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*.  MASTERY~LEARNING DECISION VARTABLES

J

¢

Al .

Introduétion o . , e - :

v . _e oo . "-4 ) v - l
. This paper focuses on'the andlysis of test data by a mastery-

learning test model, The inputs for the test model are €pe responses

-

of individuals to test items; these responses are classified as either

.
'

correct.or incorrect. The outputs of the test model are called deci- |

. , ,
-sion variables. The test médel described here is algorithmic, i.e., a

mathematical model 1is used to compq;gwnggggical vaf:;s for the decision

.

variables. It is an extensién'of:the M5§f§r?fEe2§niﬁg’Ebdéf;?ﬁaEIck and

o spidams, 1970) as described in TY 55-;71504.. eséi, 1971), Two decision . o
J .‘ ;ariablgé are poFéideréd: g;obébif};j/:iBmaétety for an indiv;dué} and ‘~ ;
, “ ;—fﬂaropor'tion in mastery fo;;:/-'én i;sy:fuctional |group, -
; i ., . é/ﬂfi;///f '//_ ‘ .
« - Symbols and Notatio - \ ”
) WA‘--_ '_. ] Variables will é/;epresented by capital letters. 'if a variable
. o . ' i -
. répresentg a vector), the elements of the vector will pé }epresegfed by .
’ \t@é equivalent lowdr case symbol, - _ A _ ‘ = ) . T

* Lower case letters and numerals will be used as subscripts, The-

3

subscript (i) refers to a test.item; (j) to an individuél, (k) to a

) perfo§ﬁancé m?asure for an objective. If a relationship among variables

does not f&fer to a.particular test item, individutl or objective, the |
’ ! ‘ N N

corresponding subscripts will be delegfd'from thé symbolic representation
P ‘ N L]
N . .

o

e

of the relationship. The script_(J) ‘will be used to refer to a second
i | test i;e% in an eypres

i H
/
i

i




_Capital letter P will refer to a.prbbabi ity. Functgpnalrréiation-

3 .
sﬁips'will be denoted by enclbeing the'independfnt variable in parentheses
G-I P(X/M) will represent the conditional probability of a response X

given that‘the individual is in the mastery (M) state)., The set theoretic

- notation M will be uSed to denote not being in the\mastery (M) state.

The Mastery-Learning Model - ) . . )

-

The mastery~-learning model (TM 5-71-04) assumes hat a test measures
proficiency with respect to a single skill and that,there\are on1§ two

states of proficiency for that skill. Each individual "tested is in
R \ + -~

either the mastery (M) or non-maétery(ﬁ) state at the +ime of testing.

The only true scores are assumed to be 0 and K (for a K-item test); all

intermediate scoreg are due to measurement error,

’

There are two.classes of measurement errors: wrong respanses by

A

individuals in -the mastery state (B errors) and correct responses by -

individuals in the non-mastery state (« errors). , o

R
1]

i

the probability that an individual in the M state will give

a correct response to the g th item,

-

W,
L

the probability that an individual«dn the M state will give

- » : th %};e:f
an incorrect response to the i 1tem.;“;a

’f‘z
The o and B parameters are assumed to have tru¢ values which are

characteristic of the test, Emrick and Adams model has been modified . ;,

A d
to penmit item parameters, ‘rather” than single o and B test parametersa )
. . ‘ ‘ '/ !
The assumption is still made that oy and Bi have the same value for A ’ o
Yo : s R

every individual belonging to a common, instructional group. " ,{, T
t‘\.' n‘\ ..
\ i -

b~




Let’ ; ’ ©ot. LS '
- X j'rep'resent ‘the response of individual j to item i,

\ ! - - = *
.o ;o e
, . 1 if a correct response is given

oy

LY

0-if an incorrect:-response is given -

w !

X =”Elj”‘25”‘31"3"’.""&£| o " (2) -

represent the response vector- for individual -

o Sj = xlj + xzj +, x3j -+ * o o' + }ﬂKj (3)

rypresent the test score for individual j

Sequential analysis of the item responses will be assumed in the deriva- -

~

-\_/ tion of the mastery-learning model. —The (j) subscript will be deleted

o “ L.t . .
. T to simplify the notation. . e . " ‘

- For any ’:.ndividual tested the following conditional probabiIities
- 7 /

~ are associated with his response. to the first item: ¢

s Ry =1/ M) - o T | @y ;’

e T . - . ,‘

. P(X =0 / M) // e A , (5) : ‘ ;.,
y P(x =1/ M)/ = . (6‘) , ’;/
,,,,, ) .?(x1 =0./M = ooy . ' ,. ? ; ) '
A The probability that a response indica’tes a particular state can ' ‘ ) /

be computed using Bayes formnla-

“ I . . .o ! - - 3

o ' FRM+P(x, /M) T - v
R ) e - L ®
o . - . ( P(xl) “'t ) o :




PR% represents the prior probability_of the mastery state,

P(xl) represents the prior or expected distribution of %) .given by,

,'P(xl) = PRM.P (%, /1) + [l-PRM] P (x) KM ' ‘: 9 - -

For a correct response,

Pt/ x. = 1) il e R 10)
5 pRM-(,1~B) + [1-PRM)ec) '

anae

t

For an incorrect response,

/ PGt/ % '/ 0) | s U - - (11)
. X, = = - “
// pa 1 PRM-B; + [1-PRM]-[1-a ] :

e o
S : B . !
|

Methods for estimating\prior:probabilities will be discussed tater in . “

P

t

this paper. " ‘ Sl :

Tﬁe conditional probability of mastery based on the first item

resp nﬁs\fequation 8) is used as the prior proBability for the second
item response. ': ) . ( '

rat v . %) Cy . P(M/xl).P(xé/M) . i 5 -
! X, - i u
R P(M/x,)P(xy/M) + [1-2Q4/x)) TP (x,/H) C .

. E—

’

~

Substituting equations (8) and (9) for R(M/xl) yields;

o R [k )R (/1) ] S a3y,
PO i  PRHe[PCx, /M) P(x, /M)] + [1-m4] e /M) ep(x, /DT I

L]




‘This‘procedure can be repeated, sequentially eomppting-ghe conditional

/ ’

.probability of mastery given the ith item response, with the prior
4 /

probabilzty based qn tﬁe previous responses. For a K-item test
oo PR 'n‘(P(x /)

K ,
PRM ’n_”P(xi/M) + [1-' 'ﬁ’P(x,/ﬁ)
. i=1 , : B = A

pai/x) = 18)

Fot’ any length test, ‘ ..

PE/X) = 1-RQUKR) . Lo as .

i
equation (14) becdmes:.

If average values of o, and Bi are estimated rather than item parameters,

+

<

P(M/S) é )} b KP§M (I‘B) (B) .' K-s (16) . * ..
‘ e 1-8)° (BN 5 [1-mﬂ~<a) (1)

.

»

‘e v

Estimating the'Proporfion of Students in the Mastery State -

. » " . #’ N
. The proportibn-in-mastegy for a group of .students can be estimated

from the observed mean score for the group. The foIlowfhg derivation of

the relatzonshlp'between mean score and proportion-in-mastery makes two -

independence assumptions o g

(1) The responses of a student to edch test item are independent

. '
. .
® s ‘ o M

_of the vesponses of all other. students in the group., - -

(2) An individual's responses to the separate items on a test o

-

can. be treated as.a sequence of independent’ trials, -

, . .
gisse | AL [ .

a




Let, E(Sj) represent the expected score for the jsh individual and,

1 N ’ %
U =, ‘ﬁ 1 Z S . (17)
J=1" b | BRSNS
~ A
represent the observed sample mean for a group of N students, From p

the first assumption, the expected value of the observed sample mean

is:
1 N .
E@® = 5.l OB ‘ (18) .
N j=1 ’
For an item with parameters (al', Bl), , )
E (xi) = 1-51 for the N individuals in the mastery state., (19)-
M .
E (xi) - - @) for the (N-Nm) individuals in the non-mastery
. Tl M state. (20)

From the second assumption the expected scores for individuals in the M

: bt \
and M states are:

. -

K
E (S) = I (1-81) for the N individuals in M state. (21)
M =1 " ’
K ‘ - .
E (8) = ¥ « for the N-N individuals in M state.. (22).
- 1 m
M i=1 ‘
\ \

(‘ .
The expected value of the observed sample mean is then,

E@U) = % Nm‘:. B(S) 'M + '(N-Nm)-E(S) ﬁ] (23)
[k L K
S [N E ) ¢ el @




(25)

L4

~

//angthe/esttmated value of proportion in mastery for a particular group

% to be GMP, ' \ o
Then,

[} ) B K . -

E(U) = m:.ifl (1-8,-a,) . z ~a, " ' (26)

Using the observed sample mean, U, as an estimate of E(U) and solving

for GMP yields: A ) N
K . .
U - o - .-
151 L " - )
P = — | (27) .
) z <1-ai-a> ST
1=1 - A

1f average values of o and B are employed rather than item values, this

re1ationship simplifies to, - . ’ "

UK - @ . ' Co -
B o g C (28)

s

" An estimate ‘of the proportion of students in the mastery state can - oo ;]
be uged for two, distinct purpgses:, (1) it can be used directl:

a -

decision variable by the evaluator to judge . the effectiveness of an,

7

instructional unit or by the teacher in seiecting an appropriate strateg

for remediaI instruction. If only a small percentage of an’ instructional
/ -

group has achieved d;stety, review or second instruction for the entire
group may be warranted while tutorial assistance for non-hastersrmay be

preferred if 4 1arée percentage has achieved mastery, (2) it can a1so be

- .
; , . . A Lo
¢ . s v .

/7

3

-~ I




e ,
’

used to estimate prior probabilities needed in the computatien of

probability of mastery. . A

Prior Probability Estimates C ‘ ..

Two general classes of prior prdbability estimates can be used in

the computation of probability of mastery. The first includes all’ ! i
methods which assign the same prior probability to each iﬂdividqal in
a group. The second class includes all methods which use other test

data obtainéd from an individual to estimate a "personalized" prior

probability.

_+ The proportion of students in mastery estimate can be used directly

v

.as a Class‘l prior probability. Each student is assigned the same_prior

v

probability‘of mastery, GMR; as the group mean score increases, the prior

-probability estimate ihcreases for each member of the group.

thrick and Adams (1970) suggested a different type of Class 1

estimate. The anticipated instructional effects, i.e., the anticipated

i - .

'proportion of students in mastery after instruction, can be estimated

from relevant past expetriences. The performance of a similar group of

e

.students‘during'the previous‘year may be relevent if the instructional

activities are comparable. This approach may be best su1ted for "small"
o @ S a o

nstrdctional groups ‘and replicated instructional treatments while the

)

GMP_estimate‘can be used for 'first time" 1nstructional treatments

/
i

applied to sufficiently large‘instructional groups. o © . a

The only type of Class 2 estimate which will be considered-here is’

-

based ontest data which have been .analyzed in terms of probability of

mastery of some performance objective, The only requirement is that

[
‘




v

the responses of an individual to the test items currently being analyzed

3

>be 1ndependent from the responses to. test items used for the prior prob-

2

ability estimate, .Ehus, the.test used may be a parallédl test for the . L

same performance objective, it may be a concurrently administered test

7

/ | ' .

for a diffgrent performance objective or, a previous measure of a per- . -
. " formance o ﬁective. - : o

s

Adjustment Matrices

-
+

It will generally be desirable to ‘transform a probability of mastery T

“ g C ' .
measure'in order to use it as a personalized prior probability estimate.

A linear transformation of a prior performance measure to estimate a

.personalized prior probability will be represented B”an adjustment

matrix, . j s fu' i
— . — . : a :

%,0 - %,1

‘Ackk) is the adjustment matrix used to:ésﬁimate¢a.personalized.prior -

probab111ty for a current performance measure (c) from performance measure

y [N -

(k). The personalized prior,probabnlity;for measure (¢) is then, |

" (30)
RMj <00 j X
where PMj k is the probability of mastery for the j individual for

performance measure (k). UL ‘s” o L L
o . B .t

’




The

A}

For example,‘

.

41,0

-

, .

.

»

.

.

is the expected probability that the 1ndividua1 will be 1n ’

the mastery state for the current objective pn the condition

»

v

that he was in the’ non-mastery state for the priOr objective.

Since the a e,k parameters are probab111t%es,

and -

choices of prior performance measures.,

~—¢~'

a

e

Adjustment matrices have educational inte retations for particular

x

0,0

1

,+a

1

J

+. a

1,0

1,1

]

»
bd
.
’
LN
.

1»

‘

.

\ -

+

2

-

s

.

(31)

‘

R 3N

'(32)

€

’

VIf the prior performance measure

measure, the adjustmeut matrix can be interpre

.

1nStructiona1 effectiveness.

N

The 51 1

&
4

1)
‘

4 I3

u is a pretest’in the form of a parallel measure of. the current perfprmance

t/gfag a representation of
. » '

«value for -an instructional effec-.

-

-2

4

\

tiveness ‘matrix should be very close to 1.0 ;since it can usua11y be

‘

»

3

Ja
) assumed that instruction will not 1ead to a transition from ‘mistery to”

a1 garameters in an adj?stmentgmatrix are cpndifional probabilities¢
3 .o . RN . ) " ' ' ' : ’

T

4 \~ [
. a non-mastexy state. The a; o/leue 1s,\%?r the:case of a1 1 equa1 to , .
1. 0, .a‘useful index of instructional effecﬁiveness. ' .
.If a hierarchial re1ationsh1p between two;performance measures . 7 .
. . o i
, exists, a second type of adjustmgnt matrix with a meaningful 1nterpre-
‘tation can be constructed. Suppose objective (k). musf be mastered before . s
the/current objective, (), can be mastered. The adjustmént matgix, o
) - > /,4 . \ .
(k)’ should have an a1 0 valuefequal.to zerg.’ o N
@ -r‘ . -
'-, . - % s - v,.\
] . - e
y - . . \ ) ‘vI‘ ’ . . » ‘;/ r‘ /_‘ ) Lo
l - ! - <« ’ : 3 ' o

B . . Ve
RRA Fi Tt Provided by ERIC
.. o . . . i )
. : . .
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- Unbiased Prior: Probabilities Lo s e T o
P ) B ° '; ; . “‘ l T

A prior probability estimate for’current performan;e measure (c)

, L - N s -

based on performance measure (E) is deftned to be unbiased if:
z ..‘ . < -l:_:; . < ) ] ‘o . ,. . . i
Gb_.@c.{ . .al‘,-o + [al ,1 ?1’0] Gb.Ek K .. (433) .

. . ] I : K . ¢ P ' . .

" whete Ggﬂ?c is the'proportion-in-mastery for the current performance ’
mgasure . . ;; R - . . . s . ] , L. ) »

* 4 v N . - 4
] .

N " v, . . [ , . .
RN . A graphical representation of an adjustment matrix facjlitateg the
» . 4 . . » »

explanation of'this defirition (see Figure .1). - . '
, [ . s

Prior .GME . .
* Probability |
PRM ) lt e
L de(ky | . .
) 31,0 | -
|
| " Probabilify of Mastery
- GMPk 1.0 for Measure k * .
! ’ ' PMJ ’k .

Figure 1. Adjudtment matrlx for estimating a prior probability for current
Yformance measure (c) “from a probability of mastery value ‘.
‘computed for measure (k). . o d R . '

3 ~ . ) ' .,

L An adjustpent matrix is %epresented graphically by a straight line
which has an {ntercept equal to a1 0 and a slope equal to (a1 1 -,al’e).

Equation (33) results from substituting GMPk for PMj X and GMPc for ' .
2

-

e o .o b,




A Correlational Method for Estimating A@justment Matrix Parameters

L

The correlation between two dichotomous Measures can be ‘computed.

~

usfng the formula for a Phi coefficient: . *

P, , P, - PP : .- ' :
phi = —tal 1 12,’ . . (38)

L NS J P, (I-2) = 2 \ )

whére:?l'and Pz represent the mgrginal.orobabilities of being in’

. the (1) state for the first and second mea;ore respectively and
pi 1- Fepresents the conditional probability P(x2 = 1/x = 1). .

A contingency table can be used to display the correlation between

K

two dichotomoué\msfsures. o

£

Measure 1 . ’

. RS A

1~ . -
B B F0,1

Measure 2 °t ?

;‘ . - - Pz . pl,O' .H N p1,1 ) -

» .-
' st

Figure 2. Contingency table ;elatipg Variable 1 to Variable 2.

THe following relations among conditional and marginal pnobabilities

will be used Lﬁ 1ater derivatlons.

~ A

Po,'o + pl,O =_'1

P + p1,1 = "1

0,1




. Two contingency tables are of particular interest: the contingenc.y
. . 7 , g

tables for an adjustment matrix and for re1ating observed response to

true state. ' _ T ’ - ) .

. b) ¢

c 0,0 %0,1 - »

. : - ®e | 1,0 1,1

; »

Figure 3, Prior Measure .- Current Measure
Contingency Table . .

-

4

.. . o .-
- . P N

True State

- [ I‘W

» ~ Incorrect (‘0) l-cr,’ B -
;. . l‘PC » i i : .
’ Observed i ], ’ . ot * ’
Response " - . .
: Correct’ (1) |. %. \ 1-8;- - .
. “’ . - . Pci ’s ‘ : ‘ ¥

N . . . -~ .

: Figure 4. . True State -* Observed Response ce = {
Contingency Table for a single test item. . N
. .

~ . ~ o~ ‘ ‘. .
& A

Y

" The symbol PC will be used to represent the probability of a

-

coi;‘rect response to item (i) if, 8 responderit is randomly se1ected from

> *

the population, . T T . IR . .

- ) -

Observed score will be defined té be related to true score for .- . =~ - -

v

“ -~

measure® (k) by tbe_ following equation: i N . , “'

T 5 F %k  (39) /




<

~ . - g <
i
and i K ] is the measurement error; . i -
\' 0
f{. T if a non-master gives a correct response, ' . .
e. ., a= - . : < .
ik =1 1if a master gives an incorrect ‘response, co

L4

0 otherwise, ‘ ¢

S:.nce x, . and tk are dichotomous variables assuming only the va,lue/s

o~

ik S
[
zero and ong, .- - !y
. ~ s 4 ’ /
_ 2_‘{‘ ‘ : C
S S PG, | (1-PC; ) - : | / 40) \
‘ana, - ’ ) ) L ) / * . -~
". 4 N 2 ) . , S B
EL q,((tk) = MP' (1-MPk) . / (4Y)

The correlation between brue score and observed score is cOmputed using

~

equation (34). " ” T, ’ ,:.;5-’9 . . /
MR, (i-B ) - . PC, - . - e
Plyge B = : L 42)
ﬁ},k tk ’\/MP (1-MP, ) A/PC X (1~PC1 k) ‘ ) CA o

Using relatigﬁ (37) to express PCi k in terms of MPk, M
‘ fo . - 3

MB (1-MP) (1-B, -

o) '

i ; / ot
e ) (43) " .
I A /\/MP (1-p )"/Pcik(]'”Pcik)l/ |

" “which simplifies to,
. ' R
ol aeBm@) ‘ S

1 (44) .
G(tl-c)’ oCx; 1) . . -

-

C ‘/ng‘i;k ) -




f_/,"--..’-,,' DR, -~ ' : .

ol et L ‘ -
4 3 /(?(x,t;) e W . - . . (45) PR

it cgh neadify be seen that the numerator of (44) is the covariance (

<
1
3
.- TS . .

. te . ‘\\ . . A .
"{_’_ 'Yi k = 1 0’ Bi . ) o (47) o
7. 3 - .
it e an be’ shown that the covariance of any two dichotomous items is, ..
o = . - .ﬂ .‘ T ‘ N
,°(x1 » %) = 0y, £ Yi,10Y5,2 . ‘ S
oo X v - ] ‘
' 5 ' i ’
. -where tl-is the  true iscore for measure I t2 is the true score for
* Y 3. *
measure 2 &nd xi, xj are observed responses to items selected from
S, a . .
measure& L and 2 respectively. - < ®
. Re1ations for the covariance dand correlation of composite variablesi )

W e -
(V3 - -

S (see equatiOn 3) ‘are derived directly from item re1ations.

% - . g . . ”
» \-A PO . - oo , - ) o . ‘

Defiﬁe'yk to he the average value_of Yi k| Coa
. - s .
’ K R ) .o o

' . e

Yik - .
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as well, . ..

Substituting (45) i t

ot £, (KLY (R2+v) ofe)) a(t.,)

o*(t)) (Kloy) oXt,) (K2.v))

o
- "(_tl.’_tz) (K,i’f’ﬁ) (R25y) - - /7(48)
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formula is'used’ to estimate the correlation between true scores from

- the correlation t;etwger; observed scores (Lord and Novick, 1968).

(50)

(31) |

For Classical Test Theqry',‘l the~follor, ing correction for atte{uation*
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which is an identity.
- ' For an adjustment matria‘c",. D -
- a MP, - MP Mf
. 1,k k"
Pk ey = 2 2L
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Solving for a yields.
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x is restrict'ed to be unbiasgd,. equation 1(33)

can-bé used to s’oi[ve for the a o para.meter.x
’ . . ?
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will be giscusséd in a sﬁbsequ_ént paper.,
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parameters emp,irically.' Methods for estimating the «
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Using GMPk to estimate MP , GMP_  to estimate MP_ and the relation between' °
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L o Formulas.(55) and (56) can be used to vbtain adjustmerit' matrix )

1? Bi par?ameters .
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. The Adjustment Matrix for Parallel Tests
fwo mastery tests are parallel if the correlation between ‘true

i
t
|
scores for.the tests is equal to 1. The correlation between two ',.i
- . . ;
|
1

A Lo~ .

dichotomousrmeasures can be unity only if:

P

2

P,.= P, . . . I CL
which means that the proportion-in-mastery values are equal, and, -
. i . s .

_‘,al’1 = 1,0 _ - ‘ ‘ (58)}

'
*

From"eguation 37, it.can be seen that perfect correlation also implies

- that:

. . _ . ‘ ; .
#,0.% © . . (59)
In the derivation of the Mastery Learning Model, sequential analysis

;&'-‘N

- of item Tesponses was aigumed?ﬁa be proper. This 1is equivalent to, the
assumption that one (or several) items can, be used as a prior measures-
with an adjustment matrix satisfying (58) and (59)--in computing prob-

ability of mastéry given one additional item response. The assumption

©

reduces to the requirement that the test items are paraIlel‘measures.

) It should be noted that the o Bi parameters and the itém diffi-
’ »

o . R N
'culties (PC ) need not be equal for items to be parallel. The assumption

~of para11e1 items is thus 1ess restrictive than is the case for classical

v - -

f’«

. test theory (Lord and Novick 1968) _ . ’ : . oo

Reliability, -Complexity, and Interpretaﬂility

The following properties influence the utility of decisions variables

as inputs to a decision process.
-
Yy

~




e
(a) Reliability ~the measuremEnt property of being repeatable.t
A second. testing results in the same rank-ordering of individuals ’
(or groups) or the same cIassification into categories.
_(b). Complexity- to make effective'decisions Yequires the derivation N
g and application of complex decision rules, A decision ptocedure
which is difficult to explain to individuals responsible for the
; decisions made will be labeled "complex" as well as procedures.'
requiring lengthy computation. . ‘
(c) interpretability: the decision variablevhas an intuitine or
easily understoodﬁmeaning for the decisiOn maker,
It‘is much less complicated to derive an objectiVe’basis for coﬁparing
the reliability of decision variables than it is for the'complekity and

.

interpretability properties, This alone is not a valid reason for selecting
. 4 :

- N .
» . “ . -

decisgon variables solely on the basis of reliability., The reletive-impor-tz
tance of each .of these properties for effective decision\making must be
~considered; this will'depend both upon the type of decisioﬁzbeiné made and
the characteristics of the decision maker. - .
Comparison with two distinctive tests models will be used in diSCUSSIHg
reliability, complex1ty, and interpretability. '
Test Model 1: Standardized-Normal
(a) Individual Student Decision Variable--standard (z) score
/(b) Group Decision.Variable--group mean score
Test Model 2: Criterion-Réferenced e -
.(a) Individual ;tndent Decision Variable--raw or percentage
\ cottect-score ) | a

'(b) Gronp.Decision Variable-~percentage exceeding criterion score

s 21




Reliability indices for the Standardized-Normal Test Model attempt

to assess whether the rank-ordering of individyals is prederved with

repeated testing, Presetvation of rank-order is important for applica-

tions requiring correlational analysis and some selfection broblems. A
Criterion-Referenced Test Model is more frequent > used for different
types of applications (performance assessment_and placement);, A reli-
ability index which\assesses the repeatability of classitication into
several (usually two) categories may be most appropriate for these
applications, . ’

The appropriate reliability index is thus dependent upon the par-
ticular application employing the decision variable, Reliability assess-
ment for the Mastery-Learning Model is complicated‘by the possibility ot

having a riumber of measures available which are potential prior measures.

A different reliability coefficient can be computed‘for each choice of a

N ’

N, . ¥ .
prior performance measure, For those who accept the notion of multiple
~

indices of test validit&, this complication should impose computational
rather than conceptual difficulties, It should be possible to select
prior measures which improve both the reliability and“Validity of masgtery ,

learning decision variables for those applications for which Criterion-

>

Referenced analysis is currently used,

?

" As defined.in this paper, assessing the complexity of a decision

: variable requires the prior existance’ of decision rules which have been

L3

" - -

evaluated in'terms of effectiveness, A simple decision rule which is
adequate in one sﬁguation may be ineffective in another. Theoretically

derived decision rules using standardized scores tend to be complex

.,




('I' ' g . , ., . - ’ .’ ‘ ’ ‘ ) .
) (Cronbach and Gleser, 1965), they would be quite difficult to explain o ‘.

»

the non mathematicians and may require considerable computational power.

‘ Decision procedures for the Criterion-Referenced Model dre degraded by
the absence of an assumed distribution'of true scorés., This tends to
both complicate the decision procedures and reduce its effectiveness
f‘(Besel,'1971)5
It may be possible to use approximate decision rules which‘satisfy
the complexity criterionfand achieve “acceptable results but the interpret-

° .’

ability of the results may suffer, Arbitrary’choice of criterion-scores

~

for Criterion-Referenced Models and cutting scores for Standardized-Normal

Model may simplify decision procedures at the expense of understanding he

effects of, altering tbe choice, ' . ) . ., . oY

~

" Theoretically based decision rules can be_derived for the Magterys

<

Learning Mbdel which are relatively simple to explain and calculate. For

interpretability, _they depend only on the concepts of subjective probability

0

and expected loes. Emperical verification of these claims remains to be

+

A

attempted, * . - T ‘
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