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ABSTRACT

a

This volume records the' papers presented at a
Northwestern. University symposium concerning the articulation of
cognitive psychology with mathematics education. Piagetian theories
are described and extended to classroom applications in several of
the papers; other psychological theories such as information
processing are also discussed. All of the papers are concerned with
students' learning mathematics in an active. environment. Charles
Smock's paper addresses the ways in which students organize
mathematical ideas? Related to this question is Max-Bell''s paper on
the role of, applications in learning mathematics; Professor Bell
explores the question of whether concepts must precede applications,
oro, conversely, application is a necessary part of the learning of
concepts. Zoltan Dienes' discussion of finite geometries and Robert
Davis' consideration of computer-aysisted mathematics laboratories
carry this theme further. The extension of Piaget's research to
concepts ordinarily taught in the vat hematics classroom, and to the
development of children between the stages of concrete and formal
operations is discussed by Leslie Steffe. The'related issue of using
Piagetian tasks in educational diagnosis is also discussed by Davis.
An overview of psychological research as related to mathematics
education, especially in the area of problem sqlving, is provided in
Harry Benin's paper. (SD)
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information concerning mathematics education documents analyzed at

the ERIC Information Analysis Center for Science, Mathematics, and

Environmental Education. These reports fall into three broad

categories. 'Research reviews summarime and analyze recent research

in specific areas of mathematics education. Resource guides identify

and analyze materials and references for use by mathematics teachers

at all levels. Special bibliographies announce the availability of

documents and review the literature in selected interest areas of

mathematics education. Reports in each of t,ese categories may also

be targeted for specific sub-populations of the mathematics education

community. Priorities for the development of future Mathematics

Education Reports are established by the advisory board of the Center,

in cooperation with the National Council of Teachers of Mathematics,

the Special Interest Group for Research in Mathematics Education, the

Conference Board of the Mathematical Sciences, and other professional

groups in mathematics education. Individual comments on past Reports

and suggestions for future Reports are always welcomed by the ..d.Lor.
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Introduction

The articles 14-.4 this book are based on lectures which were given at
a two -day symposium, "Cognitive Psychology and the Mathematics Laboratory;"
that was held as part of the 1973 dedication year ceremonies for North-
western University's new School of Education building. The symposium was
jointly sponsored by Northwestern's Mathematics Department, School of
Education, and the Center for the Teaching Professions; and (in spite of
the worst snow fall of the year) the symposium was attended by more than
two hundred mathematics educators from throughbut. the country.

Rationale:

The rationale for the symposium grew out of discussions that were
generated during a conference that was held at Columbia University in 1971
(ref., M.F. Rosskopf, L.P. Steffe, and S, Taback's Piagetian Cognitive -
Development Research And Mathematical Education). Continued correspondences
between various participants in the Columbia conference indicated a growing
concern about the following issues.

1
1) While mathematics laboratories are gaining in fad appeal, precise mean-

ing for such an instructional technique has remained only loosely and ambi-
guously defined. Elementary or junior high school teachers who have attempted
to use such a teaching strategy have typically been forced to rely on a set
of "rule of thumb" slogans, none of which are valid in all learning situa-
tions. "Concrete understanding before abstract"; "intuitive understanding
before formalized"; "use activities, then symbols"; "use discovery rather
than reception methods"; each of these slogans refer to distinct instructional
variables which can occasionally speciiy contradictory approaches to teaching
if their range of appropriateness is not qualified and coordinated by at
least an embryonic theory of laboratory instruction,

2) Several cognitive theories (e.g., Piaget's) seem to offer at least
a framework for a theory of instruction that could be used to give direc-
tion to the laboratory movement. However, the trend in education has
typically been to use cogniiive psychology to help justify preconceived
instructional biases rather than to lock at a theory in order to derive
a consistent set of implications. Consequently, when a method of instruc-
tion is not effective in certain situations, the theory may be unjustifiably
discredited (or rejected) rather tnan being modified or extended to cope with
the new difficulties.

The above two problems art Artafnly not new to the history of curriculum
change. In fact, if the name "Pidget" is replaced by "Dewey," most senior
mathematics educators will be able to point out str'king similarities between
the "activity curriculum" movement of the 1920's and the "mathematics
laboratory" movement of the 1970's. However, this cyclic history of curriculum
change (i.e., enthusiastic adoption, followed by disillusionment, followed
155, rejection) indicates that theory building has not really been taken
seriously by mathematics educators.
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"Theory Building"-vs-"Theory Borrowing";

Perhaps it is unrealistic to continue. to search for "outside" theories
that caa be "lifted" (withoutmodification) and used in mathematics education.
Perhaps the emphasis should shift from "theory borrowing" td "theory building."
One of the main benefits to be derived from theory building is that the theory
seldom has to be completely rejected when conflicts are detected or when

difficulties occur.

In spite of the doctoral dissertation experiences that many mathematics
educators have endured, theory building does not necessarily have to conjure
up images of dull, "ivory tower" activities that make no real difference
anyway. For a beginning, theory building can simply involve organizing
a point of view that can form a basis for communication with other mathe-
matics educators. In this way, individuals can profit by (and build on)
the work of others. However, in order to avoid obvious errors and inconsis-
tencies, theory building inevitably attempts to describe the range of
applicability of its major principles, and to reconcile major conflicts
within its point of view. Consequently, when difficulties arise, a theory
should be more than a point of view that is simply accepted or rejected;
it should be an explanatory "model" that can (and must) be gradually modi-
fied and reorganized to deal with progressively more complex situations.

While the history of science is filled with examples to illustrate the
power of theory building, many mathematics educators would point out that
mathematics education is more of a profession than a scientific discipline,
and that "the best practice of the best practitioners is still better than
the best theories of the best theorists." however, this observation does
not mean that theory building could not be helpful, it simply reemphasizes
the point that theory building in mathematics education is in a very primitive

state. Certainly no currently available psychological theories (including
Piaget's) is ready for wholesale adoption by mathematics educators. In fact,

it seems unlikely that a loqta& theory will ever become available which can
be adopted (withou.. modification) by mathematics education. Even if a

particular theory seems to be especially relevant to the acquisition of
mathematical concepts, the mark el a useful theory is measured as much
by the questions it generates as by the questions it answers. For this

reason, every theory carries with it the seeds of its own destruction which
soon require it to be modified and incorporated into a more comprehensive

theory. But, ,ontin4ous modification in mathematics education' cannot take

place by continuously borrowing from outside mathematics education.

The recent boom in cognitive research has produced information about
Ce development of mathematical concepts which was simply not available. to
curriculum designers even ten years ago. The que4tion is whether the modern
laboratory movement can organize this info-mation into a theoretical point
of view which will help it cope with some of the major problems that contributed
to the downfall of its "activity curriculum" prototype of the 1920's,
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The Issues:

0

The purpose of this book' (and the'symposAlm on which it was based).
was to draw together a series of articles by some of the foremost authorities
concerning the relationship between mathematics laburatories and cognitive
psychology. An attempt was made to focus on issues which, have been neglected
in'the laboratory movement. These issues and problem areas include:
applications of mathematical ideas, concrete embodiments of mathematical
ideas, computer assisted laboratory activities, clinical diagnosis of
student errors, teacher training (using laboratory techniques), and directions
for future research.

It is the hope of the authors and editor that the articles in this
book will indicate some crucial problems and stimulate some useful ideas
which may contribute to the success of the mathematics laboratory movement
and to closer ties oetween cognitive psychology and mathematics education.

40f

Richard Lesh
Fditor
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An Overview of the Book

Richard Lesh
Northwestern University

Chapter 1: Discovering Psychological Principles for Mathematics

:nstructir,n.

Author: Professor Charles Smock has been associated with the Piagetian
school of cognitive psychology, and is currently the director of the
"Mathemagenic Activities Program-Follow Through" at the University of Georgia.
He has frequently worked with mathematics educators in the development of
instructional materials, and has conducted research concetning the development
of logical-mathematical concepts.

Talc: The questionNf how children learn cannot be neglected when
considering the question of how they should be taught. The way that a
child organizes a set of mathematical ideas may, or may not, correspond to
the way a textbook or teacher organizes them. Beginning with the two major
issues that constituted the rationale for Northwestern's symposium, Professor

Smock isolates important cognitive variables having to do with the way
children organize mathematical ideas, and he links these cognitive variables
to instructional variables which are basic to a laboratory form of instruction.

Chapter 2: Two Special Aspects of Math Labs and Individualization

Papert's Projects and Piagetian Interviews.

Author: Professor Robert Davis is beat known to mathematics educators
as the founder and director of the Madison Project: The Madison Project has
produced curriculum materials emphasizing the use of discovery exercises and
concrete materials. Professor Davis is currently the director of the
University of Illinois Curriculum Laboratories: In order to appreciate the
perspective from which Davis' paper was written, it is important to mention
that the curriculum laboratories are closely associated with the University
of Illinois Plato Project which emphasizes flexible and creative uses of the
computer in instruction.

Top.c: Professor Davis' paper actually considers two separate but
related issues. The first has to do with the diagnosis of student errors
through "Piagetian" clinical interviews; and the second has to do with
"computer assisted mathematics laboratories" which has been devised by
Seymore Papert at M.I,T.

One of the great possibilities created by the University of Illinois'
Plato Project was that detailed histories of formal mathematics instruction
could be stored for large numbers of individual students. Such information
could furnish exhaustive data about the ability of students to master a

given concept depending on whether or not specific "prerequisite" concepts
hat already been introduced. Given this possibility, and Professor Davis'
close affiliation with the Plato Project, it becomes even more impressive

"I
tl



to notice that he ha,, become an enthusiastic supporter of the "clinical

interview" technique of diagnosing students' difficulties. Apparently

Davis has concluded that such clinical techniques can furnish important

information to supplement the kind of information which can be gathered

by Plato.,

To further reinforce the potential ties between compulers and mathe-

matics laboratories, Davis argues by analogy: "If a perebn really wants to

learn French, going to France is better than taking a course; so, if a

student wants to learn math, it may be best to go to 'mathematics land'

(a place where mathematics is created and where communication takes place

in 'mathematics')." As an example of one such mathematics land, Davis sites

Seymore Paper..'s "Turtle Lab" (a computer assisted mathematics laboratory).

The turtle lab attempts to demonstrate that a computer (or "turtle") is a

perfect playmate to accompany the student through mathematics land since

it is a creature that only communicates in "mathematics."

Chapter 3: The Role of Applications in Early Mathematical Learning

Author: Professor Max Bell is well known for his work with mathematical

,
applications, mathematics laboratories, and innovative teacher training

programs. He is currently the Chairman Gi the Elementary Education Department

of the University of Chicago's School of Education.

Topic: Giving students real world experiences in order to learn

useful mathematical concepts had usually been one aspect of laboratory

approaches to teaching. A key problem with regard to the emphasis of mathe-

matical applications in the curriculum can be stated as follows. If It is

true that one must know a mathematical concept before one can apply it, then

due to lack of time and training, teachers may often have to neglevt applica-

tions in order to have time to simply "teach" the underlying concepts. On

the other hand, learning to apply the concept may be a critical aspect in

the initial acquisition of many mathematical c(ncepte. Professor Bell

distinguishes between "applications" and the kind of concrete "embodiments"

that Dienes discusses, and he argues that even though educators are beginning

to recognize the value of concrete embodiments, applications are still largely

neglected. He goes on to clarify the role that mathematical applications

might be able to play in motivating students and fostering the acquisition of

process objectives (organizing data, formulating hypotheses, estimating

answers, etc,)

Chapter 4: Abstraction and Generalization: Examples Using Finite

Geometries.

Author: Professor piton Dienes is director of the Psycho-Mathematics

Research Center at the University of Sherbrooke, Canada. Me has worked with

Jerome Bruner at the Center for Cognitive Studies at Earvard University, and

has directed major curriculum project, in Canada and Australia, and has been

closely affiliated with the current mathematics education movement in England.,



Topic.: Professor Dienes has formulated a theoretical point pf view
which is a significant extension of Piaget's theory. Dienes' "liarning
cycles" model of mathematics instruction uses concrete "embodiments" and
games to help children learn mathematical concepts. However, even though
some of'Dienes' principles of instruction (e.g., the multiple embodiment
principle) have gained recognition and general acceptance, otheraspects of
his theory have been largely ignored by mathematics educators.

In this book,Profeseor Dienes uses examples about finite geometries
to illustrate ebme of the processes which he believes are involved in the
abstraction and generalization of mathAmatical ideas.

Chapter 5: An Application of Piaget-Cognitive Developmental Research

in Mathematical Education Research,

Author: Professor Leslie Steffe has been one of the foremost mathematics
educators who has attempted to interpret and investigate the meaning of
Piaget's theory foi mathematics instruction. Professor Steffe is associated
with the University of Georgia.

Topic: In order to analyze the development of logical-mathematical
thinking in children, Piaget has concentrated his efforts on children in the
5-7 and 10-12 year old age ranges. Consequently, Piaget's research has
focused on the cognitive processes used by first graders (i.e., groupings)
and sixth graders (i.e., INCR groups), while neglecting children at inter-
mediate grade levels, For this reason, and since Piaget has avoided mathematical
ideas that are typically taught in school, it is only possible to cake relatively
crude inferences about how children's mathematical thinking gradually changes
from concrete operational mode of thinking to a formal operational mode.'

Professor Steffe argues that certain mathematical strucsures may be
able to describe the transitional phases through which elementkry school
children must pass, and that tAse mathematical structures may be even better
models of children's logical..mathematical thinking than Piaget's groupings
or INCR groups. If Steffe's hypotheses is correct, this fact could be
tremendously useful tq mathematics educators who would like to construct
curriculum materials which are consistent with the "natural" development of
logical thinking in child-en.

111.

Chapter 6:- Future Research in Mathematic' Education: The View From

Developmental Psychology.. /
Author: Professor Harry Beilin delivered one of the key addressee at

the 1971 Columbia Conference on "Piagetian Cognitive-Developmental Research
in Mathematics Education," and is one of the leading psychological authorities
who has attempted to interpret the relevance of developmental psychology tor
mathematics education.
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Presently, Professor Beilin is the editor of the Journal of Everimental

CBild Psychology, and is associated with Cle educational psychology and

developmental psychology programs at the City University of New York Graduate

Center.

Topic: Professor Beilin was assigned the awesome task of describing

the directions that future research must take in order to further establish

the relevance of cognitive psychology (and Piaget's theory in particular)

toward the, development of mathematics laboratory experiences for children.

Those mathematics educators who have maintained an interest in problem

solving strategies will be especially interested in Professor Beilin's

analysis of current teends in cognitive research.

Additional Presentation

The conference program contained an additional presentation by Professor

John LeBlanc, director of the Mathematics Education Development Center.

We regret that it wis not possible to include Professor LeBlanc's paper in

this book For a description of his presentation, Training TeacheralbsinK

Model Techniques, interested readers should write to: Professor John

LeBlanc, Mathematics Education Development Center, 329 South Highland Avenue,

Bktiomington, Indiana 47401.
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Discovering Psychological Principles
for Mathematics Instruction1,2

Charles D. Smock
University of Georgia

It is not that they can't see the solution -- they ca't
see the problem.

(Chesterton)

Science is not ?ust a c:-.1ection of laws, a catalogue cf unrelated
facts. It is a keation of the human mind, with its freely Invented
ideas and conLepta . The only justification for our mental structures
Ls whether and in what way our theories form . . a link with the world
of setiat impressions:

(Einstein)

The drive to lean an intellectually satisfying life is , . a product
of long process ,of education , . . (and) . , . io an autocatalytic aftair,
growing with the practice of it

(Bridgeman)

Currently, either the name Piaget or the term mathematics laboratory
is sure to attract the interest of mathematics educators. While labora-
tories ace gaining in fad appeal, precise meaning for such an instructional
technique has remained only loosely and ambiguously definea. Teachers who
have attempted to use such a teaching strategy have typically been forced
to rely on a set of "rule of thumb" slogans, none of which has been shown
to be valid in all learning situations.

"Concrete understanding before abstract;" "Intuitive understanding
before formalization;" "Use activities, then pictures, then symbols;" "Use
discovery rather than reception methods." All of these slogans refer tc
distinct instructional variables which occasionally specify contradictory
approaches to teaching if their range of appropriateness is not qualified
and coordinated by at least an embryonic theory of laboratory instruction.

1This paper is not for duplication or reproduction in any form without
the permission of the author.

2This report is based on activities supported (in part) by the
Mathemagenic Activities Program-Follow Through,-C.D., Smock, Director, under
Grant No. 0EG 0-8-5224478-4617 (287) Department of ..EW, U.S. Office of
Education:

I



Mathematics educators appear to have little interest in theory con-

struction and have a restricted view of the role of a mathematics laboratory.,

Theory is used to justity instructional biases and the laboratory is con-

sidered only an instructional device. Theory construction can help clarify

the different types of roles a laboratory has in mathematics education re-

search and practice. The mathematics laboratory should be a context for

research on problems relevant to specific aspects of the instructional pro-

cess (variation of teaching strategies and techniques) and on discovering

those conditions critial for mathematical learning, and development of

mathematical tninkirg in children, as well as fun and games for child and

teacher. If educational researchers expect to accumulate knowledge relevant

to theory based instructional practices, they must have "mathematics"

laboratories.

However, in my opinion, Chesterton's remark is quite appropriatef "It

is not that theVcan't see the solution -- they can't see the problem." We

have yet to identify the fundamental dirensions of educational and instruc-

tional problems racing the mathematics educator. Key psychological principles

for mathematics instruction and construction of a theory of instruction can

be realized only after this first step has been achieved, A body of knowledge

now exists in developmental-cognitive psychology that should have considerable

utility for contributing to more refined theories of and strategies for

instruction; for creating better school learning environments. One

approach to t1-1, immediate task, then, is to search for suggestions from

developmental psy,hology that pose relevant problems for mathematics educators

for developing tlIzorzes of mathemati :s instruction.

Mere is no pauctcV o( cN:ices of psychol4gical models available from

whi.71h to start the search kerlyne, Bandura, Bower, Scandura, Skinner,

Zuppac ano. of co,rse Piaget. Fach r33 proposed a set of ideas (relevant

to a tneory, of m,tnematics
re,iu:ring theoretical and empirical

study, The s:lection of any one aadei, nol..-v=n, brings with it -any hidder

presuppositions and is determined in no pact by one's own preconceived

notion regarding ::uman developrent, learning and eoumit'nn. As a group,,

these models represtnt a virtual w,rderiand of excitfr.g ideas. Each of us

can understand Alice's dile-ma better as we ev.A.ore their fAntas-irs (Suppes,

1c01).

A theory of 1nstruAter-<4t begin ,ith an adequate theory of learning

and/or cognitiYe development. No longer can we accept that statement as

"obvious" -- and go about the business of werating a multitude of metho-1,.

based on unorganized intuith,e rules constructed on the basis of inaeequate

knowledge of the process of cognitive development of children. Mathematics

educators need to return to the be6inning and ask not "bow do: «e teach--

but rather "how do children learn"'

M dern developmental psychology provides a necessary, but not .5,.ffi-

cient, endy of knowledge for identifying sore of the fundamental

constraints, ?.11.1
facts associated «ith the process of generating

of mathematics le,rn;.ag and instruction, Bar, to imply, and act 7.a lf,

psychology has become ta c.arhtmarics learrinzs cnlv A? fi.e., a!rer

Piaget), misses a fulica-enral int - ,ut the -elate, n c,f the .,,,-,ecce of



psychology to the sciene of educaticr, Ind distorte the history of Both.
On the other hand, I do not rant Flaget's theory cf cognitive development
abandoned without clew.: understanding of why. The historical pattern in
education and psychology seems to be one of enthusiastic adherence to a
relatively novel theory -- lth dicappuintmert and rejection following
close behind; The sisence of serious controversial issues underlying much
of the cerrent research in cognitive elevelopmert, and mathematics learning,
increases my concern that much that is valuable in Piaget's theory may be
lost. This symposium, perhaps, wil: provide evcre relevant set of issues
about which we can disagree than hale surfa-_ed 'o this point.

Many psychologists, ineleling myself, consider Piaget's clarification
of the necessary bases of theory ceestrecticn as important as his cognitive
developmental theory per se. Inplicitly, and explicitly, Piaget was greatly
influenced ray advances in theccetical physics (Bridgeman, 1929) during the
1920's and 30's. The funeamental Aspect of relativity theory which cannot
be ignored in psychological theoriring is chat conceptual jeugments are
always relative to the podition of the ohserver. Analysis of knowledge
acquisition requires a description of the operacionai basis of these acqui-
sitiens; i.e., the mEntel creyations of the individual that are associated
with the ccnstructien and -aentenense of cenaistent patterns (structure) of
his contiuually transfereine relatiens eith the physical and social envi,cn-
ments. Thus, Peeget's emleeisis en a le,nstreetivistic theory of knowledge

(Piaget, 1968, 1971; is indissoleb:e free his interpretation of operatieniem --
that is, the need for operati:nel analyeis ef the process cf knowledge acqui-
sition. "Reality" is constructed, tot ezinent in rind, man Dr stimulus, and
applies tc the child anc, :eeerac: tc 37MC interpretations Steveee,
1935), theorist alike.

The form of epIstemolog) cepeca) of Azericen pevehutoeists rc.fe Mtchel,
1971 has been nalee realism, and char eelentation ,,ae been quite useful.
We need not abardon it - ompletely, It snoula row be obvious that our
epleteleological preceneeptions, whatever they mav te, are part of out view
of the eeild. Kessen (1966) states the iss:c clearly: -The child who is
ernfioeted by a stable reality that can be des.:ribed adequately in the len-
gtagE contemee.rary physics, is a child very different from the one who Is
seen fa:ing phenomenal disorder from which he must consrruer a coherent view
uf reality" (PP, 58-59''

Arelysis of eognitlue learning and. development, then, is always "biased"
by the !ace of a context of preconceived ideas of reality (i.e., western cul-
ture) and a partl-uiar set of concepts or theory and selected data. Piaget's
apprcare tl the enalsis of the development of children's conception of space
previdee us an excellent example (Piaget, J. and Inhelder, 8., 1956). The
destgnatlon of a eunception of space toward which the child will develop,
i.e., that conceptior held by the educated aselt, is the critical first step.
&,1C2 the endpoint for thth arelopment nas been stated, observations and in-
terpreratiot of the child's Lel,avior are organized around these specifications.
Ohseivetions not congruent wits., and not struciurable in terms of the speci-
fled endpoint.., no matter how relihhle, cannot ht considered a relevant part
of development. This is not an example of bad science of inappropriate pro-
cedures let rzther illev-rates that cen:lusions about the child's cognitive
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,apviratcs ma, be oas'ad as much on the construction of reality imposed on him

in the fir5f ?lace as on the reliability and generality of the observations

we rage., VneCt:er we a'e engaged in instructional practices. or instructional

research, rheor) builcing, there is, for each of ut, a set of guiding

propsysitiJns that cpstitu,es a theory of learning and development. These

"fantasies' or "freely invented ideas and concepts" provide a particular
coberunt view of the developing child and of the critical determinants of

the learringprocesa,

Fiaget's eviutemolJgy, Pnd nis biological background, thus predispose
hire toward 5n operati:eal and structural analysis of the knowledge acquisi-

tion process :aaget, 1967; 1968; 1970; 1971). The essentials of his posi-

tion, require only brief review there. Knowledge is defined as invariance

under trarsfoimation (a most familiar concept to rathematicians).. The con-

structioa of invariances in organism-environment relations takes place
through the meration of two corplimentary biological adaptation processes,
teeth of whicr, are under tht: control of the internal self-regulating mec:ianism

of equilibration.

One of me two professes (assimilation) concerns the application of

existing cognitie pe:-tional systems (structures) to the processing of

envircnmertal (scnsor,i) data. External data or events are incorporated

into existing structures through bctb on-going physical and mental activity:

Such events and the products of new experience can be incorporated into the

cogn;cive structure only to the extent it is consistent with existing

fu- fictional structures.

Accommooatior is tie complementary process whereby adaptation occurs by

integration of existing structures with other functional structures and/or

by dtfferentiation of new structures undet confrontation with new experience%

Activities such as play, practical or symbolic, represent assimilative

activity; whereas memory, in the sense of invoking past events, and imitation

are accoftmodative since only existing structures are brought to bear on

particular events or set of events. Assimilation is an active constructive

process by which the data from experience are transformed and integrated

with an already generalized cognitive structure. Accommodative activity, on

the other hand, is associated with the process whereby application of existing

structures are brought to bear on particular new events or sets of events,

i.e., events or sets of events to which these structures have not been

applied previously.

Too often instructional theory and practice have emphasized assimilation

(i.e., "play") or accommodation (i.e., imitation) activity and neglected the

role of equilibration of these complementary processes for cognitive learn-

ing, Appropriate generalization of Piaget's ideas to instructional theory

and practice requires consideration of three additional factors associated

with Piagrian theory: "logic," operative vs, figurative thought, and

equilibration,
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Operational Structures and "Logic".

Piaget (1970) recektly elaborated his position that human beings possess
the same biological structures and functions that, in "exchange" with the com-
mon features of the natural world, generate mental (operational),structures
and functions characteristic of each stage of develOpment. Logical thought,
in the Piagetian sense, then is universal and of fundamental importance to
an understanding of development and learning. But, whereas Chomsky maintains
the human mind is "programmed" at birth with cognitive structures (i.e., mental
representation of a universal grammar), Piaget accounts for the universality
and stability of structures across cultures (Piaget, 1967; Goodnow, J.; 1962:
Goodnow, J. and Bethon, G., 1966; Greenfield, 1966; Maccoby, M, and Modiano, N.,
1966) in terms of the self-regulation mechanism of equilibration. Thus, Piaget
proposes that the mind'at ary point in development (i.e., life) is the unfinished
product of continual self-construction (1971); i.e., "logical" processes
are generative and not fixed. Structures are not perrormed, but are self-
regulatory, transformational systems with the .functional factcrs in that
construction being the processes of assimilation and accommodation.

Intelligence, the basis for knowledge acquisition, consists, then, of
two aspects: adaptation (with the complementary processes of assimilation-
arcommodation and the self-regulatory mechanism of equilibration) and organi-
zation consisting of sets of mental operations that form the basis for
maintaining invariance under transformation (i.e., knowledge). It follows
from these considerations that there is an inherent logic to development;
i.e., operational systems consist of elements and laws of combination of
those elements that form a "logical" closed system, These mental structures
are observable in the actions of the organism in its environment and. further,'
are describable in terms of formal or logico-mathematical structures.
Genetic psychological analysis of these structures is a necessary prerequi-
site to an understanding of thought processes. "No structure without
genesis, no genesis without structure" (Piaget, 1968). During the sensori-
motor period of development, action structures of the individual are re-
vealed in practical groups, i.e., the observable coordinated actions of the
individual (Forman, 1973). During the pre-operational period, the child con-
structs representations (figurative structures) which do not have the opera-
tional property of reversibility. Piaget was able to identify operational
structure* with clear mathematical system properties in children betWeen ages
five and seven. The discovery of a resemblance betwegn the structure of the
mental action system (reasoning or thought) and mathematical structures
(i.e., mathematical groups 4:,nd lattices) had a profound effect on Piagetfs
thinking, Thought, it would appear, has the same, or similar properties,
as mathematical group structures, both of which are governed by the same
internal logic.3

3Piaget never has tried to find a mathematical'"model" to 'fit" the' observed
facts of behavior; rather the mathematical aspect 'f flagella theory is unique
in that he assumes, somewhat a remiqescent of Boole's 'flews of thought'' an
identity between the inherent logic of thought processes and certain formal
mathematical systems that have become "externalized," through induLtive
reasoning, and guide the action-patterns of the individual.,
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The basic structuralistic approach of Piaget involves finding logical
mathematical systems that describe the thought processes of an individual.
Mathematical group and lattice theory offers algebraic systems (Piaget, 1957;
Flavell, 1963) for describing operational thought and Piaget has tried to
take maximum advantage of that approach. To review the fundamentals: a

mathematical group is a system consisting of a set of elements, together
with an operation (law of combination), which yields the following system

properties: (1) when applied to the elements of"the set, the combinatorial
operation will yield only elements of the set; no elements external to the set

can be produced; (2) each set contains a neutral (or identity) element that
when combined with any other element of the set yielde no change; (3) each
element of the set has an inverse which in combination with any element yields
the neutral or identity element; (4) the combinatory operation (and its inverse)

is associatN; i.e., [(n m) p n + (m + p)]. Piaget found it necessary

to generate a "grouping" model with additional properties' (i.e., both group
and lattice properties) to describe the concrete operational structures. The

properties of these psychological groupings are not derived from the properties

of things, but from modes of acting upon things. Thus, the elements of psycho-

logical glIZTIMave, themselves, transformations that characterize the indivi-
dual's operations as he acts upon incoming sense data.

The revelations emerging from relativity theory require a construction-

istic position with respect to the nature of knowledge; i.e., understanding
of knowledge acquisition requires a description and characterization of the
mental operations and operational systems applied to the data of experience.
Piaget's emphasis on structural analysis thus makes contact with the epis-
temological implications emerging from relativity theory; the biologists'
emphasis on development as the formation, differentiation and hierarchical
integration of functional (actiun) structures; and the mathematicians' em-
phasis on formalized systems that permit description of these structures.
The task of the developmental psychologist is to describe the nature of action
structures of the child at each point in development and, as much as possible,
to formalize those descriptions in terms of logico-mathematical terms.

The classical "conservation" tasks, if administered appropriately, form

one basi3 for generating observation of coordinated actions that appear to

reflect such mental operational structures. The available evidence appears

to support the possibility that such operational (mental) structures "exist"

both in terms of replicability of developmental trends in task solution and
training studies (cf: Beilin, 1971a), At the same time, neither psychologi-

cal nor ed...:_ational researchers have yet devoted sufficient attention to the
problera of the validity (i.e., internal consistency) of the grouping struc-
tures ;Clary, 1970; Green, D:, 1971), nor to the role of such structures in

learning (Berlyne, 1961; Bruce, 1971; Inhelder, Be and Sinclair, H., 1969),

beyond these classical situations,

Only recently have mathematics educators become interestec in Piaget's
views of fundamental logico-mathematical relations, such as his idbas about

the logical properties of number and space. Beilin (1971b) points out that

philosophers of science generally have emphasized the desirability of iso-

lating philosophical and logical systems from psycho- logical matters. Psy-

chologists, mathematicians and logicians generally have maintained this

position with respect to Piaget. However, a significant part of his pay-
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chological theory has mathematical and logical content which cannot be
ignored (Leskow, S. and Smock, C.D., 1970; Alonzo, M., 1967) by either
psychological or mathematics learning researchers. Mathematics educators
rightly should be directed in part, to the analysis of the logical and mathe-
matical veracity of Piaget's system and to the correspondence between the
characteristics of the psycho-logic systems to those logic structures derived
from purely mathematical analysis, Recent work from Steffe's laboratory
(e.g., Kidder, 1973; Johnson, D., 1971; Leah, R., 1971; Johnson, M., 1971)
represents an excellent beginning in this direction.

Role of Experience and Equilibration

Experience is not a unique factor in development according to Piaget.
Merely being exposed to particular experiences is conducive neither to
cognitive activity nor to developmental change. Children may or lay not
make discoveries in the course of play, and watching a laboratory experi-
ment (or conducting one) may or may not help a child acquire a particular
concept, Equilibration (Langer, J., 1973) is the central factor in struc-
tural changes whether the reference is to stage or concept learning. Equili-
bration is the process of intrinsic (self) regulation that balances assimi-
latory and accommodative processes, compensates for external and internal
disturbances and makes possible the development of more complex, hie .rchic-

ally integrated operational structures. Dieequilibrium occurs as the child
assimilates data from exchanges with the environment into existing mental
structures. As cognitive structures change to accommodate to the'bew in-
formation, equilibrium is restored: The equilibration process is one of
auto-regulation -- both of the transformations of information based on exist-
ing cognitive structures and of changes through accommodation. It any case,

the child must be exposed to environmental input that "engages" the func-
eional structures; i.e., he must be involved in a personal striving to under-
stand or "accept" the task as a "problem."

A basic question for instructional theory and practice is: What are
the processes and conditions that motivate and insure engagement or accept-
ance of the problem task by the child? The source of "interest" that promotes
striving for problem solution is contingent on assimilative-accommodative
activity but the specifics remain unclarified in Piaget's theory (cf: Mischel,
1972). What Piaget means by the "need" of structures to function is a
"primitive" factor not unlike the notion of competence "drive"-suggested by
White (1969), Within a structuralist framework -- if a structure exists, it
must function -- cognitive structures appear to have a dimension of openness
that make probable continual sources of disequilibrium from interaction of the
internal operational and/or figurative structures activated as well as by
exchanges involving novel environmental input: In any case, natural or lifelike -

contexts seem to provide excellent situations in terms of promoting cognitive
change. Despite lack of specifications, Piaget is quite explicit on his
position: "It is not necessary for us to have recourse to separate factors
.of motivation in order to explain learning, not because they don't intervene...
but because they are included from the start in the concept of assimilation...
to say that the subject is interested in a certain result or object thus
means that he assimilates it or anticipates an assimilation and to say that
he needs it means that he possesses schemes requiring its utilization"
(Piaget, 1959).



Cognitive conflict, or the awareness of a momentary disequilibrium,
represents a need to establish consistency (equilibrium) between the existing
schemas and/or novel information and is motivation for cognitive activities.
Both applying an existing schema and elaborating new ones in the course of
development stem from simply the overriding need to make "sense" ofpresent
problems by fitting them coherently into schemas "learned" in the course of
solving prior problems.

The notion that disturbances introduced into the child's systems of
prior schemas lead to. the adoption of a strategy for information processing
is the fundamental difference between the equilibration and associationistic
theories of learning (Piaget, 1957b). For associationistic theories of
learning: "what is learned" depends on what is given from the outside (copy
theory) and the motive that facilitates learning is an inner-state of some
sort of other. Equilibration theory holds, however, that learning is sub-
servient to development; i.e., what is learned depends on what the learner
can take from the given by means of the available cognitive structures.
Further, cognitive disequilibrium (functional need) is what motivates learn-
ing (i.e., questions of felt lacunae arising from attempts to apply schemas

to a "given" situation).

The child then will take interest in what generates cognitive conflict;

i.e., in what is eomeived as an anomaly. If the task demands are too novel
as to be unassimilable or so obvious as to require no mental work, the

child will not be motivated.

After the period of senstri-motor development, equilibration becomes a
process of compensating for "virtudl" rather than actual disturbances. At

the operational level, intrusions "can be imagined and anticipated by the
subject in the form of the direct operations of the system -- the compensa-
tory activities will also consist of imagining and anticipating the trAns-
formations to an inverse sense" (Piaget, 1967): Further, there need be no

external intrusions in order for the equilibration process to be activated.
For example, the acquisition of conservation concepts is, in Piaget's view,
"not supported by anything from the point of view of possible measurement or
perception -- it is enforced by logical structuring much more than by exper-

ience" (Piaget, 1967) It is the "internal factors of coherence -- the de-

ductive activity of the subje,t himself" that is primary: Equilibratio' we

noted earlier, is a response to internal conflict between conceptual sci...mas
rather than a direct response to the character of outside structure factors,
Equilibration is a matter of achieving "accord of thought with itself" in
the service of establishing accord of thought with things.

Unfortunately, little empirical investigation has been oriented to ques-
tions of situational determinants of curiosity (Smock, C.D. and Holt, B.C.,
1962) of children at various sti.ges of development and with different
experiential backgrounds; 1.e., what children recognize as problematic, and
what kinds of incongruities are sufficient to motivate change in concepts

and/or beliefs.,
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Operative and Figurative Thought

A ,onsiderable amour of confusion concerning Piagetian theory, and its
Implication for both research and instructional practice derives from a
failure tc consider the figurative and operative aspect of intellectual func-
tioning. In'general terse, the distinction is between the selection, stor-
age and retrieval, and the coordination and transformation of information
(Inhelder, et. al., 1966). More specifically, the development of any se-
quence of psychological stages, a la Piaget, consists of an interactive
process of equilibrating functional structures of the organism with the
event-structures of the environment. Figurative and operational processes
represent two types of functional structures necessary to account for
knowledge acquisition, development and learning. Figurationh are defined as
those action schemata that apprehend, extract and/or reproduce aspects of the
physical and social environment. Such action schemata include components of
perception, speech, imagery, and memory. Figurations and associa&cl acts are
based on physical, as contrasted to logico - mathematical, experience and con-
stitute the "empirical" world; i.e., empirical truth is no more than the "re-
presentation of past events in memory."

Operatioqp, on the other hand, do not derive from abstractions from ob-
jects and specific events; rather, operational knowledge is derived by ab-
stractions from coordinated acikons on those events. Thus, operations are
those action schemata that construct "logical" transformations of "states."
Such logical systems of transformations operate either upon representations
Of events, or on the cognitive system's own logical operations, i.e.,
reflexive operations:

Figurative and operative structures are two parallel streams with their
genetic or developmental origins in the same source (Piaget, 1967, 1968;
Piaget, 1970, 1971) -- the sensori-motor structures. Logical (operational)
structures are not generated from the figurative schemata, i.e., not from
perception, memory, etc. Reciprocally, figurative structures do not derive
from operative ,schemes but from the representations of past states of events
derived from sical experience. And most importantly, figurative struc-
tures do not de ive from each other, but have unique bases in sensori-motor
schema. Image , for example, is a derivative of deferred sensori-motor or
imitation (Piag t, 1951; 1952; 1971) and not perception,

The postulation of these quite distinct functional structures is one
of the cornerstones of Piaget's theory of knowledge acquisition and cogni-
tive development (cf: Furth, 1969). Both the source and function of the
structures are theoretically distinct. Operative structures derive from
abstraction from coordinated actions, figurative structures derive from t

sensort-motor and perceptual activity. Operative structures produce "lo -

cal" transformations (conservation of invariants) whereas figurative stn c- .

tures reproduce sensory-perceptual consequences of environmental configu
tions The variant operative structures of the intuitive, the ..oncrete, and
the formal levels form the discontinuous sequence of stages of cognitive
development. On the other hand, figurative structures are static and
dependent directly upon the data of experience (sensory-perceptual consequences
of stimulation), Thus, Piaget makes the fundamental assumption that all
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knowledg acquisition activity is constructive, but the construction of
figural representations is quite a distinct process from that constructive

activity at the operative level,

Logically, there are three possible relations between the figurative
.nd operational structures. First, the may be unrelated and, if so, as
mentally segregated functional structures, do not set limits on the func-

tioning and development of each other. Second, psycholokical phenomena
might be reduced to one of the types of structures.. Lang& (1969) suggests
that subjective idealists, perhaps, try to reduce psychological phenomena
to assimilatory operations; and there are many theorists uho try tcereduce all
mental phenomena to accOmmodatory figurations while naive realists propose

that such processes are figurative; i.e., perception is knowledge (Michotte,

1943; Garner, 1962). Third, and the one proposed by Pi.get, is that of
partial communication between figurative and operative structure within the
constraints of assimilation and accommodation processes.

The relations, and the potentialiform of interaLtion
presented in Figure 1 below.

Figure 1

Relations of Two Invari,,nt Processes
of Adaptation and. Two Types of Cognitive Structures

0

Assimilation

A

Adaption

Accommodation

C

B

Environmental Events
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Langer (1969) has examined the organizational and delielopmental (i.e.,
transitional) impact of accommodatory figurations on assimilatOry operations
(See B, Figure 1); i.e., how does the child mentally extract and/or represent
empirical information about physical and social objects and the consequences
of that empirical activity for the construction of logical concepts. Imita-
tion of an observed event, comparison of one's predictions with/the outcome
of a physical deformation, comparison of observation or appearance with the
way things really are, represent different modes of introducing conflict and
cognitive-structural change. Generally, his findings are confirmatory, but
not definitive with respect to the Piagetian hypotheses. In any case, if
the development of each type of functional structure has implications for,
but not direct causal effects upon, the functional structure and development
of the other, current paradigms for the study of learning mathematical con-
cepts will require considerable modificatiog. The work of the Geneva group
mentioned earlier concerning, for example, /*wry (see A, Figure 1) and Langer's
(1969b) analysis of the impact of accommodatory figurations (i.e., imitation,
etc.) on assimilatory operations represents beginni .gs in this direction.

Analysis of learning, in the context of Piagetian theory, poses require-
ments for much more detailed empirical analysis than has been generally
recognized. On the one hand, researchers attempting to assimilate Piaget to
their own conceptual structures concentrate on experimental procedures whereby
the subject is required only to remember event contingencies (e.g., response-
reward associations or "a" follows "b" :ollows "c"). Such procedures certainly
produce change in "behavior" (e.g., Gellman, 1969; Mehler and Bever, 1967
Bever and Mehler, 1968); however, failure on transfer tasks, and a lack of
persistence of task solution over time indicates that a figurative process
underlies the change in performance. On the other hand, the atcommodators
(i.e., those more favorable toward Piaget's theory) often fail to generate
experimental paradigms that adequately differentiate between the figurative
and operational knowledge (Wallach, L. and Sprott, 1964) or assume that
"external disparity" (appearance vs, "reality") is sufficient to establish
disequilibrium (conflict) between logical necessity (derived from the opera-
tional structures) and perceptual pregnance (cf: Bruner, 1966). For example,
situations designed to establish disparity between the child's predictive
judgment of the outcome of a transformation and his observation of the
actual outcome may, in fact, generate little or no cognitive conflicts
Certainly, a most parsimonious explanation of many negative findings in
training studies is that such disparity is external to the child's logical
operational system.

Implications for Learning and Instruction

In some form or other, the goals of American educators have always been
stated in terms of "optimizing" the intellectual, social, etc., development
of individual children; a vague statement, obviously, and subject to a variety
of interpretations. Whatever imperatives that goal implits, the educational
and instructional processes must be based upon an understanding of the nature
of psychological development of children. Whether we want to produce individuals
who will strive to maintain the status quo; individuals who desire and accept
change; people content to be technologists (i.e., skilled labor) ;' or problem
solvers; it is necessary to understand the basic processes of child develop-



ment and the conditions that permit "quality control of the product" (if

I may use current jargon).

The issue is important because science (i.e., thebry and research) can
only yield "what is" and not what "ought to be." We are fortunate, in one

sense, that the science of psychology (and of pedagogy) is young and imper-
fect; the proposed modhls and methods for educating young children are no
less imperfect and are influenced as strongly by current social thought and
individual philosophical biases, as by an understanding of the lays of psy-

chological development, Such a state of affairs, while producing wasted
efforts, spurious claims, more rediscoveries than discoveries, etc., can at
least provide time for the development of articulated sets of societal
goals for education,

The best that can be hoped for, under the current conditions of our
knowledge, is development of preliminary "models" for instruction. Such

models can provide, at least, a schematic set of principles and guidelines
for constructing a learning environment consistent with the admittedly inade-
quate theories and knowledge of psychological growth. However, we should try

not to violate recent advances in theory and known laws of child development.

Piaget (1961b) has rightfully declined to gener-lize his theory to

specifics for educational practice. He has, however, suggested a theory of

knowledge acquisition which has contributed to clarification and integration
of a particular set of propositions concerning psychological development
(many of which have a long history in child psychology and education). If

we accept the fact that his theory of cognitive development is not 'et a

conceptually or empirically "closed system," several dedtions concerning
the construction of "optimur" environments can be generated.' A modest attempt

in this direction has been made at the University of Georgia Fallow Through

Program (Smock, 1969). The initial stage of that model is based on an

attempt to generate a set of instructional principles based on our under-
standing of Piaget's theory of cognitive development. Though many of the

basic propositions upon which the model is based are not inconsistent with
Piaget's thinking about knowledge acquisition, the interpretation is that of

the modeler. It is influenced, therefore, by numerous sources of bias,
misunderstanding, distortions, etc.., that are inevitable under conditions
where abstract theoretical concepts are not represented in unequivocal

abstract or logico-mathematical terns.

It now is clear the child can no longer be considered a pass4ve recipient
of stimdlation, nor can external reinforcement be considered a primary factor

in learning and behavioral change. The introduction of "mediation responses"
(verbal or otherwise) is not able to account for the complexities of observed
changes in behavioral organization during the course of psychological growth

during childhood. Many psychological theorists have adopted, in one form or

another, the idea that human organisms actively respond to tleir environment
and that the patterning of these responses reflects a "plan" or "set of cog-

nitive operations." In other words, the child interprets environmental event

input, but these interpretations are controlled by his capabilities for gen-

erating rule systems for coordinating and transforming the input to "match"

a scheme, plan, or a mental operational structure. Analysis of the "rule
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sys ms" characterizing cognitive development, thinking, and learning requires
spec fications of the properties of, and antecedent conditions for, acquisition
and ructuralization of environmental events (mental representation/figurative
knowledge) and of mental actions (operative knowledge) involved in coordina-
tion and transformation of those representations. The study of the development
of rule systems defined as such is coincident, then, with the systematic
investigation of the "inherent logic" of development of operational and
figurative tnought processes.

Intelligence, first of all, is considered no more, and no 1?ss, than
biological adaptation; i.e., adaptation at any level of complexi:y reflects
"intelligent" activity. "Knowledge" consists of two types (pi functional
structures (figurative and operational) that :onsttuct invar.ants in organism-
environment relations, These invariants are derived from abstfactions
from objects (physical experience) In the first case, and frcr coordinated
actions (logico-mathematical experiences) in the second. Inteligence, then,
refers to both types of cognitive learning and development and is defined in
terms of functions (thus, thinking, reasoning) rather than content (i.e.,
words, verbaI responses, associations, etc.). Analysis of coditions for
congitive learning and development must begin with the identification of
components of behavioralbrganization (structure) that reflect particular
coordinated action-modes of the child as he is confronted with changing
intrinsic (maturation and prior cognitive acquisitions) and extrinsic
(physical and socioli isticl6factors.

Cognitive structures of systems cf coordinated (mental) actions proceed
through invariant stages of structural change with autogenetic deyelopmerr.
The successive differentiation and hierarchical integration of these cogni-
tive structures permit the individual to ,ne with increasingly c(-plex
social and physical "real4ties." The process of cognitive development in-
volves the changing characteristics of transformational rule systems (virtual
and/or cognitive operations) characterizing tht child's rode of adaptation,
Neither the maturational structure of the organism nor the "teachirg"
structure of the environment is the sole source of reorganization; rather, it is

the structure of the interaction between the child and the environment that
provides the basic intellectual development, i.e., 'cnstruction by the child.

cJnditiuns for structural' organization and reorganization require:
a) an optimal degree uf discrepancy between environmental-demand structures
and the functional-psychological structures -- botl, figurative (i.e.,
perceptual activity, images, memories) and operative; and b) social-learning
conditions that de7.and "spuntanecus" ur ",-onstfu,tive" activity by the .hild.

Several impli,ations fur tht. construction of theoreti,allv appropriate
learning environments are implied in these general prirLlples. First;
structural change, for exa-pie, depends upon erperienc.e but not in a way tit
traditional learning theorists conceive experience; i.e., learning interpreted
as pairing of speri-fic objects and responses, direct instructions, modeling,
etc. gather, the functional genetic view holds that the cognitive capacit es
dete:nine the effectiveness of training. For example, ahilitc to solve cl,ss
inclusion problems implies that the child alreaci, has the requisite single



and multiple classification operational system for classes (i.e., combination,

reversibility, etc.) in addition to appropriate information selection,

storage, and retrieval abilities. At the same time, while experience is

necessary for developmental progress, prid appropriate enrichment of the

environment can accelerate such development, :experience cannot change the
sequel:ce, structurin:! or emergence of action a,ades in the process of develop-

mental change. In other words, organization of experience is not provided

solely by the environment cor by the internal structures of the child.

Second, the structure of learning environment also must be considered

relative tc two frames of reference The cognitive development of the child

first must be analyzed in terms of the operational systems controlling his

interpretation of environmental events. Such operations, or "transformation

responses," are expressed behaviorally in the coordinated actions of the child

as he is confronted with changes in the physical and social world. For example,

the mental operations of associativity, reversibility, etc., can be inferred

from the manner in which the child attempts,,to solve problems involving regular

environmental contingencies (causality), unaeistanding of spatial relations.

etc. The content of substantive areas (e.g., science, mathematics) then must

be analyzed and structured in terms of their own logical sequence and inter-

lockingness with other contents. Certain concepts in the physical sciences,

language, and mathematics, for example, each have their own inherent sequence

and structure. Thus, certain concepts and information are necessary precursors
to subsequent understanding of higher order concepts. Further, the inter-

locking nature of these "contents," in some cases, may be independent of the

psychological state of the child. Optimal educational conditions require,

then, thorough understanding of the psychological-cognitive capacities of the
child as well as the sequential structuring of concepts within a particular

curriculum area

Third, the striving for equilibration between assimilatory and accommo-
dative processes under both intrinsic or extrinsic pressures underlies the

adaptive process. Optimum conditions for structural reorganization (learning

in the broad sense) require disequilibration. This condition is met when there

is an appropriate "mismatch" between the cognitive capacities of the child and

the conceptual dema^d 'evel of the learning task. Too little or too much

"pressure" results in over-assimilation or over-accommodation tendencies

respectively, but does not promote developmental changes in cognitive structures.

Fourth, facilitation of learning requires analysis of two levels of

cognitive functioning -- figurative and operative processes. The first

(i.e., figurative thol.ght) is most emphasized by those theorists (particularly

behaviorists) recommending a direct tuition approach to instruction. The

operational theory of intellectual development does ;1st deny the value of

"provoked" learning (i.e., through imitation, algorithms, etc.). Rather, it

must be recognized that such learnings are considered limit4d because of lack

of generalization or transfer to new situations and because the basic (i.e.,

operational) intellectual processes concerned with problem solving and

reasoning are not much affected.

While there Is some doubt that much acceleration of structural reorgani-

zation is possitle through environmental enrichment, early childhood education
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sho'Id provide opportunities for utilization of relevant cognitive operational
structures. Generalization of conceptual learning across content areas
rather than the building of specific knowledge and skills (e.g., a large
vocabulary) should be emphasized since the latter cannot directly accelerate
operational system change and may, in fact, retard development of these
"deeper" competence structures.

In any case, the nature and variety of tne child's "exchanges" with the
environment need to be considered in educational planning. The nature of
the interaction refers to the relative emphasis on autogenesis (self- directed)
as contrasted to exogenesis (environmental or teacher-directed) structure of
the learning environment. The position of the functional genetic position
can best be summarized in the old adage -- "You can lead a horse to water,
but you can't make him drink - unless you feed him salt." Thus, the task
of the teacher is to engineer an educational environment consisting of curri-
culum materials, social interactions, and directed activities that provide
appropriate "salt" for each child. Sequentially structured curricula could
be designated to provide an optimum degree of environmental structure and
level of conceptual material to permit appropriate balance of assimilatory
and accommodatory activity.

The amount of interaction (i.e., enrichment) refers to the variety of
structured curriculum contents which are relevant to the child's physical,
social, and symbolic experiences. The interlocking nature of substantive
curriculum areas makes it possible to provide a variety of experiences rele-
vant to acquisition of the cognitive "products" that provide representation

of the environment (memories, vocabulary, etc.) and, at the same time, to
facilitate the development of coordinated rule systems associated with cog-
nitive operational development. For example, analysis of the visual environ-
ment (attention or observational skills) as well as cognitive operational
structures (e.g., conservation of area) can be emphasized in science, social
studies, mathematics, art, etc.

The engineering of an educational or "learning environment" based on
tne preceding consideration necessarily involves some specificetion of:
1) the child's, cognitive developmental level; 2) the physical structures,
including curriculum materials; and 3) the social or inter-personal structures.
The organization of these "elements" should be such that the equilibration,
between different cognitive systems and/or between intrinsic functional
structures and environmental structures, is acnieved. Thu., sequentially
_structured sets of curriculum materials and of social interaction situations
are necessary to provide the "pressure;" necessary for learning (adaptation),
A variety of specific learning environments needs to be available to maximize
the probability of each child finding activities that attract or "trap" him
into interacting with the physical (e.g., science) and social (e.g., social
studies) environment at both the behavioral and symbolic levels (e.g., art,
role playing, music). Finally, the physical and social environments should
be arranged so that considerable freedom of movement, within the structure
of a variety of contents, is possible, i.e., "a modified open-structure
classroom," A"careful balance between relatively high and low structured
learning situations and between group and individual learning activities
should be maintained.



-16-

C

The Hathemagenic Activities Program, a model developed in the con-

text of enriching the Jducational environments of economically aeprived

children", is based on three explicit principles derived from the considera-

tions discussed above. Specifically, the MAP principles of change -- hhether

the target for change is the individual organism (child) or a complex_social

system (e.g., Local Education Authority) are based on the above assumptions

concerning the role of experience in learning and development. First, the

source of motivation, to change is provided by a discrepancy (disequilibration)

between different conceptual systems (ideas) and/or between previously acquired

conceptual systems and environmental task demands. Thus, an appropriate mis-

match (H) is necessary to generate exploratory activities and insure the

individual has the prerequisite conceptual basis for learning higher order

concepts.

Second, since coordinated actions (practical and mental) are the bases

for the knowledge acquisition, the learning environment moat he structured

so that specific tank demands include appropriate practical, perceolual, and

mental activity (A)

Third, the learning environment must include provisions for personal,

self-regulatory (P) constructions. Knowledge acquisition involves _onstruction

of invariants from properties of objects (physical experience) aid from the

child's actions on objects (logico-mathematical experiences). Optizal onii-

tions for facilitating new "constructions" (concepts learning+ invol*e a

balance between tasks that are highly structured (in which tEe ch:li mer61.

"ccpies" or imitates the correct solution) and tasks that permit the child to

generalize and discover new applications of his concepts. Practical:y, self-

regulation implies a variety of task options available to the child, the number

of options may well vary with the nature of the task, leve. of de-..1-:emenc,

and many other factors. However, MAP proposes that optiaac -- in terms of

level of task difficulty, mode of learning, and choice ^f actl..ity itself --

are necessary ingredients of developmental charge. -.:hetlIcr the target be a

child, a teacner, or en educational system.

The implied educational model requires sigv:ificant cn.ar:ges lu the

teachers' role definition and teaching strategies as as tactt(s).

The need for sensitivity to the child's capabilitiet, and ,h= structurinc or

learning situations that promote self-regulated, 'c:sustr...ctive" kncvlecie

acquisition, together with thorough acquaintance with svetlabl teehnriopcal

aids, require an "educational engineer" in the best sense cf 1,-.4t term.

4Mathemagenic Activities Program A Model for Early Childhood rdocetin,

prepared by C.D. Smock (A preliminary statement of the conceptual 'oasis f:r

the Mathemagenic Activl ties Program for the Follow Through Program spoerred

in Terminal Report, Research and Development Center for Early Educational

Stimulation, University of Georgia, August, 1970),
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Two Special Aspects of Math Labs and Individualization:.
Papert's Projects and pisletian Interviews

Robert B. Davis
Director, The Madison Project

University of Illinois (Urbana)

Math labs and individualization have moved into a new era, For the
next few years., the important new emphasis will be on "Turtle Labs", PLATO
terminals, and new diagnostic procedures,

What Is Old

During most of the decade 1963-1972 the effort toward "math labs"
and manipUlatable materials in the United States was in the direction of
learning how to use "lab" and "exploratory" approach in school mathematics.
This involved learning about appropriate physical materials, from Cuisenaire
rods and geoboards to pebbles, bottle-caps, and string, it involved
identifying worthwhile explorations that students could undertake (ss in
the formula for the number of moves in the Tower of Hanoi puzzle, or in
Pick's Theorem for geoboards, etc.); it involved developing the strands
of mathematics (such as graphs and functions) that could make the lab
explorations fruitful; it involved re-consideration of classroom layout
(e.g., creation of a "math lab corner") and a time schedule that would
facilitate a hands-on approach; and it involved developing an explicit
rationale to explain to outsiders what this was all about. The recent NCTM
Annual Meeting in Houston, Texas, was dramatic testimony to the completion of
one stage in this historical process among the commercial exhibits, more
space was devoted to manipulatable materials than to traditional textbooks,
and the major excitement was around manipulatable physical materials,
computers, self-study machines, and so on.

The "how-to-do-it" decade drew heavily upon the work already done
in Great Britain; the general impact of British programs is well-summarized
in two books by Edith Biggs, one of the leaders of the British movement:

The Schools Council, Mathematics in Primary Schools,
Curriculum Bulletin No. 1, London, England,
Her Majesty's Stationery Office, 1966,

Edith Biggs and James MacLean, Freedom to Learn.
An Active Learning Approach to Mathematiea.
Addison-Wesley (Canada), 1969.,

Another excellent book, covering virtually every aspect of the "experience"
approach to learning mathematics is:

E.M. Williams and Hilary Shuard, Primary Mathematics
Today, Longman, 1970,

Among observers of the American scene, Silberman has viewed this
movement with approval (Charles E. Silberman, Crisis in the Classroom.

is The Remakieg of Amertcsn Education. Random House, 1970. Cfe especially
pages 296-297.), and Morris Klein has almost completely ignored it
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(yhy Johnny Can't Add. The Failure of the New Math, L,t. Martin's Press,

New York City, 1973):

As the use and rationale for math labs developed further, many ed.icators

were led to "open education." But -- while most of this work has not vet

been effectively implemented in most schools -- on the research level this
is now 411 "old hat", at least in the sense that excellent programs do
exist in sonde places (e.g., in the Bank St, et School in New York City), and
excellent written discussions already exist (cf. Sections C and I) in the

bibliography). f

What Is New

But the point issthat we are entering a new era, and the task oeforp
S is no longer the light-hearted discovery of deli,,htful prActices in

England, but rather the job of loosing beneath the sur,q.e Ilimpse the

foundation we are building on, Consequently, the present note deals with

three specialized topics that are s,,,gestive of the tasks that face

nowadays. The first of these Is the FLATO project the second is Se'nodr

Papert's use of "Turtle Labs" in elementary school mathematics, which tm
point to a wholly new approach both to curriculum and to learninc, experiences
and the third is an adaptation of Piagetian interview proc,,2 rps h. lack

Easley, Stanley Erlwanger, and their colleagues, which has des'' strated a
quite unprecedented capability of revealing a child's ideas about lathematics

The children's ideas, as thur identified, are far different from what

anyone suspected., In fact, as discrepancy is potentially the most
revolutionary thing in mathematics education today, and surely one of the

most interesting.

PLATO

The PLATO Project at the University of Illinois in Urbana-Champaign is
the largest educational computer system in the world. Its Director is

Professor Donald Bitzer, a twentieth - century Thomas Edison who has person-
ally invented many new hardware and software devices that make the system
simultaneously one of the Most flexible, yet also the cheapest, of the

available computer systems. Earlier versions of the system -- called

PLATO I, PLATO II, and PLATO III -- have provided computer-based instruction

at'the University of Illinois for the past twelve years. fhe greatly

improved PLATO 7q system is now being phased in and -- besides continuing
to provide university level instruction -- will soon begin to offer
instruction in several commnity colleges, and in reading and mathematics

at the elementary school level,

This is perhaps not the place for a detailed description of the uses
and rotentfalitiPs or PLATO, but at a more modest level it is surely true
that a PLATO terminal in the corner of the room can be Che most important

item it, a math lab, and a cluster of PLATO terminals can provide the best
delivery system for individualized programs that presently exist. ror

information write to, Computer-based Education Research Laboratory,

University of Illinois, Urbana, Illinois 61801.
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Papert's "Turtle Labs"

An entirely different use of computers (and other technology) is
being developed by Seymour Papert and his colleagues, at the Artificial
Intelligence Laboratory at M.I.T. Papert does not use his computers to
"teach" children anything; rather, he uses the computers to provide a new
kind of environment that a child can live in. Papert's rationale is subtle
and profound, and cannot he reduced to a few brief propositions -- but
pethaps some brief remarks can serve to suggest Papert's analysis, "Suppose",
Papert says, "your,daughter takes a course ortwo in French. Will she
learn to speak French" "NO", he answers, "probably not -- not really.
But does this mean that she is somehow unable to learn to speak French'
Clearly not, for if she grew up in France she would speak French, quite
fluently." This, then, gives us an important clue -- perhaps, instead
of taking a course in French, we should live, for a time, in France, Perhaps,

instead of taking a course in mathematics, a child should live for a while
in Mathland. But where is Mathland? It is where children can talk with
Mathematical Beings about matters that interest children -- using, of
course, the language Mathematics.

Well, where on earth is that'

Nowhere, Papert replies, unless webuild it somewhere. He has built
it somewhere -- specifically, in schools in Lexington and Concord, Massachu-
setts, and in Exeter, England, The Mathland that Papert has built he calls
a "Turtle Lab." In it there are music: boxes that produce music, under
computer control. There are electric typewriters that type whatever the
computer tells them to type, TherAsare some electrically-operated wheeled
vehicles that role around the floor, following orders that they receive
from a computer, There is a television tube ("CRT") that displays what-
ever tihe computer orders it to display. There is a marionette show where
the choreography is determined by the computer.

And who tells the computer w"at to do' The child, of course! But

since the computer speaks Mathematics, the child must converse with the
computer in Mathematics.

Notice that the child does NOT first "study" mathematics, then "apply"
it to the computer, No r" -e does he first study English, then apply it to
telling his p.cents that 1. wants a bottle, or the blanket to cover him up,
He begins using English -- and, in the Turtle Lab, mathematics -- to express
himself. A child's initial learning of English comes from ilia it to
pursue worthwhile goals, Similarly, in the Turtle Lab, a child aoquires
a mastery of mathematics by using it to pursue worthwhile goals,

There is, in fact, a special version of the language Mathematics -- in
reality it is called LOGO -- that Papert developed that allows any child
who can read, write, and count, to tell computers what he wants them to
do. Papert has arranged for his computers to be programmed so that they
Understand the LOGO language, and hence carry out the things the children
tell them to do In a sense, Papert's LOGO-speaking computer is an infinitely
docile, perfectly obedient pet -- a kind of super-dog -- that never tree
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of carrying out the child's commands., Of course, computers are so obedient --
or, if you prefer, so stupid -- that you must always be careful to tell them
exactly what you mean, because they will follow your instructions to the
word, to the letter, to the decimal point. You must make sure you say
what you mean .., and you must say it in the language Mathematics.

In order to permit comparisons between Papert's Turtle Lab and various
other learning settings, we -ed to mention briefly one or two other aspects
of Papert's approach. "You learn", Papert argues, "by doing, by thinking
about what you are doing, and by talking about what you are doing."
Papert's program is individualized it the same sense that wood-working
shop is: one child is making a bookcase, which he will take hove,
another child is making a toy salt boat, which he will take hove, In the
Turtle Lab an analogous thing happens:. one child is working out the
choreography for a puppet show, another child is prIgraTming the computer
so that one of the "turtles" will become skillful at escaping from mazes,
In this sense, the Turtle LAb is individualized. But in a more important
sense it is not individualized at all. Just as the child making the sail-
boat May ask advice from the child making the bookcase, so the children in
the Turtle Lab often talk with one another to get suggestions on how to
overcome various technical problems.

To mke such discussions even more fruitful, Papert has developed a
heuristic meta-language, reminiscent of Polya, to aid children in talking
about their work. They divide large problems into smaller ones, they look
for "bugs" (computer talk for inadequacies in algorithms), they try simpler
analogous problems, etc, This emphasis on analyzing what you are doing is
a central, and major, part of Papert's learning environment.

It is also worth pointing out that in tne Turtle Lab, as in woodworking
shop, children work on projects, not merely assigned problems. Projects

are (mainly) chosen by the children themselves, often des45ned by the
children themselves, and are permanently stored in the computer for use
whenever desired: This makes possible a great cumlative power., At the

start of the school year, in September, children program the computer to
execute relatively simple things. These computer programs are called
procedures. A September procedure might be as simple as having the
computer draw a triangle or the CRT., But after it is written, each
procedure is named, and the computer will execute the nrocedure whenever
the name is used in later procedures. One fifth-grade boy extended an
early triangle-drawing procedure to a procedure that would draw an arbitrary
broken line -- which could close on itself to form a triangle, or a square,;
or an octagon, etc., but need not do so. Using this procedure, the boy
wrote other procedures to draw fish, aquatic plants, and finally a whole
aquarium scene.

Looking at the aquarium scene one is overwhelmed uy its complexity --
to think that A 10-year-cld boy told a computer how to draw it' - but
the important point is that it is built out of less complex pieces that
the boy assembled all year long. Nor did he, in September; have any Idea
that he would make the aquarium scene months later Rather, he began by



-25-

making something that looked as if it might be useful, Then he made more
things that lo6ked as if they might be useful -- or might be fun to make.
As he made new things, he saw opportunities to incorporate as components
some of the things he had done earlier. Thus he came to build very
complicated things that were, in fact, made up of simpler things used as
building blocks,

This cumulative use of past work has great power, and, emotionally,
it shows a child that the things he has been making are worthwhile, It

is the opposite of making something only to throw it away, In the Turtle
Lab, you make things in order to keep them, enjoy them, and use them --
perhaps as pieces in something even more complicated.

Information on Papert's Turtle Labs can be obtained by writing to
him at this address., Massachusetts Institute of Technology, 545 Technology
Square, Cambridge, Massachusetts 02139.

A Child's View of Mathematics

Until recently it had been fashionable to say that "ideas" are
inaccessible, we cannot know them, and therefore we must content ourselves
with considering "behavior." A witticism summarized 5 decades or so of
American psychology by saying: "Man, having lost his soul and his freedom,
has now lost his mind." This was an unfortunate point of view for mathe-
matics, because mathematical entities are ideas, they exist nowhere except
in the human mind, The study of mathematics is necessarily the study of
concepts, of cognitive constructs.; Deprived of a concern for ideas, one
is automatically a fortiori deprived of mathematics,

For some time there has been intellectual warfare between two
factions of educators who espouse opposite sides of this question the

one side emphasizing a focus on the child's ideas, while the other side
advocates the avoidance of "ideas", and a focus on externally-observable
"behavior". (Cf,, e.g. Rising, et al., 1973.) To this abstract intellec-
tual dispute there has recently been added a lively empirical confrontation.
The "behavior" approach, in this fight, is presently represented by a
paper-and-pencil "individualized" mathematics curriculum created according
to the behaviors to be developed, which was authored by some of the
leading proponents of the method of focussing on observable behaviors.
The "idea" side is represented by Professor Jack Easley, of the
University of Illinois, and a group co- workers, notably Stanley Erlwanger,
who have adapted Piaget's clinical interview technique in order to inves-
tigate children's ideas about mathematics. The Easley-Erlwanger group
did not in fact plan a confrontation. What they had in mind was an
exploration of children's ideas about mathematics, Fate provided a direct

confrontation of the two philosophies. By accident, many of the children
studied by the Easley-Erlwanger group have, for several years, been
students in the "individualized" curriculum created according to "behavior"
criteria. Hence -- by accident -- the two points of view are now engaged
in direct battle on an empirical battle ground. What ideas do children

have about mathematics, and where do these ideas come from? But the

children being studied are in a school program that de-emphasizes "ideas"
-- hence the dramatically focused confrontation.
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What Easley and Erlwanger have bee" finding, in pursuit r...f children's
mathematical ideas, is perhaps the most exciting thing now going on in
mathematics education.

The case of Benny is typical. Benny is a sixth grader, has been in
the individualised math program since the beginning of grade two, and was
identified by his teacher as doing well in mathematics, being in fact one
of the most successful students in the class,

Erlvanger has audiotaped many hours of interviews with Benny; these
tapes are now being carefully transcribed. I mate use, here, of a preliminary
transcription that may have involved some minor paraphrasing of language,
but the actual mathematics has been carefully checked for accuracy. It
is Just as Benny did it.

Converting fractions to decimals:

How would you write 2/10 as-a decimal or decimal fraction?

One point t.,o (writes: 1.2)

And 5/10?

(writes; 1.5)

Asked to explain his procedure, Benny said (for the 5/10 example):.

The one stands for ten, then there's the decimal point;
then there's 5 -- shows how many ones.

Other conversions made by Benny:

400/400 i.00

9/10 - 1.9 ("The decimal means it's dividing till you can get
from one nine that will be 19, and in that 1.9,
the decimal shows how many tens.")

429/100 5.29

3/1000 - 1.003

1/8 .9

1/9 - 1.0

4/6 1.0

It is probably already clear that Benny has his own methods for doing
things. They are methods, and he uses them very methodically -- even
thoughtfully. But, unfortunately, Benny has not lcdtned good ways to think
about arithmetic.
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Here is some more of Benny's work:.

And 4/11 '

E. 1.5

Now does it matter if we change this (pointing to the 4/11}
and write instead 11/4 '

B; It won't change at all. it will be the same thing ..,
(writes: 11/4 . 1.5)

F. How does this work' 4Z11 ie the same as 11/4 7

B, Yah ... because there's a ten at the top, So you have to
drop that 10 ... take away the 10, put it down at the
bottom .

(writes: 11/4

then 11/4

then 11114

then 1/14.)

So, really, it will be 1/14, So you have to add these numbers
up, which will be 5 ... then 10 .., so 1.5,

For the irverse process, converting a decimal tn . fraction, one gets
a choice of many "correct" answers.: rh.. can be 3/2, or 2/3, or 1/4,
or 4/1.

Addition of decimals:.

Like, what would you get if you add ,3 + .4?

B, That would be ,.. (writes .3 + 4 . .07),

E, How do you decide where to put the point'

B, Because there's two points; at the front of the four and
the front of the three. So you have to have two numbers
after the decimal, because you know ... two decimals,
Now like if I had .44 + .44, I have to have four numbers
after the decimal.

How about 3/10 + 4/10

(writes 3/10 + 4/10 0 7/10)
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Further answers by Benny,

4 + 1.6 . 2.0

7.48 - 7 - 7.41

Addition of fractions:

Ahswers by Benny

2/1 + 1/2 - 3/3 -

(" 2/1 + 1/2 is just like saying 1/2 + 1/2, because 211,
reverse that,(writes 1/2), so it will come out one whole

no matter which way. One is one.")

Recall that Benny had been identified b; his teacher as a very successful

student in mathematics, perhaps the best in his class. Nearly every 5th or

6th grader studied by Erlwanger has had mainly wrong ideas about arithmetic --
although many of these children were regarded as successful by their teachers.,

'Apparently the usual diagnostic procedures used in school are not adequate to

pick up the erroneous ideas many c.f these children have. Moreover, the

children rangi in I.Q. from 100 to well over 120, one would expect that they

shout,: able to understand mathematics,

Returning to Benny's work, show. above, it is important to note that

there is a pattern to all of this, Not only is Benny consistent within his

own scheme, but as one looks at a large numoer of children and compares their

methods with the instructions: program, one sees that where the students
have gone astray, their errors match up with identifiable features of the
program of instruction that they are experiencing in school. Obviously,

one cannot prove that the instructional method is responsible for the

particular kinds of .!rrors that have been built into the children's
cognitive schemata, without undertaking sizeable study of children in

different school curricula. This has not yet been done -- but Erlwanger

and Easley do have it on their agenda for the future. For the moment one

can merely look at the children's ideas, look at the cov-se of instruction,

and ask; is it reasonable or credible that this course of study should

lead children to form these ideas?

Features of the Program of Instruction

The program of instrncrinn that Benny and the other children were
pursuing in school had, among others, the following features:

1. Working alone. It was "individualized" in the sense that each

student worked alone, by himself, This had several consequences,

r.:tcd below.

2. paper-and-pencil. The program existed on pieces of paper --

printed booklets, written answers, w-itten judgements (by the

teacher) on some of those answers (but very .1atchy judgements,
mainly limited to "right" and "wrong").
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1. Absence of physical materials. The program did not use any
"math lsb" raterials or experiences: no measurirg cups, no
actual cooking, no meter sticks, no making maps of the school
yard, no Cuisenaire rods, no Dienes MAB blocks etc.

No discussions. Because each child worked alone, he had no
opportunity to hear (or participate in) classroom discussions,

peer-group teaching, explanations of what he thought he was
dcing, etc.

5. N heurist. -Pta-language. Obviously, then, no special way
of talking about what you are doing was developed (quite in
contrast to Papert's-very careful development of a heuristic
meta-lang,age),

So diagnosis. No serious diagnosis of a child's ideas was
carried out: (The teacher was unaware, for example, that many
of the children considered that, in

3.3

8 indicated the wholes", and the 3 indicated the parts",
and that they therefore believed that

8:3 t 3/8.)

Section tests: The material was divided into sections (or "levels"),
and, in order to conplete a section and move on to the next section,
a child had to take a section test alid get at lease. 80% of the
answers right. This arrangement was intended to avoid cases like
nenny's but it clearly failed to do so (Why it failed is an
interesting question!).

cnecking_answers. As a child worked on problems, either he would
heck them h.mself against an ans,,P- key, or a para-professional

»neld the -k them.

Ahsence ,,f _ounter-exaalese .iven good diagnostic work and a
gh level of teaching, one of the most important activities would

,InJoubtedly have been confronting student with contradictions
and counter exanples to their wrong generalizations., Gi the
,.onditions of this particular curriculum, this sort of t;,,ity
was impossible, and did not occur.

f,luetit.. and haste. The program was highly competitive, and
me rompetition was based on speed. A race-track drawing in the
lassroo7 showed who was the leader (in the sense of having

,c-pleted the most "levels" or sections), who was ne>t, etc.,
c;,Ild's standing in class was displayed for everyone to

Fee (Comparisons were only on speed; no consideration was gl
,reativitv, depth of understanding etc.)



11. Homogeneous problem sets. An% single probler set dealt with one

subject: Consequently, careful analysis of hr,u to attack a

problem was never involved; looking at a problem for clues as to

how to proceed didn"t occur. You did what was being covered in

that particular lesson,

12. Task and feedback. A typical task- -- say, adding ,ioci,-als --

was introduced by a sketched-out instance, such as:

A student was supposed to stare at this eva-ple, then go anc'

do Likewise. 'What this reant was that he guessed at a pattern,

then tried to use his pattern to answer similar questions, after

which he corpared his answers with those in the key. :f they

disagreed, he used this feedback -- very different in essence
from a counter-exarple -r a sharply pinpointed contradiction --

to re-adjust his pattern, and to build his own rationalization

as to what uas going on.

This question is so irportart c:.t_ it ceserves fur0-er discussion.

Suppose you have "solved- a -robler tie s.lbseq.:ert disc._ssic

depends on the kind of probler b f sae it was

4' 1:3 '5.

Notice tat there are -any different kinds of ' ,'back trat You

right receives, and noti-e ho. irportart the ces are i.ere

are a few possibilities.

iY Yo,. are told that your answer is wrong /this Is the cniv

feeback Iris pro:tram usually presided) ;,

it) lo; are asked rake a rict-re of a pie for a rectangle),

c,lor 1/2 of it in:tie, of it red., and see 'nw

:e Sur. seems t bc;

lit, So-e,;;:e goes o.er y:ur prrced-re wits \or, one step at

ti-e, and dis,_..sses

Minxing of '.'atbemati AS Chinese erthogral.il

Tor tnese ohi:dre ,
rathemai:s consists of svnbois on papers. Tle

object of tie ga-t is zet t.-e right svrb.iis in .t,-e right places. (:

right take this att.:: e if y(A; askea re to opv s--e 2-inese (hara-terq.

Tris reverrip.:
ar'0%e.
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It is also shown by the following ,..-ork of a 7th grade student (not
in Eriwanger's sample':

Few else might you write

A: (by 7tn grade boy)

65 . 63

6- 6
subtracting exporents

513
tried to tale 6 from 3, couldn't,

6
Id "regrouped" the numerator.

5- subtracting 6 fror 13.

You couldn't make this kind of error if exponents reant something to
you; if you had a clear notion of the size of various numbers, etc.. You can
only make this kind of error when you are applying rote memorizes procedures
to relatively meaningless symbols.

The Small Procedures Are Correct

In tne examples above, and In nearly all we have studied, the small
"pieces" of procedures are correct. Trey are by no means random. Indeed,
in most cases they could ')e clazsifie_ as regression to earlier ideas.
Cf. the example with exponents. »n-en the boy found himself confronted with

61

6

since it did not have for him a clear reaning he had to do soretning. What
he did was to use the correct algorithm fur this problem:.

namely. "re- group" as follows

and subtract

63

- 6

5 1

5

3



Si-ilarly, Benny's rule for placing he decimal point in the problem

.3 + .4 .07

was correct, but belonged with the problem

.3 x .4 ,

and not with the problem in addition.

Th-oughotlt hundreds of examples the pattern remains clear:, Lhildren

use correct mini-procedures, but don't always pick the correct one fot the

actual :roblem at hand, The little pieces are correct, but belong some-

where else.

How much practice dii the school program provide in the problem of

selecting procedures? Very little, since most problem sets were homogneous.

Once you fourd, pet'aaps by trial and error, some procedure that yielded an

answer the tea-her would accept, you merely used this same procedure on

all the other problems on that page.

Confusin of Similar Stimuli

It is especially worthwhile to compare, side-by-side, the actual

problems children were supposed to be working on, with the groblems

which their (inappropriately chosen) mini-procedures ca.Le. Pere .ra a few

Benny (grade 6: "at the top of his class" accordiri; to teacher's

rating)

.3 + .4 .07

(That is to say, while Benny's addition mini- procedure to add

and 4, °.ettin4 7, was correct and aporpriate, 12is miri-

procedure for placing the decimal point was not appropriate for

this problem -- but it world have been appropriate for

.3 x ,4

Hence, in selectine a mini-procedure for locating the decimal

point, Benny confused these two stimuli"

.3 + .4 vs. .3 y .4

ii's Bennv, again.

The partial procedure concerned with the digits ''ce 4 and 11

to get 15") is a correct one, but Benny has confused the stir,JII

4_ vs, 4

11 11
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In the vast majority of these cases, the two stimulf which were con-
futed were, in fact, actually quite similar. Apparently the children
haven't learned to make finer discriminations between rather similar stimuli.

But, before one adds to the curriculum some units on discriminating
rather similar stimuli, it is worth noting that, in curricula based on the
meanings of the symbols, and giving priority to thinking about these meanings,
it appears to be the case that this problem of stimulus confusion is far
less severe. Perhaps it is not advantageous to conceptualize these symbols
as stimuli -- maybe it is better to consider them as marks that are supposed
to refer to some important idea, and to focus attention on these ideas.

Children Make Up Their Own Rules

In this school's course of instruction, relatively little attention is
paid to why something is, or is not, true. There is also no chance at all
for a student to explain his line of thought to a teacher. Consequently,
whatever ideas a child gets -- if they produce, for the time being, acceptable
answers -- will go unchallenged and unanalyzed.

Consider the case of Natalie, a 10-year old fifth grader, whose recorded
I.Q. is listed as 99, but whose actual is almost certainly higher than
that.

Asked to add

Natalie wrote

. 4 + .3

. 4 .3 .7

This vas like one of her usual problem sets, She wrote the answer the
teacher would expect -- hence no one discussed with Natalie how she was
thinking about this problem.

Asked ro add

Natalie wrote

4. + 3: 7.

Again, what, one would expect. Again, no one discussed with Natalie how.she
was thinking about this problem, After all, she got the right answer, didn't
she?
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Here ig part of Erlwanger's interview:

F: .4 + 3.

N: .4 + 3. .7.

Notice the creation of a new symbol

.7.

which presumably can have no meaning to Natalie as a number. How large is

.7.?

But Natalie has finally revealed to us something of the way she is
thinking about those little periods that they use in mathematics. "If they're

on the left in the question", Natalie seems to think, "put them on the left

in the answer." Consequently, when -- for the first time -- Natalie encountered
themIon both left and right in the question, she decided to put them on both

the left and the right in the answer.'

Children make up their or rules. It often pays to find out what those

rules are. It is not enough to know that, for the moment, those rules seem

to be producing right answers. They may still be wrong rules.

The Absence of Meaning

Perhaps this is really a restatement of the Chinese orthography theme,

Benny again provides an example:

Asked to add

Benny wrote

.3 + .4,

+ .4 .07

Asked, immediately thereafter, to add

Benny wrote

3 4

10 10'

3 4 7

10 10 10

Benny was not disturbed by any incongruity here; yet obviously for anyone to

whom the meanings of these symbols are important, the gross inequality in the

size of 7/10 and .07 is conspicuous, salient, and arresting -- not a matter

that one could easily overlook, by any means. Yet Benny did not see it at
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AP

all (or else he didn'A see the relation between

and

3 4

10 + 10

.3 + ,4 1.

The Child's Use of Feedback

We have remarked earlier that the school program provided the children
with no feedback that related to meaning -- only feedback about right or
wrong answers. Hence, for the children, math became a kind of gucasing game.
You tried something, and waited to see what happened., If necessary, you
adjusted things, and tried again.; This use of feedback is appropriate and
inevitable -- in math, or in learning to bowl, or learning to ride a bicycle --
but the feedback must relate to central meanings) not to peripheral details.
hath as a meaningless guessing game was revealed in the language used by
many children. For example, Lori, a 6th grade girl with an I.Q. of 123, asked
to write

as a decimal,said:

21

1000

"I'd probably write 1000.21."

The use of the phrase "I'd probably write ,.." is as significant and as
characteristic as t:c wrong answer she did write..

Benny stated this even more emphatically:

It (the pr.:Less of finding answers to problems) seems to
be like b game.

b: (Fmotioually) Yes! It's like a wild goose chase!

So you're chasing answers the teacher wants?

Bz Yah! Yah!

Which answer would you like to put down?

(5'nouting) ANY! As long as I know it could be the ri
answer,

Speaking of his teacher, and her paraprofessional aide, Benny says:.

They mark it wrong because they just go by the key, They
don't go by if the answer is true or not They go by the
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key, It's like if I had 2/4, they wanted to know what it
was, and I wrote down one whole number, and the key said a
whole number, it would be right no matter if it was

really wrong.:

What Is Mathematics? What Do the Children Think Mathematics Is?

I have argued el',ewhere that cne of the main goals of mathematics
instruction is to end up with children who believe that mathematics is a
reasonable and sensible response to a reasonable and sensible problem.
One of Papert's 5th grade students defined mathematics by saying: "For

any challenge, there's a smart way to approach it, and a dumb way to approach
it. If you approach it the smart way, you're doing mathematics."

The children in Erlwanger's sample see mathematics very differently
from this.

We've already seen the view that mathematics is "a goose chase", a
kind of blind man's bluff in search of answers that the teacher will accept.

But Benny also had a different view of the nature of mathematics -- a
far subtler view, that is intriguingly dualistic, Here is Benny's description,

as paraphrased by Erlwangen

Benny's view about answers is associated with his understanding
of operiltions in mathematics. He regards operations as merely rules;
for example, to add 2 + .8, he says:' 'I look at it like this:.

2 + 8 - 10; put my 10 down; put my decimal in front of the zero.'
However, rules are necessary in mathematics 'because if all we did
was to put any answer down, (we would get) 100 every time. We must

have rules to -get the answer right.' Pe believes that there are rules

for every type of problem;' for example, he says: 'In fractions we

have 100 different kinds of rules.' These rules were 'invented by a
man or someone who was very smart.,' This as an enormous task because
'It must have took this guy a long time ... about 50 years ... because
to get the rules he had to work all of the problems out like that ,..'

Hence we see Benny's view of math as arbitrary, expressed (for example)
in the 100 rules for fractions that were worked out by "someone who was
very smart." The rules serve the game-like purpose of guarcnteeing that
there will be some winners and some losers:. "because if all we did was to

put an answer down, (we would get) 100 every time," which Benny obviously

considers unacceptable.: In all of this we see the arbitrary, game-like,
senseless face of mathematics -- as experienced by Benny.

But Benny also sees an objective reality lurking there somewhere, for
he says

It must have took this guy a long time .,, about 50 Years
because to get the rules he had to work all of the problems out
like that ..,
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So, apparently, "this guy" was working against some objective criteria,
criteria obvion11)( unknown to Benny But Benny doesn't seem to want to know
these objective cateria -- Benny w nts to know the 100 rules that "this
guy- finally ended up with.

Both sides of this dtality are expressed by Benny elsewhere in the inter-
views, as well. For example, <lb talwanger writes:,

Benny also believes that the rules are universal and cannot be changed.
The following excerpt illustrates this view:

E: What about the rules. Do they change or remain the same

B: Remain the same.

E: Do you think a rule can change as you go from one level to
another?

B: Could, but it doesn't. Really, if you change the rule in
fractions it would come out different.

Would that be wrong?

B: Yes. It would be wrc-.; to make our own rules; but it would
be right. It would not be right to others because if they are
not used to it and try to figure out what we meant by the
rule it wouldn't work out.

Benny's objectivity here seems, however, considerably less objective --
not based on an underlying reality, but rather on a desire to be fair to
other people by not changing the rules in the middle of the game.

On Eliminating Cognitive Dissonance

In Erlwanger's interviews, Benny got wrong answers nearly all the time.
(That his teacher nonetheless considered him very successful is something
of a mystery, but perhaps her own view of mathematics was that it was a kind
of Easter egg hunt, and she found Benny an avid and energetic hunter for
hidden treasures., This would contrast with my own view, which presumes the
existence of a unique reality for which we are attempting to construct
various d criptions, and a child's job in learning mathematics is to build
up inside his own head cognitive structures that reflect this reality with
the most ound accuracy that can be attained. In this latter view, Benny
was doing very badly, since he nearly always missed the central point
-athematically, but in terms of the Easter egg view -- there being no profound
grand strategy determining the placing of the Easter eggs, and hence no
external structure to be faithfully modelled cognitively -- Benny's energetic
pursuit could be considered the ideal pattern of learning.: You find Easter
eggs by scurrying around, all over the place.)
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In any event, Benny's answers in the interviews were mostly wrong.
From this, and from remarks he made during the interviews, it seems safe to
infer that Benny's answers in class were also mainly wrong.

Now, in this particular school program, a child checks his answers
against a key, to see whether he is right or wrong. This must have been

a sore trial for Benny. But a very interesting -- and in some senses tragic --
thing occurred: Benny thought about this situation at length, and finally
succeeded in developing a personal philosophy that brought him peace of mind.
So much peace of mind, unfortunately, that he lost all motivation to make
his answers match other people's. In this he resembled some psychotics:
he was so contented with his world view that he didn't want to change it.

What Benny did was this: he noticed that you might have an answer like,

2

4

whereas the key might have an answer like

1

2

From "just looking at them" you might conclude that these answers were
different -- but there is a way out! There exists a rule that lets you do
something to ene of these

2 . 2 x 1 1 x 1 1

4 2 x 2 1 x 2

so that you obtain the other. They looked different, but once you used the

appropriate transformation rule on them, they were really_the same!

Benny generalized this, if only you knew enough of these transformation
rules, you could always show that your answer really matched the answer in

the key! Benny had invented a large repertoire of such rules. Here is one

out of many:

E: How would you write

11

4

as a decimal?

Bf (writes) 11
4

Now does it matter if we change this (pointing to the 4 )

11

and write instead 11 ?

4
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B: It won't change at all:, it will be the same thin,:
(writes: 11

1.5 )

E: ,How does this work' 6 is the same as 11 ?

11 4

B: Yah ,.e because there's a ten at the top. So you have to
drop that 10 ... take away the It:, put it down at the bottom ..,
(writes):

11

4

then 11

4

then 11

14

then 1

14 )

So, really, it will be 1 , So you have to add these numbers
14

up, which will be 5 then 10 .., so 1.5.

These rules had one good effect on Benny -- they let him be happy about
his "success" in mathematics -- but they also had a very unfortunate effect.
It was next to impossible to convince Benny that any of his answers were
wrong. What tools could you use to convince him? Show him the correct
answer? No, he responded by showing you how his answer was really the same
as yours. Show him contradictions? No, his transformation rules enabled
him to reconcile any apparent contradictions. Show him that his answer
was nonsense -- for example, much too large, or much too small' No, all

the symbols were meaningless to Benny. Considerations involving meaning
cid not reach him, To Benny, all answers were nonsense, so his were exactly
as good as yours,

Implications

Adaptations of Fiaget's clinical interview procedures seem to be
capable of revealing much more of what is in a child's mind than other
common methods can, If this potential can be developed by teachers -- and
by parents -- we can get a far deeper assessment of the successes and
failures of our school prop -9. And if, as has been the case In the
Frlwanger study, many of these programs are revealed as catastr,,;hif failures,
then various vigorous actions may develop in consequence.

Meanwhile, for those of us who (as I do) work on the ,reation of school
programs, here is a specially significant kind of handwriting on the wall.

For details, write to:, Stan y Erlwanger, 1210 West Springfield Avenue,

Urbana, Illinois 61801:
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The Role of Applications in

Early Mathematics Learning

Max S. Bell
University of Chicago

I hope during this hour to open up for examination the role of
applications of mathematics in early.mathematical learning. It seems to
me that this unsolved and neglected problem warrants considerably more
attention than it has received up to now, if only because the ability to
use mathematics lies at the heart of our objectives for mathematics
education. Indeed I would say that mathematics education has been a failure
for any person who is unable to comfortably and naturally make use of
mathematics in a wide variety of situations. (I believe it follows from
this that mathematics education is a failure for very large numbers of
people -- perhaps the majority -- but that is a matter to be argued elsewhere.)
It is possible, of course that early attention to application has nothing
such to do with eventual ability to apply mathematics; still, I believe
we should open up the question for investigation and reflection.

By "applications" I mean exercises tha. link things in mathematics to
aspects of actual real world happenings. "Applications" will be considered
to be different than "models" in the sense of paper and plasmic and string
representations, and different than invented games with mathematical content
or other "embodiments" of mathematical things in the Dienes sense; though
these are all unquestionably useful in learning mathematics. By "early"
learning I have in mind about kindergarten through third grades or, in
other terms, the late preoperational and early concrete operations parts of
a child's development. By a "role" for applications, I do not have in
mind any txclusive dependence on applications but merely al end to the
nearly total neglect that prevails now. I am tentatively assuming that such
neglect is hazardous because in the same way that important aspects of a
child's general cognitive ability are probably built (or mature naturally)
during the early school years, important aspects of his ability to use
mathematics are probably also 4t7.-.1oping.. Therefore, it may be that a
poverty of early experience with applications represents a developmental
loss that is difficult or impossible to make up later.

In my remarks I first want to sort out various categories of mathe-
matics and real would links, and draw a distinction between "embodiments"
as a link and "applications/mathematical" models as a link. Next, and

, X
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briefly, I will try to establish that a problem exists; that applications

in early learning are neglected. The- I will briefly explore several

possibly good reasons for this neglect. Then, by a series of simple-

minded examples, I will argue for the proposition that early attention
to applications could open up many of the things we really should accom-

plish in mathematics education. Along the way I will make some random

comments on possible connections between cognitive psychology and an
early concern for applications, with no claim, however, to consistency,
comprehensiveness, or expertness with respect to models of cognitive

development:.

Mathematics and Real World Links

I believe that we, are often unclear about what we mean by "applications."
There are many possible cross-coanections within the world of reality,
within the world of mathematics, and between these two worlds. To call all

such connections "applications" makes the word mean too many things. It may

clarify the matter at hand to sort out the possibilities; Figure 1 is a

rough attempt co do this.

Figure A Diagram of Links Between and Within Mathematical and Real Worlds

The World of Reality

1. Real world situation
Another (possibly simpler)
real world situation

2.

3. "Embodiments" in real world
materials or operations on

such materials

4. Problem situation

The World of Mathematics

Mathematical iteml
Another (possibly more complex)
mathematical item

Mathematical item 4

Mathematical Model

1 The "Mathematical item" might be a single thing such as a number

or equation, or a mathematical structure, or what have you.
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The fist part of the diagram concerns moving between various levels of
abstraction while still within the real world, with no explicit resort to
the world of mathematics. This would include various sorts of simulation
and simplification within the real world. While there is no direct resort
to matnematics, the thinking processes often resemble those useful in
mathematics, and it is my belief that activities here may build important
and possibly crucial background for mathematical learning

The second situation diagrammed in Figure 1 is the well known one of
moving among various levels of abstraction strictly within the world of
mathematics. For example, one develops a certain piece of mathematics, then
uses it as a starting point for another mathematical concept or theory, As
a matter of fact, and unfortunately in many cases, the great bulk of mathematics
instruction falls here., But I believe this should not be the case with
respect to early mathematical learning. At some point beyond early learning,
this may be the most efficient way to learn mathematics, but I can see no
stage where it shculd be the exclusive means to mathematical learning.`

The possibilities indicated by the tnird situation diagrammed in
Figure 1 have be n extensively developed b'. Dienes, Davis, the Papys, and
many others. Her, one starts with mathematical iceas or concepts to b, ta.eht
and looks for links to the world of reality via 'embodiments" of those
concepts in operations on real world objects. It mav wall be that teaching
strategies exploiting possibilities in this area are the ones that fit child
development patterns best, certainly their use in moon of the Paget oriented
research is striking. I do not believe in panaceas or single dimension
solutions, but I believe there is no question about the fruitfulness of the
embodiments approach to early mathematical learning, and much of the
discussion in this symposium will predictabl:. be centered on it

But at least for tnls one hou: let us direct oar attention to the
fouLth area indicated by Figure 1. Here one does not start with mathe-
matical ideas and then seek embodiments of these in the real world, bet
rather starts with problematical situations in the actual real world, and
seeks solutions by way cf the intervention of mathematical mocels. this is
very common now in schalarsip, commerce, and industry, and has rroved to
be very fruitful.3

2 Perhaps an emphasis exclusively on this area is misr';ced even in graduate
level mathematics courses. Tn an ess .'y In tt,e, American Mathematical Monthly,
E.T, Parker credits his success in a breaktnreugh on a previously unsolAed
conjecture of Euler to a graduate level group tneory course in which his
professor began e-ery class session by rcterring to some aspect of the rigid
motions of a square as an embodiment o the mathematics to be discussed (Parker).

3 What is meant by the phrase "mathematical models" has been dealt with in many
places (e.g., several articles in Bell, 1967). Here is a neat capsule summary:
"The use of applied mathematics in its relation tc a physical problem involves
three stages, (15 a dive from the world of reality into the world of mathematics;
(2) a swim in the world of mathematics;, (3) a climb from the world of mathematics
back into the world of reality carrying a prediction in our teeth." (John Synge,
quoted in the American Mathematical Monthly, 68 (October, 1960, p. 799). The
"dive" is the province of problem solving strategies znd its result is a mathema-
tical mode:. The "swim" (1..rnd9 on ability to manipulatP,

transform, and extond,
the mathematics itself.
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For the remainder of this discussion I will use "applications" as a
single word to indicate activity on behalf of mathematical modelling cf real

world sit ations - the fourth area diagrammed in Figure 1, There seems to

be no disagreement to the proposition that such applications can enrich

mathematical learning from at least the middle school years on (It remains

true, however, that in spite of endless and repeated recommendation, such

activity is not yet a viable part of mathematics instruction at any level.)

any suggestions for the middle and later years are beginning to appear

(Bell 1972, Tanur, Hosteller, ECCP),

But it this hour we will leave that aside in favor of a preliminary

attempt to sort out what contribution attention to this fourth sort of link --

applications -- might make to facilitating the early learning of mathematics.

Are Applications Neglected in Early School Matnematics?

Having stated a problem, I should show that it exists, Is this four*-`

sort of link, actual uses of mathematics from the actual world, in fact

neglected in grades K-3? The answer is certainly yes with respect to the

textbooks that, rightly or wrongly, dominate the child's early learning 4

mathematics. Examination of most such boars reveals at most a few thinly,

scattered pages of verbal problems that very seldom make interesting connec-

tions with genuine real world issues. The answer is yes with respect to

journals such at The Arithmetic Teacher -- looking over a recent year of that

journal I founs Dnly three articles that gave attention to some application

of mathematics and none of these were directed at the early elementary years,

The answer is probably yes with respect to research in mathematics education.

I have not carried out a thorough survey of all the research literature but

an infotnal survey plus examination of several reviews of research in

mathemaci,.al education turned up very little of interest cn the topic under

consideration here. The charge of neglect is most certainly valid with

respect to the training of elementary school teachers. Again, I have not

made an exheustive survey but I know of just a single place giving courses

for teachers that are explicitly directed at what might be done with

applications in the school mathematical experience of youngsters. (The

University cf Chicago offers such courses In summer sessions.) Also, If one

can judge by published textbooks for mathematics and methods courses for

elementary school teachers, a concern for applications is certainly not

a major emphasis in such courses,

On the other hand the neglect ray not be total. There has been

considerable activity on behalf of early school science by a half cozen

or more curriculum writing groups. The AAAS, Minnemast, FSS, SCIS, and

other projects have proposed science oriented applications for young

children that would most certainly be helpful in the learning of mathematics

(Hurd), However, that doesn't let us off the hook; and in any car, a

science educator colleague tells me that such materials are by no meaub

widely used in primary schools. To the extent that mathematics education

curriculum projects elsewhere - for example, the Nuffield Project materi,

have in" -nced United States practice, this would also lessen neglect of
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applications for they tend to give considerable attention to the interplay
between a child and his real world. If any schools have survived in the
United States that use soundly implemented John Deweyan principles, then
applications of mathematics in the sense of the fourth section of Figure 1
cannot have been neglected. (I mention this last unlikely possibility only
to remird us of one of the roots of Much of the discussion that will take
place during this symposium.)

Some Possible Reasons for Neglecting Applications
in Early Mathematical Learning

Mathematics and real world links in the embodiments sense may be
catching on as a significant factor in early mathematics teaching, but
I believe that we must conclude that such links in the appliCations
(mathematical models) sense play virtually no role at present in early
mathematics teaching in the United States. Such widespread neglect of
what on its face would seem to be important cannot have happened without
reasons, and it may be that some of these reasons would compel us to the
conclusion that neglect is warranted and ought to continue. I wish to
examine that possibility now.

Leaving aside bad reasons for neglect, here are some possibly good
reasons: first, it may be that "Young students, by and large, are not
interested in applications .... They are the purest of pure mathematicians,
and somewhere during the maturation process, they become sullied and begin
demanding applications of the subject" (Beberman, p.11). Second, there
mays be dissonance and conflicts between cognitive development patterns and
the requirements of applications. Third, the disparity between the require-
ments of applications and the meager computational skills available at
early school levels may be impossible to bridge. Fourth, even if the
above problems could be resolved, working on the problem of applications for
the young might still justifiably be assigned low priority given the many
other difficult problems we face. Finally, there may be an overall and
pervasive dissonance between attention to applications end our proper
objectives and curriculum - that is, with what we think children must
accomplish in school mathematics. I will consider each of these briefly
in the next few paragraphs, and several of them at greater length in the
section that follows.

First, whether or not lack of interest of children is a barrier
to using applications seems to be to be very much an open question that
cannot be answered until we put our best inventive efforts into a fair
trial. That is, if we make it an objective to use applications in early
mathematical teaching, then we are immediately thrown on the question of
appropriate learning experiences. We must, in short, carry out feasibility
studies, using with children the best materials we can devisee

Second, we must consider the possibility of dissonance between
f;Pvelopmental patterns and early attention to applications. If one takes
a behaviorist view towards early mathematical learning, there should, in
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principle, be little dissonaLce for I take the behaviorist point of view

to be "if you want it, do it." That is, it is a matter of outlining

learning hierarchies where, for whatever applications exercise you wish
to use, the appropriate prerequisites have been attended to earlier, and

the reinforcement structure is such that he present piece of material is

likely to be learned. Indeed, Robert Caine, who is far more in the behavior-

ist camp than in the Piagetian camp, was one of the principal architects
of the apparently successful AAAS science program for early science
learning, and it has many mathematical elements in it. If, on the other

hand, one takes a Piagetian point of view, there are probably some restraints

on considering applications, For example, some applications would have

to wait for the formal operations stage. But I don't believe the restraints

are very severe Attention to many applications that are tied to a child's

direct experience shOuld be possible even in the late pre-operational and

in the concrete operations stages.

As to the third possible reason for neglect, disparity between the
rather slow diVelopment of computational and algorithmic skills in children
and the requirements of significant applications, I believe there are at

least three possible ways to bridge the gap. In the first palce, the

requirements of calculation can be embodied in very concrete calculating
devices, e.g., Napier bones, Papy minicomputer, Hassler Whitney's minicomputer
(Van Arsdel, Whitney). A second way to finesse this problem would be for
teachers to act as "consultants" or "answer machines" so that when youngsters
have formulated a problem to the point where calculation is called for they
can call for an answer to the pdrticular computation required.; A third

answer, and one that I t v may very well be forced upon us whether we

like it or not, lies in widespread use in early mathematical learning of
the small electronic calculating machines that are widely advertised these

days. These pocket-size calculators use computer chip technology and can
do any operations in any order with eight or more digits available for input
or output data. Furthermore, they give instantaneous results with the decimal

point automatically placed. Some come with memories and with built-in standard

programs. (One I have seen has a special percent key -- surely a sad comment

on how little people have learned from the mathematics education.) Hence

I can imagine that a first grader might understand perfectly well that the
proper maneuver to get the total number of first graders in his school is

addition of 31, 29, 33, 27, 21, and 30, but would not have the technical
skill or the patience for drudgery that would let him get an answer, If so,

punching the numbers into such a calculator would solve the problem.

Another example: except for drudgery and lack of skill, a third grader
might very well be able to balance the family check book for a given month
with possibly considerable insight into family finance resulting from the

exercise: With such a machine as this, the drudgery and the demands on

technical skill are removed. These machines are already very cheap and very

available, and I think that they may well cause a revolution in what is

appropriate to do in the school teaching of mathematics - a revolution we

should even now anticipate and plan for.''

4Recertly one indicator of American taste, The New Yorker, had a cartoon with

four ladies finishing up a luncheon and one saying, 111.7i according to a pocket

calculator, my share of the check including tax and tip is five dollars and forty-

two cents." These machines are also the subject of the cover article in the

March i973 Popular Science,

I^
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Now a comment on possible neglect because of justifiably low priority
among many problems. I would have some sympathy for this point of view
if achieving more emphasis on applications required considerable expendi-
ture of energy and resources in isolation from our other problems. But,
on the contrary, attenticn to applications in early mathematical learning
might have considerable payoff in connection with, or as a means to, solu-
tion of many of our other problems. For example, "disinterest," 'lack of
motivation," and "poor attitudes," are perennial problems in mathematical
learning, and really good applications material might help overcome them.
For another example, better evaluation of what a child really knows might
be promoted by setting up an interesting application, then observing how
the child attacks the problem. Similarly, observation of children engaged
in applications might reveal interesting things about cognitive development
patterns, especially if the applications were highly involving of the child's
energy and attention,

The final reason for neglect that I listed was that attention to
applications may simply be out of step in fairly pervasive ways with the
school curriculum as it "Ought" to be or with what we really want as end
result of schooling in mathematics.* I cannot deal with this objection
briefly since it requires a definition of what we want from the school
mathematics experience. The next section attempts such a definition, and
also implicitly attempts a rebuttal to this and several of the other
reasons giveh for neglecting applications in early learning.

What Role Can Applications Play in Early Learning of
the Mathematics Children Should Eventually Have in Hand?

It is my firm belief that anyone who proposes any objective for
mathematical education is obliged to also consider what learning experiences
might be attempted to test the feasibility of that proposed objective. In
my mind the great strength of the work of such people as Dienes, Davis, the
Papys, and others has been their commitment to proposing learning experiences
that support their announced convictions. Hence I feel obliged to give
some attention here to an indication that applications can play a role in
the early experience of children in opening up and developing irportant
mathematical outcomes. For a variety of reasons I cannot think .!t appropriate
to tie such a discussion to a standard "scope and sequence" diagram of
present schbol content. Instead, I will use an outline (shown here as
Figu-e 2) that has been more extendivelv developed in another place (Bell
1973)., This outline summarizes my own view of what we really want as
minimum net residue in the minds and guts of people after they have served
their required 8, 9, or 10 year sentence in school mathematics classrooms.
I believe that there has been insufficient consideration of such endpoint
objectives, but that argument belongs elsewhere. For the present, let me
indicate the spirit in which this "tentative list" should be considered,
then move on to the attempt to show how applications could contribute in the

4. early stages of development of some of the items in the list.

*For example, "Applications tend to give students ,.. the idea that mathematics
has no right to its own existence, and so you are shutting off potential
mathematicians." (Beberman 1963, p.12)
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1. 6Ifieient and informed use of
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perpandleular, subset,, etc.

4. Fundamental measure concept.
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1.1 Counting
1.2 Measuring
1.3 Coordinate
1.4 Ordering
1.5 Indexing
1.6 Identification numbers, codes
1.7 Ratios

systems

2.1 Intelligent use of mechanical aids to calculation

3.1 [elate/nee of many equivalence cl
3.2 Plesible selection and tit* of appropriate elements from

equivalence classes for fractions, equations, etc 1

4.1 'Massure functions' as a unifying concept

4.2 Practical problems role of ',mit', instrumentation
closeness of approximation

4.3 Pervasive role of aoauros in applications
4.4 Derived measures via formulas and Other ea themat Lc.1 modal;

5.1 'Number sense'
5.2 Rapid and accurate calculation with one and two digit

numbers
S.I Appropriate calculation via positive and negative pavers

of ten
S.4 Order of magnitude
5.5 Guess and verify procedures recursive pr

5.6 'Measure amts.
5.7 Use of appropriate ratio.
5.4 Rules of Thumb rough conversions 1..g.. pia is

pound'): standard modules
5.9 Awareness a reasonable cost or amount in a visty of
' situations

6.1 Via building and towing 'ftathomatieml models'
6.2 Via concrete 'embodiments' of mathematical ideas

7.1 In fornula
7.2 In equations
7.3 In functions
7.4 for stating anions and properties
7.5 As pararotera

0.1 Inputs. Outputs. appropriateness of than for given

situation
6.2 Composition ('If this happens, and then that. what is

combined result?-1
6.3 Use of rspresantational and coordinate graphs

9.1 'Starting points'. agreements (axioms), and primitive

(sodefinsd) words
11.2 Consequences of altering axioms (rules)
11.3 Arbitrariness of definitions, nerd for precise definitlo,
6.4 Quantifiers (all. some. tier. exists. etc.1
0.5 Putting together logical argument

10. 'Chance,' fundamental probability 10.1 Prediction of mass behavior vs. unpredictability of

idea.. descriptive statistics single events
10.2 Representative sampling from populations
10.3 Description via arithmetic .veragc moain. standard

deviation

11.; Geomettic
apse"

relations is plane and 11.1
11.2
11.3

Visual sensitivity
:Aandercl geometry prOperties and their application
Projections frbm three to two dimension.

12. Interpretation of infOrmetioonl 12.1 Appropriate scales. labels. ec.

graphs 12.2 Alertness to misleading gee

13. Completer uses 11.1 Capabilities and limitations
13.2 'Plow chart' organization of problems for communication

with computer

Figure 2. A Short and Tentative List of Nhat is 'Really' Wanted SO Kinimum

Reeidea for Everyman from the School Mathematics Experience
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For example, consider equivalence classes (3.1 and 3.2 in the list).
Through a long series of exposures and experiences starting in kindergarten
(or before) a youngster should come to know that most mathematical things
come in many equivalent forms and that much of school mathematics deals with
conversion from one form to another. He should also realize that problem
solving both of textbook exercises and real life problems frequently involves
recognition of equivalence plus good judgment about which of a number of
possibilities are appropriate for use in a particular situation. (For
example, "3 + 7" and "10" are each sometimes useful; and in calculating
"1/2 + 1/3," "3/6" is a more helpful form than "1/2".) Again, "measure
functions" (see 4.1) may seem to be fancy vocabulary to confuse the
uninitiated but what is in mind is merely that in virtually every measurement
situation, one has a set of real world objects (or happenings) on the one
hand, and a set of numbers on the other hand, with the task of assigning
numbers uniquely to objects (or happenings). Thus, measures of public
opinion and measures of length are not altogether different, and the
processes involved in volume measure and length measure are very similar.
Through an extended and varied development over a number of years, everyman
should understand this commonality of approach. Similar comments apply to the
other items on the list. What are wanted are durable and correct intuitions
and gut feelings, friendly familiarity, and genuine competence with respect
to those mathematical things that can help individuals sort out their
increasingly complicated worlds. In no case will a single experience or
unit of work accomplish what is needed, and some part of nearly everything
can be worked on nearly anywFere in the school experience of youngsters.

The question for this hour is the contribution that applications could
make in the early learning of things such as those in my list, As I make a
number of random suggestions I don't mean to suggest that all will actually
work nor that they exhaust the possibilities. I merely wish to suggest that
feasibility investigations are possible: If we have learned anything over
the past fifteet. years or so, it should be that the best way to find out
what kids can do is to try something.

For starters, numbers pervade the actual world and it should be possible
early on to call attention to some of their many uses. Counting and
measuring are already widely attended to in schooling so let us see what
might be done with some other sorts of uses, Might a youngster be led to
notice that a room number such as 213 really conceals a pair of numbers
one giving the floor and the other the room number on that floor, with
the 13 also indicating where on the second floor and perhaps even on which
side or the hall? To contribute both to coordinate systems and ordering
(1.3 and 1.4 in the list) I wonder if a youngster might be given the assign-
ment of walking up and down the block he lives on a few times and trying
to make sense of the l'ouse numbers? I don't know at what age a youngster
would be able to bort out all the details of the coordinate and ordering
system thus embodied but he might very well notice that all the numbers are
of the sort 5403, 5411, 5413, 5450, 5478, etc., and the "54" might take on
some significance. Further, the child may notice that smaller numbers come
before larger numbers on the block; that houses an equal distance apart have
addresses that jump by about the same amount; possibly that even numbers are
on one side of the street and odd numbers are cr. the other; and that if he
goes into the next block, all the numbers begin with 55.:
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As other example', might we not alert the youngster to the pervasive
use of numbers as identification codes (1.6); for example, license plates,
telephone numbers, zip codes, highway numbers, etc.? Might we make something
of "take a number' in bakeries and other places to impose a fair order of

service on a crowd of customers? Can we also ask where it might not be
appropriate to impose an order of service based on arrival time -- in a
hospital emergency room, for example?

Moving on, there must be many ways of having youngsters sort
themselves into equivalence classes (3.1). For example, note how far

each lives from school and put all those the same distance away in the
same group for some activity.. (Some of the Nuffield and Papy arrow graph

exercises are based on such exercises.)

With respect to measure function (4.1), we perhaps only need to
make processes more explicit in many actual measure situations; e.g.,
the school nurse lining up a class and weighing each pupil, or a teacher
returnilyoungster's work marked with "good," "you cap do better," etc.,

or even versus(E). With respect to the pervasiveness of measure
(4.3) it would be interesting to find out when children can be led to
notice how many measures surround them by simply asl..ing them trom time

to time for lists of as many situations as they can think of in their
everyday life where measures are assigned.

With respect to indirect measure via formulas (4.4), the Piagetian
research suggests that anything very complicated in this line may need

to wait on the formal operations stage. But some exploration of not

direct measures may be possible by way of, for example, rubbing young
children's noses in the fact that wnen reading temperature on a ther-
mometer, they are reading a length with respect to the red line on the
thermometer; that time is judged by amount of rotation of clock hands,

and so on.

Let us move down the list to "order of magnitude" (5.4 on the list).
It has been pointed out that an order of magnitude change in technology
frequently changes things qualitatively and not merely quantitatively (Hamming

1963). For example, moving from horse and buggy travel at five miles an hour to

automobile travel at 50 mph changes the entire sociology and habits

of a country in very fundamental ways, Again, I'm not sure where in

children's development such ideas are accessible, but perhaps we could
draw from their experience with the world with such questions ac these:
"Suppose you had 2c, what could you do with it? Suppose you had 20c,

then what? $2? $20? $200? $2,000?" and so on. Or: "Where could

you get to by walking for the next couple of hours? Where to by auto-

mobile? Where to xn an airplane?"

To consider guess and verify procedures (5.5) I believe quite simply

that we must work them in whenever possible, That is, we should watch

for opportunities based on children's experience where it is appropriate
to ask "About how much...?" and then "Why do you think so?"
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The use of variables (7.1 to 7.5 in the list) has been explored in a
variety of existing materials by the use of "frames." To the extent that
functions and equations expressed using frames can be tied to children's
everyday experience with the real world, this would qualify for what I
want done with applications in early learning. Similarly, consideration
of inputs and outputs (8.1) can be supported by a variety of classroom
and everyday activities.

The Nuffield books have a good deal of activity centered around
representational (arrow) graphs (8.3) that could well be adapted for Amer-
ican classrooms. (Coordinate graphs related to actual applications per-
haps must be deferred beyond the early stages I am discussing here.)

With respect to logic (9 in the list), we all know about the Piagetian
findings with respect to reasoning from arbitrary hypotheses but I believe
that it is widely agreed that much less formal reasoning based directly on
a child's experience is accessible in the concrete operation stage. For
example, youngsters at play do make up arbitrary rules for games and as
disputes arise they argue through the consequences of their rules: They
also change rules and argue from the new "axioms."

With respect to my category 12, informational graphs, we have many
suggestions in the early Nuffield mathematics materials and it seems clear
that the child's actual experience provides ample material to be exploited
here:

Finally in this brief sampling, it may be that flow cnarting exercises
belong beyond the early learning that is my focus here, but perhaps not..
Piagetian findings indicate that one-way functions are available fairly
early and perhaps it isn't too much to ask youngsters to sequence events
that they are directly involved in by what would amount to an informal
flow chart.

The examples I have given here are (deliberately) quite simple-minded,
My intention has been to indicate that applications from a child's real
world can play a role in the opening up of many important mathematical
concepts as well as in their further development. Two things would be
required, it seems to me, and neither of them is very common in early
schooling: First, we would need to have teachers themselves enough at
home with such mathematical ideas as are suggested by the list displayed
as Figure 2 that their on knowledge and intuitions would alert them to
possibilities for using the children's experience in opening up and
developing these ideas. Second, even with such awareness of where
mathematics education is headed and what it would mean to arrive there,
teachers would need many suggestions with respect to things they might
actually do with youngsters. For this, we would need to go to work and
produce a large number of sample experiences and dialogues to illustrate
ways in which each of the things listed above could be opened up, The
first task would be to sensitize kids to notice what goes on in their
world. Next, there should be more explicit development of concepts via
applications based on children's experiences (as well as through embodiments)
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through the concrete operations stage. Finally, in the formal operations

stage, there should be a variety of problem situations firmly rooted in

the real world but not now necessarily in a child's direct experience.
These would require for their solution fairly sophisticated formulation

and exploitation of mathematical models. For this last many examples are

already available, if not yet very much used But for early mathematical

learning, accumulation of the required large number of suggestions has

barely begun, except in the science units noted earlier.

Some Further Remarks About Applications Related
To Early Mathematical Learning

I wish now to continue with some more or less random comments and

speculations on the subject at hand,

So far I have referred to the findings of developmental psychology
research mainly to speculate on limitations that developmental patterns
might put on the use of applications in early learning. (For example,

metric proportion may not be available as a mathematical model until the

formal operations stage.) But one wonders if observing children as they
deal with actual applications from their own direct experience might not

throw additional light on developmental patterns. For example, Sinclair

notes that "Until nine years of age, there is confusion in comparing two

moving objects or persons .., going further usually implies taking more

time" (Sinclair), But suppose a teacher were to get the cooperation of

some parents and set up or find situations where John, Mary, and Jack

have actually travelled quite different distances in about the same time

(a near place by automobile and a far place by airplane; or to school on

a given morning by bicycle versus walking versus automobile, for example).;

In the context of direct personal experience, how will John, Mary, and

Jack themselves respond at different ages to the question "How can that

happen?" and to what extent will their classmates also ettage the problem?

That is, I wonder if the medium of applications from the real world might

not be fruitfully used in developmental studies -- at some loss in

precision and replicability but perhaps with some gain in motivation and

concreteness. To be sure, standardized concrete situations with action
called for are already common in such research but I have in mind longitu-

dinal studies of what a given child's development lets him make of his own

direct world experience when explicitly alerted to some aspect of it,

especially with reference to appropriate mathematical models and concepts.

One way to attend early to applications of mathematics would be to

call attention to aspects of the child's experience that he may not be

able to "explain" at a given developmental level but which would be

interesting in their own right and which might set the stage for later

development. For example, there is a neat and rather profound link

between the worldiof reality and the world of mathematics by way of biolo-

gical consequences of scaling laws that indicate how changes in linear

dimensions relate to changes in area and volume (Haldane). Consideration

of the complicated proportions among linear, squared and cubed measures

must wait for the middle and upper school years but direct experience

can show much earlier, for example, that mice eat much more in relation to
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their size than do children, horses, or elephants, (This is, of course,
because they have more skin surface area relative to their volume and
weight so relatively more body heat is radiated.) Children can observe
that a young baby is about half as long as a first grader, but may only
weigh about an eighth as much; and that babies (with relatively more
surface area) are much more easily chilled or dehydrated than older children.
Hippopotamuses have quite different structures than gazelles, partly
because of scale effects. Such things may be observable, if not explainable,
at Piaget's concrete operations stage and would support more sophisticated
later work. To explore such possibilities we again need to describe a
great many spiral developments where the observations and experiences at
the beginning of the spiral are clearly spelled out in terms of things that
can be drawn from a child's actual experience. Observing children's
reactions as we follow through such spirals might also considerably extend
our knowledge of developmental patterns in children,

The original suggestion of the organizer of this symposium was that
I try to relate Ausubel's advanced organizer notion to applications. I

decided instead on a broader theme but do wish to comment briefly in this
area. You are no doubt familiar with Ausubel's definition of an advance
organizer as "introductory background material presented at a higher level
of abstraction, generality and inclusiveness than the material itself and
designed to serve as organizing or anchoring framework as the material is
learned" (Ausubel). I can imagine situations (probably in the formal
operations stage) where a given application is indeed inclusive enough to
provide an anchoring framework for the learning of some mathematics.
For example, an applications situation with linear programming as the
appropriate mathematical model would serve very nicely as an advance organi-
zer for systems of equations and inequalities. An application - say
predicting an election - calling for collection of data, then manipulation
of the data using statistical models might serve very well as a framework
in which to integrate certain statistical concepts. But in general,
and especially in early mathematical learning, I believe most useful and
accessible applications make too few demands an the appropriate mathe-
matics to serve as advance organizers of that mathematics in the Ausubel
sense - that is, the applications are not general or inclusive enough.
There is another sense, however, in which explicit attention to applications
in the early school experience might serve as advance organizers; not to
give children ways of assimilating mathematical theory but rather ways
to assimilate their everyday experience: That is, if Ausubel is correct
in asking for integrating structures into which new data are incorporated,
it may be that explicit attention to applications of mathematics will give
a youngster structures into which he will absorb aspects of nis everyday
experience that otherwise might go unnoticed or unacknowledged, Pe might
be sensitized to the very pervasive use of numbers in his surroundings,
for example, in ways that his school instruction in arithmetic would not
cause, even if enriched with a laboratory approach via embodiwelics.
Similarly, he might be sensitized to the pervasiveness of measures in
his world.
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Finally, let me try to tie my topic more explicitly into the general
symposium themes. First, it should be clear that what ; am calling
applications here are in the general spirit of a "laboratory" approach,
especially in the sense achocated by Moore and Perry around 1900 and later
by Dewey and those of like mind, It must be recognized, however, that
mathematics laboratories as they exist today as physical locations in
schools contain mainly materials in the "embodiments" mode, plus a variety
of drill and practice materials.. They are not generally set up to
emphasize applications in the sense of my discussion today. To make
mathematics laboratories useful for teaching applications, the usual
"laboratory" collection would need to be augmented with a number of
workcards, etc. that sensit-ie cnildren to their own real world experience,
and that also direct their attention to real world problems in ways that
invite them to engage in the mathematics modelling process.6 Tools and
instruments to help them in these encounters should also be present in
the laboratory,

To turn to the second conference theme, try remarks so for have made
several connections with cognitive psychology. There 1..as some speculation
on limitations that might be put on an applications approach if Piaget-
postulated development patterns prove out. I made several suggestions to
the effect that applications might be used in exploration of developmental
patterns, on the assumption that the Piagetian :esearch does not yet tell
the whole story. I noted in passing that at least one excellent elementary
science program, which includes sone applications in the spirit of my
remarks today, has been worked cut on behaviorist rather than Piagetian
assumptions -- c;:e Robert Gagne influenced AAAS science program I have
also remarked that much of what I am talking about, and much else
consistent with the symposium discussion, goes back to Dewes and those
of like mind. That is, at the moment 1 find the Piagetian dssumptions most
helpful but I believe tnat a core eclectic selection tror various 0,eories
or taking an avowedly behavioristic view would lead to the same po,;itive
conclusions about the likely effectiveness of applications as do aid to
early mathematical learning.

Summary

I have attempted during this hour to oFen up for further discussion
.nd investigation some possibilities f,r using ,Pcli.:at.,:ns of mathematics

from the every day experience '0 young children to enrich and support early
mathematical learning. 1 tried to sort out sorLe of the main links within
and between the world of reality and the wurld of mathematics (Figure 1).
I claimed that work strictly within the world of mathematics dominates
the schpol mathematics experience although the exploitation of "embodiments"
of maths _ics concepts is making some inroads t1,10 dominance. I noted
that the applications business of starting with real world situations and
finding ways to fit mathematical models to them is a largely undeveloped
possibility in early learning and examine! sore reasons for this neglect,

At least one such workcard collection suitable for ^liddlc and later
school grades has been poolished (:ritbel).
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.1 offered a possibly peculiar listing of the ultimate outcomes we might
aim for in school mathematics (Figure 2) and tried to show that there
might well be in the use if applications from the child's real world a
number of opportunities to begin spirals of experience leading to gut
level mastery of certain very important concepts, I concluded with a
series of more or less random remarks about possfoilities for exploiting
applications from the real world in exploring cognitive developmental
patterns in children and also to provide "organizers" to help a child
integrate his ever encounters with various uses of mathematics into
his developing co, 'e patterns. (Our colleagues in science are probably
well ahead of us IA "is area and we should look carefully at what they
are doing and the results they have achieved.)

If we are to become serious about exploiting applications in the
child's world in early mathematic., learning a good deal of work would have
to go into providing teachers with suggestions, sample dialogues, outlines
of spiral developmcnts, and so on. T am not optimistic that such efforts
will take place very soon, if only because mathematics education is faced
with plenty of problems already. But the fact is that a child does live
in Lhe real world and is surrounded by countless applications of mathe-
matics; surely this could be a potent learning resource. The ability to
use mathematics lies at the heart of our objectives f' mathematics

education, I do not believe we can afford to neglect much longer the
potential of the use of applications to improve the early mathematical

learning experience,
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ABSTRACTION AND GENERALIZATI4
EXAMPLES USING FINITE GEOMETRIES

Zoltan P. Dienes
Director of Psychomathematics

Research Centre
Sherbrooke, Canada

It is beginning to filter down into the inner circles of mathematics
education that what mathematics a child learns is of little importance because
the specific content will for the most part be forgotten anyhow. What
matters is the kind of mental discipline that he acquires and the kind of
mental habits and techniques that he learns. Such interests and skills
would include the following: an interest in generalization; an appreciation
of an abstract structure; the ability to decode a coding system or to
transcode from one system to another system;, and the ibility to look for
necessary.or sufficient condition. for certain properties to hold..

Provisions for acquiring.these kinds of competences in children should be
the aim of mathematics education, instead of saturating young heads with
useless definitions and terms, however exact these may be from the point of
view of the abstract mathematician.

In this paper, I would like to show how some of these ideas can be
encouraged to grow., The field I have chosen is finite geometries. Naturally,
practically any other part of mathematics could have been taken and similar
kinds of arguments used.

The Seven-Point Geometry, Points and Lines,

We could start with the following game. Let us say that seven children
are together and they want to play a game. This game can only b..2 played by
three children, and the other four have to watch, How could we arrange the
children in groups of three so that every child plays three times, and so
that each child plays with every other child one time, and only one time?
There will be seven such teams of three.

If the seven children aref
John, Jack, Jess
Joan, Jasper, ..loey,

and Jchanne

The teams could be:.

(John, Jack, Joan)

(John, Johanne, Jasper)
(John, Jess, Joey)
(Jack, Jess, Jasper)

(Jack, Johanne, Joey)
(Jess, Johanne, Joan)
(Joan, Joey, Jasper)

This problem will lead to the conzideration of a seven-point geometry in
which the children are the points, and the groups of children are the lines,

The game can be made more concrete by using seven objects, The objects
can have two colors (red and green), two shapes (square and circle), and two
sizes (large and small). We will then have seven objects if we get rid of
the small green circle, And, to form sets of three objects each, we pick any
two of the remaining objects, and look at the small green circle. If we
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put the small green circle next to one of tne objects, we will see that
they are different from each other in cm -in mays., The remaining object

has to differ from some other object in the same ways, This determines

the third object in the set of three objects, For example, if we take a

small red circle and a large green circle as our first two objects, which
is the third object? Place the small green circle next to the small red

circle, We see that there is a difference in color. Therefore, we must

put the large red circle next to the large green circle, so that there is
also a difference in co_or (and only in color) between the latter two objects.
So the small red circle, the large green circle, and the large red circle
belong to the same set of objects. Of course, we could have put the small

green circle next to the large green circle; tnen, we would have notioed
a difference in size; so then the large red circle vould still have to
have been put next to the small red circle because the small red circle z.n1
the large red circle are different in size, and in size only. 7n this wav:

we establish a binary function., Given any tuc o^_!ects, a third one viii

be determined. This correspoo.ds to the fact t'at, given any two points,

a straight line is determined

Instead of using eight ob_;e,..s, we have ,Ised eigbt sets. To

make the sets, we could use foir red objects, four blue,oblects, and four

yellow objects. The first prct,lem is to construct sets of obje:ts -,i4t of

these. The sets will be constr,cted so that there Is nover Tore than one

of any given color in ea.'. set. Using this rul, .,even :afferent sets can

be formed, if we ignore the empty set.

{o o e} fool o4)} { o}

{o o} {41} o}
re can for- tn. biLary f.;ntion in t!le gi,er

two 5..:s, the tc-rd tv: 'nat is associte, with tie first is determined

b; sav,ng that if ;f a ,olor in the two sets,

we must nct put tn':, -.r it the tbir, t d ,.for o, rs onl.. once

in ti.0 f!rst two thli 7c, t I,- the t-,.rd f the

three sets.

:Thts problem --.1.t. lv tr .1' re to t'e first pr'bier.

Of course, tr,ls e :dent t- a mathemati,ian

not so evident to a I: is Is ust unat ma,s a mathematiclal, that

he is; namely, the fact able tz rec.;n12.e identlt of .,trutture.

In other words, ne can thine. ter-, of anstracti.-n. 7o : 0 abstract,

we need to practice the process -f ,e .ght procce: as follows:,

one group of children, can play tne seven-o..ject game, an0 arot.er group

will play the seven-sets game, These games ,n then -orpared. Which

set corresponds to whim object' et us sa !rat object A :'bject B

determine object C to the o:ject game, and that to oblert A ,rrresponds set X,

to object B correbpor-s se. Y, and to ob!e,-t C .--orresprrds set Z., Set X and
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set Y must determine set 1. If that is not so, then either we have not
found a way to compare the objectgame and the setgame, or else this is
impossible, So, in the case of comparable or isomorphic games, children
should learn how to construct the isomorphism in question.

child game

John

Jcck

Jess 11--110.

Joan

Jasper

Joey

Johanne

object game set game

I (red)

O."6111-11111' (yellow)

0

0

r

(blue)

(red, yellow)

(yellow, blue)

(red, blue)

-4111----30.- (red, blue, yellow)

Isomorphisms for the three games that have been considered so far are
shown above. To that these isomorphisms work, look at the following
diagram. The "triads" in one game whould correspond to the "triads" in
each of the other games,

Joan and Jasper

t t

and 0

"only play with"

"determine the object"

(red, yellow) and (yellow, blue) "determine the set"

Joey

ti

$

(red, blue)

Here is a useful representation of the abstraction that was just
described. Seven "lines" are shown; one of them is in the form of a
circle,
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In the case of non-isomorphic games, children should be able to
discover why the two games are not isomorphic. This will lead to arguments

leading to different conjectures. If they were the "same" game, then
certain things would happen; but you know that this is not so, and so the

two games are noX the same. So the idea of sameness will acquire a kind

of "isomorphism color" instead of an "identity color".

Take the following "seven-element-game" with these arm positions as

the operational values:

3 up 2 up 1 up do nothing 1 down 2 down 3 down

Three children play; the first assumes a position of his choice, the second
is the operator and the third has to show the result of the operation.; We

should specify that to go "up" from the uppermost position means to assume
the lowermost one, to go "down" from the lowermost position means to assume

the uppermost position. Here are some "additions":

%MEMO* etc.

Although the first and the second positions always determine a third
position, the second and the third do not determine the same first. For

example, "2 up" + "1 down" "1 vp" but "1 down" + "1 up" 0 "2 up" so

there are no triads in the sense of the other seven - games. Therefore, this

game cannot be isomorphic to tt,e other seven-games.

The Fifteen-Game

Mathematicians are inveterate generalizers. At any meeting of mathe-

maticians when one talks to another about a theorem he has just discovered,

the first thing the other one will say: "Oh yes! That's fine, but is it

not applicable to a more general situation? And if'not, why not"? How

can we encourage this type of inquiry? Clearly we can do so by putting

children in situations where generalizations are possible, and indeed even

quite obvious In order to encourage them to do generalizations, we should

first show them how one game can relate to another game by one being more

general than the other.:
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Points, Lines and Planes

Instead of taking seven objects, we can take fifteen. In other words,
instead of taking color, shape, and size, we can take color, shape, size,
and thickness. There will be thin objects and thick objects as well as
large ones and small ones, as well as circles and squares, as well as
green ones and red ones. So we single out the small thin green circle in
this case as the comparison object which is put against another object to
make a pair. This determines another similar pair. The differences between
the testing object and the first object must determine the differences
between the second and the third object. Here are two examples:

1st object 2nd object 3rd object
/ \ /

/ green red \ / d

1) 1 0 1 I

1 / \
first object

/
x second object

/green green \ / red

/
\ /

2'I 0
I I

4th object

green

[I] 1

third object

first object / \ second object third object /

red

/
A similar game can be played using sets of objects if we take eight red

objects, eight blue objects, eight yellow objects, and eight green objects.
Disregarding the empty set, we should be able to make fifteen sets such that
in each one there is never more than one of each color, APAin we can make
the same requirement about the third set as we made in the 7-sets game. A
third set is determined, given any first and second sets by completing the
colors of which there is only one in the first and the second sets. We
must not put a color in the third set if it already occurs twice in the first
two sets, and we must put in a color which occurs only once in the first and
the second sets. In this way, we have the same binary function as before,
only we have more sets. In this game there are 35 "triads" that can be made.

There are certain novel features in the 15-game which are not present
in the 7-game In the seven-set game, if we are given three sets which do
not belong to the same triad and try to extend by finding triads that can
be formed from th.se three sets, then we eventually obtain all of the seven
seta, This is not so in the 15-game In the 15 game, given any three sets
which do not belong to the same triad, we can never reach more than 7 sets,
Here wp have a substructure of the 15 structure which is isomorphic to the
seven structure previously studied.: But this time we can go beyond it.
Such a 7 structure can be called an extension determined by our first three
sets. It is not desirable to call them planes because the whole game
occurs in one plane, and so this might confuse children. But if we take
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any four sets that are not in the same extension, then by constructing third
sets in triads determined by pairs of sets, we can eventually reach all the

15 sets. It will be interesting to find that there are the same number of
extensions as there are sets (i.e. there are exactly 15 possible extensions).

Naturally, the same game can be played with objects instead of sets, and
an isomorphism can be constructed between the set of objects and the set of

sets. Eventually a system can be developed in which we can represent either
the objects or the sets or any other concrete version of this 15 point
geometry. For example, here is an interesting representation which takes
the form of a triangle.

The way that the 15-game is more general than the 7-game is that in
the 15-game there are elements, triads, and extensions, whereas in the 7-

game there are only elements and triads, We have not yet extended the number

of elements in a triad. But this would be another way of making up a more

general game than before.

Clearly our original sets (or our objects) correspond to points to
geometry, our trIx!s to lines, and our extensions to planes.
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The Thirteen -Game. Four Points in a Line.,

Let us think of another way that we can play a more general game.
Let there be four points in a line and four lines through a point. How
do we play such a game? We can tell the following story: there are
thirteen children who want to play a game in which four children at a time
can participate. The way to be fair in this game is to get everybody to
play the game four times, and for everybody to play one and only once with
every other child. Furthermore, we can require that out of any two groups
of children playing, there should be one and only one in common. This is
already included of course in the requirements that no child should play
with the same child twice.

Children find this game already quite difficult, and we might help by
giving them a different kind of embodiment. For example, we could take the
27 elements vector-space, with which children will play quite readily. They
can be asked to draw 27 pictures so that in each picture there are either
zero, one or two trees, either zero, one or two birds, and either zero, one
or two houses. You throw away the picture on which there is nothing (which
annoys children in any case) and so we are left with 26 pictures. An
"addition" game can easily be worked out by saying that if you put two
pictures together, there is a third picture always associated to the first
two by adding the number of houses, the number of birds, and the number of
trees with the proviso that if you get three trees you cut them down, if
you get three houses, you sell them, if you get three birds you let them
fly away. Of course, if you get four birds, you let three of them fly
away, and keep one, and so on. In other words, the rules are for playing a
modulo three game. There are three scalars in the vector space: zero, one,
and two. The zero is somewhat trivial; multiplying a picture by zero turns
it into a empty set. The scalar one is also somewhat trivial; multiplying
a picture by one naturally yields the same picture. The scalar two, when
used as a multiplier, turns a two into a one, a one into a two, and leaves
a zero unaltere.. We can ask children to find a partner for each picture
so that for each picture there is always a definite rule that gives another
picture to go with it. They will very soon get to the point of saying:
"Yee, every time there are two trees in a picture, its partner will have one,
or if it has got two houses, its partner will have one, and if it has got
one bird, its partner will have two. If it has got none of something, its
partner will not have any of that either, and so on."
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In this case, the partner-picture and the picture can be stuck back to

back so that instead of 26 pictures we now only have thirteen. If 1,,e play

the addition games with these cards, we obtain the thirteen teams of our

initial problem in the following way. We draw the 26 pictures in pairs.

Then, if we are given any two double-pictures, only two further double-pictures

call be obtained by modulo three addition,' By this means, we obtain a second

pair of double-pictures. In other words, we generate sets of four pictures

in which the initial pair is included., Therefore, we have constricted a model
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of a geometry in which a "line" will contain four "points" and every "point"
will have four "lines" going through it. Very soon the children will associate
the names of the thirteen children to one of the double-faced cards, and they
will have ,an idea of how to play the game.

In this way we have generalized from three points in a line to four
points in a line, but of course we have neglected to generalize from
points and lines to points and lines _nd planes. We have also neglected to
abstract, because we have not provided several embodiments. To do so, we
would have to find some kinds of interesting isomorphisms that can be
established between a new embodiment and the one we have already established.
The search for such isomorphic embodiments should form an important part
of the stock in trade of the imaginative mathematics teacher of the future.

O A

CR R (6A OQ OD
Eo Ct A2.

Here is such a new embodiment It is possible to take figures of
people instead of circles, squares, and triangles When the geometrical
figures are overlapping, the people could hold hands. We would need three
kinds of people. If we want to use the children in the class, we can
make two kinds of hats. One kind of hat is put on some of the children,
another kind on the other children, and the remaining children would
wear no hat. For example, children that correspond to overlapping figures
of the () , A game will hold hands, and the children that
correspond to non-overlapping figures will stand apart to make the distinction.
In this way, we can generate the thirteen elements of this geometry out
of real children or out of plastic figures.

It will be interesting to pose the probleM of which of these new
elements correspond to which of the pictures in the thirteen double-faced
picture game, The correspondence is very simple. We have to associate
squares, circles, and triangles to the three different kinds of objects .n
the pictures. For example: a tree could be a triangle, a bird could be a
circle and a house could be a square. Now if there are the same number of
trees as birds on a card, then on the back of the card there will also be
the same number of trees as birds because this property is not altered by
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taking the additive inverse. In this case, the circle and the triangle

will be overlapping. .If there is a different number of trees from birds,
the circle and the triangle will be separate: If there is no bird, then
there will be no circle; if there is no house, there will be no square,

and so on. Now if the children have discovered how to find the missing
two double-faced pictures, given any two double-faced pictures, then they
should be given the task of finding the rule of how to determine the other
two of the geometrical figures when any two of them are given. In other

words, what is the necessary and sufficient condition that four of these
figures should be "aligned." They will very soon find a necessary condition:
A necessary condition is that in the set of four there should be three of
each figure of which there are any For example, if there are any circles
at all in the set of four figures, there must be three circles, The same

must be true for the triangles; if there are any, there must be three.
Unfortunately, this is not a sufficient condition,

The necessary and sufficient condition ii rather complex and canbe
expressed disjunctively as follows given fou: figures, they are aligned

if and only if for each one of the three possibi pairs circle-triangle,
circle-square, triangle-square one or the other of tne following is true.

a, The pair occurs in the same way three times, and is missing
altogether from the fourth picture, or

b. the pair occurs in all four possible ways, That is, overlapping,

separate from each other, the first one without the second, and
the second one without the first,

For example, in a t of four, we may have the square and the triangle

occuring three times o apping and the fourth time no square and no

triangle, nr we may hav he square and the triangle cccuring once over-
lapping, once separate, once the square without the triangle and once tin.

triangle without the square, This is quite a sophisticated, disjunctive

necessary and sufficient condition, But, children of nine or ten are

able to handle this degree of complexity, particula'ly if they have been
brought up to consider disjunctions and cunjunctions as part and parcel
of their logic course:

Representations

We have sketched a zeneralization exercise from the seven-game to the
thirteen-game, meaning that from three elements aligned, we now have four
elements aligned, We have also sketched an abstraction exercise of the
thirteen game by giving two different concrete models of the same abstract

structure. it is time to find a representation.
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13-game

Here is a representation of thirteen elements, twelve elements
placed around a center. The thirteen sets of four are arranged in four

shapes. There are three lines, three crosses, three triangles, and
four Y's. One of the 'Cs is in the middle and the other three Y's are
around the sides with the filled-in circle in the middle, The crosses

have 1.1e filled-in circle at the base and the triangles have it in the
middlt of the mid-point of the base. The triangles are isosceles. In

this ay, the arrangement is completely symmetrical about the three
axes of symmetry of the figures



Lines

Crosses

Triangles

- /0-
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or

Let us now go back to consider the fifteen-game. This' can also be

symmetrically represented about three axes: whatever happens on one side of
an axis, happens on the other side of the same axis also. It is interesting
to give a certain number of requirements in this game as to where the triads
should be situated and see what kind of solution the children come up with,
while satisfying the requirements. It will also be interesting to give some
requirements which fully determine the solution and others which do not.
For example, if we require that the triads should be spaced starting from the
vertices of the triangle as well as along the inner, the middle, and the outer
triangles, then the positioning of the rest of the triads is determined, But

if we require the "knight's" moves and the straight line segments from the
vertices but only those along the s_des, then the solution is not determined.
In the thirteen game also, the solution given is not unique but there are not
too many variations possible.
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We have not generalized the 13-game to ir-'de an extra dimension.
To do tLis, we can generalize the four elemen a line problem to a
problem of points, lines, and planes. This ca, De done by having four
shapes instead of three. 7 e same rules apply for generating "four-somes"
as in the 13-game. There will be forty possible points, a line will have
four points, and a plane will have thirteen. This is an easy generalization
to make, once children have played with the three shapes, they will generalize
to four shapes: This is an example to show the kind of situation which we can
contrive so as to train a child's direction of thinking towards generalization
rather thar towards learning by rote what the teacher presents.

The 40-game

go= III

coi 1 g
A ci

A CI A



Two Different 31-Games

There is another interesting 31-element extension that could admit two
possible solutions: One of these extensions can be derived from the one-
hundred and twenty-five element vector space, itself based on the five element
field., We can also derive one from the thirty-two element vector space that
is based on the two-element field: In this case, we remove the empty set and
we have a thirty-one element projective geometry which consists of either
thirty-c-e objects with five different attributes (each attribute having
two different values) or of sets of objects m.'e up out of sixteen red ones,
sixteen blue ones, sixteen yellow ones, sixteen green ones, and sixteen black
ones. Out of these we could make thirty-one sets in such a way that no more
than one of each color is put in each set, not counting the empty set The
same rules as before can apply for making the triads. The following diagram
will act as a representation which takes account of the fact that we are
dealing with the fifth power of two: Children will readily place the single-
element sets round the first "circle", the two-element sets round the
secend "circle", and so on: (see diagram below)

The First 31-Game

Many triads will readily be found, such as (ab, ac, be). or (a, abcde,
bc le). There are extensions (i.e., place') of seven, and "super-extensions"
(i.e., spaces) of fifteen. It will be interesting to find at least some
of these.

Suggestions such as "Try to make your arrangement look pretty'" will
encourage children to look for srmetrical solutions.
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If each letter is drawn as a flowe. of a particular kind, the above
distribution provides an interesting bouquet,

Intcr- ingly enough we can build a thirty-one element geometry out
of the 125-e ement three dimensional vector'space. In this case, children
need to draw 124 pictures with trees, birds, and houses. They are allowed tc
draw either zero, or one, or two, or three, or four of each kind of object:
So the largest number of objects on a picture will be four trees, four birds,
and four houses: Before they can build a geometry out of this, they will
have to know about multiplication modulo five. For example, if we take a
picture with one tree, two birds,and three houses, and "multiply by two"
we shall have two trees, four birds and cne house. If w' multiply again by
two, we shall have four trees, three birds, and two houses; if we do so
again, we should have three trees, one bird, and four houses. Of course,
if we multiply again by two we get back to one tree, two birds, and three
houses. In other words, instead of putting the pictures in pairs as we
dLd when we had twenty-six pictures, we will now have tc put them in sets
of four. So the pictures just described would have to be stuck on a large
piece of cardboard and be considered as one element, In this way, instead
of 124 elements, we will have again the magic number of thirty-one, and we
can play the "adding game". We will find that to each pair of four-somes
of pictures, will correspond four other four-somes and no more. This is
nature: because to any two vectors represented on the two four-somes of
pict_res, by adding we can obtain any member of the two dimensional subspace
in the .hree dimensional vector space. This subspace will contain twenty-
five elements if we include the empty set, which represents the zero vector,
So it is no surprising that we only obtain twenty-four pictures and the
empty set, repre,enting the twenty -five elements of the two-dimensional
subspace, At this point, the ,mathematician caa perform a slight pedagogical
cheat, because he knows in advance how the game is going to work out. The

mathematician can use his mathematical knowledge to help cnifdten have fun
in discovering mathematics that we ourselves were probably shown ready-
made by some teacher or professor.

To map the path for our young clients, we must provide another embodi-
ment of a situation in which a one, two, three, a two, four, one, a four,
three, two and the three, one, four are represented by one and the same
diagram, Here is a suggested solution to this psychological problem
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The problem can be put in the following way: the diagrams are drawn on
one side of a card and the four corresponding vectors (i.e., those that
belong to the same one dimensional vector space) are written on the other
side. Children have to practice telling what vectors are on the other
aide of a diagram and what diagram is on the other side of a set of four
vectors. To solve this transcoding problem, they have to find out what
is constant as they go from one vector to the next on the same card. How
is one, two, three, like a two, four, one? It is not difficult to see.
Two is the double of one, and four is the double of two, and three is
multiple of four of two, and one is multiple of four of four, and so on.
In other words, the digits are in the same proportion to each other in
123 as in 241. This is something children will discover with reat
pleasure, They will probably write:, 1 3 and 2 4E4)1.

Duality

Now let us come to another interesting point, There is a principle of
duality at work in these games, Take for instance the seven game or the
thirteen game or any other similar game. The problem is to find corresponding
names for the dual objects. For instance, let us draw the diagrams for the
"points" in the thirteen-game in black, and then draw the corresponding
diagrams for the "lines" in red. There will be thirteen red diagrams, each
diagram representing a line and thirteen black diagrams, each diagram repre-
senting a point., So each red picture corresponds to just four black pictures,
But each black picture corresponds to exactly four red pictures, For
example, if we take the picture of the red circle by itself, it will be
associated with the black triangle, the black square, the black triangle-
square overlapping and the black triangle and square separate, In that case,
if we take the black circle, this black circle should be associated to
the red triangle, the red square, the red square and triangle separate, and
the red square and triangle overlapping. The problem of naming the lines
by means of red diagrams amounts to asking which set of four black ones
should be associated with which red diagram and visa-versa. The solution
to this problem in the case of the seven-game and in the case of the
thirteen will be found in the following diagrams,



lit Duality in the 7-game

4

Sets of "black" figures
(sets of "points")

"Red" figures
("linee')
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Duality in the 13-game

Sets of "black figures "Red" figures
(sets of "points") ("lines")
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Naturally, for the other games in which there are points, lines and

planes, the problem is more difficult. Points have to correspond to

planes, and planes to points, and the lines correspond to lines in this

duality. So for example, in the fifteen-game each plane or extension as
we called it, should correspond to one and only one point, and the name of

that plane should be appropriately chosen so the seven points it contains

should be able to be translated into the seven planes that pass through seven

points which should have the same red names and so on. So. again the duality

can be extended from two to three dimensions, from three to four dimensions,

and so on, Here is one way of solving the "naming problem" for the fifteen

(15) extensions.

a, b, c, ab, ac, bc, abc

b, c, d, bc, bd, cd, bed A

a, c, d, ac, cd, ad, acd B

a, b, d, ab, bd, ad, abd

c, d, cd, ab, abc, abd, abed AB

b, d, ad, ac, abc, acd, abed AC

b, c, be, ad, abd, acd, abed AT)

a, d, ad, be, abc, bcd, abed BC

a, c, ac, bd, abd, bcd, abed BD

a, b, ab, cd, acd, bcd, abed CD

d, be, bcd, ab, abd, ac, acd ABC

c, ab, bd, ad, abc, bcd, acd ABD

b, ac, cd, ad, abc, bcd, abd ACD

a, be, cd, bd, abc, acd, abd BCD

ab, cd, be, ad, ac, bd, abed ABCD

Further Possibilities

We can make up a 21-point geometry, if vector spaces based on

Galois-fields are known, Take for example the 4-element Galois-field
and the 64-element three-dimensional vector-space based upon it. We

remove the neutral as usual and obtain 63 elements. These can, for example,
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be "played with" by representing them as 63 houses, as shown in the following
figures: In the vector addition two similar windows yield no window.
Naturally the left, middle, and right windows have to be taken independently
of each other. For example:

The ac ars are: 1) x nothing changes

2)

3) x

0
1:3 r--1 .13

C`-'

Houses which are "products" of each other, belong to the same village
For example: r El CI10 CI CI ILI

1
00 0

These form one village.:.
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If we pick any two villages, by "adding," we can determine three
more villages. A set of five villages so determined could be called a
town, A "town" will be a "line" and a "village" a "point." For example,
take the following two villages,

i/O
0
Li

rgl E]

6C3 ril1J'
By "adding house

rEM

p 1

to house," we obtain these three villages:

c"-------N

r
,

.....,

E

The five villages together form a town,

1p

i
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Oby
Here

There are 21 such villages.
1, Q by 2 and Q by

are the 21 villages:0

If we denote no window by 0,
3, each house will be numbered.

001 010 100 011 101 110 120

002 020 200 022 202 220 230

003 030 300 033 303 330 310

210 102 201 012 021 211 111

320 203 302 023 032 322 122

130 301 103 031 013 133 233

121 131 112 113 123 321 111

232 212 223 221 231 132 222

313 323 331 332 312 213 333

Each village can be represented by a figvre in order to emphasize
that our new units are now villages (i.e., "pcints") and not houses
(i.e., vectors). For example, the following figures can bt used.,

o cEl on

011 OA 00 ELL CIA 0,E OR

go ctlL (DEL_/\ ODA



Representations can be found in many different forms. For
example

Some of the arrows can be put in to show whe-y the "five- comes" or
towns" are. Each village has an "emblem" and eacn town has five emLiems,

taken from its villages.; Naturally the inhabitants and town governments
need to be very cooperative, since eve.ry pair of towns has one village in
common, and every village pays taxes to five overlapping towns.

Summary

A number of examples have been given to illustrate some of the initial
stages of the aberracticn and generalization processes, In the abstraction
process that leads to the eventual formation of a formalized concept, there
are many stages, The first is always a somewhat groping stage, a kind of
"trial and error" activity; this is usually described as play. The restrictions
in toe play lead to rule-bound play or sames. This has been well represented
in the present paper, The next stage is the identification of many different
games possessing the same structure, This is the stage of the search for
isomorphisms. When the irrelevan, features of the many games have been
tiscarded, we :.re ready for a representation, Such are the many "link"
diagrams suggested. It is only when t,. stage has been reached that it
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is fruitful to use a fully symbolic language, the development of which
will be a later stage in the abstraction process.

The abstraction process should not be confused with the generalization

process. Passing from 3 points in a line to 4 points in a line, or even
more so to an infinite number of points in a line is Aeneralizing, Acquiring

a deeper understanding of the concepts of point and line through comparisons
is abstracting. Bringing in another dimension is generalizing, under-
standing more deeply what is meant by dimension is abstractinK.

It is hied that through playful activities such as the ones that
have been described, these exciting processes could he made available to
more and more children.
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AN APPLICATION OF PIAGET - COGNITIVE
DEVELOPMENT RESEARCH IN MATHEMATICAL

EDUCATION RESEARCH

Leslie P. Stefic
University of Georgia

The pr ems of mathematics and logic are independent ibut not
separate) f m problems of the psychology of mathematical learning: Attempts
to solve problems in mathematics or logic by usiLg psychological methods
(psychologism) are rejected and, reciprocally, a:tempts to solve psychological
problems solely by using logical or mathematical methods (logicism) are
rejected. Psychologists do not, however, advocate a complete separation of
mathematics and psychology. On the contrary, a close correspondence exists
between certain basic "logical-mat.ematical" structures and the cognitive
operations of the child, where the "logical-mathematical" structures serve
as models for the cognitive operations. This correspondence has been
elucidated by the Genevans in their developmental analysis of logical-
mathematical thought. Aside frog the basic empirical work by the Genevans
(on number, geometry, space, logical propositions, functions, probability,
time, etc.), it is this correspondence and its accompanying theory which
has held the fascination of mathematics educators in the United States.

A point which needssemphaPis is that while logical-mathematical
structures are used by the Ge:evana to describe the natural thought of tLe
child, these structures "do not correspond Lo anything as such in the
subject's conscious thought (Beth & Piaget, 1966, pp: 167)." A sharp
distinction has been drawn between the problems of psychology from a
genetic viewpoint and the problems of Education in mathematics,

No subject, before he has learnt it, has a concept of what
a group, lattice, topological homeomorphism, etc, is
Thus it is not in the field of re!lective thought ... that we
shall ask whether these structures are "natural" .., we can thus
'largely set aside the most awkward factor in the attempt to find
a genetic analysis: namely, the factor of edu-ational and
verbal transmission (Beth & Piaget, 1966, p, 167).

In their studies, the Genevans claim not to reduce natural thought to iormal
structures but, instead, to use the formal structures to describe natural
thought as it develops in the child--making every effort (a) to be cog-
nizant of limitations of natural thought and (b) to arrive at the most
rudimentary structured wholes. These ruuimentary structured wholes possess
specific laws of combination (e.g, reversibili-4) as well as exhibit a
generality of form across their contents (i.e., the "grouping" structure).

In contrast to these genetic structures are the structures of mathematics
proper. Throughout the ages, mathematicians have given definitions of such
entities as set, number, point, and line; all objects of mathematics. In

modern postulational developments, such entities are left as undefined objects
or are defined in t-_rms of other undefined objects. In fact, a clear
perception of the necessity of leaving certain objects of mathematics
undefined led Courant and Robbins (1941) to cot-vent that 'a dissubstantiation
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c

of elementary mathematical concepts has been one of the most important...

results of the modern postulational devt,,lopmgnt (p.xix)." As exemplifi-

cation, consider objects called "vectors." The term "vector" has been

defined as a quantity which has direction and magnitude (Phillips, 1933,

p.1). This definition is of little algebraic importance because objects,

ex-st which do not seemingly fit the definition but yet, along with ce5tnin

operations, sati.afv the properties of a vector space, An example is ehe

set of infinite se_ --,- of elements taken from an arbitrary field1/ These

objects can be cons as vectors, because if an appropriate set of

scalars is chosen a _ appropriate operations defined, infinite sequences

satisfy the properties of a vector space, Certainly to view a vector as an

infinite sequence is different from viewing a vector as a quantity which

has direction and magnitude: While each interpretation of "vector" has

assaciated meaning independent or the structure of a vector space, the

ultimate test of whether the objects are classifiable as "vectors" depends

on the structure of which they for a part: It abstract treatments of

vector spaces, the objects are left undefined.

The learner ef mathematics usually does not gain knowledge of vector

spaces by studying only abstract structure. The processes dnvolved in

acquisition, the :earner, of mathematical structures are complex and,

until quite recently, have not been an object of research. Indeed, although

the identification of genetic structures by the Genevans is a profound

contribution to research in mathematics education, the latter research area

contains elements'not directly studied by Piagetians, In maphematics edu-

cation, the student is generally expected to become explici ly (consciously)

aware of the mathematics being taught, As already noted, the operational
structures of intelligence identified by the Genevans are not present in

the mind ,..of the child as conscious structures. 1. bile` these genetic structures

may serve as mechanisms to guide reasoning of the child in the acquisition

of mathematical knowledge, the mathematical knowledge may not be at all

isomorphic to existing genetic structures. In fact, certain mathematical

structures Tay be core parsimonious models of cognitive operations th.qn are

identifiable genetic structures,

Piaget t5eth and Piaget, 1)66) has been somewhat oxplicit about

similarities uric ne perceives in mathematical and genetic

structures. One diffeen,:e is that, while the mathematical structures are

the oblect of reflection on the part of the mathematician, the genetic

structures are manifested only in the course of the child's behavior. A

second crucial eifferen:e is,that, in t-',e matheratical'structures; the 1-orm

is independent of he rontert; whereas, in the genetic structures (et least

at. the concrete ,-pernt..,ni stage), the form is inseparable from the content.

Another difference is that, in the mathematical structures, the axiom, are
the starting point of formal deduction: whereas, in the genetic structures,
the laws are the ru:.3, ,:Ltch the child's deductions obey. Similarities

also exist. Relations (oper.tions), in mathematical structures' r.,pcnd

td-'operations in geneti( structures and the "conditions" of the relatipns

in mathematical structures :.orrespom! to the -Flaws of combination" 4;

gereti.- structures. The construction of mathematical ertities,

1 filer Piag,t rstricts himst f t, th, tLr,0 basic structures--aik,.,-a-c,

relational, and topological
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"is an enlargement of the elements of natural thought and the construction
of M (mathematical)2 structures an enlargement of particular mathematical

entities (Beth and 44aget, 1966 p, 189)." This hypothesis is extremely

intriguing and certainly deserves rigorous testing: If it can be shown at

the outset that certain mathematical structures are more parsimenius models
'e genetic structures than are grouping structures, the job of testing such
on hypothesis would be aided, but not necessarily made easier. In the face
of the above stated similarities and differences between genetic structures
and mathematical structures, Beilin (1971) has succinctly expressed the belief
that "little'effort has been expended ,p testing the relations between the

,conceptual systems of mathematics and'che cognitive systems of the child
except in the most limited of circumstances (p. 118)," The remainder of
this paper is devoted to an analysis of certain mathematical and genetic
structures and a'discussion of selected series of experiments:

Genetic Structures and Mathematics Structures

In The Child's Conception of Number, Piaget apparently had two goals:
The first wa: to demonstrate stages in the development of particular concepts,
and tne seLend was to demonstrate the development of a conceptualizing ability
underlying the formation of a host of concepts, i.e., demonstrate existence
of genetic structures. While the data presented in this book are "old," the
basic theory of the Genevans conaerning the development of number in the child
has not changed substantially over the last three decades (Piaget, 1970; Beth
and Piaget, 1966: Sinclair, 1971): Four main stages have been identified in
the development of this conceptualizing ability: (a) sensory-motor, preverbal
stage; (b) preoperational representation: (c) concrete operations; and (d)
formal operations, Concrete operations are a part of the cognitive structure

.of children from about 7-8 years of age to 11-12 years of age: Fiaget (Beth

and Piaget, 1966, p: 172) postulates that such cognitive structure has the
form of what he calls "groupings" in which concrete operations are central.
While an operation is an interiorized, reversible action always part of a
total structure (Piaget, 1964, 32ff), concrete operations are those operations
which occur in the manipulation of objects or in their representation accom-
panied by language (Beth and Piaget, 1966, p: 172). In other terms, "concrete,"
in a Piagetian sense, means that a child can think in a logically coherent
manner about objects that do exist and have real properties and about actions
that are possible -a child in the stage of concrete operations can perform
mental operations in the immediate absence of the objects. All of the
grouping structures known reduce to a single model where the aifferences
in the groupings reside in the various operations which are to be structured,

Grouping I.

,In The Psychology of Intelligence, Piaget (1964b) selects special classes
for part of the elements in the first grouping discussed (in the context of
a zoological classification). These classes satisfy the following pattern:
cOC:AlCA2C:A1C ...CAB where Pe. B, the index set. This chain of sets
constitutes a lattice. 3 In the lattice, the following laws of classes hold,

2 Added by author.

3 See the appendix for a discussion of mathematical terms used in the paper.
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1. X V X = X: Idempotent Law
It

2. XV V= YU X: Commutative Law

3. (XU Y)U Z = X V (Y U Z): Associative Law

Y, then XUY = Y: Resorption Law

This lattice,. structure does not constitute the first grouping. Classes of
the form Ao' = Ay - Ao, where AA Ay are also included. The classes A0'
along- with the elements of the lattice are the elements of this first
grouping. These elements satisfy the following laws.

1. AQUA0' = Ay: Combinativity

/2. If A00 = Ay, then = Ay - Ao: Reversibility

3., (4k0U Ao )1/ Ay Ao V (Aa' u Ay) : Associativity

4. Ao V m = Ao: General Operation of Identity

5. (a)A0 VA, = Ao; (b)A0UA.y = Ay where Act Ay Special Identities

This grouping describes essential operations involved in cognition of simple
hierarchies of classes. Proficiency with the use of the class inclusion
relation is thereby essential in the establishment of operatory classification,
A more general representation of the grouping structure than that given for
Grouping I above has been given by Piaget (Beth and Piaget, 1966, pp. 172-173).
Although this general representation is not re.froduced here, it is important
to note that the interpretation given for Grouping I satisfies the require-
ments of the more general system.,

Grouping II

The second grouping discussed is commonly referred to as addition of
asymmetrical relationsPiaget's Grouping V. The asymmetrical relations
referred to are interpreted as relations which are connected, asymmetrical,
and transitive (connected strict partial ordering If A is a set and "<"
a connected strict partial ordering defined in A (which well orders A) then
the elements of A form a chain, which implies that the ordered set A is a
Lattice. If al is the first element of A, a2 the second, a3 the third, a4
the fourth, as the jifth, etc., then it is true that al < a2, al< a3,

< a4, al < a5, etc., If these instances of < are denoted by a, b, c, d, etc.,
then the diagram in Figure 1 is possible. Combinativity relies on the
transitive property of the order relation involved. That is, if al < a2 and
a2< al, then al < a3.

a a' b' c' d'
es"NeW.e"Nk
al< a2 < a3 < a4 < as < a6 <

c
dl I

Figur,: 1

41,
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The special notation a + a' = b is also used to represent the same property
(Beth and Piaget, 1966, p, 177). The notation of this latter representation
seems to be more suggestive of a grouping structure as the following
contiguous compositions are highlighted.

1, a + a' =b

2 . b + b' = c

3. c + c' =d

4, d. + d' e, etc:

A reason for introducing the notation a, b, c, d, etc.; a', b', c', d', etc.,
other than its being suggestive of a grouping structure, is that it allows
the following comparisons-- aokba(c, etc. Here, no(" denotes an ordering of
instances of the relation "<" --a hyperordinal relation (a relation between
relations) has been defined where "a" denotes a "smaller" difference than
does "b".

Compositions such as a'+ b', b' + c', etc., are ; sible also by virtqe

of the transitive property, but not a'+ c'. Elements of the grouping then,
are instances of the relation "<" (e.g, a3<ac, which is just b'+ c')
Associativity holds naturally because of the transitive property of the
relation, but it is a restricted associativity due to the restricted possible
compositions. An example is (a + a')+ b'= a + (a'+ b');or in other terns,.
((al < a2) and (a2< a3)] and (a3 < a4) is equivalent to (al < a2) and ((a2 < a3)

and (a3< a4)] in the sense that they both imply al < a4, Other grouping
properties, however, appear to be rather artificially imposed by the grouping
structure. Of the three remaining, reversibility is most viable., Reversi-

bility is distinguished at two levels, The first level of reversibility
consists of permuting the terms of an instance of the relation, permuting the
relation, or both. In symbols, R(ai<a4) = aj <ai; 11' (ai <aj) = ai> a4; and

R"(ai< ai) = a1 >a (Beth and Piaget, 1966, P . 177). The second level of
reversibility involves operations concerned with these relations, Piaget

(1966, p. 177) combines an instance of a relation with its reciprocal
(with R,R', and R") in the following three ways, The first is only.rossible

1., (ai aj) + (aj < ail .7 (ai = aj)

2. (ai< aj) + (ai> aj) 7 (ai = aj)

3. (ai< aj) + (aj> ai) : (ai < di)

if the relation is antisymmetric. The second, logically, is .just a

restatement of the first, The third is certainly logically valid regardress
of the properties of the relation, So, (1)-(3) art not taken to express
reversibility of asymmetric transitive relations at the second level. The
second level of reversibility associated with asymmetrical transitive re-
lations involves ins;ahces of the relation ai< a4 and its reciprocal R",
Piaget (1966, p, 178) Zefines reversibility at the second level by the
loll-Owing two statements.
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1: (al <a3) + (a3>a2) = (al < a2)

2. (al <a2) + (a2 > al) - (al - al)

The second statement is interpreted ah a suppression of a difference which
leads to a relation of equivalence (Ben, and Piaget, 1966, p., 178). In the

first statement, al < a2 must be known a priori because it is not possible to
conclude that al < a2 based on how al is related to a3 and how a2 is related
to a

3
(one could also say that a1 - al needs to be known a priori). If a3 > a2

represents a "diffefence" which is "suppressed," then al < a2 is "left."
Now it is apparent that an operation which is distinct from that.made possible
by virtue of the transitive property has been identified. In effect, the
operations exemplified by (1) and (2) directly above assume that the series
al < a2 < a, < .., has been already produced (or constructed) and is at best

a model of how a child, once he has already constructed a series may, for
example, start at al and proceed to a2 and then back to al, the starting
point. Because the operations associated with reversibilitysat the second
level are distinct from the operations made possible by virtue of transitivity
and assume that a series has already been constructed, they are not v...ewed
by me as germane to a model which describes mental operations involving
production of a series by a child. It this sense, composition of an instance
of a connected, asymmetrical,'transitive relation with its reciprocal (R")

deems to be a result of an imposition of a general structure. From this

position, it is a long way to a wholesale rejection of reversibility by-
reciprocity. Piaget gives , in at least three different sources (Inhelder
and Piaget, 1969, p. 292; Piaget, 1970, p. 29; Piaget, 1964a, p, 130), a
discussion of reversibility by reciprocity as it pertains to a seriation of

sticks task. Children who display operational seriation find the very
shortest stick, then look through the remaining sticks for the shortest

one left, etc., until the complete series of sticks is built (assuming no
two sticks are of equal length). The reversibility displayed in this task

is described as follows:. "When the child looks for the smallest stick of
all those that remain, he understands at one and the same time that this
stick is bigger than all the ones he has taken so far and smaller than all
the ones he will take later (Piaget, 1970, p. 29)." Symbolically, if P

is the set of sticks taken and Q the set of sticks that remain, then the
set of all sticks S - P + Q. Moreover, P is a segment of S and is well-

ordered by "shorter than," Because "shorter than" well orders S (assuming
no two sticks of S are of the same length) there exists a yEQ where, if
xEP, x is shorter than y and if z is any other element of Q not equal to
y, y is shorter than z, This is the structure (mathematical) that allows
the child to operate as he does. Piaget's reversibility in this context
is an understanding by the child that y is longer than any 4 in P and
shorter than any other z_in Q. This statement of reversibility has as a
necessary condition Piaget's reversibility at the first level of reciprocity.
The fact that x is shorter than y is equivalent to y is longer than x involves
permuting the terms of the relation as well as the relation (R"). For

the child to realize that each x in P is shorter than all y in Q does not
seem to demand a knowledge of transitivity because that was precisely how

the x's were chosen. However, in choosing the x's the child must use
transitivity and possibly reversibility at the first level of reciprocity,
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Moreover. R and R' are involved in the statement of the asymmetric property
of "shorter than." It seems to me, then, the models of reversibility in
the seriatiori of strings task are given by R, R' and R" and not by models
of reversibility at the second level:

It is only prudent to point out at this point that a mathematical model
exists which can be used to encompass most of the operations Piaget wants in
Grouping V under a unique well-defined mathematical operation. This mathe-
matical model is just the realization of the integers as ordered pairsiof
natural numbers. Obviously, the natural.numbers form a well-ordered set
ordered by the connected, asymmetric% transitive relation ( . In n is a
natural number, the segment determined by n ({0,1,2 ..... n-l)) is similar to
any of Piaget's Grouping V for some n, so that this discussion is rot super-
fluous. An ordered pair (a,b) of natural numbers is taken to represent the
difference b-a: In such case, (a,b) ED (c,d) (a + c, b + d) is the definition,
of addition of,two pairs. The two ordered pairs (a,b) and (b,a) are called
inverses of one another because (a,b) e (b,a) . (a + b, a + b), and (a + b,
a + b) is just (0,0), the identity' element of the system: Moreover, (al,a,)
(a3.a2) (al,a2) and (aj ,a22) B (a2,a,) (a ,a1), which are analogous to the
two statements of reversibility at tht seconA level: Also (avec) ED (apaci) is
an example of a composition not possible in Piaget's Grouping, the assumption
is made here that addition of natural numbers exists as well as natural numbers,
neither of which is assumed in Grouping V. It is true, however, that
whether (a,b) represents e'difference or an order (a <b) is innocucus.
So, a mathematical model exists for which a neat interpretation of (a < b) +
(b> a) (a a) is possible. This model, however, is more general than
Grouping V in that more than cr-tiguous elements are combinable and the
natural number system is assumed. It is the only Model known to me which
encompasses most of Piaget's Grouping V operations under a unique well-defined

operation and makes precise "suppression of differences," but yet does not go
way beyond the Grouping V structure.

The fact that Piaget's operations of Grouping V are so well-modelable by
addition of integers raises the question of whether reversibility as the second
level of reciprocity'is any more than operations with integers: This interpre-
tation has sound mathematical foundations because an ordinal number is identi-
fied as a well ordered set so that reversibility at the second level of
reciprocity may be interpreted as the difference of ordinal numbers.,

Questioning the relevance of the second level of reciprocity to seriation
tasks leads directly to questioning the relevance of the general identity: The
general identity is taken tv be'an equivalence relation (Pleven, 1963, P, 182),
that relation obtained from the second statement of the second level of
reciprocity--(al<ai) + (aj > al) (al al) (in Piaget's parlance): By
substitution in the sum (al <aj) + (al al), one obtains (ti - rough associating
terms) [(al< ai) + (01 <a4)) + (aj al) . "(al al) : The first sum is
(a< a4) and the second id (al = al) which shows the nonassociativity of
spelcial combinations in.Grouping V structure, It should be noted that this
notation introduces a relation of equivalence (al = al) apart from the
set A and the order relation < .
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The special identities are of the form (al < a2) + (al< al) (al < a.),

where a 2<a . Even if this statementas taken to mean that if a1 < a2 and

al< al, thea al< a3 wheneVer a2 <a3, it is rather innocuous to the relational
structure of . Empirical evidence is quite scanty that special identities
model any sort of thought in the child. In fact, Flavell (1963, p. 193)

does nat even mention them in his summary statements concerning empirical
.evidence for existence of Grouping V nor does Beilin (1971) mention-them in
his review of training studies concerning logical thinking. In such training

studies, experimenters generally focus on conservation, transitivity, class
inclusion, or reversibility (Benin, 1971). Hence, similar statements may

be made regarding the general identity and associativity. Piaget apparently

assumes, as noted by Flavell (1963), that "where reasonable evidence'for one
or two components is found, the existence of the grouping structure as a whole
can be inferred (p. 190).".

In view of the foregoing discussion, there seems to be little reason to
go beyond the relational structure per se in the case of connected, asymmetrical,
transitive relations for a model of intellectual operations modeled by GroupiLO.
Piaget (1964a) himself has commented,"The criterion for the psychological
existence of relations is the ... construction of their logical transitivity
(or, if they cannot become transitive, the justification for their non -tran-
sitivity) (p. 11)." One should not misinterpret the assertion that there seems

to be no reason to go beyond the relational structure per se in the case of

connected, asymmetrital transitive relations to find a model of intellectual
operations concerning those relations, to mean that the grouping cannot be a

model, The simple fact that it has been applied as a model counteracts such
an interpretation. In that application4 however, one'has to be willing to

accept the conditions of the application. By not accepting all of the condi-

tions, new problems are opened in mathematics education, problems which may
be important not only in mathematics education, but also in cognitive develop-
ment theory.

Before elaborating more on these problems, it is necessary to further

discuss Genetic Structures. Three remaining grouping structures are of central

interest: Grouping IV, VI, and VIII--Bi-Univocal Multiplication of Classes,
Addition of Symmetrical Relations, and Bi-Univocal Multiplication of Relations.

Grouping VI

The symmetrical relations dealt with are not necessarily reflexive or

transitive. This fact complicates Grouping VI and introduces special re-

strictions on combinativity. For example, if aRbb means that a and b are

brothers anc aR b means that a and b have the same grandfather, then from
asserting that aRbb and bRgc, it can be concluded that aRe. Thus, it is
possible to "combine" two relations which are distinct. The general identity

of Grouping VI is analogous to the general identity of Grouping V in that it

is denoted by a a (a is in an identity relation with itself)--that is, logical

identity. Reversibility is given by the symmetric property--if aRbb then the
reciprocal bRba is taken to be the inverse and is analogous to R" (or R') of

Grouping V. Flavell (1963, p. 138), in his analysis of Grouping VI, identifies
reversibility at the second level of reciprocity (also analogous to that in

Grouping V) as (aRbb) + (bRba) (a a). This general identity also behaves
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according to the statement (a a) + (aRbb) (aRbb). .Special identities are
given by tautology (aRbb) + (aRbb) (aRbb) and what is called resorption
(aRbb) + (aRgbr (aRgh)

Logical Identity and Grouping VI

At 'this point, it is necessary to draw a sharp distinction between logical
identity and equivalence relations in general. Following Tarski(1954), the
statement "x y" is defined as follows; "x y if and only if x and y have
every property in common (p. 55)." From this assertion, one can conclude that
(a) everything is equal to itself (x x); (b) if x y, then y x; (c) if x y
and y z, then x z (thus ".." is an equivalence relation); and (d) if x z
and y z, then x y (two things equal to the same thing are equal to each
other) (Tarski, 1954, pp. 56-57). Logical identity, however, ler from exhausts
equivalence relations. When two planar point sets--segments, triangles,

pentagons, eeu--are called congruent, what is meant intuitively is that one can
be made to fit exactly on the otner. While more formal definitions for con-
gruence can be given /Gans, 1969, p. 20), it is only necessary to note that
congruence for planar point sets is an equivalence relation. It is not,
however, an equivalence relation in the sense of logical identity. For in a
triangle whose sides are congruent, one would no say that the sides are
identical. There are cases, however, where it a queation of the logical
identity of two geometric entities. Such cases may arise as special cases
of two distinct, but overlapping general properties--the altitude and median to
a base of a triangle are logically identical in the case where the triangle
is isosceles.

Other examples of the distinction between logical identity and equivalence
relations important in this development are set equality (an example of logical
identity) and set equivalence (an example of an equivalence relation but not of
rogical identity). Equal sets are equivalent but it is not necessary for
equivalent sets to be equal. Equality of ordered sets and set similarity is
another example of logical identity and of an equivalence relation which is not
an example of logical identity. Two equal ordered sets are certainly similar
but two similar sets need not be equal (to be equal, they would have to contain
the same elements). In the example above concerning congruence of planar
point sets, if two congruent point seta also contain the same points, then
the sets of points are not only congruent, but are also equal (in the sense of
set equality) and hence are logically identical as well as congruent.

.%

That the general identity of the grouping structures can be interpreted
as an aspect of logical identity is no exaggeration: Not only does Piaget
hypothesize that a fundamental grouping of equalities occurs in disguised
form as a special case in all other groupings (Flavell, 1963, p. 187), but,
in his Heinz Werner lectures (Piaget, 1969), he also analyzes the development
of identity in the child in which he included a partial discussion of how
identity is related to grouping structures. In the case of Grouping I, in
an additive classification, .., we do have A A, B 8, etc, but only on the
condition that A - A 0 and A + 0 . A. Theidentity, A A depends on a
regulator, the "identical operation" of a grouping, that is ± 0; from this
point of view, identity has become operational only because it has been inte-
grated into a system of operations ( Piaget, 1969, p. 21)." Identity, then,
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can apparently be view is an interiorized operatiopat the level of

concrete operations

The above quotation can be interpreted as a condition for psychological

existence of the reflexive property of logical identity of set equality.
Logical identity is transitive, however, as well as symmetric, While both of

these properties are dealt with by Piaget (1969), the first is in the con-
text of an experiment dealing with the growth of a plant and the second is

in the context of an experiment dealing with beads in two states--as a
necklace and spread out in a box. An experiment dealing with logical

identity in the context of set equality would have to deal with the three

properties of set equality. So, only an aspect (reflexive property) of

logical identity is dealt with in this first grouping, and it is very
limited in that "the child of 7-8 years may be said to understand the

operation +A -A 0, insofar as he knows that adding A, then taking it

away, is equivalent to doing nothing (Inhelder and Piaget, 1969, p. 146),"

The null class apparehtly is a later construction developing at 10-11 years

of age due to the fact that the concrete operations assume the objects do

exist, Since Piaget (1966, p. 176) clearly states that tne general
identical element of Grouping I is the empty class, the relatively late

development of the empty class (10-11 years) seems to be inconsistent

with the status of Grouping I.

"Identity" appears as a preoperational notion but is not to'be taken

as a source of the groupings. Instead, it is to be considered as an

interiorized operation--a part Of the grouping. In terms of Groupings

V and VI, identity must be interpreted more broadly than set equality.
As already noted, the elements of these two groupings may be considered as

instances of the relations which are organized. However, the general

identity of the two groupings is neither an order relation in the case of
Grouping V nor an instance of the symmetrical relation being considered in
the case of Grouping VI but is identified in each case as an identity--and
is now interpreted as nothing more than an aspect of logical identity,

Equivalence and Grouping V1

Set equivalence, set similarity, and congruence for planar point sets are

all examples of equivalence relations (symmetrical relations) which are not

examples of logical identity. In all three cases, one need not incorporate

logical identity in a statement of Grouping VI properties. If "." denotes

any equivalence relation defined on some set A, then a statement of combine-

Givity, "If a% b and b.% c, then a , c," is just a statement of transitivity.

Reversibility becomes "If. frk, b and b.% a, then a% a% associativity is expressed

as "[ (a.% b and b:,c) and c.d] is equivalent to [a.%b and (b.% c and c'%d)i."

because each is equivalent to a,d; the general operation of identity is "if

al, a and a ti b, then a% b," A statement of the special identities is not very
interesting, but, if the form given by Flavell (1963, p. 183) is adhered to,

"If a % b and a% c, then a% c" is a statement of special identity through
"tautology", that is to say, the statement is always true, From the statement

of the antecedent, one can conclude that b%c, which to me is a stronger

conclusion that al- c. At any rate, in the statement of the grouping properties,



e -95-

no recourse to logical identity is necessary. It is to be emphasized that
the reflexive property of an equivalence relation does not express the same
thing as does the reflexive property of logical identity., To say, for example,
that a set is similar to itself is different than saying a set is equal St
itself. Similarity implies one-to-one correspondence and order, whereas set
equality, in the sense of ordered sets. implies only.order and element

membership--one-to-one correspondence is not necessary to set equality,

The statement of the Grouping VI properties given above in the case of
equivalence relations were made possible not ohly because of the properties
(reflexive, symmetric, and transitive) of equivalence relations, but are
also a modification of the statements given for Grouping VI in the psycho-
logical literature. That modification is more than a modification of state-
ment forms is quite apparent due to the fact that the statement of the
general operation of identity does not include a statement involving logical
identity. In the case of Grouping V (that concerned with connected, asymmetri-
cal, transitive relations), it has been already pointed out that reciprocity
at the second level (and hence, the general identity) is viewed as not being
germane to a model which describes mental operations involved in seriation

'activities by young children._ This view is stronger when considered in the
context of logical identity, for logical identity is quite distinct from
the order relations described.:

Partial Orderings and Grouping VIII

Mathematically, two' distinct relationAl structures have been discussed
in this section--equivalence relations and connected, asymmetrical, transitive,
order relations (connected strict partial orderings). Logical identity was
considered as a special equivalence relation. One remaining relational
structure worth mentioning is a connected partial ordering; i.e., a connected
relation "a" which is reflexive, antisymmetric, and transitive., This re-
lational structure can be thought of as being more general than those of
either equivalence relations or connected strict partial orderings in that it
"contains" both of them as substructures. The relationships among the three
structures are quite simple. Consider the set of all living people. This
set can be partitioned into equivalence classes using the equivalence relation
"same height as." If a subset of the people is chosen in such a way that
one person Is chosen from each equivalence class, this subset is orderable
using the connected, strict partial ordering "shorter than" (or "taller than").
One can consider the equivalence classes as having been ordered. The ordering
of the equivalence classes could have been accomplished not by successive
application of two relational strectures, but instead,by application of the
relation "shorter than or the same height as," which is a connected partial
ordering defined on the set of people. This relation not only partitions
the set of people into equivalence classes, but also orders the classes by

.s virtue of ordering the individuals of the classes, Special char4cteristics
Of the relation efist. One is that if a is shorter than b and if a is the
same height as c, then c is shorter than b. In fact if A is the set of all
people the same height as a, any individual who is a weber of A may be
substituted for a in the statement "a is shorter than b", the result being a
true statement. Cenerally,, connected partial orderings are not dealt with in
any.of the grouping structures thus far. The fact that it is a
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viable candidate for a model of active intellectual operations is strengthe4d
by consideration of the relation "fewer than or just as many as defined on

finite sets in terms of one-to-one functions. What this relation does is to
partition finite collections into equivalence classes and then order the classes
in the same manner that the equivalence classes of people were ordered by
"shotter than or the same height as." Any finite collection can be considered
as representing the class to which it belongs, or ae representing a cardinal
number (where the cardinal number ie defined es the class to which the finite

collection belongs).'' One may think that Grouping VIII (Bi-Univocal Multipli-
cation of Relations) would be general enough to encompass connected, partial
order relations but instead, it seemf to me that this grouping assumes them
ae Flavell (1963, p. 1,84).appliee Grouping VIII in the context of asymmetrical

relations.

As an example of Grouping VIII, let A denote a set on which two ftnnected
partial ordenings are defined: If A is taken to be a collection of bundles
of sticks and the two relations are taken to be "shorter than or just as long
as" ) and "more than or just as many as" ( <) then A can be depicted
schematically as in Figure 2. If a row and column entry is considered as a
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Figure 2 Matrix of Stidks

bundle of sticks, then < orders A by rows and <' orders A by columns.
Obviously, the bundles of sticks in Figure 2 were chosen so all row and

*lumn positions would contain entries. This requirement is not necessary;

that isCaome row and column positions could be without entries, The relation
< ie asymmetrical if it is applied to rowsiand it is in this sense that

Groupihg VIII involves asymmetrical relat /ons. The relation defined by

"shorter than or just ae long as and more than or just as many as"

4 Note that any set_merbe used as a standard set, In particular, the

counting set (1,2,...n) may be used as a standard set. Whether the counting
set or the equivalence class is considered as the cardinal number of a finite
set theoretically wakes little difference.
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(deonted by [<, <']) is a partial ordering on bundles of sticks, but it
is not a connected ordering. If Sij is a bundle of sticks in the (i,j)
position (the ith row and jth column), then if SS [ <, <1]Skt, it will
always bx true that i< k and j < t. In the following discussion, if for
some (i,j) and (k,j),Sti[<, r]Ski and 4 if for tome (1,j) and (i,t),

<']Sit , the shorihand notation tij[<]Ski and Sti[<']Sit is used

Compositions are really at two levels of complexity. The first is
depicted by "If StiNSki and Skjte')Skt, then Sti[<, <']Skt." This compo- .

sitten simply means that if the sticks in Sti are shorter but equal in numero-
sity to the sticks of Ski and the sticks of Ski are just as long as but more
numerous than the sticks-of Skt, then the sticks of S shorter but more
numerous than the sticks of Skt. Also, "If SS [ <, <'TBkt and Skt[<, e')Smn
then St

before.
<')Smn" denotes a possible composition at a more general level of

complexity than fore. An interpretation is that if the sticks in S4j are
more numerous but shorter than the sticks in Skt and the sticks in Ski. are
more numerous but shorter than the sticks In Smn, then the sticks in Sij are
more numerous but shorter than the sticks in Smn. Interpreting Flavell (1963,
pp. 185, 186), the inverse operation could be depicted as follows: "If
Stj[<, <']Skrand >')St, then Sti[, 'jStj, where theigeneral identity
would be Stir", mlgti, which is not an expression of logical,identity but is
nothing more than reflexivity of [<, <']. This expression of reversibility is
analogous to the expression of reversibility of Grouping V at the second level
of reversibility. Here, it also seems to be an unnecessary addition to the
structure. -ertainly, one would want a child to ow that if the sticks of
Stj were shorter but more numerous than those o Skt, then the Bricks of Skt
are longer but less numerous than those of Stj, which is analogous z.o reversi-
bility at the first level of reciprocity. nne can give a legitimate interpre-
tation of reversibility at the second lev1 )r Grouping VIII in terms-
of movement from position to position in the matrix, but this inter-
pretation is different than that given for relations considered immediately
tibove, and the two should not be confused,

There exists, then, the relational structure or [<, <'], which is a
partial ordering. This relational structure seems suffixiently rich to
encompass the behavioral analogues observed in the child, just el the rela-
tional structure of connected strict partial orderings seemed sufficiently
rich to encompass the behavioral analogues observed in the child in the
case of Grouping V, without recourse to all of the Grouping properties.
More discussion on this point is given after a discussion of one remaining
genetic structure--that of BS-Univocal Multiplication of Clasaes

Grouping IV

r

Starting with an example, if a Class C is partitioned into two subclasses,
say AI and A2, and two other subclasses, say B1 and B2, then C AlUA2
Bit) B2. Moreover, C. (r(iA2)/1(BIVB2) - (Ain BOLO (Ait1B2)U (A2I1 SOU
,..2rig2) If C is taken to be a set of marbles, then Al could be blue marbles,
A2 green marbles; B1 glass marbles, and B2 steel marbles: The set of marbles
then, is partitioned into blue glass marbles, green glass marbles, blue steel
warbles, and green steel marbles, In other words, a matrix or double entry
table of four cells has been generated with the component classes along each
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dimension. Rather than just 2 x 2 tables, general m x n tables may be
generated through appropriate partitionings, The grouping structure is
suppoied to describe essential mental operations and interrelationships
among mental operations involved in partitioning a given class into sa-
clazaes and in constructing simpler partitionings gived a multiple
partitioning.

Compsition is ,iscrimed as lust the intersection of classes; either the
imteYsection ct tc classes (e.g. AlfiBI) or the intersection of unions
[e.g. (Alto A2) fliBILJB,)]. Other properties are straightforward except,
per,,aps, for Leversibiiity. If Ai AB/ E, then a "division" of classes is

intr duced so that Al £:B3 and is to be interpreted as an abstraction of the
cIA09 A, from AO Bl. ;nit is, if from the class of bine glase wsrhles the

class o! is marbles ie abf;tza,_7tcd, ,aP C1436 of blue marbles remains: The

general identity element is taken to be the most general Lisps of the system
which is, in the example, the class of marbles. If, from among the marbles,

the steel ones s:t ain6led curt and then if their "steelness" is disregarded,
they are only regarded as warbles.: Svmbolically, this process is represented

by P2 B2f1C, so C 62:82.- This sort of reversibility is distinct from that
of Grouping I in that in Gouping I the elements of a class were subtracted
rather than a property of them being abstracted, Both of these processes of
reversibilitz are to be considered as inversions "which makes an inverse
operp:ion t-i correspond to an operation t, which, combined with it, ends by
antulling it (Piaget, 1966, p.,176)."

f.eneral Dit.cussion of Grouping Structures

Not only are the genetic structures discussed to be considered as models
;0gnitive operations essential to the cognition of hierarchical elassifi-

cazions, multiple classifications, seriations, and multiple seriations, but
they are also to be considered as making quantification and conservation
possible, Although definite distinctions can, and should, be made between
mathematical and genetic structures, there are no a priori reasons to believe
that borne mathematical structures could not be shown to be models of cognitive
operations in the same ,ense as the grouping structures are. In fact, it has

been indicated that when the grouping structures are specialized to encompass
mathematical structures of interest, certain antimonies occur which are not

resulvable an logical grounds. Such is the case for Grouping V, Grouping VI,

c.rousing VIII, and, to a lesser exte , Grouping I.

As noted, the structure of connected, asymmetrical, transitive relations
seems sufficiently rich to encompass behavioral analogues observed in seriation
behavior of children, without recourse to reversibility at the second level of
recip ocity, the general identity, and special identities. An application of

a model for the integers was made to series of Piaget's Grouping V, but I feel
that ,the model for the integers is too general in that it inroduces differences,
and differences are not logically essential to the relational structure
ct concern. The model did, however, allow for a neat interpretation of the
grouping operation: The fact remains that as far as I can detect at this

time, the structure of connected, asymmetrical, transitive :elations is,
as a logical model of seriation behavior, more parsimonius than Grouping V.
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However, I do not consider the question answered; further empirical work, in
the sp:rit of Piaget, needs to be done whose goal is to ascertain which model
is the sore parsimonious one While this research should incorporate all
aspects of each model, the general identity, reversibility at the second level
of reciprocity, and the special identities should be of special concern, The e

ordered pair model for the integers should not be ignored, because if reversi-
bility at the second level of reciprocity is observed in seriation behavior, the
cbild may already be operational with "number." Because the general identity
has been shown to be an integral pact of the grouping structures, its develop-
ment needs sore explication. There is an excellent prospect that logical
identity is a developmental phenomenon. Then developmental studies should
also be undertaken, whose goal is to trace the development of logical identity
and its relation to developmental aspects of seriation and classification
behavior.

Ttle extent to which partial orderings may be considered as a genetic
structure also needs investigation. In such an investigation, it would be
necessary to relate the grouping structure to partial orderings to obtain the
more parsimonious model of active intellectual operations concerned with
relations. Moreover, the role of logical identity also needs explication here.,

Because partial orderings contain equivalence relations as a substructure,
a partial ordering may encompass classifications, But rather than equivalence
relations being discussed in the context of partial orderings, they are being
singled out as a special entity of concern. When Grouping VI was specialized
ter equialence relations, the relational structure vas sufficiently rich to
imply the grouping propertie..--recourse to logical identity was not needed.
This fact suggests that equivalen:ze relations in general may have a develop-
mental nistory of their own separate from that of logical identity or
symmetr:tal re:Attic:nal which are not e...;u1valence relations. It has not been
pointed out that the r.otion of contiguous elements, so central to the
grouping structures is quite bltirred in the tonrc:-.. of equivalence relations.

The notion is distinct for seriatlions, but it is not fcr equivalences, For

example, given a collection of sticks which ajchild is to classify on the
basis of "the same length," what sticks are t6 be considered as cvntiguous
or "next to each other?" Any two vill do., Simply because the model (equI,.-a-
lence relations) does not require step by step combinations does not rean
that children will not se such combinations, If children do combine elements
step by step, of the phenomenon should account for it. While the
grouping structures account for contiguous combinations, specializing
Grouping VI to equivalence relation does not lead to any requirement that an
element occupy a unique place in a classification, as did Grouping V for a
seriation. Because of this fact, children may operate differently with equiva-
lence relations than with order relations.

In the above example, another aspect of equivalence relations is brouit
out--for every equivalence relation defined on a set of elements, there exists
a partition and for every partition there exists an equivalence relation: Hence,
there is a one-t3-one correspondence between the equivalence relations definPd
on a set and the possible partitions of the set. cc. one would hypothesize s
close relationship between behavioral manifestations of equivalence relations
and classificatory behavior of children This possible fundamental relationship
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bas not been fully investigate:. ar,d, in my estimtion, is not clearly
accounted for by Piaget's Gro,:pings, I must be quick to ocint out that

Fidget cortends that classes and relations develop synchr,nously. Then

should one infer partitioning behavior from relvional behavior, or vice

versa?

Grouping Structures and Numbei

Even though the relevance of the total (31.uping Structure to cognition of
relations has been questioned, the CenevAliteratare concerning the develop-
ment of number (and measurement' can he undevetood only in the context of the
Grouping Structures. The Genevans viol- he genetic construction of the natural

nabers as being brought about through A 's:nathesis" of Grouping I and (Beth

and Piaget, 1966, p. 175).: In fact, Co-iza hasgone so far as to show that,
starting from his general presentation of the Grouping Structure, certain
modifications can be made which lead to a sttu.2ture Vhich he shows to be that

of the natural numbers (Beth and I:Jager. 196A, pp. 268-270), Showing

logically that such a modification is ocssihle does not prove, however. that
the restrictions made on the Grouping Structure Lorrespond to any developmental

process in the child. That such A possibility exists cannot De ignored or

64,,en lightly. But rather ,han dwelling on possible research studies which

would shed ),fight on a potentle corvergence ht.:tutor u;rize's formalization
and the development of number, the earner in whici?clroupings I and V are

"synthesized" is outlined,

Piaget C1964, pp. ;83, 194) 3ives tw- essertiol conditions for the
"transformatiom" of classes into nuvo.ea, discussion. it must be assumed

some hierarchical system tc Ale A2 c, ,c,0,-; of classes cl.ists, each c,mrerent of

which contains a singular element.: 'i -t exam:ie, Al could be a bead, Al' acuhe,

A2' a-bean, etc., . where 2 - Al = A1', - ,;2 = ,17'; etc, The first condition
giver. is that all elements "ust be regarded as eq:.1.4alent tall qualities of the

individual tierents are eliminates). But, iC cc,dition on= holds, then A2
would not be a Cass of two e..ementa, but instead of only one, for Ail) =

A. if Al' = A:--;;hich is to say Oat the quality of the elements is eliminated.
I? the dIfierences of At god Ai' are token into acconrc, then they are no
longer equivalent to one ,nother except with respect to A2. This brings the

second essential condition into focus, in effect, the equivalent terns must

somehow remain dfstinct but that distinction no longer can have recourse to

qm-lltative differonces, Given an object (the head), then any other object

is u;atinguis.x: from Coat object by introducing order--by being placed next

tc, Fel,cred after, "These two conditions are necessary and sufficient

to give Ilse number, it at the same time a class and an asymmetrical

relation (Fiegtt, 2984, p. 18c)." In qualitative logic, objects cannot he,

at one and the .su:e time, cl,maifiad and seriated, since addition of classes

i5 comooltatiJe whereso strIselei is nct (Piaget. 1952, p, 184). If the

qae,Itiet- the elements are abst.acted, then the two groupings (I and V) no
longer t,nr:icn independently, bit oe-essarily merge into a single system.

The only Ae..? ft' dictinguish AI, A1', A,', ... is to seriao them A + A+ A.
where ..tenctex the sz.-oessor relation' !berth and Piaget. 196;5, pp. 266, 67),

Cleat-I), Flagat coueiders each A to be a en't-element, at once equivalent to,
but distlnrt from, toe others, c.liere the eq,liJalence arises through the

ellmirotc of qu.lities and the distinctiveness arises through the order
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of succe$stIoni

In Piaget's system, the.a, number is not to be11/Cced to one or another
of toe groupinge, but instead is a new construction--a synthesis of Groupings
I and Ve Eler.cnts, from the point of view of their qualities, are either
con.;idered fret the point cf view of their partial equivalences and are classi-
fied, or are considered from the point nf,'view of their differences, and are
se_iated, It is not po?sible to J.,c) b3th at ,,bce unless the qualities are

ab.craoted (or elil'einated), and then it is necessary that\both are done
simultaneously-one ciroot help it!

It is now pose'ole to understand the development of one-to-one correspon-
dence. Qualitative correspondence is correspondence which is based only on the
qualities of correspondlog elements, whereas numerical correspondence is
correspondence in which each element is considered as a unit element. Intuitive
correspondence is correspondence based entirely on perception and, consequently,
is not preserved outside the actual field of perception; but operational
,orrespondence has as its distinctive characteristic the fact that it is
preserved independently of pe-,..ption (Piaget, 1964, p. 70), Qualitative
correspondence, then, can be either intuitive or operational but numerical
correspondence is essentially ,,perational, Children pass through three
.tagee regarding ,:+ne-to-one (.0:respondence; the first is essentially no
correspondence (up to approximately 5 years of age), the second is intuitive
qualitative correspondence, and the third is operational or numerical correspon-
dence, Esse.cially, then, operational{ one-to-one correspondence assumes
inunber (as viewed by Piaget),

Set similarity is also a developmental phenomenon. Piaget (1964, p. 97)
differentiates between qualitative correspondence between two seriatipns and
numerical correspondence between two series. The construction of a single
series and that of finding a one-to-one correspondence between two seiies amounts
to the same thing insofar as Piaget's behavioral analyses show. Children again
go through three stages with regard to set similarity--no conception 4f the
possibility of seriation, or similarity, seriation or similarity base/ on
perceptual prcesses; and then numerical correspondence between two series.

The notion of a unit is central in Piaget's system and is not deducible
from the Grouping Structures, but rather is the result of the synthesis
already alluded to. Once reversibility is achieved in seriation and classifi-
cation, "groupings of operations become possihle, and define the field of
the child's qualitative logic (Piaget, 1964, e 155)." Here, operational
seriation has as a necessary condition reversibility at the first level of
reciproci.y, "A cardinal number is a class whose elements are concei'ed as .

'units' that are equivalent, and yet distinct in that they can be seriated, and
therefore ordered. Conversely, each ordinal number is a series whose terms,
though following one another according to the relations of order that deteimine
their respective positions, are also units that are equivalent and can
therefore be grouped in a class. Finite numbers are therefore necessarily
at the same time cardinal and ordinal ... (Piaget, 1964, p. 157)," The
development of classes and relations does not, as it may seem from the above
quotations, precede the development of number in Pilaget's theory, but those
developments are simultaneous, Without knowledge of the quantifiers "a," "none,"
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ti

\ "some," an,.. 'all," which implicitly involve cardinal number, the child is not

.
\capable of cognition of hierarchical classifications. A genetic circularity

koneequently exists in the developmental theory of classes, relations, and

numbers.
1

\ Subtleties exist in the notion of ordered sets which sometimes are

obscured by physical embodiments. If a connected, asymmetrical, transitive
relation a is defined in a set A, then one may think of the elements of a as

being ordered according to a., A physical embodiment is the case where a

collection of sticks, no two of which are the same length, is ordered by "shorter

than.". This 'relation a completely determines a particular order on A. If a

relation a' distinct from a, but nevertheless a connected strict partial ordering,

is,defined on A, an ordering of A exists distinct from the former, Such an

ordering in the case of the sticks could be an ordering based on, say, diameter

(where, f course, appropriate conditions on the diameters hold). If A

represents the sticks ordered by a and A' by a', then A is similar to A' but

the two are not necessarily equal ordered sets, which would be the case if and

only if and a' ordered A in the same way. If A contained n sticks, then a

similari mapping could be established between the standard set (1,2,3,...,0

and A ordered by a. Of course, a similarity mapping could be established

between the standard set f1,2,...,n) and A, ignoring a.
, -

In this study of ordination and cardination, Piaget (1964, chap. VI)

employed three experimental situations, one involving seriation of sticks, one

seriation;of cards, and one seriation of hurdles and mats. In the seriation of

sticks experiment, the child was asked to serrate ten sticks from shortest

to longesq and then was given nine more sticks and was asked to insert these

into the series already formed (the.material was constructed in such a way

that go twb sticks were of the same length). He was Oen asked to count the

sticks of the series after which the sticks not counted (or sticks the child

had trouble counting) were removed, apparently along with one or two he did

not have trouble counting. The experimenter then pointed to some.stick

remaining And asked how many steps a doll would have climbed when it reached

that point how many steps would be behind the doll and how many 'it would

have to climb in order to reach the top of the stairs formed by the sticks.

The serieslwas then disarranged and the same questions as before were put to

theichild,twho would have to reconstruct the series in order to answer the

questions.

There is no question that aspects of ordinal number and cardinal number

were involved in the Above experiment. Any conclusions drawn with regard to

number, hoWever, by necessity are a function of a capability to construct a

series of sticks based on a connected asymmetrical relation having little to

do with ordinal number. To demonstrate my concern more concretely, an eight

year old cnilld was asked by me which, of a collection of books on a table,

would be the third one. He answered, "What do you mean, any one could be third!"

Piaget's experiment with the staircase, then, was more an experiment concerning

similarity between a set of n sticks ordered by "shorter than" and the standard

counting set 11,2 ..... n) than 'it was an experiment concerning ordination ant;

cardination. A similar analysis holds for the seriation of the cards experi-

ment. While no analysis of the hurdles and mats experiment is given, suffice

it to say that it too involves specific relations.
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In the mathematical development of cardinal and-ordinal number, no
analogue of Piaget's "arithmetical unity" exists except for elements of sets.
"Set" is taken as an undefined objet and relations, cardinal number, and ordinal
number are defined in terms of sets. Such a procedure is logically impeccable,
although Piaget (1970, p. 37) is of the opinion that to define cardinal number
and ordinal number in such a way is to introduce number into the definition of
number. This opinion is based on the different types of one-to-one correspon-
dence identified in developmental thecry--operitional one-to-one correspondence
assumes number. But, as already noted, Piaget's formulations lead to a
genetic circularity among classes, relations, and number, a circularity of
definition avoided in mathematics. Such a circularity does not inherently
invalidate the results of developmental research on cardinal and ordinal
number; but the question arises whether other theoretical analyses are possible
for the same data, and, if so, would this alternate analysis lead dto new
empirical research'

Because log:.-s1 identity is an equivalence relation, there exists an
accompanying difference relation "ot identical to." This symmetrical
difference relation seems to be quite important in classification, because
if objects are classified together they share common properties, but they are
also different one from the other, even if this difference is no more than
their distinctness. Moreover, even if objects are different one from the other,
it does not necessarily follow that they are orderable on the basis of those
differences, To say that two objects are different only implies that a symmetri-
cal relation exists between them. Surely a seal is different from a dolphin,
but who would try to order a seal and a dolphin on that basis? It appears to me,

then, that it is quite feasible for a child to view a class of objects as being
equivalent in some aspects butt yet different in others, where no order isa
necessarily implied in such a realization of differences.; "Because an excellent
possibility exists that logical identity is a developmental phenomenon, and
because set equality is an example of logical identity, an excellent possibility
exists that a four year old child, say, would not maintain the invariance of
class membership under spatial transformation of the elements, thus having
formed only graphic collections; but an eight year old child, say, would main-
tain class membership under the same spatial transformation simply because the
concept of logical identity is an operational concept for the eight year old
but not yet for the four year old. Why it is necessary for "number" to
develop before operational classification is possible is not entirely clear,
logical identity being applied to the rearrangements of the members of a class
of objects is quite analogous to logical identity being applied to plant
growth. In either case it seems that recourse to number is not necessary.
It would not oe surprising if, at some point in time, logical identity was
used by a child sb justification for a numerical conservation. On the other
hand, it also would not be surprising if logical identity was an earlier
development than nuirber, either cardinal or ordinal. That does not me n that

, I consider logical identity as a necessary and sufficient condition for the
psychological existence of cardinal and ordinal number. Nothing cold be
farther from the actual case. It would be rather surprising, though, if a child
had a well developed concept of both cardinal and ordinal number but not of
logical identity.
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If one does not consider number to be necessary for operatory classifica-
tion, how is one to account for the development of operational one-to-one

correspondence? If a child sets up a qualitative one-to-one correspondence
betwe'en two classes and one or both of the classes is rearrariged, there is no
hope that' the correspondence would be maintained without logical identity.
Following Van Engen (1970, pp. 34-52), if a number (e.g., four) is regarded
as a particular set in the member-of-a-class meaning, then logical identity is
surely a logical prerequisite to number, but one-to-one correspondence is not

One-to-one correspondence is a logical prerequisite, however,i, to the class
meaninpof cardinal number where one-to-one correspondence is taken as an
equivalence relation. An ordinal number can also have a member-of-a-class
meaning in that it can be regarded as a particular ordered set, which implies
the existence of a connected, strict, partial ordering. The class meaning, of
course, involves one-to-one correspondence in the context of 'set

Not only are developmental studies concerning the objects called cardinal
number and ordinal number desirable, where the developmental studies take into
consideration logical identity, classes, and relations, but such developmental
studies, concerning addition, Multiplication, subtraction, and division, are
also necessary., It should be clear that the Genevan theory concerning the
development of number is not being rejected in the absence of developmental
data concerning the foregoing conceptual framework dealing with cardinal
number, ordinal number, relations, and classes. Experimentszleed to be done,

however, designed so that judgments can be made concerning viable theoretical
interpretations of the data: A priori decisions are not possible.

Some Experiments

UP' to this point the only thing offered in this paper is fin analysis of
developmental theory as it applies to developmental phenomena concerning
relations, classes, and number and a suggestion of directions that research
can take in light of that analysis, A good start has been made toward the
collection of facts necessary to the construction of a theoretical position
concerning the development of mathematical concepts: These data are incomplete

as they do not answer even the questions posed in this paper, and at times ate
directed toward answering questions other than those raised here, While no

apologies are offered for the present state of existing data, it is only prudent
to acknowledge the present state of data collection. With this acknowledge-
ment in mind, two restricted series of atudies are discussed below. While

considerably more data exists than 4s presented, the two series are selected
because they give quite different perspectives on closely related phenomena.

Conservation aitd,lawilsitivity--Status Data

The first series of experiments involves a study of transitivity across
relational ropes (order and equivalence relations) and relational content
(matching, length). These studies are important to mention due to the
centrality of transitivity as a criterion for psychological existence of a
relation in developmental theory and to the importance of transitivity to
equivalence and order relations and, ultimately, to number and measurement:
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Divers (1970) coqducted one of the first experiments in this series.
The subjects for his experiment were 49 kindergarten children, of whom 26
were black, and 47 first grade children, of whom 27 were black.: The remain-
ing children were caucasian: The age range for the kindergarteners was 65
to 76 months with mean age 71 months, and the age range Sot- the first graders
was 78-96 months with mean age 85 months. The relations dealt with were
"same length as," "longer than," and "shorter than"--two order relations and
In equivalence relation, The ascertainment of the influence of three contextual
situations oh transitive reasoning was of interest. It was felt that a situa-
tion in which no apparent' perceptual conflict was present but in which the
physical objects were actuatly present would facilitate transitive reasoning
to a greater extent than either of the two situations in which (a) the objects
were not visually present and (b) the objects presented an obvious perceptual
conflict. Moreover, it was predicted that children for whom evidence was
present of conservation of the relations involved would be more likely to
engage in transitive reasoning than would children for whom little or no
evidence was present of such conservation.

On the basis of a preliminary knowledge Of terms test, 35 per cent of
the black kindergarteners and 7 per cent of the black first graders were
eliminated from further study and 13 per cent of the caucasian king rgarteners
and nom of thn caucasian first graders were eliminated from further study.
These c.i.i.ldren were eliminated to decrease the possibility of falsely

diagnosihz children as not being able to engage in transitive reasoning.
Two tests were administered to the children remaining in the study, a conserva-
tion of length relations test and a.transitivity test. The conservation of
length relations test consisted of nine items, three for each relation: In

any group of three items written for a relation, one involved a screened
stimulus, one a conflictive stimulus, and one a neutral stimulus. In any
item, after the initial comparison and transformation took place, (that is,
after the sticks were placed in their final position) three questions were
asked of the child--one for each relation--so that a child had to know which
relation still held after transformation, as well as which ones did not, in
order to score an item correctly. A child was classified at a high level of
conservation if he scored at least two items correctly for each relation, as
a low conserver if there was not mose than one relation on which he scored two
or more items correctly and a medium conserver otherwise. Table 1 contains the
number of children within each of the conservation categories by grade. The

table reflects the internal consistency reliability of .75 on the conservatio-
test in"that substantial frequencies occurred in each category. The transitivity
of length relations test consisted of 27 items, nine for each relation., For

each relation three of the nine items involved a neutral stimulus, three a
conflictive stimulus, and three a screened stimulus In case of the screened
stimulus, the experimenter compared a red and blue stick after which the child
was asked "Is the red stick the same length as (or longer than or shorter
than, depending onthe relation) the blue stick?" The red stick was then
covered with an opaque cloth. The same procedure was followed with the blue
stick and a green stick after which the green stick was covered with an
opaque cloth and the blue stick removed from the experimental setting. Three
questions similar to the preceding question were then asked of the child to

' which he had to respond "yes" once and "ro" twice in order to answer the
item correctly.; For example, if the red and green stick were actually of



Table 1

Number of Ch4ldren by Grade and Conservation Level

Grade

COnservation Level

High Medium Low

1 %

10

20

10

14

17

11

Total 30 24 28.

the same length. the child had to respond "yes" to the question "Is the

red stick the same length as the green stick?" and "no': o the two others

' in order to answer the item correctly. The transitivity test had a mean

score of 12.4, a standard deviation of 6.2 and an internal consistency

reliability of .87, all computed on the responses of 82 children.

The statistical design employed is called a mixed design (Kirk, 1968)

with two between subject variables and two within subject variables The

ANOVA computed on 60 randomly selected subjects from the 82 completing both

tests is given in Table 2. Both between subject variables were significant

as was the within subject variable "Stimulus Condition." No significant

interactions were present. The mean scores for the between subject variables

are presented in Table 3. Conservation level was a much :Wronger between
subjects variable than was grade level, although some overall improvement was

noted for the first graders over the kindergarteners. Because a child could

obtain a active of 11 per cent based on chance responses, the means reported in
Table 3 aee Spurious because they are not corrected for guessing. The only

significaht within subject variable was Stimulus Condition. The means for this

variable are contained in Table 4. Essentially, no differences occurred between

the screened and conflictive stimulus, the v-:iability thus occurring between

the neutral stimulus and the two others. No differences were observed between
the black and caucasian children on either of the conservation of relations

test or on the transitivity of relations test:

The above experiment was essentially replicated (with modification) by
Owens and Steffe (1972), using matching relations rather than length relations.
The three matching relations were defined operationally for 51 caucasian middle
class children enrolled in two denominational kindergartens in Athens, Georgia,
rather than eliminate children frcm the study on the basis of a lack of .

knowledge of terminology. Even after seven 20-30 minute instructional sessions,
16 of the 51 children were not able to display adequate knowledge of terminology.
These 16 children repeated selected activities after which seven still did not
display knowledge of terminology and were subsequently eliminated from further
study.
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Table 2

ANOVA for Transitivity Scores

Source of
variation df MS F

Between Subjects

Grade Level (A) 1 12.15 4.12*
Conservation (C) 2 47.07 15.96**
AC 2 1.24 < 1 --
Subj. W. Groups 54 2.95

Within Subjects
--_

Relations (B) .87 < 1
AB 2 .12 < 1
CB 4 1.62 1.22
ACB 4 2.36 1.77
BXSubj., W. Groups 108 1.33

Stimuli (D) 2 8.98 14.03**
AD 2 .28 < 1
CD 4 .71' 1.20
ACD 4 .06 ''.': < 1
DXSubj. W. Groups 108 .64

BD 4 .91 1.82
ABD 4 .45 < 1
BCD 8 .75 1.50
ABCD 8 .40 . < 1
BDXSubj. W. Groups 216 -.SO

* (p < .05)

** (p< .01)
o

Table 3

Mean Scores on Transitivity: Grade Level
by Conservation Level (Nearest Percent)

Conservation Level

Grade High

K 67
1 71

Total 69

Medium

44

58

Low Total

24 45
40 56

51 32 51



-108-

Table 4

Mean Scores for Stimulus Condition (Nearest Percent)

Stimulus

Mean

Neutral Screened Conflictive

56 43 42

A conservation of matching relations test was administered in conjunction
7"-
with the knowledge of terms test and was used to classifv children as high

conservers and low conservers of matching relations. Sly items were ccnstructcd

for each relation for a total of 18 test items, All items involvedtonly the

conflictive stimuli identified by Diver4 (1970). The internal consistency

reliability was .94 on the test: This 140 to categorizing the children into

two conservation categories--high and low. A child was classified as a high

conserver provided he conserved the relation on four of the six items on each

relation and as a low conserver otherwise. All children had scores above the

criterion or appreciably below except one; his score was slightly below the

criterion level, This child and another child, who was of legal age to be

in grade one, were eliminated from the data analysis; 21 boys and 21 girls were

left as subjects. Twenty-seven were high conservers and 15 were low conservers,

Only kindergarten children were used in this experiment; in Divers (1970) study
age was not a strong between subjects variable. Conservation was used as a

between subjects variable as were the three relations. Stimulus condition was

used as a within subjects variable; six transitivity jtems were written for

each stimulus condition, Table 5 contains the analysis of variance, Since an

interactior occurred between conservation level (C) and relations (F), the main

Table 5

ANOVA for Conservation Levels and Relations

Source of Variation df MS

Conservation (C) 1 28.14 11.14**

Relation (R) 2 18.74 8.64**

CXR 2 14.22 6.56*

Subj. W. Groups 36 2.17

Stimuli (S) 2 5.64 5.26

CXS 2 1.47 1.37

RXS 4 ,42 1

CXRXS 4 1.56 P.46

CXSubj. W. Groups 72 1.07-

* (p' .05)
**(p< .01)

(p< .05), Conservative Test



-Ion-

effects of C and R cannot be discussed per se, A Sewman-Kuels post hoc test
was performed on the simple effects of the CX14 interaction to determine the
source of variation, Within the high conservation levels the mean of 77% for .

the relation "as many as" differed from the mean of 51% for the relation "more
than" (p <.05) as well as from the mean of 46% for the relation "fewer than"
(p 05), The only relation on which high and low conservers differed signifi-
cantly (p <.05) was the equivalence relation "as many as." In the case of the
within subjects variable, Stimulus Condition, the means as percents were 59,
51, and 47 (or the neutral, screened, and conflictive stimulus, respectively.
The neutral stimulus differed from both the screenec and conflictive, which
did not differ statistically.

As indicated by Beilin (1971, p.88), it is important to explicate what
constitutes the mechanism underlying conservation behaviot and distinguish it
from an operational definition for conservation, The same 'comnents also
pertain to transitivity. In the spirit of Piaget (1964, p.42), who takes
conservation to be a behavioral manifestation of the existence of a grouping
structure, in the two experiments reported on (in tart) above, it was assumed
that conservation of the relations involved would be a behavioral manifestation
of the presence of the relational structures defined on sets of concrete
material. In both studies, transitivity of three particular relations, one
equivalence relation and two connected, strict, partial order relations, was
operlitionalized and was also taken as psychological existence of the relational
structures of interest--at least'the existence of the par' .cular relational
structures. It was legitimate, then, to use conservation as a blocking
variable, because those children who were high conservers also should have
performed quite well on transitivity of the relations of interest, It was
assumed that conservation and transitivity of the relations were just reflections
of the existence of relational structures of which transitivity was a part,
Those children who were low conservers should his° have done relatively poorly
on transitivity of the relation for the same reason. Perfect relationships
sere not expected because, by necessity, the variables, conservation of
relations and transitivity of relations, were given operational definitions
(which were thought to be strong),

The variable Stimulus Condition was interesting because concrete operations
are taken to mean that a child can think in a logically coherent manner about
objects that do exist and actions that are posible either with objects or in
the immediate absence of objects. Hence, for children who were categorized as
high conservers, the screened stimulus should have presented no more diffi-
culties for the children in transitive reasoning than would the neutral
where the objects were present.. In fact, the screened stimulus should have
forced the child to focus on the only information available- -the two hypotheses,
It was anticipated that the conflictive stimulus would present special diffi-
culties because children would be more apt to reason using nontransitive
hypotheses, For those children in the low category cf conservation, Stimulus
Condition should not have been significant, for such children theoretically
should not be in possession of a genetic relational structure,

In the case of Divers (1970) data, Conservation was highly significant and
did not interact with any other variable, So, for the length relations, no
statistical contradiction was present that conservation could be considered

4

//
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as a behavioral manifestation for psychological existence of relational .

structures insofar as transitivity goes. Of course, exact relationships were

not obtagked--only statistical relationships: But the statistical relationships

were indeed strong and, in my judgment, were within tolerance of an operational

definition of the variables of concern. Divers (1970, p.73) constructed

contingency tables from which more exact relationships between conservation

and transitivity could be ascertained.. Only 12 of 94 responses were categorized

as being nonconservation responses but as being also successful transitive

responses. Of these responses, only one child showed no evidence at all of

being a conserver. The others did display conservation in some cases: There

3iere children, however, who displayed no evidence of being able to engage in

transitive reasoning but were categorized as high conservers. So, conservation

of length relations cannot be said to be a necessary and sufficient condition

for transitivity of length relations, but only a necessary condition. It would

-seem, then, that conservation of relations can appear before symptoms of a

relational structure can be found, but once such a symptom is found (transitivity),

con3ervation is almost certain to follow. It is the case, then, that a good

possibility exists that transitivity of length relations is a sufficient

condition for conservation of length relations, which does not contradict the

theoretical assumption that once a relational structure becomes operational

for a child, conservation should be present. In the case of length relations,

however, conservation may appear before transitivity.

Even though Stimulusimulus Condition was significant in favor of the neutral

stimulus, the variable was not strong enough to warrant any serious theore-

tical speculation; howe&er, children do engage in transitive reasoning in the

il

immediate absen- of concrete objects to the same extent that they engage

In transitive r soning in the presence of perceptual conflict. That slightly

greater mean sc es were observed for the neutral stimulus than for the two

other stimulus conditions only suggests that children obtained cues from the

neutral stimuli which they did not obtain from the two other stimulus conditions,

The evidence was against the hypothesis that children engaged in solution, by

nontransitive hypotheses in the case of the neutral stimulus; a two-by-two

contingency table constructed (using conservation by transitivity) for etch

stimulus condition did/not contradict the hypothesis that transitivity of

length relations is sufficient for conservation of length relations for any

stimulus condition.

Horizontal differentials are well accepted for developmental data (Lovell,

1972, p.169). The above two studies suggest that development of transitivity

of order relations, in the. case of matching relations, lags behind the analogous

development for length relations. This expectation is in contrast to the

results reported by Sinclair (1971, p.153) that length is a later achievement

than number, lagging six months to a year in development. Conservation of

length lags even farther behind conservation of number--two to three years

(Sinclair, 1971, p.153). Sinclair rightly considered length as a product of

measurement so that no contradiction is necessarily present concerning

achievement of length and matching relations and of length and number, as

reported by Sinclair.

Because the samples were different in the above two studies, the observed

time lag was only suggestive. Data from two different studies (Steffe and



Carey, 1972; Owens, 1972) confirmed that no such lag existed in transitivity
in either an all caucasian, middle to upper cleat, kindergartea sample or in
an essentially all black kindergarten and first grAde sample. In the case of
conservation of matching and length relations, conservation of length seemed
to precede conservation of matching, but the trend was not strong enough to
be of any consequence. One is forced to conclude, then, for first grade and
kindergarten child en, length telations and matching relations develop in
about the same wayi\but in most cases, one cannot infer the presence of one
from the presence of the other.

Although the data of the above four experiments did not shed light on a
parsimonious model for active intellectual operations concerned with matching
and length relations, disparities were observed between theoretical analysis
of conservation of relations and of relational structures; cases existed where
children were classified is high conservers, although no evidence was present
that they could use the transitive property. There should be no question
concerning my theoretical interpretation of the relation between conservation
and transitivity. Piaget (1964b) has related "without the grouping there could
be no conservation..." (p. 42). Smedslund (1963) has also found children who
pass conservation tests and fail transitivity tests concerning length
relations; so the phenomenon is not particular to our way of operationalizing
the constructs. The data do raise questions concerning necessary mechanisms
underlying conservation of length and matching relations and lend some
credibility to problems brought out in earlier analyses of application of the
grouping structure to equivalence and connected strict partial order relations.

Multiple Classification and Relations

Up to this point, the data have been status data regarding conservation
of relations and transitivity of relations across relational types (equiva-
lence and order) and relational content (matching and length) for kindergarten
and first grade samples only. Three experiemnts have been done--each involving
multiple classes or relations in some way. These experiments are mentioned
because of certain contrasts they present in the development of multiple
classifications and relations. The first experiment of the three was done by
David C. Johnson (1971). He constructed 18 items, six 3 x 3 matrix items, six
2 x 2 matrix items, and six intersecting ring items. These items t...nitained no
special mathematical content. The content can be classified as perceptible in
the sense of Olver and Hornsoy (1966). In the matrix items, the child waz
instructed to select, from four possible choices, the object which would go in
the one cell left empty (which was always a corner cell). The experimenter first
focused the child's attention on the matrix by saying "look at all the things
here. They form a pattern." The experimenter then pointed to the empty cell
and said, "The thing that was sAbposed to be right here was left out." The
experimenter then pointed to the four choices and said, "One of these things
is supposed to be here, Which one is the one left out?" Three of the 3 x 3
matrix items involved multiple classification only (shape by color) and three
involved a relation and classification (bigger than by shape, bigger than by
color, and more than by color). The latter three items each involved a partial
order relation, whereas the former three involved only equivalence relations:.

The six 2 x 2 matrix items were strictly analogous to the 3 x 3 matrix items.
In each intersecting ring item, each of the two intersecting rings contained
two objects and the child was instructed to find which of four objects
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bel.7rige3 in the intersecting region. For example, one ring contained a red

and a vell -w circular region and the other a blue square region a 1-lue

triangular region. 10 be correct, the child had to choose a blue circular

region for the Intersection from the choices of a blue circular region, a red

circular region, a blue square region, and a green triangular region. Notice

each distracter possesses something in common with some object in one of the

rings,

2,nv,on cncz,, Kindergarten and first grade children for his study, where

tie children had a chronological age (CA) either in the interval (64-76) or

( 7-a9) -,onths and an IQ in the intervals (80-100) or (105-1.25) The two

variables CA an4 IQ were used as classification variables; 20 children were
in earl, at tne four defined categories. These children were randomly assigned

:0 a treats-.ent or control group where the treatment consisted of experiences

to classification, The treatment lasted 17 consecutive school days for 25

cinctes per school day. The treatment for the control children consisted of

r.gular sct,00l instruction. The treatment did not involve multiple classifi-

cattc.n or relit:A:nal activities per se, except for an intersection activity.

Results of toe :NOVA's run are summarized in Table 6. The mean scored for the

T\I interaction are presented in Table 7. It was apparent that while the

higner IO children pr-)fited more from the treatment than the low IQ children,

1th groups profited, chile such a result is educationally significant, its

psycnologi,a1 significance is blurred by two factors, First, evidence was

present that the control children regarded the overlapping region of the two

rings as forming a distinct region separated from the two original rings.

Table 6

F-values for ANOVA's

rY;,e
Intersecting

virfati,r 3 x 3 Matrix 2 x 2 Matrix Rings

'ire

mock' W,

i. '1
NA

T,

'CX1

(7, 8.25*t

1
2.26

2.7.0

1

5.11*
< 1

4.45*
j

2.64
< 1

38.84**
< 1

4.69*
2.07

6.65*
1.09



Table 7

Mean Scores: T X InteraLti,n for intersecting Rings

NIQ i.xp Con

Hign

Ion.

57

31

12

11

The second concerns toe type of content o' the items. The mean scores fo.
the matrix items are presented in Table 8. Because direct instruLticn :a:,
act given en matri items, it 'was enco.raeing that so mc.ch apparent 1-7rove^ert

Table 8

"ear .5,-ores "atri\ ite-c

3 Matrix

Ex C,)r,

x 2 Matrix

EN Con

Filth

Low

Ji

could be attributed to tne treat-ent, especiall due to toe ...pst arras, of
pictLrial data children are subjected to in -athematics instruction in tne
first ts..0 graces. in any event, the e\perirenl was educationall; sipmlff.an
for tr.e matrix .tens. Pecuse Diaget '1w,6) makes such a distinction !;etw,en
physical knowledge and logical -athematical knot.ledge, the apparent ..mpr.o.ement
co,,11 be qaestioned because the items required mainly physical kno1P.;Ae for
their solution. Consecoertly, the cognitive sctn,ture of the chi;drer
not nave been altered, b,t rather theisr discriminatory powers pertainlr( :0
pnysical characteristics .74 the objects of toe items nay have been irpto"ed,
Such a possibility ;..as heightened by the results of a class-inclusio,, tEst
a.so administered by D. Johnson (IV:). No differences were detected f'cl
this test between the experimental group and the control group; and gen.?taii.
low mean sores were obtained (Irls than 4C per,ent was the greatest .an
score obtained for any group)



In light of the results of the above experiment (which is only partially

reported), Martin L. Johnson (1971) chose quite different content for an

experiment involving matrix items. He constructed six items, which in my

estimation required logical mathematical knowledg,r for solution to a greater

extent than did 1), Johnson's. The item layouts were deceptively simple. Two

of the items involved the partial ordering "shorter than or just as long as"

and "fewer tnan or just as many as," discussed earlier under the auspices of

Grouping VIII., On of these items was a 2 x 2 matrix item and the other a

3 x 3 matrix item. The layouts of these items are given in Figure 3. The

child was asked, of course, to complete the matrices. In the remaining four

items, only single sticks were placed in each cell so no recourse to numerosity

1

Figure 3

Iter 1

if .- Three inch sticks

. Four inch sticks

Item 4

11 !;!

1

II

II

Three inch sticks

+ Four inch sticks

I! + Five inch sticks

or relations thereof was necessary, The ordering was "ehorter than or just

as long as"; in these cases a connected ordering. The four item

layouts were as depicted in Figure 4, 'Mt ordering proceeded from a corner

cell with sticks on some diagonals bring of the same length. The strategies

4sed by children to complete the matrix ayuurA could vary.

The subjects for the study were 72 chi;drcn, 24 kindergarten, 24 f'rsr

graders, and 24 second graders, Twelve of ea,h were randomly assigned to an

experimental group and twelve to a control group, The c!'ildren In the experi-

mental group were given 13 instructional sessions, each about 20 minutes in

Item 2 Item 3

1 5',

15" 1 4"

4" 1 3"

4"

Figure 4

Item 5 Item 6

6"

14"

15 14"

13"
4"

13" 12"

14" 3"

5"

16 5""

12"

13"

14"
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duration, with the following activities being covered. Experiences were
provided (a) in making comparisons between objects and developing a strategy
for determining the length relation that holds between any two lir ar objects,
(b) in classifying linear objects on the basis of the equivalence elation
"as long aa", (c) in seriating linear objects from longest to shortest using
an operativnal procedure consistent with Piaget's stage three seriation
behavior, (d) in combining classification and seriation, and (e) in, multiple

seriation. The children in the control group received instr' .cion in the
context of the regular classroom. After the above experiences, the following
mean scores on thesix matrix items were obtained. These means are quite low
and hardly exceed chance responses. The item difficulties range from ,14 to
.26, the most difficult being item 1 and tne least difficult, item 4.

Table 9-

Age Exp Con

5 27 -a 20

6 15 5

7 25 20

As already indicated, a viable hypothesis for the disparity of the data
on the matrix items of the above two studies is the type of knowledge required
for item solution. The items were structurally close enough so that one would
expect fairly consistent performance, other factors being held constant.
Because children performed so poorly on the matrix items requiring logical
mathematical knowledge for solution, an immediate question arose concerning
children's measurement behavior involving polygonal paths, because the content
of polygonal paths is so close to that of matrix items constructed by M.
Johnson. Not onlywas there a question concerning children's measurement
behavior involving polygonal paths, but also concerning whether partial orderings
are viable candidates for models of genetic structures--especially for length
relations and for children in the age range of 5-8 years.

It is possible for children to compare the length of two polygonal paths
Jy, knowing how many segments are in each path and the relation between any two
segments, one from each path if the segments of each path are homogeneous
with :aspect to length, Under the latter condition, four logical possibilities
exist; the segments of one path are longer than the segments of the other but
equal in number, the segments of both paths are equal in length but unequal in
number, the segments of one path are longer than the segments of the other 1it
fewer in number, and the segments of both paths are equal in length and numbec.
In the first two cases, one segment is longer than the other, in tne third case
no comparison is possible based on the information given, and in the fourth
case, both paths are of the same length. Terry Bailey (1973) administered
four tasks, one of each of the above types to 40 first, 40 second, and 40 third
grade children who were randomly selected from a larger population of lower
middle class to middle class children in April and May of 1972. Of these 120
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children, concltusive evidence was present that only four children could
establish the length relation between two polygonal paths, and these four
children were all third graders. Conservative criteria were employed to
classify a child as being able to establish a length relation between two
paths (explanations had to be given using both number and length relations),
Even so, the third graders were late eight year olds or early nine year olds,
so that the relational structures (genetic) so necessary for solution of
the problems should have been manifested in more than 10 percent or the
third graders. The data, however. is consistent with that of M. jonnson's.
Bailey's and M. Johnson's data coupled with that of Carpenter (1972) are
serious enough in consequence to warrant mounting a massive set of develop-
mental and experimental studies concerning measurement processes of elementary
school children.

Final Comments

Data exist other than those discu'sed above. This data were collected
in studies with two overriding purposes. The first was ascertainment of
convergence of logical thinking and the second was ascertainmept of structural
aspects of logical thought under controlled experimental conditions--that is,
would one observe the same structural aspects of logical thinking after
intervention of planned experiences as one would observe in the absence of
such planned intervention? The results of the data obtained to this point
(Owens, 1972; D. Johnson, 1971; M. Johnson, 1971; Steffe and Carey, 1972;'
Lesh, 1971), while not without contradictions, suggest that one can observe
radically different interrelationships after intervention of planned experiences
than would be the case without such intervention These data and future
similar data are quite important in view of similarities hypothesized by
Piaget (1966, pp 187-89) to exist between mathematical structures and
genetic structures.
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APPENDIX

Some Mathematical Structures

Cardinal Number

Hausdorff (1962), in his classic work Set Theory, commented that "this
formal explanation says what the cardinal numbers are supposed to do, not
what they are...ye moat leave the determination of the 'essence' of .

cardinal number to philosophy (pp.28-29)." Although Hausdorff's point
of view is consistent with modern postulational develqpments in mathematics,
it does not lessen the importance of his work on cardinal (and ordinal)
number for research on acquisition of mathematical knowledge. For the
structures which characterize the mathematical knowledge the child is
asked to acquire seldom, if ever, correspond exactly in form to structural
aspects of the child's natural thought. It is truely the case that.Hausdorff
is not concerned with the nature of cardinal (and ordinal) number and leaves
the determination of their "essence" to philosophy, and ultimately to
psychology°as well. Not only is there a difference in the way in which
the objects called cardinal and ordinal numbers are viewed in mathematical
structures as discussed by Hausdorff and in genetic structures as discussed
by Piaget,, but there are formal differences ip the structures and these
differences are profound.

In the following exposition, only "naive" set theory is dealt with.
In this theory, such constructions as "the set of all cardinal numbers"
lead to antimonies. For a theorem is provable which leads to an unbounded
sequence of cardinal numbers--which means that for any set of cardinal
numbers, there is still a greater one. Consequently, "the set of all
cardinal numbers" is not conceivable even though it would appear to be
so. In axiomatic treatment of set theory, these obvious contradictions
have been removed (Kelly, 1955, pp.250-81). As the theory doep not
allow for unlimited construction of sets the object ix: x is a cardinal
number) and (x: x is an ordinal number) are not sets. A distinction
is made between a class and a set in that a class ie undefined, whereas
a set is a class which is a member of another class. That ie, a class x
is a set if and only if there is a class y so that x is a member of y.
Using this special restriction, cardinal and ordinal numbers are defined
to be sets of a special kind. Rather than follow this axiomatic treatment
of the development of cardinal and ordinal number, the treatment of "naive"
sec theory given by Hausdorff is adhered to because of its intuitive appeal.

Ordered Systems

During subsequent discussion, occasion arises to employ general ordered
systems, the basic concept of which is that of a partially ordered set. By
definition, a relation< defined in a given set P partially orders P if it
is both transitive and antisymmetric. The relation, is (a) transitive in P
if whenever x, y, z are in P and x< y and y < z, then x < z; and (b) anti-
symmetric in P if whenever x and y are in P and x<y and y' x, then x y.

In the latter definition, equality is taken in the sense of logical identity.
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A ready example of a partially ordered set is the set of subsets P(X) of a
given set X ordered by the set inclusion relation "4:." The set inclusion
relation has the additional property of reflexivity (for each set A, ACA)
but does not have the property of being connected in P(X) (i.e., for any two
sets A and B of P(X), it is not necessarily true that ACB or BC:A).

If P is a partially ordered set and E a subset of P, then an element x
of P is-called an upper bound for E if for every ellE, e<x. An element
x.is the least upper bound for E if for any other upper bound yelP, x.< y.
Analogous definitions can be gives for lower bounds and the greatest lower.
bound of E. A lattice is a partially ordered set L. for which every two element
subset (x,y) oft..has a least upper bound and a greatest lower bound.
Examples of lattices are P(X) ordered by set inclusion and the positive
integers ordered by "a divides b." The least upper bound of any two sets A
and B of P(X) is AVB and the greatest lower bound is Al1B; and the least upper
bound of any two positive integers is their greatest common divisor and the
greatest lower bound is their least common multiple.

A chain in a partially ordered set P is a subset C of P in which < is
connected (that is, a subset C where if x, y eC, x<y or y< x). Any such
subset C of P is partially ordered by < and is a lattice as w-11 as a chain.
The set of natural numbers ordered by< is an example of a chat,.. It is

important to note that < is transitive and asymmetric (if x < y, then ytx).
Yet, it is a partial ordering because the antisymmetric property is satisfied
vacuously.

Relations of equivalence also exist as well as relations of order. By

definition, a relation R defined in a set X is an equivalence relation if R
is reflexive, symmetric, and transitive. Set equivalence is a ready example
of an equivalence relation as are the congruence relation for point sets and
set similarity.

Cardinal Number

Hausdorff (1962) assigns objects, caileu cardinal numbers, to sets in such
a way that if object e corresponds to set A and object b corresponds to set B,
a - b if and only if A is equivalent to B. It is important to note that the
set A to which the cardinal number a is assigned may or may not be an ordered
set. Two cardinal numbers maybe compared by comparing the sets to which they
are assigned. a < b means that A0=81 where Bic B. It may be that A = B1 in
which case Ac B. Subleties exist concerning comparison of any two cardinal
numbers in that it is, in fact, true that the comparability of any two cardinal
numbers relies on Zermelo's well-ordering theorem, which states that any set
can be well-ordered. This theorem is necessary (in Hausdorff's development)
to show that there do not exist two incomparable sets, i.e., that it is never
the case that there exist no AI and no B1 so that Al^=11 and 131^..A.

The sum and product of cardinal numbers determine their arithmetic.
"The sum a + b of two cardinal numbers is the cardinality of the set theoretic
sum /APB*, where A and b are any two disjoint sets having the cardinalities
a and b respectively (Hausdorff p.33)." Tills definition is justified because

* U has been substituted for 71P/.
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if A'-C andB",D where D and C are disjoint, then C 01),N-A VB, so that the
cardinality of C V D is equal to that of A v B.

The product of two cardinal numbers a and b is defined as follows. "The

product ab of two cardinal numbers is the cardinality of the set theoretic
product A x B, where A and B are any two sets with cardinalities a and b

. respectively (Hausdorff, p.35)." The product of a and b is invariant of the

particular choice of the sets A and B just as was the sum except that in the

sum, A and B had to be disjoint. That is, if A"-C and then A x B'sC x D,

so that the cardinality of C x D is equal to that of A x B. The commutative,

associative, and distributive laws hold for the processes just defined, and
depend directly on the commutative, associative, and distributive laws for,
set operations.

Ordinal Number

Just as set equivalence is a basic notion for cardinal number, set similarity
is a basic concept for ordinal numbers. For clarity, the order relations dis-
cussed below are asymmetric and transitive (strict partial orderings) as well
as being connected, which means that any two elements are related. Two ordered

sets are called similar if there exists a one-to-one correspondence between
their elements that preserves order. That is, if a,bc A and c,dE B where
a4.>c and b4-#d, and if a< b, then c<'d, where < and <' are the orderings in

A and B, respectively. In symbols, "A is similar to B" is denoted by "A a B."

Set similarity is an equivalence r ation just as is set equivalence.

As mentioned earlier, Zermelo's well-ordering theorem states that any set

may be well-ordered. A set A being well-ordered by a relation< means that any
subset Al of A has a first element (an element a, such that a, < x for any x in

Al). Hausdorff (1962, p.51) assigns order types to ordered sets in such a way
that similar sets, and only similar sets, have the same order type assigned.

In symbols, r s means R a S. If a set is well-ordered, then its order-type

is called an ordinal number.

In general, the arithmetic of order types is not isomorphic to the

arithmetic of cardinal numbers For if A and b are disjoint ordered sets, then
the set theoretic sum of A and B (A + B) is a new ordered set such that the
order of the elements of A is retained, the order of the elements of B is

retained, and every a EA precedes every b E B. If a is the order type of A,

b the order type of B, thena+ble the order type of A + B. Thata+b0b+ a
in general can be seen by the following example. Let A = {1,2,3,...,n} and

B (n + 1, n + 2,...}. The order type of A is n, the order type of B is
w, and of A + B is n + w w(w is the order type of the natural numbers).
But the order type of B + A is w + n which is notw because B + A .
{n + 1, n + 2,...,1,2,...,n} contains a last element (A # B does not)..
So w + n f n + w. Because n and ware ordinal numbers and, in general, the
sum of two ordinal numbers is not commutative, the arithmetic of ordinal
numbers is not isomorphic to the arithmetic of cardinal numbers. Nevertheless,

two sets with the same ordinal number necessarily possess the same cardinal

number.
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As pointed out earlier, a set A which is ordered by an order relation
which is connected, asymmetric, and transitive satisfies the conditions for
a chain. In particular, if A is well-ordered by <, A is a chain. An
intuitive example of a chain important to subsequent discussion is as follows:
Let A be a well-ordered set. Then A has a first element, say a0; A - {a0}
has a first element, say al; A - {a0,a1} has a first clement, say a2; etc., so
that A = {a0,a1,a,,a3,...} . The notation used here is that the index of
every element is the ordinal number of the set of elements preceding it, For
a3, "3" is the ordinal number of {a0,a1,a2}, which is called a segment of A
determined by "a." In more general terms, each element a of A determines
some segment P where P - {x E A: x< a}, If Q = {x (A: x E P}, then A = P +
Note that a It P because < is irreflexive, so a is the first element of Q. A
result of this definition is that a well-ordered set is never similar to one of
its segments, which leads to the fact that for any two ordinal numbers a and
b, either a< b, b< a, or else a = b. In particular, a< b means that A is
similar to a segment of B. Of course, it it were possible for B to be similar
to one of its segments, then it would be true that a = b as well as a< b.,

As indicated above, the elements of a set A which is well ordered can be
indexed by successive ordinal numbers. This assertion can be shown more
definittly without difficulty. Just let 0(a) = {ordinal numbers such that
6 < a}. 0(a) can be represented as {C,1,2,3 ..... c,...} where o < a (Hausdorff,
1962, p.70). Moreover, if A is a well-ordered set of type a, then it is
possible to represent A as {ao,a,,a2,...,a,...} where a < a and a is the ordinal-
ity of A and the index of each element of A is just the ordinal number of the
segment belonging to it. If A is a finite set, then A - {a0,a1,a2

an-1)
and n is the ordinality of A where 0 is the ordinality of the empty set.,
Because any ordering of a finite set is a well-ordering, it is impossible to
distinguish the orderings with reference to the ordinal number of the set;
i.e., all orderings give the same ordinal number. Thereby, the ordinal and
cardinal numbers of finite sets correspond, and it is possible to find the
cardinal number of a set by a process of counting, that is, by indexing the
elements of the set A by the ordinal numbers {0,1,2 ..... n-1} by virtue of
successive selection of single elements. (Select some a0, then some al, etc.,
until the last one an_i is selected.) Then n is called the cardinal number
of the set. This process is often referred to as rational counting.

The notion of equivalence clas,., of finite sets is implicit in the above
discussion because ,1 is an equivalt e relation. This observation has led ,o
the definition of an ordinal number as an equivalence class of well-ordered
sets and a cardinal number as an equivalence class of sets without regard to
order (Barnes, 1963, p,194). The set {0,1,2,...,n-1} of cardinality (and
ordinality) n can be considered as the standard set of an equivalence class
of sets each of cardtnality n, It must be explicitly pointed out that the
arithmetics of cardinal numbers and ordinal numbers of finite sets are, in
fact, isomorphic,

To view a cardinal number as a class of sets should be no more foreign
to mathematics educators than to view the objects of a finite field formed
by the integers modulo a prime as classes of sets. Of course, to tell a five
year old child that a number is an equivalence class of sets is absurd. The
identification of a number as a set of objects, however, is a natural way
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to think about cardinal and ordinal number. In the well-known "empty hat"
(Van Engen, 1970, pp.38-39) approach to cardinal number, "0" is defined to
be the empty set, "1" is defined to be the set containing 0 as an element,

etc. More formally, 0 - 0; 1 (0); 2 (0,1);,1 {0,1,2); 4 = (0,1,2,3); ;

n (0,1,2,...,n-1). This approach relies on the representation of O(a) as
(0,1,2,3,... ,...), such that a< a, 'already discussed and made possible

through the well-ordering theor of Zermelo. Thus, "4" is the ordinal number

of the segment (0,1,2,3) and is identified with the segment itself. Because

cardinal and ordinal numbers are indistinguishable, it is also the cardinal

number of the set.,

Concretely, if A is a finite set to be counted, then by successive selec-
tion of elements, successive segments of set A are determined and a chain of

ordered sets is formed. "One," in the selection of the first element has both
cardinal and ordinal characteristics in that "one" tells how many elements
have been selected and also that the first one has been selected. A subset

of the collection A of one element has also been determined. "Two" in the

selection of the next element also has both cardinal and ordinal characteris-
tics in that "two" tells how many elements have been selected and also that the

second one has been selected. The segment corresponding to "two" is an ordered

set, is a subset of the collection A, and contains the set consisting of the

first element. 'It is ordered by t'he relation "precedes," which is transitive

and asymmetrical (and is thereby a strict partial ordering). If this

counting process is continued until A is exhausted, then A m (al,a2,...,an)
has been well-ordered by the relation "precedes." A chain of sets has been

established in that if AI = (a1), A2 (al,a2), etc., then AI( A2 C (An.
In this sense, one can say that one is included in two, two is included in

three, etc. If A is counted in a different way, A
It must be noted that while ai* may not be the same element as ai, nevertheless
ai* is the ith element and also the cardinal number of Ai* (al*,a2*,...,ai*)

where i < n. While Ai and Ai* are similar (and therefore equivalent), they

are not necessarily equal sets.
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Future Research in Mathematics Bducatiom The View from
Developmental Psychology'

Harry Beilin
City University of New York/Graduate School

Predictions of the future that go beyond extrapolations of the present
are characteristically products of fantasy ant imagination. I will confine
my prognostications to delineating features of contemporary research in
mathematics education, indicating how some current research does not deal
adequately with the problems being addressed and will suggest alternatives
that may be the basis for future research.

In ing the present ant future of mathematics education I would
hold that any educational program that ignores available knowledge of the
child's intellectual development is likely to be only partially successful.
This assertion rests on the assumption that mathematical learning as a type
of cognitive learning is under the control of the child's developing cognitive
capacities, The source of this thesis is principally, although not exclusively,
the work of Jean Piaget.

Piatet and Mathematical Education

Piaget's theory is having considerable impact upon research in mathe-
matics education and will probably continue to, although other psychological

developments will become increasingly important even in the near future:
For the present, Piagetian research has been far from fully explored and th2
application of the theory to educational practice is still in its infancy.,

Piaget's views of education, and mathematical education in oarticular
(Piaget, 1972), ere based upon the following assumptions:.

1, Learning is under the control of the child's development and not the
reverse. That is, experience alone is not sufficient for learning; it
requires an organism whose cognitive structures are of level of development
that will enable the products of experience to be integrated with them,

2. Log:co-mathematical structures are spontaneously and gradually con-
structed as the child develops. These structures are considered by Piaget to
have a natural relation to those of modern mathematics and knowledge of these
relationships is felt to be a necessary condition for the teacher to foster
creative learning.

3. The origin of mathematical thought is in the actions of the child
and not in his language.

Each of these assumptions will be considered in light of the research
problems th.y raise as well as other developments tr psy-hology that have a
bearing upon he same issues.

1Presented at the "Cognitive Psychology and the Mathematics Laboratory"
Symposium at The School of rducstion, Northwestern University, February, 1973.,
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1. Mathematical learnin and develo n

Until quite recently, the acquisition and development of mithematiral

skills and concepts was considered to be a problem for the psychology of

learning and problem solving. In the view of empiricist psychologists these

concepts were acquired through the manipulation of external sources of

stimulation and reward. The products of such external control combine

internally in simple or complex association under the impetus of some

form of motivation. Gestalt psychologists have traditionally considered the

same processes to be fundamental foram of reasoning and thought, acquired

according :o the lays that organize the processes of perception.

Both empiricist and gestalt psychologists have shared the belief that

the origin of knowledge is in perceptual and sensory processes. Experience,

for the empiricist, 0 the critical element in learning. while for the

gestaltist, organization derived from the biological wperties of the

organism accounts for change resulting from experier.,e
\\

--

With Piaget, the elements of both empiricist and gestalt views integrate

in a theory based upon the autoregulation of development, by virtue of which

active experience and internal organization provide the materials out of

which intellectual structure. are conwtructed. The acquisition of knowledge

becoses.possible only as the developing intellectual system enables the
active experience of the child to become assimilated to it. Experience it-

self does not ensure learning. The theory holds that the defined course of
development controls learning, that is, learning does not occur except as a

function of the state of the organism. The state of the organism, in turn,

is established by a relatively fixed sequznce of stage. through which the

child progresses as he moves toward full intellectual competence.

Piaget and hi. colleagues (Inhelder and Sinclair, 1969) provide evidence

for th claim that the state of the child's development affects what he is

capable of acquiring through experience, in a number of experiemnts in which

children at different cognitive levels were trained with the same tasks.

Greet difficulty in learning is reported for children who had not reached a

defined cognitive level. While studies designed to train children at differ-

ent ages with the same tasks have beer limited, there have been a number of

attempts with both Piagetian tasks (Beilin and Franklin, 1962), ...d non-

Piagetian learning tasks (Collin, 1965). The results of these studies sup-

port a developmental conception of learning.

A large number of other studies that set out to establish that logical

and mathematical concepts are trainable have not closed the question as to

whether learning can occur at ages p:ior to the development of particular

facilitating developmental stages (Beilin, 1971). An answer to the question

requires an experimental procedure that unequivocally tests a particular

reasoning process at an age when one could assume that some elements of that

protege had not been acquired spontaneously or naturally. A few experimental

studies have been conducted with very young children (about 4 years of age)

that critically embarrass Plagetian theory on this issue. The Bryant

and Trabaaso (1972) study on early transitive inferencs is one such instance,

but the question appears to be far from settled..
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a. Stages in development

Claims for the developmental control of learning have been questioned
in various ways. One persistent source of difficulty is the theory of
stages, which has been under attack for at least four decades. Suppes
(1972) has added his voice to the chorus, reiterating the view that the
idea of stages is to, uncritically accepted, that the concept at least as
proposed by Piaget is too imprecise, and that only detailed experimentation
and quantitative test will deterMine whether the existence of stages should
be accepted as fact.,

Suppes defines the -entral issue as that of differentiating stages from
continuous development, iiaget does not deny that development is continuous
He points out, in fact, that whether development is continuous or discontin-
uous depends upon the scale that one uses to measure behavior., Suppes seem-
ingly rejects Piaget's argument, but then uses it himself. He says, "The
problem is to find out for the given scale at which experimentation is con-
ducted whether the process is all-or-none or incremental, and whether there
are microscales, for example, at which the process is continuous even if the
data indicate all-or none learning at the ordinary scale of experimentation,"
Piaget couldn't agree more with that statement since it presents no problem
for stage theory, in fact, it supports the view that there may be contrasting
data couLerning continuit' depending upo the scale,

Su,,pes says further, "There is also no reason to think that when concept
formation and mastery of novel concepts are evident that learning is neces-
sarily to be characterized in terms of stages than incrementally.," Piaget
wuld probably agree with this statement too since he differentiates between
different types of concept construction, some that may be acquired incremen-
tally and others on an all-or-none basis depending on the process of forma-
ti,,r1 that is involved.

The claim that "precise" and detailed experimentation might lead to a
test of the existence of stages is itself imprecise, and hopefully Suppes
1.as a dez!nition of precision that would not exclude most experimentation in
the social sciences. in -ading psychology, Precise data as such are not in
tie selves sufficient since scientific data rarely stand uninterpreted., The
s3 -e data, in fact, are often integrated into theories that are incompatible.
F:en with precise data it is unlikely that clear-cut supp,-t for either
-htinuity or discontinuity theories will be readily forthcoming, since cc--

firmation of such general theories often depends upon many experiments , pro-
%,1,Je s ficient data to elucidate the ramifications of a theory and to a 'ble
differential confirmation among _ompeting theories.

As Suppes suggests, the theory of stages requires evidence of generali-
zation across common sets of concepts; he holds, however, that there is
'little" evidence on this point. It is difficult to tell what is meant by
"little" in this context, but the issue of the so-called horizontal dedalage,
.)r generalization across concept domains has been extensively discussed in
the Piagetiar literature, and a number of studies by non-Genevans are addres-
sed tc this issue. As the data show, there is both generalization and varia-
oilityl sometimes variability within a stage takes a consistent form, some -
ti-:es not. The issue is e difficult one for stage theory and investigations
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sympethatic and unsympathetic to stage theory will be dealing with it

foie long time. There may not be enough data to settle this issue, but

the problem has been far from ignored.

In total. Suppes' claim that stage theory has been uncritically
accepted on the basis of little evidence is itself based on limited
evidence. The issues are not new and have received both theoretical and

empirical attention. Whether the data justify far-reaching policy decisions
in education is another issue, but then again the claims for alternative
views, including Suppes', are equally open to question,

b. Cognitive structures and strategies

The stage question does not exhaust the issues concerning learning and

development: Until recently, Piaget has dealt very little with the nature
of learning. His conception of learning appears to be identified with the
behavioristic conceptions of Hull-Spence, Skinner, and Pavlov. Although

undoubtedly aware of recent research and theory in cognitive learning, he
uses classi_al behaviorism as a backdrop against which to contrast his equili-

bration theory of development, He characterizes behavioristic conceptions
as based primarily upon the response to external stimulation as the causal
determinant of learning and development. His own conception, on the other

hand, is based upon the autoregulation of internal ana external behavioral

input. Modern learning theory is not as simplistic as Piaget makes it out

to be. Most contemporary conceptions of learning include some conception
of internal, mediating, or symbolic cognitive processes. Learning Leeman-A'

in turn has shifted considerably in its orientation and focus. study

of discrimination learning, for example, so long considered ..orists

as the cornerstone of behavioral processes, now includes analyst!,
linguistic and attentional mediation, and some neobehaviorista define tneae
mediational phenomena as symbolic, In addition, problem solving strategies

that used to be the exclusive concern of cognitive theorists are now
identifiable in discrimination learning (Levine, 1966; Gholson et al., 1972).
Parallels between the problem solving strategies in discrimination learning
and those in Piagetian tasks are also being studied (Gholson et al., in

press). In a sense, the Piagetian attitude that learning is only an aspect
of the processes of development, and the traditional alternative that
development is under the control of learning are moving rapidly to an inte-

gration. The differences among a number of contemporary neobehavioristic
snd cognitive theories are often difficult to distinguish,

In Piagetian research, axnhasis until recently was on understanding the

development of cognitive strl.c.ure, A s'aift is taking place to discover the

ways in which structures func:!on. The influence of both structural and
functionalist views on research in mathematical education is not new; it was
evident, for example, in the work of Dienes and Jeeves a decade ago (Dienes,

1963, Dienes and Jeeves, 1965), While the study of structure has affected
research in -Athematics education more than the work en strategies, the
immediate future may see a te-,eraal in emphasis,
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Research on cognitive structures and strategies) is particularly
significant in mathematics education for two reasons: First, in mathematical
r oning and problem solving, children at different levels of development
ac uire different ways of dcaling with the same type of problem. Secondly,
at ny stage of development quite different strategies may be utilized by
different children for the same problem, and different strategies may be
utilized by the same child for different problems. While problem solving
strategies appear to be significant to learning and development, it is
surprising that so little is known of their nature and how they are acquired,,

One feature of strategies receives co-siderable attention in mathematics
education research, yet little attention among cognitive and developmental
psychologists. This concerns the use of algorithms in problem solving and -

thinking.- Algorithms, in essence, are a special type of strategy used in
reasoning. Their utility in mathematics is obvious, but their function in
thought was not as obvious until the development of computer models for
simulating intelligence.

The instructional value of algorithmic methods is such discussed in
mathematics education. Their efficacy is usually contrasted with that of
true concept learning," and their use is often a matter of issue in educa-

tional policy Thesdifficulty over the use of algorithmic methods stems
in part from the lack of differentiation between conceptual algorithms
and instructional algorithms. Instructional algorithms are devices, usually
symbolic, that provide standardized ways of d?proaching the analysis or solu-
tion of problems and are essentially pedagogical instruments. The most im-
portant question about them is whether they work as well of better than other
approaches within a defined set of instructional objectives. While it may be
more advantageous or desirable to crease or re-create novel personal solu-
tions to problems from an understanding of fundamental principles, it may
be more facilitating and economical, at least in some contexts, to have
ready-made solution strategies.

Although practical considerations are important in considering the value
of algorithms, even more important is the need to determine what is essential
for thought and problem solving to occur. If thinking occurs naturally with
the use of conceptual algorithms, that is, standardized routines or sub-
routines employed within a reasoning process, then they cannot be abolished
by educational edict.

Algorithmm, thus, are not simply arbitrary devices for solving sc:ool
problems but enter into the very nature of the processes by which cognition

Many kinds of strategies have been identified. In gener,-1. a strategy is
a consistent approach taken by a subject in solving a problem. These stra-
tegies can be defined by a rule that is independent of the content of the
problem being solved, such as an alternating strategy, in which a child
alternates from left to right and then repeats the sequence in a two choice
discrimitmtion problem A cognitive structure, on the other hand, is defined
by the regularities in the behavior of the subject that suggest a rule or
logic that is intimately tied to the content of a problem or a class of
problenm.
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develops. They may serve as instructional devices as well, but developments

in computer simulation of thinking show that algorithms serve a much more
serious and necessary function in reasoning and learning. Rather than banish

these structures in the sometime romanticized search for creative thought,

more adequate knowledge of the role of these structures in thinking is

required, The task for mathematics education is to develop instructional

algorithms whose structure and content will articulate most adequately with

the structure and nature of conceptual algorithms,

Information processing approaches to mathematical educational research

Research in learning and thinking is bein" reinterpreted by a number of

contemporary cognitive psychologists in terms of the wayS in which information

is processed, The original interest in information processing came from
recognizing that the human learner, viewed as part of a communication system,

has limited capacity to store, process and transmit information, Much has

recently been learned of the way information is coded so that it is understood,

acted upon, and learned effectively, More is now known too of ne components

of information storaite and processing., Most of this research has been addres-

sed to the nature of zemory, cognition, language, and perception, and at that

to fairly limited aspects of these. Recent efforts have also been directed

to constructing information processing models of cognitive development and

mathematical reasoning. This research is concerned with the nature of mathe-

matical reasoning and problem solving interpreted in terms of the organization

of information and the systems required to process such information. Because

of the nature of the information to be processed mathematical reasoning

lends itself most favoredly to an information processing type of analysis.

The ri:atively rapid application of cognitive psychology and cognitive

development theory suggests the transition into a new period of Jevelopment

for research in mathematics education.

The recent revolution in mathematics and mathematics education can be

characterized by three periods, First. came the striking and significant

changes in the conception of modern mathematics, These changes in the theory

of mathematics led to great pressure for concomitant change in mathematics

education. The social, political and economic climate of the so-called sput-

nik era provided the occasion for rapid changes in mathematics curricula

that brought them into greater accord with the newer approach to mathematics,

It was accompanied by changes in the technology of mathematics instruction,

principally at the pre-elementary and elementary. levels., The result was the

widespread introduction of instructional aids (such as the Cuisenaire rods,

Dienes blocks, Montessori materials, etc.) designed to foster the comprehen-

sion and learning of fundamental concepts in mathematics. We now appear to

be moving into a third era, characterized by the psychologizing of mathema-

tics education, based upon the notion that curriculum organization shou;id

be mapped onto the psychological processes of the develoring child.' The

I We have really only spiralled around., Parallel developments ocr.rred in

the 1920s and 1930s when it was realized that psychology had sometf,tng to

offer to education.
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Piagetian influence in this recent movement has been the most evident, but
it is clear that in the future it will only be aye force among many, as other
developments in psychological theory and technology rapidly infuse the
thinking of mathematics educators.

2. The logical structure of mathematics and the logical structure of thought

The logicist interpretation.of mathematics, by which mathematics is
reduced to a system of logic (Bennaceraf & Putnam, 1964), is after all only
one possible approach to mathematical theory. It appears, however, to be
the one to which Piaget relates hie own psychological logicism. He argues
that contemporary mathematics with its emphasia upon logical structure, princi-
pally as characterized by the Bourbaki group, shows a "natural" relation to
the logical structures of intelligence. Three types of logical structure
in intelligence are said to relate to Bourbaki "mother structures." First,
are the algebraic structures, the system of logical classes. Second, are
the order structures that characterize the system of (ordering) relations,
and finally, there are the topological structures based upon ideas of conti-
nuity, neighborhood and separation. These three "elementary" structures
later combine and form the logical groups (e.g.. the "four-group") that
enter into propositional logic and the combinatorial system.

The formal similarity of the logical system of mathematics to the
logical nature of thought suggests to Piaget that teachers should be
critically aware of the nature of child and adolescent thought development,
even though Piaget does not specifically suggest that the course of mathematics
instruction should parallel the course of logical thought development. Piaget,
perhaps wisely, offers no program as to how mathematics curricula should be
developed. He does, however, offer acme specific suggestions (Piaget, 1972)
concerning the focus of such curricula:

1. The Piagetian developmental seheme proposes that the structures of
intelligence arise out of the actions of the child. Two kinds of knowledge
are distinguished: physical knowledge and logico-mathematical knowledge.
"Physical knowledge," derives from the physical experience of acting upon
objects (e.g., comparing weights, densities, etc.) in order to discover the
properties of objects themselves. "Logico-mathematical knowledge" deriver.
from a type of experience that garners its information, not from the physi-
cal properties of objects, but from the coordination of actions on objects.,
The source of logico-mathematical knowledge is a particular aspect of action,
but nevertheless from action carried out by the child himself. When infor-
mation is give, the child by others, the child in effect has to reinvent
or reconstruct that knowledge for himself in order to achieve true
understanding.

This leads Piaget to suggest that the teacher should always be aware
that the child and adolescent is far more capable of indicating his under-
standing through "doing," and "in action" than he is in any other form of
expressing himself, including verbally: The expression of thought occurs
in avtion long before the child is consciously aware of hie thought and
Tong before he can represent it linguistically. With sensitivity on the
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part of the teacher, the child may be made more aware of his understanding
through discussion in what would be equivalent to a Socratic dialogue.
Through the organization of work with partners his own age and with a
sophisticated older child as leader, the child could also be led to

appropriate verbalization and "awareness."

2. For Piaget a new logical structure comes into being in at least

two ways. First, the generalized forma of action upon objects are assimilated
to existing cognitive schemes (generalized structures) to form new structures.
Secondly, existing schemes are integrated and composed into new structures
in response to problem solving needs. Some form of internal change has to

take place in both instances for real understanding to occur. The mathematics

teacher, however, provides the child with ready-made logico-mathematical
structures and expects the child to understand them. The child's ability

to repeat a notion and even to apply it in limited ways often given tht
impression ,pf knowledge. True understanding of teacher-given knowledge

requires r&onstruction of the idea by the child. The test of understanding
is the spontaneous application of the idea by active generalization. To

ensure understanding the teacher has to go beyond his "lessons" and "organize
situations that give rise to curiosity and solution seeking (Piaget, 1972)."
Difficulties in understanding, says Piaget, should not lead to "feedback"
procedures in which a solution or correction is given directly. Instead

the teacher should utilize an active method in which counter-suggestion
leads to new exploration so that the child is able to correct himself. This

involves the application of Piaget's so-called "clinical method" to

otdaiogical practice. Unfortunately, it is not the kind of application that
is easily made by a teacher who is charged with the instruction of a large

groupof pupils.

3. The early logical thought of the child arises out of a great deal

of active experimentation with objects. Simple and complex coordinations

between perceptions and actions are made during the very first year of
life, prior to the symbolic representation of such coordinations. In a real

sense, formalization through symbolic representation follows action. This

general model applies to all periods of development, and Piaget notes,
unhappily, that mathematics teachers are tempted all-too-often to reverse
the procedure and prematutely provide formalization prior to active experi-

mentation. eepresentations or models should correspond to the natural

logic of the child's level of thought, with systemization and fomentation
to follow the kind of knowledge that "intuitively" comes through action.
Piaget argues that mathematicians should not eschew such "intuitive" knowledge,
s.nce mathematical intuition is essentially operational (i.e., logical), and
the nature of operative thought is to dissociate fore from content. There

is no harm. in fact it may be necessary, to at first encounter experience
in which both form and content are intuitively grasped, before they are
formally separated,
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On an a priori basis alone it would seem that Piagetian theory
would relate well to early (preschool and elementary) mathematics. It

is not self-evident, however, as to how mathematics curricula should be
organized or how mathematics should be taught, since curriculum organization
derives both from the inherent logic of the subject matter and the
intellectual competencies of the child. The relation of mathematics
to other subjects, the experience of the child, and the cultural context in
which teaching occurs are also relevant.

One particular difficulty is that the logical organization of a subject
may not parallel psychological development. Piaget implies that for mathe-
matics there is such congruence, as in the logical relations among topolo-
gical, projective and euclidean geometries;' but there is relatively little
evidence, except for certain areas of mathematics, to confirm this: Inves-
tigations of school curricula in present use show critical disparities
between curriculum sequences and empirically determined sequences of intel-
lectual development (see L. Beilin, 1973, for one such example), These
studies indicate that the particular curriculum sequences studied cannot be
justified either in terms of ,heir logical organization or their accord with
psychological development. Some mathematics curricula iv present use, parti-
cularly those more recently developed, seem to have a better logic for their
organization, but as yet very little evidence exists of their relation to
the cognitive development of the child.

Piaget's suggestions for activity-based mathematical learning may take
a child so far into mathematics, although how far is not clear. Those areas
of mathematics'(genmatry, arithmetic, etc.) in which learning may be accom-
panied by the active manipulation of objects is not specified by Piaget
although he implies that even advanced mathematical understanding may be
fostered by such manipulation. Dienes' demonstrations in this Symposium
suggest that there may be many applications even for advanced forms of
mathemmtical reasoning., While Piaget proposes that formalization should
proceed in its own time it would appear that considerable experimentation
will be needed to establish such timetables.,

Educational psychologists and others are eager to know how teachers can
be aided to acquire understandin3 of the intuitive relation between mathema-
tics and intellectual development well enough to carry on an instructional
dialogue with children, Even m re, educators are concerned with how to
organize learning so that the eacher can accomplish this with large numbers
of children. Present knowledg is inadequate to provide the answers.,

3, Mathematics as a language

Piaget is at great pains to declare that language is not the critical
source of thought and knwledge, Language functions instead to represent
at.d communicate though:., This is particularly relevant for mathematics since
it is commonly held thet mathematics is a language, or has properties in
common with natural language. In Piaget's theory, logical and mathematical
structures are said to define the nat.re of the thought process;, language,
on the other hand, is a socially-created conventional system for symbolically
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representing the products of thought. As a consequence, Piaget considers
that educators, particularly mathematics educators, have placed much Zoo much
emphasis upon the linguistic aspect of education out of proportion to its
role in mathematical thinking and learning. For mathematics educators the

issue is important since so much of mathematics instruction is symbolically
formalized, although much effort has gone into making early mathematics

instruction less so. Again, the focal question concerns how knowledge is

acquired and how thinking occurs. If Piaget is correct that the development

of thought, particularly in its early manifestations, is achieved through
activity, then an educational policy may be required that places greater
emphasis upon activity and lees upon linguistic forma of instruction. While

Piaget recognizes that progressive linguistic formalization and model build-
ing is necessary, he emphasizes again the need to ensure that understanding
accompanies linguistic formalization.

The relation between language and thought is not as clear-cut as Piaget
proposes, The by now well-known work of the generative-transformational
linguists (Chomsky and others) has shown that at an early age (2 to 4 years)
the child acquires a relatively small set of linguistic rules from which he

can create a vast verbal output, Considerable controversy exist= as to the

components of this linguistic rule system and how it functions, but in spite
of a number of differences there is consensus as to the great power of that

generative system, Nevertheless, in spite of the achievements of contemn
porary linguistics, little is known of the nature of logic and mathematics

as special or formal languages, In addition, few investigators of language
acquisition have been concerned with whether mathematics and logic are
acquired in the same manner that natural language is acquired, or whether,
as Piaget implies, they are not acquired aa languages at all but as systems

of thought. The distinction may not be important if language acquisition

is under the control of developing cognitive structures. If, on the other

hand, language development is autonomous and has an internal logic that dif-
fers.from the structures of thought, then rather different practical and theo-
retical consequences ensue: The issue, at the moment, has relatively little

available research data to decide it. What evidence there is, even from the

Genevan group,, indicates that natural language acquisition cannot be accoun-
ted for solely by available knowledge of cognitive development (Sinclair,

1971). Even less is known of the acquisition of mathematical knowledge and
its representation in formal languages.

A number of attempts have been made recently to analyze mathematics in

linguistic terms although not necessarily as a generative-rule system. Some

research studies have been concerned with the comprehension of mathematical

statements, not so much as logically formulated propositions, bat as
mathematical propositions embedded in natural language contexts. These

investigations are designed to determine whether comprehension is fostered
or impeded by the form or complexity of the natural language contexts in

which mathematical data are presented. In other studies, the order of sen-

tence constituents is altered to determine the effects of sentence and pro.

blem order on the ' ltion of problems. These studies parallel those done

by psycholinguist. ,,on- mathematical contexts, While studies in psycho,

linguistics are ordivarily addressed to theoretical questions concerning the

comprehension of surface structure characteristics of the grammar, those
performed in a mathematical context have been addressed to problems of solu-

tion efficiency., Although these mathematical studies could easily illuminate
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some more general issues they seem, for the present at least, to be much more
limited in focus.

Studies in the generative aspects of 1 nguage and cognition has led to
considerable interest in the nature of rules and rule structures and their
place in thinking and learning. Because of the obvious relation between
rule-related thought and mathematics, a fair amount of research is being
pursued in the learning of mathematics! It is not my impression,
however, that mathematical reasoning is being examined as a generative system
to any appreciable extent. That is, study, is nct directed to the acquisition
of mathematical rule as instruments of creative problem solving, or for use
in the construction of mathematical ideas. Nor are the strategies by which
such rules are functionally related to problems under solution being investi-
gated to any extent. Rather, it would seem as though most of the effort is
directed to studies of success or failure in learning rules. This appears
to be a much more sterile enterprise than what the study of mathematics
learning could be,

A recent effort to apply the generative-transformational linguistic model
to the rule structure of mathematics is seen in the work of Scandura (1971),
His position is that mathematical knowledge and mathematical "behavior"
are "rule-governed." He distinguishes two conceptions of rule structure,
One involves the idea of generative procedures composed of rules, and the
second, the idea of rule-governed behavior. Rule-governed behaviors are

those that are produced by a common algorithmic (generative) procedure:
Traditional conceptions of concepts and associations are said to be special
cases of such rules, Scandura goes on to detail the form such rules take
to satisfy the recursive functions of a generative theory, Decoding,
transformation, encoding and selectional rule types are specified that
suggests a combination of both information processing theory and generative-
transformational linguistic theory,

Mathematics as such is not concerned with rule-governed behavior but
with the rules themselves. Mathematics educators, however, are very much
concerned with both since there is an apparent relation between rule-governed
behavior and mathematical rules, As already suggested, Piaget is also very
much concerned with rule-governed behavior and its relation to mathematical
rule structure, in fact it is part of his central thesis. There is thus
considerable commonality between the fundamental assumption of the structural
learning group (represented by Scandura) and the Piagetians, although there
are some important differences between them as well.

Not all mathematicians, mathematics educators, or psychologists are
optimistic about the adequacy of generative-transformational (Chomskyan)
theory as model for mathematical reasoning: Among mathematicians, Suppes
(1972) considers generative-transformational theory to be a very inadequate

explanation of even linguistic performance. To make the Chomakyan argument

seem absurd he suggests as an analogy the relation of first-order logic to

all current mathematical ideas. From these relations, he says, one can

enumerate the theorems of a mathematical subject by enumerating the proofs.
The enumeration of the proofs, he holds, is equivalent to the deep structure

rules of Chomsky's grammar. But no one, says Suppes, would seriously claim
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that knowing such proofs can provide adequate knowledge of how students dis-
cover elementary proofs, or how mathematicians discover new and complex
proofs, which he holds competence theory should do, In spite of Suppes'
argument it is not clear that the constructive process of generating
sentences is equivalent or even analogous to the discovery processes in
deductive reasoning.

Suppee own approach to theory of how children learn mathematical
concepts is through the development of models of performance in simple
mathematical tasks, such as learning to use the (instructional) algorithms
of addition. His first models were linear regression models applied to a
mall number of performance charac.eristics. A regression model that predicts
response probabilities, however, does not in itself postulate a specific
process by which students apply problem solving algorithms, Subsequently
developed models were process models specifically designed to satisfy the
information processing requirements of algorithmic tasks. These models were
based upon finite automata, although they were soon superceded by probabilistic
automata models. The probablistic automata models were seen to have
limitations at well, lacking perceptual processing components, and so further
developments suggested various advances over the automata models. These
involve "register machines" that process perceptual information through a
series of subroutines that combine different algorithms. Suppe.' models
appear to have come closer to the 2 pproach of Minsky and Papert (1972)
whose simulations of intelligence involve models derived from theories
based upon very different psychological assumptions. The Papert position
is, in fact, much more Piagetian.

There are many properties of natural language that mathematics does
not appear to share. This is particularly so in regard to semantics, that
is, in the way meaning is treated. The terms of mathematical system or
theory are not interpreted in the same way lexical entries in natural language
are. In fact, one reason mathematics is referred to as a formal language
is that its terms are ostensibly content free; those of natural language
are not. It seems dubious, however, that as a consequence mathematics is all
syntax with no maaang. Instead, neaning appears to take different form,
or may be said to have a different significance. It is thus not enough to

say that mathematics is system of abstract forms and ur.interpreted terms
that represents the abstract relations ordinarily represented in natural
language. In any case, it appears that the relations between formal
languages such as mathematics and natural language will receive great

deal of attention in the years ahead from linguists, logicians, psychologists
and mathematics educators for these relations may have important bearing
upon mathematical reasoning and problem solving..

To sum up, I have tried to show that mathematics education research
gains its strength from the infusion of theories and models from various
disciplines. It also carries the burdens of these disciplines as well as
those of its own.

The era of dramatic curriculum change and technological Innovation
appears to be over., A new era concerned with the psychological basis for
mathematics learning and reasoning is already fully entered upon. It is
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being fed by psychological theories of very diverse origin. Mathematics
education research id now a 'very lively intellectual and scholarly arena
in which mathematics, philosophy, psychology, linguistics and computer
technology are converging on the solution of some very real problems.
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