
DOCUMENT RESUME

ED 111 336 IR 002 334

AUTHOR Porch, Ann
TITLE Preliminary Design for a Language Analysis Package

(L. A. P.).
INSTITUTION Southwest Regional Laboratory for Educational

Research and Development, Los Alamitos, Calif.
REPORT NO SWRL-TN-5-71-74
PUB DATE Aug 71
NOTE 16p.

EDRS PRICE MF-$0.76 HC-$1.58 Plus Postage
DESCRIPTORS *Computer Programs; Content Analysis; *Data

Processing; *Design; Electronic Data Processing;
Indexes (Locaters); *Information Retrieval; Item
Analysis; Language Research; Permuted Indexes;
*Specifications; Word Frequency

IDENTIFIERS Computer Software Specifications; *Language Analysis
Package

ABSTRACT
A series of computer programs to handle natural

language retrieval and analysis in a manner analogous to that of a
statistical package is discussed. The document presents an overview
of several language analysis projects currently underway, and of
several research approaches to problems in language analysis. The
manner in which the Language Analysis Package (LAP) could be used
with each approach is considered, and design specifications for a
state-of-the-art system are presented. A preliminary implementation
of such a system using programs currently available at the Southwest
Regional Laboratory is suggested, An overview of the design
considerations and algorithms for LAP is also included.
(Author/DGC)

* Documents acquired by ERIC include many informal unpublished *

* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *
* of the microfiche and hardcopy reproductions ERIC makes available *

* via the ERIC Document Reproduction Service (EDRS). EDRS is not *
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the original. *

r- SOUTHWEST REGIONAL LABORATORY
TECHNICAL NOTE

L1J DATE: August 18, 1971

No: TN 5-71-74

U.S. MINT OF HEALTH,
EDUCATION /LW
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN.
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY.

TITLE: PRELIMINARY DESIGN FOR A LANGUAGE ANALYSIS PACKAGE (L.A.P.)

AUTHOR: Ann Porch

ABSTRACT

A package of computer programs to handle natural language retrieval

and analysis in a manner analogous to that of a statistical package is

discussed. The document presents an overview of several language

analysis projects currently underway, and of several research approaches

to resolving problems in language analysis. Emphasis is presented on

the way the L.A.P. could be used with each approach. Design specifi-

cations for a package sensitive to the state-of-the-art are documented.

A preliminary implementation, using programs in SWRL's possession, is

suggested as a first step in the development process. An overview of

the design considerations and algorithms for the preliminary package

is presented.

this document is intended for internal staff distribution and use. Permission to reprint or quote from this working
document, wholly or in part, should be obtained from SWRL, 11300 La Cienega Boulevard, Inglewood, Lalifornia, 90304.

PRELIMINARY DESIGN FOR A LANGUAGE ANALYSIS PACKAGE (L.A.P.)

Introduction

For years there nave been "packaged programs" in statistical

areas. These programs offer generaliied computational capabilities in

a form and format especially suited to easy use by researchers whose

basic orientation is not that of Computer Science.
1

Researchers in

the social sciences, for instance, are able to perform complex multi-

variate regression analysis by computer without undergoing any special

training in programming or computer operations.

A language analysis package (L.A.P.) with a power comparable to

that of statistical packages would have considerable general utility.

As machines become more powerful and their use expands to include

more disciplines, it is increasingly significant for researchers in

many fields to be able to use the speed and versatility of the computer for

processing natural language text as well as numerical data. For exam-

ple, researchers doing studies of textbooks now suffer from the fact

that their work usually must be done by hand. In those instances where

computer technology is employed, a special purpose program is generally

written by the resident programmer, who may or may not have specialized

training in techniques of natural language processing. The results are

costly, both in time and money spent on processing with inefficient or

one-shot programs. Because such programs are limited in scope and

written for a special purpose, the researcher has little flexibility

available to him, and finds that a ;relatively minor change in his re-

search perspective may make the computer program unusable.

1
See Biomedical Computer Programs, W.J. Dixon (ed.), Univ. of Calif. Press,
(1970) 600 pp. and Statistical Package for the Social Sciences N. Nie et. al.
(ed). McGraw Hill.

2

In the past ten years, a great deal of work has been done through-

out the country and the world in natural language processing in fields

such as artifical intelligence, inforMation retrieval, machine transla-

tion, computational linguistics, and computer stylistics. Hundreds of

computer programs have been written, debugged, run, and then shelved

when the researcher went on to another project. A number of these

programs are the product of months of careful work by experts. Some

researchers, such as Borden and Watts at Pennsylvania State University,

are trying to develop generalized systems which handle many of the

basic tasks associeed with natural language processing. The design

proposed here suggests the use of the best of those existing programs

whose authors are willing to release them.

Such an approach has several advantages: ne package will reflect

the power of the finest specialized programming skill presently available.

The development costs will be minimized since the major programming task

will consist of interfacing the existing programs or subsections in a modu-

lar fashion under the direction of one control routine, rather than

developing each of the specialized routines from scratch. By carefully

constructing the package in a highly independent, modular manner,

individual routines may be easily "un-plugged" and replaced should a

more efficient or powerful routine be developed. Thus, the system will

he dynamic and open-ended, constantly updating itself to keep pace with

the state-of-the-art.

One obvious disadvantage to such an approach is the degree to

which it creates machine dependency. Since programs are written in

3

different computer languages at different computer installations using

different machines, some account must be taken of the problem which

will arise in "minor" modifications necessary to make them run at the

particular installation chosen for the L.A.P. development. Some care

must be taken to try to keep the entire package as machine independent

as possible. Certainly it can only be implemenC'd on a computer

which had the ability to compile and run most of the major computer

languages currently in use for language processing. One such installa-

tion exists at UCLA, where the IBM 360 mod 91 has compilers for the

following languages: PL/1, FORTRAN IV (G & H), COBOL, SNOBOL, LISP,

APL, 360 ASSEMBLER, ALGOL.

Certain hardware and system software requirements will also be

essential to the efficient development of the L.A.P. Among these are

an efficient system sort-merge routine, multiple tape drives, relatively

large amounts of direct-access storage and considerable available core.

Again, the UCLA installation is one example of a computer center which

is amply equipped in all areas.

Processing Features

A survey of the work currently being done in the field of lang-

uage analysis
2
reveals seven major areas of present interest and usage

which can logically be included in the L.A.P. Of the seventy-five

projects listed in the November, 1970 issue of Computers and the Humani-

ties, nine dealt with frequency counts, seventeen with KWIC production,

fourteen with semantic or content analysis, eight with statistics, thir-

teen with index production, six with retrieval systems, six with sentence

2
See Porch, Ann, "People and Projects in Natural Language Processing: A
Preliminary Bibliographic Directory;" TM 5-71-10, August 5, 1971, 107 pp.

parsing and six with miscellaneous items such as machine translation.

Several projects must be considered to fall into wire than one category.

Ratios in Linguistics in Documentation (Current Abstracts), Language

and Automation, and Computer Studies in the Humanities and Verbal Be-

havior are much the same, although with a slightly heavier emphasis on

retrieval and parsing.

An ideal language analysis package, then, should have the ability

to perform efficiently in each of these seven basic areas, and the

flexibility to operate in any manner desired, either sequentially

or concurrently. In addition, the L.A.P. should be modifiable at any

time, either for more effective general use or for a particular research

application.

Flexibility is perhaps the most impottant single consideration in

the development of such a package. The L.A.P. will be useful only to

the degree that it is adaptable to a variety of projects aad approaches.

The fewer constraints on the user, the more likely it is to be used.

To save researcher time and money, the L.A.P. should provide the user

with as many options as possible, allowing him to select precisely and

easily only the functions he requires. No section of the package should

be "called in" unless the researcher specifically requests it. He

should not be limited to simply an exclusive "OR" type selection, where

he can only chose to do either a KWIC or an Index, but should be able to

comirine any or all routines and subroutines in any fashion he desires.

He may, for example, want tb produce KWIC's on words occurring within

his inclusion list while simultaneously producing an index of all words

except those in his exclusion list and a frequency count of every word

6

in the text. He should be able to use only the retrieval aspect of the

L.A.P. or only the statistical portion without being penalized by the

fact he is using a package rather than a single program designed

specifically for his purpose.

Data Base Manipulation

Since a number of researchers may be making use of the L.A.P.,

the system should have the ability to differentiate among data bases,

selecting the base or sub-base from a large library of resident data

bases stored on magnetic tape or disc and making it available to the

researcher for his processing. For example, the entire library might

include the complete works of Shakespeare, the ERIC files, and all

California State approved first grade text books. Researchers using

the L.A.P. should be able to easily obtain an input file containing

only first grade reading books or only ERIC documents dealing with

reading.

Often, data bases which a particular researcher may wish to use

have been prepared elsewhere with each having different input conven-

tions and formats. For example, one data base might be prepared with a

logical record of 100 and in EBCDIC code, utilizing both upper and

lower case characters, while another might have a logical record length

of 72, in ASCII code, and be in upper case only with capitals indicated

by a "1" preceding the capitalized letter. The L.A.P. should be able

to handle virtually any input format and set of conventions that the

researcher can specify.

6

A researcher may want to use output from one step in the L.A.P.

procedure as input to another. He may want to select subsets of a given

data base, process each separately, then cross reference the results or

subsets of the results., He may want to do transformations on the

data as it is being processed, and use the transformed data as input.

L.A.P. should be able to save output for further processing and should

be able to save subsets of data once they are selected, in order to

save the expense of repeated retrieval processing. The researcher

should be able to present the system with a new file or retrieve and

use a file either he or another researcher has previously used or

created.

Modes of Operation

In addition to the flexibility of modularity, input formats and

file handling, the L.A.P. should take advantage of the best features

of two basic kinds of operation. An interactive, conversational system

can provide the, user high flexibility with little training. He inter-

acts with the computer by answering questions, provides the program

information about options he intends to implement for a particular run.

On the other hand, a non-interactive, "batch" processing environment

is significantly less expensive. For example, one Los Angeles service

bureau
3
prices interactive time at $360 per CPU hour, while batch

processing is only $150 per CPU hour. Language analysis prc.zessing re-

quires considerable CPU time, since most computers are not designed for

text scanning and string manipulation, but rather for numeric processing.

If the L.A.P. could provide interaction to collect the parametric

3
C & C Computing, 8939 S. Sepulveda, Los Angeles, California

7

information required for the run from the user, and batch processing

for the remainder of the run on the data base, it would be optimal in

both areas. It can do so by having an interactive module which sets

up the parameters for the batch run, which can then be scheduled to

run at a time optimal for cost considerations.

Certainly, the ne64 for such a package exists. The design pro-

posed here is not in any way meant to be a complete solution to that

need, but rather a tool with enough inherent flexibility to survive

after scratching the surface.

L.A.P. Design

An overview of the L.A.P. design is shown in the macro-flowchart

(See Figure 1). The design consists of function modules for each of

seven basic types of language analysis: frequencies, KWIC's, retrieval,

indexing, parsing, semantic analysis, and statistical analysis such as

type-token percentages, cross tabulations, etc. Once a pilot model is

implemented, work can begin on refinement and optimization, and further

programs of interest may be added. One such additional program is

FAMULUS, a bibliography generating program, in FORTRAN IV.

Sub-modules such as a routine scanning for words, a dictionary

look-up, or a routine for sorting will be included within the larger

modules. Each of these function modules will consist of a full-blown

program which will have subroutines or internal modules within it,

any one of which, like the main modules, may be "unplugged" and

replaced by a more efficient routine. There will be an additional

processing module to translate internal format conventions into those

of the input data.

9

8

The control of the program flow will reside in the control module,

the parameters of which will be set during the interaction with the user

provided by the interaction module. Any or all of the nine main pro-

cessing modules can be called into action by the control routine, and

the order and structure of the calling procedure need bear no resemblance

to the linear thinking of the user who interacted with the interaction

module, but can be structured in terms of machine efficiency for the

particular combination of calls required by the particular run.

For the purposes of a pilot study of the feasibility of the L.A.P.,

programs in SWRL's possession can be used. At the present time, the

program library includes programs for the following modules: frequencies,

index, KWIC, parse, semantic analysis, retrieval, dictionary look-up.

Several of the programs were collected from natural language specialists

throughout the country, several were written by the author. Coincident-

ally, all are in PL/1. In order to implement the L.A.P. design discussed

here, four routines need to be written, and sufficient interfacing pre-

pared to allow the existing programs to run in the control environment.

Following is a detailed description of the system design for the

modules which need to be written, together with comments on techniques

of interfacing them with several of the existing programs.

Interaction Module

The function of the interaction module is to act as an interface

between the user and the package. It may run as a front-end portion of

the total program, if the computer system utilized has interactive

9

capability, or it may run at a separate facility (such as on a SWRL

minicomputer) and prepare user control parameters to be appended to the

input data which will then be run in batch mode at the main facility.

It will ask the user questions about the parameters of the run he

is initiating and will utilize his answers to prepare computer compati-

ble control parameters to be read by the control module.

Since it is a separately functioning entity, it rill serve as a

training program for researchers using the package for the first time.

As each control parameter is compiled through the question and answer

process, a statement will be printed out for the user's information. If

the interaction module is running as a front-end portion of the total

program, the control statements will be passed directly to the control

module. If it is running separately, the control statements will be

output in a form appropriate for use as input to the main package pro-

gram, such as punched cards or magnetic tape.

After the researcher has used the interaction module for a while

he may find that he is sufficiently familiar with the requirements of

the user control language sc that he feels competent to prepare his own

control statements without computer assistance. Certainly, such user

expertise is one of the goals of the interaction module. As a teaching,

as well as a functional program, it will keep a running count of user

success and failure in the question answering process, and output such

information to a system programmer whenever it is polled.

The system programmer can use such information to modify and upgrade

the package for maximum success within the environment of the actual

researchers making use of the system.

10

Control Module

The function of the control module is to read a set of control

statements containing run parameters preceding the data for a particular

computer run, and to perform a decision making function for that run.

In any particular case, the user will specify which package func-

tions he wishes to use, as well as the particular output specifications

he has. For example, he may wish to produce a KWIC, a rank-ordered

frequency count and a parsing of his text. He will indicate his needs

by means of a user control language which will be runched and appended

to the beginning of his input data. The control module will read the

user control statements and compile a decision table which can be used

by the program during execution to determine which subroutines will be

called for that run. If the user has made syntax errors in his prepara-

tion of the user control statements, the control module will return

error messages to him which will enable him to correct his errors before

re-submitting the job. The user control language will be designed in

such a way that typical errors, such as the omission of a comma, will

be automatically corrected, allowing execution to proceed. In such

cases of automatic error correction, a message will be printed on the

output indicating the assumptions made by the control module, enabling

the user to check for possible misunderstanding of his intent. If the

program is run in interactive mode, these assumption statements will be

printed out before the program continues to further execution, and a

verification of correctness will be required from the user.

11

For each run, the user will specify the form of his input data,

such as record length, columns punched, location of variables (for

statistics module) and size of data base being used. The control

module will scan this information and set parameters for the run to

optimize usage of enmputer equipment and peripherals. Such para-

meters will control selection of I-0 subroutines, storage and access

subroutines, etc. Messages will accompany the output, indicating the

options used in a particular run. Provision will be made for user

override of the defaults.

The user will also indicate special conventions used in his data,

such as a slash preceding a letter to indicate upper case, or an MIPP"

preceding a character stream to indicate the beginning of a new para-

graph. The control module will evaluate the form of the input data,

decide if sufficient information is present within the data to allow the

requested function modules to perform, and determine whether the trans-

late module needs to be called to provide the interface of data and pro-

grams. Messages will be output to the user indicating missing information

which prevents execution. As in other cases, translation parameters for

the particular run will accompany output. If the translation module is

needed, the control module will pass the information contained in the

user control statements concerning input conventions to the translation

module. During execution, the control module will perform subroutine

calls according to the decision table established from the user control

statements.

Translation Module

The function of the translation module is to provide the interface

between the user's data and the data conventions required by the particular

12

subprograms he wishes to use. It may be viewed as a subfunction of

the control module.

Since it is extremely costly to convert a large data base to

another format, the translation module will work in the opposite

direction, converting the relatively few program conventions into the

format in which the data exists. Such a conversion will be accomplished

in the following manner.

Each of the function modules will have an array associated with it

which is accessible to the translation module. The arrays will each

have a dimension of 256, corresponding to the 256 possible 8-bit codes.

Each position in the array will hold an octal number equivalent to the

new value (the data dependent value) which should be utilized by the

particular function program for the current run. The translation module

will set up the arrays for those function modules being called by the

current run, using the old value (the function module dependent value)

as a subscript to locate the appropriate position within the array into

which to store the data dependent value. For example, if the KWIC pro-

gram is written to expect a slash ("P) preceding each character, which

is to be taken as upper case, and the user's data has been prepared with

a dollar sign serving the same function, an octal 133 (equivalent to an

EBCIDIC ur) would be placed in position 97 of the array associated with

the KWIC program, since 97 is the EBCIDIC decimal equivalent of a slash

("/").4

4

EBCIDIC codes have been used, since the UCLA computer facility is a
likely one on which to set up the package. The same algorithm could
be used with a computer which uses ASCII, with an octal 040 being
placed in position 47 of the array.

13

Each of the function modules will have a specially prepared

initialization subroutine which initializes each of the program-

dependent variables (such as a variable "capital") to the value con-

tained in the appropriate position in the array associated with that

module.

The utilization of the general purpose array will allow great

flexibility in those cases where a new module is to be added or

substituted to the system, since no modification will be necessary

to the total system in order to handle a completely different set of

input requirements.

Output Module

The function of the output module is to direct various portions

of the output to appropriate devices at the user's discretion.

In general, the default situation will be that all output goes

to the printer; however, user's may have particular needs or preferences,

and may elect to use another output device. For example, the user may

wish to save his output in some computer compatible form for later

input to some other program. In such a case, he may specify output to

magnetic tape, punched cards, or punched paper taps.

Another, although complex use of the output module, would be an

instance where the user wants his output to serve as input for another

module within the package itself. In such a case, the output module

would not only put the output onto a selected device, but also would put

the data into an appropriate storage location within the system.

Fi
gu

re
 1

c

O
U

T
PU

T

