
DOCUMENT RESUME

ED 108 664 IR 002 190

AUTHOR Brown, John Seely; Rubinstein, Richard
TITLE Recursive Functional Programming for the Student in

the Humanities and Social Sciences. Revised
Edition.

INSTITUTION California Univ., Irvine. Dept. of Information and
Computer Science.

REPOPT NO UCI-ICS-TR-27a
PUB DATE Sep 74
NOTE 53p.

EDRS PRICE MF-$0.76 HC-$3.32 PLUS POSTAGE
DESCRIPTORS Abstraction Levels; *Computer Programs; *Computer

Science Education; *Course Descriptions; Fundamental
Concepts; Humanities; Logic; Problem Sets; Problem
Solving; *Programing; *Programing Languages; Social
Sciences

IDENTIFIERS *LOGO

ABSTRACT
Concepts in recursive functional programing form the

basis of a course designed to introduce Humanities and Social Science
students to computer programing. Unlike many introductory courses,
recursion was taught prior to any mention of iteration or assigned
operations. LOGO, a non-numeric language originally invented for use
by children, was chosen as the medium. A brief summary is made of
LOGO, and the assigned problems are described, along with the
motivation behind each. This technical report considers how
theoretical ideas about computing can be explained intuitively and
how, by choosing some metaphors that are particularly meaningful to
the non-science student, these abstract ideas can be presented
effectivelr. Some of the limitations and hindrances of the course are
described, and suggestions for circumventing them in the future are
offered. (KKC)

Documents acquired by ERIC include many informal unpublished

* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *

* of the microfiche and hardcopy reproductions ERIC makes available
* via the ERIC Document Reproduction Service (EDRS). EDRS is not
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the original.

RECURSIVE FUNCTIONAL PROGRAMMING

FOR THE STUDENT IN THE HUMANITIES

AND SOCIAL SCIENCES

John Seely Brown

Richard Rubinstein

(Revised September 1974)

ABSTRAC7

Humanities and Social Science students have long been
alienated from computing. Nonetheless, computers are fun,
stimulating, and are often appropriate for many things
these students would like to do. LOGO -- a friendly,
non-numeric la .guage -- is the medium the authors used to
introduce these students to computing. Unlike many
introductory courses, recursion was taught prior to any
mention of iteration or assignment operations. Flowcharting
was de-emphasized, and in its place a terminology was
developed which stressed communication between procedures.
Concepts in recursive functional programming formed the
basis of the course. Such concepts are easily grasped when
introduced early in one's computing experience.

LOGO is a good basis for learning abstract computer
concepts, as well as a productive environment for flexing
one's problem-solving muscles. Examples of such activities,
along with a brief introduction to LOGO, are given in the
paper.

TECHNICAL REPORT #27a

3

S OfARTmISNT op H
ItOUCATiON sv

NATIONAL INSTITUTE 00
EOUCATION

THIS DOCUMENT .AS BEEN REPRO
DuCE0 EXACTLY PS RECEIVED FROM
THE PERSON 04 ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS
STATED 00 NOT NECESSARILY REM
SENT OFFICIAL NATIONAL INSTITUTE OF
FOUCATION POSITION OR POLICY

PREFACE TO THE REVISED VERSION

The last four years have seen a substantial increase in
the use of LOGO in education. As LOGO advocates, we are
certainly pleased by this trend. Excellent work at MIT and

elsewhere have popularized uses of LOGO with children,
particularly with LOGO turtles and "turtle geometry." This
use of LOGO is very exciting, but we believe that a vast
range of other uses is going unexplored particularly with
older students. With these students, LOGO presents an even
more serious challenge to anyone wishing to use it to teach
problem-solving skills, computing, debugging strategies and,
indeed, thinking.

LOGO's successful application requires a tremendous
amount of creativity on the part of the teacher. He must be
able to generate interesting, meaningful and suggestive LOGO
projects. At a minimum, this means that the teacher must be
absolutely fluent at thinking in LOGO. He should understand
non-numeric programming and should be able to combine this
knowledge with a sensitivity to problem-solving skills in

order to construct interesting sequences of tasks for the
student to explore.

A word of caution is in order: LOGO is substantially
different from conventional languages, encompassing
computing ideas not readily accessible in many of these
other languages. Thus, there are important but subtle
characteristics of LOGO which may be missed or misunderstood
at first exposure. In fact, experience with conventional
numeric languages can operate as a hindrance. Therefore,
it is important that the prospective LOGO teacher use LOGO
in a variety of different ways before beginning to teach
with it. The simple syntax of the language belies a deeper,
powerful capability.

Since LOGO is really quite a different animal we should
not expect to simply map over projects designed for other
languages. We must be willing to let our imaginations run
free over totally new problem domains. Likewise, we should
think twice before deciding that LOGO is unusable because it
lacks features found in some other languages. For example,
we have often encountered the belief that it is difficult to
use LOGO in a modern math curriculum (in either primary or
secondary schools) because it lacks floating-point
arithmetic. We do not share this view. In fact, we have
found that the unlimited precision of LOGO's arithmetic
facilitates countless provocative experiments into the
nature of numbers. For example, students can "invent" and
experiment with number systems which use modulo arithmetic,
negative number bases, rational numbers, and so on. Such
experiments have the side effect of giving students the
:,lance to discover theorems -- an experience well worth

fostering and well within their grasp. a
we believe after four years of using LOGO that its

simplicity and friendliness enables even older "kids" to
quickly get involved with problems which they find
interesting and which are nonetheless embodiments of
powerful ideas. We hope the following paper will give
potential LOGO users a good start in understanding how this
came about. In this slightly revised version, we gave added
more explanatory material for those who don't already know
LOGO.

We stress that the generation of good problem sets is,
in our estimation, surprisingly subtle and difficult. The
paper illustrates a number of (we think) interesting
projects. These ideas may certainly be used as is, but they
can also be viewed as suggestions of good directions in
which to proceed. We hope that the reader will be sensitive
to our approach as well as to the details.

JSB, RR
September 1974

ACKNOWLEDGMENTS

We would like to thank Robert Bobrow, Wally Feurzig, and

Seymour Papert for various discussions about the pedagogical

uses of LOGO. We are also indebted to the students who,have

taken SS-15 for providing us with numerous insights into

vices and virtues of this approach to computing.

This paper is based on a talk by the first author at the

National ACM-72 Conference in Boston, August 14-17, 1972.

RECURSIVE FUNCTIONAL PROGRAMMING FOR THE STUDENT
IN THE HUMANITIES AND SOCIAL SCIENCES

Introduction

A computer can be a great device for capturing the

imagination of students, yet for various reasons few

students in the Humanities;Qr Social Sciences seem to be

amused by these giant wizards. Being somewhat idealistic,

the authors--at the University of California at Irvine--made

another stab at the well-honored problem of introducing

these students to computing.

We knew that we could construct all kinds of "games"

ranging from an enhanced Eliza [1] (a simulated Rogerian

therapist) to sophisticated chess programs [2] and that

students could be easily persuaded to play these games.

Such ploys can often help students to overcome certain

anxieties about computers, but this was not our primary

purpose. Nor were we especially concerned with teaching

students how to "program" per se. Instead we wished to

present the computer as a medium in which students can

formulate ideas and engage in abstract reasoning.

There are numerous students in the Humanities and

Social Sciences who are interested in and talented at

logical and analytical reasoning. Often these students have

rejected the physical sciences and mathematics because they

ro
a

dislike the rigidity of mathematical structures. We suggest

that the computer can accomodate a host of interesting

meta-languages which appear less restrictive and formidable

to these students than the language of mathematics. By

introducing these languages as a convenient medium for

expressing formal theories or models of a logical but

non-mathematical nature, we hoped to provide a context in

which these students could generate complete and unambiguous

descriptions of their ideas. In addition, some of these

meta-languages can in themselves be sources of powerful

theoretical ideas. Mastering them permits the student to

experience the "Aha!" phenomenon in a formal, but

"non-mathematical" domain.

Because of the orientation of these students, we could

not count on their being willing to tolerate inconveniences

inherent in most computing systems. Not wanting to

prematurely turn them off, we were adamant about satisfying

the following:

Maxim: The computer must be friendly.

If this seems too obvious, we should note that what

constitutes a "friendly" system is just now becoming a

subject of study in computer science. For our purposes, we

felt that a "friendly" language (system) would be truly

interactive,[3] have excellent debugging and editing

faciliti render meaningful error statements, and possess

8
- 2

a uniform syntax with few idiosyncratic restrictions (e.g.

limits on the lengths of variable names). Since few of our

students had any interest in numeric problems, we also felt

that "friendliness" would imply a language which excelled in

symbolic processing.

Fortunately a language exists which embraces many of

these requirements. It is no surprise to discover that this

language was invented for use by children. How natural! Of

course a ten year old child is not going to tolerate all the

petty restrictions found in most current systems. The

language we chose was LOGO [4].

In the next section we will discuss our course and some

of the techniques we used. We will give a brief summary of

LOGO, and then proceed by example, describing some of the

problems we assigned and discussing the motivation behind

each. We will consider how some theoretical ideas about

computation can be explained intuitively and how, by

choosing some metaphors that are particulary meaningful to

the non-science student, these abstract concepts can be

presented effectively. In the last section we will describe

some of the limitations and hindrances we encountered and

offer some suggestions for circumventing them in the future.

3
3

Are Approactr

Although our primary goal was not to teach programming

per se,

programs.

of work.

we did require our students to write and debug

Each week's assignment required about five hours

The homework problems were designed to build on

each other and often involved "extending" the language by

adding new functions and predicates. Ideally, by the end of

the course, each student would have created his own extended

version of LOGO. Since LOGO is a function-oriented

language, these extensions are syntactically

indistinguishable from the original set of primitives. This

helped foster a notion of s.stom tailoring the language to a

set of problems of particular interest to a given student.

In order to encourage a certain style of analyzing

problems, we deleted two constructs from LOGO (which were to

be reinstated later in the course). First, we eliminated

the GOTO statement. This meant that the only way a process

could be repeated was through recursion. The second

deletion, consistent with the first, was the assignment

statement (explained below). Our purpose in this was not to

be pedantic. Rather, we felt that students could grasp

subtle, non-trivial aspects of recursion better if they were

forced early to write recursive programs. (Students who

already know FORTRAN-like languages might otherwise take

months to gain the same familiarity with recursion that a

neophite acquires in a few weeks.)

We do not wish to argue the virtue of recursive versus

iterative procedures from a programming point of view.

Nevertheless, through recursive programming we quickly

immersed the students in:

A) some interestinc theoretical problems which are
more logical than mathematical, and

B) some of the deeper problems of how names
(variables) take on meanings (values).

This latter problem is most apparent in a recursive context

where the student is often baffled oy, what appear to be

paradoxes (i.e. variables take on different values without

specific reassignment). Once these "paradox..s" are

encountered, a full treatment of how names take on meanings

is then more interesting and informative.

In conjunction with tne removal of the assignment and

"GOTO" statements, we imposed three Catinal Rules:

1. NO function (procedure) can be more than seven
lines long (12 for psychologists).

Tt:is, our most important rule, encouraged the student to

decompose problems hierarchically and then solve them by

stepwise rinement. We hoped that by making this

restriction-we would get the students to use a top-down

5
JL14

approach to problem solving. (See Wirth (5) for an

excellent technical discubsion of this approacn.)

2. The name of every function should be semantically
meaningful. (Remember that in LOGO names can be
of arbitrary length.)

This rule not only helped us in assisting a student to debug

his program, it also helped him to clearly delineate the

purpose of each of his functions. In addition, it helped to

keep functions short, thus reinforcing Rule 1.

3. Access to date must be done through function
calls.

This rule was not introduced until fairly late in the course

since "accessing a piece of data had hardly any meaning to

a beginning student. (The reasons for this rule are

discussed later in this paper.)

LOGO Basics

This section gives a brief description of LOGO's

pre-defined functions. Readers who arr familiar with LOGO

may wish to skip to the next section.

LOGO has two basic data types -- words and sentences.

A consists cf an arbitrary sequence of letters,

6 12,

411 numbers, or other symbols, and a sentence cozists of an

arbitrary sequence of words.

Examples:
a) "ONE", "5" and "ABCDEFGH" are all words.

The quotes mean take the included sequence
as a literal.

B) "THIS IS A SENTENCE" and "5 32 ABCDEFGH"
are sentences.

Since LOGO specializes in non-numeric computations, it

contains a number of procedures for tearing apart and

concatenating data items. There are four basic functions

for tearing data items apart: FIRST, BUTFIRST, LAST and

BUTLAST. These act in the following manner:

FIRST OF "ABCD" --> "A"
FIRST OF "HI OUT THERE" --> "HI"
BUTFIRST OF "ABCD" --> "BCD"
BUTFIRST OF "HI OUT THERE" --> "OUT THERE"
LAST OF "ABCD" --> "D"
LAST OF "HI OUT THERE" --> "THERE"
BUTLAST OF "ABCD" --> "ABC"
BUTLAST OF "HI OUT THERE" --> "HI OUT"

(Note: the words "OF" and "AND" are noise words which are

ignored by LOGO but increase the readability of the code.)

Each of these functions expects exactly one input and

outputs the resulting answer.

Concatenation of objects is achieved in LOGO through

two functions-- WORD and SENTENCE:

WORD OF "AB" AND "CD" --> "ABCD"
SENTENCE "AB" AND "CD" --> "AB CD"e

Both the WORD and SENTENCE functions require exactly two

inputs. Two closely related functions, "WORDS" and

"SENTENCES", allow an arbitrary number of inputs.

Inputs to a function need not be literal strings but

may be the outputs of other functions. An example of such a

composition of functions is:

PRINT BUTFIRST OF WORD OF "AB" AND "CD"

where WORD outputs "ABCD" which is the input to BUTFIRST

which outputs "BCD" which is the input to PRINT. Balanced

parentheses may be used for clarity. Thus, the above line

can be written equivalently as:

PRINT BUTFIRST OF (WORD OF "AB" AND "CD")

LOGO also has a collection of predefined predicates

which car be used to test for certain properties. Each

predicate outputs either "TRUE" or "FALSE" and is usually

used in conjunction with a TEST statement. Some basic

predicates are:

ZEROP NUMBERP EMPTYP MINUSP WORDP SENTENCEP IS

All of these predicates expect one input except "IS" which

requires two since it is checking for identity:

*PRINT IS "4" "A"
FALSE

Or:

14
- 8

*PRINT IS FIRST OF "HI OUT THERE" WORD OF "H" AND "I"TRUE

The TEST statement precedes a predicate (i.e. "TEST"

has either "TRUE or "FALSE" as its input) and sets a truth

flag which can later be read by the "IF TRUE" or "IF FALSE"

statements as will be illustrated below.

In the case of LOGO, one speaks of names and the things

that names name rather than of variables and their values.

Assigning things to names (i.e. values to variables) is

performed with a MAKE statement. For example, the

expression:

MAKE "SEX" "MALE"

assigns to the name "SEX" the value "MALE".

There are two ways of accessing the thing (value) of a

name. If we want to print the thing of SEX, we could do

either:

or:

PRINT THING OF "SEX"

PRINT /SEX/

That is to say that to fetch the value of X we can ask for

either THING OF "X" or simply /X/. Since the thing of a

name can be a name, we can have the following situation:

9

MAKE "ANIMAL" "DOG"
MAKE "DOG" "FIDO"
MAKE "FIDO" "MAN'S BEST FRIEND".

The function THING can be composed with itself an arbitrary

number of times, e.g.:

PRINT "ANIMAL" -.-> ANIMAL
PRINT /ANIMAL/ --> DOG
PRINT THING OF /ANIMAL/ --> FIDO
PRINT THING OF THING OF /ANIMAL/ -->

MAN'S BEST FRIEND

In using variables, one must always specify whether it

is the name (variable) or the thing (value) that you are

talking about. This is in contradistinction to most

languages where an expression such as:

LET X = Y

means that the variable X is to be assigned the value of Y.

Requiring students to always make this distinction is

pedagogically nice when dealing with a complex symbolic

structure in which the name of one object may be the value

of another.

A Conducive Learning Environment

Before launching into a description of some typical

problem sets, we would like to comment on some environmental

10 - 1G

I

IIIfactors that proved to be extremely important.

The first year we taught this course. we had four

terminals placed on a large square table. These terminals

were more or less dedicated to the LOGO students and the

precedent was established that the students could help each

other as much as they wanted. We placed no time limits on

the use of the machine. This was possible only because LOGO

is so inexpensive to use.[61 In addition, as we had few

available manuals, we encouraged students to try out a

command or procedure to see what it did instead of

consulting a manual. As a result, the students were always

busily showing each other newly discovered "secrets" of

LOGO. The side effect of this was that they were learning

preliminary skills in debugging -- i.e. given a procedure,

discover what it really does.

A Sequence of Problems

Since LOGO contains only a few primitive procedures (we

use thc- term "procedure" interchangeably with "function"),

it was reasonable to ask students to create some new ones

for their first assignment:

Write a predicate to be called MEMBERP which is to have
two inputs and which checks to see if its first input
is contained in its second. If it is, then MEMBERP
should output "TRUE". Otherwise it should output
"FALSE".

The purpose of this assignment was twofold. First, it

exposed the students to a simple recursion. Second, it

called to their attention the possibility of adding new

predicates, as well as operators, to the language. Wr also

established the naming convention that any procedure which

is to behave as a predicate (i.e. outputs "TRUE" or

"FALSE") should have a "P" as the last letter in its name.

This helped the students to remember which functions could

follow a TEST command.

A solution to this problem might be:

TO MEMBERP /ITEM/ /SET/
10 TEST EMPTYP /SET/
20 IF TRUE OUTPUT "FALSE"
30 TEST IS /ITEM/ FIRST OF /SET/
40 IF TRUE OUTPUT "TRUE"
50 OUTPUT MEMBERP OF /ITEM/ AND BUTFIRST OF /SET/
END

The first line above tells LOGO that what follows is a

definition of the function MEMBERP, which will require two

inputs, the first to be called /ITEM/ and the second, /SET/.

That is, the command TO means much the same as the word "to"

in "To bake a cake." A LOGO procedure is a receipe for doing

something. The END command indicates the end of the

procedure definition.

12

III

Stated loosely in English, the MEMBERP procedure says:

To determine: Is an item an element of a set:

If the set is empty, the answer is false. (10,20)
If the item is the first element in the set, then

the answer is true. (30,40)
Otherwise, the answer is: Is the item an element of

all but the first element of the set? (50)

(Numbers in parentheses refer to line numbers in the procedure).

Or, alternatively,

An item is contained in a set if it is the first element
of the set or if it is contained in all but the first
element of the set. Otherwise, the item is not contained
in the set.

In order to illustrate and explain the underlying

structure of recursive functions like the above, a

diagramming convention was introduced along with some

helpful terminology [7]. We consider the "MEMBERP"

predicate to be the name of a "little brother" who has

numerous identical twin brothers -- all called by the same

name, MEMBERP. This family of MEMBERP brothers works as

follows: suppose we make a request of a MEMBERP brother,

i.e.

13

Figure I -- A MEMBERP Brother

to test if /SET/ has any elements. It is not empty, so he

tests if /ITEM/ (i.e. "A") is first of "XYAZ". Since "A"

is not equal to "X", "IS" outputs "FALSE" to "TEST" (line

30) causing line 40 to fail. We are now at line 50. But in

order for this first little brother to complete line 50, he

must call for assistance from one of his twins. He requests

that his brother tell him the answer to a slightly simpler

problem; he asks him to compute: MEMBERP "A" "YAZ". This

process continues with each brother calling on another

brother to do a slightly simpler task until finally a

brother is called who can complete his simpler task

(possibly the null task). This last brother then sends his

answer back to the brother that called him enabling that

kA) 14

brother in turn to finish, (i.e. complete his line 50), and

so on:

Figure II -- A Chain of MEMBERP Brothers

0 0 0
C)

tiEtIBERMYAZ O tlEABERPVYAr o lIEMBERP.K.N.

"TRUE"

The explanation omits one very important construct

which we dub "conceptual clouds." A conceptual cloud is used

to determine the " orld-view" of a particular brother. That

is, it defines what he knows or what meanings he ascribes to

the names in his particular world. Each MEMBERP brother has

a conceptual cloud that looks like those above the men in

Figure II. So as far as the first brother is concerned, the

- 15 -

meaning of /SET/ (what /SET/ denotes, i.e. the THING OF

"SET") is the string "XYAZ". His next brother in line has a

different world-view: in his conceptual cloud /SET/ has the

meaning "YAZ".

Surely by now the leader must think this description is

trivial. We ask indulgence, for without such detailing the

next problem would probably stump many of us. Its solution

is non-trivial without considering the world-views of each

little brother. Pushing toward a deeper understanding of

recursion, we formulated the next task:

Write a procedure (say, MAKEPRETTY) which prints a
given string and then prints it again chopping off the
last letter and so on until there is one letter left.
At that point it then starts backing up by printing one
letter, then two, and so on. For example:

*MAKEPRETTY "ABC"
ABC
AB
A
A
AB
ABC

Writing a procedure to achieve the first part is

simple:

TO MAKEPRETTY /X/
10 TEST EMPTYP OF /X/
20 IF TRUE STOP
30 PRINT /X/
40 MAKEPRETTY BUTLAST OF /X/
END

antelo
OC,"P

16

411
Such a procedure given "ABC" as an input would print out:

ABC
AB
A

The catch is now to unfold this process by somehow

recapturing what /X/ used to be. A particularly elegant

solution is to add just one line to the above procedure,

namely:

TO MAKEPRETTY /X/
10 TEST EMPTYP OF /X/
20 IF TRUE STOP
30 PRINT /X/
40 MAKEPRETTY BUTLAST OF /X/

= = > 50 PRINT /X/
END

In English, this procedure says:

To print out a word in pretty format.

If the word is empty, then stop. (10,20)

Print the word. (30)
Print everything but the last Utter of the word in

pretty format. (40)
Print the word. (50)

The reason this modified procedure works is that when each

MAKEPRETTY brother returns to his calling brother, that

brother still retains in his conceptual cloud exactly the

desired information to complete his task. Build the little

23
17

brother diagram with the appropriate conceptual clouds and

see how well it fits into place. Note that the MEMBERP

procedure uses a form of recursion so trivial that

converting it to an iterative procedure is quite easy. The

MAKEPRETTY procedure presents quite a different situation.

Converting this procedure into an iteration would require

introducing temporary storage locations, indicies, and so

on.

At this point in the course, rather than develop any

further the structure of conceptual clouds and their

relationship to names, we gave a fairly heavy dose of

programming assignments. Examples of these assignments are:

A) Using the MEMBERP predicate write a VOWELP predicate
which determines if a given letter is a vowel. For
example:

TO VOWELP /L/
10 OUTPUT MEMBERP OF IL/ AND "AEIOU"
END

A letter is a vowel if it is in the set "aeiou".

B) Write a set of procedures which remove all vowels from

each word in a sentence. Use these procedures to

explore how well one can recognize the words of a

sentence without vowels printed as contrasted with

devoweled words in isolation:

tio TO SCAN /5/
18 TEST EMPTYP IS/
20 IF TRUE OUTPUT /EMPTY/
38 OUTPUT SENTENCE OF (REMOVE-VOWEL FIRST OF /S/)

AND (SCAN OF BUTFIRST OF /S/:
END

TO REMOVE-VOWEL /W/
10 TEST EMPTYP /W/
28 IP TRUE OUTPUT /EMPTY/
30 TEST VOWELP FIRST OF /W/
48 IF TIME OUTPUT REMOVE-VOWEL BUTFIRST OF /W/
50 OUTPUT WORD OF (FIRST OF /W/)

AND (REMOVE-VOWEL BUTFIRST OF /W/)
END

These procedures work as follows:

To remove the vowels from a sentence (SCAN), remove
the vowels from each word in the sentence.

To remove the vowels from a word (ATMOVE-VOWSL):

If the word is empty, the answer is empty. (10,1o,
If the word begins with a vowel, the answer is

everything but the first letter, with its vowels
removed. (30,40)

Otherwise, the answer it a word composed of the first
letter of the input word and the word consistinp
of everything but the first letter of the word with
its vowels removed. (50)

We have included some typical solutions to these

problems in order to impart some feeling for the simplicity

of LOGO. In fact, most solutions are so simple and the

amount of typing so minimal that often a student will

explore different strategies for solving the same problem.

This in turn often provokes discussions of what makes one

- 19 -

solution "better" than another.

The next problem involves a short excursior into number

theory. Our purpose was to show the student how one might

write some quick and dirty p.ocedures in order to test a

hypothesis. Although we were intially hesitant to introduce

any numeric or algebraic problems, this problem was

surprisingly well liked and helped tie together many of t"

points developed during tne first few weeks of the course.

Problem: Explore the following conjecture:

Any number can be made into a symmetrical number uy the
following operations: First test to see whethe. the
number is alreNey symmetric. If so -- you're done.
Otherwise, add to this number its own reverse and try
again. For example, suppose we choose the number 124.
Since 124 W 421 it is not already symmetric. So, add
421 to 124 which gives 545. Is 545 symmetric? --
YES! For another example, try .79. 79 # 97. So, Qdd
97 to 79 which gives 176. But 176 is not symmetric, so
add to it 671 which gives 847. Will this process end
by reaching a symmetric number?

Just prior to this assignment the students had written a

procedure (called 'REVERSE") which forms the reverse of an

artitrarily long word:

PRINT REVERSE OF "ABC"

C BA

This procedure was typically written:

20

TO REVERSE /W/
10 TEST EMPTYP OF /W/
20 IF TRUE OUTPUT /EMPTY/
30 OUTPUT WORD OF (LAST OF /W/)

AND (REVERSE OF BUTLAST OF /W/)
END

The reverse of a word is a word composed of the last
letter and the reverse of all but the last letter of
the word.

Students quickly realized that they could use the

REVERSE procedure to test a number for symmetry:

TO SYMP /NUMBER/
10 OUTPUT IS /NUMBER/ REVERSE OF /NUMBER/
END

A number is symmetric if it is the same as its reverse.

Hence, to see whether a particular number can be made

symmetrical, we can use the following procedure:

TO CHECKSYMP /N/
10 TEST SYMP OF IN/
20 IF TRUE OUTPUT "TRUE"
30 OUTPUT CHECKSYMP OF SUM OF /N/ AND REVERSE OF IN/
END

A number eventually becomes symmetric if it is already
symmetric or if the sum of it and its reverse
eventually becomes symmetric.

We hoped that by this time most of our students could write

such a program in less than half an hour, thus leaving them

111 free to expand the assignMent in various directions. For

- 21 1.4Iii I

example, most of the students wrote a procedure to generate

the integers and applied CHECKSYMP on each successive

integer. Many went farther and computed distributions on

the depth of the recursion for each number and then looked

for patterns on this distribution. At some point, each

student inevitably stumbled on the number "196" which leads

to a recursion so deep that LOGO runs out of memory. This

lead to discussions of whether such conjectures can be

settled definitely with a computer, and if so, how. It also

showed the students how easy it can be to synthesize

procedures to probe a conjecture, thereby lessening

dependence on "canned" programs.

Before turning the students loose on major projects

(which occupied the last several weeks of the course), we

introduced some preliminary ideas on representation of

information, data structures, and how names take on meaning.

For the student of cognitive psychology this was probably

the most important aspect of the course, but nearly all the

students found that this material contributed greatly toward

their understanding of how representations of knowledge can

be modeled.

Toward this end, we gave the students the task of

creating the simplest form of a Quillian-like semantic net

(6) and a fixed format question answerer which would use the

net. The behavior of the question answerer is best

characterized by example. Assertions are of the form:

- 2
2

-
'4E1

II

Felix is a cat

Cat is an animal

and questions are of the form:

Is Felix a cat?

Is Felix an animal?

At this juncture we had to allow the use of the

assignment statement (i.e. MAKE "X" "5").

The first apparent way to model the above assertions is to

use the "MAKE" statement as:

MAKE "FELIX" "CAT"

MAKE "CAT" "ANIMAL"

which results in

/FELIX/ IS "CAT"

/CAT/ IS "ANIMAL"

That is to say that the THING (or value) of "FELIX" is "CAT"

and the THING of "CAT" is "ANIMAL". (In this same manner

n-ary trees can be built, since the thing of a name can also

be a sentence consisting of the daughters of the name.) This

- 23 -

approach for linking information has some subtle problems

that can challenge even the best student. For example,

suppose we have the following data:

/A/ IS "B"
/B/ IS "C"
/C/ IS "D"
/X/ IS "Y"
/Y/ IS "Z"

in which the last node is being located by the recursive

procedure:

TO FIND-LAST-NODE /Y/
10 TEST EMPTYP THING OF /Y/
20 IF TRUE OUTPUT /Y/
30 OUTPUT FIND-LAST-NODE OF THING OF /Y/
END

The Zest place you can get to from here is here if

there is nowhere to go. Otherwise, it is the last
place you can get to from the place you can get to from

here. (And sometimes we find LOGO simpler to think in

than English.)

Executing this procedure with the input 'A" one gets back

"D" as the answer. However, asking for FIND-LAST-NODE of

"X" causes a baffling problem -- the procedure enters an

infinite recursion because the second FIND-LAST-NODE brother

asks for the THING OF "Y". But we happened to use the

symbol "Y" as the name of the input, (i.e. function

- 24

argument) and this meaning of the variable takes precedence

over any meaning assigned external to the function call.

Hence when the THING OF /Y/ becomes "Y" we get into an

infinite recursion. Most students stumbled across this

apparent "bug" in one way or another and were totally at a

loss to explain what could be happening.

With their suspicions and curiosity aroused, we were in

a position to develop the next powerful idea: how functional

arguments and local variables are handled with push-down

stacks. Once this idea was understood, the students were

more willing to consider alternative techniques for linking

information to names. We therefore introduced the notion of

a property list as a means of storing information which is

not local to the given procedure. Although LOGO has no

direct mechanism for property lists, it is trivial for

students to "provide" LOGO with such capabilities.

The key idea centers around LOGO names (or numbers)

being arbitrarily long strings of letters. This allows us

to synthesize a unique name from the given name of the

property and the name of the variable to which the

information is to be attached. For example, to represent

the above data chain, let us invent the property "NEXT" and

define it by the function "GET-NEXT", i.e.

TO GET-NEXT /X/
10 OUTPUT THING OF (WORD OF "$NEXT$" AND /X/)
END

- 25 -

sip As
43Ji.

The above chain would have the same modeling structure,

i.e.

FELIX CAT

but its implementation would look like:

/$NEXT$FELIX/ IS "CAT"

/$NEXT$CAT/ IS "ANIMAL"

vi ANIMAL

(The "$" symbols are used simply to reduce the chance that
such a name could crop up in another context.)

To store such information one might write another one line

procedure called PUT-NEXT:

TO PUT-NEXT /NAME/ /VALUE/
10 MAKE (WORD OF "$NEXT$" AND /NAME/) /VALUE/
END

With these procedures FIND-LAST-NODE could be rewritten:

TO FIND-LAST-NODE /Y/
10 TEST EMPTYP 0: GET-NEXT /Y/
20 IF TRUE OUTPUT /1/
30 OUTPUT FIND-LAST-NODE OF GET-NEXT /Y/
END

From this example one can guess that efficiency is not

az 26 -

I

our main concern. Instead we are trying to convey a style

of problem solving in which minor decisions can be postponed

(e.g. how to implement GET-NEXT) and global solutions

sketched out without concern for smaller details. Cardinal

Rule 3, mentioned earlier, encouraged writing programs in

this fashion. This problem solving method has the added

advantage of allowing one to experiment with different

representations of information simply by modifying a few

functions.

Before turning the students loose on their final

projects, we tried to unify some of the above ideas by

giving them the classical task of alphabetizing a list of

distinct words. The approach we asked the students to

consider was that of growing a tree representation of the

list of words and then recursively searching the tree and

outputing the ordered list. The tree is constructed so that

all nodes in the left sub-tree of a node are

lexicographically less than that node, and all nodes in its

right sub-tree are greater. Once this is achieved, the

student next must then discover the simple but elegant way

to traverse the tree, building up a sentence of the words in

alphabetical order. Recursively stated, the key concept is

to create a list (sentence) of all the nodes in the left

subtree, the current node and all the nodes in the right

subtree. The left and right subtrees are smaller than the

original tree and hence by recursing on the subtree we

- 27 33

eventually encounter the null subtree.

The close correspondence between the way the tree is

structured and the way it is searched is not accidental. We

hoped that this example would illustrate how careful

consideration of the data representation problem can

contribute to the efficiency and ease of the total solution.

Postponing any decisions on how the tree is actually

stored, we can write d top level ORDER procedure which walks

over the tree gathering nodes in their alphabetical order.

Note that there is no output until the walk is completed, at

which time a sentence is returned which consists of the

ordered words.

TO ORDER /NODE/
10 TEST TERMINAL-NODEP /NODE/
20 IF TRUE OUTPUT /EMPTY/
30 OUTPUT SENTENCES OF (ORDER GET-LEFT /NODE/)

AND (GET-VALUE OF /NODE/)
AND (ORDER GET-RIGHT /NODE/)

END

The ordering of a tree at a node is a sentence of the
crdering of its left sub-tree and the node itself and
the ordering of its right sub-tree.

Of course, before ORDER could be executed we would have

to specify the four data accessing functions TERMINAL-NODEP,

GET-LEFT, GET-VALUE, and GET-RIGHT. (Appendix I shows one

possible implementation of these functions and a tree on

which ORDER could be applied.)

One of the more interesting aspects of this problem is

- 28 -34

that the shape of the tree depends upon the order of the

initial list of words. Once students discovered how to

write a tree-growing procedure, we posed such puzzles as

finding the orderings of the the initial list of words that

caused the most lop-sided or well balanced trees to be

generated. By using the TRACE feature, the students quickly

discovered a relationship between the shape of the tree and

the depth of the recursion.

By the time we finished our discussion about sorting

and trees, most of the students were ready to proceed on

their own projects, but some were discouraged. For the

latter students, we provided a two-week excursion into

computer art. For the former, we posed a choice of

projects. Some of these are summarized in the next

paragraphs.

Projects

One of the simplest projects involved the generation of

political slogans over a basic sentence structure which has

"slots" that are to be filled in. Each kind of slot has an

associated list of sub-expressions and the program simply

selects at random an element from each list and places the

expression in the appropriate slot. As a programming

exercise this project is undemanding. Constructing good

- 29-

lists of sub - expressions, however, introduces the student to

the problems of semantic anomalies. The immediate result of

this project was to impress the student with the tight

structure and slight content of slogans. Our primary

purpose, however, was to show how easily a computer can be

made to generate something which, superficially at least,

resembles an act of intelligence.

A more complex project was to create a procedure which

could randomly generate sentences with a non-deterministic,

finite-state grammar. If the student completed this task

satisfactorily, we suggested that he invert the process and

write a procedure which could decide whether or not a

sentence was in the given language. The non-deterministic

nature of the grammar leads the student to the discovery and

compariEwl of depth-first and breadth-first strategies.

What i,-- striking about this project is that while the logic

involved is non-trivial, the process is inherently recursive

and can be executed with a simple procedure. (See Appendix

II for a typical solution.)

Another project originated in Rubinstein's experimental

LOGO course for the blind. The student is given a

dictionary and is asked to write a program which will print

out the definition of a word, expanding each non-primitive

word in that definition into its definition, and so on. The

solution of this problem is, of course, inherently

recursivc. For the initial dictionary, we chose a

- 30

non-circular but unusual subset of the Meriam Webster New

Collegiate Dictionary:

/$dhow/ is "an Arab lateen -rigged vessel with a long
overhang forward, a high poop, and an open waist"

/$poop/ is "deck above the upper deck abaft the mizzen"
/$mizzen/ is "mizzenmast"
/$mizzenmast/ is "aftermost mast of a two-masted vessel"
/$abaft/ is "to the rear"
/$lateen/ is "triangular sail, extended by a long yard,

slung to the mast"
/$yard/ is "long spar"
/$spar/ is "mast"
/$waist/ is "that part of a vessel's deck between the

quarter-deck and the forecastle"
/$forecastle/ is "forward part of vessel"

(See Appendix III for solution.)

Other less formal projects involved modifying the

question answerer previously discussed to work with semitic

nets containing cycles, and to answer questions like: "Tell

me all you know about 'x'."

The above is only a small subset of the projects that

have been attempted. All of the advanced projects involved

symbol manipulation as contrasted with numeric computation.

All of them shared the property that once a clean attack on

the problem had been achieved, only a small amount of code

was necessary to achieve a solution.

- 31 -

Computer Art

Our motivation for introducing "computer art" was

two-fold. First, those students who have trouble catching

on to LOGO usually have no feeling for what we call the

structure of a process. For them, a function or a procedure

is a black box whose components remain a mystery. Computer
%-

drawings often can clarify these issues since they enable

the student to "see" inside the procedure by viewing on the

plotter the result (or execution) of each step. In a sense,

the plotter can act as a very detailed and useful trace

feature.

The second reason for introducing computer art applies

equally to all of our students. Inevitably, they realize

how dumb and mundane the operations of a computer really

are. How, then, can a computer generate something new? Now

can it reveal properties of a theory heretofore unknown? In

other words, how can a computer synthesize anything

surprising (besides bugs)? Computer art provides a

beautiful vehicle for the exploration of such questions. In

the eicture below, for example, one cannot help but be

impressed by the totally unexpected Gestalt effect of a

simple operation repeated a large number of times. First we

asked our students to visualize the effect of this simple

program:

- 32

1. Consider a co-ordinate system with its origin at
the center of the paper. Imagine a square in the first
quadrant with side of 1 or 1 1/4 inches.

I

_O. dilas
I

1

1 y astiS

2. Draw the square on the paper and then rotate and
shrink it a little. Repeat this operation several
times (e.g. six).

3. Copy the resulting figure into the other quadrants
as follows: Reflect the figure in the Y axis, forming a
figure with squares in the first and second quadrants.
Now reflect t.ds whole picture in the X axis, creating
a figure with squares in each quadrant.

Ur)
13113

4. 'Move the resulting figure so that it is just in
the first quadrant, resting on the axes, as the
original square was.

5. Repeat step 3,

- 33-
39

Figure 3 -- Drawing resulting from a procedure a

We then permitted them to compute the effect and our point

was made!

Computer drawings provide an interesting metaphor for

linguistic processes. Throughout the course we stressed how

a process could be used to describe a static situation.

Consider the problem of describing the above figure down to

the details of all its surface variations and complexities.

Then let us note how simple it is to represent the structure

of this surface pattern by the structure of the process. It

is not too far fetched to think of the procedure generating

the figure as the "deep structure" of this "surface

pattern". While this is just a metaphor, we feel there is

some virtue in it. Visual figures that appear wildly

complex often have simple, insightful descriptions when

considered from the point of view of their generating

procedures. A detailed account of the pedagogical uses of

computer art can be found in the doctoral dissertation by

Rubinstein [9] .

BASIC

Although we had talked very little about other

languages, our students expressed the wish to learn

something about BASIC and how it differs from LOGO.

Consequently we devoted the last week of class meetings to a

35

41

survey of BASIC. We discovered that most of the students

had little difficulty in understanding and using BASIC. The

one concept foreign to them was the "FOR ... NEXT"

structure, but they were able to see t: ;.s as a

straightforward recursion. There was also some confusion

caused by arrays. In some cases this was caused by their

lack of understanding of matrix algebra. To our chagrin,

however, even those with knowledge of matrix algebra were

not' able to see how to introduce matrices into LOGO

themselves.

From olii limited experi 'ce we have found that the

transition from LOGO to BASIC is fairly easy for most

students whereas the transition from BASIC to LOGO is often

The problem in the latter case isincredibly difficult.

that if a student initially experiences iteration, his

understanding of recursion is often limited to the simplest

form where the last statement of a function is a call to

itself. Even within this context he becomes baffled if

extra arguments must be introduced to keep track of the

depth of recursion (simple indexing).

Complications

We did encounter some unexpected difficulties with our

LOGO problem sets. One impressive aspect of the language is

- 36 -
4`'

II

that interesting and logically complex problems can be coded

in surprisingly few lines. This was one of our reasons for

choosing LOGO, but it was also a characteristic that caused

several problems. In particular we discovered that most

small functions (7t2 lines) had only one or two key

"schema." This meant that if a student couldn't figure out

how to write a function, we could not slowly lead him down

the path of discovery. Most hints we could give him would

be either too obscure and therefore worthless or else

divulge too much and lead immediately to the solution. It

also created a problem when students helped each other,

since any help at all often meant the two solutions would be

isomorphic. To a large extent the problem is not inherent

in LOGO itself, but is inherent in the level of problems we

thought reasonable for the course..

We also found that with our use of LOGO some students

used a "template" programming crutch wherein they would find

a tight program schema into which they would blindly

substitute predicates and variables until their program

magically worked. Once we detected this behavior we could

design problem sets which foiled such behavior. It is

something to be on guard for in any introductory computer

course although this difficulty might have been enhanced by

the simplicity of LOGO and the problems we presented.

- 37 4'4.4

Conclusions

An important aim of the course was to help our students

develop a sensitivity to precise problem specification and

then to expose them to some problem solving strategies. The

processes of decomposing a problem into sub-problems,

enhanced through the paradigm of functional programming and

bottom-up debugging, are clearly arts, requiring attention,

effort, and experience to develop. Of course, the value of

learning such methods rests heavily on their transferability

to other areas of concern to the student. By stressing

problems involving symbol manipulation instead of numeric

computation we hope to increase the chance of such

transferability. The notions that computers can be made to

respond sensibly to input (such as English) and that precise

specification can be made of how "information" is

represented opens the door to thinking about the problems of

long term memory, the representation of knowledge, and of

course the nebulous domain of natural language

comprehension.

- 38 - 44

FOOTNOTES

(1) Joseph Weizenbaum, "Eliza -- A Computer Program for the
Study of Natural Language Communication Between Man and
Machine," Communications of the ACM, Vol. 9, No. 1,

January, 1966.

[2] R. Greenblatt, D. Eastlake, and S. Crocker, "The Greenblatt
Chess Program," Proceedings of the Fall Joint Computer
Conference, 1967.

(3) Although most languages can be made to be interactive, few
have been designed for promoting or facilitating meaningful
interaction.

[4] There are several centers developing LOGO, and each has
various documents describing their version and, or course,
their research. The following three reports provide a
flavor of two of these centers:

A. Wallace Feurzeig, et.al., "Programming-Languages as a
Conceptual Framework for Teaching Mathematics," Report
No. 2165, Vol. 1, Bolt Beranek and Newman, Inc.,
June 30, 1971.

B. Seymour Papert and Cynthia Solomon, "Twenty Things to Do
With a Computer," Educational Technology, 1972.

C. Seymour Papert, "Teaching Children To Be Mathematicians
vs. reaching About Mathematics," Int. J. Math.
Educ. Sci. Technol., Vol. 3, 1972, Pp. 149-262.

(B) and (C) above are reprinted, along with
several other good articles, in New Educational
Technology, available from Turtle Publications, P.O.
Box 33, Cambridge, Mass. 02138.

15] Nikalus Wirth, "Program Development by Stepwise Refinement,"
Communications of the ACM, Vol. 14, No. 4, April 1971.

(6) The LOGO interpreter consumes 5K of shareable core on the
PDP-10 and each student requires around 2K additional core
for his programs and work space.

45

(7) Feurzeig, Papert, Bloom, Grant, Solomon, 4
"Programming-Languages as a Conceptual Framework for
Teaching Mathematics," Report No. 1889, Bolt Beranek and
Newman Inc., November 38, 1969.

(8) QuiUian, M. Ross, "Semantic Memory," in Minsky (ed.),
Semantic Information Processing, pp. 216-278.

(9) Richard Rubinstein, Computers and a Liberal Education: Using
LOGO and Computer Art. School of Social Sciences,
University of California, Irvine, 1974. (Ph.D.
Dissertation).

APPENDIX I

The ORDER Program

The purpose of the ORDER program is to walk a binary tree
and return as output the elements of the tree in sorted order
(pre-order). For this example, the following tree is used:

Figure 4 -- The Binary Tree

- 41

47

*LIST ALL
TO ORDER /NODE/
10 TEST TERMINAL-NODEP /NODE/
20 IF TRUE OUTPUT /EMPTY/
30 OUTPUT SENTENCES (ORDER GET-LEFT /NODE/)

AND (GET-VALUE OF /NODE/)
AND (ORDER GET-RIGHT /NODE/)

END

TO TERMINAL-NODEP /NODE/
10 OUTPUT IS /NODE/ "*"
END

TO GET-LEFT /NODE/
10 OUTPUT FIRST OP THING OF /NODE/
END

TO GET-VALUE /NODE-NAME/
10 OUTPUT BUTFIRST /NODE-NAME/
END

TO GET-RIGHT /NODE/
10 OUTPUT LAST OF THING OF /NODE/
END

/SCAT/ IS "SCAR $LUMP"
/SCAR/ IS "$APPLE *"
/SLUMP/ IS "$DOG SPEA"
/$PEA/ IS "* $ZOT"
/$90T/ IS "* *"
/$APPLE/ IS "$ANT $BARK"
/$ANT/ IS "* *"
/SHARK/ IS "* *"
/$DOG/ IS "* *"

- 42 48

*TRACE ORDER
*PRINT ORDER OF "$CAT"
ORDER OF "$CAT"

ORDER OF "SCAR"
ORDER OF "$APPLE"
ORDER OF "$ANT"

ORDER OF "*"
ORDER OUTPUTS NO
ORDER OF "*"
ORDER OUTPUTS ON

ORDER OUTPUTS "ANT"
ORDER OF "SBARK"

ORDER OF "*"
ORDER OUTPUTS NM
ORDER OF "*"
ORDER OUTPUTS MN

ORDER OUTPUTS "BARK"
ORDER OUTPUTS "ANT APPLE BARK"
ORDER OF "*"
ORDER OUTPUTS ""

ORDER OUTPUTS "ANT APPLE BARK CAR"
ORDER OF "SLUMP"

ORDER OF "$DOGN
ORDER OF "*"
ORDER OUTPUTS ""
ORDER OF "*"
ORDER OUTPUTS ""

ORDER OUTPUTS "DOG"
ORDER OF "SPEAN

ORDER OF "*"
ORDER OUTPUTS ""
ORDER OF "SZOT"

ORDER OF "*"
ORDER OUTPUTS se*
ORDER OF "*"
ORDER OUTPUTS 00

ORDER OUTPUTS "ZOT"
ORDER OUTPUTS "PEA ZOT"

ORDER OUTPUTS "DOG LUMP PEA ZOT"
ORDER OUTPUTS "ANT APPLE BARK CAR CAT DOG LUMP PEA ZOT"
ANT APPLE BARK CAR CAT DOG LUMP PEA ZOT

49
43

APPENDIX II

The PARSE Program

The purpose of the PARSE program is to determine whether a
given sentence is in the grammar determined by a finite-state
transition network.

Figure 5 -- The Finite-State Transition Network

- 44 -

- St -

ON3

sof. ASII/ SI maxno OT
/ISII/ dIVNIWW3I OI

ON3
(/3WVN/ ONV seSe JO MOM) AO %In MAIM OT

/DivN/ szno-x30 ox

ON3
/NIS/ ONV (/xsilxno/ ao xmaxne JO xmaang) dWIYM memo 09

anNx. xnaxno aim di et
(/1LS/ ao xmaxne)

(/xsruno/ AO xmaxne do xsua ao szno-x3o)

drIVN IS3I 3Aaz JI 09
(/us/ xstria) (Aszuno/ xS2iId

) SI WIZ OS
asIva. xnazno 30NI JI Ot

(ASIIIA0/ dIVNIWW3X) ONV (/ISIIIO0/ dlUdW3) W3NXI3 IS3I OE
.snvx. xnaxno 3ANx al AZ

(/NIS/ dAIdN3) aNv (VIVNIWN3X) Nz08 IS3I OT
/NIS/ /ammo/ dWIYM ox

ON3
/NIS/ cm NTS, sIno-In dWIYM xnazno OT

/WIS/ d3SfYd OI

TIV ASTI

APPENDIX III

The Dictionary Program

This programming example demonstrates the use of
recursion to build a "complete" definition based on
dictionary entries. By complete we mean that every word in
a definition for which we have a dictionary is defined when
it is used. Note that the program does not check for loops
in the dictionary.

*LIST ALL

TO DEFINE /S/
10 TEST EMPTY? /S/
20 IF TRUE OUTPUT ""
30 TEST WORD? /S/
40 IF TRUE OUTPUT DEFINE SENTENCE /S/ ""
50 TEST EMPTY? GET-DEF OF FIRST OF /S/
60 IF TRUE OUTPUT SENTENCE FIRST /S/ AND DEFINE BUTFIRST /S/
70 OUTPUT SENTENCES FIRST /S/ AND "(m DEFINE

GET-DEF FIRST /S/ ")" AND DEFINE OF BUTFIRST /S/
END

TO GET-DEF /NAME/
10 OUTPUT THING OF WORD OF "S" AND /NAME/
END

TO MAKE-DEF /NAME/ /DEF/
10 hAKE WORD "S" /NAME/ /DEF/
END

TO ADDWORD
10 TYPE "TYPE WORD (CR), DEF (CR):
20 MAKE-DEF REQUEST REQUEST
Era)

-46 -
52

/$DHOW/ IS "AN ARAB LATEEN -RIGGED VESSEL WITH A LONG
OVERHANG FORWARD, A HIGH POOP, AND AN OPEN WAIST"

/POOP/ IS "DECK ABOVE THE UPPER DECK ABAFT THE MIZZEN"
/$MIZZEN/ IS "MIZZENMAST"
/$MIZZENMAST/ IS "AFTERMOST MAST OF A TWO-MASTED VFSSCL"
/$ABAFT/ IS "TO THE REAR"
/$LATEEN/ IS "TRIANGULAR SAIL, EXTENDED BY A LONG YARD,

SLUNG TO THE MAST"
/$YARD/ IS "LONG SPAR"
/$SPAR/ IS "NAST"
/$WA1ST/ IS "THAT PART OF A VESSEL'S DECK BETWEEN THE

QUARTER-DECK AND THE FORECASTLE"
/$PORECASTLE/ IS "FORWARD PART OF "ESSEL"

*PRINT DEFINE OF "DHOW"

DHOW (AN ARAB LATEEN (TRIANGULAR SAIL , EXTENDED BY A LONG
YARD (LONG SPAR (MAST)) , SLUNG TO THE MAST) -RIGGED
VESSEL WITH A LONG OVERHANG FORWARD , A HIGH POOP (DECK
ABOVE THE UPPER DECK ABAFT (TO THE REAR) THE MIZZEN
(MIZZENMAST)) , AND AN OPEN WAIST (THAT PART OF A VESSEL'S
DECK BETWEEN THE QUARTER-DECK AND THE FORECASTLE (FORWARD
PART OF VESSEL)))

- 47 -
rJ

