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. The studies reported in this monograph have been influenced by the
work of many professors. In the current zeitgeist in mathematics educa-
tion, it is easy to underestimate the impact of the foresightedness of a
rather small number of profesgors in mathematics education who did much
of their work during the decades circa 1950-1970. of the most influ-
ential contributors, directly and indirectly, to th works of this volume
are Myron Rosskopf, past Professor of Mathematics Chairman of hhe
Department of Mathematical Education, Teachers Calk ge, Columbia Univer-
sity; and Henry Van Engen, Professor Emeritus of Ma hematics Education,
the University of Wisconsin. Their work stimulated others to examine
the formation of operational characteristics of b ic mathematical con-
cepts in children of school age. This effort e clear the necessity
of the interdisciplinary naturp(a research in thematic education.
2:biz:Cases and substance of research in cogn ive-developmental psy-
ch especially Piagetian, proved most tim= y and, we pe, mast
fruitful.
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directly influenced the contents of this volume are Thomas Romberg,
Professor 0 Mathematics Education, the University of Wisconsin and John
LeBlanc, Associate Professor of Mathematics Education, Indiana University.
Professor Romberg"was dissertation director for Thomas Carpenter, author
of Chapter VII, and Professor LeBlanc was thesis advisor for Richard
Lesh, author of Chapter V.
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Conferences

In 1967, the National Science Foundation, the National Council of
Teachers of Mathematics, and the Department of Mathematics Education,
University of Georgia, cosponsored a conference on needed research in
mathematics education. The conference was general in nature in that it
included major pipers on needed research in the learning of mathematics,
in the teaching of mathematics, and in mathematics curriculum. It was
felt by most of the participants that the conference was wellrspnceived
and \,ell- directed for one of the first national conferences on needed
research in mathematics education. But, from this conference, it was
clear that follow-up efforts aimed at more specific areas of research
in mathematics education would,be needed--the scope of research in
mathematics education is too broad to be dealt with adequately at any
one conference.

Subsequently, a conference was held on Piagetioan cognitive-develop-
ment research and mathematical education. This second conference was
sponsored jointly by the National Council of Leachers 6f Mathematics,
the Department bf Mathematical Education, Teachers College, Columbia
University, and the National Science Foundation. The proceedings from
this conference consisted of 14 major papers. These papers were
successful in identifying the state of the knowledge in the area of
cognitive development research in mathematics education and in high-
lighting promising areas for further research.

It was clear to some of those participating in the conference,
however, that the papers-were theoretical and experimental in nature
and did not, to any great extent, deal with mathematics pedagogy and
Piagetian cognitiAAr-development theory. Consequently, a symposium was
held on Piagetian cognitive-development research and mathematical
laboratories at Northwestern University in 1973 as part of the dedication
ceremonies for their new educa6p building. These papers ranged from
theoretical expositions of cognitive-development theory-to practical
expositions of teacher education programs.

These two conferences and one symposium, in addition to theoretical
papers, empirical research, and related projects by mathematics educators

,

and psychologists, attest to the exploding interest in the United States
in the area of application of cognitive-development research in mathe-
matics education research and development. The papers of these conferences
and the symposium 4re significant contributions to literature in mathe-
matics education. However, the concepts and principles contained in the
papers are far from being universally applied (or acknowledged) in educa-
tional practice in mathematics education in the schoolg' and collegei of
the United States. Such a state of affairs is not necessarily undesirable
in view of (1) the lack of formal training in cognitive-development,of
professional educators in mathematics education and (2) the state of the
applied research of cognitive-development to mathematics education: As
difficult as it may have been to institute changes in the school mathe-
matics curriculuth in the 1950's and 1960's, the mathematical preparation
of professional mathematics educators in those two decades far excels
psychological preparation of mathematics educators in the 1970's. Even so,
there has been a dramatic Piagetian renaissance in mathematics education
in the United States over the past ten years. Much work remains to be
done, however, if the children in the schools are to realize the potential
benefit of recent advances in knowledge derived from cognitive-development
theory and research.



Steffe / Introduction 3

On an Outline of a Program of Research

A massive amount of theory and data exists which describes the
development of mathematical and scientific concepts in children from the

onset of the formation of the permanent object through adolescence much
of that theory and data was generated by the Genevan school within a

specific epistemological framework. This theory and data, while it is

extremely rich, certainly was not generated by researchers primarily

interested in the establishment of scientific pedagogy. As such, it

cannot be indiscriminately applied with the hope that, somehow,such
application will improve the state of affairs in mathematics education.

Generally, mathematics educators are concerned with the child's
learning aspects of various mathematical systems in school mathematics- -
the natural numbers, the integers, the rational numbers of arithmetic,
the rational numbers, the real numbers, polynomials, Euclidean geometry,
transformational geometry, linear spaces, matrix theory, and finite

systems, to name some. Cognitive-development theory can contribute to

an understanding of how it is a child acquires knowledge of these mathe-

matical systems through its description of cognitive operations children
acquire and the mechanism through which children acquire them. A mathe-

matics educator cannot stop there, however, because the cognitive opera-
tions demanded by mathematical systems may be distinguishable from (but

include) the cognitive operations described in cognitive-development

psychology. Mathematics educators do not yet know how to utilize the
cognitive operations studied in cognitive development psychology in the

further acquisition of cognitive operations demanded by the mathematical

systems mentioned. In fact, few attempts have been made toward the,
identification of relationships between the cognitive operations studied

in developmental psychology and the cognitive operations demanded by the

mathematical systems. For example, (1) if a child is or is not in

possession of cognitive operations normally attributed to the grouping

structures vis- à-vis Piaget, what does this say about his knowledge or

acquisition of the integers, of the rational numbers of arithmetic, or

even the rational number system? Or, (2) if a child does or does not

possess the proportionality scheme or the INRC Group, what does this say

about his knowledge or acquisition ofmeasurement, of the rational numbers,

of finite algebraic systems?
Not only, then, is it critical to test for possible relationships

between the cognitive systems of the child and knowledge of the systems
of mathematics, it is also critical to learn how the mental operations

normally attributabl to the grouping structures, figurative structures,

and the formal opera onal structures are utilized by the child in the

acquisition of mathem y.cal content whose structural properties are not

necessarily isomorphic to those genetic structures. All of this informa-

tion is difficult to acquire, but until the story is told, critical

assumptions will have to be made in the application of cognitive-develop-

ment theory to mathematics education assumptions which, of course, may

not be untenable.
Assuming the validity of certain critical assumptions alluded to

above, applications of cognitive-development can be made to mathematical

education in which learning-instructional models can ba formulated and

tested empirically. Such a model may not attain the status of a theory

but can be used to both describe and prescribe learning-instructional

phenomena concerning mathematics until it, proves unusable in terms of the

desired objectives and/or learning process.

9
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LESLIE P. STEM
CRADLES D. SMOCK

On a Model for Learning.
and Teaching Mathematics

Piagt (1971, p. 21; 1973a, p. ix) has expressed the convictions
that (1) experimental pedagogy must remain distinct from psychology but,
yet, utilize psychological principles, and (2) hypotheses derived from
psychology must be suhjected to empirical verification (or refutation)
rather than be accepted only on the basis of deduction. While it would
seem unnecessary to restate these two convictions, education has a his-
tory

simplistic deductions and then,, when educational practice ha shown

tory of embracing a particular theory or point of view

the transparency of these deductions, abandoning that theory. Piagetian
cognitive - development theory may be no exception to this general pattern
ineducation because it is, in the main, the theoretical basis on which
the "mathematical laboratory" is built.

The mathematical laboratory, according to Smock (1973) has "re-
mained only loosely or ambiguously defined (p. 1)." If that assertion
remains true after substantial attempts are made at an unambiguous defi-
nition, then the mathematical laboratory would have to rely on only slo-
ganese or personal testimony for its justification as an instructional
approach. Until and unless mathematics educators return to the beginning .
and ask "how do children learn?" rather than "how go we teach?" the fun-
damental dimensions of educational and instructional problems facing the
mathematics educator will remain unidentified. If we confront this basic
question, it is possible to proceed with the task of characterizing what
is meant by a "mathematical laboratory." The emphasis, then, is to be
placed not on methodology and learning activities but, rather, on the
learning characteristics of the child as he acquires particular subject
matter and content and methodology constructed for that special purpose.

e preparation of this chapter was supported, in part, by the
Mathemagenic Activities Program, Follow Through, C. D. Smock, Director,
under Grant No. EG-0-8-522478-4617 (287), Department of HEW, USOE.

4
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The problems of characterizing the mathematical laboratory can best

be understood in the context of the issues involved in developing a theory

of mathematical learning and instruction. Bruner points out (1964b) that

most theories of learning and development are descriptive rather than

prescriptive. While this may be the case, a theory of mathematical in-

struction for children must be based in the developmental constraints of
concept learning, a theory of learning relevant to mathematical concepts,

and in mathematics itself if the theory is to have validity. Consequently,

rather than focusing on instruction with little regard for learning or

on learning with little regard for instruction, analysis of school mathe-

matics requires that learning and instruction be considered simultaneously.
Even then, little progress will be possible if mathematics and cognitive

development are ignored.

_ One of the best examples of an analysis and synthesis of cognitive
development theory, fundamental mathematical structures, and mathematics
instruction for the early school years has been presented by two Russian
educational psychologists, El'konin and Davydov (1974): Following

Vygotskii, a child's mental development is viewed as ultimately

determined by the content of the knowledge studied. They feel that re-

searchers who study the development of mental operations (notably Piaget)
concentrate only on those processes which are maximally independent of

specific subject matter. El'konin and Davydov are critical 9f this

approach because it leads to a view that the sources of mental-develop-
ment lie in the individual independently of the specific historical con-
ditions of existence and characterize the child's mind in absolutist terms.
On the other hand, they do not ascribe to Brunet's hypothesis that "any

subject can be taught effectively in some intellectually honest form to

any child at any stage of development!" Such an assumption makes reference

to abstract forms of teaching fundamentals of any dubject to a child of

hny age, but forms of instruction must be f and that are suitable for
each specific piece of content and given ag level.

Piaget (1971, p. 211, however, clea differentiates experimental

pedagogy from psychology. Exper ental agogy is concerned less with

the general and spontaneous chara ics of the child than with their

modification through pedagogic processes. Moreover, in commenting on the

value of developmental stages ip educational sciences, Piaget (1971, p.
171) rejects the notion of inflexible stages characterized by invariant '

chronological age limits and fixed thought content. As an interactionist,

Piaget (1971, pp. 171-73) advocates that the cognitive structural changes
that come about through maturation and those that derive from the child's

individual experience be considered ha separate factors in intellectual

development. Also, Piaget (1964a) maintains that mathematical structures

can be learned if the structure of interest can be supported by simpler,

more elementary structures. Consequently, while the Genevans' work has

not been in experimental pedagogy but has dealt with the development of

the child independent of particular subject matter curricula, experimental

pedagogy does not stand in apposition to cognitive-developmental psAhology.

Rather, experimental pedagogy is complementary to it, with the potential

of contributing knowledge of the developmental processes.
Piaget rejecti the notion of inflexible stages characterized by

invariable chronological age limits and fixed thought content. Yet,

Erkonin and Davydov make a central issue out of whether to characterize

a given age level in terms of processes for which a developmental period

is concluded or in terms of the processes for which that developmental

period is beginning. The former'is rejected because it would lead to

c
L
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presentation of educational exercises that demand only previously formed
intellectual processes for solution and to the further assumption that
intellectual development is inviolable and independent of the content and
methods of presentation of subject matter. El'konin and Davydov, thus,
believe that development of psychological processes underlying the learning
of mathematics not only do not precede

instruction in mathematics but are
formed in the process of learning.

El'konin and Davydov's point of view is consistent with the leading
role ascribed to instruction by.

Soviet psychologists (Kilpatrick and
Wirszup 1969, p. v). But El'konin and Davydov do not separate methods of
instructiommfrom the content of what is to be learned nor from the gen-
eral cognitive development of children. El'konin and Davydov test experi-
mental curricula based on measurement processes, but their experiments do
not provide conclusive evidence that the cognitive development of the
children was altered. The experiments shed some light on symbolization
capabilities of concrete operational children in highly structured measure-
menE exetzises, but little evidence is presented which would lead one to
believe qiese.concrete operational children were, as a result of the
instruction in measurement, in the formal reasoning stage vis -a -vis Piaget.
Thus, the contribution of school learning to cognitive development (in
a Piagetian sense) remains to be adequately tested.

The important contribution of E1'konin and Davydov is the detailed
analysis of fundamental mathematical structures and the explication of
the yet unconfirmed hypothesis

that cognitive development of children can
by altered by school instruction in mathematics. Their analysis of the
fundamental mathematical structures led them to the conclusion that the
concept of quantity, with its roots in the ordering structures, should be'
the starting place for school mathematics. The task of analyzing-the
similarities and differences of the fundamental mathematical (including
those mentioned by E1'konin and Davydov) and genetic structures is an
important first step (Beth and Piaget, 1966).

One important difference is that mathematical structures are the
object of reflection by the mathematician but genetic structures are
manifested only by the child's

behavioral-action structures, which aredetermined by his assimilation of past experiences. A second major
difference is that form is independent of the content in the mathematical
structure but in genetic structures the form is inseparable from content.
Finally, in.the mathematical structures axioms are the starting point of
formal deduction whereas in genetic structures the laws are the rules
which the child's deductions obey.

Similarities in the structural types are twofold: (1) operations
in the mathematical structures

correspond to operations in the genetic
structures; and (2) the axioms of the mathematical structures correspond
to the "laws of combination" in genetic structures. It is these opera-
tional genetic structures which E1'konin

and Davydov identified as being
maximally independent of specific subject matter.' The basic content of
the genetic structures, however, are classes and relations which, in
synthesis, form the basis of cardinal and ordinal number in the logical
domain and of quantity and of measurement in the infralogical domain.
On'the face of it, then, it seems as if E1'konin and Davydov's declaration
of genetic structures as maximally independent of school mathematics is
unjustified. It is true, however, that profound structural differences
exist.in the genetic structures of concern and certain of the mathematical
structures which are used as the basis for the content of school curricula.-'
These structural differences are a central -issue in the determination of
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the applicability of genetic structures to mathematical 3earning. Mental

operations associated with such mathematical structures may or, may not be
accounted for by the mental operations ascribed to the genetic structures.
If the latter case is so, Elikanin and Davydov may be essentially correct
in asserting that the psychological processes are developed concomitant
with learning. Piaget (Beth and Piaget, 196 , p. 189), however, proposes
that the construction of mathematical entit s is an elaboration of the
elements of natural thought and the coast tion of mathematical structures
is an enlargement of particular mathematical entities.

The Piagetian hypothesis is, at least, intriguing--it.suggests that
the individual constructs his own mathematics. The testing of the hypol-

thesis, however, is extraordinarily complex due to the .structural differ-
ences alluded to above. So, two programs of research would seem to be
necessary. On the one hand, the logical and mathematical veracity of,
Piaget's system, concentrating on similarities and differences between.
genetic and mathematical structures, requires both logical and empirical
study. On the other'hand, models (albeit preliminary) for learning and
instruction of mathematical concepts need to ped where that
development explicitly includes tpeore as well a= empirical com-
ponents. It is this second progr- f research which- s of basic concern

- in this monograph.
Piagetian theory. offers se -ral principles which be utilized in

the construction of such a mode (Puget, 1971, 1973b; Sm ck, 1970, 1973).
First, equilibration theory pr deg a theoretical model o ,knowledge
acquisition with specification of the iactors that regulate acquisition.
Second, two distinct levels of :.it e functioning--figurative processes

and operative processes--are -d as necessary for understanding
learning and development. Third' 1,11Ltive capacities determine the effec-

tiveness of training and these cogn ive capacities are influenced by
four factors that contribute to cogni e'development. Fourth, the

learning envirpment must be considered rom both the points of view of the
genetic structures and the mathematical structures. The implication of some of

these principles for the development of an instructional model and for
research relevant to that model is presented below.

General Factors Contributing to Cognitive Development

Piaget (1964a) has identified the major factors contributing to
. the developmAt of cognitive growth of children as including: (1) mature-

tion, (2) experience, (3) language, and (4) equilr on.

Maturation

The proposition that maturation is a major determinant of cognitive

growth is not, of course, a novel idea. What is new in Piaget's analysis

is the explicit inclusion of a maturatiotal component as a modulating
factor to the experimental and/or experiential contribution to develop-
ment progress. The constraining role of maturation is supported by, for
example, the fact that transitive reasoning seldom has beenobserved in
children below four years of age. The evidence indicates great difficulty
in a child's learning transitivity of, for example, 7 as many as" during
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the stage of preoperational representation (even when apparently appro-
priate learning experiences have been encountered). Such evidence cannot
be takeh as proof that maturation is responsible, but it certainly suggests

that inatrinsic physio-biochemical processes play a prominent part in de-
velopment of thinking. Subjecting a child to learRing "experience" does
not appear sufficient to insure he will understand the concept of transi-
tivity.

Experience

Experience in and of itself may not be sufficient to explain con-
ceptual learning of children but no one denies its importance for intel-
lectual growth. But, if experience was sufficient, all one would have
to do to "teach" transitivity would be to give the child sufficient ex-
posure and he wool learn. But, unfortunately, it is not that simple.

Physical Experience and Mathematical Experience. Piaget (1964a)
bas analyzed "experience" into two components: physical and logico-
mathematical experience. Imagine, for example, that a child matches
objects of Set A one-to-one with objects of Set B through overt. (practi-
cii) actions; i.e., he places one object from Set A in?correspondence
with one object from Set B, etc., until all the objeCts of one (or both)
of the sets are exhausted. Then, he takes the objects of Set B and like-
wise matches them with the objects of another set, C. DoeS this matching
constitute a physical experience or a logico-mathematical experience? It
could be either, depending on the cognitive level of the child.

One cannot differentiate between the two types of experiences
through observation of the child's overt acts of matching. The crucial
determiner of the type of experience is whether the Sets A and C are
"related" by the child by virtue of the comparisons of A and B and then,
B and C. If the child is not able, through reasoning (mental operations),
to determine the relation between A and C, then the experience gained
through overt matching of the objects of A and B and B and C was, by
definition, physical in nature. The relation between the Sets A and B
in this case was a function of the physical arrangement of the objects
and would not exist for that child in the absence Of perceptual input.
That is, the relatLoW remains external to the child and thus is destroyed
upon rearrangement of the objects of the sets. When the two sets of
objects are in a state for physical comparison, the child definitely
obtains knowledge about the objects--either they match or they don't7-
but, for that knowledge to be mathematical in nature, the relation must
be conserved by the child when the objects are moved to new states and
the child must be able to engage in reasoning involving the properties
of the relations that go beyond the perceptually or graphically "givens."

The distinction between a physical experience and a mathematical ex-
perience is essential to the understanding of the growth of mathematical
concepts. Knowledge based on physical experience alone is knowledge of
static'states of affairs and, if a child is wrong, it is easy to demon-
strate that to him. However, knowledge derivable from mathematical ex-
perience is another matter; if a child is wrong, it is difficult, if not
impossible, to convincingly demonstrate, or even to get the child to
accept verbal explanation of the correct answer. For example, if a
child fails to align the two endpoints when comparing length of sticks,
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it is quite easy to correct the mistake. If, however, he fails to dis-

play transitive reasoning in a task, one or two examples is not likely
to teach him the concept.

Physical knowledge, then, is the construction of the invariants
relevant to the properties of objects (i.e., states) and is based on
"experience" through direct contact with objects through one or more of
the five senses. For example, one may touch something and it is hard,
cold, hot, soft, supple, etc. Or, one may see something--an object is
red, a diamond cutting glass, the shape of a banana, etc. The source

of mathematical experience, however, is assumed to be the abstractions
from coordination of actions vie -i-vie object; i.e., transformation of
the "states" associated with series of discreet physical experiences.
The critical difference is that the mathematical knowledge gained demands__,
that a pair (or set) of physical objects not be defined by the temporal-
spatial (perceptual) similarities, but rather by the invariant relations
among or betWeen objects. Overt (perceptual) actions alone are not
sufficient for mathematical experience. As already noted; a child may
match the objects of two equivalent collections and the knowledge gained
from the actions and perceptual consequences may be no more than physical
knowledge. Often cited as an example of mathematical experience is the
realization by a child that it makes no difference hob you count a col-
lection of objects--you get the same number. Such knowledge is gained
only through counting the collection in at least two or more ways; i.e.,
coordination of mental, as well as practical, actions.

Linguistic Trcau3nrission

Language, the third factor in the growth of mathematical concepts,
is considered a part of the experiencof the child, but deserves special
consideration because of its special qahlity and status within the total
realm of experience. Information contained in a verbal communication will
not, necessarily, increase a child's understanding of a mathematical con-
cept. Bailey (1973), for example, presented a transitivity problem to
40 first graders, 40 second graders, and 40 third graders who were in the
top two-thirds of their class according to teachers' judgments. Each

child was presented a transitivity of length problem. Poem children
who did not solve the problem were told the correct relations between the
two sticks. For example, if a child took a stick B and first compared it
with C, and then with A, and found that A and B were the same length and
B and C were the same length, but could not infer the relation between
A and C, he was told A and C were the same length. After the verbal in-
structions, the child was asked to explain why A was as long as C. Of

24 children who could not infer the correct relation between A and C,
only five would give a satisfactory explanation of why A and C were of
the same length after the verbal instructions.

It would appear that for children in the stage of preoperational
representation (or even in the transitional stage), any attempt to teach
mathematics concepts only through verbal or symbolic Means will be unsuc-
cessful. But, because words and symbols are an important part of mathe-
matics, their specific functions must be clarified. Until then, a care-
fully arranged interplay between the spoken words which symbolizes a math-
ematical concept and the sets of actions performed in the process of con-
structing a tangible representation of the concept should be maintained.

In short, a mathematical vocabulary should be deVeloped during the course
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of activities used to explicate and provide embodiments for a concept to
be learned. The particular blend, of course, will be determined by the
specific activity and characteristics of the child.

Equilibration and Learning

Of the four factors which contribute to the growth of mathematical
concepts, Piaget considers equilibration to be most fundamental. Equi-
libration is a self-regulatory mechanism that balances the invariant
biological adaptation processes of assimilation and accommodation. As-
similation refers to the process by which novel events are integrated
into the existing mental structures. The complementary process of ac-
commodation concerns the alteration of mental structure under the pres-
sure f this new information.

Learning, in this context, refers to the process by which new in-
fo ion is assimilated into available cognitive structures and to the
m ication of those structures (accommodation). Mathematical learning,
the , appears to be more than association of stimulus and response. The
association of 6 with (2 x 3) is important and no one doubts it can be
conditioned (or memorized) using, appropriate instructional strategies.
Teaching which assumes a stimulus-response view of learning runs the risk
of promoting physical knowledge and not mathematical (or operational)
knowledge. However, 'because learning is generally thought to be pro-
voked by situations external to the learner, it is necessary to analyze
the levels of learning relevant to particular mathematical concepts or
structures.

If our assumption is correct, there should be a differential emphasis
on assimilation and accommodative activity depending on the level of under-
standing of a particular concept. Assimilative task structures would
emphasize "play" and/or self (child) regulated activities until the child's
behavior indicates the,essential elements of a concept have been assimilated.
Then, more task situations (including modeling and verbal exploration), as
well as situations designed to utilid generalize the relevant concepts
to new situations, should be introduced. The appropriate balancing and
sequencing of the assimilative-accommodative activities (practical and
mental) requires considerable theoretical and observational skills of the
instructor. At the same time, the basic ideas and associated techniques
can be identified and used as guidelines for a Piagetian type of learning
environment.

Levels of Mathenatioal Concepts. Relations, classes and number
take a relatively long period to develop as operational concepts in the
child, appearing perhaps as late as nine to ten years of age. The stages
of cognitive development in Piagetian theory are identified as sensori-
motor, intuitive preoperational, concrete operational, and formal opera-
tional with the movement from one stage to the next being clearly marked
by "transitional; phase characteristics. Our assumption is that mathe-
matical concepts go through similar "stages" (called levels) as the child
"learns" a concept; e.g., in the case of relations, either children have
little or no knowledge of relations, or they are able to engage in rea-
soning involving the properties of the relations, or they are oscillators
--at times, in restricted situations, they appear as if they are able to
reason involving relations, but that reasoning is limited and can be

16
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extinguished quite easily. Finally, as the assimilation-accomodation

activities are "balanced:Tr-the child now "feels" he "understands" and
insists on the "logical necessity" of the concept.

Learning-Instructional Phases for Mathematical Concepts

Phase I: Exploration

Equilibration, the balancing of assimilatory and accommodatory
activity, is a useful theoretical construct to help determine the cri-
teria for learning activities in mathematical instruction. Exploratory
activities have been identified by Piaget as representing a preponderance
of assimilatory activity; i.e., modification of the environment to match
the existing cognitive structures. As such, exploration is conceived as
an essential first step in mathematical instruction and learning. This
first phase corresponds to the first level of mathematical constpts
identified; i.e., to essentially "no concept" and to the emergeMee of
the second level (rudiments of a concept). At these two levels of mathe-
matical concept development, emphasis is on the constmctive thinking
by the child. It is a period of concept formation and not analysis.
Exploratory activities can vary along two dimensions: the type and struc-
ture of the material and the degree of direction given to the child.
However, it is important to keep in mind that the child needs to struc-
ture (assimilate) the activities but in a direction relevant to theepar-
ticular concept learning desired.

Multiple Ehbodiment Principle. In order to illustrate the above
principles using particular concepts, imagine that one-to-one correspon-
dence is the concept of interest. The "no concept" phase of one-to-one
correspondence corresponds exactly to the preoperational stage of devel-
opment. Children who display lack of one-to-one correspondence first
must be allowed to engage in undirected exploratory activities, using
physical objects that later will be used in more directed activities. For
example, the child may be given assortments of beads, bird cutouts, blocks,
discs, animal cutouts, toy animals, toy cowboys, toy soldiers, etc., and
allowed free play time with these materials. Most children will attempt to
place cowboys and-Indians on horses, dress dolls, stack dishes, stack blocks,
string beads, categorize animals or bird cutouts, align soldiers in rows
and give each guns,etc. Further, this type of practical play is extended
by the child into symbolic play; i.e., such as waging wars, ketping house,
setting tables, etc. The length of time and number of free play activities
which should be encouraged is determined4by the frequency of "transitional
indication" in the chiles behavior and two additional principles: (1)

multiple-embodiment and (2) mathematical variability (Dienes, 1971).
The first (multiple-embodiment) states simply that in play activities,

the child should use as many different material sets as appropriate so
long as each material set is conducive to construction (by the child) of
the concept. Consider a particular free play activ4y where the preop-
erational child places cowboys and Indians on horses. Through this
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assimilatory activity, the child can gain the physical knowledge that
indeed the cowboys and Indians fit on the horses. The situation is set
for an adult to create a disequilibrium for the child by asking the ghild
if there are enough cowboys and Indians so each horse would have a rider.
To find out, the child has to change his practical activ ty to answer
that question. Now if the child correctly achieves that task, the next

step is to introduce new materials but maintain the orig al goal (one-
to-one matching); e.g., are there enough dresses so one c uld be put on

each doll?
If the child does not initiate specified goal-directed ctivities

following suggestions, the adult may then demonstrate that th re are
enough cowboys and Indians so each ho s a rider. Such .tation

learning (accommodatory activities) provid the conditions o employ

the principle of multiple-embodiment for sub uent learn g tasks and

even, at times, imitative behavior across task s ation The adult

must, always, be sensitive to the type of knowledg the child is acquiring
ink. the imitative activities; i.e., knowledge acquis tion under imita
conditi94 has a high probability of being at the level of "physics
knowledge" if children are in the preoperational stage. By remain g

sensitive to this, the adult will avoid expecting the child to bui d an
understanding of higher-order concepts prior to acquiring the nece

prerequisite concepts.

Mathematical Variability Principle. It was pointed out above that

free play activities can, through appropriate intervention, be changed
into more directed learning activity for children. The second dimension
of task activity that can be modified by the adult involves the applica-
tion of the mathematical variability principle (Dienes, 1971). In con-

trast to the multiple embodiment principle ihere the mathematical con-
tent is held constant and the materials varted,.the mathematical vari-
ability principle varies the mathematical cOntent. For example, in case

of one-to-one correspondence, the relation being considered can either
be changed to a new relational category altogether (e.g., length rela-
tions or family relations) or to a,relationkiithin the category of
matching relations (i.e., more than, fewer than, as many as). Both of

these types of variations cans, if appropriately used, create cognitive

conflict to be resolved by the child.
In summary, it has been pointed out t at "play" can vary from free

plily to directed play, where the directed p ay is a natural extension. of

free play. Further; the principles of mult ple embodiment and mathematical
variability provide guidelines for setting he stage for transition from

the level of physical experience to mathema ical experience. However,

dramatic short-term success in teaching ma ematical concepts to pre-

operational children is not to be expected. More success can be expected

with children in the transitional stages ( hich corresponds here to the '

second level of mathematical concepts), bu again, the short-term success

will undoubtedly be modest. During the de elopmental phase of preopera-

tional representation, it is advocated th the learning-instructional

phase conditions be held relatively constant, i.e., use the explorations with
variations based on the mathematical variability and multiple embodiment
principles.
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Phase II: Abstraction and Representation

The second learning-instructional phase, that of abstraction and
representation, is based in part on the distinction between physical
experience and logico-mathematical experience. Abstraction from pro-
perties of objects (physical experience) are called simple abstractions;
e.g., hardness, sharpness, etc. Reflective abstraction (logico-mathe-
matical experience) involves abstraction from the actions performed on
(or with) objects or representations of those actions. Reflective ab-
straction is represented by the case of a child counting a string of
beads from one end, then from the other, and realizing that the number
of beads is independent of the manner of counting them; i.e., which is
selected first, which second, which third, etc. The beads are there,
but the knowledge gained had to do with the actions with the beads and
the capability of representing and reviewing the actions. Or a child
may pair elements from two sets until one is exhausted prior to the othf;
re-pairing the elements in a different way provides the conditions nec-
essary to make the abstraction that no matter how the pairing is done,
the one set will always contain more elements than the second set. It
is clear that a child may be "playing" but still be engaged in reflective
abstraction. Thus, the teacher need not be restricted to "play" activ-
ities as long as the child reveals capacity to make the higher level
abstraction.

The child may engage in reflective abstraction but not achieve
stable representation of newly gained knowledge. Representations may
be figurative (e.g., images) derived from drawings or perception of a
collection of symbols, etc., and not available to the child at a later
time. For example, if a child compares a green stick with a red stick
and finds the green stick to be shorter than the red stick, any one of

. 11
G<R, G < R, or G R

might be used as a static, immediate representation. There, reflect4e

abstraction and representation together contribute to a higher level of
concept formation than expected in the first learning-instructional
phase in that rudiments of mathematical concepts are present and can be
utilized in a limited way (2nd level of concept formation).

Phase III: Formalization and 'Interpretation

0..;4,4,

The learning-instructional phase of formalization and interpita-
tion completes the proposed learning cycle for mathematical concepts.
The mathematical concept base-ten numeration system will be used to

.illustrate the three learning-instructional phases, with emphases on
formalization and interpretation (Phase III). The concept was selected
because no data are presently available that show the numeration systems
are part of the natural cognitive development of children.

We assume the child is at the concrete stage of operations and the
operational structures related to classifAation and relations are avail-
able to him. It must be noted that because a child is at this develop-
mental stage does not mean he knows base ten numeration nor that figura-
tive representation of the concept has been achieved. What use the child
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is able to make with his knowledge of classes, relations, and number may
be in the absence of formalization of numeration concepts. Therefore, the
only prerequisites required are the completion of a learning cycle concerning
the ordering of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9; ability to
write them from memory, and to do simple addition problems.

Any natural number can be written in expanded notation. Consequently,
the coefficients, the base, and the exponents can all be allowed to vary
in employing the mathematical variability principle. Usually, the base
is held constant (base ten is used) and only the exponents and caeffi-
ciente' are allowed to vary.

Imagine that a small group'of children are given a collection of
various assortments of materials, such as geometrical shapes, checkers,
dried beans, etc., and are allowed to engage in free play with the meter-
leis, building whatever they wishcastles, houses, roads, forts, etc.
The first type of direction which could be given to the children fe to
find "how many piles, with a certain number in each pile, den be made ftom
the objects." The mathematical variability principle should be employed
by varying the number in each pile or the total number of objects in
each collection. The multiple embodiment principle should be used by
changing the type of objects (thus setting a new problem each time) or
the type of collection to be formed. The essential aspect is that a
collection of objects always can be partitioned into eubBolleotione
with the same number in each and one other subcollection with relatively
fewer objeota in it; e.g., a collection of twenty-six objects can be
partitioned into four subcollections with six per subcollection and
two objects, in the nonequal set.

One of the first bits of logico-mathematical knowledge the children
generally acqUire is the sameness of the number of objects in the total
collection before and after the partitioning process. That is, tH child
discovers, through his actions,. that a pile of objects can always be put
back the way it was before the partition (reversibility) and that no objects
were added r ... . atod; therefore, the number of objects before and after
piling the "same" even though the child does not know how many things
there are.

Specifically, if a child starts with tome objects, makes three piles
with six per pile, and one pile of four, the child should know that.the
total number of objects in the original pile4s the same as the number of
objects in _three piles of six and one pile of"four, without knowing there .

objects > partitioning action

pile of 6

pile of 6

pile of 6

pile of 4

"41-.., are 22 objects.. The mathematical variability principle (varying the
number of objects in each pile) should help the ihAld,to the realization
that no matter how many are in each pile, the t6tati number in all the
piles is equal to the total number of objects. When a child discovers
this, he has made a transition from the first learning-inptructional phase
(exploration) to the second learning-instructional phase (abstraction and

20
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representation).

At this point, the operational basis for constructing the concept
of a numeration system has been laid. The goal of the second learning-
instructional phase is to have the child construct a notational system
and construct the lace-value concept. Generally, the two -digit numerals
are worked on di erent age levels than are the three-digit numerals,
which in turn are wor on at different age levels than are the four-
digit and hi er,digit numerals (the generalization of place value).

After e childr first enter the second learning-instructional
phase they are able to artition a collection into subcollections and
know that the number of ects in the original collection is the same
as that in all the subcollections. Capitalizing on this knowledge and
the ability of the children to engage in rational counting, place-value
concepts may be developed. However, until the children can represent
any collection of a tens and b ones (where a and b are digits) as "ab,"
they are not ready to learn the number names for the two-digit numbers
,and order the numbers from 0 to 100. The number names and the order rela-
tion are included in ,the next learning-instructional phase because the

knowledge gained to this point is to be systemized by the children. The
basis for the learning which is to take place has been laid in counting
out piles of ten. However, the main goal of the formalization-interpre-
tation phase is to, again, systemize the whole numbers from 0 to 100 using
the number names. Formalization takes place in the sense that a notational
system is developed and organized by the child. The organization of the
notational system is baded on the abstraction and representation accom-
plished at the second phase and on the new element of an order relation.
The order relation is an essential part of the third learning-instruc-
tional phase for the concept of numeration. Witholt it, the third phase
would have little meaning. The order relation, however, is based on one-
to-one correspondence, so that preliminary cycles will have to have been
completed with regard to one-to-one correspondence and number.

Some Problems

The foregoing model for learning and teaching mathematical concepts
needs critical examination in view of other theoretical constructs in an
attempt to build the best first approximation'of a model possible. That
refinements are possible is easily recognized, as a host of theoretical
constructs exist which have not yet been integrated into the model. Some
of these constructs are figurations and operations, the concept of decent.:,
tering, and egocentrism of the child. Moreover, a great deal of differ-
ence may exist between the model's applicability to mathematical concepts
shown to be part of the general development acquisition and those not.
Further, no attempt has yet been made to apply the model to geometrical
and spatial concepts. It may well be that a model for learning concepts
in those areas is greatly different from 4 model for learning numerical
concepts. However, reason does exist that the above model is applicable,
to geometrical and spatial concepts as Piaget views the grouping structure
as a basic structure of mental operations in the infralogical domain. In
any case, it is clear that theoretical refinement of.the posited model is
necessary and that the model needs to be studied across different mathe-
matical concept areas fot applicability. Certainly, there are no a priori
reasons that a single model is sufficient to account-lor the learning of

4
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disparate mathematical concepts.

The theoretical problems associated with the model should not pre-
clude empirical study of the validity of certain crucial implications of
the model. Especially important are such factors as:

1. Are the four factors contributing to the development of certain
mathematical concepts critical to the learning of those concepts which have
not been shown to be part of the natural course of intellectual development?

2. Can those mathematical concepts not (yet) shown to be develop-
mental phenomena be ordered along the three levels comparable to the con-
cepts known to be part of the-developmental process?

3. What is the validity of the learning-instructional strategy
involving the mathematical variability and the multiple embodiment prin-
ciple, in the context of sequencing learning conditions according to the

exploration, abstraction-representation, and formalization-interpretation phases?

4. What is validity of ],earning- instructional phases? Does a
structural integration take place only after appropriate overt actions
are internalized through reflective abstraction? That is, is the phase
of formalization and interpretation identifiable distinct (psychologically)
from the phase of abstraction and representation? Reflective abstraction,
as a theoretical construct, is appealing, but does it have psychological
credibility in mathematics learning?

The experimental studies reported in the
a preliminary test of the noti of reflective
of classes and relations by chil en who had no
operational structures. The set principles
described above together wit!. a ysis of the r
and mathematical structures e used as guides

n
follow g chapters er

abstra tion in learn
t yet consolidated concrete
inh ent in the models

ele ant genetic structures
fo the design of the

learning materials. No attempt was made to isolate ne or more of the
underlying factors which may have contributed to resLltant learning.
The preliminary model was applied in its totality in all of the training
studies so that complex interactions of principles in the model were not
explored in the learning of selected aspects of classes and relations.

The learning material utilized in the experimental studies did not
progress beyond the abstraction and representation phase, except, of
course, for cases in which children themselves went into the third phase.
The initial learning-instructional tasks were intended to operationally
define the concepts foi the children. These learning-instructional tasks
were written within the constraints of the learning-instructional phase,
Exploration. The children were allowed time to engage in free play activities,
but direction from the experimenters was included in a highly controlled
context to insure that each of the children engaged in overt activities
necessary to operationally define the concepts. It was not expected that
the children would progress beyond physical knowledge in these initial
tasks. The multiple embodiment principle and the mathematical variability
ptinciple wete employed in such a way that each material set of interest
and each concept of interest were included in these initial tasks. A
carefully designed schedule for the introduction of terminology was fol-
lowed thro4lghout the learning materials.

Other learning-instructional tasks were constructed intending to
maximize the possibility of children engaging in logical-mathematical
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experience. These tasks differed from the initial tasks in that they
included operations on, or properties of, the concepts involved (e.g.,
transitivity, asymmetry, class interjection). Hindsight and foresight
(anticipation) activities were utilized in the design of these higher-
order tasks. No attempts were made to include figural representations
or written representations of the higher-order tasks. The tasks always
included manipulatable objects. Internal representations of tasks (images
or verbal thought) or spoken language were encouraged, but no con-
trols were included to maximize such representation except in the case of
terminology developed to communicate the concept elements (e.g., "pair,ft
"partner," "more than"). The time devoted to the two learning-instruc-
tional phases was held constant.

In the study by Steffe and Carey (Chapter II) the mathematical
structures of equivalence and order relations were used astmathematical
models in the construction of the learning materials. The content of
the relational structures was length relations defined for open curves
of finite length. In the experiment, each child was used as his own
control so that information was available prior to the experiment on
conservation and transitivity of length relations. relationship of
relational structures to genetic structures has be d scussed elsewhere
(Steffe, 1973)--similarities and differences poin d mit earlier in this
chapter were kept in mind, where the similarities were emphasized owing to
the status of relations in cognitive development.

The study by Owens (Chapter III) was also concerned with the reflec-
tive abstraction and representation of relational structures. Owens,
however, emAmwed two relational categories, matching relations and length
relations, what each category included equivalence and order relations.
Owen's test of whether reflective abstraction took place in the children
demanded that the children be able to apply learned properties of matchihg
relations to length relations, where the length relations were only oper-
ationally defined. The learning materials, just as in the Steffe and
Carey study, employed the foregoing posited model. Owens not only demanded
the learned relational properties be transferred to a different relational ,"

category in a test for possible reflective abstraction, but he also admin-
istered a problem to the children which demanded that transitivity of
matching relations be employed in its solution.

In the study conducted by Martin L. Johnson (Chapter IV), rather
than attempting to induce properties of equivalence and order relations
property by property, children were immersed in total seriation tasks.
This decision was predicated on the theory that relational properties
emerge as a result of a total scheme of classification or seriation rather
than the other way around. It was felt that reflective abstraction would
be given the nibximal opportunity to operate in a relttively short period
of time (16 instructional days Out of 22 consecutive instructional days)
with content shown to be developmental phenomena.

Lesh, in the study reported in Chapter V, did not begin with mathe-
matical structures in his learning program but, rather, conducted a pilot
investigatpn using the lenecic structures as his starting point. On
the basis of the geneticmttructures, Lesh generated three sequences of
tasks, one dealing with seriation, one with number,and one with classifi-
cation. The, tasks were subjected to empirical validation as to their sequen-
tial nature and difficulty. A transfer of learning experiment was then
carried out where training was given on seriation and classification and
transfer to the number tasks tested. The preliminary model presented above
was utilized in the construction of the learning materials for the transfer
of learning experiment.
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A fundamental issue raised by Lesh's experiment was mentioned in
discussion of the El'Konin-Davydov experiment. The mental operations
Leah worked with were taken from the genetic structures. Because Leah
was dealing with such fundamental concepts, it was possible for him to
proceed as he did. However,Piagetian theory has less to offer concerning
possible genetic structures underlying more advanced concepts, and even
if mathematical structures are conside{ed, mental operations underpinning
these structures may be different from those underpinning genetic struc-
tures. In'that the results of Lesh's training study are positive, more
experiments need to be conducted designed to shed light on mental opera-
tions underlying the child's concept of number.

The study by David C. Johnson (Chapter VI) was concerned basically
with educational technology. No attempt was made to experimentally de-
termine basic mental operations underlying the child's concept of number.
Rather, it was assumed that Piagetian theory was essentially correct as
it is concerned with relations and classification. The experimenter was
explicitly aware of structural differences in mathematical structures and
genetic structures dealing with classeg and relations, but he emphasized
the similarities rather than the differences.

Of the experiments reported in this monograph, David C. Johnson's
experiment provides the best test of, the construct "reflective abstraction"
in the case of learning concepts, shown to be developmental phenomena. In

the ieaening material, children were given definite opportunities to en-
gage in mathematical as well as physical experiences. The transfer tests
all demanded mathematical knowledge for successful completion, whereas
the achievement measures demanded only physical knowledge. So, a test was
possible of the amount of mathematical knowledge the learning material
produced in the children.

The study conducted by Carpenter (Chapter VII) was concerned with
development of mental operations regarding measurement. The study was
not experimental in nature but was related to the previous studies in
the monograph by virtue of the content of the tasks, the variables con-
trolled, and its developmental nature. In particular, Carpenter tested
the degree to which young children possess the logical structures nec-
essary to assimilate and apply information from measurement processes and
attempted to identify some factors involved in the development of measure-
ment concepts. The study provides, within a scope limited by the tasks
aniar.tora studied, baseline, data for designing experiments relevant to
specific questions implied by the model.

is
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Learning of Equivalence and
Order Relations by
Four- and Five-Year-Old Children

Elkind (147) has categorized Piaget's conservation problems into
two categories, conservation of identity and conservation of equivalence.

Regardless of the content of these problems, they routinely
involve presenting the subject with a variable (V) and a
standard (S) stimulus that are initially equivalent in both the
perceptual and, quantitative sense. The subject is then asked
to make a judgment regarding their quantitative equivalence.
Once the judgment is made, the variable stimulus is subjected
to a transformation, V+ V', which alters the perceptual but
not the quantitative equivalence between the variable and
standard. After completion of the transformation, the subject
is asked to judge the quantitative equivalence between the

standard and the transformed variable (p. 16).

In the above conceptualization, a 4udgment of conservation may be
relative to conservation of a quantitative relation or 4o the identity of
V and V'. Even though the possibility of two judgments exists, "It is prob-
ably true, nonetheless, that from the point of view of the subject, the
conservation of identity is a necessary condition for the conservation of
equivalence (Elkind, 1967', p. 17)."

Aspects of conservation exist which are not completely clarified by
Elkind's characterization. For example, consider the relation "as many as."
If the elements of a set A are in one-to-one correspondence with the elements
of a set B, the A has as many elements as B, and vice versa (denoted by A
-B). In a conservation problem involving "-I', if the child is asked to

make a "quantitative judgment," one must be assured that the child associates
at least a one-to-one correspondence with the phrase "as many as." That is,
one must be assured that a conservation problem is not a test of terminology.
The establishment of the initial comparison is also basic to conservation
of length relations between two objects. One may take the point of view,

This paper is based on Research Paper Number 17 of the Research and
Development Center for Educational Stimulation. University of Georgia,
Athens, Georgia (Carey & Steffe, 1968).
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moreover, that even though a child may point to the longer of two sticks,
he may be basing his judgment on two endpoints only without regard to the
relative position of the remaining two endpoints. In this case, one should

not be willing to accept that he perceives the initial relation. Clearly,

a comprehension of relational terms is a prerequisite to problems in con-
servation of the relation. The phrase "the same length as" has a quite
different referent than does "as many as." While both are equivalence're-

lations they still different relations. Thus, there seems to be no

reason to believe t the ability to conserve one of the two relations
implies the ability conserve the other. Smedslund (1964), in a study of
concrete reasoning, o served that 31 children failed one of the two con-
servation problems involving "same as" and "longer than" while 32 failed
both and 97 passed both, which supports the contention that the ability to
conserve a particular relation does not imply an ability to conserve
another. Moreover, in a conservation problem, the initial relation need
not be an equivalencepelition. It may be, in fact, an order relation
e.g., "fewer than").

Whether the initiaLjudgment in a conservation problem always in-
volves a judgment of quantitative equivalence is not completely clear.
For, if A and B are curves of finite length, then A is the same length as
B if and only if L(A) -L(B), where L(A) is a number denoting the length of
A, and L(B) is a number denoting the length of B. If T(B) is a trans-

formation of B which is length preserving, then L(B)...L(T(B)) implies that
A is the same length as T(B). If children cannot associate a number with
A and B, then there is no reason to believe that "the same length as" has
any quantitative meaning for them. Therefore, under-these conditions,

there would be no reason to expect children to conserve a quantitative
equivalence between A and B. It is entirely reasonable to expect children
not to be able to associate a number with a segment but yet be capable of
estabilshing a relation not necessarily involving number between two or
more segments, for Piaget, Inhelder, and Szeminska (1960) make a sharp
distinction between "qualitative" and "operational" measurement.

Qualitative measuring . . . which consists in transitive
congruence differs from a true metrical system in that
the latter involves, changes of position among the 844.
divisions of a middle tern in a metrical system . . . .

whereas in qualitative measuring, one object in its
entirety is applied to another (p. 60).

While conservation, and hence qualitative transitivity,
are achieved at a mean age of 7 1/2, measurement in its
operational form . . . is only achieved at about 8 or
8 1/2 (p. 126).

Before presenting length relations to children below six years of
age, it seems necessary, then, to define the relations on a basis that
does not assume number. Such a definition follows. Let A, B, qnd C be
segments. A is the same length as B if, and only if, when segments (or
their transforms) lie on a line in such a way that two endpoints coincide
(left or right), the two remaining endpoints coincide. A is longer than
B if, and only if, the remaining endpoint of B coincides with a point
between the endpoints oEKTat,in this case, B is shorter than A.
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The above definitions are acceptable from a mathematical point of
view as the length of a curve it the least upper bound of the lengths of
all inscribed polygons. Intuitively ,then, one could think of the length
of a curve as the length of a line segment where, of course, the lengths
are identical. It is essential to note.that in the definitions given,
children do not have to assign numbers to segments through measurement
processes. The definitions are, given entirely in terms of a line, the
endpoints of curves, betweenness for points, and coincident points on a
line and are consfetent with Piaget's (1964a) view that "learning is possible
in-tbg, case of . . . logical-mathematical structures, but on one condition--
that 1 e, the structure you want to teach . . . can be supported by simpler,
more elementary, logical-mathematical structures"(p. 16). The relations
"same length as," "longer than," and "shorter than," as defined,and their
properties are more elementary and logically precede measurement. The
definitions given above are the results of an attempt, on the part of the
in'vestigators, to define the relations in as simple a manner as pose ble
bLt in such a way that they are still mathematically acceptable.

The relations need not be presented to children by the use of ords
alone as they may be defined operationally, i.e., defined by physical .

operations with concrete objects. The physical operations eventually need
,to be performed by the child himself, because central to Piaget's theory is the
fact that the child is active; he gains knowledge through his own actions.

',Operationally, then, for a child to find a relation between two "rode,"
say rod A and rod B, he must place the rods side by side.and align two ofthe
endpoints. The relative extension of the two remaining endpoints then

.
determines the relation(s).' If rod A is in fact shorter than rod B the
child, upon'placing A by B, can deterMine that fact. Througean equivalent
action or the same action the child also can determine that B is longer
than A. It is through the coordination of these actions that logical-
mathematical structures evolve for the child as "coordination of actions
before the stage of operations needs to be supported by concrete material.,
Later,"this coordination of actions leads to the logical-mathematical
structures"(Piaget, 1964a,p. 12).

If a child establishes a relation between two curves in accordance
with the operational definition given, then to conserve the relation, the
child must realize that the relation obtains regardless of any length-pre-
serving transformation on one or both of the cu es. In other.te4rms t e
child must realize that, after such a transformation, if the curves are
moved back side by side as in, the original spate, the ends will be still
in the same relativ positions. Viewed in this manner, the conservation
of the relation is e sential for the transitive property. Take the example
of a child who is pt rented with two fixed line segments, say, of the same
length but not obviously so, and a third segment the same length as the
first two and then questioned about the relative lengths of the two fixed
segments (which he must not overtly compare). The child must realize that
once he has established a relation between the lengths of two segmen&
the relation obtains regardless of the proximity of the segments.,

If conservation of identity.is viewed in terms of quantity, then
there 4s little logical reason to expect,"canservatiori of identity" to be
involved in conservation of length relations as discussed above. While
the length of an object is a number assigned to the object, it is not
necessary for a child (or an adult) to know the lengths of two segments in

.order to e ablish a length relation between them,.on an operational basis.
The only as ct of identity involved, then, would seem to be that the child
would have t affirm that the segment is the same segment no matter how it
is moved aro d.

,t)
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The length relations as operationally defined and mathematically
defined do have certain properties. The relation "the same length as"
is reflexive, symmetric, and transitive and the relations "longer than"
and "shorter than" are nonreflexive, asymmetric, anyl transitive. Because

for any curve A, A is the same length as itself and not longer or shorter,

it would seem that, at least in a relational sense, what sometimes passes
for a test of conservation of identity is no more than a test of the re-

flexive and nonreflexive properties. Although it is not true for equiva-

lence relations in general, if it is assumed that for each curve A there
is a curve E such that A is the same length as B, the reflexive property
of "the same length as" can be deduced from the symmetric and transitive
properties. For if "-" denotes "the same length as," A-B and B-A implies
A-A for each curve A. This logical interdependency gives little hope for

conservation of identity to be necessary for transitivity. -

In addition to the properties of the relations, the following state-
ments are logical consequences of the definitions of the relations given.
(1) A shorter (longer) than B is equivalent to B longer (shorter) than A;
(2) if A is the same length as B then A is not shorter llonger) than B;
(3) if A is shorter (longer) than B then A is not longer (shorter) than B.

Questions and Hypotheses of the Study

. '

Few data exist concerning proficiency levels of four-and five-year-
old children in establishing length rdlations in accordance with the operational
definition given. For open curves, the operational definity5n/is ex-

tended as fellows. To establish a length relation between ft? open
curves A and B, a child mus01) place each curve on a line in such a
way that two endpoints (left or right) coincide, (2) compare the relative
position of the two remaining endpoints, and then (3) am the basis of (1)

and (2), determine what relation holds. Given that a child is able to

establish a length relation between two curves, it is hypothesized that
he will be able to conserve the relation established. This hypothesis

is advanced due to the fact that for a child to establish a length rela-
tion, he must attend to relative positions of the endpoints of the curves

P as well as ensure that the curves are on a line. ,Even though the actions

of establishing length relations between curves are physical actions,,
for a child to carry the physical actions out spontaneously, it would
seem that the child must be operational in a Piagetian sense. If such

--- is the case, a multitude of potential physical actions would be possible,
which should include use of the properties and logical consequences of
the relations. A second hypothesis IA then advanced. If a child is able

A

to conserve length relations established, it is then hypothesized that
he would be able to use properties and logical consequences -of the rela-
tions. It must be made explicit that it is not hypothesized that use of
the reflexive and nonreflexive properties precedes conservation of length

relations. Rather, it is hypothesized that conservation of length rela-
tions la necessary for use of the reflexive and nonreflexive properties
as well as the asymmetric and transitive properties. It is further hypo-

thesized that use of relational properties and consequences will be con-
sistent with logical interdependencies of those properties.

All of the above hypotheses are advanced only for children who have
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not received formal instruction on relations. Because any hypothesis
advanced for children who have received specific instruction must by
necessity be at least provisionally instruction-specific, a list of
specific questions is presented rather than hypotheses. The first list
is a question asked for four- and five-year-old children who have not been
engaged in formal instruction on establishing length relations; the second
list is questions asked for four- and five-year-old children whohave_been
engaged in formal instruction only on establishing length relations; and
the third list is questions asked for four- and five-year-old children
who have been engaged in formal instruction on establishing length rela-
tions, conserving length relations, and using properties and consequences
of length relations.

Question asked for four- and five-year-old children with no formal
instruction on length relations.

1. What is the proficiency level of children when spontaneously
establishing length relations between two curves?

Questions asked for four- and five-year-old children with formal
instruction only on establishing length relations.

2. What is the proficiency level of children when establishing
length relations between two curves?

3. Does formal instruction only on establishing length relations
improve the proficiency level of children when establishing length relations?

4. Are children able to conserve length relations when the asymmetric
property and logical consequences are involved as well as when they are
not involved?

5. Are children able to use the reflexive and nonreflexive properties?
6. Are children able to use the transitive property of length relations?
7. 'Is the ability to use the reflexive and nonreflexive properties

necessary (or sufficient) for children to conserve relations?
8. Is the ability to,use the reflexive and nonre roperties

necessary (or sufficient) for children to ae the transitive property of
length relations?

9. Is the ability to conserve length relations necessary (or
sufficient) for children to use the transitive property of length relations?

Questions asked.for four- and five-year-olds with formal instruction
on establishing length relations, conserving length relations, and using
properties and consequences of length relations--

Questions (5)-(9) are repeated here as questions (10)-(14).
15. Does formal instruction on conserving length relations; on the

reflexive, nonreflexive, and asymmetric properties; and on consequences
of length relations improve the ability to (1) use the reflexive and non-
reflexive property, (2) conserve length relations, acid (3) use the transi-
tive property of length relations?

Procedure

Subjects

The subjects were 20 four-year-old and 34 five-year-old children.
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At the initiation of the study, the range of ages was 47-57 months for
the group considered as four-year-olds and 59-69 months for the group

considered as five-year-olds. The children were in three self-contained

classrooms with some of both age groups in each room. The verbal

maturity and intelligence of the children were measured by the Peabody
Picture Vocabulary Test and Stanford Binet Intelligence Scale, Form L-M
(Table 1). The mean for the intelligence of the four-year-olds was

modestly higher than that for the five-year-olds.

Table 1
Verbal Maturity and Intelligence

Verbal Maturity Intelligence

Age Group Range Mean Range Mean

4 83-119 102.6 98-145 119.6

5 55-120 97.7 81-130 109.1

According to the Hollingshead Two Factor Index of Social Position, the
social classes of the children ranged from I (high) to V (Table 2).

Category III for each age group contained the greatest number of children.

Table 2

Social Classes by Age Group

Social Class
Age Group I II III IV V

4 3 4 9 4 0

5 3 8 13 6 . 4

Instructional Sequence and Measuring Instruments*

Instructional sequences. Three instructional sequences were con-

structed especially for the study. Instructional Sequence I was designed

to develop the ability of children to establish a length relation between

two curves; Instructional Sequence II was designed to develop the ability

of children to use the reflexive and nonreflexive properties;' and In-
structional Sequence III was designed,to develop the ability of children
to conserve length relations and use the asymmetric property and logical

consequences. The following principles were.employed in the design of

the sequences.
1. Mathematical concepts are not implicit in a set of physical

materials. A child gains mathematichl knowledge from a set of physical

materials hy the actions he performs on or with the materials.

*Sample items are given in the Appendix.

tjU
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2. Mathematical concepts should not be presented to young children
through the use only of the symbols of mathematics or verbalizations.
Explanations which accompany the child's actions, however, may facilitate
his acquisition of mathematical concepts.%

3. There should be a'continuous interplay between the spoken words
which symbolize a mathematical concept and a set of actions a child per-
forms while constructing something that mikes the concept tangible.

4. In order to teach a concept, it is necessary to use different
assortments of physical materials and different types of activities all
of which are related to the development, by the child, of the same con-
Cept(s).

5. The principle of reversibility should be employed (i.e., return-
ing a transformed set of conditions to an original set of conditions).

6. Situations must be contrived in which the children are led to
multiple focusing (e.g., if A is the same length as B, then B is also
the same length as A).

7. Situations must be contrived which involve more than done child
so that the children may interact.

8. The principle of equilibration should be employed.

Measuring instruments. Five instruments were constructed to measure
pupil capabilities. The first instrument, the Length Comparison Test, was
designee to measure the ability of children to establish a length relation
between two curves. Six different material sets were used. Three items,
one's "longer than," one a "shorter than," and one a "same length as" item,
were presented to the child in the case of each material set for a total
of 18 items.

The second instrument, the Conservation of Length Relations Test,
consisted of two parts. In the first part of each of the 18 items, the
children were asked to compare t e lengths of two curves. Since the
material used in the items diffe ed from those in either Instructional
Sequence I or the Length Camper son Test, these 18 first parts were con-
sidered as an Application Test for Instructional Sequence I (hereafter
called the Length Comparison Application Test). The second part of each
item involved the ability of the child to conserve the length relation
he had just established. Nine of the items also involved the ability
of the child to use the asymmetric property of "longer than" and "shorter
than" or logical consequences. These nine items comprised an instrument
which will be designated as the Conservation of Length Relations: Level
II Test. The remaining nine items comprise an instrument which will be
designated as the Conservation of Length Relations: Level I Test.

"Yea" was'the correct response in the case of the nine items of the
Level .I Test. "Ne- OW the correct response for each of the nine items
of the Level II Test. The children were required to respond in the
presence of a perceptual conflict so that if a child based his response
on visual perception he would give an incorrect response. Three distinct
lengthnpreserving transformations Were used to produce the perceptual
conflicts. Also, different material sets were utilized.

The third instrument, the Reflexive and Nonreflexive Test, consisted
of six items of a diversified nature. Three of the items involved the
refle*ive property of "the same length as" and three items involved the
nonreflexive property of "longer than" or "shorter than." Five different
material sets were employed. "Yes" was the correct response to the items
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involving the reflexive property, and "No" was the correct response to

the remaining three items.
The fourth instrument, the Transitivity Test, consisted of six

items where "Yes" was the correct response for three items. For these

items, each of the relations "longer than," "shorter than," and "the same

length as" was included. "No" was the correct response for the remaining

three items. Each of the latter three items involved transitivity of

"the same length as." It was not possible for the child to use a non-
transitive hypothesis to arrive at a correct response because all of the
perceptual cues were biased against a correct response and the child was
not allowed to directly-compare the two curves under consideration.

Instructional and Evaluational Sequence'

Small group instructional procedures were utilized in each room.
An instructional group generally consisted of six children with teacher

aides present to guide the remaining children. After the Length Comparison
Teat was administered, Instructicnial Sequence I was administered for a

sequence of seven sessions of 20-30 minutes per session. Due to small-

group instructional procedures, die total instructional time spanned more
than seven,days for any one class. However, any one child was involved

in only seven instructional sessions. The Length Comparison Test, the

Length Comparison Application Test, the Conservation of Length Relations
Test, the Reflexive and Nonreflexive Test, and the Transitivity Test
were administered during the days immediately following the last instruc-

tional session. The Length Comparison Test was not administered a second
time to one class because that class earned a high mean score on the first

administration of the test. The material in Instructional Sequence I was
administered ro that.class, however, to support the interpretation of the

remaining tests.
Instructional Sequence II and III began immediately after the

testing period following Instructional Sequence I. Instructional Sequence

II was administered in three sessions of 20-30 minutes per session and
Instructional Sequence III was administered in five sessions of 20-30

minutes per session. The second administration of the Length Comparison
Application Test, the Conservation of Length Relations Test, the Reflexive
and Nonreflexive Test, and the Transitive Test began one day after the

last instructional sequence.

Testing Procedures

The children were tested on a one-to-one basis. The items were

assigned at random by test to each child so that each had a different

sequence of the same items. All tests were administered by specially

trained evaluators.
The Length Comparison Test was scored on a basis of the number of

correc3 comparisons a child was able to perform. The Conservation of

Length Relations Test was administered at one sitting so that a child
would be forced to respond "Yes" or "No" in a random sequence. If a

child established a relation, regardless of whether he established a
"correct" or "incorrect" relation, he was tested on his abil to con-

serve that relation. In the case of the Transitivity Tea , unless a child
established two correct comparisons, no measure was obta ned on his

3 ed
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ability to use the transitive property of that relation.

Design

Length Comparison Teat. An analysis of variance technique was used
to study the profiles of four- and five-year-old children with regard to
the Length Comparison Test on the. first and second adMinistration (Green-
house and Geisser, 1959). In particular, the design allows for testing
of the hypothesis that the profile of mean scores on the first and second
administration does not differ for the four- and five-year-olds as well
as, providing a test for possible differences in the mean scores on the
first and second administration across age. An item analysis was also
conducted.

Conservation of Length Relations Teat. The Conservation of Length
Relations Test consisted of nine items for which a response of "Yes" was
correct and nine items for which a response of "No" was correct. One may
think of each student's response set as being an ordered 18-tuple where
each element is either "Yes" or "No." If each response set is considered
to be a random sample from 218 such response sets, it has probability of
2-18 of occurring (Feller, 1957, p. 29). If a child guessed during the
test, then one may consider his responses as being nothing more than an
18-tuple of "Yes's" or "No's" for elements, where "Yes" or "No" for any
one entry each had probability of 1/2 of occurring. In this case, his
response set may be considered as a random sample, and the probability
he obtained at least six correct "Yes" responses and six correct "No"
responses is not greater than .06.

For a child to be clabsified as being able to conserve length relations
and conserve length relations involving the asymmetric property and logical
consequences, he then must have at least six of the nine. items which were
written to exemplify Level I and six of the nine items which were written
to exemplify Level II correct. In such case, the child is said to meet
criterion for Level I and II.

If one considers the nine items written at either Level I or Level
It regardless of the nine items written at the other level, a probability
of only approximately .02 exists that a child responded correctly to
eight or nine items at that Level if he guessed. Thus, if a child does
not meet criterion for Level I and II one may consider his responses to
one of the two items sets written at Level I or Level II. Clearly, a
high probability exists that those children who scored at least eight
or nine correct for a particular item set may have responded to those
items on a basis other than guessing. Such children may be candidates
for being classified at just Level I or Level II. One cannot, however,
with any degree of confidence, assert that in fact such children did not
possess 'a response bias unless the remaining nine items are considered.
For example, if a child was able to score an eight or nine on Level I
items and responded on a basis of guessing on Level II items, then a
probability of only .02 occurs that the child had at most one correct "No"
response. If this unlike* event occurred, whether a response bias existed
or whether the child responded on the basis of the perceptual cues is an
open question. For a child to meet criterion for just Level I or Level II

3.3
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then, he must respond correctly to eight or nine item
qUestion and no less than two and no more tha, ve
level. It must be pointed out that the criterion
since it is known that children do respond on the bas
cues (Steffe, 1966).

A principal component analysis was conducted
aid in the interpretation of the above criteria.
determined as well as internal consistency rel
also can be used in interpretation of thefcrit

t

to check the distribution
differ from a theore tribution bared
"goodness of fit" test was employed (SOgel, 19

In order to detect any significant changes in the number of children
meeting criterion on the conservation of length relations test for Level I
and II from the first to second administration, the McNemar test for
significance of changes was used. (Seigel, 1956, pp. 63-67). Thus, those
children meeting criterioh were given a "1" and those not meeting criterion
were given a "0," so only nominal scale of measurement was employed.
According to Seigel, the "McNemar test for the significance of changes is
particularly applicable to those 'before and after' designs in which each
person is used as his own control in which measurement is in the strength
of either a nominal or ordinal scale 4. 63)." Explicitly, the null hypo-
thesis is: Hcit. For those children who change, the probability P1 that
any child will change from C (criterion) to -C (noncriterion) is equal
to the probability P2 that he will change from -C to C. The alternative
hypothesis is: HI: P1 < P2

of the Level in
ems of the other
conservation one
of perceptual

all 18 items to
ifficulties were

s, both of which
ablished. In order
1 scores did not

am responses, a
, pp. 42-46).

Reflexive and Nonreflexive Teat. The set (Yes, No) represents
possible responses for the six items of the Reflexive and Nonreflexive
Test. Other responses were possible, but they occurred with zero prob-
ability in the testing sessions. Because there are 26 different sex-
tuples with "Yes" or "No" as elements, if a child guessed, the probability
that any one of the 26-tuples occurred is 2 6. Under these conditions,
the probability of a child obtaining at least five or six correct responses
is approximately .11. It must be pointed out, however, that children do
respond on the basis of perceptual cues, so that the actual probability
that a child who does not possess the ability to conserve length could
obtain five or six may be much lower than .11.

If a child responded on the basis of a bias (always says "Yes" or

"No"), then he would not obtain a five or six. Moreover, if a child
possesses only the ability to use either the re/naive or nonreflexive
property, he also would not achieve a five or six. Hence, the performance
criterion of a total score of five or six was established. A "goodness of

fit" test was employed to teat the hypothesis that the distribution of
total scores does not differ from a distribution based on random responses.
In order to detect any significant changes in the number of children meet-
ing criterion from the first to second administration, the McNemar test
for significance of changes was used. Explicitly, the null hypothesis
is Ho: For those children who change, the probability Pi that any child
will change from C to -C is equal to the probability P2 that he will
change from -C to C. The alternativellypothesis is: H1: P1 < P2

3d
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Transitivity Test. Based on the average item difficulty of the
Length Relations Application Test, a parameter was established (average
item difficulty) which may be regarded as an efficiency level of the
child's ability to establish length relations between curves. Using this
parameter, r, the probability that a child could establish a correct
relation in each of the two necessary overt comparisons on any item
(comparisons between A and B and between B and C, where ARB and SRC and
R is the relation) in the Transitivity Test was r2. The calculation
assumes that the comparisons are performed independently.

If a child responded on a random basis to a relaitl;p0.1.*Iuestion
concerning A and C (such as, "Is A longer than C?"), t probability p
of a correct response on any item is 1.4/2. Using this value of p, a
performance criterion was established and a "goodness of fit" test
performed on the distribution of total scores to the theoretical distri-
bution of total scores based on guessing.

To establish whether the ability to conserve length relations is
necessary (sufficient) to enable children to use the transitive property,
an inspection was made of those children who met criterion on each test
instrument. If the ability to conserve length relations-is necessary
for the ability to use the transitive property, then each child who
attains criterion on the Transitivity Test must also meet criterion on
the Conservation of Length Relations Test. If the ability to conserve
length relations is sufficient for the ability to use the'transitive
property, then each child who meets criterion on the Conservation of
kength Relations Test must also meet criterion on the Transitivity Test.
Other interdependencies were investigated in the same way.

Results of the Study

The results of the study are partitioned as follows: Length Com-
parison Test; Length Comparison Application Test, Conservation of Length
Relations Test; Reflexive and Noureflexive Test; Transitivity Test; and
Conservation and Transitivity RelationshipseA .

Length Comparison Test

The results of an internal-consistency reliability study (Table 3)
revealed that the reliabilities associated with the total test scores
were quite substantial and support analyses of the data. In the case
of the first administration, the reliabilities for the subsets were also
substantial. For the second administration, however, the reliability
for the six items which were designed to measure the ability of children
to establisk the relation "shorter than" was low. Various reasons may be
given, efile, most apparent of which is the high mein and relatively small
standard eviation (Table 4). It is known that easy tests may be unreli-
able. \

No differences were statistically discernible for the variable Age
using the total scores as the dependent measure (Table 5) although the
mean score for the second administration was significantly greater than
the mean score for the first administration. No interaction of Age and

ss
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Table 3
Reliabilities of Length Comparison Teat: First and Second Administration

(Ruder-Richardson #20)

Reliability

Test First Administration Second Administration

Total .91 .83
Longer Than .82 .71
Shorter Than .87 .43
Same Length As .77 .73

Table 4
Mean and Standard Deviations of Length

Comparison Test: First and Second Administration

I)

Test

First Administration Second Administration

X S.D. B S.D.

Total 10.68 5.35 14.55 3.53
Longer Than 4.38 1.91 4.94 1.43
Shorter Than 3.29 2.32 5.12 1.07
Same Length As 3.00 2.02 4.49 1.70

Table 5

ANOVA Summary
Length Comparison Application Test

Source of Variation by Test

Total Scores
A (Age)
B (Tests: First vs. Second Administration)
AB

Longer Than
A (Age)
B (Tests)

AB

Shorter Than
A (Age)
B (Tests)
AB

Same Length As
A (Age)
B (Tests)
AB

2.65

22.45**
< 1

< 1

2.85
< 1

3.42

26.35**
< 1

2.04

14.18**
2.80

**p < .01

36
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Tests occurred that indicate that the difference between the means
for each group on the second administration was not significantly differ-
ent than the differences between the means for each group on the first
administration.

On the subtest "longer than," the children started with relatively
high mean scores (68 and 75 percent for the four- and five-year-olds,
respectively) and ended with mean scores 78 and 86 percent, a nonsig-
nificant gain, statistically. In the case of the subtest "shorter than,"
a large gain was d for both the four- and five-year-olds (from 43 to
76 percent for a e fo and from 62 to 91 percent for age five). Again,

Age was not sig fican . In the case of the subtest "same length as,"
a substantial increase was again present (48 to 57 percent for age four
and 46 to 80 percent for age five). Age was again nonsignificant as
was the interaction of Age and Tests. On the basis of the test scores
alone, one may hypothesize that an interaction occurred. The nonsignifi-
cant interaction may be due to the power of the statistical test involved.

All the correlations computed between test scores on the first
and second administration with the variables Verbal Maturity, I.Q., Age,
and Social Class were low, although some differed signifiOntly from a
zero correlation. Age correlated significantly (Total test--.42, Shorter
Than--.41, Same Length As--.42; p < .02) with scores on the second ad-
miniatration except for the subtest "longer than." The correlation co-
efficient between Social Class and the subtest "same length as" on the
first administration was also statistial1y significant (-.41, p < .02)
but negative.

Length Comparison Application Test

In order to ascertain whether the ability of children to compare
lengths of curves was restricted to six specific material sets, the
Length Comparison Application Test was administered and a correlation

study conducted using scores of eight tests (the total tests and subtests
thereof for the second administration of Length Comparison Test and for
the first administration of Length Comparison Application Test). The
correlation of .81 between total scores (Table 6) along with the signifi-
cant pair-wise correlation of the respective subtests indicates a high
degree of relationship.

Table 6
Correlation Matrix

Length Comparison Test (Second Administration) and
Length Comparison Application Test (First Administration)

Test 1 2 3 4 5 6 7 8

LCT

1. Total 1.00 .82** .79** .88** .81** .71** .78** .65**
2. Longer 1.00 .52** .53** .77** .71** .77** .58**
3. Shorter 1.00 .57** .69** .60** .65** .59**
4. Same As 1.00 .58** .50** .56** .48**
LCAT
5. Total 1.00 .83** .93** .89**
6. Longer 1.00 .79** .60**
7. Shorter 1.00 .72**
8. Same As 1.00

**Significantly different from zero correlations; p < .01

r I
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The L gth Comparison Application Test was administered twice, once
before the mpletion of Instructional Sequences II and III and once after.
The pupil p formances on the second administration are of interest because
Instructional Sequence III contained additional exercises on length com-
parisons. However, no apparent changes in the mean scores were observable
across administrations (Table 7). All the reliabilities on the first ad-
ministration were substantial (Table 8). On the second administration, the

Table 7

Means and Standard Deviations of,Length Comparison
Application Teats

Test

First Administration

X S.D.

Total 44.10 3.89
Longer Than 5.02 1.39
Shorter Than 4.34 1.81

Same Length As 4.74 1.50

Second Administrati
S.D.

14.44 3.14

5.16 1.22

4.86 1.03
4.42 1.58

reliability of the subtest "shorter than" was very low. A high mean score
and small standard deviation may contribute to this reliability.

Table 8
Reliabilities of Length Comparison Application Tests

(Kuder-Richardson #20)

Test
Reliability

First Administration Second Administration

Total .85 .76

Longer Than .71 .63

) Shorter Than .77 .18

Same Length As .68 .65

The correlation of the variables Verbal Maturity, I.Q., Age, and,
Social Class with the total test scores and subtest thereof on the first
and second administration were low (-.12'to .39). All but one of the sig-
nificant correlations involved Age. This is consistent with the correla-
tions reported earlier for the Length Comparison Test.

Conservation of Length Relations Test

An internal consistency reliability study was conducted for each
test administration. The range of the reliabilities was .81 to .88. The
item difficulties (Table 9) and means (Table 10) for the Conservation of
Length Relations Tests indicated that performance of children on Level I
and Level II items was similar for the first test administration. There
was a major difference, however, for the second administration in that Level
I items were considerably less difficult that Level II items, items -which
remained at about the same difficulty level for both teat administrations.
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A principal component analysis was conducted (Table 11)! Factor
1 of the first test administration was a.bipolar factor where the items
at Level I loaded negatively and the items at Level II loaded positively.
Four of the five positive loadings which exceeded .5 were items involving
the asymmetrical property of "longer than" or "shorter than." The remaining

Table 9_, -

Item Difficulty of Conservation of Length Relations Tests

Difficulty
Item First Administration Second Administration

Level I

1 .59 .83
' 2 .39 .69

3 .55 .85
4 .49 '.87

5 .51 .83 1
6 .51 .77
7 .37 .73
8 .49 .85
9 .39 .73

Level II

1

2

3

4

5

6

7

8

9

.47 , .46

.43 .58

.49 .44

.59 .58

.43 .44

.43 .52

.57 .56

.43 .46

.4p .58

Table 10
Means and Standard Deviations of Conservation of Length

Relations Test: Level I and Level II

First Second
Administration Administration

Level X S.D. X S.D.

Level I
Level II

4.29 3.17
4.33 2.80

7.13 2.56
4.62 2.92 .

positive loading which exceeded .5 involved the statement, "If A is the
same length as B, then A is not longer than B." The six items which had
loadings greater than .5 for Factor 2 of the first test administration in-
cluded four items which involved logical consequences of the relations,
one of which involved the asymmetrical property of "shorter than" and one
of which tested conservation of "the same length as."

Of the two identifiable factors of the second test administration,
the items which had loadings greater than .5 were all Level II items for
Factor I and Level I items for Factor 2. Moreover, each Level II item

had a loading greater than .5 on Factor 1. These factors clearly may be
a result of the item difficulties ford the second test administration.

ill :1
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Table 11
Principal Component Analysis of Conservation of Length Relations Tests

First Administration Second Administration

Item Level 1 2

Level I
1 -.5179 .4928

Longer Than 2 -.8139 .3029

3 -.7534 .1310

Q4 -.6982 .3444

Shorter Than 5 -.6776 .4312
6 -.7831 -.0674

7 -.6963 .5853

Same Length Att 8 -.7261 .2393

'9 -.8440 .4050

Level II
1 .5748 .4854

Longer Than 2 .3730 .5885

3 .6523 .0404

4 .8592 .2577

Shorter Than 5 .7244 , .5162

6 .4528 .5671

7 .5512 .6195

Same Length As 8 .3729 .2845
9 .3865 .7055

Percent Communality 45.5 21.61

1 2

-.1938 .6206

.0778 .7665

.3150 .4925

-.2794 .5122

-.2651 .4185

-.1996 .7985

-.3807 .8069

-.3466 .3631

-.4118 .7599

.5134 .3771

.7704 . .2654

.8291 .2600

.5999 .1304

.7887 .2206

.5580 .0838

.7462 .2527

.6475 .2374

.7429 .1681

41.67 .00

These principal component analyses jus ed idpnt ying two levels of
items in the Conservation of Length Relati Te .

Level I criterion was met by one four-year-old and three five-year-
old's for the first test administration. Of these four children, only
one five-year-old met criterion for Level I and II on the second test
administration, and the four-year-old met criterion for Level I. The

remaining two children did not meet any criterion on the second test
administration. A total of four four-year-olds and six five-year-olds
met criterion for Level I on the second test administration.

In case of the first test administration, seven children scored
eight or nine on Level II items but at most five on Level I items. Of

these seven, five had only a zero or one on Level I items. One of the
remaining two children met criterion for Level I and II on the second
test administration. The other child did not meet any criterion on the
second test administration. No child net criterion for Lemel II only on

the second administration.

4 )
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After Instructional Sequence I, three four-year-olds and three five-
year-olds Met the criterion for Level I and IP. Five four - year -olds and
fourteen five-year-Olds met the same criterion after Instructional Sequence
II and III. AccOrding to the McNemar Test, the change for tfie five-year-
olds Nes significant (x2 1, 6.67; p < .01), but the change for the four-year-
olds Wtas not.

If childrep do, in fact, respond "Yes" or "No" in a random fashion
to items presented, then the distribution of total scores should not depart
from a binomial frequency distribution based on random responses, except
for chance fluctuations. The actual frequency distribution of scores for
each group by Conservation Level did statistically depart from a theore-
tical distribution at the .01 level (Table 12).

Table 12
Comparison of Theoretical and Actual Frequency Distribution

Conservation of Length Relations

Test Ey Age X
2

Four-Year-Olds
Level I, First Administration 744.5**
Level I, Second Administration 1712.8**
Level II, First Administration 140.8**
Level II, Second Administration 69.6**

Five-Year-Olds

Level'I, First Administration 351.3**
Level ,I, Second Administration 2071.5**
Level II, First Administration 267.0**
Level II, Second Administration 495.9**

**p < 01

The correlation between the Level I and Level II total scores with
Verbal turity, Age, and Social Class was not significantly different
from ero correlation except 4or the correlation between I.Q. and the
Leve II total scores on the second teat administration. This correlation
of..34 was low.

Reflexive and Nonreflexive Test:

The reliabilities for the Reflexive and Nonreflexive Test were .43
for the first test, administratio4 and .53 for ,the second'test administra-
tion. A contribution to the low test reliabilities was the existence of
more than one factor-in the test,(Table 13). In case of each test admini-
strationr"the items loaded on two factors. Factor 1, in case of the first
test adMinistration, was a combination of the reflexive property and the
type,,of transformation and Factor 2 was a combination of conservation in-
volvipg the noereflexive property and the type of transformation. It is
noted that for both factors, two of the items involving the same property
loaBed with a highbr value than the third. The third item always involved
a different transformation from,the two others, which involved the same
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transformation. These factors clearly justify the criteri n established
because for a child to know that a curve is the same length itself, he

must also know it is not longer or shorter than itself.

Table $.3

Principal Component Analysis for the Reflexive and Nonr lexive Test

Item
First Administration Second Administration

1 2 1 2 ,

Nonreflexive

1 .1971 .6889 .7808 .0553

2 -.1639 .6452 .8748 .0444

3 i .1975 .3252 .5354 -.0007

Reflexive
4 -.9071 -.0168 -.0819 .7808

5 -.9341 .1090 -.0586 .8334

6 -.4188 .0184 .0940 .3311

Percent Communality 52.63 26.88 . 42.45 35.84

The item difficulties for the first test administrat n ged
from .24 to .51 with font item difficulties below .40. The difficul-
ties for the second test administration ranged from .37 to .88 th only
one difficulty below .40. All of the item difficulties increased from the
first to second administration with the greatest increase for the items
involving the reflexive property. A change from 2.12 to 3.75 in the means
for the first and second administfation reflected the modest increase in
item difficulty.

One four- and one five-year-old earned a score of five or six on
the first test administration. The number of four- and five-year-olds
meeting the criterion on the second test administration increased to six
and nine, respectively. he two children who met the criterion on the
first test administration did not meet the required level of performance
on the second administration. However, the number of students who changed
from noncriterion to criterion was greater than t number of children who
changed from criterion to noncriterion (x2 4 8.50 p < .01). There was slso
an increase in the 'limber of children that respon ed correctly to all the
reflexive items but did not meet the criterion. e cha e was from seven
to twenty-one from the first to the second test a ministr tion.

When the distribution of to scores by he four year-olds was
considered, it was found that the fti.Iuency dist ibution or both the first
(x2 32.8) and second 50.7) test admini ration departed statistically

at the .01 level from a binomial distributi Th4 theoretical and actual
frequency distributions of scores earned by t five-year-olds on the first
(x2 37.7) and second (,(2. 31.3) test admini tration also departed statisti-

cally at the .01 level. .

All correlations of the total scores with e variables Verbal

Maturity, I.Q., Age, and Social Class were low. How er, the correlations

between total scores and Social Class were sigfilficant different from,

zero.
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Thotnaitivit

The reliabilities for both test administrations forIthe Transitivity
Test (.50 and .45) were low. This may be expected because the principal
component analysis (fable 14) revealed the existence of more than one

factor in the test. For the first test administration, two items (one
involving transitivity of "shorter than" and one "longer than') loaded
greater than .5 on Factor 1. Factor 2, first administration, is a com-
bination of transitivity of "longer than" and "same length as." For the
second test administration, Factor 1 involved transitivity of "same length
as," and Factor 2 involved transitivity of "shorter than" and "longer than,"
a clear dichotomy.

Table 14
Principal Component Analysis for the Transitivity Test

It Relation First Administration
1 2

Second Administration
1 2

1 Same Length .4362 .4998 .8001 -.0065
2 Same Length .2940 .4637 .5762 .3157

3 Shorter than .6970 -.1967 .1468 -.4648
4 Longer than .5621 -.5222 .1204 -.5562
5 Same Length .3424 .2903 .4260 -.0658
6 Same Length :4241 -.0545 .7806 -.1921
Percent Communality 44.44 27,90 61.50 11.11

The mean scores for the first and second administration were 2.00
and 2.67, respectively, an increase which reflected the increase in item
difficulty for each item. Only one item on any administration had a
difficulty that exceeded .5. Four four-year-olds and five five-year-olds met
the criterion (a total score of five or six) for transitivity on the first
test administration. Atotal of fifteen students met the criterion on the
second administration of which five were four-year-olds and ten were five-
year-olds. Five students that met the criterion on the first test admini-
stration did not meet the criterion on the second administration. Three
of these students were unable to make the necessary length comparisons
upon which to base the transitive property. Therefore, only two students
may have lost transitivity. The level of performance of one of these two
students may involve a chance fluctuation since transitivity was exhibited
three out of five times on the second test administration.

The actual frequency distributions of scores earned by the four-
year-olds on the first (x2 6.5) and on the second (x2 9.1) test administra-
tions did not depart statistically at the .05 level from a binomial distri-
bution based on random responses. Since the actual frequency distributions
for the four-year-olds did not depart from the theoretical distribution,
no four-year-olds were considered to have the ability to use the transi-
tive property of the length relations involved. In the calculation,of
the theoretical binomial distribution based on guesses, a probability p
for correct responses was .30. This value is based on an efficiency level
of .78 as calculated from the Length Comparison Application Test, first
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test administration.

The actual frequency distribution of scorea earned by the five-year-
olds on the first (x 17.2) and second test administration (x2 74.9)
did depart statistically from a binomial distribution at the .01 level.
The main departure for the first administration scorea was in the number
of 0 and 1 scores. An increase in frequency of total scores in the range
of 3 to 6 was noted in the results of the second test administration.

An investigation of characteristics of children not meeting the
criterion and those meeting the criterion revealed little difference
between the mean age for the two levels of performance of any one group.
There was a small difference between the mean Verbal Maturity scores and
for the mean I.Q. scores. Correlation between the variables Verbal
Maturity, I.Q., Age, and Social Class and the levels of performance were
not statistically significant.

Ri,kz!!!::hips Among the Variables

On the first test administration, two children met criterion on the
Reflexive and Nonreflexive Test. Neither of these children met criterion
on the Transitivity Test or criterion on Conservation of Length Relations:
Level I and II Test. One child met criterion only in the case of the
Conservation of Length Relations: Level I Test. On the second-test
administration, only one child out of the 14 who met criterion on the
Reflexive and Nonreflexive Test met criterion on the Transitivity Test.
This child did not meet the criterion on, the Conservation of Length
Relations: Level I Test or on the Conservation of Length Relations:
Level I and II Test. However, seven of the 14 children who net criterion
on the Reflexive and Nonreflexive Test met criterion on the Conservation
of Length Relations: Level I and II Test, and three children met criterion
in the case of Conservation of Length Relations: Level I Test.

Four children met criterion of Length Relations: Level I Test but
not on the Level II Test for the first testadministration. Two of these
children met criterion on the Transitivity Test and one met criterion on
the Reflexive and Nonreflexive Test. The two children meeting criterion
on the Transitivity Test did not meet criterion on the Reflexive and Non-
reflexive Test. Only four out of the ten children who met criterion on
the Conservation of Length Relations: Level I Test but not the Level II
Test on the second test administration met criterion on the Reflexive and
Nonreflexive Test. None of the ten met criterion on the Transitivity Test.

On the first test administration, only one out of the six children
who met criterion on thelConservation of Length Relations: Level F and
II Test met criterion on the Transitivity Test. None of Atte six child-
ren met the criterion on the Reflexive and Nonreflexive test. On the
second test administration, seven of thh 19 children who met criterion
on the Conservation of Length Relations: Level I and II Test met criterion
on the Reflexive and Nonreflexive Test. Seven different childr n met
criterion on the Transitivity Test. Five children did not meek criterion
on the Reflexive and Nonreflexive Test or on the Transitivit Test.

On the first test administration, only two of five chil en who met
criterion on the Transitivity Test met criterion on the Conse ation of
Length Relations: Level I Test. One of these five children t criterio
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on the Reflexive and Nonreflexive Test. On the second test administration,
seven of the ten students who met criterion on the Transitivity Teat also
met criterion on the .:ervation of Length Relations: Level I and II
Test, but only one c d met critn n on the Reflexive and Nonreflexive
Test.

Length Co

fusions, Discussions, and Implications

son Test.

Before or after Instructional Sequence I on length comparison, the
performance of four-year-old children in establishing a relation between
two curves is not different from that of five-year-olds. It appears that
four- and five-year-old children easily learn the relation "longer than"
through informal experiences or testing facilitates learning of this rela-
tion. Beilen and Franklin (1962) did find that testing facilitates first-
grade children's acquisition of measurement tasks which, in addition to
the fact that testing was conducted. for all three relations, leads to the
conclusion that children acquire "longer than" through informal experience
to a greater extent than "shorter than" or "the same length as."

Instruction on establishing length comparisons does significantly
improve the ability of both four- and five-year-old children to establish
length comparisons. The instructional experiences utilized in this study
involved a continuous interplay between language and manipulation of objects
as Bruner and Kenney (1964) recommend. This interplay was an endeavor to
eliminate experiences dependent solely upon language and not real practical
action, which Adler (1964) considers a failure of formal education and
which should have aided the children in not responding on a perceptual
basis when establishing length relations as suggested by Wohlwill (1960).

The ability of four- and five-year-old children to make length com-
parisons involving the relations "longer than," "shorter than," and "same
length as" is not limited to situations in which they learned to establish
these relations -- as the children had the ability to use the relations in
novel length comparison situations. The formal expehences with concrete
materials was sufficient for a majority of the children to reach an overt
operational level with length comparisons, a level of performance which
was retained over the several months this study was in progress.

There appears to be little, if any, relation between the variables
of Verbal Maturity, I.Q., Age, and Sdcial Class and the ability of fbur-
and five-year-old children to make length comparisons involving "longer
than," "shorter than," and "same length as." This is similar to Beilen
and Franklin's (1962) findings that I.Q. was not a factor in first-grade
children's learning to measure length.

Conservation of Length Relations

The definitions given for length relations and conservation of
these relations (i.e., that the relation obtains regardless of the prox-
imity of the curves) seem to have been supported by the results of Ow
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study. On the Length Comparison Application Test, first administration,
the mean score was 78 percent (14.10 out of 18 items) with a standard

deviation of only 3.89. At this point in time, the children in the__

study were able to associate a relational term with an overt comparison
of curves in such a way that they were able to discriminate among the
comparisons denoted by "longer than," "shorter than," and "the same length
as." The particular relation a child established on the first administra-
tion of the applicati A test through overt comparison was a function of
the proximity of the arves involved. This is supported by the fact that
at most two children ..ould be classified at only Level I and at most four
children could be classified as meeting criterion on the Conservation of
Length Relations: Level I and II Test (those four who met criterion on
both the first and second administration of the Conservation of Length
Relations Test). With the exception of these last four children and
possibly the former two, there is no evidence that at the time of the
first administration of the Length Comparison Application Test an overt
comparison constituted a logical-mathematical experience for the child
making the comparison. The overt comparison was certainly not sufficient
for the child (using Piaget's terms) to disengage the structure
of the relation he established. It certainly may be the case that the
relation for the child not only was a function of the proximity of the
curves but was a function of the external physical situation so that the
child did not think aboyt the relation in the absence of the external

situation. In Bruner and Kenny's (1964) terms, the child had not inter-
nalized the relation; or in Lovell's (1966a) terms, the child was not aware
of the significance of his actions in the overt comparison of the curves.

The definitions of Level I and Level II were well supported by the
principal components analysis on the first administration. This analysis

shows that the items written at Level I and Level II involve differential
abilities. In particular, for the ptetest, the items written at Level II
which involved the asymMetrical property of "longer than" or "shorter
than" loaded on Factor 2 as well as an item involving a logical conse-
quence of "the same length as." On the second test administration, the
items written at Level I were much leas difficult than those written at
Level II, which certainly contributed to the factors present in the prin-
cipal component analysis.

Level I items were constructed to measure the extent to which the 4

children realize that the length relation they established between two
curves is independent of the proximity of the curves. As noted, before
the administration of Instructional Sequences II and III, only about 12
percent of the children could be categorized at Level I. After the ad-
ministration of Instructional Sequences II and III, however, the evidence
indicated that about 57 percent of the children could be categorized at
that Level. At the same two points'in time, the percents were 8 and 37
with regard to Level I and II, which was a statistically signifiCant
change. It -must be emphasized that the children in this 37 percent not
only were able to establish a relation between two curves and retain the
relation regardless of the proximity of the curves but were able to use
the asymmetric property and logical consequences of the relation under

consideration. It is certainly true that the experiencdsicontained in
Instructional Sequences II and III did not readily increase the children's
ability to use logical consequences of the relations they were able to
establish.

4.6
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The data suggest that the mean I.Q. for the five-year-old children
who met criterion for Level I and II was greater than the mean I.Q. for
those who did not meet criterion. The correlation of total scores for
Level I and II with the variables of Verbal Maturity, I.Q., Age, and
Social Class were not significant with the possible exception of a low
correlation between I.Q. and Level II posttest scores.

Reflexive and Nonreflexive Properties

Very few four- and five-year-old children were able to use the reflex-
ive and nonreflexive properties on the first administration of the Reflex-
ive and Nonreflexive Test. Elkind (1967) apparently would identify the
ability t use the reflexive property as conservation of identity even
though e did not subdivide conservation of identity with regard to the
reflexi e and nonreflexive properties. An effort is-made here not to
confuse onservation of identity with the ability to use the reflexive
and non 1 ive properties nor to confuse conservation of length with
conservation of length relatimis.

Some four- and five-gear-old children have the ability to use the
reflexive property but not the nonreflexive property. Instructional

N.

experience on,length comparisons appear to be sufficient for such children
o exhibit the reflexive property, as 14 percent of the sample were able
o use the reflexive propertmn the first test administration as compared
to four percent who were able to use both properties.

Instructional Sequences II and III significantly increased the ability
of four- and five-year-old children to use both properties. Oh the second
test administration 41 percent of the sample were able to use only the
reflexive property and 30 percent of the sample were able to use both.
Only 29 percent of the sample did not display en ability to use the
reflexive or nonreflexive properties. These conclusions substantiate
Piaget's theory that experience is a necessary but not a sufficient
condition for the development of logical thought processes because all
the children received the same selected experiences. Certainly the data
substantiate that the ability to use the reflexive property is different
from and precedes the ability to use the nonreflexive property.

There appears to be little, ff any, relation between the student
variables Verbal Maturity, I.9 Age, and Social Class and scores_carned
by four- and five-year-old children on the Reflexive and Nonreflexive Test.
Only correlations involving Social Class were significantly different from
zero, but these correlations were low.

Transitivity

Few five-year-old children were able to use the transitive property
after only instructional experience in establishing length relations. At
this point in time, only 16 percent of the five-year-olds used the transi-
tive property. At the same point in time, the distribution of total scores
for the four-year-olds did not statistically depart from a binomial dis-
tribution based on random responses, so no four-year-old was considered
able to use the transitive property of length relations. Some children
performed poorly because of their inability to establish the two initial

ri?
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comparisons, an inability Smedslund (1963b) considers as a reason for
failure of some young children to use the transitive property.

Instructional Sequences II and III did increase the ability of
^- five-year-olds to use the transitive property, since the percent of five-

year-olds able to use the transitive property increased to 31. These
same experiences did not increase the ability of four-year-old children
to use the transitive property because again the distribution of total
scores for the four-year-olds did not statistically depart from a binomial
distribution based on guessing.. The number of five-year-olds that used
transitivity of length relations is below that found by Braine (1959) but
above that found by Smedslund (1964). It appears that these experiences
were not logical-mathematical experiences that readily increase children's
ability to use the transitive property. All the children may not have
had a mental structure sufficient to allow assimilation of the information.

The mean Verbal Maturity and I.Q. of five-year-old children who were
able to use the transitive property appeared to be slightly higher than
for those who do not use this property. However, the correlations between
these two variables and transitivitA scores earned by the total sample was
not statistically different from zepb. Also, there appears to be little,

(if any, relationship between the variables Age and Social Class and the
ability of four- and five-year-old children to use the transitive property.

Relationships Among the Variables

The relationships of reflexive and nonreflexive properties, conser-
vation of length relations, and transitivity of length relations will be
discussed on each of the first and second test administrations,

On the first test administration only two children met criterion on
the Reflexive and Nonreflexive Test so that a discussion of relationships
is riot appropriate. However, on the second administration, 30 percent of
the children met criterion. Of this 30 percent, only one child met cri-
terion on the Transitivity Test. Because there werec10 children who met
criterion on the Transitivity Test, it is quite apparent that the ability
to use the reflexive and nonreflexive properties as measured here is not
a necessary or a sufficient condition for the ability to use transitivity
of length relations. -This observation is quite consistent with the fact
that the reflexive property of "the same length as" does not imply the
transitive property of "the same length as" nor does the nonreflexive
property of "longer than" or "shorter than" imply the transitive property
of these two relations, on a logical basis,. ...Conversely, the transitive

property of "longer than" or "shorter than" does not imply the nonreflexive
property of these two relations. Because on a logical basis the reflexive
property of "the same length as" is (under restricted conditions) a con-
sequence of the symmetric and transitive properties of "the same length as,"
and because some children could use the reflexive property but not the
transitive property, there may be factors which enable children to use
the reflexive property before.they are able to use transitivity (e.g.,
spatial imagery or the definition of "the same length as"). ip fact, the
results indicate that the reflexive property may be necessary for transiti-
vity. This observation may be due to the possibility that use of the
reflexive property in this study was more of a "learned response" than a
logical-mathematical process.
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It also appears that use of the reflexive and nonreflexive properties
is not a necessary or sufficient condition for being able to conserve
length relations. Of the 30 percent who met criterion on the Reflexive
and Nonreflexive Test, only seven children met criterion for the Conser-
vation of Length Relations: Level I and II Test. This observation is con-
sistent with the logical relationships of the properties of the relations.
However, the data do not contradict the fact that being able to use only
the reflexive property may precede an ability to conserve length relations
at Level I and, therefore, Level II. The data of this study support the
contention that conservation of identity is not unitary in nature. Certainly,
if a child judges that a stick is the same length as itself, he must also
judge that it is not longer or shorter than itself, or a contradiction
would be present. On a logical basis and on a psychological basis, when
one considers "conservation" problems, it is necessary to consider the
properties of the relations which may be involved.

For those nineteen children who met criterion on the Conservation
of Length Relations: Level I and II Test, seven met criterion on the
Transitivity Test. Since only ten children met criterion on the Transi-
tivity Test, it 'seems that conservation of length relations: Level I and
II is necessary for transitivity. The fact that two of three children who
met criterion on the Transitivity Test but not for conservation length
relations: Level I and II, did not meet criterion for conservation of
length relations: Level I or for reflexivity and nonreflexivity, indicates
an inaccurate assessment. The above data are consistent with Smedslund's
(1963b) observation that what he calls conservation of length is a necessary
condition for what he calls transitivity.

The study involves implications for further research and development.
Among these implications, the following are relevant. (1) With the exception
of the transitive property, it may be important to first introduce the pro-
perties, relationships, and consequences of the relations involved at the
point in time in which the children are first able to associate a relational
term with an overt comparison and before perceptual conflict is introduced.
The children could then observe, with perceptual support, the properties,
etc., involved. Tf the children were thus able to learn that the relation(8)
they establish is (are) not a function of the proximity of the curves
involved, they may be able to use the properties, etc., in the Oence of
perceptual support, and indeed, even in the presence of perceptual conflict.
(2) The relations "as many as," "more than," and "fewer than," and their

properties are basic- in the development of the cardinal numbers. For this
reason, an analogous study as suggested in (1) above is important. (3)

If children are able to learn particular equivalence or order relations
and their properties, relationships, and consequences, are they able to
transfer this knowledge to other such relations given knowledge of that
relation? (4) On a logical basis, the relations involved in this study
are basic to measurement. Moreover, the relation of "more than," "fewer
than," and "as many as " are basic to cardinal numbers. Are the relations
basic also on a psychological basis?

9
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Appendix

Sample Items of Measuring Instruments

Length Comparison Teat

Material Set I

Materials:

One green stick; 3 pieces of white string, one being longer than, one
shorter than, and one the same length as the green stick

Directions:

Item 1. Using these pieces of string, find a piece longer than this
green stick.

Item 7. Using these pieces of string, find a piece shorter than this
green stick.

Item 14. Using these pieces of string, find a piece the same length
as this stick.

Conservation of Length Relations Teat

Level I-- Longer Than

Materials:

One green straw; 3 red straws, one being longer than, one shorter than,
and one the same length as the green straw

Statement:

Using these red straws, find a straw longer than this green straw.

Transformation:

green

red (move the red straw)

question:

"Is this red straw still longer than this green strap?"

---
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Level II - -Longer Than

Materials:

One green straw; 3 white pipe cleaners, one being longer than, one
shorter than, and one the same length as the green straw

Statement:

Using these pipe cleaners, find a pipe cleaner longer than this
green straw.

Transformation:

green straw

pipe cleaner
(move the green straw)

Question: "Now is the green straw longer than the pipe cleaner?"

Reflexive and Nanreflexive Teat

Materials:

1 cardboard with M-L Diagram. 1 6-in. flannel strip

Statement:

Look at the length of this strip.

Transformation:

Look at the strip here.

Look at the strip here.

Question:

"Now, is the strip longer?"
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Trenaitivity Teat

Materials:

A red stick and a green stick of the same length attached to a
cardboard as follows:

red stick

green stick

A white stick the same length as the red and green sticks for the
child's use.

Question:

(a) "Is the red stick the same length as your stick?"
(b) "-I...the green stick the same length as your stick?"
(c) "Is the green stick shorter than the red stick?"
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DOUGLAS T. SWISS

Learning of Equivalence and Order
Relations by Disadvantaged
Five- and Six - Year -Old Children

Hilgard (1964, pp. 405-471) has suggested that there is a continuum
of research studies along the dimension from pure research on learning
to applied research on classroom practice. He specified six steps along
this continuum: (1) learning research without regard for educational
relevance, e.g., animal studies; (2) learning research using human sub-
jects but without concern for educational practice; (3) research on
learning which is relevant to school learning, because school children
and content are studied; (4) studies conducted in special laboratory
classrooms on the feasibility of some educational practice; (5) tryout
in a normal classroom; (6) developmental steps. In the first three of
these steps the investigator is not primarily concerned with immediate
application of his results to the classroom. In the second triad of ,
steps, the researcher is expressly interested in classroom practice.

'An analogous argument can be made for the existence of a continuum
of types of research ranging_from baiic research on cognitive development
to eventual classroom practiCes based upon cognitive. development theory.
From the Genevan studies it appears that Piaget and hiS colleagues are
interested in the nature of cognitive development without particular con-
cern for educational practice. ginillArly, in many of the training studies

which have been reported (Bailin, 1971), the experimenter is not primarily
interested in developing curriculum for schools. The present study may
be categorized at a level analogous to step (4) above. The investigator's
goal ib to make application of cognitive development thebry to curriculum
use4 in the classroom."

The experiment reported in this chapter is based on a doctoral
dissertation in the Department of Mathematics Education at the University
of Georgia (Owens, 1972).

C- 47.
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The Problem

The Purposes of this study were fourfold: (1) to determine the
effectiveness of a set of activities desigded to teach .conservation and
the transitive property of the matching relations "as many as," "more
than," and " er than" to a group of economically disadvantaged five-
and six -y; children; (2) to determine the effect of the learning
activities on t ability of the children to use properties of matching
relations other the specific properties upon which instruction was.
given; (3) to dete e effect of the learning activities on the
ability of the chitn to conserve and use relational properties of
length relations "as long as," "longer than," d "shorter than"; (4) to
determine relationships among matching and 1 nq h relations.

Operation and Structures

An operation, a concept centrafto Piaget's developmental theory
(1970, pp. 21-23), has four properties. First, an operation is an
action which can be carried out in thought as well as executed physically.
The second characteristic of an operation is that it is reversible; the
action can be carried out in one direction and in the opposite direction.
Third, an operation always assumes some invariant (conservation). The
fotirth property is that every operation is related to a system of oper-
ation called a structure.

Piaget (Beth & Piaget, 1966, p. 172) believes that mental structures
of the stage of concrete operations (from age 7 or 8 to age 12, approxi-
mately) may be reduced to a single model called "groupings." Piaget has
postulated eight major groupings and a ninth preliminary groUping of
equalities (Flavell, 1963, p. 195). If x and y represent grouping ele-
ments and "+" and "-" represent grouping operations, then each grouping
has the following five properties (Piaget, 1964c, p. 42):

1. Combinativity, x + x' y;

2. Reversibility, y - x xl;

3. Associativity, (x + x') + y' x + (x' + y');

4. General operation of identity:x - x 0;

5. Special identities, x + x x.

In Grouping I, Primary Addition of Classes, the elements are classes
which are ordered in a chain of inclusions Ac:BcC, etc. Addition, "+,"
is interpreted as the union of classes and "-" as set difference relative
to a supraordinate class. Thus A + A' B where A' B -.A, since Ac:B,
and "0" represents the null class (Flavell, 1963, pp. 173-74).

In Grouping V, Addition of Asymmetrical Relations, considerAthe
aeriatfon 0 <A<B<C< D, etc. If 0 < A, 0 < B, 0 < C, etc., are
denoted by b, c, etc., and A < B, B < C, C < 0, etc., are denoted by
a', b', c , etc., respectively, then combinativity (a + a' b) is
interpreted'as transitivity of the relation when wri:-ten as given (Beth
& Piaget, 1966, p. 177).
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In an additive system of relations, such as Grouping V, reversibility
takes the form of what Piaget calls reciprocity (Beth & Piaget, 1966).
Reciprocity consists of either permuting the terms of the relation (denoted
by R), reversing the relation (R.), or both (R"). Thus, R(A < B) = B < A,
R'(A < B) = A > B, and R" (A.15 B) = (B > A). Concerning reciprocity Beth
and Pilget (1966) stated:

If we combine additively the relation < B) with its R, R',
and R", we have:

(1) (A t (B < A) = (A = B) which is true in the case
wh e t!) relation is <.

(2) < B) t (A > B) = (A B) id.

(3 (A < B) (B > A) = (A < B) .

Thus in all three cases there is no anu/Lment, but the product
is either an equivalence or the relation with which we started
unchanged.[p. 177)

Piaget indicated that statements (1) and (23 hold for partial order
relations, such as "less than or equal to." Apparently (1) should be
interpreted as, if A < B,and < A then A = B. This is precisely the anti-
symmetric property of a partial order relation. Moreover, if "< 4ipis an
order relation such as "less than" for example, then A < B and B < A
_contradict 'the asymmetric property and cannot hold simultaneously. In

(3) A < B and 11'> A are logical equivalents and can hold simultaneously
for order relations as well as for partial orderings. Thus, R" (A < B)
B > A is evidently the form of reciprocity characteristic of Grouping V
since the R andle cannot be combined with the original asymmetrical
relation.

The general identity is not the absence of a relation, as in the
case of the null class, but an equivalence relatign. A special identity
takes the form of (A < B) + (A < B) = (A < B), and associativity is
limited to the cases in which no special identity is involved (Beth &
Piaget, 1966, p. 17.8).

Number

Development of the Concept of Measurement

From Piaget's (1970, pp. 37-38) analysis of children's mental pro-
ses, he has concluded that the development of the concept of number is
ynthesis of operations of class inclusion and operations of order. So

g as the elemen of a class have their qualities, Grouping I and'
Grouping V cannot be ap lied to the same elements simultaneously, but
the basis of the notion f n r-i that the elements are stripped of
heir qualities, such that each element ecomes a unit. As soon as the

qualities of the elements are abstracted Grouping I and Grouping V can

no longer function separately but mu t ceqsarily merge into a single

new structure (Beth & Piaget, 1966, p. 259-67). "Class inclusion is*
involved in the sense that two is inc ded in three, three is included

in four, etcY(Plaget, 1970, p. 38). Since the elements are considered

to be equivalent the only way to tell the elements apart is to introduce
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some order. The elements are arranged-one after another spatially, tem-
porally or in the counting sequence (Piaget, 1970, p. 38).

Van Engen"(1971) disagrees with Piaget's notion of number.

The difficulty with this conception of number is that it
does not distinguish between the elements of a set and
the relation that exists between two or more elements of
the set. The study of the order of whale numbers is the
study of a relation that exists between two numbers and
has the usual properties of an order relation.(p. 40]

Van Engen (1971, pp. 37-39) suggests that, from a mathematical
point of view, the cardinal numbers are standard sets of a particular
kind. For example, 5 (0, 1, 2, 3, 4). To determine the cardinality
of any set S, it is necessary tcAfind .one of the standard sets to which
S is equivalent. This is accomplished by constructing a One-to-one
correspondence or by counting. "From the point of view of mathematics,
the relations 'as many as,' 'more than,' and 'fewer than' are basic to
the development of number"(Van Engen, 1968, p. iii). On the basis of
these relations, the cardinal numbers can be ordered, and the counting
set can be formed.

These matching relations may be operationally defined between two
sets A and B of physical objects as follows. Place an a beside a b
until all the a's or b's are exhausted. If both sets are exhausted
simultaneously, then there are as many a's as b's. If set *is exhausted
and set A is not exhausted, there are more a's than b's and fewer b's
than a's.

The relation "as many as" is thus another way of expressing set
equivalence and is an equivalence relation. If "there are as many a's
as b's" is indicated by "A=B" for equivalent sets A and B, then "
is reflexive (Ar:A); symmetric (If AgaB then B=.1A); and transitive (If.
A=B and B..wC then AlzsC). The relations "more than" and "fewer than"
are order relations, for if A > B indicates "there are more (or fewer)
a's than b's," then ">" is nonreflexive (A A); asymmetric (If A > B
then B A); and transitive (If A > B and B > C then A > C), The relations
"more than" and "fewer than" are examples of asymmetrical transitive re-
lations of which Piaget wrote. They also exhibit the reversibility pro-
pfrty. For if there are more a's than b's, then there are fewer b's
than a's , and conversely. Thus, from the mathematical point of view of
Van Engen and from 'the psychological perspective of Piaget, the matching
relations are involved in the development of the number concept.

Measurement

.4Seasurement has been described as "a process whereby a number is
assigned to some object"(Steffe, 1971, p. 335). From this definition
it follows logically that number is a prerequisiteof length. Sinclair
(1971) has stated that the

first measurement concept (length) is achieved rather later
than that of number;. . . There,is an even greater time
lag..-.between acquisition of the corresponding conservation
of length concept and the simple numerical conservations.
Although the psychological construction is parallel, dealing
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with continuous elements is very much more difricuZt than
dealing with diecontinuous units.fp. 153]

Sinclair (1971) has presented empirical evidence which is consis-
tent with the logical conclusion that number precedes length in develop-
ment. However, the explanation given is that length is achieved later
than number because it is more difficult to deal with continuous elements
than with discrete objects. Relations also provide a basis for the
development of measurement in elementary school children. The relations
"as long as," "longer than," and "shorter than" are comparisons of the
relative lengths of segments, but for children they can be defined on
objects such as sticks or straws. In the present study, a concept of
number was not required in establishment of either the matching relations
or length relations. However, the materials for the length relations
were continuous objects, and the materials for the matching relations
were discrete. Thus, Sinclair's (1971) hypothesis raises the question
of whether the ability to use the matching relations precedes the ability
to use length relations in the tasks of conservation and transitivity.

For an operational definition of the length relations, consider
two segmhnts A and B. A is as long as B if whenever A and B

..(or their transforms) Zie on a line in such a way
that two end points coincide (right or left), the two
remaining end points coincide. A is longer than B
if and only if the remaining end point of B coincides
with a point between the end points of A. Also, in
this case, B is shorter than A.[Carey and Steffe, 1968,
p. 31]

The relation "as long as" thus defined is an equivalence relation ond
has the reflexive, symmetric, and transitive properties as does the
matching relation, "as many as." The relations "longer than" and
"shorter than" are order relations and possess the nonreflexive,
asymmetric, and transitive properties analogous to the relation "more
than."

Conservation and Transitivity

In Piaget's (1952) classical conservation of number tasks, a child
is-asked to establish that there are as many objects in a set A as in
Sat B. Then one of the collections, say A, is taken through a physical
transformation. Then the child is asked, "Are there as many m'a as b's,
or does one have more?" Van Hagen (1971, p. 43) has argued that this
task may be measuring whether or not the child conserves the one-to-one
correspondence rather than conservation of number. In this study a task
similar to the above example is considered to be a measure of conservation
of the relation "as many as." It is not necessary that conservation be
limited to cases of equivalence. For example, in a task given by Smedslund
(1963b) a child was asked to establish that one stick was longer than a
second stick and to maintain that the one stick was longer after a,con-
flitting cue was introduced. While Smedslund called the task "conservation
of length," a similar task in the present study is called "conservation
of the relation 'longer than.'" Thua, order relation conservation is
also included.
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Conservation is studied from the relational point of view and
transitivity is necessarily a relational property. Thus, the relation-
ship between the development of conservation and attainment of transi-
tivity is approached from the standpoint of relations. In his earlier
writing, Piaget (1952, p. 205) reported that as soots as children can
establish a lasting equivalence (that is, conserve the equivalence), they
can at once use the transitive property. "The explanation is simple:
the composition of two equivalences (transitivity]* is already implied
in the construction of a single lasting equivalence between two sets,
since the different successive forms of the two sets seem to the child
to be different sets"(Piaget, 1952, p. 208).

Similarly, Northman and Gruen (1970) argue that transitivity is
involved in equivalence conservation. Suppose the subject establishes
A equivalent to B (A - B). When an equivalence-preserving transformation
T is performed, the subject establishes (covertly) A T(A). Then, tran-
sitivity is used in order to deduct T(A) B or to conserve the equiva-
lence of A and B.

.Smedslund (1964) has argued that from a logical point of view, con-
servation precedes transitivity in the child's development. Consider
three quantities which are related by a transitive relation @. Assume
that a child established A@ E. B (or A) must undergo some transformation,
T, before B ia,c ared with C; otherwise, A and C can be compared per-
ceptually. Hence A. T(B) (or A - T(A)) must hold from one comparison
to the other.

In a later discussion of training research Piaget (Beth & Piaget,
1966, p. 192) also alluded to an ordering in the attainment of conserva-
tion and transitivity. He reported that Smedslund easily induced conser-
vation of weight by repeatedly changing the shape of a small clay bail
and checking the weight on a scale. Smedslund was not successful in
obtaining immediate learning of the transitive property.

Basic Questions of the Study

Among equivalence and order relations in the primary school cur-
ricula are set relations, based on matching finite sets of objects, and
length relations, determined by comparing relative lengths of objects.
It appears from Piaget's theory of grouping structures that if a child
has, for example, Grouping V: Addition of Asymmetrical Relations in his
cognitive structure, he can use logical properties of any such relations.
In this study, an attempt was made to: (1) provide experiences for five-
and six-year-old children in which the transitive property of the rela-
tions "as many as," "more than," and "fewer than" could be observed
empirically by the children, and in which conservation of these relations
could be observed through reversing a transformation; and (2) determine
the effectiveness of the treatment in inducing the logical-mathematical
properties of these relations and of the length relations "as long as,"

"longer than," and "shorter than."
Specifically, the following questions are basiC to the study where

most, but not all, arise from Piaget's theory.

*
Added by the Author.
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1. What is the effect of selected experiences on the ability of
children to establish, conserve, and use properties of equivalence and
order relations?

2. What is the effect of age on the ability of children to
establish, conserve, and use properties of equivalence and order relations?

3. To what extent does an experimentally induced capability to
conserve and use transitivity of matching relations transfer across
relational categories to conservation and transitivity of length relations?

4. To what extent does an experimentally induced capability to
conserve and use transitivity of matching relations transfer to remaining
properties of matching relations?

5. What is the effect of a pretest on the ability of children to
establish, conserve, and use properties of relations with or without
selected experiences?

6. Is the ability to conserve matching relations related to the
ability to use the transitive property of matching relations?

7. Is the ability to conserve length relations related to the
ability to use the transitive property of the length relations?

8. Is the ability to conserve matching relations related to the
ability to conserve length relations?

9. Is the ability to use transitivity of matching relations related
to-the ability to use transitivity of length relations?

10. Is the ability to solve a problem involving transitivity of a
matching relation related to performance on a test of conservation or
transitivity of matching relations which utilizes a standardized inter-
view technique?

11. What are the intercorrelations among the variables of the study?

Method

The subjects of the'study were 23 kindergarten and 24 first-grade
children of the William Fountain Elementary School, Atlanta, Georgia.
Kindergarten children were randomly selected from 35 children of two
classes whose ages were in the range (5:1)1 to (5:10) at the outset of
the study. Grade one children were randomly chosen from 48 children of
three classes with ages between (6:1) and (6:10) at the outset. The
school was chiefly composed of Negro children from low income families.
With one exception, the children in the sample were Negro.

15 years, 1 month.
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Tests

The thirteen tests described below were constructed to measure the
abilities of the children to establish relations, conserve relations, and
use relational properties.

The hatching Relations (MR) Teat was designed to measure the ability
of a child to establish matching relations and the Conservation of Matching
Relations 0061 Teet was designed to measure the ability of a child to
conserve a matching relation, provided that he could establish the rela-
tion. These two testsewere administered simultaneously. In the example
presented in Figure 1, a child was given five blue discs glued on a piece
of cardboard and six red discs (i). He was instructed to pair the red
discs and the blue discs. After the pairing (Figure 1--ii), the examiner
asked two questions, "Are there as many red discs as blue discs?" and
"Are there more red discs than blue discs?" After the second response
the examiner rearranged the red discs (Figure 1-iii) and repeated the
same two questions. In each case the correct answer to one question was
"yes" and to the other "no." In each item, the rearrangement was percep-
tually biased in favor of the incorrect conclusion. The first two ques-
tions comprised an item of the MR Teat. All four questions were considered
in the cHR Teat.

Figure 1
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The Length Relation! (LR) Test was designed to measure the child's
ability to establish length relations. The Conservation of Length Rela-
tions (CLR) Test was designed to measure the ability of a child to con-
serve length relations. These two tests were given together in the same
way as the MR and CHR Tests. In each item the child was asked to estab-
lish a length relation between two sticks (or straws) by answering two
question*. Then the dticks were rearranged to produce a perceptual bias
against the correct conclusion, and the questions were repeated.

The purpose of the Transitivity of Matching Relations (TMR) Test
was to measure a child's ability to use the transitive property of
matching relations. On a TMR item a child was presented three collections
A, B, C, of physical materials, arranged in clusters. Suppose, for
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example, that there were fewer a's than b's and fewer b'a than c's. The
child was instructed to pair the a's and b'a and was then asked, "Are
there fewer a's than b's2" The examiner then put the a's into a cup
which aat nearby and said "Pair the b's and c's." After the pairing the
examiner asked, "Are there fewer b's than c's?" The examiner then placed
the c's in another cup and asked, "Are there fewer a's than c's?" and
"Are there more a's than c's?" (or "Are there as many a's as c'sr)
Note that the sets A and C were not "paired" and that the objects were
screened at time time of the transitive inference.

The Transitivity of Length Relations (TLR) Test was designed to
measure the ability of a child to use the transitive property of the
length relations. On each item, as in the T} test', a child was asked
to establish the relation between two sticks, A and B., Stick A was
placed in a box and stick B was compared with anotliar stick C such that
the same relation held between B and C as between A and B. Then stick
C was placed in a box and two questions, relative to A and C, were asked.

The purpose of the Symmetric Property of the Matching Relations
(&'R) Test was to determine the child's ability to use symmetry of the
relation "as many as." For an item of MR test the child was presented
two collections A and B of objects and instructed to pair the objects.
After the pairing the examiner asked two questions: "Are there as many
a's as b's?" (Response), "Are there more (or fewer) a's than b's?"
(Response). Then the examiner put the two collections into two cups and
asked, "Are there as many b's as a's?" (Response), and "Are there more
(or fewer) a's than b's?",

The Symmetric Property of the Length Relations (SLR) Test was
designed to measure the ability of a child to use symmetry of the rela-
tion "as long as." In this case the child, was asked to compare two
sticks (straws) to determine that stick A was as long as stick B and
that an order relation did not hold. Then the examiner placed the two
sticks into two boxes and asked, "Is stick B as long as stick A?" and
the previous question involving an order relation.

The Test of the Asymmetric Property of the Matching Relations (AMR)
was designed to measure the ability of a child to use the asymmetric pro-
perty of the relations "more than " and "fewer than." The child was
pfesented two collections, for example, with more a's than b's and
instructed to pair them. After the pairing the examiner asked, "Are there
more a's than b's?" After the response the examiner placed the two
collections into two cups and asked, "Are there more b's than a's?" and
"Are there more. a's than b's?"

The purpose of the Test of the AsymmetriO Property of the Length
Relations (ALR) was to measure the child's ability to use the asymmetric
property of "longer than" and "shorter than." On an item Of this test
the child compared two sticks related by an order relation. Suppose a
child established correctly that stick A was shorter than stick B. The
examiner then placed each stick into a box and asked, for example, "Is
stick B shorter than stick A?" and "Is stick A shorter than stick B?"

The Reversibility of Matching Relations (RM17) Test was designed
to measure the child's ability to use the following property: if there
are_ more (fewer) a's than b's, then there are fewer (more) b's than a's.

On a given item, the child was presented with two collections A and B of
objects such that an order relation held. After the child had paired the
objects, the examiner asked, "Are there more (fewer) a's than b's7" The
examiner then put the objects into two cups and asked, "Are there fewer
(more) b'8 than a's?" and "Are there as many b's as a's?"

6 1



56 Research on Mathematical Thinking of Young Children

The Reversibility ofLength Relations (RLR) Test was designed to
measure the ability of a child to use the following reversibility pro-
perty: if segment A is longer (shorter) than segment B, then segment B
is shorter (longer) than segment A. After the child compared two sticks,
the examiner asked, "Is stick A longer (shorter) than stick B?" Then,
the examiner placed the sticks into two boxes and asked, "Is stick B
shorter (longer) than stick A?" and "Is stick B as long as stick A?"

On each of the HR, LR, Cl1R, CLR, THR, and TLR Tests there were two
its which in fact exhibited each relation. Thus there were six items
on each of these tests. The SMR and SLR Tests contained three items
each. The AMR, ALR, RMR, and RLR Tests had two items for each of two
order relations, or four items per test. The total number of items was
58. The relations (MR, LR) Tests involved situations under which the
stimuli were arranged to aid the child in establishing the relation.
The questions of the conservation (CHR, CLR) Tests were administered
under conditions of perceptual conflict. All other items were administered
under screened stimuli conditions. The child was not asked to give
reasons for his answers on any of the structured items.

The Transitivity Problem (TP) was designed to measure the ability
of a child to solve a problem which involved transitivity of a matching
relation with minimum guidance from the examiner. The situation involved
a cardboard box from which the front and top were removed. The box was

divided into halves by a partition as shown in Figure 2. Ten checkers
were attached to the bottom inside one half of the box and ten tiles
were attached in the other side. Twelve buttons lay on the table in front
of the box. After the objects were identified, the examiner said, "Find
out if there are as many checkers as tiles. You may use the buttons to

.11e4 you find out." In general the examiner gave as little guidance as
*a possible, but if the child failed to respond at some point, the
examiner directed the next step toward solution. When a response was
given, the examiner asked for an explanation.

a
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Scoring Testa

An item was scored "pass" provided that a child answered correctly
all the questions contained in the item and "fail" otherwise. The
number of items scored "pass" by a child on each test was considered to
be his score on the test. For the purpose of comparing these data with
other studies it was desirable to distinguish children for which evidence
existed that they could use a property from those for which no such
evidence existed. This wag accomplished by setting a criterion score
based on a random model. It was assumed that a child could use a rela-
tional property if and only if he met the criterion on a particular test.
Four of the six items was the criterion set on each of the CMR, CLR, TMR,
and TLR Tests. The probability of reaching this criterion by guessing
was at most .038.

For the Transitivity Problem, the following four levels of ability
to apply the transitive property were identified: 1 the child neither
consistently established relations nor used the transitive property;
2 the child established relations but did not use the transitive pro-
perty; 3 the child both established relations and used the transitive
property without adequate justification; 4 the child established rela-
tions, used transitivity, and gave adequate justification for his con-
clusion. The consensus of two of three Judges' ratings, based on tran-
scripts of audio tapes, was taken as the child's rating on the Transi-
tivity Problem.

Instructional Activities

All of the instructional activities were designed for use in small
instructional groups and involved manipulative materials. In some activ-
ities each child had his own set of materials. Other activities involved
one set of materials for the entire group. In the latter cases, the
instructor Or one child performed the manipulations, but all of the
children entered into discussion. Materials for instruction varied f
materials such as small toys to neutral material such as checkers, tiles,
or colored wooden discs. Colored sticks, straws, etc., represented
segments for length comparison.

The purpose of Unit I, Matching Relations, was to develop the
ability of the children to establish matching relations. The relations
were introduced by having children pair the objects from two finite
seta. It was noted that the sets may or may not be in one-to-one cor-
respondence. When the sets A and B were equivalent, e phraseology
"there are as many a's as bee" was used. "More than"' was introduced
second, and "fewer than" was introduced as the reverse of "more than."
It was emphasized that if a relation holds between t sets (in a fixed
order) then no other relation holds.

Unit II, Length Relations, was designed to d elop the ability of
children to establish length relations. The re ons were introduced by
placing the ends of two sticks together, observing the remaining ends,
and associating the name of the appropriate relation. After "longer than"
was discussed, "shorter than" was introduced as the reverse. The equiv-
alence relation "as long ae" was the third length relation considered.

The purpose of Unit III, Conservation of Matching Relations, was
to develop the ability of children to maintain relations between sets
when the physical matching of the objects is destroyed. The principle
of reversibility of a transformation was emphasized by having the children
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return the objects, following a trensformation, to the position in
which the relation was established. Combinations of perceptual screening,
perceptual conflict, child transformations of his own materials, and
instructor transformations in a group situation were used in Unit III
and Unit IV, Transitivity of Matching Relations. Unit IV was designed .

to develop the ability of children to use the transitive property of the
matching relations. The chief metbq4 of the transitivity training was
what has been termed fixed practice with empirical control (Smedslund,
1963a). The instructor gave explicit instructions for comparing sets
A and B, then B and C% Sets A and C were compared after the child made
a prediction of the relation between them.

Design
ti

Age (five-and six- year -olds) was used as a categorization variable
because of its importance in cognitive development. Treatment wag a
second major factor of which two levels existed, a 'Full Treatment and a
Partial Treatment. The Full Treatment consisted of all four units
described earlier and the Partial Treatment consisted of Units I and II.
Transfer shall be inferred from a significant difference in favor of the
full treatment group in performance on some property for which no
instruction was given, provided that there is a sigsif4cance in the same
direction on a related property for which instruction was given.

In most of the learning research based on cognitive development
theory, and in many other educational research studies, pretests are
given to all subjects. However, due to the large time requirement of
instructing and testing, a strictly pretest-posttest design was not
considered feasible in the present study. However, it was desirable to
obtain premeasurersOia,some subjects, so a Solomon four group design was
selected. Use of thi8 design requires that part of the Full Treatment
group and part of the Partial Treatment group be selected at random
to hwie the pretest. Schematically, the Solomon four group design may 1,
be represented as follows:

Randomized G
1

Pretest: Full Treatment Posttest
assignment

to groups G
2

Pretest: Partial Treatment Posttest

G
3

Fullo,Treatment Posttest

G
4

Partial Treatment Posttest

Campbell and Stanley (1963) note that the results of an experiment using
this design are more generalizable than those from a pretest-posttest
design, because the effects of testing and the interaction of testing
with the treatment are determinable, and randomization controls for
initial biases between groups. They also suggest that experience with
the Solomon four group design in a particular research area gives infor-
mation about the general likelihood of the effects of pretesting in
that area of research. It is desirable that this general information
be obtained for learning research based on cognitive development theory.

Campbell and Stanley (1963) suggest that to analyze the data
obtained from the Solomon four group design, the pretests may be dis-
regarded except as another treatment, and only the posttest scores
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analyzed by analysis of variance. If there is no effect due to pretesting

or no interaction of pretesting and treatment, then the pretest data may

be use a covariate in performing analysis of covariance on the data

from the pr test groups. In the present study the first of these sug-

gestions wa followed, bu the analysis of covariance was not performed

due to the small pretest roup size. Moreover, the pretest data were

considered to be somewhat invalid because the examiners strictly adhered

to the relational termin ogy preferred by the investigator. A more

flexible testing procedu e, adaptable to the child's language pattern,

was used for-the postte s.

Procedure

Children in the 1 and Partial Treatment groups fir had expe-

rience in establishing relaciaaa (Units I and II). Ten les ns on

matching relations from Unit I and seven lessons from Unit on length

relations were given. Then the tests on relations (MR, UR), nservation

(CMR, CLR), and transitivity (TMR, TLR) of each relational cat gory

were administered as pretests to the pretest group while the no-pretest

group had only the relations tests. Following the pretests, the Full

Treatment group had four lessons on conservation of matching relations

(Unit III) and five lessons on the transitive property (Unit IV). Near

the end of this instructional period the Partial Treatment group had

two additional lessons on matching relations, but the remainder of the

treatment period was spent in normal classroom activities.
Each lesson was of 20-30 minutes duration. There were four to

six children in an instructional group. The investigator and two

teachers' aides served as instructors and testers. Instructional groups

were rotated among instructors each day. During testing the Full and

Partial Treatment groups were balanced among testers in five untimed
interviews per child, except that the Transitivity Problem session (sixth

interview) was held entirely by the investigator. The test items given

during a test session were randomly ordered for each child, independently

of other children, and each pair of test questions of an item were ran-

domly ordered for each item and each childw
Near the end of the study it was apparent that the full treatment

had not extensively changed the language patterns of the children with

regard ,to relational terminology. The investigator felt that strict

adherence to predetermined terminology could make the tests invalid in

terms of the concepts measured. Approximations to desired terminology,

for example, "the same" for "as many as," was accepted in the posttests.
Further, if a child were giving a "no - -no" or a "yes--yes" response set

to an item, the question was repeated using an alternate terminology.

This was the only way in which the postests differed from those tests
which were given as pretests, but tills was considered to be sufficient

to make the pretest data invalid per se. Thus, Pretest was retained as

a factor but the data were disregarded.

Statistical Analyses

The data for the analysis of variance were vectors of 12 posttest

scores for each individual. Multivariate analysis of variance was an

appropriate statistical design. The design is represented diagramaticalll

in Table 1. Three factors were considered at two levels each: Age--
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five- and six-year-olds; Treitment - -full treatment and partial treatment;
and Pretest--pretest and no- (retest. The Age X Treatment interaction and
the Treatment X Pretest interaction were of particular interest to the
investigator, but the three-way Age X Treatment X Pretest interaction
was not considered as one of the questions in the study. Thus, three
separate multivariate analyses of variance were performed in which two
factors and their two-way interaction were considered. Data for all
cells of each factor were combined for the 2 X 2 factorial multivariate
analyses. It was of particular interest to the investigator to determine
the effects of the treatment, the pretest, and age upon each of the
variables and to determine if two-way interactions existed. Thus, a
univariate analysis for each of the 12 response variables was performed.
In this regard Table 1 may be interpreted as 12 univariate designs in
which the three main effects-and pairwise interactions were of interest.
Again the analyses were handled by consideration of three 2 X 2 factorial
univariate analyses for each of the 12 variables and combining all cells
within a factor under consideration.

*
Table 1

Diagram of the Design

Factors and Levels Twelve Response Variables .

S

Treatment Age MR Ca TMR SMR AMR RMR LR CLR TLR SLR ALR RLR

Full Five

Treatment
Six

Partial Five

TreAtment
Six

Treatment Pretest

Full

Treatment

Pretest

No Pretest

Partial/ Pretest

Treatment
No Pretest
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Calculations for all of the M'ANOVA's and ANOVA's were performed by

computer with the use of the computer program MUDAID (Applebaum and

Bergmann, 1967). MUDAID provides multivariate and univariate analyses'of

variance for pairs of factors and pairwise interactions. Also, each

multivariate pass provides matrices of intercorrelations among the re-

sponse variables.
Each covariance matrix in a multivariate analysis contains estimates

of the variances of the variables on the main diagonal and estimates of

the covariances for pairs of variables in the off-diagonal positions.
Each covariance matrix has an associated matrix of sums of squares and

cross products. The sum of squares of error and sums of products of

error are the residuals after the effects of the factors and interactions

have been removed by subtraction of their sums of squares and sums of

products from the respective totals. The correlations reported in this

study were calculated from the covariance matrix derived from the matrix

of sums of squares and products of error in the Treatment X Age analysis.

Chi-square tests for independence (Ferguson) 1966, pp. 192-208)

were used to determine whether a relationship existed between levels of

performance on the Transitivity Problem and Age. Chi-square tests were

also made to determine relationships between conservation and transitivity

within a relational category and to determine relationships across rela-

tional categories within corresponding measures. Chi-squares were calcu-

lated on the 2 X 2 or 2 X 3 tables where the frequencies were the number

of children achieving a criterion or level of performance.

Results

Multivariate Analyses

5
None of the F ratios for any factor or two-way in erection were

significant at the .05 level of significance in the mul variate tests.

However, the F statistic for the main effect of Age was .95 in the

Treatment versus Age multivariate analysis with 12 and 32 df. The

critical value (p < .05) of F with 12 and 32 df is 2.07. Thus the factor

Age approached significance, but no interpretation was made.

Univariate Analyses

Analyses of Variance for which F ratios were significant in the
Treatment versus Age analyses are reported in Table 2. Table 3 contains

analyses of variance for the cases of significance in the Treatment versus

Pretest analyses. Any factor which was statistically significant in a

Pretest k Age analysis was significant in the corresponding Treatment

X Pretest or Age X Pretest analysis. Thus, analysis of variance tables

are not presented for Pretest versus Age. Group means, as percents, for

treatment and age groups are presented in Table 4. Age was the only

significant (p < .01) effect for the variables matching relations (MR)

and conservation of matching relations (CMR). In the first case, the

mean for the six-year-olds was 87% and for the five-year-olds was 59%.
On conservation the six-year-old group performed at a mean of 62% and

the five-year-old group at a mean of 36%. It was not anticipated tliat

Treatment would be significant for MR since all children had receivai

instruction in matchipg relations.

6r2
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Table 2
Treatment Versus Age Analyses of
Variance With Significant Effects

Response Variable

Source Conservation Transitivity Symmetricof ,,,, 4

PropertyVariation Relations (MR) Of MR (CMR) Of MOM) Of MR (SMR)
M.S. F M.S. F M.S.'', F M.S. F

Treatment (T) .44 .16 2.19 .62 19.90 8.34** p.32 2.69Age (A) 31.53 11.79** 28.88 8.18** 2.36 .99 11.10 12.89**T X A .15 .06 1.49 .42 .16 .07 .15 .18Error 2.67 3.53 2.38
-1

.86

Asymmetric Property Reversibility Length
of MR (AMR) of MR (RMR) Relations SLR)

M.S. F
, M.S. F M.S. F

Treatment 7.69 3.98 2.60 1.97 1.00 1.01Age 10.39 5.37 8.74 4.79* 5.87 5.89*T X A .14 .07 .47 .26 .53 .53
Error 1.93 1.83 1.00

(p < .10), *(p,< .05), **(p < .01)
Notes Each factor and interaction had 1 df; error 43 df.

Table 3
Treatment versus Pretest Analyses of
Variance with Significant Effects

Transitivity Asymmetric Symmetric ,Reversibility
Property Property

of MR cTHR) of 1121 (AMR) of LR (SLR) of LR (RLR)
F M.S. F M.S. F M.S. F

Treatment (T) 20.41 8.45** 8.37 4.10* .21 .18 1.71 1.21
Pretest (P) 1.19 ..49 5.39 2.64 4.71 4.09* 3.53 2.31
T X P '.00 .00 .39 .19 4.92 4.29 9.54 6.26*
Error 2.42 2.04 1.15 1.52

*p < .05 **p < .01
Note: Each factor and interaction had 1 df; error 43 df.

68
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Tablt 4
Group and Total !leans, as Percents, for Each of 12 Variables

Variable Treatment Groups
4
Age Groups Totals

Full Partial Six Five

MR 75 71 87 59* 73

CMR 53 45 62 36* 49-

TMR 58 36* 51 43 47

SMR 81 48 81 48* ' 65
AMR 73 52* 74 50* 62

RMR 68 54 72 50* 61

LR 90 85 93 81* 87

CLR 62 52 63 51 57

TLR 47

62

51
58

50
67

48

54

49SLR

60

ALR 64 57 68 53 61

RLR 72 .. 62 65 70 67

*This pair of means was significantly different in a univariate analysis.

Treatment was a significant (p < .01) main effect tor transi-
tivity of thatching relations (TMR). The full treatment group mean was

58% and the partial treatment group mean was 36%. Treatment was also a

significant (p < .05) factor for the variable AMR in the Treatment versus
Pretest analysis, and was close to significance at the .05 level in the
Treatment versus Age analysis. In this case the means were 73% and 52%

for the full treatment and partial treatment groups, respectively. Age

was also a significant (p < .05) main effect for AMR as it was for SMR

(p < .01) and RMR (p < .05). In each ea these cases the six-year-olds
performed at a higher lev9t1,than the five-year-olds.

The F statistic. for the 4151c: Age and for the variable Length

Relations (LR) was significant. ever, in Bartlett's test (Ostle,

1963, pp. 136 -137.) tt;jelo:pothesis of homogeneity of variances was

rejected. Thus, to pretation of the ANOVA was made.
There were no significant interactions in the Treatment versus

Age analyses. There were, however, two Pretest X Treatment interactions

(p < .05) for the variables in SLR and RLR. Pretest was not a significant

main effect in the absence of interaction in any analysis, The cell

means fOr the significant interactions are presented in Table 5. In

each case the greatest mean was that of the full treatment group which
had no pretest, and the least,mean was that of full treatment group
which had pretests. One possible interpretation of this interaction is

that the pretests interfered with the effect of the treatment. However,

this may be a misinterpretation since instruction was not given on the
symmetric and reversibility properties of either category of relations,

nor was there any indication of transfer to the properties 6f length
relations from the instruction which was given. The interpretation which

is accepted here is that the pretests had essentially no effect on the
subjects' performance on the posttests.,

,

A

GA
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Table 5
Cell Means as Percents: Treatment X Test-Interactions

SLR RLR
Pretest No Pretest Total Pretest No Pretest Total

Full

Treatment
Partial
Treatment

42

58

85

58

62.

58

54

67

91

58

72

63

Total 50 71 60 60 74 67

Age was the most general effect in the study, but the surprising
result was that Age was not significant for any length relational
variable. In comparing means for length relational variables with means
for matching relational variables, it may be noted that a grand mean of
87%'for the variable Length Relations was equal to the mean for the six-
year-old- group on MR, which was significantly greater than the mean for
the five-year-old group on MR. The grand mean of 57% for CLR was between
the means of 62% for the six-year-old group and 36% for the five-year-
old group on Ca. For TLR the mean of 49%,wasbetween the significantly
different means for the full and partial treatment groups for TNR. The
means of 60%, 61%, and 67% for SLR, ALR, and RLR, respectively, were
between the respective matching relational means for the two ages, which
were different because of an age effect in each case. Also, in each
case the mean for the five-year-old group was greater for length than
for the corresponding matching relations variable. Thus, while no
factors were significant for the length relations variables, overall
performance in each case was not decidedly different from performance
on the corresponding matching relations variable. No formal statistical
tests were made between variables across relational categories.

Transitivity Problem Results

In order to test the relationship between performance on the
Transitivity Problem and the factors Treatment and Age, chi-square
tests for independence were performed on contingency tables. The fre-
quencies'of Transitivity Problem ratings versus Treatment groups are
presented in Table 6, and ratings by age frequencies are found in Table
7. Two children counted and no ratings were possible. While it is of
interest to see the number of children at each of the four levels on the

Transitivity Problem, categories 3 and 4 were combined into a single
category, 3 or 4 (the child used transitivity), for thechi-square tests.

I)\

This was necessary to increase the expected frequency for some cells.
Frequencies are presented both ways but the chi-square tests were
performed on the 2 X 3 tables.

73
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Table 6
Contingency Table: Trans tivity Problem

Ratings Versus Tree ent Group

Treatment Group

Full Treatment
Partial Treatment

le 7
Conting cy Table: Transitivity problem

tings Versus Age Level ,,

Rating
Age Level

1 2 3 or 4 3 4

Six 3 ' 7 12 8 4

Five 8 12 , 3 2 1

The chi-square calculated for Table 6 was 3.62 with 2 df, not
significant at the .05 level. ,Thus while there appeared to be a tendency
for more children in the full treatment group to get a rating of 3 or
4 and more children in the partial treatment group to get a rating of
1 or a rating of 2, the hypothesis of independence was not rejected. The

chi-square calculated for Table 7 (2 X 3) was 8.97 with 2 df which is
significant at the .02 level. Thus, the null hypothesis of indepen-
dence was rejected, and the existence of a relationship between age and
the level of, performance on the Transitivity Problem was accepted.
There was a tendency for six-year-old children to have the higher rating
of 3 or 4, and for the five-year-old children to have the lower ratings
of 1 and 2.

While the treatment was effective in improving the abilities of
the children to petform the transitivity tasks of Tat the treatment
was not related to level of performance on the Transitivity Problem" On
the other hand, there was no significant difference between ages in performance
on THR, but age level was related to 'towel of performance on the Transi-
tivity Problem. These results raise a question about the relationship
between performance on the Transitivity Problem and the more structured
tests.

Relationships Among the Variables

Chi-square tests were used to test for a relationship between
leve4,of performance on the Transitivity Problem and criterion perfor-
mance on THR and CgR. The frequencies of the ratings on the Transiti/Ity
Problem versus .neeting the criterion on THR and Ca are presented in
Table 8.and Table R respectively. Chi-square tests were run on the 2x3 tables.
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Table 8
Contingency Table: Ratings on Transitivity Problem Versus

Criterion on Transitivity of Matching Relations

'TMR Criterion Rating

Level 1 2 3 or 4 3 4

Criterion 1 7 8 5 3Not Criterion 10 12 7 5 2

)Table 9
Contingency Table: Ratings on Transitivity Problem Versus

Criterion on Conservation of Matching Relations

Ca CriteriOn
Rating

Level 1 2 3 or 4 3 4

Criterion 0' 5 13 8 5Not Criterion 11 14 2 2 0

The chi-square calculated for Table 8 was 5.45. The critical value
of chi+square with 2 df is 5.99 (p < .05). Thus, the chi-square for level
of performance on the Transitivity Problem versus Transitivity, as
measured by TMR teat, was near significance at the .05 level, but indepen-dence was accepted. The chi-square calculated for Table 9 was 22.43(p < .001). There was a strong relationship

betilfn ratings on the
Transitivity Problem and achieving the criterion on the CMR test.

The product moment correlations in the present study were calcu- .fated in the multivariate analysis
by using the error covariance matrix

from the Treatment versus Age Analysis. The reason for using this errormatrix to calculate the correlations is that essentially all significant
effects have been eliminated from the matrix and only nonsignificant
effects remain. That is, the effects of Treatment and Age were statisti-
cally removed by subtraction, and only the (nonsignificant) effects ofPretest remain. The correlations are presented in Table 10. Since dffor error in the analyses of variance was 43, there are 42 df associated
with each correlation of Table 10. The critical values for correlations
significantly different from zero are .30 (p < .05) and .39 (p < .01).

Inspection of Table 10 revealed that 47 of the 66 correlations were
significantly different from zero and all were positive. Only two corre-
lations were greater than .60 and 16 others were greater than .50. Ofthe 19 nonsignificant correlations,

13 were with or between LR and TLR.
It was interesting that the only length variable with which LR s-corre-LAW-watt CLR. Indeed, each item of the CLR Tests wasAlepende

t
t upo anitem of the LR Test. It appears that there is little relation hip be n

each of LR and TLR and the remaining variables. In addition to TLR, three
variables are not correlated with CLR. The nonsignificant correlation
of SMR with RMR and RLR indicate a lack of relationship between the, symmetric

property of "as many as" and the reversibility property of
either relational category. The additional nonsignificant correlation

t

e .-)
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Tale 10
Intercorrelations Among the 12 Variables

cNR TMR S1 AMR RMR LR CLR TLR SLR ALR RLR

MR
CMR.

TMR

SMR
AMR
KKR
LR
CLR
.TLR

SLR

ALR

73** 57**
51**

32*

37*

44**

59**
59**
28

46**

59**
68**
47**
27

45**

22.

30*

07

43**

43**
07

35*
41**
24

41**
40**
27

46**

16

f.0 **

28

36*

26

25

15

11

49**
56**

51**
55**
54**
54**
27

53**
47**

55**
48**
59**

51**
52**
46**
24

25

33*

64**

40**

39**
32*

17

41**
50**
20

39**

23
57**

40**

*p < .05, **p < .01
Note: Decimal points are omitted.

was between TMR and AMR. The remaining correlations with each matching%

relational variable were significant. It is interesting to note that

CMR was correlated with each variable across both relational categories.
Whether or not a child in the present study attained the criterion,

on a particular test is a measure of the child's ability to use the rela-
tional property of the test. In order to examine the hypothesis that
conservation ability precedes the ability to use the transitive property
within A category of relations, 2 x 2 frequency tables, of those who did

and did not use conservation and transitivity, were prepared. Chi-square

tests for independence were then made on the contingency tables. The

frequencies .of children meeting criterion on CMR versus meeting criterion

on TMR are presented in Table 11. Table 12 contains the frequencies of

children in the sample who met the criterion on conservation versus those
who met the criterion on transitivity of length relations. The calculated

chi-squares with 1 df were 1.73 for Table 11 and .57 for Table 12. These
nonsignificant chi-squares indicate independence between the ability to
use conservation and the ability to use transitivity within the respective

relational categories. These results are not completely consistent with
the significant product moment correlation of .51 between CMR and TMR for,

the matching relations. However, dn the casg of length relations, the

result is consistent with the nonsignificant correlation between conser-
vation and transitivity.

Table 11.
Contingency Table: Criterion on CMR Versus Criterion on TMR

Conservation of Matching Transitivity of Matching Relations (TMR)

Relations (CMR) . Criterion Not Criterion

Criterion
Not Criterion

9

8

10

20
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Table 12
Contingency Table: Criterion on CLR Versus Criterion on TLR

Conservation of Length
Relations (CLR)

Transitivity of Length Relations (TLR)
Criterion Not Criterion

Criterion
Not Criterion

9 15
9 14

Examination of Table 11 revealed duit there were 8 children in the
study who net criterion for transitivity but not conservation of matching
relations. From Table 12 it may be observed that 9 children met criterion
for transitivity but not for conservation of length relations. In each
case, about one-half of the children who could use the transitive property
within a relational category failed to conserve the relations of the
same category. Thus, no evidence is provided by these data that, for the
childreb in this study, the ability to conserve relations precedes the
ability to use the transitive property. The case is different, however,
in the case of the Transitivity.Froblem.

For consideration of whether the ability to conserve matching relations
precedes the ability to conserve length relations, frequencies of children
who achieved the criteria for CLR and CMR are presented in Table 13.
Table 14 contains frequencies with which children in the study met the
criteria for TLR and TMR as an indication of whether matching precedes
length in development of the transitive property of relations. The cal-
culated chi-squares were 6.33 for Table 13 and .87 for Table 14, each with
1 df. The value for conservation was significant (p < .05), and thus a
relationship between meeting criterion on CMR and meeting criterion on
CLR is indicated. These results dre consistent with the significant corre-
lation of .41 betweeh CMR and CLR and the nonsignificant correlation
between TMR and PLR.

Table 13
Contingency Table: Ctiterion on CLR Versus Criterion on CMR

Conservation of Length ryConservation Conservation of Matching Relations (CMR)
Relations (CLR) Criterion Not Criterion

erion 13 1p
Not Criterion 5 19

Table 14
Contingency Table: Criterion on TLR Versus Criterion on TMR

Transitivity of Length Transitivity of Matching Relations (TMR)
Relations (TLR) Criterion Not Criterion

Criterion 8 10
Not Criterion 9 20
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The data of Table 13 gave no indication that conservation of matching

relations precedes conservation of length relations for the children in

this study. In fact, 10 children who met the criterion on CLR failed to
achieve the criterion on CMR. On the other hand, there were 5 children
who met criterion on CMR but failed to meet criterion on CLR. This evidence

is in opposition to the suggestion that the ability to conserve matching rela-
tions precedes the ability to conserve length relations.

From Table'14 it may be observed that 9 children used (as defined
by the criterion) the transitive property of matching relations but not
length relations. On the other hand, 10 children used the transitive pro-
perty of length relations but not of matching relations. These data gave

no indication that, for the subjects of this study, the ability to use the
transitive property in one relational category consistently preceded the
ability to use the transitive property in the other relational category.

Presumably, a solution of the Transitivity Problem required use of the
transitive property of the relation "as many as." However, other abili-

ties were necessary for a solution. Thus, the fact that some children
achieved the criterion on TMR but did not reach a solution in the Transi-
tivity Problem is consistent with the logical conclusion.

What appears inconsistent with the logical conclusion is that seven
children solved the Transitivity Problem but failed to reach the criterion
on the transitivity (TMR) test (see Table 8). Of these seven, however,

four made a score of three on the TMR test and thus gave evidence of some
facility in transitivity. Th4 failure of the other three children may be

attributed to inaccuracy of measurement.
Another discrepancy between the data and the logical conclusion is

the fact that 8 children used the transitive property (as defined by the
criterion on TMR), but did not conserve matching relations. It is interes-

ting to note that 5 ok these 8 children were in the full treatment group.
It is also of interest to observe that in the entire study, 13 children
who had full treatment achieved the criterion on TMR while only 4 children
in the partial treatment did so.

Discussion and Conclusions

The Effectiveness of the Treatment

The mean performance of the children in the full treatment group was
significantly greater than the mean performance of the children in the
partial treatment group on the Transitivity of Matching Relations Test.
This was an indication that the treatment was effective in improving the
ability of the children in using the transitive property of these relations.
However, the results from the Transitivity Problem indicated no relation-
ship between a student's membership.in a treatment group and his level

of performance on the TransitiVity Problem. :This apparent discrepancy
may be interpreted by an examination of the tasks and the instructional

activities. In the instructional setting the children were instructed
to establish the relation between two sets, say A and B, and between B

and a third set, C. The sets-were constructed in such a way that the

same relation existed between B and C as between A and B, The children
were then asked to- predict the relation between A and C and were given

an opportunity to verify their prediction. Each item of the structured
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transitivity test followed this same procedure except that on the test the
child did not have th$ opportunity to verify his conclusion. Also, in the
testing situation the objects were screened at the time of the transitive
inference, whereas this was not always the case in instruction. In the
Transitivity Problem, the child was required to compare sets A and B, and
sets A and C where A contained two more objects than B or C. He Chen was
required to remove (either physically or mentally) two objects from the
set A to form a new set which was equivalent to B and C before applying
tbe transitive property of "as many as," and to conclude that B was equi-
valent to C. The reasonable conclusion then, is that the treatment improved
the ability of the children to perform tasks very much like the treatment
activities, but this improvement did not generalize to the Transitivity
Problem, a higher order 06k.

These results are consistent with previous transitivity training
studies. In a study with five- to seven-year-old children, Smedslund
(1963c) found that none of the children acquired transitivity of weight
due to practice. In another study he (Smedslund, 1963c) found that about
30% of a gro p of eight-year-old children

acquired transitivity of weight
by practice, while only 12.5% of a control group acquired transitivity.
Thus, behavi r indicative of transitivity has been obtained in some train-
ing studies, but it appears to be difficult to induce transitivity by
practice.

It ap rs from Piaget's theory that if a child's cognitive structure
contains t e grouping of addition of asymmetrical, transitive relations,
he can us the transitive property of any such relations, regardless of
the conc -te embodiment. Piaget (1952, p. 204) has indicated, on the con-
trary, that a formal structure of transitivity is not acquired all at once,
but it must be reacquired every time a new embodiment is encountered.
Sinclair ( 971) has further suggested that properties of the concrete
embodiments such as discrete or continuous) will affect the attainment
of psychologi .11y parallel concepts.

In the p sent study, experiences in length relations were given to
introduce an embodiment of the transitive relations in addition to 'the
matching relatio s, but no instruction was given in transitivity of the
length relati . The results indicate that while the treatment improved
the ability to se transitivity of the matching relations, there was no
correspondin mprovement in the ability for the children to use transi-
tivity' of 1 gth relations. Thus, the conclusion was reached that the
treatment as rather task specific and no generalized scheme of transiti-
vity was duced.

s conclusion is consistent with Piaget's conjecture, and with the
' results of training studies in conservation. For example, Beilin's (1965)

.subjects improved in conservation of number and length when experiences
were given. However, the training was not sufficient to foster generali-
zation to conservation of area.

The results of the Asymmetric Property of the Matching Relations
Test indicate that the treatment was effective in improving the ability
of the'children in the full treatment group in using the asymmetric pro-
perty of the matching (order) relations. This may be interpreted not as
a transfer of training, but as a direct consequence'of the instructional
activities. In each activity, the instructors stressed the relations
which did not hold as well as the relation which did hold. Consider, for
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example, an activity in the differential treatment in which there were
more a's than b's. After the transitive inference or conservation question,
"Are there more a's than b's?" the instructor also asked "Are there as many
a's as b's?" and "Are there fewer a's than b's?" If a child failed to

answer "no" to each of these latter two questions, the instructor corrected
the child by using the materials. The statement that there are not fewer
a's than b's is equivalent to the statement that there are not more b's
than a's. This logical equivalent (that there are not more b's than a's)
is precisely the asymmetrical inference from the relation which does hold:
there are more a's than b's. This situation may have been interpreted in
this way by the children, so that the treatment effect was obtained for
the asymmetric property.

The differential treatment contained four lessons on conservation
of matching relations and five lessons on transitivity of matching rela-
tions. The conservation portion of the treatment was not successful in
improving the conservation ability of the children in the treatment group.
Many of the conservation training studies previously.zeported have indicated
that conservation ability has been improved (Beilin, 1971). The conserva-
tion treatment in the present study was apparently either too short, or
the activities were inappropriate for the subjects of the study. Another

possible factor was that the transitivity instruction intervened between
the conservation instruction :and the testing period. This delayed the
testing on conservation for one more week after instruction than the test-
ing on transitivity. There remains the possibility that the conservation
lessons were instrumental, in fostering the improvement of performance of
the treatment group in the transitive and asymmetric properties.

Matching and Length Relational Properties

The mean performance of the six-year-old group was higher than the
mean performance of the five-year-old group on all matching relations tests
except transitivity. It is not surprising that these cognitive abilities
imprbved between the ages of five and six. The amazing result * that
age had no significant effect on the abilities of the children in using
any of the length relational properties. Consideration of the means indi-

cated that performance on length relational properties was at about the
same level as performance on matching relational properties. Consideration
of criteria levels showed that more children attained conservation and
transitivity of length relations than the corresponding properties of
matching relations. Thus, from the point of view of relations rather than
number and length, Sinclair's (1971) hypothesis is not confirmed for the
children in this study.

Conservation and Transitivity Attainment

The result that about one-half of the children who used the transi-
tive property in each relational category failed to use conservation of
that respective category is at variance with results of previous studies.
Smedslund (1964) found only 4 of 160 subjects who passed the test on
transitivity and failed on conservation of discontinuous quantities, and
only 1 subject was in the corresponding cell for length. Owens and Steffe

(1972) observed only 4 of 126 instances (among 42 subjects) in which
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transitivity of a matching relation preceded conservation of that relation.
Divers (1970) found that in 87% of the cases where transitivity of a
length relation was attained, the relation was also conserved. In the
studies cited, the results consistently indidaeed that attainment of con-

(.\\

servation preceded attainment of the transitivity property. None of the
studies involved instruction or practice, and the present results may be
interpreted in terms of the treatment effect. The treatment was effective
in improving performance on the test of the transitive property while the
treatment had no effect on conservation performance for matching relations.
Thus, some children in the treatment group met the criterion on the tran-
sitivity test who might otherwise not have attained transitivity. Only
two children who used transitivity on the Transitivity Problem failed to
exhibit conservation. This explanation applies, however, only to the match-
ing relational category, because the treatment was not effective in im-
proving the performance on transitivity of length relations.

Perhaps an interpretation can be made in terms of the characteristics of
the children in the sample. Skypek (1966) conducted a study which involved
both middle and lower socio-economicIptatus children. It was found that
among the low status children, the deyelopment pattern of cardinal number
conservation was erratic. While the present study included no middle class
group for comparison, it appears that the pattern of attainment of conser-
vation and relational properties was irregular for these low economic status
subjects.

4,



MARTIN I. JOMVSON

Learning of Classification and
Seriation by Young Children

The acts of classifying and ordering objects may be analyzed both

psychologically and mathematically. Beth and Piaget (1966) have attempted

to explain these acts psychologically by postulated models of cognition

called "groupings." Two of the Groupings, Grouping I and Grouping V, deal

with classes and asymmetric relations, respectively. These two groupings

provide models for the cognitive acts of combining individuals in classes
and assembling the asymmetrical relations which express differences in
the individuals, or more specifically, models for classification and seri-

at ion.

The elements of Grouping I are classes which are hierarchically

arranged. Somewhere between late preoperational and early or middle con-

crete operational stages the child can readily ascend such a hierarchy
of classes by successively combining elementary classes into supraordinate

claOes + As= B; B + B'- C, etc.) (Flavell, 1963). Furthermore, the

child can just as easily descend the hierarchy, beginning with a supraordi-
nate class and decomposing it into its subordinate classes, (C - E,

etc.). In addition, the child can destroy one classification system in
order to impose a new and different one. on the same data (Inhelder and

Piaget, 1964).
Beth and Piaget (1966) point out that seriation behavior can be

found in children from the sensory-motor stage onward, with operational
seriation coming only after the child begins to anticipate the series
and coordinate the relations invtlVed in forming the series. An example

is where a child is given elements A, B, C, D, E, F, G, etc., and is
asked to arrange them according to some asymmetrical transitive relation.
If the child finds a systematic method -- puts down the " snallest" of the
elements (A) after carrying out pairwise comparisons, the "smallest" (B)

The experiment reported in this chapter is based on a doctoral
dissertation in the Department of Mathematics Education at the University

- of Georgia (Johnson, M. L., 1971).
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of the remainder (again after comparing in pairs), then again the "smallest"
(C) of the remainder, etc. -- he understands in advance that any element
E will be at the same time "larger" than any element already put down
(A, B, C, D) and "smaller" than the remaining elements (F, G, etc.).
Grouping V provides a model for the cognitive actions present in such an
act of serilting objects.

Mathematically, classification and seriation can,be interpreted as
being logically dependent on equivalence and order relations. It is well
known in mathematics that each equivalence relation serves as the basis
for a classification of objects (Berstein, 1964) and conversely that every
exhaustive classificatiQn of objects into distinct classes defines an
equivalence relation, where objects are considered as being equivalent if
they are classified together. For example, given a set of linear objects
(A), with the instructions to "put all objects having the same length
together," the set can be partitioned into disjoint subsets by using the
mathematical properties of "same length as." On the other hand, nonre-
flexive, asymmetrical, transitive relations can serve as a basis for
ordering a collection of objects, or for the act of seriation.

Classificatory behavior of young children has been the subject f
a substantial amount of research in recent years. Inhelder and Piaget
(1964) were among the first to systematically study the behavior of chil-
dren as they attempted to form classes. These authors report behavior
related to classificatory acts ranging from "graphic collections" (Stage
I) in which the child forms spatial wholes, to true classification (Stage
III). True classification appears when children are able to coordinate
both the intension and extension of a class as shown by an ability to
solve class inclusion problems -- somewhere around 8-9 years of age.
Lovell, Mitchell, and Everett (1962) found behavior similar to that found
by Inhelder and Piaget with only Stage III children being able to group
objects according to more than one criterion; such' as color, shape, or
form. The fact that tlie basis of classification children use is age
related was revealed by Olver and Hornsby (1966). Their research showed
that collections made by very young children are based on perceptible
properti,s of objects (color, shape, etc.) with an increase of functional
based equivalence as children grow older. Other researchers (Maccoby and
Modiano, 1966) reported that the choice of criteria for classification is
a function of the child's culture. While this may be the case, Olmsted,
Parks, and Rickel (1970) reported that the classification skills of cul-
turally deprived children, including an increase in thelgriety ofcriteria
used for classification, could be improved by involving e children in
a systematic training procedure. Edwards (1969) also reported an increase
in classification performance of children due to training. Other investi-
gators (Clarke, Cooper and Loudon, 1969; Darnell and Bourne, 1970) reported
that conditions of training, such as making the child aware of natural
relationships or orderings among a set of objects, may facilitate the
learning of equivalence relations.

Seriation behavior develops in stages similar to classification
behavior (Inhelder and Piaget, 1964). Systematic or operational seriation
appears in Stage III -- approximately eight years of age. Opetational
seriation is distinguished by (1) the discovering of a systematic way of
forming a series and (2) the ability to insert new elements in an existing
series without relying on trial-and-error procedures. Developmental
stages consistent with the findings of Inhelder and Piaget have been
reported by Elkind (1964) and Lovell, Mitchell, and Everett (1962).
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Very little research has been reported in which training procedures
were used in an attempt to facilitate seriation ability. Coxford (1964)
reported that selected instructional activities had a falitating effect
on the seriation ability of those children who were already in a transi-
tipnal stage. Holowinsky (1970), however, reported that any increase in
seriation ability of four-, five- and six-year-old children in his sample
was more likely due to age increases than to instructional activities.
Clearly, the issue of training effects has not been resolved.

The current literature indicates that various factors influencethe
ability of a child to determine criteria for classification. Although the
training research has not been completely unfavorable, classification has
been approached only as a general categorizing process not including the
major action in classifying the forming of equivalence classes. Hence,
any relationship which may exist between the child's knowledge of the
mathematical properties of an equivalence relation and his classification
skills based on that telation has not been explicated.

Similarly, the current literature does not explicate any relation-
ship which may exist between seriation ability and properties of order
relations. Specifically, does a relationship exist between the child's
knowledge of the transitive property of an asymmetric, transitive rela-
tion and the child's ability to seriate on the basis of that relation?
Furthermore, it has not been determined whether seriation ability is re-
lational specific or material specific. Conversely, because classification
and seriation involves using mathematical relations, does classification
and seriation training produce an understanding of the mathematical
properties of the relations involved, specifically, the transitive
property?

Purpose

The main purpose of this experiment was to determine the influence
of training on the ability of first and second grade children to classify
and seriate objects on the basis of length. A second purpose was to
investigate the influence of such training on the child's ability to
conserve and use the transitive properties of the above relations "same
length as," "longer than," and "shorter than."

Other objectives were to determine if the subject's ability to use
the transitive property of the equivalence relation "same length as" was
related to his ability to classify on the basis of the relption; to inves-
tigate the relationship between the child's ability to use the transitive
property of the relations "longer than" and "shorter than" and his ability
to seriate on the basis of these relations; and to determine if the
ability to seriate linear objects is material specific or relational
specific.

Method

The Subjects

Eighty-one subjects, comprised of.thirty -nine first grade children
and forty-two second grade children were chosen for this study. Twenty-
three first grade and twenty-four second grade children were fromthe
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W. H. Crogman Elementary School, while sixteen first grade and eighteen
second grade children were enrolled at the Cleveland Avenue Elementary
School; both schools in Atlanta, Georgia. At the beginning of this study,
March 16, 1071, the mean age for first grade was 80.8 months and for
second grade 91.8 months.

The W. H. Crogman Elementary School is located near downtown Atlanta
in a Model Cities area. All subjects from W. H. Crogman School who par-
ticipated in this study were Negro. By virtue of having been in a Model
Cities area, the educational programs of W. H. Crogman Elementary were
enriched by the use of parents as "teacher helpers" and a well-planned
extended day program for first and second grade children. Many of the
children who participated in this study took part in home economics, art,
music, organized physical education, and a variety of other activities.

Cleveland Avenue Elementary School is located in Southwest Atlanta
and served a predominately Caucasian, middle-class student population.
Of the thirty-four children in the sample from this school, thirty-two
were Caucasian and two were Negro. Within each school, the sample was
randomly selected from the existing first and second grade classes.

Description of Learning Material

Two instructional units were written for this study. Unit I con-
sisted of six lessons designed to acquaint the students with the relations
"same length as," "longer than" and "shorter than" and to make proper
comparisons based on these relations. Unit II consisted of ten lessons
designed to give experiences in classifying on the basis of the equiva-
lence relation "same length as" and seriating on the basis of the order
relations "longer than" and "shorter than." For example, lessons rand
3 of Unit II were primarily concerped with classifying sticks, straws,
pipecleaners, and ropes on the basis of length. In lesson 2 the child
was asked to determine the longest and/or shortest object from a collection
of objects given to him. The procedure followed was to make pairwise
comparisons until the longest (shortest) object was determined. In sub-
sequent lessons, the child was asked to serrate collections of sticks
and then mixed collections (strings, sticks, straws, pipecleaners) using
a procedure Consistent with Piaget's stage three behavior. At least two
lessons required the child to insert additional objects into series
already formed.

Instructional Schedule and Modes of Instruction

Instruction on Unit I began at W. H. Crogman School on the morning
of March 18, 1971. Similar instruction began at Cleveland Avenue School
on March 19, 1971. Because of having to alternate between the schools
on consecutive days, twelve days were required for the completion of Unit
I. Upon completion of Unit I, a Criterion Test (see Criterion Test) was
administered. The children who met criterion were randomly placed into
either an experimental or control group. The experimental group received
instruction on Unit II while the control group received no further in-
struction. Instruction on Unit II began on April 14, 1971 with instruction
being given at W. H. Crogman School in the morning and at Cleveland Avenue
School in the afteinoon. Ten instructional days were required for the
administration of Unie II, ending on April 27, 1971. All instruction was

8 ?)
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carried out in groups of approximately six students in 2b minute sessions.
Unit II was taught only by the Investigator while teacher aides helped
with the instruction of Unit I.

Tests

Instruments were constructed to measure the children's knowledge
of the length relations, ability to conserve and use the transitive
property of the relations, ability to serrate using the order.relations,
and ability to classify using the equivalence relation.

Criterion Test. A nine-item test was consttucted to determine if,
at the; end of Unit I, the children understood the relations and terms
used in the conservation and transitivity tests to be a4mindetpred as
pretests. To meet criterion on this test, the child had to.meet criterion
on each of the three relatiSes, whicit was defined as correctly performing
on two of the three questions asked about each ?elation. pot example,
the child would be asked (from a pile of sticks with a standard stick
placed before the pile) tp "find-a stick the same length as the standard
stick,","find a stick longer than the standard stick," and "find's stick
shorter than the standard stick." Simil instructions were given for
the other six items which inmluded,hoth icks and strings. All questions
were asked in random order to each'Ch

e '
vk

Consery n of Length Rebations°Test (C4RT). This test consisted
of six, s; two each concerning the relations "sane length as," "longer
than," and "shorter than." Two perceptual stimuli were given for each
relation; neutral and conflictive. All of the materials were red and
'green sticks 3/8" in diameter differing in length by la" within an item.
In items with the neutral stimuli a red and green stick would be displayed
and the child was asked "Is the red stick the same len h as the green
stick?" or "IS the red stick longer than the green stir 7" or "Is the red
stick shorter than the green stick?" The question asked ld depend on
whatever relation did hold betysen the two sticks. After the child had
determined which relations did hold, one stick was moved right or left
so that the left end of one stick coincided with the right end of the,
other. Three questions were now asked in random order. "Is the red stick
the same length as the green dtickr, "Is the red stick loriger than the
green stick?", "Is the red stick shorter than the green stick?".

The items with conflictive stimuli were administered in a slightly
different way than the items with neutral stimuli. After the child had
determined the relation that existed between the red and green sticks,
they were moved to form a "T" and the three questions were then asked.

To'receive a score'of one on an item, the child had to answer
the three questions correctly. The correct sequence of answers depended
on the item being given. This test Was given both as a pretest and a
posttest.
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Transitivity oLength Relations Test (TLRT). This test consisted
of six items; two. each for the relations "same length as," "longer than,"
and "shorter than." Two petceptual stimuli were presentr'screened and
conflictive. All materials in this test consisted of red, blue, and
green sticks all 3/8",in diameter and differing in length by 1/8". In

each item, the child 41 first to determine the relation that existed
between the red and bite sticks, then the blue and:green sticks. To make
an inference about the relation that existed between the red'and green
sticks the child was again asked i'hree questions in random order as in
the CIrRT. On the items with screened stimuli the final inference about
the Ikngth of the red and green sticks had to be made with the sticks in
boxes and not visible by the subjects. This test was used both as a
pretest and a posttest with scoring as in the CUT:

Seriation Test. A 12-item test was constructed to assess the child's
. ability to seriate on the basts of "longer than" and "shorter than."
Items! 1-6 were based on the relation "longer than;" items 7-12 were based
on "shorter than." Item 1 and item 7 required the child to seriate six
sticks (free seriation), all 3/8" in diameter, differing in length by 1/8"
with the shortest stick being 5 1/2" long. Item 2 and item 8 required the
child to seriate six strings (free seriation) of the same length as the
sticks in item 1 and item 7.

. .

For the free seriation items, a point was .given for each stick or
string judged to be in the "correct place" with respect to the relation
given. For'example, when the child had indicated that his series was
formed, he was then asked to show how the objects were in order from the
longest to shorte'st.(shortest to longest). Now, if, for instance, ht was
basing his ordering on "longer than," and he indicated that his series
Was formed from left to right, a point would be given for a stick b if b
was'shorter than die stick it immediately succeeded and at the \same time
longer, than the stick it immediately preceded. A maximum of four points
was awarded for each of the free seriation items.

Items 3, 4, 5, 9, 10 and 11 required the child to insert a stick
into a series W.re,ady formed. However, the sticks in the series were
glued on an 8"1 16" piece of cardboard, spaced and staggered so that a
baseline was not di,scernable, as in Figure 1.

." Figure 1

"Item 04 (seriated from longest to shortest - left to right).

"i

k

8"
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items 3 and 9 consisted of four sticks, in items 4 and
in items 5 and 11 six sticks. In each case the sticks
Items 6 and 12 were also insertion items but the

a visible baseline and the sticks could be moved about.
for'each correct answer.

Classification Test. This test consisted of 3 items; two requiring
the child to group sticks On the basis of length and one in which the
child had to determine the criteria used for sticks already grouped.

Thmaterials for item 1 consisted of 12.green sticks, each 3/8"
diameter with four of length 5", four of length 5 1/4" and four of length
5 1/2 ". One stick of each length was mounted on a piece of paper board.
The three mounted sticks were pointed out to the child who was then in-
structed to "find all of the sticks that would go with this stick (5"),
this stick (5 1/4") and this stick (5 1/2")." The nine sticks to be class-
ified were in disorder before the child. A record of all sticks correctly
and incorrectly placed was kept by the experimenter.

The materials for item 3 consisted of ten red sticks all 3/8" diam-
eter, three of length 4", three oflength 4 1/4", three of length 4 1/2",
and one of length 4 3/4". The _ten sticks were given to the child and he
was instructed to "put all pf the sticks together that belong together."
A record 0 the child's actions was kept by the experimenter.

Item 2 required that the child determine the criteria used for
grouping. The materials for this item consisted of fifteen sticks; five
each at length 6", 6 1/4", and 6 1/2". The sticks were placed into three
distinct piles about 15 4inches,apart on a table. Within a pile, sticks
differed in color and diameter; with length being constant. The child
was instructed to " me yhy I have all of. these sticks together in
this pile (6"), in ptle (6 1/") and in this pile (6 1/2")." If a
correct answer was ,-the child was asked to justify his answer.
Upon, justification, h- as then aske4, "Why do I have these sticks in
different piles?" Ag justification for-a correct answer was asked
for. A record of all anew = s was kept by the experimenter.

The Experimental D sign and Statistical Analysis. Two treatment
conditions within two grade levels within two schools produced eight corn-

, parison groups. Table 1 is a layout of the design. SI and S; represent
W. H. Crogman Elementary School and Cleveland Avenue Elementary School,,.
respectively. numerals '41" and "2" represent grades 1 and 2. The
letters E and C represent experimental and control groups, and Gi (i 1,
...., 8) represents the eight different groups.

,Because'the main purpose of the criterion test was to eliminate
subjects who did not have a knowledge of the relations, no test of signi-
ficance was performed on the criterion test data. It should be pointed
out that all children met criterion on the Criterion Test.

A 2 X 2 X.2 factorial design utilizing analysis of Variance (MUoALS)/i
waused to determine the effect of the tWo classification (School and
Grade Level) and treatment variables on the seriation test. An analysis

MUGALS (Modified University of Georgia Least Squares Analysis of
Variance), Athens, teorgia, University of Georgia Computing Center, 1966.
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Table 1
Outline of the Design

Tests
Grade Crit CUT TLRT Seri Class CLRT TLRT

School Level Treatment Test Pre Pre Test Test 'Post Post

Si

S2

1

2

1

2

E G1 G1 G1 G1 G1 G1 G1
C G2 G2 G2 G2 G2 G2 G2
E G3 G3 G3 G3 G3 G3 G3
C Gy Gy Gy Gy Gy Gy Gt.

E G5 G5 G5 G5 G5 G5 G5
C G6 G6 G6 G6 G6 G6 G6
E G7 G7 G7 G7 G7 G7 G7
C G8 G8 G8 G8 G8 G8 G8

of covariance (MUGALS) was used to analyze the conservation and transitivity
posttest scores using the respective pretests as covariates. An item by
item analysis involving the treatment variable was performed on the clasj.-
fication test data using contingency tables and Chi-square test of inde-
pendence. To determine relationships between transitivity, seriation, and

classification, a series of contingency tables was constrUcted and tested
with Chi..square tests of independence.

Results

Seriation Test

The overall mean for the seriation test was 12.51 with a standard
deyiation of 7.03. The total possible score by an individual onl'this
test was 24. Table 2 contains the means for grades and treatment within
'groups:.

Table 2
Means for Seriation Test

School Grade Experpmentals Controls

Crogman

Cleveland

1

2

1

2

12.83

15:50
11.25
20.0ff

6.55
12.42
7.88

13.56
a

Table 3 contains the difficulties of all dichotomous items on the
seriation test,` Because items 1, 2; 7, and 8 were nondichotomous the
difficulties of these items are reported as p-values in Table 4.

ft6



Johnson / Learning of Classification and Seriation 81

Table 3
item Difficulties of Dichotomous Items - Seriation Test

Item No. Frequency of Correct Response Difficulty

3 46 .57
4 33 .41
5 33 .41

6 46 .57
9 41 .51

10 36 .44

11 43 .53

12 44 .54

Table 4
P-Values for Nondichotomous

P -Values

Item No. Score 0 1 2 3 4

1 .26 .06 .17 .00 .51

2 .2&" .16 .23 .03 .30,

7' .27 .07 .12 .05 .48
8 .30 .12 .27 .05 .26

*p is the ratio of Ss who received score i (i = 0, 1, 2, 3,,4) for
item x (x = 1, 2, 7, 8) to the total number of subjects answering.

Inspection of Table 3 shows that less than fifty percent of the
children were able to correctly answer items 4, 5 and 10. Items 4 and 10
involved inserting a stick into a fixed five-stick series in which the
sticks were ordered from longest to shortest (item 4) and from shortest
to longest (item 10). It was expected that item 5 would be more difficult
than item 4, because item 5 contained six sticks as opposed to five in

' item 4 and were arranged in a staggered series from longest to shortest.
Because items 5 and 11 were identical except for order, the difference in
difficulty was not expected. Furthermore, inserting a stick into a six-stick
series with a baseline (items 6 and 12) appeared to be slightly easier
than inserting into a six-stick series without a baseline (items 5 and 11),

Table 4 clearly shows that more children were able to correctly
seriate sticks (items 1 and 7) than strings (items 2 and 8). Little dif-
ference in difficulty was found betweenperformance on the "longer than"
item using sticks (item 1) and the "shorter than" item using sticks
(item 7): Similarly, little difference in difficulty was found between
performance on the "longer than" item using strings (item 2) and the
"shorter than" item using strings (ttem 8). It also appeared that children
either could not put any objects in correct order (score of 0); could
correctly order up to four or make two pairs of three, each correctly
ordered (score of 2); or couldnorrecay order all six objects (score of 4).

The analysis of variance-4e; the seriation test is .reported in Table

5. Both grade (p < .01) and treatment (p < .01) were highly significant
main effects. No differences could be detected due to school. No signi-
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ficant first or second order interactions could be detected. It is clear
that the experiences provided to the subjects in this study were sufficient
to improve their seriation ability as measured by the seriation test.

Table 5
Analysts of Variance for Seriation Test Scores

Source of Variation df HS

S (School) 1 - 35.66 <1.00
G (Grade) 1 648.79 17.22**
T (Treatment) 1 452.92 12.02*
S x G 1 42.70 1.13
S x T 1 .25 <1.00
G x T 1 .02 <1.00
S x G x T 1 48.41 1.29
Error 73 37.68 '

**(p < .0005), * (p < .001)

Conservation of Length !?elation Test (Posttest)

Table 6 contains the means for all groups on the CLRT posttest. An
interesting observation is that the means for first-grade controls were
somewhat higher than means for first-grade experimentals across schools.

Table 6
Means for Conservation of Length Relations Test (Posttest)

-School Grade Experimentals Controls

Crogman

Clevelhnd

1

2

1

2

2.50

4.50
2.25

5.22

3.20

4.08
4.25

4.89

The CLRT was given both as a pretest and a posttest. A comparison of item
difficulties on the pretest and posttest is given in Table 7. Overall,
the items on the CLRT were easier on the posttest than on the pretest.
Item 1, involving "same length as," was more difficult than item 2, also
involving "same length as," on both administrations of the test. This is
surprising since item 1 used a "neutral" situation while item 2 was a
"conflictive" item. Divers (1970) found that different perceptual situa-
tions had little effect on conservation ability. Items 3 and 4, involving
"longer than," were the easiest items on the posttest.

The results of the CLRT posttest were analyzed by analysis of covar-
iance using the CLRT pretest as a covariate. The results of this analysis
are reported in Table 8.
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Table 7

Item Difficulties of Conservation of Length Relations
Test: Pretest and Posttest

Item No.. Relation and Situation'
Difficulty

Pretest Posttest

1 Same Length As (N) .35 - .56.
2 Same Length As (C) .42 .63
3 Shorter Than (N) .63 .67
4 Shorter Than (C) .43 .70
5 Longer Than (N) .35 .64
6 Longer Than (C) .41 .64

Table &
Analysis of Covariance for Conservation of
Length Relations Test Scores (Posttest)

Source of Variation df MS F

S (School)
G (Grade)
T (Treatment)
S x G
S x T
G x T
TxSxG
Error

1

1

1

1

1

1

1

72

14.45
10.68

.67

8.98
.42

.34

.98

2.26

6.39*

l-------/1.---"-----7<1. 1

3.5.7.

<1.00
<1.00
<1.00

*(p < .05)

The main effects of school and grade were both significant. In view
of past research on conservation ability, it was expected that older
children would be better conservers of length relations than the younger
children; however, it was not expected that the school effect would be
significant. No significance could be detected due to treatment. No sta-
tistically significant interactions were found; however, there was a possible
suggested interaction between school and grade.

Transitivity of Length Relations Test (Posttest)

Table 9 contains the means for all children on the TLRT pos test.
Item difficulties for the pretest and posttest are given in Table 10.

Inspection of Table 10 reveals that on the pretest, all ites except
item 3 were of near equal difficulty. It was not expected tha item 3
would be easier than item 4 because item 3 required the child to make an
'inference about the relative length of sticks placed in \boxes and not
visible to the child. An interesting result, was the change in difficulty
of items 1 and 2 in a positive direction, from pre-to posttest and a change
in difficulty in a negative direction 3, 4, 5, 6'from pretest
to posttest. The items involving the li r order relations were at least
as difficult after the extensive training on strategies of seriation
U9utilizing these relations.
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Table 9
Means for Transitivity of Length Relations Test (Posttest)

School Grade Expe?imentals Controls

Crogman

Cleveland

1

2

1
2

1.50

2.50

2.13

2.67

1.40

1.33
2.50
3.44

Table 10
Item Difficulties of Transitivity of Length Relations

Test: Pretest and Posttest

Item No. Relation and Situation
Difficulty

Pretest Posttest

1 Same Length As (S)* .33 .49
2 , Same Length As (C) .30 .43

3 Shorter Than (S) .44 .38
4 Shorter Than (C) .31 .28

5 Longer Than (5) .33 .22

6 Longer Than (C) .31 .30

*S:. Screened, C: Conflictive

Table 11
Analysis of Covariance for Transitivity of

Length Relations Test Scores (Posttest)

Source of Variation df MS

S {School) 1 14.96 6.31* ,
G (Grade) 1 2.12 <1.00
T (Treatment) 1 .59 <1.0b
S x 0 1 .001 <1.00
S x T 1 8.14 3.43
G x T 1 .12 <1.00
TxSxG 1 1.40 <1.00.
Error 72 1 2.37

*(p < .05)

Table 11 contains the results of the analysis of covariance on the
TLRT posttest with the TLRT pretest used as a covariate. Only the main .

effect of school wad significant. No significant interactions we4 de-
tected with only a possible Interaction suggested between school and
treatment.

The test statistics for the seriation test, the CLRT pre- and post -
teat, and TLRT pre- and posttest are contained in Table 12. Test correla-
trona are given in Table 13. An unexpected result was that the seriation
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Table 12
Test Statistics for Seriation, Conservation, and

Transitivity Tests (N = 81)

Test
pr

Number of Items Possible Score Mean
0

SD Reliability

Seriation 12 24 12.5 7.03 .81**
CLRT (pretest) 6 6 2.58 1.98 .77*
CLRT (posttest) 6 6 3.84 1.98 .85*
TLRT (pretest) 6 6 2.03 1.47 .46*
TLRT (posttest) 6 6 2.11 1.66 .63*

**Alpha Coefficient, *KR-20

Table 13
Test Correlations

Con. Pre. Con. Post .Tran. Pre. Tran. Post

Seriation
Con. Pre.

Con. Post
Tran. Pre.

.21 .25*

.65*

.15

.45*

.43*

.26*

.38*

.33*

.31*

*(p < .01)

test did not correlate more than .26 with any other test. All correlations
differed significantly from the zero correlation except the correlations
between the seriation test and the conservation and transitivity pretest.

Classification Test

Item 1 on the classification test required the child to find and
group into three distinct piles sticks similar to a given stick. From
the children's responses, four performance categories were identified.
They were: (a) the child did not attempt to classify sticks; (b) the
child made some partial classes but did not exhaust the set of sticks to
be classified; (c) the child exhausted the set but made some incorrect
choices, and (d) the child correctly classified all, sticks. Table 14
shows the number of subjects exhibiting each of the above four types of
performance on item 1 by treatment, grade, and school. A Chi-square test
of independence was performed for each main effect and performance. The
control subjects performed comparably to experimental subjects on item 1.
Thirty-six ofrforty-seven (76%) subjects at Crogman School were able to
classify all sticks. The same percent of category d responses was found
at Cleveland School; twenty-six,of thirty-four (76%). A alight relation-
shik (x2 - 6.78, p < .10) was fourid between performance on item 1 and
grade level.

Item 2 requirbd the subjects to discover the criteria for classifi-
cation. In this item sticks Of different colors and diameters were
presented in three distinct piles and the child was ask to give a reason
for their being grouped together in separate piles. e c was also
asked to tell why distinct piles were formed. Five distinct categories of

5
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Table 14
Frequency Table: performance on Item 1 Contrasted

With Treatment, Grade, and School

Performance
a b

Treatment

Grade

School

E 1 7 4 29

C 0 4 3 33

1 1 8 5 25

2 0 3 2 37

Cr 1 7 3 36

Cl 0 4 4 26

responses were identified. They were: (a) the child did not discover the
criteria; (b) the child gave a correct reason for the piles being together
but without justification; (c) a correct reason was given with justifica-
tion; (d) in addition to justifying the reason for sticks belonging in
distinct groups, the subject correctly gave a reason for sticks being in
different groups but without justification for his reason; (e) all of (d)
with justification. The overall performance of the subjects on item 2 is
presented in Table 15 contrasted by treatment, grade, and school. A slight
relationship was found (x2 = 9.26, p < .10) between performance and treat-
ment; however, a higher frequency of category (e) responses was given by
the control subjects with a reversal for category (d) responses. Overall,
it can be seen that about 75% of the subjects failed to discover the
criteria for classification in item 2.

Table 15
Frequency Table: Performance on Item 2 Contrasted

With Treatment, Grade, and School

Performance
a e

Treatment'

Grade

School/

E 29 1 2 6 3
.,

C 30 0 2 0 8

1 29 0 3 1 6

30 1 1 5 5
Cr 35 1 3 2 6

Cl 24, 0 1 4 5

In item 3 the child was given ten sticks and asked to classify them
as he desired where the sticks differed only in length. Onetstick was
longer than all of the others, requiring the child to come to grips with
forming a class with one element. Four categories of performance were
identified: (a)Inoattempt was made to group the sticks; (b) the child
made at least two .piles with the sticks being placed incorrectly; (c) the
child put all sticks in correct piles according to length except the
longest sticks; (d) the child correctly classified all sticks, including
the longest stick. The overall performance of the subjects contrasted by
treatment,'grade, and school is given in Table 16.
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Table 16
Frequency Table: Performance on Item 3 Contrasted

With Treatment, Grade, and School

Treatment

Grade

School

Performance
a b c d

E 5 17 3 16
C 1 21 4 14
1 2 22 5 10
2 4 16 2 20
Cr 4 22 6 15
Cl 2 16 1 15

No significant relationship could be detected between performance
on item 3 and treatment, grade, or school. However, the frequencies
reported for grade 2 shows that second graders gave more correct category
(d) responses than the first graders which indicates that more older
children were able to deal with a class consisting of one, member than
their younger counterparts.

Classification and Transitivity

One purpose of the study was to investigate relationships between
the ability to use the transitive property of "same length as" and classi-
fication ability on the basis of length. Tables 17, 18 and 19 contain
the subjects' classification responses on items 1, 2 and 3, respectively,
partitioned by transitivity score. The transitivity score was a result
of the subject's performance on the transitivity items involving "same
length as" on the TLRT posttest. Zero, one, and two were assigned as
transitivity scores depending upon whether the subject correctly answered
none, one, or both of the transitivity items. In order to increase cell
frequencies, rows indicating intermediate levels of performance on the
classification test were combined as explained by Guilford (1956). Tables
17 and 18 show that performance on item 1 and 2 was slightly related to

Table 17
Contingency Table: Classification Performance (Item 1) vs

Transitivity Ability (same length as - Posttest)

wClassification
Performance

Transitivity Score
2 1 0

d

a-c
25

3

16

3

21

13

x2 = 5.73, p < .10

transitivity ability of "same length as." No relationship could be
-detected between transitivity ability and classification performance on
item 3. Perhaps transitivity was not needed to correctly perform the
items on the classification test. However, the data in Table 17 indicate
that at least 80% of the time, the child who scored 1 or"2 on the tran-
sitivity test performed at the highest level on the classification item.

kJ.)
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In contrast, the data in Table 18 suggest that at least 85% of the time,
the child who scored 1 or 0 on the transitivity test performed at the
lowest level on classification item 2.

ti
Table 18

Contingency Table: Classification Performance (Item 2) vs
Transitivity Ability (same length as - Posttest)

Classification
Performance

Transitivity Score
2 1 0

d-e

a-c

10 2 5

18 17 29

X2 - 5.72, p < .10

Table 19
Contingency Table: Classification Performance (Item 3) vs

Transitivity Ability (same length as - Posttest)

Classification Transitivity Score

Performance 2 1 0

d

a-c

13 7 10

15 12 24

X2 - 1.91, p < .50

Seriation and Transitivity

The ilelationship,berween seriation ability using the relations
"longer than" and "shorter than" and the ability to use the transitive
properties of these relations was also investigated. These results are

presented in Tables 20 and 21. The transitivity score refers to whether

Table 20`

Contingency Table: Seriation (longer than) vs
Transitivity (longer than - Posttest)

Transitivity Score

Seriation Score 2 1 0

9-12 4 12 12

5-8 1 6 13

0-4 2 10 21

X2 - 3.91, p < .50
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Table 21
Contingency Table: Seriation (shorter than) vs

Transitivity (shorter than - Posttest)

Transitivity Score
Seriation Score 2 1 0

9-12 2 10 12
5-8 5 11 14
0-4 7 5 15

X2 = 4.96, p < .30

the child correctly answered none, one or both of the items on the transi-
tivity test involving the relation "shorter than" or "longer than." The
seriation score for each order relation ranged from zero to twelve.

The results of Chi-square tests of independence indicate that the
hypothesis of independence between seriation ability and transitivity
ability cannot be rejected beyond the .10 level of significance.

Other Relationships' a

It was expected that the ability to seriate sticks was related to
the ability to seriate strings across relations. The results repcirted in
Tables 22 and 23 show that a high relationship does exist between these ,
two abilities. Inspection of Table 22 shows that of the 24 subjects who
received a score of four, representing the correct seriating of six strings
from shortest to longest, twenty-three also received a.score of four for

Table 22
Contingency Table: Seriation of Sticks vs Seriation

of Strings (Shorter Than)

Sticks
Strings 4 3-2-1 0

4 23 0 1
3-2-1 17 10 7
0 1 9 13

X2 41.03, p < .001

seriating sticks from shortest to lbngest. However, of the forty-one
receiving a score of four for seriating sticks from shortest to longest,
only twenty -three received four for seriating strings. Similarly, Table
23 reveals that of 21 students receiving a score of four with strings,
18 received -a score of four for sticks While of 39,who received a score
of four for sticks, only 18 received a score of four for strings, all
seriation based on the relation "longer than." Not only were the abilities
related,'but clearly seriating strings was somewhat more difficult, than
seriating sticks.

4
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Table 23
Contingency Table: Seriation of Sticks vs

Seriation of Strings (Longer Than)

Sticks
Strings 4 3-2-1' 0

4 18 3 0

3-2-1 18 15 3

0 3 2 19

x2 = 54.54, p < .001

Table 24
Contingency Table: Insertion Ability

(Baseline vs Non-Baseline)

Non - Baseline

Baseline 2 1 0

2 17 10 8

1 4 9 7

0 2 11 13

X2 = 13.83, p < .01

A strong relationship was also found between the abilities to
insert a stick inte an existing series of sticks with a baseline and with-
out a baseline, shown in Table 24. Seventy-four percent of the subjects
who correctly inserted the stick into the two non-baseline items also
correctly inserted the stick into the two baseline items while only
fifty-four percent of the subjects who inserted correctly ihto the two
baseline items could also insert correctly into the two non-baseline
items.

Discussion

The results of this study clearly confirm the hypothesis that seria-
ability of "linear" objects can be improved by training. It is also
clear that seriation ability improves with age and, if trends hold, little
ability to seriate "linear" objects can be expected below six years of
age. The experiences provided in this study to the first grade children
were sufficient to cause their mean performance (12.04) on the seriation
test to be comparable to the mean performance of the second grade children
who did not have the experiences (13.49). Being black or white appeared
to have little or no effect on the subject's seriation ability.

The extent of 0- cts' seriation ability, in terms of being
operational in a sense, must be questioned when one considers
the overall performance on the transitivity teat. In particular, the
treatment appears to have had no effect on the children's ability to use
the transitive property of the order relations involved in the study. In

fact, no significant relationship could be detected .between transitivity
of nonger than" and "shorter than" and the ability to seriate using these

(36
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relations. This finding is not consistent with the hypothesis presented
by Beih and Piaget (1966) and confirmed by Elkind (1964) that transi-
tivity is necessarily present when a child exhibits behavior characterized
as stage three seriation behavior. The question is raised concerning what
is "operational" seriation behavior. In this study, children were able to
seriate strings and sticks, as well as insert additional sticks into a
series already formed without any trouble but could not use the transitive
property of "longer than." Such responses would indicate that the seria-
tion training was successful in training the children to use an algorithm
which was not part of an operational scheme. If this was the case, it
would be expected that the relationship between seriation and transitivity
would be negligible. If, however, the children were now "operational"
then these findings suggest that contrary to Piaget'S hypothesis, seria-
tion behavior does not necessarily imply transitivity. In any case, it
is clear that we need additional.guidelines as to what constitutes opera-
tional behavior and more effective ways of measuring such behavior.

:Throughout the training sessions outlined, it was frequently pointed
out that'll object awas the same length as object b, than the spatial
position of a "and b did not after this relationship. Furthermore, if awas longer (or shorter) than b, then a would remain longer (or shorter)
than b regardless of their spatialtposition. Even though such procedures
were part of the classification and seriation training little or no
difference was de ected between the experimental and control groups in
the performance on the CERT. However, a significant school and grade
effect was found. While the school and grade differences were expected
in view of past studies, the non-significant treatment effect was unex-
pected. Although the procedures in this study differ somewhat from the
procedures used in a study by Sigel, Roeper and Hooper (1966), they report
that classifiCation training improved ability to conserve quantity. Caw
and Steffe (1968) report the selected experiences significantly improved
the ability of four- and e-year-old children to conserve length. The
experiences piovi arey and Steffe were similar to the experiences
provided to the sampl in this study.

The'results of th classification test indicate that it was somewhat
easier for children to lassify sticks bn the basis of self-selected
criteria than to dis er the criteria used for sticks already classified.
While little differ nce was found in performance (as noted by frequencies
of response) on it one and three due to school and treatment, it was
clear that second g de children did better on both of the items. On item
three, the different in response frequencies indicated that second grade
children were able to form a class with only one element more consistently
than the first graders. This finding was consistent.with Piaget's obser-
vation that the concept of a singular class appears in a,child around
eight or nine years of age.

The hypothesis of a.relationship between the child's classification
ability and his ability to use the transitive property of the equivalence
relation of "same length as" was not confirmed. The lack of a relation-
ship may be explained, at least partially, in two ways: (1) A two-item
test may not give a true assessment of transitivity ability. Past research
reveals that much controversy exists over methodological issues and at the
age at which children acquire the transitive property. Braine (1959),
using a non-verbal technique,reported that children can use the transitive
property of length relations as early as four and one-half years of age.
On the other hand,'Smedslund (1963b) reports that operational transitivity
occurs around seven years of age and that Braine failed to assess transi-

)
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tivity. (2) Transitivity was not needed to do the classification tasks.

In the case of item one, this could possibly have been the case since
over half of the subjects receiving a score of zero on the transitivity
test (indicating failure to correctly answer both transitivity items)
performed at the highest level on this item. On item 2, over 50Z of the

subjects performed at the lowest level of performance across transitivity
scores. Over half of the subjects receiving zero on transitivity also
performed at the lowest levels of performance on item 3. Such results

suggest that transitivity was not necessary for the classification items

in this test.
In view of the findings of this study, questions may be raised

concerning the feasibility of placing certain topics and activities in

the early elementary mathematics curriculum. Consider the topic of formal

linear measurement which is now being introduced by some curriculum devel-
opers as early-as first grade. According to Piaget, Inhelder, and Sze-

minska (1960), prerequisite to understanding linear measurement is the
ability to conserve length and to use the transitive property of length

relations. The findings of this study indicate that about half of the
first and second grade children used did not show evidence of these

prerequisites. In view of this, perhaps. as pointed-out by Huntington
(1970), the teaching of formal linear measurement should be delayed

until approximately bird grade. A

The idea of ordering numbers (such as 3 comes after 2 and 3 comes
before 6) is one commonly taught at first and second grade. It seems

reasonable that children at these grade levels would also have many
experiences in ordering sets of physical objects. Certainly, such an

activity is less abstract than ordering cardinal numbers per se. An

example of such an ordering would be to order sticks on the basis of

"longer than." This study has shown that many children at first and
second grade cannot perform such ordering, causing one to question
whether the child has a concept of "five," "six," "seven," etc. when he
arranges them in order or if he is just recalling the order from his rote

counting process. It has been shown that seriation ability, as related
to linear objects, can be improved with certain experiences. It, still

needs to be shown whether similar results can be found with other rela-

tions.
The early elementary mathematics curriculum includes activities in

forming and describing "sets" and operations with "sets." However, basic

to forming sets of objects is the notion of classifying objects on the
basis of certain properties of qualitative characteristics of the objects.
As noted, Inhelder and Piaget (1964) have shown that children go through

various stages in determining criteria for grouping. This study has

shown that while children of six or seven years of age can sort sticks on
the basis of length, they experience great difficulty when given a collec-
tion of sticks already partitioned on the basis of length and asked to tell

why they were grouped together. This finding implies that children will

experience difficulty in determining the reason or reasons X number of

objects has been placed in a set. For example, suppose A {January,

February, March, April, May, }. Will the child "discover" the

criteria for grouping and add June to the set? Teachers should be aware

that this type of problem may be quite difficult for six- and seven-year-

old children. .

Finally, the present study has raised questions concerning relation-
ships between classification, seriation and transitivity ability. While

some answers are given, it is not at all clear what kind of experiences
7
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Children should have between the ages of four and eight inorder to
facilitate development of structures needed in logical activities.

99
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The.Generalization of Piagetian
Operations as It Relates to the
Hypothesized Functional Inter-,
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Operational Concepts

One useful definition of the word "concept" can be stated as follows.
A concept has been attained when one can, within a given universe .of ex-
perience, distinguish instances from noninstances of the concept. On the

--basis of this definition, at least two subcategories can be-distinguished
within the class of concepts. An example of the first of these types is
the conct of "red." This type of concept may be referred to as a concrete
concept since all of the information that is necessary in order to distin-
guish instances from noninstances is directly given in the perceptual field.
Another type of concept may be referred to As an operational concept in
that it involves abstractions, not, just from directly perceived properties
of objects, but also from relations between objects, or from operations
(or transformations) that are performed on objects (Piaget, 1971, p. 26).

Matherlatical concepts can involve operations in at least two ways.
Some concepts (e.g., set union "+") inherently involve the mastery of a
system of operations. Other concepts are operational because they arise
only after a system of operations has been mastered. As an example, con-
sider the concept of a class.

The Concept of a Class

A class of objects does not exist in isolation. In order to form a
class of objects C, one must be able to determine not only what elements
are in C but also what elements are not in C (call this class C') rela-
tive to same_subsuming class S.

A kindergarten child can be presented with three c.YeZ. plastic boxes
containing 8 yellow balls, 3 yellow cubes, and 8 green cubes respectively.
If he is asked, "Are there more yellow things or more balls?" the response
is often "more balls." An analysis of children's responses (Inhelder
Piaget, 1964) reveals that the difficulty is not that young children mis-
understand the intent of the question. The difficulty seems to be that
when the child's attention is drawn to the class C (balls), the subsuming
class S (yellow things) is cognitively destroyed. Hence, the child may
end up by comparing the size of the class C with the size of the class C'

(yellow cubes).

Similarly, other tasks indicate that when atteniion,is directed to-
ward a subsuming class, its subclasses are often confused with overlappings
(Vygotsky, 1962,1)p. 56-65). Based on the careful analysis of children's
responses to such tasks, Inhelder and Piaget (1964, Ch. 1-4) have concluded
that a concept of a class C relative to a subsuming class S requires the
coordination of the operation "+" (i.e., class union, S C + C'), with its
inverse "-" (i.e., separation of classes, C S - C').

Three Basic Types of Logical-Mathematical Operations

A group of mathematicians, the Bourbaki group (Bourbaki, 1948),
wanted to isolate a small Number of "matrix structures" which would be

fundamental to all of the various branches of mathematics in that no one
of them could be reduced to the others and that all other mathematical
structures could be derived from these by combination, differentiation, or

r" r
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specialization. Through regressive analysis, three basic types of structures
were isolated which can be roughly characterized as follows (Grize, 1960,
pp. 72-81):

1. Algebraic structures, the prototype of which is the group.
These structures were distinguished in that their_form of
inverse operation was negation.

2. Ordering structures, the prototype of Which is the lattice.
These structures were distinguished in that their form of
inverse operation was reciprocity.

3. Topological structures, involving the concepts of neighborhood,
limit and continuity.

Just as the axiomatician can analyze mathematical structures in forms
of Component structures and can look for the fewest and weakest,axioms that
will be sufficient to account for a given structure, the developmental psycho-
logist can look at tasks that childPen perform and characterize them in
terms of the system of operations or relations that they involve. Piagetians
(Beth & Piaget, 1966, p. 186) have isolated three basic types of cognitive
operations that are roughly equivalent to three types of structures deter-
mined by the Bourbaki group. Distinguished by their form of inverse, these
types of cognitive operations are:

1. Operations whose form of inverse is negation, as in the set union
operation + that gives rise to classification concepts.

2. Operations whose form of inverse is reciprocity, as\in the order-
ing relation< (less than) that gives rise to.seriation concepts.

3. Geometric transformations.

Of course, a child may not be consciously aware of the Operations and
relations that are implicit in his activities. For example, when a pencil
A is shorter than a pencil B, and B is shorter than a pencil C, kinder-
garten children may be able to conclude that A will be shorter than C.

Further, they can use this fact long before they are explicitly aware of the
transitive property of order relations or of the system of relations that
the transitive property implies. As another example of the intuitive
mastery of a concept, children commonly use perfectly correct rules of
grammar long before they are explicitly aware of these rules.

Intuitive Mastery of Operational Concepts

In mathematics as in language acquisigon, it may betypical for
children to use rules (or systems of operations) before concious aware-
ness is attained. The intuitive mastery of a system of operations may
be somewhat analogous to the acquisition of an unconscious habit. What
is at first a habitUal pattern (i.e., structure) for using a system of
operations to achieve some end later becomes a program in the sense that

r.,(-)
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various substitutes can be inserte)3 without disturbing the overall act.
The unconscious application of a system of operations becomes more and
more probab'e in the performance of concrete tasks, and it is in this
sense that one can speak of the intuitive mastery of a given operational
structure.

It is clear that children typically come to master a wide range of
tasks that are characterized by isomorphic operational structures over
a relatively shoFt period of time. For example, in the case of the order-
174 relation< , # child usually becomes able to put cubes in order accord-
ing to size at about the same time he becomes able to put pencils in
order according to length, at about the time he can put circles,in order
according to diameter, etc.

A question which arises is, "How might one go about teaching chil-
dren an intuitive understanding of the order relation< ?" In order to
teach a concept such as "red," the child can simply ie shown examples and
counterexamples of red objects. However, in order to give a child an
intuitive understanding of the relation< , the situation is not as simple.

The Concept of a Series

Consider the relation < as it pertains to the task of putting ten
'3/8" dowel sticks (varying in length by 1 cm , the shortest of which is
9 cm ) in order according to length (Inhelder & Piaget, 1964, Ch. 9).

The earliest responses that children are able to give when confronted
with such a task consists of unconnected, uncoordinated pairs of shorter
and longer sticks 0111 di+ I). Later, children are able to produce
two or three unconnected subseries (

Ill 1'1). This is accomplished by
choosing the stick that is apparently shortest (i.e.,,usually without
making any active comparison), then some stick that is longer than the
first stick selected, followed by a stick that is longer than the second
one selected, etc., untir the child is forced to choose a stick shorter
than the last one selected. At this level of mastery of the seriation
task, the child is often unable to select the shortest stick firsts then
the shortest of those remaining sticks, etc., until all of the sticks have
been put in order. Such a response would require that the child be able
to coordinate the relation "longer than" (i.e., longer than the sticks
already selected) with the relation "shorter than" (i.e., shorter than
those sticks remaining). Indeed, even if a child is able to correctly
seriate a collection of sticks, he may still be quite unable to insert a
"forgotten" stick (i.e., an eleventh intermediate stick in the series)

I

without breaking up the ordering and reconstructing the entire series.
Insertion of a "forgotten" stick requires simultaneous consideration of
the relation "longer than and its inverse "shorter than." Thus, the
concept of a series involves the gradual coordination of the relation
"longer than" and its inverse "shorter than."

Mathematically, the relation that characterizes the above seriation
task is a strict partial ordering, the formal definition of which follows.
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4

Definition: < is a dtrict partial ordering on.* set S if < is a

set of ordered pairs of elements in S such that:

1. For every element a in S, (a,a) is not in,<
(nonreflexive property).

2. For every pair of elements a, b in the set S, if
(a,b) is in < then (b,a) is not in < (asymmetric

property).

3. For any three elements a, b and c in the set S, if
(a, b) is in < and if (b,c) is in < then (a, c)

is in < (transitive property).

From this definition it can be seen that, apart, from the fact that

the relation < involves giving a response to pairs of objects (in some
arbitrary set), it is primarily properties 1, 2, and 3 that define < .

Further, it is clear that these three properties stipulate that an under-
standing of the relation < implies a corresponding mastery of the relation

"not < " plus an ability to simultaneously consider pairs of relations.
Mathematically, the three basic types of logical-mathematical struc-

tures were defined by the Bourbaki (1948) in terms of their form of inverse

and their manner of combination. Therefore, Piaget has held that psycholo:
gically operations (or relations) are not understood in isolation, but
only as.they relate to whole operational structures (Beth & Piagesx 1966).
That is, an operation (i.e., operation, relation, or transformation) is
not first learned and later assigned its properties (i.e., commutative
property, associative property, etc., or reflexive property, transitive
property, symmetric property, etc.). Rather, the meaning of an operation

is derived from the structure of which it forms a part. For the seriation

task described above, it was not until the comparison "longer than" came to be
coordinated with the comparison "shorter than" that the comparison attained
the status of a strict partial ordering relation. This point will be

reconsidered in the next section; however, for now, the following observa-
tion should be made.

It is quite possible, that, for a specific finite set of objects, a

pseudorelation between objects can be learned as simple S-R associations
to pairs of objects without any accompanying understanding of the relation

per se. As a trivial example of this phenomenon, one could take a set of

ten ordered Cuisenaire rods (III 11 HIP and teach a young child to say,
"They are not equal in length" for any pair of rods which could be presented
from the ordered set of ten rods. Such learning alone would dot indicate

an understanding of the relation 0 (in length). Rather, the child may

have learned only a property of a particular set of objects. No under-

standing would be required of the relation per se. For the purposes of

this paper, less.concern will be given to a child's apprehension of S-R

. associations to pairs of objects in a specific set than to a child's
apprehension of certain relational structures in a wide range of situations.

Ilf two identical Cuisenaire rods (A and B) are glued to a piece of

paper with arrows drawn on the paper as follows ( ) and if a

third identical rod, C, is used by a child to compare with rods A and B,

he may say that A C (in length) and B C (in length), but still maintain

that A 0 B (in length).
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The Formalization of Operational Structures

The preceding section posed an apparent instructional dilemma because
of a phenomenon which can be called structural integration. Structural
integration occurs when lower order concepts ape brought together into a
whole (i.e., structure) and when the properties of the lower concepts
depend partly or entirely on the characteristics of die whole.

Structural integration occurs fairly often in mathematics. Two
examples have already been given. The mastery of the set union operation
+2 and the ordering relation < both involved structural integration. In
order to cometo an understanding of either of these individual operations,
a child must consider the operation to be part of a.system of operations.
But this fact causes a "chicken -egg" sort of instructional dilemma. It
appears that in order to master an operation, a child must master a system
of operations. But in order to master a system of operations, the indivi-
dual operations must be mastered.

Mathematicians can formalize a mathematical structure (e.g., define
a strict partial ordering relation) by starting with certain axioms, un-
defined terms, or accepted rules of logic, and construct theorems and
definitions oti the basis of these. That is, axiomatics terminates endless
regressions by beginning with undefined terms and it avoids circularity by
arbitrarily choosing a starting point which has Rot been demonstrated.2

Psychologically, however, one is not afforded thl luxury of beginning with
indefinables, axioms, or accepted rules of logic.

For example, in the case of the ordering relation < , the nonreflexive,
asymmetric, and transitive properties cannot be used as self-evident con-
cepts. Before the relation < has been coordinated with its inverse, each
of these properties is repeatedly and often emphatically denied by children
(Infielder &Piaget, 1964). Even such mathematically primitive concepts, as
Hilbert's order axiom (If 8 is between A and C, then it is also between
C and A) are not a priori intuitions for children until the betweenness
relation has been subsumed within a system of relations (Piaget & Inhelder,
1971, p. 144).

The Genetic Construction of Operational Structures

A

In order to teach children a concept of redness, one can present
examples and counterexamples of red objects. In a certain respect, the
abstraction of operations can be achieved through a similar process. That
is, operations are abstracted from many different situations in which the

2G,Ode1 (1934) demonstrated the.impossibility of establishing the
noncontradiction of any deductive theory solely by methods borrowed from
this theory or from weaker systems. The verification of the completeness
and noncontradiction of a system and the independence of its axioms must
be tested by the use of mathematical models. However, as soon as lower
systems are subordinated to higher, only systematichAoles are guaranteed
an autonomous existence (Beth & Piaget, 1966, p. 272). Referring to exactly
this point, Bertrand Russell is known to have quipped, "Mathematics is the
subject where we never know what we are talking about, nor if what we are
saying is true."
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The Formalization of Operational Structures

The preceding section posed an apparent instructional dilemma because
of a phenomenon which can be called structural integration. Structural
integration occurs when lower order concepts are brought together into a
whole (i.e., structure) and when the properties of the lower concepts
depend partly or entirely on the characteristics of the whole.

Structural integration occurs fairly often in mathematics. Two
examples have already been given. The mastery of the set union operation
+, and the ordering relation < , both involved structural integration. In
order to come to an understanding of either of these individual operations,
a child must consider the operation to be part of a system of operations.
But this fact causes a "chicken-egg" sort of instructional dilemma. It
appears that in order to master an operation, a child must master a system
of operations. But in order to master a system of operations, the indivi-
dual operations must be mastered.

Mathematicians can formalize a mathematical structure (e.g., define
a strict partial ordering relation) by starting with certain axioms, un-
defined,terms, or accepted rules of logic, and construct theorems and
definitions on the basis of these. That is, axiomatics terminates endless
regressions by beginning with undefined terms and it avoids circularity by
arbitrarily choosing a starting point which ham pot been demonstrated.2
Psychologically, however, one is not afforded the luxury of beginning with
indefinables, axioms, or accepted rules of logic.

For example, in the case of the ordering relation < , the nonreflexive,
asymmetric, and transitive properties cannot be used as self-evident con-
cepts. Before the relation < has been coordinated with its inverse, each
of these properties is repeatedly and often emphatically denied by children
(Inhelder & Piaget, 1964). Even such mathematically primitive concepts, as
Hilbert's order axiom (If B is between A and C, then it is also between
C and A) are not' a priori intuitions for children until the betweenness
relation has been subsuMed within a system of relations (Piaget & Inhelder,
1971, p. 144).

The Genetic Construction of Operational Structures

In order to teach children a concept of redness, one can present
examples and counterexamples of red obiects. In a certain respect, the
abstraction of operations can be achieved through a similar process. That
is, operations are abstracted from many different situations in which the

2,0del (1934) demonstrated the impossibility of establishing the
noncontradiction of any deductive theory solely by methods borrowed from
this theory or from weaker systems. The verification of the completeness
and noncontradiction of a system and the independence of its axioms must
be tested by the use of mathematical models. However, as soon as lower
systems are subordinated to higher, only systematic wholes are guaranteed
an autonomous existence (Beth & Piaget, 1966, p. 272). Referring to exactly
this point, Bertrand Ruaaell is known to have quipped, "Mathematics is the
subject where we never know what we are talking about, nor if what we are
saying is true." o
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operation occurs. Piaget has held that these situations in which operations
occur are the child's actions. Logical-mathematical knowledge is seen as
beginning, not with an awareness of self (a priori intuitions) or of things,
but with the coordination and recognition of their interactions. THat is,

an operation is an internalized scheme of interactions, where the scheme
of a set of actions is their common Ilerational essence.

The scheme of an action is, by definition, the structured
group of the generalizable characteristics of this action, that
is, those which allow the repetition of the same action or its
application to a new content. . . . This is why such schemes have
a completely general significance and are not characteristic
merely of one or another of the actions of a single individual.
(Beth & Piaget, 1966, p, 235)

For example, in order to teach a child the relation < , he can be
given a variety of experiences ordering many kinds of objects according
to various criteria. To expect a child to abstract the relation < by
working with only one set of objects (e.g., Cuisenaire rods) would be as
unliNgly as expecting the child to abstract redness by showing him only
one red object.

Thus, internalizing schemes of actions means abstracting the common
operational essence from a number of isomorphic interactions. In the case
of the seriation operation, one might give the child the following types
of experiences:

1. put Culsenaire rods in a row according to length,
2. put dowel rods in order according to length,
3. put cylinders in a row according to height,
.4. put cylinders in. a row according to diameter,
5. put circles in a pile according to diameter,
6. put cubes in a row according to size,
7. make a tower of cubes according to size,
8. put-spheres in prder according to size,
9. put spheres in order according to color,

10. put sandpaper in a pile according to roughness.

None of the materials above inherently embody the relation < . Rather,
each set of materials can be used to coordinate the relevant scheme of
interactions. These various sets of materials can then be used to help
the child abstract the relevant ,system of operations. However, the abstrac-
tion which takes place is not from the objects per se, but from the systems
of interactions that were coordinated using the objects.

Reflexive Abstraction

In the previous section certain similarities which exist between
teaching children a'concept such as redness through experiences with
objects and teaching children an operation through experiences performing
actions on objects were pointed out. However, there are also certain
dissimilarities between these two types of abstractions. In order to
abstract a concept of redness from a set of objects, the child simply
needs to isolate the relevant property. However, as long as the single
interaction is isolated, it can have little significance to the child as
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the archetype of an operation. To abstract operations from one's own
actions consists not simply of taking note of individual isolated inter-
actions, it requires the reconstruction of these actions on a higher plane.
Individual, interactions gradually take on new significance (reflexive
abstraction) as they are modified by being treated as part of a whole
operational structure.

Reversibility

The key to the emergence of a whole system of schemes of interactions
`is the appearance of the inverse to the given scheme. This reversibility
phenomenon is attained when the child exhibits a recognition of the fact
that the combined application of a scheme.followed by its inverse is
equivalent to the identity scheme. According to this definition reversibi-
lity implies not only the emergence of the inverse scheme but also the
identity scheme and combination oLpairs of these.3 Thus, the attainment
of reversibility implies the existence of an operational system which in
turn elevates the scheme to the status of an operation as part of the
structured whole.

For Piaget, an operation is an internalized scheme of interactions
that is reversible and that is dependent on other schemes with which it
forms an operational system characterized by laws that apply to the whole

'structure (Beth & Piaget, 1966, p. 234). Further, he has held that the
simplest such structures include not just the original scheme of actions,
but also at least its inverse, identity schemes, and combination of pairs
of these.

1

Genetic Circularity

It should be clear from the a e description that the evolution of
operational structures wo d not conceived as beginning with individual
isolated operations which a essively linked together. Rather, the
evolution of structures of operations wodld be visualized as occurring
simultaneously with the evolution of the operations thatsthe structure
subsumes. Thus, both the structure and its operations simultaneously
crystalize out of a system of schemes of actions as it becomes progressively
coordinated (genetic circularity).

While the coordination of a system of schemes of actions is achieved
progressively, its completion is marked by a momentary acceleration in this
construction as the child shifts to a qualitatively higher level of thought.
As a result of this reorganization, new self-evidence typically appears

3
One could easily argue that the emergence of the identity, scheme is

equally as important as the emergence of the inverse and choose to call
this event the child's recognition of Identity (Berlyne, 1965). Or one
could argue that the child's ability to combine paifs of schemes is the
significant event (Lunzer, 1960a, p. 32) and call the event Combination.
The choice of terms seems somewhat arbitrary, however, in the sense that
Reversibility, Identity, and Combination should each be implied no matter
which of the three terms one wishes to emphasize.
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with regard to concepts whose definitions depend upon the application of
the given structure. Thus, certain operational concepts (such as the
concept of a series, or class)_and certain properties (such as transitivity)
arise out of structured wholes of operations, the completion of which ex-
plains the necessity of its elements insofar as their meanings are e
dependent on that whole.

.4

Piaget's Groupings

Because of the fact that a formalization of the most elementary opera-
tional structures which are mastered by children are globally similar

to a mathematical group, Piaget has coined the word "grouping" to refer to
such structures. The concept of a grouping is believed to be useful (1)
due to the ability of children to internalize any particular action that
is inciried within a given scheme of action at "about" the same time and,
(2) since the internalization of a scheme of action automatically implies
the internalization of a structure of intrrnalized actions, the simplest
of which includes the scheme, its inverse, identity schemes, and combina-
tions of pairs of these.

It should be emphasized that a grouping is not some sort of "a priori"
cognitive structure (A la Gestalt psychology) which imposes itself on the
thought of a child. There is no more reason to attribute a priori existence
to Piaget's groupings in the minds of children than there is to attribute
a priori existence to the Pythagorean Theorem in the mind of Pythagoras.
The theorem was not a form into which Pythagoras' experiences fell. It was
a necessary consequence of the progressive organization of Pythagoras' ex-
periences. There is an important psychological distinction between a
form that is assumed to exist a priori in a child's mind and a form that
is a product of equilibration (i.e., progressive organization) and which
could not have developed otherwise.

Cognitive Characteristics of Preoperational Children

Children who have not yet mastered.a given system of operations are
characterized by at least the folloi-aing cognitive characteristics. syncre-
tic thinking, centering, and fixed state thinking.

Syncretic Thinking
0 oo

Children who are able to copy a 3 x 3 array of circles (0.0 o, ),
and who have stated that each of the two arrays contains nine circles, are
often convinced that the two arrays no longer contain the same number of
circles after one of the two arrays has been partitioned into three clusters

08 480). Children have difficulties coordinating part-whole rela-
tionships within numerical aggregates. When attention is drawn to a'numerical
whole, the parts (or units) are cognitively neglected. When attention is
directed toward component parts, the whole is often cognitively destroyed.
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That is, children tend to view sets of objects aynoreticaly, or as a global
unanalyzed whole, rather than analytically.

Gast (1957) has shown that the ability to determine the cardinality
of a at depends on the homogeneity of its items. He found an initial stage
in which virtually complete homogeneity of the elements 16 required; a
second in which perceptual diversity is possible within certain limits of
qualitative resemblance; and a final t e in which the objects may belong
to several disj tive classes (al see Piaget, 1952; Dodwell, 1962; and
E1%ind, 1964). concept of a t is by no means an a priori intuition
for young children.

Fixed State Thinking

Preoperational children ten to focus on successive states of an ob-
ject or set of4Objects rather thin on the operations that connect these
states. For example, if a kindergarten child is asked to represent (by draw..
ings, by gestures, by multiple choice selections from pictures) the succes-
sive positions occupied by a stick in falling 'from vertical to horizontal

( 4> the task proves to be surprisingly difficult.
.. .

'While kindergarteners are uaUally able to represent the beginning
vertical position and the ginal horizontal position, intermediate positions
often present great difficulties. Young children may not only fail to rep-
resent intermediate positions correctly, they may even fail to recognize a
correct representation when it is shown to them (Piaget & Inhelder, 1971).
Thus, preoperational children seem unable to integrate a series of states
of an object into a continuous whole--or,a transformation.

As another example consider two identical transparent bowls one of
which contains six beads and the other five and two identical opaque boxes
in front of each bowl (Figure 1). \If the beads are taken from the bowls
and placed one for one into the boxes until each box contains five beads,

young children may believe that there are not the same number of beads in

Child

Figure 1

'bowls

boxes

I
the two boxes, indicating that a yellow bead is left in one bowl while all
of the blue beads have been used. Further, if the child is told that there
are five beads in one of the boxes and is asked to guess how many beads are
in the other, he will typically answer in accordance with his judgment of--
equaltty or inequality. If he had previously stated that the two sets were
unequal, he will likely guess almost any number other than five. Thus, young
Children seem to believe that the cardinality of a set may somehow

lit 9
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be affected by the source of its elements.
Preoperational children tend to base their judgment solely on isolated

configurations that are before them at any given moment. This cognitive
preference was reflected in the above task in that children typically make
their incorrect numerical judgment based on the only number-relevant infor-
mation that was available in the final state of the task situation -the
source of the objects.

4

gptering

Another task can be posed which illustrates one of the cognitive
characteristics that accompanies,thinking in terms of unconnected fixed
states. Place two cylindrical glasses in front of identical boxes, each
of which containspthirty half-inclt beads (Figure 2). The child is directed
to take a blue bad in one hand, a yellow bead in the other and to put the
beads into the two cylindrical glasses at exactly the same time. After
ten beads have been put into each of the two glasses, the child may believe

/** yellow beads
blue beads

Figure 2

that there are more beads in the glass where the beads reach a higher level.
Children not only focus their attention on momentary conditions of an

object or set of objects, tiey also center on only the most salient percep-
tual features of a given configuration. That is, they may notice height
but neglect thickness.

The Concept of Number

It has.been argued that it is typical for logical - mathematical con-
cepts to be operational concepts. Nonetheless, the involvement of operations
in the formation of many mathematical concepts is much less obvious than in
the two examples cited thus far. In particular the opertitional nature of
early number concepts has been contested throughout the history of mathe-
matics education. One of the most eloquent arguments against nonoperational
Points of view concerning the origin of number concepts has been given by
Dewey (McLellan and Dewey, *14), whose views are summarized in the follow-
ing statements:

Number ie not (psychologically) got from thinge,
them (p. 61).

. . . This. abstraction is complex, involving hao
difference that makee the individuality of each
noted, and yet the different individuals must be
--a awn (p. 25). #111,

it ie put into

factors: the
abject mat be
grasped as one
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Thus, in considering.a group of seven red circles, Dewey would con-
tend that the concept "redness" is a qualitatively different sort of con-
cept than the concept of "sevenness." Whereas redness can be directly
perceived in the circles, sevenness only becomes a property of the circles
due to operations that'are performed oh the circles.

Modern mathematics educators have often Cited children's responses
to Piagetian number conservation tasks in order to help verify the point
of view expressed by Dewey. Nonetheless, universal acceptance has not
been given to any one of the various possible interpretations which exists

concerning the relationship between a child's understanding of number con-
cepts and his ability to respond correctly to conservations of number tasks.
In the following two sections, conservation-like task's will be given which
will help to establish an interpretation of the significance of conser-
vation tasks. In addition, the examples may help to, clarify the way
children come to master elementary number concepts.

'Qualitative Cognitive Growth

Implicitly taking the position that correct conservation responses
are largely unrelated to the child's level of understanding of the concept
of number, certain psychologists and educators have attempted to explain
the mastery of conservation tasks by children in terms of their gradual',
mastery of the fact that a spatially displaced set of objects can be re-
turned to their original positions (or slight modifications of this
argument). It seems likely that an understanding of empirical return is
a necessary (but not sufficient) condition for mastery of conservation
tasks. However, the insufficiency of this explanation is illustrated by
the following example.

Suppose a circular string of circumference four inches is put in the
shape of a square ( ). The child is told that the string is a fence
and that a cow can eat the grass inside the fence. Then the string is
changed into the shape of a 1-1/2 inch by 1/2 inch rectangle. The child
is asked if the cow still has the same amount to eat (CMC7.3).

Understanding of empirical return is an almost equally good explana-
tion of conservation of area in the above task, in spite of the fact that
area is not conserved for this task as can be seen if the strin continues
to be transformed into two line segments of length two inches (Ln=5----,)

Kindergarten children often respond correctly that the area diminishes
as the square becomes more rectangular. However, to assume that these
children understand the concept of area would be incorrect. Further ques-
tioning may indicate that those children who responded correctly were
basing their judgments on the height of the rectangles. (Incorrect answers
usually focus on the width. Only seldom will a child judge the areas to
be the same.) Thus, children often respond correctly by basing their
judgments on the wrong information.

Children older than five years of age (and in fact many adults) often
assert that the area remains the same. Further, they may maintain this
conviction almost until the area disappears in the limiting case. Such
adults certainly do not understand less than the 'average kindergarten
child. They have shifted to a qualitatively higher level of thought which
brings-with it new factors as sources for incorrect judgment. A fundamen-
tal fact which Piaget's research makes abundantly clear is that cognitive
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growth from birth to maturity does not simply get qualitatively better and
better; qualitative reorganizations also occur. His theory addresses itself
to these qualitative changes. Learning is not simply a matter of associ-
ating right answers to questions.

If one's emphasis is on a child's understanding of the concept of
number, it is Crucial to be able to account for the differences between
Piaget's conservation of number tasks and the area task described above.
That is, it is important to be able to explain how children come to under-
stand that number is invariant under simple displacements. Too often
invariance (or conservation) has been treated as a unitary sort of concept,
as though invariance of what (i.e., number, mass, volume, area, etc.) were
relatively unimportant.

Rejectable Explanations of the Initial Attainment
of an Operational Concept of Number-

With respect to logical-mathematical knowledge, Piaget has considered
the most relevant aspects of intelligence to be, not what a child perceives,
but the rules of organization which the child gradually develops in order
to control and use the information he receives. Althoug)i an adult may feel
that he perceives "nineness" in a 3 x 3 array of circles ( ), he
may be more skeptical regarding the purely perceptual origin of "nineness"
in the following'configuration ( o000 0o0 ) The sensation of perceiving
"nineness" appeard to by similar to what happens when one looks at a hidden
picture puzzle. Once the picture is distinguished, it is difficult to
realize how it had ever been disguised (Bruner, 1968, Ch. 5).4

Many examples could be given which would bear witness to the fact that
any concept of number which does not involve at least the operation of
giving an order to objects which previously had no order (seriation)1,
identifying in some sense objects which are not in fact identical (c1assi-
fication), and coordinating part-whole relationships in order to grasp t e
concept of units can involve orily,the most rudimentary and superficial
concept of number. Until children Ave mastered these elementary operati ns,
they not only fail to realize that number is invariant under simple disp ce-
ments, they also deny each of the properties that define the concept of
number. For instance, tasks can be posed in which nonconservers will deny
the validity of Peano's Axioms of (1) that a numerical whole is equal to
the sum of its parts, (2) that addition is commutative (or associative),
(3) the existence of an identify element (or inverses), and (4) the rela-
tionship ,between cardinal and ordinal numbers (Piaget, 1952). Such tasks
can be used to determine progressively reduced developmental levels at
which a nonoperational concept of number. could exist.

Raving reduced the level of development at which a nonoperational
concept of number could exist, the question remains whether an early opera-
tional number concept must ultimately, or at some still lower level, evolve
out of some sort of nonoperational concept. One might still hold that
some nonoperational concept (although exceedingly rudimentary) is actually

4
Wohlwill (1968) has summarized some of the distinctions between per-

ception and conception as seen by the Gestalt school (Kohler, Wertheimer,
Bruner, Brunswick, and Piaget).
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a first approximation to a later, more refined concept. On the other hand,
it may equally well be that any nonoperational concept of "number," far
from being a first approximation to a more mathematically viable concept
of number, is actually a detriment to later learning. To clarify this
possibility, consider the following analogy.

A child who could select a red crayon from his box of crayons would likely
be considered to have attained a primitive concept of redness. To be sure,
the concept would be quite elementary to a spectrometrist, who must analyze
incoming light from far away stars. Nonetheless, under limited conditions,
the concept would likely suffice as a first approximation if it did not deny
any of the properties that characterize a later, more sophisticated notion
of redness.

Conversely, a concept which could not in some sense be construed as
being a first approximation to a later, more sophisticated concept would
not be considered to be a concept of redness. Thus, if the child's red
crayons were broken in half and he were taught to recognize it only by its
shorter length, the learning which would accrue would not be a concept of
redness. Even though the child might always be able to p.elect the red
crayon from his box upon command, he might be respondiOg to length cues
rather than to color cues. Such a training procedure Would be foolish, of
course, since redness is at least as easy to teach a child as shortness.
It does little good to trick a child into giving a correct response to
erroneous cues and it does little good to trick him into correct responses,
which he does not understand. However, while these maxims seem to be so
much a matter of common sense concerning the concept of redness, they
are commonly violated concerning children's Instruction pertaining to
number concepts. Children are often tricked into giving correct arithmetic _-

responses which they.do not understand and/or into giving correct responses
to erroneous cues.

For example, while a child can often be tricked ito giving the correct
numerical responses to the following arrays of objects ( : '.':, etc.),
the concept that the child may be learning may not be a concept of number.
The essence of making numerical judgments involves learning to avoid making
judgments on the basis of shape or pattern, A training procedure based on
standard dot patterns may encourage preoperational children toward tendency
to judge numerical wholes on the basis of gross configuration (or area
covered) rather than on appropriate cues.

Dot patterns, Cuisenaire rods, counting discs, and arithmetic blocks
can each be useful models in order to help children come to an understanding
of number Concepts. However, even if a dot pattern ) can eventually
be used as a model to represent the number 10, it is important to remember
that it is a constructed representation. That is, the model only comes to
embody the number 10 after certain systems of operations have been coordi-
nated relative to the model. Until a child has toordinated these operations
4mtp elementary systems, his thinking will tend to be fixed and syncretic
with respect to tasks that are characterized by the structure, and he will
tend to center on only one aspect of models that are presented.

Initially ely Verbal or Symbolic Concepts of Number

The pr operational thinking of young children seems to be so different
from that of itn adult that for the child many adult-like words and responses must
mean something very different from the meaning an adult assigns to them. It is

J.)



108 Research on Mathematical Thinking of Young Children

difficult to say exactly what the statement 5 + 3 8 ma can to a lit
child whose thinking is characterized by fixed thinkin , syncretic thin
and centering; but it is well known that even withou roper understandi ,

children are quite capable of memorizing large quan ities of verbal or vt

symbolic material. Thus, misunderstandings are of en (tot detected until
an entire facade of ill-conceived notions collapses n early elementary
school arithmetic, this collapse typically occurs when children reach
regrouping concepts involving "borrowing" and "carryin 5

The improvement of langauge may aid in the acquisi on of an opera-
tional concept, if the activation of language can facilita the coordina-
tion of operations and enable the child to be less dominat by perceptual
forces (Bruner, 1964). Nonetheless, appeals to an initiall purely verbal-
symbolic concept to explain the development of an operatio al number con-
cept is insufficient. Piaget (Ripple & Rockvstle, 1964 has stated:,

Words are probably no short-out to a better understanding
. . . . The level of understanding seems to modify the language
that is used, rather than vice versa. . . . Mainly language
serves to translate what is already understood; or else language
may even present a danger if it is used to introduce an idea which
is not yet accessible (p. 5).

The fundamental problem appears to be to determine to what underlying
concepts the language and symbols that children use are being attached
(Bruner, Giver & Greenfield, 1966, p. 47).

The Genetic Development of the Concept of Number

On the basis of parsimony, Piaget's description of the development
of number concepts is quite pleasing since an operational number concept
need not be assumed to 'evolve out of some sort of nonoperational concept.
PiagetianA (e.g., Piaget, 1952; Inhelder & Piaget, 1964) have furnished
an impressive quantity of data to substantiate the hypothesis that elemen-
tary number concepts (the assignment of numerals to sets whose elements
are xegarded as classed and ordered) develop in parallel to, and as a
synthesis of, the development of elementary classification and seriation
concepts. This appears to be so since the intellectual coordinations in-
volyed in forming series and classes are also involved in forming seriated
classes (i.e" numbers). However, Piaget's analysis of the cognitive
evolution of number and other logical-mathematical concepts relies heavi-
ly on the Rsychological viability of analyzing, ordering, and equating
concepts (or tasks) on the basis of their underlying operational structures.

5Roughhead & Scandura (1968) and Brownell & Chazal (1935) have re-
ported findings which indicate that rote verbal or symbolic learning may
actually cue out the kind of reorganizing activity which seems necessary
for a child to come to an operational understanding of number.

"7.
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Ordering and Equating Operational Structures

For Piaget, cognitive growth is viewed as a process of gradually
coordinating systems of operations through the dual process of assimilation
(i.e., inner organization) and accommodation(i.e., outer adaptation).

As the child's perceptual activities become coordinated, he becomes
cognizant of more features of what is perceptually before him at any given
moment (i.e., less centering, syncretic thinking, and fixed state thinking).
This increased awareness demands greater coordination, which in turn pro-
duces still more analysis of perceptual givens. In short, what we have is
an activity that organizes reality while coordinating its own functioning.
The tendency in adaptation is constantly in the 'direction of greater
equilibrium of the functioning structure in the face of external distur-
bances and demands for internal consistency (i.e., coordination) (Piaget,
1960). Further, each relative equilibrium state carries with it die ability
to detect new sources of disequilibrium and hence the seeds of its own
destruction. What we have here is a sort of concrete analogue to the fact
established by Godel (1934) concerning the impossibility of establishing
the noncontradiction of a deductive system solely by methods borrowed from
this system or weaker systems.

This progress toward greater equilibrium, together with the proposi-
tion that operations exist psychologically only within structured opera-
tional wholes, yields a basis for ordering and equating operational concepts
(or tasks). As a trivial illustration, one' would expect that the task of
putting cylinders (which vary according to height and diameter) into 4 x 4

Figure 3

matrix would be mastered no sooner than the task of putting ten dowel rods
in order according to length. This is because the operational structure
that characterizes the dowel rods task is included within the.structure
that describes the task involving a matrix of cylinders (Figure 3).

Intra-individual Variability

While Piagetians have amassed a large amount of data to support the
contention that task's with isomorphic operational structures are mastered,
at "about" the same time, it is also well known that intra-individual
variability commonly occurs concerning a child's ability to perform tasks
which are characterized by a single operational structure (Piaget, 1971,
p. 173).

As an example of the phenomenon of intra-individual variability,
consider the following tasks. Six pennies are placed in front of a kinder-
garten child, and ten pennies are placed in front of an adult. The child

,5
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is then aged to "Hake it so we both have the same number of pennies."
Another-Similar task can be posed using small one-inch cubes instead of
pennies. The problem is markedly more difficult using pennies than using
one-inch cubes. Using cubes, the problem is commonly solved by kinder-
garteners following the sequence of steps illustrated in Figure 4. The
child is aided in making the two groups equal in nuMber by being able to
make them the same shape. Using pennies, the child is forced to be more
analytic in his consideration of the two groups. Therefore, ifone were
to consider a set of tasks all of which are characterized by the same
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system of operations, the tasks would vary somewhat in difficulty due to
the relative involvement of factors such as: syncretic thinking, fixed
state thinking, and centering.

Ordiring and Equating Tasks

The intra-individual variability, which is part of Piaget's theory
concerning a child's ability to perform concrete tasks which are charac-
terized by a single operational structure, has caused understandable con-
fusion among those who would interpret this theory. This confiltion seems
to have developed, at least in part, because of a common failure to distin-
guish between the invariant sequential mastery of various tasks which
involve the application of these operations. To illustrate this distinc-
tiob, consider the following situation.

Suppose that tasks T1 and Ti' both involve the application of an
operational structure Si. The theory predicts that tasks TI and Ti' (and
all other tasks characterized by operational structures Si) should be
mastered at "about" the same time, subject to a certain amount of intra-
individual variability, and subject to certain side conditionsflof equiva-
lence between the two tasks.6 Hence, one might visualize a given child's
mastery of all tasks that are characterized by a particular operational
structure, as in Figure 5.

In particular, then, it would only in general be true that tasks
T1 and T1' are mastered at the same time. For instance, it could happen
that task TI' was mastered before Ti.

Now suppose thk another task T2 was found to be characterized by an
operational structure S2, and further suppose that structure S2 includes
(or subsumes) Si. On the basis of the subsumption of structure Si by S2,

6That is, the two tasks would have to be equally facilitating. They
would have to be relatively equivalent concerning the degree to which they
require the child to decenter, be more flexible, be more analytic (i.e.,
less syncretic), etc.
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one could conclude that structure S2 would be mastered by a child no sooner
than structure S1. Nonetheless, this fact would not necessarily imply that

% of tasks %100
(characterized

by cognitive

structure S1
mastered by
the child)

1
1

2
1

3
1

4
1

5 TI' T1 1

91 1018 9 10

age

Figure 5

task T2 would be mastered no sooner than task Ti. In fact, the situation
could occur as illustrated in Figure 6. That is, although it is in general
true that tasks characterized by structure S2 are mastered no sooner than
tasks characterized by structure SI, this might not be the case with respect
to particular tasks Tz and T1. It could happen that task T2 would be mastered

% of tasks

(characterized
by cognitive
structure SI or
S2) mastered by
the child

before task.

%100

11 21 31 4 1

Figure 6

Lunzer's Hypothesis

81 91 101 age

Lunzer (1960a, pp. 30-32; 1960b) has attempted to reconcile the fact
of antra- individual variability with the quantity of evidence that Piaget-
ians have produced showing that children attain the general ability to
internalize all logical-mathematical action schemes into reversible struc-
tures over a relatively short period of time. That is, children usually
master all three types of logical-mathematical, at about six or
seven years of age--subject to variations due to Asmorn such as experience,
social transmission, and equilibration (Piaget, 1964a).

Lunzer has suggested that the crucial step that is taken by children
at about six or seven years of age is when they become capable of making

two judgments simultaneously, and this ushers in the beginning of Piaget's
period of Concrete Operations.

It is, no doubt, guff& true that a generalized ability to make two
simultaneous judgments is a prime factor accounting for the great cognitive

reorganization which takes place in children at about six or seven years
of age. In fact, this seams to be only another way of defining Piaget's
concept of reversibility. What isrfor Piaget the coordination of an

I 7
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operation with its inverse is for Lunzer the ability to make two simul-
taneous judgments. However, Piaget has believed that it is fruitful to
distinguish at least three types of logical-mathematical operations (Beth
& Piaget, 1966, p. 186). In terms of simultaneous judgments, these opera-
tions would perhaps be distinguished as follOWS.

1. Operations involve coordinating two properties of a set of objects.
2. Relations involve coordinating two comparisons between objects.
3. Transformations involve coordinating two perceptions of an object.

The main factor that enables all three types of groupitigs to be mas-
tered during the same general age range may well be the fact that each
involves the coordination of an operation with its inverse. Nonetheless,
the three basic types of logical-mathematical operations may retain ctr-
tain unique characteristics that enable them to be distinguished from one
another as distinct psychological entities (Elkind, 1964).

It is only in such special instances as the synthesis of the classi-
fication and seriation groupings to form the number group that Piaget has
hypothesized functional interdependence between concrete operational struc-
tures. The relationship between the number group and, the classification
or seriation groupings is predicted to be closer than the relationship
between the classification and seriation groupings.
between specific actions within a given scheme are close than the rela-
tionships between groupings that are formed from distinct schemes.

The Pilot Study

A theory which hypothesizes the invariant sequential mastery of cer-
tain operational structures while allowing for intra-individual variability
concerning a child's ability to perform tasks which are characterized by
these structures has remained a source of controversy. For example, cer-
tain psychologists (e.g., Kohnstamm, 1967) have asserted that the fact of
intra-individual variability renders teaningless the practice of ordering
and equating tasks on the basis of underlying operational structure. Such

criticisms suggested a pilot study, the primary experimental objective of
which Was to investigate the interdependent development of classification.
seriation, and number concepts.

While helping to confirm the psychological viability of an zing,

ordering, dnd equating tasks on the basis of their operations tructures,

the pilot study was to serve the dual function of furnish g the theoreti-

cal scaffolding which would be necessary for structuring and interpreting
a transfer of training study. Toward these ends, three parallel sequences
of Piagetian tasks were obtained (denoted by Sl, S2, . . S7; Nip N2 . .

N6; and CO, CI, C2,. . C6) which were graded in difficulty and which
pertained to seriation, number, and classification respectively. Each of

these three sequences was determined by ordering tasks according to the
theory outlined in preceding sections and selecting those tasks which would,

in fact, exhibit a relatively invariant sequential mastery. For example,

the seriation tasks were related in such a way that the probability would
be small ( <15%) that a child would be able to correctly respond to task

1 8
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S(n + l)' before he is able to respond to task S(n); and similarly for the
other sequences of tasks. Once formulated, these three sequences were
to be used to investigate the intAdependent development between concept
areas.

The easiest task in the seriation series involved copying a circular
string of beads (S1) or copying a string of beads in the inverse direction
(S2). Progtessively more difficult seriation tasks involved reconstructing
a set of ten ordered Cuisenaire rods (S3), putting ten dowel rods in order
according to length by trial and error (S4), or without trial and error (S5),
inserting dowel rods into a completed series (S6), and reconstructing a
4 x 4 matrix of Cylinders (S7). The simplest classification task involved
producing "nongraphic collections" (see Inhelder and Piaget, 1964, p. 19-20,
for an explanation of classification by graphic collections) when attempt-
ing to classify objects within a set of yellow cylinders, yellow cones,
green cubes, and green pyramids '(C11. More difficult classification tasks
involved anticipating criteria for exhaustively subdividing sets of objects
(C2), repartitioning sets of objects according to differing criteria (C3),
reconstructing a 5 x 5 classification matrix (C4), and hierarchically classi-
fying a set of objects (C5). The most difficult classification task (C6)
was a quantitative inclusion task (Inhelder & Piaget, 1969, Chapter IV).
The simplest number tasks involved copying a row of seven circles (il) and
partitionin$ a set of sixteen pennies into four equal sets (N2). More
difficult number tasks involved equalizing a set of ten pennies and six
pennies by taking pennies from the larger set (N3) and copying a 3 x 4
array of circles (N4). The most difficult number tasks were four distinct
types of number conservation tasks.

**
After a child had copied a row of seven red circles (o o oo o o o ),

conservation task N5a required the child to realize that his row still had
the same number of circles as the model row after the circles in the model
row had been pushed closer together ( o o*Stt o 0). Conservation task
N51, tesyd the child's understanding of the fact that the number of circles
in a 3 x'4 array ( giii ) does not change when the circles are regrouped
into three 2 )c 2 arrays. Task N6 involved two subtasks, one in which.beads
were placed into two separate, and different shaped glasys by the ch$d
(N6a), and the other in which six beads were placed into two separate iden-
tical red cardboard boxes in a one-to-one fashion where the beads came from
piles of'beads of different cardinality (N6b).

Procedure

Each of the three sequences of tasks was administered individually
to each of 160 kindergarten children during khe last month of the 1969-
1970 school year. The children participating in these studies represented
rather typical small town Indiana communities. Although I.Q. test scores
were not available for kindergarten children in the schools involved,
typical achievement test and I.Q. test performance of older children in
the participating schools were about average for the state of Indiana.

Severely mentally handicapped children had been identified (and placed in
special classes which were not used in the study) through the combined use
of a Bender Perceptual Development Test, a Boehm Test of Basic Concepts,
and a Draw-a-Man General Intelligence Classification Test. Scores for
the children used in the pilot study sample on each of these tests were
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distributed from below average to superior for their age group. The ages
of the children (83 boys, 77 girls) ranged from 5 years 4 months to 6
years 7 months. Each of the 160 children took the task batteries on three
successive days. Each of the three batteries of tasks required from 10
to 20 minutes to complete. The order in which the test batteries were ad-
ministered was varied. doe-sixth of the children were chosen at random
to take the seriation battery of tasks on the first day, the number battery
on the second day, and the classification battery on the third day. Simi-
larly, one - sixth -of the children took the task batteries in one of the
other six permutations of the order: seriation, number, and classification.

Results

Tasks on the pilot study batteries were each scored on a pass-fail
basis. A summary of the results of the pilot study are recorded in
Figure 8, which should be read as illustrated in Figure 7. Figure 9kindi-,,

45

Figure 7

5

cates that of the 160 children who participated ithe pilot study, 45
responded correctly to task T1 but not to task T2, and 5 responded
correctly to task T2 but not to task T14,0060ther children either missed
both tasks or responded correctly to both tasks. Thus, Figure 7 reveals
that, on the basis of a sample of 50 children who responded incorrectly
to exactly one task, the chances are approximately 90 percent, i.e.,

4,prt 45/(45 + 5) 45/50 that a given child will correctly respond to
task-T1 before task T2.

The tasks are related in difficulty approximately as illustrated in.
Figure 8. The easiest tasks are at the top of the figure and children
appear to proceed in a parallel fashion through each of these three series
of tasks. That is, tasks which are at approximately the same level in
Figure 8 are comparable in difficulty, whereas talks which are at different
levels differ significantly as to degree of difficulty.

The existence of a high correlation between cognitive development in
these three concept areas is also evidenced by the following information.
By assigning each child an ordered three-tuple (x,y,z), where x, y, and
z correspond to the child's scores on the seriation, number and classifi-
cation batteries respectively, scatter diagrams and Pearson's product-
moment coefficients were obtained.
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Figure 8
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Although the correlation coefficients between these three series of
tasks were high (r

ns
= .695, ar = .041; r

nc
= .650, arnc= .046; and rse .609,

ns
'rsc u .050), the nature of the relationship between the three areas is by
no means established. In particular, a causal connection between these
series based on transfer of learning with respect to underlying operational
structures (as opposed to simply a high probabilistic correlation) has not
been established. However, several facts are of interest in this regard
from the informs n that was obtained. 0

FIt was not that correlation coefficients r
ns
= .695 (arns = .041)

and r
nc
= .650 (arnc = .046) were both greater than the correlation coeffi-

cient r = .609 (ar = .050). Such a result, if significant statistically,
sc sc

would be consistent with Piaget's hypothesis of closer operational ties
between number and either of the other two concept areas than between seri-
ation concepts and classification concepts. However, (with the possible
exception of the difference between rns and rsc) the above results did not

attain st istical sifnificance and were not considered as evidence con-
firming theoretical position. To obtain _more information concerning

this hypot sis, scatter diagrams were plotted recording the following in-
formation:,

1. The scores on the Number Tasks versus the sum of the scores
on the Seriation and Classification Tasks.

2. The scores on the Seriation Task versus the sum of the scores
on the Number and Classification Tasks. ,

,3. The scores on the Classification Tasks versus the sum of the
scores on the Seriation and Number Tasks.

The respective correlation coefficients which were obtained from
these diagrams were: rn = .809 (arn = .027), rn = .751 (ars .035),

rn = .724 (arc = .038).

From this information it is possible to determine that, for the
children and tasks used in this study, the chances are 95 percent better
of predicting performance on the number tasks on the like of the sum of
the scores on-the seriation and classification tasks than of predicting

performance on either of the other series of tasks using a similar method.
Apparently, there was a tendency for scores on the number task sequence to
lie "between" the scores on the remaining two sequences.

Although the above fact is an interesting result which appears to

be consistent with Piaget's position, it is considered to be more of an
indication of an issue which requires further research than a piece of
data which either confirms or disproves any given position. Flintier, the

heart of the issue concerning the psychological viability of or ring and

equating tasks on the basis of underlying operational structures seems to
be not so much a question of how much intra-intlividual variability is
allowable as it is a question of whether significant transfer of learning
is possible between tasks which are characterized by isomorphic operational

structures.
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The Training Study

The key issue toward Which the training study was to be directed was
to determine whether transfer of learning could.be induced between tasks

involving similar underlying operational structures. Since Piaget has
predicted number to be a synthesis of seriation and classification opera-
tions, the decision was made to try to induce number concept learning
through ,teaching seriation and classification concepts.7 It was hoped
that the seriation andiclaseification concepts would bear a similarity
to the-number concepts only due-to underlying operational structure. How-

' ever, Lunzer's hypothesis suggested that precautions should be taken to
demonstrate that if transfer was obtained it was not due only to the ability
to make two judgments simultaneously. Toward this end, a short study was
conducted to determine two tasks which involve only transformations and
which would be roughly equivalent in difficulty to tasks N5 and N6 from
the pilot study. If such tasks could be found, it was hypothesized that
transfer from learning classification and seriation operations uld pro-
duce gains in the understanding of number concepts, while very little gain
would be made concerning spatial concepts involving only transformations.

The two tasks which were selected involving only spatial transformations
were Task T6': Piaget's three mountain problem concerning the child's ability
to accurately conceive'of points of view other than his on (Piaget
;nheldfir, 1967, Chapter VIII), and Task T7: Piaget's task dealing with hori-
zontal axes relative to the water level in an inclined bottle (Piaget
Inhelder, 1967, Chapter VIII). Tasks N5, N6, T6 and T7 were administered
individually to 100 kindergarten children (50 boys,,50 girls). The results
of the'study are shown in Figure'9.

NS 14

2114 16
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Figure 9
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t7Traiding studies such as those conducted by Sigel, Roeper, and Hooper
(1966), Churchill (1958a), and Lasry (1969) offered hope that such training
might be possible.
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Subjects for the Training Study
re

The results of the pilot study were used to select twenty kindergar-
ten children who were matched according.to cognitive development relative to
seriation, classification, and number concepts. That is, children were selected

whp could correctly respond to tasks Sl, N2, and Cl, but who responded in-
correctly to task S3, N3, and C3', and who could thus be assumed Co be in-
capable of responding_ correctly to More difficult tasks in any of the

three sequences of tasks.8 The children participating in the training

study were all kindergarten children from one of the schools that had
been used the previous year in the pilot study.

The above twenty children were divided into two groups which were equiva-
lent in age (range: 5 yeard 3 months to 6 years 2 months), boy-girl dis-
tribution, performance on tasks S2 and C2, and performance on the follow-
ing three tests. er Perceptual Development Test, Boehm Test of Basic
Concepts, and t raw-A-Man-General Intelligence Classification Test.

Procedure

The trainin: two and a half weeks between Thanksgiving

and Christmas vacat ns. Training sessions involved groups of five children

each and lasted about a half hour each school day. The training group par-
ticipated in laboratory type sessions to be described in the following

section. These training sessions aimed at teaching children all and only
the operations which were involved in the tasks of the classification se-
quence or the seriation sequence of the pilot study. Short stories were

read to the control group followed by discussions of social studies prob-
lems, community helpers, or social roles. In this way, control group

was given special treatment, presumably different from that of the training

group only in content:3

Instructional Philosophy

The immediate instructional aim of the training study was to teach
children to master those structures of operations which characterized the
tasks in the classification sequence or the seriation sequence in the,'

pilot study. That is, the training group children were taught to perform
tasks which were characterized by the following four groupings of operations:
classification, multiplicative classification, seriation, and multiplicative

seriation. The criterion used to test the mastery of the above groupings

8Seventeen children in the pilot study had responded correctly to
tasks 81, N2, and Cl, but not to tasks S3, N3, or C3. None of these chil-

dren responded correctly to any of the more difficult tasks in the three

sequences.

9For a complete account of this training study, including a complete
day-to-My account of the training sessions, see Leah (1971).
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of operations was that the child be able to correctly respond to all of
the tasks in the classification sequence and the seriation sequence from
the pilot study.

To teach the children to master the above four groupings, the follow-
ing instructional philosophy was employed. For each task which had appeared
in either the leriation sequence or the classification sequence of the pilot
study, other tasks were devised which were characterized by the same struc-
ture of operations but which utilized perceptually different materials.

For example, in the case of Task S5 (putting ten dowel rods in order accord-
ing to length), a set of isomorphic tasks was given in the section of this
paper titled "The Genetic Construction of Operational Structures."

Isomorphic sets of tasks relative to each of the tasks which were
involved in the classification and seriation sequences of the pilot study
were presented followingthe sequential order of difficulty which had
been revealed in the pilot study. Thus, isomorphic sets of tasks were pre-
sented first for Task'S1, then for Cl, then for S2, then for C2, etc.

In the process of encouraging children to actively apply seriation
and classification schemes in tasks which required progressively higher
degrees of coordination and flexibility, the following training variables
were introduced as by-products. Children were taken from tasks which re-
quired only a semi-anticipation of the result of the application of an
operation to a set of .objects, through a trial and error period in which
semi-anticipation was successively corrected by hindsight, to a period
characterized by the attainment of reversibility of the relevant operations
in which the results of operations could be genuinely anticipated (i.e.,
foresight). Further, children were gradually required to overcome their
cognitive tendencies toward centering and syncretic thinking. Nonetheless,
it should be stressed that decentration and analytic thinking were consi-
dered to be primarily by-products of the gradual coordination ofd the
schemes of actions rather than conversely. The primary focus of the train-
ing procedure was to coordinate schemes of actions which lead to the group-
ings of striation, multiple seriation, classification and multiple classi-
fication.

In addition, children in the training group became acquainted with
the meaning of the following words relative to the correct completion of
their seriation and classification tasks: alike, different, order, some,
al/, and more than. Although the use of language was considered to be
useful in helping children to organize their seriation and classification
activities, the emphasis of the training procedure was on coordination
rather than on the use of language. For the most part, the use of language
was left to the spontaneous application by-the children. Little effort
was made to refine the children's use of language except in the instances
noted above.

Posttest: Results

The posttest was given individually to each of the twenty children
who participated in the study. The results were striking. None of the
ten children who had been is the control group were able to respond correct-
ly to any of the six tasks on the posttest. In contrast, four of the ten
children in the training group responded correctly to all of the number
tasks (i.e., N5, N6a, and N6b). One other training group child responded
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correctly to only Task N5b, and one responded correctly to only Task N6b.
Thus, the train g group significantly out-performed the control group.
Of equal impor ce, however, is the fact that none of the ten children
in the trains group were able to respond correctly to either of the
transformatio tasks T6 or T7.

Conclusions

The training group's sessions aimed at teaching children those
operations and operational structures which were involved in the seriation
and classification tasks of the pilot study. The posttest revealed that
transfer of learning from the experience which the training group had
received induced improved understanding concerning number concepts. Fur-
ther, the nature of this transfer was determined by the fact that whereas
transfer was obtained to tasks involving number concepts, no transfer was
obtained to tasks involving only spatial transformations.

Children who had simply learned to make two simultaneous judgments
would have been expected to perform better on not only the number tasks,
but also on the transformation task of the posttest. However, this was
not the case, even though the number tasks and the transformation tasks
had been shown to be comparable in difficulty. Other conjectures such as
maintaining that the training group had simply had more practice in deal-
ing with concrete materials must similarly be rejected since one would
expect to find comparable improvement on both the number tasks and the
transformation tasks of the training study.

The results of this study seem to bear witness to the fact that
children may indeed be capable of abstracting the operational essence
from the series of tasks which are characterized by isomorphic operational

. structures. That is, children appear to be capable of internalizing
schemes of actions. Further, once these schemes are internalized as re-
versible structures (i.e., groupings), they appear to generalize to new
situations which involve the same scheme. Therefore, the results of the
study appear to significantly strengthen the psychological viability of
ordering and equating operational concepts (or tasks) on the basis of
their underlying operational structure. Further, the fact that no trans-
fer was obtained from the seriation and classification instruction to
tasks which involve only spatial transformations indictes that Piaget's
distinction between thrge basic types Of cognitive logical-mathematical
operations may be quite a fruitful sort to make. There may be certain
qualitative psychological differences between the types of operations
which have been referred to in the present article as operations, relations,
and transformations.

Since Piaget's analysis of operational concepts (and number concepts
in particular) relies heavily on the psychological viability of analyzing,
ordering, and equating tasks on the basis of their underlying operational
structures, his description of the development of such concepts was
strengthened by the results of this study. For Piaget, operational con-

cepts each as the concept of numbek need not be assumed to evolve out of
some sort of initially nonoperational (e.g., purely perceptual-linguistic)
concept. Rather, an operation is an internalized scheme of actions which
is reversible and which depends on other operations, with which it forms
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a structured whole characterized by laws of totality (Beth & Piaget, 1966,
p. 234).

Two facts should perhaps be mentioned concerning the fact that chil-
fl dren who spontaneously mastered all of the tasks in the seriation and
' classification sequences of the pilot study out-performed the ten children

in the training group of the present study.
1. While a concept of number might involve only seriation and classi-

fication operations, tonservation of number tasks involve transformations
as well. For this reason, if the goal is to teach children that number
remains invariant under simple spatial transformations, it seems likely
that the child will have to be taught all three types of logical-matibe-
matical operations (i.e., operations, relations, and transformations).
However, the purpose Of this study was not to isolate sufficient conditions
which will insure the child's mastery of conservation tasks. Rather,,it
was to produce transfer of learning due to similarities in underlying
operational structures.

2. Cognitive operations are perhaps never mastered in any absolute
sense during the period ofhconcrete operations. This is because children
are not actually aware of the systems of operations which they bring to
bear in various logical-mathematical settings. Mastery of a given opera-
tional structure means that a child is able to apply the system of operations
in a wide range of concrete situations. Further, it seems likely that the
more situations in which a child has learned to apply a given operational
structure, the greater will be the chance that the structure can be applied
to a new setting. What we have here is near tautology; the wider the appli-
cability of a given cognitive operational structure, the greater will be
the chances that the structure will be applied in any given situation.
Maximum transfer can be expected from learning of greater generality.

Children in the training group were given a relatively small number
of tasks representing each operational structure which characterized the
tasks in the seriation and classification sequences of the pilot study.
Therefore, it is not unreasonable to suppose that their level of mastery
of the relevant structures of operations would have been somewhat less
than that of a child who could spontaneously respond correctly to all of
the seriation and classification tasks. Thus, the degree of transferability
which one would expect from such learning would be somewhat less than for
spontaneous problem solvers,

Since training studies are frequently interpreted as encouraging the
acceleration of a child's cognitive development, a disclaimer concerning
the unqualified desirability of acceleration should be emphasized. From
the point of view of this paper, Piaget's theory can perhaps be most use-
ful in providing guidance to broaden the conceptual basis underlying those
mathematical topics that are of greatest importance to mathematics educators.

If Piaget's analysis of the development of logical-mathematical con-
cepts is ta)cliVSeriously, then for many concepts that are most fundamental,
learning may have to be much more broadly based than many educators have
been willing to admit. So, while acceleration of a single isolated con-
cept is no doubt possible, even this acceleration should only be possible
within limits that are imposed by the breadth of the child's conceptual
bases.

In order to come to an understanding of the concept of number; chil-
dren may have to have certain experiences seriating and classifying objects,
as well as certain experiences concerning spatial transformations. The
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exact nature of these experiences may be able to be determined by analyz-
ing, ordering, and equating tasks on the basis of their underlying opera-
tional structures.

Figural model§ can be very useful in order to help children come to
an understanding of logical-mathematical concepts. But, according to Piaget

before a model can be used as an image to represent a mathematical concept
certain systems of operations will usually have to be coordinated relative
to the model. For mathematical concepts, figural models are typically

constructed representations. That is, mathematical properties will usually
have to be put /net the object using systems of operations before the pro-
perties can be abstracted.

18
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Learning of Selected Parts of a
Boolean Algebra by Young Children

Literature pertaining to theoretical as well as empirical study of
the thinking of young children is quite abundant. Although used exten-
sively by psychologists, this literature remains largely untapped by ma
matics ucators. However, for mathematics educators interested in cc ni-
t the research literature%surrounding the work of the Geneva Schoo
provides a framework for (1) explaining how mental operations basic. to
mathematical thought develop, (2) identifying structural characteristic
of thought as they undergo change with age, and (3) forming a theoretica
basis for certain curricular decisions and experiments in the learning of
mathematics.

The present study was designed with the following purposes: (1) To
determine if, specific instructional conditions improve the ability of young
children of various ages and intellectual levels to (a) form classes, (b)
establish selected equivalence or order relations; and (2) to investigate
that if specific instructional conditions improve abilities outlined in
(a) and (b) of (1) above, whether transfer occurs to (a) other class-related
activities and (b) the transitive property of the selected equivalence and
order relations.

Grouping Structures

Piaget (Beth and Piaget, 1966, pp. 158-162) has identified four main
stages in which structural characteristics of thought are qualitatively
different. They are: (1) sensory-motor, preverbal stage; (2) the stage
of preoperational representation; (3) the stage of concrete operations;

The experiment reported in.this chapter is based on a doctoral
dissertation in the Department of Mathematics Education at the University
of Georgia (Johnson, D.C., 1971).
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and (4) the stage of formal operations. Concrete operations are a part
of the cognitive structure of children from about 7-8 years of age to
11-12 years of age. Piaget (1964c, p. 42) postulates that this cognitive
structure has the form of what he calls groupings, of which five proper-
ties exist. Eight major groupings are identified, each of which satisfies
the five properties. The idea of an operation is central to these group-
ings. Piaget (1964c) views an operation as being an interiorized action,
always linked to other operations and part of a total Piaget's
claim is that operations are fundamental to the understa4 ng of the
development of knowledge. The groupings are the structures of which the
operations are a pa . difference in the groupings resides in the
various operations wh c structured. The elements of two groupings
are classes and asymmetrical relations which correspond to the cognitive
operations of combining individuals in classes and assembling the asymmet-
rical relations which express differences in the individuals.

It must be made clear that the Geneva School is concerned with
describing transformations that intervene between the input of a problem
and the output of a solution of the problem by a subject. As Bruner
(1959) Dui it, "Piaget proposes to describe them [the transformations]
in terms of their correspondence to formal logical structures [p. 364]."
At a certain stage, a child becomes capable of solving a variety of prob-
lems not possible at an earlier stage, but is still not able to solve
other problems which contain elements of a more advanced stage. In short,
Piaget has provided a structure of intelligence which can be used to
account for success or failure of children when solving certain problems.

Because the grouping structure is used as a tool to characterize
the thinking of the young child, it is interesting to give an interpreta-
tion. In The Psychology of Intelligence, Piaget apparently selects special
classes for part of his elements in the first grouping. These classes must
satisfy the following pattern: ¢ C AiC, A2 . . .cUAa, where ocA and A is
the index set. If "C" is interpreted to mean "C ," then the above sets
constitute a lattice, which is a partially ordered system in which any two
elements have a greatest lower bound and a least upper bound. Clearly,
"C" is a partial ordering of the sets in question since it is (a) reflex-
ive, (b) antisymmetric, and (c) transitive. Moreover, for any two elements
An and AB, Aan AB is the greatest lower bound and AaU AS is the least upper bound.

This lattice structure is not all that is included in the first
grouping. Classes of the form A'a = Ay - Aa where AaC Ay are also included.
The, classes A'a included along with the elements of the lattice are the
elements of this first grouning. If one interprets Piaget's (1964c) "+"
to be " U," then he gives (embedded in a zoological classification) state-
ment. analogous to the following [p. 42]:

Combinativity, AaUA'a = Ay;
2. Reversibility, If AaUA'a = Ay then Aa = Ay - A'a;
3. Associativity, (AaU A'o)U Aty = Aa U (A'aU Ata);
4. General Operation of Identity, A a u Aa;
5. Special Identities, (a) AaUAa (b) AoU Ay Ay where AaGAy.

When considering definitions of a Boolean Algebra such as recorded in
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Modern Algebra by Birkhoff and Maclane [1958, pp. 336, 337), it can be noted
that aspects of a Boolean Algebra are inherent in Grouping I. For example,

there are two binary operations "fl" and "Ul" with all of the usual pro-
perties (such as commutativity and associativity) and a binary relation
"S " which orders the subclasses. Also, PL/X , X if X is a class in the
system.

Grouping I also describes essential operations and relations involved
in cognition of simple hierarchies of classes. Proficiency with the use of
the class inclusion relation is viewed by Piaget as essential in the estab-
lishment of operatory classification. Two abilities cribed by structural
Properties, are of particular importance in this oficiency. The first is

the ability to compose classes (combinativity) and decompose classes (reversi-
bility), and the second is the ability to hold in Rind a total class and its
subclasses at the same time, made possible through combinativity and reversi-
bility; or as will be seen later, through an ability to think of two attri-
butes at the same time.

Due to the centrality of the class inclusion problem as a test of
operatory classification, Piaget (1952) reported an early study with chil-
dren of ages four to eight. A major part of the investigation involved
presenting the children individually with materials similar to the following:
wooden beads, the majority of which were brown; blue beads, the majority of
which were square; and flowers, the majority Of which were poppies. Typical

kinds of questions asked were the following:" (a) Are there more wooden
beads or more brown beads? (b) Would a necklace made of the wooden or of
the brown beads bablonger? or (c) Would the bunch of flowers or the bunch
of poppies be bigger? The questions were quite difficult for children under
seven, but children over seven performed quite well. The main re on attri-
buted to the failure of the younger children was that they supposedly could
not think simultaneously of the whole and its parts, as mentionedhabove.

Continuing the "additive" operations, Piaget delineates two groupings
/entitled "Addition of Asymmetrical Relations" and "Addition of Symmetrical
Relations." The asymmetrical relations referred to are interpreted here as
strict partial orderings, i.e., orderings that are (1) transitive, (2) asym-
metric, and (3) nonreflexive. Moreover, if such relations are linear, then
the set A on which the relation is defitieckis a chain and hence is a lattice.
The general properties of a grouping may be applied. Combinativity can be

interpreted under the more general notion of relation composition. That is,

A a B and B a C implies A a C which is an expression of transitivity.
Reversibility by reciprocity includes permuting the terms of the relation
as well as reversing the relation, i.e., the reciprocal of A a B is Bx'A.
The composition is associative by virtue of the transitive property and has
special identities. Addition of symmetrical relations involves several dis-
tinct categories of relations; some transitive, some intransitive, some
reflexive, and some nonreflexive.

Piaget (1964c) also describes groupings based on multiplicative
operations, i.e., those which deal with more than one system of classes or
relations at a time. Two of these groupings are called Bi-Univocal Multi-
plication of Classes and Bi-Univocal Multiplication of Relations. In the

former, an example is given by the following: If C1 and C2 denote the
same set, of, say, squares, but C1 = AIL; A2 and C2 = B1tJB2 where Al denotes
red squares, A2 blue squares, B1 large squares, and B2 small squares, then
C = CIA C2 - (Alf% 51)u (Ain B2)U (A2 A BO ti (A2 /1 B2). In other words,
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a matrix or double entry table of four cells has been generated with the
component classes of C1 on one dimension and those of C2 on the other.
In the case of Bi-Univocsl Multipliaation of Relations, an example could
be seriating a collection of sticks according to lengths and diameter
(thickness). A double entry table would thus be defined. If L denotes
length and T thickness, then the matrix could look ss follows. All the
objects in the first row are the same thickness but different lengths
while the objects of the first column are the same length but different

L1T1 L2T1 L3T1 LyT 1

LjT2 L2L2 L3T2 L4T2

L1T3 L2T3 L3T3 L1T3

ILITy L2T4 L3T4 L41,4

. . .

thickness. It must be pointed out, however, that L1T1 denotes at least
zero objects, so that equivalence as well as order relations are potentially
involved in this process. The structural properties of these latter two
groupings are not discussed -- except to say that multiplication of classes
allows a child to classify according to two or more classification systems
at once--oxtto consider an object as possessing two or more attributes
simultaneously, and that multiplication of relations allows a child to
seriate a collection of objects according to two or more order relations at
the same time.

In general, classification (which involves equivalence relations) and
seriation (which involves asymmetric relations) are at the heart of the
theory of Piaget. When asked to classify, children below the age of five
usually form "figural collections." By age seven, children can sort objects,
add classes (form unions), and multiply classes (cross classify). However,
genuine operatory classification does not exist until age eight when chil-
dren can'solve the class inclusion problem. Although (A + A B) is
logically equivalent to (A B - A'), many children have difficulty with
the latter having mastered the former as shown by a failure to state B > A
(B contains more than A). The conservation of the whole (being able to
hold the class B in mind when focussing on A) and the quantitative com-
parison of whole and part (B > A) are the two essential characteristics of
genuine class inclusion (Piaget, 1964c, p. 117).

Recognizing that empirical research exists which provides evidence
for existence of the above groupings (i.e., feplications studies) and that
experiments exist which have been designed to test the theory (i.e., train-
ing studies), the present study was of s slightly different nature, but was
embedded in existing psychological, mathematical, and logical theories and
structures. Just how it was embedded is made clear as the study is laid
out. It must bb emphasized that the study was not done to test Piaget's
theory or to replicate already known results, such as those produced by
Smedslund (1963c), Bruner and Kenney (1966), and Shantz (1967), but an
employment of the theory in an applied research problem. To be sure, con-
troversies exist concerning the validity of the theory (e.g., see Kohnstamm
(1967), Braine (1959)).
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Method

The theory of Piaget is a theory of development which subordinates
learning to development in contrast with behavorial theories which attempt
to explain development in terms of learning (e.g., Gagne's work). As a
corollary, one could view mathematical experiences (e.g., school instruction)
as not being assimilated in any genuine way in the absence of requisite
cognitive structure. More specifically, it would appear that work on
classifications and relations would bear little fruit for children in the
stage of preoperational representation. However, as Sullivan (1967) comments:
"If learning should be geared to the child's present developmental level as
Piaget insists, then the problem of matching the subject matter to the
growing conce?tual ability of the child (i.e., present cognitive structure)
is a relevant consideration 4. 19]."

Learning Material.

Classifications and relations were the broad topics about which
learning material was constructed. The basic connectives considered in
the learning material were Conjunction, disjunction, and negation, as
well as selected mathematical relations. The learning material, described
in detaA61 elsewhere (Johnson, D., 1971), was conducted to provide children
with experiences in forming (1) classes, (2) intersection and union of
classes, (3) the complement of a class, and (4) relations between classes
and between class elements. Physical objects were employed so that each
child could be actively involved. Some free play was permitted and inter-
action with peers was encouraged. The learning material was administered
in 17 instructional sessions each lasting about 20 minutes. The first three
sessions were designed to provide experiences in forming classes. Hula hoops
and other representations of closed curves were used in all sessions to
motivate formation of classes. In sessions IV, V, and VI work ''was done on
the intersection and the c
:children were put in a conf
/object could not be placed i
neously. For example, if th
in one hula hoop and triangu
would arise as to where the

ement of the intersection of classes. The
t situation when it was pointed out that an

side two nonoverlapping hula hoops simulta-
children were instructed to place red objects
r shapes into another hula hoop, the problem

triangles should go. Sessions VII and
VIII included activities concerning formation of the union of classes.
Sessions XII, XIII, XIV, and XV contained activities designed to opera-

tionally define the relations "more than," "fewer than," and "as many as."
The remaining sessions involved review on formation of classes involving
complementation, intersection, and union. Five basic posttests were then
constructed to measure achievement and transfer.

Posttests

Connective Achievement Test (CA). The connective test was designed
to measure an ability to use the logical connectives "and," "or," and "not."
Two sets of physical objects were used in the testing. One set consisted
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of Dienes Logic Blocks used in the learning sessions (CAL) and the other
set consi ted of physical objects which had not been used in the learning
sessions CA2). Ten items were written using each set where the items
were isom rphic across sets except for the differences in the objects
used. Six warm-up questions were included for each set of objects to
insure that the.children understood basic attributes of the objects. The
phraseology "Put in the ring all the things that are ..." preceded the
directions in each of the 12 warm -up and 20 test items. The directions
for the ten items involving physics; objects which had not been used in the
learning sessions were:

1. Either sticks or they are clothespins.
2. Either sticks or they are not blue.
3. Not blue discs.
4. Red. scs.

5. Clo pins and they are blue.
6. Either sticks or they are green.
7. Not blue and they are not clothespins.
8. Not red.
9. Discs and they are sticks.

10. Red and they are not sticks. ,....-

Relation Achievement Test (RA). This 25 question test was designed
to measure understanding of the relations "more than," "fewer than," "as
many as," "same shape as," and "same color as." For each of the first

three relations, objects used in the items were mounted on pieces of
posterboard in a vertical, horizontal, and circular arrangement, for a
total of nine items. The set of number pairs used for the "as many as"

relation was( (6, 6), (7, 7), (8, 8)). The set used for the "more than,"

and "fewer than" relation was( (5, 6), (6, 7), (7, 8)). A "more than,"
"fewer than," and "as many as" question was asked for each item to insure
that when a child said, for example, "There are more A's than B's," he
also knew that there were neither fewer A's than B's nor as many A's as
B's. An example question would be, "Are there fewer A's than B's?" For
the 16 shape and color items, eight cards (containing two objects each)
were constructed, two for each pair in the set( (same shape, same color),
(same shape, different color), (different shape, same color), (different
shape, different color)). Each card was used for two items, a shape item
and a color item. The tester pointed to the appropriate object and,asked:
"Is this the same shape as that?" and "Is this the same color as that?"
The next three tests to be described are transfer tests with the exception
of the intersecting ring items in the Multiplication of Classes and 1241a-
tions Test.

Multiplication of Classes and Relations Test (MU). This test was
constructed to measure the ability of children to use two or more criteria
at once. Parts of this test were similar to the nine matrix tasks designed
by Inhelder and Piaget (1964, pp. 60-61), which were either four-cell or
six-cell matrices with from five to eight choices located below the matrix.
For the purpose of testing the ability of children to multiply classes
and relations, six material sets spanning across each of the following
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three types of arrays were utilized: (1) 3 x 3 matrices, (2) 2 x 2
matrices, and (3) ring intersection. The six sets were defined by the
pairs in the following set: f (shape used in learning material, color
used in learning material), (shape, color used in learning material),
(color, number), (shape, shading), (shape, size), (color, size)). Exactly
one material set was used in the construction of eakh of the six 3 x 3
matrices, of each of the six. 2 x 2 matrices,-and of each of the six inter-
secting ring patterns. Although the intersection ring activity was not
performed during the unit, it was very similar to some activities and was
thus considered as an achievement measure. The matrix items were never
solved in the instructional unit and hence were viewed as transfer measures.
For each of the eighteen items described, a strip of four response choices
was constructed. For the matrix items each response strip included (1)
the correct missing object, (2) an object from the same column but a
different row than the missing objects, (3) an object from the same row
but a different column than the missing object, and (4) an object having
one attribute not represented in the matrix. For each pair of intersect-
ing rings, corresponding response strips included (1) an object from
the left ring, (2) an object from the right ring, (3) the object logically
belonging in both rings (possessing both attributes), and (4) an object
having one attribute not represented in either ring.

Class Inclusion Test (CI). This 16 item test was,included as a
transfer measure for two reasons.4.t,First, whenever a class and its com-
plement are specified, the idea of inclusion is implicit. Second, as
already noted, Piaget views successful solution of the class inclusion
problem as indicative of operatory classification.

Factors affecting the ability to solve inclusion problems are: (1)

presence of an extraneous object, (2) three or more proper subsets pre-
sent, (3) equal numbers in a set and its complement, (4) mingled items,
(5) items not visually present, (6) addition or subtraction of an item
after initial comparison. These factors were utilized in designing the
items of this test. Two other factors included were: (7) items of an
infinite nature, and (8) items where subset comparison is made through
the use of an outside set of objects. Eight items involved factor 1;
two, factor 2; three, factor 3; nine, factor 4; one, factor 5; two, factor
6; two, factor 7; and two, factor 8. With the exception of two items;
the number of objects in subclasses for each item was assigned to the
items randomly where the numbers were members of the set{ 2, 3, 4, 5).

The first 14 items (items numbered 1-14) included two questions.
An example item is where there were five blue tops, three blue guns, and
two turkeys. The experimenter had the child point to the toys and to the
tops. The two standard questions, "Are there more toys than tops?", and
"Are there more tops than toys?" were then asked. The last two items
were analogous to one another in that each included Factor 8. In addition
to two standard questions, two other questions were asked concerning com-
parison of the outside set of objects with the set of objects of direct
concern. For example, one item contained pictures of seven animals (four
horses and three rabbits) and four dots arranged proximal to the horses.
Two questions were asked requiring the child to compare the horses and
dots, and the animals and dots as well as the two standard questions.
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Transitivity Teat (TR). This 10 item test was designed to measure
the ability of children to use the transitive property of the relations
tested for in the Relation Achievement Test. Two items were designed to
test for the transitivity property of each of the five relations. A
"left to right" and a "right to left" matching were used in the testing
for the transitive property of the, relations "as many as," "more than,"
and "fewer than." The triplets of numbers of objects used for testing
for the above three relations were (7, 7, 7) and (8, 8, 8) ; (8, 7, 6)
and (9, 8, 7) ; and (6, 7, 8) and (7, 8, 9) respectively. The test was
used as a transfer measure to determine if an ability to use transitivity
is improved by instruction on the ations of concern.

An example of a transitivity m for matching relations is where
there were seven red discs and seve en discs mounted in rows on poster-

board. The child was directed to ma. a pile of seven blue discs -krrth

the red discs and judge the relation etween the two sets. The red discs

were then covered. The child was t n directed to match the blue discs
with the green discs and judge the elation between the two sets. The

green discs were then covered. Three questions were then asked; "Are

there as many red discs as green discs ?" "Are, there more red discs than

green discs?" and "Are there fewer red discs than green discs?". An

analogous procedure was used for transitivity,of the equivalence rela-
tions involving color and shape, except only two questions were asked, one
for the appropriate equivalence relation and one for its accompanying
difference relation.

Sample

The subjects for the study were chosen from four kindergarten and
four first grade classes located in or closely adjacent to Athens, Georgia.
All of these children were administered an Otis-Lennon Ability Test during
March 24-April 1, 1970. A total of 99 first graders and 97 kindergarteners
were tested. Two levels, Primary 1 and Elementary 1, of the Otis-Lennon
Mental Abilities were utilized. The Primary 1 level is designed for
pupils in the lest half of the kindergarten and Elementary 1 ,level is
designed for pupils in the last half of the first grade. The test items

sample the mental processes of classification, following directions,
qualitative reasoning, comprehension of verbal concepts, and reasoning
by analogy. K-R 20's for the Primary and Elementary Levels are .88 and
.90 respectively. The two categorization variables, then, were chronolo-
gical age and IQ. Only those children who had an IQ in the interval (80,
125) and a CA either in the interval (64, 76) or (77, 89) for kindergarten
and first grade, respectively, were included in the study. The children

were further categorized by the two IQ intervals (80, 100), (105, 125).
Children within the four categories thus defined were then randomly
assigned to an experimental or control group after an ordered randori
sample of 80 subjects had been selected, 20 in each category. Thirty-

five alternates were also selected for a total of 115 children in the
sample.

AdMinisration of the Tests

Administration of CA. The CA was administrated to six subjects at a
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time. Three subjects were seated adjacent to each other on one side of
a table and the other three were seated facing them on the opposite, aide
of the table. Subjects were separated by cardboard partitions so they
could not see each other. Each subject was given a rope ring and some objects
to classify. No objects were initially inside the rope rings. The order

oteat questions was initially randomized. The investigator read all

thidirections clearly and repeated if necessary. All subjects were
given sufficient time to make their responses. The experimenter stood

behind the subjects and recorded each response as correct (correct set
(:), objects was placed in ring) or incorrect (either items omitted or at
least one incorrect item placed in ring).

For subtest CA1,if all the proper objects were placed in the ring
sa nothing extra was placed there the answer was considered as correct.
One point was given for correct answers and no points were given for in-
borrect answers. Subtest CA2 was scored in a similar way. Since the tests

were parallel, Subtest CA3 was formed through"the consideration of the
responses to the items in Subtests I and II. The subjects were given
credit for having a question right on Subtest III only if they had scored

each corresponding question right on both CAI and CA2. In considering

Subtest CA3, one point was given for each question judged as right by

the above procedure. The normal testing time was approximately 23 minutes.

asinistration of RA. For this test, the material sets were placed
in,a row on a low, table in order from 1 to 17. Administration of items
1-9 (matching relations) was done first with the sequence of presentation
randomized individually for each subject. Also the question sequence was
randomized for each question for each subject. Cards 10-17 (shape and
color relations)° followed with the sequence of presentation also random-
ized for each subject. Here pgain, the question sequence was randomized
for eac subject. The eight 'same shape" questions asked of cards 10-17

i
compose items 10-17 for this test and the eight "same color" questions
compose items 18-25 respectively. For each card, the respOnse was
scored correct if the color and shape questions were both correct. The

test recorded the "yes" and "do" responses for each question asked.
Ave ge testing time was appr oximatefy twelve minutes.

ilabniniatration of MU. The eighteen material sets for this test were
placed in order (1-18) on ,a low table similar to that used with the RA.
Each strip of four response choices was centered and placed directly below
the respliqiye matrix or ring item." The sequencr of presentation of the
eighteen items was randomized,for each subject. The tester recorded the
response choice pointed to on each response strip. Average testing time
was approximately twelve minutes.

AdMiniatration of CI. The 16 items were partially randomized for
each subject. The exceptions were that items numbered 3 and 4, and 13
and 14 were presented in pairs in the natural order and items numbered
.15 and 16 were presented last in the natural order. An item was scored

4-1

.0
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Table 1
Formation of Subtests

Test No. of
Type Items Subtests Content of Subtest'

10 CAI First ten items of CA
Achievement 10 CA2 Last ten items of CA (novel material)

Tests 10 CA3 Intersection of Tests CAI and CA2
25 RA Same as RA
6 MUr Last six items of MU (intersection rings)

6 MU3 First six items of MD (3x3 matrices)
Transfer 6 MU2 Second six items of Mtk (2x2 matrices)
Tests 16 CI Same as CI

10 TR Same as TR

as correct only if the two standard questions were correctly answered.

Aaninistration of TR. Itegfwere arranged in a row on a low table.
Administration of'the six items for matching relations was conducted
followed by the fOur items for the color and shape relations. Within this
constraint, the items were randomized independently for each subject. A
transitivity item was scored as correct only if all questions were correctly
answered.

Design of Study and Method of Analysis

The basic design of the study was The Posttest-Only Control Group
Design presented by Campbell and Stanley (1963). This design calls for
initial randomization followed by an experimental treatment given to the
experimental group. Twelve major multivariate analyses of variance null
hypotheses were tested.

HI: The mean vectors of the experimental and control groups
are not different on the achievement measures.

82: The mean vectors of the experimental and control groups
are not different on the transfer measures.

H3: The mean vectors of the kindergarten and first-grade
subjects are not different on the achievement measures.

Hy: The mean vectors of the kindergarten and first-grade

subjects are not different on the transfer measures.
Hs: The mean vectors of the low and high IQ subjects are not

different on the achievement measures.
86: The mean vectors of the low and high IQ subjects are not

different on the transfer measures.
H7: There is no significant interaction of IQ with Treatment

on the achievement measures.



H9:

H9:

H10:

H11:

H12:

Johnson / Learning ofs Boolean Algebra 133

There is no significant interaction of Grade with Treatment
on the achievement measures.

There is no significant interaction of Grade with IQ on
the achievement measures.

There is no significant interaction of IQ with Treatment
on the transfer measures.

There is no significant interaction of Grade ,with Treat-
.ment on the transfer measures.

Thereris no significant interaction of Grade with IQ on
the transfer measures.

. Test statistics and an item analysis were computed for each of the
subtests composing the transfer and achievement measures. Two point bi-
serial correlation coefficients, a phi coefficient, and a difficulty in-

were computed for each item. A point biserial correlation coefficient
represents the degree of correlation existing between a dichotomous and a
continuous variable. In the study, IQ measures and the total test sco
formed by the composite of posttest scores were considered continuo
variables. The dichotomous variables are the individual items scor4 as
either correct or incorrect. Correlations involving IQ and total .cores
provide indices of validity and reliability respectively. Essenti lly,
a phi coefficient is, with minor modification, a chi - square calcul ed on
a two-way contingency table to test for independence of two random i-
ales. The table was defined by experimental and control groups,
ratio of aubjects passing or failing each item to the total response
.that item.

The null hypotheses were tested with the use of Multivariate Analysis
of Variance (MANOVA) procedures. Program MUDAID (Multivariate, Univariate,
and Discriminant Analysis of Irregular Data) was used for the MANOVAs
where the five achievement and four transfer measures were the response
variables for all combination of independent variables taken two at a time.
Therefore six HANOVAs and 27 ANOVAs were calculated; one for each IQ (I)
by Age (A), IQ by Treatment (T), and Age by Treatment. Levels of IQ were
80-100 (L) and 105-125 (H); levels of Treatment were experimental (E) and
control (C); and levels of Age were five-yeat-olds (K) and six-year-olds (F).

Results

The results of tie analyses are presented in this section. All data
analyzed in the item analysis section were obtained from all 111 subjects
and alternates administered all the posttest measures. The multivariate
analyses are limited to 80 subjects selected for the study.

Item Analysis

A phi Coefficient was calculated for each of the 99 items. Utiliz-
ing a significant 4r (p< .05), items which were discriminators between the
experimental and control groups were found for each test. From the array
of data in Table 2, it can be easily seen that there was only one item

1 19
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which discriminated in favor of the control group out of the total 99
items.

Table 2
'Frequency of Items: Discriminators and Nondiscriminators

Discriminators Nondiscriminators

No. of
Itemi Sub test Experimental Control

10

10

10

25

6

6

6

16

10

CAI

CA2
CA3
RA ,
Mir
MU3

MU2
CT
TR

8

7

8

7

5

4

2

0

7

1

2

3

2

17

1

2

4

16

3

Two of the subtests deserve special discussion in that all or a
majority of the items of those tests were nondiscriminators. First, in
the case of the RA test, the 16 items which involved usage of the relations
"same shape as" and "same color as" were extremely easy for all subjects,
and thereby were excluded from all other analyses. Second, four of the
six items composing the 102 teat were nondiscriminators. It appeared
that much guessing was done on_this test, as the average score was approxi-
mately the same as chance would allocate. One of the four =discriminators
on MU2 was excluded from all further analyses. Ten other items were also
excluded from the analysis with undesirable item characteristics (very
hard or very easy items with low or negative biserial correlations with
the total test or IQ). Nine of these ten items were nondiscriminators;
six for the achievement measures and three for the transfer measures.
Seventy-two items were retained for the analysis of variance.

Multivariate and Univariate Analysis

The necessary subtest information is tabulated in Table 3. The in-
ternal-consistency reliabilities are quite substantial indicating good
homogeneity of the test items. The multivariate and univariate analyses
of variance are given for the direct achievement measures (CAI, CA2, CA3,
RA, HUr) and transfer measures (HU3, HU2, CI, TR) for the two classifi-

cation variables (Age and IQ) each considered in conjunction with the
treatment variable, and also considered in conjunction with each other.

1 PO
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Table 3
Subtest Statistics

No. of
Items Subtest Reliability

(KR-20)
Grand
Mean

9 CA2 .72 5.09
7 CA2 .65 3.70
9 CA3 .74 3.88
9 RA .82 5.89
5 MUr .67 1.39

6 FI13 .70 3.23
5 NO2 .58 2.35

13 CI :75 3.78
9 TR , .79 6.13

Analyses of achievement measures. For the purpose of testing the
hypotheses related to achieVement, the five achievement subtests were con-
sidered concomitantly as response variables in the HANOVA and were con-
sidered singly in ANOVAs. /n the MANOVA analysis of T vs I, the likeli-
hood ratio test statistic - 113.30 was significant (p < .01), indi-
cating significant differences in the Mean vectors for all effects. As
indicated in Table 5, the main effects due to T and I and the interaction
of T and I were significant. The test of all F values in Table 5 is done

Table 4
Subclass Means: T vs. I (Achievement Subtests)

Subtest. Low High Means

Experimentas
CA1 5.35 7:40 6.38
CA2 4.15 5.95 5.05
CA3 4.25 6.35 5.30
RA '5.50 8.60 7.05
Mr 1.55 2.85 2.20

Controls.

CA1 3.20 4.40 3.80
CA2 2.05

7

2.65 2.35
CA3 1.80 3.10 2.45
RA 3.25 6.20 4.72
HUr 0.55 0.60 0.58

Means
CA1 4.28 5.90 5.09
CA2 3.10' 4.30 3.70
CA3 3.02 4.72 3.88
RA 4.38 7.40 5.89
MUr 1.05 1.72 1.39
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Analysis

T vs. I

T vs. A

I vs. A

Table 5
F Values for MANOVA of-Achievement Subtests a

. Factor

T 29.66**
I 10.06**

T x 1, 2.52*

T 20.32**
A - <

T x A 1.13

I 5.43**
A < 1

I x A 1.13

a* .05 level of significance
** = .01 level of significance

using p and-(N-3-p) degrees of freedom where p is the number of response
variables and N is the number of subjects. In this analysis p is 5 and
N is 80. Also, F.05 (5, 72) . 2.35 and F.01 (5, 72) = 3.28.

In order to further interpret the main effects of T, I, and T x I,
five univariate analyses were performed. The results in terms of F values

, for these analyses and also for T vs Aitted I vs A are included within Table
6. It is noted that for each of the five response variables there existed
a significant F (p < .01) for both T and I. This indicated that perfor-
mance of children of E and C and also of L and H were significantly different

Table 6
ANOVA F Values for Achievement Measuresa

Type
Variation

.

CAI CA2 CA3 RA MUr

T 60.22** 114.20** 80.54** 17.31** 44.97**
I 23.98** 22.56** 28.65** 29.30** 7.76**

T x I 1.64 . 5.64** 1.59 < 1 6.65**

T 13.37** 8.92** 13.96** 23.90** 4.69*
A <1 1.25 <1 <1 <1

T x A < 1 <1 <1 <1 1.09

a* = .05 level of significance
** = .01 level of significance

49,
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on all achievement subtests.

Significant interaction (p < .05) of T with I occurred only on CA2
(involving "and," "or," and "not") and MUr. The significant interaction
indicates that on these subtests the performance of control subjects was
not like the performance of experimental subjects across the two levels
of IQ. Table 4 indicates that on these subtestp, the higher IQ experi-
mental subjects performed better than any other group.

In the HANOVA anallits of T vs A, the likelihood ratio test statis-
tic X

2
71.43 was signi ant (p < .01), indicating significant differ-

ences in the mean vectors for all effects. The only main effect that

Table 7
Subclass Means: T vs. G (Achievement Subtests)

Subtest Kindergarten First Grade Means

Experirlen
CAI 6.35 6.40 6.38
CA2 5.00 5.10 5.05
CA3 5.30 5.30 5.30
RA 6.75 7.35 7.05
MUr 2.40 2.00 2.20

Controls
CA1 3.45 4.15 3.80
CA2 1.95 2.75 2.35
CA3 2.00 2.90 2.45
RA 4.90 4.55 4.72
MUr 0.40 0.75 0.58

Means
CA1 4.90 5.28 5.09
CA2 '-- 3.48 3.92
CA3 3.65 4.10 3.88
RA 5.83 5.95 5.89
MUr 1.40 1.3g 1.39

1
was significant in this analysis, as indicated in Table 5, w T. Again,
univariate analyses were performed to further interpret the ain effect.
As shown in Table 6, significance (p < .01) was achieved on e ch of the
five subtests if and only if the effect was T.

The final two-way analysis dealt with the factors of I and A. The
likelihood ratio test statistic X2 27.41 was significant (p < .01) indi-
cating significant difference in the mean vectors presented for all effects.
As indicated in Table 5, the only main effect that was significant was I.
Hence, for the effepts of I and A, considered concomitantly, significant

141
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Table 8
Subclass Means: I vs. A (Achievement Subtests)

Subtest Kindergarten First Zrade Means

Low
CAI

CA2
CA3
RA
MUr

4.00

2.80
2.75

4.40
0.90

4.55
3.40
3.30

, 4.35
1.20

4.28
3.10

3.02
4.38

1.05

High
CAI 5.80 6.00 5.90
CA2 4.15 4.45 4.30
CA3 4.55 - 4.90 4.72
RA 7.25 7.55 7.40
MUr 1.90 1.55 1.72

CAI 4.90 5.28 5.09
CA2 3.48 . 3.92 3.70
CA3 3.65 4.10 3.88
RA 5.82 5.95 5.89
MUr 1.40 1.38 1.39

differences on achievement existed between the two levels of intelligence
used in the study. Table 6 shows that again all F values for the I effect
were significant ( p < .01). As can be seen from Table 8, for all five
subtests the mean scores of the high intelligence group were greater than
for the low intelligence group and first graders performed better (but not
significantly) than or approximately equivalent to kindergarteners. Op
the basis of the results listed in Tables 5 and 6, hypotheses HI, H9, and
H7 were rejected and H3, H9, and H9 were accepted. Hence, for the achieve-
ment scores, the factors IQ and Treatment significantly affected perfor-
mance. First graders performed better, but not significantly better, than
kindergarteners on all achievement measures.

Analyses of Transfer Measures

The four transfer subtests were the response variables considered
concomitantly in MANOVAs and separately in ANOVAs for the purpose of
testing the hypotheses related to transfer effects. For the MANOVA
analysis of T vs I, the likelihood ratio test statistic X2 60.19 was
significant (p < .01) for all effects. As illustrated in Table 10, the
main effects due to T and I were significant but the interaction of T
with I was not significant. The test of all F values in Table 10 is done
using p and (N-3-p) degrees of freedomas was the case with the achievement
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Table 9
Subclass Means: T vs. I STransfer Subtests)

Subtest Low High Means

Eaperimentals
.

MU3 3.15 4.45 3.80MU2 2.10 3.40 2.75CI 2.20 5.00 3.60TR 5.80 8.35 7.08

Controls
MU3 2.60 2.70 2.65MU2 1.85 2.05 1.95CI 3.10 4.80 3.95TR 4.15 6.20 . 5.18

Means

MU3 2.88 3.58 3.MU2 1.98 2.72 2 5CI 2.65 4.90 3.TR 4.98 7.28 6.12

Table 10
F Values for MANOVA of Transfer Subtestsa

Analysis
Factor

T vs. I
T 7.18**
I al.75**

T x I 1.00

T vs. A' 5.69**
A <1

T x A < 1

Iva. A
I 9.68**
A <1

I x A <1
a
** significance of factors beyond the .01 level

'
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measures. However, for the transfer measures p is 4 and.N is 80. For the

new value of p, F.05 (4, 73) - 2.49 and F.01 (4, 73) = 3.59.
To assist the investigator in interpreting the main effects of T, I,

and T x I more precisely, four univariate analyses were performed. F values

for these analyses and also T vs A and I vs A are reported in Table 11.
For MU3 and TR significance was maintained (p < .01) for the main effect T.

Table 11
ANOVA F Values for Transfer Measures

a

Type Variation MU3 MU2 p CI TR

T 8.80** 5.59* < 1 18.95**

I 3.26 4.91* 13.33** 27.77**

T x I 2.40 2.64 < 1 < 1

T 8.25** 5.11* < 1 14.03**

A < 1 < 1 < 1 < 1

T x A < 1 < 1 1.86 < 1

I 2.88 4.45* 13.30**' 22.47*t

A <1 <1 <1 1.06

I x A < 1 < 1 < 1 < 1

40 a* - .05 level of significance
** = .01 level of significance

A significant F (p < .05) was computed for MU2 but a nonsignificant F was

computed for CI. The results were slightly different for the main effect

of I. Here, significance (p < .01) was established for CI and TR, and for

MU2 there was significance at the .05 level. No significance was found

for the main effect of I on MU3. It is not known why the main effect of

I was significant for MU2 and not for MU3. One possible explanation is

that the subjects of greater intelligence were able to use the fewer cues
available in MU2 more proficiently than subjects of lesser intelligence.
Table 9 indicates that significant differential performance always favors
the experimental and high IO groups.

For the MANOVA performed on the pair of factors T and A, the likeli-

hood ratio test statistic X2 - 26.04 was significant (p < .01), indicating
significant differences for all effects. Only the main effect of T was

significant (r. < .01) as indicated in Table 10. Treatment was significant

(p < .01) for MU3 and TR, and was significant (p < .05) for MU2, as given

in Table 11. Hence, for those three variables, performance of subjects in

the two levels of T differed significantly. Table 12 reveals that for all

variables for which the main effect of T was significant, Experimentals

outperformed Controls.
The last two-way analysis was done with the pair of factors I and A.

The 'i.ikelihood ratio test statistic X2 = 35.48 was significant (p < .01)
indicating significant differences in the mean vectors for all effects. As

illustrated in Table 10, only the main effect of I was significant (p .< .01).

Table 11 reveals that the main effect of I was significant (p < .01) for

dk;

"s.
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Subclass Means:
Table 12
T vs. G (Transfer Subtests)

Subtest Kindergarten First Grade Means

Experimentals
MU3 3.60 4.00 3.80
MU2 2.75 2.75 2.75
CI 3.45 3.75 3.60
TR 6.90 7.25 7.08

Controls

MU3 2.60 2.70 2.65.
MU2 1.80 2.10 1.95
CI 4.70 3.20 3.95
TR 4.85 5.50 5.18

Means
MU3 3.10 3.35 3.22
MU2 2.28 2.42 2.35
CI 4.08 3.48 3.78
TR 5.88 6.38 6.12

Table 13
Subclass Means: I vs. G (Transfer Subtests)

Subtest Kindergarten First Grade Means

Low
MU3 2.60 3.15.\ 2.88
MU2 1.95 2.00 1.98
CI 3.05 2.25 2.65
TR 4.70 5.25 4.98

Hqh
MU3 3.60 3.55

3.58MU2 2.60 2.85 2.72CI 5.10 4.70 4.90TR 7.05 7.50
7.28

Means
MU3 3.10 3.35 3.22MU2 2.28 2.42 2.35
CI 4.08 3.48 3.78
TR 5.88 6.38 6.12
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CI and TR and was significant (p < .05) for MU2. Hence, IQ plays an impor-

tant role in performance measured by those variables. No other signifi-

cant main effects were found. Table 13 indicates that responses favored

the high intelligence and first-grade levels.
From the results indicated in Tables 10 and 11, hypotheses H2 and

H6 were rejected and H4, H10, Hil, and H12 were accepted. Therefore

transfer to related areas was found to differ significantly depending on

levels of I and T. As with the achievement measures, the more intelligent
subjects performed better than the less intelligent subjects and the
experimental subjects performed better than the control subjects.

Discussion

There is laatantial evidence in this study that kindergarten and

first-grade children can be taught (1) to form classes using intersection,
union, and negation, and (2) to make correct "prenumber" comparisons 0
sets of ,objects. Mastery was not required, although significant differ-
ences were noted between Experimentals and Controls. Furthermore, this
increase in achievement was accompanied by some transfer to related acti-

vities. The main effects of Treatment and IQ were very significant on
both achievement and transfer measures but the main effect of Age was not
significant on any measure.

It is quite important for understanding the results of this study
to distinguish between two types of experience--physical experience and
logical-mathematical experience. According to Piaget (1964a) physical
experience "consists of acting upon objects and drawing some knowledge
about the obiects by abstraction from the objects [p. 11]." Piaget

(1964a) states further that in logical-mathematical experiences "know-
ledge is not drawn from the objects but it is drawn from the actions

effected on the objects [p. 12 ." child is asked to place all the

objects possessing a given attrib de a ring: he can be shown his

mistakes and theysCan be correcte s type of activity is basically

in the realm of physical knowled awever, suppose that a child claims

that there are more dogs than mal after he has pointed to the. dogs and

animals independently. It is ossi le to correct his mistakes in a way

similar to that of the previous example. With the exception of the MUr

subtest, all the achievement measures fell in the realm of physical know-
ledge. Hence, the treatment was very effective for imparting physical
knowledge. However, the MUr subtest and the transfer measures must be
considered when investigating the production of logical-mathematical know-
ledge.

Activities,with intersecting rings were proVided in the unit but in

a format that differed from the intersecting ring test items. Although
Experimentals performed significantly better than Controls on the MUr
subtest, it can be noted that nether group performed extremely well.
Furthermore, Controls appeared to consider the three regions formed by the
intersecting rings as nonoverlapping regions. Hence, improvement can be

explained by hypotheses other than a genuine improvement in the formation

of intersections. In the case of the CI subtest, the treatment did not

produce significant differences. On this measure, intelligence produced
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the only significant effect. However, operatory classification was notachieved by either IQ group because the higher IQ group scored about 37percent and the lower group only scored about 25 percent ,where theexpected mean based on guessing is 20 percent . Improvement on the
transitivity items can be attributed

to clarity of language rather thanto usage of the transitivity property. Items based on the relation ofshape and color contributed
greatly to the rather high mean scores ofthe Transitivity subtest. Mean scores for Controls and Experiments onmatching relations were 30 and 55 percent,

respectively, whereas theanalogous mean for the shape and color relations were 86 and 97 percent,respectively. The matrix items provided the strongest evidence for animprovement in logical thinking,
although the Genevans claim that it isdifficul.t.oto distinguish between graphic and operational solutions.There was some evidence that the most substantial improvement existedfor the high ability first graders..

In conclusion, the unit produced substantial improvement in phy-sical knowledge but very little improvement in operatory classification.When considering the results of the study and observing the way in whichaddition and subtraction are presented in school mathematics curricula,a serious problem is revealed in that children are being presented withconcepts they are conceptually unable to handle. In a subtraction prob-
lem such as 9 - 5 - 4, if a child thinks that the difference is largerthan the minuend he might just as well write something like 5 - 9 - 4.

Although there was nearly a significant difference in achievement
between kindergarten and first-grade children on CA2, it is recommended
that instruction similar to that used in the unit begin at the kinder-
garten level because there were no significant differences in achievementbetween these grades on any subtest. However, more research with a more
generalized population is highly recommended before final grade-level
placement is decided upon. For example, a much deeper investigation isneeded concerning the actual relations that exist between the words "and,""or," and "not" and the growth of conjunction, disjunction, and negationconcepts respectively. These should be investigated at Various gradelevels in conjunction with other concepts such as conservation of variousrelations as discussed by Piaget. The positive transfer made to the tran-sitive property of the equivalence and order relations used in the unitwas an interesting outcome.

Various properties of the multitude ofequivalence and order relations existing in the mathematics curriculum
warrant similar investigations. It was noted that relations such as"same shape as" and "same color as" and the transitive property of theserelations were very easy even for kindergarteners. Very little, if any,
instruction is required in kindergarten for such relations.

IQ should be considered when
arranging instruction based on the con-cepts in this study. Three of the reasons for this are as follows: (1)there was significant interaction (p < .05) of treatment with IQ on MITTwith the best performance by the high IQ subjects, (2) among the best

discriminators between levels of intelligence was RA, and (3) the intelli7
gence factor was significant on the transfer subtests CI and TR. This isworthy of note because these

two subtests occupy key positions in the
theory of Piaget. IQ was the only factor where significance was attainedfor CI. In such areas as those just mentioned, a thorough analysis needs
to be made concerning the relation that exists between Piaget's classifi-
cation of mental operations and the degree to,which these operations are

1t
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measured on various IQ tests. 4uch investigation could have far-

reaching implications for arranging mathematics instruction at various

age leitels.
At this point in time it,is uncertain exactly what abilities the

3 x 3 and 2 x 2 matrix questions and the intersecting ring questions

are measuring. There exists good, but inconclusive, evidence that the

intersecting ring questions are measuring the same type of ability as

the matrix questions. Future investigations need to incorporate other

methods when investigating the intersection concept. It is assumed that

the improvement in cross classification was done through the "intersec-

tion of attribute" activities of the unit. However, it is strongly

recommended that the ielation existing between two attributes and a

total cross classification be investigated further. As indicated pre-

viously, Piaget has hypothesized that cross classification, as measured

by matrix activities, develops at about age seven and the intersection of

simple attributes at about age nine. The present study shows that in-

struction in one area will perhaps hasten the develdpment of the other

operation. Any such transfer is important to education.
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Conservation or invariance of a given_property under certain trans-
formation is basic. to the process of measurement of that property. One
of the essential features of measurement or comparison of quantities is

,

that the transformation's used in the measurement or comparison process do
not change the relation between the quantities.

Studies by Piaget, Inhelder, and Szeminska, (1960) indicate that this
logical interdependence of conservation and measurement is reflected in
the development of these concepts in children. However, although Piaget
ett al. (19601 extensively document relationships between conservation

" and measurement failures in a variety of situations, their tasks share
certain common features which may have influenced their conclusions.
First, most of the measurement tasks fequired relatively sophisticated
measurement manipulations. Second, in all comparisons distracting cues
were perceptual; and if correctly applied, Measurement processes yielded
the correct response. There is evidence that certain conclusions of
Piaget et al.:(1960) resulted from thid lack of experimental variability.

They concluded that young children are dominated by the immediate
perceptual qualities 6f a situation. However, the results of another
investigation (Carpenter, 1971a) indicate that young children respond to
numerical cues with about the same degree of frequency as perceptual
cues. As a consequence the children in this study demonstrated irability
to interpret and apply aspects of 'the measurement process earlier than
indicated by Piaget et' al. (1960).

.

In the current study, the relation between young children's responses
to perceptual and numerical cues on liquid conservation and measurement
problems was systematically investigated. A second dimension of the study
was to investigate the effect of equivalence and 'order relatiods on young
children's performance on conservation and measurement of liquid quantities.

The experiment reported in this chapter is based on a doqpral
dissertation in the College of EducatiOn at the University of Watonsin
(Carpenter, T. P., 1971).

4
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A third dimension of the study was to provide insight into young Children's
conception of a unit of measure and their understanding of the relation
between unit size and number of units.

Mathematical Definition of Measurement

Mathematically, Measurement can be discussed in terms of a function
mapping the elements of a given domain into some mathematical structure
(usually a subset of the real numbers) in such a way as to preserve the
essential characteristics of the domain. First a structure must be estab-
lished on the domain by applying some empirical procedures to define
equivalence and order relations (% and < respectively) to compare elements
of the domain. Generally order relations are. established demonstrating

equivalence between one quantity and a proper subset of the other quantity.
Thus, logically the definition of equivalence relations precedes the defi-
nition of order relations. Similarly empirical procedures are used to
define an operation "*" that is both commutative and associative to com-

bine elements of the domain.
Specifically, in the case of liquid measure we could say that two

quantities of liquid are equivalent if they both exactly fill identical
containers. Quantity A is greater than quantity B if it fills one of

the containers with some left over. The operation is defined by simply
pouring one quantity of liquid into the other.

Once the domain has been given a recognizable structure, a function
that maps the domain into a subset of the reai numbers and preserves

the essential characteristics of the structure of the domain must be
defined. For liquid measurement this means that given liquid quantities
Li, 12, and 13

1. u(LI) u(12) if and only if LI 1, 12

2. u(11).< u(12) if and only if LI < 12

3. 13 v 1I*12 implies that u(13) 11(11) + u(12) assuming that LI

and £2 do not intersect.

The measurement function for liquid quantities is defined by
arbitrar4ly selecting a quantity of liquid to as a unit. Then any other

quantity of liquid is compared with successive multiples of to until a
multiple nlo is found such that nto is less than or equivalent to the
given quantity which in turn is less than (n + 1)10. (A multiple nt0

is defined to be a quantity of liquid equivalent to 10 *L0*...*10 in

which there are n terms.) Next a quantity LI is chosen such that 1011
is equivalent to to, and a multiple of LI is joined to nto such that
ntenill is less than or equivalent to the given quantity which in
turn is less than 1110*(n1 + 1)11. Similarly £2 and n2 are cfiosen such
that a04n111 ien212 is less than or equivalent to the given quantity which
is less than nt0 *n111 *(n2 + 1)12. Continuing in this manner a decimal
number V. n.n1n2n3... can be constructed and used to define the function

mapping the domain of liquid quantities onto the set of positive real
numbers by u(1) - r, where £ is the given quantity above.

When the function up is defined by 'arbitrarily selecting a quantity
to as a unit, a different function ul can be defined by choosing a
different quantity LI and using it to generate 01. For liquid measure-
ment functions the relation between the functions so and ul is the form

)

..6, 11()
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Ve kill, where k is a positive real number and k > 1 when to < LI and ..- 0 < k < 1 when L0 > t1. In Other words, for these functions there is an
inverse relationship between the unit size and the number of units.

It should be notedthat n basic hasumption in attributing'a structure to the domain and defining the function from the domain to the setof positive real numbers 14 that the property that is being measured does
not change under certain transformations

and is not affected by the
empirical procedures used to define the relations ea& operation on thedomain. This assumption pe es the entire measurement process. Oneof the essential characteristi

of a measurement function is that itpreserves the relation between elements of the domain that it measures.Thus, it is critical that nei er the empirical procedures employed to
compare elements of the domain directly

or the procedures used to defineand apply the measurement
function affect the relation between elements.

Related Research

For Piaget et al. (1960) this assumption that certain propertiesremain constant under certain
transformations is the central idea underlying all of measurement. It is upon this assumptibn that these authorshave based their investigations of the development of measurement concepts. Based on their studies of length, area, and volume they proposed

a stagewise development of measurement which is interrelated with thedevelopment of conservation.

The measurement problems in these studies can be divided into twobroad classes which' correspond to the two major divisions within the
mathematical definition of measurement described above, those strictlyemploying empirical procedures

directly to elements of the domain aftdthose employing the measurement function. In the first class of problems,
objects of the domain

were directly compared on the basis of a given
attribute without assigning a number to the attribute. These problemsinclude the classical conservation problems in which one of two objects
equivalent in some way is transformed to appear larger or smaller thanthe other. To conserve, a child must not respond on the basis of the
immediate appearance of the objects but rather must recognize that theobjects were equivalent in the earlier state and the relation betweenthem did not change. All comparisons were visual and measurement functionswere not introduced. For example, in studying the development of areaconcepts, Piaget asked children to compare two identical rectangles madeup of six squares each and arranged in a two by three configuration.
After a child agreed that the two rectangles were the same size, thesquares in one of the rectangles were moved to create a different shapedregion. The child was then asked to compare the size of this new regionwith that of the undistorted rectangle.

In the second class of problems,
measurement functions were appliedin which different units of measurement were used. In some problems

children were given several different sizes of units and in others theunits were such that fractional
parts were required to cover the objectbeing measured. In this class of problems the objects being compared

were never visually comparable.
Thereby, in order to accurately judgethe correct relation measurement was necessary. FurthermorWchildrenwere required to perform the

measurement operations ao that they nqtonly had to correctly apply
the information from the measurement process,but also had to carry out the measurement manipulations., For example,,

1 )
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in studying the development of area measurement functions, children were
asked to compare different shaped figures by measuring with different

units. In one set of problems children were given enough units to cover
the figures, but the units were of different sizes and shapes. Some

were squares, some were rectangles (two squares), and some were triangles
(squares cut diagonally in half). In another set of problems children'
were given a limited number of square cards which they had to move by
successive iteration from one part of the region being measured to the

next. Some regions were shaped in such a way that it was impossible to

cover them with the given units without intersecting the exterior of the

region. Thus, it was necessary for the children to consider fractions of

units.
Based on children's responses to these problems Piaget et al. (1960)

concluded that the development of measurement and conservation is integrally
related and that the same general pattern of development persists across
all types of measurement operations. The earliest stages (Stages I and

IIA) are characterized by a dependence on one dimensional perceptual
judgments.. Conservation is not present and transformations from prior

stages are completely ignored. Children are unable to apply measurement
processes in any meaningful manner; and quantities are compared on the

basis of a single, immediate, dominant dimension. In Stage IIB children

begin to make a number of correct judgments as long as distortions in
quantities being compared are_not too great. Correct judgments in Stage

IIB are largely a result of trial and error. Children have a dim concept

of conservation and some notion that greater quantities measure more

units. In Stage IIIA children begin to conserve and measure using a

common unit of measure. However, they fail to recognize the importance
of a constant unit of measure and often count a fraction of a unit as a
whole or equate two quantities that measure the same number of units

with different size units of measure. In Stage IIIB children successfully

conserve and measure. They recognize the importance of different units
of measure and understand phe inverse relationship between unit size and

number of units. It is not until Stage IV, however, that children finally
discover the mathematical relation between area and volume and their

respective linear dimensions.
Studies by Lovell, Healey, and Rowland (1962); Lovell and Ogilvie

(1961); and Lunzer (1960b)- -which employed items similar to those used

by Piaget et al. (1960) generally supported their conclusions regarding

the development of measurement concepts. On the other hand, whereas
these studies implied that conservation is a prerequisite for measure-

ment, Bearison (1969) used measurement operations to teach children to

conserve. Nonconservers were provided with experiences in which they
compared two quantities of liquid in terms of the ntibber of identical

beakers containing the two quantities. Bearison (1969) concluded that:

The effects of training facilitated the conservation of
continuous quantity and transferred to the conservation of area,

maze, quantity, number, and length. The explanations offered for

conservation by the trained conservers were identical to those
elicited from a group of "natural" conservers, and the effects
of conservation were maintained over a 7-month period (p. 653).
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In another set of studies integrating counting and conservation
concepts Carpenter (1971 b) and Wohlwill and Lowe (1962) found that simplycounting the elements in the conservation of discrete object problems
does not substantially improve performance. However, Alm y, Chittenden,
& Miller (1966) and Greco, Grize, Papert, & Piaget (1960) found that
"conservation of number" (invariance of the number assigned to a set
of discontinuous elements under a reversible transformation) precedesthe standard equivalence

conservation, which involves invariance of the
relation between equal quantities.

Whereas Piaget et* al. (1960) considered both the empirical pro-
cedures applied directly to the domain and the applicatioh of the measure-
ment function, two Soviet researchers,P.

Ya. Gal'perin and L. S. Georgiev
(1969), have concentrated their efforts on the application of the measure-
ment function, especially the role of the unit in defining the function.They administered a series of

measurement problems to a group of Soviet
kindergartners in which the children were asked to measure and compare
quantities of rice in various situations. ,Based on these studies,

4Gal'perin and Georgiev (1969) concluded that young children taught bytraditional methods have a number of serious misconceptions regardingthe measurement process because of a lack of a basic understanding of aunit of measure. They found young children to be indifferent to the
size and fullness of a unit of measure and to have more faith in direct
visual comparison of quantities than in measurement by a given unit.

In a replication of the Gal'perin and Georgiev investigation withAmerican first graders, Carpenter (1971a) found responses similar tothose in the Soyiet study.
However, based upon the results on four

additional items and a different
interpretation of the results of the

Soviet items, the conclusion was made that young children are not indif-ferent to the size and fullness of units of measure; but just as in
Piaget's conservation problems, they are only capable of making one-

-dimensional comparisons and therefore do not focus on both unit sizeand number of units at the same time. Furthermore, Carpenter (1971a)
hypothesized that young children do not rely primarily on visual com-
parisona,as both Piaget and Gal'perin and Georgiev have concluded, butrather they respond on the basis of the last stimulus available, be itvisual or numerical.

Carpenter's (1971a) investigation also raised questions regarding
the role oi equivalence and

order relations in conservation and measure-ment problems. Measurement problems in which equal quantities were madeto appear unequal by measuring them with different sized units of measure
were significantly more difficult than similar items in which unequalquantities were made to appear equal. Similar results were found favoringinequality ash n the same unit was used to measure and compare two differentquantities. ese results, which suggest that with regard to certainaspects of tile easurement process a stable concept of nonequivalence maypreced a e concept of equivalence, run counter to the above logicalcons uction of these concepts in the definition of the measurement
function.

In his basic works on number and measurement (Piaget 1952, Piagetet al. 1960), Piaget does not differentiate between items employingdifferent relations between sets. He has attempted to assess the child'sconception of number, length, weight, etc. of a single quantity and hasused equivalent sets as an experimental convenience. Elkind (1967),Van Engen (1971), and Wohwill and Lowe (1962) have questioned Piaget'sprocedure of using what Elkind
(1967) calls "conservation of equivalence"
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tasks to assess conservation of number, length, weight, ed For example,
Elkind (1967) hypothesize4 that "identity conservation" (iAvariance of a

quantitative attribute --e.g., numerousness, weight, volume--under a
reversible transformation) precedes equivalence conservation. This

hypothesis has been supported in studies by Hooper (1969) and MCNannis

(1969), while a study by Northman and Gruen (1970) found no differences

betWeen the two types of conservation.
In a study directly testing the effect of equivalence and order

relations on performance on conservation items, Zimiles (1966) found no
significant difference. in difficulty between conservation tasks using
equivalent sets of discrete objects and conservation tasks using non-
equivalent sets of discrete objects in which the direction of the non-
equivalence appeared to be reversed after the transformation. However,

there was evidence that a substantial amount of individual inconsistency
of performance between items could be attributed to differences in

equivalence and nonequivalence conditions.
Steffe and Johnson (1971) also found that items which contained

equal numbers of items in the sets to be compared demanded different
abilities than items that employed the same number of items in both sets.

In several other studies both equivalence and nonequivalence items have

been administered. Although these studies were not designed to test for
differences between the two types of tasks, their results were examined
to determine whether differences did in fact exist. Analysis of individual

items in studies by Carey and Steffe (1968) and Harper and Steffe (1968)

indicated no clear-cut differences in difficulty between equivalence and

nonequivalence items. On the other hand, in a study of conservation of
discontinuous quantity with children between 2 and 4 years old, Piaget
(1968) found a significantly greater number of correct answers in non-

equivalence situations. Beilin (1968) and Rothenberg (1969) also

reported significantly more correct answers to problems in which the

relations between sets were nonequivalence: however, their tasks were not

traditional conservation problems, and experimental variables appeared

to favor the nonequivalence situations.
From a slightly different perspective, the results of three studies

in which the type of inference required of the children rather than the
relation between the sets being compared was investigated (Beilin 1964,
Carey and Steffe 1968, and Griffiths, Shantz, and Sigel /967), indicate
that problems that require judgements of equality are more difficult than

problems that require judgments of inequality. In one favoring equivalence

Uprichard (1970) found that treatments in which children learned to classify

sets on the basis of equivalence were mastered more quickly than treat-
ments in which children classified sets on the basis of "greater than"

or "less than," and learning sequences that-began with equivalence were

more effective than sequences that began with either "greater than" or

"less than."
,

Several factors may explain this rather mixed collection of results
regarding the role of equivalence and order relations in conservation
and measurement problems. First, certain of the' nonequivalence problems

may not have required true conservation judgments. For example, if

unequaloquantities are made to appeartequal by measuring them with dif-
ferent size units so that they measure the same number of units, it is
still possible to accurately compare the quantities on the basis of unit

size with no reference to the previous state. Second, although there

does not appear to be difference in difficulty between equivalence

and nonequivalence pro ems with discrete objects, there is some evidence

that suggests that equivalence-nonequivalence differences may exist for
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problems comparing
continuous-quantities where precise judgments of. equality are more difficult than judgments

of inequality. Fleishman,Gilmore, and Ginsburg.(1966)
and'Smedalund (1966) found that a numberof young children'{as many as 20%) fail to maintain choices of equalityeven when no apparent conflict
is'introduced.

Nrpoee and Procedures

The major purposes of this study were (1) to assess the degree towhich young children possess the logical structures to assimilate andapply information from measurement processes and(2) to identify someof the factors involved in the development of measurement and conserva-tion. Specifically, the question as to whether conservation and measure-ment failures are primarily the result of a dependence on perceptualcues, the order of the cues
or an interaction of the two was investigated.That is, an attempt was made to determine whether

young children responddifferently to visual and numerical cues in conservation and measurementproblems or whether they simply respond to the last cue available tothem.

Another purpose, of the study
was to determine the role of equiva-lence and order relations in children's performance on conservation andmeasurement problems. Three different combinations of order and equiv-alence relations were studied.

1. Equivalence: Equal quantities were transformed to appearunequal.

2. Nonequivalence I: Unequal quantities were transformed sothat the dominant dimension in each quantity (height of theliquid in conservation
problems--number in measurement

problems) was equal.

3. Nonequivalence II: Unequal quantities were transformed so
that the direction of the inequality appeared to be reversed.

For"most Nonequivalence I problems the correct relation betweenquantities could be determined from the distracting cues by simplyfocusing on the appropriate
dimension (for example by focusing on the sizeof the unit rather than the number of units). To determine whether anypossible differences favoring Nonequivalence I were simply the result ofthis sort of pseudo

conservation, differences between measurement pro-blems in which tt was not possible to visually distinguish
the largerunit were assessed.

Whether recognizing that an increas in one dimension of a quantitymay be compensated for by a decrease in a other dimension (when holdingthe quantity constant) is important in yo g children's conservation
judgments was also investigated. Piaget ( 52) asserted that thisrecognition of compensating relationships s a significant factor in thedevelopment of conservation. By contrastin ormance on measurementproblems in which it was possible to visually dist nguish this compensatingrelationship to problems in which it was not, information

concerning theimportance of this factor for young children's conservation judgments wasobtained.
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Finally, young children's understanding of the following basic

measurement concepts was'investigated.

1. Quantity A is equivalent to quantity B if and only if p(A) =

p(B), and quantity A is less than quantity B if and only if

P(A) < p(B).

2. In order to compare quantities on the basis of measurement, the
same measurement function (the same unit), must be used to

measure both quantities. AIL...

3. When equivalent quantities are measured with different units,
an inverse relation exists between unit size and the number of

units.

In order to conduct the investigation, the following items were
administered to a group of 129 first and second graders.

1. Conservation of continuous quantity.

Equivalence. The child was shown two identical glasses
containing equal amounts of water and was asked to compare

the amount of water in the two glasses. If he said that

there was more water in one of the glasses, some water was
poured from this glass into the other glass; and this process
was repeated until the child agreed that there was the same
amount of water in'the two glasses. Then one of the glasses

of water was poured into a taller, narrower glass, and the
child was again asked to compare the amounts of water.

Nonequivalence I. The child was shown two identical glasses
containing unequal amounts of water and was asked to compare

the amounts of water in the two glassed` Then the glass con-
taining the smaller amount of water was poured into a taller,
narrower glass such that the height of the water was the same

as the height of water in the glass containing more water,
and the child was again asked to compare the two amounts of

water.

Nonequivalence II. The child was shown two identical glasses
containing unequal amounts of water and was asked to compare
the amount of water in the two glasses.- Then the glass con-
taining the smaller amount of water was poured into a taller,
narrower,glass such that the height of the water was higher

than the height in the glass containing more water, and the
child was again asked to compare the two amounts of water.

2. Measurement with visibly different units.

Equivalence. The child was shown two glasses containing equal
amounts of water and was aked to compare the amounts of water
in the two glasses. If he said that there was more water in

one of the glasses, some water was poured from this glass into

the other glass; and this process was repeated until the child
agreed that there was the same amount of water in the two

glasses. Then the water in each glass was measured into two

I - Q
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opaque containers using visibly different units of measure so
that one glass of water measured three units and the other
measured five. Then the child was again asked to compare the
two amounts of water.

Nonequivalence I. The child was shown two glasses containing
unequal amounts of water and was asked to compare the amount
of water in the two glasses. Then the water in each glass was
measured into two opaque containers using visibly different
units of measure such that both glasses measured three units.
Then the child was again asked to compare the two amounts of
water.

Nonequivalence II. The child was shown two glasses containing
unequal amounts of water and was asked to compare the amount
of water in the two glasses. Then the water in each glass was
measured into two opaque containers using visibly different
units of measure so that the greater quantity of water measured
three 'units and the other measured four. Then the child was
again asked to compare the two amounts of water.

3. Measurement with indistinguishable different units.

Equivalence. This task was the same task as the.e.guivalence
task in measurement pith visibly different units except the
smaller unit appeared larger. One glass measured five units
and the other measured four.

Nonequivalence I. This task was the same task as the non-
equivalence I task in measurement with.visibly different units,
except the smaller unit appeared larger. Both glasses measured
four units.

Nonequivalence II. This task was the same task as the non-
equivalence II task in measurement with visibly different units,
except the smaller unit appeared larger. The greater quantity
of water measured.six units and the other measured seven.

4. Measurement of unequal-appearing
quailtities with the same unit.

Equivalence. The child was asked to compare two equal quantities
of water in two different-shaped

contain rs, one tall and narrow
and the other short and wide (i.e., the f al state in the
equivalence task of conservation of conti uous quantity). Then
the water in each glass was measured int two opaque containers
using the same unit (each glass measure four units) and the
child was asked to compare the two amo nts of water.

Nonequivalence II. The child was asked to compare two unequal
amounts of water in the two different-shaped containers ( the
final state in the nonequivalence II task of continuous quantity).
Then the water in each container was measured into two opaque
containers using the same unit (the glass that appeared to hale
more water measured four units and the other measured five),
and the child was again asked to compare the two amounts of
water.
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5. Measurement with the same unit into apparent inequality.*

Equivalence. Using the same unit of measure, four units of

water were measured into two different-shaped containers and

the child was asked to compare the two quantities of water.

Nonequivalence II. Using the same unit of measure, five units

of water were measured into a short, wide container and four

units were measured into a tall, narrow container and the

child was asked to compare the two quantities of water.

In order to keep the number of tasks administered to each child

reasonable, items were split into two groups and each group was adminis-

tered to a different set of children.
Sixty-one children in Part A

received all three conservation problems and both sets of problems in

which quantities were measured with two different units. All three

sets of problems were administered with Each of the three relations.

Sixty-eight children in Part B received all the measurement problems

with Equivalence and Nonequivalence II relations.

Thus, the problems in Part A fit a 3 x 3 rePeated measures design

where the factors were Problem Type (continuous quantity conservation

and the two measurement problems with different units) and Relations

(Equivalence, Nonequivalence I, and Nonequivalence II). The problems

in Part B fit 422 x 4 repeated measures design where the factors were

Problem Type (all four measurement problems) and Relations (Equivalence

and Nonequivqlence II).
The hypotheses of interest tested in Part A are as follows.

H1: There is no significant difference between performance on

Equivalence and Nonequivalence II items for any of the problem

types.

H2:

113:

H4:

There is no significant difference between performance on

Equivalence and Nonequivalence I measurement problems in

which the larger unit of measure is not visually distinguishable.

There is no significant difference between performance on

Equivalence and Nonequivalence I items for conservation problems

or for measurement problems in which the larger unit is

visually distinguishable.

There is no significant difference between performance on

conservation problems and corresponding measurement problems.

H5: There is no significant difference between performance on

measurement problems in which it is possible to visually dis-

tinguish the larger unit and those in which it is not.

H6: Neither mean performance nor any of the above contrasts are
significantly affected by grade, sex, or the order in which

the items were administered.

*These .tasks are simply the tasks in (4) with the stimuli appearing in

a different order.

1r0 U
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Hypotheses H1, H5, and H6 were also tested in Part B. In addition,
the following hypotheses were added:

H7: There is nosignificant difference in performance between
measurement problems in which correct visual cues are followed
by distracting numerical cues and corresponding problems in
which correct number cues are followed by distracting visual
cues.

Hs: There is no significAnt difference in performance between
measurement problems in which the correct measurement cues
appear before distracting visual cues and those in which they
appear after the distracting visual cues.

Subjects. This study was run over a nine-day period in the spring
of 1971 in a predominantly rursi community near Madison, Wisconsin, with
a population of about 4,000. The subjects (Ss) for the study were
selected from three of the five first grade classes and two of the five
second grade classes in one of the two elementary schools serving the
community. The sample, which included all students in the five classes
except three who were absent on the testing days, consisted of 75 first
graders and 54 second graders. The age range of the first graders was
6 years, 5 months to 9 years,.8 months with mean age 7 years, 5 months;
and the range of the second.graders was 7 years, 7 months to 9 years,
5 months with mean age 8 years, 4 months.

Procedures. Ss were randomly assigned to two groups, 61 Ss to
Part A and 68 to Part B. Each S within each group received the same
basic set of problems; however, the order of the problems was randomized
for each S.

All items were administered in a small room apart from the classroom
by-one experimenter (E), a stranger to the Ss. The S sat at a table
opposite the E. Procedures and protocols were kept as consistent as
possible be een items; hOwever, certain procedures were randomly
varied betty n Ss in order to control for responses based on experi-
mental vari les.

Piag (1968) and Siegel and Goldstein (1969) found that young
children t nd to responcLto the last choice available to them in a con-
servation roblem. Thus, if the E said, "Is there the same amount of
water in he two cups or does one have more?" the S may respond that one
has more ecause "more" was the last,choice given to him. Therefore,
some of the Ss were asked, "Is there the same amount of water in the two
cups or does one have more?" and the others asked, "Does one cup have
more water in it or is there the same amount in each cup?". For each
S the "same-more" order was the same for all problems.

For some Ss the smaller quantity was always measured first in non-
equivalence problems, and for others the larger quantity was always
measured first. Both of these variations were randomly assigned to Ss.

Problems were admi4istered in two sittings. Ss in Part A received
five problems the first 'day and four several days later, and Ss in Part
B had four problems the first day and four the second. Although reasons
for responses were solicited and recorded, answers were judged correct
or incorrect without regard to the explanations given.
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Analysis. Item totals, reasons for responses, and types of errors
were recorded for each itdta. The following categories were used to
classify reasons for correct responses:

1. Reversibility: If the quantities were transformed back to
their former state, they would again appear in the correct
relation (equal or unequal).

2. Statement of operation performed: The water was just poured into
a different container and this did not change the relation between
the quantities.

3. Addition--subtraction: Nothing was added or taken away.

4. Compensation, proportionality: The liquid was higher but the
container was narrower. One measured more units but the
units were smaller.

9

5. Sameness of quantity: It's the same water.

6. Reference to the previous state: They were the same befdre
when the water was in identical glasses.

7. No reason, unclassifiable: No reason was given or an incompre-
hensible reason was given.

Incorrect responses were sorted into two broad categories.

1. Dominant dimension: Ss incorrectly chose (a) the taller con-
tainer of water or (b) the quantity that measured the greater
number of units.

2. Secondary dimension: Ss incorrectly chose (a) the wider con-
tainer or (b) the quantity measured with the larger unit.

Hypotheses were tested using a multivariate analysis of variance
program of J.D.Finn (1967). In this programyanalysis is conducted using
single degrees of freedom - planned contrasts, and freedom is allowed to
specify the contrasts of interest. This flexibility especially suited
'the purpose of this study in which specific contrasts, rather than over-
all differences between factors, were of interest.

The Finn program yields standard errors for each of the variables
and also estimates the magnitude of the effects for the specific contrasts
and their standard errors. Thus, 95% confidence intervals have been
plotted for each of the problems and for each of the significant contrasts.

Based on the results of previous research it was predicted that
there would be no significant difference between performance on Equivalence
and corresponding Nonequivalence II problems. However, Nonequivalence
I problems were expected to be easier than problems employing the other
two relations except in the set of measurement problems in which the
larger unit was not visually distinguishable. Since the Nonequivalence
I relation was expected to operate differently than the other two relations,
contrasts between problems involving the Nonequivalence I relation were
conducted independently of contrasts between problems involving the
other two relations.
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In both Part A and Part B, four MANOVAs were employed. Thfirs
contained all contrasts that were predicted to have no significant
effect, Equivalence Nonequivalence II contrasts, and all contrasts
between measurement problems in which the larger unit was not visually
distinguishable. The second MANOVA contained all contrasts that were
expected to be significant and all contrasts for which there was
insufficient prior evidence to make a prediction. Thus, the second
MANOVA contained contrasts between problem types and contrasts between
Nonequivalence I and the other two relations. The third and fourth
MANOVAs tested for effects due to grade, sex, and order in which the ite
were administered. What this partitioning effectively did was to hypot
esize a model, to test the goodness of fit of this model (the first MANOVA),
to test whether the parameters of the model are nonzero (the second MANOVA),
and to test whether the model or the parameters of the model are sig-
nificantly influenced by grade, sex, or the order of administration of
the items (the third and fourth MANOVAs).

Testing for the effect of order presented certain problems. Since
the order of items was randomized, every S received a different order of
items, eliminating the feasibility of partitioning into each distinct
order. Therefore, the effect of the order of the items was determined
by a procedure proposed by Zimiles (1966). He found that the first
item administered often significantly influenced performance on all
subsequent items. Ss administered easier first items performed better
on all subsequent items than Ss administered a more difficult first
item. No differences were found, however, due to variations in the second
item administered. Thus, Ss were partitioned into order groups based
onthe first item they received.

Results

Part A. The results of individual items in PaA, the reasons
given for responses, and the types of errors are summarized in Table 1.
The means for individual items surrounded by 95% confidence intervals
have been plotted in Figure 1. Since the individual items are
scored on a 0-1 basis, the mean can be interpreted as representing
the fraction of Ss correctly responding to the item. Similarly the
confidence intervals can be interpreted in terms of percents. For
example, there is a 95% probability that between 27Z and 56Z of the
population would respond correctly to the Equivalence conservation
item.

There was very little diversity in the reasons given for correct
responses. Practically all the Ss either referred to the previous
state of the quantities or noted the compensating relationship between
unit size and the number of units or between height and width. Com-
parisons between reasons given by Ss who were successful on the items
in which it was possible to distinguish the compensating relationship
between unit size and number of units but were unsuccessful on problems
in which it was not are enlightening. Seven of the eight Ss who either
(1) correctly answered at least two of the measurement problems in which

the larger unit was distinguishable but none of the problems in which
it was not or (2) correctly answered all three of the problems in which
the larger unit was distinguishable and at most one of the problems in
which it was not, gave compensation as the reason for at least one of
their correct respopses.
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The teats of the hypotheses are summarized ii Table 2 and Table 3.

Tablet 2

HANOVA.--Relation COntrasts tot Part A

Source df HS F P
Multivariate 4,24 .0769 .9887

ale: CE C2 1 .0164 .0830 .7755
HD:. DE D2 1 .0164 :1021 .7518
Mc: IE 12 1 %0164 .0450 .8336
H2: IE Il 1 .0164 .0984 .7563

Degrees of freedom for error = 27
C .'Conservation
D Measurement with visibly different units
I. Measurement with indistinguishably different units
E - Equivalence
1 Nonequivalence I
2 = Nonequivalence II

HANOVA-Problem -Type and E
able 3

valence -- Nonequivalence L Contrasts

Source df HS F P
Multivariate 5,23 31).5264 .0001

I - 0 1 6.7776 67.1332 .0001
H5: D % I 1 .4376 3.6255 .0677
H4a: DE + D2 CE + C2 1 .0164 .1180 .7339
H4b: D1 C 1 .0164 .0608 .8072
H3: DE + E D1 + D2 1 1.8074 11.6189 .0021

Degrees of f eedcal for ester 27
C Conservat on
D Measureme t with visibly different units
I Heasureme t with indistinguishably different un4s
E Equivalen e
1 Nonequivalence
2 - Nonequivalence

I

II

These results indicate that there are no significant differences
between Equivalence and Nonequivalence II relations for any of the pro-r,
blems tested. There is a significant difference between Nonequivalence
I arid the other two relations except in the case of the measurement
OrOblema in which the larger unit is not visualW identifiable. No
significant differences were found between the conservation and measure-
ment problems or between the two types of measurement problems.

These results are summarized in the model in Table 4., The parameter:
of the model are all positive and significant except for 0. was included
in the model because (1) it approaches significance and (2) this effect
was significant in Part B (see below). Ninety-five percent confidence
intervals for each of the parameters have-been plotted In Figure 2.

.16:i
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Figure 2. Confidence Intervals for Parameters of the Model in Part A
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Table 4

Item Means for Problems In Part A

Problem type Relation
.Equivalence Nonequiv. I Nonegniv. II

Conservation
continuous y+ 0* v+ Eo,+ B v+ 0*
quantity
Measurement with
distinguishably v+ 0 + $*+ S v+ 0*
different units
Measurement with
indistinguishably

different units

*0 is not significant in Part A.

Signifitant differences between grades were ftund for overall means
(p .0001), but no significant effect.due t'o grade level was lound for
any of the hypotheses tested ( p, .42). No significant differences were
faind due to sex, or order in which the items were administered(p .16).

'Part B. The results of individual items in Part B, the reasons
.given for responses, dnd the types of errors are summarized in Table 5.

Table 5
Number of Subjects in.the Major Response Categories in Part B

Item*
Total Correct
Reason for correct
response

DE D2 IE 12 ME M2 VE V2
22 26 11 13 47 48 64 58

Reversibility 0 0 0 0 .0 0 0 0
Statement of operation 0 0 0 0 0 0 0
performed
Addition-Subtraction 0 0 0 0 0 0 0 0
Compensation, 5 10 0 0 0 0 0 0
proportionality
Sameness of quantity 0 0' 1 0 0 0 0 0
Reference to previous 14 11 6 8 45 46 59 55
state
No reason given or 3 5 4 5 2 2 5 3
unclassifiable
reason given
Total incorrect 46 42 57 55 21 20 4 10
Type of error
Taller container or 46 40 57 53 21 17 4 7

greater number of
units
Wider container or 0 2 0 2 0 3 0 3
larger unit
D Measurement with visibly different units
ritMeasur with indistinguishably different units
H Measur nt with the same unit into apparent inequality

- Measurem t,of unequal-appearing quantities into the same unit
E Equivalen
2 m Nonequivalence II
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and the means for individual items surrounded by 95% confidence- intervals
have been plotted in Figure 3.

Figure 3. Confidence Intervals for Its in Part 13
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As in yart A,vfrtually.all of the reasons for correct responses
fall into two categories; and except for the problems inwhichquantities
Were measured with distinguishably different units, virtually all the
correct responses were based on reference to the previous state. Two
of the five Ss who correctly answered both of the problems in which the
larger unit was distinguishable but neither of the problems in which it
was not gave compensation as the reason for their response.

Only one S missed every item. Another S completely ignored the
number cues, even though he successfully counted.the number of units;
consequently, he missed all the problems in which quantities were
measured with the same unit but ansWered correctly the items in which
quantities were measured with different units. A third S who was in
the "more-same" protocol group responded "same" to every item. On the
measurement problem with indistinguishably different units, only two
of the Ss were able to use the information from the measurement operation-
-to correctly identify the larger unit. The rest were unable to apply
the inverse relationship between unit size and number of units to this
problem and simply responded incorrectly on the basis of the unit that
looked larger. Between 85% and 89% of'the Ss gave the same response to
corresponding Equivalence and Nonequivalence II problems.

The analysis summarized in Table 6 indicates that there is no
significant difference between Equivalence and Nonequivalence II relations.

Table 6

MANOVA--Relation Contrasts for Part B

Source df MS F P
Multivariate 3,3Z 1.6369 .1970

IE = 12 1 .0000 .0000 1.0000
DE = D2 1 .2353 1.9335 .1721
ME = M2 1 .0000 .0000 1.0000
VE = V2 1 .5294 4.6109 .0379

Degrees of freedom for error = 40
D = Measurement with visibly different units
I = Measurement with Indistinguishably different units
M = Measurement with the same unit into apparent inequality
V = Measurement of unequal-appearing quantities with the same unit.,
E = Equivalence
2 = Nonequivalence II

Consideration of the univariate analysis indicates that the contrast
between problems in which unequal-appearing quantities are measured with
the same unit approaches yagnificance at the .01 level adopted in this
study and would be significant if a .05 level had been adopted. None
of the other contrasts even approach significance. The analysis in
Table 7 indicates that there is a significant difference between each of
the four types of measurement problems in Part B.

These results are summarized in the model in Table 8. The parameters
of the model are all positive and significant. Ninety-five per cent
confidence intervals for each of the parameters havd been plotted in
Figure 4.

4

ej 9
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Figure 4. Confidence Intervals for Parameters in Part B
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Table 7

MANOVA-- Problea -Type Contrasts for Part B

Source df MS F P'
Multivariate 3,38 70.8403 .0001

H5: D = E 1 2.1176 20.3702 .0001
H6: D = M 1 8.4706 33.6859 .0001
H7: M '= V 1 2.4853 19.5404 .0001

Degrees of freedom for error = 40
D = Measurement with visibly different units
I = Measurement with indistinguishably different units
= Measurement with the same unit into apparent inequality

V = Measurement of unequal-appearing quantities with En' same unit

Table 8

Means for Items in Part B

Problem Type
Relation

Equivalence Nonequiv. II

Measurement with
distinguishably p + 0 1.1 4 0
different units
Measurebent with
indistinguishably u 1.1

different units
Measurement into
different-shaped 0+ y u+ 0+ y
containers
Measurement from
different-shaped + 0+ y+ a u+ 0+ y a
containers

No significant differences were found due to grade, sex, or the
order in which the items were administered. Sex and order effects
approached significance (p - .02) for the contrast between the two
measurement problems in which a single unit was used,but did not even
approach significance for any of the other contrasts (p > .13).

A and B comparisons. Four items were given in both parts of the
study. The 95% confidence intervals for corresponding items do intersect
(Figure 5); however, compAison of corresponding item means indicates that
the fact that differences between measurement problems using visibly
different units and those using indistinguishably different units are

.significant in Part B but fail to reach significance in Part A can be
attributed entirely to between-study differences in performance on
the problems employing indistinguishably different units.
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Figure 5. Confidence Intapals for Items Appearing
in Both Farts A and Bt

TJ .. Measurement with visibly different units
I .. Measurement with indistinguishably different units
E - Equivalence
2 .. Nonequivalence II
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Analysis of variance for contrasts be een conservation.of Oun-
tinuous quantity and measurement pro in which quantities were
measured with the same unit into arent inequality (i.e, the final
state of the conservation problems) is summarized in Table 9, indicating
significant differences favoring the measurement problems. These results
should be interpreted somewhat cautiously in that the two types of
problems were administered in different sets of problems in the series.

Table 9
ANOVA--Conservation of Continuous-Quantity Measurement

into Apparent Inequality Contrast

Source df MS F
Between 1 11 14.6**
Within Cells 127 .76
**p < .01

The results in Figure 5, however, indicate that for the four problems
that were administered in both parts, performance was generally higher
in the part containing the conservation problems; so the danger of inter-
action with other problems favoring the measurement problems is probably
not too great.

Furthermore, in Part A no significant difference was found between
conservation problems and corresponding problems in which quantities are
measured with different units. In, Part B problems in which quantities
are measured with the same unit were found to be significantly easier
than corresponding problems in whiCh two units are employed. The com-
bination of these results confirms that problems in which quantities are
measured with the same unit are easier than corresponding conservation
problems.

Summary and Conclusions

It appears that it is not simply the perceptual properties of the
stimuli that,produce errors in conservation problems. There is no signi-
ficant difference in difficulty between conservation problems and cor-
responding 'measurement problems in which the distracting cues are numerical.
The position of Piaget (1952, 1960), Bruner, Olver, and Greenfield (1966)
and others that young children are highly dependent on perceptual pro-
perties of events and that conservation problems occur because the immediate
perceptual properties of the conservation problems override the logical
properties that imply conservation, has been based on tasks in which
distracting visual cues always appeared last. The results of the
current investigation, however, demonstrate that misleading numerical
cues produce the same errors as misleading visual cues.

The failure of young children to respond primarily on the b s
of visual cues is even more striking in the contrast between co rvation
problems and the problems in which quantities are measured i apparent
inequality and the contrast between the problems in which quantities are
measured with distinguishably different units and the problems in which
quantities are measured into apparent inequality. The problems measuring
quantities into apparent inequality, in which correct measurement cues
are followed by misleading perceptual cues, are significantly easier than
either corresponding conservation problems, in which both sets of cues

.A
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are visual, or corresponding problems in which quantities are measured
with different units, where correct visual cues are followed by incorrect
numerical cues.

These results, which could be interpreted to imply that numerical
modes dominate visual modes, should be regarded with some caution.
Zimiles (1963) has suggested that conservation failures may- result from
Ss basing their judgments on the E's manipulations of the quantities being
compared. For example, if two rows of blocks which the S has judged
equivalent when they are arranged in one-to-one correspondence are spread
out, the S says that the longer row has more because the act of spreading
the blocks out implies to him that the length of the rows is the dimen-
sion he is being asked to compare.

In the current investigation, the experimental procedures emphasize
the measurement cues, which means that the correct choice is emphasized
in the problems employing a single unit of measure but the incorrect
choice is emphasized in the problems employing different units of measure
and the conservation problems.

Thus, it appears that the most significant factor in determining
which cues young children attend to is the order in which the cues
appear. Problems in which correct cues appear last are significantly
easier than corresponding problems in which correct cues are followed
by misleading cues. As noted above, however, the order of the cues was
not the only factor that was found to affect responses.

In general there does not appear to be any significant difference
between conservation and measurement problems employing Equivalence
relations and corresponding problems employing Nonequivalence II rela-
tions. Nonequivalence I problems are significantly easier than corre-
sponding problems employing Equivalence or Nonequivalenceip relations
except in liroblems in which it is not possible to identi the larger

unit. These results imply that the relation between quantities being
compared does not affect performance, and the Nonequivalence I problems
are easier simply because they do not require genuine conservation,since
accurate comparisons can be made from the final states of the quantities.

Measurement operations have some meaning for the majority of students
in the first and second grades. By the end of the first grade, virtually
all students recognize that quantities are equal if they measure the
same number of units and quantity A is greater than quantity B if A
measures more units than B. Only 3 of the 129 Ss tested did not respond
to any questions on the basis of measurement cues; and only 2 of the 3
definitely ignored the measurement cues. The other S simply responded
"same" to all problems.

This does not mean, however, that first-and second-grade students
have totally correct measurement concepts or are able to accurately
apply measurement processes. As few as 25% of the Ss tested completely
understood the importance of using a single measurement function, and only
6% were able to discover the relation between measurement functions from
the results of the measurement operations. Only 70% of the Ss were able
to use measurement results if they were followed by conflicting visual
cues. Only 59% of the Ss demonstrgted any knowledge that variations in
unit size affected measurement results, and as few as 40% of the Ss were
able to apply this knowledge to problems in which quantities were
measured with different units. This figure dropped to 25% when the
larger unit was not visually distinguishable, and only 6% of the Ss
were able to use the results of measurement operations to determine the
larger unit when it was not visually apparent.

L
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The conclusion that by the end of first grade virtually all children,
even those in Stages I and IIA, have some concept of measurement appears
to contradict Piaget's (1960) conclusions that measurement concepts do
not begin to appear until Stage IIB. This apparent conflict is due to
the fact that Piaget employed less structured measurement tasks. In
order to have any measurement cues to respond to, Ss had to measure
themselves. In the current investigation the measurement cues were
forced upon the Ss; therefore, even Ss in the earliest stages had
number cues to guide or distract their reponses.

The results of the two sections of this study with respect to
the importance of recognizing the compensating relation between dimensions
are ambiguous. Significant differences between the problems in which
it is possible to distinguish the larger unit and those in which it is
not were found in Part B but not in Part A. In Part A, however, about
7% of the Ss tested did find the problems in which the larger unit was
distinguishable easier than the problems in which it was not, and the
pooled results indicate there exist signIficant differences. Considera-
tion of this fact and examination of the confidence intervals for the
parameter 0 indicate that probably at least 10% of the population sampled
require that the distracting cues contain compensating relations in order
to conserve. These conclusions should be regarded with some caution,
however, since the discrepancy between the results in Parts A and B
indicates that there may be some interaction between tasks administered to
the same S that affects the parameter 0.

In general there were no significant differences due to sex, order
of items, or protocol variations. The fact that only one S in the entire
investigation consistently responded either "more" or "less" to all
problems indicates that by the end of the first grade few children still
respond to conservation problems on the basis of the last alternative
offered to them.

Thus, of the factors under consideration in this study it appears
that centering on a single dominant dimension is the major reason for
most conservation and measurement failures and the development of conser-
vation and measurement concepts can be described in terms of sing
ability to decenter.

In the earliest stage children respond on the basis of a singl
iediate, dominant dimension. The dimension may be either visual or
numerical depending on the problem. In the next stage children are
capable of changing dimensions, but in each problem they still focus
on a single dimension. In this stage some children are capable of
pseudo conservation and correctly solve Nonequival ce I tasks but
not Equivalence or Nonequivalence II tasks. Childr n in this stage
occasionally conserve by focusing on the earlier st to but are
incapable of simultaneously considering the immedia state of the
quaptity and the state prior to the transformation a d deciding which
set of cues provide a legitimate basis for comparison. They generally
explain their responses by referring to the prior state and seem to
purposely ignore the current state of the quantity. Children around
this stage probably show the most gains in conservation training research,
but the gains may be in a very narrow sense. It seems likely that most
training simply serves to redirect the object of the child's centering
without providing him with the flexibility of thought that is necessary
for progression to later stages. ,Thus the child may learn to conserve
by simply centering on a different aspect of the problem but still lack
the flexibility of thought that conservation implies.
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Finally, children gain the flexibility to consider several conditions
of a quantity simultaneously and can choose the condition that provides
a rational basis for comparison; however, it is not until a later stage
that they are able to consider the consequences of the comparisons between
different states and use the information from both conditions to discover
the correct relation between the sizes of different units based on the
number of units two comparable quantities measure.

4,
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RECUT! LOVELL

Summary and Implications

The research papers that have been presented represent a concerted
effort to investigate the thinking of Children in the age range 4 to 8
years. Five of the six papers have dealt with aspects of the training
and acquisition of logical structures and the sixth with the acquisition
of structures involved in conservation and measurement. Accordingly, we
must begin by briefly commenting on what is known of the effects of train-
ing. Beilin (1971) has gfven an extensive review of the broad position
on the effects of training as it was at the end of 1970, and the position
at the time of writing this chapter has not materially changed. * If the
training of conservation or of logical operations (classification and
relational skills) is considered, training does often appear to effect
an improvement in performance. At least, the training appeared to work
in the hands of its proponents. The Geneva workers would probably concur,
although they would stress that training has no effect if some vestige of
operativity is not already present (Inhelder and Sinclair, 1969). For
both those who tend to give credence to the Piagetian conceptual frame-
work and for those who do not, the problem is (as Beilin points out) to
define what is meant by true operativity. If strong criteria are insisted
on it is difficult to refute the Piagetian position. But-if weaker cri-
teria are used it is easier to disconfiem it. However, it would not be
profitable to pursue this particular point here, vital as it may be.
Rather the results of the experiments in terms of the effect of training_
on performance on the posttests are considered.

Even if the issue of operativity is not pursued, other issues that
could influence interpretations of the experiments remain. First, it is
not possibl r the reader to know much about the quality of the training

cular study. While it is true the standard procedures can be
laid down, one cannot be sure (unless present) of the general atmosphere
and quality of the interaction between experimenter and pupils. Second,
there is the question of the size of the groups involved in the training
programmes. The writer is well aware of the difficulties in seldcting
pupils and of the work involved. But it must be pointed out that it is

171
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t.
possible for fluctuation to be present in data obtained from small groups.
My experience leads me to suggest that when small groups are themselves
randomly selected from small numbers of children, it is possible for the
small groups to be different with respect to some relev4nt variables.
In such cases, even when results are obtained at some acceptable level of
statistical significance, they cannot necessarily be trusted too far. In
the five papers involving training, summary information is contained in
Table 1. The results of these studies, then, can be generalized only to

Table 1
Number of Children in the Samples

of the Training Studies

Paper Numbers of Children Children Were:

Steffe and Carey

Owens

Johnson, M. L.

Leah

Johnson, D. C.

20 four-year-olds
34 five-year-olds
23 Kindergarteners
24 First Graders
39 First Graders
42 Second Graders
20, selected from a
larger group used
in pilot study
115 children of
which 35 were
alternates

Randomly assigned to full
and partial treatments

Selected from two schools

Randomly assigned to ex-
perimental and control
groups
Randomly selected from
two age levels and two
intelligence levels and
then randomly assigned
to experimental and con-
trol groups with ten per
cell.

similar samples. While it is possible that the groups were different with
respect to some relevant variables, there is no way that this can be ascer-
tained. A third issue is one that was raised by Smedelund (1964). He

argues that in every concrete reasoning task there should be clear distinc-
tion made between percept, goal object and inference pattern. The first
resides in the stimulus situation ae apprehended by the snhject; the goal
object ie what the child ie told to attain, such ae quantity or rength;
while inference pattern ie formed by the set of premises and conclusion,
e.g., transitivity or conservation. He argues that each factor can only
be studied with the Other two held constant -- this being a necessary
condition for the discovery of exact relations. For hie study, 160 chil-
dren were involved ranging in age from 4-3 to 11-4 and evenly distributed
over age and sex. The taeka1 were administered individually. The results
strongly point to the fact that when the generality of concrete reasoning
is studied over variations in percepts, goal objects, and inference pat-
terns,concrete reasoning has a very limited generality over the period of

1These included class inclusion, multiplication of classes, reversal
of spatial order, conservation of discontinuous quantity, multiplications
of relations, transitivity of length, conservation of length, addition and
subtractions of one unit, transitivity of discontinuous quantity.
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its acquisition. Indeed, in such circumstances, it appeared to be
acquired in one restricted situation at a time, and only the grosser
regularities -- such as differences in average item difficulty -- were
observed. However, when the interactions between different inference
patterns were studied, with goal objects and percepts held constant, the
position was differev. Such a study is, of course, of great importance,
since concrete reasontalwis assumed to be reflected in certain types of
inference patterns. In Smedslund's investigation, the comparison between
conservation and transitivity of length approached methodological perfec-
tion in the sense that only inference .patterns varied, and goal obje4s
and percepts were virtually constant. In this situation, only one child
passed the test of transitivity and failed the test of conservation.

1 Smedslund assumed that this was a case of diagnostic error and that-con-
servation of length preceded transitivity'of length.

. Another issue (although not unrelated, to the third)* involves the /
developmental ;inks between partial structured. InheldeF (1972) quoted/
earlier work of the Genevans into the question of.whether elementary / ,

measurement of length can be helped by the applicationofkoumerical opera-
tions. Their conclusion was that interactions between numerical and ordi-
nal ways of dealing with tote problek of either judging or construe ng
lengths tend to produce conflict, and -it was this which led the final '

resolution of the measurement task, since conflict was overc a ly by
the child's own efforts;t0 find-"compensatory and coordlnati ctions."
They argued that psychologically speakil , conflicts give rise to the

i

recombination of existing partial stru tures in order to reestablish the

lequilibrium which has been destrope d hence, conflicts give rise to
new cons;ructions. helder argues f m biology, where ney.combinations

p can only take pla inside what aye called reaction norms, that new 9om-
binations in c itive development can only occur within narrow"-zones of
.assimilat capacities. The StructUral levels of thought, while being

itat th ery origin of the generation of new combinations, at the same
time impose liMits, pn the new constructions that can be produced:

Closely linked with the contents of the last patagraph is the fact
that in scholastically backward, and particularly in schools- educable
retarded children, the attainments of concrete operational thought are
extremely erratic from situation to situation (Lovell, 1966b). Both in
everyday life and school situations, it would appear that their experiences
bring far fewer conflicts, and/or they have very narrow zones of assimi-
lating capacities. It is thue.somewhat trite to say that given training
experiences may not be assimilable to children of limited ability. ,There
may well be, of course, something of a "chicken-egg" problem here. However,
(),/ens quotes the study of Skypek who found the developmental pattern of

.

cardinal number conservation was likewise erratic among pupils from lower
socioeconomic- status homes.

, )
These, then, are some of the issues which must be borne in mind when

considering the results of the experimental studies and their educational
Implications.

The Research Results and the
Educational Implications

The paper by Steffe and Carey is discussed first. It should be
rememberid that the measured intelligence of the children was normally,

distributed in both age groups (although both means were well above the

r-
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average of 100), and the distribution of social classes to which the
children belodged wsa.also a normal one. Even on the first application
of the Length.Comparison Test, many children in both age groups could
establish relations between two curves, especially in the, case of "longer
than." The remaining results"are summarized in Table 2.

Table 2
Suzamary..A Results of the Sttfdy by Steffe and Carey

Tr fining Results on Posttests

(Involving the
interplay of
Language and
action;)

InstrUctional
Sequence I.

Instructional
Sequences II
and III.

ti

1

A significant improvement in the number of
correct responses, in comparing the Angths
of two curves, especially in the case of the
relations "shorter than" and "same length as."

1. Little improvement in the number of correct
responses in the comparison of lengths of
two curVes,since children came to the first
application of the test fairly'well able to
discriminate ampng the relations.

2. A significant improvement in performance in
respect of the-Length Conservation Test:,
Level I. The percent of children categorized
at Level I increased from 12 to 57.

3. The percent of children categorized at both
Levels I and II of the Length Conservation
Test increased4from 8 to 37 -- a statis-
tically significant increase.

4. A significant improvemenein the ability of
the age groups to use both reflexive and
nonreflexive properties. In the posttest
some 41 percent were able to use the reflex-
ive property and 30 percent both properties.

5., No four-year-olds were able to use the tran-
sitife property either beforeor after the
instructional sequences, but the percent of
five - year -olds able to use the transitive

property increased from 16 to 31.

The variables IQ, Verbal Maturity; Age, and Social Class had no sig-
nificant effect on the posttest scores in the case of the Length Comparison
Test, the Length Comparison Application Test, Length Conservation Test. Levels
I and II, and the test of Reflexive and Non-Reflexive properties": This argues
a case that the appropriate instructional activities may profitabty be undertaken
with similar populations of four- and five-year-oldst In our present state
of knowledge we cannot,specify,"in advance, which children will benefit

. from such instruction and which will not, but the results clearly suggest
that some will. In the case of the Transitivity Test, those five -year-
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olds who could use the transitive property had slightly higher scores
in IQ and on the Verbal Maturity Test, but there is no case at all for
attempting any instruction using similar populations with a view to im-
proving the use of the transitive property before five years of age, and
even at that_age results are likely to be limited. The Conservation of
Length Test Level II Involves a different ability, and is more difficult
than Level I. This is clearly in line with Smedslund's argument. Here,
goal object and inference pattern are invariant, but percept changes.

ti Again on the second administration of the test of reflexive and nonre-
flexive properties only 30 percent net the criterion, and of these only
one child net the criterion on the Transitivity Test, although there
were nine others who did meet the latter criterion. From this it may be
deduced that the use of reflexive and nonreflexive properties, as measured,
is neither a necessary nor a sufficient condition for the ability to use
the transitive property of length relations. However, there are unavoid-
able changes between these tasks in percepts, and inference patterns.
Consequently, the necessary change in percepts may have, influenced the
relations between the tasks, although this is not certain.

The paper by Douglas T. Owens is concerned with five- and six-year-
old Negro children who were disadvantaged in the sense that they came
from low-income families. No measures of IQ were given. A rather small
number of children were subdivided into.a Partial Treatment and Full
Treatment group,with the former group receiving Instructional Units I and
II; andithe latter Instructional Units I, II, III, and IV. Unit III was
designed to develop the ability of children to maintain relations between
sett when the physical matching of objects was destroyed, while Unit IV
was to help the children use the transitive property of matching relations.
Transfer was inferred from a.significant difference in favor of the full
treatment group.in rformance on some\property for which no instruction
was given, provid.d t there was a significant change 0 the same direc-
tion on a related ty for which instruction was given. On the post-
test, the scores on he. ransitivity of MAtching Relations test improved
significantly and sco on the test of the asymmetric property of matching
relations improved al ni cantly (p < .01).. It.very much looks as if the
Instructional Units III a d IV improved the performance of children on

t tasks which were similar o the activities involved in the treatment, but
that there was no transf r to`the Transitivity Prohlem, nor to the Tran-
sitivity of Length Rel inns Test. Again Unit not result in any

' improvement in the conservarkft stility of the Full Treatment Group. On
the other hand, age was a f'ctor influencing performance on,a11, matching
relations tests other than transitivity. But it had no effect on the,.
abilities of children to use length relational properties.

We should not be too surprised that more children attained conser-
vation of length relations than conservation of matching relations, and
more children attained_ transitivity of length relations than transitivity
of matching relations. In each case we have inivence patterns constant
but different goal objects and percepts. The source of the difference in
difficulty between items on length and items on matching lies either in
the nature of the 1 obje t, or differences in percepts. While id,
Siedlund's study ther a a tendency for conservation and transitivity
of quantity to precede, respectively, conservation and transitivity of
length, there were exceptions. With this rather small sample of somewhat
limited background experience, these particular results can beaccepted
without too much surprise. Again, studies have generally shqwE that most
children use conservation of,a particular relational category before they
use the transitive property for that category. In this study, however,
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about one-half of those using the transitive propert in a par.icular
category failed to conserve that category. As Owens su these
results may be to some extent interpreted in terms of the treatment
effect. But we must not forget the erratic performance of dull and/or
disadvantaged qhild'ren. It seems that for them concrete reasoning has
very narrow applicability for a much longer period compared with normal
pupils, and that every situation, or nearly so, has to be tackled afresh.
Put the other way around, there is little transfer of training. This

erratic performance is also frequently seen in individual examinations
using the various versions of the Binet Test of measured intelligence.

The educational implications of this study may be read as follows.
For samples of similar children it is likely that instruction in the
activities indicated is likely to improve performance only o osely
related tasks. Such children must, of course, be given a 1 range of
relevant experiences -- the opportunity to assimilate -- but teachers
must not be disappointed in their slower progress and in their greater
specificity with respect to performance, compared with pupils from more
advantaged homes. There seems little evidence at present that the growth
of logical thinking as such, in this type of pupil, will be aided by
training.

We now turn to the study of David C. Johnson. In this study the
children were drawn from kindergarten and from first grade. Only those*
children with an IQ between 80 and 120 were included in the study. Pre-

cise details of social class are not given. The aims of the investigation
were (1) to determine if specific instruction improved the ability of the
children both to form classes and establish selected equivalence and order
relations, and (2) to see if transfer of training,pok place to certain
other selected tasks. The five posttests measured respectively:

1. The ability to use the ilcal connectives "and," "or," and
"not." (Test CA)

2. Understanding of the relations more than," "fewer than,"
"as many as," "same shape as," and "same color as." (RA)

3. The ability to use two or more criteria at once. (MU)

4. The ability to solve class inclusion problems (CI). Success

on this demands operatory classification in Piaget's view.

5. The ability to use the transitive property of the relations
tested in'the RA Test (TR).

From these tests five achievement and four transfer ta4s were
selected. For the, sake of clarity these are listed in Table 3 for the
benefit of, readers, as it is otherWise difficult to hold in mind the dif-

.

ferences between the achievement and transfereasures. '

In considering the results it should be remembered, as was pointed
out earlier, that for each age and IQ level there were only 10 children
in the experimental and 10 in the control group. However, for all five
achievement tests, the F vplues for Treatment and Intelligence weie sig-
nificant at the one percent level, although the mean score on MUr remained
low even in the experimental group. The F value for Age was not signifi-
cant: In the case of the four transfer tests,the F value for Treatment
was significant in the case of MUI, MU2, and TR,although the mean score
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Table 3
Tests of the David C. Johnson Study

Achievement Tests Content

CA1 First ten items of CA
CA2 Last ten items of CA (novel material)
CA3 Intersection of rests CA1 and CA2
RA As RA
MUr Last six items of MU ( intersection rings)

Transfer Tests

MU3
MU2
CI

TR

First, six items of MU (3 x 3 matrices)
7,' Second six items of MU (2 x 2 matrices)

Same as CI
Same as TR

in the experimental group for.MU2 remained rather low. Against this, the
F value in respect of intelligence was significant in the case of MU2, CI,
and TR. Out age,yas not a significant variable.

Looking at the evidence as a whole it seems that, for similar popu-
lations, using the kinds of instructional activities undertaken in the
sSudy, help can be given in forming classes using intersection, union,
and negation, and in making "prenumber" sets of objects. Moreover, there
was some transfer to related activities. But Johnson rightly asks whether
there was any real improvement in operativity. That cannot be answered
for certain,dince it depends on the criteria we decide on to define opera-
tivity, as was indicated earlier. As was pointed out above, the perfor-
mance of the experimental and the control groups on MUr remained low in
spite of the fact that the foimer group did significantly better than the
latter group. Moreover, as Johnson points out, the type of performance
of children in the control group mitigates against interpreting it as an
inability to form interesting rings. The treatment did not produce a
significant improvement in the case of the CI Test, and although intelli-
gence was a factor in performance on this test, neither the experimental
nor the'control group reached operatory classification. Inhelder and
Piaget (1964, p. 164) bring evidence that graphic solutions to matrix
items each amaximum at age of six years, after which graphic solutions
decline and operational solutions increase. It is, therefore, difficult
to be sure, considering the ages of the pupils engaged in this study,
that the improvement in the performancelof the experimental group on the
matrix items implied an improvement in logical thought.. Again do the
case of,the transitivity test, the author suggests that improvement can
be attributed to clarity of language rather than to the use of the tran-
sitivity property as such. Thus, looking at the data as a whole, it is
possible that these children acquired physical knowledge and an increase
in figurative knowledge, but not in logical- mathematical knowledge, except
perhaps for those five-year-olds with high-measured IQ. Once again, it
seems that the kinds of instruction given can be of considerable use to
similar samples of children, 6ut-teadhers must not think that it will
nedessarily bring about a growth in logical thought.
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Johnson makes an important point when he advocates the need for a
study of the actual relations that exist between the words "and," "or,"
and "not," and the growth of conjunction, disjunction, and negative
concepts, respectively. It would also have been useful in this, and
other studies, if a principal components analysis had been carried out
in order to establish how the test scores cluster together and hence
make possible some estimate of the abilities underlying the various tasks.
This might have thrown light on what abilities the 3 x 3 and 2 x 2 matrix
questions, and the intersecting rings questions, measure in these age
groups.

A study concerned with the learning of classification and seriation
is reported by Martin L. Johnson. Two groups of first-and second-grade
children were involved. One was drawn from a Model Cities area and
consisted of Negroes, and the other group came from a middle-class Cau-
casian neighborhood. No measured IQs are given.' After the teaching of
Unit I, pupils meeting the criterion test involving the relations "same
length as," "shorter than," and "longer than," were randomly assigned to
an experimental and control ,group. The members of the former group were
given Instructional Unit II, which was designed for experiences in classi-
fying objects on the basis of the equivalence relation "same length as,"
and in seriating on the basis of order relations "longer than," and
"shorter than." The Conservation of Lepgth Relations Test and Transitivity
of Length Relationet Test were used botE as pretests and posttests, with the
respective pretests used as covariates, whereas the Seriation and Classi-
fication Tests were used asposttests only.

Both grade and treatment significantly affected performance on the
Seriation Test. In Item 1 of the Classification Test, both experimental
and control groups did equally well, but in Item 2, where children had
to discover the criteria for objects already classified, there was a
slight relationship between treatment and improved performance (.05 < p
< .10) where school and grade had no effect. Indeed, 75 percent of the
subjects failed to achieve the criteria for classification. In the case
of Item 3 (requiring the formation of a class with one element) neither
school, grade, nor treatment was significantly related to performance,
although more Grade 2 than Grade 1 pupils gave complete solutions. However,
the fact that school and grade, but not treatment, affected posttest per-
formance on the Conservation of Length Relations Test was, perhaps, some-
what surprising, and we shall come back to this point in a moment. Again,
only school, and not treatment, affected the posttest performance of the
Transitivity of Length Relations Test.

A number of issues are immediately raised by the results. First,
the abilities involved in seriating sticks and strings are clearly related,
but the seriation of the former is easier than the seriation of the latter.
This is an example of percept and materials changing, with goal object
and inference-pattern remaining constant. There is also a marked relation
between the ability to insert a stick into an existing series of sticks
with and without a baseline. And while the ability to seriate a set of
"linear" objects can clearly be improved with training (the ability also
improves with grade) in the case of both ethnic groups, we remain uncer-
tain whether thq level of logical thinking or the operativity of the
pupils increased, or whether some rule was learned which enabled them to
seriate more easily. The fact that no significant relation was found
between transitivity of "longer than" and "shorter than and the ability
to seriate using the relations, might suggest that the training helped
pupils to use an algorithm. On the other hand, it could be that more

pupils had become operational in the Piagetian sense, but that the ability

.4
10.
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to serrate does not imply transitivity. Only a more precise study of,the
relationship between seriation and transitivith keeping goal objects and
percepts as constant as possible will throw light on the latter problem.

If, however, the training did not improve operativity,then some of
the other results are more understandable. For example, treatment did
not affect performance on Items 2 and 3 of the Classification Test, on the
Conservation of Length Relations Test,.and on the Transitivity of Length
Relations Test. Such results would be in keeping with the view that
operativity was not increased by the treatment, as would the fact that
performance on Items 1 and 2 of the Classification Test was only slightly
related to the transitivity performance of "same length as," and perfor-
mance on Item 3 not at all. On balance, it seems likely that the level
of logical thinking tas not increased, but grade did Affect performance
on some tests.

The study of R. A. Lesh concolls the interdependence of classifica-
tion, seriation, and number concepts. Three parallel sequences of tasks
(indicated by Cl, C2 ---- C6: S1 ---- S6: NI N6) were devised
to exhibit a relatively invariant sequential mastery, so that there would
be only a small chance that a child could respond to the (n + 1)th task
before he could respond to the nth task. The tasks were tried out by
having them administered individually to each of 160 children aged 5 years
4 months to 6 years 7 months, living in a typical small ton. This was in
the nature of a pilot experiment leading up to a training "Ludy in which,
an answer was sought to the question of whether significant transfer of
learning is possible between tasks which are characterized by isomorphic
operational structures. In this case, the attempt was made to bring
about the elaboration of number concepts through teaching seriation and
classification concepts. But, in the training study, an answer to another
question was sought: namely, would such training transfer to two tasks
involving only spatial transformations which were roughly equivalent in
difficulty to tasks N5 and N6 ? -0

The two spatial tasks chosen were Piaget's"three mountains"tasks
(T6) and Piaget's tasks dealing with horizontal axes relative to the
water level in an inclined bottle. We are not told how these particular
tasks were made equivalent in difficulty to tasks N5 and N6, nor the
exact details of materials and procedures used in these experiments.
Experience shows that there are subtle changes in pupils' performance on
these two tasks, depending on the precise task, on the materials used, and on
the wording used in questioning (Lovell, 1972). Children are often at
different stages on the two tasks, and, indeed, the level of performance
may differ within "a task because of changes in experimental procedure.

For the training study, another 20 children were chosen, aged 5
years 3 months to 6 years 2 months. These had correctly responded to
tasks SI, N2, and Cl,but had failed on tasks S3; N3, C3, and, from the
experience gained in the pilot study, were most unlikely to respond
correctly to tasks N5 and N6. The pupils were divided 'into an experi-
mental and control group , with each individual in one group matched for
sex and scores on certain other tests with an individual in the other
group. Moreover, the primary purpose of the training was to get the pupils
to coordinate schemes of actions which would lead to the groupings of
seriation, multiple seriation, classification,and multiple classification;
these, in turn, hopefully leading to increased decentratIon and analytic
thinking.

The training successfully carried over to the number tasks but not
to the spatial tasks, in the sense thate experimental gloup outperformed
the control group on the former tasks, OSereas none of the'experimental

1
H,
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group responded correctly to tasks T6 and T7. It would appear, as the
author says, that training can enable some pupils to internalize schemes
of actions which can be generalized to new situations involving the same
schemes; in other pupils the transfer will be limited or nonexistent.
The difficulty is that we do not know whether or not those in the experi-
mental group who were able to pass tests NS and N6 after the training were
at some level of "transition" stage at the beginning. Basically we need
to know more about the schemes available to children at the beginning of
the training period than we are told inthis and in all the other studies
reported. But the author seems aware of the need to know more about the
schemes at the outset. Indeed, he makes the point that the evidence is
in favor of Piaget's distinction between three basic types of logical-
mathematical operations being a useful one, and points out that children
who' spontaneously mastered all facts in the classification and seriation
tasks of the pilot study outperformed the 10 children in the experimental
group on number tasks. The schemes of the former were obviously different
in some way from those of the latter. Lesh further points out that while
the number concept involves only classification and seriation operations,
the cbnservation of number also involves transformations. Clearly the
schemes of some children in the experimental group permitted the handling
of the relevant spatial transformation in the number field, while the
schemes of other children did not. Such transformation had not been part
of the training program. Yet, none of the pupils in the experimental
group had schemes appropriate for the successful completion of tasks T6
and T7. Now, it is true that-the scheme is a generalizable aspect of
coordinating actions that can be applied to analogous situations, while
schemes are coordinated among themselves in higher order structures.
Moreover, tasks T6 and T7 depend for their successful completion on
schemes and structures that enable them to handle aspects of projective
and Euclidean space, respectively. Piaget is clear that the elaboration

of logical-mathematical structures depends on maturation, social inter-
change, education and culture (cross cultural studies confirm this), and

above all, on self-regulation. It would seem, then, that the structures
involved for the successful completion on tasks T6 and T7 require differ-

.

ent experiences from those required for NS and N6: not that experience
is a sufficient condition for the elaboration of structures, but that it
is a necessary one. The discrepancy between performance on NS and N6 on
the one hand and T6 and T7.on the other, is not unexpected with this age
group. The intra-individual variability in performing taski characterized
by a single operational structure is also likely to depend in part on
experience and familiarity with materials, but to be sure we need to know
much more about information processing in children than we know at present.

The author points to the rather narrow base of the training progtam
and suggests that those pupils who spontaneously solved the classification
and seriation tasks have better developed schemes than members of the
experimental group, since the former did better than the latter on the
number tests. This, he argues, is a case for more widely based teaching
programs than many mathematics educators have admitted to hitherto. With
this point the writer would heartily agree. We require widely based but
directed programs, involving both action and language in small-group work.
There seems little doubt that one can accelerate the performance of
children on a particular task or on ones closely related to it, but the
extent of transfer depends on the nature of the scheme available at
the beginning of the teaching and on the width of zone of the pupil's
assimilating capacity.
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So far we have considered five studies. The effects of the training
programs are briefly summarized in Table 4.

Table 4
Summary of the Training Programs

Group Nature of Training Effects of Training

1. Four- and five- To establish length
year-olds. Normal relations between two
spread of IQ and curves, to use reflex-
social background. ive and nonreflexive

properties and to con-
serve length relations.

2. Five- and six-
year-olds. Dis-
advantaged Negro

3: Kindergarten and
first-grade chil-
dren with
measured IQ
80 -120. No
precise details
of social

background.

4. First and
second grade
children;
Negroes and
middle-class
Caucasian

No
IQ's given.

5. Aged 5:3 to
6:2. Drawn
from small
Indiana com-
munity. A
spread of
ability.

To establish length
relations, to conserve
matching relation&,
and to use the transi-
tive property of
matching relations.

To form classes,

intersection and
union of classes,

complement of
classes, relations
between classes and
between class
elements.

To classify on basis
of equivalence rile-

.tion "same length as,"
and seriate on basis
of order relations

"longer thap," "shorter
than."

To classify and
seriate.

Improved ability to com-
pare the lengths of two
curves, in conservation
of length relations, in
use of reflexive and non-
reflexive properties.
Limited improvement in
use ol transitive proper-
ty by 5-year-olds.

Improved performance on
transitivity of matching
relations -- a task
similar to activities
involved in treatment.
No transfer to other
tasks.

Improved performance on
all five direct achieve-
ment tests and on three
of the transfer tests,
although not on the test
of Class Inclusion. Some
doubt remains as to
whether there is any
improvement in regard to
operativity.

Improved performance on
Seriation Test. No im-
provement on Classifica-
tion Test, Conservation
of Length Relations Test
or Transitivity Test.

Improved performance on
number tests but'not on
tasks involving spatial
transformations.

4/
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In summary form, the overall picture can be quickly grasped. Suit-
able teaching programs aimed at improving children's understanding of
certain mathematical ideas can profitably be undertaken with kindergar-
ten, grade 1, and grade 2 children, providing such children are not slow
learners and do not come from disadvantaged homes. With such popula-
tions, some children's performance will improve more than would have
been the case without directed, experiences, and in some instances, there
may be some transfer of training. But it remains uncertain whether there
will be any real improvement in operativity as the result of narrowly
based experiences -- further, there remains the problem of the criteria
used to define operativity. In the writer's view, the kinds of training
included in these experiments could be incorporated into teaching pro-
grams in which small groups of children work through the various directed
activities. It is, of course, important that children are not unduly
pressed when the schemes available to them are far from those required
for the tasks. If this is indeed the case, they are likely to assimilate
the ideas with distortion, turn away in distaste, or have a tenuous grasp
of the ideas in question. Readers will also have noticed that here and

_Ampathere in the papers, age, grade, and intelligence significantly affect the
posttest results. This surely suggests that a longer period of varied
experiences and better developed schemes, or earlier developed schemes
in the case of higher intelligence, play a marked role in understanding
mathematical ideas.

As against this, the one study reported among disadvantaged chil-
dren suggests that teachers must n9t be disappointed when there is improve-
ment in performance only on tasks very close to those that have been
taught. Teachers must be prepared for limited improvement and limited
transfer effect. In the case of school-educable retarded children, a
number of studies have shown (Lovell, 1971a) that the intercorrelation
coefficients calculated for performance on tasks administered individually
on Piagetian lines are much lower than in the case of normal children.
The schemes available to a child of chronological age and mental age
seven years on a Binet type scale, must be different in wa s we do not
understand from one of chronological age ten and ment age seven. The
fact that there is so much less transfer in dull a disadvantaged chil-
dren does not imply that the kinds of teaching act vities that these
papers have discussed should be denied them. But teachers have to move
carefully to maintain motivation and interest, be more sensitive to the
capacity of such children to assimilate their experiences, and be ready
to defer such activities for a few months. At the same time, our exper-
ience suggests that such children need more direction, sensibly applied
in the teaching, than do abler and more advantaged children.

. We must, of course, bear in mind chat the posttests were given
immediately after the training period ended. None of the studies reported
giving a posttest, say, six months later. It is not possible to conjec-
ture what the findings would have been on the latter occasion. This is
a reason for long term follow-up studies of children, for which the writer
argues a case later.

Three other points must be made.

1. In Almy'q, (1970) study, which involved a large number of second-
grade children, it was found that performance was irregular across Piaget-
type tasks. The results obtained in the present studies arP consonant
with the view that, even at 7-8 years of age, intellectual structures are
still in a formative stage.

r
i .4
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2. These studies have thrown no light on the question of the ana-
lytic set - -or onthe awareness on the part of the child that certain logi-
cal relations inhere within the situation. This demands a certain suspi-
ciousness on the part pliithe child when faced with a task. We cannot
tell from these studies whether the child is unable to elaborate the
logical structures as necessary, or whether he can but fails to in the
sense that he is not "switched on" to the implications of the situation.

3. It might appear from these studies that training in these types
of activities was good in itself, for so often performance in closely
related tasks improved although there was little transfer to other tasks.
This may well be the case, but we cannot be sure. Ybung children appear
to elaborate logical structures out of their interaction with their
general environment, as they play and as they experiment with the world
about them. It could be that direct activities, however skillfully and
humanely applied to hold the interest of children, could nevertheless
have a deleterious effect in the long run in the sense that we do not
know how well such directed activities can be incorporated into the on-
going structures without, so to speak, any damage.

The sixth study, that of T. P. Carpenter, did not involve training.
Rather, he was looking at the performance of 75 Grade 1 and 54 Grade 2
children on tasks involving the conservation and measurement of liquids.
More specifically, Carpenter attempted to determine if young children
responded differently to visual and numerical cues or simply to the
last cue available. At the same time, the study was designed to find
the role of equivalence and order relations in conservation and measure-
ment problems. In order to reduce the number of tasks given to any oae
child, the three conservation problems, and both sets pf problems (Nos.
2 and 3) in which quantities were measured with two different units, were
administered to 61 of the children; the three relations being tested for
all three sets of problems (Part A). The remaining 68 children were
given all the measurement problems (Nos. 2, 3, 4, 5) with Equivalence
and Nonequivalence II relations (Part B). We have no precise details
of the social background of the children other than that they were drawn
from a predominantly rural community in Wisconsin.

Some interesting data emerge. In Part A, 25 of the 61 children
were correct on the Equivalence conservation item with a 95 percent prob-
ability that between 27 percent and 56 percent of the population would
respond correctly to this item. These figures give readers some idea of
the frequency of correct response to what has been the most usual type of
conservation problem. But in the case of correct answers to all the
tasks in Part A the reasons adduced fell almost completely under two main
headings: (1) reference to the previous state, or (2) a compensating
relationship between height and width, or between the number of units and
unit size. Moreover, the evidence indicates that there are no signifi-
cant differences either between the conservation and measurement problems
or between the two types of measurement problems given. Furthermore,
there are no significant differences in performance between Equivalence
and Nonequivalence II relations foe any of the problems given.

In Part B it is important to note the following three points: (1)
the great difficulty in measurement with indistinguishably different units,
(2) how much easier the tasks were which involved measurement of unequal-
appearing intervals with the same unit, and (3) the ease of the items
involving measurement with the same unit with apparent inequality. Indeed,
there is a significant difference between each of the four types of
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measurement problems in Part B with respect to performance. Furthermore,

there is no significant difference in respect of difficulty betwe
Equivalence and Nonequivalence II relations, although in the case where
uaequal-appearing quantities ap measured with the same unit, the iffer-

eace in difficulty is significant at the p .05 but not at the p = .11

level. Nearly all the reasons for the correct responses were based on
reference to the previous state. The author argues with some reason that

from a consideration of the performance on the four items given in both
Part A and Part B, when quantities are measured with the same unit they

are easier than corresponding conservation problems.
This study indicated that there is no difference in difficulty'

between conservation problems and corresponding measurement problems in
which the distracting cues are numerical; and that misleading numerical
cues can produce the same errors as misleading visual ones. The fact

that these children found the tasks in which quantities were measured
with tike same unit into inequality so easy is good evidence that they do
not respond only, or even primarily, on the basis of visual cues. Car-

penter argues that the most significant factor in determining which cues
young children attend to is the order in which the cues appear. The

present writer' would like to see more evidence for this, although to be

fair to the author, he does clearly point out, as he must, that the order

of cues is not the only factor found to affect responses.
The evidence also suggests that relations between quantities being

compared does not affect performance, since there is no significant dif-
ference in performance between conservation and measurement problems em-
ploying Equivalence relations and corresponding problems employing Non-
equivalence II relations -- here we have different perdepts but the same
goal object (quantity) and inference pattern (comparison of quantities).
And apart from the situation in which it is impossible to identify the
larger unit, Nonequivalence I problems are less difficult than the corre-
sponding problems employing Equivalence and Nonequivalence II relations,
since the correct relation between quantities could be found from the
distracting cues by focusing on the appropriate dimension; e.g., focusing
on the size rather than the number of units.

Carpenter points out that by the end of the first grade almost all
children recognize the quantities are equal if they measure the same
number of units, and quantity A is greateythan quantity B if A measures

more units than B. The writer's experience generally confirms these ages

or grades, except for very dull children. It is, of course, true as the

author Asserts, that children in grades 1 and.2 do not have well-developed
concepts of measurement nor are they able to measure accurately in all

instances. In a more structured situation, such as Carpenter employed,

the measurement cues were forced on the pupils, whereas Piaget employed

less structured tasks in which children had to measure themselves in
order to have any measurement cues to respond to. Thus, the beginning of

understanding with respect to measurement came earlier in this study than

in Piaget's experiments. The present writer has pointed out elsewhere
(Lovell, 1971a) that the structure of a problem affects its difficulty for

children. This is as true at the lev.el of formal operational thought as
at the age of onset of concrete operational thought. Moreover, this

point does indicate that some kinds of well-structured problems can be
introduced to Grade 1 children,and indeed in kindergarten,in the form of

play with water and sand.
The author concludes that the major reason for most conservation

and measurement failures lies in centering on a single dominant dimension,

and the development of concepts of conservation and measurement can be

AJ 5
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thought of in terms of the increasing ability to decentre. He proposes
that children pass through four stages, and these can usefully be compared
with four steps proposed by Inhelder (1972), which were determined through
learning experiments involving conservation and class inclusion. 13nfoi-
tunately we do not know how consistent, in respect of a stage, a child
was across all the tasks Carpenter undertook, any more than we know how
consistent a child was in passing or failing a task he undertook. However,
his proposals were: ,

1. The child responds on the basis of a single dominant dimension,
which can be either visual or numerical depending on the task set.

2. The child is capable of changing from one dimension to another,
but within any One task he tends to remain focused on one dimension.
Sometimes, conservation results from the child keeping the earlier state
in mind, but he is unable to consider both the earlier state prior to the
transformation and the present state at one and the same time, and decid-
ing which set of cues provides the right basis for comparison. Children
at this stage seem to ignore the present state and refer only to the
former state ("they were the same before"). The author suggests that it
is children at this transition stage who gain most from training in con-
servation, but such gains are on a narrow front and without a basis for
movement to a later stage and hence to an improvement in operativity.
Certainly the Geneva school would claim that training is ineffective
except for those at a transition stage.

3. The schemes now permit the child to consider a number of condi-
tions of a quantity, simultaneously, and choose the one that provides a
rational b'asis for a comparison.

4. The'child can now use the information from the prior and present
state and find the correct relation between the sizes of different units
based on the number of units which the two comparable quantities measure.

Inhelder's paper gives details of proposed stages found in learning
experiments involving conservation and class inclusion:

1. Two different systems of evaluation (e.g., number of sticks and
lengths of sticks)could be elicited, but neither was sufficiently developed
to permit their integration. The two separate systems were activated
successively, and the child did not feel there was any contradiction.

2. In place of the two evaluative schemes being evoked successively,
both seemed to be present almost simultaneously. But the pupil could not
conceive of a new solution which could take both schemes into account.
However, he is conscious of contradictions.

An attempt is now made at integrating the two evaluative schemes,
but it s inadequate. There are compromise solutions in the form of par-

,tial com sations.

4. The d ferent schemes can now be integrated. Thus in respect
of two lines of qual,length composed of matches of different lengths the
reply might be "You have more matches but they are shorter.", A Scheme no
longer operates a post hoc correction on another but rather there is a

reciprocal adjustment.

.11
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Inhelder states that in all the processes that have come to light
in the training experiments carried out at Geneva, development takes
place in a similar_way except in one group of problems. In those involv-

ing logical operations in the strict sense of the word (e.g., class
inclusion), the regulatory mechanisms found at stage (2) which yield the
awareness of contradictions are not followed by the compromise solutions
of stage (3) but by complete logical compensations which later result in
correct solutions (4).

The suggestions of Carpenter, also of the Geneva school, have been
mentioned since the importance of studying the growth.of partial structures
is raised in the next section. 1 t

Some Suggestions for Further Research

The studies that have been presented have been carefully designed
and skillfully executed, and the suggestions which follow are in no sense
to be taken as a reflection on them, but rather they should be regarded
as lines for research in the future. The research reported has been
concerned with the period of four to seven or eight years of age -- a
period in which Piaget characterized the child's thinking as a semi-logic,
or a one-way mapping, and the suggestions made here necessarily relate to
the same period and the years that immediately follow. Unfortunately,
psychology has not yet provided a valid theory of cognitive development
which is presented in detailed process terms. Piaget has given us great
insights and his developmental theory of intellectual growth provides a
useful conceptual framework in which the teacher can consider the ideas
he wishes his pupils to develop, although it still leaves large gaps in
our knowledge. ,Nowever, his theory is constantly developing as new prob-
lems are raisedi, new methods developed to deal with these, and existing
models adjusted or refined to account for these findings. The following
broad research areas are suggested.

1. Many studies have enumerated the items which a child passes or
fails. this certainly has its place either in training, or in the fre-
quent monitoring of children in a longitudinal study. But perhaps at
this moment of time more emphasis should be placed on carefully recording
the precise nature of the response both in respect of action and verbali-
zation. We need far more knowledge about the exact stage of development
of the relevant schemes of a child at the beginning of the training. It

would appear from the Geneva evidence that children at the lowest operative
levels get little from the training. But when items are scored on a pass
or fail basis we do not see the detailed base line, or detailed develop-
ment of the schemes which lead to a correct solution to the problem. Such

information is greatly needed.
Again when training programs employ two or more p7:SCedures (e.g.,

numerical [number of matches] and ordinal [length of matches] ways of
dealing with problems of constructing or judging lengths) we need to see
the interaction between schemes at various points or steps. At some point
conflict ensues, and-in the view of the Geneva school it is conflict that
triggers the reciprocal assimilation between schemes which provides the
final resolution of the problem. Note carefully, however, that the dif-
ferent schemes which are assimilated and integrated may not all be at
the same developmental level. Much research Is required here as,we know

little about the effect on each other of the various activities in which
the child engages.

ii ),



Lovell / Summary and Implications 187

Such studies are likely to throw light on the nature of the schemes
(in respect of mathematical ideas) available to normal as compared with
dull and disadvantaged pupils. It would also be likely to shed light on
the important problem of transfer. In short, such studies are likely to
throw light orlArocesses that impel the pupil forward. The classical
Piagetian sprUctiral model must be supplemented. We need more information
on the growth onchemes underpinning mathematical ideas and the way in
which"they hhcome integrated with other schemes.

In keeping with what has just been said, readers are reminded again
of the views of Smedslund regarding the importance of studying the growth
of inference patterns holding constant percept (as far as possible) and
goal object And also of the point made by Pinard and Laurendeau (1969)
that until we know more than we do now, the structure d'ensemble criterion
should be investigated to see to what extent the different Piagetian
groupings are achieved in synchrony on tasks related to the same conceptual
content and same material. Hamel and van der Veer (1972) attempted to
carryout the suggestion of Pinard and Laurendeau involving Multiple
Classification and Multiple Seriation tasks. Using their method of
scoring, the correlation between performance on these tasks was around
+0.6 even when measured intelligence has been partialled out. The
authors are yell aware that some children may solve this kind of problem
by means other than using operational schemes -- as we saw.earlier.
However, they also make two points. First, the amount of information
affects problem-solving behavior at the stage of concrete operational
thought, Second, there is a need for a longitudinal study of individual
children as they move from the preoperational to the concrete operational
stage of thought, to see to what extent different operatory schemes

develop in synchrony, and how performance is affected by irrelevant vir,
iables. The views of Hamel and van der Veer strongly support the general
views just proposed by the writer.

2. In connection with what has been just said it seems to the
writer that an information processing model of some of the tasks that
have been attempted in these papers could be of importance. It is true
that at the Universitd de Montrdal work in this field has been in progress
for some time, although the results are not widely known yet. In order to
encourage readers who have easy access to a computer, a brief sketch of
a little of the Montreal work is given.(See Baylor et al. 1973.) In, say,
weight seriation and length seriation tasks,a video-tape record is made
of the child solving, or attempting to solve, the problem given. The
actions and words of the child are then transcribed onto a protocol.
The protocol is carefully analyzed, in respect of both the task environ-
ment and of the subject's intellectual structures as revealed by his
behaviors. The pupil's. behavior on the task is then simulated by writing
a set of rules or program which can be interpreted by a digital computer.
When the program is executed a close reproduction of the child's behavior
is obtained. It can also generate further protocols on new but similar
problems.

Baylor gives an example which related to the weight seriation task.
The child is presented with seven white two-inch cubes and a sensitive
balance. The former all looked alike but were identified by different
Letter names. Their weights varied from 100.2 gms to 106.5 gms so that
the pupil was forced to use the balance to judge the relative weights of
the cubes. He was not allowed to put more than pwo cubes on the scale
at any one time. Examples are given of the recognizable strategies found
in the task and programs are given for the various "stages" of strategies
employed, namely:

15)
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1. A juxtaposition of pairs without any coordination between pairs;

2. The child tries to coordinate bis successive weighings of pairs;

3. Successive weighings are coordinated.

The derivation of predictions from the model formsthe basis for further
experimental studies. Data from the latter may, of course, demand modi-
fications in the model; in the way one could come to a number of recyclings
through the series. For example, if a pupil at stage (3) was presented
with two extra cubes and asked to intercalate these into the series,
would he behaye as the model predicts? If he does not, then why not?
The model would have to be appropriately amended in this case.

At the time of writing, Baylor et al had a program which would sim-
ulate behavior over both a task which involved the seriation of sticks
(taking only two at a time) and the weight seriation task, for a program
must ever be made more general. At the same time these writers point
out that there are certain aspects of Piagetian theory that have, not yet
found adequate nontrivial representations in the information processing
models (e.g., such competences as the onset of reversible, asymmetric
operations, and the ability to envisage, say, a cube as weighing more
than its neighbor to the right and at the same time weighing less than
its neighbor to the left). Thus, at present, an information-processing
model and a Piagetian model must remain complementary, although the
former may, as the result of future research, give operational defini-

tions to the Piagetian insights that cannot be represented at present.
At the moment a small amount of work has been carried out in England

involving information processing in respect of the class inclusion prob-
lem and the conservation of quantity, but details of the work are not
yet available. In the writer's view this is a potentially useful research
area as it may well throw great light on the nature of the partial struc-
tures; that is, schemes in the process of developmenr, and of the inter-
action between schemes when a complete solution is developing. It may
also throw light on the partial structures of able and less able children,
and on the question of transfer.

3. More research is required into the growth of schemes leading to
success in the class inclusion problem. Piaget believes that successful
performance in this problem demands operatory classification, while
Inhelder (1972) points out that the experience at Geneva suggests that
training in the class inclusion problem has positive effects on perfor-
mance on the conservation problems. In D. C. Johnson's study, children
were given experience in forming classes, in forming intersections and
unions, and in forming the complement of a class. The Class Inclusion
test administered as a posttest involved the following factors; presence
of_an extraneous object, three or more subsets present, equal numbers in
a set and its elements, mingled items, items not visually present, addi-
tion or subtraction of an item after an initial comparison. Now it is
true shat whenever a class and its complement are specified, the idea
of inclusion is implicit. But apparently the training was of little
avail when it came to the CI items. Further detailed studies involving
the growth of schemes relating to the CI problem, taking into account
variables such as Johnson used, are likely to be of value. They would
also throw further light on the growth of schemes in relation to the
amount of relevant and irrelevant information provided in the problems.
And it might develop that greater transfer to other tasks such as conser-
vation might Se found, as Inhelder suggests.

1 91
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Beilin reviews the relevant evidence concerning training studies
in class inclusion.. After reviewing the evidence provided by Kohnstamm
and the counter-evidence of the Geneva school, together with other
studies, he concludes that training can lead to the successful conclusion
of this logical ability. Whether operative achievement from instruction
and training results is still unresolved, since conceptual and operational
definition of operativity have yet,to be made. This need not detract the
mathematics educator. He wishes to know whether the "pay off" in respect
of transfer to other skills is greater if the emphasis is put more on
class inclusion.

4. While the present papers involve fundamental logical structures
vital to mathematics, which are elaborated with greater or lesser under-
standing in the move from semi-logic to concrete logical thought, we
should not be content with these alone. We need to establish, in a whole
range of abilities from very able to school-educable retarded, more
knowledge as to the stages through which pupils pass in elaborating the
concepts involved in, say, the numeration system or in the properties of
the natural number system. And we need tar more information in respect,
of the growth of spatial and geometrical concepts and how these develop
in comparison with numerical ones. Again, we need more information on
whether topological concepts develop prior to Euclidean and projective
concepts in the child's representation of space. Lovell (1959), Lunzer
(1960a), and Martin (1973) have doubted this. But the evidence of Laurendau
and Pinard (1970) must also be considered. The outcome of this argument
is important for it would give guidance in respect of the order in which
spatial ideas should be introduced to young children.

5. Research is needed along the lines argued by Steffe (1973).
In his paper he has attempted to outline some possible relations between -
the cognitive systems of the child and the mathematical systems of finite
cardinal and ordinal number. Moreover, he argues that it seems likely
that some mathematical structures may be more parsimonious models of cog-
nitive operations than the genetic structures proposed by Piaget. For
example, he reasons a case for suggesting that, on the basis of informa-
tion which we have at present, the structures of connected, asymmetrical, /
transitive relations is more parsimonious as a logical model of seriation /
than is Piaget's Grouping V (Addition of Asymmetrical Relations). But
more research is needed to establish if this is the case.

Again, since logical identity (essentially an equivalence relation
is an integral part of the Piagetian grouping structures, a great
more knowledge needs to be established concerning its development, a
of the relation between its development and the growth of seriation And
classification behaviors. Moreover, although logical identity, set equiv-
alence, and set similarity are all equivalence relations, they may have
different roles in the child's elaboration of the concepts of cardinal
and ordinal number. Here, too, research is needed, and Steffe lists a
number of problems to be investigated holding in mind Piaget's Grouping
I (Primary Addition of Classes).

6. Some of the basic research which we have suggested will require
time both to execute and implement. Meanwhile children ave to be educated.
Thus, I also believe That a longitudinal study of childten is important
in which the style of teaching is kept constant over a period of years
even though the same teachers do not remain with the pupils throughout
the period. This involves great problems. For example, even if the style
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of teaching remains constant over a number of years, the vigour and enthu-
siasm of individual teachers may not. In my view we need to compare the

performance and understanding of pupils towards the end of the elementary
school, whose teaching can be characterized since kindergarten and Grade 1
as carefully directed activities of the kinds indicated in these papers,
with pupils who have been taught on more traditional lines. This is a
formidable task. For one thing, the directed activities to induce an 1

understanding of mathematical ideas would have to be done in a manner to
hold the interest of pupils since children in the elementary school look
upon mathematics as a tool with which to solve real-life problems, and
not as a purely intellectual exercise. Again,the ability to compute
quickly aad accurately is a skill that all pupils need. Bluntly, our
research to date has been too short-termed. In respect of the present
studies, for example, it is unlikely that we shall ever know what happened
to the mathematical understanding of these people in later school life.
Do any improvements brought about by such directed activities enable the
pupil to elaborate the concept of time any more easily, or have a surer
grasp of the properties of the natural number system in the sixth grade?
The design and execution of such a study would present formidable prob-
lems, but until it is tackled we shall not have accurate data on the long-
term effects of a consistent style of teaching mathematics over a number
of years.

The writer is, of course, well aware of the results of the Almy
(1970) study,in which.a large number of children who had had prescribed
mathematics and science programs since kindergarten (AAAS, Gee and SCIS)
were compared with pupils whose mathematics and science activities were
planned by the teacher. In atg second grade both groups of children did
about as well on Piaget-derived tasks; so there wasimo indication of su-
perior logical thought in either group. However, twd points need to be
made in respect of the Almy study. First, we cannot be sure how well the
presribed programs were implemented; that is, of the quality of the teach-
ing. Attention was drawn to this danger in the opening paragraphs of
this chapter. In any study the writer had in mind the quality and style
of teaching would be controlled as far as possible. If this were not
possible from kindergarten to grade 6, it might be possible from kinder-
garten to grades 3 or 4. Second, the follow-up study of Almy was in the
second grade; the writer has in mind a much longer study. It is, of
course, unlikely that we should ever be able'to.maintain a style of teach-
ing across all areas of school life, and we have no idea what effect on the
gpwth of logical thinking the mathematics programs alone would have.

While mathematics educators must necessarily believe in the partic-
ular programs they advocate, we shall not know the long term effects of
such programs until a yell-designed experiment is undertaken. Beilin,

in his extensive review of the literature in the training and acquisition
of logical structures, argues that since the child can construct a concep-
tual system out of many materials and techniques, even those not intended
by the researcher, the basic pattern of organizations is internal. That
is to say, the growth of the logical operational system is under the
control of a genetic mechanism and permits the growth of intellectual
structures through interactions of environmental inputs. Put simply, we
want to know what the long-term effects are of particular environmental
inputs on the growth of logical thought and the grasp of mathematical
ideas. And can young pupils assimilate particular inputs, as in the case
of directed activities in mathematics, without any ill effects?

1. 9
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