
DOCUMENT RESUME

ED 108 615 IR 002 131

AUTHOR Foote, Thomas
TITLE Weekly Log Record Sort (WLSORT).
INSTITUTION Southwest Regional Laboratory for Educational

Research and Development, Los Alamitos, Calif.
REPORT NO SWRL-TN-5-72-14
PUB DATE 21 Mar 72
NOTE 20p.

EDRS PRICE MF-$0.76 HC-$1.58, PLUS POSTAGE
DESCRIPTORS Communication Skills; *Computer Programs; *Data

Processing; Electronic Data Processing; Flow Charts;
Information Processing; Information Storage;
*Management Systems; Recordkeeping; *Student Records;
Systems Development

IDENTIFIERS *Computer Software Documentation; FORTRAN V; Sort
Routines

ABSTRACT
Computer routines to sort the weekly log records

submitted by teachers participating in the Southwest Regional
Laboratory's communications skills monitoring program are described.
Written in Univac FORTRAN V, Weekly Log Record Sort (WLSORT) sorts
log records on magnetic tape to enable subsequent computer programs
to interpret the input data by district, school, and classroom. This
document is intended to serve as the softward documentation for the
programs. Included are a program description, data format
specifications, program constraints and limitations, and operating
instructions. Program flowcharts, program listings, and sample data
forms are also provided. (DGC)

SouthWest Regional Laboratory
TECHNICAL NOTE

DATE: March 21, 1972

NO: TN 5-72-14

 TITLE: WEEKLY LOG RECORD SORT (WLSORT)

AUTHOR: Tom Foote

ABSTRACT

WLSORT sorts CS-1 weekly log records located on magnetic tape to enable

the new weekly log processor program CS-1-WLSR1, (TN 5-72-15) to interpret

all data in terms of classes rather than groups.

WEEKLY LOC RECORD SORT (WLSORT)

1.0 - PROGRAM IDENTIFICATION

WLSORT *

2.0 - OBJECTIVE

Weekly Log records written on magnetic tape in order of district,
school, teacher, class, group, month, and day, must be re-sorted
in order of district, school, teacher, class, month, day, and
group (i.e., shift of the last three fields only) to enable the
program CS-1-WLSR1 to interpret all data in terms of classes
rather than groups.

3.0 - PROGRAM DESCRIPTION

3.1 Program Logic

WLSORT reads one weekly log record at a time from magnetic
tape, calculates its record identification value (i.e., the
value that will be sorted on) according to the month, day,
and group read for each record, and assigns a corresponding
index value (i.e., the value that will point to .that record
for output) according to the order in which each record is
read. Exit from this loop is triggered by either (1) a
device error, (2) a transmission abort, (3) a class containing
more than 240 records, (4) an end-of-file read on the input
tape, or (5) a record containing a new class identification
number. Cases 4 and 5 are considered to be the normal exits,
indicating that all records for a class have been properly
read and are waiting to be sorted. After exiting the read-a-
record loop, and before calling SUBROUTINE SORT, the record
containing the new class identification number is stored and
labeled as the first record of the next class (whose following
records are yet to be read). Ignoring this latest record
(which belongs to the next class) and supplied with the last
class' array of record ID's and corresponding index values,
SUBROUTINE SORT rearranges the record ID's in ascending order
(using a bubble sort) and concurrently moves their corresponding
index values.

The first value returned in the rearranged index array then
directs the output loop to write onto tape, the record with
the smallest record ID; the second index value triggers
writing of the record with the next smallest record ID,
and so on until all records for that class have been
written. If a class once sorted on an output tape is
not the last class on the input tape, the program returns
to continue reading the next class. The program

* WLSORT is an adaptation of CS-1-Weekly Log Sort (TN 5-71-15).

terminates once the read-a-class/sort-a-class cycle is
completed for all classes.

3.2 - Variables

All variables in this program are of integer type. The
value of the subscript KOUNT corresponds to a selected
record within the current class and all arrays subscripted
by KOUNT are dimensioned to 240.

LAURA (KOUNT, L), INTEGER ALPHA. This array (dimension
240 by 40) contains all the ALPHA data read from
one weekly log record.

ICLASS (KOUNT), INTEGER CLASS. This two-digit value
identifies the class to which a given weekly log
record belongs.

IDAY (KOUNT), INTEGER DAY. This two-digit value
identifies the day (range 1 to 31) on which the
weekly log sheet was dated.

IDST (KOUNT), INTEGER DISTRICT, SCHOOL, AND TEACHER.
This six-digit value identifies the district, school,
and teacher to which a particular log record belongs.

IGROUP (KOUNT), INTEGER GROUP. This single-digit value
identifies the group to which a particular weekly
log record belongs.

IMDG (KOUNT), INTEGER MONTH, DAY, AND GROUP. This array
of record Identification values is computed for each
record by concatenating the values IMONTH, IDAY, and
IGROUP, e.g., IMONTH = 10, IDAY = 30, IGROUP = 2
yields IMDG = 10302. Once computed for each record
within a class, these record ID's are passed to
SUBROUTINE SORT and rearranged in ascending order.

IMONTH (KOUNT), INTEGER MONTH. This two-digit value
identifies the month (July = 1, August = 2 . . .
June = 12) in which data on a given sheet was
recorded.

INIT, INITIAL VALUE. As the initial value of the main
read loop INIT is set to 1 for the first record of
the first class read. For subsequent classes, however,
INIT is set to 2 to account for the new class record
which marked the end of the old class' read loop
(i.e., that record which waits in array position 1
of the new class array about to be read).

KEY (KOUNT), KEY ARRAY. This index array is stored with
each counter value of the read loop's DO variable
KOUNT, i.e., integers 1, 2, 3, . . NRECS, originally
in that order. SUBROUTINE SORT then rearranges this
array by allowing each of the array values to follow
their corresponding values of the record ID array

(IMDG) as the IMDG array is sorted. The first value
in the rearranged index array KEY then directs the
output loop to write the record with the smallest
IMDG index value, while the second KEY value triggers
writing of the record with the next smallest IMDG
index value, and so on.

KOUNT, KOUNTER VALUE. This DO variable for the read loop
counts the records being read for a class. In addition
to serving as a subscript for each record, each KOUNT
value is immediately stored into the KEY array as
described in the "KEY (KOUNT)" definition above.

KOUNT2, 2nd KOUNTER 'VALUE. To avoid alteration of a DO
_variable outside its respective loop, KOUNT is renamed
KOUNT2 upon exit of the read loop in order to compute
LESONE. LESONE is the argument passed to SUBROUTINE
SORT, which indicates the total number of records to
be sorted.

LESONE, LESS ONE. This value equals the number of records
read, minus one. By purposely ignoring the last
record read, i.e., the record with the discrepant
class number, this subtraction yields the exact
count of records to be sorted for the preceding class
and is thereby used as the third argument passed to
SUBROUTINE SORT..

LOGREC(L), WEEKLY 1E—RECORD. As the array containing all
alpha and numeric data on a weekly log record, this
serves as a major argument to be passed to the read/
write subroutine NTRAN.

LSTAT, STATUS VALUE. This value indicates the status of
NTRAN. The LSTAT status codes are as follows for
read and write operations:

-1 indicates transmission not complete
-2 indicates end-of-tape (indicates end-of-file in

write operations)
-3 indicates device error
-4 indicates transmission aborted

NO MORE, NO MORE. This flag is either set to 1 or 0 to
indicate whether "no more" classes remain to be sorted

NO SUB, Number of the SUBscript. This subscript value
identifies the weekly log record currently being
printed. Since the compiler will not permit the use
of nested subscripts e.g., EMONTH(KEY(J)), the current
KEY(J) value is restored as NOSUB, which in turn is
used as the subscript for writing the elements of
the newly sorted record.

4.0 - SUBROUTINES AND FUNCTIONS

4.1 - SUBROUTINE SORT (SORTON, FOLLOW, NRECS) sorts the array SORTON
(using an ascending bubble sort) while rearranging the array
FOLLOW. In turn FOLLOW is employed to fetch and write records
in their sorted order. '

Argument Description

FOLLOW(NREC), FOLLOW the SORTON elements. This integer
array enters the subroutine, containing numbers
1, 2, 3, . . . NRECS, in that order. As out-of-
order record ID's are shifted into order, their
corresponding elements in the FOLLOW array are
also shifted. FOLLOW is finally ieturned with
its elements rearranged, and is used by the main
program to fetch and write the records in their
new sorted order.

SORTON(NREC), SORT ON this array. The record identifi-
cation numbers within this array are examined
with respect to their order (i.e., relative to
their immediate neighbors) within this array so
as to trigger sort operations necessary to
rearrange them in ascending order.

NRECS, NUMBER OF RECORDS. As the third argument in
the subroutine list, this integer value indicates
the number of record ID's to be sorted.

4.2 SUBROUTINE NTRAN (UNIT, READ/WRITE CODE, BLOCK LENGTH, BLOCK
NAME, STATUS VALUE). This library routine acts in conjunction
with subroutines ENCODE and DECODE to read and write formatted
records with lengths greater than those handled by the standard
FORTRAN READ/WRITE statements.

5.0 - DATA SPECIFICATIONS

5.1 - Input Formats

Each record has been preprocessed from the raw weekly log
scanner data, and appears on the input tape in order of
district, school, teacher, class, group, month, and day.
The record format then corresponds to the optical scan sheet
format (see Appendix A), although irrelevant blanks have
been deleted. As the following read sequence shows, each
record contains: 1) IALPHA, the array of 238 alpha character
responses; 2) IDST, the 6 digit integer identifying the
district, school, and teacher; 3) ICLASS, the 2 digit integer
identifying the class; 4) IGROUP, the 1 digit integer identifying
the group; 5) IMONTH and IDAY, the 2 digit integers identifying
the month and day respectively; and 6) IUNIT, the 10 digit

integer indicating the units to which the record pertains.
These values are read in according to the following format:

READ (31,200) (IALPHA(KOUNT,L),L=1,40), IDST(KOUNT),
ICLASS(KOUNT), (GROUP(KOUNT), IMONTH(KOUNT), IDAY(KOUNT),

IUNIT(KOUNT)
200 FORMAT(22A6/17A6,A4,16,12,11,12,12,I10, 3X)

An example of records conforming to this format appears in
Appendix B.

5.2 Output Formats

Each record will be written on the output tape in order of
district, school, teacher, class, month, day, and group.
The contents of each record will be rearranged as IGROUP
is shifted as indicated below:

WRITE (31,500) (IALPHA(NOSUB,K),K=1,40) , IDST(NOSUB),
ICLASS(NOSUB),IMONTH(NOSUB),IDAY(NOSUB) ,IGROUP(NOSUB),
IUNIT(NOSUB)

500 FORAAT(22A6/17A6,A4,16,12,12,12,11,I10, 3X)

An example of records conforming to this format appears in
Appendix C.

6.0 - PROGRAM CONSTRAINTS AND LIMITATIONS

6.1 - Programming Language

Univac 1108 FORTRAN V

6.2 - Vendor

'University Computing Company

6.3 - Storage Requirements

7210 octal words

6.4 - Hardware Configuration

Univac 1108 (EXEC 2), card reader, 2 magnetic tape units
and printer

6.5 Program Parameters

Number of records per class should not exceed 240 unless
array dimensions and loop limits are expanded beforehand.

6.6 ErrOr Messages

If the number of records per class exceeds 240, the program
prints the following message before terminating all processing:
ERROR . . NUMBER OF RECORDS FOR THIS CLASS EXCEEDS DO
LOOP LIMIT OF 240.

If an end-of-tape marker is encountered in the write sequence,
the program prints the following message before terminating,
all processing:
WRITE ERROR I.E., . . .
ERRORS IN TAPE OR TRANSMISSION ON RECORD ID NUMBER (DSTCGMD) =
01 02 01 01 1 4 1 (i.e., the identificqtion number of the
record in question)

7.0 - OPERATING INSTRUCTIONS

At UCC, the program was run with the following control card configura-
tion:

@ RUN,W FOOTE,LS3512,3,150
@ MSG DELIVER JOB TO SWRL
@RAKEX ASG H=1343 RINGIN
@RAKEX ASG F=1035 NORING
@ FOR DECK1,DECK1

Main Program (see listing, section 9.0)

@ FOR DECK2,DECK2

SUBROUTINE SORT

@ XQT DECK1
@ XQT TUTIL (TUTIL is a write-to-tape routine, local to UCC)
REWIND H
PRINT H 20 RECS
REWINT F
REWINT H

 PROGRAM FLOWCHART

FLOWCHART LAYOUT FORM

Tom Foote PROGRAMMER:

WLSORT PROGRAM I D :

9.0 - PROGRAM LISTING

Program Listing continued

SUBROUTINE SORT

1.0 PROGRAM IDENTIFICATION

SUBROUTINE SORT (SORTON, FOLLOW, NRECS)

2.0 - OBJECTIVE

Sort An array of record ID numbers into ascending order and
concurrently move their corresponding index values (initially
in order of 1, 2, . . . NRECS).

3.0 - PROGRAM DESCRIPTION

3.1 Program Logic

SUBROUTINE SORT is passed, 1) SORTON, an array of unsorted
record ID numbers, 2) FOLLOW, an index array containing
numbers (1, 2, . . . NRECS) corresponding to each record
ID number, and 3) NRECS, the number of elements contained
in each of those arrays. In the rare event that only one
index value is passed, SUBROUTINE SORT bypasses any sorting
activity and returns to the main program. Otherwise, an
ascending bubble sort is applied, The outer loop is entered
and its D0 variable is set to indicate the first of a

 complete pass through record ID array SORTON and index array
FOLLOW. Similarly, the inner loop is entered and its DO
variable is set to indicate the first comparison made between
twn elements within the record ID array: If those two
elements are out of order with respect to one another,
each is shifted to the other's position, as are their
corresponding FOLLOW values. Comparisons continue with'the
last elepent in the last comparison compared with the element
succeeding it until all elements within the array have been
compared with their neighbors. Should all comparisons within
a pass yield no out-of-orders, both arrays are returned to
the main program in their new sorted order. Otherwise, the
outer loop is again entered to begin another complete pass
through the arrays.

3.2 Variables

All variables are of integer type

FOLLOW(NRECS) FOLLOW the SORTON elements. This array
enters the subroutine, containing numbers 1, 2, 3, .
NRECS, in that order. As out-of-order record ID's
are' sEir-ed into order, their corresponding elements
in the FOLLOW array are also shifted. FOLLOW is

finally returned with its elements rearranged, and
is used by the main program to fetch and write the
records in their new, sorted order.

FTEMP, FOLLOW TEMPORARY. This value serves as the
temporary storage location for an element within
the FOLLOW array during the operation in which that
element is shifted in position with a neighboring
element.

KMPARE, KOMPARE. This DO variable of the comparison loop
appears in the arithmetic expression for the subscript
of the two array elements being compared.

MORE, MORE PASSES. This flag contains a value of either
1 or 0 to indicate whether more passes through the
record ID array are required to finish the sort.

NPASS, NUMBER OF THE PASS. This DO variable indicates
the number of times the record ID array has been
completely stepped through. If only one record ID
is passed to SUBROUTINE SORT, NPASS is set to zero,
sort operations are bypassed, and the single record
ID value and corresponding FOLLOW value, are immediately
returned to the main program.

NRECS, NUMBER OF RECORDS. As the third argument in the
subroutine list, this value indicates the number of
record ID's to be sorted.

SORTON(NRECS), SORT ON this array. The record identifi-
cation numbers within this array are examined with
respect to their order (i.e., relative to their
immediate neighbors) within this array so as to
trigger sort operations necessary to rearrange them
in ascending order.

STEMP, SORTON TEMPORARY. STEMP serves as the temporary
storage location for an element within the SORTON
array during the operation in which that element is
shifted in position 'th a neighboring element.

4.0 - SUBROUTINES AND FUNCTIONS

None

5.0 - DATA SPECIFICATIONS

Not Applicable

6.0 - PROGRAM CONSTRAINTS AND LIMITATIONS

6.1 - Programming Language

Univac 1108 FORTRAN V

6.2 - Vendor

University Computing Company

6.3 - Storage Requirements

176 octal words

6.4 - Hardware Configuration

Not applicable

6.5 - Program Parameters

The number of elements contained in either array should
not exceed 240 unless array dimensions and loop limits
are expanded beforehand.

6.6 - Error Messages

None

7.0 - OPERATING INSTRUCTIONS

Executed under main program control.

PROGRAM FLOWCHART

FLOWCHART LAYOUT FORM

PROGRAMMER: Tom Foote

PROGRAM ID: Subroutine Sort

9.0 - PROGRAM LISTING

APPENDIX A WEEKLY LOG: COMMUNICATIONS SKILLS PROGRAM

At the end of every week send the completed form
to the District Program Supervisor.

AT THE TOP INDICATE:

1. Date of the last school day of the week.
a. month: Blacken the rectangle around the appropriate

number.
b. Day: Blacken the appropriate retangle in both rows.

If the date is 1 through 9, blacken the zero in the
first row and the appropriate rectangle in the second
row.

Examples

Month

Day

October 4 January 23

FOR EACH DAY INDICATE: *

1. The sequence number of the book you are using by blackening
the appropriate rectangle under one of these series names:*

RRS (Reading Readiness Series)
PPS (Pre-Primer Series)
PS (Primer Series)
FRS (First Reader Series)

2. Whether a test was given. If yes, blacken the "Y" rectangle.
If no, blacken the "N" rectangle.

3. Time spent on program in
a. Initial instruction: Blacken an "I" rectangle under one

of the time ranges. If no time was spent, do not make
a mark.

b. Review: Slacken an "R" rectangle under one of the time
ranges. If no time was spent, do not make a mark.

AT THE END OF THE WEEK INDICATE:

1. Last page completed in the text that week: Blacken the
appropriate numbers in the three rows. If the page number
is less than 10, blacken the zeroes in the top two rows
and the appropriate number in the bottom row. If the page
number is between 10 and 99, blacken the zero in the top
row and the appropriate numbers in the bottom two rows.

* If the class is grouped, follow remainder of the directions, once
for each croup, under the headings Group 1, Group 2, etc.

APPENDIX B

EXAMPLES OF THE INPUT RECORDS

238 ALPHA Character Responses Per Record

APPENDIX C

EXAMPLES OF THE OUTPUT RECORDS

238 ALPHA Character Responses Per Record

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

