recalled. The .subject. is
tested on memory alone. But in mathematies education two large dif-
ferences appear. First, in most laboratory studies of PI and RI, the
material is to be remembered over minutes or hours, whereas a mathe-
matics item may be needed on a final exam after a lapse of months.
~ Second, in mathematics class simply recalling the formula is usually

" not enough. One must cap the recall by using the formula to produce

- a correct solution. May retroactive and proactive interference be
detected in this larger context? One obvious place to ‘seek such inter-
ference is in a place where the student sees two or more methods for
doing a given kind of ‘calculation.

often there is a single "best" algorithm. How many really different
ways are there to differentiate a polynomial function? But there are
at least five points in the school mathematics curriculum at which (a)
two or more algorithms are widely taught and (b) research has attempted
to measure the relative strengths and weaknesses of each. The five
areas are:- '

Division of fractions .

Iong division (distributive vs. subtractive or Greenwood
algorithm)

Estimating quotient digits in long division

Finding the lowest common denominator

Placing the decimal point in division of decimals.

The present paper brings together studies which involve the teaching
of two alternate computatiqn algorithms to students. Originally that last
sentence ended, "to the same students." But one fascinating, frustrating
" result was noted again and again.,. Brownell (1938) hoped nearly forty
years ago that "perhaps in teaching for understanding we shall some day
depart from the well-nigh universal custom of offering children but one
of geveral alternative forms for computation." This hope has not been
realized in many mathematics curricula. -

1 ‘Orne topic in school mathematics distinguished by the fact that

several algorithms are routinely presented to a given class is the
solution of simultaneous linear equations. No study exists at present,
however, which compares their effectiveness or which looks for retro-
active/pr active phenomena. The writer”is now at work on such a study.
At this writing no data have been analyzed.

In a different but related area, Spencer (1968) attempted to teach

addition and subtraction 31multaneously, looking specifically for
1nterference and facilitation.
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To the present day the majority of studies comparing algorithms do
so by presenting two or more groups of children with one algorithm each.
The relative effectiveness of the algorithms is then inferred from a
comparison of test scores, or gains, for the groups. This precludes the
study of proactive and retroactive interference, as well as proactive
and retroactive facilitation. Neither is observed, since nelther has a
‘chance to happen. The student does not learn two algorithms, so inter-
ference a.nd facilltatlon are alike impossible.

‘ In a small minority of experlments, however, students were taught
more than one algorithm. These studies are noted in the review which
follows. Of interest also from the interference point of.view is that
several experlmenters, whose studies congisted of teaching the algorithms
to different groups, nevertheless conclude by recommendlng the teaching
of more than one algorithm to each child.

Studies on Division of Fractions

Bergen (1966) compared the complex fraction (reciprocal) method,
the common denominator method, and the inversion method, on eight types
of division proolems involving mixed numbers, whole numbers, and simple
fractivng. On the first of four tests, the reciprocal method was found
better than the inversion method (p < 05) while on all four tests the
common-denominator method ‘was found inferior to the other two methods

(p< .05).

Bergen concluded by recommendlng that pupils begin their study of
division of fractions by using the reciprocal method, since it is
stronger at the outset. However, since this method is more involved
than the inversion method, pupils should be ta.ught the inversion method :
later as a shortcut. : / : '

Bidwell (1968), comparing the merits of the same thrqe methods,
came up with this ranking: inverse operation method besty followed by
complethracflon method and common-denominator method. He agrees with
Bergen that the common-denominator method compares poorly w1th the
others, but disagreed with her about the first-place finish. “The dif-
ference may be that Bidwell included tests-for four things which Bergen
did not include: transfer between related concepts, integration of
concepts, attainment of concepts, and the correlation between concept
‘attainment and computational skill. He reported the' inverse-operation
_ method showed the lowest transfer error rate and the highest concept-
attaiment percent. :

Another discrepancy appeared in the results obtained by Krich (196k4)
and Sluser (1963). In Krich's study, experimental-group pupils were
given ‘explanations of principles and were allowed, but not specifically
asked, to develop the inversion algorithms for themselves. The control.
group was given rote learning and drill. TFor average students, a dif-
ference 1n favor of the experimental group developed on & two-month
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Capps (1962)

delayed test (though not at the end of the instruction). Comparing
delayed test scores with pretest scores, Krich noted the' control group
actually lost ground, while the experlmental group made a small gain
(not significant at’ .05)

Sluser, on the other hand, reported that his experimental group
got "an explanation" of the reciprocal principle while the control
group did not. The experimental group fell behind the control group
(p < .C?). Analyzing results by IQ levels, Sluser reported that the .
brighter experimental-group children could understand the principle and h

‘were helped‘ but average and below-average students were confused.

As before, the discrepancy may be die to a difference in treatments,
this time to theé very large difference between a student's passively -
hearing an explanatlon and actively creating the explanation for himself.
Krich used programmed instruction to reduce the effect ‘of teacher vari=-
able, while Slﬁser presumably did not.

Looking gt the same problem area from a somewhat different angle,
ooked at the possibility of retmoactlve interference,
induced by the algorithm.for dividing fractlgns, with the algorithm for

~multiplication taught earlier. He compared thevinVersion method with-

the common-denominator method, giving a posttest which contained. a
multlpllcatlon-of -fractions subset. From this standpoint the inversion

' method was superior (p < .0l). On a deldyed test the difference was _
not as sharp, but still significant at the .05 level. It may be.con-

cluded that either the inversion method reinforces multlpllcatlon of
fractions skills more than the common-denominator method, or it inter-
feres less. The%experiment did not include a base=line control group

to determine which might be true.

The final study reviewed in this section, an older study, is of

interest for this report chiefly because in it the same children were
1 but

student ;

taught two algorithms. The study is reported by Brownell (1938
was actually done by Thelma Tew. (Presumably Tew was Brownell'
this writer can find no report- éf the study published by Miss Tew
herself.) Detalls are few.- More serious is the problem that the;s%udy
was not well-controlled. Indeed Brownell's article iné¢ludes no data
whatever. Bum several observations are worthy of note.

Tew's sequence was: common denominator method first (since, the
inversion method is particularly difficult to explain in a meaningful
way) - folloWed at length by inversion as a shortcut. It was found that
pupils leanned to divide by the common denominator algorithm "more
easily and,more intelligently than ever before when she had taught by
the 1nver$10n method....Comparisons with children taught by the inver-
sion methpd were consistently in favor of Miss Tew's group." This
finding contradicts Bidwell and Bergen. How may it be explained? The
Bergen and Bidwell studies appear to be more carefully done. This
writer's conjecture is that in the Brownell-Tew study there could have

been a Hawthorne effect strong enough to tip the scales the other way.
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Brownell continues, "Promptly the more intelligent and capable
children adopted the short-cut, while the slower children stayed with
the more familiar common denominator method, =~ which is precisely what
they should have done at their stage of developmen ."" Presumably the
second method took less than one week. Implicit in Brownell's "con-
sistently" is that the children were doing at least as well as other
children taught the textbook method (inversion). Brownell's report
seems to imply that, for those children who used it, the shortcut method
enhanced this superiority. But-this is not clear, since no data were
given.

What does seem clear, and germane for this report, is that (a)
introducing a second method did not cause undue confusion in children's
thinking, and (b) not all children used the second method. Brownell
comments that this is what they should have done. Still unanswered is
the larger question of whether children in similar situations will
consistently do what they '"should" do.

Studies in Long DivisiOn:_'Distributive vs. Greenwood
(Subtractive) Algorithm ‘ ’

. This group of studies compared the "distributive”‘and "subtractive"
algorithms for long division. Three studies are reviewed.

Scott's (1963) experiment, like Brownell's above, is distinguished
. by the fact that in it a group of students was given more than one
algorithm. Two groups of students were taught both methods; a third,
the sub*ractive algorithm only; and a fourth, the distributive algorithm
only. Scott's chief interest lay in comparing the two-algorithm classes
with the one-algorithm classes. Among his conclusions were:

(1) The use of two algorithms for division computation neither
confuses nor presents undue difficulty for young children. The two=~
algorithm groups proceeded at least as smoothly and efficiently as the
one=glgorithm groups. :

(2) Teaching two algorithms takes no more teaching time than

"teaching only one.

(3) Children who use two algoritims are at least as efficient
in solving division problems as those children who use only one.

‘ (4) The two-algorithm children have a greater understanding of
the division process than those who use only one. .

Dawson and Ruddell (1955) compared the same two algoritims, using °
different groups of children. They reported that use of the subtractive

algorithm was better than use of the distributivevalgorithm; but because
of a design flaw‘(different visual devices, for instance, were used with

7

A




the two groups) one cannot establish that the difference was related to

the method.
!

Van Engen and Gibb (1956) noted that the distributive algorithm
emphasizes the relation of division to multiplication, while the sub-
tractive algorithm emphasizes the concept of division as repeated sub-
traction of multiples of the same divisor. Thelr chief interest lay in
conceptual matters, but a subset of the study involved a comparison of
the effectiveness of the two algorithms. ) :

They found that the subtractive group attempted more problems than

the conventional group. However, having started, the latter group has
less difficulty with the processing.

Disregarding any effects of classes, arithmetic achieve-
ment and intellectual ability, the conventional group achieved
greater success in problem solving, although they did not
attempt as many as did the subtractive group....Classes taught
the conventional method were more successful in solving problems
familiar to both groups. On the other hand, the subtractive
group did better in solving problems unfamiliar to both groups.
These findings suggest that the subtractive methods group -had not
reached a high level of skill, ... yet their understanding of the
process was such that they were better. able to transfer to new
situations. (Van Engen and Gibb, 1956). '

van Engen and Gibb make no explicit sequencing recommendations (or in-
deed any recommendation) based upon this difference. Notwithstanding,
fifteen years later Kratzer (1971) remarks that most textbooks,
"following Van Engen and Gibb," present first the subtractive algorithm
and later the distributive. -

Kratzer's point is that if children are eventually to use the dis-
tributive algorithm, would it not be more efficient to begin and end
with the one method rather than duplicating children's (and teachers')

effort? He approached long division through "a partitioning distributive

approach" using stacks of popsicle sticks as a visual-manipulative aid.
He found his method at least as effective as the Greenwood method.

Estimating Quotient Digits in Long Division

An additional group of studies of division devoted attention to
several competing methods for producing a gquotient digit when dividing
by a two-digit divisor.

Most of these studies were made at a time when the distributive
method for long division was the method in general use. Many studies
examine what Hartung (1957) called an "example population," cataloguing
and counting the problems themselves as the data, while other studies
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analyze children's responses to problems. Grossnickle (1932) presented
a study based on a problem population. He recommends the "always~
round-down" method, not only because it offers good probability of
giving the correct digit on first trial, but also because whenever it
yields a wrong digit, correction procedures are easier.

Osborn (1946) came to a similar conclusion, but with more vigor.
In the 1930s, Morton had published probabilities of getting the correct
digit on first trial with the use of .the "always-round-down," "always-
round-up," and "round-both-wa,ys"2 method. The probabilities were based
on a simple but lengthy count of several thousand division problems
done by each of the three methods. Osborn chided Morton for omitting,
by Osborn's count, some 20,700 problems. Osborn conceded that the both-
ways rule gives success in 14,858 of these, but noted that his always-
down rule works in 4,980 of them. More to Osborn's point, in the both-
ways approach the student needs to be alert to the fact that "remainder
larger than divisor" is a danger sign. ' In the always-down approach the
error cue is a subtraction which cannot be done. He concluded, "Rule 1
has to be taught in- anJ case, and the introduction of Rule 2 results in
intolerable confusgion.'

Osborn said this, however, without actually talking to students
and examining their work. Flournoy, who did, scolded Kim in turn for
trying to settle the problem not on the basis of what /children actually
do but by what educators (looking at division probl ) 'anticipate they

"might do. ' ;

Flournoy (1959a) found no evidence of "intol 4£ble confusion."

She agreed with Osborn, though, that with slow chdldren one rule 1is
probably enough. Her finding was that children ase both methods

equally well; she added the interesting fact that children tend to use
both methods regardless of which was officially taught. She recormended
teaching both methods.

On the other hand, Carter (1960) recommended only one method. Her
treatments were: down, both ways, and down followed by both ways (after
ten weeks of a twelve-week instruction period). She found the "two-
rule" students, the third group, to be below either the round-down
. students or the both-ways students, with no significant difference be-
tween the latter two groups. On speed, an immediate posttest gave the
same ranking to the round-down and both-ways groups, while an eighteen-
week delayed test showed all three groups of equal speed. Carter noted,
as did Flournoy, that children do not always use the method taught.

"Round-both-ways" is a short if inaccurate tag for the following
rule: If the second digit in divisor is four or less, round the first
digit down; if five or more, round up.
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Placing the Point in Division of Decimals

Only one study has investigated.the two methods for positioning .
the decimal point: Flournoy (1959b). The two competing algorithms are:
multiplying both divisor and dividend by the appropriate power of 10,
using a caret and making the divisor a whole number, vs. subtracting the
number of decimal places in the divisor from the number of places in the
dividend.

Her conclusilons were:
(1) In general, the first method gave greater accuracy -- though
with above-average pupils the second method was slightly superior.

(2) The nature of the subtractive method seemed to provide more
opportunity for error.

(3) The caret method was the method of the textbook, so it is
recognized that variations in presentation of the subtractive method
were probably more widespread than for the caret method. But there was
considerable indication what children taught the subtractive method
understood the mathematical principle underlying their method as well
as the children who were taught to use the caret method. -

Flournoy remarked in summary that puplls w1ll “eventually sttain a
rather mechanical, but efficilent, method for placing the decimal point;
regardless of the method taught. Still unanswered is the questiqpxéf
whether presenting both methods to a student will produce fac;litutlon
or interference. L

o
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Finding Least Common Denominatqg .

Again only one study was found which explored this topic.” Bat-haee
(1969) compared the methods of (a) factoring denominators and (b)
finding ICD by inspection. The latter was the method of the adopted
textbook. He. found the inspection method much superior. Students saw
only one of the two methods. :

Two Operations at Once

Spencer's (1968) paper investigates a more ambitious proposal: not
merely teaching simultaneously-two algorithms for the same process, but
teaching simultaneously two processes. The processes are whole-number
addition and subtraction. He found some interference, but more facilita-
tion and on the whole a gain over the usual segregated approach.

Spencer ends by suggesting that instructional strategies may have been
a factor ‘in the interference. '

f
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How Important is Algorithm-Related Research and Teaching?

How fréquent are errors involving algorithm, 1n comparison with
other kinds of errors? On study gives an estimate. Roberts (1968)
analyzed 148 papers of third-graders who took the computation section
of the Stanford Achievement Test in 1966. He classified four kinds of
errors: wrong operation, obvious computgtibnal error, defective algor-
ithm (defined to be "correct operation-but some other error than number-
fact error") -and random response.

Distributions.of errors were analyzed from samples out of each
quartile of achievement scores, with the following result. In the
lowest quartile 29% of errors were classified-as defective algorithm,
379 of the total number for students in Quartile II, 439 of errors in

© Quartile III, and 39% of the errors in the upper quartile; overall,

36%. These figures may be inflated a bit since "defective algorithm"
seems to be in some measure a '"mone of the above" category. But there
was a separate category for what were deemed to be random responses, .
so the "ballooning" was probably moderate. It seems safe to say that
at least a fourth, and likely nearly a third, of the errors, on computa-

tion problems in the third-grade SAT that year were algorithm-related -

the student knew whether to add, subtract, or whatever, but!'had trouble
with choice and use of algorithm. It would seem, then that time spent
in identifying and correcting algorithm-related errors is -time well
spent. -

Summary

The majority of the research studies consldered in this paper have
made "side-by-side" comparisons of alternative algoritlms. We may glean
from them the following conclusions: , - :

(1) Bergen concluded her sfudy by recommending the use of two

‘methods though her study did not actually-do so.

2) Tew; as reported by Brownell, &id use two methods, with
results judged successful.

(3) Spencer combined addition and subtraction, successfully.
(4) Sscott attempted two algorithms for long division in sequence,

successfully.

(5) Flournoy recommended the teaching of two methodg for esti-
mating quotient digits, though she did notractua 1y do so.

(6) Kratzer indicated that the distributiv metdod for long.
division is as good as the sequence sometimes taught,’Greenwood method
followed by distributive method. (

i
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(7) Carter stated that one rule is enough for estimating quotient
digits. If a second is taught, it should be delayed to avoid confusion.
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Algorithmic’ Problem Solving

Richard W. Corner :
|
|

One of the important goals for education|is the development of
problem solving ability. An educated person should be able to use his
knowledge to create new ideas or to act to resolve practical problems.
The highest order of problem solving is the splution of those problems
which requiré invention by the-solver. In Gagne's (1965) view, problem
solving is the process in which two principles are ~ombined to form a
"higher-order" principle. This view of the role of problems in mathe-~
matics education has been well-stated by Dilworth (1966):

[
-« »problems should be. formulated which present the student
ith an opportunity to perceive significant mathematical '
redationships capable of leading to a vafiety of signifi-
cant non-obvious conclusions. (p. 83) |

At the opposite end of the problem~solving spéctrum is the rote applica-
tion of rules to problems. Many students attempt to solve problems by
chanting magic words over the problem. For exaimple, instead of using
qancellation to simplify rational expressions) some students will use

2% %
3+ i can be simplified:

2
2+ 3 _ 2. Pdlya (1948) has criticized textbooks for only having

B

problems of the "rule-under-your-nose' variety, which encourage mindless
memorization. _ '

the "cross out!” rule. Thus, the expression

4 -

e e . LA - e U — .

Memorization can lead a problem solver into difficulty but at
certain stages in learning it seems to be desgrable. For example, for
a child at the early elementary level "7 + 9 = ?" is a problem which
the child can translate to concrete embodimen%s and solve. later, as
the child matures, the problem "7 + 9 = ?", akks only for the recall

of a memorized fact; it is something the child "knows." The spirit of
mathematics education today is based on the hypothesis that meaningful
learning of facts and algorithms will result in the student being able
to better use and transfer the facts. Of necgssity some facts must be
memorized. ‘ . — e S v

e

Tt seems to me that there is an intermediate level of problem
solving between memorization (meaningful or otherwise) and inventive
problem solving which should be of concern to| mathematics educators.
Many students have the desire to use mathematics but have no desire
(or ability) to be inventive problemfsolvers. These students need to
use methematics to solve problems in other filelds such as economics,
englneering, and biology. Much of the mathematics which has practical
application is summarized by algorithms. Thus, the intelligent use of
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algorithms to solve problems seems to me to be a valid gdal for mathe-
matics education.

This paper will attempt to explore some of.the facets of algorith-
mic problem solving. First the literature on problem solving will be
reviewed. Based on the literature, a model for algorithmic problem
solving will be proposed. This model points to some considerations for
the future mathematics education.

What 1s a Problem?

The following defines "problem" in a general sense:

_ A problem is a set of stimuli and a goal, set in an enviromment.

To solve a problem, a person must first perceive the goal. If the
stimuli elicit behavior which results in achievement of the goal in a
manner consistent with the environment, then we say that we say that

the problem has ,been solved. A problem in mathematics must be solved
consistently within the mathematical and logic system in which it is
contained. Consider the following problem: Solve the guadratic equation
x2 + 4 = 0. The goal of this problem is finding the set of numbers which
make the sentence, x° + 4 = 0, a true statement. If the environment in
which we are operating only contalns the real number system, then the

set of numbers is empty. However, if we admi} the complex numbers, then
we have a non-empty set of numbers, iZi, - 2i}. If it is claimed that
the numbers 2 and =2 are solutlons to the equation, then we have an
inconsistency with the properties of the system in which we are operating.

A given problem may be classified as an inventive problem, an
algorithmic problem, or a memorization type of problem, depending on
the experience and knowledge of the problem solver. Merrill (1971) nas
extended Gagne's view of learned behavior and includes this view.
Merrill classifies all learned behavior into 10 categories, including
Gagne's eight and two additional categories (see Figure 1). As in
‘Gagne's theory each lower level behavior is necessary for a high-level
behavior. Furthermore, Merrill proposes that a person will display what
he calls the "Push Down Principle." Since each succeeding level in the
hierarchy increases the cognitive demand on a person, he will act in such
a way as to reduce the cognitive load as'much as possible. That is, a
behavior acquired at one level will be pushed down to a lower level as
soon as conditions have changed sufficiently so that the learner can
respond to the stimulus situation using lower level ‘behavior. In problem
solving, as de ined by Gagne, the learner evolves a new principle. In
Merrill's scheme, on the second ebcounter with the same problem type,
the learner only needs analysis behavior to apply the¢ previously evolved

principle. Aflter several encounters with the same situation, the be-
havior required is reduced to the classification level. That is, the
problem solver Jjust needs to know if the problem is in The class which




is solved by the previously evolved principle. This "Push Down
Principle" makes it possible for persons to use previous facts to
expand their knowledge.

Behavior

Class .Behavior type

' 1 \
Emotional| 1. Emotional (Signal Learning)

Psycho- 2. Topographic 3. Chaining 4. Complex
motor (stimulus . : Skills
Response) ‘
Memori- 5. Naming 6. Serial Memory 7. Discrete Memory
zation - ’ (Verbal Asso- (Multiple
ciation) ‘ Discrimination)
Complex 8. C(lassification 9. Analysis 10. Problem
Cognitive (Concept (Principle Solving
Learning) Learning)

Figure 1. Types and classes of behavior.

Research on Problem Solving

Tn his review of research, Kilpatrick (1969) concluded that little
research on problem solving was being done. He further stated that
much of the research lacks direction and is of low quality. Two theore-
tical positions seem relevant to algorithmic problem solving, the
behaviorist and the information processing theories.

1. The Behaviorist Approach

Skinner (1966) states in operant learning terms what may be con-
sidered the basic approach to the behaviorist theory of problem solving
(see Figure 2). The problem acts as a discrimination stimulus, sy 43

3

the response, R , is a "coding" by mediating processes into a secondary
gl elicts the respogfe ?f selecﬁion
1

. pl,d', p,d
of the appropriate| rule (alForithm) for the problem ( ). Then, the

p,d’
discrimination stipulus, S

: p,d
problem becomes the stimulus for applicatfion of the rule (Sp o) The
. b

elicted response will be an S-R chain pf length greater than or equal
to one; the final response is the desired solution (Ry) -
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S, >Ry, 55 >R, g5, R —8, —>R **S_—*R

p,d Psd P, s P,r P: n n -
The problem a =~ Mediated ‘Problem as . Application Solution
discrimination - discrimination stimulus " of rule

stimulus stimulus for rule
Figure 2. The behaviorist theory of problem solving

The basic operant position has been modified by several others.
Kendler and Kendler (Davis, 1966) view problem solving as a combination
of horizontal and vertical processes. " The horizontal processes are
seve#al ongoing S-R chains. 'Problem solving then is the vertical inte-
gration of two or more of these chains. Staats (1966) sees the process

as a . highly complex sequence of stimuli which may elicit multiple
responses and responses which requlre multiple stlmull for their
elicitation.

Davis (1966) summarizes the research on problem solving with the
view that problem solving behavior is essentially the result of trial-
and-error learning. If a person has prior experience with a given
problem, then he has acquired the necessary S-R. relations to apply a
previously learned rule for solution. The research tasks usually asso-
ciated with this type of problem solv?gg aré anagrams, water jug, and
"insight" (e.g., matchstick or hat racK) problems. When a person does
not associate the desire outcomes of a problem with a rule, he then
operates in a trial-and-error manner. His trial-and-error behavior
establishes the necessary S-R relations to allow the application of a
rule for solution. The research tasks associated with overt trial-and-
_error are typically light-switch, classification, and probablllty
learning tasks.

2. The Information Processing Theory

Newell and Simen (1972) have outlined the essential ideas of an
information processing theory of problem solving. The essence of the
theory is the assumption that a human acts as an information processing
gystem in solving problems. The research done in this area has been
designed to support this assumption. :

An information processing system (IPS) jhas capability to splve
problems in the form of a program.| The program is written in a symbolic
form, usually, but not necegsarily}| a compu ei_programming language.

e| IPS has receptors whichJallow it to receiye information from the
envirorment. The IPS has af processor which connects the receptors with
a long term memory. The long term/ memory of the IPS is cnpable of

storing and retaining of symbolic structures such as programs or lisis.
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The processor of an IPS has a set of elementary processes which allow
. it to call from long term memory. the structures needed to process inputs.
Upon completion of the processing the’ results are communicated to the
enviromment by effectors (see figure 3). This model of an IPS was
stimulated by and has its embodiment in the modern digital computer.

Input —— Receptor (>

\

output <~ Effector -

HowmnnEQO HWH
A

HEEnR=a200HZEH

Figure 3. Representation of an information
processing system

A simple IPS is a bimetallic thermostat. Its receptor is a bi-
metallic thermometer and its effector is a switch comnected to a
furnace. The processor is the bimetallic thermometer and the long
term memory is fixed by the construction. A program might have the
following steps: '

1. Measure temperature, T.

2. If T > 68°, go to 1.
_ If T < 68°, go to 3.

3. If T>66°, go to 1.

If T < 66°, go to 4.

4. Switch on furnace

5. Measure T. . ; ,
6. If T > 68°, switch furnace off, go to 1.

If t < 68°, go to 5.

of course the IPS model is concerned with problems other that
turning furnaces on and off. ‘Paige and Simon (1966) have tested the
theory is applied to algebra word problems. First a computer program
was written to solve problems. Next, subjects are asked to solve a
set of problems, talking aloud as they solve the problems. To test
whether the program is a valid model of the problem solving procedure,
the steps which the program executed are compared with the protocols
of the subjects' solutions. Positive results have been obtained for
algebra word problems, chess and symbolic logic problems. o




As can be seen the theory is a non-statistical and highly content-
specific at this time. Hallworth's (1969) comments point out the
strengths and weaknesses of the theory. Because of the necessity of
writing a program, the theory must be precisely stated and points out
vagueness in other theories. He mentions that attempts to program what
happens when a child passes from nonconservation to conservation in
Piaget's theory, point to vagueness in.Piaget's theory. The IPS theory
is questionable in that its validity has been tested only in a few cases.
Since the theory of solution of a specific problem 1s embodied in the
computer program, the highly specific nature of a computer language
limits the usefulness of theory. /

The IPS theory brings many problems not usually thought of as
algorithmic into the realm of algorithmic problem solving. If we assume
“that any programmable process is an algorithm, then the work in this
- area has greatly expanded the number of problems amenable to algorithmic
solution. Algebra word problems are not usually thought of as being
algorithmically solved. Certainly this area of research opens the
possibility of finding new problem-solving techniques which may be
easier to teach than those currently used.

A Model for Algorithmic Problem Solving

The model which is proposed for algorithmic problem solving is
based partially on the behaviorist and the information processing theories
~of problem solving (see Figure 4). The problem provides a stimulus for
the solver which causes him to select an algorithm from the set of all
 algorithms known to him. These algorithms can be thought of as stored
" in the solver's long~term memory. The selection may be based on pre-
‘vious_instrﬁction or non-previous triagl-and-error learning. The
algorithm then is tested as to its applicability to the problem. This
test may be a simple multiple-discrimination task or involve some

operating and testing (that is, there may be a testing algorithm). If
the algorithm fits the problem, then it is applied to the problem and

a solution is found. If the algorithm does not fit the problem, then
it is applied to the problem and a solution is found. If the algorithm
does not fit the problem, then another algorithm is selected and tested.
The solver may fail to generate any algorithms for testing; in this

case he then attempts to restructure the problem or to discover a new
algorithm for the problem. If he is successful in changing the structure
of the problem, he again selects and tests algorithms. A part of dis-
covering a new algorithm would be the testing of its appropriateness.

If he is unsuccessful in restructuring the problem or finding a new
algorithm, he has failed to solve the problem, [It should be noted; that
this model is not 1ntended as a comprehensive model of problem sol 1ng,
but it is intended as F model of algorithmic proWlem solving.
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RESTRUCTURE - SET OF
THE PROBLEM ALGORITHMS
(Behaviorists' KNOWN TO
trial-and- PROBLEM
error; SOLVER
Restructure (Memory)
as in the
Gestalt psy.,
or Scandura's
higher order DOES ALGO.
rules. FIT PROBLEM®?
)
APPLY ALGO. (S, —>R,—...8, —R,)
TO PROBLEM

SOLUTION

Figure 4. A’ proposed model for algorithm problem solving

NO
SOLUTION

Consider the following example of how a person reacts to a

problem:
Solve x° - 6x+ 8 = 1.
1. Select algorithm. None apply. Quadra ic eQuations have.
/ : , form ax® + bx 4 ¢ =10
-2, Restructure problem X® - bx + T &
3 Select algorithm. Factor quadratic
- b,

Test algorithm. Attempt to [facpor: ]
‘ (x=7) (x=1) = ¥ = 8x+ T # x" =6x+ T
No other se¢ems| to apply.

o1




5. Select algorithm . Quadratic Formula
6. Test algorithm Equation has form
: : ax“ + bx = c =0
thus -quadratic formula applles

-b % \/b? ~bac

7. Apply algorithm ax“ + bx + ¢ = 0 => X =
. 2a -
& xv2-6x+7=0=> X=6iv36—)+.l;7
2 1
=6 * \/—="6i2 Ve
) , 2 ' 2
8. Solution x =34 2

The restructuring of the problem could be thought of in several
different psychological contexts. The Gestaltists as exemplified by
Wertheimer (1959) view problem solving as restructuring.- By insight
(often sudden), the problem solver "sees" the structure of the problem
and thus is able to solve the problem. The behaviorist view of this
activity would be that if a problem does not elicit the behavior neces-
sary for the solution, then trial-and-error behavior would occur. The
trial-and-error behavior results in experlence which relates the problem
to a known rule and hence the solution.

Scandura's (1974) theory of beha#ior relates to what may occur
during restructuring. His assumptions about problem solving are:

(1) If a person has a rule which allows achievement of the goal, then
he will apply it. :

(2) If a person does not have a rule for achieving a goal, then he will
shift to a higher order goal of deriving a precedure which will
satisfy the original goal.

(3) If the higher goal is satlsfled, then the person returns to the
original goal. .

He feels that the ability to solve problems primarily depends on the
presence or dbsence of higher order capabilities which make it possible
to combine the parts of a problem into a whole which is adequate for
solving the problem. It is necessary to have both simple rules
(algorithms) and higher order rules which make it poss1ble to modify .
simple rules. In Scandura's (1972) theory:

... rules are the basie building block of all ,
mathematical knowledge, and that if looked at in the
right way, all mathematical behavior is rule-

governed. (p. 142)
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Neither the Gestaltists nor the behaviorists theories suggest.how in- -
struction in restructuring might be done. Scandura (1972) suggests one
way this might be done. » :

Some Questions for Mathematics Instructién

If the above model is valid, it points to certain areas of mathe~
matics instruction which may be in need of revision. From elementary
school through college the primary emphasis of the curriculum is the
achievement of proficiency in carrying out the steps of algorithms.

The result is that we see "solutions” for problems such as this:

|

Problem: Solve (x+L) (x+3) > O \
Solution: (x+l4) (x3) >0 ;
=x + 4> 0 andfor (?) x;+ 3>0

The student often applies a familiar algoritl indiscriminantly without
consideration of its appropriateness. We ask, does current instruction
emphasize the importance of considering whie! algoritim 1s appropriate
for a given problem? h\

often several algorithms are presented for solution of a problem.
For example, in algebra students will be taughk to solve quadratic
equations by factoring, completing the square,xand the quadratic fcrmula.
Consider the following problem:
Solve: x°+ bx -9 =0 ' |

Solution 1 (by the quadratic formula): -

\
Lo e V@F - (W) (1) <-9>\

2(1)

Lt Va6 v 36
= 2 \

}

s Vs2 \
- 2
x Va3

- 2

-y 2V13

— c——e

= 5 !

- -2x V13 ;l%
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Solution 2 (by completing the square)
’ |
x2+ kx=9
x2 4 bx+ b =94+ k4 ’

(x+2)2 = 13 s

V13
Vi3

Even though the efficiency of Solution 2 as compared with Solution 1°

is obvious, when given the choice of algorithms students.wmlirusuully
use the one most recently sv.dlied. A similar example can be seen in the
solution of systems of linear equations where we teach both substitution
and elimination algorithms. In calculus we teach both the quotient.
rule and the product rule for differentiation; seldom, however, do we
discuss when a quotient could be transformed into a product and more
easily differentiated. How often do mathematics teachers give instruc-
tion in how to choose the most efficient algorithm for a problem?

I+

X+ 2 =

I+

X=-'2

Computing continues to have an increasing impact-on mathematics.
A recent IBM advertisement notes that 100,000 multipliéations which
cost $1.26 on a 1952 computer now cost one cent. ‘The daily newspaper
has advertisements for four-function hand-held electronic calculators
costing $19.95 and "electronic slide rules" costing less than $100.
These economic changes point to computing's- continued growth in impor-
~tence; it will be necessary for an accompanying change in mathematigs
instruction. The selection of the appropriate algorithm and the most
efficient algorithm is important in compGter applications. The need
for human computeys will continue to decline. At the same time thg
need for problem solvers who are able 1ntelllgently to apply algor&thms
will grow. ;
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Algprithmé and Mental Computation

Raymond Zepp

There is no scarcity of journal articles which call for increased
instruction on mental computation in the elementary school, These
articles, for the most part, consist of high-minded but vague appeals
to the necessity for grocery-store arithmetic and the like, A typical
example of this kind of article is one by Koenker (1961) in the
Arithmetic Teacher, His conclusions are: - -

A ten minute daily period devoted to mental arithemtic
would prove of great value in preparing a child for his present
“and adult out-of-school number experience. It would also help
the child develop arithmetical understanding which carnot be
taught by a pencil-and-paper type of arithmetic alcne, (p. 296)

o Tt is difficulf to argue with the reasonableness, of Koenker's
statements. However, before we wholeheartedly launch programs of mental
computation, we must answer precisely some specific questions. - These
qpestions fall into three categories as follows:

1. Is mental computation a well-defined topic? In a sense, all
‘arithmetic is mental. Perhaps mental computation algorithms are
essentially the same ones used with paper and pencil and involve pre-
cisely the same mental processes; then traditional written drill would
be sufficient to increase nomwritten computational ability.

N ] ]

2,. Can the algorithms involved in mental computation be taught at
811? Perhaps it is an ability which, similar to IQ, cannot be culti~
vated beyond certain narrow limits. In other words, time devoted to
mental computation may be totally wasted. :

i 3. What are the effects of instruction in mental computation on
he child's overall growth in srithmetic? Does‘Mnow1édge'bf mental
lgorithms transfer to use of written algorithms? Would a student be
more or less likely to gain the fundamental mathematical understanding
jand insight deemed so important in elementary education? -

Let us examine these questions one-by-one.
i

' 1. Is mental computation a legitimate topic?

The least one can sdy igs that there seems to be a concensus on the
meaning of the term "mental computation' (or "mental arithmetic"). Hall
' (1954) noted that the term "mental arithmetic" appears as a separate

?




listing both in the Education Index and in Webster's New International
Dictionary, where it is defined as '"the solution of arithmetical problems
by mental précesses, unassisted by written figures." Hall elaborates
that the term should include "problems in which gquick estimations are
made which either may or may not be verified by a written response.”

But the question of whether the algorithms of, along with the

mental processes used in, mental computation are essentially different
from written arithmetic, is more difficult to answer. Clearly, the two
abilities will correlate highly, since many prerequisites, such as
knoWledge of mulbiplication tables, are common to both. There do,
however, seem to be certain techniques in which the two differ. Tlournoy

1959) attempted to differentiate between mental and written algorithms.
For instance, to add 34 + 4B, the algorithm which demands the adding of
8+ kL, carrying 1, etc. is much less amenable to mental computation than
a procedure of addlng 30 + 4O and then adding 12. TFlournoy used her
classification in a study which showed that many students, who were
forced to use mental computation, automatically shifted to mental
algorithms. Before and after a unit of instruction in mental computation,
150 pupils wrote explanations of the algorithms they used. TFor instance,
in adding 43 and 28, a pupil stated, "I added 3 and 8. This is 11. I
put down 1 and carrled 1. This made 1+ 4 + 2, which is 7. I got 71
for an answer" (p. 137). This was classified as a written-type algorithm,

Before the instruction, 85 percent of the students used '"paper-and
pencil" thought. After the instruction, only 23 percent did. However,
"there was very little change to the shorter or different ways of
thinking when dividing whole numbers" (p. 138):

A summary of the aigorithms used is the folloying:

After instruction in how to add without using paper and
pencil, pupils were using 11 different ways... TIn adding 3
and 48, the majority of pupils were using one of two methods:
a) 30+ 40 =70; 8+ L =125 TO+ 12 - 82.

b) 30+u8=78; 78 + L = 82.
After instruction in how to subtract without paper and
pencil, pupils were using 10 different methods. In subtracting
24 from 62, the majority of pupils were using one method of
thinking which was: 62 - 20 = 42; L2 - L = 38,

After instruction on how to multiply without paper and
pencil, pupils were using about™5 different ways of arriving
at an answer. For the exampie, 16 x 11, the majority of pupils
were using one of two methods. Almost half of.the 150 pupils
used this method:
16 x 10 = 160; 16 x 1 = 16; 160+ 16" = 176.
And about half the pupils multipiied 11.by one-half the multlpller,
then doubled the answer, as 8 x 11 = 88; 2 x 88 = 176.

After instruction on how to divide without using paper and
pencil, pupils generally used two ways of arriving at an answer

}
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to -a lelSLon example. While the majority of pupils used the
regular pegc1l and paper procedure for dividing 174 by 3, a
few pupils (about 10%) were using the following procedure:
150 + 3 £ 50 24 , 3 =8 '50+8 58.
(Flournoy, 1959, p. 138)

Some corﬁelatlonal data have been collected on the relationship of
ability in mental computation to other variables. Whimbey, et al. (1969)
have tried to/ demonstrate an extremely close relationship to memory span.
In two dlffe ent experiments, college students took an ETS digit-span
test along w1th a mental arithmetic test constructed by the author. In
the first. group, the tests "correlated .77, which, corrected for .87
reliablllty, gave .95 correlation." The precise nature of the correction
was not stated A similar result held for the second group of students.
However, these results are only speC1ously convincing: if one takes &
closer look at the tests, one finds mostly questions.of the form "you
have 8A, ﬁB 2C¢, and 5D, and you add to this 2B and 50, how many of
each category do you now have?". on the mental test. Tt seems as though
the so-called "mental arithmetic test" was constructed w1th ‘the sole
purpose of correlating with a dlglt—span test

Better correlational data can be found. Perhaps the most far-
reaching and experimentally rigorous research in the field is a study
by Olander and Brown (1959). Seventeen-hundred students from grades
6 through 12 took a test of subtraction problems of 2 to 4 digits
administered either orally or by flashcards. ' They also took a digit-
span test, and scores on intelligence tests as well as Stanford- Achleve—
ment Tests were available. Olander and Brown noted: -

(1) In relation to memory span--Before this study-began it was
assumed that ablllty in mental arithmetic was depeﬁaent to a considerable
extent on a person's memory span. However, this expectation vas not
. borne out by the results. The correlation between proficiency in mental
- arithmetic and memory span was found to be only .35.

(2) 1In relation to general arithmetic achievement~-Based upon
results in only grades 6 through 9, the correlation between ability in
general arithmetic and mental arithmetic was .65. Compared with the
correlation of .50 between intelligence and mental arithmetic, this is
a high correlation, apparently indicating mental arithmetic is more
dependent upon general arithmetic ability than it is upon 1nte111gence.

(3) In relation to sex--Boys excelled girls in mental arithmetic.
Girls showed superiority when paper and pencils could be used, though
the difference was not: significantly different.

It seéms fair to say, then, that facility in mental arithmetic,

although related to general arithmetic ability, is by no means the same
thing.
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2. Can proficiency ig+mental~arithmétic be effectively taught
in the schools?

L)

Owing to the relationship between mental. and general arithmetic
mentioned above, it is natural to expect that some general arithmetic
concepts must be mastered before mental computation can occur. Pigge
(1967), in a study with 18 classes of fifth graders, compared three..
teaching methods: Method A-~ 75% of instructional time was devoted to
development and méaningful'discussion.versus 25% drill; Method B-- 50%
development, 50% drill; and Method C-- 25% development, 75% drill. In
the pretest and posttest and later recall test of addition and sub-
traction problems, nothing was said about the use of pencil and paper.
On the recall test one month later, pupils displayed a partial reversion
to written calculations. The conclusion was that: drill in written
arithmetic seems to cause students to begin solving problems mentally.
However, the experiment said nothing about the accuracy of the mental
solutions. Furthermore, one might ask what would have happened if the
students were asked not to use pencil and paper.

But what research has been done on the efficacy of direct instruc-
tion in mental computation? Quite convincing evidence has been submitted
by Flournoy. In one study (Flournoy, 1959), & sixth-grade class spent
10 minutes of each arithmetic class for two months on mental exercises.

A pretest and posttest in mental computation were given. The mean pre-
test score was 8.84, whereas the mean posttest score was 13.85, signifi-
cant at the .0l level. B

In the same study, classes of sixth graders were given three weeks
of instruction in estimating and interpreting answers. A typical
prdblem was to estimate or give an example of a distance of 250 miles.
Prtctice in rounding numbers was also given. s compared with a control’
group, scores on a test of such problems were significantly higher.
out of 18 questions, the mean was 15.0 as compared with 9.2 for the
conbred—group. Flournoy's conclusion was that the skill of estimation
not only can be taught, but "has to be taught, it isn't just caught.”

Flournoy's previous study (l95h) is similar, and even more striking.
Five-hundred-fifty sixth graders were given 10 to 12 minutes per day of

‘instruction in mental computation. Tests in both mental computation

and problem-solving were administered before and after the treatment.
All classes showed significant increases on both tests at levels from
.05 to .001. Perhaps even more important was the fact that both fast
and slow pupils showed increases. This would tend to dispel the thought
that only bright students can learn mental computation skills. Dramatic
results such as these appear to answer question 2 in the affirmative.
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3. What effect does instruction EE mental computation have on a

child's growth in arithmetic?’

A number of studies show positive results. 1In fact, this writer
could find no studies with negative or even neutral results.

Flournoy's 1954 study cited above showed that in six of the classes
‘drawn randomly from the 20, pretests and posttests on written computa-~
tion and written problem-solving showed differences significant at the
‘01 1level.. Further, the Towa Test of Basic Skills in Arithmetic Problem
Solving revealed significantly more than average growth in arithﬂetiqj
over the-two months. o

‘In a study by Hall (1942) 40 fifth- and sixth-grade students
brought in their own practical oral problems to be solved mentally for
15 to 20 minutes each day. Unit Scales of Attainment were adminlstered
before and after the treatment. The results are listed on the next:
page. The figures are impressive for less than one year of instruction.
Notice also that growth was relatively uniform over ability grouping. -

Results of Hall (1942)

medlan
1Q Sept. 1941 Apr. 1942 Net Gain
gl L-1 5-L 1-3
- - - grade
105 L-6 6-1 1-5 v
113 5.4 6-5 1-1
95 5-0 6-2 | 1-2
- - ' - grade
10k 5=k 6-9 | 1-5 s
;‘ 112 5-9 7-3 1-6

A Unit Scale of Attainment score of 4-1 is to be interpreted
as a mathematical growth level of Lth grade, 1lst month.




‘In a study by Austin (1970), one teacher’'s seventh- and eighth—grade
classes set aside one class period per week for mental computation

problems made up by the students, for example, 8 + 4 x 2 - 3 x 6, etc.
The scores of & random sample of 100 boys and 100 .girls were compared

to those of a control group on the SRA achievement test. A significant
- difference at the .0l level was found. The experimenter noted that the
teacher variable was not controlled and may have been a factor. Another
uncontrolled factor was the effect of a modern mathematics curriculum.
No significant interactions of groups and IQ or of groups and sex were
found. | .

Rea and French (1972) administered the SRA achievement test before
and after a twenty-four-day period during which a sixth-grade class
spent approximately 15 minutes per day using Kramer's Mental Computation
Series. Although there.was no rigorous statistical analysis, the class
(n = 13) did show an average growth of eight months over the two-month
period. Such striking results cannot be taken.lightly. ‘

Schall (1969) gave 399 fifth graéers a pretest and a posttest to
students who were ‘given two weeks of instruction in mental arithmetic.
The tests were in attitude, mental arithmetic and arithmetic achievement.
Attitude improved. Mental arithmetic ability improved, but not too
significantly (p > .10). No significant gains were found in paper-and-
pencil computation, but gains were found in problem-solving. Schall
concluded that pupils were able to transfer skllls and concepts betfer
after the two Neeku. .

The precise reason for the increases in arithmetic growth exhibited
above is not known. Various explanations have been offercd.

1) Pigge (1967) stated: "It has often been stated that
reliance on paper and pencil solutions alone can lead
to automatic computation witheut requiring much think-
ing. On the other hand, it is believed that the
thought processes required in mental arithmetic en-
able the chlldren to better understand the numerical
relationships" (p. 589).

2) TFlournoy (1954) appeared to concur with a statement
she attributed to Spitzer: '"Mental arithmetic tends
to emphasize significant aspects of the number system"

(p. 148).

Rea and French (1972) imply that success was due to
increased motivation of students, i.e., fun with mental
arithmetic serves primarily as a motivational device to
get students to enjoy mathematics.,

W
~—

102




1) Hall's 1942 article seems to emphasize the fact that
the students made up their own problems. The numbers,
therefore, acquired a personal meaning and relevance
to the students.

<

In only the first two of these explanations is there implication of
direct transfer of skill in using mental algorithms to skill in using
written algorithms. Whatever the reason the data are consistent and
fairly conclusive that mental computation instruction produces good re-
sults in general arithmetic growth. -

Conclusions

"The literature on mental computation is fairly consistent in its
proclamation of the value-of teaching mental computation. Mental arith-
metic, while closely allied with written arithmetic, is a topic in itself
which can be effectively taught to both slow and fast learners, Moreover,
instruction in mental computation has been shown to be of significant
value in enhancing students' overall growth in arithmetic,

If" there is a set of algorithms unique to mental computation, and
if knowledge of those  algorithms is useful to students in learning mathe-
matics, then it follows that research should be done as to the best
method of teaching those'algorithms. There has been much research on
methods of teaching written algorithms, but almost none on methods of
teaching mental algorithms.
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Algorithmic frocesses in Arithmetic and Logic

Jesse D, Parete

Introduction

This study is designed to meet two objectives., The first is to
investigate the relationship that may exist between (1) school students!'
ability to formulate and use the rule-governed hehaviors necessary for
success on the Furth-type task and (2) their ability te-use-arithmetic
algorithms, For this study, the first variable is theorized to be a
measure of the subject's innate ability to process information in an.
algorithmic fashion, | '

The second objective is to investigate the effectiveness of teaching
division of fractions by two different algorithms, In this same context,
two strategies for teaching division of fractions will be tested. They -
consist Sf presenting both algorithms to the students in two different
sequential\ orders. The purpose of testing these two strategies is to
find out if the lkarning of one algorithm influences the learning of the

© other, S

Related Research

Hans Furth, a psychologist ‘interested in the development of human.
intelligence, has studied students' mental behaviors as they worked with
concepts formed with the logic rules of conjunction and disjunction and
the logic operation of negation (Furth, Youniss, and Rods, 1979). lis
subjects were elementary school students (grades 1-6). '

The paradigm he used in his study consists of preaenting subjects
‘with ‘statements such as 'x and y' where x and y are values of two attri-
bute dimensions, For example, 'house and red' would be presented as
'Tt is a house and it is red,' Together with this statement, the subjects
would be presented a picture of some colored object., For such a pair,
the subjects would respond to whether or not the statement and the pilcture
matched, i.e., whether or not the picture was a positive exemplar of the
concept being expressed., With a statement such as 'x and y' , four task
items are presented: one item for each possible truth value case (TT,
TF, FT, and FF) of a bidimensional rule.

_ Turth tested his subjects using the following concepts: 'x and y',
'x and y', 'x and y', 'x or y', 'x or y', and 'x or y' (where means
negation.,) By analyzing consistent responses on certain item types,
Furth sorted the subjects into three distinct groups.

_ To illustrate the item types, the four items formed from the concept
'YX and y' will be analyzed (see Table 1).
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Table 1 |
& | i
- : o _ ) Truth Picture

: ' Correct Picture Table Instance — .
. : ' Statement . Response Instance Cases Cases |
: 1) Not a house or ’ |
it is not red match -, red house TT s'e' ’ |
2) " : match - . blue house F sfc -
. i ’ . |
3) " v . match red car FT s ¢ |

L)’ o not a match blue car " FF s c

Note: The symbol s indicates that the relevant value of the shape
dimension (house in this case) is present in the picture
and s' indicates that it is absent. Similarly for.the color v |
{red) c and c', ' L "

——
‘-

! The most primitive level of responding was fowid with responses to =~ ‘
items like 1 and 4 in Table 1. One group of subjects (Level 1 subjects) 1
consistently responds with a match for item 4 and not a match for item 1. S
This type- of response was caused by an attribute present (or absent) - 'j
S factor and not the logical ¥ruth value of the instance or the concept |
- ’ it was to exemplify., In item 1 the relevant attributes, house and red,
X were absent (s' c') so the subjects in this group gave a negative re-
sponse; in item 4 they were present (s c) and a positive response was
elicited. ' : S

The second level of subjects (Level 2 subjects) demonstrated another
consistent pattern of behavior which Furth interpreted as a transitional |
stage in the ability to deal with the relation of logical truth., These ‘
subjects could successfully answer item types 1 and 4 no matter which of ‘
the six concepts they were dealing with., Note that the truth value cases J
(TT and FF) are concordant for these two items while in items 2 and 3
they are discordant (TF and FT)., Furth concluded that the subjects were 1
beginning to deal with the relation of logical-truth and that they were )

'not able to apply their new skill in the discordant cases because the ' : l

memory load interfered with information processing. The third level
(Level 3 subjects) had little trouble with the task of dealing with the
relation of logical truth. T

The number of students in any level was related to the grade level. .
Because of this, Furth drew his conclusion that the three levels repre- : o
'sented a developmental sequence.
\ " These three levels also reflect the behavior of adult subjects ' / |
lapplying a problem-solving strategy in "rule learning" tasks. Bourne
(1970) enalyzed this strategy as the application of three steps:
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(1) identifying the truth value of the attribute dimensions, (2) placing
the exemplar (or~nonexemplar) instance into one of the four truth value
cases, and (3) attaching a correct truth .value %o correspond to the rule,
His experﬁments:provide evidence for such a model by the behaviors that
subjects exhibited.‘“Hexgiz;vCited studies indicating that the subjects'
application of this. strategy-—can be enhanced by pre~training the subjects
on the subtasks or steps (Haygood and Kiehlbauch, 1965; Bower and King,
1967; Bourne and Guy, 1968).

Bourne (1967) interprets this %ehaviorfas rule-governed. It may be
applied to any one of the four bidimensional rules, conjunction, dis-
junction, ‘biconditional, and conditional. It is like an algorithm in
arithmetic, The subjects are not conscious of the regsoning behind their
behaviors, but apply the rules to solve problems,

Capps (1963) and Bidwell (1968) report that different methods of
teaching division of fractions ipfluenced students' achievement on multi-
plication of fractions. The common denominator method caused interfer-
ence, There does not seem to be any research on the effects of teaching -
multiple solutions for division of fractions and, thus, any research on

how one algorithm may influence learning of another.

- Hypotheses
' !
The null hypotheses to be tested in the present study are:

Hl, There are no differences among three groups of subjects
formed by analysis of responses on a Furth-type logic
test with regard to the likelihood that they will use

 both algorithms taught for solving division of fractions
problems. : '

H2, There is no difference in achievement on a division of
fractions test between students taught the inverse '
“glgorithm and students taught the complex fraction
algorithm. , oo

H3. For groups of students identified at each of the three
levels of performance on the .logic test, there is no
difference in achievement on a division of fractions
test between students taught the inverse algorithm and
students taught the complex fraction algorithm.

H4, There is no difference in achievement on a division of
fractions test between students taught the inverse
algorithin followed by the complex fraction algorithm
and those taught the -same algor}thm in reverse order,

/

H5. TFor groups of students identified at each of the three

levels of performance on the logic test, there is no
Ve ‘,// ¢
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difference in achievement on’ the division of fractions
test between students taught the inverse algorithms in
"“reverse order. '

Subjects

" The subjects were 53 sixth-grade students in two classes in one
elementary school in Columbus,” Ohio, Their social background was pre-
dominantly of the lower socioeconomic level, There were nearly equal
numbers of boys and girls, with ages ranging from 11.3 years to 13.2
years and IQ measures (for those available) ranging from Th to 116,

Tests . . . ~

A 2i-item logic test was constructed with items similar to thoseﬂ
used in the Furth paradigm. The same six concepts Furth worked with

were used in the construction of items. For each concept, there were

four items, one for each of the four possible truth value cases (1T, TF,
FT, and FF). The two dimensions used were shape and color and the rele-
vant attributes on all items were "house" for the shape and "red" for
the color. A reliability of .59 (n = 37) was obtained for this test us-
ing the Hoyt Anova procedure., Factor analysis was used to validate the
claim that this test could sort subjects into the three different types
of behaviors as outlined in the introduction., On each of a three-,
four-, five-, and six-factor analysis, one factor could be labeled a8 a
"Level 1" factor and one a "Level 2" factor based on the dominance of
item types associated with the given level, Since Level 3 subjects re-
spond to almost all item types correctly, no factor was expected to re-

- flect their behavior. Other factors obtained reflected differences
between the conjunctive and disjunctive rules., :

Two division tests were prepared to measure student achievement
after instruction., The first test (Dl) contained 15 problems all
written in the following form: a/b + ¢/d., The second test (D2) also
contained 15 problems of which 11 were written in the same form as those

" on Dl. Two problems were written in the complex fraction form and two

were written as the equation which is used in the inverse algorithm
solution. Hoyt Anova reliability coefficients for these two tests were
.88 (n = 37) and .94 (n = 37), respectively.

Experimental Design

Subjects were grouped into one of three levels of performance (L1,
L2, or L3) attained on the logic test., Within each level. subjects were

* randomly assigned to one of two treatment groups (Tl and T2). To test

hypotheses H2 and H3, Tl consisted of instruction on the division of
fractions with the inverse algorithm and T2 consisted of instruction
with the complex fraction algorithm. To test hypotheses Hl and If5, T1

f
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consisted of instruction on the division of fractions with the inverse
algo’ithm followed by instruction on the complex fraction algorithm,
plus the influence of test D1 given immediately after the instructional
period for the first algorithm. Treatment T2 was the same except for

" the order of the algorithms., Both treatment groups ‘were taught by the
researcher, Table 2 presents the experimental design model,

Table 2. Experimental Design

Day 1 Day 2-5 ___ Day 6 Day 7-10 Day 11
Instruction with Instruction with
Logic Algorithm I Test D1 | -Algorithm C Test D2
Test Instruction with / Instruction with :
Algorithm C g 1s Algprithm I
Algorithm I | Algorithm C
(Inverse) ..~ {Complex Fraction)

+

1/3 )
- 1/3 = [1/3 x 2/1] x 1/2 _l%_

Ans. 1/3 x 2/1 = 2/3 s gfi =23 2/3

1/2[] , o 1/3+1/2 =[]

The random assigmment of individuals to treatment groups was used
in order that individuals rather than classes could be used a8 the ex-
perimental unit. Unfortunately, it was impossible to instruct subjects
from both .classes assigned to the same treatment group at a common time.
Instead, four ‘instructional groups were’ formed., Treatment Tl was admin-
istered twice; once to those subjects in one class assigned to Tl and:
once to those subjects assigned to Tl from the second class, Similarly,
T2 was administered twice daily. The data were analyzed as if the random
assignment into treatment groups had been achieved. This liberty with
statistical assumptions was forced by the small sample size in this
experiment. It was rationalized with two factors in mind., PFirst, the
- pesearcher taught both classes for four weeks prior to administering
the treatments and introduced all the prereguisite concepts for division
with fractional numbers. Second, the researcher administered each treat;
ment. ' ' A | !
For the statistical design (see Table 3), the logic test was used |
as a blocking variable, ‘ R
\(]
4/

111 /




T *3( 4S9 Uo do,.npo.m.HwﬁHH *2 2an3Td _ *IQ 3591 UO UOTAOBJISAUI °*T SINITI

W} TIOBTY w.,m.HwEHH .
Rq pamoTTod UOTASBRIL X9Tduod - 2T

: WG TIOBTY UOTROBIL | W TIOSTY UOoT}o'RILI XO9Tduo) - 2T . N
. xo1dmoy £q POMOTTOd 9SI3AUT ~ T : . WL TIOBTY 9saaaul - TL
¢ 21 S €1 21 1
‘ T T 0 — T T 1 0
&---02K —1.9 . & -~—-—-0 2l (0008 19 o
2 |
2

-1 81

—1ve

— 0¢ (982°1€)

— 9¢




e g—

Table 3. Statistical Design

Ll L2 L3
71 (G (n=2) | Gp (n=28) Gz (n=7)
T2 |Gy (n=k) Gpp (n = 10) Gog (n = 6)

A 2x3 factorial design using analysis of variance (SOUPAC):L wae used to
analyze the effects of the two treatment variables and the three levels
obtained from the logic test. This design was run on each of the two
division tests D1 and D2. ' ‘

To test the first hypothesis H1, a Chi square test was run usin
the levels of performance on the loglc test (11, L2, and L3) as the lfnde-
pendent veriable and performance on four specially prepared items pl ced
on the second division test D2 as the dependent variable, Two ltems!were
written in the form of the second step of the complex fraction algorithm
and two were Written in the form of the equation in the second step Qf
the inverse algorithm (see Table 2), Success was considered to be |
achieved if the subject used the intended algorithm on all fgur problems,

: \
Results N

Results fram the analysis of variance for the division tests D1 and
D2 are given in Table L, "

Table 4, Analysis of Variance

Test D1 Test D2

Source of Variation . daf - MS F P MS - F P
Treatments (T) 1 3he.h2  3.51 0,07 206,14 3.07 0,089
Loglc Levels (L) 2 | L7481 L4.87 0.015 411;17 6.13 0.006
TxL 2 552,44 5,66 0,008 | 234.73 3.50 0.043
Within 31 97.55 67.05

Total 36 [1k67.22 919.09

In each anslysis the interaction was significant beyond the .05 level and
the graph of tell means indicated that the nature of the interaction was
disordinal (see Figures 1 and 2), Therefore, only the simple effects at

"each of the three levels L1, L2, and L3 may be interpreted.
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Critical values for differences in means at different levels of the
logic measure were computed using the Dunn procedure for post hoc analy-
3is. The critical value for the difference in means at L1 on test D1
was 30.68 at the .05 significance level; the observed difference was
23,125, At L2 on test D1, the critical differences were 16,829 and
11,243 at the .05 and .30 significance levels, respectively; the ob-
served diffference was 7.325. At L3 the difference in means was very
small, so no statistics were coamputed (since it was evident that there
“would be no statistical difference in the scores). '

On the/second_division test, [the only means that appeared different
were gt L1, The Dunn critical value at the .05 significance level for

differences in means was 16.97; the obserfed difference was 17.0.
. i

Tables 5 and 6 contain tﬁe‘test statiétics for the division tests

D1 and D2, \

o \

|
Teble 5. Stdtistics for Test D1
I . .

Ll L2 ’ I3 .
TL . | M=8,00 (n=2) M=29.13 (n=8) M=31.29 (n=7)  M=27.53 (n=17)

SD=7,06 8D=10,62 $D=6,55 SD=il.12

T2 | M=31.25 (n=4) M=21.8 (n=10)  M=36.33 (n=6)  M=28.05 (n=20)

SD=4,11 SD=14,01  8D=h,72 SD=12.08

M=23,50 (n=6) M=25.06 (n=18) M=33.62 (n=13) M=27.8L (n=37)

SD=12,82 | SD=12,82 SD=6,13 SD=11.49

Table 6, Statistics for Test D2

11 12 13
T1 M=16,5 (n=2) M=36.83 (n=8) M=37.29 (n=7) M=29,71 (n=17)

SD=0,71 SD=10,32 D=k 2 SD=9.l41

T2 M=33.5 (h:h) M=26.1 (n=10) M=36.83 (n=6) M=3o._8 (n=20)

SD=1.29 SD=11,17 SD=h,17 SD=9.l1
M=27.83 (n=6) M=26.22 (n=18) M=37,08 (n=13) M=\§o.2'9 (n=37)
SD=8, 84 SD=10,49 SD=4,1i3 sné\?.'/a
o
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Levine's test for homogeneity of variance was run for both sets of
data. This test indicated that the hamogeneity condition was met
(p <.05) to satisfy the analysis of variance model,

Table 7 presents the contingency table for subjects in groups L1,
L2, and L3 who did or did not meet the criterion set for the four
special problems from division test D2. A chi square of 4,23 (af = 2,
‘. i . : .

Téﬁiéﬁ7:“‘66htingenéy Teble for Special
Problem Task on Division Test D2

Meet Criterion Failed Critefion Total

L1 1 5 6
L2 : L 14 18
13 7. ' 6 ' 13

Total 12 - - 25 37

’

p<.125) was calculated for this data. At the .125 significance level,
group L3 was different from either L1 or L2, but Ll and L2 did not
- gtatistically differ from each other.

Discussion

The biggest difference in mean scores appeared on division test D1
between the groups at the L1 level of the logic test (see Figure 1).
These are the studénts who were judged to be least capable. of processing
information in an slgorithmic fashion, They seemed to be quite success-
ful using the complex fraction algorithm and quite unsuccessful wlth the
inverse algorithm, The researcher served a8 the instructor throughout
this experiment and it is his feeling that the subjécts.in.the L1 group
taught with the complex fraction algorithm were applying it rotely. The
subjects in this level who were taught the inverse algorithm had trouble
following the steps of this algorithm, The equation formed in the second .
step seemed to be a "trouble spot" for all students and therefore it was
not as easily applied in the rote fashion in which the complex fraction
algor%thm appeared to be applied., : -

If the complex fraction algorithm is easier to perform, .groups uging
: it at éach of the three levels should out-perform those using the inverse
‘o algorithm, While this appeared to be the case for subjects at Ll and L2,
the revgrse is true for level L2 subjects, The L2 subjects are those who

were judged to be attempting to deal with the relationship of logical
truth on\the logic test. Most important is that, unlike the L1 subjects,

they were attempting a meaningful solution to items on the logic test.

Tt may be, the case that the rationale for the inverse algorithm is.

\ . i
//

|

f
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easier to comprehend., For the inverse algorithm the subjects must under=
stand the relationship between multiplication and division, i.e., that
they are inverse operations. The complex fraction algorithm requires

the students to deal with the formation of a complex fraction; this con-
cept was new for them, There are no new concepts involved in the inverse
algorithm; its rationale is built on concepts the students have a.lready
dealt with at one txme or another, .

TIf it can be assumed that the two algorithms dlffer in the manner
described above, the differences-in group means for test D1 at each

“level (L) reflect the characteristic measured by the logle/ﬁest the

ability*to perform with algorithmic processes, The LI subjects were
using an algorithm on the logic test as evidenced by "their consistent
responses to item types for which the instance patterns were sc or s'c',

“But this is a rotely applied algorlthm in that it lacked,any~external

meaning, The level L2 subaects were attempting. mesningful solutions.,
In so doing they became/eonfused on items whose truth value case was

 discordant, The L1 subjects consistently answered same of, these ltem-

types correctly. For example, the statement, "Not a house and 1t is
red" paired with a picture of a black house, is one such itém-type. The
truth value case for this item is TF the pattern (picture) instance is
stc', and the correct response is "not a match." Thus those subjects
attemptlng the ‘meaningful. solutlon on these types of items seemed to
perform less well,

In the same fashlon; subjects at level L1 using the camplex fraction
algorithm out-performed both groups at level L2 on division test DI,

The only group whose average fell after instruction with both algo-
rithms (see Figure 2) was that group at L2 receiving instruction with
the inverse followed by the complex fraction algorithms (Tl) This tends
to support the interpretations stated above concerning performance with
the two algorithms. The fact that those subjects in the group Ll re-
ceiving instruction with the camplex fraction algorithm followed by the
inverse algorighm (T2) also gained on test D1 tends to detract from the
interpretation of differences in the algorithm, Similarly, those in
treatment group Tl at L1 did not gain as much as might be expected.

‘These events as well as those observed on the first test may be due
to other factors such as individual differences not controlled for by
the design of this experiment. The sample sizes for the two groups at
Ll were It and 2, respectively—a small number of students from which to .
draw conclu31ons.

The results obtalned for the special problems on test D2 were straight-
forward if not significant at the .05 level. The pr0portion of students
meeting the criterion of success increased from L1 to L3; the proportions
were ,167, .222, and ,538, respectively. These data add support to the
theory that the logic test was measuring, in some way, subjects' ability
to use algorithmic strategies,
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The results of this small study warrent expansion to a larger scale.
The use of classes as the statistical unit and IQ scores as a covariate
could greatly increase the power of the statistics necessary to anglyze
data from a study of this nature, If there are strong ties between the
logic test results and achievement in the arithmetic algorithmic setting
studied that are accounted for by IQ, it could have significant implica-
tions for future educational practices, A construct of a higher-order
skill more specific than general intelligence could be postulated, The
construct of higher-order'rules governing behavior in meny domains has
already been postulated and investigated by Scandura (1971). The higher-
order skill postulated from the theory upon which this study is based is
the facility to organize and process information in an efficlent algo- ‘
rithmic menner, Again, assuming that this is & valid construct, instruc-*
tion designed to develop this skill could help students improve in both
the areas of logic and arithmetic and possibly other areas, :
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A Comparison of Different Conceptual Bases \
" for Teaching Subtraction of Integers |

Diane Thomas ’ |

Purpose

There are a number of ways to interpret the operation of subtraction.
In some situations, such as "If Kathy has 7 pileces of candy and eats 3 of
them, how many does she have left?", subtraction becomes the process' of
taking away. In "How much more than 3 is 72", subtraction is used to
make a comparison between two numbers. Subtraction as a method of com-
'plementary addition is indicated in "What must be added to 3 in order to
meke 72" When integers are considered, subtraction may be defined as an
"adding the opposite" procedure. Each of these different interpreta~
tions can be thought of as forming a separate conceptual basis for the
process of subtraction. ” ‘ ‘

When students extend the number system they use from the whole
numbers to the integersi and then consider subtraction as operating on
these "new' numbers, the subtraction algorithm that they will use will
be derived from one of these conceptual bases. The question of which
conceptuel base is most appropriate for the student's first introduc-
tion to subtracting integers was investigated ia this study. Three
algorithms, derived from three different conceptual bases, were compared
in an attempt to ascertain which most facllitated student skill in com-
putation. ' '

Background

A variety of approaches are used in upper elementary-school text-
books for the first presentation of the topic of subtracting integers.
In the 1972 Houghton Mifflin series, Modern School Mathematics-~
Structure and Use, subtraction of integers is introduced through the
ugse of number patterns, eventually leading to the principle that sub-
tracting an integer is the same as adding its opposite; the presenta-
tion is done in a caompletely symbolic mode. The 1968 Addison-Wesley
series, Elementary School Mathematlcs, approaches subtraction through
related addition facts ('Hence, in order to find a difference, we think
of finding a missing addend." p. 368), &and the presentation is in only
the symbolic mode. In Modern Mathematics Thraugh Discovery, the 1970
" §ilver Burdett series, the 'finding a missing addend” approach also is
used for an introduction to adding integers, bt students are expected
to use a number line in getting their answers; subtractlon is presented
in & like manner in the 1969 Ginn series, Essentials of Mathematics.
The 1972 Laidlaw series, Progress in Mathematics, conslders subtraction

a8 adding the opposite and i1lustrates each/prdblem with movement on the
number line. ' ’




.Similarly,"methods texts and journal articles recommend varying
approaches for the student's first encounter with subtracting integers.
Butler and Wren, in The Teaching of Secondary Mathematics (1960),

suggest that subtraction be defined as the process of finding a missing
addend and that the number line be used as a vehicle for i1llustration.

“As another possible method, Butler and Wren include presenting subtrac-

tion of integers through the symbolic mode where number patterns are
analyzed: :

From +8 +8 +8 +8 +8 +8 '+8 etc.
Subtract 3 2 41 0 =1 =2 =3 etc.
Difference +5 % +7 +8 +9 +10 +11 etc,
- : (pp. 373-375)
Riedesel, in Guiding Discovery in Elementary School Mathematics (1967),
opts for emphasizing that subtraction involves the idea of finding
the difference between two numbers and suggests that word problems
stressing the notion of distances above and below sea level, and of tem-
peratures above and below zero, be used in conjunction with the number
line for the student's first introduction to this concept (pp. 133-135).
In the January 1973 issue of the Arithmetic Teacher, Werner discusses
possible number line models of subtraction and concludes thut the model
involving finding the missing addend provides the smoothest transition’
from the system of whole numbers to the system of integers. Three sug-
gestions for introducing subtraction of integers are made by Kennedy in
his methods text, Guiding Children to Mathematical Discovery (1970):
(1) using a number line with subtraction defined as finding the missing
addend, (2) exploring the meaning of subtraction with integers by using
Postman Stories that involve a mailman delivering and picking up bills
and checks, and (3) employing David Page's method of using positive and
negative money (pp. 381-383). Finally, Kennedy also recommends approach-
ing the topic through a concrete mode by using pipe cleaner loops--a
method first described by Fremont in a 1966 article in the Arithmetic
Teacher. - Fremont's method is summarized below:

Pipe cleaners are used to represent positive and nega-
tive numbers; a pipe cleaner bent in this mammer =
represents +1 and one opening in the other direction
represents -1, Subtraction is thought of as a take
away process. The problem Lk - 3 would be worked as

$ D where slashes drawn through three of the
loops indicate 3 have been taken away. In & problem
such as 2 -~ 3, 2 is represented by o>, In order
for three to be taken away, & zerd 1s added to the 2,
and the 2 is represented by :» = < < . Now three are
taken away-- ¢>¢>c;¢r-leaving -1 as the result,
(pp. 571-572) |

Thus, many approaches to introducing subtraction of integers have
been suggested to teachers and used in student textbooks; however, there
has been little corresponding research into the relative merits of these
different approaches. Two studles (Coltharp, 1969; Sawyer, 1973) inves-
tigated selected semiconcrete and abstract approaches to learning
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subtraction of integers; one study (Zelechoski, 1961) attempted to corre-
late learner characteristics with gain in knowledge of integers. Coltharp
reported no significant differences in overall achievement between sixth
graders taught addition and subtraction of integers from an abstract,
algebraic approach through the use of ordered pairs of numbers and those
taught by means of a visual approach through the use of the number line,
However,| only overall achievement was measured in Coltharp's work--there
was no mention of the students' achievement in the specific area of sub-
traction. Sawyer compared achievement of seventh graders taught subtrac-
tion of integers by three different methods: '

1, Complement method--method of subtraction by adding:
the same number to both the minuend and the subtrahend.

((+5) + (+3)) = ((-3) + (+3))
(ES) + (+3)
+

Exemple: (+5) - (-3)

nonon

2, Related number facts method--method of subtraction
involving the relationship between subtraction and
addition, '

Example: (+5) - (=3) = N iff N+ (-3) = (45);
therefore, N = (+8)
(Number lines were used at the introduction
of this method.)

3. Systems method--by examining a modular system, the
student learns that x -~ y = x + (~y). This is
generalized to the integers.

Example: (+5) - (-3) = (+5) + (43) = +8

Results showed no consistent superiority of one method over another.
Zelechoski found that for students in grades seven, eight, and nine,
. mental age correlated most highly with gain in knowledge of signed
numbers, followed by algebra aptitude.

As pointed out by Sawyer in his study:

+v+.There are many models for explaining subtraction of
integers....(but) there seems to be no agreement as to
which model is most easily used and retained by students.
There does seem to be agreement that subtractlon of .
integers is a troublesome area in mathematics as witnessged
by the number of articles written on the subject., It seems
that, because of the importance of subtraction of integers
to the further study of mathematics and the concern of the
peonle involved in the area, an investigation of the prob-
lem would be very important to the field of mathematics
education, (p. 16)
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Procedures

) The present investigation attempted to compare three instructional
treatments based on different conceptual bases for subtraction of
integers to see how they affected student achievement on camputation
problems and to test for any interaction between instructional approach
and student ability level. The three instructional treatments were de-
fined as follows: : ‘ )

Tl ~- Number line, subtraction as "adding the opposite“

A common algebraic definition of subtraction is
given by- '

“1In any ring R we define, for a beR, ’
- a-b=a+(-b)

(Introduction to Abstract
Algebra, Dubisch, p. H1).

In T1, this definition was established by first
using examples where the minuend and subtrahend
were both whole numbers, The procedure used for
- adding integers .on a number line served as the
means for deriving the answer; for exasmpie:

6 -4 =6+ (-h) ﬁa

and 6 + (-4) is represented by YRNIN I S A A S AR
o 2
s06 -4 =6+ (-k4) =2

Then, the definition wﬁs used to obtain answers
when the minuend was negstive and the subtrahend
was positive:

(=3) = 1= (-3) + (-1) b
(=k) -4 0

-

Finally, the definition was used to obtain answers
when the minuend and subtrahend were any integers.
Thus, for example,

- (=5) - (-2)

b - (-3)
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T2 -- Number line, subtraction as "finding the missing
addend" :

The rationale for this approach to subtraction of
integers is based upon related addition facts and
the commtative law:

6 - 4 = n may be rewritten as.
n + L4 = 6, or, equivalently,
Y +n =6,

In this last form, the problem becomes one of locating
the numbers 4 and 6 on the number line and determining
the distance and the direction (the "missing addend")

between the two points, starting from the subtrahend k4,

2,
- so6 -L4 =02
0 4 6 .
The problem (-4) - (-1) would be worked in the seme

manner:

(-4) ~ (-1) = n is equivalent to

n+ (-1) = 4
(-l) tn= Y4
-4 -0

Since (-1) + (=3) = (-h4)
we get that n = (-3)

T3 -~ Number line with semiconcrete referent, subtraction
as "take away"

Positive and negative integers are represented as

follows:
C = -1 +] = D
Cc T o= <2 +2 = 702D
cCCcCcCcC= —3 +3 = 2020

end the notions x + 0 =x and y + (-y) - O are
stressed., ) :

Subtraction is viewed as a "take away' situation:
6")4'beCOIneS Ty TH D \’_)»), take a.wa.y')?.") N

orpppP leaving - ), or +2, as the result.
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Whenever necessary, enough zeros are added to the
_plcture of the minuend in order to fac1litate the
"take away" process'

1 - L means that we have D and must take awsy D D D O e
in order to do that, the 1 is represented as 1 + O + o + 0,

or DCDcDcD, Thenl-hbecqmes |
555, or -3. P Pc pc ?lea.\mng

Similerly, (-3) - (;5),would'be worked as -

(-3) = (-3) +0+0=ccccoc>

and (-3) - (-5) =¢ ¢ EgDED=22=2,
Two specific hypotheses were to be tested at the .05‘level:

1) TThere is no significdnt differences between the
three teaching approaches to subtracting integers,
and

2) There is no significant interaction between student
ability level and the instructional approach being.
used.

Three intact classes of sixth graders at one elemeniury school in
the Columbus, Ohio public school system were used in the study. Students
supposedly had been randomly assigned to classes before the study began,
In order to control for the teacher variable, the investigator taught all
three classes,

According to the reguler classroom teachers, the topic of positive
and negative numbers had not been previously discussed in their classes,
The instructional unit on integers developed by the investigator lasted
for one half-hour each day tor each class, for a total of seven days.
(See Appendix I for selected worksheets used in teaching the unit.) The
-activities for the first three days were the same for all three classes,
On‘the_first day, students were introduced to the concept of positive
and -negative numbers, they located integers on the number line, and they
read coordinates of points already specified on the number line. A brief
review was held on the second day, then a pretest on adding and subtract-
ing integers was given to the students. The third day was devoted to
adding integers, both with and without the use of a number line, Each
class then was randomly assigned to one of three treatment groups for
subtracting integers and on the fourth, fifth, and sixth days studied
subtraction of integers according to the treatment specified, The choice
of examples and problems worked during the introductory period on the
fourth day by necessity was dictated by the treatment, so that students
could begin with the easiest problems for that particular method, On
the fitth and sixth days, all numerical exemples used by the instructor
during the class presentation, as well as all problems to. be ~worked by
each student, were the same for nll three treaLmenLe. An otlempt was
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made to teach all material meaningfully for the students in all of the

groups., On the seventh dey after a brief review of the subtraction pro-
cedures, students in each group were given the posttest on subtraction;
upon completion of that portion of the test, thef* received the addition

. posttest,

Results of Analysis of Data

Since intact classes were assigned to the treatment groups, an -
attempt was made to determine whether the three classes were equivalent
in ability to add and subtract integers before the treatment began., An
investigator-constructed test of 12 items on.adding integers (Kuder
Richardson-20 estimate of reliability = ,88) and of 12 items on subtract-
ing integers (KR-20 estimate of reliability = .89) was given to all three
classes, In analyzing the data, a blocking variable was used: student

~abllity level as determined by scores on the California Test of Basgic

Skills=-Arithmetic Level 2, given when the students were in the fifth
grade. Raw scores ranging from 7C through 89 on the Cdlifornia Test were
considered to indicate high ability, scores from 46 through 69 were cles-.
gified a8 indicating average aullity, and scores from 24 through 45 were

‘considered to show low ability.

Table 1 shows the number of subjet¢ts per cell and per treatment
level; Tables 2 and 3 show section means (weighted and unweighted) and
standard deviations (unbiased) on the addition pretest and on the sub-
traction pretest. -

Table 1.‘ Munber of Students Participating ' y
Y
Tl ) T2 T3
Add the Missing Take Away
Opposite Addend Totals
High 7 3 7 17
> \ y
B4 Average 8 6 23
25 ,
Q- Tow 5 6 6 17
<
Totals 20 15 22 " 57
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A two-way anslysis of variance was run on the addition pretest scores
and on the subtraction pretest scores as a check to see if the three differ-
ent classes possibly were not equivalent at the beginning of the instruc-
tional treatments, Unweighted means were used in the calculations,
Summsries are given in Tebles L4 and 5. : ’

Teble 4, Analysis of Variance of Addition Pretest Scores
' by Teaching Approach and by Student Ability Level

Source ' af SS , < MS , F

~ Prob,
"A (Teaching . '
Approach) 2 19,8002 9,9001 2.5647 .087
B (Ability '4 : .
Level) 2 31,7968 15,8984 4,1187% .022
"AB  (Method X
Ability) k4 23,3085, 5.8271 1.5096 .21k
S/AB (Error) L8 185,2841 3.8601 ‘
Total _ 56 260,1896
*p < .05
Table 5, Analysis of Variahce of Subtraction Pretest Scores
by Teaching Approach and by Student Ability Level
Source af 8§ MS F Prob,
A {Teaching - : :
Approach): 2 .3272. .1636 ,0730 .930
B (Ability |
Level . 2 1,4083 . .7ok2 . 3143 .732
AB (Method X
Ability) 4 7.7047 - 1,9262 .8597 495
s/AB  (Error) 48 107, 5413 2.24ol
Total 56 116,9815

As shown in Teble 4, no significant main effects were found for the teach-
ing approach veriable, nor were there any significant interaction effects,

Similarly, the ANOVA for the subtraction pretest scores revealed no

signif-

icant interaction effects., Thus, we have no evidence to say that the three
treatment groups were:not equivalent prior to instruction in adding and

subtracting integers,




A two-way ANOVA then was used in analyzing student scores on the
addition posttest and on the subtraction posttest., Table 6 shows means
(weighted and unweighted) and standard deviations (unbiased) for scores
on the addition posttest; Table 7 summarizes the analysis of variance
performed on the addition posttést scores.

\ : . Table 6, Addition Posttest Section Means.and
Standard Deviations

, Level Means (| Unweighted A

\ T1 T2 T3 Level SDs Level Means
« High i1 = 914, | Xis = 9.00 |Xis = 8,56 X1 = 9.00 9.00

o o =28 o = h.36 o =209l o =2,94

[+)] B . .

> — P = - =

8 Average. | Xap = 8.13 | Xaz = 6,33 |Xag = 8.11 [[Xa1 = 7.65 i 752

. 0 = 3,56 ¢ ?,3.26 o = 3,&1 o = 3,37

2 : ;

o = = = =

~ Low Xar = 4,00 | Xaz2 = 5.83 | Xaz = 733 |Xe1 =5.82 5472

2 o =430]| 0 =L458| 0 =3.67} 0 =L.16 |

Unweighfed R _ ‘ Unwelghter
Level Means 7.09 7.06 ! 8,10 Overall Mean  7.42

Table 7. Analysis of Variance of Addition Posttest Scores
by Teaching Approach and by Student Ability Level

Source Coap ss MS " F . Prob.

A (Teaching ‘ : '

Approach) 2 . 12,24k 6.1220 LTl .625
B (Ability | |

Level) 2 93.5688 46,7844 3.6280% .034

AB (Methéd X

Ability) L 32,5400 8.1350 .6308 643
S/AB (Error) , 48 618,9782 12,8954
Total - 56 757.3311
*p < .05

No significant main effects for teaching approach were found, nor
were there any significant interaction effects, for the addition posntest
scores, Although the main effects of the teaching approach were not
found to be significant on the addition pretest (p < 087) because the
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probsbility was close to the .05 level an analysis of covariance was run
on the addition posttest, with the addition pretest scores used a8 the
covariate., Results of this test also showed no significant main effects
for the teaching approach and no significant interaction effects,

Table 8 shows means and standard deviations for scores on the sub-
traction posttest, while Teble 9 gives a summary of the two-way ANOVA
performed on the subtraction posttest scores (unmeighted means8 were used
in the ANOVA calculations). : -

) .
Table 8, Subtraction Posttest Section Means and Standard

A

—m Deviations
_ ; Level Means fUnweighted
T1 ' T2 | T3 |Level SDs Level Means
_, Hign | Fi1 = 7.57 | X2 = 9.67 = 10.14]%11 = 9.00 9.13
v o =3.31| o =1.1i5 = 2,12] o =2,7h
B _ _ _
"i'AveraSC Xo1 = 5.87 X2y = 7.9
-0"3‘ = l& I+9 =
bt A
A
: :
Unweighted , - Unweighted
Level Means 5,62 8.78 7.49 Overall Mean 7.30.

Table 9. Analysis of Varieance of Subtraction Positest
Scores by Teéching Approach and by Student
Ability Level

Source af . SH] - M8 o Prob.
A (Teaching ’ '
_Approach) ' 2 87.8194 43,9097 3,8936% .027
- B (Ability - |
Level) 2 173.9838 86.9919 7.7139% 001
AB (Method X < ‘ _
Ability) 4 28,7223 7.1806 .6367 .639
S/AB (Error). 48  sh1.1313 11.277h
Total 56  831.6568
*p < .05
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Table 9 shows -that the main effect of the teachlng approach vari-
able was found to be significant at the .05 level, while the interaction
effects were not 31gn1f1cant Post-hoc multiple comparisons of instruc-
tional approaches were performed using ng the Scheffe’ test to determine the

- specific nature of the differences. Results showed that students study-
“ing subtraction of integers by the "finding the missing addend" method

scored significantly. higher (p < .05) on the subtraction posttest than

-did students using the "adding the opposite” approach; other comparisons

were not significantly different.

) &
'Limitations and Suggestions for Further Research

There were sevéral limitations to this study. It was not possible
to randomly assign students to treatments, Since intact classes were
used, there might have been a teacher effect confounding the results,
even though all instruction for the unit on integers was handied & by the
investigator, Further, it was learned that each class had been together
for longer than just the sixth grade; test records for the California
Test of Basgic Skills revealed.that the students had been in the same
classroom units for the fifth grade also, so that a group effect could
possibly be present, This study should be replicated using random
assigmment of students to. treatments, or perhaps by randamly assigning
more than one intact class to each treatment level.

The design of this study did not permit the 1nvest1gator to
ascertain the extent to which the subsequent instruction in subtraction
either facilitated or hindered student ability in adding integers. A
possibility for future studies would be to investigate the degree of
1nterference taking place.

A further improvement for the study might be to measure student
achievement not. only on computation items; but also on items covering
concepts’ and applications., kinally, including a retention test in the
design of the study might yield useful information about the effective~.
ness of the various approaches to subtraction that would not be ev1dent
when only an immediate posttest was used,

Conclusions and I@plicatiohs

Analy31s of scores on the subtraction computuation posttest showed
that students taught to use the "finding the m1831ng addend" method
scored higher than those using the "take away' procedure, who in turn
scored higher than those employing the "adding the opposite" approach.
The difference which was significant at the .05 level favored the
"finding the missing addend" group over the "adding the opposite" group.
There were no significant interaction effects between the three instruc-
tional treatments and student ability level.
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If replications of this study, correcting for the lack of random
: assigmment of subjects to groups, would confirm the present results,
{ implications could be made for classroom teaching. The results indi-
‘ cate that the conceptual basis which came  from the definition of sub=-
traction for integers,” the "adding .the opposite" approach, was more
L difficult for students to understand than were the other t#o methods
which essentially extended the same procedures used when students
learned about subtracting whole numbers, It appeared that students'
previous experiences with using movement on a number line to illustrate
subtraction of whole numbers 1leéd them to view subtraction as always
meaning & motion to the left, a jump back. This prior leesrning, com-
bined with the new ideas of directed numbers and of opposites, seemed
to make it hard for the "adding .the opposite" group to accept the
generalized definition for subtraction of integers as being realistic.
) : Part of the students' difficulties also appeared to stem fram the time
_ allotment for the study's instructional sequence, For all three treat-
ment groups only one class period (a half hour ) was allowed for in-
struction and practice in adding integers, and only part of ;hat time
was-devoted to learning how to use a nunber line to illustrate the
operation--too short a time for many of the students to become suffi-
ciently competent with this techniqué. Yet, the "adding the opposite’
algorithm depended heavily upon student ability to add integers using
the ‘number line, while the other two treatments did not. [Certainly, a
- lack of mastery of this basic subskill would affect student understand-
ing of“the "adding the opposite" procedure. Thus, a teacher wishing to
intrgduce subtraction of integers through the "adding the opposite" '
apprdgch would be advised to be aware that its development wlll require
more time than the "finding the missing addend" approach, and possibly
than the "take awey" method, Finally, if there is a 1#mit on the in-
structional time'available for providing students with a first intro-
duction to the topic of subtracting integers, the teacher should con-
sider that the "finding the wissing addend" approach has been shown
: to facilitate student skill in computation to a greater degree than
‘v does the "adding the opposite” method. '
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APPENDIX
Selected Worksheets

Fifth day
Tl--"adding the opposite”

Name

PART I
State the opposite:

("7)’ @ }‘l" _ @ ('l-)’

TR T e e e e T T e e T e 0

ORI

PART IT
f Neme the number that is being subtracted (the subtrahend):
(:) 10-9 (:) 6 -4 (:) 5 -7
® 2-8___ -3 ©¢8-21___
@Du-(-3) ___ ®6-(2)__ (O -3)-(-5) ___
PART III "
(:) 9 -6=n (:) 4y =6 :=n
<t 6 > <<:% ——— 6 ————— > b
Answer: 9 - 6 = Answver: L4 - 6 =
@ (-3)-(-7) = n ®1-(2) -n
<t 6 > || <t 6 >
Answer: (—3)—(;7) = ' ’ Answer: 1 - (=2) =
G)3-7=n @® b - (-5) =n
> ||
0 0
Answer: 3 - 7 : Answer: 4 ~ (-5) -
@ (-3) -2 =n ® (-6) - (-8) = n
-« 6 > Attt 8 ettt
Answer: (-3) - 2 = , Answer: {-6) - (-8) =
@ 6-4 n @ (-1)-5-n

13&




Fifth day
T2--"find the missing

addend”
Name
PART I ‘ |
Write the related addition problem.
(:) 8-3=n EE% 4y -1 =n |
®9-5= 6 -8=n
(B 2-7- ®2-(-1)=n
@ 4-(-6) =n ® (3)-5=n
(@ (1) -8=n Q9 (-4)-(-2) =n
@ (-1)-(-7) =n D (-8)-(-3) = n
PART II \-\ _
(:) 9-6=n ' \‘ (:) Y -6 =mn
_<|llolkl‘llii=1=:!=> <;%;:::f6??1l;l;;>
Answer: 9 -6 = Answer: U - 6 = . .
(:) (-3)-(-7) =n ‘(:) i-(-2) = n
«—t——t—t—t— > <ttt 6 ——t—t———>
Answer: (=3)-(-7) = Answer: 1 - (-2) =
‘ e
® 3-7=n ®4-(5)=n
<~ A O S e
Answer: 3 -7 = Answer: U4 - (-5) =
@ (-3) -2=n ® (6) - (-8) =n
e bt e <ttt — >
Answer: (=3) -2 = Answer: (-6)-(-8) =
@ 6-L4=n GE)J. (-<1) =5 =n
> <
Answer: 6 - L = Answer: (=1) = 5 =
135
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Fifth day
T3--"take away"

Name

PART T Write the new symbols for:

@s5-__ @

| ® -1 = | , ‘h {:) -5

PART I _
@h+o+o= @(-3)+o+o+'o+o= @7+(-1)+1
@ (8 (1) +1+ (1) +1+(-1)+1= (B)6+(2) +2=

PART III | : o |

@D o9-6- @ u-6-= B (-3) - (-7) =

®1-(2) = G®3-17-=

=
@ (-3) -2 = ® (-6) - (-8) = (®6-u-=
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Solving Quadratic Inequalities:
More Than One Algorithm?

Brady Shafer

To avoid the confusion that often arises in the minds
of pupils from the presentation of a variety of methods,
explanations, solutions, rules, remarks, etc., it has been
the constant aim, in the preparation of this book, to pre-
sent each subject in one form only... Co

' --Ray's Arithmetic, 1879
4

Perhaps in teaching for understanding we shall:one - \
dey depart from the well-nigh universal practice of offer-

ing children but one of several alternative forms of \

computation. ’ \

‘ ‘ --W. A. Brownell, 1938 \

: |

|

Experiments at the secondary school level which compare students' '’ *
learning of more than one algorithm for a given kind of problem are
rare.! Typically two methods of problem solution are compared, but the
question of whether the learning of one method facilitates or interferes

with the learning of the other is not asked.

' In elementary-school mathematics, a number of studies and discus~

sions have examined alternative algorithms for certain arithmetic
procedures. At least three elementary research studies have been

. characterized by the use of two algorithms.with the same subjects.

Scott (1963) concluded that teaching two algorithms in long division
"does not confuse children, induces no undue difficulty, and takes no’
additional teaching time." In a study which dealt with estimating
quotient digits, Carter (1970) found that a group given two rules
(round divisor down if second digit is less than five, up if five or
more) was both slower and less accurate than two groups which were
given only one rule each. And as early as 1938 Brownell noted the
"nearly universal practice" described at the beginning of this paper.

Brownell (1938) reported a study conducted by Tew which involved
teaching two methods for dividing fractions, one for understanding and
a second "as an efficient computation shortcut," with results he jJudged
to Ye satisfactory. (No data were presented.)

1T guydam, Marilyn N. Annotated Compilation of Research on Secondary
School Mathematies, 1930-1970, two volumes. U. S. 0ffice of Education
Final Report, February 1972. See also the annual research compilations
by Marilyn N. Suydam and J. Fred Weaver in the Arithmetic Teacher and,
since 1970, in Journal for Research in Mathematics Education.
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second-year algebra students reacted to instruction on two algorithms
for ‘solving quadratic 1nequa11t1es,‘and (2) to search for evidence of
interference or facilitation by one algorithm with the learning of the
ther. Thus, in addition to comparing achievement on-the two forms of
the algorithm the study also investigated some of the consequences of

i presenting two algorithms in sequence. Did gains in achievement result

v after seeing a second method? Did students tend to "fix" upon the
initial algorithm and ignore later ones? Did the procedure induce

. _ _student confusion?

The Algorithms

One delimitation was necessary at the outset of the study. At the
time of year when it was made (February), all students had considered
gquadratic expressions which could be factored. The quadratic formula
had been introduced in some classes but not in all; therefore the study
involved no problems for which the quadratlc formula was necessary.

The two methods will be contrasted by use of examples.

METHOD A: VERBAL
The first method éOnsists.éf ékamining possible cases, as follows;
Case 1: x° + 5x < =h
Case 2: vx? + 5x+ b<oO
Case 3: (x+ 1L)(x+ W) <O

Hence a product is negative. One factor must then be negative, but not
both. There are two possible cases. (l) The first factor might be ' o
negative, but not the second. In this case x+ 1< O and x+ 4> 0.
~ Heénce x < =1 and X > =-l4. The solution set for this sentence is the set

A/ of real numbers between -4 and -1, both endp01nts omitted. (2) A
second possibility is that the second factor might be negative but not
the first. Thus x+ 1> O and x + 4 < O, implying the x > -1 and
x < -4, Since no number satisfies both statements simultaneously, the
second case gives no additional solutions. Hence the solution set for
the given inequality is (x: =t < x < -1). :

METHOD B: VISUAL

The second method also begins by making one member of the inequality
zero and factoring the polynomial which forms the other member, as in

The purpose of the research reported here was (1) to examine how
the previously cited Case 3. It then utilizes the number line in the
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following way. To know if the. values of a continuous function are posi-
tive or negative, it is useful to know the zeroes of the function. The
‘zeroes for the polynomial in Case 3 are of course -k and -1. These are
indicated orn a number line: S

4 -3 2 -1 0 1 2 ; , S
‘ . //
The line is thus divided into three regions. For a given number /&, in
any of the regions, one can easily decide whether (x+ 1)(x+ by is -
, i p

positive or negative.

. /,’ .
If x is any mumber in the region right of -1, for instdnce, both

x + 4 and x + 1 are positive; hence their product is positive. Thus

no number larger than -1 can be a solution as the product is required
to be negative. If x is between it and -1, one factor 41s negative and
one positive, hence the product negative and the inequality satisfied.
Tf x < -4, both factors are negative, the product is positive, and-the
inequality is not satisfied. 2

The x-values of -1 and -4 give O as a polynomial value. Hence they
must be rejected since 0 < O i§fa false statement. The solution set
then consists of all real numbers between -4 and -1, with endpoints
omitted. ' g

Method B depends heavily upon continuity properties of the function
involved. But since all polynomials are continuous, this involves no’
mathematical difficulty, nor did it seem to involve any pedagogical

" difficultys .. .

Procedure

The study was conducted with four Algebra IT classes at Brookhaven
High School, Columbus, Ohio. All classes met during morning hours.
The study covered six days of instruction and four of tests. Dally

activities are summarized as follows:

Day 1. A pretest was given to all four classes; the test was a
ten-item instrument covering linear equations, quadratic equations, and
linear inequalities.

Day 2. A review was given of linear equations, linear inequalities,
and factoring.

Days 3 and k. Two classes were shown Method A and the remaining two

classes were shown Method B. Students were asked not to work or discuss
homework with anyone except members of their own class.
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Day 5. Test 1 was given to all classes. This test was abbrev1ated
to orily eight items since all class perlods were shortened for an
assembly. it - “

. R

Day 6. All classes were shown the method not previously taught.

The original plan ~-- to spend two days’teaching the second method -~ was.
modified when students indicated they were ready for the test and were
perhaps getting bored.

Day 7. Test 2, twelve items, was given to all classes, with in-
structlons to work all problems by the new method.

Days 8 and 9. Transfer material was Dresented, conslstlng of such
problems as

5% |x + 5'[ X -1
-0+ 5~ %

< 1.

Day 10. A twelve-item posttest’was given, including four transfer
items, with students given complete freedom in choice of algorithm to
be used for all problems. .

All classes were taught by the writer, to maintain some control
over teacher variable. In addition, differences in ablllty were measured
by the pretest, with no significant differences among classes noted in
ability to do the kinds of problems on the pretest (see Table 1). To
control the time-of-day variable (the possibility exists that early-
morning classes might be fresher and therefore do better work regardless

- of treatment), the earliest and latest classes (1 and 4) were grouped

together in assigmment to treatment. The activities of Day 2 'were an
attempt to give a common background to the four classes through a review
of the prerequisite skills.
SN _
Table 1. Means and Standard Deviations for the Four Tesis
Administered During thg Study

: Pretest l 'Test 1 Test 2 Posttest
GROUP v s - Y .S i s v s

~

All students (N=T1)x 3.86 2.10 5.79 2.12° 8.24 3.43 7.L5 2.68

Treatment AB: Verbal-

2.03

8.89

Visual (N<37) 4L.00 2.01 h.92 3.03  7.30 2.70
Class 1 (N=17) 3.94 1.86 h.82 1.89 7.65 3.51 6.B8 2.6
Class 4 (N=20) 4,05 2.13 5.00 2.1k 9.95 2.01 T7.65 2.76
Trestmen’t BA: Visual- |
Verbal {N=34) 3.71 2.18 6.74 1.77 17.53 3.68 7.62 .65
Class 2 (N=16) 3.88 2.42 6.00 2.12 8.00 3.7 7.75 2.86
' Class 3 (N=18) 3.56 1.92 7.39 1.01 7.11 3.59 7.50 2.h3

*Data are reporied only for studcnts who took all four exams.
Actual class sizes ranged from 22 to.28.




¢ Results

For each of the four measures, a t-test was conducted for the
difference of means between treatment groups AB and BA. No differences
were significant at the .05 level.

. The preceding comparisons do not take into account differences in
pretest scores: —To-compare gains in performance, regression analyses
were made. In three separate analyses, Test 1 scores were regressed
against pretest scores, Test 2 scores against pretest, and posttest
against pretest. Regression coefficients and correlations appear in
Table 2. : B

At the time of Test 1, students had seen only one algorithm. 1In
Test 2 (as already noted), they were asked to use the algorithm most
recently taught, but were given free choice of algorithm on the posttest.
Thus AB group used Method A in taking Test 1 and method B in taking
Test 2. TFor groups using Method B (BA on Test 1, AB on Test 2) the
difference in regression coefficients is not significant. But for groups
using Method A, the difference in regression (0.37 vs. 1.22) is signifi-
cant at the .00l level. Students who have seen Method B and then Method A
achieve greater gains in performance with Methqd A than students who have
seen Method A alone. :

Analyses of variance and covariance were conducted using standard
scores from the four tests. The difficulty level of the posttest was
. somewhat higher than that of Test 1 and Test 2 (see Table 3). By
"eliminating the two most difficult items® from the posttest, a ten-item
subtest was obtained with a mean item-difficulty level of .311, which
compares favorably with that of Tests 1 and 2. It was hoped by this
means to adjust for the difference in test length forced on the study
by school schedule. As Tables 4 and 5 show, the attempt was successful .
since in both analyses the F ratio for main effect due to tests is zero.

Tn the analysis of variance, which did not involve pretest scores,
no other effects were significant. But in the analysis of covarilance,
in which scores are adjusted for pretest scores, three effects were
significant at the .05 level: main effect for treatments, main effect
for classes within treatments, and test-treatment interaction. These
conclusions, as well as the earlier ones involving regression, must be
qualified by noting that pretest reliability is only .65, lower than
that of the other tests (see Table 3). However, some evidence is given
to suggest that when gains in scores are considered, the sequences BA
and AB affect student performance in a different fashion.

.

&)

%" The differences in error rate for the two treatment groupé were not
significant for either problem. Both problems were of transfer type.
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Table 4.

Analysis of Variance of T-Scores from Test 1; Test 2, and
a Ten-Item Subtest of Posttest

Sum of

Source - Squares df Mean Sqﬁare F P less than
Treatments. 19680.934 - 1 19680.934+  1.080 .375
Quizzes . 0.006 »ilzm _qu;\o:603 0000 1.000
Txq interaction 'ih16§8.813 t21, 70844.375  3.889 147
Classes (within . - _

treatments) 25994.785 1 25994.785  1.ke7 .318
0xQ interaction  6U23.230 2 3211.615  0.176 846
Residual 54649.238 3 . 18216.410

Table 5.‘ Analysis of Covariance of T-Scores from Test
a Ten-Ttem Subtest of Posttest, with Pretest

1, Test 2, and
T-Score as

Covariate
Sum of -

Source Squares df Mean Square F P less than
Regression 2.876 1 2.876 0.00k .956
Treaﬁments, 17972.449 1 17972.449 24,382 .039
Claéses (withini _ ,b

treatments) 25970.672 . 1  '25970.672  35.233 . .027
Quizzes 0.005 2 0.003  0.000 1.000
CxQ interaction 6L23.227 2 3211.613.  L4.357 .187
TxQ interaction 141688.688 2  7084k4.313  96.110 .010
Residual Wrkoke 2 737.121
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~would. be chosen by more than two to one .over Method A. _As the data .

Only on the posttest, it will be recalled, were students given a
choice of algorithm.  They were asked to show enough detail in written
solutions so that the scorer could tell which method they were using.

A frequency count was made of algorithm use, by class and by problem.
Despite the 1nstructlons, 182 responses could not be judged as a con-
sistent use of either method, while Method A was used 35 times and
Method B, 498 t1;é§< Even if all "doubtful" responses were counted as
instances of Method A (a highly unlikely occurrence), still Method B
stand, the margin of choice is more fourteen to one. The difference is
significant at the .00l level. Differences between treatment groups
were not significant at the .05 level on the entire set of problems, on
those problems worked correctly, or on any individual problem. '

: Summaty and Interpretation

No differences related to class means appeared, either in analysis
by t-tests or in the analysis of variance. In the two analyses which
took pretest scores into account, however, significant differences

occurred.

One significant difference was the difference in regression coef-
ficients between the treatment group which had seen Methods BA and the
group which had seen Method A alone.  Interpreting that difference is

. difficult. Informal evidence gleaned in conversations with students

suggests one possible explanation. Students in the BA group were happy-
with Method B at the halfway point in the study. What may have happened ==

-despite a request to use Method A in Test 2 -- was that many BA students.

might have verified answers by using Method B. Of course test papers
would give no evidence of the forbidden method if this were the case.
At least two earlier researchers have noted discrepancies between the
method "taught" and the method actually used by the children (Brownell,

19663 Flournoy, 1959).

N
¢

There is also a second possible explanation. At the time the
experiment ended, students in Both treatment groups overwhelmingly
chose Method B. ~As Table 1 shOws, in both Test 1 and Test 2 there was
8 tendency toward better student performance with Method B, though not
a statistically significant difference. Students were not confused by
being confronted with two methods. There yas some impatience manifested
with the second method (in both groups) which resulted in the elimina-
tion of a second day with the new method. This may have been detrimental
to Method A, which seems to require somewhat more time to explain. This
in turn may account for finding (Table ?) that Method A alone was as
good as BA. '

- 1hk
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Implicafions . ‘ . \\\
Stﬁdents liked Method B, the numberélkge method, and exhibited a

tendency to better work with it. If only one method is to be taught,

and if the teacher's goal is student performance at the close of the

unit, it would appear that Method B is the better choice. Of note here
is the fact that the textbook presented only th verbal method.

Nine problems in each class, on average, werg solved by the verbal '

method. Would the needs of the students who used
well served if Method B had-been taught alone? 1In this instance they
were a decided minority; but with a different pair o alternative algo-
rithms, the split might be more nearly fifty-fifty. rhaps students
should be presented both algorithms in such a case and ‘then given a
choice. The teacher can give guidance, of course, if it\is evident that
s student has made an unsound choice. But is not this thg whole point
of individualizing instruction?

_ No data were gathered to verify stability of results over a reten-
tion period, not did the study address the question whether spending
more time on one algorithm might be as effective as teaching two.
Further research is needed to answer these questions,

9 -
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A Comparison of Two Strategies for Teaching
Algorithms for Finding Linear Equations

'Richard W. Corner .

[l

An important part of teaching is the transmission of substantive
content. The professor lecturing to the gathered students is the classic
image- of instruction. The lecture, still an important part of-teaching,
particularly in college, has been supplemented with instructional tele-

- vision, sudio-tutorial systems, and programmed texts. The modes for the
presentation of content would all be classified as direct communication
strategies by Hough and Duncan (1970). :

Fey (1969) points out that research on classroom behavior has been
mostly of the nature of comparing '"name" methods; e.g., "discovery"

that it lacked specification of what was meant by the particular name,
thus leading to inconclusive or unreliable results.

To specify precisely the behavior of classroom teachers, Rosenshine

(1970) suggests the use of category systems for thé obsérvation of
classroom behavior. These systems are low inference systems; that is,
the observed behaviors are categorized by the use of precise and narrow

. definitions. TFor example, the knowledge that a teacher responds to &

~ student question with a question 42 percent of the time is much more
informative than the statement, "The teacher usually asks leading
questions.". Rosenshine notes that there have been few studies relating
teacher behavior and instructional outcome.

A number of category systems have been developed for the purpose
of classroom observation. Among these are systems by Flanders; Smith,
Meux, et al.; Hough and Duncan; and Henderson. The purpose of each of
these systems is somewhat different; systems appropriate for the analysis
of direct communication are of interest here. ‘

Category éystems for Direct Communication Strategiles

Henderson (1970) has formulated an instructional analysis system
which is based on classroom teaching. His purpose was to analyze con-
cept development through a taxonomy of the language used in talking

' about concepts. The categories or moves of his -system can be partitioned
into three classes. The first is connotative, talk about the concept.
fhe second is denotative, which primarily involves giving examples of
the concept. The final category is meta language or language about
language, as seen in formal definitions. Henderson's system has been,
restricted to research on concept formation.
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Henderson's system was derived from the more general work by
Smith, Meux, et al. (1967). Smith et al. categorize behavior into
"ventures" or episodes, which are complete subunits such as solving a
problem, explaining a concept or proving a theorem. Based on classroom
observation, Smith et al. identified seven types of ventures; each ven-
ture has a number of categories of behaviors. In a limited sample of
mathematics classrooms Smith found three types of ventures; the three
were the concept venture, the procedural venture, and the rule venture.
The concept venture is Henderson's area of interest, previously discussed.
In the procedural venture classroom discussionxeeﬁtersronwtherprocedure
for solving a problem. The rule venture involves the formation or
justification of a rule. Smith's system has a problem in terms of size:
there are a large number of highly specific categories in each of the
seven ventures.

A system which seems highly appropriate for the analysis of direct
communication strategies is the Content Analysis System (CAS) developed
by Hill (1969). The system was developed for general classroom analysis.
The ten categories of the system were based-on the Gestalt ideas of
figure and ground (see Figure 1). Hill's system has the advantage of a
small number of categories as compared to the system of Smith et al.
CAS can be used to analyze concept development as in Henderson's work
or can be used for any other direct communication instruction. In his
observation of 36 different junior high school classrooms, Hill found
no identifiable strategies as analyzed by CAS. The categories of CAS
seem highly appropriate for the specification and analysis of direct
communication strategies.

Procedure and Results

The purpose of this study was to explore the use of CAS as a means
of specifying different instructional strategies. 1In this initial
endeavor the first objective:was to develop materials which were appro-
priate for the students, specifying different strategies in terms of
CAS. The second objective was to ask the question: For this topic and
these subjects, is there any difference in the strategies?

Two -different programmed lessons were written to introduce the
algorithms for finding linear equations. The same number of examples
and the same examples were used in each treatment. The only difference
was the sequence of instruction (see Figures 2 and 3). One sequence
" was deductive in nature and the other sequence was inductive in nature.

The subjects were 26 students in a reduced-pace pre-calculus course
at The Ohio State University. Students were randomly assigned to treat-
ments. The students were given 35 minutes to complete the programmed
lesson; all were able to complete the lesson in,the allotted time. Be-
cause only 50 minutes were available for the experiment, a six-item test
was used for evaluation. The students were given 15 minutes for the test
and all were able to complete the test.




Background: Develops information or knowledge of the context or-
frame of reference within which the content idea, topic, or
figure is set. May be a review of previously developed
content. '

s}
!

Defining: Determines the precise significance or meaning of the
content figure, idea or concept. Includes definition of
terms used in the concept or figure.

o
!

N - Naming: TIdentifies or specifies the content figure by name, symbol,
or image. Includes questions seeking ldentity.

=
1

General Example: Presentation or development of examples of a
general or construct nature. May deal with the nature of
many specific examples or the classes of a hierarchy. Includes
derivation of formulas. Doubtful examples are classes as
general.

Ea - Abstract Example: Communication which presents specific examples
verbally or symbolically; presented in spoken or written form
only. Includes charts, schematic drawings and graphs. No
real or image form presented. :

Ec - Concrete Example: Specific Examples which are presented in a real
or image form, such as pictures or drawings. Example uses an
object which represents the content figure. Includes any
drawings representing three-dimensions.

En ~ Negative Example: Tllustrates representations negative to the
: content figure. An example which is Presented as a contrast
N\ or test of the figure. :
A - Amplification: Content communication by which an enlargement or
expansion of the focus of attention occurs. Two or more
things are compared, contrasted or related.

An - Digression: Content communication which expands beyond the rele-

vant content figure. Incorrect statements and accompenying
corrective feedback are categorized here.

M - Miscellaneous: Non-content communication. Class management, pro=

cedures or control. Personal communication such as non-
content opinion.

Figure 1. Categories of Hillt's content analysis system.
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1.

12.
13.
1L,

15.

Fa:

Fa:

Fa:

Ba;

Fa:

Fa:

Ea:

Ea:

Find equation of line through given points using similar
triangles. ' :
triangles a. two~point formula.

Find equation of line through given points using two-point
formula,

slope.

Find slope and sketch line,

Find slopé and sketch line,

Use two-point formula to find point-slope form.

Find‘eéuation of line thréugh two points. (parallel to X-axis)
line parallel to X~axis, |
Find equation of liﬁe through two points (parallel to Y-axis).
line parallel to Y-axis. |
Use point-slope form to find»slope-intercepp form,

Find equation of line through general points using similar
Determine slope and Y-intercept.

‘Find equatibn of line through two points.

. 4
Find equation of line through two points.

Figure 2. Inductive sequence.




1. D:
2. Ea:
3. Ea:
4. Ea:
5. D:
6. Ea
7. Ea
8.(a)
8.(b)
9. Ea
10. E:
‘ll. "Ea
12; Ea:
13. Ea:

slope

Find slope aﬁd sketch line.

Find slope and sketch line,

Find slope, |

Linear equation (y = mx + b), y-intercept
Line parallel to Y-axis

Line parallel to X-axis

Given equation. 'Find slope and y-intercept.

Given 2 points. Sketch line, find slope, find y if x = O+

Ea: Given 2 points. Sketch line. Find equation;
 X-axis) o

Ea: Given 2 points. Sketch line. Find equation.
Y-axis : ' ‘

Given 2 points. Find equation:

Find equation of line through (x,,y,) and (%) ,¥)

form)
Sketch equation and verify point-slope form.
Given slope and point. Find equation.

 @iven twa points. Find equation.

Figure 3. Dedﬁhtive sequence.

151

PR

(parallel to

(parallel to

(Point-slope




The KR-21 test reliability was .43, which makes any conclusion
about the results questionable.
(Ho: uy = up) and an F-test for equality of variances (Ho: U% = oﬁ)
indicated no differences in the treatments (see Table 1).

Treatment

Inductive
Deductive

Discussion

A t-test for the differences of means

Table 1

Data Analysis

I/

12

1

I

Sample Sample

= Mean Variance
4.17 1.61
4,00 - 2.86

.09 (Not significant; t 05,24 = 7.06k)
1.77 (Not significant; F.05,13,11 = 2.11)

The first objective, the development of materials using different
CAS strategies which were appropriate for the students, seems to have
been met. The students were able to complete the programmed lessons

. in the allotted time and scored reasonably well on the test.. Because

of the test reliability, any conclusions about the relative effectiveness
of the strategies is highly tenuous; however, the results seem to imply
_that there was no difference in the student learning.-

Several areas of further research aré indicated. First, it would
be interesting to include a transfer component in the evaluation of °
the results. Secondly, a long-term study éomparing inductive and de-
ductive strategies would be more likely to indicate difrerences. A .
treatment .of 35 minutes duration is unligely to reveal any difference.

\\
~

An area for possible exploration would be the determination of an
optimal instructional strategy for a given algorithm. It is possible
that one algorithm may be best taught inductively while another is best
taught deductively. The degree to which instructional strategies depend
on content could be discovered. A : :
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Some Computational Strategies of Students
‘Using Desk Calculators

Raymond Zepp

Introduction

Thg’calculator has recently come into prominence in American life
with the development of small electronic calculators. It has naturally
been considered as an educational aid in mathematics, particularly for
students whose computational skills are weak. It is probably fair to
say that calculatcrs will play a tremendously increased role, both in
school and society. '

Although much has been said about the possible uses for calculators
in the schools, very little has been said about the mental processes by
which students.operate the calculators. We need to examine and under-
stand these processes in order to maximize the effectiveness of the use
of calculators in education. Moreover, and perhaps more importantly,
an understanding of the processes may provide insights into the nature
of the learning and use of algorithms in general.

Lankford has been concerned with the nature and variety of "compu-
tational strategies" of students. He usks in what ways a student
attacks computational problems. This question, applied to computation
with calculators, is the focus of the present study. The study parallels
some of the ideas and technlques and discussed by Lankford (1972, 197h).

Procedure

. Twenty-three students from an immer-city high school in Columbus,
Ohio were interviewed, These students, on the basis of low mathematics
achievement, had been ‘assigned to a classroom equipped with desk

_ calculators. Their subject matter consisted of basic arithmetic,
fractions, and decimals. with uunerous practical story problems, pro=-
grammed learning approach was used in the classroom.

The subJects were informed that the -interviewer wished to learn
how people think when they. use calculators and that they were to work
some examples, explaining or stating aloud (1nto a microphone of a tape
recorder) all their thoughts concerning the examples. The interviews -
lasted twenty to thirty minutes apiece. The problems emphasized frac-

~_tions, division, and combined operations.

Findings

A. Division: The greatest single difficulty in division examples
was with the sequencing of the numbers. ‘l'en of the twenty-three students




made at least one error in interpreting the order in which the numbers
were considered in a division example. The confusion seemed to center
around the verbalization of the problem,  especially when using the words
"divided by" and "goes into." The problem 384 + 17 was read by nine
students as "17 into 384," and by five students as "38L into 17." Of
these five students, three worked the problem incorrectly, that is, by
dividing in the wrong order. The other two, who had stated the problem
incorrectly, proceded to solve the problem correctly, that is, different
from the way they had verbalized it. More strikingly, the problem

65/6 was read by four students as "6 into 65," but by elght students as
"65 into 6." Of the eight, four worked the problem using the wrong
order. In all cases, the way in which the problem was worded when the
calculator was used was the same as when the student was asked to work
the problem by hand, but only one student used the wrong order in
actually working the problem by hand. Other wordings of division prob-’
lems besides "384 divided by 17" were "384 divide 17," by several
students (this would appear to be a direct consequence of using the
calculators), and "384% divided through 17," by one student,

When asked what factors dictated the choice of which number to
enter first in division, seven students replied that the bigger number
is always entered first, and similarly, two students remarked that you
can't divide the larger into the .smaller. One student always entered
the smalier number first. One girl entered the larger number in problems
1ike 384 + 17, but knew that in 65/6 the "top" number was to be entered
first, whether larger or smaller. A few had much more difficulty with
65/6 than with 384 + 17 because they had no idea that a division was
called for. Finally, one boy solved 65/6 as follows: since 65 has

. one more place than 6, he wrote the problem as 65/6 x 1/10 : 1 5/60.

The only reason that could be elicited was "that tekes it to one more
place."” -

Do students trained with calculators understand the concept of
division, or are they merely puuching buttons? A very rough estimate
is that approximately one-third of the students. were punching buttons.
This estimate is based on the observation that approximately one-third

.could change a problem stated "38L4 + 17" ‘into the torm 17 J33h, but

were totally at a loss as to how to begin to work with the algorithm.
These same students seemed to have no "feeling" for the meaning of the
answer. Of course, there is nothing to indicate that these students
could have done any better had they not been trained on the calculator.
The better students did quite well. Two even checked their answers
using multiplication. ' »

B. The Concept of Fraction: There seem to be three separate

- notions which many of the students interviewed could not connect, and

therefore confused. These are the idea of fractional parts, the decimal
representation of fractions, and the interpretation of the " or "/" as
"divide," as in 4/2 = 2. A very clear example of this confusion ls the
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" ease of one of the brighter girls, who had correctly divided 65/6, and
who had a recollection that 2/3 was either 6.7 or .67, but refused to
divide 2 by 3 on the talculator because "three just won't go, into two,

so it's impossible." She went én to explain that 65/6 meant divide,

but 2/3 didn't, and she had no idea where the decimal representation
came from. She knew the meaning of the fractional part 2/3, she - knew
that sometimes a slash or bar meant to divide, and she would compute with
decimals, but she had no understanding of the interrelationship of the
three notions. ' . ' C

" Most students did understand what a fraction was and could give
such examples as "2/3 of a pie," or "8/10 would be a collection of 10
objects with 8 taken away." One case, however, indicated that the "pie"
notion may be rotely learned in school but not fully understood:. one

of the slower girls insisted that 2/3 was the smaller section of the

pie,
III ‘ 2/3

while the larger segment was about 3/5. A slower boy thought that all
fractions, including 5/3, were less than one. On further consideration,
he stated, "There might be fractions bigger than 1, but I can't think

of any." Two students could not give ‘any explanation for fractions _
other than "2/3 is 2 divided by three;" this notion may possibly be trace-
" able directly to their training on the calculators. But to reiterate,

the students, by and large, did understand what a fractional part was,

and could -compute with decimals. The confusion seems to have been in
transitions among the three notions .stated above. '

‘The question of the size of fractions is another matter entirely.

It was here that students did poorest. They were asked which fraction
is larger, 13/17 or 11/15, and why. Six-quickly said that 13/17 was
larger because 13 > 11 and 17 > 15. Upon further questioning, with
examples such as 13/10 and 11/15, mest of them were confused. One said
that in a mixture, the numerator takes precedence, hence l3/lO->'ll<lS.
Another said that the denominator takes precedence, hence 13/17 > 14/15.
Other responses to the initial question were that the denominator :
always takes precedence (13/17 > 11/15) and that the numerator always
takes precedence (13/17 > 11/15), while two students stated that the
denominator takes reverse precedence, since 1/2 > 1/3. fThus 1/4 > 15/16

because only the denominator counts. By far the "best" answer, which two
" students arrived at separately, was that 1/17 is a smaller piece of pie
than 1/15; 13/17 is four pieces away from a whole pie, and 11/15 is
four of the larger pieces away from the whole pie; therefore 13/17 is
* closer to the whole pie, and thus larger. A third student, reasoning
similarly, observed that both were 4 pieces away from a whole, so the
two fractions were equal.
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written method 2 b 6 ] 7

Five students immediately divided 13 by 17 and 11 by 15 using the
calculator, and nine others first explained which was larger, perhaps
incorrectly. But later, upon being asked, they were able to use the
calculator to compare the two as decimals. However, of these nine,
three reasoned incorrectly as follows: 13/17 = .76 11/15 = .73, hence.
11/15 is larger because "decimals are just fractions to begin with,
like 1/2 > 1/3." In other words, the fractional part .76, having higher
digits, is actually the smaller fraction. This kind of statement is yet

another example of the aforementioned confusion between fractions and

their decimal representations. e

C. Algorithms Involving Fractions: The common algorithms involving
fractions are quite easily done on the calculator. For example 3/4 =
3/ + 5/6°=' (3+h) + (5+6) = .75 + .833 = 1.5683. The students could
perform these operations rather well. On the other hand, they did
extremely poorly in working the traditional written algorithms. For
instance, only one girl of the 23 students knew that a ccmmon dehomina-
tor was used in solving addition of fractions. It i1s ilmpossible to say
what effect the calculators have had here. One could perhaps argue that
prolonged use of the calculators caused the students to forget the
written methods. But another might argue that the fact that these
students could not perform this kind of operation was the reason they
had been placed in this class in the first place. Both arguments are
probably correct to some extent. The lack of understanding of basic

- concepts which they exhibited certainly precludes further progress in

mathematics. There was, however, some forgetting. Many students said
that they "used to be able to do it," and there was evidence that
students remembered bits and pieces of algorithms. For instance, in
working with the fraction 3 2/9, three students wrote the fraction as
9x 3+ 2, so 3 2/9 = 29. Another student said it was 3 x 2 + 9 = 15.
Still, these students may not have been able to work the problems even
if they were not enrolled in the calculator class.

The following table lists the number of pupils who solved various

.problems correctly by calculator tcchniques as compared to the number who

merely used their written technique (correct or not) on the calculator,

For exasmple, the correct calculator technique for 3/4 + 5/6 is

(3 + 4) + (5 +6) = .75 + 833 = 1,583, An incorrect written technique
would be 3 + 5/4 + 5 = 8/10, which could be "duplicated" on the, calculator.

3/M+ 5/6 W -12/9 Wh1/3x21/h 2/3x75

calculator method 8 9 6 6
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Errors fell into two major categories as follows: 1) the misunder—'
standing of the relationship between fractions and their decimal equiva-
lents, and 2) misunderstanding of placement and meaning of the decimal

“point.

Into the first category fall the following errors:

a) 3/4+ 5/6 = (3+4) + (5+6) = .75 + 1.20 = 1.95

b) 3£u + 5/6.= 3.4+ 5.6 = 9.0, and similarly, 4 - 12/9 = L4 - 11/9 =
- 11.9 o A _

c) b 1/3 x 2 1/h = k.3 x 2.4 =10.32

d) 2/3x 75 = 2.6 x75= 195. The student went on to explain that she
had remembered 2/3 = 2.6 and 1/3 = 1.6. '

e) One girl observed that 3 won't go into 2, so you can't do 2/3 on a
calculator. She was induced to try 2 + 3 on the calculator, but

~ when she obtained .6667, she decided that was impossible, and gave
Cup.

Tnto the second category fall the following errors: -
a) 3/b+ 5/6 = 75+ 8333 = 8L408 '
b) 2/3'x 75 = 6667 x 75 = 499999 (two students)
¢) 1/3+ 1/h = 33.5+ .25 = 33.75
d) 5-32/9: 2/9=19-2= U450, so32/9=3k50. 5 - 34.50 = 29.50
D. Confusion of Operations: During the first three interviews,
the students sométimes punched X instead of +, ard vice versa, into the
calculator. It was thought that the + written in the problem may have

resembled a X to them. In subsequent interviews, the problems were read
carefully to the students, but the mistake persisted. Most of the

students immediately corrected their mistake, but three argued that

although the problem said +, it was necessary to punch X in the addition
of fractions. Two students also confused division with subtraction. - -
An explanation is difficult to find. It may be that to a calculator
user who merely punches buttons without understanding the underlying
operations, one operation is as good as another. This showed up in
statements .like "I timesed 3 with 4," or I plussed 5 by 6." This ex-
planation is unlikely, as not all operations were confused. A more
plausible explanation-is that when faced with a problem of some dif-
ficulty, the solver tries the strategy which is easleat to use or is
most familiar. Only one student could udd fructions without a'ealculator,
while most could multiply fractions. o 1f multiplication of fructions
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"is in fact easier, students might tend to substitute multiplication for
addition. If one assumes that addition seems easier to students then
division, then the following examples lend support to the above
explanatibn. )

2 + 71

15 + 83°
Four different students correctly added 12 and 71 as well as 15 and 83,

- but were puzzled over what to do with the resulting 83 and 98, so they
added them, TUpon questioning'as to why they had added, none could ex-
plain, except by saying, "It seemed like a good thing to. do," Another
student worked the problem 2/3 x 75 as follows: 2 x 75 = 150, 3 x 75 =
225, then, after a long pause, 150 + 225 = 375, A final example is the

- student who, in working the same problem, found that 2/3 = 667, and
then tried .6667 + 75, This particuler student had previously stated
that he was good at dividing. .

The students had never encountered a problem of the form ——=

E. Reasonableness of Answers: Does the use of calculators give
students mny more insight into estimating the size of numbers? In the
classes interviewed, particular stress had been given to the estimation
of answers. A few students performed admirably. For instance, two-
students reasoned in this manner: 384 + 17 = 22.528 (on the calculator).
"That's about right since 20 x 17 is three-hundred something." But by
and large, the students had no conceptions about the plausible size of
their answers. Most students did look at their answers in an attempt
to check their calculations, as s was shown by frequent winces and looks
of dismay at answers on the calculator which they believed to be wrong.
But it seems that the size was a rarely-used criterion by which answers,
were checked. Three or four students, for example, said that 384 + 17 =
- 22.528 was wrong because both 384 and 17 were whole numbers, so the

answer should be a whole number.

)

The calculators can be set to read answers accurate to 2, 4, or 8
decimal places. When it was set to eight places, the answer 38& + 17 =
22.52848652 was usually a big surprise, and the usual response was that
this answer was too big. GCenerally stated, the number of digits in the
answers was the most important criterion used to determine the reason~
ableness of answers,

. Four or five students said almost all their answers were reasonable
for reasons such as, "I think I did it right," or "Machines don't lie.
These answers suggested an absolute trust in the machines. But more
often than not, students merely could not determine whether or ot their
answer was reasonable, even though. they tried.

F. Attitude: The students were confident of their ability to use
the calculators (but not necessarily of their mathematical ability).
Almost all seemed to engoy the interview, and many seemed proud to be

i




‘explaining "math" to someone. It was thought prior to the intervieWs
that many students with low self-concepts would fear to venture answers
lest they manifest their "stupidity." These thoughts were not borne

out; the students, in general, gave their answers with assurance.
i \

The students. also appeared to enjoy punching buttons and seeing
the answer light up on the screen. They appeared to have a good feeling
of having produced the number on the screen. One boy even punched the
"clear"” button after working problems when he was not using the calcula-
tor at all! »

Attitude toward fractions was extremely negative. Many students
uttered disparaging comments when presented with the first fraction
problem. One girl could in no way be coaxed to attempt any fraction
problems. When quizzed about their negative attitudes, most responded
that they could never do fraction problems.

Conclusions

Very few conclusions can be drawn, as the students' mathematical
‘achievement was very low before they used the calculators, and was still
very low at the time of the interviews. Many can solve prohlems with
the calculators which they would have little or no idea about how to
solve otherwise, and they seem to enjoy doing so. The calculators
have probably not added much to their mathematical understanding, but
at this age, and with their long history of failure, it is doubtful
that other methods would have any effect either. In general, only a
few students were robot-like button pushers. Most made some attempt
to understand the problem and to appreciate the numbers and issues
involved.

Use of the calculator has changed a few concepts in some students.
For instance; to a few the fraction 2/3 had no physical embodiment other
than 2 divided by 3. Others have learned that all numbers are decimals
and hence the need for operating with fractions is obviated. Most
dangerous by far is the idea that if one punches numbers into a calcula-
tor, it will always be right. Any teacher who uses calculators must
be sure to insist that students check the reasonableness of their
answers, lest they lose contact with the feel for the size of the num-
bers which they are using.
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Marilyn N. Suydam

Alessi, Galen James. Effects of Hutchings' "Low Fatigue" Algorithm on
Children's Addition Scores Compared Under Varying Conditions of
Token Economy Reinforcement and Problem Difficulty. (University of
Maryland, 1974.) Dissertation Abstracts International 35A: 3502;
December 197h.

Fourth graders who had high scores on basic addition facts were
randomly assigned to two groups: one taught the "low fatigue"
algorithm and one taught the conventional addition algorithm. Tests
were at three levels of problem difficulty and administered under
three conditions of token reinforcement. The "low fatigue" algorithm
produced higher scores for both number of columns correct and columns
attempted. Significant differences among means were also found for
the difficulty level of columns correct. As the test forms increased
in difficulty, the extent of superiority for the "low fatigue"
algorithm decreased.

Bat-haee, Mohammad Ali. A Comparison of Two Methods of Finding the
Least Common Denominator of Unlike Fractions at Fifth Grade Level~
in Relation to Sex, Arithmetric Achievement, and Intelligence.
(Southern Illinois University, 1968.) Dissertation Abstracts-29A:

- 4365; June 1969.

Fifth graders (n - 112) were randomly selected from six classes, and
assigned to be taught to find the ICD by the inspection method used
in their textbook or by a set of six lessons on factoring of
denominators. Pupils taught by the factoring method performed sig-
nificantly better than those taught by the inspection method.

¥The reports which are’ listed have been included to illustrate various
factors which are relevant to the study of computational algorithms.
Tt should not be inferred that each study referenced is necessarily
free of design flaws. An earlier version of this listing, prepared
by Marilyn N. Suydam and J. F. Weaver, was used in the Postsession on
Computational Algorithms sponsored by the Special Interest Group for
Research in Mathematics Education at the Annual Meeting of the
American Educational Research Asgoclation in 1977.
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Baumann, Reemthikkelds. Children's UnderStanding of Selected Mathe{
matical Concepts in Grades Two and Tour. (The University of
Wisconsin, 1965.) Dissertation Abstraets 26: 5219-5220; March 1966.

Forty randomly selected pupils from grades 2 and 4 were interviewed
" 4o ascertain their ability to attain and use concepts of commuta-
tivity, closure, and identity. Twenty-one tasks were presented and
pupils were rated on definitions they gave before and after each
task. It appeared that attaimnment of the concepts were difficult,
and pupils did not generally evidence transfer of learning from \
pervious tasks. High-IQ fourth graders succeeded best, but even

1
their "readiness" seemed questionable.

- - Baxter, Marion McComb. Prediction of Error and Error Type in Computa-
; tion of Sixth Grade Mathematics Students. (The Pennsylvania State
University, 1973.) Dissertation Abstracts International 35A: 251;

July 197k.

Types of errors made by 96 sixth-grade pupils were identified and
W analyzed; effects of feedback, homework, and other factors were

. assessed. Algorlthm errors appeared to be best predicted by ment&l

age.

Bergen, Patricia M. Action Research on Division of Fractions.
~ Arithmetic Teacher 13: 293-295; April 1966.

Booklets were de31gned to teach 63 puplls in three sixth-~-grade
= classes by the complex fraction, common denominator, or inversion
N algorithms. No significant differences were found between complex
A fraction and inversion algorithms, but each was significantly supe-
rior to the common denominator algorithm on most types of examples.

Bidwell, James King. A Comparative Study of the Learning Structures
of Three Algorithms for the Division of Fractional Numbers.
(University of Michigan, 1968.) Dissertation Abstracts 29A: 830;
September 1968

Three meaningful approaches were taught to 21 sixth-grade classes

(n = 48) randomly assigned to treatment for eight days. - The inverse
operatlon procedure was most effective, followed by complex fraction
and common denominator procedures. The complex fraction procedure
was better tor retention, while the common denominator procedure was
poorest. :
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Brooke, George Milo. The Common Denominator Method in the Division of
Fractions. (State University of Iowa, 1954.) Dissertation Abstracts
14: 2290-2291; 195L. -

One group had division o#f fractions presented by the inversion method,
and the other group used the common denominator method. Sixth~-grade
pupils in 28 classes (n = 772) were taught for four days. No signi-
ficant difference between the two groups was found. ’

Brownell, William A. The Effects of Practicing a Complex Arithmetical
Skill upon Proficency in Its Constituent Skills. Journal of Educa-
tional Psychology 4kh: 65-81; February 1953.

A test was administered to 17 fifth-grade classes (n = 367) before
and after three weeks of instruction on division by two-place numbers.
Tt was found that: (1) practice in dividing by two-place numbers
(the complex skill) had no single, uniform, predictable results as
far as proficiency in sub-skills was concerned; (2) in general, the
oldest and best-established sub-skill (subtraction) seemed less sub-
ject to change than sub-skills recently taught, while the sub-skill
(simple division) most like the complex skill seemed to be least
stable; (3) loss in proficiency in sub-skills may be attributed to
retroactive inhibition; (4) children with the lowest degree of
proficiency in sub~-skills made relatively little improvement on
these while working on the complex skill. - :

%

Brownell, William A. and Moser, Harold E. Meaningful vs. Mechanical
Learning: A Study in Grade III Subtraction. Duke University
Research Studies in Education, No..8. Durham, North Carolina:
Duke University Press, 1949. 207 p.’ /

*In a study involving 1400 third grade pupils, half of ﬁhe classes
were taught to borrow using the decomposition algorithm; the other
half using the equal additions algorithm. Bach half was divided
again, so that one group learned the procedure meaningfully and the
other group, mechanically. Among the conclusions were: (1) the
equal additions algorithm appears satisfactory for .children who have
a background of meaningful arithmetic, but for children with limited
background the decomposition algorithm, taught with meaning, 1is
better regardless of the criteria employed; (2) the equal additions
algorithm is difficult to rationalize; (3) some proficiency can be
produced by mechanical instruction with elther the decomposition or
equal additions algorithm; (4) crutches were needed, but were more
helpful for the decomposition algorithm than for the equal additions
algorithm. ' ,




Brueckner, Leo J. and Melbye, Harvey O. ﬁelative Difficulty of Types
of Examples in D1v13}on with Two-Figure Divisors. Journal of
Educatlonal Research 33 401-414; February 1940. 2

Tests were administered to L7L pupils in grades 5 and 6. ILong
division was found to be not a single general ability but a process
that consists of a considerable variety of skills found in combina-
tions varying widely in difficulty. Examples in which the apparent
quotient is the true quotient were much easier than those which
required correcting. The mental ages at which less than 25 per cent
error resulted ranged from .10 to 15 years.

Burdick, Charles Philip. A Study of the Effects of Academlic Accelera-
tion on Learning and on Retention of Learning Addition in the Set
of Integers. (Syracuse University, 1969.) Dissertation Abstracts
International 31A: 5k- 55, July 1970

To determine the optimal grade level, a three-day unit on addition

- with integers was taught to 245 pupils in grades 5 through 8, with
a retention test administered six weeks after the end of instruction.
It appeared that grade 6 is the optimal level for teaching addition
with integers, since there was the greatest increase in learning
from instruction, attainment of group criterion, performance, and
non31gn1f1cant loss on the retention test. However, the greatest
increase from pre- to retention test was found in grade 5.

Burkhart, Lewis Leland. A Study of Two Modern Approaches to the
Development of Understanding and Skills in Division of Whole Numbers.
(Case Western Reserve University, 1967.) Dissertation Abstracts

28A: 3877; April 1968.

Tourth graders using the multiplicative approach had significantly
greater mean achievement and retention than those using the subtrac-
tive approach, on measures of computational skills, understandlng,
and applications. -

Capps, Lelon R. A Comparison of the Common Denominator and Inversion
Method of Teaching Division of Fractions. Journal of Educational
Research 56: 516-522; July-August 1963. (Also see Capps, Arithmetic
Teacher 9: 10-16; January 1962.)

Sixth graders in 20 classes were randomly assigned for instruction
on two methods of division of fractions. Groups did not differ
significantly in ability to divide fractionS, but the group taught
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by the inversion method scored significantly higher in ability to y
multiply fractions on the immediate posttest, though not on the y
retention test. Analysis of gain or loss from posttest to retention /

test revealed no difference between methods for addition, subtrac- K
tion, or division of fractions, but the common denominator group o/
gained significantly on multiplication of fractions. /'

Carney, Harold Francis. The Relative Effectiveness of Two Methods of
Peaching the Addition and Subtraction of Rational Numbers. (New
York University, 1973.) Dissertation Abstracts International 3LA:
659-660; August 1973. » ) . R

For eight fourth-grade classes, use of field postulates and other
‘properties of whole numbers in teaching addition and subtraction
with fractions was found to be more effective than use of objects
and the number line. '

/

Carter, Mary Katherine. A Comparative Study of Two Methods of Estimating
Quotients When Learning to Divide by Two-Figure Diyisors. (Boston
University School of Education, 1959.) Dissertation Abstracts 20: A¢,,,/f””””
3317; February 1960. ‘ /IH;Hgf«f~"‘”"

yor -~ - -

For 12 weeks, 22 fifth-grade classes (n = 463) were taught (a) only
the one-rule method, (b). only the two-rule method, or (c¢) first the
one-rule method followed by the two-rule method as an,alternative.
Those taught one rule were more accurate than those taught by the
two-rule method, and the combined method was also better than the
two-rule method. Those taught the combined method did as well as
those taught one-rule in both speed and accuracy. After a lapse of
time, no significant differences in speed were found.

Coburn, Terrence Gordon. The Effect of a Ratio Approach and a Region
Approach on Equivalent Fractions and Addition/Subtraction for Pupils.
in Grade Four. (The, University of Michigan, 1973.) Dissertation ’
Abstracts Tnternational 3uA: L688; February 197h. .

Six classes of fourth graders were taught an instructional sequence

for equivalent fractions based on an initial ratio thinking model,

while six other fourth-grade classes were taught using a model which
emphasized paper-folding activities. While achievement on some con-

cepts was comparable for the two groups, students using the region

approach achieved significantly better on adding and subtracting ’
unlike fractions and on some retention and attitude measures.
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Coltharp, Forrest Lee. A Comparison of the Effectiveness of an
Abstract and a Concrete Approach in Teaching of Integers to Sixth
. Grade Students. (Oklahoma State University, 1968.) Dissertation =
' " Abstracts International 30A: 923-924; September 1969.

- In a study with 79 pupils in four sixth-grade classes; addition and
subtraction with integers was presented through a concrete procedure
using the number line and other visual materials or with an abstract

_..or algebraic procedure with ordered pairs. No significant differences
, -4n achievement were found.

Cosgrove, Gail Edmund. The Effect on Sixth-Grade Pupils' Skill in ,
Compound Subtraction When They Experience a New Procedure for Per-
forming This Skill. (Boston University School of Education, 1957.) -
Dissertation Abstracts 17: 2933-293k4; December 1957.

It was found that 31xth grade pupils who had learned the decomp031—
tion algorithm could change to the equal additions algorithm without
significant interference effects. Hypothesized speed and accuracy
advantages for equal additions were not observed.

Cox, L. S. Diagnosing and Remediating Systematic Errors in Addition
and Subtraction Computations. Arithmetic Teacher 22: 151-157;
February 1975. ‘

Types of errors made by children were analyzed and categorized as
systematic, random, or careless.

Coxford, Arthur Frank, Jr. The Effects of Two Instructional Approaches
on the Learning of Addition and Subtraction Concepts in Grade One.
(University of Michigan, 1965.) Dissertation Abstracts 26:
6543-65hh; May 1966.

For the two higher-ability first grade classes in the control group,
subtraction was based on the removal of a subset from a set, with

no explicit use of the relationship between addition and subtraction.
For the experimental group, which consisted of two lowér- a d two
‘higher-ability first grade classes, subtraction was based on finding
the missing part of a set when a set and one of its subsets Wwas
given, with extensive use of the relationship between addition and
subtraction. Symbolism on addition and subtraction ¢oncepts was
delayed six weeks in half of the ¢lasses in each treatment. | Few
significant differences were found between the two &ppruoch s. For
higher-ability groups, the control approach led to greater meedlate
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proficiency in solving subtraction sentences, while the experimental
approach tended to facilitate solutions of application of subtraction
to a greater extent. Delayed symbolization'led to greater transfer

and applicability than did immediate symbolism when the expe

rimental
approach was used in the lower ability groups. .

crawford, Douglas Houston. An Investigation of Age-Grade Trends in
Understanding the Field Axioms. (Syracuse University, 196L.)
Dissertation Abstracts 25: -5728-5729; April 1965.

A 45-item test on field axioms was constructed and administered to
1000 non-randomly selected pupils in grades 4, 6, 8, 9, 10, and 12.-
Mean scores increased significantly from one even-numbered grade to
the next. No significant differences were found for sex except
between grades 8 and 9; IQ had an increasing effect as grade level
increased. For traditional-content students in grades 9 and 10,
the order of difficulty was commutativity (easiest), inverse, closure,
identity, associativity, and distributivity. ' :

Dawson, Dan T. and Ruddell, Arden K. An Experimental Approach to the
Division Idea. Arithmetic Teacher 2: 6-9; February 1955.

Twelve fourth-grade classes were equated on seven variables and then
taught for 22 days using the textbook approach or an approach in
which division was presented as a special case of subtraction. Use
of the subtractive concept resulted in significantly higher achieve~
ment on immediate and delayed recall tests. A greater understanding
of division and its interrelationships with other operations was
also found when the subtractive concept was used.

Crumley, Richard D. A Comparison of Different Methods of Teaching

Subtraction in the Third Grade. (Unpublished doctoral dissertation,
University of Chicago, 1956.) .

Children in third grade tended to see ;ubtructidn as a take-away
process regardless of the teaching procedure used.




. Dilley, Clyde Alan. A Comparison of Two Methods of Teaching Long
Division. (University of Illinois at Urbana-Champaign, 1970.)
Dissertation Abstracts’lnternational 31A: 2248; November 1970.

Ten schools at three socio-economic levels were randomly selected,
and one fourth grade from each school was randomly assigned to be
taught division using either the successive subtractions method or
the distributive method, taught meaningfully.  On only two of seven
tests was there a significant difference between . treatments: on the
application test the difference favored the successive subtractions
method, while on the retention power test the difference favored the
dlstrlbutlve method.

Ebellng, David George. The Ablllty of Sixth_Grade Students to Associate
Mathematical Terms with Related Algorlthms. (Indiana University,
1973.) Dissertation Abstracts International 34A: T7514-7515; June
197h

From thls study with 1094 sixth graders, it was concluded that:

(1) the average sixth-grade student has the ability to associate

fewer than half of the algorithms for operations with whole numbers
with their mathematical terms; (2) writing an algorithm in horizontal
or vertical form makes no difference in students' ability to associate
the terms with the algorithms; (3) students are able to associate
terms with algorithms when written in normal order significsntly
better than when written in inverse order. ‘

% Ellis, Leslie Clyde. A Diagnostic Study of Whole Number Computations

l of Certain’Elementary Students. (The Louisiana State University and
l : Agrlcultpial and Mechanical College, 1972.) Dissertation Abstracts

| International 33A: 223L; November 1972.

A screening test on the four operations was followed by a diagnostic
test used to tabulate errors and plan instruction for 690 pupils in
grade 6. Division was found to be the most difficult operation,
followed by subtraction, with addition least difficult.

Faires, Dano Miller. Computation with Decimal Fractions in the Sequence
" of Number Development. (Wayne State University, 1962.) Dissertation
Abstracts 23: U4183; May 1963.

Two equated groups of eight fifth-grade classes were assigned to the
“two treatments. One group was introduced to decimals though a
sequence based on an orderly extension of place value, with no




reference to common fraction equivalents, while -the other group was
taught fractions before decimals, as is usually done. Gains in com=-
putational achievement and at least as good an understanding of -
fraction concepts resulted. It was concluded that computation with
decimals is apparently more nearly like computation with whole num-

_ bers than with fractions; thus reinforcement of whole number compu-
tational skills is provided. '

-\

Flournoy, Frances. Children's Success with Two Methods of Estimat§9g4
" the Quotient Figure. Arithmetic Teacher 6: 100-10L4; March 1959.

Two fifth—gradevclassesl(n = 61) were taught the one-rule method of
rounding down and two classes (n = 63) were taught the two-rule method
of rounding both ways. On a 1lO-item test, some children (including
many .low achievers) taught the two-rule procedure did not use it.
However, the two-rule method appeared to result in greater accuracy.

+

Flournoy, Frances. A Consideration of Pupils' Success with Two Methods
for Placing the Decimal Point in the Quotient. School Science and’
Mathematics 59: UWh5-455; June 1959. "

Involved in this study were 137 pupils in six sixth-grade classes.
Pupils taught to make tlie divisor a whole number by multiplying by
a power of ten placed the decimal point in the quotient correctly
more often than did pupils taught the subtractive method. Above-
average achievers scored better with the subtractive method, but
below-average achiévers found it decidedly more difficult. Failure
to place the necessary zeros in the dividend was common to those
using either method. ‘

Flournoy, Frances. Applying Basic Mathematical Ideas in Arithmetic.
Arithmetic Teacher 11: 104-108; February 1964, R

An 18-item test measuring ability to apply basic laws of arithmetic
in each operation with whole numbers was administered to 106 students
in four seventh-grade classes. An error of 30 per cent or greater
was found on 15 items, and 50 per cent error or greater on ten times.
Items related to the distributive property were most frequently
missed. \ : : :




Division. Teachers College Contributions to Fducation, No. o51.
New York: Bureau of Publications, Teachers College, Columbia
University, 1949, :

Pupils in the experimental treatment were required to develop and
use a table of multiples of the divisor, d; from 1 x d to 9 xd, to
find quotient digits when working examples having two-digit d1v1sors.
Nonsignificant differences in achievement favored the experimental
treatment over the control.where pupils were taught the 1ncrease-by-
one or two~rule procedure.

\

Gaslgn, Wllllam Lee. A Comparison of Achievement and Attitudes of
Students Using Conventional or Calculator Based Algorithms for
Operations on Positive Rational Numbers in Ninth Grade General

athematics. (University of Minnesota, 1972.) Dissertation Abstracts
International 33A: 2217; November 1972. '

Gaslln, William L. A Comparison of Achievement: and Attitudes of Students
Uslng Conventional or Calculator—based Algorithms for Operations on
Pos1t1ve Rational Numbers in Ninth-Grade General Mathematics. Journal
for Research in Mathematics Education 6: 95-108; March l975

For six “ninth-grade classes, use of units in which fractional
.numbers were converted to decimals and examples then solved on a
calculator was found to be a "viable alternative" to use of conven-
_tlonal textbooks (1nclud1ng fractions) with or w1thout a calculator,

Fuller, Kenneth Gary. An Experlmental Study of Two Methods of ILong -
‘
‘for low-ability or low-ach1ev1ng students. i

Gibb, E. Glenadine. Children' s Thinking in the Process of Subtraction.
Journal. of Experimental Education 25: 71-80; September 1956.

problems at three levels of abstraction and with three types of
applications -- take-away, additive- subtraction, and comparative-
subtraction. There were significant differences among applications
for understanding, equation, solution, and time scores. Highest
degree of attainment was on take-away problems and lowest level on
comparative problems. Additive problems took a longer time.
Significant differences were also.found among contexts, with perfor—
mance better on problems in semi-concrete context 'than in concrete
context, and lowest in abstract context.

Thirty-six randomly-selected pupils in grade 2 were 1nterV1ewed about 1
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Gran, Eldon Edward. A Study to Determine Whether the Negative~Number
Subtraction Method Can Be Learned and Used by Elementary Fupils.
(University of South Dakota, 1966.) Dissertation Abstracts 27A:
4165-4166; June 1967. -

Pupils in grades 3 through 6 learned the negative-numbér subtraction
method with speed and accuracy superior to those taught by decomposi=-
tion. Pupils demonstrated ability to apply the method to common and
decimal fractions. However, they failed to continue to use the method
as their habitual method of subtraction.

Gray, Roland F. An Experiment in the Teaching of Introdﬁctory Multi-
plication. Arithmetic Teacher 12: 199-203; March 1965. '

Twenty-two third-grade classes were randomly assigned to instruetion
which introduced multiplication by stressing understanding of the
distributive property or which explained multiplication in terms of
repeated additions and arrays. The use of the distributive property
resulted in higher achievement, ani knowledge of the property appeared
to help children proceed independently in the solution of untaught
multiplication combinations. The children appeared not to develop
an understanding of the distributive property unless it was specifi-~

- cally taught. ‘

Green, Geraldine Ann. A Comparisen of Two Approaches, Area and' Finding
a Part of, and Two Instructional Materials, Diagrams and Manipulative
Aids, on Multiplication of Fractional Numbers in Grade Five. (The
University of Michigan, 1969.) Dissertation Abstracts International ‘ (

31A: 676-677; August 1970.

For a 12-day unit, 480 pupils in grdde 5 were taught by treatments
involving two approaches -- one hased on area of a rectangular
region and one on finding a fractional part of a region or set --.
and by diagrams or materials. The area approach was more effective
than the finding-a-part-of approach; diagrams and materials appeared
to be equally effective. The area/diagram combination was most
successful, with the part—of/materials-approach second, and part-of/
diagram ranking poorest.

Grossnickle, Foster E., An Experiment with Two Methods of Estimation of
the Quotient, Elementary School Journal 37: 668-677; May 1937,

No significant differences were found between seven fourth-grade
clagses in one School who were taught the apparent method and seven




fourth-grade classes in another school who were taught the increase-
by-one method, on measures of accuragy, estimation scores, or mean
number of errors. . . R

Grossnickle, Foster E. Estimating the Quotient by Two Methods in

Division with a Three-Figure Divisor. Elementary School Journal
39: 352-356; January 1939. ‘ "

The result of division by the 810 three-figure divisors (which do
not .contain multiples of 10) were computed. Whether the apparent
or the increase-by-one method of quotient estimation is used, in
about 99 percent of the cases the true quotient is within a range
of 2. Because of the difficulty of ascertaining what to increase,
the apparent method was recommended

Grossnickle, Foster E. Kinds of Errors in Division of Decimals and

Their Constancy. Journal of Educational Research 37: 110-117;
October 1943. : '

On tests from 4OO pupils in grades 6 through 9, 21 different kinds
-0f errors in division of decimals were found. Forty per cent of all
errors resulted from improper usage of the decimal divisor. The
average number of errors of each type was about the same at each
grade level. The only constant error resulted from d1v1d1ng an
integer by a dec1mal

Grouws, Donglas A. and Reys, Robert E.. Division Involving Zero: An

Experimental Study and Tts Implications. Arithmetic Teacher 22:
74-80; January 1975.

Presenting division sentences involving zero before multiplication
sentences involving zero was associlated with significantly higher .
scores than the reverse sequence. FErrors made when computation
involved zero are noted.

-Hall, Kenneth Dwight. An Experimental Study of Iwo Methods of Instruc-

tion for Mastering Multiplication Facts at the Third-Grade Level.
(Duke University, 1967.) Dissertation Abstracts 28A: 390-391;
August 1967.

Thirty classes (n = TOl) of third graders were tuught two sets of
36 lessons. No significant differences werc found between groups

.
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taught by procedures emphasizing the commutative property and ordered
pairs; with practice on uncommuteqd combinations, or by emphasis on
the tnh@itional approach, with practice on commuted combinations.,

Hammond, Robert Lee, Ability with the Mathematical Principles Governing
the Operations of Addition, Multiplication, Subtraction, and Division.
(University of Southern California, 1962,) Dissertation Abstracts 23:
2372-2373; January 1963.

A test was developed and administered to 300 seventh graders to ascer-
tain their understanding of mathematics principles and the relationship
of this understanding to arithmetic and mental ability. Significant
correlations were found between test scores and mental ability,
arithmetic ability, and algebra aptitude scores. ‘Mathematical ability
factors were identified. :

Hartung, Maurice L. Estimeting the Quotient in Division (A Critical
. Analysis of Research). Arithmetic Téacher ks 100-111; April 1957.

A critical analysis of significant research pertaining to the estima-
tion of quotient digits when dividing by two-place divisors is pre-
sented. Advocated and defended is a preference for a one-rule
"pound-up" method of estimation instead of a one-rule "yound-~-down"
method or a two-rule '"round-both-ways" method -- especially during
the early stages of instruction.

Harutunian, Harold. Validation of a Learning Hierarchy Using Classroom
Interaction. (Boston University School of Education, 1973.)
Dissertation Abstracts International 34A: 5584-5585; March 197h.

. g ¢’

Using Gagne's task ahalysis procedure, a learning hierarchy of
thirteen subordinate skills was derived for adding fractional
numbers. It was validated with a sample of five fifth-grade classes.

Hegstrom, William J. Construction and Clinical Testing of Programmed
Instructional Units for Very Low Achievers in Junior High School
Mathematics. (University of Miami, 1971.) Dissertation Abstracts
International 32A: 3663-366k4; January 1972.

Programmed instruction booklets on fractions and reduction of frac-
tions appeared to be feasible for low-~achieving junior high school
students.
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Hexrvey, Mérgaret A. Children's Responses to Two Types of Multiplica-

tion Problems. Arithmotic Teacher 13: 288-292; April 1966.

Sixty-féur randomly selected second graders were administered one
of two 10-item tests; they were asked to find the answer to multi-~
plication problems and then select a representation, or they first
selected a representation and then found an answer. Equal additions
multiplication problems were less difficult to solve and conceptu-
alize, and less difficult to select a '"way to think about", than
were Cartesian product problems. Cartesian product problems were
more readily solved by high achievers in arithmetic than by low
achievers, by boys than by glrls, and by those with above average
intelligence.

Hightower, H. W. Effect of Instructional Procedures on Achievement in

Fundamental Operations in Arithmetic. Educational Administration
and Supervision 40: 336-348; October 195L.

A critical review of 17 research studies on addition and subtraction
led to the conclusion that additional variables and criteria must be
used in research on method. : / \

Hill, Edwin Henry. Study of Third, Fourth, Fifth,'and Sixth Grade

Children's Preferences and Performances on Partition ehd Measurement
Division Problems. (Staté University of Iowa, 1952.)/ Dissertation
Abstracts 12: 703; Issue No."5, 1952.

Pupils in grades 3 through 6 (n = 8LL) were given a test on the two
types of division problems, and asked to indicate their preference.
Both boys and gjrls in grades L-6 preferred measurement problems,

- while-third graders indicated’'no preference for either type. Boys

in grades 3-5 and girls in grades 3-6 scored equally well on both
tybes of provlems; boys in grade 6 scored significantly higher on
measurement problems.

Hinkelman, Emmet A. A Study of the Principles Governing Fractions Known

by the Fift nd Sixth Grade Children. Educational Administration
and Supervdsion 42: 153-161% March 1956.
T :

Thirty-one fifth~ and sixth-érade pupils were tested by means of a
20-item true-falsc "principles of fractions" test (e.g., one item
was: '"Adding the same number to both the numerator and denominator
ot a fraction leaves the value of the fraction the same.'"). All ten
principles were known to the pupils as a group, with a range of one
to eight principles known by individuals. Means were 3.1 for grade
5 and 4.1 for grade 6.
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Hostetler, Robert Paul. Toward a Theory of Sequencing: Study 2-1:
An Exploration of the Effect of Selected Sequence Variables upon
Student Choice in the Use of Algorithms. (The Pennsylvania’ State
University, 1970.) Dlsse*tatlon Abstracts Internatlonal 31A:°
46233 March 1971. .

Using a CAI program on equivalent fractions with 24 fifth graders,
evidence was found that (1) explicit instruction about the relative
scopes of applicability of two algorithms did not significantly

affect the algorithm preferences; | (2) the order in which two algorithms
are learned affected the algorithm preference of a student: strong
support was obtaihed indicating that the preferred algorithm is the
one learned last; and (3) the order in which two algorithms are
learned exerted a significantly stronger influence on algorithm pre-
ference than did knowledge of the scope of applicability of the two
algorithms under consideration.

Howlett, Kenneth Donn. A Study of the Relationship Between Piagetian
Class Inclusion Tasks and the Ability of First Grade Children To Do
Missing Addend Computation and Verbal Problems. (State University
of New York at Buffalo, 1973.) Dissertation Abstracts International
3bkA:  6259-6260; April 197h. ' -

Y ) L

First-grade pupils classified as Stage III on a class-inclusion test ,~”*f
performed significantly better than Stage I pupils on both mlssing,»“"
addend computation and verbal problems.

.,/'

Hughes, Frank George. A Comparison of Two Methods of'Teachiﬁg Multi-
digit Multiplication. (Tne University of Tennessee, 1973.)
Dissertation Abstracts International 34A: 2460-2461; November 1Y73.

The lattice method of multiplication was used with six classes of
fourth graders, while six other fourth=grade classes used the dis- i
tributive algorithm. Groups using the lattice method were able to |
compute in significantly less time and more accurately than groups

using the distributive algorithm. No significant differences in
understanding or attitude were found.

Hutchings, Barton. Low-stress Qubtractlon. Arithmetic Teacher 22:
226-232; March 1975.

-

A "low stress" algorithm, which involves regrouping before any com-
putation is done, has been found to be effective with various types
of learners.




Hutchings, Lloyd Benjamin. An Examination, Across a Wide Range of
Socioecononic Circumstance, of a Format for Field Ré§earCh.of
Experimental Numerical Computation Algorithms, an Instrument for
Measuring Computational Power Under Any Concise Numerical Addition
Algorithm, and the Differential Effects of Short Term Instruction in
Two Experimental-Numerical Addition Algorithms and Equivalent Prac-
tice with the Conventional Addition Algorlthm. (Syracuse University,
1972.) Dissertation Abstracts Internatlonal 33A: U6T78; March 1973.

The experimental rapid-acquisition algorithm produced "a, quick,
_Q' strong increase in cemputational power", conventional practice re-
‘ sulted in some improvement, non-treatment had little effect, and an
alternative experimental algorithm was debilitating, for the fifth
graders studied.

Ingersoll Gary M. An Experimental Study of Two Methods of Presenting
the Inversion Algorithm in Division of Fractions. California Journal
of Educational Research 22: 17-25; January 1971. '

In two experiments, 131 sixth-grade children from five classes were .
involved. After a program used by both groups on one day, pupils
were randomly assigned to three different programs completed on the
second day. The complex fraction method appeared to be more effec-
tive than a procedure using the associative property.

Jordan, Ralph James. Effects of Sequence of Presentation of ‘Square
Koot Extraction Methods. (The University of Rochester, 1970.)
Dissertation Abstracts International 31A: 3416; January 1971.

Over 200 eighth graders were present varied sequences of three pairs
of square root methods. Immediately after presentation, the aigo-
rithm followed by the divide-and-average method was preferable to
the reverse sequence. No significant differences were found between
sequences for retention or transfer. The algorithm appeared to be
the most preferred method.

¥ansky, Robert James. An Analysis of Models Used in Australia, Canada,
Europe, and the United States to Provide an Understanding of Addition
. S and Multlbllcatlon over the Natural Numbers. (University|of Illanlﬁ,
1969.) Dissertatipn Abstracts, International 30A: 10Tk4- 1%75, '
eptember 1969. ;

Races for meaningf instruction and the relationship of four classe :
af models of 4 number system to thosce bases were examined, to Ldentlfy
and analyze procedures and materials used with children in teaching

. ,
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addition and multiplication. Structural models used in textbooks
were identified and classified, and the probable teaching effective-
ness of each was analyzed with respect to mathematical and pedagogical
criteria. Changes in the models now in use were suggested.

Kratzer, Richard Oren. A Comparison of Initially Teaching Division
Employing the Distributive and Greenwood Algorithm with the Aid of
a Manipulative Material. (New York University, 1971.) Dissertation
Abstracts Tnternational 32A: 5672; April 1972.

Kratzer, Richard 0. and Willoughby, Stephen S. A Comparison of
Initially Teaching Division Employing. the Distributive and Greenwood
Algorithms with the Aid of a Manipulative Material. Journal for
Research in Mathematics Education L: 197-20k4; November 1973.

'8ix fourth-grade classes were taught division using the distributive
algorithm as a method of keeping records of manipulating bundles of
sticks; six other classes used the Greenwood algorithm, with sticks.
No significant difference was found between methods on a test of
familiar problems, but the distributive group scored better on trans-
fer problems. - .

Lankfofd, Francis G., Jr. Some Computational Strategies of Seventh -
Grade Pupils. Final Report, USOE Grant No. OEG-3-72-0035.
Charlottesville: .The Center for Advanced Study, University of
Virginia, October 1972. ERIC: ED 069 L9%6.

\

Lankford, Francis G., Jr. What Can a Teacher Learn About a Pupil's
Thinking Through Oral Interviews? Arithmetic Teacher 21: 26-32;
January 197Th.

The results of interviews with 176 pupils in grade 7 were presented.
Frequency of right and wrong answers to examples for each operation,
with whole numbers and with fractions; strategies frequently used;
the nature of wrong answers; and some characteristics of good and
poor computers were specified.

Leach, Mary Louise Moynihan. Primacy Effects Associlated with Long )

Term Retention of Mathemaftical l%orithms. (University of Maryland,
1973.) Dissertation Absfracts In ernational 3L4A: T002-T7003; May
197k, | : ' i

Euclid's algorithm for finding the greatest common divisor of two
numbers, the traditional squgre root algorithm, and the slide method
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of multiplication were arranged in six serial orders. Sixty
elementary-education majors were randomly assigned to six groups,
with each receiving one serial arrangement of the algorithms, pre-
sented via programmed booklets. ‘No significant differences .in
retention were found. C

Morton, R. L. Estimating Quotient Figures When Dividing by Two-Place
Numbers. Elementary School Journal 48: 141-148; November 1947.

The results of estimating quotients by the apparent and the increase-
by-one methods (on 40,014 examples) were presented: (1) the
increase-by-one method is correct 79 per cent of the time when
divisors end in 6, 7, 8, or 9; (2) the apparent method is corréct
72 per cent of the time when divisors end in 1, 2, 3, or 4; (3) for
any divisor ending in 1 through 9, the apparent method is correct 53
per cent of the time, and the increase-by-one method is correct 61

- per cent of the time; (4) the apparent method is more successful
with divisors ending in 5. It was concluded that pupils should be
taught to round to the nearest multiple of tens.

0'Brien, Thomas C. An Experimentai Investigation of a New Approach to
the Teaching of Decimals. (New York University, 1967.) Dissertation
\\ Abstracts 28A: L5h1l-L542; May 1968.

\ Thirty-six sixth-grade classes were randomly assigned to the three
treatments. Pupils taught decimals with an emphasis on the principles
of numeration, with no mention of fractions, scored lower on tests of
computation with decimals than those taught either (a) the relation
between decimals and fractions, with secondary emphasis on principles
of numeration, or (b) rules, with no mention of fractions or
principles of numeration. On later retention measures, the numera-
tion approach was significantly lower than use of the rules approach,
but not significantly different from the fraction-numeration approach.

oOsborne, Alan Reid. The Effects of Two Instructional Approaches on the
Understanding of Subtraction by Grade Two Pupils. (The University
of Michigan, 1966.) Dissertation Abstracts 28A: 158; July 1967.

The effects of continuing in grade 2 the instructional treatments
iised by Coxford (1966) in grade 1 were) studied. The set-partitioning-
without~removal aﬁ?roach resulted in |significantly greater understand-
ing of subtraction than did the take-away approach. Evidence
concerning time for symbolism was ingonclusive.
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Osburn, Worth J. Levels of Difficulty in Long Division. Elementary
School Journal L6: hHlhi-Lh7; April 19L6,

N

i .

Forty-one levels of difficulty for division with two-digit divisors
and one-digit quotients were stated, with examples and the total
number of possible exercises. The apparent method of estimating the
quotient, with the instruction to try a quotient figure less by 1
when a subtrahend is too large, could enable the learner to handle
all but five per cent of any long division he will ever be called
upon to do. '

L . Osburn, W. J. Division by Dichotomy as Applied to the Estimation of
\ Quotient Figures. Elementary School Journal 50: 326-330;.February
\  1950. ; —

Analysis of division examples with divisors ending in 6, 7, 8, or 9,
using a dichotomy, revealed that the apparent method is successful
in 4,800 cases where the increase-by-one method is also successful.
The appareni method fails in 9,846 cases where the increase-by-one

_ method is successful, and is successful in 1,885 cases where the
increase-by-one method fails. Both methods fail in 2,099 cases. *

Pang, Paul Hau-lim. A Mathematical and Pedagogical Study of Square
Toot Extraction. (State University of New York at Buffalo, 1969.)
Dissertation Abstracts International 30A: 1080; September 1969.

For students in grades 8 and 9, the direct-trial method wasfsignifi—
cantly better than the traditional algorithm and the average-and-
divide method for finding the square root. -

Phillips, Ernest Rdy; Validating Learning Hierarchies forﬁSequencing
Mathematical Tasks. (Purdue University, 1971.) Dissertation
Abstracts International 32A: L2LO; Febrq@fy 1972. T '

A hierarchy for the computational skilié of adding rational numbers
with like denominators was constructed using Gagne's task analysis.
Sequence seemed to have little effect on ilmmediate gachievement and
transfer to a similar task, but longer~-term retention seemed suscep-
tible to seguence manipulation, for the fourth graders studied.

|




Romberg, Thomas A. A Note on Multiplfing Fractions. Arlthmﬁﬁlc
Teacher :15: 263-265; March 1968. // |

Anslysis of tests from 691 sixth graders re#ealed that/ a 1argér
percentage of students who had used '"modern" programg were faﬂling
to cancel on problems dealing with multiplication of fractipns, than
were pupils who had had "traditional" programs. / |
. / : !
. /‘/

Roussgeau, Leon Antonio. The Relationship Betweég Selected Mathemitical
Concepts and Retention and Transfer Sklll ~rith Respect to Loné
Division Algorithms. (Washlngton State’y iversity, 1972.) Didserta-
tion Abstracts International 32A: 67?/ﬁ June 1972.

Twelve tandomly-selected fourth-gradg’classes were randomly assﬁgned
to one §T four treatments: (1) matdematical, based on the distribu-
tive law of division over addition; (2) real world; based on the
physical aét of quotitioning; (3) real world, based on the phys%cal
act of partitioning; and (4) rofe, based on the memorization of
routines. No significant, differences were found in the retentidn

of the division algorlthms synthesized from these treatments. The
rote algorithm was better for transfer to slightly more difficult
problems, but for problemé of greater difficulty, the quotitive and
distributive algorlthms/were better than rote an{\partltlve algorlthms.

In Report of the/8001ety s Committee on Arithmetic. . Twenty-nlnth
Yearbook, Nat;onal Society for the Study of Education. Bloomlngtpn,

Illinois: Publlc School Publishing Co., 1930. pp. 671-678. |
|

~ Four methods of subtraction were presented and the experiments &
related to them described.

1

‘SBawyer, Ray Corwin. Evaluation of Alternative Methods of Teaching ,\

: L Subtraction of Integers in Twc Junior High Schools. (Unlver31ty of

. . Idahos 1973.) Dissertation Abstracts Internatlona;/3&k*‘*6958
g May 1974. (ERIC: ED 073 9ul)

v The seventh-grade group taught the related facts method achieved \

significantly higher on the concepts section of a standardized test%

than did the group taught the complement method, but no significanti

! differences were found for ach'evementron addition and subtraction |

of integers. 1In another distrfict, tro retention differencjs were |
noted.

i
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Ruch, G. M. and Meéd,’Cyrus D. A Review of Experiments on Subtr&ctLon
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Sdhell, Leo.Mac. Two Aspects of Introductbry Multiplication:° The
Array and the Distributive Property. (state University of Iowa,
1964.) Dissertation Abstracts 25: 5161-5162; March 1965.

T . .

Two nine-lesson sets of instructional materials were presented to
nine third-grade classes. Five classes used arrays exclusively %o ‘
illustrate pultiplication;'four classes used a variety of illustrations.
The distributive property was used in three lessons. The Array group.
produced more correct drawings illustrating the commutative and
distributive properties and multiplication word problems; the Variety
group made more correct drawings for addition and subtraction word
problems. Pupils in neither group adapted their illustrations to the
"reality of the situation.” TItems dealing with the distributive
property were more difficult for all pupils, and expecially for low-
scoring pupils, than items dealing with other phases of multiplication
tested.

Schell, Leo M. and Burns, Paul C. Pupil Performance with Three Types
of Subtraction 'Situations. School Science and Mathematics 62:
AR 208-21k4; March 1962.

i

Twenty-three pupils in grade 2 were asked to solve 36 subtraction
problems. No significant differences were found in performance on
the three problem types (toke-away, how-many-more-nzeded, and com-
parison or difference). Take-away problems seemed to present fewest
difficulties and were considered easiest by the pupils. o

+

Schmidt, Mary Merle. Effects of Teaching the Commutative laws, Asso-
ciative Laws, and the Distributive Law of Arithmetic on Fundamental
Skills of Fourth Grade Pupils, (The University of Mississippi,
1965,) Dissertation Abstracts 26: L4510-4511; February 1966,

Seven fourth-grade classes (n = 194) formed the control group, which
used the Row-Peterson textbook during 1961-62. Seven fourth-grade
classes (n = 215). formed the experimental group in 1962-63, for
which the Row-Peterson textbook was supplemented with instruction
on the five basic laws as applicable. At each of three ability
levels, experimental classes made greater gains on the California
Achievement Test than control classes did.

185

W N
IR I




Schrankler, William Jean. A Study of the Effectiveness of Four
Methods for Teaching Multiplication of Whole Numbers in Grade Four.
(University of Mlnnesota, 1966.) Dissertation Abstracts 27A: L055;
June 1967

Twenty-three fourth-grade classes were randomly selected and assigned
to treatments, In a readiness phase, the 100 multiplication facts
were emphasized for one group (n = 281); the commutative, agsociative,
and distributive properties for multiplication were empha31zed in the
other group (n = 327). Then half the classes were taught the distri-
butive algorithm using indentation, while half were taught the distri-
butive algorithm using complete partial products. The properties-
products group scored higher in understanding and problem solving,
while “the facts-indenting group was superior in computation direétly :
~after instruction. The properties~indenting group was superior in
computation and problem solving on the retention test, while the facts-
products group excelled in computational speed.

Scott, Lloyd. Children's Concept of Scale and the Subtraction of
Fractions. Arithmetic Teacher 9: 115-118; March 1962.

Two 18-item tests were administered to 89 fifth-graders after pupils
had had several months of practice with the operations involving
common fractions. Children made many more errors in subtracting
common fractions involving regrouping than in subtracting whole
numbers involving regrouping. - Many regrouping errors in subtracting
common fractions were related to children's tendency to relate this
process to the decimal scale of our number system. Children involved
in a contemporary arithmetic program made a greater proportion of
total errors at the regrouping step in common fractions than did
children in Brueeckner's study of several decades ago.

3cott, Lloyd. A Study of Teaching Division Through the Use of Two
Algorisms., School Science and Mathematics 63: 739-752; December
1963. :

For a two-month period, four classes of third graders were taught
division using one or two algorithms. The use of two algorithms
neither confused nor presented undue difficulty; no more teaching
time was needed than for teaching pupils to use only one algorithm.
- Those who used two algorithms were at least as efficient in sclving
division problems as were children who used one algorithm. Use‘of
two algorithms resulted in greater understanding of the divisio
operatlon, puglls were generally superior in their ability to s§t
Elng between partitive and meagure-

on as a means for solv1ng problems.

up a proper algorithm, distinguls
ment division, and deflning divis
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Sension, Donald Bruce. A Comparison of Two Conceptual Frameworks for -
‘Teaching the Basic Concepts of Rational Numbers. (University of
Minnesota, 1971.) Dissertation Abstracts International 32A: 2408 ;
November 1971. : . -

TFor 162 pupils in grade 2 who were randomly assigned to treatments
lasting 11-days, area, set-subset, and combination representations
of introduciig rational number concepts appeared to be equally
effective on tests using two types of pictorial models.

Sluser, Theodore F. A Comparative Study of Division of Fractions in
Which an Explanation of the Reciprocal Principle is the Experimental
Factor. (University of Pittsburgh, 1962.) Dissertation Abstracts
23: L62L-4625; June 1963.

The teaching of {the common denominator and inversion algorithms with
and without explanation of the reciprocal principle as the rationale
behind inversion were compared. A total of 299 sixth-grade pupils- in
11 classes were finvolved for 20 days. The group given the explanation
scored significaEtly lower on tests of division of fractions than the
group merely taught to invert and multiply. ‘A large percentage of
errors occurred because pupils performed the wrong operation.

‘ /

;
!
/

Smith, Charles Winston, Jr. A Study of Constant Errors in Subtraction
and in the Appliication of Selected Principles of the Decimal Numera-
tion System Made by Third and Fourth Grade Students. (Wayne State
University, 1968.) Dissertation Abstracts International 30A: 108k
September 196 _

9.

From each of ZWO randomly-selected schools at each of two achievement
levels, two third and two fourth-grade classes were selected. Errors
made by 523 pupils on a diagnostic test and a place value test were
analyzed. Pﬁpils‘who correctly applied selected decimal numeration
principles made few-subtraction errors, and those proficient in
renaming had less difficulty in subtracting. Krrors committed most
frequently by students who applied principles correctly were related
to: basic subtraction combinations,-subtracting the minuend from the
subtrahend, and writing zero as an answer instead of borrowing.
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Steffe, Leslie P. and Parr, Robert B. The Development of the Concepts
of Ratio and Fraction in the Fourth, Fifth, and Sixth Years of the
Elementary School. Technical Report No. 49. Madison: Wisconsin
Research and Development Center for Cognitive Learning, University
of Wisconsin, March 1968.

Six tests -- U pictorial, 2 symbolic -- were constructed and used

to measure the performance of Uth-, 5th-, and 6th-grade pupils (in
three different ability groups) on problems classified either as
ratios or as fractions, where "reduction" to lower terms was involved
and a missing numerator or denominator was to be found. Differential
performance was observed with respect to grades, ability groups, and

test types -- with a very low observed correlation between scores on
symbolic and pictorial tests.

Stenger, Donald J. An Experimental Comparison of Two Methods of
Teaching the Addition and Subtraction of Common Fractions in Grade
Five. (University of Cincinnati, 1971.) Dissertation Abstracts "
International 32A: 3676; January 1972. '

BEighty-one pupils from two fifth-grade classes were randomly assigned
to two treatments for 16 days. The group taught with a subset ratio
procedure achieved significantly better than the group taught by
another (unspecified) procedure on both immediate and retention
tests. ~

Stephens, Lois and Dutton, Wilbur. Retention of the Skill of Division
of Fractions. Arithmetic Teacher 7: 28-31; January 1960.

For T4 sixth graders who had been taught the inversion method or
the common denominator method, no significant differences were found
on the retention test after three months.

Stocks, Sister Tina Marie. The Development of an Instructional System
Which Incorporates the Use of an Electric Desk Calculator as an Aid
to Teaching the Concept of Long Division to Educable Mentally Re-
tarded Adolescents. (Columbia University, 1972.) Dissertation
‘Abstracts International 33A: 1049-1050; September 1972.

The 15 secondary EMR students improved in skills with the division
algorithm after 'nstructifn with the calcula?or.

|

*
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- Suydam, Marilyn N. and Weaver, J. Fred. Using Research: A Key to
Elementary School Mathematics. University Park: The Pennsylvania
\ State University, 1970.

This review of research oh elementary school mathematics includes
bulletins on addition and subtraction with whole numbers (B~1),
multiplication and division with whole numbers (B-2), and rational
numbers -- fractions and decimals (B-3). )

‘ /

Tietz, Naunda Meier. A Comparison of Two Methods of Teaching Multipli-
cation: Repeated-Addition and Ratio-to-One. (Oklahoma State
University, 1968.) Dissertation Abstracts International 30A: 1060;
September 1969. ' '

A random sample of 214 pupils in eight. fourth-grade classes was
randomly assigned to one of two treatments: (1) the repeated-addition
approach using the array as the physical referent or (2) the ratio-
to-one approach using a coordinate system and ordered pairs of numbers
as the physical referent. No significant relationship was found
between the method used and the acquisition, retention, and under-
standing of multiplication for the total group. However, use of
arrays (with the repeated addition method) seemed better for average
and low groups. ’

Trafton, Paul Ross. The Effects of Two Initial Instructional Sequences
on the Learning of the Subtraction Algorithm .in Grade Three. (The
University of Michigan, 1970.) Dissertation Abstracts International
31A: LOW9-4050; February 1971. ; ' .

~

Eight third-grade classes were randomly assigned to two approaches
to two-digit subtraction. More extensive development of the decom-
position algorithm was found to be more effective than a procedure
which included work with concepts and use of the number line before’
the algorithm was taught.

Tunis, Harry Brandriff. The Effects of Differential Rehearsal and
Presentation Treatments on the Performance of a Mathematical
Algorithm. (University of Maryland, 1973.) Dissertation Abstracts
International 3LA: L4093; January 197h.

A rehearsal strategy that did not involve grouping of algorithm
steps (for finding the area of a triangle) was superior to strategles
in which rehearsal steps were grouped, for 100 elementary-education
majors.
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Van Engen, Heﬁry apd Gibb, E. Glenadine. Genefal Mental Functions
Associated with Division. Educational Service Studies, No. 2.
Cedar Falls: Iowa State Teachers College, 1956.

In this' study with 12 fourth-grade classes, the use of the conven-
tional, distributive algorithm was compared with the subtractive form.
Some advantages were reported for each: (1) Children taught the
subtractive form had a better understanding of the process or idea
of ‘division in comparison with the distributive method. Use of this
algorithm was especially effective for children with low ability;
those with high ability used the two methods with equivalent
effectiveness. (2) Children taught the distributive algorithm
achieved higher problem solving socres. (3) Use of the subtractive

" method was more effective in enabling children to transfer to un-
famlllar but similar situations. (4) Children who used the distri-
butive algorlthm had greater success with partition situations,
while those who used the subtractive algorithm had greater success
with measurement situations.

Vest, Floyd Russell. Development of the "Model Construct'" and Its
Appllcatlon to Elementary School Mathematics. (North Texas State
Unlver31ty, 1968.) Dlssertatlon Abstracts 29A: 3539; April 1969.

A system of theoretical concepts to be imposed on the area of
teaching the operations with whole numbers and associated concepts
was delineated. An organized catalog of models describing 20
families of models for addition and subtraction and 20 for multi-
plication and division was presented. Functions of models were
determined and evaluated. '

Weaver, J. F. and others. Some Fagtors Associated with Pupils' Perfor-
mance on Examples Involving Selected Variations of the Distributive
Idea. February 1973. ERIC: ED 075 199.

Weaver, J. Fred. Pupil Performance on Examples Involv1ng Selected
Variations of the Distributive Idea. Arithmetic Teacher 20: 697-
7043 December 1973.

Twelve 9-item tests were constructed and administered to pupils in
grades 4-7 to ascertain whether there are differential achievement
effects associated with context, form, format, and number variables.,
At all grade levels, pupils exhlblted very little sensitivity to use
of distributivity in solving the examples presented.
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Weinstein, Marian Sue. An Investigation of Algorithm Justification in
Elementary School Mathematics. (The University of British Columbia,
Canada, 1973.) Dissertation Abstracts International 3hA:. 3045;
December 1973. » :

No significant achievement differences were found between fifth-grade
pupils taught fraction algorithms by a strictly pattern or a strictly
algebric approach. Some evidence was found that teaching an alge-
braic approach followed by a pattern approach might be effective.

Wheeler, Larry Eugene. The Relationship of Multiple Embodiments of the
Regrouping Concept to Children's Performance in Solving Multi-digit
Addition and Subtraction Examples. (Indiana University, 1971.)
Dissertation Abstracts International 32A: L260; February 1972.

Second-grade pupils proficient in regrouping two-digit addition and
subtraction eéxamples on three or more. concrete embodiments scored
significantly higher on multi-digit tests than those not' proficient
in using concrete materials. A significant correlation was found
between number of embodiments manipulated and achievement on multi-
digit examples.

Wiles, Clyde A.; Romberg, Thomas A.; and Moser, James M. The Relative
Effectiveness of Two Different Instructional Sequences Designed to
Teach the Addition and Subtraction Algorithms. Technical Report
‘No. 222. Madison: Wisconsin Research and Development Center for
Cognitive Learning, The University of Wisconsin, June 1972.

Wiles, Clyde Allan. Comparisons of Three Instructional Sequences for
the Addition and Subtraction Algorithms. (The University of
Wisconsin, 1973.) Dissertation Abstracts Intermational 3hA: 6375;
April-197h.

Investigated at the second grade level, a sequential and an integrated
approach to the introduction of two algorithms for addition and sub-
traction examples involving renaming found no evidence to support any
advantage of an integrated approach (introducing the two algorithms
more or less simultaneously) over a sequential approach (introducing
first the addition algorithm, then the subtraction algorithm).
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. Williamson, Bruce Merle. -A Comparison of a Natural Algorithm with the
.Inversion Algorithm for Teaching the Division of Rational Numbers.
(University of Minnesota, 1972.) Dissertation Abstracts International
33A: 1503 July 1972. '

<

Three classes of sixth graders used programs teaching an algorithm
using equivalent fractions or the inversion algorithm., No signifi- -
cant difference was found between the two algorithms.

Wlllson, George Hayden., A Comparison of Decimsl-Common Fraction Sequence
with Conventional Sequence for Fifth Grade Arithmetic. (University of

Arizona, 1969.) Dissertation Abstracts Internatlonal 30A: 1762;
November 19692

Teachers of four fifth-grade classes (n = 112) were randomly assigned
‘o use the usual textbook sequence of teaching common fractions
followed by decimal fractions, or a re~ordered s&quence using the
same textbook., No significant differences were found on achievement,
concept, computation, and problem solving tests.| Greater raw-score
gains were made by those using the decimal-commorn fraction sequence.

|
\

\

Wilson, Jean Alice, The Effect of Teaching the Rationale of the
Reciprocal Principle in the Division of Fractions Through Programmed
Instruction. (University of Pittsburgh, 1967.) Dissertation
Abstracts 284: 2926; February 1968, \ :

\

The reciprocal principle was taught by programmed 1nstruction, whille

the mechanical process of inversion was tuaght by the teacher., Sixth

graders from one district were assigned to the 1nveﬁ31on treatment,

while 31xth graders from two other districts comprised the rec1procal

group (n = 630)., Pupils using the inversion procedure scored signi=~
! ficantly better on a computation test on division of | fractions, while
‘ the retention test scores favored the reciprocal program group.

il
1

Zinn, Bennie Ardist, Jr. Extending the Teaching of Multiplication Facts
at ‘the Seventh Grade Level, (Texas A & M University, 1971.) Disser-
R tation Abstracts International 324: L263; February 1972.

A set of nine lessons was developed which allowed students to use the
concept of structure and to develop understanding of dmgit placement,
and expanded notation with two- dlgat multiplication ey&mples. The
unit was taught to three seventh-grade classes in threel schools,
while another class in each school had the regular program. The
1%300na appeared to be effective,
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Division Problems and the Concept of Rate. Arithmetic
547-556; December 196k. e

Zweng, Marilyn J.
Teacher 1l:

Forty-eight second graders (randomly selected) were tested to ascer-
tain differences in difficulty between partitive and measurement
division problems and between basic and rate division problems.
Partitive division problems were significantly more: difficult than
were measurement problems. Rate problems seemed to be easier than
basic problems.  Partitive basic problems were significantly more -
difficult than either basic measurement or rate measurement problems.

U
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‘ Summary

So much is not considered in this publication on algorithmic learning:’

--g0 much exploration needs to be conducted.” .

r.eed to be researched.

-850 many variables
. =--so much thinking'ﬂeéds to be done.
~--S0 many implicatibns need to be drawn -~ and tested.

There are implications for research questions and for research design,
And even more important, there are implications for curriculum and

instruction, . .
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