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X This réport reviews theoretical and empirical studies of

decision making. The purpose of the review was to identify results
. that.would be appligable to the problem of training decision makers.

L

/ -The litérature on decision making is éxtensive. However,
R relatively few studies have dealt explicitly with the problem of
“trgining in decision-making skills. The task, therefore, was to .
W gather from the general literature on decision making® any impli-
cations that c¢ould be found for training. . :

zeptualized here as a type of problem -,
' solving, and the review is organized in terms” of the following
“component tasks: information gath®

« Degisionwpmaking is conc

) ering, data evaludtion, problem
v structuring, hypothesis generation, hypothesis evaluation, pref-
, erence specificqtion, action selection, and decisjon evaldation. .
Implications of research findings, for training arexdiscussed in
- - - the contéxy of descriptions of eash of these, tasks.
J;.general conclusion drawn from the study is thaé'decision
making~is probably not sufficiently well understood to permit the
design of «dn effective generali-purpose training system for decision
makers. -Systems-and programs could be developed, however, to
facilitate training with respect to specific decision~making skills.”
‘ The ‘'development of more generally applicable training techniques
o or systems should proceed in an evolutionary fashion. - “

-

- ¢ R . . )
Tralning is one way tq improve decision-making performance;
L) 3 ) 3 3 3 3
another is to provide the decision maker with aids .for various

’

2 - . 3 - B g - - -
v I "aids are viewed as cemplementary approaches to the same problem,

the report ends with a discussion of Several decision-aiding tech~
W niques that are in one or another” stage of study or development.

* .
L4 .
‘ -
L]
. ., 1 _ o
¢ . . e . .

-3
‘l

GovernmentpRights In Data Statement

Il

. . " " | Réprbduction of this publication
in whoke or in part is permitted
’, ) v for any purpose of the United
‘States Government. ! /o

L
7

. "
* -
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The Muman Factors Laboratory oﬂ the Naval Tralnlng Equlpment,

, Center has been involved in decisien-making research with the
+ objective of developing an approach to decision-making tra;nlﬂg
é which yill improve the decision-making and tactical performance
capabilities' of Navy commanders. This report is the .result of an
. . \ analytical review of decision-making research which wag performed.
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‘Mych, has been written about the importance of decisian making
for industry, for government, for the military and for rational--or t
at least re;sopable--people in general., Moreover, a.great deal of
reseatch has been conducted on décision-making hehavior. 1In spite
of these facts--or perhaps because of them--there ‘s not generxal
agreement concerning what decigion making: is, how it should he done,
how it is done, how to tell.whether it is.done well’ or poorly, and
how to train people to %9 it better. o

The term "decision making" has®been applied to' a very broad

range of behaviors.-

The detedtion Of weak sensory stimyli has been

viewed , in part, as a decision process (Gréen & Swe

ts,
57).

1966), as
Pattern

classifjcation by machines (Sebestyny
information from memory (Egan, 1958),
tasks such as automobile driving '(Alg
ing (Szafran, 1970), the production’ o
1973), educational counseling (Stewar
.cha

has perception by humans more. generally (Bruner, 19

'1962), the retrieval of

the performance of skilled
ea, 1964) and airplane pilot-
£ speech (Rochester & Gill,

t & Winborn, -1973), the pur- ,

the
con

representative .0

ing of industrial pxrodycts (Reingen, 1973), the evaluation of
erformance of salesmen «(Sheridan, & Carlson, 1972), and the
cting of 'a laboratory experiment J(Edwards,. 1956) -are also
the types of processes that have been distussed

under .the rubric 'of decision making. Probably when th

e term is, used \

in industrial, governmental and military ¢

ontexts, howewer, what

: the user has in mind'is something close to. what Schrenk (1969).
= ‘descgibes’as "situat}ons”characterized by fairly wellrdefined
objectives, significant action alternatives, relatively high |,

.* stakes, inconclusive informatioh and limited time for decision

(p. 544). We haster to add that to.limit one's attention’ to

N

sitvations that ‘Have all of these characteristics would preclude -

consideration of the large majority of

ex¥perimental "Investigations

oo - of decision, making;.in particular, in very few laboratoky studies

o of decision making have the stakes been high; and one may question
in many--if not most--cases the ai%yificdhce of the action alter-

natives to the experimental subjefts. It does nogmpecessarily

follow that the results~gf lTahoratory
real-life decision 'making, of course.

studies have no relevance to
The degree to which one is

. * .willing to extrapolate from the one situation. to the other depends
on the extent to which one.subscribes to the view that simple and
é}incdnsequentidl decision problems are- solved--at least in principle
--in the same ways as are ‘those that are complex and consequential.

., - / .
. As Schrenk(1969) has pointed out, there are three ways to

g -

improve the performance of the human decision element in a system:

2

/(1) selection (insure that decisions are made only by individuals

who are competent to make them) ,

(2) training (attempt to improve

the decision-related skills of people in decision
ro! ‘

-making positions),
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and (3) dec151oE aldlﬁ§k(prov1de decision makerS'w1th procedural
and technical aids to °‘compensate for their JSwn limifations). To
the extent that pérformance of a decision-making,system is of in-
terest, as Qpposed to that of a human belng, another possibility
that deserves consideration is that of automation (have gachlnes
,perform those dec1sron tasks that they can perform better than -
"people). . . .
The number:of tasks that are now performed by machines that
‘n were once thought to require human skills is growrpg and will
continue to do so. Many tasks that {nvolve decision making by
some definition should. be«~indeed, many ‘have been--automated.
There' is little justifigdtion for wasting a good ,human brain to
make what Soelberg (1967) calls "programmed decisions.," decisions
that are made with sufficient fréquency and under suffic1ent1y
specifiable conditions to permit the detailed description of pro-
cedures for maklng them. Thermostats, governors, regulators,
stabilizers, compnter algorithms, and such things, are the pre-
ferred "degcision makers",for these types of situations. The
situations with which we are primarily concerned are not of this
straightforward programmed type. ‘They are situations that are

novel, unstructured or unplanned for, or ,they involve human pref- .

erences that are. not eas11y spec1f1ed, or potential action con-
sequences that are not known with certainty. Clearly, these
types of s1tuat10ns age the more interesting objects of study,
and are probably more representatlve of what people view as bona
fide dec1s1on making.

.« It 1is 1mportant to recognlze that the objecteves of much
decision-making research are to make novel situations less novel
by proyiding prototypes ®n terms of which the novel situations

. can be perceived, to facilitate the imposition of structure on
situations when apparent structure is lacking, and to provide |
technlques for %ecreaslng the probability of surprises and for
.'coping with unplanned-for situations as though they had been
anticipated all along. But the reader who might think that such
objectives could, if realized, take the chatm out of decision
mgking may‘rest easy: There seems little danger of success to
the p01nt of reducing all decision making to an_ algorithmic

sprocess in the near future. Indeed, there are some aspects of
decision making that men may never feel comfortable turning over
to machines. Hence, the needs for selection, training and des-
cision aiding are still real, and are likely to continue to be
for some time to come. Moreover, as more and more of the pro-
cedurizable tasks that were once performed by men do become auto-
mated, the tasks that are left to be performed by men--or perhaps
by men and machines in collaboration--take on added interest and
significance by virtue of their very ;es1stance to automation.
Should not those tasks which seem to requlre the attention of
human brains be the tasks that hold a unique fascination for us
as human beings?
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The géneral question thit motivates this study is i
of whetper individuals can,be trained to be effect{vé d§2§s§g§9tlon
makerg in unprogrammed situations. And if the answer to that
guestlon appears to be yes, the next ‘question that presents itself
is that of how that trainirfg can’ be accomplished most*effectively
Immedlatgly, one is led to, more specific questions.' Does it make.
sense_to think of decision making as a skill, or as a collection
of skills, that ‘can be deyelopéd in a sufficiently general, way that

they can be gppiied in a variety of specific contexts? What is it
thgt ?he dec151op maker needs to be taught? Cgncepts? Facts?
Principles? Attitudes? Procedures? Heuristics?

-~

,fhe literature onwd;cision—making research is volumious, but
despite numercus references to the importance of the training of
decision makers (e.g., Edwards, 1962; Evans & Cody, 1969; Fleming,

-197-0; -Hammell
Scalzi, 1970;

& Mara, 1970; Kanarick, 1969; Kepner & Tregoe, 1965;
Sidorsky & Simgpneau, 1970), the number of studies

that ‘have explicitly addresse

d the guestion of exactly what should

be taught and_how the teaching can best be accomplished is remark-
ably small. The central interest in the area contiénues to be

with parameterization of the decision maker and his environment _ /
and with generation of specific aids to’the decision process.

This review is not limited, therefore, to studies that have
focused specifically on the issue of,decision training. We have
- attempted instead to look at a rather broad cross section of the -

general decision-making research literature with a view to finding,
wherever we could,

implications for the training of decision makers’
and clues concerning 'what futther research might lead to more
effective.training procedures or programs. .

16
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SOME COMMENTS ON chESIQN THEORY

One can‘diétinguish two rather different approaches that
have been taken to the study of decision making. *One is analyti-
cal; the other is basically empirical. A common goal of both o
approaches, however, is .the development of formal models of
decision processes. .In the first .case, one tries to analyze:

. decision situations--often hypothetical situations--abstracting,

« ° from them their commori elements.' One then attempts to produce " .
a* model of the decision+making process, using the ¢onstructs that
have been identified in the process of analysis. In thfe empirical
approach, one begins by observing ihdividuals making decisions in’
real-1ife situations, and attempts, on the basis of these obser-

;& vations, to develop parsimonious ‘déscriptions of decision-making

v behavior. : . :

; Each approach-has its strengths an&\its weaknesées.« The .
models generated by analysis are likely to be more abstract than ’ ‘6

‘ those developed through observation. As a consequence, they are
n typically more general. However, there may be considerable dif-~

- ficulty in applying such models in specific cases. This is true
‘ » because real-life decision situations frequently are not easily.
e describable in terms that an application of a model would require.
. In cpntrast, a model of a decision-making process that is developed .
“ by observing decision makers in action is likely to be applicable,

at least to situations highly similar to that from which the model

. is derived. Such models may .lack generality, however, and prove
.+« to be inapplicable outside the context “in which they are developed.

2.1-- Prescriptive versus Descriptive Models e
T I

A prescriptive model indicates what one should do in a giveny
decision situation; a descriptive model is intended to describe
what one actually does. Typically, prescriptivé models are the .
outcomes of analytical approaches to the study of decision making,
whereas empirical approaches,generally lead to descriptive models.

In theory at least, a prescriptive model may be used either as a ]
guide for decision makers or as a standard against which to assess

the extent to which,decision-making performance approaches opti-
mality. Descriptivé models differ from prescriptive mbodels inso-

far as human decision makers perform in a less™than optimal fash-

ions. Were a decision maker to behave in an optimal fashion, a
description of his behavior would.constitute a prescriptjve model.
Comparisons between .prescriptive and descriptive models can be
instructive in suggesting the reasons why human behavior is some-

, times not optimal. . . .
s ; ) R ’ // -
. Prescriptive models are generally ascociated with economists
and mathematical statisticians. Among the dévelopers and expositors .

. | 17 -0 —
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of prescriptive hecision theory are, Bernoulli (17§8), Neyman and
Pearson (1933), Samuelson (1947), vonNeumann and Morgenstern
(1947), Wald (1947, 1950),,Good (1952), Blackwell and Girshick )
(1954), savage (1954) ~ Luce and Rai?@a (1957), and Schlaifer (1959
Such models typically postulate~an - ‘economic,” or at least a
"rational," man who behaves in a way that is ‘entirely consistent

with his decision objectives and who does not have some of the
limitations .of "real people. . . »

.
)2

rd hd ~
. Descriptive models were introduced primarily by psychologists
and other students qf human%behavior, notably Edwards (1954, 1961);
Petersodn, Birdsall, and Fox (1954); Thrall, Coombs, ‘and Davis
(1954); simon (1954, 1955); Tanner (1956); Davidson, Suppes, and
Siegel (1957); Fes;inger (1957); Luce (1959); Siegel .(1959);

! Rapoqut (1960); Estes (1961); and Edwards, Lindman, and Savayge
(1963)" The: objective in this case has been to discover by
experiment 4nd observation how human beings, diven their limita-
tions, perform in decision-making situations. It is fmportant
to note that descriptive models have been viewed as descriptive
only of the behavior of the décision maker, and not necessarily
of the ‘thinking that leads to that behavior. For example, the
finding \that an individual's choice between two gamble# can be
predicted on the basis of which has the most favorable "expected,
outcome" is not takén as evidence that in making the choice the
Andividual actually goes through the process of calculating
expected values and picking the alternative with the largest one
(Edwards, 1955; Ellsberg, -1961).

The two lines of developmenp—-prescriptive’and descriptive .

" model&--have not proceeded.independently of each other. Several
of the investigators mentioned above have made 'significant con-
tributions of both prescriptive and descriptive types. Moreover,
one approach that has been taken to the. study qf human limitations
is that of attempting to modify prescriptive models sb that they
are’ in fact more descriptive.. Typically, what this involves is
the imposition of constraints on the model that repregent specific
limitations of the human. For example, a prescriptive model that.
assumes an infallible memory unlimited capacity is unlikely
to be very descriptive of huffin behavior; to modify such a model
forLthe purpose of increasing its descriptiveness would necessi-
tate at least the addition .of some constraints that represent

such factors as a mitation on memory capacity and degradation

of stored %nfo ation over time. J C

- / -
The distinction between-prescriptive and descriptive models

‘is sometimes blurred in the literature and one cannot always be
sure in which way a proponent of ‘a model intends for it to be
taken. On the other Rand, many writers have observed that the
models deriving from theories of economics do, in fact, fail to
describe behavior,‘or at least to dé so very accurately. Miller

»
. S
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and Starr (1967) poirt out, for example, that in the economist.sg :
view of décision.making, the objective of the decision fraker is to
maximize the "utility" that he can achieve within the limitations ;
,0f his resources. They note, however, that the stumption.that
individuals §g act so as to maximize utility has ‘been challenged
by many investigators of decision making. If rationality is
defined in terms of the extent to which behavior is appropriate
to the maximization of utility, theysnote, then when people do ;.
not maximize utility, they, by definition, are actipg irrationally. 7
Miller and Starr list several factors that have beén suggested as
" possible rpasons for the failure of ‘decision makers to behave in
an optimal way: "the ibability of the individual to duplicate the
rather recondite' mathematics which economists have used to solve
the problem of maximization of utility; the existence of other
values which, though npt readily quantifiable, do cause divergences
from the maxjmization of utility in the marketplace; the effect of
habit; the influence of social erulation; the.effect ot social. _ .
ingtitutions" (p. 25). e / N " T
. . ‘ A \

®While interest in prescriptive models stems at least in -
part from the assumption that they can prxovide guidance for .
decision makers in real-life situations, their application often
proves to be less than straightforward. Haythorn (1961) notes .
the difficulty that operations analysts and operations researchers ‘
often encounter in trying to analyze decision situations in com- .
plex organizations to the point that prescriptiv¥e models can be
applied. He ascribes the \difficulty to sevexdl factors: "First
As the fact that organizations are constructed by men with some,. |
purposes in mind, although these are not usually stated very
explicitly. Analytic solutions must assume that the decision ¢
maker is rational, that the parameters relevant to the decision
are quantifiable, and that the information necessary to make an
optimum decision is available. A careful look at the view of
the wdrld held by critjical decision makers reveals that they are
by no means completcly rational; that some of their objectives .
are not easily quantifiable, and perhaps even incompatible with
other objectives; that they do not have 3ll of the information
needed in many cases; and that frequently the information they
have is inaccurate" .(p. 23). ) \ '

. .Schrenk (1969) has argued that progress on the development
of techniques for aiding decision makers wéllrbe impeded until

a model of "optimum" decisiop processes that makes realistic

assumptions about human capabilities is for'thcoming. Such a

model, Schrenk suggests, should reflect the behavior of "reasofiing

man," a concept that Hé™distinguishes from the rational man of

economic decision theory%%#"The idea is not to specify an 'ideal'
decision procedure which Will produce perfect chqQices in abstract

or labhoratory situations, but rather to develop a process that

will yield better decisions in real situations" (p..548). Schrenk .
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-results of decision-making research; (2) it could provide guidance

S ) L | —
72,2 Worth, 'Probabeility and Expectation

. obtaining the product.oftsome measure of worth:of each outcomé&”

. lated for each action alternative, the sum of the products of the

" only suggested that choices are made as though they were based on

" with develoring technidues for measuring subjective worths.and

. NAVTRAEQUIPCEN 73-C-0128-1
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sees four purposes that spch a model might serve: (1) it could
providera framework for the classification and integration of the

for further research; (3) it.could help syst designers to
‘structure decision tasks and to allocate decision functjons to
men \and machines, and (4) it could. help guide the development of
deci 1on—a1d1ng concepts. . .

/

”

** Sometimes a decision méker Eas the tgék of choosing one from
among several alternative courses of actibn, knowing what the .
effect of any choice would be. (This situation, which is referred -
_toras decision making under certainty, is di‘scussed in Section IX,)

" Often, however, one must make a choice when t consequences of

‘ that chbice cannot be anticipated with gertainfy. In the latter
situation, the decision maker is said to be m ing a decision

"under ‘risk." The most common,way of dealing ith risky d@cisions
quantitatively has been with models‘that make use of the concept
of mathematical expectation -]

o - N .

* The "expectation" associmted with a choice is calculated by

and a measure of the probability of that outcome, and summing over
all outcomes that could result from the.choice of interest. It,
has sometimes been assumed that the decision maker attempts to
make a choice @hat maximizes his "expected" gain. More precisely,
it is assuméd that the decision maker behaves as though he calcu-

worths and probabilities of the possible outcomes associated w1th
that alternative, and picked the alternatiye for which this sum

was greatest. The "as though" in the preceding statement is
important. No one contends that decision makers, as a rule, ‘really
perform the arithmetic necessar{ to compute expectation; it is

M . e [N

such cahiulations.

. Each of the factors in the expectation equatiOn«—worth and .
probability--can be treated as either an objective or a subjective
variable. The four possible combinations of objective and sub-. f/
Jective indicants of worth combined with objective and subjectiveg
measures of probability define four classes of~expectation models
that have been studied. Table 1l gives expressions, in the nota-
tion used by Coonbs, Bezembinder, and Goode (1967), for expecta-
tions representing each of these models. Much of he research on .
decision making under risk has been concerned wit ﬁ.determining
which -0of these models is most descriptive of human’ behavior, and

probabilities. . ST

¥
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TABLE 1. FOUR BASIC (TYPES OF EXPECTATION.MODELS.

\

[3

, } ' 7
[ . » - -9
. 1 ' )/’ " - % ] &
¥ 7
. | 4 ExpeBration [IXpectation
- Type of’ Type of associated wit;'kthe
‘Model worth proba?ility with j':'h choice (which °
%  mpeasure measure possible hag n possibie
N .é . ‘ outconme rutcomes)
A - ,
- \ << .‘ - . Kn
Expected objective objective - pj vj . z ?pj Vj
value ‘ . . j=1
' - . 5.
8 ‘ ‘' B ‘ h["
Expected subjective  objective Py Yy ) z Py oy
utility - i j=1 «
v <
<
) N . . B - Q&
Subjectively objective subjective wj vj z wj.vj
expected ' ’ j=1
value |, o
v . n
Subjectively subjective subjective . wj U z wj u:j
* _expected g 3 j=1 _
utility ,
4 - . b

-

Pj .
by o
vj : :
4y F

a subjective
an objective

a subjective

{

\
an objective probability

p%obaﬁility

measure of worth

21

measure of value (e.g. amount of money)

(or utility)'

3
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- The first of the models listed inm Table 1, the Expected Value
model, is the least complex conceptually, and the most easily ap-
plied, inasmuch as.both of Yits parameters are Objectively defined.
Although -bhis model has some appeal as a prescriptive model, it
has proved not to be generally descriptive of how real decision
makers behave (sea, for example, Coombs, Dawes, & Tversky, 1970;
Edwards, 1961; 'MLichtenstein & Slovic, 1971; g}dhtenstein, Slovic,
‘& Zink, 1969). : ' 400 ’

The inadequacy of the Expected Value model‘'as a descriptive
nodel “is.clearly illustrated by the well~known St. Petersburg '
paradox. Suppose one were offered an opportunity to purchase the
following gamble. A fair coin is to be tossed until it comes up

. tails, at which time the coin tossing is terminated and the winnings
are collected. If the coin comes up heads on the first toss, the-
purchaser will receive $2.00; if it comes up heads on both the
first and second toss, he will receive $6.00 (or $2.00 for the
first toss and $4.0G for the second). . More genérally, if ‘it comes
up heads for n consecutive tosses, he will receive $2.00 for the

%

‘first.toss,V$4.00‘for'the second, $8.00 for the third,... and $2
for the kth, for 'a total of "4 *
i - n - - 3
“y 15 2K go1rars. - : . . :
Low kL - : ~ ‘ N
Since, by definition, the successive tosses’ are independent, tha 7
expected value of this gamble in’dollars is given by -
BV =224+l ey 4L 7 S I A R
. 2 4 - o

. which is to say, it is infinite. If one were attempting to maximize _
expected value, therefore, one should be willing to pay a large
amount of money indeed to play this game. It would be surprising,
however, if marny people could be found who would be willing to
risk’ their life savings, say, which would be small by comparison
with the expected gain, to purchase this gamble. 1In general, it
is clear that the attractiveness of a gamble depends not only on
the egpected value of the outcome but on such faétors as the amount
that one could possibly lose, and the.nature of thé distribution
of probabiliti@s over. the possible outcomes. 1In the gamble de-
scribed above, for example, the probability is .5 that the purchaser
will win nothing, and .75 that he will win at most $2.Qb. .

!
Ip-.spite of the inadequacy of the Expected Value model s;a
enerally va%tid description of behavior, it should be notedﬁ%ﬁgt
the model does a creditably good job of describing behavior, at
least grossly, in many decision situdtions. Even in the case of
gambling behavior, it does not-invari ly fagl; "about 88% of the
job" of explaining the behavior of the\ Las Vegas gamblers studied

by Edwards, for example, could.be done on the basis of a knowledge
J of the expetted valie of each bet (Rapoport & Wallsten, 1972).
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Implicit to the Expected Value model is the assumption that’
the monetary value of a decision outcome represents its real worth

' to the decision maker, and that.this, worth is the same for all . .
individuals. Recognition that such®an assumption is undoubtedly
‘false led to the formulation of the Expected Utility model in ¥
% ,monetary value is repldced by a measure of the "utility" of Ay

an utcome for the particular decision maker involved. According
to this formulation the. $ame 8ec1slon outcome may appeal to dif-

. ‘ ferent individuals to different degrees, ahd, consequently, prefer-
ences.among decision alternatives w th uncertain outcomes may /£

. differ from one dec151on maker to ano her. The Expected Utility .

. model was first proposed by Bérnoulli 1738) ‘and aiven 1ts modern =, . ,

axiomatic form by von Neumann- and Morgem\tern (1947)

e leen that the worth factot 1n the expectatlon equation is .

defined as a sub]ectlve variable, the question arises concernlng . /

how probability shouldjbe defined. Although a review o. the con-

troversy would take us oo far, afield; it should be noted that the

question of what ‘the concept of probablllty "really means" has om

been the subject of “endless philosophical debate. It is sufficient. ¢ .

. for our *purposes to recognize that statements of the type "the

probab111ty of the occurrence of event X is equal to Y" have, been

used in a variety of ways. Such g statement is sometimes used to

e refer to the relative frequency with which X has been_observed .
ovef the course of many similar situations. Or it .can have refer-

encg to a ratlo in which the numerator represents the tatal number

Of"~ ways in‘which the outcome of an hypothetical experiment, can

satisfy some criterion and the denominator represents:the totai

numb er of 'different outcomes (as when one says the prob -

"bility of rolling a 2 or, less on a fair die is 2/6). Sometimes

a probgblllty statement 1s usef to refer to the strefigth of one's

confldence, or the degree of one's belief, that an event X, as

opposed to theother events that are con51dered possibilities,

will occur. It is this connotation that we here refer to as,

"subjective probability."

. ' ) In some situations 1t)nakes little 1f any pradt::a; difference
" which of these connotatlons one glves to the concept of probablllty,

-~

!

*Related to this usage of the term is the so-called "Principle of
Insufficient Reason,"whlch(glrects the decision maker to consider
all possible outcomes to be of equal likelihood in the absence of
information which indicates such a consideration to be inappro-
priate. See Rapoport (1964) for an‘interesting discussion of the
limitations of this prescrlptlon in defense of an assertion that |
the six faces of a die’ are equally likely when one has no reason
to assert otherw1se. "

\\
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inasmych as they will all yield the same numbers. Most people
would perhaps agree, for example, that the probability of tossing -
headd on a fair coin is .5, irrespective of their philosophita '
position concerning how probability should bé defined. Many
"probabilistic" situatiens of interest to investigatdors of deci+t
sion making do not easily admit of an analysis in terms of rela-
tive frequencies, Jr even of theoretichl ratios, however, and it
is perhaps for this regson that many decision theorists subscribe
to the nation thatfprobability is best defined” in terms of-~ degree
of belief. ngoPort (1964) defends this positiongthe following way.
"We are told that decisions involving the probabiiity of the out- ’
break of a nuclear war'are based on 'calculated risks,' by which
term thode who recommend or make deci®ions must imply calculations
involving probabilities. Since e’'probability of an egent such
as the outbreak of a nuclear war can have nothing to do with the
frequency, < such~events'§sinc at this writing none has occurred,
and, i 11 likelihood; no mor; than very few can occur), either’
the #ifrase "the probability of 'a nuclear war' has no meaning at |,
all, in.which case the notion of the 'calcwlated risk' is only

eyewash, or else 'probability' has another meaning, ha%%ng nothing

whatsoever to do with frequency" (p. 25).

> N « & . e

The argument that:probability often ‘cannot be defined mean-
ingfully in te¥ms of relative frequencies or ratios is a strong
one for, resorting &0 a definition in terms of subjective uncer-.

tainty. Even when an objective definitioh is easy to come ‘by, .

however, one may question .whether it should be used by any.theory
that purports to be dggcriptive of the behavior of real decision
makers. It i§ the décision maker's own expectation that i% pre-
sumably important in determining his behavior and his expectation
must be calculated in terms of the,probabilities as he perceives
them. Moreover, it is‘required of a rational man that his behavior
bé’ consistent with the information at his disposal, but not that
he have perfectly accurate informatiomn. Thus, two'decision makers
could behave optimally*\put quite differently, in the same situa-~
tion if their perceptions Qf the sitnation differed, a fact that
is easy to accommodate wheﬁ\probability is defiihed as degree of
belief but not when it is defined strictly in terms of the ob-
jective details of the situation.

In the foregoing discussion of Expected Valug and Expected
. Utility models, it was tacitly assumed that the probability factor

in the. expectation equation was objectively defined. As suggested
by Table 1, two additional types of expectation models might be
realized by combining subjective probabilities with both objective
and subjective measures ©of worth. 'The resulting models might be
referred to, respectively, as Subjectively Expected Value and Sub-
jectively Expected Utility models® Although both of these types of

models have been considered, the latter is by far the morxe widely ac-
cepted .and.used. This mod&l has been presented by Savage (1954) and’

by Edwards (1955). Among the four models liSted_in'Tgble 1 which

- - -
4 ’
. '
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it has reéceived the Ygreatest amount of empirical support, and
at the.moment, ran¥¢s.as the most influential (Rapoport & Wallsten,
1972) . . o ' ) :
W4 s * . . \

. SavageAs (1954) formulation of decision theory ident'ifies a
nuﬁber of "seemingly agreeable" (Tversky, 1969) rules that
should be satisfied Q?foxe it is apptopriate to assign a single
fixed number denoting”worth to each possible decision outcome and
a single fixXed number denoting judged<likelihood:of occurrence
and then 'to*select maximum products. These rules (see Beckéy &

have been'referreaxﬁg as sing1e~s£ége algebraic decision models~-~

McClintock, 1967) are ‘as follows: : -
gﬁ;e 1l: Transitivity. If, in a choice situation, the de-
cisiog/haker prefers Outcome A to Outcpme B and Outcome B %o »
Outcome -C, he should préfer. Outcome A to Outcome C.:

ry N — . ', *

Rule 2: Comparability. The decision maker should b2 willing

to compare two possible ontcomes and decide either that he prefers
one to the other or that he'has he preference between them.

Rule 3: Dominance. . If the decision maker determines éhat,
under every possible condition a’choice of ‘ong” of fis alternative
actions results’in an outcome at least.ad defirable as that which
would result from the,choice of a second alt rnative action, and,
results in‘a more desirable outcome’'under aZE\least one possible
condition than would the second/;qyion, the §ecohd action shou}d
not be preferred to the first.- - R ' .

- Rule 4: fTrrelevance of nonaffected outcoéés. If the de-
cision maker determines that, for a particular state of the world,
two or more of the actions open to him result in the same outcome,
his preferences among such actions should ‘not be affected by the
‘outcome associated with that state.

. . . % .k .

‘Rule S5&- IndependeHCe of béliefs and rewards. The decision
maker's statement concerning the likelihood of occurrence of .a
given outcome should mnot be affected by wh@#’he hopes will occur.

R ~
i ‘ & »
jSome of thHese rules seem to be honored as much in the Breach
as in the bbservance,(see, for; example, MacCrimmon, 1968). Vio-
lations of Rule 1 are of maj significance. This is so because
the asslmption of transitivij y of preferences is a necessary
requirement Ffor the' cons ¢tion 6f a consistent ordinal utility

. function. (For a discussion of the problem of generating utility

functions from preference judgments, see' Roberts, 1970.) Tversky
(1969) refers to transitiyity as "the cornerstdne" off decision
theory and points out that it underlies measurdment models of
sensation and walue &s well., He also notes that decision makers ,
often do v}olate the transitivity rule in specific situations. -

7

\/ . ‘ £
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S . Another rule which seems difficult to satisfy is that .re- v
quiring independence of beliefs, and rewards (Rale 5). MacCrimmon
(1968) has found a strong dependency between an individual's « .0
estimates of.the likelihoods of events and his-"tastes"--thg
worths he assigns to those events. ~As might be anticipated, such
. an association may pose difficult analytic problems, since, for .
a given set of choices, one cannot assume that a distribution of s
(stated) preferences arises simply out of differences asscdeiated
with bit one of the two parameters in the expectation equation.
In principle, this problem is similar to the so-called "conjoint g
o . measurement, problem” which has received major attention in th
context of Subjectively Expected Utility theory. e T

& variant of the dominance principle (Rule 3) has been stated
by MacCrimmon so as to apply .to the problem of comparing alter-
natives that'differ with respect to several attributes.when
preferences can be stated with réspéct to single attributes
individually: . "When 'comparing all alternatives, if some alter-
native has higher attribute values for all attributes, we say
that this alternative 'dominates' the others. We can weaken this ¥
-notjon somewhat and say that if one alternative is at least gs
h ood as the other alternatives on all attributes, and is actzally

better on at least one of them, then this can still be considered
the dominant“alternative. Con&grsely,°if one alternative i§
. worse than some ‘other alternative for at least one attribute, and

— is no better than eqguivalent €or 'all other attributes, then we

can say the former alternative is deminated by the latter"™ (p. 18)., *
Some writers have noted that the dominance criterion is inconsis-

.. \ tent with the maXimin criterion of game theory (Marschak, 1950)

Luce & Raiffa, 1957). Ellsberg (1961) has discussed additional - |
problems with'this rule. . ’ .
- . .

’ Some other asswaptions that have usually been considered
necessary to the use of expectation models are the following: (1)

. that the act of gambling has no utility itself;#(2) that the sub-
jective probabilities associated with the altérnative decision
outcomes sum to unity; (3) .that preferences are independent of the

“ method by which they are measured. It has not been possible

demonstrate that the first two of these .assumptions are simulta- T

neously valid. Moreover, Slovic (1966) and others (Lichtenstein

& Slovic, 1971; Lindman, 197.0) have shown that ‘preferences among R

gambles may indeed depend in part on- the method by which they -

are obtained (e.g., ﬁ_ratinq’procedure versus a bidding procedure).

In spite of these limitations, expectation models, and in par-

ticular the Subjectively Expected Utility model, have proven tc

) be reasonably predictive of at least certain types of choice

. behavior (Coombs,; Bezembinder, & Goode, 1967). They clearly do

N not, however, tell the.whole story of how to account for human ?

chdice behavior. ‘

}‘ . \
1 .
i . ,
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- The demonstration that expectation models such as those de-
scribed are unable to account for choice behavior' consistently .
and completely has.léd some theorists to seek to modify (which has -
invariably meant to complicate) thé models to make them more de-
scriptive. Other-theorists have simply rejected them out of hand.
Payne (1973) points out that models such as those we have con~ .
sidered involve the representation of risky alternatives as proba-

" . . NAVTRAEQUIPCEN 73~C~0128-1

. ~-bility distributionf over sets of decision outcomes, and attribute s
' the choice among the decision alternatives to some function of each
. distribution's central tendency. In the hope of developing models )
with greater predictive power, some theorists hgve locked not only )
to cen*tral tendency measures, such as expected Or mean values, ) /

but to variances and higher moments of these distributions as well
(Becker & McClintogk, 1967). Still others have made modifications
that relax the requirement ‘that the decision maker's choice be
~ invariably dictated by which of his alternatives represents the .
greatest expectation; "random utility" models have been proposed,
. for example, which assume that the utility of a given outcome ‘is
! a random variable and that varfations in this variaBle produce
variations in choice (Becker, DeGroot, & Marschak, 1963).
4 . . .
Shackle's (1967) assesSment of expéctation models is represen-
" tative of the'opiniong of theorists who reject such models out of
hand. He argues that tHe concept of mathematical expectation, . ‘li
and, indeed,‘ﬁhe concept.of probability as well, are irrelevant
to the assessment of one-of-a-kind decision situations. Further~-
more,’ he contends, most real-life decision situations of interest
are, to those who face them, unique eévents; never before has the
individual beemycalled upon to.make exactly the choice that he
faces and never again will he have to select from among the same
~ set of action alternatives under precigely the sdme circumstances.
% In such cases, Shackle argues, the decision maker is concerned
with what can happen as a‘®fYesult of his choice, not with what
would happen if the expeg&ment were repeated a large number of
timegt "he is concerned with possibility ‘and not probability"
{p. 40). We shoydd note that the argument implies a relative-.
frequency conngzgiion of probability, a conhotation that not all
decision’ theorists accept. . : .

A

Miller and Starr (1969) suggest that one can always find a
way jo view a deCision probl:ftgg/a’ﬁaximization problem if one
-wants to do so: the quantity that the decision maker wishes to
maximize 1s the degree of atfainment of his objective. But this
is not yery helpful as a definition: indeeda it comes close o
Reing tautological. Millet and Star? apparently do not intend
to assert as an empirical fact that decisioh makers do attempt to
_maximize anything. More generally, whether 'decision makers attempt\\
. to find optimum solutions to their decision problems Miller and
Starr consider to be guestionable. Simon (1955) has taken the ,
position that they usually do not. According *o his "principle ‘

»
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of bounded rationality" what they do instead is +to deflne a -~
limited - set of acceptable, or "good enough," decision ‘outcomes
and then select a strategy that they consider to be likely to
achieve one of these. )
The curxent status of expectation models among investigators
of decision making is, reasonably well summarized by three obser-
vations. (1) The models that are seriously advocated as descrip-
tive.of human behavior are rather more complex than the straight-
forward Expected Value model that was origihally proposed.’ The .
history of the development of expectatien models may be fairly
characterized as a progression from the simple to the more complex:
objectively defined variables have been replaced with variables
defined in subjectlve terms, and the number of model parameters

" has been increased. (2)- Even the most compllcated models have

not proven to be totally descriptive of behavior and some theorists
have challenged the validity of the basic assumption of this class
of models, na.nely that the decision maker is motivated to maximize

.an expectation, no matter how the factors from which expectation

is computed are defined. (3) The1r limitations notwithstanding,
expectation mcdels--even the least sophisticated*®Expected” Value
model--3d0 a reasonably good job of predicting choice behavior in
many situations. The challenge is to come up with models that .
as thosa for which they succeed. Meanwhile, when ‘the maximization
of expectation is recognized as the decision objectlve, then
expectation mocdels can be used prescriptively to guide ‘the
decision process. -

-

A

2.3 Géme Theory ) ;

-

i

The theory of games was developed to deal with situations
in which the outcomes of an individual's decisions depend ‘no:i only
upon his own actions but also upon those of one or more "opponents”
~-decision makers whose objectives conflict to some degree with
higs own. Of special-interest is the so-called "zero-sum" situa-
tion .in which the worths of the outcomes to the opponents sum to
zero; one loses what another wins. , A.commonly prescrlbed strategy
for each "p1ayer" of a zero-~sum game is to make choices in such
& way as to minimize his max1mum p0551ble loss, the so-cal]ed

.minimax rule.

4 »

. The assumptions of game theory are open to a number of criti-
cisms. Shackle (1967), for example, characterizes the theory Jf
games, as developed by vonNeumann and Morgenstern, as "essentiall
a study of the logic of how to present as impregnable a front )
as p0551ble to an 1nfalllbly wise and rational opponent" (p. 61).
The assumption that one is in a conflict and that one's opponent
is rational and infallibly wise leads directly to the minimax
doctrine. Shackle questions to what extent this conceptualization

1 - " oy

-~
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can be taken as a reascnable approximation to reality. "Is the
impersonal world of nature or even that of business actively con-
cerned to defeat us? Is the humap opponent reasonably assumed
_to be infallible? 1Is there no e§sential and ineracicable uncer-
tainty in the outcomes of such few big experiments, large in time
scale in comparison with the human life- span, that any of us has
time to make? Rather than minimax our losses, is it not more
“reasonable to fix for them some maximum tolerable numerical Slze,
to avoid any action-scheme which would bring losses larger than
this within the rxange of p0551ble or . 'too-possible' outcomes, and
subject to this constraint to choose that action-scheme which
brings within the range of,possibie br 'sufficiently possible'
outcomes, as high a positive success as we can £ind?" (p. 65).

In a similar vein, Becker and McClintock (1967) questlon
what tney refer to as game theory's "principle psychological assump-
tions. They pofht cut that the theory assumes, on the one hand,
that both decision makers will attempt to maximize their own
utillty and, on the other hand, will attempt to minimize their
maximum losses. These assumptions are inconsistent unless the
decision makers lock at the game from. each dther's points of
view--a requiremznt which Morin (1960) f£inds unsupportable on
empirical grounds--and unless the utilities of each decision maker
are known to the other and sum to zero for each possible outcome.

Despite its limitations, game theory has provided a valuable
fragework within which to view decision making.in suchgflelds as
economics, political science, social psychology and mi itary
strategy. The theory has been. extended to cover non-zero-sum
.situations, situations permitting cooperation or collaboration

minimax, other strategies have been identified as either prescrip-
tively appropriate, or descriptive of behavior, in particular
situations:

3

-

A short and very readable exposition of, the basic concepts
of game theory may be found in Edwards (1954). A comprehensive
tutorial treatment is provided by Luce and Raiffa (1957).

2.4 Decision Theory and Training . Jﬁ

" It is a reasonable questlon to raise whether one may hope to
~be an effective decision maker in a variety of situations without
some intellectual appreciation for the decision-making process,
as it is represented by theoretical treatments of decision making.
One would guess that there would be some advantage to being famil-
iar, at 'least with certain of the key concepts that decision
theorists employ. In practice, this would mean providing would-be

c/\\gc151on makers with a basic introduction to probability theory

. as\well as a working familiarity with notions of rationality, -
value, utility, mathematical expectation, rlsk risk preferences,
and so on, -

*
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In fact, one could make the case that failure to provjde an
adequate grounding in theory mlght deprive the decision maker of
the sorts of 1n51ghts that would lead to productive use of avail-
able decision-aiding technlques. The demonstration by MacCrimmon e

v (1968) that decision aids developed in quite disparate contexts N ‘ |
™~ can be effectively brought together in the solution of problems i ;
involving multi-attribute alternatives, suggests the utility of .

broad acquaintance with basic concepts and principles.
’ / N 2
In reporting one effort.to develop g system to assist cor- |

porate decision makers by enabling them to manjipulate parameters’ '
(entered as distribution functions) on preprogrammed tree nodéls,
Beville, Wagner, and Zanatdos (1970) made some observations that
arerelevant to this point. They noted that the use of subjective N
probability distributions as inputs to models is novel even to '

. experienced decision makers, and must be carefully taught. More . L
generally, they concluded that a black-box approach to utilization’ )
of*“the system would have been markedly inferior to one in which
the workings of the system were explained to the user.

‘ The teachlng of decision theory should of course, distin-
guish what is intended to be prescriptive from what is con51dered\
descriptive of the behavior of human decision makers. It should
also clearly identify the limitations of the models that are

‘ considered. Tutorial treatments of decision theory and game
theory are readily available sources of training material (Edwards,

1954;' Edwards & Tversky, 1967; Howard, 1968; Lee, 1971; Luce

. & Ralffa, 1957; Miller & Starr, 1967; North, 1968; Rapoport, 1960;

& Schla‘ifer, 1969). A comprehensive blbllography of research reports

has been prepared by Edwards (1963).

Whether famili?xization with theoretical treatments of de-
cision making will in fact improve decision-making behavior is a
question for empirical research. Our guess is that the-answer

will be a qualified yes. ‘' Such training will be efficacious for

some people performing cexrtain types of gecision tasks but perhaps
not for all pegple or all tasks. One objective of training research
should be to identify those conditions under which such training .
would be effective and those under which it would be a waste of
time.




NAVTRAEQUIPCEN 73~c—d}?@~1

SECTION III
L
CONCEPTUALIZATIONS OF DECISION SITUATIONS AND TASKS -

Numerous ways of conceptualizing decision processes have been
proposed by different investigatorst: Some conceptualizations
emphasizé differences among decision situdtions; others focus on
the tasks that decision makers are required to perform. Aall of
them have the same purpose, namely that of simplifying the problem
of thinking about decision making by identifying a‘few "types,"
each of which'is representative, in terms of some critical aspects,
of a variety of specific situations or tasks. We review briefly in
this section a number'of proposed simplifying conceptualizations.
There is&gﬂ attempt to be exhaustjve. The intent is simply to
illustrate by means of a few examples some of the ways, in which
investigators of decision making have characterized or categorized

the object of their 'study. : .

3.1 Classifications of Decision Situations or D&cision Types

3.1.1 Edwards

Edwards (1967) makes a distinction between static and dynamic
decision situations. In the former case, a one-time decision is
required, whereas in the latter, sequences of decisions are made,
earlier decisions and their outcomes having implications for sub~
sequent ones. Six types of dynamic decision situations are
distinguished on the basis of such factors .as whether the environ-
ment is stationary or nonstationary, whether or not the environment
is affected hy the decisions that are made, and whether or not the
" information about the envirponment is affected or controlled by.
those decisions. Edwards further classifies psychological research
reldting to decision making under four topics: information
seeking, intuitive statistics, sequential prediction, and Bayesian
processing. .

. ‘ <

3.1.2 Howard

Howard (1968) characterizes decision situatibns in terms of
three orthogonal dimensions: dégree of uncertainty, degree of
complexity (number of relevant variables), and degree of time
dependence. The various combinations of the extreme values on
these dimepnsionsg are taken as representativé of eight prototypical
situations, for each of which there is an appropriate set of
analytidal tools. An example of a deterministic (no uncertainty),
single variable, static (time-independent) problem would be to
determine the largest rectangular area that can be enclosed with
a fixed amount of fencing. , The appropriate mathematical tool would
be the calculus. Decision problems like assigning customer.; to
warehouses or jobs to men would, in Howard's taxonomy, be in the
category defined as deterministic, complex (many variables), and

) ‘
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static. Matrix algebra and linear optimization are appropriate
mathematical techiniques.

<

3.1.3 Sidorsky - . .~ =

Sidorsky and his colleagues have proposed a taxonomy of types.
of decisions encountered in‘taptical military situations (Sidorsky,
Houseman, & Ferguson, 1964; Sidorsky & Simoneau, 1970; Hammell &
Mara, 1970). The acronym ACADIA is used as a mnemonic for the six
types of "situational demands” identified by the taxonomy: N
Acceptance, Change, Anticipation, Designation, Implementation, and
Adaptation.

. An acceptance-type decision has to do with applying data to
the acceptance or rejection of a hypothesis concerning some char-
acteristic of the enemy. Detection, classification and localiza-
tion are associated operations or objectives. The acceptance-
decision idea seems to be close to what some other investigators
have::referred to as situation diagnosis. A change-type decision
invlV¥es the decision. maker in a choice between in}tiating a new
tactical operation or continuing the course of action on which he
is already launched. - An anticipation-type decision is required _
when a decision maker must predict what the state or intention of
an enemy force will be sometime in .the future. v

A designation~type decision involves the choice of one from
among a set’ of possible action alternatives. An implementation-
type decision has to do, not with the selection of an action
alternative, but with the determination of the proper time to
‘execute it. An adaptation-type decision is called for when the
decision maker is faced suddenly with unexpected and perhaps
potentiadly disastrous circumstances.

3.2 Classifications of Decision ‘Tasks

3.2.1 Howard . i;

Howard conceives of the decision process as ing composed
of three;phases: (1) the deterministic phase, (2) the proba-
bilistic phase, and (3) the information phase. 1In the deterministic
phase, the decision analyst identifies the state and decision
variables and constructs a model of the decision problem. In the
probabilistic phase, he assigns.probability distributions on the
state variables. In the information phase, he detérmines what
additional information should be gathered to reduce uncertainty
further. Howard estimates that the first phase represents about
60% of the total effort of the decisiont maker, while the second
and third phases represent about 25% and 15%, respectively.
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3.2.2 Adelson

A taxonomy” of decision tasks that are carried ’out in modern
military command-and-control systems is proposed by Adelson (1961).
Four, types of tasks are distinguished: (1) characterization of the
state of the world, (2) determination of the available action
alternatives, (3) outcome predlctlon and (4) choice rationalization.
The first task type refers to the need of the decision maker to
characterize the current state of the world in a way .that is :
relevant to his decision problem. The definition of the variables
in terms of which the characterization should be made, and the
assessment of the relative stability of the world that is being
observed are seen as significant problems. The second task type
acknowledges the need to make explicit the courses of action that
are open to the decision maker. The dlfflculty Of this.-task may
depend somewhat on how rapidly the situation is changin~ and on the
cost of obtaining information. Outcome prediction refers to the
process of attempting to anticipate what the consequences would be
if specific.action alternatives were selected. drhe final task type
involves the need to justify one's choice of action in terms of the
objectives of the command~and-conq;ol system. . -

3.2.3 Drucker . »

Drucker (1967) has identified six steps.that he considers to
be involved in the process of making the types of decisions that
confront business executives: (1) the classification of the problem,
(2) the definition of the problem, (3) the specifications which the
answer to the problem must satisfy, (4) the decision as to what is
"right (as distinguished from what is acceptable in order to meet
the boundary conditions), (5) the bulldlng into the decision of- the
aetiory to carry it out, &nd (6) the feedback ?hlch tests the
validity ard effectiveness of the decision aggainst thé actual course
of events. ;

| -
3.2.4 Soelberg : : - ‘

L3

’

Soelberg’'s 61966) taxonomy, like Drucker's identifies six
aspects of the decision making,process: (1) problem recognition,
Anning, (4) search, (5), confirmation

and (6) implementation.
3.2.5 Hill and Martin .

A model proposed by Hill and,Martin (1971) also recognizes
six different categories of activities in the decision-making
process: (1) identification of concern, (2) diagnosis of situation,
(3) formulation of action alternatives, (4) test of feasibility of
sélected alternatives, (5) adoption of alternative,.and (6) assess-
ment of consequences of adopted alternative. The model assumes that

-\. -
.
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’ the decision maker's behavior at each of these steps is influenced
by what he knows of the theory and practice,of decision making as
well as by what he knows about the setting in which the decision A
problem exists. HiIl and Martin identify nineteen skills that
they consider to be implicit in these six generic activity
categories: .

s . "1. Asking for and receiving feedback
2. Assembllng the facts (including past experlence as it bears

,on the decision). :

Identlfylng the courses of action available

4. Identifying forces for and ayainst the alternatives

5. Ranking and rating alternatlves (1nc1udes.putt1ng a value
on applicable risk factors) . o

LY ”.

- 6. Assessing the people- -task ratio e
¥
7. Identifying the latest and expected conseguences of the .
) alternative courses of. action . -
8. Determining thé advan ages and dlsadvantages of each actlon -
. alternative .
: ‘9. Testing the validity and effectiveness of the consequeﬁces
' of the decision against the actual course of events to "

.evaluate the decision makér's judgment and to modify his
subsequent decision-making behavior . .

10. Bralnstormlng action alternatives
‘11, Cla551fy1ng and deflnlng the,problem requiring a deC151on

12, Analyzing and evaluatlng stimuli and decisions coming in
from the outside -

13. Defining the goal at which the decision is directed
14. Communicating the dec1smon in wrltten or verbal comp051tlon
1%. Identifying resources bearlng on the making of the decision ,

16. Recognizing the need for a detision

17. Utilizing minor, relatively simple decisions to contribute
to making the more complex one (includes determining the
hierarchy of order in which minoxr decisions will-be dealt
with and coping with timing as alternatives come into focus
and seemlngly demand attention at the same°t1me)

. 18. Obtaining ;nformatlon -

19. Specifying the boundary conditions the decision must
‘ satisfy" (p. 433).
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3.2.6 Edwards

, Edwards (1965b) lists the following thirteen steps that must "
bée carried out by any Bayesian decision system: ’

. i "l. Recognize the»exisfence of a decision problém ”
. , 2. Identify availablé_acts é§ - «
. B )
3. Identify relevant states that determine payoff
+ for acts . .
. - . 4, Identify the valuefdimensions to be aggreéated
N e : into the payoff matrix
‘5. Judge the value of each outcome on each dimension
. 7 . 6. Aggregate value judgments igtq a composite
payoff matrix’ . ) ' -
, . 7. Identify informatioﬁ“SOurceéérelevant to
oo ’ discrimination among states
« » . - 7
8. Collect‘data from information sources’ . . ‘ ,
9, Filcer da@a, put.intoiétandhrd format,
and display to likelihood estimators L
’ 10, Estimate likelihood ratios (or some.other
quantity indicdating the impact of the datum ,
:on the hypotheses) - ‘ .
11. Aggregate impact estimates into posterior
distributions . ; ..
12. Decide among acts by using principle of
' maximizing expected value . ,
{ , : - :
- 13. Implement the decision" (p. 142, Tablc 1). ]
Steps l'through 5,lénd 7 and 10; Edwards su '
ggests, are best per-
formed by men, Steps 6, 11 and 12 by mabhines,uané Steps 8, g and
13 by both men and machines. Steps 1 through 7 may be done in
radvance of the decision time; Steps 8 through#13 must be done at
the time that the decision is to be made. .(See Sectjon VIIi, for
a discussion of Bayesian information processing.)
‘ %

e
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" '3.2.7 Schrenk -

- conceptuallzatlon ofi the dec1slon~process that we é%qd
particularly interesting is one proposed by Schrenk (1969). The
motivation for developlng this cgonceptualization was to prdvide a

. representatlon of the decision-making process that is prescriptive
’ in the sense that it can be used 'as a guide for the structurlng
of dec1s1on-mak1ng tasks of man-machine systems,”but which does not
make unrealistic assumptions about human capabilities. The con-
ceptualization is viewed by Schrenk as tentative, and in need of
further development; however, even as it stands it provides the ’ K}
system designer with a great deal of food for thought concerning
. how to allocate décision functions among men and\machlnes.
) . Three major categories of decision tasks, or phases’'of the
- ] decision process are distinguished: (1) problem recognition,
(2) problem diagnosis, and (3) action selectlon. Each of these
phases is further.broken down into several components, and flow-
. diagrams arg given which show, where the components appear in the
overall process. The follow1ng is a paraphrasing of Schrenk' s
description of each of these components.

-
-

. e Problem Recognltlon- Determlnatlon thgt a problem
. requiring a decision eX1sts. . o !
. — Acquire information: Receipt of 1n¥ormat10n indicating
that actual situation dlffers from the desired s1tuatlon. -~

. - Recognize objectives: ' The decision -maker's purpose or

,, mission. : , ’ ) .

1 . ’ - -
L = Perceive‘decision need: Perception of difference between
== objectlves and current situation; may result from change
in situation or in objectives. "'*

e

- Assess problem urgencz and importance: Establishment of
priority. of problem, relative to other problems demanding
attentfon, and allocation of resources for @olving it.

z

¢ Problem Diagnosis: Determination of the sitnation that is
. causang problem. ‘

. ‘ ‘ .« .
.~ Define possible sitpations: Generation of hypotheses
regarding situation. .

[ 2

. .+ = Evaluate situation 1ikelihoods- Asslgnment of a priori )
probabllltles to alternative hypotheses. ‘

»
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~ Determine whether more information ,is needed: Assessment
of adequacy of information in hand; a continying process.

- Identlfy possible datgrsources' If more information is
. de51red. |
. - Judge value versus ¢ost: To determine whether, or how,
desired information should be acquired.

- Seek moreogpformation: Assuming value judged to be greater
than cost. - .

.8 .
. - Re-evaluate situation likelihoods: Iterate.

. - Determine whether alternatives under consideration account
. for all the data: Recognition of possible need to modify. N
+ . set of hypotheses being considered. .

‘Make diagnostic decision: Selection of favored hypothesis,
or possibly of small set of weighted alternatives.

“ e Action Selection: Choice of course of action.
' [

Define action goals: Specification of explicit goals,
including interim or subbrdinate objectives.
- Specify value and time criteria:y Identification of

. Televant dimensions of multidim nsional goals and
specification of time constrajsfts within which decision

" must be made. .

-,Weight decision criteria: Establishment of relative
1mportance of various decision criteria.

iy - Sgec1fy risk philosophy: Spec1chatlon of strategy of
action selection insofa® as it is dictated by considerations
. of balanc1ng risks agalnst potentlal gains.

- Input operating doctrlne. Con51de§atlon of any rules or .
doctrine by which the decision maker!s behavior should be
guided.

° . - Geperate~saction alternatives: Explicit listing of reasonable
o set of courses of action open to decision_ maker.

-~ Predict possible outcomes: Specification of the possible
outcome associated with each of the potential action
alternatives.

(;:;.'

v
-

=)

- Estimate outcome gains and losses: Determination of value
v of possible decision outcomes. =0

- Estimate outcome likelihoods: Estimation of probabilities
. ‘ ‘of occurrence of possible outcomes for each action :
alternative. .
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~ Evaluate expected valﬁes of actions versus their costs:
Derivation, from preceding two steps,, of expected value of
each possible action, and estimation of associated ‘cost.

P

tion alternative i1n terms of i1ts implications for the—
risk philosophy that the decision mak er has adopted.

- Determine whether‘more information is needed: As under .
Diagnosis; a continuing question; new information might be
useful either for identifying addltlonal action possibili-
ties, or to improve predictjions concerning possible '
decision outcomes.

- Seek information: If desired, and worth cost of acquisition.

- Re-evaluateiaction alternatives: Iterate

- Determine whether best action isqacceptable: Review of most
desirable action alternative to assure its acceptability,
‘1n terms of the decision goals and oriteria, the expected
gains from the ch01ce and the cost of making 1t.

L3

- Choose course of action: The* "decnﬁlon."

- Implement action: Initiation of whétever steps are ,

necessary to assure that the selected action is carried out.
i . “ L3
I

, ¢  The main fault that we havé to £ind with Schrenk's model is
that it may be overly elaborate. It is doubtful that 'many
individuals go through anything approaching this mu1t1step pro-
cedure in th€ process of making a decision. This is perhaps an
unjustified criticism, inasmuch as Schrenk intended the model to
be more prescriptive thaq descriptive. And whether such a model
can serve as a projtotype procedure for decision makers to follow
remains to be seent sIn any .case, the representation does serve the™
useful function of making explicit many of the aspecfts of decision
making and it stands as._a. reminder that decision making may be
viewed as a complex and multifaceted process indeed.

3.3 Decision Maklng as a Collectlon of Problem-Solv1ng Tasks

.

We take the pogsition that dec1s10n maklng is best conceived’
as a form of problem solving; or, more specifically, that it
involves a variety of aspects each of which may be viewed as a
problem-solving task in its own right. 1In the most, general terms,
_the decision makér's problem is to,behave in a rational, or at
least a reasonable, manner. To be sure, the distinctive character~
istic of "the specific problems®with which the decision maker deals °
is the element of ch01ce- he must at some point decide upon one
« from among two or more alternative courses of action. Wwhile the

- Evaluate actions by risk philosophy: Assessment of each ]

N
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aq§~of choosing among alternatives is central to decision making,
.+ —7it is by no means the only problem--or even necessarij
difficult one‘-that the decision maker must solves We wish to
emphasize the JAimportance of making explicit the Hther things that
must be done'if one issmotivated to make the best possible--or
at least a satisfactory--decision,, given tHe resburces at one's " .
disposal. In many real-life situations, the probBlem of choosing 2 . "
ameng possible courses-of action is far simpler than that of
discovering what one's options are inthe first place, or of
assigning preferences to possdble decision outcomes in a con-
sistent wdy. ' Also, the decision maker may find it necessary t&
make many preliminary decisions simply by Wway of setting the stage
for makling the decision’ which is his primary doncern. For example,
he will want fo reduce his uncert inty about the decision situa-

C/' tion or ahout the consequentes of the various choices .hat are
‘- open to himg Howewer, the aéahisitidn of information takes time,
"¢ and may be costly in other ways, so he will .continually be faced

with the problem of deciding whether any additional information

that he may wish to get is worth the cost of getting it.

‘It is clear from the foregoing that there are many ways to

classify the various tasks that %gﬁ decision maker may be required
to perform. The scheme that we f}hd most satisfactory recognizes ’
eight aspects of’decision making: ~informati gathering, data
evaluation, jypothesis generatidn, problem.s cturing, hypothesis

* evaluation, preference specification, action s lection, and *decision
evaluation. . ' .

* This conceptualization has an element of arbitrariness about

/it--as does any other. There are four points that we would like
to make in this regard. First, the decision to ¢conceptudlize the
process in terms of eight types of tasks,. as opposed to some other .
number, is itself somewhat arbitrary, and reflects our own biases
concerning what constitutes a useful level of organization. One
nmight conceptualize the decision process at a much coarser level
and distinguish two major types of tasks--diagnosis and action
selectdon-~that would encompass all of those that we wish to
distinguish. This approach has been taken by several investigators
(Bowen, Nickerson, Sgooner & Triggs, 1970), Kanarick, 1969;
Williams & Hopkins, 1958)." Bowen et al. (1970) point out that in
the military, diagnosis is the proper function of intelligence, and

<- ° ‘ ," \ ’
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: action selection that of command. Xt the other extreme, one
mlght attempt a much finer grained representation and identify a
much larger number of activities that a decision maker may be
called upon ‘to perform. In this case, each of the tasks we have
identified might be replaced with several more detailed tasks.
These are not mutually exclusive approaches, of course, and we will
have occasion to consider how some of the tasks we have iIdentified
may be further broken dawn. However, this level of analysis
appears to us to be the most useful one for our presenL purpose,
and possibly for serv1ng ‘as a‘'general framework in term° of which

. .to thinK about. detlslon making as a whole.
\ \

Second, ‘our taxoncmy is not orthogonal. to other conceptuali-
zations such as:those discussed in the precedjing section. 1t has
elemer®s in common, with most of them. Indeed, the intent is not
to' take issue with other taxonomies, but to propose one that *eu~"
resents what, in our view, are the%best aspects of all of them. -

T 1rd we do not mean to suggest that whenever an_individual
finds hlmself performlng the role of a decision mak “,“e cxplicitly
‘runs through this set of tasks in serial fashlon, or aven that he: {
performs each of these tasks eXplicitly at al —Moreover; when
he does perfdrm these tasks it is not necessa ily the case that he

‘ is fully aware of doing so. It is characteristic of human beings ,
_that they often can solve problems quite effectively without having
any clear idea how they do it. This characteristic has been a
frustration to researchers in artificial 1nte111gence, who have
found it exceedingly difficult to program computers to perfcrm some
Qtasks that human beings seem to be able to perform with ease. *
What we do mean to suggest by the proposed taxonowmy is that/al1 of
these types of activities are implicated in decision making /and
. that any attempt at a thorough discussibn of the decision-making
process must take account of them.. - -
Flnally, viewing decision making as a problem—solVing pracess t
that is composed of several phaseg or subprocesseﬁfemphasxzes the
fact that in any given decision sityation, different decision tasks
could be performed by different individuals or groups (or hachlnes)
An implication for training is that it mé& be: less appropriate to,
thirk of training decision makers per. se than of training 1nd1v1duals
~ to play specific roles in the decision-making prdcess. On the other
.,hand, there will undoubtedly always ,be some situations in which all
the various aspects of a decision problem will be handled by the
same dindividual. But whatever the case, there is perhaps sorething
to be gained by making decision makers--or specxallst membeyrs of
. : dec1slon—mak1ng groups--aware of the many facets of the general task.

4
<
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In the next few sections of this report, we consider each of .
thé compohents of our task taxonomy in turn. The order in which
~ the tasks are discussed represents a natural progression; however,
in real life decision situations, an individuwal, in a decision-
making system, may perform several of these tasks more or less
simultaneously. Or he may skip' from one to another in a variety
of ,orders, and may perform any given type of task many times in g
the course of attempting to solve a single decision problem.

- - +
- ¢ ¢
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SECTION IV
INFORMATION GATHERING

From the point of view of the decision maker, most decision
situations are characterized by some degree of uncertalnty. This
uncertalnty may involve the current "state of the world," the
decision alternatives that are, available, the possible consequences
of selecting any given one of them, and even the decision maker's
preferences with respect to the possible decision outcomes. One
cof the major problems facing the decision maker, ctherefpre, is
that of acquiring information in order to réduce his uncertainty
&éoncerning such factars, thereby increasing his chances ,0of making
a dec151on that will have a desirable outcome. \

\
What makes the problem 1nterest1ﬁ g, and nontr1v1a1,‘1s the
_fact that information acqulsltlon can be costly, both in terms of

. time and money. Therefore, the decision maker must determine

3

whether the value of the information that could be obtained through
any given data~collection effort is likely to be greater than the
cost of obtaining it. And therein lies a decision problem in its
own right. '

In theory, one can see an infinite regress here. In order to
decide whether to initiate any information-collecting effort, one
must determine the worth of the information to be collected and
the cost of collecting it. But in order to determine that, one
may have to collect some information-~~at some cost, and so on. 1In
practice, of course, infinite regresses never occur; and in this
case, one very quickly gets to a point at which the decision maKer
relies on information .in hand, or appeals,to his own intuitions.

£

4.1 Information Seeking versus Information Purchasing

»

Information gathering, may be thought of as involving two quite
.different activities: (1) information seeking (1ocat1ng the infor-
‘mation that ope needs or wants), and (2) informatjon purcha51ng
(deciding whether information, the location of which is known, is
worth what it will cost to acquire it). This distinction is some-
thing of an overgimplification, inasmuch as the act of seeking
itself typ1ca11¥ involves some cost, and one often must decide
whether to incur that cost without any assurance that the search
will yield the information that is desired. . The aspect of "seek-
ing" that we wish to emphasize, however, is the need for identi-
fying and actively searching out information sources, of finding
opt where the desired information is and.g01ng after if. The term
"purchasing"” is used to connote a more pa551ve role on the part of
the dec151on maker, the opportunity to acquire information is pre-
sented to him and he need only indicate whether or not he wants
to avail himself--at some cost--of the information that is:offered.

"
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The distinction between information seeking and information
purchasing is a useful one because it highlights the fact that
experimental studies have focused almost exclusivelv on the latter
process; although investigators often have not made the distinction
and have frequently discussed their results as though they had to
do with the former. Typically, the decision maker is presented
with all the information that he needs--although he may have to
decide how much of it to purchase~-and the process of seeking in-
formation is not studied. The world outside the laboratory is.
not nearly so accommodating, however, and one must either seek
out the information one wants, or go without.it. Moreover, studies
of information purchasing, while they tell us something ‘about how
effectively people can judge the worth of information that is made
available to them, shéd little light,on information-seeking behavior.

Perhaps the main reason why information-seeking behavior has
not been widely studied is the difficulty of manufacturing situa-
tions in the iaboratory that are representative of those faced by
decision makers in the real world. In any case, whatever the
reasons, information seeking per se has not received the atténtion

from investigators of decision making.that it deserves. The ex- ~ .

periments tha® we have reviewed that purport toc deal with this -
topic invariably have actually studied information purchasing as
we have defined t%st term. )

4.2 Optional—stopping\Experiments‘ ' .

Y An experimental paradigm that has often been used. to study
information~purchasing behavior is one in which the decision maker
is provided with the opportunity on each trial either of purchasing
more data that are relevant to the decision that he is required
to make, or of making the decision. The terms "deferred decision"”
"optional stopping" and "optimal stopping" have all been used to
refer .to £his paradigm. "Deferred decision" and "optional stop-~-
pPing" connote the fact that the subject in %such an experiment has
the option on each trial of making a terminal decision or deferring
it in.order to obtain more data. “'Optimal stopping" refers to
the fact that when the situation is sufficiently well-structured
so that the costs and payoffs associated with possible decision
outcomes, the cost and informativeness of data, and the decision
maker's objectives are all known, the point can be determined at _
which information purchasing. should be stopped and the decision
made. The "optional-stopping" paradigm is to be contrasted both
with the more familiar paradigm in which the experimenter deter-
mines how much informatign’ the decision maker will be given, and
what is usually called the "fixed-stopping" paradigm in which the
decision maker specifies how much information he wishes to purchase,:
in advance of receiving any. . . j

/
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Often, in optiohal-stopping experiments, the required de-
cision concerns the parameters of the distribution from which
the observational data are being drawn. For exampl€, one may .
have to decide whether a seqience of red and black’ poker chips
that one observes is drawn from a population in which the propor-
tion of reds to blacks is, say, 60-40 or 30-70., The question of
interest in such experiments|is whether the supject's information-
purchasing behavior deviates|from optimalityv,and if so, in what
way? = ‘ ] Y, ' s '

\ : /

What constitutes optimal performance, has been worked out for
a variety of specific situations (Birdsall & Roberts, 1965;
Blackwell & Girshick, 1954 Raiffa & Schlaifer, 1961)}. For our
purposes it suffices to recognize that, in general, the amount of
information (number of observations) that should be purchased .
will vary directly withr the magnitudé/of the costs and values
associated with the deg¢ision outcomés, and inversely, with the
cost and "diagnosticify" of the data tha& are purchased. Diag-
nosticity refers to ¥he degree to’ which the data should reduce
the decision maker's uncertainty ocout which of the terminal de-
cigﬁon alternatives should be selected. The diagnostic 'value of
a datum depends on several factors (some of which are discussed
in Section VIII), and typically decreases as the number of data
that have already been collected increases. A factor that usually

_is not taken into consideration in optional~-stopping experiments

but”can be critical in real-life situations is the importance of :
time itself, 1In some situations the potential consequences of a
decision are highly time-dependent. This fact can be incorporated

in an optimal~stopping rule by making the cost of an observation,

or the stopping criterion, a function of time. ,

Typically, performance in optional-stopping experiments has
been found not to be optimal. Moreover, as illustrated by a
study by Green, Halbert, and Minas (1964), the deviation from
optimality may be in either direction. In one experiment, Green,
et al. found that the number of observations purchased increased
with the a priori uncertainty concerning the correct decision--
as would be expected of an efficient Bayesian processor--howevexr,
subjects tended to purchase too many observations when the a priori
uncertainty was maximized by providing no prior information con-
cerning ‘the likelihoods of the correctness of the possible de-

‘cisions. In combination, the results of these experiments suggest

that decision makers may sometimes purchase too much information,
and sometimes too little. In particular, it would Appear that .
they may purchase too much information if the a priori uncertainty
is small, and too little if the a priori uncertainty is large.

Many investigators have used the optional-stopping paradigm
(Becker,' 1958; Edwards, 1967; Edwards & Slovic, 1965; Fried &

Peterson, 1969; Howell, 1935; Irwin & Smith, 1957; Pitz, 1968, 1969;

¥
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i P;uitt, 1961: Schrenk, 1964; Snapper & Peterson, 1971; Swets &
Birdsall, 1967). The results of most of these studies suggest
that although information seeking may approach optimal levels
(Becker,_l958; Howell, 1966; Pruitt, 1961}, there are reasonably
systematic departures from perfect performance. The general
finding seems to be that too little.information is sought when
(theorgtlcally) much“is required, and that too much is sought

, ‘when lltt}e is required. The lattexn finding fits well with the
conservatism or inertia effect often noted in studies of Bayesian
inference, but the ‘former clearly does not.

‘ A few descriptive models of optionalfstOpéing behavior have
been developed (see, for examples, Edwardé, 1965a; Pitz, 1968;
fltz, Relnpold, & Geller, 1969). These models have been developed
in a Bayesian context (Rapoport & Wallsten, 1972) and tend to be
situation specific (see, for example, the "World Series Model"

of Pitz, Rein?pld, & Gellex, 1969).

Noting that most optimal-stopping experiments had been con-
cerned only with the question of when to stop acquiring information
. from a single source, Kanarick, Huntington, and Petersen (1969)
suggested that a more valid simulation of some decision-making
situations, e.g., tactical situations, would recognize that the
decision maker must deal with information from more than one source.
In keeping with this observation, Kanarick et al. did an optional-
stopping study in which the decision maker had the option on each
trial of acquiring data from his choice of thfee sources, or of
making a terminal decision. The terminal decision that was re-
quired involved the presence or absence of an enemy submarine in
the vicinity. The information sources differed, both with respect
to the cost of obtaining information from them and with respect to
e the reliability of the information obtained. (The topic of reli-
’ ability of information will be discussed more fully in Sections
V and VIII.) Costs associated with incorrect decisions were also
manipulated. Although the behavior of the subjects was consistent
with the rational model in many ways--they were willing to pay more
for more reliable information; how much information they collected
before making a particular decision depended on how bad the con-
sequences would be if that decision proved to be incorrect--
performance was less than optimal in several respects. The sub~
jects tended, for example, to consult the most reliable (and most
costly) souxces less frequently and the less reliable (and less
costly) sources more frequently than they should have. Kanarick-
et al. characterized this behavior as a form of conservatism, "a
reluctance to expend the resources necessary to obtain the best
information in a choice situation” (p. 382). Phe subjects also
tended to purchase less data in general than they should have, and,
» consequently, made more incorrect decisions and won fewer points
than did a Bayesian model that was used to represent optimal be-
havior.

.
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Levine and Samet (1973) have also studied information gather-
ing--information purchasing in our terms--in a simulated tactical
situation. The scenario was a military action and the subjects’' -
#ask was to decide which of, eight locations was the target of a
hypothetical enemy advance. On each trial, a subject could either
make a terminal decision or request additional information from
each of three intelligence sources concerning the present where-
abouts of the advancing force. A sequence of reports from a given
source represented the path that the advancing force had taken
over a period of time, dccording to that source. Among the vari-
ables, that were maniptlated were the reliability of the intelli-.
gence sourcgs, the degree of conflict among reports from different
sources, and the probability that a request for information would
yield an updated report (as opposed to a repetition of the preced--
ing report). Performance was sensitive to each of the’ variables.
In particular, fewer reports were requested and ‘decisions were
more often correct when all thk sources were reliable, and the
quality of performance  tended to decline as the percentage of the
sources that were unreliable was increased. Increasing the degree
to which the sources were in conflict also had the effect of de-
creasing the number of reports requested. (This counterintuitive
result may be due in part to the fact that as conflict increased
in this experiment, so did the probability that the correct target
was indicated by at least one of the sources on a given trial,)
The number of requests for reports decreased as the probability that
a given report would yiel@ new information increased; the relation~
ship was’ such, however, that the amount of information (number of
updates) received increased with Fhis variable. ‘ .

[y

In a subsequent experiment, in which the same decision problem
was used, Levine, Samet, and Brahlek.(1974) varied the rate at )
which -aew reports were given to the subject, whether the reports
were delivered automatically ox in response to the subject's
requést, the possibility of revising an initial decision and the
payoff scheme. In this case, performance was Jbetter for the faster
rates of information acquisition, but was not highly sensitive to
whether the rate was self- or force-paced. Increasing the ,oppor-
tunity for revising a decision had the effect of decreasing the
accuracy of first decisions and ,the subjécts' confidence in them.

4.3 Decision” Revision and Effect of Commitment on
' Information Gathering

The results of a few studies suggest that one's information-
gathering behavior may be different after making a decision than
before, particularly if the making of the decision involves some

. -sort of public acknowledgment or commitment (Geller & Pitz, 1968;

Gibson & Nichol, 1964; Pruitt, 1961; Soelberg, 1967). People may
require more information, for example, to change a decision than
was required to arrive at a decision in the first place (Gibson &
Nichol, 1964; Pruitt, 1961). This observation is in keeping with
the results of several studies that suggest that evidence that tends
to confirm a favored hypothesis is often given more credence than
evidence that tends to disconfirm it (Brody, 1965; Geller & Pitz,

r ’ -
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1968; Pitz, Downing, & Reinhold, 1967). And sometimes disconfirm-
ing evidence may even be hmisinterpreted as supportive of a degision
that has already been made (G rabltz & Jochen, 1972Y
1

The motivation for acquiring 1nformat10n may change, following
a decisdion; from that of trying to increase the probability of
making a good decision to that of justifying or Yationalizing-a
decision that has ‘already been made. Soelberg (1967) has corcluded
from a study of the job-seeking behavior of graduates of the Sloane
School that people frequently make an implicit selection from among
the existing opportunities, following which "a great deal of per=-
ceptual and 1nterpretatlonal distortion takes place in favor of
the choice candidate" (p. 29). In.a somewhat similar vein, Morgan
and Morton (1944) have asserted that people often, accept conclusions
that are consistent with their convictions w1thout regard for the
validity of the inferences on which those conclusions are based,
and that "the only circumstance under which we can be relatively
sure that]the inferences of a person will be logical is wien they
lead to a conclusion which he his already accepted" (p. 39). We
will return to the question of the logicality of thought in

Section 8.3).

One suspects that in real-world situations the information-
seeklng behavior that follows the making of a decision may often
differ considerably from that that precedes it. In particular,
one would guess that to the degree that the motive of the informa-
tion” seeker is the rationalization of a decision already made, the
process would become highly selective as to the sources consulted.

4.4 ‘Quantity of Information and Quality of Decision

It is quite natural to assume that the mcre data one has that
are relevant to a choice that he must make, the better his choice
will be. The assumption, without qualification, is not valid'®
(Ackoff, 1967; Fleming, 1970; Hayes, 1964; Hoepfl & Huber, 1970;
Sidorsky & Houséman, 1966). It is possible, indeed easy, to provide
an individual with more information than he can assimilate and use--
especially if he is .operating under some time pressure. The point
is illustrated nicely by an experiment by Hayes. '

e 1

Hayes had naval enlisted men make decisions concerning which of
several alrplanes to displatch to investigate a reported submarine
sighting in a similated tactical situation. The available airplanes
differed with respect to such characteristics as speed, distance of
its base from the target, delay before it could take off, quality
of its pilot, quality of its radar, and so on. Each characterlstlc
‘could take on any of eight (not necessarily numerical) "values,"
which could be ranked unequivocally from hest to worst. The number
of available airplanes from which a subjeqt had to chodse was varied
(4 or 8) as 'was the number of characteristics (2, 4, 6 or 8) on

/
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which he was to base his choice. The effect of the latter variable:
is of particular interest. Decision time increased markedly with
this variable; however, the decision quality--which was defined ob-
.jectively in two ways--did not. . Hayes hypothesized that, otther .
things equal, one's sensitivity to the way two alternatives differ
with respect to individual characteristics decreases as the number
of characteristics that must-be considered increases. Of particular
relevance to this review is the fact that Hayes trained a second set
‘of subjects for several days to see if they would learn to make
better decisions with the larger amounts of information. Although
the quality.of decisions was generally somewhat higher after training
than before, the relationship between decision gquality and number of
characteristics on which a decision. was based did not change.”

.

We should not conclude from this study that one should never,
under any circumstances, be provided with more than a very few items
. of information that are relevant to. any choide that one may have to

make. One might conclude,- however: (1) that decision makers should
be trained to recognize their limitations for assimilating informa-
tion, and to avoid attempting to operate beyond them, and (2) that
to the extent that the functional relationship hetween the desira-
bility of the various choice alternatives that are open to the de-
cision maker and the values of the factors that determine it is known,

. the implication of particular sets of factor values should probably
be computed; and not estimated by men. The problefm of determining,
or discovering, such functional relationships is a nontrivial one.
(See Section IX.)

©
4.5 A Conceptualization or Information Gathering in the Real World

* . What makes the real-world decision maker's task particularly
difficult is the fact that the information that he would like to
have typically is distributed among a variety of sources. One way
of characterizZing these sources is in terms of the two properties:

- degree ©f passivity and degree of cooperativeness. According to
this conceptualization, a source is either active. or passive, land
' either cooperative or uncooperative. Co

»

. An actively cooperative source--thelpreferred type--volunteers
information, and Seeks ways to get it to the decision maker. In
the military context, an intelligence officer would be an actively
cooperative source for a commander.

A passively cooperative source is one that would. provide in-
formation 1if &olicited, but does not volunteer it. A possible
reason for not volunteering information in this case is .a’failure
.of the source to recognize itself as such. An example, again ‘from

\ . a military context, would be friendly inhabitants of an area of
‘, operations who have information that would be valuable to a

+
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mllltary commander, but are unaware of the fact. The problem that .
the decision maker has vis-a-vis passively cooperative sources is

o to identify and find them.

An actively uncooperative source has information that would
be of use to the dec151on maker, but being motivated to thwart,_
the decision maker's obJectlves if p0551ble, volunteers 1nformat10n
that is misleading. A propagandist is an example of such a source.
The decision makeir's problem with respect to actively uncooperative
sources is to recognize them as such and to assess the information
obtalned from them accordingly. :

A pa551vely uncooperatlve source is one that w1thh01ds in- . | o
“formation from the decision maker, and further will not provide :
it if asked. Hostile noncombatants in an area of military operations ¢

might fit this description, as might espiénage agents. The decision
maker's problem with respect to passively uncooperative sources is
to persuade them to change their status and become actively
cooperative. Hlstory, both real and fictitious, is replete with
accounts of the unsavory methods”“that have been employed to this

\\ end. N
' To the extent that.laboratory studies of decision making have
. been concerned with ipformation gathering, they have involved ' ‘I’

actively cooperative sources almost exclnsively. The problem of
finding sources that are nonobvious and that of coping with those

that are noncooperative have received very little attentaon from
. experimenters. 1In part this is undoubtedly due to the ‘fact that
capturing the essence of these aspects of information gathering in
laboratory situations is a very difficult thing to do. And the
alternative of studying these processes in situ is hardly less
) difficult. Until such studies are performed, however, our under- «

standing of how ,decision makers go about gathering ~ especially

: seeking - information so as to increase their chances of making

' effective, decisions will remain very 1ncomplete. 3

4

~ 4.6 IﬁTEématloanatheging and Training
. . ’ |
We stress again that laboratory studies of information
gathering have failed to capture the complexity of the problem
that often faces the information seeker outside the laboratory.
Consequently,very little.is known about information seeking
behavior as it occurs in the real world. This is unfortunzate
» because information seeking constitutes a particularly critical
aspect of many real-life decision problems and so long as this
behavior- is not well understood, our understanding of decision
making will be incomplete.

e 4
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The implications for training axe obvious: training procedures
that are based on a solid foundation qf factual knowledge about
human capabilities and limitations cannot be developed if the foun-
dation does not exist. The need 1is foX research that is designed
to answer some of the questions that labqratory experiments here-
tofore have, failed to address effectively Such questions include
the following. How good are people at identifying sources of
information that is relevant to their decision problems? How do
they qg»about discovering such sources? How capable are they of
‘assessing the cost of acquiring information that may be difficult
to get and the worth of the information that might be obtained? °
To what extent can useful principles and procedures for information
seeking be made explicit and taught? It is probably fair to say
that with respect to such questions there is insu@ficient basis for

. even an educated guess as to the answer. Clearly there is need for
some imaginative research on this aspect of the deFision-makiﬁg
process. ; . .

Laboratory studies such as those reviewed above do shed some
light on information purchasing behavior. In particular they tell
.us something out human capabilities and limitations in assessifg
: the worth of information .in wWell structured situations. Although
it would be risky to generalize many of the conclusions uncritically
to.nonlaboratory situations, the conclusions nonetheless are sug-
gestive of what should perhaps be done by way of training or train-
ing research.

-
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SECTION v

DATA EVALUATION - ,

In the preceding section we used the words data and informa-
tion more or less synonymously. It will be helpful at this point
to make a distinction. The term data is perhaps best used to
refer to what one collects, a§d the term information to connote
whatever conclusions or inferénces one draws from data. The data
and the information extracted therefrom can be identical, but.they
need not be. For example, if a military commander receives data
to the effect that the troop strength of an opposing tactical
force is 15,000 men, and he considers the source to be a reliable
one, he will undouktedly acceépt the data as accurate and conclude
that the enemy troop strength is indeed 15,000 men. On the other
hand, if he has less than full confidence in the source of this
repgort, he may tentatively conclude that the troop streagth is
somegwhere between 5,000 and 25,000 men, and attempt to get. more
data“.from which he can derive a more precise estimate.

‘'The point is that as part of the process of attempting to
reduce' his uncertainty about his depisitn situation, the decision
maker must evaluate the data tHat he receives as to their per-
tinence and trustworthiness. In other words, the first decision
that the decision ‘maker must make_with respect to any’ new datum
is how seriously he should take it. He may not explicitly do
this in all cases, but to fail to do so at least implicitly is
tantamount to judging his sources as completely trustworthy and
their inputs as equally important. ’ .

5.1 The Evaluation versus the Use of Data .
{
There are two questions relating to data quality that deserve
attention: (1) how well can people judge and report the quality
f the data on which.decisions are to be based, and (2) how

effectively can they.utilize information concerning quality of
data when that information is provided for them? The first of
these*questions concerns what we are referring to as the task of
data evaluation, and is discussed in this sectioni! The second
has to do with data utilization and is more appropriately dis- ,
cussed in conngctibn with hypothesis evaluation in Section VIII.

In anticipation of the 1attAr discussion, we note here simply
that several experiments have been addressed to the question of.
how effectively decision makers use knowledge of data quality.
in most sgch studies thg performance of subjects has-been compared
with that"of some ideal
Funaro, 1974: Johnson, 1974; Schum, DuCharme, & Degitts, 1973;
Snapper & Fryback, .1971; Steijer & Gettys, 1972). 'What is most -
germahe to %he topic of this section:is the fact that the models
that are used to represent optimal behavior typically Wistinguish

N
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(usually Bayesian) model (see, for examples,
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two separate steps. The first step entails an adjustment of the
nominal diagrostic value of a datum, the value £hat the datum would
have if it were known to have been reliably observed or reported.
The seapnhd step involves the application of the modified datum to

data evaluatioﬁ, and it is important to note that the failure of
subjects to perform this step properly appears to be one of the
reasons why,they typically acquire less information from data that
are not per}ectly reliable than is there to be acquired. : ’

»

5.2 Studies of Data Evaluation

D

Data evaluation has been recognized by the U.S. Army as being
of sufficient importance to warrant the development of a rating
procedure for use by tactical intelligence personnel to evaluate
all incoming "spot reports" (Combat Intelligence Field Manual,
FM30-5). . The procedure, which has been standardized for use by
NATQ army forces, requires that a sender of a report explicitly
rate the report both with respect to the reliability of its source
and the accuracy of its contents. The letters A through F are -

through 6 to represent judge¥l accuracy, The first five ratings
represent a scale going from "completely reliable" (A) to "un- .
reliable" (E) in one case, and from "confirmed by other souxces"”
(1) to "improbable" (5) in the nther. The lowest ratihg in each
case is used to indicate that,a judgment cannot be made% "relia-
bility cannot be judged” (F), "trut@4iannot be judged" (6).
I R

Obviously, the purpose of using such a rating procedure is
to provide the receiver.of a report with some indication of how
much confidence he should have in its contents. How effective the
procedure has been, however, is open to question. Data collected
during field exercises have indicdted that ratings often are
omitted. from spot reports, and that the ratings that are used are
too consistently high (Baker, McKendry, & Mace, 1968). The same
study also révealed that the reliability’ @nd the accuracy ratings
tend to be highly correlated. One possible‘gxplanation of this
correlation is that reliable sources tend to produce accurate
reports. This is an intuitively plausible explanation, and it
raises the*questionh of the need for two ratings. The other pos-
sible expl&nation for the correlation is that the rater finds it
difficult to treat reliability and accuracy as independent dimen-
sions. The results of a subsequent laboratory study of rating
behavior were interpreted as supporting the latter possibility
(Samet, 1975a). On the basis of his results, Samet proposed that
an attempt be made to design and validate an improved procedure ’
for_evaluating intelligence data. Specifically, he suggested the ¢
possibility of assignirg to a report a single number that would
represent the evaluator's estimate of . the likelihood of the report
being true, based on all the. information available to him that

was relevant to that judgment. '

] ’ « &
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5.3 Tht Use of Nonquantitative Qualifiers. -~ ' .

) -

Probably most people who evaluate data or data sources do not
do so according’ to a fo 1 procedure or in quantitative terms. ‘
More typically, they, use such qualifiers as "usyally reliable,"” ?
"not very dependable,' "prone to exaggeration?[‘a"very precise,"

"a bit.careless,":"very likely," "a rough estimate," and so forth.
Such_phrases are certainly meaningful and undoubtedly can convey : i
important qualifying information. The problem is that mot all

people mean the same thing when they use one of‘;hese phrasds, and \\

what complicates matters is the fact that even 4 giyen indiv@dual
may use the same term to mean somewhat different‘things at dif-

ferent times. . ° ) R .

~

¥

‘A number of effort® have been made to measure the éxtent of
agreement between individuals in their use of such qualifying
terms. A common experimental paradigm Qs that of provi.'ing sub-
jects with lists of terms or phrases and requiring them, to trans-
late the degree of certainty or uncertainty.denoted into g numeric
(typically probabili%tic) estimate. The variance observed among
. and within subjects in the translation then provides a measurement ’
of agreement. Results of these studies (see, for example, Lich-
tenstein & Newman, 1967; Johnson, 1973; Samet, 1975a, 1275b)
typically show very low levels of agreement among subjects, .and .
the potential for considerable misunderstanding when iarge votabu- ‘
laries of qualifiers are used.

What factors influence the translation of a qualifier into
a numeric estimat®#? There seem to be no clear answers to this
question. Cohen; Dearnl@y, and Hansel (1958) suggested that con-
text in which a word is used might play a .role, but a recent gtudy
by Johnson (1973) in which the encoding of 15 different probability
words (or phrases) contained in each of three different sentence
contexts was explored failed to uncover any significant context
effect. On the other hand, a study ¥ Rigby and Swain (1971) in
which magnitude-denoting terms such as "couple," "lots," and
"bunch" were used did suggest such an effect. For example, a
"bunch of missiles” had an average assignment of 7.73, while a
"bunch of tents"” had an average assignment of 12.32. It seems
obvious on the face of it that nonquantitative terms denotihg
physical magnitudes must be subject to enormous context effects.
"Small" distances are measured in angstrom units by nuclear .
physicists and in light«years by astronomers. Indeed, it is
difficult to see how, in the absence of context, such terms can
be considered meaningful at all. Probability terms are different
from magnitude terms in that probabilities are bounded whereas
magnitudes are not. Perhaps this helps to account for the former's
greater independence of context. ‘It should be rfoted that neither
Johnson nor Rigby and Swain found significant differences in the
use of these terms due to grcup membership (army enlisted men and .

-
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~graduate students, in the former study; army hellcopter, Alr Force
prop, Air Force jet, and Navy attack bomber pilots in the 1atter)

~

5.4 Data Evaluation and Training .

It seems clear that full exploitation of computer~based tac-
tical data-analy51s systems will ultimately require the use of
numeric values in place of qualitative estimates, if the relia-
bility of data is to be taken into account when they are used.

. How best to a%rlve at these values is, at this point, a matter of
conjecture. One could attempt to establish a formal vocabulary.
of qualitative terms and phrases, associate with each term or
phrase a specific numerical value (or range of values), and train
personnel to use the resultant ispmorphisms in encoding and de-
coding communications. This is fhe essence of a proposal made
some years ago by. Kent (see PlAtt, 1957). Con51der1nq, however,
that formal training would be’ a requlrement in any ca:.¢&¢, a pre-
ferred alternative to this apptoach is to instruct deci..ion, makers
in the use of probability (and magnitude) scales ana requlre
estimates to be communicated in explicitly quantltatlve terms
{Johnson, 1973; Samet, 1975). Thg .obvious problem for training
research is that of developing effective procedures for training
people to evaluate data quantitatively and for increasing the
intra= and inter-person consistency with which quantltatlve

\\jssessments are made.

\
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ot SECTION VI ' " ‘
PROBLEM STRUCTURING .
: An exceedingly important step. in solving any problem is to . -

--———- be-quite-explicit about what the problem is that one is to solve.
And one way to be explicit is to attempt to represent the problem
in terms of a formal structure. While the need to be explicit
may appear to be too obvious to deserve comment, it is also ap~"’
parent that satisfying that need is, not always an easy thing to do.
Attempts to apply computers to problem-solving tasks have high-
lighted both the need for explicitness and the difficulty of ob-
taining it. Armer (1964) has commented on the frustration that
is sometimes entailed when one tries to formulate a problem in
such a way that a computer can help solve it. He illustrates his
point with reference to a bank official who stated, after having
his banking procedures mechanized "that 65 percent of the data-
processing-group's -effort went to deciding in detail whk t problem
they were ‘solving" "(p. 250). Presumably, the investment *as worth

"it; without it, they could not have recognized a solution had they
found one. ' '

N,
N

The, act of trying to make the structure of a problem exﬁlicit
can be an instructive experience for a problem solver, inasmuch .
as it forces on him the realization of what he does and does not
know about the problem on which he is working--or thinks he is,.
Essentially, this observation is made by Cloot (1968) vis-a-vis
the application of computers to the decision problems of manage-
ment. He takes the position that one of the ™.)0or benefits that
is to be derived from an attempt to implement a computer-based
management information system is not the help that one would get
from a functioning system, but what one can learn about the prac-
tice of management from the implementation effort. "It can even
be"argued' that the successful use of a computer-based MIS should
be measured by the extent to which managers learn to improve
their performance so that they can discard it again... There is
no doubt that the changes that do come about will be due more to
managers having abetter understanding of thei. decision processes,
than to the technical facilities of the computer" (p. 280).

A major contribution of theoretical treatments of decision
making is the provision of formal models in terms of which a de-
cision makKer can attempt to structure his own decision problems.
Invariably, such models are simplified abstractions, and conse-
quently may not do justice to the full details of any given situa-
tion. Nevertheless, they'do provide one with structured ways of
viewing things,. which may make the Problems easier to think about,
and as :a consequence--hopefully~-easier to solve. It has been

v suggestéq that this is the way in. which quauncitative models will
have thely primary effect: "I believe that the greatest impact of
the quantitative approach will not be in the area of problem sol~ ‘l’

—per—

ving, although it will have growing usefulness there. 1Its greatest,

42
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‘ impact will be on problem formulation: the way managers thir;kf
about their problems--how they size them up, bring new insights
to bear qn them, and gather information for analyzing them. In
this sensg, the results that 'quantitative people' have produced
are beginning to contribute in a really significant way to the
art of management" (Hayes, 1969, p. 108).

A

6.1 State-Action Matrices ) . 7

Probably the most well-known way of representing decision situ-
ations is in terms of state-action matrices. _Such matrices make -
three aspects of decision situations explicit: the hypothesized
possible "states of the world," the action alternatives that are
open to the decision maker, and the decision maker's preferences
with respect to the various possible state-actién combinations.’
Sometimes such mattrices are referred to as payoff matrices inasmuch
as each cell of the matrix represents the cost or valme--or utility
--to the decision maker of the outcome of a particular action se-
.lection, given ‘that the associated state hypothesis is true. A
decision problem may be represented in this way as follows:

, : )

Action Altefnatives
Ay A A, T ... 7 A

1 2 il n N

Hypothesized Hl Ull U12
States
of the H, U1 Uz
World N

Hi Uij

: 4

Ho ) Unn

Much of the theoretical-analytical work on decision making
. has been concerned with optimal strategies for selecting action
) alternatives once the situation has been formally structured.
Given an explicit decision gpal (e.g., minimization of risk!
maximization of expected gain, and a formal representation
of the situation, prescriptive models can provide useful guidance %
for action selection. The process of representing real-1life
decision situations formally, however, is at the present time more
of an art than a science. Examples of decision situations tggg
are easily structured can always be found; however, not all de-~
cision problems can. readily be forced to fit the same mold.

‘ ! Y
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Evén given that the structure shown above is an appropriate
* one for a particular problem, it is clear that.in order Eﬁ use it
one must be able to specify, as a minimum, what the hypofhesized
states of the world are, what one's action options are, and how
-the various possible decision outcomes (state-action pairs) relate
to the value system that will determine the desirability of the
actual outcome. One may find it necessary to engage in a consider-

able amount of information seeking in ordér to fill out-such a
structure. Moreover, how one does fill out the structure is deter-
mined in part by exogenous variables over which one has no control,
and in part by self-imposed constraints. The state of the world
tends to be beyond one's control; all one can do is attempt to
determine what it is likely #o be. One's action alternatives,’

" however, may be constrained in part by limits that are self-imposed.
What are viewed as viable strategic military options, for example,
may depend®en the particuldx military doctrine in vogue at the time.
Benington (1964) points out that the basic concept bel.'nd the
development of such automated, or semiautomated, systems s the

» SAQE system in the 1950's was the concept of "set-piece warfare."
"Set-piece warfare is characterized 'by warning of threat, total
and preplanned goals, speed of.response, and detailed and precise
management of the campaign" (p. 9). Emphasis is on massive re-
taliation totally preplanned, or "spasm" response. During the
early 19%0's, the set-piece warfare idea lost favor. President

- Kennedy and Secretary of Defense McNamara began to emphasize the

-importance of flexibility and adaptability, the ability to make
selected and controlled responses, directed toward military (non-
civi’ian) targets and appropriate to the (not always foreseeable)
coniingencies that elicit them. Clearly, the set of agtion alter-
natives that the strategist will consider .under one of these re-
taliation doctrines is quite different from that that he will
cunsider under the other. !

%

.

- 6.2 Alternative Structurings of a Given Situation . \

It is apparent that to think in terms of the structure of a
decision space i§ to oversimplify matters greatly. Usually any
given situation can be structured in a variety of ways. Moreover,
how one chooses to represent 2 particular situation-may not be
incidental. It seems to bBe true of problem solving in general
that how one represents a problem can be an impor'tant factor in

' determining how easily one can then solve it. This point has often
been made by individuals engaged in efforts to program computers
to perform intellectually demanding tasks (see, for example,

&

L] Nilsson, 1971). The same problém may yield to "attempts to solve
it when represented in one way while resisting such attempts when
represented in anbther. .t

. £
. An important aspect of devé?bping a useful structure is that
of conceptualizing a situation at an appropriate level of detail.

)
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Too simple a structure may violate the complexity of an actual
situation. On the ofher hand,:Charles Pierce's maxim that "a few
clear ideas are worth more than many confused ones" seems particu-
lar;y apropos here. We state as a conjecture that a necessary
requisite for effective dec151on making is the ability to get
quickly to tpe heart of a problem, to concentrate on.e%sentials,
and to ignore irrelevancies. What this often’ means in practice is
being able to see.through superflolalltles that frequently obscure-
underlying issues. Moreover, even when the situation, strlpped of
incidentals, is inherently complex, there may be some merilt in a
simplified conceptuallzatlon of it, prov1ded that the fact that the
oonceptuallzatlon is a 51mp11f1catlon is not then promptly forgotten.
There is little to be gained by representing a situation ih such

a complex way that the decision maker cannot grasp the representatlon
intellectually. What constitutes an optzmal level of detail may
vary from situation to situation and from individual to individual,
but variability in this regard may not be very great. WWe suspect
that for the vast majority of situations and decision me“=2rs a
representation that involves more than elght or ten hypotheqlzed
states of the world and as many action alternatives, at any given
level of 'description, will prove to be an unwieldy one.

6.3 - Structuring as an, Iterative Process

-

On the basis of an anlaysis of protocols obtained in hi#% ;
classical study of problem solv1ng, Duncker (1945) reached a con-
clusion that is germgne to the issue of problem structuring. The
problem that he used most frequently in his studies was the now
well-known radiation problem: Ygiven a human being with an inoperable
stomach tumor, and rays which destroy organic tissue at sufficient
intensity, by what procedure can one free him of the tumor by these
rays and at the same time_avoid destroying the healthy tissue which
surrounds it?" (p. 28).. The conclusion that Duncker came to after
observing the efforts of many people to solve such problems was
that the development of a sclution typically proceeds frbm the more
general to the more specific. (On this point, see also Hogarth,

1974, and Kleinmutz, 1968.) The principle by which the problem

is, hopefully, to be solved emerges first, and the de:2ils of the
solution come later. It often happens that a principle may be
valid, but there turns out to be no feasible way t¢’ implement it.

A principle that was frequently identified in the case of the radi-
ation problem, for example, was "avoid contact between rays ‘and
healthy tissue." When the problem solver could think of no way to
do this and still get the rays to the tumor, he had to abandon the
principle itself--even though it was a sound one~-and search for
another that was not only sound but practicable.

A

The finding of"a new principle, or a general property of a
solution, always involves, Duncker suggests, a reformdlation of
the original problem. 1In the case of the example just given, having
accepted "avoiding contact" as a valid principle, one has in effect
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defined his broblem as that of finding a wg& to do just this. When
forced to reject a given principle as impractical, the substitution
of another (e.g., "lower the intensity of the rays on their wvay
through healthy tissue”) in effect defines another how-to~do-it
problem to be solved. "We can accordingly describe a process of
solution either as development of. the solution or as development

of the problem. Every solution~principle founéd in the process,
which is itself not yet ripe for concrete realization... functions
from then on as rcformulatlon, as sharpening of the original settlng
of the problem. It is therefore meaningful to say that what 18 ’
really done in any solution of problems consists in formulating the
problem more productively. To sum.up: The final” form of a Bolution
18 typieally attained by way of mediating phases of the process,
of«which each one, in retrospect, possesses.the charactey cf a
solution, and,. in prospect, that of a problem” (p.34, italics his).

It is.probably the case that complex decision problums, like
other types of complex, problems, yield grudgingly to attempts to
structure them. Moreover, a decision maker may find it necessary
to formulate and reformulate a decision space several times before
arriving at a structure that he feels adeguately represents the
decision problem that he must solve and dpes so in a way that
facilitates arriving at @ solution. The willingness to discard
a favored conceptual framework when it is seen no longer to fit
the facts in hand has been considered by some to be one of the
defining characterlstlcs of original thlnklng (Mackworth, 1965, s
Polyani, 1963).

6.4 Problem Structuring and Training

The question of how to train decision makers to structure
decision problems effectively has received very little attention.
Moreover, if it is true, as Edwards (1973) has suggested that of
the several aspects of decision analysis the process of problem
structuring is least amenable to formal prescription, exactly what
should be taught is not clear.

It seems likely, however, that something is to be gained by
familiarizing decision makers with such formal representations--~
models--of decision situations, as are provided by decision theory
and game theory. Such tralnlng should be conducted in such ‘a way
as not to leave the student with the unrealistic idea that all
decision situations are readily, represented--without distortion--
by the same model.

. Practice in representlng specific situations in terms of such
models, and &fiteria for judging the relative merits of different
models for different problems should probably be part of any
tralnlng program in decision making. Practice in representing a
given dec1shon problem at different levels of detail also would
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probably be beneficial. Duncker's work suggests that one approach
to problem structuring that might usefully be taughg is that of
zeroing in on.an appropriate formulation by a 'serie$ of approxima-
tions, proceeding from the more general to the more detailed. =

But these -are only conjectures. The fact is that little is
known about how to train a person to be good at imposing structure
on a problem--whether it be a decision problem or a problem of J
any other kind. Mackwbrth (1965) has noted that one of the chax- :
acteristics of creative individuals is an exceptionally strong
need to find order where none appears on ‘the surface. If this
is so, then one way to train people to be better problem structurers
is to train them to be more creative. If only we knew hoy to do

tha t ! . ’ % J <

L4

An alternative to training decision makers to formalize their
decision problems is to.provide them with models that are appro-
priate to their particular. situations, and that can then be used
as decision aids. @oxry (1970) has suggested this possibility.

A model that is to be used by a decision maker need not be genera-
ted by him, but, Gorry points out, it may be derived from his
description of the situation, and it must be thoroughly under-
standable by him. In this case the training task becomes that of
teaching an individual to make effective use of the structure that

someone , else *has imposed upon his problem.
. -

At least one study has been addressed to the question of the
subtasks in terms of which one class of decision makers sees deci-
sion-making and how this view would change as a result of training.
Hill and Martin (1971) gave secondary-school teachers problem-
solving exercises designed to train them with respect to some of
nineteen specific skills that they associated with decision making
and to acquaint them with a particular model of the decision-making
process (see Section III). Both before and after training, ‘the {
subjects were asked to list the specific.steps that they would
take in an effort to solve a hypothetical prcblem involving an inter-
person confli¢t. ‘Perhaps the most striking aspect of the results
was how large a proportion of the steps that subjects® listed fell
in the "formulating-action-alternatives" category. Before, training-
more of the listed steps fell in this category than in_the other
five combined. The main effect of training was to reduce. the num;‘
ber of steps in this category by about two-thirds and to incréase
the usage of some of the other categories slightly; but formulating
alternatives still remained the largest category. The investigators
concluded that training had made the participants more aware of the -
several activities involved in decision making, but pointed out
that their results shed fio light on the question of whether much as
increased awareness. would produce better decision making.

+
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v 4 SECTION VII -

HYPOTHESIS GENERATION

"Hypothesis generation is closely associated with problem
structuring. We find it convenient to consider it separately,
however, because it is a more narrowly focused type of activity.
Problem structuring is always important. Even when complete in-
formation is available concerning the state of the world, the
action alternatives and all the possible decision outcomes, it is
still necessary to cast the problem into some mold, and the mold
that is chosen may have much to do with the decision that is made.
Hypothesis generation, on the other hand, is a necessary activity
in those decision situations characterized by uncertainty about
such things as the state of the world and the implications of
selecting specific’ decision alternatives. Often, in spite
of one's best efforts to gather information, it is not possible
to eliminate uncertainty about thesé things completely: In such
cases, it is convenient to conceptualize the decision ‘malkar's view
of the situation as a set of conjectures, or hypotheses.

7.1 Hypofhesis Generation versus Hypotﬁesis Testing -

Investigators of cognitive processes have long recognized ‘.
two rather different types of thinking. Bartlett (1958) speaks ‘
of closed versus adventurous thinking, Guilford (1963) of-conver- .
gent versus divergent thought. Mackworth (1965) distingujshes o]
problem solvers and-problem finders. ®he one kind of thi king Ad

tends to be deductive and analytical; the other inductive and
analogical. The first has to do with evaluating hypotheses, the
second’ with generating them. The history ‘of science attests to
the fact that the ability to evaluate hypotheses, to deduce the
implications of theories and put them to empirical test, is a far
more common quality among men than is the ability to generate
hypotheses, to construct théories that organize and structure
facts that were not perceived as related before.

. Some formal treatments of decision making require that the
situation, as viewed by the decision maker, be conceptualized as

a set of mutually exclusive and exhaustive hypotheses, each of
which représénts one of the possible states of the world. As data
are gathered, they are used to modify a set of probabilities, each
of which represents the decision maker's estimate of the 1likelihood
that a given hypothesis is true. Much laboratory experimentation
has been-devoted to the question of how effectively man can assi-~
milate data and use it to modify his view of the world as implied
by the probabilitiés that he associates with the hypotheses that

he is entertaining. (We will consider that problem in the fol- !
lowing section.) However, very little attention has been given

to the question of how:capable people are of generating a reason-
able set of hypotheses to begin with,  or of modifying the set

when the need to do so arises.




NAVTRAEQUIPCEN 73-C-0128-1

. - Typically, all of the hypotheses that are to be considered
are provided for the decision maker in advance, so the process of
) ‘hypothesis generation is not studied. Moreover, formal decision .
*  procedures usually permit the decision maker only to update the
probabilities that have been assigned to the previously established
“ set of hypotheses. 'They fail to recognize the fact that it may
be the case in real-life situations that a set of hypotheses that
is originally developed may not contain the hypothesis that will
eventually prove to be the true one. It often occurs in real-life
situations that incoming data suggest to the decision maker new
hypotheses that have not yet been considered. Aany decision-making
’ procedure that purports to be generally valid must provide for )
establishment of new hypotheses whenever the information in hand
indicates the need for them. .

57.2 Importance of Hypothesis Generation

The importance of the function of hypothesis generacion can
hardly be overemphasized. To be sure, one may think of some de~
cision contexts for which all the potentially interesting hypotheses
can be specified in advance. For example, it may be the case for
some straightforward troubleshooting situations that an exhaustive
set of the hypotheses of interest can be'listed prior to the per-
formance of any tests. More typical of complex decision problems,
‘ however, is the case in which the set of possibilities is either
not fully known, or too large to be listed exhaustively. The
problem of the physician who is attempting to diagnose an illness
with a set of . symptoms that does not fit a common pattern, or the
investor who is trying to gauge the risks and potential gains in
a speculative financial venture, or the computer programmer who is
tracking down an elusive bug; or the tactician who is trying to
assess the significance of some unorthodox behavidr on the part
6f a wily opponent is less that of testing prespecified hypotheses
than that of defining hypotheses that it would make sense to con-

sider. @

~ , The difficulty is not so much that of representing a decision
situation in terms of a set of possible states of the world that
is exhaustive and mutually exclusive. The problem is that of
coming up with a set of possibilities that is useful from the
'decision maker's point of view. A military commander can always
represent the alternatives that are open to an adversary in terms
of such gross action categories as attack, defend, and withdraw,
and the ability to distinguish among these possibilities would
undoubtedly be of interest. However, a commander's decision-making
responsibilities typically require much more precise information
than would be provided by the resolution of the uncertainty implicit
in these three possibilities. That is to say, he wants to know not
only whether, enemy forces plan to attack, but at what time, in what

‘ strength, at what locations, and so forth. It is at this level of

. representation that the commander's (or perhaps his intelligence

officer's) hypothesis-generation capabilit}es ‘are put to the test.
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7.3 Experiments on Hypothesis Generation . ‘

v

The study of hypcthesis generation in the laboratory has
often involved "concept attainment" or "discover the rule" type
tasks. The work of Bruner, Goodnow, and Austin (1956) illustrates
the use"of concept attainment tasks to study this aspect of think-
ing. In a typical experiment, a subject attempts to identify a
concept that an experimenter has in mind. The concept usually is
defined in terms of conjunctions or disjunctions of’ specific stim-
ulus attributes (e.g.: “"red and square"; "blue or yellow, and not

~circular"). 1In some situations the subject is shown stimuli, some
of which belong to the conceptual category that he is attempting
to identify and some of which do nbt. He is told which stimuli
are which and from this "exemplar" information he is to attempt to
identify the concept. Sometimes the subject chooses the stimuli
that he sees, in which case the task can also be used to study a
form of information~gathering behavior.

Obviously, the performance of this task involves hypothesis
testing (a topic¢ to which we will turn in the following section),
but the key problem 1: that of hypothesis generation. Unless one
comes up with the right hypothesis to test, the testing that he
does will only eliminate some of thé untenable possibilities, of .
which there may be many. ‘

A basic conclusion that Bruner et al. draw from their experi-
mental results is that the strategies that subjects employ in these
.sorts of tasks can be isolated and described. They identify four
such strategies, for example, that subjects ‘use when they have the
job of discovering a conjunctive concept by selecting stimuli and
being told, concerning each stimulus selected, whether or not it
is an exemplar of the concept that they are attempting to identify.
These strategies differ in terms of the balance they strike among
three parameters: the amount of information obtained from an ob-
seryation, the cognitive strain imposed on the subject (amount of .
information that must be carried in memory, extent to which involved
inferences must be made), and the risk that the strategy will fail.
The strategies are defined in terms of the nature of the hypotheses
that are generated and put to the test. 1In one case, for example
("successive scanning"), one specific concept is hypothesized at
a time, and stimuli are chosen in such a way as to test that hy- °
pothesis directly. 1In another case ("conservative focusing"),
the initial hypothesis, in effect, includes several possible con-
cepts and an attempt is made to discover the defining attributes
systematically one at a time. Which of the several strategies is

most appropriate depends on the details of the experimental situa-
tion.

.Bruner et al. found that the strategies that subjects use
tend 'toﬁ-change appropriately in response to changes in the . .
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experimental situation: and, on balance, these investigators con-
sidered the performance of their subjects to be quite good. 1In
their words: "In general, we areﬂstruckvbyfthewnotable~fiexibitity
and intelligence of our subjects in adapting their strategies. to
the information, capacity, and risk requirements we have imposed
on them. They have altered their strategies to take into account
the increased difficulty of the problems being tackled, choosing
methods of information gathering that were abstractly less than
ideal but that lightened pressures imposed on them by the tasks
set them. They have changed from safe-but-slow to risky-but-fast
strategies in the light of the number of moves allowed them. -They
- have shown themselves able to adapt to cues that were less than
perfect in validity and have shown good judgment in dealing with -
varjous kinds of payoff matrices. They have shown an ability to

comgége partially valid cues and to resolve conflicting cues"
(p. 8). .

Performance was not ideal, however. ' Among the limitations -
that were .noted were a tendency to persist in focusing on cues
that had proved to be useful in the past even if they were not
useful in the present, and an inability to make as effective use
of information gained from noninstances of a category as of that
gained from category exemplars.

‘Bruner et al. also found that concepts defined in terms of
disjunctions of stimulus attributes were more difficult to discover
than those that were conjunctively defined. This finding has been
corroborated by Neisser and Weene (1962} who used a large variety of
attribute-combination rules. Not surprisingly, concepts defined
in terms of the presence or absence of a single attribute are
easier to attain than are those defined in teirmk of conjunctions
or disjunctions of two or more attributes, which in turn are
easier than those defined in terms of more com ex rules involv-~
ing combinations of conjunctions and/or disjunctions (Haygood
& Bourne, 1$65; Neisser & Weene, 1962). > ’ .

Another experimental’ task that has been used to study hypo- )
thesis generation is that of discovering the rule by which a
specific sequence of numbers or letters was generated., Typically,
the subject is shown one or more sequences (or segments of se-
quences) that satisfy the ruyle. He then can propose other se-
quences, or continuations of the segment, in order to test the
validity of tentative hypotheses that he may wish to consider.

Each time he proposes a possibility he is told whether it satds~
fies the rule; and when he feels he has obtained enough information
to justify doigg s0, he is to state the rule.

Again, performance of this task obviously involves information
gathering and hypothesis testing as well as hypothesis generation,
but hypothesis generation is in some sense central. What information
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is sought is likely to depend strongly on what rule is being con-
sidered.. Moreover, unless the correct rule is hypothesized at
e — -~ SOome -point; it -cannot-be tested and validated, = = =~ -
. o .

The results of experiments along these lines have revealed
some interesting deficiencies in hypothesis~generation behavior
which appear to stem from a lack of understanding of some basic -
rules of logic. Wason (1974) has described some results that
suggest that people may have particular difficulty in discovering
rules that are sufficiently general that they subsume many rules
that are more specific. For example, the rule "any three numbers
in increasing order of magnitude" proved to be particularly dif-
ficult for his subjects to discover. If, as examples of triads
that conform to this rule, a subject were given (8 10 12), (14
16 18) and (20 22 24), he might quickly generate the hypothesis

"successive even numbers," test it with other sequences that

> satisfy it, and then announce this rule with confidence. What is
disappointing about this behavior is the failure to hypothesize
alternative rules to which the given sequences also conform, and
then to consider sequences that would discriminate between the
alternatives hypothesized. More disturbing, however, is the
finding that even when told.of the incorrectness of a hypothesis,
and presented with conclusive infirm evidence, subjects some-

* times insisted that their hypothesized rule was validated by the

fact that all the test sequences that they generated conformed
. to it. :

‘

+  Two other results noted by Wason are relevant to the problem
of hypothesis generation, because they also demonstrate hqw the
.process can g¥t bogged down. First is the possibility of perse-
veration with an invalidated hypothesis without recognizing that
one is perseveraging. He notes, in this regard, that what subjects
often do when informed that a hypothesized rule is not the correct
s one is to generate additional triads that are consistent with that
rule and then announce’' the same rule expressed in différent texrms.
- Second is. a tendency, when hypothesized rules are invalidated, to
generate more and more complex rules rather than simpler ones.
The following example is given of a third generation rulé produced
' by one subject: "The rule is that the second number is random,
and either the first number equals the second minus two, and the
third is random but greater than the second; or the third number
equals the second plus twd, and the first is random but less than
the second" (p. 382). Reca}l that the correct ryle was "any, three
numbers in increasing order of magnitude." One c¢onclusion tﬁat
may be drawn from this type of experimental finding is that the
discovery of a general rule, even though concep%ually simple, may
be impeded by the discovery of more specific rules whos. exemplars
are also exemplars of the more general rule.

»
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3.4 Hypothesis Generation and Training

kY

s ’

Hypbthesis generation represents the same sort of challenge
to training and training research as does problem structuring.
.The basic néed in both cases is for a greater understanding of
how to promote creative thinking. = . .

A SpelelC problem that deserveg,attentlon from training
specialists is that of perseveration. Results such as those ob-
tained by Bruner, Goodnow, and Austin (1956) and by Wason (1974)
indicate the need for training pxocedures designed to improve
the ability, or increase the willingness, of decision amakers to
generate alternatives to the hypothesxs, or hypotheses, under
consideration. They demonstrate the 1mportance of sensitizing
decision makers to the danger of accepting a hypothesis on the
basis of 1nsuff1c1ent evidence, and to the fact that the best way
to avoid this mistake is to attempt to generate plaus.ble alter-
natives and to seek the kind of data that will be most likely to
dlscrlmlnate among them. ; X /
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SECTION VIII e

S e e *"***“-V’“H*Y“PGT‘I'IES‘I;S‘"EVAI.;UATION“—"”'” S e

Narrowly defined, hypothesis evaluation refers to the process
cf applying data to the agsessment(of the likelihoods of oné's -
hypotheses concerning the unknowns‘of the situation. More generaly,
the term might be used to connote the process of extracting,informa~
tion from data, of attempting t® reduce one's degree of uncertainty .
. about the parameters”of the decision space.. In some formally struc-
tured appyoaches to decision making, hypothesis evaluation may involve

the revisionseof numerical probability estimates or other, quantita-
tive indicants of relative likelihoods. In other cases the process |
may be less explicit, but it is not for that reason less important. *
, We &ssume that even in situaticns that have been given little formal
structure, the decision maker attempts to make use of a. least some 4
of the data that are availabde to him, in order to clarify his view,
or perhaps to confirm his assessment, 0f the situation. - '
. ‘ »
The following discussion takes a rather broad vigw of .
hypothesis evaluation. It touches on & number of topics that
relate to man's abilities, limitations, biases and predilectipns .
as a processbr of information or a user of evidence. In some cases, '
it may appear to range beyond the specific subject of hypdthesis.
evaluation, and deal with "thinking" more generally. QOur reason
for including this material is that it seems to us relevant to .the
problem of decision making, and it appears to fit more readily here 4 '
than elsewhere within our conceptual framework. 1In Section 8.6, o
the discussion b&comes ri3rrowly focused on the problem of revising . ...
probabilities in situations that have been formalized to the extent ‘
-~ that a Bayesian dita-aggregation algorithm might be applied.
¥ -
‘8.1 Serial versus Parallel Prosgssing _ .

i One question of interest concerning the way people evaluate -
~ hypotheses is whether they consider them one, or several, at a
time. Empirical ‘data are lacking on the question of which of
these alternati¥es best characterizes man's approach to hypothesis
evaluation. It is our impression that the prevailing consensus is
that the assumption of seriality is the more plausible of the two,

(4 insofar as the conscious consideration of hypotheses is concerned.
~ If the serial model is the more nearly correct, this must
represent a basic limitatien of man. It is difficult to think of
~ a convincing reason why oné should evaluate the hypotheses serially

if Qe is able tg treat them in pdrallel.

But even if we assume that one cannot test several hypotheses
at once, there is still a question about the order in which testing
is done. One might apply an incoming datum to each of the

3 B
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h§potheses in turn. Alte;natively,'one might focus exclusively on
one hypothesis until one. had . enough confirming data to accept it,

or until the evrdeﬁce agalnsE it was sufficient to Warrant its
rejection, ift which case attention would be shifted to another
jpossibility. Note that in this latter case a datum cannot be dis-
- carded after being applied to the evaluation of one hypothesis
because lt may be germane to the evaluatlon of, others later.

] One putatlve advantage of the Bayesian approach ({see
Sectioh 8,6) is that it forces the decision maker to apply an
incoming datum. to each f the candidate hypotheses in turn., One
of theg lmpllC&thHS\Qf this fact is that it minimizes. the need .
, for the decision maker or system to retain data. Assumlng that
"the set of hypothese with which the. decision maker is working
is complete, and will not be extended, a datum can be discarded
once it has been assimilated and the probabllltles associated
'with all the hypotheses rev1sed

%@.2 Subconsc1ous Processes

, What 1s happenlng at a, subsconsc1ous level is, of course,
even less well-understood. The belief has been expressed that
the brain carrles on problem-solving activity even when one is not
cons¢iolsly thlnklng about a problem. Wallas (1926) elaborated
. and popularized the notion, which he credits to Helmholtz, that
creative thinking often involves a period of "incubation," which
" ‘follows a period of "preparation," and precedes a period of
"illumination." During the preparation period, according to this
view, the problem solver consciously labors on the problem,; during
the illumination period the problem solver becomes aware of the
solutlon for which he was seeking. No conscious attention is
givén to the problem during the incubation period, but, Wallace
" suggests, much subsconSC1ous exploratlon ©of the problem takes place.-

While the idea has prlmarlly anecdotalrsupport, the
testlmony of ¢reative thinkers about the way|they have arrived
at selutions to difficult problems is fairly compelling evidence
that something of this sort-does occur. We mention it in this-
céntext to make the point’ that the fact (if it is a fact) that
decision maKers tend to apply newly acqulred data to the evaluatlon
of only one hypothesls at a time, should probably not ke taken as
conclusive evidence that the credibility of a hypothesis not under
consideration has not been affected by those data. Moreover, it
is at least a plausible conjecture that the likelihood thit any
given hypothesis will"suggest tself" for exp11c1t consideration
may depend o some degree on such subconscious act1v1ty (Maier,

1931). . : ‘ EAN
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Dreyfus (19 61) has argued that such subconscious, or
marginally conscious, activity is a general and difficult-to-
simulate characteristic of man as a problem solver. It is this
ability that makes it possible for him to consider consciously
only the "interesting" moves. in a game of chess without explicitly
considering all possible moves and rejecting those that are not
worth pursuing. But subconscious processes are beyond the scope
of this report, so we will not pursue the topic further,

8.3 Man As An Intuitive Logician

-

réchnically, logic is the discipline which deals with the
rules of valid inference. The term is used colloquially, however,
as a synonym for reasoning. It is of some relevance to the
general problem of decision making, and in particular to the
problem of trdining decision makers, to consider whethar reasoning
as it is practiced by people is logical in the technical sense;
and, to the extent that it is illogical, whether it is illogical
in consistent ways. A further question of interest is whether
training in formal logic can reasonably be expected to improve
decision-making performance. :

¢
-

Philosophers have not been in agreement on the first
question. Henle (1962) points out that some of ‘the 19th century
writers (e.g., Boole, 1854; Kant, 1885; Mill, 1874) viewed logic
as the science of the laws of thought. Some more recent writers
(e.g., Cohen, 1944; Russell, 1904; Schiller, 1930) have treated
logic as something quite independent of thought processes and to
reject the notion that thinking necessarily conforms to logical
principles.* A middle-of-the-road view is that thinking sometipes
conforms to 1ogiga1,principles——especially when one's explicit
purpose is to reason carefully and deductively--and sometimes
does not. T ‘

-

N |

"~ L4

*A cynic might assert that few arguments are won oOr lost on
logical grounds. Certainly, the alogical strategems that can
be applied to arguments are numerous, and perhaps are better
learned in the course of normal development than are the rules
of inference. The disputatious reader who feels his arsenal
of such strategems is deficient is referred to Schopenhauer
(no date) who provides a veritable cornicopia .of them.
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Whether or not thinking is loyical may be difficult to
determine empirically in any particular case, because the steps
by which one arrives at a conclusion usually are not available
for observation. As Mill (187%) points out , since "the premises
‘are seldom formally set out,... it is almost always to a certain
degree optional in what manner the suppressed link shall be filled
up... [A person] has it almost always in his power to make his
syllogism good by introducing a false premise; and hence it is \
scarcely ever possible decidely to affirm that any argument 1nvolves
a bad syllogism" (p. 560; from Henle, 1962).
it \ ]
Individuals undoubtedly differ greatly in their ability to

think logically, and any characterization of human strengths and
weaknesses in this regard is bound to be only partially correct.
There are many ways in which reasoning can be illogical, however,
and it is not unreasonable to ask whether some of the many possible
evidences of fallibility are appreciably more common .han others.
Several ways in which human reasoning does seem to depart from the
ranks of logic have been ‘discussed by Henle (1962). . These include:
failure to distinguish between the factual truth of a conclusion .

and the logical valldlty of the argument on which it is based;
restatement of a premlse or a conclusion, which may have the

effect of preserving a logically valid. form, while changing the
substance of the argument the omission of premlses from an argument,
or the addition of spurious premises. The fallacy of the "wndis-
tributed middle" is one that has long been recognized as
particularly bothersome, and involves the assignment of different
meanings to the same term when it appears in difﬁerent premises.

Another type of logical error that seem$ to be commonly
made involves a misunderstanding of tHfe syllogistic form: "If A
then B; A; therefore B," or "If A then B; not B; therefore not A." ‘
These forms may be perverted either as "If A then B; not A;
therefore not B," or "If A then.B; B; therefore A." Bbth of these
forms are lnvalld nevertheless most readers will probably recognize
-them as forms that-they have encountered, and perhaps used, in
arguments.

Wason (1974) describes a failure in reasonlng that he has
observed that seems to be related to this type of misunderstanding.
Four cards are placed on a table so the subject can see only one
side of each of them. The cards contain reSpectively a vowel, a
consonant, an even number and an odd number. The subject is told
.that each card has a letter on one,side and a number on the other,
and is asked which cards would have to be turned over to determine
the truth or falsity of the statement: "If a card has a vowel on
one side, then it has an even number on the other." The majority of -
Wason's subjects chose either the card showing the vowel and the
one showing the even number, or just the card showing the vowel.

"~ The correct answer is: the card that shows the vowel and the one
that shows the odd number. Only by finding an odd number behind

-
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the vowel or a vowel behind the odd number would the statement.be
falsified. The students' choice of the card with the even number
is ,a form of the fallacy known as asserting the consequént: "If
A then B; B; therefore A.". e ’ >
. * : X
This type of reasoning error occurs with sufficient-eonsis~

tency (at least among college students) to have prompted investi-
gation by several researchers. A completely satisfactory explana-
tion has not yet been forthcoming. Wason seems to favor the view
thq% the choice of cards is made on an intuitive basis dnd that
the "reasons" for the choice ~ which subjects give in response to
, the experimenter's inquiries - are really rationalizations., "This

‘hypoghesis is consistent with our crude knowledge.about intuition.
A verdict may occur to a judge before the grounds which support

it have been spelled out; a chess player may "see" a good move; and
then analyze the “‘continuations which validate it. Such thought
suggests a processing mechanism which operates at different levels"

(p.385).

The last chapter on the topic of the relationship bétween S
logic and thought has not been written. And it cannot be until
much more is known about the workings of the human mind. The
immediate challenge for training research is to identify ways to
improve the capability of individuals ¥#o reason logically, or at
‘least’to recognize and be able to avoid the more common illogical
pitfalls.

AY

8.4 Man as an IntuiE;VQ Statistician

It issguite clear that most individuals couldwﬁanage to get
through life without e . er explicitly agsigning a numerical
probability to an event. Undoubtedly, the vast majority of people
do so. It seems safe to assume, however, that people do make
judgments of likelihoods, and that these judgments--even though
nonnumeric, and often implicit--condition their behavior. An
individual carries an umbrella because he thinks there is a good
chance of rain, or buys stock that he expects to appreciate. One
purchases . life insurance before boarding an airplane because one,
in effect, has gonsidered the likelihood that the plane will go
down during that{flight to be nonnegligible; the fact that he
boards the plane at all is probably evidence that he also considers
that likelihood to be something less than certainty. One chooses
one among three job opportunities, because the chances of success .
and advancement are perceived as greater in the case of the selected
job than in that of the others. In short, although most of us do
not attempt to assign numeric probabilities to possible situations
or events, we behave as though our choices had been dictated by
reasoning of the sort: this event is more likely than that, or the
likelihood of this situation is great enough so that I had better
do thus and so in order to be prepared if it should occur.
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A question of some practical interest, therefore, is that of
how effectively such judgments are made. For many situations,
there is no way to answer this question objectively. The individ-
ual who selects one job from among®three possibilities because he
considers the likelihood of success to be highest for that case
will never know for certain whether his judgment was correct.

There are also, however, many situations for which the "objective"
probabilities of events are known or can be determined, and we

can at least ask how well people do when asked to estimate
probabilities explicitly in thdse cases. The literature that is
relevant to this question falls fairly naturally into three cate-
geries., First are the studies that deal with people’s ability to
estimate the statigtical properties of samples that they are
Permitted to observe. Such studies concern relative freguencies
rather than probabilities, but to the degree that our ideas-about
probabilities are based on, or influenced by, percei\ ~d frequencies
they are germane. Second are some studies that have to do with

the extent fo which people's intuitive notions about the probabil~
ities of events correspond to, or conflict with, the implications
of the theory of probability as represented in the probability cal-
culus. Third are numerous recent experiments that consider the
specific question of how effectively people function as Bayesian
data aggregators. In this section we will consider briefly the
first of these three categories of studies; in Sections 8.4 and 8.5
we will consider the last two.

People appear to be reasonably good at perceiving proportions,
or the relative frequencies of occurrence, of both sequential and
simultaneous events (Attneave, 1953; Peterson & Beach, 1967;
Schrenk & Kanarick, 1967; Erlich, 1964; Vlek, 1970) and at esti-
mating the means of number sequences (Beach & Swensson, 1966; .
Edwards, 1967)., Inferences’ concerning the median or mode of a
skeéwed distribution (assuming the subject knows the definitions
of these terms) are fairly accurate, and the estimated mean of such
distributions tends b be biased in the direction of the median
(Peterson & Beach, 1967). One's confidence is one's estimate of
the mean or the variance of a population appears to increase as the
sample size increases (Peterson & Beach, 1967; but see also Pitz,

{1967). X ‘ -

Estimates of the variability of a set of data often tend to
decrease as the mean increases (Hofstatter, 1939; Lathrop, 1967;
Peterson & Beach; 1967). Peterson and Beach (1967) point out that
while the notion that variability is necessarily inversely related
"to the mean is erroneous, it is intuitively compelling. "Think :
of the top of a forest. The tree tops seem to form a fairly smooth
surface, considering that the tree may be 60 or 70 feet tall. Now,
look at your desk top. In all probability it is littered with many
objects and if a cloth were thrown over it the surface would seem
very bumpy and variable. The forest top i$ far more variable than

the surface of your desk, but not relative to the sizes of the
objects being considered" (p. 31). One is led to wonder whether
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. the finding that estimated variability tends to decrease with

increasing ‘mean might be due in part’to failure by the subject

to understand that it is’an estimate of absolute variability that
he is to produce. Relative variability probably often does de-
crease as the mean Increases (to cite Peterson and Beach's tree
top example), and without explicit instructions to the contrary it
would not be unreasonable for a subject to suit the terms to the
context, as one does when one speaks both of a small skyscraper

and a large dog.

8.5 Intuitive ﬁrobability Theory

How closely do man's intuitions about probabilities corre-
spond to the implications of probability theory? fThe question
cannot be answered decisively, but a number of pertinent observa-
tions can be made. For example, people often seem to find it
difficult to believe that the outcome of an event can be )
independent of what has preceded it. This difficulty is sometimes
manifested in the "gambler's fallacy" (a fallacy. that competent
gamblers probably woéuld not make), one form of which holds that a
run of successes increases the likelihood of a failure, or vice
versa (Cohen & Hansel, 1956). Another example of assumed dependence
among successive events has been noted by Jarvik (1951), who found
that when given a two-alternative prediction task, subjects often
tended to predict the more frequent event after one occurrence of
the less frequent event and to predict the less frequent after two
consecutive occurrences of the more frequent event.

Several experimenters have found that man does not estimate
the probability of compound events very accurately. In particular,
when assessing the likelihood of the joint occurrence of several
1gdependent events, he tends to produce estimates that are too
high (Cohen, Chesnick, & Haran, 1972; Fleming, 1970; Slovic, 1969),
Conversely, when estimating the probability of disjunctive events--

/,thé prob@bility that any one of several specified events will occur--
he tends\to produce estimates that are too low (Cohen, Chesnick, ‘

& Haran, '1972; Tversky & Hahneman, 1974). The overestimation of
the -probability of conjunctive events is consistent with the ob-
servation ﬁhgt people frequently base judgments of the degree of
cor;elation between two events on those cases in which the outcomes
of interest do, occur together without giving sufficient considera-

tion to those cases in which they do not (Peterson & Beach, 1967).

What is of more interest than the fact that man's intuitions
sometimes lead to incorrect judgments about event probabilities is
the question of the extent to which the failings of intuikion--
at least insofar as they are systematic--are explainable in terms
of identifiable ways in which such judgments are made. 1In a
recent series of studies, Tversiy and Kahneman (1971, . 1973, 1974;
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Kahneman & Tversky, 1972, 1973) ‘have explored this question The
general approach in these studies and in those of others wh ave
conducted similar investigations (e.g., Alberoni, 1962; Tdné,§1964;
Wagenaar, 1970) has been to ask people to estimate the probability
of the occurrence of a hypothetical event, or, perhaps more commonly,
to indicate which of two such events is the more probable. One
might be asked, for example, to indicate which of the two following
sequences of coin tosses is the more likely, HHHHTTTT or HHTHTTHT;

or to indicate which of two hospitals~- which record approximately

15 and 45 births a day, respectively--~would have the largest
frequency of days on which more than 60% of the babies born are

boys. :

The results of these studies have revealed a number of ways
in which the answers that people give to such questions depart
systematically from the objective probabilities of tl'-» events as
inferred from the application of probability mathematics. Tversky
and Kahneman attribute such failures in judment to the heuristic
principles that people often use when attempting to: estimate
probabilities or relative likelihoods.

It will be helpful, before considering some of Tversky and .
Kahneman's specific results to digress briefly to consider the
notion of 3 heuristic principle or procedure. The term "heuristic,"
which comes from the €reek heuriskin, meaning "serving to dis-,
cover," appears sporadically in the literature of philosophy and
logic as the name of a branch of study dealing with the methods
of inductive reasoning. It was revived by Polya (1957) in his
classic treatise on problem solving, and used to connote inductive
and analogiocal reaspning leading to plausible conclusions, as
opposed to the deductive developments of rigorous proofs. In
recent years, computer scientists, and especially researchers in
the area of machine intelligence, have appropriated the term to
connote "a rule of thumb, strategy, trick, simplification, or other
kind of device which drastically limits search for solutions in
large problem spaces" (Feigenbaum & Feldman, 1963, p. 6). 1In short,
a heuristic principle or procedure, usually referred to simply as a
heuristic, is a means of making an inherently difficult problem more
tractable. The criterion by which a heuristic is measured is its
usefulness. It is important to bear in mind, however, that
heuris“ics are not expected to lead invariably to correct solutions.
"A 'heuristic program;' to be considered successful, must work well
on a variety of problems, and may often be excused if it fails on
some" (Minsky, 1963, p. 408),
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8.5.1 Representativeness

Tversky and Kahneman describe two heuristic principles--

_representatiVeness and availability*-which they feel acccunt for
many of- the systematic judmental biases that they and other

investigators have opserved. According to the representdtiveness
principle, "the subjective probability of an event, or a sample,

is determined by the, degree to which it: (i) is similar in .
essential characterls tics to \{ts parent population; and (11) .
reflects the saliént features of the process by which it is gen-

rated” (Kahneman & Tversky, 1972, p. 430). Several examples of

the application of this principle are given; two will suffice for

our purposes, one illustrating each of the *subprinciples. .

. The importance of the similarity between the judged event
and the parent populatlon is illustrated by the following gquestion:
"All families of six children in a city were surveyed. 1In 72
families: the exact order of births of boys and girls was GBGBBG.
What is your estimate of the number of families surveyed in which
the exact order of births was BGBBBB?" (Kahneman & Tversky, 1972,

P. 432). If the probabilities of male and female births were
exactly equal, ,the two birth sequences would be equally probable.
(Apparently, the frequency of male births is sllghtly higher than

that of female births, so the lattef sequence is slightly more .
probable than the former.) About 80% of the subjects (high-school
J/students) who were asked this question judged the latter sequence

to be less likely than the former; the median estimated numbex of
families with this birth order was 30. Kahneman and Tversky

attributed this result to the fact that the two birth sequences,

while about equally likely, are not equally\representatlve of

families 1Q the population. The former sequence is, more similar

to a larger proportion of the population, both in terms of the,
relative number of girls and boys, and in terms of the length of

runs qﬁ births of the same sex. .

The second way in which the representativeness heuristic .
manifests itself--in sensitivity to the degree to Wth% an event
reflects the salient features of the process that generated it--~
is illustrated by the tendency of people to consider reqularities
in small samples to be inconsistent with the assumption that such
samples were generated by a random process. Thus, when people are
asked to produce random sequences such as the results of an imagined
series of coin tosses, they tend to produce fewer long runs than
would a truly random process. Moreover, in judging the randomness.
of small samples, they are likely to reject as nonrandom many of
the samples that a random process does generate. Kahneman and
Tversky characterize the intuition that produces such judgmental
biases as a belief that a representative sample should represent
the essential characteristics of the parent population, not only ‘
globally, but locall§ in each of its parts. In other words the

Q ’ '.'?S
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’obsefved behavior is consistent with the belief.that the laﬁtof
large numbers applies to small numbers as well (Tversky & Kahneman,

1971). N

The application of this heuristic could lead gne to the sort
of fallacious thin*ing illustrated by the conclusion that the .
probability of finuing more than 600 boys in a random sample of 1000
children is the same as that of finding.more than 60 boys in a random
sample of 100 children. The probability of the latter event is,
of course, much greater than that of the former, Kahneman and '
Tversky .(1972) showed that people (at least high-school studénts)
do virtually ignore the effect of sample size when estimating the
estimates made by Kahneman and Tversky's subjects, when asked to
judge the probability of events that have a binomial distribution, .
Yere much Tqre(appropriate for small samples (e.g., .') than for
arge samples (e.g., 100j;0or 1D0C). In other words 1 r
subjects tended té’ﬁnder‘stimate grossly the pr baéifgtylgfgﬁigﬁTples'
p;op@blllty events and overestimate the prebabi ity of Iow-prbba-
b%llty events, and the magnitude of the miss increased with the
size of the sample. - <

8.5.2 " Availability

L]

The availability principle, 'according to Tversky and Kahneman
ability on .the eéase with which instances or assogiations are {
called to mind. For example, when asked to estimate the relative
likelihoods of heart attacks for men and women, one might think of
male and female victims of heart .attack among one's personal acquain-
tances and take the ratio as.an estimate of the relative likelihoods
in the population. Or, if asked to judge which of two letters occurs
the more fréquently as the first letter of English words, one might
attempt to think of a few Words of each class and make the judgment
ori the basis of the rapidity with which examples come to mind. \

Tversky and Kahneman point out that "availability" ig an '
ecologically valid cue for the judgment of frequency because, in
general, more frequent events are easier to recall or imagine than
infrequent ones. However, availability is also affected various
factors, which are unrelated to actual frequency. If the availability
heuristic is applied, then such factors will affe the perceived
frequency of classes and the subjective probabilify of events.
Consequently~ the use of.the availapility heuristic leads to
systematic biases” (1973, p. 209).

As one example of how application of the availability heuristic
can lead to an erroneous judgment, Tversky and Kahneman report the
following experiment. Subjects were asked to estimate the number of
different remember committees that can be formed from a group of 10

-
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people. The estimates tended to decrease with increasing r fox
svalues of r between 2 and 8. In particular, subjects typically
judged it to be possible to form many more committees of size,2

- than of size®8, when in fact the same number is pdssible in both-
cases. (Similar results were obtained when subjects were asked

to estimate the number of different patterfns of r stops that a bus
could make while traversing a route with 10 stations between start
and finish.) The explanation for this result, according to Tversky
and Kahneman, lies in the fact that committees (of two members are
more readily imagined than those of eight, and, ‘consequently, appear
t6 be more numerous. '

The major difference between the heuristic principles of
representativeness and availability, Kahneman and Tversky suggest,
is in the nature of the judgments on which the subjective prob-
ability estimates are based. "According to the representativeness
heuristic,one evaluates subjective probability by the degree of
correspondence between the sample and the population, or between *
an occurrencé and a model., This heuristic, therefore, emphasizes
the generic features, or the connotation, of the Levent. According
to the availability heuristic, on +he other hand, subjéctive
probability is evaluated by the difficulty of retrieval and con-
struction of instancééi It focuses, therefore, on the particular
instances, or the denotation, of the event. Thus, the represen-~ ‘
tativeness heuristic is more likely to be employed when events are
characterized in terms of their general properties; whereas, the
avaidability heuristic is more likely to be employed when events
are more naturally thought of in terms of Specific occurrences"
(Kahneman &.Tversky, 1972, p. 452). A feature common to both
. heuristics is their reliance on mental effort as an indicant of
subjective probability. "It is certainly harder to imagine an
tncertain process yielding a nonrepresentative outcome than to

. imagine the same process yYielding a highly representative outcome.
Similarly, the less available the instances of an event, the harder
it 1s to retrieve and construct them" (ibid, p. 452).

8.5.3 A Methodological Consideration °

There is a methodological consideration relating to
some of the findings of judgmental biases that deserves more
attention than it has received. This has to do with the possible .
role of language ambiguities. We have already alluded more than once
to the well known fact that the meaning of language is conditioned
by the situation in which it occurs. « To borrow an example from
Dreyfus (1961), "a phrase like ‘stay near me' can mean anything from
'press up against me' to 'stand one mile away,' depending upon
whether it is addressed to a child in—a crowd or a fellow astronaut
exploring the moon" (p. 20). -Although it seems unlikely that many

of the resu}.ts that have been mentioned above can be attributed to .
the 1lmprecision of language, the possibility that some of them
F
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, . .
may be based, at least in part, on this factor should not ‘be
\1 overlooked. The finding that the estimated variability of a set
‘ of ‘data tends to decrease as the mean increases was mentioned in
a preceding section as one possible case in point. Tversky and
Kahneman's finding that people judge it to be possible to form a *~
larger number of different 2-man.committees than 8-man committees
- from a pool of 10 men may be another. There is a way of defining .
"different" (e.g., "having no people in common") such that the
judgment would be valid, and before one can take the results as
evidence of faulty intuitions concerning. combinatorics, one must
be certain that none of the subjects is using such a definition.
Our guess is that language ambiguities will not go far toward
explaining the results obtained by Tversky and Kahneman, but it
seems conceivable that they may have played some role, and some
further research might be directed toward determining the extent

of that role. .
8.5.4. Training and Intuitive PrGbability Theory

We have reviewed these results at some length because this
general line of research strikes us as being not only exceptionally
interesting from a theoretical point of view, but of considerable

o practical significance. To the extent that the heuristics that
. have been identified are representative of the ways in which people
generally make judgments of likelihood, it is clearly important to
determine those conditions under which they lead to erroneous
. judgments and those under which they do not. Tversky and:Kahneman
N have demonstrated that there are at least some situations in which
judgments, that are presumably based on identifiable heuristics,
! err in systematic ways. This Yoes not, of course, establish that
these heuristics are, on balance, bad, as they are careful to
,point out. What one would like to know is the relative fregquency
with which they lead to erroneous decisions in practical real-life
situations. From the point of view of the training of decision
makers the question is how to foster the use of such heuristics in
situations in which they are most likely to be effective, while
discouraging their use in situations in which they are likely to
lead to erroneous judgments. Perhaps at least a small step in
that direction would be to make decision makers explicitly aware
of the nature of the heuristics that tend to be used in estimating
probabilities, and of the types of. exroneous decisions to which
they can somehimes lead. .

A
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* 8.6 Bayesian Inference

Undoubtedly the most widely advocated formal approach to the
application of incoming data to the evaluation of hypotheses is
the "Bayesian" approach. Because it has attracted so much atten-
tion and has been the focus of so much research, we will consider
it in some detail.

8.6.1 Béyes Rule

/

It is necessary to begin with 3 set of mutually exclusive
and exhaustive hypotheses, Hj, concerning the state of the world.
To each of these hypotheses one must assign.a probability, P(H;),
that that hypothesis is true. Because these hypotheses are, by
definition, mutually exclusive and gfhaustive, it follows that the
a priornyt probabilities sum to one, ive.,

RCAIEY o )
. Inasmuch as the hypotheses that one is considering are likely
(i%o have different implications concerning what might be observed

under specified conditions, it seems intuitively reasonable that
one should be able to increase one's degree of certainty concern-
ing the truth or falsity of any given hypothesis by making appro-
priate observations. For example, if H., implies D, and if D is
observed, then the credibility of H, might reasonably he expected
to be increased. (The truth of H. Is not proved by such an obser-
vation, of course, inasmuch as it does not follow from the fact
that H. implies D that D implies Hi; as was pointed out in Sec-
ion 8.3, inferring the truth of H} from the observation of b
would involve the logical fallacy known as "asserting the con-
sequent.") If both H. and H. could lead to D, but the likelihood
of D given H, is grea%er than its likelihood given H., then our .
intuitive notions about evidence suggest that the observation of

D should increase our confidence in H, somethat more than our
confidence in H:. These notions were expressed formally by the
18th Century Brgtish minister, Thomas Bayes, in the so-called
"inverse probability theorem"--a theorem or rule that has been

the subject of much debate.

Bayes rule expresses p(H,|D), the probability that H; is true
given the observation, or datim, D, as a functior of p(DIHi), the
probability that D will be observed given Hj is true, and P(H;),
the probability that Hj is true as determined prior to the obser-
wvation of D. The probability of an observation given a hypothesis,
P(D|H) is usually referred to a's a conditional probability; the
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probahility of a hypothe51s given an observation, p(H\D), is usually
called.a posterior probability. Bayes rule defines a procedure for
“using the fact that D has been observed, to adjust one's estlmate of
the probability that Hj is true. The rule may be written as

P(D'Hi) P(‘Hi)

P(H; [D) = o : ' (2)
‘'L pID|H,) p(H.)

j=1 . J J .

- ' , : \

]

where n is the total number of hypotheses in the set. Because
2p(D|Hj) p(Hj) = p(D), equation (2) may be simplified to

j
- p(D|H,) p(H;) ‘
p(H; [D) = = .. (3)
( p (D) .

AN

When a sequence of observatlons is made, the rule is applied

recunsively, "and the value of p(H ID) that is computed as the
resuiE of one observation becomes the p(H;) for the following
computation. That is to say, the posterlor probabilities result-
ing from one observation become the prior probabilities for the
next one. Thus, equation (3) may be written more appropriately as:

a
&

p(D[H,) p__, (H.|D) .
P (H;[D) = Ll 1 (4)
. Pn~1(D) “

where pp(Hj|D) Tepresents p(H;|D) after the nth observation, and
Po (Hj |DY or, more appropriately, po(H )+, 1s understood to be the
probablllty of Hj before any observatlons are made. We will follow
the convention of using subscripts only when they are essential
for clarlty. .

Bayes rule states, in effect, that if the prior probablllty
of a hypothesis belng true, p(H;) and the probability of observing
a particular datum given that hypo“E_51s is true, p(D|H ) are known
for all i, then the probability that the hypothesis is true given
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that the datum has been observed, p(Hi[D), can be calculated in
a straightforward way. .In many decision situations, p(H;) and
p(D|H;) are not known, and cannot be determined objectively:
therefore, they must be estimated. The significance of the rule
stems from the assumption, for which there is some evidence that
will be considered later, that people are better at estimating
conditional probabilities, p(DfH), than at estimating posteriox
probabilities, p(H|D). Obviously, if they were invariably very
good at estimating p(H|D) there would be no need to make use of
Bayes rule to calculate this value; it would suffice to have the
decision maker estimate it directly. :

’ A
8.6.2 Iikelihood Ratio "

In order toéﬁake use of Bayes rule it is not necessary to
require that an individual estimate probabilities expl'citly. An
alternative procedure is to have him judge the ratios of pairs of
conditionral probabilities. Such ratios are referred to as
likelihood ratios. The likelihood ratio of D given Hj relative
to D given H, may be expressed as follows:

-~

p(D|H;)

L = e

1,2
p(D[H,)

: | (4)

The.attractiveness of likelihood ratio stems from the fact
that people often find it easier to make the implied judgment
than to estimate conditional probabilities directly. The type of
judgment that isrequired in this case is of the sort "Event D
is X times as likely if H. is true than if H, is true." Neither
of the conditional probabllities need be spegified explicitly.

A disadvantage associated with its use is the fact that a great
many more judgments are required with respect to each observation.

8.6.3 Other Methods for Obtaining Probability Estimates

Other methods have been used to obtain.probability estimates
without having the subject explicitly produce numerical values.
Fer chips-in-urn problems, for example, Peterson and Phillips
(1966) have had subjects adjust markers on a scaled 0~to-l1l con-
tinuum so that each interval is equally likely to contain the
true proportion of chips of a specified color. Organist (1964)
developed a simple answer chart which forced a subject to make
his distribution of probabilities over the possible hypotheses
sum to one and also specified what his payoff would be for each
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hypothesis if it were correct, given theoprobability that he , . !
attached te it. Shuforg, (1967) describes a computer-controlled

system which presents a subject with a set of hypotheses ana

allows him to specify probabilities by adjusting the lengths of
lines associated with the hypotheses by pointing at thefn with a .
light pen. When one line is lengthened or shortened, compensatory
adjustments are automatically made in the remaining 1iné§bso that
the probabilities always sum to one. This system also provides the
user with information concerning the implications.of his probability
assignments vis-a-vis his payoff, given the truth of any

particular hypothegiy ==

K,

»
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8T T T DL EGHOSEICIty of Data

Intuition suggests that the more disparate the implications .
of two hypotheses, the more informative data sheuld b, concerning P
which of the hypotheses is likely to be true. 1In a Bay351an -
context the informativeness, or "diagnosticity,"of data is deflned
in terms of the likelihood ratio. Specifically, the magnltude of
a likelihood ratio is said to represent the dlagnos£1c1ty of a
datum with respect to the two partlcular hypotheses involved. The
more the ratio differs from 1:1, 'in either dlrectlon, the more
informative the datum is with respect to which of the. hypotheses’
under con51deratlon is correct, and the more the distribution of |
probabilities over’ these hypotheses will chapge as a consequence., .

80605 ‘QOddS ) - ‘{‘ L . * ) /.

The ratio of two posterior probabilities is referred to as
the posterior "odd¢" with respect to the associated hypotheses.
The posterior odds of Hy with respect to H; may be expressed as

P (HllD) {p@lEy) . REALY P(D|H,) p _; (H,|D) © N
P, (Hy|D) " pD) ", p (D)

-

or, equivalently, as

»

(8, D) (lu, " -
Pn(H D) p H,) ) P,_; (H, [D) E (1) )
p,, (H,|D) P8y =) (H,|p)

L T
S
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which is to say that the, posterior odds is simply the prior odds
multiplied by the likelihood ratio. Legting @n;i,j represent the
odds of H; with respect to Hj; after thé nth observation, we may
express the relationship as %ollows;

£ . . =L, . L )
n;i,j Ll,an-l;l,é . {(8) v
Obviously ,
-1 bty
. . = Q. . e, ! 9
5,1 91,3 ‘ . (9)
and . 1 - o -
L , = - 3 : .l. 3 )
J.1 Lll]

t
Often it is clear from the context which of the two terms of
either an odds ratio or a likelihood ratio is to be the numerator
and which the denominator, so the subscripts are omitted and the
expression is written more simply as \ O

ill) ’
-

It is essential, however, that the same hypothesis, whether H. or Hj,
be represepted in the same position (numerator or denominator} in

both ‘ratics. .

] n n-1°

e

8.6.6 Applications of Bayes rule in The Two-Hypothesis Case.

" To summarize what has been said so far, Bayes rule represents
a procedure, for evaluating hypotheses in situations that have the
following characteristics: (a) the possible states of the world
can be explicitly representéd by an exhaustive, and mutually
exclusive set of posgibilities; (b) discrete observations may be
made in an effort to find more information about the actual state
of the world; and (c¢) for the data obtained from each observation,
it must be reasonable to assign a number. that represents the
probability that those data would have been obtained, given the
truth of any specific one of the hypothesized states of the world.
In order to get an appreciation of;how Bayes rule extracts
informatidn from data, it will be helpful to consider some concrete
examples of decision tasks to which the rule might be applied. We
will focus first on the simple case in which the hypothesis set
contains only two alternatives. 0

71
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Imagine an urn containingired and black chips. Suppose two
hypotheses, Hl and H,, are stated, one and only one of which is
true, concerning wha% proportion of the chips in the urn are .red.
The task is to.decide which of these hypotheses is the true one.,
Data are obtained by sampling chips one at a time, replacing each
chip after it is examined. Assume that the chips are thoroughly
mixed before each observation and that the probabilit¥y of drawing
a red chip o a trial is exactly R/R+B, where R is the number of
red chips, and B the number of black chips, in the urn. :

Suppose the first hypothesis, H,, is that 70% of* the chips
are redsy and that the second hypothe$is, H,, is that 20% of the
chips are red. Suppose further that the prior probabilities are
equal, that is, po(Hl) = po(Hz) = .5.§:Figure 1 shows how 4

p(Hl[D) and p(HZID) change as a result of applying Bayes rule to

the data obtained in the following ten successive obsccvations:
RRBBRRBRRR. Figures 2 and 3 show the odds, and the uncertainty,
in the information theoretic sense of the word, change from ob-
servation to observation. Uncertainty is, of course, a monotone
but nonlinear function of the difference between the probabilities
associated with the two hypothesés. T , :

w5
-

Note that the effect of-ap observation is*not}necéssarily to
decrease the amount of uncertainty concerning which hypothesis is
true. If the distribution of p (Hi) favors the incorrect hypothesis,
uncertainty is very likely to igcrease‘as a result of observing .:
data rbefore it de¢reases. Even if the distribution of pA(H.) -
favors the correct hypothesis, or weights both hypotheseg eéually,‘
uncertainty may-increase on individual trials. 1In this case, how-
ever, it Will decrease on_the average, assuming unbiased sampling.

Another interesting and perhaps counterintuitive observation
concerning figure 1 is the very large effect that the one or two
initial observations can have . In our example, the initial
drawing of two successive reds had the result of making one of the
(initially equally likely) hypotheses over twclve times more likely

than the other.

Intuitively, one would expect that the degree of confidence
that one should have that the proportion of reds and blacks in one's
sample reflects the true proportiop in the population should depend
on the sample size. Thnat the application of Bayes theorem does not
violate this intuition may be seen by comparing the probability
distribution after the third observation and after the sixth obser-
vation (figure 1). In both cases, red chips have comprised 67 percent

{
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Figure 1. Changes in posterior probabilities,

p(HlID) and p(il,|D) as a result of
the indicated observations of Red and

Black chips
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Figure 2. Changes in odds, Ql , @s a result of the
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jindicated observations of Red and Black chips
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Figure 3, <Changes in uncertainty concerning hypotheses

as a result of the ihdicated observations of

Red and Black chips
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of the sample; however, the uncertainty "is less following the, sixth
observation than following the third, reflecting the fact that the
sample size was larger in the former case.

Figure 4 shows how the probabilities change over the course
of ten observations in ,which reds and blacks occur. with the same
frequency but in a different order. In particular, the first two
observations in this case- produced blacks, and the second two, reds.
Pbservations 5 through 10 are assumed to be the same as in the
original example. Note that by the end of the fourth trial, the
proportion of red and black draws was the same in both examples;
consequently, the probability distributions are the same at this
point and thereafter. This illustrates the fact that the Bayesian
calculation of p(H,|D) {is path-independent, in the sense that the
effect of an observation is strictly dependent on the-Current value
of-p(H.,), and independent of the particular sequence of observations
on whidh that value is based. The calculation is also .adependent
of the number of observations on which the current value of p(H.)
is based. Note that this point is different from the one made dbove
concerning the effect of sample size .on uncertainty. The point
that was made above was that the probability that a given proportion
of reds inone's sample accurately reflects the proportion in the’
population‘increases with sample size. The voint here is that the
effect .that dn observation will have is independent of how
p(Hi) got to be whatever-it is.

&

Figures 5, 6 and 7 illustrate’ the effects of setting

the initial values of p(H,) and p(Hzl to something other than .5.
The sequence of draws is }dentical o that in figure 1, and con*
sistent with what might be expected if the true hypothesis were H,.
In each fidure, one curve shows the effect of rthese observations
given that p,(H,) = .8; another shows the effect given that p(H,)

= .2, and thg third*represents p,(H.) = .5. The main thing tg
notice ig that the effect of an nitial incorreect bias is largely
nulled out by relativély few observations. This point is frequently
made by proponents of Bayesian information-processing systems in
response to the observation that a priori probabilities are some-=
times difficult to assign on anything other than an arbitrary basis.
A fact that wsually is not pointed out is illustrated in figure 7:
changing the distribution of a priori probabilities shifts th
function relating log odds to data by a constant. eﬁﬁ-\‘7

8.6.7 Expected Effects of Observations on Hypotheses

in the foregoing examples of the application of BRayes rule,~we
have considered how probabilities may change as a result of a
sequence of specific observations. It has been apparent from these
examples that the effect of an observation sometimes is to increase
the probability associated with the true hypothesis and sometimes to
decrease it. On the average, however, we expect the probability

*.
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po(Hl) = po(Hz) = .,5

Figure 4. Changes in posterior probabilities, p(HlID)
and p(Hle) as+ a result of the indicated

i,

N
observations'of Red and Black chips

[ (Note that the results of the observations

r ) L. are the same as in figure 1 except that the
- first four produce a different ordering of

| Reds and Blacks.)
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Figure 5. Effects of indicated observations on
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associated with the true hypothesis to increase with each observa-
tion, and that associated with a false hypothesis to decrease, as-
suming an unbiased sampling of the data. We turn now to a con-
sideration of how P(H; |D) can be expected to change, on the average,
as a result of applying Bayes rule, if chips are drawn from an urn
that contains reds and blacks in the proportion indicated by a
specified hypothesis, say Hy . SN

It will facilitate the discussion to begin by considering all
possible outcomes of a specific experiment. Figure 8 shows all
possible effects of four observations on p(Hy|D), in the case of

our example of H,: 70% R, Hy: 20% R, "and p(H;} = .5. Each node

in the graph rep%esents one”possible value of p(Hl!D) after the 2
number of observaticns indicated on the abscissa; no values are
possible other than those represented by nodes. (By rotating the

graph in figure 8 about a horizontal axis passing tnrough the .5
pointion the ordinate, one would produce the graph of prgiD);

which is to say,each of ‘the points in the graph of p(H,iD) ig the
complement of a point in the graph of pP(HyiD}.) 1In general; after

N observations, p(H;|D) will have one of N+l possible values. After
two observations, for example, p(Hy D) will have one of the. three values
925, .568, or .123. The number above each node indicates the.

number of ways to arrive at that node. There are three ways, for
example; to arrive at the node at p(H,!'D) = .321, N = 3: RRB, RBR - .@‘-
and BRR. The set of numbers associat&a with a given value of N -

will be recognized as the coefficients of the terms of the expansion

of (a+b)”, the so-called "binomial coefficients." In our appli- -~

cation, each of these coefficidnts, which may be written as {g’,
represents the number of ways that N events can be composed ,

of  events of one type and N-m of another. The events of interest

in our case are draws of chips from an urn, ‘and the two types’

are draws''of red and black chips, respectively. The sum of these
coefficients for given N, ' N .

<
I//

o]

R . »
N{_ 4N '
L [N)=2Y, , | oz
m=0 . '/ C 7
-repre;en;swthe nupber of uniquely ordered sequences of reds and " «

blacks that'can result from N draws. Inasmuch as the effect of )
. applying Bayes rule tq a sequence wf data is insensitive to-the 4
Y order in which the data areé considered, it is convenient to think
of all sequences having the samé cgpbination of reds and blacks.
+ as the same outcome, irrespectiye Of the order ip which the reds
. and blacks have occurred. Thus{the effegtive number qf possible 4
Sta outcomes of N @draws is N+1 rather Eyah N, o an’ e

L

Figure éjshowé the graph of pessible outsomes for our /
hypothetical “experiment as they perfiin to p(HllD).u By the
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algebra of exéeétation; the expected, or mean value of p(H%ID)

value being weighted by its probability of occurrence. [In terms

of figure 8, the expected value of p(H;|D) after N draws may be
found by multlplylng the product of the value of each node above

N .on the abscissa by the probablllty:qf arriving at that node,

and summing over theée products. ' -

oo

-

Suppose that the probability that an observation will yield
a red chip (solid lines) is g, and the probability that it will
yleld a black one (dotted lines) :is 1-q. The probab111ty of
arriving at a given node in the graph, via a particular path, is i
the product of the probabllltles associated with the links in that”
path. The probablllty of arriving at a given nodg, 1rrespect;ve
of the path, is the sum of.the probabilities associated with all
possible paths to'that node. But every path leading to.a common
node has exactly the same probability of being. traverse., because
each is composed of the same combination of R and B links. “So, .
the easy way to calculate the prdbability, of arriving at a node
is to take the product of the probability of traversing any spe-
cific path to that node and the number of path leading to that node.
Figure 9 shows expressions for these probabilities for each
of the nodes in our sample graph. In general, the probabtllty of
arriving at a glven node via a specific path composed of m R 1links
and N-m B°links, is given by .

|

expecred : !

after N draws is the weighted sum of all_possible values, &dch ' l
1

!

[ 4

rd

(- : . - ,

’ H, : N~
: My = (M-, s

. The expected value of p(H lD) aftex N observations, then,
S \fs givén by

X

o~

L L £ - Y
and the probability of arriving at a node via any such path by .

| ) N

|

|

’ » 5 N 1
/, ¥ . = I
AL B ey ED) = F Ty By (10
. . ) . m:O 4
where P represents the posterior probability of Hy after N
obiervaﬁigns, m of which have yielded red chips. . q
L4 \]
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The following iterative formula can be used +o compute

»

_ (N-m)qg L
TrN,m-l-l h Zm-l-l‘i (1-9) ”N,m ’

v _ N
Mo = Wit
and computation can be, simplified by taking logarit;hms;

.t ‘

£

‘ N logTFN,m-l-l = log x + log TrN,m ,g1 S

//
whgre - SR . . )
~ T o
4y w Y (N-m) (q) . T
X Tﬁ‘u‘—) (1-q) CA , é

N R . o . ) '
\g |

1og'7-rN'o = N log (1-q)-

¢
oy ~ '

<, 7 )

.. The value of q in equation (13) depends, of course, on which
of the hypotheses under consideration appens to be true. The
expectatiof can be computed, however, for each of the possibilitie_s.

-
’ N

The general expression may be written as follows:

¢

—_ =%

E|py (Hi'&{[Hj is truef =
< L

- m

f lN,P(RIH )™ (B|m, )N .
L 5) P (BHy) Pw,m{,‘(zo).

~ i . |
ML o

77::

‘\1\
(16) -
A’ 7 ,-f‘"
(17) ,
” & % .
!
hd i
(18)
.i‘\
.\ ¢
(19)
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Figure 9. Graph illugﬁrating‘the computation of expected
. values of posterior probabilities
P . (The expression above each node .represents ,
‘ the probability of arriving at that node, given
g is the probability of drawing a red chip; The
T AN S expected value of the posterior probability
following N observations is the sum of the values

. of ‘tHe nodes above N, each weighted by its .
"drrival" probability.) ‘ o
. .
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¢ figure,lo shows E[pN(H |D)] for our example (H 3 70% red
Hy: 20% red), given H; is true (top curve) and glven Hl is not trde

(bottom curve).” The top curve shows the expected growth of ’
p(H1|D) wheh Hj is true and’ of«p(Hle) when H, is true.' .Conversely,
the bottom curve reépresen the expected decline of p(HllD) when
Hp.is trué and of p(Hle) en Hl is true Thus, in the, two-

Ll al;ezgatlve case,
: . ’ . ) « ’ . T e

- . ‘ R 1 s " ’ ’ .
L . %§1T;(H11D)|Hl.is truel = E [p(H2|D)|H2 is thue] . (21) )

4 - . . v
.' ( ) ’ R ~
. .

- To compute the.expected uncertalnty following N ol servations,
one must compute the uncertainty associated ‘with each of the possible
outcomes of the observatipns, and then take a welghted average of
. _ these uncertainties, th€ weights b¥ing the pxobabiliities of occur-

) rence of the specific outcomes, The untertainty assoc1ated with a -
. Eec1f1c outcome, say?® the outhme N observatlons yleldlng mred -

; > .chlps, ‘is glven by - .
,' v s - . AN Bx -“ , .

h
£ 8] = - P. ... lo P. ; R .
. - N,m - iz=:l. i;N,m # g2 1;.N,m , . - (22).

$

“w

]
J

. where h)lS the number of hypotheses u;aeé con51derat10n and B

s - is the probability associated with the <« h hypothesis after SLiN,m
.N observations yielding m red chips. The expected uncertainty
~ after'N observations, then’, is obtained by weighting each U o
by its probability of occurrence, and summing over all )
possible ‘outcomes. Thus,’ [ ~ <
- - : 2

/ ’ P E.'(UN) ‘=/ mgo n’N,m UNﬁ,m; ’ . , (23)
) ‘ , S+ RSN
‘where TT . 1s*def1ned as before. Again, inasmuch &s the vglue

of g in equatlon "(13) depends on which hypothesis is true, the
general “expression for E(UN) condltlonal updn which hypotheqls
is true may Be written \ )
. s/ ' [ '. )
* A '
. ) : _ N} <, N-my L (24)
_— , .E(UNIHj is true) = é;o (m’ p(RIHj)QF18|Hj) N,m

.t
* Y . ’
.
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« The computatlon of expected’ uncertalnty relates\to fngre 8

ifi ‘the following way-. Imagine fhat such an outcome graph, were }
developed for each of the hypotheses under coensifleration,' con- .
dltlonal upon the truth of a. spec1f1ed hypothe51s”. The value of - .

) is found by summlng -p logjp across graphs for given N,m, '
tﬁé values of-p being the value§ of the nqdes on the g¥gphs
(equation 22). The value of E(U,) is thep obtained by weighting

. each of‘these sums by the probaglllty of arriving at node N,m, ..

given the truth of the spec1f1ed hypothesis, and summimg qver m, -

(equatlon 23). Flgure 11 shows how thé expected tncertalnty con-

cerning which of the two hypotheses is true changes as a reSult of .

observations in the case of our example (H 70% red, H2 20% red), r -

given the .truth of each hypothesis 1n turny - ) .

. .
The ‘examples that.we have been considering ve aill converged .
. rather qulckly to a state of relatively low unce ta1n+y This was
due to thé fact that H, apd H, were quite dlsparate. But suppose ¥ .
H, and H, were 51m&é9r with réspect to their 1mp11cat10ns for
3 d%ta. Sappose, for¥example, that we-let H, be the s as before
~(that is, that 70% of the chips are red) a%d H, be the\hypothesis
that 60% of the. chips are‘réd. Again, setting“the initial .proba- . -
hilities equal tg .5 and assuming the same seéquence of observations
as indicated igure 1, figqures 12 and 13 show the effects of
) these bbservatlons on the d;strlbutlon of probabilities over the
two hypotheses, and on uncertainty. Figures l4-and 15 show _the p
expected effects of data on posterior probabllltles and uncertalnty
for this case.: Obyiously, the’ ekpectedfeffects /0f observations
are much smaller--the data have less diagnostic impactsm-when the,
hypothe$Ses are-similar than when they are very different. Or, to
say the same thing in other words, a 1arger sample is needed to \
.produce the_same degree of certaint Q%1th respect to which hypo-.
thesis is tnue. This illustrates tpe intuitively compelling idea
- that the smdller the differences between two statistical distribu-
tions, the closer one must examing them to tell which is whigh.,
Continued sampllng will eyentually make the probablkltles d1verge
and the uncertainty decrease, assuming, Of course, that the samp-
ling is random gnd one of the hypotheses is in fact true. Figures (\

s

16 and. 17 show the ,expected changes in p(Hl}D) and uncertainty

over the course of 200 observations, given™H;: 70% red, H 60% red
(H,) = .5%% Two h andred observations would not, on the gverage,

rgdu&e the uncertaifity in this case the .amount that ten ob- .

‘servations would reduce it, giwven- the more disparate hypotheses,

H,: 70% red and H,: 20% ;ed

1°
: Table 2 (page 95) shows, for various comblnatlons of H, and H
+ the expected posterior probablfity of H, after ten observat}ons, gzven
that chips are sampled‘from an uxn contalnlng reds and blacks in ,
.the proportlons specified by H ' and assumlng pOQH ) po(H ) = .5.
. N ) .
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Percentage of Reds
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SENSf&IVITY OF BAYESIANGANALYSIS

< -

according, t
cef&Qg ol&

~7

[

: 0010 20 30 40 50 .60 -70° 80 90 100

> = G0 . .s0 .74 .90, .97 .99 1.00 '1.00 1.00 1.00 1.00 .1.00
S 1 74 .50 .59 .72 .83 .90 95 .98 .99 1%0 4700
£' 207, .90 58 0 .56 .67 .79 .87 494 .97 .99 1.00
g ,-30 5, .97 72 .56 .50 ..55 .66 .77 .87 - .94 .88 1.00
,§ \ ff) . .99 .83 : .67 .55 .50- .85 .‘fs's' YN -1 3

. % 50 ! 1.00 .90 75 .66 .55 .50 .55 " .66 .79
% 'ieo , 1.00 .95 .87 .77 .657 455 .,.50 .55 .67
E- 70 ; 1.0 .98 .94 -.87 .77 .66 .'s*s .50 56
o .80 1.00 .99 .97 .94 .87 .79 .67 .56 .50
§ 90 1(.1.00 1.06 .99 .98 .95 .90 .83 '.72° .59 . .50 } .74
5 100 1.00 1.00 1.00 1.00 1.00 1.00 .98 ..97 . .90 .74. \.50
& , ~T . 3

. _ L ) . - i . .

Cells represent ekpected values of posterior probablllties
associated with correct hypothesis after 10 draws from (either)

N4 one of the urns. . .
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‘c There are several ‘things to notice about this, table. First,
‘it represents the eXpected valué of the pr bability assocfated with -
the“true hypothesis, so it.represents p(Hy |D) if data are sampled

- « from dn urn for which Hy is™true, and P(Hy|D) if the sample is
taken- from an urn for'which H, is' true. & second thing to notice

r .about the table is the fact tﬁat it is symmetric about the minor

. ! * diagonal. Thus, for example, the probability associated with the

‘o true hypothesis is” the same for Hy: x% red, Hy: y% red-as for .

{ Hy: y% red, Hy: x% red. . This is 3 trivial point, and simply
e . indicates;that the expected effect of a sequence of Obserwvations
is stricfly a function of the-diagnosticity of data and is inde-~ .
~~ pendent &f which hypothesis® is which THird, except when oné of the

R hypotheses is extreme (say, hypothesizes that 10% or less, or 90%

or more,\oﬁ,the chips, dre 'of one color), the expegted impact of

»" data is largely a function of the difference between the hypothe~.

o sized‘perqentdées and relatively independent of their a’ solute, .

.magnitudes. L : .

-

.

© ~It'was pointed out above that for various combinations of H
’ and»Hz,xthe first one or two observations can have a rémarkgbﬂy {

- large effect. How* much effect they will have depends, however,
on whut those gbservations are’and en the disparity between H
and‘ﬂz.‘ This point is illustrated by figure 18, The figurg shows
the probability of Hy,s given a sihgle observation that yields a

4 “red chip. In all cases, it is assumed that the hypotheses were

' equally probable before the observation. Note that if the hypotheses

are disparate, for example,'Hl: 90% red and H,: 10% red, or Hq,: 10%

red énd‘Hzg 90% red, a single observation wilf change the pro%a-

bilities associated with Hl“and’HZ from .5 and .5 to .9 and .1,

or to .1 and .9. On the other hand, if the initial probabilities
.are very close, say-.5 and .6, a single, observation will change
* them very litti?.1 ; ’ . . : ?iﬁa '

~

' 0oz -
8.6. 8 The Symmetrical- Two-Hypothesis Case

s

A two-hypothesis case of special interest is that- for which
one of «two possiblé observations has' the same probability given
one hypothesis .as does the other observation given the other -
hypothesis. « That is, we are concerned with the situation in which
p(quﬂl) = p(Dslgz},*or equivalently, .in,which P(D |H)) = 1-p.D, |H,) ..

This i§ sometimes referred to as the "symmetrical® case, reflecting
the fact that one of the two possible observations provides exactly
as much support for one of the hypotheses as does the other obser-
vation for the other hypothesis. This situation holds in the
chips-in-urn context when both hypotheses involve{the same pro-
portional #plit of chips of different colors, but one identifies
red chips, and the other black-chips, as being the more numerous.
. L

-

v . w




: : PROPORTION OF REDSL
L -7 ACCORDING "TO Hy | -
- 7 ) 0.1 .
“F & - 0.5 -,
. 1 ) ~$A 9 .
: S | ! 1 LT I I I
[ . . 1 03 04 05 6 x’7 08 ~9 100
. ~ PROPORTION OF REDS ACCORDING TO H
. [ Q .
- B Py (Hy) = py(H)) = .5
. . ) / . ‘
¥ / /” \
s _ 'Figurg 18. The effect of drawing a 31ng1e Red chip,

given various combinations- of prior,
hypotheses concerning the proportion

~©f Reds in the urn

i




-NAVTRAEQUIBCEN 73-C-0128-1

”~,
- < . e ) "’
\H N

- 4&
L3 .
¢ 4 "

The hypothes1s palr Hy: 70% R, 30%-B, Hy: 30% R, 70% B satisfies .
this condltlon, for exXample; whereas thé pair Hu- 70% R, 30% B;
~Hys 20% R, 80% B does not. . . .
The symmetrlcal case 1s of special 1nterest because of:
fact that, the effect of a series of observations.on the odds-Favor-
’ ing onég hypothes1s over the other can be calculated in a trivially

& .simple way. If Q, represents the odds prior to the observatlons
. of interest, and E represents the likelihood ratio, then
- 7 ” .
- . = 1@ o ’ ' (25)
) S %“LQO . '

*where d represents the dlfference between the number of observa-
tlons of Da (say, red chips) and ®f'D, (say, black chips), amd — T
represenits the odds following the 8bservat10ns Note that the
sgze of the shmple--the number of observations--does nov enter into -
thig.calculation. Suppose,-for example, that Qg = l,and L = 3 - ‘
) (as’ would be the case if p(RlHl) = .75 and p(R|K,) = .25, and the:-.:
odds and likelihqod ratio were expressed H relaglve to H,), then,
__ given a sequengejof observdtions’yielding four more red c ips
a than black chipss, the,posterlor odds.would be :

"
o« 9,k Z 3% =81, - ' (26) @
and the same result would hold whether the difference of four was
e obtained from a sample containing 8 reds and 4 blacks .or one con- S
taining 100 reds and 96 blacks. ) ) "
\ i . i
The exclu51ve dependence of Q. on d follows directly from
the fact that the likelihood ratio for one of the two possible ob-
servatlons is the reciprocal of that for the other observation.
Recall %rom equatlon «(11) that the posterlor odds following a
single observation is simply the prior odds multiplied by-the
. 11ke11hood ratlo associated w1th the observatlon )

Q= 19 ;- (11) y

%

' Recall, teo, however, that the likelihood ratio is conditional on
the observation. Thus, 1if Da is observed,

.
¥

L _[__pwa'“l) (27)

3

whereas, if D, is observed,

B : ,
f J P(Dg|Hy) )
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Ly ,

v
v

Letting L& represent the likelihood ;atio when D, is observed,

and Lg, the likelihood ratio when Dg is obsgrved, we may represent

the effect &F a Specific sequence of observations, say .

D°DD , on th® odds as .» . .

BaoaBa : ;
\, - "4 2' p ' - R . * 'N (29)

Sy :/'La LB ‘n-6

o -

In the symmetrical case, however, ‘ .

’ o
e

so the efféct of the same specific sequence of observations may

(31)

\ _ o4 =2 _ .2 ' W -
Hall & = L, Ly ®n-g = Ly Y6’ :
and in general 1 .
: ¢ . .
. .d - . - .62,
N ) .

*

‘where d is the number of observations of Dy minus the nunber of
-Observations of Dg. But, inasmuch as -neither n nor k is used in
the calculation, we may express £ as a function of d, and write

the expression as in equation (25).
We see then that in the symmetrical case, the odds increase
exponentially with ‘the difference between the number of observa-
tions of the one type and that of the other
obtained. Figure 19 shows how the rate of g
depends on the disparity between the condition
equivalently, on the size of the likelihood ra io.
shows how the size of the difference that is q@quire
a given odds varies with the larger of
of which the likelihood ratio is’comprised.
typically tend to be conservative Bayesians
to revise their'estimates of the likelihoods
of the world suggests that many people would fin
that are shown in these figures to be counterintuitive,

rowth of ‘this function
1 probabilities, or,
Figure 20
d to realize

{y * 1 b

type that have been r ™

the conditional probabilitie I8
The finding that people’*
in their use of data

of theipossible states
d the relationships |
The fact,
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. for example, that with condltlonal probabllltrEs of p(D |H ) = .7
and*p(D_|H,) =,.3, a sample that contalns three more obgervatlons of .

Dgy than%of Dg will favor ‘H, over H2 by a factor of rore than 10 -
may .be surprising; as may the fact“that with a difference of six,
the oddsaregreater than 100 to 1. - ,
Another aspect of the symmetrical case that some regders may
find counterintuitive is the fact that the total effect f a series
of observations on the odds depends only on the difference between
_ the number of: observations of the two types and is independent of
the total number of observatlons made. Both 1ntu;tlon and statis~
‘tical training suggest that one's confidence in any inference that
is to be drawn from the properties of_ a sample should,;ncrease with
the?sample size. The apparent parad;& is resolwed by a recogn;tldn
of the fact, that, exczpt under the hypothesis that each observation
is equally 11ke1y, the absolute difference (though not .he relative
difference) between the frequercies of occurrence of the two types

of observation is expected to increase ‘with sample size. Spec1-
fically, if H: x% R, (14x)% B is true, the difference between the
number of Rs «and BS in a sample of size N should be (2x-1)N, on I
the average. , i ‘
Cons1der, for example, the symmetrlcal hypotheses H 70% R,
30% B and H,: 30% R, 70% B. If H, were true, samples of ten draws
would be expected te produce four more‘reds than blacks on the’
~average; and. the odds follow1ng a ten-draw sample witH four more-
reds than blacks would be ‘about 30 to 1 in favor of Hl Samples of
100 draws, given H should produce 40 more reds than blacks, on *
the average, a,dlﬁ%erence that would. drive the odds to more than :
523 trillion to 1. Thus, the odds do tend to increase with sample
size because.d tends to increase with sample slgi. A sample of
100 draws that produced four more reds than blacks would be quite
.unlikely if H, were tyue, and thus would not constitute strong
evidence in favor of that hypothesis. It would be even léss
likely, . however, if Hjy ‘were true, so it does constitute some
. evidence for Hj, but only as mu h as one would expect to obtain
from a much smdller sample. Table 3 shows the odds favoring H.,
giyen various c0mb1natlons of p( |H ) and p(D|H ) and several
values of d. ,

~ = -

8.6.9 The Several-Hypothesis Case é

So far, the examples that we have considered to~Jdllustrate
the tise of Bayes rule have invodved only two hypothesg¢s. We turn
now to consideration of a few cases in which there are more than
two hypotheses. Figure 21 illustrates a case in which 1 Hj '
and H represent, respectlvely, the hypotheses that the percentage
of red chips in the urn is 90, 70 and 50, and shows how the pos-

- terior probabilities assoc1ated with these hypotheses would change

102

~ . 415
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TABLE,3. ODDS FAVORING H, GIVEN THE INDICATED VALUES OF ‘
| ¢t p(DlH), p(D|H,) AND d. . .
\ ) :~ vl ' ‘ d _
“a. p@@E) p(@|E) L, 1 2 4 8 16 32
C s Bs 1.22 1,280 1.5E0 2.2E0 84,980 2.4E1 +5.8E2
.. .60 .40 1.50 1.5E0 , 2.3E0 '5.1E0 2.6El  6.6E2  4.3E5
* 65" .35 1.85 1.9E0 3.4E0 1.2El1 1.4E2 1.9E4 3.5ES8
.70 .30 2.33 2.3E0 5.4E0 3.0El 8.8E2 7.7E5  6.0ELl
L5 .25 3.00 B8.0E0 9.0EO 8.1E1 66E3 4.3E6  1.9E15
. .80 .20 4.00 4.0E0 1:6El 2.6E2 6.6E4  4.3E9  1.8ELQ
.85 ©15 ' 5.67 5.7E0  3.2El 1.0E3 ¢ 1.1E6 ' 1.1E12 1.3E24
¢ .90 © . .10 9.00 9.0E0 B8.1El 6.6E3, 4.3E7 1.9E15 3.4E30
V95 % .05  19.00 1.9E1 3.6E2 1.3E5 1.7B10 2.9E20 8.3E40
e o o .

t by the number to the right of the E.

All odds values are rounded to two 31gn1f1cant digits and exprcsgkg
in exponentlal form. To obtain the approximate value of @, multiply
the number to the left of the E by ten raised to the power 1ndlcated
For examplie, 4. 3E7 = 4.3 x 107).
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PROBABILITY .
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%1 2 3 4 5 6 7.

O§SERVATI®N NUMBER

. R R B B R '"R°‘8 R R R
~ o . . DATUM .

190 100 67 50 60 67 59 62 67 70

© . PERCENT OF REDSNIN SAMPLE .

1 9* 70% Bed?
. . os¥ L) =
. Hy: 50% Redi¥pg(H;) = .333 . Qi

H.: 90% Red; H

. ") '/ ¢
Figure 21. Changes in posterior probabilities p(Hi|D)
as ?’Eesult of';hé indicated, observations

of Red and Black chips
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as a result of the indicated sequence of observations, giveh pd(H.)
= .333. Figure 22 shows the change in uncertainty concerning 1
which hypothesis is «correct as a result of the same sequence of
observations. ‘ r * ,
When only two hypotheses are dhder consideration, there is ,-/
only one odds ratio (or its reciprocal) that can be expressed.

The nimber of odds ratios that can be expressed grows rapidly,
_howevet, as the number. of hypotheses is increased beyond two. In

general, given N hygotheses; there are(g’ or N(N-1)/2 odds .that

can be expressed considering only pairs of hypotheses. Thus in t%e
three-hypothesis case we might consider Ql 20 Ql 3 .0r Qz 37 each
’ ’ >

of which is shown in-fiqure 23 for our example. .

- It ma§ be of intéreé% to consider lother than pairwise odds \
ratios, in the several-alt@&rnative case,, however. Given five . .
hypotheses, .for example, one might wish o consider the odds of

Hy) relative to the combination of H3 and Hy, which would be ob-
tained by taking the ratic of p(Hj|D) to the sum of ptH;3|D) and
p(H4FD). It may often be of particular ‘interest to consider the
odds -of a given hypothesis, H; relative to all the remaining .
hypotheses in combination. Such an odds would give the ratié of .
the probability that 'Hji- is true to the probability that one of

the remaining hypotheses is true, i.e., that H; is false. We
might refer to such an dﬁ@s as the absolute gdéc of H; and repre-

sent it as follows: -
P(HllD) p(HlID) y . .
9,1 < = ITSpTEL DY : (33)
A i,i 2:-p(Hj]D) © 1-p Hi D)
PRI . :

Figure 24 shows how the indicated ohsefvations affect the ab-
solute odds of each of the hypotheses of ‘our example. -
Expected values of posterioé prgbabilities_and of uncertainty
may be calculated in the same way when thefe dre several hypotheses’
as when there are only two. ; An outcome graph such as those shown
in figured 8 and 9 could be,used to specify all possible posterior
probabilities for a given hypothesis, H., and their probabiLities
of attainment on the assumption that a-specified hypothesis, H. is
true. The weighted sum of the nodes above a particular value
of N-would represent, as before, tHe expected value, after N obser-
vations, of the posterior probability of H., .given that H. is really -

' true. Also as before, computation of expected unqertaint§ involves

summing over both i and, m, for given N. Inasmucii as it is possible
to compute an expectation of p(HiID) given that Hj is true for all

b
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" and j in the case of our exémple (H,: 90% red,.H,: 70% red, 2 50% T

— with either false hypothesis. Counter to intuition, however, this

o

o o . i LA . A - S
“\ . 4 . - 'r \ , . \ N ~ ‘L\ s
. ’ ! g ~, ' €« * 'l ’ £ . ’
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N t

L

. \ PRI -
possible combindtions 6f values of i and j, the number of outeome - ~
graphs that could/be of interest increases with thg square of the N
number of hypotMeses under~consideration. N , »

P ‘ -

(3

’ Table 4 shows the expected values of ‘pﬁ(Hi|D) and U, for & .
N=1,2, ...10, giyen that Hj is true for afl qomhinations"of i ’ .
.red, p,(H;) = .333)._ As might be expected, givefi that H: i rud, | )
E[Q(Hi?D)} increases most rapidly when i = j;.which is tg ay, - -
the expected value of the probability associated with the true

hypothesis grows faster than that of the probability associated

is not a necessary condition. An example will be.considered .
Presently in which the expected probability associated, with a false
hypothesis grows, for a while, at a greater rAte, than does the
expected Qrobability associated with the true hypothesis, even \
when both hypotheses are equally probable a priori. .ith coptinued
sampling, however, the probability of the true hypothesis eventually
gets largexr than that of any of the false hypothesegé Another point 4
of interest ‘concerning table 4 is the fact that eacil of three ,
columns of values occurs twice: the second and fouxrth columns .
are &Qﬁgfical, as are the third and seventh, and the sixth and 9iahth.
This il3ustrates the following relationship: S .

%

.8 ]

"t 1 - - . R )
- E[p(HiID)IHj is true] = E[p(HjID)]Hi is true], (34) ¢

\
~

that is, the expected posterior probability of Hj, given that- H,
_is true, is the same as the expected posterior probability of .

Hy, giyen that ‘Hj is true. This relationship holds in general, and
iindependemtly of the number of hypotheses under consideration.

As in the two-alternative case’, the rate at which the eipected
values of the posterior probabilities approach ane or zero--and,
consequently, the rate at which uncertainty is expected to decrease--
depends on the dispafity- among the hypotheses. The point is illus-
trated in takle 5, which shovs all values of E[p1 (H-ID)IH-’ise’ .
true] for two sets of hypotheses: Hy, H2 and H3:. 0,170 an 56%,
red, and™30, 60 and 30% red. The table also shows the expected -
uncertainty after ten observatioms, E(Ujgq), ‘concerhing which
hypothesis is truye, as a function of which hypothesis actually is
true. - . s n ) . L

-

Table: 6 shows E[plo(HifD)lg' is true] and E(Ulolﬂj is true)”
for ‘two sets of five hypothéses. "This table illustrates some of the
same points as does table 4. The rate at which the probabilities ‘
change from their original values, and the rate at which uncertainty.
decreases depend on thé& disparity amonag the hypotheses. The value :
of E[p(HilQL}Hj is’ true] is always equal to that of E{p(HjID)IHi .
is' true], which is seen by the fact that ‘each array, if considered
as a matrix, is equbfto {Eﬁrtranspose. .

-~
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_/TABLE 4. EXPECTED VALUéS OF POSTERIOR PRQBABILITIES AND
UNCERTAINTY (IN BITS), GIVEN THAT CHIPS ARE SAMPLED

) . Hl:496%
. {No es

uncertainty calculated from the.gxpected posterior probabilities.

expected uncertalnty,

E(U), is pot the same as the

v FROM THE URN FQR WHICHXTHE'INDICATFD HYPOTHESIS W,
IS TRUE. s

' 5@; f’

(W

1] * )
2 - f?ue HypothEZis )
1 Hy L Hy Hy
Hypothesis_for which Expectation Compu%ed
' t . , " ' .

' Hy By . Hy E(U) Hy ., H, ‘Hy ‘E(U) Hy H, H, E(U)

o 1 .397 .333 .270 .1.53 .333 .333 .333 1.49 <270 .333 .397 1.45

5 2 453 ,327 .220 1.44 7,327 .338 .334 1.41 .220 .334 .446 1.35
g 3 .501 .319 .180 '1.35. .319 .347 .334 1.36 .180 .324 .486 1.26°
R4 5427 .310 .149 1.26 .310 .358 .332 1.32 149 .332 ,519 1,19

.§ 5 .577 .300 .123 1.18 .300 .370 .330 1.28 .123 .330 .547 1..12
/. 0 ¢ .607 .291 .102 1.10 +291. .383 .326 1.25 .102 .326~7572 1.06
<8 7 +634 .281 ,084 1.03 .281 .396 ..322 1.22 .084 .322 ,593 1,00
s 5 8 .658. .272 .070 ,0.96 .272  .411 .318 1.19 .070 .318 ,+612 0.95
g 9 .680 .26% .058 0.90 .262 .,425 .312 1,17 .058 .312 ,630 .91

Z 10 .699 .253 ,048 0.85 .253 .440 .307 1.14 .043 .307 .645 0.87

i X N '
red, H2°-70% red, H3: 50% red; pO(Hi) = ,333.
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i, and j%%ND'THE TWO INDICATED HYPOTHESIS SETS. *

Elp,, (8, |D) |H; ¥S TRUE] FOR ALL COMBINATIONS OF .

vy -~

i

' Hy: 90%. Red, Hy: 70%~Red, Hy: 50% Red -
. o3 = =
. R —2- 3 . .
176997 .253 - .048 K ,
i 2 .253 .440 .307
.048 .307 .645 )
E (U) " 0.85" 1.14 0.87
{in bits) v .
Hy: 90% Red, Hy: 60% Red, Hy: 30% Red
j I
1 .824 171
3 3 amn .603 -
' 3 .005 .226
E (U) 0.48 0.86
(in bits) :

In both cases po(Hi) = ,333.
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TABLE 6. E[plé(HilD)lHj IS TRUE] FOR TWO FIVE-HYPOTHESIS SETS.

-~

H,-H.; 90, 80, 70, 60, 50% Red, respectively

1757
’ . .
p J.
. 1 .475 3 .282 148 . 068 *.026
-2,  .282 .271 .216 .146 .085
i 3 .148 .2%§ .239; .221 . .176
4 .068 .14% .221 .273 .292
/5 .026 .085  .176 2292, .421
E(U)  1.64 1.90,  1.96 1.86 . 1.67
(in bits) “
, L |
Hl—HS: 90, 75, 60y 45, 30% Rgd, respectively:
t e o
1 .604 .280 .094 .021 .002
2 .280 ".337, .240 L112 .031
I .094 .240 .300 .240 .126
v 4 .021 112 .240 T .323 . 304
5 ° .002 .031 .126 .304 - .537
E(U) 1.19 1.63 1.75, 1.63 1.30
(in bits) ; ) ‘ ¢

In‘both cases pO(Hi) = ,2.

4
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For the hypothesis set represented by the bottom half of : :
.table 6, it is true that the expectation is maximum when i = 3
‘which is to say that after ten observations the probability of
the true hypothesis is always larger than that of any of the false
ones. Note, however, that this property does not characterizée the
values for the hypothesis set represented by the top half of the
table.” In particular, given this hypothesis set, the expected N
probability of H, is greater than that of H, after ten qbservations,
-even if chips ar@ drawn from an urn for whidh H, is true. Similarly,
E(p,,(H.|D)] is greater 'than E[p o(H D)) when'ﬁ4 is true. With :
éon%?nu d sampling the expected %robébility of the true hypothesis
will continue to grow, finally approaching one, whereas that of
each of the false hypotheses will at some point begin to decrease
and will eventually approach zero. The fact that the expected
value of the probability of a false hypothesis is higher at any
time than that of the true hypothesis may be quite counterintuitive,
however. Figure 25 3hows the way in which the expected values)
of each of the posterior probabilities of the example represented
in the top half of table 6 change over twenty observations, given
that H, is-‘really true. .Note that p(HZID) is initially smaller
than p%H D), but eventually overtakes“and surpasses it; with.,
further %ampling p(H,|D) would continue to increase, whereas
p(H; |D) woyld decreae. *

A o2 . ’ /

A comparison of tables 5 and 6. illustrates several addit&onal
points. Thé hypothesis sets represented in table 5 are contained
within those represented in table 6.. Considering only those
hypotheses that are represented in both tables, it may be seen
that the expected posterior probabilities associated with hypotheses
within the smaller set are invariably larger than those associated
‘with the same hypotheses within the larger set.. It may also; be
seen that the expected amount of uncertainty remaining after ten
observations, given the truth of a specific hypothesig, is _greater
when the hypothesis set contains five alternatives than when it
contains three. Of course, the a priori uncertainty is alsé
gréater in the former case (2.32 bits versus 1.58 bits), so,what
is of greater significance is the fact that'a larger proportion of
the original uncertainty is resolved in the three-alternatiye case.

113 s ‘
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8.6.10 Man as a Bayesian Hypothesis Evaluator

A considerable amount of experimentation has been done to |
determine how well Bayes rule predicts Behavior when an indivi-
dual attempts to process probabilistic information in situations
like those illustrated. For example, given the task of )
deciding, on the ‘basis of a sequence of observations, which of
several hypotheses about the nature of the source of those ob- .
servations is true, how Closély will the)estimates produced by the
human decision)maker correspond to those produced by the application
of Bayes theorem? Obviously, in situations as highly structured as
those described, it would be of little interest to do such experi-
ments with an individual who understood Bayes rule and was permitted
to do the calculations necessary to use it. Such a test would do
nothing but demonstrate one's ability to do.arithmetin. Experi-
ments on Bayesian information processing typically are done with
people who, are not formally aware of Bayds rule, or if they -are,
they are not provided with the time ©o perform the necessary calcu-
lations. It is an interesting question, in this case, whether an
individual's intuitive, or at least informal, notions about evidence
will lead him to adjust his probability estimates in a way similar
to that that would result from an application of Bayes rule. .And

. if "the answer to this question is no, it is of interest to determine

whether his performahce deviates from that of Bayes rule in con--
sistent ways. . :

. Perhaps the question that has been of grgatest interest to,
and received most attention from, experimenters is whether hypotheses
"are more effectively evaluated by having decision makers estimate
posterior probabilities,. p(H|D), directly upon acquiring ‘incoming
data, or to have them eftimate conditional probabilities, p(D[H),
‘and then to use these estimates to update the posterior probabilities
with the use of Bayes rule. Much of the evidence favors the con-
clusion that hypotheses are evaluated more efficiently when the
latter approach is taken, that is, when humans make estimates of
b(P|H) and these estimates are used along with Bayes rule *to cal-
culate estimates of p(H|D). Although the directional effects of
data on posterior probability estimates produced by humans are .

the magnitudes of the effects tend to be smaller in the former case.
In particular, the posterior probabilities tend to obtain more ex- .
treme values and to reach asymptote faster when they are calculated
according to Bayes theorem than when they are estimated directly

by humans (Edwards, Lindman, & Phillips, 1965; Howell & Getty, 1968;
Kaphlan & Newman, 1963; Peterson & DuCharme, 1967; Peterson & Miller,
1965; Peterson, Schneider, & Miller, 1965; Phillips & Edwards, 1966.
It appears, therefore, that humans tend to extract less information
from data than the data contain; they require more evidence than
does & Bayesian process to arrive at a given level of certainty

115 o
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concerning which of ‘the competing hypotheses is true. That is one
of the findings that has led to the characterization of man as a
"conservative" Bayesian. In other words, men tend to underestimate
high posterior probabilities and overestimate low ones. A similar,
but.less pronounced, tendency is found when men estimate odds
rather than posterior probabilities (Phillips“& Edwards, 1966).

]

’

Slovic and Lichtenstein (1971)* refer to the conservatism of .o
man in his use of probabilistic data as the primary finding of
Bayesian research. They review three competing explanations of
the result: (1) misperception, or misunderstanding, by the subject
of the process by which the data are generated; (2) inability of .
*subjects to aggregate, or put together, the impacts of several
dq;a to produce a single response; and (3) an inability, or un~
willingness, to assigmextreme odds, e.g., odds outside the range rl

of 1:10 to 10:1. Whether any of ‘these explanations is adequate
has yet to be determined. ' . 2

e e *

: It was The finding of conservatism that prompted Edwards (1963, '
1965) and his colleagues (Edwaxds, Phillips, Hays, & Goodman, 1968) ;
to experiment with probabilistic information-processing systems
that use experts to judge the- likelihoods of the data reachiny the .
system, given each hypothesis under .consideration, and machines

to calculate posterior probabilities on the basis of these estimates '
.and the data, * : . - .

e

Not all of the evidence ‘that is relevant to the question favors
the conclusion that humans are invariably much better at estimating
p(D|H) than p(H[D). Southard, schum, and Briggs (1964b), for
example, obtained some results that challenge the generality of the
finding that humans tend to underestimate high posterior proba-~ i,
bilities, and overestimate low ones. In particular, given a small
hypothesis set and a frequentistic environment, the estimates of
p(H|D) produced by humans wére glose to, and sometimes more extreme
than, those produced by Bayesian methods. Other studies, several
from the same laboratory, have alse yielded results that question
the validity of the general conclusion that better decisions result
when values'of p(HID) are Yerived by applying Bayes rule to men's
estimates -of p(D|H) (Schum, Goldstein, & Southard, 1366; Howell, 1967;..
Kaplan & Newman, 1966; Southard, Schum, & Briggs, 1964a). Often
even when evidence of conservatism has been ‘found, ‘the degree to
-which the human's estimate .of P(H|D) has differed from an estimate
produced by Bayes rule has been very slight (Peterson & Phillips,

1966; Schum, Southard, & Wombolt, 1569).

These findings do not'permit one to conclude ZLat'estimates

" of p(H|D) are never better when derived from estim@tes of p(D|H) T

than when produced directly, but they do call into question the, .
opposite notion, namely’that of the invariable superiority of the ‘
indirect approach. Moreover, they suggest that the direction that

reseaxch should take id that of determining the ¢onditions under

2 . -
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which each approach is warranted. . Schum, Goldstein, and _
Southard (1966) present some data, for example, that suggest’ that
estimates of p(H|D) that are produced directly are more adversely
affecteéd by degradation in'the fidelity of -the incoming information
than are those that are derived from estimates of'p(DJH).
. r)(ﬂ‘ 4 ¢ 3

Another finding that is relevant to the‘guestion of man's
capabilities as a Bayesian hypothesis evaluator is that evidence
that tends to confirm a favored hypothesis may be given more
crédence than evidence that tends to disconfirm.it (Brpdy, 1965;
Geller & Pitz, 1968; .Pitz, Downing, & Reinhold, 1967; Slovic;
1966). This finding raises the more general question of whether
a vested interest in a decision outcome impairs one%s ability to
eva@luate data objectively.*® If it‘'is the case, as Bacon (1955%) \
long ago suggested, that "what a man_had rather were true, that
he more readily believes," at least-one of Savage's basic
rules for the application of decision theory is gene: ally vio;gﬁed.

The possibility that an individual's.preferences among -
hypotheses may impair his ability to evaluate them in an unbiased
way is closely related to the finding that ;eople tend to be
reluctant to change a decision once it has been made (see Section

*4.3). bt , -

& . b

"Bach of these tendencigs—--conservatism, partiality, and
perseverativeness--has been viewed as a fault, or as_evidence
that ‘man applies data to the evaluation of hypotheses in.an
inefficient way. And, in tﬁéSZontext of most 1l&boratory experi-
ments in which it has been observed, it undoubtedly is. These
tendencies may sometimes be less patently unjustifiable outside
the laboratory, however. An insistence on having cqmpelling
evidence before changing an established opinion may have a
stabilizing efféct that is not altogether bad. Many opinions
zre formed slowly over a period of years, and all the factors .

hat may have contributed to their formation cannot always be
recalled at will. The individual who is qiick to changé an
opinion every timeihe encounters an argument that he cannot
immediately refute’may find himself constantly shifting from one
position to another, always a proponent of the view that he last
heard capably expounded. : . .

Hypothesis evaluation has been studigd more than most aspects
of decision making in the laboratory. This is due in part to the
existence of a simple prescriptive model (Bayes rule) for per-
forming this task, given an appropriately structured problem, and
in part to the fact that it lends itself to laboratory exploration
more readily than some of the other decision-making functions.
Much has been learned about mah's capabilities and limitations
in applying evidence to the resolution of uncertainties about the
various aspects of a decision situation. Much remains to be
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determined, however. Aﬁong several issuQ\\é at deserve further
study are the following: the,possibility at information~display
formats and response technlques may % enge subjective proba-
blllty estimates that are obtained (Damass Goodman, &,Peterson,, .
1972; Herman, Ornstein, & Bahrick, 1964), the appar nt lack of
understanding of how to combine probabilities arising from inde-
pendent sources of information (Fleming, 1970); the possibility
that the weight that one attaches to data may depend on when those
data occur during the hypothesis-evaluation process (Chenzoff,
Crittendon, Flores, Frances, Mackworth, & Tolcott, 1960: Dale,
1968; Peterson & DuCharme, 1967); and, the possibility that one's *
ability to deal with uncertalnty in a conflict situation may de-
pend on:whether one is operatlng with an advantage or a disadvan-
tage with respect to one's. opponent (Sidorsky & Simoneau, 1970). .

.3

8.6.11° Bayes1an Hypothesis Evaluatlon and Training .

One way to interpret some of the results that have been de-
scribed above--for example, the flndlng that men often extract -
less information from data than does a Bayesian aggregator--is
to see them as indications that man's intuitive ndtions concerning
the uses of evidence are not entirely consistent with the Implica-
tions of Bayes rule. Perhaps the thing to do, if this is, the case,
is to disabuse would- be decision makers of those faulty 1ntu1t1ons.

4

Such a task mlght oe approached in two ways. On the one
hand is the cognitive approach of teaching the decision maker about
Bayes rule and its implications. An alternative pOSSlbllltY is
toc expose the décision maker to a variety of sltuations, in whlch
his behavior is evaluated and immediate feedback is provided to”
him concernlng the way in which it departs from optimality,. if it
does. This is the behav1or shaping approach; in essence, it is .
aimed at modifying one's-intuitions without necessarlly providing
an intellectual understanding of how optimality is defined. These
two approaches are not mutually exclusive, of course, and it seems
reasonable to assume that a training program would ,be more likely -
to be effective if it used both. That is to say, the decision
maker should ‘probably be given a good understanding of the notion
of inverse probability and how Bayes rule aggregates data; and he
should also be provided with considerable practice in attempting
to apply the rule in situations €hat are suff1c1ent1y well-struc~
tured that his performance Eabe evaluated and compared to an
obJectlve criterion of optim . The selectlon of training
scenarios should put special emphasls on those s1tuatlons for
which ‘'man's intuitions have béden shown to be most mlsleadlng, e.qd.,
espec1a11y small or especially large levels of a priori uncertainty
and situations in which the direction of evidence changes after
a tentative decision has been reached

4

-
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The results of some studies have indicated that such tra1n1ng
can be at least partially effective. Fleming (1970), for example,
explored the queétlon of the effectiveness of feedback concerning
the outcome of a selected action in improving the decision maker's
performance on subseghent detision tasks. The context of the
 Study was "a simulated tactical decision-making situation. Subjects
were requlred to combine probabilistic data from three 1ndependent
sources in order to arrive at an estimate of the relative likeli-
hood of attack on each of three ships. Initiallyy subjects demon-
strated an” ignoxance, of the proper combining rule (multlpllcatlop)
"and were conservative in est1mat1ng the overall probabilities .of
attack. The investigator concluded that these data~aggregation
and'probability-estimation tasks should be automated. He also
shoWed, however, that, although the subjects were unable to gen-
erate the correct probabllltles on the basis of feedback, the  did
revise their estimates ‘over the course of trials in such.a way
as to correct for conservatlsm (apparently by. addlng a constant).

Other 1nvest1gators have also. shown that experlence in é;tlmating
posterlor probabilities can produce behavior which, if not optimal,
is more neatly so than before the training began (Edwards, 1967;
Hoffman & Peterson, 1972; Southard, Schum, & Bridges, 1964b).

Such studies establish that_ certain aspects of hypothesis evalua- .
tion, in particular posterlor probability estimation, can be im-
proved somewhat as a result of practice. What they do not indicate,
however, is how much can be expected of training or how tge train-
ing should be done in order to obtaln optimal results.

Another issue that relates to ,training 1nvolves the questiqn
of how well people can make the p(DlH) judgments that they are ™"
required to make in some Bayesian systems. It seems to be generally
assuméd that people have less trouble making these judgments than
they do making judgments of p(HlD) In at least one study, how-
ever, thlS was not the case.. Bowen, Feehrer, Nlckerson, Spooner,
and Triggs (1971) encountered a fairly strong resistarce on the
part of experienced military intelligence officers to the idea of
making judgments of the sort: "If it is assumed that 'Attack' is
the enemy commander's course of action,‘what is the probability
that one will observe the traditional’indication YMassing of Tanks'?"
These investigators pointed out that the "generally negative re-

+ action to the p0551b111ty of estlmatlng probabilities of the type
that would be required in a Bayesian system must be tempered by
the fact that the participants were not ‘familiar with the concept
of Bayesian inference and had not been trained to make the required
judgments" (p. 103)% There is, therefore, the question of the
degree to which training in Bayesian analysis would be effective

t in overcoming the relatively strong preferences that somebdec1sion

,makers seem to have for estimating posterior prObabllltleS them- ,

selves. _ J ‘ - \
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Several other questions concerning man's capabilities as they
apply to hypothe51s evaluation have been noted above. These ques-
tions have arisen because of the results of exper%mental studies.
They are questloﬁs which, fon the most part, have not yet been
adequately answered: The queStions, in most cases, suggest some
‘limitation or def1c1ency in man's hypothesis-evaluation skills.
To the extent .that these limitations or deficiencies are demon-
strated by further research to be genuine, they represent challenges
to designers of training programs. If it is the case, for example,
that probability estimations are sen 1t1ve to the format in which
information is displayed or the mode in which tlie response is given,
as sdme studies have 1nd1cated, the question is whether such effects
can be eliminated by training.” If they cannot be, then the need.
to be restrictive with respect to displey formats and responseés |

modes is so much the greater. Or, to take another examplé, if the
way one applies data to the evaluation of a hypothesis is different
for a favored hypothesis than for an unfavored one, as ) ther studies
have suggested, this constitutes another challenge tQ tra‘ning.

Can one be trained to apply data to all possible hypotheses.in an
unbiased way without regard for his preferences? Similar questions
concetnlng the potential effectiveness of training can be raised .
concerning each of §he other limitations and deficiencies that .

have been noted. More research will be required in order to answer

these -questions. .
8.7 The Measurement of 'ective Probability

Throughout this report we have made frequent reference to
subjective probabilities, and it has been tacitly assumed that

© ssuch thlngs can be accurately measured. In fact, how to assure

accuracy in measurements of this quantity has been a questlon of’
fome interest. The problem is a probl®m because of the fact that
the ,probabilities that one obtalns may depend on the way in whigh
_they are obtained; or as Toda (1963) (puts 1t, subjective proba—
bility is es entially defined by the measuring technique that is
used. Toda rfurther suggests several criteria that such a measu-*
ring technlque should satisfy: "First, the logical nature of the
task presented to the subject should be thorodughly understood by
the experimenter, and, hopefully, by an intelligent subject.
Second, the tasgk should involve well-defined payoffs to the subject.
Third, the task should be so structured that it is to the disad-
vantage of a subject to respond in a manner inconsistent with his
expectations. Fourth, since our interest in measuring subjective
probability is related to its use in ,decision theory, the measuresx

ment technique should not be inconsistent with decision theory" (p. 1).

The third of these criteria is perhaps the most subtle, and
has received the greatest amount of attention. Stated in other
terms, the requirement'is that it be in the subject s best interest
to state his probability estlmates honestI& That this can be a
problem may be illustrated by a 51mp1e example of a situation in
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which the requirement is not met. Consider the case of a student

taking a multiple-choice examination. Suppose he has been in-’

structed that in answering wach question he is to assign a number

to each of the alternatives associated’ with that question in such

a way as to reflect his estimation of the probability thats that

alternative is the correct one. When he is very gertain of which

alternative isycorrect, all of the numbers except bne will be zero;

when he is less than 100% certain, however, he would assign non-

zero numbers to more than one alternative. Suppose further that

the score that he is to receive for any given question is some

linear function of the ratio of the number placed on the ‘correct

alternative to the sum of the numbers used on all the alternatives

associated with that question. Given this scoring rule, the student

should not distribute numbers in accordance with his true estima-

tion of the probabilities; instead, he should put zerps on alls

the alternatives except the one that he considers most, likely,

even if he is not very certain that that alternative is indeed the g

correct one. N . ) : . . .
. . -

This is easily seen by consiﬁering a two-alternative case.

Suppose that the student really thinks that the chances are 7.in

10 in favor of A being the ecdrdrect alternative. If he is Honest,

then he-will assign 7/10, of whatever points he is going to use,

on alternative A and 3410 on B. Given our scoring rule, and -assu-

alternatives in the raltio of 7 to 3, then the two values that his
score may assume are 7/10 and 3/10. Moreover, from the student's
point of view, the probability of getting a score of 7/10 is 7/10
(i.e., the probability that A is correct), and the probability of
getting a score of 3/10 is 3410. 'Ifhus2 the subjectively expected )
value of his score is ~(7/10)“ + (3/10)“ = /58. But suppodse that

our student were a gambler, and decided to;put all his’ chances on

the alternative that he considered most likely to be corréct. Now
the two values that his score can assume are 1 'and 0, and the ex-
pected value of his score (assuming that he really believes that

A's chances are 7 in 10, rather than 10 in i0, as his answer would ,—
indicate) is 7/10 x 1 + 3/10 x 0 = .70. Thus, whereas the student
was instructed to assign numbers to alternatives in accordance with
his judgment of the likelihood'of their being correct, the scoring
rule is such that he can expect to obtain a higher score by-ignor-

A 3

ing “the ifistructions than by following them.

A scoring rule that is to satisfy Toda's "honesty is the best
policy" requirement must have what has been referred to as a
"matching property." In formal terms, the matching property may
be stated as follows: Suppose that a subject reports n non-negative
values, " n * S

IETY .eer., L r., > 0, presumably.to reflect the
n’ ;. 4 » ST
subjective probabilities that he associates With alternative
possibilities, Xys X5 ...X . Assume a -discrete subjective

13
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probability distribution, p ...p_, that represents the | C ‘
...x.

subject's true probability estl%ates rggardl n :
Lettlng P, R and X represent, respectively; the %ect rs C v -

(Pll pz’ ooop ), (rl, I'Q, ooor ) anCl (}’1, Xz, ve o X ), v ¥

and W(R, X) the payoff to the subject, gliiven the response vector R .
and’ the probability vector X, the matchi g property is realized by

" any payoff function for whlch the following statement-is true:,

The response wvector, R, maximizes the subjectively expected payoff
E[W(R, x)], if ‘and only if R = kP, k being a scalar constant.

That:is to say, a payoff scheme, or a scoring rule, hags the matching
proeperty if and only if the subject maximizes his subjectlvely
expected payoff when the weights that he assigns to the possibilities
differ from his true subjective probabilities at most by the same
multiplicative factor. g\é ‘that when the relationship R = kP

dees hdld, the calculation* of odds will be the same whether based

om R or on*P. .g& -

‘Subjective-probability measurement procedures and response
scoring techniques that make use of functions that have this matching
prdperty have been referred. to as "admissible probability measures"”
(Shufoxd, Albert, & Massengill, 1966), and "proper scoring" rules
(Winkler & Murphy, 1968). VrSeveral functions with the matching
property have been defined and 1nvest1gated, among them the "loga-
rithmic loss" (Good, 1952; Toda, 196 the "quadratic loss" .
(Br1er,'1950 deFinetti, 1962; Toda, 63; van Naerssen, 1962,
and the "spherical gain" (Toda, 1963; Roby,' 1964, 1965).
8.7.1 -The Logarithmic Loss Function

' ¥

The logarithmic'loss functlon is unique among these functlons
in its exclusive dependence on the vadue of the component of R
that is assigned to the correct alterndtive. It is not affected

by how numbers are disfributed over the other components of R .
The function is glven by . . :
* . . - n .
= k- — . 35
WL‘(_gle.L) k'log r; jﬁl T (35)

!

. -

where k is a positive constant, and (Rlx ) is read "response
vector R, given that x; is the correct aiternatlve. ~The subjec-
t1ve¥y expected ayof f; glven this functiodn,: is

-

. . n )
E(WL) = KZ ] log r, - .E rj (36) -
j=1 ] -

) .

which is maximized when r, = p., . '
. : i i ) . ] "'
) + Max E(WL) - kZpi log p; - 1 (Toda, 1963). -(37)
- N ’ e,
.E -
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Because the maximum subjectively expected value is negative--hence P
its designation as a "loss" function--a constant is often added 1

to the function in order to make the payoff positive.” Also, because. o
the function becomes -wat r. = 0, a truncated version o6f it is N - - .
usually employed in practicé. ) C B ’ . - AN
8.7.2 The Quadratic Loss Function - . ’ . .é*f

- A Y -~

L3

The quadratic loss- function is given by " \

’ . . P .o : -8 .-

. . . 2 2 . » 351 , R

‘v WRIx) = oY o+ (1 - - {38} S
Q=710 g K . x L

»

when the.number of alternatives is

W (R|x;) 2 gy .

- . Q 1 ke’ . ‘ ,

\' " ' \ v ' ) w - - ) ’ N ” - ( ’ :&‘ .‘;
for the two-alternative case. 1This function is negative in the’ . )
two-alternative case (althcugh not necessarily‘when ‘the Number of - .. T
alternatives is greater than .two), Sop—as in the case of the .
logarithmic loss, a'constant is oft€n added to the function to .

+ assure a positive payoff. : N . B . AN

ol éreater than two, sand by . . -
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8.7.3 The Sphefiqgl—Gain Function ] . '
~ The spherical—édin function, which has been elaborated by .

Roby (1965) will be considered in somewhat more detail, because

it has some useful prpperties that the other rules/do not have, ;

and a particularly elegant geometrical representatior as well. oy

The payoff function is given by - - N

W, (R]x;)

—

r

i

-

n
z
j=1

.

5

24 %

,

:f\-

}

-

-

For a proof that Wg is maximized oniy when R = kP see Snuford,
Albert, and Massengill (1966).

used earlier should be sufficient Lo make the assertion plausible.
Consider again the two-alternative éxamination item for which a

. student thinks the chances are 7 in 10 in favor of alternative A.

A reference to the example that. was

Recall that if his score is a linear function of the proportion
of points he assigned to the correct alternative, then nis hest
stratedy is to put zero on every alternative cxcept the one he

considers most likely to be correct; in which case, his axpected-

score would be .,70.

To see that this is not true in.the case of

the spherical gain scoring rule, note that if the student puts
all his stakes, say n points, on alterpative A, his expected sUoIe
will be: ‘

2

Rd

3
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7/10 x (n/vh%+0%) + 3/10 x (0//h2+0%) = .70,

If, howéver,ﬁhe weights the alternatives in accordance with His
judgment of what ‘the chances really are, his expected score will
be: '

7/10 x (7//7°+3%) + 3710 % (3//7%+3%) = .76.

It should be noted that the p%ocedure permits the student to
assign weights to the various alternatives in any way-he sees fit.
There might appear to be some advantage in forcing the numbers _
assigned to the alternatives for a given item to add to one,
inasmuch as they could then be interpreted directly as probability
estimates. The student could be instructed to make his assign-
ments so that they would indeed add to one; however, this is an
unnecessary demand since the score is unaffected by a change of
scale. Moreover, if we wish to treat the assignments’ as proba-
bility estimates, as we shall in what follows, we can easily
normalize them by simply dividing each assigned@ number by the sum
of the fumbers associated ‘with that question. When this is done,
and each of the original numbers is replaced with the resulting
quotient, then each of the resulting numbers will be referred to
as a probability estimate, and the collection of numbers associated
with a given item as a probability vector.

A nice feature of the spherical gain scoring rule is that it

'provides an easy and intuitively meaningful way of distinguishing

between one's confidence in the truth of a particular hypothesis
(or correctness of a test item) and one's general degree of
"resolution" with respect to the overall decision space (or .to the
whole test item).- Roby defined, as a "resolution index,"

~ U s 3 2 i
,xffaﬁf/;/’ b3 (—31—— : (41
]=l Z ri 3
i=] ' . v

where RI represents an individual's confidénce in his answer.
Equation 41 is simply the denominator of equation 40 after the
latter has been normalized. . .o

As in the case of W_, the maximum value of RI is 1. It should
be clear that RI = 1 only if r. = 1 for one value of j add 0 for
all others. That is to say, in keeping with our intuitive notions
about how an index of confidence should behave, it assumes its
maximum value when one has put all his chances on a single alter-

" native. (Nete that whether that alternative is correct or

L
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incorrect is irrelevant to this measure--as it should be.) Unlike .
W_., RI canrot assume the value 0. Its minimum value depends on 'the
number of alternative hypotheses under consideration, or--in the
case of the examination example--the number of candidate answers
associated with a question. It is obtained when _ _. 1

: ok R

‘ J .

for all j; that is, the indeX gets its lowest, value when the same
number is assigned to every alternative. Agal  this is consistent
with our intuitive ideas about confidence. The fact that the
minimum value of the index depends on the numb r of alternatives is
also in keeping with our intuitions about how a measure of confidence
should behave: one should have less confidence. in a guess)among
three equally likely alternatives than in a guess between#two of '

themn.
8.7.4 Implementation of Admissible®*Probability Measu ‘es

One of the practical difficulties in applying scoring rules
with the matching property is that of provzdlng subjects with
intuitively fieaningful information concernlng the implications of
their probability a551gnments vis-a-vis the scores that could re-
sult from them. It is clear that simply providing individuals w1th
formal expressions of the rules will not suffice, at least for-
those who are not mathematically trained. One approach to this
problem’ is that of illustrating the implications of any given rule -
with concrete examplées that make clear the advantages of being
honest. Another, and perhaps préferred approach is.that of pro-
viding the individual with an explicit representatlon of the payoff
that he would receive, given the truth of any specific hypothesis
and the way in Wthh he had distributed probabilities over the
alternatives.

“Organist &nd Shuford de51gned'a papgr and pencil procedure
for prov1d1ng this’ information in the case of the logarithmic
loss function (Baker, 1964; Organist, 1964; Organist & Shuford,
1964). Shuford (1967) and Baker (1968) have also described a
computer—based technique for providing similar-information in a
dynamic way. “In this case the alternatives open to the decision
maker are shown on a computer-driven dlsplay Associated with
each alternative is a line, thte length of which represents the
user's relative confldence that that alternative is the correct
one. The user adjusts ‘the lengths of the lines by means of a
Iight pen. When the length of one line is changed by the user,
the lengths of all the others are adjusted by the computer so as
to constrain the sum of the lengths to add to one at all times.
Also displayed with each line is a number which indicates to the
user what his payoff would be if the alternative associated with
that line were the correct one. The logarithmic loss function -
determined the relationship between the number ;epresenting

.
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potehtial payoffs and the,lenéths of the lines in the applications
of the system that are reported. However, the relationship could
as well have been determined by any other scoring rule of interest.

8.7.5 '?he Efficacy of Admissible Probability Measures .

It would seem clear from the mathematics of the.situation*
that scoring rules that have the matching property should be used
in preference to those that do not. It has not been clearly de-
monstrated empirically, however, that subjects’ tend to behave
dishonestly if such rules are not used, or that their responses
are free of biases if they ,are (Aczel & Pfanzagl, 1966; Jensen &
Peterson, 1973; Samet, 1971; Schum, Goldstein, Howell, & Southard,
1967). Moreover, it is also apparent that many of the probability
estimation situations of interest to investigators of decision
making are situations in which the only scoring rules that are
operative that are imposed by nature. The s.tuations
in which gubjectlive’ probabilities are of greatest practi.al sig-
nificance tend\ Yo be those in which the payoffs are beyond the
experimenter's control. - ’

-

8.7.6 »Sﬁbjective Probabflity Measurement and Training

One question of interest that relates to ‘training research
is whether individuals who have had experience’in making jprobability
judgments in centrolled situatidns with scoring rules that have
the matching property are more effective at judging‘prpbabilities
in real-world situations than those who have had experience at
estimating probabilities.but have not been exposed to matching-
property rules. As has already been noted, some investigators
have advocated the use of experts to estimate conditional proba-
bilities to be used in Bayesian aggregation systems (Bond & Rigney,
1966; Edwards, 1965b). Often, however, it is not possible to
determine how accurately such estimates are maﬁe. If one had an
objective indicant of the probabilities of interest that was inde-
pendent of the experts' judgments, it would not be necessary to
get the judgments. It would be .of interest, however, to determine
" whether the behavior of experts on such tasks would be sensitive
to the type of experience they Had had in estimating probabilities
in controlldd situations, and in particular to their exposure to
admissible or inadmissible prcbability measurement techniques.

Savage (1971) has. suggested the early introduction of admissible
scoring rules to’'children, along with careful training in the
assessment of opinion strendth, could have the salutory effect of
dispelling some of the myths concerning the relationships hetween
certainty, belief and action--e.d., the idea that one should speak
and act as though cg;fain,‘even when one is not, and the notion
that weakly held opinions are worthless--that are fostered by
conventional educational testing methods.
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Scoring rules %ith the matching prope ty answer to one aspect

of the problem of measuring subjective pr babilities, .namely that
of structuring the situation so that honésty in reporting is the
best policy. Therelare other aspectso the problem,. however, that -
are not so readily Solved. Expressioys of certitude have been shown
to vary considerably as a function of’ the wayv in which they are ‘
reported (Samet, 1971) and of the'cthext in which they are obtained
(Nickerson & McGoldrick, 1963). Typically, when subjects are asked

to rate their confidence in their ‘own performance on a perceptual ¢

or cognitive task,,/a positive correlation between these variables
iS’found-—confidepée is highest when performance is best--but the
strength of the relationship is not always great, and the signifi-
cance of -a given confidence gating depends on the situation and the
person making it (Andrews & Ringel, 1964; Nickerson & McGoldrick,-
1965). A fundamental question that is raised by these results is

whether such factors affect certitude itself, or only its expression.

A further_qgestion is whether such variability--whatever its basis--
can be eliminated, or dtrleast signifitantly reduced, as a result
of appropriate training."

»

8.8 The Use of"Unreliable Data

In the foregoing discussions of the use of Bayes rule, it has
been tacitly assumed that the data used inh estimating conditional
or posterior probabilities had been accurately observed and re-
ported. In the chips-in-urn illustrations, for example, it was
assumed ﬁhat:one could examine a chip and determine its color easily,
or that someone else determined the color and repgrted it accurately.
Thus, the decision maker could operate with complete confidence in
the data at his disposal. In the real world of decision making,
things often arxe not this way. Frequently, the observation or the
reporting of events is faulty, and the decision maker is obliged
to take this fact into account when making use of the data that he

' " has obtained.

We naturally assume that data from a trustworthy source will
be more useful to a decision maker than will data from a source
that has not ;nspired confidence in the past. The use of an
explicit reliability rating procedure for intelligence reports by.
NATO army forces (see Section 5.2) is based on such an assumption.
Few attempts have been made, however, either to validate this
assumption or to determine in a quantitative way exactly how con-
fidence ih a data source does affect the way in which the data
from that source are applied to a decision perlem.

. 8.8.1 Prescriptive approaches

_ Ope_class of prescriptive models for taking into account the
rellabl}lty of data has come to be known as "cascaded" or "multi-
stage" inference, suggesting a process of hypothesis evaluation

- that involves more than one.step. Schum and puCharme (1971) point

out that research on cascaded inference has been focused on two

.
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situations: one, in which the observer or reporter of an event ex-~
présses his degree of certainty concerning whether or-not the.event
actually occurred (see, for example, Dodson, 1961; Gettys & Willke,
1959; Steiger & Gettys, 1972), and a second, in which the report of
an event is made without qualification by a source that is known to
be less than perfectly reliable (see, for example, Schum & DuCharme,
1971; Schum, DuCharme, & DePitts, 1973; Snapper & Fryback, 1971).

In both cases, attention has been confined primarily to o
relatively simple situations, e.g., those in which (1) the dec1s%on_
maker's task is to determine which of two hypotheses. Hy or H,, is
true, and observations have only two possible outcomes, D1 an& D2'
and (2) the reliability of a report is independent of the
hypotheses that are being considered, that is to say, event D1
and D, are neither more nor less likely to be confused under

Hl than under Hz.

Dodson (1961) considered the situation in which an observer
is not certain which of two mutually exclusive events, D, and D.,
has occurred, but may be able to make a probability or certitudé
judgment on the question. He suggested that in order to calculate
the posterior probability of a hypothesis in this case, one should
calculate its value, given each of the possible*events, and then
take a weighted sum of these values, the weights being the proba-
bilities that the observer attaches to the event possibilities.
Given only two possible data, the calculation may be represented
as follows:

§(H; [D) = y(D))p(H;ID)) + ¥(D,)p(H, D)) - (42)

where £(H,|D) is the posterior probability of H;, taking the ob-
server‘s lncertainty into account, and ¢(D.) is the probability
that ‘the observer attaches to the possibility that he has observed
event D.. More generally, given n possible évents and the assump-,
ion thdt the observer can attach a probability-to each of them,

the formula might be written as ® N

‘P(Dj)p(Hile). (43)

., n
E(H;[D) = 35

1l
Substituting the Bayesian formula for p(Hile) we havé

P(D;[H;) P (H,)

j) L p(D.|H.)p(H,) (44)
i J i

E(H, D) = Ly (D
j

. Using Dodson's work as a point of departure, Gettys and Willke
(1969) and Schum and puCharme (1971) gave tHe process of dealing
with unreliable data a more explicit two-stage form. The following
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discussion roughly follows Schum and DuCharme. These writers fo-
cused on the case in which a decision maker obtains information -
about data via a 'source that sometimes incorrectly reports what
has aétually occurred. (It is irrelevant to this discussion whether
the source's errors' are assumed to be errors of observation or
errors of report.) For each of the decision problems that weré
analyzed there were two hypotheses, H1 and H,, two possible data

events, D, and D,, and two possible réports Ly the source, d1 and d2.
What one %ants tg-determine is p(Hildj).* .
According to Bayes rule ) \ .
v .
L ! 4,'

; .
The problem then is to determine p(dle.). If the pir.bability of

a datum conditional on a hypothesis, p(ﬁle.), and the probability

of a report, conditional jointly on a hypotﬁesis and a datum
(p(d;|H.0D, ), are known, then the probability of a report, -condi- .
tiondl ®n 5 hypothesis p(d.|H;) can be easily calculated. The
relationship- is given by ]

pldylHy) = ﬁp(nklui)p(dlefln Yo (46)

a graphical representation. of which is shown in figure 26. When,
by assumption, the reliability of a report is independent of the
hypothesis that is being considered,

*

p(dy IHinDk) = p(d; |D,) _ ‘ (47)
so, in effect, . ® .
pld;|H;) =,£p(nklai)p(djlnk). . (48)

Schum and DuCharme refer to

p(d;iH;)

Yermmy (4

*Our notation differs slightly from that used by Schum and DuCharme:
we use D1 and D2 to represent the two possible data events, whereas .

they used D and D, and we_use d, and d, to represent reported data
whereas they used D* and D*.
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Figure 26. Graphical representation of derivation of
d p(d |H )} and adjusted llkellhqod ratlos
for less than compietely rellable data
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* as the "adjusted likelihgod ratio," the likelihood ratio that takes
into account the'degree of reliability of the source. Of course,.
A reduces to the standard likelihood ratio when the source is
assumed to give completely reliable reports, inasmuch as, -in this
case “ : .

Al

. 1 = | X
p(:dlek) - I for j =k ,
_ Odfor j # k.-
The way to deal with the problem of unreliable data then, accor= . =
ding. to Schum and DuCharme is with a two-step process: (1) adjust
the diagnosticity of the data by determining p{(d.|[D.) or A, and
(2) apply the adjusted data to revise the distriButfon of pro-
babilities over the hypotheses via Bayes rule. o

4

. What one must be able to measure ¢r esfimate in order to
use this procedure are p(D|H), the standard condition il probabilities
of Bayes theorem, and p(d|D), the indices of source reliability.
Schum and DuCharme define source reliability in terms of

r = p(dil’Di) i . - ..
the probability that the source will réport a data event accurately.'
They distinguish four different decision "cases" in terms of cer-
tain symmetries and asymmetries involving p(d|H)* and p(d|D), and
they develop the implications of their prescription for dealing

with unreliability for each case. The cases that they distinguish

are: .
' Case I: Symhetric p(D|H): - Symmetric p(d|D)
’P(DilHl) = p(D?lHZ); p(d,|p,) = p(d,|D,).
L3
Case Ii: Asymméetric p{QJH); Symmetric p(d|D)
S Py [Hy) # (Dy[H7); Py |Dy) = p(d,|D,).
R ,
Case III: Symmetric p(D|H): Asymmetric p(d|D)
P(D; [H)) = p(Dy|H,); P(d;]D;) # p(d,y|D,)-
i Case IV: Asymmetric p(DIH); Asymmetric p(d|D) .

p(D|H) # p(D,|Hy): P ]D)) £ p(d,|D,).
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L4

In order to avoid the use of conditional probabilit& nota-

-

For symmetric p(D|H): p

‘For asymmetric p(D|§): Py

?

.

For asymmetric p(d|D): ry
T2

1—r1

, 1--r2

i

n

n

.p(Dj |Hi) ’ j#l .

tion, Schum and DuCharme introduced the following notational
equivalencies: .

P(Di lHi)

~

p(D, [H;)
p(D; |Hy)
P (D, |H,)
p(D, |H,) .

p(d;|Dy) o
P(dj lDi) ,J#L.

p(dy [Dy)
p(d,[D,)
p(d,|D;)"
p(d, [D,) . .

: Letéing the subscripts on A represent symmetry or_asymmetry

p(&llﬁl)
p{dy Hz)

.

132

with respect to p(D|H) and p(d|D), respectively, and m;?ing the
above substitutions into equation (46), as appropriate, we obtain
Schum and DuCharme's expressions for the prescribed use of data
of imperfect, but known, reliability for each of the four cases
All adjusted likelihood ratios represent

~
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" E - — pr+>\l‘p)s(!~-r) .
' Case I: AAS;S . (T-p)T+B(1i=0)

. . plf+(1—ﬁk)(l~r)
Case 1I: a,s = p,r¥ (1-p,NArT)

A

. pEy+(1-p) (1-r,)
Case IIXI: As,a = (1-p)rl+p(l-r2)

‘ or if ;);él and r,#1,
A o= C[I§§]+1 :
, [
where
c= %1 .
1-r2

Case 1IV: A =

.NAVTRAEQUIPCEN 73-C-0128-1

/ \
or, equivalently, .
3* L - p1+k \ \
a,s p2+k \\
'Where . l=r '
= ‘A ]‘-; = —-—"'——2'r_1, r#‘.s -

pir1+(l-pl)(l-r2)'

a,a p2r1+(l-p2) (1"r2)

or if rl#(l~r2) .
pl+b
a,a p2+b

A

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(59)
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. It follows from the definitions of unadjusted and adjusted
likelihood ratio that the latter is always cloder to unity than ,
the former and that the difference between them increases as ’
reliability, r, is decreased from 1.0 to 0.5% {(except when the
data are completely uninformative to begin with and the unadjusted -
ratio is 1). This is consistent with the intuitively compelling
requirement that the less reliable the data, the less diagnostic
impact it should have.** Figure 27 shows how the difference be-~
tween unadjusted and adjusted likelihood ratic grows.as reliability
is decreased, and how the adjusted ratio goes to 1 for r = .5, for
- the case in which both p(D|H) and r are symmetric, i.e., Schum and -
3 .

DuCharme's Casge T.

*

Figure 27 also illustrates the fact that the greater the
diagnostic impact of data (when reported by a completely reliable
source), the greater is the effect of a decrease in reliability of
. a report. This also is an intuitively reasonable relati‘onship: R

) the less informative data are to begin with, the less there is to
lose if they are reported unreliably. What is less intuitively
’ apparent is the fact that even a very small decrease in reliability
may have an extremely large efTec; on likelihood ratio if the un-~
adjusted ratio is very high. Schum and DuCharme (1971) point out,
for example, that in Case I, if a datum with an unadjusted likeli-
hood ratio of 100,000 is.reported by a source with a reliability
of .99, the adjusted ratio is reduced by about four orders of . ;
magnitude to slightly less than .99. .

The results of Schum and DuCharme's analysis bear on issues
relating to the design of information and decision-making systems
and on the role of humans therein. For example, they show that under
Case I conditions, there is a reasohably straightforward tradeoff

. ‘
*Decreasing r below 0.5 has the effect of making the adjusted
.likelihood ratic depart again from unity,- although it still remains
closer to unity than does the unadjusted ratio. In othegsyords,
decreasing the reliability quotient belew 0.5 increases thevdiag-
nosticity of the data, but in sunport of the alternative hypothesis.
This is consistent with the idea that a source that is consisténtly
wrong may be very informative; one need only interpret its report
ds evidence of the oppoéite of what it says. In this discussion,

we will confine our attehtion to the case in which 1.0.> r > 0.5."

**Schum and DuCharme (1971) point out, however, that when the

reliability of report is not independent of which hypothesis-is

being considered, it is possible for A to differ more from 1 than ,
does L; that is to say, it is possible for a decrease in relia- T,
bility, in that case, to inc¢rease the diagnosticity of data.

h Y
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betwgen p(D|H) and p(d|D). And the tradeoff is such that if one
wants to increase the diagnostic impact of 1nformatlon flowing ,
through.a\gystem, and/the costs of 1ncreas1ng the conditionals
p(D|H) and” p(d|D) arel equal, one should increase the smaller of
the two. . . .
' ) / e - . .

, Also, the analyses show that in Cases II and IV A is dependent
upon specific values of p, and p, rather than on ‘their ratio. Tlus,
despite the fact that earlier reSults have suggested that people "
find. it easier to make judgments of 11ke11hood ratios than of \\
cdonditional probabilities, there may be situations in which esti-
mates of the 1atter should be xrequired.

'. . -

8.8.2 sSome Emplrlcal Results

The models ddveloped. by $chum and DuCharme are prescriptive,
providing for optimal adjustment of the likelihood rati. under
conditions, in which data are reported with less® than total, hut
known, rellablllty We now,turn to a consideration of several |,
studies aimed at comparing actual performance against that prescribed
by these models. In the next section we 'then present a Jbrief

account of some descriptive models suggested by these results.

All experlments and models *that w111 be considered jin these sections
‘address situations where input to the decision process 1s an event

or set of events reported.twua single unreliable source.

Snapper and Fryback (1971) present the results of a study in
which tﬁe experlmenter reported to the subject with (symmetric)

_ reliabilities of 1.0, 0.9, and 0.7 the outcomes of events concep-

tually similay to the draws of chips from an urn. The probabilities
of events COndlthDdl on hypotheses, p(Dy IH ), p(D, |H,) and

p(D IH ), p(D ), were, respectively, as ollows. %a)o 33, 0.67
and* 3 %b) 0.80, Q.20 and 0.60, 0.40; (c) 0.90, 0.10 and

0. 45, 0 55 (d) 0.25, 0. 75 “nd 0.75, 0. 25 For condltlons in -
which the experlmenter s rellablllty was equal to unity, only (a)
and (b) were used. Subjects were required to indicate which of

the hypotheses they considered more . likely as a result of the ex-
perimenter’s report, and how much more likely than the alternative
hypothesis they considered it to be. Under conditions of unit
reliability, subjects' estimates corresponded very closely to the
actual likelihdod ratio, but when reliability was less than unity
they represented slight underestimates of the impact of the least |,

"diagnostic reports and overestimates of the impact of the remaining

reports. The extent of this overestimation, moreover, increased
with the magnitude of A.

Johnson (1974; see'also Johnson, Cavanagh, Spooner, & Samet,
1973) ,has utilized a similar task and/response structure to
study the effects of four different variables on cascaded
inference: (1) sample size, the numb r of draws which underﬁay
axcumulatlve outcome report (€.g., "three reds, two blacks");

y
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(2) data generator diagnosticity, the relative composition of red

and black chlps in the urn; (3) sample diagnosticity, the dlagn05~
tic value defined by the difference between total numbers cf red
and of black chips underlying a report; and (4) source reliapilitv,
Posterior-odds estimates that were obtained in this case were found
to be sensitive to different values of sample size, data generator
diagnosticity and source reliability, tending to decrease as the
values of these variables decreased. When the report was known, '
to be perfectly reliable, estimates of posterlor oids were generally
more conservative than those computed from Bayes: theorem; however,
they became progressively less conservative and approached optimal
values at intermediate levels of reliability (,8~.7), and then
became sllghtly excessive at lower levels (. 7-.6).

The diagnosticity and reliability of reported events were
manipulated by Youseff and Peterson (1973) in such.a way that the
value of A in a situation requiring multistage inference was
equal to the value of the standard likelihoad ratio in a single-
stage situation (that is, one with report relrablllty equal to .
unity). Subjects' estimates. tended to be conservative for high
values, both of f and c¢f L, as compared with the Baye51an model,
and tended to be excessive. for low values. The odds estimated
in conditions requiring multlstage inference were consisténtly

' greater than those estimated in single-stage conditions and, as

a result, were excessrve compared to the optimal odds over a
wider range than were 51ngle—stage odds. .

Schun, DuCharme, and DePitts (1971) conducted a study in whlcﬂ
the accuracy of subjects' own.observations of ,the number of Xs
contained in tachistoscopically presented 4 x ‘4 matrices of Xs )
and Os constituted the reliability levels. Subjects were required
to estimate the relative likelihood of tw? possible hypotheses
relating to the data generator after each’'of five stimulus s
pteésentations.” Under conditions in which sufficient time was
available for totally accurate observation of the stimuli, 2 -
mates became increasingly conservative compared to the optimal
model as the diagnosticity of each observed event.and the infe-
rential consistency over a set of five events increased. Under
conditions in which insufficient time was available for accurate
observations, the subjects' estimates were generally close to
optimal or slightly excessive when diagnosticity and .consistency
were high, and became more conservative as either of these para-
meters assumed lower values. In & second phase ‘of this same study,
subjects estlmatedﬁdlrectly the dlagnostlclty of data based on
brief obsfrvations of each slide. Compared with the optimal model,
such estimates become increasingly exge551ve as L increased.

The results of these studies estaﬁllsh that the behavior of

decision makers is indeed influenged by the degree of reliability.
of their data sources. They alsoi emonstrate, however, that

o
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’

performance tends not to.be consistent with that prescribed by

the formally appropriate rule for adjusting data diagnosticity.
Further, performance with unpeliable data often differs in one
important respect from that that has been observed in classical.
Bayesian inference situations 'in which events are observed, or
reportgd,\w;th perfect accuracy. Whereas in the latter case the
decision m§ker's estimates, though revised in the appropriate di-
rectior!, tend to be conservative as compared with Bayes theorem,
his estimates based on less-than-completely-reliable data fre-
quently appear, to be excessive as compared with Schum and Du-
Charme's prescription for optimality. Because the value of A as
defined by the Schum and DuCharme model, in effect, makes an adjust-~
ment in the direction of increasing conservatism (produces a value
closer to unity), the two effects--conservatism vis-a-vis I and
excessiveness vis-a~vis A-~cah offset each other, if conditions

are just right.

'8.8.3 Some Attempts to Develop Descriptive Models of

Cascaded Inference

As we have noted, the model developed by Schum and DuCharme
(1971) for dealing with unreliable data prescribes two steps, or
stages: in the first stage, the nominal didgnosticity of a datum
is discounted to reflect the degree of reliability of the source,
and in the second, the adjusted datum is applied to the hypotheses’
under evaluation in accordance with Bayes rule. If hypotheses
are being evaluated in terms of odds, the process can be repre-
sented as - follows: ‘

pldjd,)

Stage 1: compute A= 5TaTﬁ;T

Stage 2: compute Ql= AQO

LS

where A represents the adjusted likelihood ratio, and Ql and QO
represent the posterior and prior odds, respectively.

. The experimental results that were reviewed briefly above
make it clear that people typically do not behave in accordance
with this prescription. Several investigators have atkempted to
develop models that do describe behavior.

The results obtained by Snapper and Fryback (1971), using
symmetric reliabilities, suggest that in dealing with unreliable
data, decision makers estimate the likelihood ratio as though the
data were completely reliabli, adjust the resulting ratio by mul-
tiplying it by the reliability quotient, and then apply the ad-
justed ratio to the calculat..on of posterior odds. The process
may be represented as follows: .

138
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Stage 1: compute X = rL

il

Stage 2: compute 51 XQO'

7’ ~
2

Snapper and Fryback note that the optimal rule for the f{rst stage
of the process is neither ‘apparent nor intuitive, whereas the rule
that  seemed to describe the behavior of their subjects has some
intuitive appeal and is easily applied. Itsusé leads, however, to
subjective estimates of likelihood ratio that are £&xcessive in
comparison with those prescribed by A. That is to say, leads to
overestimation of the diagnostic impact of a given (unreliable)
datum. ' ‘ ) .

z
(4

The extent to which x,overestimates A--for Schum and Ducharme's
Case I--is illustrated in figures 28 and 29. Figure 28 shows

both A and A as funﬁtions of r for several values of i; figure

29 shows the ratio A/A for the same conditions. The figures show
only cases for which L > 1 and r 2 +5. For L < 1, one obtains the
same reltationships by simply expressing *the likelihood ratio Hz

re H; rather than H; re H,. The case of r <.5 is of little: ‘
interest for the re&son eX¥plained in the first footnote on page 134.
As may be seen from these figures, the,degree to which X over-—
estimates A depends both on L and ¥: for given L .it tgnds to

vary inversely with (given ¥ >.5) and for given r it increases .

sharply with L. : . , -

Gettys, Kelly, and Peterson (1973) have suggested a model’
that is slightly ‘diffevent from that,of Snapper and Fryback. It
assumes that the decision maker estimates posterior’odds on the
assumption that the most likely event is true, andthen adjusts
the odds to refléct the reliability of the data Source. This

v

-

Stage 1: compute Ql = LQO -

]
3]
2
vy

Stagé 2: compute Hl

It is apparsnt that although the process by which the pos-
terior odds are estimated differs in the two cases, the results
are precisely the same. Edwards and Phillips (1966) have presented
evidence, however, suggesting that the way in which people estimate
posterior odds may be better described by (\ )

_ LC
91 = I, QO, (60)

where ¢ varies with L, than by the prescribed Q. = LO.. Funaro
(L974) points out that the models of Snapper an& Frybgck, and of
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former leads to S L
"y ‘ c ’
@ = (r)%e, (61)
and the latter to .
Yo C . -
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P ~ ’ . . + 0
Gettyé, Kelly, and Peterson make different predlctlons if the odds
are calculated according to Phillips and Edwards' expression. The

*

Funaro (1974) has recently attempted to evaluate the pre-
dictive power of Snapper and Fryback's model and of that of Gettys,
Kelly, and‘Peterson, usiny both L and’ L as unadJusted likelihood
ratios in each ¢ase. A symmetric p(D|H)--symmetr1c r task (Schum
and DuCharme, Case I) was used. Subjects were require. td revise
odds' estimates under both single-stage (perfect-source :zliability
assumed) and cascaded-inference conditions. Values of ¢ were
estimated separately for indiyidual subjects from data obtained
in the 51ng1e-stage condltlons. .

‘}’ N

The results were not consistent with any of the models de-
scribed above. They were predicted best by another model that
Funaro proposed. This model, which Funaxo called the empirical
model, assumes that subjects accurately estimate A, and then apply
this estimate to the rev151on of odds with the same degree of ef-
fectiveness, or ineffectiveness, with which they apply L in single-
stage tasks. The conclusion appears to be inconsistent with the
results of Youssef and Peterson (1973) who found that odds's es-
timates made under cascaded conditions were consistently excessive
relative to those made in single-stage tasks, given A = L.

Funaro notes, however, that subjects in his experiment could
have acquired a direct appreciation for A from the proportion

of successes and-failures in a series of reports obtained
from the source during the course of the experiment. {In a sym-
metrical p(D|H) chips—in-urn 'situation, one can unambiguously
define a "success" as the drawing--or in this case reporting--of
a chip of the predominant color.) To the extent that subjects
were able to develop a direct awareness of A, the effect would
have been to eliminate the need for a two-stage process and to
transform the task into the simpler problem of revising odds on
the basis of totally reliable data. The suggestion is an eminently
plausible one and the possibility that this<is in fact the way
unreliable data are often accommodated 1n real-world situations

deserves further study

8.9 Some Comments on Bayesian Hypothesis Evaluation
/.
Inasmuch as the Bayesian approach to hypothesis evaluation
has regeived so much attention by decision theorists and investi-
gators of decision making, it' seems important to consider some of
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the limitations of this approach. To point out limitations is not,
of course, to deny that the approach has merit. Among its advantages
dre the fact that it places minim§;mggmgg4§wggﬂmemgxyabecauseﬁdataA._WMW_»

. can be discarded after being used to update the distribution of

probabilities over hypotheses, the fact, that it provides a means

of aggregating qualitatively different data in a meaningful way and
the fact that the proceduré for applying data to the evaluation of
hypotheses automatically 'weights data in terms of their relevance

to the hypotheses being evaluated. It is precisely because the ap-
proach does work well in some contexts that there is a danger of
uncritically concluding that it is appropriate in all cases. The
following observations are based largely on a discussion by Bowen,
Nickerson, Spooner, and Triggs (1970). : .

First, Bayes rule itself applies to only one of the several . !
aspects of decision making; namely, hypothesis evaluation or, more
Precisely, -the resolution of unceg%ainty concerning tane state of
the world. Whatever its efficgcy For that particular task, it is

.

Second, application of Bayes rule requires that the decision
problem be structured in a very precise way. In particular, it
requires that one's uncertainty about the state of the world be
represented as an exhaustive set of mutually exclusive possibilities.
It does not, however, provide any help in identifying these possi-

7’

bilities. -

i
Third, the requirement for an exhaustive set of mutually ex- -
clusive hypotheses ‘about the state of the world precludes the
possibility of expanding. one's hypothesis space as one goes alon%.
It clearly often is fthe case, in real-life situations, that new
hypotheses are suggested by incoming data. That is to say, obser-
vations may have the effect not only of modifying the credibility
of existing hypotheses, but Jf suggesting new hypotheses as well.
: g j

‘ Fburth, the fact-that use of Bayes rule presupposes a set of
mutudlly exclusive hypotheses has another implication. By defini-~
tion, one and only one of these hypotheses can be true; all the
others must be false. _The probabilities that are associated with
these hypotheses do not, of course, represent their truth values,
but, rather, the decision maker's opinion concerning their truth-
or falsity. It was pointed out in the preceding paragraph #hat no
provision is made for the possibility that the hypothesis set does
not contain the true hypothesis. It is also the case that provision
is not made for the possibility that more than one of the hypo-
theses are true, or that one or.more is partially true.

Fifth, application of Bayes rule is a recursive process: each

time that a new observation is to be used to update a posterior
probability estimate, the posterior probability from the preceding

3
~
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update is used as the prior probability for the current update.
Otriginally, however--before the first observation is made-~-the
prior, probakilities must be estimated, and Bayes rule does not
help in this regard. Investigators are not entirely agreed on how
these prior probabilities should be assigned--or on what they mean.
It is often pointed out that how prior probabilities are assigned
may make little difference (provided values very close to 0 or 1
are not used), because the effect of the initial values will be
largely nulled after several observations have been made. The
problem can be a significant one, however, when hypotheses must be
evaluated on the basis of relatively few data. In such cases, the
initial prior probabilities can have a very.strong effect on the
final posteriors, and thus the way in which they are assigned 'is
of considerable concern. ' J

Sixth, the basic assumptlon that justifies a Baye51an approach
to hypothe51s evaluation is the assumptlon that man is better at
estimating p(D|H) than at estimating p(H|D). We have noted in
preceding sections some experimental evidence that tends to support
this assumption. We have also noted some studies, however, that
have shown that thig result is not always found. Moreover, there
is a question concerning how far the evidence that does support
this assumption can be pushed. The only way thadt one can determine
how accurately a man can estimate p(D|H) is to observe his perfor-
mance in experimeftal situations in which p(D|R) is objectlgely .
defined or can be determined empirically. But, typically, in real-
life situations of greatest interest, p(DIH) is not known, and
cannot be determined empirically--which is why is must be
defined or can be determined emp1r1cally~-wh1ch is why it must be
estimated. The question arises then, if it is not known, how can
we be sure that one's estimate of it is accurate? And the answer
is that we cannot. How much confidence one should have in the. ¥on-
clusion that man is better at estimating p(DlH) than at estimating
p(HID) in real-world situations depends in 1arge part on the extent
to which one is willing to assume that what is known about perfor-
mance in laboratory situations in which p(D|H) usually has a
straightforward relative~frequency interpretation.is generalizable
to real-world situations in which it does not.

Seventh, Bayes rule does not provide the decision maker w;th
a criterion concerning when to stop processing incoming data and
to make a decision. Inasmuch as data gathering can be costly in
terms of both time and money, it is -essential that any completely
adequate prescriptive model of decision making have an explicit
stopping rule to indicate when hypothesis evaluation should be ter-
minated anq a decision made.

&
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We emphasize that these comments deal with limitations of
Bayes rule. One might argue that the observations are unnecessary,
on the grounds that proponents of Bayesian diagnosis have never
claimed that these limitations do not exist. It seems to us °
important to make these limitations explicit, however, because
they help to place the’notion of Bayesian decision making in
perspectivé. The idea of obtaining estimates of p(D|H)vor of
likelihood ratios from humans and u$ing “these estimates .o update
posterior probability distributions “in accordance with Bayes theorem
is undogbtedly a reasonable approach to evaluation in some situa-
tions. It is not always appropriate or practicable, however, as
sdmefBayesians have been careful to point out. Edwards (1967) de-
scribes the situations for which the approach is most appropriate
as those that have one or more of the following three characteris-
tics: "the input information is.fallible, or the relwtion of input
information to output diagnostic cateégories is ambiguous or uncertain,
?r the output is required to be-in explicitly probabilistic form"
p. 71). ' ’

~~——
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SECTION IX
PREFERENCE SPECIFICATION

It is generally assumed that a decisian maker is not indif-

As weé have already noted, in some formal representations of de-
cision situations, the decision maker's perferences with respect

to the possible qutcomes are madé explicit in a payoff matrix.

The contents of a cell of such a matrix is the worth to the de-
cision maker of the choice of a specific action~alternative, given
the truth of a specific hypothesis concerning the state of the
world. The entire matrix presumably represents the situation <
fully: it identifies all the decision maker's actien alternatives
as well as all the possible states of the world, afid shows for each
alternative-state combina;ion its worth to the decision maker.

9.1 A Difficult and Pecitliarly Human Task .

- The problem is how to determihe these worths. There are two
Observations to make in this regard. . The first is that this task,
more than any other associated with decision making, is peculiarly
human. One would expect that many of the decision~related tasks
that now must be performed by humans will in time be performed by
computers. However, the specification of preferences for decision

' outcomes ihvolves value judgments. To say that one decision out-
come is better thdn, worth more than, or preferred to, another is
to say that it represents a greater good within the context of the .
decision maker's own value system. Such judgments must come, at
least indirectly, from man.

The second observation is that to specify one's preferences
objectively is not necessarily an easy thing for an individual to
# .do. Even when all of the action alternatives have been made ex-

plicit and the outcome of each possibility is known--that is, even
when uncertainty is minimal--the decision task may still‘be a very
difficult one. This is particularly true when the worths of tgg
possible decision outcomés are intangible or depend on many facdtors.
Consider, for example, the problem of choosing a house for purchase.
-Even assuming thdt one confines his attention td a few houses that
he knows are available, and that he has all the information that

he wants about each one, he has the problem of somehow deriving
from many factors (purchase price, number of rooms, design, general
condition, extras--porch, garage, storage space, extra baths,
fireplace--lot location and layout, distance from work, tax rate

in town, services and public facilities in town) a common figure

of merit in terms of which one house can be judged to be more or
less preferred than another.

In military situations, the specification of preferences may
be especially difficult. It may often happen that none‘of the
possible decision outcomes is intrinsically desirable, and the
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decision maker may find himself faced with the necessity of attempt-
ing to choose the least undesirable one. The problem is aggravated
by the fact that the assignment of preferences may necessitate the
weighting of time, materiel, territory and human lives. One balks
~at the idea of trying to specify the valuesof human lives and that
of a piece of territory in terms of a common metric, but this is
what is done, at least implicitly, when a decision is made to at-
tempt to gain a territorial objective when it is known that the
endeavor is likely to result in the loss of a certain number of men.
Or, consider the private transportation system in the United States.
The builders, users and requlators of automobiles and highways have
implicitly expressed a preference for a system that provides certain
capabilities and convenjiences at a cost of approximately 60,000
traffic fatalities per{§bar. One suspects that the exercise of
making explicit how the various factors:that contribute to human
preferences are traded off against each other in specific decision
sitbhations would often be revéaling to decision maker.: themselves,
-who sometimes may have little conscious appreciation, v..thout going
through such an exercise, of how such factors do combine to deter-
mine their own preferences.

Among the eight aspects of decision making in terms of which
this report is organized, preference specification is one of the
two (the other is hypothesis evaluation) that have received the
greatest amount of attention from,philosophers and researchers
alike. In the case of decision making under certainty, the study
of preferences and the study of choice behavior amount to the same
thing. Presumably one chooses what one prefers--and vice versa--
if he can know for certain what the decision outcome will be.

9.2 some Early Prescriptions for Choice

~

In order to make choices amqng alternatives that differ with -
respect to several incommensurate variables, jone must, at least
implicitly, dexive from the several variables involved a single
figure of merit with respect to which the alternatives can be

compared. That is to say, one must be able to decide that in some

global sense Alternative A is preferred to Alternative B. How this_

is—generally done is not known; how it should be done is a matter
of some dispute. >Undoubted1y, individual methods for dealing with
the problem range’from highly intuitive impressionistic approaches
(I just consider all “the factors and decide that I like this com-
bination better than that) to formal quantitative algorithms.,

;Benjamin Franklin was familiar with the problem, and his way
of dealing with it is at least of historical interest: "I cannot,,
for want-of sufficient premises, advise you what to determine, but
if you please I will tell you how... My way 1s to divide half a
sheet of paper by a line into two columns; writing over the one Pro,
and over the other Con. Then, during three or four days' considera-
tion, I put down under the different heads short hints of the
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different motives, that at different times occur to me for or
against the measure. When I have thus got them all together in

one view, I endeavor to estimate thexiespectlve weights... [to] find,
at length where the balance lies... nd, though the weight of
reasons cannot be taken with the precision of algebraic quantities,
yet, when eacly is thus considered, separately and comparatively,
and the whole matter lies before me, I think I can judge better,
and am less liable to make a rash step; and in fact I have found
great advantage for this kind of equation, in what may be called
moral or prudential algebra."*

-

A more formal attempt to procedurize choice behavior was made
at about the same time by the British philosopher and social re-
former, Jeremy Bentham. Starting with the basgic premise that
choices should be dictated by the extent to which their outcomes
augment ox diminish the happiness of the party or parties whose
interest is in question (the "principle of utility"), Bentham
attempted to define a quasi~quantitative procedure--a "hedonistic
calculus"--the use of which would assure that the choices that are
mmade would be consistent with this principle:

"To take an exact account then of the general tendency
of any act by which the interests of a community are affected
proceed as follows. Begin with any one person of those whose
interests seem most 1mmedlately to be affected by 1t, and
take an account: . .

(1) Of the value of each distinguishable pleasure
which appears to be produced by 1t in the first instance.
\d{\ _——

p (2) Of the  value of each pain which appears to be pro-
- dliced by it in the flrst 1nstance. X

¢ (3) Of the value of each pleasure which appears to be
produced by it after the first. This constitutes the fecundit

of the fi:st pleasure and the impurity of, the first pain.

(4) Of the value of each paln which appears to be pro-
duced by it after the first. This constitutes the fecundity
of the first pain, and the impurity of the first pleacurea

\
(5) Sum . up all the values of all the gleasurea on the one
side, and those of all the pains on,the other. The balance,
if it be on the side of pleasure, will blve the good tendency

-

——e

*This account of Franklin's approach to decision maklng was quoted .
by Dawes and Corrigan (1974), who found it in.a letter from Franklin
to his friend Joseph Priestly, dated September 19, 1772.
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of the act upon the whole, 'with respect to the interests of
that individual person; if on the side of pain, the bad
tendency of it upon the whole. ' -
b
(6) Take an account of the number of persons whose

interests appear to be concerned, and ,repéat the above pro-
cess with respect to each. Sum up the numbers expressive
of the degrees of good tendency which the act has, with re-
spect to each individual in regard to whom the tendency of
it is good upon the whole; do this again with respect to each
individual in regard to whom the tendency of it is bad upon .
the whole. Take the balance; which, if on the side of ///F

leasure, will give the general good tendency of the.act,
with respect to the total number or community of individuals
concerned; if on the side .of pain, the general evil tendency,
with respect to the same community" (Bentham, 1939, p. 804).

The value of a pleasure or pain, Bentham assumed, wot1ld depend
on four factors: . ’
" (1) Its intensity. '
(2) Its duration.
(3) Its certainty or uncertainty.
(4) Its propinquity or remoteness."

. Bentham did not expect that the plocedure he defined would be
"strictly pursued previously to every moral judgment, or to every
legislative or judicial operation"; but he did contend that it
represented- a 'model of how judgments should be made, and a stan-
dard against which whdtever procedures are used might be evaluated.

Bentham's approach to choice behavior can be, and has been,:
criticized on philosophical grounds. The principle of "the greatest
Pleasure for the greatest number" is itself open to criticism,
because it appears to place no limits on the extent to which the
many can prosper ar the expense of the few, provided only that the
"battom line" of the calculation of the net happiness is increased
in the process. For our purposes, the important point is the fact

- that Bentham attempted to réduce the process of making choices.to
a stepwise procedure. iy

9.3 simple Models of Wotrth Composition

Although he used language that suggested that he believed
that worth could be quantified and his procedure formalized as o
a gort of calculus for computing the’worth of any given decision
outcome, Bentham did not himself express his notions in mathe-
matical form. His conceptualization of the choice process, how-
~. . ever, is clearly suggestive of a linear model which expresses the
‘a - \worth of a decision alternative as a function of the sum of the
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values of the various components of pleasure (or pain) that that
alternative represents, weighted by the number of people that
would be affected by the decision outcome. The choice would, of
course, be the alternative with the greatest calculated worth.
Implicit in Benthafi's prescxiption is the assumption that )
the total worth of a detision outeome is a monotonically increasing
function of each of the factors which contribute. to the worth, and
that the monotone character of this relationship for any given
factor is independent of the values of the other factors. Yntema
and Torgerson (1961) have suggested that there are probably many
practical choice situations in which this is a“valid assumption.
For example, the worth of a vocational choice probably increases
monotonically with the attractiveness to the individual 6f the - .
work involved, whatever the status of the other factors to be con-:
sidered. Yntema and Torgerson present some data that suggest
that when this is.the case, the decision maker's choice behavior
can often be matched, if not improved upon, by a selectiocn algo-
rithm that takes account only of how worth relates to each of the

- factors individually and ignores the ways in which the fdctors

interact. To develop such an algorithm it is necessary only to
determine how worth varies with the individual factors. Several
ways of making, this determination ‘are suggested. 2n impartant
point for our-purposes is that the relationsHips of interest may

be inferred from the behavior of the decision maker when confronted
with 'the task of choosing between pairs &f hypothetigal alternatives
selected to represent specific (in particular, extreme) combina-
tions of \the relevant factors.

EN
~ £

Dawes and Corrigan (1974) have recently taxen an even strongef
positidn with respect to theé%practicality and the validity of simple
linear decision algorithms in‘a wide variety of choice situations.
They have shown that if, each of the factors contributing to the
wprth of a decision outcome has a conditionally monotone* relation-
ship, to that worth, and the measurement of these factors is subject
to error, then not only are decisions that are based on weighted
1ine§r combinations of the factors 1ikely to be better than those
made by human decision makers, but in some cases this is true even

-if the weights are equal¥oer randomly chosen. Data from several

studies of judgmental and choice behavior are reviewed in support
of this conclusion. Of the situations meviewed by Dawes and Cor-
rigan, the only ones in which a linear weighting algorithm did
more poorly than a human decision maker were those in which the
human's judgment: was based on information not taken into account
by the algorithm. ‘

*A conditionally mionotone relationship is one that is monotone, or
can be made monotone by a scaling transformation.

T . d
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9.4 The Problem of Identlfywng Worth Component'

4 ! ‘ ’
The implication is that if one can identify the factors in

terms of which worth is determined, one frequently can 1mprove

significantly upon ‘human judgmen by appllcatlon of a simple linear

‘ model. /The problem, according to this view, .is not in the develop-

ment of arcane mathematical decision algorithms, or even ‘n the
application of complex weighting functions to,a linear comblnatlon
rule, but that of identifying the dimensions of the choice space
and of determining how these dimensions relate, individually, to
the worth of the possible decision outcomes.
2 .

The danger in thlS line of reasoning is that of assuming that

identification of the factors in terms of which judgments are, or

. ’

.should be, made is a trivial task. As we have already suggested,

such an assumption is almost certainly false for many, if net most,
real-life decision situations. Most people can proba. ly recall
choices that they have made which they realize in retro-~pect were
made without consideration of some factor that they woula have
recognized as relevant and important if only they had thought to
think of it. An individual buys a house, for. example, and realizes
too late that he failed to determine whether the cellar leaks.

Had the question occurred to shim, he would have recognized it n
only as a relevant consideration but as one that would have figured
heavily in his assessmént of the relative worths of candidate pur-
chases. A potentially important aid to a decision maker would be

a procedure that would facilitate the identification of the dimen-
sions of his choice space. Having determined the factors upon
which the relevant worths of possible choices depend, and how. these
factors relate functionally to worth, a simple linear model of the
type espoused by ¥Yntema and Torgerson might then.be used té infer
the decisionNmaker's behavior 'in a choice situation. The experi-
mental results reviewed by Dawes and Corrigan suggest that such a
model might even be used in place of the decision maker to effect
the choike. . ) . : . )

\

9.5 Studies of Choiée Behavior

’

In using the ch01ces of a human as the standard against which
to compare the performance of a model, one is assuming that humans
behave in at least a consistent, if not an optimal, fashion. OnIy
recently has the assumption that decision makers are able to maKe
consistent choices amo g alternatives that differ on many dkpen—
sions without recourse to formal analytlcal procedures been tested.

Slov1c and Lichtenstein (1971) have reviewed\sevqral'approaches‘

that have been taken to the problem of describing how people do in
fact make such choices. They divide these approaches into two.
major categories: those that make use of correlational or regres-
51on ana1y61s or the closely r?lated ana1y51s of variance, 1?d those

¥
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that make use of Bayes theorem. Among the nonBayesian approaches—..
that are reviewed are the correlation model of Hoffman (1960; 1968},
the lens model of Brunswik (1952, 1956), the integration theory of
Anderson (1968, 1969), and the theory of ccnjoint measurement of
Luce and Tukey (1964) and Krantz and Tversky (1971). The objective
in all of this work is to discover and describe how a human "judge"
combines information concerning different attributes of a choice

- alternative to arrive at a judgment of its overall desirability
relative to the other alternatives among which a choice is to be
made.

The results of many of the studies reviewed by Slovic and
Lichtenstein (1971) suggest that, although people can make "wholistic
evaluations" (Fischer, 1972), they tend to focus their considera-
tions on less: than the full set of dimensions, and, as a conse-
quence, frequently ignore potentially important information. Also,
there appears to be a degree of random errdr in the evaluation
process which increases as the decision maker attempts to consider
increasing numbers of relevant attributes (Hayes, 1964; Kanarick,
Huntington, & Petersen, 1969; Rigney & Debow, 1966) . -

. On the Wasis of results obtained in his study of job-seeking
behavior, Soelberg (1967) challenged the idea that people generally
do make choices in accordance wijth worth-calculation models in .
real-world situations. In his words, "The decision maker believes
a priori that he will make his decision by weighting all relevant
factors with respect to each alternative, and then 'add up num-
bers' in order to identify the best one. 1In fact, he does not
generally do this, and if he does,-it is done after he has made
an 'implicit' selection’ among alternatives” (p. 28}  soelberg
draws a number of other conclusions from his study which,' in the
aggregate, seem to suggest that much of the effort that goes into
decision making is calculated to rationalize--rather-than.arrive.
at--a choice. 1It's as though the decision maker were in cahoots
with himself to deceive himself into perceiving his choices as

well-founded when in fact the real basis for them may be unknown.
) -

=

9.6 Procedures for Specifying Worth ‘

Obviously people can--people do--make choices among multi-
dimensional stimuli; the results mentioned above suggest, however,
that our ability to handle many dimensions simultaneously in a
consistent and reliable way without the aid of a formal procedure
is somewhat limited. < Given that the problem seems to be one Of
exceeding man's ability to process information, it is not sur-
prising that some of the solutions that have been proposed take
the form of ways of restructuring unnianageable problems S0 as to
make them into problems of simpler proportions. Such procedures
are sometimes referred to as decomposition procedures because
they divide the task into subtasks that presumably are within the ’
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to the subtasks\are then used as a basis for inducing a solution to
the original prqblem.

decisioﬁf;;;;r s information—processing capabilities. fThe solutions

These pr res typically involve a number of steps (e.q.,
Fischer, 1972) guch as specifying the alternatives to be compared,
specifying the dimensions or factors with respect to which the
alternatives are to be compared, assessing the worth of each alter-
native with respect to each dimension, -and combining the results of
the dimension-by-dimension assessments into some overall indicant
of worth for each alternative. The first of these steps has not
been a focus of attention in studies of preference specification;
the alternatives usually are provided. 1In the real world, identi-
fying these alternatives can be a nontrivial problem, but it is -
perhaps better thought of as a problem of information gathering
than one of specifying preferences. The second step 1lso has(pot
received much research attention.

]
\ .

A great deal of attention has been given to the third& of the
steps mentioned by Fischer (e.gq., Becker & McClintock, 1967; Coombs,
1367; Fischer & Peterson, 1972; Fishburn, 1967; Hammond, 1967; Huber,
Sahney, & Ferd, 1969; Luce & Tukey, 1964;/MacCrimmon, 1968; Miller,
Kaplan, & Edwards, 1967; Raiffa, 1968). HNumerous techniques have
beén proposed and studied for assessing the worths of alternatives
with respect to individual dimensions or factors. These techniques
range from simple, qualitative pair-comparison procedures that
yield ordinally scaled preferences to relatively complex methods
for deriving ratio scales for interdependent factors.

MacCrimmon (1968) has reviewed several prescriptive techniques
for choosing among alternatives that differ with -respect to multiple .
factors. The fechniques that he considers are discussed under the
following rubrics: (1) dominance, (2) satisficing, (3) maximin, (4)
maximax, (5) lexicography, (6) additive weighting, (%) effectiveness
index, (8) utility theory, (9) tradeoffs, and (10) nonmetric scaling.
In each case, he describes the necgssary assumptions and information
requirements, and presents a formal mathematical representation .of
the optimal (or best) choice defined by the technique. Congidera~
tion is also given to the possibility of using several metheds, in
combination on a given choice problem, as suggested earlier by
Pinkel (1967).

A more recent review of worth-~assessment techniques has been
prepared by Kneppreth, Gustafson, Leifer, and Johnson (1974), 1In
this review, methods are classified in terms of five properties:.

(1) whether probabilities are used, (2) what kind of judgment is
requirsd (e.g., simple preference, numerical assignment), (3) num-
ber of factors involved in a single judgment, (4) whether appropriate
for continuous or discrete factors,,and (5) .nature of output. pro-
duced (e.g., ranking of worth, quantitative indigant. of worth). &

-
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. Especially helpful features of this review are explicit discussions
! of what the authors see as the primary advantages and disadvantages
associated with éach of the methods described, and the provision of
* references for the theoretical bases of these techniques. Of par-
ticular relevance to this report is the stress that Kreppreth, et al.
put on the need for training before some of these techniques can be
used effectiwvely.

. The - fourth step menticned by Fischer--that of combining the
results of factor-by-factor assgssments into overall worth esti-
mates--has proven not to be a difficult one in many practical situa- -
tions because of the fact that a simple ‘linear combination rule
“seems to work remarkably well in so many cases (see Section 9.3).

Prescriptive techniques for preference specification, or worth

assessment, are of considerable interest because of the potential
that they represent for procedurizing--and thereby, hopcfully, .
simplifying-~the solutions for complex choice pxoblems. A less
tangible but perhaps no less important benefit that can result from
attempts to apply such presecriptive techniques in real-world situa-
tions stems from the fact that these procedures force the decision
maker to be explicit concerning his own value system as it relates

. to the problem at hand. This fact has obvious ramifications vis-a-
vis the problem of evaluating the performance of decision makers
who make choices that affect the lives of others; one clearly wants .
to*know, in such cases, not only what the choices are, but the
bases on which they are made. Being forced to be explicit concern-
ing the factors that determine his choice @nd the relative importance
that he attaches to each of “them may be a€’ revealing to the de-
cision maker himself as to an independent observer.

£

9.7 pPreferences among Gambles

§

So far, we have considered ohly the problem of specifying
preferences among stimuli that differ perhaps in many, but in known,
" ways. In this case the decision maker knows what the effect of any
choice that he may make will be. Another type of preference speci-
fication that has been studied involves preferences among gambles,
or between gambles and "sure things." The general procedure in
such studies is to present the decision maker with a choice, either
between two wagers, or, more typically, between a wager and a sure
thing, and then to adjust either the possible outcomes of the
wager (s) or the probabilities of these outcomes until the decision
maker is indifferent to the alternatives from which he must choose.
By repeating this process a number of times with different wagers,
' oné can generate the kind of data from which worth functions can
be inferred. ‘
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Typically, ‘the wagers that have been used ih these studies
are such that one of the possible outcomes_is more desirable than

the other, and the probability of the less desirable outcome is 4

unity minus the probability of the more desirable one. Slovic,
(1967, 1969), howeyer, has studied preference behavior in so-called
duplex gambles ir: which the probabilities of "winning" or "lésing"
can be varied independently of respective payoffs. In.this situa-
tion, the decision maker can win and not lose, lose and not win,
win and lose, or neither win nor lose. As Slovic points out, "It
can be argued that this type of gamble is as faithful an abstrac-
tion of peal-life decision situations as its more commonly studied
counterpart in which the probability of losing is equal to unity
minus the probability of winning (py, = 1-P,,). For example, the
choice of a particular job might of%er somd probability (py) of a
promotion and some probability (p,) of a transfer to an ungesirable
location, and it is possiblé that one of these event~. both of s
them, or rneither of them, will occur" (p. 223). . ;

In the first of Slovic's studies, two different methods of
indicating the attractiveness/unattractiveness of a' wager werq9
explored. One method required the subjects to rate strength of
preference directly on a scale ranging from +5 (strong preference
for playing) to -5 (strong preference for not playing). The second
required the subject toequate the attractiveness of this gamble
with an amount of'moqey such that he would be indifferent to play-
ing the gamble or receiving the stated amount. One third of the
subjects assigned to the second method were regquired to state the
largest amount they would be willing to pay the experimenter in )
order to play each bet, and, for an undesirable bet, the smallest
amount the experimenter would' have to pay them:before they would
play it. Another third of the subjects were given ownership of a
ticket for each gamble and required to state the least- amount of
money for_which they would sell the ticket. The subjects in the
final third were required to state a fair price for a given gamble
in the absence of information as to whether they or the experimenter

owned the right to play it.

Slovic demonstrated that subjects did not weight the risk
dimensions in the same way when bidding as when rating. Variation
in the ratings was influenced primarily by variation in-probability
of winning (p,)s while variation in bidding was influenced primarily

-by variation ¥n probability of losing (p.). Also, payoff dimen-

sions-~dollars won ($W) and dollars lost”(SL) produced more effect
on bids than on ratings, while probability dimensions produced

more effect on ratings than on bids. Finally, it was found that
when a person in the bidding group considered a bet to be attractive,
his judgment of its degree of attractiveness was determined pri-
marily by the amount ({$W); when he disliked a bet, the primary

‘determinant of the degree of dislike was (S$L). This finding has

particularly important methodological implications, because, as
Slovic points out, no existing prescriptive theory of decision

-
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-making would ‘consider that response mode should be a determinant of
the way in which decision makers utilize probabilities and payoffs
in making decisions under risk, and he argues that behavior in such
circumstances may be strongly influenced by information—processing
considerations.

*

9.8' Preference Specification and Training

Yon first thought, preference specification-~among all the
tasks associated with decis$on making--might’appear to pose the
least challenge for training research. One might. assume
that if there is an aspect of decision making that comes
naturally, it should be that of sayihg what one's preferences are.
Things clearly are not that simple, however, and the evidence is
abundant that people do not always know what'their'preferences are,
or at least how'to specify them.in an unambiguo%s and .consistent
way. - : .

The research reviewed in this report suggests at least four
problems that relate to training and preference specification.
First is the question of how to train people to make judaments of
subjective probability that are independent of the worths of pos-
sible decision outcomes, as the use of subjective expected utility .
models requires (see Section 2.29. A second and closely related :
question is that of how to train people to make worth judgments
that are invariant across different measuring techniques.

The development of decomposition methods has been motivated
by an interest in simplifying the process of making preferences,
and their bases, explicit. As Kneppreth, Gustafson, Leifer, and
Johnson (1974) have pointed out, however, some of these procedures,
particularly those that yield the most quantitative results, are
workable only with relaEIVély sophisticated users. A third challenge
for training research, therefore, is to develop methods for pro-~
viding the necessary training in cost-effective ways.

A fourth problem relates to two aspects of decision making,
preference specification and information gathering. 1In laboratory
studies of choice, the dimensions in terms of which preferences
are to be specified typically are given. In real-world situations,
however, the dimensions of choice are often determined by the
decision maker himself; in other words, the factors that are con-
sidered in attempting-to assess the relative merits of the choice
alternatives are those that the decision maker happens to think
about, Surprisingly little attention has been given by researchers
to the question of how capable people are at enumerating on demand
the factors that. they would consider important in any particular
choice situation. It is not even clear whether, when provided with ,
a list of such factors, one can say with confidence whether the ‘
list is complete. Much more research is needed, both to determine
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human limitations and performance characteristics in this regard,
and to explore how training might improve one's ability to make
one's worth space explicit vis-a-vis specific.choice proBlems.
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' SECTION X _ .
ACTION SELECTION , -
M LN

*

Selection, or choice, is often thought of as representing the .
essence of decision making. Aand obviously, if one has no options,
then he has no decisions to make. Paradoxically, however, the act
of choosing per se ‘'is the least interesting of the aspects of
decision making that are considered in this report. This is be-
.cause of the fact that when the other aspects have been realized--
when information has been obtained, the decision space structured,
hypotheses generated and evaluated, and preferences stated--the
choice may, in effect, have been.determined. This is, of course,
as it should be. One's goal in all of these activities is to remove, .
insofar as possible, doubt ‘about what the chojice should be.

In spite of his best efforts to reduce, uncertainty to a minimum,
and thereby to discover what his decision ought to be, “owever, the
decision maker may, on occasion, feel.very much "left to his own
devices" when forced to make a choice. Ellsberg (1961) rather
graphically described the sense of frustration that cne can feel .
when he faces his moment of truth and is not entirely convinced of
the adequacy of the basis on which the choice will have to be made.
"(This) judgment of the ambiguity of one's information of the over-
all credibility of one's composite estimates, of one’s confidence
in them, cannot be expressed in terms of relative likelihoods or .
events (if it could, it would simply affect the final, compeound
probabilities). Any scrap of evidence bearing on relative likeli-
hood should already be represented in those estimates. But having
exploited knowledge, guess, rumox, assumption, advire, to arrive
at a final judgment that one event is more likely than another or
that they are equally likely, one can still stand back from this
process and ask: 'How much, in the end, is all this worth? How
much do I really know about the problem? How firm a basis for
choice, for appropriate decision and action, do.I have?' fThe
answer, 'L don't know very much, and I can't rely on that,! may
sound rather familiar, even in connection with markedly unequal
estimates of relative likelihood. If 'complet® ignorance' is rare
or non-existent, 'considerable' ignorance is surely not" (pp. 20,21) .+

Most of thé decision situations that we have considered in

this repert involve the problem of choosing one from among several
t

~

*This statement is contained within a larger discussicn of circum-
stances in which it may be "sensible" to act in conflict with the
prescription of the Savage (1954) axioms (see Section 2.2). The
reader is referred to the full discussion for an interesting anal-
ysis of the problem of ambiguity in choice behavior.
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courses of action. It is important te note, however, that people
sometimes find themselves faced with the task of deciding not what
to do, but when to do it. ., The required action may be dictated

by circumstances, or predetermined in one way or another, but

the individual is left with the job of deciding on the best time
to act. This-'type of decision problem is nicely illustrated by
the following.situation. ’ v

Consider a pistol duel in which the duelists are instructed
to turn to face each other on signal and to fire one shot at will.
Suppose that once the men have faced each other, each may walk
toward the other, reducing the {distance between them if he wishes.
We may assume .that the accuracy of each duelist improves, although
not necessarily at the same rate, as the distance between them’
decreases. Clearly, each mian faces a dilemma: every second that
he, delays firing in crder to decrease the distance between him and
his opponent and to increase his chances of an accur. te .shot, he
also increases the chances of success ‘for his opponent; on the
other hand, if he fires too soon; he risks missing, in which case
his opponent is free to advance on him until his shot will be cer-
tain to find-'its mark. .

This type of situation is representative of what Sidorsky,
Houéeman, and Ferguson (1964) have characierized as "implementation-
type decision tasks." In Sidorsky's experiments the daelists were
simulated navy tactical units, bbt the problem was essentially the
same as that of the individual antagonists. The decision maker
had to decide when to fire a missile, knowing that bofh the proba-~
bility of hitting his opponent and the probability of being hit by
him were increasing (but at different rates) in time.

A particularly interesting result from this work is the find-
ing that subjects performed less appropriately when operating at
a disadvantage than when operatiing at an advantage. One of the
conclusions that Sidorsky and his colleagues drew from the results
of a series of studies (Sidorsky & Houseman, 1966; Sidorsky, Houise-
man, & Ferguson, 1964; Sidorsky & Simoneau, 1970) was that "the’
inability to analyze and respond appropriately in disadvantageous
situations is a major cause of poor performance in tactical de-
cision making" (Sidorsky & ‘Simoneau, 1970, p. 57). If this obser-
vation is generally valid, ifs implications for tactical decision
making are clearly very significant. The implications for training
are also apparent, namely, the need for extensive decision~making
experience in disadvantageous situations.

>
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SECTION XI
DECISION EVALUATION

The problem of evaluating the performance of decision makers
is a difficult one and it is cr¥itically important to the task of
training. Without an evaluation scheme, there is no way of as~ e
certaining whether training has resulted in an improvement in
decision-making performance. Training assessment is not the only
redason for an interest in evaluation of decision-making performance,
however. Anyone who finds himself in & position of having to pass
judgment on the performance of a decision maker is in need of a
set of criteria in terms of which that judgment can be made. More-
over, a decision maker himself might wish to evaluate a particular
decision that he has made in terms of a set of objective criteria.

Unfortunately, a& completely satisfactory set of\abjective
criteria against which performance can be compared has not been
developed. As Kanarick (1969) has pointed out, "unlike uther
behaviors, there is no standard dependent variable, such as time-~
on-target, trials to criterion, or percent ‘correct." One can, of

- course, choose for study in the laboratory only tasks for which

performance can be objectively evaluated (e.g., probability esti-~

mation for frequentistic events); however, one runs the risk of ,
thereby excluding from study a larg€ percentage of the problems of .
interest. Certainly, in most real-life decision situations in

which the objectives -are compfex, the stakes are real, and the
information is incomplete, evaluation is an extremely difficult

tai._o >,

11.1 Effectiveness versus Logical Soundness

Of central importance to a discussion of evaluation of de-
cision making is the distinction between effectiveness and logical
soundness. Failure to make this distinction sharply--sometimes
to make it at all--has resulted in much confusion in the litera-
ture. Effectiveness and logical soundness are quite different
things. *One might be willing to assume that logically sound de-
cisions will, on the average, tend to be more effective than
decisions that are not logically sound. However, the assumption
that the correspondence will necessarily hold in any. particular .
instance is manifestly not valid.

A decision is effective to the extent that the result to6 .
which it leads is one which the decision maker desires. Effective-
ness usually is easily determined after the fact. The logical
soundness of a decision depends on the extent to which the de-
cision maker's choice of action is consistent with the information
available to him at the time the decision was made, and with the )
decision maker's own preferences and goals. That these are guite .
different fact®rs is clear from a simple example. Suppose that ‘

160
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one is given the option of betting $5 against $20 that the next
roll of a fair die will come up 6, or betting $10 against $12 that
the up face on the next roll will have an odd number of dats. If
he elects to make the first bet and the roll produces a 6, we would
say that the decision was an effective one. However, whether it
could be considered a logically sound one would depend on what the
decision maker's objectives were. If his intent was to maximize
his potential gain, or to minimize his potential loss, the decision
was sound. If his intent was to maximize his expected gain, it

was not. b

Decision-making behaviox. should be evaluated in terms of its
logical defensibility and not in terms of its effectiveness, inas-
much as effectiveness is found to be determined in part by factotrs
beyond a decision maker's control, and usually beyond his knowledge
as well.* It often appears not to work this way in practice, how-
ever. Evaluation of decisions in terms of their outc.mes seems
to be the rule, for example, in the world of finance and business.
Investment counselors are hired and fired on the basis of the con-~
sequences of their portfolio recommendations, .and corporate manage-
ments are frequently juggled as a result of unsatisfactory profit
and loss statements. Although the cliché "it's the results that
count" has particularly strong intuitive appeal in this context,
decision outcome is no more justified as the basis for evaluation
of decision making in the financial world than in any other. As
Krolak (1971) asserts in a discussion of portfolio management
evaluation: "The real question to be answered is how well did [I]
do with the information, capital, strategy and ability to assume
risk as compared wiph others who might possess the same resources?"
(p. 235). ‘

That decision-making performance in military-training situations
is not always evaluated in terms of its logicality, has been noted
by Hammell and Mara (1970). 1In discussing some of the mission

-

*Commenting on Fuchida and Okumiya's account of the WWII Battle of
Midway, Admiral Spruance (1955) made the following interesting
observation: "In reading the account of what happened on 4 June,

I am more tham ever impressed with the part that good or bad for-
" tune sometimes plays in tactical engagements. The authors give us
credit, where no credit is due, for being able to choose the exact
time for our attack on the Japanese carriers when they were at a
great disadvantage--flight decks full of aircraft fueled, armed
and ready to go. All that I can dlaim credit for, myself, is a
very keen sense of the urgent need for surprise and a strong
desire to hit the enemy carriers with our full strength as early
as we could reach them."

i
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training that'is carried out in ASW tactical training programs,

they point out that performance evaluation is based, in many in-
stances, on the simple effectivehess indicator of whether or not
the team scores a hit. If it does, performance is judged to be
acceptable. Commenting on specific training exercises that they
observed they note: "If a hit was made, regardless of circumstances,
each team member's performance was usudlly.considered good... In
some instances a hit was scored because the target would make a
predetermined maneuver intd the path of a torpede which had been
obviously fired in a wrong direction" :(p. 9). .

* It is probably safe to assume that most people in decision~
making positions are more likely to be rewarded, or censured, as »
the case may be, on the bagis of the effectiveness of their de-
cisions than on that of their logical guality. This is due in
part perhaps to the fact that society is far more interested in
the results produced by its decision makers than in the reasons
for which degisions were made. It is undoubtedly 4lso true, however,
that it is easier to determine the outcome of a decision than to |
determine whether the decision was logically justified at the time
that it- was taken. One wonders how many heroes have been made, not
in spite of, but because of, very podr decisions which have had
happy outcomes, and, conversely, how many "bumblers" owe their
reputations not to the illogicality of critical decisions they
have made, but to fortuitous turns of events that have blessed
sound choices with disastrous results.

We may note in passing that even if one wishes to evaluate a
decision in terms of its effectiveness, rather than its logical
soundness, the task may be less than straightforward. Miller and
Starr (1969) make the point that decision objectives are not always
singular. vOften, one is attempting to realize several objectives
simultanecusly, and seldom is it possible to optimize with respect
to all objectives at the same time. It is difficult in such cases
to evaluate a decision outcome unless its implications with respect
to all the objectives can be combined %nto a single fiqure of merit.

A

One attempt to develop a procedure for combining per formance
scores on various decision-effectiveness criteria into a single
figure of merit was made by Sidorsky (1972), and Sidorsky and his
colleagues (19€8, 1970). A set of operational criteria that were
intended to be used to evaluate the decision performance of a
military tactical unit was identified as follows: spatial rela-
tionships (the spatial interface between own and enemy tactical
units), self-concealment (the degree of success in keeping the
uninformed concerning,own unit), information generation
(thel degree of success in keeping informed concerning enemy
- unith), weapon utilization (dest.oy or counterattack capability),

ard conservation of resources (adequacy of supplied). Such
criteria have been used by Sidorsky to rate the quality of
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decisions made during experimental tactical exercises. A
Decision Response Evaluation Matrix was developed which, when
uséd in conjunction with an algorithm for combining scores with
respect to all five operational criteria, permitted the quality
of a decision to be expressed as a single measure.

1l.2 Evaluation Criteria .

Granted that logical soundness is the appropriate basis on
which to evaluate decisions, the problem then is to translate
that principle into a set of obl{jective criteria against which
decision-making performance can\be judged. In view of the huge
literature on decision making, surprisingly little attention
has been given to this problem.

Sidorsky and his colleagues (1964, 1966, 1968, 1970) and
Hammell and Mara (1970) have suggested five behavioral factors in
terms of which an individual decision-maker's performan.e might

" be judged: stereotopy (the tendency of a decision maker to respond

in an unnecessatily predictable way), perservation (the tendency
to persist when persistence is unwarrantedh{ timeliness (the
extent to which the decision-maker's behavior is reasonable in .
terms of the time constraints imposed by the situation), e
completeness (the extent to which all available relevant informa-
tion is used), and series consistency (the consistency of the
decision-maker's behavior within the context of a series of
interrelated actions). The first two factors are liabilities

for a decision maker; the last three are assets. In contrast

with the operational criteria mentioned in the preceding section,
these behavioral criteria are more concerned with the logicality
of*a decision than with its effectiveness.

The conceptualization of the decision-making process that has
provided the structure of this report suggests a number of dimensions

with respect to which the quality of a decision-making activity
might be evaluated: “the adequacy of the infdrmation-gathering
process; the sensitivity of data evaluation; the appropriateness
of the structure that is given to a decision problem; the facility
with which plausible hypotheses are generated,; the optimality of
hypothesis evaluation; the sufficiency with which preferences
specified; the completeness of the set of decision alternativ

that is considered; the timeliness of action selection and it .
consistency with the decision maker's preferences, objectives,and
information in hand. The development of technigues for assessing
these aspe~ts of decision making quantitatively and unambiguously
represents a challenge to investigators of decision-making behavior.

11.3 “A Methodological Problem

It is worth noting that to determine after a decision {as been
made whether its basis was logically sound may be a very difficult

I
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task. People usually can give plausible reasons for choices they
have made. One may be permitted a certain amount of skepticism, .
however, concerning whether reasons that are given after the fagt
are the reasons that prevailed at the time of the making of the °
choice (Soelbery (1967). This is not to suggest that people neces-
sarily misrepresent the bases for their decisions intentionally.

It seems not: unlikely, however, that we fregquently convince our-
selves, without being conscious of doing so, that choices have

been determined by certain rational considerations, when in fact
those considerations were discovered or invented only after the
choice was made. One might argue that even though the alleged
basis of a decision may not have been verbalized, or even consciously
appreciated by the decision maker, it could still have been opera-

tive at a subconscious level at decision time. But this is a ~

difficult, if not impossible, point to confirm or invalidate ex~
perimentally, and for that reasoh it is not a very useful hypothesis.
Pascal (1910) expressed his skepticism concerning the credibility

of after-the-fact introspective explanations of behavior over three
hundred years ago: "M. de Roannex said: 'Reasons come to me after-
wards, but at first a thing pleases or shocks me without my know-
ing the reason; and yet it shocks me for the reason which I only
discover afterwards.' But I believe, not that it shccked him for
the reasons which were found afterwards, but that these reasons
were‘only found because it shocks him" (p. 98).

t
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2 SECTION XII oL -
SOME FURTHER COMMENTS ON ?RAINING OF. DECISTON MAKERS .

[y
- N e, .

_ Throughout this report we have commented én how the theoret-
ical notions and research f£indings that have Bbeen reviewed relate
to issues of training and training research. . These comitents have
been made within the contexts ,pf the discussiofis to which they
pertain. It is not our purpose in this sectiop to review or suf-
marize these comments, but rather #o turn to sgme training-related
topics thaq have not been addressed elsewhere n the, report.
rmancé Limitations
s ES - J
Some investigators (Hammell & Maxa, 1970) have advocated <. E
the approach of identifying "be%avioral deficiencies" and. 4,
developing training programs that are designed to ameliorate .'«" !
them. Similarly, Kanarjck (1969) has suggested that bnélcompopehﬁ
of a training program for decision maker should be’ that of making;
them-aware of some of the common reasons for the making of poor =~
decisgions. . . o : T

s

12,1 Performance Deficiencies versus Pe

i

The term "deficiencies" has been used in.two ways in the o .

literature: to refer to stereotyped ways of behaving suboptimally, :

H

and to refer to basic human limitations. 1In what follows, we will
refer to the second type of "deficiencies" as limitations, and
use the word #eficiency only to dencte suboptimal but pgresumably

‘correctable behaviors. An example of a behavioral deficiency

would be the tendency of humans to be overly conservative in their
application of probabilistic information to the evaluation of hy-
potheses. A possible example of a limitation would belthe in-
ability of most people to weigh more than some small number of
factors, without some procedural help, in arriving at a preference
among choice alternatives. .

The distinction bé%ween deficiencies and limitations has
important implications for training. Dzficiencies may be "trained
out"; basic limitations must be "trained around."

. The first problem in dealinngith either a putative deficiency
or a limitation, however, is to verify that it indeed exists. It ’
is obviously imperative, when a deficiency or limitation is iden-
tified by a single experimental study, that the finding be cor-

roborated by further research. More important, however, and more-

difficult, is the problem of establishing that the conclusions
drawn from experimental studies are valid beyond the laboratory
environments in whi¢h the resulte were obtained. It is exceed-’
ingly difficult to capture some of the aspect8 of many real-world
decision problems (e.g., very high stakes) in laboratory situa-
tions. And what may constitute appropriate behavior in the one-

situation may prove te be inapprcpriate in the other..

{J-
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Assuming, however, that one-is able to identify some examples
of deficient behavior that appear to be fairly universal among ‘
decision makers, the question is how to go about training them out.
One obvious possibility is to expose trainees to decision-making
situations in which a given deficiency is likely to show itself
if it is ever going to do so, and then provide the individual with
some immediate feedback concerning the appropriateness of his be=~
havior. One would probably want to provide numerous opportunities
for the same deficiency to show itself in a variety of contexts,
providing feedback to the trainee each time that the deficiency is
displayed. Probably, toa, feedback should be provided for some
time after performance has improved to the point that the deficiency
is no longer apparent. B ,

When dealing with basic human limitations, the goal should be
to ‘educate the decision maker concerning what thHose lim®+ations
are and to provide him with the means for working around them.
For example, if it is the case that without the help of some ex-
plicit procedure, a decision maker cannot effectively weigh more
than n variables in attempting to optimize his choice of an action
alternative, it may be futile to try to train him to .make effective
use of more variables; however, if that is the case, he should be
made aware of his limitation and be trained to perform within it.

. .

Another approach to dealing with deficiencies.and limitations~-
in addition to training--is that of providing the decision maker
with aids' to facilitate variousAaspects of the decision process.

e goals of training and of decision aiding are not viewed by the
writers as mutually exclusive, but rather as complementary, ap-
proaches to the improvement of decision making. Moreover, the
fact that decision aids are being developed has implications for
training, a point to which we will return in Section XIII.

12.2 Simplation as an Approach to Training

A common approach to the problem of training decision makers
is that of simulation (Bellman, Clark, Malcolm, Craft, &
Ricciardi, 1957; Cohen & Rehman, 1961). The idea is to place
the decision maker in contrived situations that are similar
in certain critical respects with the decision-making situations
that they are likely to encounter in the real world. The approach

" has been used in efforts to train business executives (Martin,

1959), prospective-higb—sghool principals (Alexander, 1967),
¥esearch and development project managers (Dillman & Cook, 1969),

. military strategists and tacticians (Carr, Pyrwes, Bursky, Linzen,

& Hull, 1970; Paxson, 1963), high~school history and science
teachers (Abt, 1970), vocational-education leaders (Rice & Meckley,
1970), and government planners (Abt, 1970).

479 ' ,
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Most business colleges and graduate schools today make some
use of simulation and gaming tethhiques to teach management and
decision-making skills. Also, as a result of early efforts by the
American Management Association tq develop a decision-making
course, corporations such as General Electric, Pillsbury, Westing-

house, and Standard 0il of New Jersey have devised in-house training

" programs that make use of simulation techniques.

Two different forms' of management-training games are discussed
by Cohen and Rhenman (1961} in their survey of the present and fu-
ture roles of such games in education and research. The first

- form~~the "general-management" game--attempts to provide experience

in the making of business decistons at a top-executive level, while
the second form--the "functional" business ame~~focuses on specific
decision sitnations within a limited .functidnal level of the organ-
ization. Because of. the complexity of interactions among organi-
zational entities and the multidimensionality of the uecision envi-
ronment simulated in the general-management games, the possibility
of defining and utilizing optimai strategies has not yet been
demonstrated. The functional game situations, .on the other hand,
which are typically lower in complexity, allow for the specification
and application of optimal or "best" strategies.

A variety of views have been expressed concerning the strengths
and weaknesses of simulation as an approach to training. Kibbee
(1959) - suggests the following advantages: -

"1) It (simulation) can provide a dynamic opportunity for
learning such management skills as organization, planning,
control, appraisal, and communication.

2) Simulation can provide an executive with an appreciation
of overall company operations and the interaction between man,
money and materials. It helps make a generalist out of a )
specialist who has never had the opportunity of reviewing his
decisions as they affect the organization as a whole.

3) Simulation can provide executives with practice, insight
and improvement of their main function: makirg decisions.
Faced with realistic decisions about typical business problems,
they can experience years of business activity in a matter of
hours, in an environment similar to that they face in everyday
life.

4) Simulation can exhibit what Dr. Forrester of M.I.T. callg
the 'dynamic, ever-changing forces which shape the destiny of

a company.' The general business principles that are illus-
», trated can be studied and understcod by the. participants"
(p. 8).
167
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Similar themes are expressed by Abt (1970) concerning the efficacy
of management games:

* +

{

"Games are effective teaching and training devices for stu- \
.dents of all ages and in many situations because they are J
highly motivating, and because they communicate very effi-
ciently the concepts and facts of many subjects, They create
dramatic representatives of the real problem being studied.
The players assume realistic roles, face rroblems, formulate

strategies, make decisions, and get fast feedback on the
consequences of their action.

In short, serious games offer us a rich fieid for a risk-free,
active exploration-of serious intellectual and social problems"

(p. 13).

Simulation, as a general approach to'training of decision
makers is not without its critics, however. Martin (1959), who
generally endorses the approach, volunteers several caveats. He ¢
points out, for example, that many of the qualitative dimensions '
of a situation, such as ‘personnel quality and morale in an organi-
zation being modelled, are difficult to reflect in a game. Further,
in order to make a game administratively manageable, it may be
necessary to limit the degrees of freedom one has with respect to
innovation, which is an unfortunate constraint. Finally, he points
out that-it is not always clear exactly what students are learning
in a- simulation situation. ."There is no doubt that the simulation
technique is a powerful teaching device, and therefore is poten-
tially dangerous unless we are relatively sure of what is being
taught . " ’ . B

One wonders, in connection with the last point, if definition
of what should ke taught and learned can really be expected prior
to development of an adequate prescriptive theory of management
decision making. Moreover, it seems clear that so long as decisions
are evaluated in terms of effectiveness rather than in terms of
logical soundness, the answér to the question of whether any train-
ing program 1s teaching individuals to make optimal decisions will
~emain a matter of conjecture. Apropos the point of how to insure
t.hat simulations have some realism, Freedy, May, Weisbrod, and
Wweltman (1974) have proposed a technique for generating decision-

task scenarios that utilize expert judgments concerning state

variables and transformations in much the same way that a Bayesian
aggregator would make use of expert judgments of conditional pro-
babilities.

We would summarize our own attitude toward simulation training
in the following way. The appreoach has many advantages. The stu-
dent can be exposed to a variety of decision situations. Situa-
tion parameters can be varied systematically, thus permitting the

P : 168
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study of their effects on decision-making performance. The conse-
quences of incoxrect decisions are not catastrophic, as they could
be in some real-life situations of interest. The student's per-
formance can be evaluated and immediate feedback can be provided
to him, thus, presumably, improving his chances of learning.

On the negative side of the ledger, there is first the diffi-
culty of the task of deciding what aspects of a situation to simulate.
Any simuldtion is a simplification, and if one wishes tc¢ assure
transfer of what is learned in the simulated situation to real~life
situations, it is imperative that the simulation preserve those
aspects of the real-life situation that are relevant to the skill
that is being trained. Moreover, the difficulty of assuring the
veridicality of a simulation is likely to increase greatly with
the complexity of the situation that is being simulated. °Second,
there is the problem of generality. Situations are specific. One
want$ the student to carry away from training segsions 3kills which .-
will be applicable in a variety of contexts. Simulation itself
does not guarantee that that will occur. 1In fact, one might guess
that there would be the danger of focusing on specific aspects of
particular situations which could have a tendency to impair the
learning of general principles. N

12.3 On the Idea of a GeneralFPurpose Training System for
Decision Makers :

A training system for decision makers that has a reasonable
degree of generality is bound to be a relatively complex system.
Moreover, given the current level of understanding of decision
processes, it is unlikely that anyone would be able to design a
system that would be certain to be satisfactory. The approach
that seems to us most likely to produce a useful system is an
explicitly evolutionary one, and one that involves potential users
of the system in its development from the earliest stages. What
one needs to do is build a working system that represents one's
best guess concerning what capabilities such a system should have,
and then elaborate, extend, and improve the system in accordance
with the insights that are gained through attempts to make use of it.

The idea that many complex systems are best developed through
an evolntionary process is not a new one. Benington (1964) has
argued strongly for such an approach in the development of command-
and-cortrol systems. Commenting on the fact that nmany systems be-~
come obsolete even before they are operational, he notes that "The
principal cause of this situation is the fact that until recently
the proposed users of these systems did not take many interim steps
that would have helped them; instead, they waited for the grand
solution. When the development of these command-and-control systems
was undertaken, it-was thought that the design team could analyze
present operations, project changes over many years, design a system
for the far-off rfuture, and then implement. Now most agree that
this process just wor't work" (p. 16).
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SECTION XIII

DECISION AIDS
The recognition that--whether because of behavioral defi-
cienicies or basic limitations--men often do not pérform optimally
as decision makers has motivated the development of numerous de-

. cision-aiding procedures and techniques. The existence of deci-,
sion aids has two somewhat opposing implications for the training
of decision makers: On the one hand, insofar as ah aid succeeds

‘. in simplifying or otherwise facilitating the performance of some

specific task, its existence mav lessen the traingng demands vis-
a-vis that task; on the other hand, users of decision aids must
be trained to use those aids. It does not follow from, the fact
> that some training may be required before an aid can be used
effectively that the aid is therefore a failure; if a trained
user-of-an aid can make better decisions than a trained decision

. maker who does not use that aid, then the aid may be sa.d to be !

an effective one. 4 .

. Given the view of decision making as comprised of a variety
of tasks .,and processes, it seems reasonable to expect that initijial
decision-aiding techniques will be more successfully applied to
-some of these tasks than to others. The goal should be, not to
develop the grand aid for the decision maker, but, rather, to , >
develop a variety of aids to facilitate performance of the various ' ‘
tasks. Together, a.group 3f such aids might be thought of a%-a L
"decision suppert system" (Levit, Alden, Erickson, & Heaton, 1974; ;
Meadow & Ness, 1973; Morton, 1973), but the individual aids, and |
not the system, 'are probably the more reasonable objectives towén%
which to work initially. y ~ : o .
. ~ . ’ ’ ’
Another factor that some researchérs have argued is highly
relevant to the design of decision aids is that of individual dif-
ferences. One group of investigators, for example, has character-
ized "decision styles" in terms of three dimensions with respect
to which individuals are assumed to vary: abstract-concrete,
logical-intuitive, active-passive (Henke, Alden, & Levit, 1972;
Levit, Alden, Erickson, & Heaton, 1974). All possible combinations
of the extremes of these dimensions are viewed as eight "pure
decision styles" that are representative of the types of individual~
. ized approaches to decision making that decision-aiding systems
" must take into account. The point that these investigators make
is that decision aids or decision support complexes, should be
designed with particular users, or user types, in mind. Systems
designed for one type of decision style, they claim, may degrade
the performance of a user who operates according to a different ”
style.

o
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Decision aids run the gamut from d¢he types of heuristic

principles discussed by Polya.(1957) to explicit paper and pencil ¢

procedures for working through some aspect of a decision problem,

to interactive computer-based techniques. 1In this section, we -

consider only a few of the many aids to decision making that have

been developed. The intent is not to provide an exhaustive review

but a representative sampling of what has been done in this regard.

.

13.1 Linear Programming ’ / .

. Linear programming is a mathematical technique for determi-
ning a set of decision’ parameter values that maximizes or minimizes
specified functions within certain linear constraints. The tech-
nique is particularly useful in solving such problems as resource
allocation, production mix and industrial cost contr.l. It is
best illustrated by a simple example.

] Suppose a manufacturer produces three products. We will .
designate the monthly quantities of these products as Xy, X9 and
X3. The products have different unit production costs, say,
d7s ap, and a3, and different unit sale prices) say, by, by, and ,
b3. To keep %he illustration simple, we ignore the problem of
inventories. Raw material limitations restrict the number of units
of products 1 and 3 that can be produced per month to c7 and Cs3,
respectively. The total number of man-hours available to the
producer is n per month, and it requires d;, d,, and d man-hours’  _.
to produce one unit of products 1, 2, and 3, respectively. THe ,.
problem is to determine the number of units of each’product that
the manufacturer should produce per month,in o;?ef to maximize _—

His profit. : _ L. -

A
{ ) . .
Linear programming is a technique for solving such problems,
when solutions exist. The technique involves expréssing the con-y

straints*as a set of simultaneous linear equations, an3~fﬁ§n7

L4

~ ¢
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searchlng within the ranges of the values of the independent
variables that satlsfy the equations for those values that op-
timize the desired functlon. In the€ case of our example, the
function to be optlmlzed (1n this case, maximized) would be the
profit function, 1i. e(,
(bl l)x + .(b2--a2)x2 + (b3~-a3)x3

When the problem involves only two or three decision vari-
ables, a geometrical model of the situation can give the decision
maker an intuitively meaningful representation of the significance
of the various factors and, in pajticular, of the sensitivity' of
the decision outcome to a less than optimal selection of values
for the decision variables. When certain boundary conditions are(
met, the set of parameter values that satisfies the }inear con-
straints within which the decision must be made is reprasented
by convex polygons or polyhedra (in the two-~ and three-variable
cases, respectively), and the solution to the optimization problem
invariably is (or at least contains) one of the figure's vertices.

" The same principle holds in cases of more than three rsariables,

but, of course, the geometrical model is no longer helpful.

One of the limitations of linear programming is thae fact
that it is applicable only to situations in which the decision
space has been fully represented numerically and th. cutcomes of
all of the admissible decisions are known. Another is the fact
that it can be used only when the effects of the individual deci-
sion variables combine in an additive (linear) fashion. One can
imagine real-life decision situations in which the effect of a
change in the value of one decision variable depends in some way
on the value of another variable. For exampre, hcw much impor-
tance one would ‘attach to a difference in salary between two JObS
might deperd on whether the jobs also differed significantly in
terms of the extent to which they placed one's life in -<danger.

As has already been noted in Section IX of this report, however,
several investigators of decision making have argued that the
assumption of additivity appears to be a reasonable one in many,
if not most, real-life situations. Probably the more difficult
requirement to satisfy in order to use linear programming ch~-
niques is that of adequately structuring the decision spa and
quantifying the salient variables. When the necessary conditions
can be met, however, there can be no doubt of the effectiveness

of the technique.

13.2 Decision Trees and Flow Diagrams —

Sometimes it i$ possible to convert an apparently complex
set of written or verbal instructions concerninc a problem-solving
procedure into a decision tree or flow diagram. When such a con-
version can be accomplished, it is often found that the desired
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procedure is more easily and efficiently followed with the aid of
the diagram than with the original set of instructions (Blaines,
1973; Raiffa, -1968; Wason, 1968; Wright, 1971). o ‘
) The following distinction between decision trees and flow
diagrams is made by Triggs (1973): . "A decision tree is an assembly
of individual paths in a- structure orgarnized so that no path ever
returns or proceeds to another part of the diagram. A decision

flow diagram may, on the other hand, contain paths that return Y'
to early parts of the diagram or feed to other common elements.

A decisibn flow diagram can be more operationally directive in its
structure, and less concerned with the explicit details of the
decision process. In a tree structure, at every node of the tree,

the user of the diagram can exactly state by what set of chance -
events and decisions one arrived there. Thé flow diagram structure

is not always érganized so that each such path can be uniquely
specified" (p. 3). s .

The clarity aﬁagefficiency gained by representing procedures
requiring sequential~decisiong in diagrammatic form ‘have been
recognized for some time. In such fields as computer programming
and systems analysis, graphic techniques-have been employed in
the teaching and c¢onduct of specific programming, debugging, main-
tenance, and troubleshooting tasks. Only recently, however, have
formal attempts been made to assess the benefits. to be derived. 1In
an entertaining article by Davies (1970) the results of a relevant
experiment by B. N. Lewis are discussed. The latter investigator
presented d series of six problems -involving a tax regulation to
each of 60 subjects. One third of the subjects worked with the
original (prose) statement of the regulation, a second third worked
with a simplified {prose) statement, and the final third worked
with an algorithmic (decisign tree) form. . The mean time required
by the original prose group to solve all six problems was 23.4
minutes, compared.to 11.8 minutes required by the simplified prose
group and 9.2 minutes required by the algorithm group. Mean erfrors
in problem solution followed a similar pattern: 29%, 10%, and 8%
for the respective groups. .

More recently, Blaiwes .(1973) compared tHF performance of )
decision makers who had been given instructions concerning the ) ¥
construction and use of decision trees with that of decision w
makers whe had hot been so instructed. Only one of the ten subjects
in the ‘uninstructed group gave evidence of using a deeision-tree
approach to the solution of the four experimental tasks, whereas »’
all teh of the instructed subjects used it. Subjects using the
decision~-tree approach initially required more time than
uninstructed subjects; but their performance improved as they
gained facility with the approach. Most importantly, subjects
in the instructed group performed ‘at a higher level of e

N -
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accuracy than subjects in the uninstructed group. Although-.the
possible effects due to practice canhot be separated from those
due to problem difficulty because of the.particular design used
by Blaines, we regard the experiment as a demonsErat;on of the
ease with which the decision-tree.approach can be taught to
individuals who have not previously encountered it.

A review of numerous attempts to apply decision trees and
flow diagrams to the solution of decision problems (e.g., Baker,
1967; Clarkson, 1963; Dutton & Starbuck, 1971; Horabin, 1972;
Howard, Matheson, & North, 1972; Rousseau & Zamora, 1972; Tudden-
ham, .1968) has been prepared by Triggs (1973). He points out
that the degree to which such aids can be useful to a decision
maker will depend od the nature of the problem that is faced.

They tend to be most useful for situatiens that are easily struc-
tured, perhaps by means of decomposition techniques advocated

by Raiffa (1968). Triggs cautions against the temptation "to make
a complex probléem tractable by forcing it into a conceptual repre-
sentation . with which one knows how to cope," at the .expense of
ignoring or eliminating critical aspects of the real prcblem.

He also points out that' the task of imposing the type of structure
on a decision p:oblem that is necessary if decision trees or flow
diagrams are to be used.to advantage, may be sufficiently time-
consuming and expensive to assure its impracticality in some dy-
namic situations in which the time for analysis is limited. More-
over, forcing the decision make? to think about his problem in
terms of a specific structure may inhibit his use of cognitive

skills that he otherwise might bring to the task. Triggs concludes,

however, that on balance these cautions do not negate the efficacy

of the approach. Citing Zadeh's (1973) work, he notes that "even
in systems that are too complex or too ill-defined to admit of
‘precise quantitative dnalysis, 'fuzzy' algorithms and diagrams
have the potential of being useful to the human decision maker"
(p. 17). . o

A lucid tutorial treatment of decision trees and their use
is presented by Peterson, Kelly, Barclay, Hazard, and Brown (1973)
in Chapters 2 and 3 of a Handbook for Decision Analysis. .The
handbook has been prepared for the express purpose of aiding the
individual who is faced with substantive decision prcblems to
apply concepts and procedures of decis.on theory to the solutjon

- LY

of those problems. .

% . g

13.3 Delphi, an Aid to Group Decision Making

Y

The decis}on maker of most prescriptive models of decision
making could be an individual, a committee, a corporation, or a
machine, inasmuch as such models are concerned with the decision-~

"making process and are indifferent to the nature of its embodiment.
Most empirical studies of decision making, however, have focused

K i
‘T
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on the behavior of ‘individuals. Relatively little attention has

‘cular assessment was made by which member. The pros and cons of

-
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been given to the question of how decisions are, or should be,
made by, n~person groups. There are, of course, large liter-
atures dealing with related topics such as the effects of group
organ%zation and communication channels on problem solving, and
the effects of group pressures on individual behavior. '

One generalization that it seems safe to make is that the
decision-making performance of groups may be jinfluenced by a
number of factors that are not obviously related.to decision
quality in any straightforward way. Especially ‘is this true\mﬁgn
group-members are required to resolve problems about which there
exist conflicting views. As Helmer (1967) puts it: . P

"Round-table discussions for such purposes have certain. |
psychological drawbacks in that the outcome is apt to be a |
compromise between divergent views, arrived at a.l too often
under the undue influence of certain fagtors inherent in thé
face-to-face situation. Thése may include such things as ;
the purely specious persuasion of others by the member with;
the greatest supposed authority br even merely the loudest
voice, an unwillingness to abandonh publicly expressed a
opinions, and the bandwagon effect of majority opinion" (p.l?).

As oneJ%eans of remedying thése types of prablems,. and of
providing a rationale by which to combine "expert" opinions, the
Delphi method. was créated (Brown, 1968; Dalkey & Heimer, 1963;
Helmer, 1967; Rescher, 1969). This technique requires each member
of the group to write down his independent assessmenc of the prob-
lem or solution under study. The set of assessments is then .

revealed td all members but without identification of which parti~

each response are then openly debated and each member files a
second assessment. Following n repetitions of this procedure,
the median assessment is then adopted. . »

t *

The Delphi procedure-is reputed to be usable:

?

"@5 To éetermine what the operative values of a group are,
what relative weight they have, what sorts of possible trade-
. offs obtain among them, and the 1like.

2) To explore the sphere of value criteriology, clarifying
by what criteria thgbzalues of a group come to be brought to
bear ‘upon actual c#res. : .
) : - L%
3) To discover divergences of value posture within a group
and the existence of subgroups with aberrant value structures.
\ - P
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4) To serve as a tool for seeking' out areas of value
consensus--or agreement as to actions and preferences--
that may exist even when there are conflicts of value.

. : .
5) To provide a tool for the third-party evaluation of
conflicts of interest. )

6) To assess the correctness of value ascriptions to given
groups. - S

7) To assess the correctness of value judgments in the area
of means-values" (Rescher, 1969, p. 7). » €

The use of a modifiéd version of the Delphi technique is
illustrated in a recent effort by O'Connoxr (1972) to apply expert
judgment to the scaling of water quality. The problem was to o
assess the quality of water to be used (1) as a public tupply,
and (2)r for the maintenance of a fishyand wildlife populacion. -

Eight experts made iterative judgments as to the parameters* to-be v\
included, the relative importance weights to be assigned, and the
fules for combination. of indices.® Good consensus was- obtained .
with respect to sets of judgment parameters and ¢ombination rules,
but there was considerable disagreement on weightings. O'Connor *

found, however, that this disagreement was not critical in the . .

development of the final indices.

An importdnt‘feaéure of the Delphi technique is the fact that )
it provides a means for achieving group consensus without the need
for the face-to-face discussion of issues’which typifies most
group problem-solving methods. This charactéristic was exploited
in the O'Connor study, where the experts were gengraphically widely
segarated and were never in direct communication with/éaqh other.

4.

<13.4 Computer-Based Decision Aids ; A

%

} N
~ The potential éavantages to be gained ‘from @pplying the
general computational capabilities of digital computers to deci-
$ion probﬂems have been recognized for some time. Several writers
have made very convinocihdiarguments to the effect that bo§2 men
.and computers have somethIng to offer to the decision*maki o
process, and that the nged is for the development of écision
systems that assure a sym tic coupling of the capabilities of
man and machine (Briggs g Schum, 1965; Edwards, 1965b; Ligklider, -
1961; Shuford, 1965;‘Yn§gma & Klem, 1965; Yntema & Torgersom, 1961).
) A

e . D
i It is not difficult & imaqineﬁﬁ\computer system bejng used

to aid a decision maker in the performidnce of essentially all of

the aspects of decision making that we have considered in fore- e,
going sections of this Teport. Such a system might provide th
decigpion maker with.4 dAta base of .facts or observations tPat are
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A relevant to his decision problem. It could serve as an extension®
of his own memory by keeping a record of factors that he had in-

+ dicated he ought to "keep in mind" in making a decision. It could
help him generate hypotheses, and to structure and present the
decisi~n space. It could help him discover what his preferences

. are and to express them in a guantitative way. It co.ld provide

L ' graphical representations of the decision situation. It might
g - (assuming a vBlid model of the decision problem) project the prob-
» able consequences of various action selections. It might serve
* as an interface between two or more decision makers' collaborating
) on the same problem and facilitate the application of group deci-
sion techniques. It could do whatever computation was required.
It could prod the decision maker to consider aspects of the problem
that he otherwise might overlook. It could suggest approaches or
- . strategies that have been found to be useful in similar problem
~ situations. It could make explicit to the decision r-ker (either
" byyinference or by questidning of the decision maker himself) some
aspects of the situation or the decision maker's thinking that
otherwise would only be implicit. Aand so on. ‘
. . o A
! It is in fact € easy to imagine ways in which the computer
» . . could be.used as an aid for decision making that one can be seduced
to thinking that the implementation of such capabilities is a
. straightforward thing. Ingsome instances this is perhaps the case;
in others, it_assuredly is not. The important point is, however,
that computer~based decision aids are being developed and quite .-
sophisticated ones are likely to be operational in the near future.
No trai;Eng program for décision makers can afford to ignore this
fact., ™ . - .

In‘a precéaing section of this report some comments were’ made

7 concerning simulation as an’approach to training. Given the avail-

' ability of coniputer .systems to decision makers, another way that
simulation may be used to advantage is as an operational decision
aid. 1In this case the effects, or probable effects, of selecting
specific action alternatives can be explored by ‘the decisior’ maker

b beforg he actually makes hifs choice (Ferguson & Jones, 1969). The

4 projections or predictions of the aid will only be as good, of

course, as is the model of the situation that produces them, and

f it is rot necessarily the case that ‘the use of such predictive ,
ajds will invariably lead -to iwproved performance (Sidorsky & Mara,

~.1968). The potential for this’'type of simulation is great, howevér,
and deserves more attention that it’has received to date. At the
very least, such an aid can be Used to help”defermine what is
possiblg and what %ﬁ‘not, giving an accurate representation of the
curreént state of affairs. The point is- illustrated by an experi-
mental decision aid designed to monitor and{ control maritfme
traffic{(Eimal , Prywes, & Guktafemo, 1967). The system was com- °
posed &f alforhatted data base,) a set/of ."worker programs" which

. oper‘aﬁ\Q on the da base, and a queyy language which allowed "the

L4 Lid - -
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user to interact with the gdata base on line. Information that
could be .extracted from th& data base on request included”'" (1)
past, present, or future locations of ships, (2) the number, tvpe,
or names of ships in any geographic area of the North Atlantic

at a past, present, or future time, and (3) how far is a ship
from some particular place’and if ordered to change coirse when
can it get there?" (p. 206). The system could provide information

on sets of. ships satisfying some class description; for example, !
it could provide the distances of all ships of a given type,. from

a given destination, and the time required to reach that destina-

tion, a§§uming the necessary changeé in course. The System 'illus-

trates a njice allocation of function between man and machine. o .
The computer does the bookkeeping and arithmetic, the man exer-
ceses judgment and makes choices.- Hopefully,. the choices that'
the man makes will be the better because Qf the bookkeepind and I ,
arithmetic that the machine does. 3 ,

y; 4

Two of the more prominenp‘problem areas for which computer-, )
based decision aids have been developed Jr plannéd are medicine
and military ¢actics. ] . |

13.4.1 Computer-Based aAids fof Medical Decision Making ). Ef

Among the first investigators to attempt‘tq apply modern’ . 2
decision theory to medical decision making wereg Ledley and, Lusted '
(1959). During the subsequent fifteen years, many such applica-

tions of decision theoretic techniques were proposed and tried;
and within the past ten years, several experimental computer-based
systems have been developed for the purpose of facilitating
various aspects of decision making in the medical context. Ap-
plications that have been explored include initial patient inter-
viewing and symptom identification (Griest, Klein, & vanCura, 1973;
Whitehead & Castleman, 1974), analysis organization and presenta- )
tion of ‘the results of laboratory tests (Button & Gambino, 1973),
personality analysis (Kleinmuntz, 1968; Lusted, 1965), storage and
retrieval of individual-patient data (Collen, 1970; Greene, 1969),
n~denfand provision to practitiohers of clinical information ’
?Siegel &' Strom, 1972), automated and computer-aided diagnosis of
medical problems (Cumberbatch & Heaps, 1973; Fisher, Fox, & Newman,
1973; Fleiss, Spitler, Cohen, & Endicott, 1972; Gledhill, Mathews

'7& Mackay, 1972; Horrocks & deDombal, 1973; Jacquez, 1972; Locwick, §

1965; Lusted, 1965; McGirr, 1969; Y&h, Betyaxr’, & Hon, 1972), .
management and graphical representations of data to aid research :
in pharmacclogy and medicinal chemistry' (Castleman, Rugsell, Webb,
Hollister, Siegel, Zdonik, & Fram, 1974), modelling'of physioclogical
systems and exploration via simfilation of the effects of alternative
courses of treatment (Seigel & Farrell, 1973), and training
(Fgurzeigu 1964; Feurzeig, Munter, Swets, & Breen, 1964).

‘_./\‘
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The results of one recent study of computer-assisted diagnosis
are particularly relevant to the question of when expert judgment .
should or should not be used in the decision process. Leaper (1972,
1975) compared two methods of combuter—aésisted diagnosis ©f dis-
orders for which abdominal pain was' a primary symptem (e.g., appen-
d%citis, diverticulitis, perforated ulcer). Computdr=gided Bayesian
diagnoseg were performed using estimates ofproebabj es that were
either (a) inf@rred from frequency data collected frdm 600 patients

‘or, (b) produced by a group of clinicians. The diagnosSes that resulted

from,tbe‘computer—ai&ed method that unsed the clinicians'’ proba-
bility estimates were’marginally more accurate than those produced
by unaided glinicians (82% versus 80%). The method that made use
of probabilities inferred from incidence data, however, - gave sig-. .
nificantly more dccurate resultc (91%). A secondary result of .
this study that'is of some interest is the fact’%ha; mosE’glinicians
insisted on retaining their own p;@bability estimates, even when
those estimates were greatly different from the.survey cata and:
they haé/peen informed of this] fact. C

.. Thesé ‘results strongly suggest that relative frequeﬁcy data
should he usedras a basis for probability estimates in preference
to expert opini%bs, if such date are available. The principle
should not be'applied, -of dgurse, without 'due redard for such fac-
ors as the size and repres ativeness of thé samples from which
the relative frequency data-dare obtained? As a general xule, the
most defensible strategy incestimating probabilities would seem
to be: use expert judgments only if a jore objective method is not
feasible, as would be the case when es{imating the probabilities
of very low-frequency events or events that are not reasonably -
thought of as "fregquentistic" in nature. -

-

“~

13.4.2 Computer-~Based Aids for Tactical Decision Making(
§

Much has been written about the use of computerfbased alds. _
to facilitate decision making in the c¢ontext of tactical operét}ons
(#lden, Levit, & Henke, 1973; Baker, 1970; Bennett, Degah, & Spiegel,
1964; Bowen, Feehrer, Mickerson, & Triggs, 1975z Bowen, Feehrer,
Nickerson, Spooner, & Triggs, 1971; Bowen, Halpin, Long, lLukas,
Mull{rkey, & Priggs, 1973; Freedy, Weisbrod, May, Schwartz, & Wett- 4
man,{*973; Gagliardi, 'Hussey, Kaplan, & Matten, l96§;-Hanes & Gebhgr '
1966; ‘Levit, Alden, & Henke, 1973; Levit, Alden, Er%ckson, & Heatorn,
1974; Sidorsky & Simoneau, 1970). The extent to which suqh sysﬁgms
and-aids haye led .to improved decaision makingj;;probably impossible
to determine. gt(is easy to be critical of this Wwork, howgver,
because -progress has certainly not ke spectacular. And it may
be th some of the decision-aiding efforts have peen paorly
cdnceived. But tactical decision making is complicated and not
thérouqnly understood. It is not surprising that there wou@d Lze
some false starts before significant progress 1;Jm§de on.thls
problem. Even fdise sta¥}s can provide usetul insights into a

. ~
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what the @imensions of the problem are and to provide sdme clues

I concerning the requirements for a solution. ™

 Bowen, Nickergan, Spooner, and- Triggse(1%70) have desctibed
~ several computer-based systems that Have. been,- or. are heing, de-~ -
veloped by the military services td aid the decision-making process
in tactical situations. Among the systems that were reviewed . are:
- the Army's TactWcal Operations.Systém' (TOS)~-in particular, TOS-
7th Army;-and Tactical Fire Direction System (TACFIRE), the Air
Force'and Marine COrps' Tactical Information Processing and Inter-
“."pretation System (TIPI), the Air-ForceiE/fhteliigence Data Hand-
ling °‘Systém ;(IDHS), and the Navy's Integrated Op ational Intel-
ligence System (IOIS). These systems are intended to improve
tactical decision maKing by.facilitating data management and mani-

pulation, meé%agé routing, display generation, report prepagatiQnT———j—-*

fire control, plannthg, resource allocation, and, other’ tasks and -
functions that fall within the puprview of ‘tactical opgrations.
‘There are two motivations for bringing sfch system8 into the
“tactical $ituation. One is to unburdep ‘the dectsiod makey of tasks
that are just as well performed by machines, -and thereby make it °
possible for him to devote more time to those aspegts of decision
.making "that require hjkqn judgment and expertise. The other is
" to upgrade the quality and adequacy of the ihformation on which
"decisions are based. This involves,not‘only the problem of_pgpcés~
sing and integrating large amounts of information, but also that.
of packaging, and presenting informat%on in ways that arg well- ~
, suited to the information-processing. capabilities of the human °*
being who must make use of it. How effectively éxisting or con~-
templated’ systems realize these objectives is difficult to,deter-
i

mine with much prgecision. -
' ’
‘o : .

H
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————— 1 It is not the purpose of this review to describe particular-

systems in detail. We will, however, .consider briefly two systems
as illustrative of those that havé beéen developed, one intended
- for.operational use, and one for fise as a. training instrument.

- ’

13.4.2.1 AESOP D

». /
* ‘s 3 3
} An intensive program to develop an on-line.information~eontrol -

13

system of¥value to milifary decisionﬁmakers i® the planning of
- tactical and strhtegic resource allocations was begun by the Mitre
Corporation in 1964. On completion in 1969, thé prototype, called
"An Evolutionary System for On-line Plannihg.(AESOP) to emphasize
its .Incremental approach to the generation of.computer-based
management apd planning assistance, made available to system usefs
.2 range of techniques which could aid in such diverse activities
.as, data acquisition, aggregation, plan assessment and report .
preparation. . .. . b
. o . _
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pfoblem, however; if nothing.more, they should help to clarify....oew—=

S

PO




N

et

- of the problem—solv1ng activity of decision makers, that is, of \the

*
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The AESOP, system-.consists of+two major parts. One of .these
is a ‘set of capabllltles for storing, modlfylng, retr1ev1ng, ‘and
displaying data, and for performing various sorts of symbolic and
arithmetic nipulations with the aid of a,flexible dlsplay—
oriented user language, a light pen, typewrlter and. push~buttons.
Details of these aspects are covered in a variety of program pub- -
lications, the most informative &f which are Bennett, Hainé&s, and
Summers (1965) and Summers -and Bennett (1967) P

. N \
.~

; The second part of the system consists of a set of s1mulated
strateglc and tactlcal military applications which provide a ? .
context for exercising the capabllltles mentioned above. One of
the mores\signif t of these is that of a T cgsggl Air Control
Cehter (TACC) in which the resource 2klocation tasks of a Flghter
Sectiopn/Current Plans Division aré Simulated. Since this parti-
cular application also served as a testbed for the formal.test and
evaluation of AESOP pr1nc1ples, it provides’the most ~omprehensive
picture of the strengths_ and 'weaknesses of the system. The XYemain~’
der of our current summary will relate to this appllcétlon and, to
the results of evaluation studies. More detailed treatments of

the s1mulatlon and evaluation can be found in Doughty (1967),

.

')Doughty and Feehrer (1969), and Doughty, Feehrer, Bachand and

Green (1969) . 2, ﬂ.

v As s1mulated in the AEéBR\ggogram, the bas1c task off. a Flghter
Section revolveés about the allocdtion (on reque by hidher head- .
quartexr ) of tactical airdraft to each of three mission categofles
(1) on-call tlose air support, (2) preplanned close air. supporty

and (3) preplanned counter-air and interdictiqQn. ' Under "normal"
circumstances the total number of ready aircraft in near proximity

to prescribed ,
requesteéd, so) the planner is forced to make tradeoffs relating to - .

~such factors as sortie rate, flying time, time over target, and
probable degree of target destruction. The cumulative consequences
of thege tradeoffs are: (1) that some requésts for support fail to

. be satisfied at-all, (2) some reduests fail to be satisfied on a R
tlmely basis, and .(3),some requests, though satlsfled on a timely
bas1s,iare not satlsﬁ{ed at the requlred level.

In th1s context the tactical versfon of AESOP has two
1nterrelated-goaIS° (1) the elimination 8f much of the laboncand
inaccuracy assofiated with manual computation and display of'ready j
resources, sortie rates, flying times and weapons' effects, and
with the preparation of formal orders (Fragmentary Orders) to
squadrons implicated in a planned allocation, and (2) fac;lltatlon

judicious select®on of squadrons, aircraft types , PfWeapons categories,
and so on. ’ ) i

-

. For purposes of evaluation, tHe actual resourcé allocations
produced by planners using the AESOP system ‘wére compared with

S 1 - . SN O ?

target areas is less ‘than, the number of aiycraft ..

-
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those produced by .planners-using a simylated version of the'stan-
*dard system 1n an-integrgted series of tactical exercises depicting
the mllltary maneuvers of loyalists and 1nsurgents during a ten-
day“llmlted war. Experimental seégSivns began with briefings re-
lating to orders' of battle, political and military activity, and
J