DOCUMENT BRESUMR

ED 105 197 CE 003 &85

AUTHOR Weissmuller, Johnny J.; And Others

TITLE CODAP: Prograamer Notes for the Subroutine Library on
the Onivac 1108.

INSTITUTION Air Porce Husan Resources lab., Lackland AFB, Tex.
Coaputational Sciemnces Div.

REPORT RO APHRL~TR-74~85

PUB DATE oct 74

EOTE 183p.; For related volumes, see CE 003 486-487

EDRS PRICE up-$0.76 HC-$9.51 FLUS POSTAGE

DESCRIPTORS Career lLadders; Comprehensive Prograas; *Computer

Programs; Inforsaticn Processing; *Inforsation
Retrieval; Information Services; Inforsation Sources;
sIaforsation Systess; Job Analysis; Occupational
Clusters; *Occupaticnal Information; Occupational
Surveys; Task Analysis; *Technical Reports

IDENTIFIERS Air Force; CODAP; Coaprehensive Occupational Data
Analysis Prograss; UNIVAC 1108

ABSTRACT

The Coaprebensive Cccupational Data Analysis Prograass
(CODAP) package is a highly interactive and efficient systea of
computer routines for amalyzing, organizimg, and reporting
occupational information. Simnce its inception in 1960, CODAP has
gTown in tandea with advances .m job analysis methodology and is now
capable of answering most of the wide variety of mamagesent guestiomns
which confront CODAP users. The documentation of the Univac 1108
CODAP system is being published in a series of three technical
reports covering the control card and programing aspects of the
systes. The docusent contains programer notes on 100 library
subroutines used by the current Univac 1108 version of CODAP. After a
table of entry points, the write-aps appear in alphabetical order on
subroutine name. Each write-up includes a sumsary of subroutine
functions and a list of entry points. For each entry point, a calling
sequence with descriptions of input and oatput arguments is provided.
Comments on peculiar reguirements for conversion and use of the
subroutine close each write-up. (Author)

AFHRL-TR-74485

AR FORCE B

CODAP:

PROGRAMMER NOTES FOR THE SUBROUTINE
LIBRARY ON THE UNIVAC 1108

Johnay J. Weisswuller, Sgt, USAF
Bruce B. Baston, ATC, USAF
C. R. Rogers

COMPUTATIONAL SCIENCES DIVISION
Lackiend Air Force Base, Texas 78236

October 1974
interiss Report Ser Povied Jenusey 1973 — Soptember 1974

. VU S. OEPARTMENT OF HEAM.TH.

EDUCATION

s TreS OOCUMENT wAS BEEN REFRO
. OUCED EXACTLY a3 RECEIWVED FROM
THE PERSOR ON ORGANIEATION ORIGIN
ATING 17 POINTS OF VIEW OR OPiNIONS
STATED 00 NMOY NECESSARILY REPAE
SENT OFFICIAL RATIONAL INSTITUTE OF
EDUCATION POSITION O POLILY

LMV VLMD =>

LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE,TEXAS 78235

g

NOTICE

When US Government drawings, specifications, or other data are used
for any purpose other than a definitely related Government
procurement operation, the Govemment thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the
Government may have formulated, furnished, or in any way supplied
the said drawings, specifications, or other data is not to be regarded by
implication or otherwise, as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way
be related thereto.

This interim report was submitted by Computational Sciences Division,
Air Force Human Resources Laboratory. Lackland Air Fosce Base,
Texas 78236, under project 7734, with Hq Air Force Human Resources
Laboratory (AFSC), Brooks Air Force Base, Texas 78235. Dx.
Raymond E. Christal, Chief of Occupational Research Division (OR),
was project monitor, and Mr. William Phalen, OR, was the work unit
scientist.

This report has been reviewed and cleared for open publication andfor
public release by the appropriate Office of Information (O1) in
accordance with AFR 190-17 and DoDD 5230.9. There is no objection
to unlimited distribution of this report to the public at large, or by
DDC to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved.
ROBERT A. BOTTENBERG, Chief

Computational Sciences Division

Approved for publication.

HAROLDE. FISCHER, Colonel, USAF
Commander

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enterod)

REPORT DOCUMENTATION PAGE ORE. COMPLETING F

BEFORE COMPLETING FORM
1 REPORT NUMBER 2 GOVY ACCESSION NO.J 3. RECIPIERT'S CATALOG NUMBER
AFHRL-TR-74-85
8. TITLE (and Subtitle) S. TYPE OF REPORT & PERICD COVERED
CODAP: Programmer Notes for the Subroutine Interim Jan 73-Sep 74

Library on the Univac 1108

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
Johnny J. Weissmuller
Bruce B, Barton
C. R. Rogers

8. PERFORMING ORGANIZATION NAME AND ADORESS 10. ""°°".“=o‘.§'x’:5§:‘r'..'l.'§.%‘§§s' TASK
Computational Sciences Division 62703F

Air Force Human Resources Laboratory 77340116

Lackland Air Force Base, Texas 78236

1. CONTROLLING OFFICE NAME AND ADDRESS 12. NEPORT DATE

HQ, Air Force Human Resources Laboratory (AFSC) October 1974

Brooks Air Force Base, Texas 78235 F] ;gsaen OF PAGES

[18. MONITORING AGENCY NAME & ADDRESS(I! different from Controfling Ofti.e) |} 15. SECURITY CLASS. (of thta repost)

Unclassified

1Se. DECLASSIFICATION: COWNGRADING
SCHEDULE

15. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the ebsiract entered In Block 20, i different ltom Report)

18. SUPPLEMENTARY NOTES

13. XEY WORDS (Continus on reverso side if necessary and identily by block number)
Comprehensive Occupational Data Analysis Programs

CODAP Subroutines
Computer Programs hierarchical clustering FORTRAN
occupational survey job descriptions Assembly Language
task analysis job types work analysis

20. ABSTRACT (Continue on raverse side if Identity by block b

The Comprehensive Occupational Data Amlysis Progrm (CODAP) package is a
highly interactive and ef €icient gsystem of computer routines for analyzing,
organizing, and reporting occupational information. Since its inception in
1960, CODAP has grown in tandem with advances in job analysis methodology and
1is now capable of answering most of the wide variety of management questions
which confront CODAP users. This documentation of the UNIVAC 1108 CODAP
system is being published in a series of 3 technical reports covering the
(SEE REVERSE SIDE)

Q FORM 1473 £0iTioN OF 1 NOV 68 15 OBSOLETE UNCLASSIFIED

EKCH‘“”

e 4 SECURITY CLASSIFICATION OF THIS PAGE (When Deie Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Block 20, ABSTRACT (Con't)

control card and programming aspects of the system. A fourth report is in
preparation by the Occupational Research Division of AFHRL which covers the
regsearch and operational applications of the CODAP systema. This document
contains programmer notes orn 100 library subroutines used by the current
UNIVAC 1108 version of CODAP. After a table of entry points, the writeups
appear in alphabetical order on subroutine name. Each writeup includes a
summsry of subroutine functions and a list of entry points. For each entry
point, a calling sequence with descriptions of input and output arguments is
provided. Comments on peculiar requirements for conversion and use of the
subroutine close each writeup.

UNCLASSIFIED

r SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

PREFACE

The authors wish to express their gratitude to all those who have
contributed to the preparation of this series of 3 technical reports:

AFHRL-TR-74-83 CODAP: Source Program Listings

AFHRL-TR-74-84 CODAP: Control Card Specifications

AFHRL-TR-74-85 CODAP: Programmer Notes
In particular, the following people have played a vital role in the
development of these documents: Dr. Raymond E. Christal, Chief of the
Occupational Research Division of AFHRL, Mr. William Phalen, also of
that Division, and of course the secretaries, Betty L.’ Brooks and

Laurel J. Betz, who not only typed but also helped in proofreading.

FOREWARD

The Comprehensive Occupational Data Analysis Programs (CODAP) System
has been under continuous development for the past fifteen years. In
its current form, it is a joint product of the Computational Sciences
Division and the Occupational Research Division of AFHRL. In general,
the Occupational Research Division has developed input-output specifi-
cations for programs and program modifications, while the Computational
Sciences Division has provided programming services. However, even
this distinction has not always been a clear-cut one, since suggestions
for program improvements have come from individuals in both Divisions.

Since its conception, development of the CODAP system has been under
the general direction of Dr. Raymond E. Christal, Chief of the
Occupational Research Division. Dr. Christal also personally designed
many of the programs and program modifications.

The earliest CODAP programs were written by Mr. Daniel Rigney and Mr.
Wayne E, Fisher. This version was later expanded and reprogrammed
(under contract) for execution on an IBM 7040 by Mr. Irwin R. Oats
and Mr. James R. Hills of the Computer Sciences Corporation and later
of Oats~-Hills Incorporated, Houston, Texas. (Mr. Oats and Mr. Hills
have translated CODAP programs for execution on the IBM 360 and 370
series computers, under contract with the U.S. Marine Corps and the
Department of Defense.)

Since 1970 all CODAP innovations and modifications have been programmed
in-house by the Computational Sciences Division. During this period,
many new programs were added to the system, and nearly all old programs
were extensively modified. During the last two years the CODAP system
has been completely rewritten for execution on the Univac 1108. This
reprogramming was first undertaken by MSgt William D. Stacey, with the
assistance of Sgt Johnny J. Weissmuller. After MSgt Stacev's departure
from AFHRL, the translation and reprogramming were completed and checked
out by Sgt Weissmuller, assisted by A1C Bruce B. Barton. It is this
version of the CODAP system which is documented in this technical report.

Many individuals have contributed to the CODAP system, and it would be
difficult to specifically enumerate each contribution. However, the
authors would be remiss not to mention those individuals who have
participated in the mainstream effort. It is possible, with the passing
of time and the failing of memories, that the following history contains
serious omissions and inaccuracies, but it is correct in terms of
currently available information.

The hierarchical clustering programs, OVRLAP, GROUP and KPATH, were
initially designed by Joe H. Ward, Jr. and R. E. Christal, with original
programming by Daniel Rigney and Wayne E. Fisher. The remainder of the

first CODAP package was designed by R. E. Christal, with numerous
suggestions from I. R. Oats, J. R. Hills and others. This pioneering
effort included JOBGRP, JOBSPC, ASFACT, PRDICT, GRMBRS, PRIVAR, VARSUM,
GRPSUM, GRPDIF, MXTPRT, TSETUP, INPSTD, VARGEN, EXTRCT, and JOBINV.

The programming for these was accomplished by I. R. Oats, J. R. Hills

and D. W. Hartmann.

The table below lists the programs developed after the initial package:

Program
SETCHK

PROGEN
TSKNDX
AVALUE
DIST2X

CORREG

AUTOJT

PRIJOB

DUVARS

REXALL

AVGPCT
JDINDX
JOBIND

TSKGRP

DTAGRM

Initial Design

W. L. Wells

Edward L. Adams

R. E. Christal

R. E. Christal

C. R. Rogers

Joe H. Ward Jr.
Robert A. Bottenberg
William Phalen

William Phalen
R. E. Christcl

William Phalen
William Phalen
Johnny J. Weissmuller
R. E. Christal

William Phalen

Initial Programming

Edward L. Adams
Edward L. Adams
William D. Stacey
William D. Stacey
Johnny J. Weissmuller
Janice Buchhorn
Kathleen Hall
William D. Stacey

Paul Aron

Computer Sciences
Corporation

William D. Stacey

Johnny J. Weissmuller

Johmny J. Weissmuller

Johnny J. Weissmuller \k/Johnny J. Weissmuller

R. E. Christal

Harry Lawrence
Johnny J. Weissmuller

William Phalen
R. E. Christal
Philip Aitken-Cade

Edward L. Adams

Johnny J. Weissmuller

Computer Sciences
Corporation

Among other individuals who have vlayed a meaningful part in the
development, improvement and maintenance of the CODAP system, are
the following:

Dr. Robert A. Bottenberg Monitoring and Direction
M+, Jir Souter of Programming
Mr. C. R. Rogers

Mr. J. Myer Systems and Programming
Joe Morsh Numerous Suggestions
Wayne Archer for Program Changes
Harry Kudrick Program Execution

W. L. Wells and Suggestions for
Robert L. Vance Improvements

Bill Feltner, Jr.
Wesley C. Hill
Steve D. Poole
Terry D. Lewis

INTRODUCTION

This document contains programmer notes on the 100 library subroutines
used ir. the UNIVAC 1108 version of CODAP. The philosophy behind this
subroutine package was to isolate both machine dependence and recurrent
CODAP processing techniques.- This should allow for a functional
replacement of those operations on the user system. The information

in this report will aid programmers in deciphering the logic and control
of CODAP coding.

After the table of entry points, the writeups appear in alphabetical
order by subroutine name. FEach writeup includes a summary of subroutine
functions and a list of all entry points. For each entry point, a
calling sequence is provided with descriptions of the input and output
parameters. Comments related to conversion, special applications, or
restrictions may be found at the end of each writeup under SPECIAL NOTES,
The CODAP subroutine library is divided into two logical groups, those
subroutines which are invoked by referencing the library, and those
which n,st be explicitly included. The latter . are referred to as
"subprograms'. Each is a specialized subroutine for only one main
program. In the case of frequent change due to experimentation, some
subroutines like RFILE (which should have been a "subprogram") were

entered in the library. This allowed easy access to a subprogram which

was used in a frequently changed main program (OVRLAP in the case of
RFILE). In general, however, the convention holds. The 81 writeups
which follow describe only those subroutines which may be used by
referencing the library. The remaining 19 subprograms do not have
writeups, as in analyzing the main programs the purpose and calling

sequence of each should become clear. The following is an alphabetical

Q NS
ERIC 10

IToxt Provided by ERI

list of the subprograms not mentioned elsewhere in this document:
SUBPROGRAM MAIN PROGRAM
ALPHA CORREG
APLWTS VARGEN
CORRLB CORREG

CRTOTP CORREG

DICTRW VARGEN

DISKLD MTXFRT

FDTPRT EXTRCT

I2FA DIAGRM

OVLAP MTXPRT

PLEVEL CORREG

POSTAP CORREG

PRIMSC CORREG

PRINTR EXTRCT

PRINT1 CORREG

REGREF CORREG

START (STRT) DIAGRM

TAPGEN CORREG

TPTOCR CORREG

ZEROST CORREG
Any other entry points which are not found in the following table of
entry points are either standard FORTRAN subroutines (like CLOSE or
EXIT) or they are inline subroutines which may be found at the end o! the

main program.

ENTRY POINT TABLE

This is a list of the entry points into the CODAP subroutine library.

The left-hand column is an alphabetized 1list of the entry points, and

in the right-hand colum is the name of the element in which the entry
point may be found.

ASCA ASGA DATE SUBRTN
ASGAM ASGAM DATETIME SUBRTN
ASGC ASGC DATETM DATETM
ASGCM ASGCM DEFINE RFILE
ASGCMR ASGCM DELAY DELAY
AUTORV AUTORV DISK DISK
BCDBIN DATACV DISTX1 DIETX1
BIN SUBRTN DKSTAT DKSTAT
BINBCD DATACV DREAD DREAD
BINFD SUBRTN DSKRED DISK
BINOCT SUBRTN DSKSTO DISK
BLANK BLANK . ERII ERII
CARD SUBRTN ERIIX ERII
CHKMSK MSKOP1 ERRMSG ROSTER
CLOSEF CFHIO ERSMSK MSKOP1
CLOSER RFILE ERTRAN ERTRAN
COMPA COMPA FACREJ FACREJ
coMPC COoMPC FDBIN SUBRTN
COMPN COMPN FIELD SUBRTN
COMPRC COMPRC FLD FLD

CPI CPI FMTGEN FMTGEN
CYCLES CYCLES FORMAT FORMAT

12

FORMZX

FREDEV

FREE

FREES

FSORT

FSORT2

GETC

GETFIL

GETMAS

GETMSK

GETMSM

GETPCD

GETPCI

GETRAN

H2ACND

H2SORT

INFO

INSERT

IRANF

INTIAL

IRAND

ISCAN

JDCOPY

JDEOF

LASCMP

LTSORT

FORM2X

FREDEV

FREE

FREES

FSORT

FSORT

SUBRTIN

GETFIL

GETMAS

MSKOP2

MSKOP2

GETPCD

GETPCT

IRANF

H2ACND

H2SORT

SUBRTN

INSERT

IRANF

INTIAL

RANDOM

SUBRTN

JDCOPY

JDEOF

LASCMP

LISORT

ENTRY POINT TABLE (Con't)

LSORT
MARGIN
MARGNC
MOVBIN
MOVFD
MOVFD1
NEXREL
NEXREM
NOHEAD
NOPAGE
NRAND
OCTBIN
OMSG
OMSGW
OMSGWP
oMSG§
OPENF
OVRFLO
PARTBL
PRINTC
PRTDIC
PUTC
RANF
RANSEQ
READF

READR

LSORT
NOHEAD
NOHEAD
SUBRTN
SUBRTN
SUBRTN
NEXREL
NEXREL
NOHEAD
NOHEAD
NRAND
SUBRTN
OMSG
OMSG
OMSG§
oMSGY
CFHIO
OVRFLO
SISO
ROSTER
PRTDIC
SUBRTN
RANF
RANSEQ
CFHIO

RFILF

REPEND

REPEN1

RESDRV

RESET

REWIND

REWINM

RPCOPY

RPEOF

RPINDX

RUNID

SAMPLE

SBUILD

SCAN

SELECT

SETMSK

SETSCN

SETUP

SETUPS

SETUP9

SHIFT

SICLS

SIGET

SIOPN

SOCLS

REPEND

REPEN1

RESDRV

ROSTER

TREAD

DREAD

RPCOPY

RPEOF

RPINDX

RUNID

SAMSEL

LINK

SUBRTN

SAMSEL

MSKOP1

SUBRTN

SETUP

SETUPS

SETUP9

SHIFT

SISO

SISC

SISO

SISO

ENTRY POINT TABLE (Con't)

SOOPN
SOPEN3
SOPUT
SPOST
SPREP
SRAND
SRREL
SRRET
SSORT
STATS
STATSS
STATUS
TIME
TMTCSC
TREAD
USEMSK
WRITEF
WRITER
ZERBLK
ZEPMSK
Z2ERO

ZERO1

ZER§

SISO

TABL3

SISO

S1S0

SISO

RANDOM

LINK

LINK

LINK

STATS

STATS

STATUS

SUBRTN

TMTCSC

TREAD

MSKOP2

CFHIO

RFILE

ZERBLK

MSKOP1

ZERO

ZERO1

SUBRTIN

SUBROUTINE IDENTIFICATION

Name ASGA (Assign an Input File)
Language FORTRAN V
Date Nov 1973

Programmer Weissmuller
FUNCTION
ASGA will test to see if the requested file is already assigned to
this run. If it is, ASGCA establishes the FORTRAN UNIT number and
returns. If it is not already assigned, ASGA issues an assignment
request. If the request is accepted and the file is assigned, the
FORTRAN UNIT number is established via the "@USE" card and control
returns to the caller. If the request is rejected, however, a message
is printed and the run is aborted.
ENTRY POINTS
1. ASGA
CALLING SEQUENCE
1. CALL ASGA (NAME, IUSE)
a. Inputs
(1) NAME is a three word array where words 1 & 2 are the
filename in an A6,A4 [ormat and the 3rd word is the
negative file cycle in Al format., Word 3 = blank will
assign cycle ¢ (the most recent cycle,
(2) 1USE is a binary integer representing the FORTRAN UNIT
to be associated with the requested file.
b. Outputs
(1) The file will be assigned and associated with the correct

FORTRAN UNIT, OR

o
1

ASGA-2

(2) The run will abort after a diagnostic.
SPECIAL NOTES
This subroutine is very machine dependent. Its sole function is to
specify an input file and establish its association with a designated
FORTRAN UNIT. Hence this subroutine ought to be replaced by a routine

more suited to the user's installation.

11

ASGAM-1

SUBROUTINE IDENTIFICATION

Name ASGAM (Assign a Report or JD File)
Language FORTRAN V
Date Nov 73

Programmer Weissmuller
FUNCTION
ASGAM will test to see if the requested file is already assigned to
this run. If it is, ASGAM establishes the FORTRAN UNIT for this copy
of the Report or Job Description file and returns. If not already
assigned ASGAM will issue an assignment request. If the request is
accepted and the file is assigned, the FORTRAN UNIT is established and
control returns to the caller. If the request is rejected, ; message
is printed and the run is aborted.
ENTRY POINTS
1. ASGAM
CALLING SEQUENCE
1. CALL ASGAM (NAME,IUSE)
a. Inputs
(1) NAME is a three word array where words 1 & 2 are the filename
in an A6,A4 format and word 3 is blank or a negative file
cycle in Al format.
(2) 1USE is a binary integer representing the FORTRAN UNIT to
be associated with the requested file.
b. Outputs
(1) The file will be assigned and associated with the correct

FORTRAN UNIT, OR

12

v

ASGAM-2

(2) The run will abort after a diagnostic.
SPECIAL NOTES

1. This subroutine is very machine dependernt. Its sole function is
to specify an input file and establish its association with a
designated FORTRAN UNIT. Hence this subroutine ought to be replaced
by a routine more suited to the user's installation.

2. The subroutine is designed to handle a 3 cycle Report or Job Description
file. These files are identified externally by their "M" suffix
appended to the standard CODAP filename of exactly 10 characters. The
most current copy of cycle is (-@) and the oldest copy is cycle (-2).
The existence of a (-3) cycle implies an error on a previous run. See

subroutine CYCLES.

ASGC-1

SUBROUTINE IDENTIFICATION

Name ASGC (Assign an Output File)
Language FORTRAN V
Date Nov 73

Programmer Weissmuller
FUNCTION
ASGC checks the MASTER FILE DIRECTORY to see if a file with this name
already exists. If none exist, a request for a blank output tape is
issued. When the request is accepted the FORTRAN UNIT is established
for the new file and control returns to the caller. If, however, another
file with this name already exists, the last four digits of the filename
are converted to binary integer, one is added and the binary integer is
reconverted to an A4 format., If this is not the fifth such attempt,
control transfers to the first test above. If the last 4 digits are not
numeric or five changes have been made, the subroutine prints a diagnostic
and the run aborts.
ENTRY POINTS
1. ASGC
CALLING SEQUENCE
1., CALL ASGC(NAME,IUSE)
a. Inputs
(1) NAME is a two word array containing the output filename
in A6,A4 format. A (+1) file cycle is always assigned,
indicating this is the most recent copy.
(2) 1IUSE is a binary integer representing the FORTRAN UNIT to

be associated with the requested file.

14

9

b. Outputs
(1) The file will be assigned and associated with the correct
FORTRAN UNIT, OR
(2) The run will abort after a diagnostic.

SPECIAL NOTES

This subroutine is very machine dependent. Its sole function is to

specify an outpﬁt file and establish its association with a designated

FORTRAN UNIT. Hence this subroutine ought to be replaced by a routine

more suited to the user's installation.

ASGCM~-1

SUBROUTINE IDENTIFICATION

Name ASGCM (Create 3 Reel Report or JD File)
Language FORTRAN V
Date Nov 73

Programmer Weissmuller
FUNCTION
ASGCM is the same as ASGC with the followihg exceptions:

a, ASGCM creates 3 new tapes with an "M" suffix and leaves the
third reel mounted.

b. ASGCM requests the operator to reserve a tape drive and
indicate the unit number to the program.

c. ASGCM writes a binary 1 to FORTRAN UNIT 2 which is a running
record of the number of "BEGIN REPORT" sentenils on the Report
file.

ENTRY POINTS
1, ASGCM
2. ASGCMR
CALLING SEQUENCES
1. CALL ASGCM (NAME,IUSE)

a, Inputs

(1) NAME is a two word array containing the new Report or Job
Description filename in an A6,A4 format. For external
identification purposes, an "M" is appended to the 10
character filename signaling the operators to leave t-e
WRITE rings in place.

(2) 1IUSE is a binary integer representing the FORTRAN UNIT to be

associated with the requested file.

Q 16

ERIC <1

ASGCM-~2

b. Outputs
(1) The file will be assigned and associated with the correct
FORTRAN UNIT, OR
(2) The run will abort after a diagnostic.

2, CALL ASGCMR
a. Inputs - NONE
b. Outputs

(1) A message to the operator to release the requested tape
drive from its reserved state.
SPECIAL NOTES

1. This subroutine is very machine dependent. Its sole function is to
create either a Report or Job Description file with two backup copies,
and establish a FORTRAN UNIT for the most recent copy. Hence this
subroutine ought to be replaced by a routine more suited to the user's
installation,

2. The subroutine is designed to handle a 3 cy~le Report or Job description
file., These files retain their WRITE ENABLE ring as they are used for
output again at a later time. (See ASGAM and CYCLES). In addition,
their external filename contains an "M" suffix to alert the operators

that the WRITE ENABLE rings are NOT to be removed.

17

AUTORV-1

SUBROUTINE IDENTIFICATION

Name AUTORV (Automatically Revert to Backup Copy)
Language FORTRAN V
Date Jul 74

Programmex Weissmuller
FUNCTION
AUTORV deletes the "current copy" entry in the MASTER FILE DIRECTORY for
the Réport or Job Description file. This has the effect of making the
f;rst backup copy become the most current copy. AUTORV is called only
AFTER it has been decided that the reversion is necessary. This is
determined by checking for a third backup copy (=3 cycle). If a third
backup copy is found in the MASTER FILE DIRECTORY, a reversion is
necessary since a normal termination of a CODAP run will delete the
references to the third backup.
ENTRY POINTS
1. AUTORV
CALLING SEQUENCE
1. CALL AUTORV (NAME,IUSE)
a, Inputs
(1) NAME is a two word array containing the filename of the
Report or Job Description file in an A6,A4 format. The
"M" suffix will be appended automatically.
(2) IUSE is a binary integer representing the FORTRAN UNIT
number that the subroutine is allowed to use for internal

processing associated with NAME.

18

<3

b. Outputs

(1) The first backup copy (-1 cycle) will become the most

current copy (9 cycle) upon return from the subroutine.

SPECIAL NOTES

This subroutine is very machine dependent. Its sole function is to
insure that the proper reel of a8 3 reel file is used for input. 1f

backup copies of Report and Job Description files are not maintained

this subroutine is not even needed. If the using installation does not

have the equivalent of a MASTER FILE DIRECTORY (an online index of tapes
and mass storage files), then this subroutine camnot be programmed and

the responsibility for specifying the proper reels is left to the user

of the program. (See CYCLES).

BLANK~1

SUBROUTINE IDENTIFICATION

Name BLANK (Fill an Array With Blanks)
Language FORTRAN V
Date Nov 73

Programmer Weissmuller
FUNCTION
Blank is a FORTRAN DO LOOP which fills a specified portion of an array
with blanks.,
ENTRY POINTS
1. BLANK
CALLING SEQUENCE
1. CALL BLANK (NWORDS, IARRAY)
a., Inputs
(1) NWORDS is a binary integer specifying the number of words to
be blanked out.
(2) IARRAY is an array name into which the blanks are to be inserted.
b. Outputs
(1) IARRAY will have NWORDS of blanks inserted.
SPECIAL NOTES
1. This subroutine uses a literal ' ' to fill the array. A data word may
be established if direct use of literals is not implemented in FORTRAN
at the user's installation.
2. A call of " CALL BLANK(1¢,LIST(5))" may be used to blank out only

words 5 through 14 of array LIST, leaving words 1-4 and 15-end unaltered.

N)
)

CFRIO~1

SUBROUTINE IDFNTIFICATION

Name CFHIO (COBOL Féle Handler I/0 Interface)

Language 1100 Assembler

Date S Sep 74

Programmer Rogers

FUNCTION

This subroutine {s an interface for the COROi. F{le Handler. It allows
for opening, reading, writing and closing of COROL files. If a file
is not catalogued or assigned when the OPEN routine is called, parameters
fn the calling seauence set the tvpe of equinment and the s{ze of the
file and the appropriate request is issued.

ENTRY POGINTS

1. OPENF
2. READF
3. WRITEF
4, CLOSEF

CALLING SEQUENCE
1. CALL OPENF (FIT)
a, Inputs
(1) FIT is the File Information Table. It is an array of
parameters, file control table, and buffer area. Tt is
used by all calling sequences. The information {n the FIT
is as follows:
FIT(1),FIT(2) 12-character INTERNAL FILE NAME, left
fustifted with trailing spaces.

FIT(3)-FIT(?) 30~character EXTERNAL FILF. NAME, left

justified with trailing spaces. If EXTERNAL
21

<6

FIT(8)

FIT(9)

FIT(10)

CFH10-2

FILE NAME is spaces, CFHIO will use the
INTERNAL FILE NAME to assign the file and

no QUSE will be generated,

BLOCK SIZE of the file.

LRL of the record. It is alwavs specified
in words. When the file is closed via
CLOSEF, the LRL will be set to zero.

OPTIONS are specified as fieldata characters,

six characters per word, left to right.

Sl Inpui/Output flag
I = Input
0 = Output

S2 Buffering flag

D = Double buffering
S = Single buffering
S3 Labeling flag
0 = Omitted labels
S = Standard labels
U = User labels
S4 Open options
N = No rewind
R = Rewind
S5 Close options
L = Lock (Unload)
N = No rewind

R = Rewind

22

CFHIO-3

Sh Dynamic assign flag
N = No print
P = Print @ASG and @USE statements
FIT(11) Assignment specifications in fieldata:
S1 Assignment flag
C= Cétalogue the file
T = Temporary file
U = Unconditionally catalogue the file
S2 Space requirement
F = FASTRAND (EXEC 8 default amount)
P = Position granularity
T = Track granularity
$3-S6 Number of granules in fieldata, left
justified with trailing spaces.
I1f S1-S6 = spaces, @ASG,A is made.
FIT(12)-F1T(94) File Control Table area. This area will
be used by CFHIO and should be zero originally.
FIT(95)-FIT(N+94) Buffer area, where:

N = (BLOCKSIZE + 2) * 2 for double buffering

N = (BLOCKSIZE + 2) for single buffering
b. Outputs
(1) The file will be assigned if necessary and opened OR
(2) The facilities rejected messages will be printed, in either

case the program continues.

23

[

(8

CFH10-4

2. CALL READF (Fii,RECORD,SEOQF)
a. Inputs
(1) FIT as described above.
(2) EOF is an alternate exit to be returned to when End-~of-File
is encountered. If EOF is zero, the normal return is taken.
End-of-File is also indicated by LRL = §.
(3) RECORD is for output onlv.
b. Outputs
(1) RECORD is the arrav containing the next logical record on
the file. Th; LRL is returned in the FIT.
(2) EOF ig_an alternate exit to be returned to when End-of-File
is encountered. If EOF is zero, the normal return is taken.
End-of-File is also indicated by LRL = §.
3. CALL WRITEF (FIT,RECORD)
a. Inputs
(1) FIT as described above with the LRL set for the output
record length,
(2) RECORD is the array containing the output image.
b. Outputs
(1) The RECORD arrav is written to the COBOL file.
4, CALL CLOSEF (FIT)
a. Inputs
(1) FIT as described above.
b. Outputs

(1) The COBOL file is properly closed and the LRL is set to zero.

24

CFHIO-5

SPECIAL, NOTES

1. This routine is highly specialized for the UN1VAC COBOL FILF HANDLER.
Some type of replacement will be required if FORTRAN and COBOL files
are not directly compatible.

2, A1l CODAP programs which use COBOL files (SETCHK,INPSTD,TSKNDX,TSKGRP,
REXALL, and ASFACT) require a card-image file with a blocking
factor of 50. On the UNIVAC 1108 this_means LRL = 14, blocksize = 751 =

(14x50 + 51 control words).

COMPA-1

SUBROUTINE IDENTIFICATION

Name COMPA (Compare Alphabetic Values)
Language FORTRAN V
Date Dec 73

Programmer Rogers/Barton
FUNCTION

COMPA compares two FIELDATA words, returning a -1,8, or 1 depending upon

their relative values. Use is particularly suited to the FORTRAN Arithmetic
IF Statement,
ENTRY POINTS
1. COMPA (Function: returns integer -1,#, or 1)
CALLING SEQUENCE
1. COMPA (LAV1,LAV2)
a, Inputs
(1) LAV1 and LAV2 contain FIELDATA words which are to be compared.
b. Outputs
(1) The Integer Function COMPA will take on the value @ if LAV1
and LAV2 are identical. If LAV1 is lower in the FIELDATA
collating sequence than LAV2 (e.g. LAV1 = 'EARLY1' and
LAV2 = 'LATER2'), the value taken is 1, Otherwise the value
is -1,
SPECIAL NOTES
1. This version of COMPA is a FORTRAN V rewrite of an IBM 7040 Assembly
Language subroutine, Results depend upon the collating sequence of

characters on the machine used. For example, in FIELDATA, the

characters of the alphabet (A~Z) precede the alphanumeric characters

1-9, while the reverse was true of IBM.

26

ERIC 1

COMPA-~2

2. COMPA is used as an argument of a subroutine by the program DIST2X.
3. The function COMPA utilizes the FORTRAN FLD Function.

4. The name COMPA is declared INTEGER and EXTERNAL.

27

coMPC-1

SUBROUTINF IDENTIFICATION

Name COMPC (Compare Alphabetic or Numeric Values)
Language FORTRAN V
Date Dec 73

Programmer Rogers/Barton

FUNCTION
For a pair of words, COMPC returns the value from either COMPA or
COMPN, depending upon the value of a flag word in COMMON. Use is
particularly suited to the FORTRAN Arithmetic IF Statement.
ENTRY POINTS
1. COMPC (Function: returns integer ~1,8, or 1)
CALLING SEQUENCE
1. COMPC (LAVC,LAVD)
a. Inputs
{1) LAVC and LAVD contain the values which are to be compared.
The two words must be either both alphabetic (e.g. FIELDATA)
or both numeric, and
(2) The flag word in COMMON must be set to 1 or @, respectivelv.
b. Outputs
(1) 1f the value of the flag word is @), COMPC takes on the same
value as would COMPN.
(2) If the value of the flag word is 1, COMPC takes on the same
value as would COMPA, In general, COMPC returns a @ if
the values compared are 'equal", a -1 if the first value
(LAVC) is '"larger", and a 1 if the second value (LAVD) is
"larger". The specific meaning of "larger" depends upon
which function, COMPA or COMPN, is selected.

28

a3

SPECIAL NOTES

COMPC-2

1. This version of COMPC is a FORTRAN V rewrite of an IBM 7040 Assembly

Language subroutine. COMPA and COMPN are used directly by this

function.

2. The name COMPC is declared INTEGER in DIST2X.

29

COMPN-1

SUBROUTINF IDENTIFICATION

Name COMPN (Compare Numeric Values)
Language FORTRAN V
Date Dec 73

Programmer Rogers/Barton
FUNCTION
COMPN compares two binary integer words, returning a -1,¢#, or 1 depending
upon their relative values. Use is particularly suited to the FORTHAN
Arithmetic IF Statement.
ENTRY POINTS
1. COMPN (Function: returns integer -1,#, or 1)
CALLING SEQUENCE
1. COMPN (LAV1,LAVZ)
a., Inputs
(1) 1AV1 and LAV2 contain binary integers which are to be compared.
b. Outputs
(1) The Integer Function COMPN will take on the value @ if LAV1
and LAV2 are identical. If LAV1 is less than LAV2, the value
taken is 1. Otherwise, the value is -1.
SPECIAL NOTES
1. This version of COMPN is a very simple FORTRAN V rewrite of 'n IBM
7040 Assemblv Language subroutine.
2. COMPN is used as an argument of a subroutine by the program DIST2X.

The function name is declared INTEGER and EXTERNAL.

30

~)

e

COMPRC=~1

SUBROUTINE IDENTIFICATION

Name COMPRC (Compare Two-Word Alphabetic or Numeric Values)
Language FORTRAN V
Date Dec 73

Programmer Rogers/Barton
FUNCTION
For two ordered pairs of words, COMPRC returns the value from COMPA or
COMPN or both, depending upon the values of two flag words in COMMON,
Use is particulariy suited to the FORTRAN Arithmetic IF Statement.
ENTRY POINTS
1. COMPRC (Function: returns integer -1, #, or 1)
CALLING SEQUENCE
1. COMPRC (LAVA,LAVB)
a, Inputs
(1) LAVA and LAVB are each a two-word subscripted arrav
containing values which are to be compared, Corresponding
words in the two arrays must be either both alphabetic (e.g.
FIELDATA) or bcch numeric, and
(2) The corresponding flag word (of a two-word COMMON arrav)
must be set to { or @, respectivelv,
b. Outputs
(1) If the value of a flag word is @, COMPRC takes on the same
value as would COMPN for the corresponding pair of input words.,
(2) If the value of a flag word is 1, COMPRC takes on the same
value as would COMPA for the corresponding pair of input words,
In general, COMPRC returns a @ if both pairs of corresponding
values are "equal", a =1 if LAVA(1) or LAVA(2) is "larger" than,

31

%

COMPRC-2

LAVB(1) or LAVB(2), respectively, and 1 in the reverse

instance. The specific meaning of "larger" depends upon

which function, COMPA or COMPN, is selected. If the pair
or words subscripted (1) are not "equal", the second pair
will not be examined.
SPECIAL NOTES
1. This version of COMPRC is a FORTRAN V rewrite of an IBM 7040 Assemblv
Language subroutine. COMPA and COMPN are used directlv bv this
function.

2. The name COMPRC is declared INTEGER in DIST2X.

CPI-1

SUBROUTINFE IDENTIFICATION

Name CPI (Pack Characters into a Word)
Language FORTRAN V
Date April 1974
Programmer Stac2v/Barton
FUNCTION

CP1 generates characters from three words of information and packs
them left justified into a single word.
ENTRY POINTS
1., CPI
CALLING SEQUENCE
1. CALL CPI (NR,IAXP,LAP,LFW,NFC,KTFW,KTFC,ICMA,LOPT)
a. Inputs
(1) NR is an integer format repetition factor (e.g., the '7'
in 7A2).
(2) 1AXP is the alpha format character (e.g. 1,A.X,etc.),
left justified.
(3) LAP 1s an integer format field length (e.2. the '2'
in 7A2).
(4) ICMA is either a parenthesis or a comma, left justified
alpha,
(5) LOPT is an integer option flag. For LOPT = @, if IAXP is 'I'
the subroutine changes it to 'A'. For LOPT = 2, IAXP is
changed to 'A' for either 'I' or 'X'. For LOPT = 1, the

IAXP input is left unchanged.

33

b,

SPECIAL NOTES

(6)

KTFW and KTFC are simplv passed bv CPI between FMIGEN

and INSERT.

(7) L¥Y and NFC are for output onlv,

'Outputs

(1) LF¥W contains the left justified alpha characters generated
from ICMA, NR, TAXP, and LAP, For example, if ICMA =
' (BUBBE' ,NR=7, TAXP = 'AYYY¥K', and LAP=2, after a call
to CPI, LFW would contain '(7A2¥¥' , And

(2) NFC contains the intege: 1umber of characters packed into
LFW. In the example abuve, NFC would equal 4. And

(3) ICMA is set to a left justified alpha comma, OR

(4) 1f NR or LAP exceeds 99, the run aborts after a diagnostic.

1. This subroutine is highly specialized for use bv FMTGEN to create

FORTRAN formats from CODAP Format Cards,

2. The subroutine is not machine dependent, except that a 6-character

word {s assumed, so little or no conversion need be required.

34

SUBROUTINE IDENT1FICATION

Name CYCLES (Establish new copy of Report or JD file)
Language FORTRAx V
Date Nov 73

Programmer Weissmuller
FUNCTION

CYCLES checks the MASTER FILE DIRECTORY to see if a third backup exists.
1f it does, AUTORV is called, otherwise CYCLES continues. Next, CYCLES
checks to see if a new copy is already assigned to this run. If it is,
the FORTRAN UNIT is established and control returns to the caller. If not,
an ;ssignment request is issued for the oldest backup copy, (=2 cycle).
The assignment request specifies that if the run terminates normally all
reference to this backup cycle be deleted from the MASTER FILE DIRECTORY.
This physical reel will receive a copy of the most current version plus
all informztion generated in this run. Its FORTRAN UNIT is set equal to
IUSE. Next, the most current copy (-§) is assigned. A FORTRAN UNIT of
28 is established if the file is a Report file (IUSE = 26) or a FORTRAN
UNIT of 27 is established if the file is a Job Description file (IUSE = 25).
At this point the physical reel ID of FORTRAN UNIT "IUSE" (the oldest
backup) is entered into the MASTER FILE DIRECTORY as a new copy of the file
(+1 cycle).

Hence, if a Report file is designated (IUSE = 26), CYCLES assigns the
most current copy to FORTRAN UNIT 28 and the new copy to be created (by
writing over the oldest backup) to FORTRAN UNIT 26 (= 1USE).

1f, however, a Job Description File is designated (IUSE = 25), CYCLES

assigns the most current copy to FORTRAN UNIT 27 and the new copy to be

25

30

CYCLES-2

created (by writing over the oldest backup) to FORTRAN UNIT 25 (= IUSE).
Control returns to the caller upcn assignment of the files.

ENTRY POTNTS

copy to the newest copy. See RPCOPY and JDCOPY.
CALLING SEQUENCE
1. CALL CYCLES (NAME, IUSE, IASGD)
a. Inputs
(1) NAME is a two word array containing the Report or Job
Description filename in an A6,A4 format. An "M" suffix
is appended to the standard CODAP filename for external use
and to remind the operators that the WRITE ENABLE rine

must be left in place.

(2) 1IUSE a binary integer representing the FORTRAN UNIT to
be associated with the newest copy of the file to be
created. Must be either 25 or 26.
(3) IASGD (output only)
b. Outputs
(1) 1IASGD will be set to 1 if the File was already assigned
prior to calling CYCLES, or IASGD will be set to @ if
the subroutine CYCLES had to assign the file.
(2) Either
(a) The most current copy of the Job Description file
associated with FORTRAN UNIT 27 and the new copy to
be created is associated with FORTRAN UNIT 25
(IF IUSE = 25)
(b) The most current copy of the Report file associated with
FORTRAN UNIT 28 and the new copy to be created will be
36

1. CYCLES CYCLES itself does NOT copy from the current

CYCLES-3

associated with FORTRAN UNIT 26 (If IUSE = 26) OR
(c) The run will abort ue to an invalid NAME being specified.
SPECIAL NOTES
1. This subroutine is very machine dependent. Its sole function is
to cycle new and old copies of the Report or Job Description files
in preparation to actually copy and append new information onto the
newest cycle.
2. This subroutine requires a MASTER FILE DIRECTORY (an online index

of tapes and mass storage files) or its equivalent. See AUTORV.

37

42

DATACV~1

SUBROUTINE IDENTIFICATION

Name DATACV (Data Conversions, FIELDATA/binary)
Language 1100 Assembler
Date May 73

Programmer Weissmuller
FUNCTION

DATACV has two entry points. One entry point is used to convert
FIELDATA to binary and conversely, the other entry point is used to convert
binary numbers to their FIELDATA representation. These subroutines are
used instead of ENCODE or DECODE statements because they provide for an

error return.

ENTRY POINTS
1. BCDBIN
2. BINBCD

CALLING SEQUENCE
1. CALL BCDBIN (IBCD, IBIN, NCHAR, $ERR)
a. Inputs

(1) IBCD is a FIELDATA string of characters, left adjusted.

(2) IBIN is for output only.

(3) NCHAR is the number of characters to attempt to convert
to binary. If NCHAR=2 only the 2 left most characters will
be used.

(4) ERR is a FORTRAN statement number to which control will
be passed if the leftmost NCHAR characters of IBCD contain
a non-numeric. Note that preceding blanks are considered
to be zeroes, but that embedded or trailing blanks are

considered errors.
38

43

DATACV-2

b. Outputs
(1) 1IBIN is the binary integer value of the leftmost NCHAR
characters of IBCD, OR
(2) Control is transferred to statement ERR of the calling
program.
2. CALL BINBCD (IBIN, IBCD, NCHAR, $ERR, IFLAG)
a. Inputs
(1) 1IBIN is a full word binary integer.
(2) 1IBCD is for output only.
(3) NCHAR is the number of character positions available to
receive the FIELDATA representation of IBIN,
(4) ERR is a FORTRAN statement number to which control will
be passed if the FIELDATA representation of IBIN exceeds
NCHAR characters.
(5) 1IFLAG is a binary integer which is equal to either @ or

1. If IFLAG = @, preceding zeroes of IBCD wilil be left as

zeroes. If IFLAG = 1, preceding zeroes of IBCD will be
converted to blanks.
b. Outputs
(1) 1IBCD is a FIELDATA string NCHAR characters long, left
adjusted, OR
(2) Control is transferred to statement ERR of the calling
program,
SPECIAL NOTES
1. Not only is this program very machine dependent because it is in
assembler, but is is also dependent on the FIELDATA code structure.

. (See attachment.) This subroutine ought to be rewritten for the

user's installation.

39

44

.
3149 Bev 3 UNIVAC 1100 SERIES SYSTEMS [D-12
CrL MBER PAGE REVISION | 2ace -

D.6. 80-COLUMN CARD CODE, SYMBOL, XS-3, FIELDATA, EBCDIC, BCD CONVERSION
TABLE
Table D—6 c1oss references printer symbols with the card punch, XS-3, Fieldata, EBCDIC, and BCD codes.
High-Speed
$0-Column Printer XS8-3 Fieldata EBCDIC BCD |
Card Code Symbol Qctal Octal Hexidecimal QOctal |
121 A 24 06 1 61 i
122 B 25 07 C2 62 }
123 c 2 10 c3 63 ‘
124 0 27 1 C4 64 ‘
12.5 E 30 12 C5 65 |
12.6 F A 13 cé 66
12.7 G 32 14 C7 67
12.8 H 33 15 (of: 70
129 i 34 16 (of:] n
; 1141 J 44 17 D1 41
! 11-2 K 45 20 D2 42
11-3 L 46 21 03 43
11-4 M 47 22 D4 44
11-56 N 50 23 05 45
11-6 0 51 24 D6 46
117 P 52 25 D7 47
11-8 Q 53 26 08 50
119 R 54 27 DS 51
0-2 S 65 30 £2 22
03 T 66 K3 E3 23
04 v 67 32 E4 24
0-5 v 70 33 ES 25
06 w n 34 E6 26
0-7 X 72 35 E7 27
08 Y 73 36 £8 30
09 2 74 37 £9 3
0 0 03 60 FO 12
1 1 04 61 F1 01
Toble D-6 80-Column Card Codas, Symbol, XS-3, Fieldata, EBCDIC, BCD Conversion Table (Part 1 of 3)

40

4o

tad e 3 UNIVAC 1100 SERIES SYSTEMS A D-13
AteN LA l PAGE REVISICN PASE

I High Speed
! §0 Cotumn Printer XS 3 Ficldata EBCDIC BCD
; Card Code Symbol Octal Octal Hexadecimal Octal
|: 2 2 05 62 F2 02
! 3 3 06 63 F3 03
4 4 07 64 Fa 04
: 5 5 10 65 F5 05
{ 6 6 1 66 Fé 06
! 7 7 12 67 F7 07
; 8 8 13 70 F8 10
§ 9 9 14 n F9 n
: 12 . 20 a2 50 60
i ~-{minus) 02 41 60 40
12.0 ? 23 54 6F 72
11-0 ! 43 55 5A 52
0-1 I C4 74 61 21

28 & 63 46 7A 00 or 60"
i 38 = 35 44 78 13
‘ 4.8 (apos) 56 72 c 14
58 21 L3 D 15
68 76 45 7€ 16
78 @ 40 00 7F 17
1238 22 ?5 48 73
1248) 75 40 4c 74
1258 { 17 01 4D 75
12-6-8 < 36 43 4E 76
1278 = 37 03 4F 77
1138 S 42 47 58 53
114.8 * 41 50 5C 54
1158 i 01 02 5D 55
1168 16 73 5€ 56
1178 Ja 57 04 5F 57
023 #* 60 77 EO 32
038 {comma) 62 56 68 33
Toble D-6 80 Column Card Code, Symbol, XS-3, Feldata, EBCDIC, BCD Conversion Tabie (Part 2 of 3)
41
ERIC 46

Aruitoxt provided by Eic:

4191 B 3 UNIVAC 1100 SERIES SYSTEMS

UPNLUMIER

0-14

l PAGE REvV 510N

PAGE

High Speed
80 Cotumn Printer Xs$-3 Ficldata EBCDIC BCD
Card Code Symbol Octal Octdl Hexadecimal Octal
048 (61 51 6C 34
053 % 55 52 6D 35
0us \ 15 57 6E 36
g-78 x 77 76 6F 37
Blank b 00 05 40 20
NOTE
1 Symbols are for stundard Univac Type 750 Series High Speed Prnters

*00 1y used as 3 stop code on tapes using even parity

Tabie D-6 SO-Column Card Code, Symbol, XS$-3, Fieldata, EBCDIC, BCD Conversion Table {Part 3 of 3}

o 42

LRIC

47

DATETM-1

SUBROUTINE IDENTIFICATION

Name DATETM (Get Date and Time from the System)
Language FORTRAN V
Date Jun 74

Programmer Weissmuller
FUNCTION
DATETM will query the System to retreive the current date and time,
recode the month, reformat the information and return.
ENTRY POINTS
1. DATETM
CALLING SEQUENCE
1. CALL DATETM [1DATE, ITIME)
a. Inputs
(1) 1IDATE is for output only (2 word array)
(2) ITIME is for output only (2 word array)
b. Outputs
(1) IDATE will contain the date, month, and year in an A6,
A3 format, (e.g., '12 Jan 74')
(2) TTIME will contain the current time in an A6, A2 format.
(e.g. '15:25:91")
SPECIAL NOTES
1. This subroutine is very machine dependent but should be easy to

replace on any machine.

43

48

DELAY -1

SUBROUTINE IDENTIFICATION

Name DELAY (Timing delay in seconds)
Language 1100 Assembler
Date Sep 73
Programmer Weissmuller
FUNCTION

DELAY will cause a program to pause for the specified nmumber of seconds.
(30 seconds is ihe maximum allowed.) Its primary usage is within the file
assignment routines which will solicit for a tape drive every 30 seconds
until one becomes available.
ENTRY POINTS
1. DELAY
CALLING SEQUENCE
1. CALL DELAY (NSEC)
a. Inputs
(1) NSEC is a binary integer indicating the number of seconds
to pause. (Maximumalilowed is 3¢.)
b. Outputs

(1) Execution of the program will be suspended for the specifiied

period.
SPECTAL NOTES
1. ’This subroutine is very machine dependent. Moreover, if the user's
\

installation does not allow or provide for repeated requests for

tape drives, this subroutine may not even be needed-
e ¢

DISK-1

SUBROUTINE IDENTIFICATION

Name DISK (Random Access 1/0)
Language FORTRAN V
Date Aug 73

Programmer Weissmuller
FUNCTION

This subroutine's primary purpose was to serve as an interface for the
conversion of the CODAP system from an IBM 7049 to a UNIVAC 1108. The
7040 version was in assembler, so to minimize recoding, the 1108 version
was coded in FORTRAN to simulate the 784 version.

TRY POINTS

1. pIisK
2. DSKSTO
3. DSKRED

CALLING SEQUENCES
1. CALL DISK (NREC, LENGTH)
a. Inputs
(1) NREC is a binary integer denoting the maximum number of
random records to be written.
(2) LENGTE 1is a binary integer indicating the maximum length
(in words) of any given record.
b. Outputs
(1) A random access file established for FORTRAN unit 29.
2. CALL DSKSTO (NWORDS, IARRAY, IREC, ISW)
a. Inputs
(1) NWORDS is a binary integer representing the number of

words to be written to the random a~—-:ss unit (29).
45

0

DISK-2

(2) IARRAY is the location of the first of MWORDS to be written
or stored on unit 29.

(3) IREC is a binary integer specifying the index of key of
the record to be written. IREC may be any number from 1
to the NREC value specified in CALL DISK (NREC, LENGTH)

(4) ISW is a binary integer equal to @ or 1. If ISW = @,
DSKSTO will simulate an IBM 7§#4@ random access routine and
block all outputs by 465 words. If ISW = 1 (actually ¢ 6),
DSKSTO will store the information provided into a single
record.

b. Outputs

(1) NWORDS of information beginning with core locatior IARRAY
will be stored in record number IREC and will be blocked
by 465 if ISW = @, and unblocked otherwise., OR

(2) The run will abort if an IREC greater than NREC is specified.

3. CALL DSKRED (NWORDS, IARRAY, IREC, ISW)
a. Inputs

(1) NWORDS is a binary integer indicating the number of words
to be read from the random access unit (29).

(2) TARRAY is the location in core of the first available word
to receive the information just read.

(3) IREC is a binary integer specifying the index or Key of
the record to be read. Note: A request to read a record
which has not been written causes an error termination.
In DSKSTO IREC may be any number within the range 1 to
NREC, while in DSKRED, IREC must not only be in that

range, but also must have appeared in a call to DSKSTO.
46

' 51

DISK-3

(4) 1SW is a binary integer equal to #or 1. If ISW = ¢
DSKRED will simulate an IBM 784f random access routine
and read information in blocks of 465 words. If ISW =1
(¥ 0), DSKRED will read unblocked data.

b. Outputs

(1) NWORDS of information will be read into IARRAY from record
IREC of the random access unit (29). OR

(2) The run will abort if:
(a) an IREC greater than NREC is specified
(b) an IREC which was not written with DSKST0is specified
(c) NWORDS is greater than the number of words actually

in the specified record IREC.

SPECIAL NOTES

1.

The DISK entry point must be called prior to either DSKSTO or
DSKRED, and the DSKSTO call must logically precede the DSKRED call.
This subroutine is very machine dependent and is in fact a replace-
ment of an IBM 704f machine dcpendent routine. The value of this
routine is questionable. 1If the user's installation has a FORTRAN
compiler which allows direct coding of random access reads and writes,
this routine is unnecessary for new programs, but allows easy con-
version of older programs. If, on the other hand, FORTRAN does not
allow such direct references, this routine could be coded in the
user's assembler language and pretty much replace the direct
references as they appear in the UNIVAC J1#8 FORTRAN V version.
This routine is much less powerful than direct FORTRAN V random

1/0 statements. The FORTRAN V random access statements allows

47

52

DISK-4

the user to specify a list of variables to be written, and the list
need not be of items contiguous in core. DSKSTO, however, will
only access sequential core locations and hence any type of
"skipping around" must be accomplished by moving all values into

a single array (if not already equivalenced). Generally speaking
these moves of one array into ancther are done via TMTCSC.
Moreover, in order to use DSKRED, one must know the number of
words in the Record prior to reading it. Hence it was decided

that DSKSTO and DSKRED would not be used in new programs even
though doing so would have greatly simplified conversions for

|
other installations.

DISTX1-~1

SUBROUTINE IDENTIFICATION

Name DISTX1 (Binary Search for Proper Interval of Distribution)
Language FORTRAN V
Date May 73

Programmer Weissmuller
FUNCTION
DISTX]1 determines within which, i{f any, interval on a range a given value
lies.
ENTRY POINTS
1. DISTX1
CALLING SEQUENCE
1. CALL DISTX1 (MAXN,IBOT,ITOP,IFIND,ICOMP,ISUB)
a. Inputs
(1) MAXN is the binarv integer number of intervals.
(2) 1IBOT is the array of inclusive lower bounds, one for each of
MAXN intervals.
(3) ITOP is the array of inclusive upper bounds, one for each of
MAXN intervals. Both upper and lower bounds must be specified
in ascending order and cannot overlap, but "gaps" between
intervals are permitted,
(4) IFIND is the value to be matched against the inter-.als.
(5) 1COMP is the EXTERNAL-~ized name of the comparison function
(e.g. COMPA or COMPN) appropriate to the value being tested.

(6) 1SUB is for output only.

DISTX1-2

b. Outputs
(1) 1ISUB is the binary integer interval number (array subscript
for IBOT and ITOP) within which the value lies. If the
value is not within any interval specified, ISUB = @,
SPECIAL NOTES i
1. The subroutine utilizes a binary search technique with a variable
comparator function; hence COMPA, COMPN, and/or other user-svecified

functions need be supported.

DKSTAT-1

SUBROUTINE IDENTIFICATION

Name DKSTAT (Disk Status)

Language 110C Assembler

Date Sep 73

Programmer Weissmuller
FUNCTION

DKSTAT is the subroutine used by all the "assign file" subroutines.
This is the routine which actually tests to see if a mass storage file
is already assigned to the run., See STATUS for a similar function
on tape files.
ENTRY POINTS
1. DKSTAT
CALLING SEQUENCE
1. CALL DKSTAT (ID,ICODEl,ICODE2,IFLAG)
a. Inputs
(1) ID is a two word array which contains the FORTRAN UNIT
left adjusted in FIELDATA in the first word and the
second word blank. The association between the FORTRAN
UNIT and the external filename must be established prior
to this call.
(2) ICODEl is output only.
(3) ICODE2 is output only.
(4) IFLAG is output only.
b. Outputs

(1) ICODEl will contain the equipment code associated with the

specified FORTRAN UNIT if{ IFLAG=§,

DKSTAT-2

(2) ICODE2 will contain the FILE MODE if IFLAG=9.
(3) IFLAG will = @ if the file associated with the specified
FORTRAN UNIT is a mass storage file that is currently
assigned. Otherwise IFLAG=1. Note: A tape file fails
and sets IFLAG-1. (See STATUS)
SPECIAL NOTES |
1. This subroutine is very machine dependent and should either be
replaced or eliminated. This routine is used to avoid requesting
a file which is already assigned.
2. ICODE1l and ICODE2 are never used, but are included to maintain a

calling sequence similar to STATUS, the subroutine which serves

an identical purpose for tape files.

DREAD-1

SUBROUTINE IDENTIFICATION

Name DREAD (Disk Read of FORTRAN Print)
Language 1100 Assembler
Date Oct 73
Programmerx Weissmuller
FUNCTION

DREAD will read a FORTRAN written print fils from mass storage,
This subroutine is used primarily for reading Reports written to
mass storage by the EXTRCT program. See TREAD for a similar function

on tape files.

ENTRY POINTS
1. DREAD
2. REWINM

CALLING SEQUENCES
1. CALL DREAD(NWORDS,LINE,JSEQ, SNEW, SEOF)
a. Inputs
(1) NWORDS is for output only
(2) LINE is a 22 word array for output only
(3) JSEQ is for output only
(4) NEW is thm FORTRAN statement number to jump to if a new
report sentinel is read
(5) EOF is the FORTRAN statement number io jump to if an end
of file is encountered in an attempt to read the next line
b. Outputs
(1) NWORDS is a binary integer which is the number of words in

the print image array LINE

53

£
o

DREAD-2

(2) LINE contains the next print line read. It has a maximum

length of 22 words and may be printed thusly:

WRITE(6,100) (LINE(I),I=1,NWORDS)

100 FORMAT(22A6)

(3) JSEQ is a b.nary integer which is set equal to the index

number of the current Report being read. This value is

seét only when the $NEW return is used.

2, CALL REWINM

a. Inputs - None

b. Outputs

(1) The print image file read by DREAD is rewound

SPECIAL NOTES

1. This is a very machine dependent subroutine and should either be

replaced or eliminated. The primary function of this subroutine is

to read print images from mass storage and in particular, print

images in Report File Format. {Report File Format simply means

that individual reports are preceded by a sentinel of the form

'REGCIN REPORT',N where N is a binary integer written out in 1A6

format.]

2. Both DREAD and TREAD assume FORTRAN UNIT 28 is the print image file.

This association must be established prior to calling either subroutine,

Name

Language

Date

Programmer
FUNCTION

ENTRY POINTS
1. ERII
2. ERIIX

¢))

(2)

3)

SUBROUTINE IDENTIFICATION

ERI1I (Executive Request to Interactivity Interrupt)
1100 Assembler
May 74

Rogers

ERII provides a method by which operators may query the program as
to its name and/or status. This subroutine sets up a message buffer

and a separate activity which the operators may interrogate.

CALLING SEQUENCE
1. CALL ERII (ISW, NWORDS, MESAGE, IFLAG)

a. Inputs

ISW is a FIELDATA "P" or "L" which sets a program switch
to either Print all operator responses cr only enter them
into the Log. Basically a "P" is used for interactive
runs and a "L" is used for batch runs. All standard
CODAP programs are designed for batch rums.

NWORDS is a binary integer indicating the number of words
to be printed from MESAGE. Note: Since this call is only
done once, NWORDS should be large enough to accommodate
the longest message to be written.

MESAGE is an array of at least NWORDS which contains the
message to be displayed for the operators. ERII always
picks up the current contents of MESAGE, so MESAGE may be

55

&0

changed at any time in the main program to update the

status.

(4) IFLAG is for output only.

b. Output

(1) If the operator solicits ERII, the current contents of
MESAGE will be displayed on the console screen. To solicit
ERII, the operator must type in:

II rrrrrr X,

where "II" is the interactivity interrupt command for
EXEC 8, rrrrrr is a 1 to 6 character run identification code
and X is an operator response. X may be "P", "C" or "M".
The "P" will cause MESAGE to be printed, "C" will set IFLAG
to a non-zero value, and '"M" will solicit and transmit a
message from the operator to the executing program.

(2) For the OVRLAP and GROUP programs, IFLAG is used to force

checkpoints prior to the normally scheduled time. These

programs set the IFLAG variable to zero and every time
IFLAG is found to be non-zero, a checkpoint is taken.
IFLAG is set to a non-zero value only if the operator enters
a response that begins with a "C".
2. CALL ERIIX
a. Inputs - None
b. Outputs
(1) The separate activity established by the call to ERII is
halted. This must be done in order to avoid an abnormal

termination of the run.

Q 56

6L

ERII-3

SPECIAL NOTES
1. This subroutine is very, very machine dependent and its sole function
is to allow program - operator interesction. In many installations
this practice is highly discouraged. ERII may be removed from the

system with very little difficulty and no i1l effects will arise.

ERTRAN-1

SUBROUTINE IDENTIFICATION

Name ERTRAN (FORTRAN V - EXEC 8 Interface)
Language 1100 Assembler
Date -

Programmer UNIVAC
FUNCTION
_ERTRAN is a FORTRAN V - EXEC 8 Interface subroutine which allows access
to system information sund processing capabilities. This is a UNIVAC sub-
routine ‘and no symbolic coding is available. This write-up is included
for reference only.
ENTRY POINTS
1. ERTRAN (Subroutine Call)
2. NERTRN (Function: returns 1/0 status word)
CALLING SEQUENCES FOR COMMON USAGES
1. CALL ERTRAN (2)
a. Inputs
(1) Binary integer number 2.
b. Output
(1) The run takes an error termination.
Note: This calling sequence is used only after an
unrecoverable error has been detected.
Z. CALL ERTRAN (6, IMAGE)
a. Inputs
(1) Binary integer number 6.
(2) An array, IMACE, which contains a valid EXEC 8 control

card image which ends with the sequence "¥.B'". See attach-
ment for valid EXEC 8 control statement® £rom ERTRAN.

58

€3

ERTRAN-2

b. Output
(1) EXEC 8 performs the requested action, OR
(2) Run aborts 1if requested action was not possible.
3. IOERR = NERTRN (6, IMAGE)
a. Inputs

(1) Binary integer number 6.

(2) IMAGE is an array containing a valid EXEC 8 control card
image which ends with "¥.B". Normally in this usage, IMAGE
contains a request to assign a file.

(3) IOERR is for output only.

b. Outputs

(1) Either the request action is completed and IOERR = 0, OR

(2) IOERR is set equal to the error status word or zero.
Note: This Calling sequence is used in the subroutine
GETFIL.

4. CALL ERTRAN (9, IDATE, ITIME)
a. Inputs

(1) Binary integer number 9.

(2) IDATE is for output only.
(3) ITIME is for output only.
b. Outputs
(1) IDATE contains the current date in FIELDATA in for form
MMDDYY .
(2) ITIME contains the current time in FIELDATA in the form

HHMMSS .,

59

ERTRAN-3

Example: If called at 7:52 p.m. and 14 seconds, on
August 19, 1974, then
IDATE = "081974" and
ITIME = "195214"

This calling sequence is used in the subroutine DATETM.

SPECIAL NOTES

1.

This subroutine is obviously very machine dependent. Calli g
sequences 1 and 4 are rather trivial and may be easily duplicated
or removed. Calling sequences 2 and 3 however, are crucial to
the file manipulation subroutines (SETUP, SETUP6, and SETUP9).
If the calling sequences 2 and 3 cannot be simulated, file assign-
ments and their associations with the proper FORTRAN UNITS may be
forced directly onto the user of each individual program. In that

event, program documentation will have to be augmcnted.

60

816

UP.NUMBSER

l UNIVAC 1100 SERIES SYSTEMS l [3s
PAGE REVISION ea

(713

3.4.6. ERTRAN - EXECUTIVE REQUEST ROUTINE

Purpose

ERTRAN routine aliows the FORTRAN procgrammer to reference some of the executive request functions, namely
ABORTS (abort run), ERRS (error return), EXITS (normal exit), CSF$ (generate contro! statement), SETCS (set
condition word), CONDS (retrieve condition word), and DATES (request date and time} The executive requests are
described in UNIVAC 1100 Multi-Processor System Operating Systemn, EXEC 8 Programmor Reference, UP-4144
(current version).

FORTRAN V Reference

ERTRAN may be called by CALL ERTRAN (args) or referenced as a function by | = NERTRN (args). If the function
reference is used, the function vatue consists of the error or status information or zero if no error status is provided.

The reference has three forms
ERTRAN(k) fork =1,2,0r3
ERTRAN(k, ARG1) fork=6,7,0r8

ERTRAN(k, ARG1, ARG2) for k = 9, where ARG1 and ARG2 represent (INTEGER) type variables, and k determines
the executive request function.

Assembier Language Reference

ERTRAN cannot be referenced by the assembier language programmer; however, each of the executive request
functions can be referenced directly in assembler language

Routines Referenced

NERP% ay way of entry points NERRS and FIELDS and executive request functions ABORTS, ERRS, EXITS, CSFS,
S TC$, CONDS, DATES, and PRINTS.

Description

if k = 1, the executive request function ABORTS is referenced. All current activities are terminated and the run s
terminated in an abort condition,

If k = 2, the executive request function ERR$ s referenced. The Err Mode condition 1s set. If the programmer has

established an Err Mode routine, control will be returned to it. Otherwise, standard Err Mode action will occur
terminating the run.
61

.5

18716 UNIVAC 1100 SERIES SYSTEMS J l 16
UP.NUMRER pace nevision frace

If k = 3, the executive request function EXITS is referenced. The rout:ne provides normal program termination.
k=4andk =5 areilegal.

It k = 6, the executive request function CSF$ is referenced. The routine provides the uscr with a means of submitting
an executive control statement image (ARG 1) for interpretation and processing. The image submitted must be an array
or a Hollerith field contaiming ore of the control statements listed below. The control statement must not be longer
than 80 characters and may be terminated by the character sequence: blank, period, blank.

&“.ADD Add to run stream 3
OASG * Assign a file

@BRKPT Breakpoint symbiont o1tput files

@CAT Catalog a file

OCKPT Produce check point dump of this run

BFREE Deassign a file

8L0G Message to log a file

@GMOOE Set mode and/or noise constant for tape file

SQUAL File qualification

ORSTRT Restart run whose check point dump was saved by @CKPT
@START &Mle an indesendent run

asYM Queue files

6USE Associate internal to external fite name

If k = 7, the executive request function SETCS is referenced. The routine places (sets) the contents of the lower third
{bits 11-00) of ARG1 in the corresponding third of the run condition word. The lower two thirds of the run condition
word is used as a flag which can be either tested by the control stater:ent @®TEST or retrieved by the FORTRAN call
CALL ERTRAN (8, ARG1) and then tested.

If k = B, the executive request function CONDS is referenced. The routine retrieves the condition word and makes it
avalable to the user in ARG1.

If k = 9, the executive request funct:cy C.ATES is referenced. The routine supplies the uscr vwith the current date and
time in ARG and ARG2 respectively. The date in ARG1 is in the format MMOD Y'Y where MM represents the month
{01:12), DD the day (01:31), and YY the last two digits of the year (00-99). The time in ARG2 s in the format
HHMMSS where HH represents the hours (00-24), MM the minutes {00-60), and SS the seconds (00-60).

If k is negative or greater than 9, efror termination results. Error termination also results when the CALL
ERTRAN(arg) is used and the status word is negative. When the | = NERTRN (arg) function is used, error termination

will not take place, based on the status of the operation. ERTRAN has 97 instrucuions and 70 data words for a total
main storagn raquirement of 167 words.

62

€7

FACREJ-1

SUBROUTINE IDENTIFICGATION

Name FACREJ (Facility rejection messages)
Language 1100 Assembler
Date Oct 732

Progr.. mer Blakley
FUNCTION
FACREJ translates the EXEC 8 I/0 status word into appropriate error
messages. The I/0 status word is a 36 bit word in which each bit denotes
a particular error condition,
ENTRY POINTS
1. FACREJ
CALLING SEQUENCE
1. CALL FACREJ (IOERR)
a. Inputs
(1) TIOERR is the EXEC 8 [/0 status word returned by an I/0
opcratien,
b. Outputs
(1) A printed list of error messages from the 1/0 operation.
SPECIAL NUTES
1. This subroutine is extremely machine dependent. If the user's
installation has sufficient diagnostics prov jed by the system, this
subroutine is completely useless. It may be dropped from the system

with no {11 side affects.

63

€3

FLD~1

SUBROUTINE IDENTIFICATTON

Name FLD (Extract a Field of Bits) ,
Language 1100 Assembler
Date -

Programmer UNTVAC

FUNCTION
FLD is a UNIVAC function in FORTRAN V which allows access to any
string of bits within a single 36 bit computer word. This function
is used to extract the "minutes" field out of a word containing the
time in HIMMSS format.
ENTRY POINTS
1. FLD (Function: returns an integer value)
CALLING SEQUENCE
1. IVAL = FLD(IBIT,NBITS,IWORD)
a. Inputs
(1) IBIT is a binary integer in the range 0 to 35 which
identifies the first bit of the string to be extracted.
Bits are counted from left (@) to right (35) unless
overidden by coMpILER (FLD=R) statement which reverses
the sequence.
(2) NBITS is a binary integer in the range 1 to 36 which
denotes the number of bits in the string tc be extracted.
(3) IWORD is an integer, real, logical, or typeless expression
from which the string is to be extracted.

(4) 1IVAL is output onlv,

64

FLD-2

b. Outputs
(1) 1IVAL will contain the extracted field right adjusted
with leading zeroes. If "VAL" rather than "IVAL" were
used, the resulting binary integer represented by the
extracted string would be converted to floating point
notation then stored in VAL.
SPECIAL NOTES
1. Even though this is an intrinsic FORTRAN V function it could

easily be replaced by an assembler function at the usex's

jnstallation. Note, however, FLD may ve used on the left side of

an equals sign in FORTRAR V, and this is probably not allowed in

other FORTRANs. Minor reprogramming could remove such references

if they occur.

2. If IBIT or NBITS above are not jn the allowable range highly
erratic results will occur. The statement COMPILER (FLD=ABS) is
used to force these arguments to be positive values, as all

negative numbers are not in the acc=pted range.

SUBROUTINE IDENTIFICATION

Name

FUNCTION

1.

CALLING

1.

Date

Language

Programmer

EXTRY POINIS

SEOUFNCFE

CALL FMTCEN (LOPT)

a.

FMTCEN

F.ITGEN reads CODAP Format Cards (see attachment) and generates FORTRAN

formats which are used to read raw data card images.

Inputs

(1)

FMTGEN-1

FMTCFN (FORTRAN Format Generator)

FORTRAN V

Apr 73

Stacev/Barton

LOPT is a binarv integer option flag which determines the tvpe

of field specified for Task variables (T) and blanks (¥).

LOPT = ¢ produces an A format for T's and an X format for B's.
LOPT = 1 produces an 1 format for T's and an X format for ¥'s.

LOPT = 2 produces an A format for both T's and ¥'s; this enables

the transfer of data from card columns corresponding to blanks
on the Format Cards,

The number of CODAP Format Cards must be smecified in the
second-from-last word of the named COMMON area.

The proper Format Card deck must bhe provided (see attachment),

FMTGEN-2

b, Outputs

(1) Most of the data and control information are passed in a
named COMMON area hetween “MIGEN and *h- ~alline nrora

L3

This S55@4-word area contains arrays tor tne ouipes of the

.

generated FORTRAN format, tav.es for 7 lac.ve dodw o
Task, Historv, and Jhecr loty, the .ot (3o b cLomieres
tabies for pointers to input r~ard bo-ilesien i PES BT
item counts, 2nd cne=woird couwuts of * o, ey, ant 1
items :ommatted, OX
(2) TFormat Card errors will cause tne Cun &€ abor e el o
diagnostic.
SPECIAL NOTES
1. This subroutine 1s tailored expresslv for SFTCHK and INPSTD, the rrograns
through whick data enter the CODAP system.
2. FYTGEN requires the subroutines FRTRAN, CPI and INSFRT, but is subject

to no more than the same restrictions as are these subroutines. In

particular, a 6-character word is assumed.

Q 67
ERIC T2

Aruitoxt provided by Eic:

FORMAT CARDS-1
FMTGEN ATCH

FORMAT CARDS

These cards describe the SETCHKed raw data file. There must be a format
card to describe each raw data card within a case. If a case consists

of 20 raw data cards: then 20 format cards are required. There are no
restrictions on the layout of raw data cards or format cards except that
each raw data card must contain a control number in columns 1-4 and each
format card must contain 'C...' in columns 1-4. Raw data fields are defined
by the following format characters:

C Defines the beginniag of the case control number. This

character must appear in column 1 of each format card.

H Defines the beginning of a history variable.
T Defines the beginning of a task wvariable.
. Defines a continuation of any of the above. A task

variable may occupy no more than 6 columns (T.....).
The length of task variables (in terms of columns) must
remain constant for all tasks.

¥ A blank column defines a skip.

other Any other character is defined as a 'check' character.
A checy character must have a matching character in the

corresponding column of the raw data. A maximum of 500

'check' characters is allowed.

FORMAT-1

SUBROUTINE IDENTIFICATION
Name FORMAT (Retrieve Print Format)
Language FORTRAN V
Date Oct 73
Programmer Weissmuller
FUNCTION
FORMAT decodes a print format from the Variable Dictionary on the front
of a History or KPATH file. This subroutine also returns flags indicating
the cype and length of variables.
ENTRY POINTS
1. FORMAT
CALLING SEOQUENCE
1. CALL FORMAT(LDICT(14,N),IMAT,NCHAR,ITYPE, IFLD1, IFLD2, $ERR)
a. Innuts
(1) LDICT is a two dimensional arrav which contains the Variable
Dictionary entries. There are 15 yords per entrv and up to
16 entries per block. The format is contained in the last
two words of the entry (words 14 and 15). N is number of
the entrv within the current block.
(2) TIMAT, NCHAR, ITYPE, IFLD1l, and IFLL2 are for output cnly.
(3) ERR is the FORTRAN statement number to jump to if the
dictionary entry does not contain a valid format.
b. Outputs
(1) 1IMAT is a two word arrav which contains the format in FIELDATA,
left adjusted with all extra blanks omitted. OR IMAT contains

' NO FORMAT ' or ' INVALID ' if the error is used.

69

FORMAT=-2

(2) NCHAR is a binarv integer which is a count of the non-blank
characters in IMAT.
(3) [ITYPF is:
(a) -1 if the variable is alphanumeric ("A" format)
(b) @ if the variable is binary integer ("7" format)
(¢) +1 if the variable is floating point ("F" format)
(4) 1f ITYPE is:
(a) -1, IFLD1l is a binarv integer indicating a repetition
fFactor for a background variable (e.g. 1 for 1A3),
IFLD2 is a binarv integer indicating the number or
alphanumeric characters to be used (e.g. 3 for 1A3).
(b) @, IFLDl is a binarv integer indicating the number of
decimal digits required to orint the maximum value
(e.g. 7 for I7).
IFLD2 is not used.
(c) +1, TFLD1 is a binary integer indicating the maximum
number of spaces required to print the value of the

"." and a decimal

variable. This includes "+" or
point (e.g. 19 for F10.3).
IFLD2 is a binary integer indicating the number of
decimal digi*s to print following the decimal point
(e.g. 3 for F1¢.3).
SPECTAL NOTES
1. 'This subroutine uses the FORTRAN V FLD function, negative DO LOOP

indexing and LNCODES and DECODES. For those reasons it is rather

machine denendent. Tt mav be easilv replaced bv an assemblv subroutine.

70

W
o

FORMAT-3

2 FORMAT expects the format to depict a single word variable and hence

-e

will return an invalid response to variables like SSAN (A6,A3) or

ORGANIZATION (10A6,A4).

Lt 7 &)

‘ 71

FORM2X-1

SUBROUTINE IDENTIFICATION
Name FORM2X (Formats for DIST2X)
Language FORTRAN V
Date Dec 73
Programmer Barton
FUNCTION
FORM2X encodes a format for DIST2X output according to parameters set by
that program.
ENTRY POINTS
1. FORM2X
CALLING SEQUENCE
1. CALL FORM2X (KX,LY,FIRST,MAT)
a, Inputs
(1) KX,LY and FIRST are program-generated parameters which control
Computed GO TO chains within the subroutine.
(2) MAT is for output only.
b. Outputs
(1) MAT is an array for the ENCODE-d FORTRAN format.
SPECIAL NOTES
1. This subroutine is an expedient resulting from the conversion of D13T2X
from the IBM 7040 to the UNIVAC 1108. IBM supported the use of a FORTRAN
statement number in the WRITE format parameter which led, via inline
Computed GO TO chains, to the appropriate fixed FORMAT statement. Since
UNIVAC does not have this capabilitv, but allows variable formats by
ENCODE-ing the specifications into arrays, FORM2X was written to use the
same parameter values to control the contents of the words in ENCODE
lists. Obviously, FORM2X is highlv specialized, but reduces the machine

dependence of DIST2X.
Q. 72

FREDEV-1

SUBROUTINE IDENTIFICATION

Name FREDEV (Free Device)
Language 1100 Assembler
Date Nov 73

Programmer Weissmuller

FUNCTION
FREDEV erases FORTRAN V's record of a unit assignment. For each FORTRAN
unit (@ thru 3@) there is an entrv in a table (NTAB$) which associates
the FORTRAN unit with the external file. If the external file is
de~assigned using FRTRAN during a FORTARN program, FORTRAN is not
aware of it aad it attempts to rewind the file at the end of the program,
This causes an abnormal termination. This subrouwtine, then, erases the
NTABS entry, thereby informing FORTRAN the device is no longer assigned
and should not be rewound.
ENTRY POINTS
1, FREDEV
CALLING SEQUENCE
i. CALL FREDEV (IUNIT)
a. Inputs
(1) 1IUNIT is a binary integer representing the FORTRAN unit to
be released.
b. Outputs
(1) TFORTRAN's record of the unit is erased.
SPECIAL NOTES
1. This subroutine is extremely machine dependent but mav not be needed

at all in other FORTRAN's. 1It's only usage is in the subroutine FREE.

73

78

SUBROUTINE IDENTIFICATION

Name FREE (Free a ¥File)
Language FORTRAN V
Date Nov 73

Programmer Weissmuller

FUNCTION

FREE will release a file and its associated device so that they may be

used by other runs. This is most important with tape files as the tape

drives are at a premimum.

ENTRY PCINTS

1.

FREE

CALLING SEQUENCE

1.

CALL FREE(IUNIT)
a. Inputs
(1) [IUNIT is a binarv integer representing the FORTRAN unit
to be reieased.
b. Outputs
(1) The FORTRAN unit is freed and the device is released. (SEE

FREDEV)

SPECIAL NOTES

1.

This subroutine is machine dependent to the extent that it uses

ERIRAN to interact with the system to release a file and its device.

This ought not be di® «cult to program in assembler jf necessary.

FREES-1

SUBROUTINE IDENTIFICATION

Name FREES (Free a File, but Save the Tape Drive)
Language FORTRAN V
Date Nov 73

Programmer Weissmuller
FUNCTION
FREES will release a tape file but retain its associated drive so that it
may be used by a subsequent assignment. This is very important as the
tape drives are at a premimum.
ENTRY POINTS
1. FREES
CALLING SFEQUENCE
1. CALL FREES (IUNIT)
a. Inputs
(1) IUNIT is a'binary integer representing the FORTRAN unit to
be released.
b. Outputs
(1) The FORTRAN unit is freed and the drive is retained.
SPECIAL NOTES
1. This subroutine is machine dependent to the extent that it uses

ERTRAN to interact with the system to release a file and not its

drive.

75

23
o

FSORT-~1

SUBROUTINE IDENTTFICATION
Name FSORT (FORTRAN-EXEC 8 SORT Routine)
Language FORTRAN V
Date Oct 73
Programmer (eissmuller
FUNCTION

FSORT is a FORTRAN subroutine which is called to sort all records on

a given FORTRAN unit. This routine calls LINK and TABL3 which are

routines used to access the UNIVAC Sort Package. Records are read

from the specified FORTRAN unit, passed to the sort package, then
rewritten to the FORTRAN unit in the sorted sequence.
ENTRY POINTS
1. FSORT
2, FSORT2
CALLING SEQUENCE
1. CALL FSORT (IUNTT,NWORDS,ITYPE, IORDER)
a, Inputs
(1) TIUNIT is a binary integer denoting the FORTRAN unit.,
(2) NWORDS is a binary integer indicating the maxiwum number
of words in the largest record to be sorted.
ITYPE is a binary integer eaual to either
@ if an alphanumeric sort is desired or a

1 if a numeric sort is required,

FSORT=-2

(4) TIORDFR is a binary integer equal to either
@ if ascending sequence is desired, or
1 if descending sequence is required.
. Qutnuts
(1) A1l records on FORTRAN unit IUNIT will be in the reauested
seauence based on the first word of the record.
2. CALL FSORTZ (IUNIT,NWORDS,ITYPE,IORDER,JTYPE,JORDER)
a. Inputs
(1) Same as above, plus
(2) JTYPE is a binary integer equal to either
@ if an alphanumeric sort is needed on the second var%able, o£
1 if a numeric sort is needed on the second variable.
{3) JORDER is a binary integer equal to either
@ if ascending sequence is desired for the secondary sort, or
1 if descending sequence is desired on the secondary sort.
b. Outputs
(1) A1l records on FORTRAN unit IUNIT will be in the requested
sequences based on the firsc twc words of the records.
SPECIAL NOTES
1. This is a specialized subroutine which ought to be 1cnlaced by an
jnterface to the user's installation sort package.
2. Note: The FORTRAN unit must contain unformatted records in order

to work nroperlv as full-word sort fields are assumed.

<
v

GETFIL-}

SUBROUTINE IDENTIFICATION
Name GETFIL (Get a Tape File)
Language FORTRAN V

Date Ooct 73

Programmer Weissmuller
FUNCTION

GETFIL will repeatedly reissue any file assignment request passed to it.
Only tape file assignments should be requested via this subroutine as it
issues a message to the operators everv two minutes which reads
"WAITING ON TAPE DRIVE. AE" The assignment request is reissued every
15 seconds until accepted or an error status other than "WAIT" is returned.
ENTRY POINTS
1. GETFIL
CALLING SFQUENCE
1. CALL GETFIL (IMAGE)
a. Inputs
(1) IMAGE is an array which contains a valid file assignment
control statement,
b. Outputs
(1) Either the tape file is assigned, or
(2) The run terminates with diagnostics.
SPECIAL NOTES
1. This subroutine is rather machine dependent but is used strictly
within the file assignment package. As the file assignment package
is apt to be entirely rewritten at each installation this routine

is not very significant.

78

GETMAS-1

SUBROUTINF TOENTIFICATION
Name GETMAS (Cet a Mass Storage File)
Language FORTRAN V
Date Oct 73
Prograrmer Weissmuller

FUNCTTION

CFTMAS will repeatedlvy reissue anv fiie assignment request passed to it,
This subroutine will issue the request and if a "WAIT" status is returned,
30 seconds later, the request will be reissued. This is repeated until
e ther the reguest is accepted or untii an error status other than YRAIT"
is retnrned,
ENTRY POINTS
1. GFTMAS
CALLING SEOUEXNCE
1. CALI GLTVAS (IMAGE)
a. Inputs

(1) TIMAGE is an arrav which contains a valid file assignrent

control staiement

b. Oulruts
(1} FEither the file is assigned, or
(7Y lhe run terminates w'th diagnostics.
SPECTIAT NOTiS
1. This subroarine is rather machine dependent bt is used strictly
within the file assignment pachage. As the file ascignwent pachage
iv apt to be entirely rewritten at each installation this routine

is not very significant.

79
\‘1
ERIC
84

GETPCD~1

SUBROI'TINE IDENTIFICATION

Name GETPCD (Cet Program Contrul Table Data)
Language 1100 Assembler |
Date Mav 74 ‘

Programmer (ejissmuller
FUNCTION
CETPCD will retrieve information from the PCT (Program Control Table). i
This table contains information about the run-id, the account being
charged, and the running time. This routine, though elegant, is by
no neans essential,
ENTRY POINTS
1. GETPCD
CALLING SEQUENCE
1. CALL GETPCD(IDEC,IVAL)
a. Inputs
(1) IDEC is a binarv integer (@#-24@) indicating which word of
the PCT is to be cooied into IVAL.
(2) 1IVAL is for output onlyv,
b. Output
(1) 1IVAL will contain the contents of the appropriate word of
the PCT, i
SPECTAL NOTES 1
1. This is an extremely machine dependent subroutine but it may be deleted
with no 111 side-effects. 1Its primary function was to provide

independent time estimates for individual programs,

80

8O

GETPCT-1

SUBROUTINE TDENTIFICATION

Name CETPCT (Get Program Coatrol Table Data)
Language FORTRAN V
Date Mav 74

Programmer Weissmuller
FUNCTION
CETPCT will retrieve information from the PCT {Program Control Table).
This table contains information about the run-id, the account being
charged, and the running time. This routine, though elegant, is bv
no means essential.
ENTRY TOINTS
1. GETPCT
CALLING SEOUENCE
1. CALL GETPCT (I0CT,IVAL)
a. Inouts
(1) I0CT is a octal integer (#-@$36@) indicating which word of
the PCT is to be copied into IVAL.
(2) IVAL is for output only.
b. Outnut
(1) 1IVAL will contain the contents of the aopronriate word
of the PCT,
SPECIAL NOTES
1. This is an extremely machine derendent s.oroutine, but it mav be
deleted with no i1l side-effects. Its orimary function was to

nrovide indenendent time estimates for individual programs.

81

56

“SY! EMS MEMORANDUNM livsres 1100 08 faevon 13 [ines

«.3.3 PROGRAM OONTROL TABLS (PCT)
The materfal presented in thia subsection ia a supplement to the PRM, UP-41.44, Reviaton 2.

4.8.3.1 The Element PCT (Based On “avel 27.0)
®'s and +'s as uell as the Reserved Yord ror User are explained st the end of the tabls.

¥ORD TAGS s
of AA : X URIGINAL Rui IDENTITY :
01 AB ' GENERATED RUN IDENTITY :
02 AC :__TOTAL ACCUMULATED RUN TIME FOR ALL COMPLETED TASAS :
03 AD : ESTIMATED HUN TIME (200 MICROSECONDS INC,) :
o4 AB AY A2 AX :ACCT PRTY wlo”ags T OPTIUR CL,AE QUIUE ADDR:SS :
$
05 AL $QUAL. TBL. START (REL) ACTIVITY MAME TBLOR §
06 0 3B $CONTINGENCY MASK CONTIG PROG CONTINGENCY ADDR OR # :
3 { PROG) CN t
0" DY AF : CHCPU COUNT 10G CUUNT 1 st acont wnee -
10 M : « TOTAL I1/0 REQUEST COUNT t
1 o : TOTAL I/0 DATA TRANSFER COUNT t
12 A0 ' RESERVED FOR USER t
13 AP : CORE-SZCOND ACCUMULATION t
1% A ' CORE-BLOCK-SECOND :
15 : _ VAIT$ OO IT | VAITS CHAIN :
16 A3 1 RUM START TDME AND DATE (TDATE$ FORMAT) s
17 BB t XQT OPTIONS (BIT 25-A--—-BIT #=Z) :
] B ' CONDITION WORD :
2 B0 : MOST RZCANT QUALIFIER (12 CHARACTERS) 4
2 t IITIA. VALUE WILL BE PROJECT IDENTITY W _:
23 Bi 3 ACCOUNT NUMBER (12 CHARACTERS) :
2% 1 (28D WORD -~ ACCT NO) _:
25 CA CB : CORE QUANTUM USED { CJRE QUANTUM)
2% cc : TOTAL ACCUMULATED RUN TIME (200 MICROSSCONDS INC.) s
n a cs : REAL TIME ACTIVITY COUNT | SAP LOCK COUNTR___ :
30 ILOGCBIX 7S SEG LD | PROG.TYPE| TYPE AND LEVEL | PROGRAM SIZE :
n cL SACT REL VIA AWAIT$ (BIT 35-ACTID3S5-BIT 1=ACTID1-BIT @ ALWAYS @1
32 o t MASK CONTRO'. WORD OF EXISTING ACTIVITiES s
33 cn : ACIIVITY MASK OF ACTIVITY 1 :
% (o4} t ACTAVITY MASK OF ACTIVITY 2 :
3¢ cr 3 ACTIVITY MASK OF ACTIVITY 3 ___ @
]
1§
H]
Y e e et
72 DS 1 ACTIVITY MASK OF ACTIVITY 32 :
73 or ' ACTIVITY MASK OF ACTIVITY 33 :
7% o ' ACTIVITY MASK OF ACTIVITY 3 t
75 of ' ACTIVITY MASK OF ACTIVITY 35 :
76 VI) ¢ 3 RELATIVE ADDRESS OF LAST ASA CURRENT ACTIVITY COUNT
” IBIP CPIP 1/S cCH 00:3" OfF | MAXRTL| LINKAGE TO CROOLS RZF '
$]
Q 82
&7

SY3STEMS MEMORANDUM

hvsvu_l_loo (] la:vmon 1)

luo!vn 2.4-2

HORD
TSASA

101
102

103
0.
105
106
107
110
111
112
13
104
1ns

16
u?

122

122
123

125
126
127
130
131
a2
133
134
135
136
137
140

2
143

&
”

ERIC

Aruitoxt provided by Eic:

IAGS
P BN

Ihv+
IM IN IC ID

B B
BBy

-

B BA X
1J 1IQ Ccp
J1 33 X JL
WG M WE JA

Jp JB JC
3G JE

JMJZ JXIN
JO JR NB JY

Js JQ
JTIU M IV
KA
KB
(M
| 4]

KE
Kr XG
KH XJ
KL ¥
KN X0
XP KQ
KR '8
PO\

e
EERERAg

KUN OONTROL SECTION

SASA T/S OORZ CL GR PGE PCT ABORT MASK H
] IRG FLAG FLAG]
1. CHAIN FOR EXEC WORKERS (ASA) ATTACHED TO USER'S FCT 3
sCHECXFOINT COUNT DISP MSG] #RR DEACT COUNT 3
H HANDLER H
3 BUSY DO H
: NOT TERM| :

sLAST PCT ABSOLUTE ADDRESS

NEXT PCT ABSOLUTE ADDRESS

IBANK CORE DESCRIPTOR

-
.

DBANK CORE DESCRIPTOR

3 REVATIVE IBANK VALUE

| 18/DB SEPARATOR VALUE

CORE QUANTUM TIME

FILENAME OF PROGRAMS PF USED BY

: 10AD AND PMD :
:TS EXIT NOT USED | FILE HIADER TABLE REC. ADDRESS :
:TS PCTABT JQ¥M FLAG [NOT USED | NUMBER OF SEGMENTS :
=TS £SI_CM |ESI CON PN [ESI OON QN _ESI CONT ROUTINZ ADDRESS _ :
\TS TIMING | MCORE- |INS QUANT | COUNT FOR OUTSTANDING 1/0 :
: LCORS REQUESTS :
L FLAG s
+ PCT ITEM CHAIN START ___ PCT IT2M CHAIN END :
+f$ PCT T |DO NOT [PCT T™H ER DACT CHAIN :
3 USE FLAG :
ESIACTS| *o [ve ES ACTIVITY COUNT :
tRLIST TS |DEACT FORCED RLIST BUFFER LINK :
3 ERRF PAG t
: SUSPEND FLAG BUFFER ADDR. FOR PMD :
ATS FCTLNK | SIZE INu [P FLAG NOT USED :

PROGRAM START (TIME AND DATE)

FROGRAM NAME (1ST 6 CHARACTERS)

NAME (LAST 6 CHARACTERS)

PROCRAM VERSION NAME {1ST 6 CHARACTERS)

VIRSION RAME (LAST 6 CHARACTERS)

POSITIONS ASSIGNED TYPE 030

TRACKS ASSIGNED TYPE 030

POSITIONS ASSIGNED TYFE 031

TRACKS ASSIGNED TYPE 031

POSITIONS ASSICNED TYPE 032

TRACKS ASSIGNZD TYPE 032

POSITIONS ASSIGNED TYPE 033

TRACKS ASSIGNED TYPE 033

POSITIONS ASSIGNEZD TYPE 034

POSITIONS ASS1GRED TYPE 035

TRACKS ASSIGN.D TYPF 035

e e - ———

__POSITIONS ASSIGRED TYPE 036

TRACKS ASSIGNED TYPE 036

POSITIONS ASSIGNED TYPE 037

TRACKS ASSIGHED TYPE 037

TIME OF LAST TRACK SECOND CALCULATION

(SCRATCH) TRACK SE ONDS_TYPE 030

TRACK SFCONDS TYPE 031

TRACK SECONDS TYPE 032

TRACK SECONDS TYPE 033

TRACK_SZOONDS_TYPE 034

83

4
4

&8

H2ACND~1

SUBROUTINE IDENTIF CATION
Name HZACND (Ascending Sort on Right Half Word)
Language FORTRAN V
Date Mar 74
Programmer Barton
FUNCTION
H2ACND sorts an array inte ascending sequence on the right half (H2) of each
word,
ENTRY POINTS
1. H2ACND
CALLINGC SEOUENCE
1. CALL H2ACND {NNDUP, LPACK)
a. Inputs
(1) NNDUP is the binarv integer number ¢ f words in the array to
be sorted.
(?) LPACK is the arrav (name),
b, Nutputs
(1) The words are reordered such that the values of the right

halves of the words in subscript order grow larger.

S

P

7

CTAL NOTES
1. This subroutine performs a straightforward bubble sort, using the
FORTR#N FLD Function for halfword access.

2. H2ACND is called by OPTRAN,

84

&9

H2SORT-1

SUBROUTINE IDENTIFICATION

Name H2SORT (Descending Sort on Right Half Word)

Language FORTRAN V
Date Dec 73
Programmer Barton
FUNCTION
F2SORT sorts an array into descending sequence on the right half (H2) of
each word.
ENTRY POINTS
1. H2SORT
CALLING SEOUENCE
1. CALL H2SORT (NRESP,LPACK)
a. Inputs
(1) NRESP is the binarv integer number of words in the arrav to be
sorted.
(2) LPACK is the arrav (name).

b. Outputs

(1) The words are reordered such that the values of the right
halves of the words in subscript égder § row smaller,
SPECIAL NOTES
1. This subroutine performs a straightforward bubble sort, using the
FORTRAN FLD Function for halfword access.

2. H2S7RT is called by JOBIND.

85

i [5 f
(W4 |

INSERT-1

SUBROUTINE IDENTIFICATION

Name INSERT (Pack Characters Into Next Array Locations)
Language FORTRAN V
Date Jun 73
Programmer Staczy/Weissmuller
FUNCTION

INSERT packs a given number of the leftmost characters from a word
into the next available character positions of a COMMON array up to
1000 words long.
ENTRY POINTS
1. INSERT
CALLING SEQUENCE
1. CALL INSERT (KTFW,KTFC,LFW,NFC)
a. Inputs
(1) KTFW is the integer subscript of the next COMMON array
lotation.
(2) KTFC is the integer count of characters filled (¢#-5)
in that location.
(3) LFW contains the characters to be inserted, left justified.
(4) NFC is the integer count of characters to be inserted (1-6).
b. Outputs
(1) The specified characters are appendec to the COMMON array, and
(2) KTFW and KTFC are updated, OR
(3) If KTFW becomes greater than 1000, the run aborts after a

diag.ostic.

86

INSERT-2

SPECIAL NOTES

1.

This subroutine is highly specialized for use by CPI and FMTGEN to
create FORTRAN formats from CODAP Format Cards. As a typical
example, suppose words 6 and 7 of the COMMON (format) array contained

the string '12X¥YY YYBBYY' and LFW contained ',13I2¥' (so that

KTFw

6, KTFC = 3, and NFC = 5), After a call to INSERT, KTFW = 7,

KTFC = 2, and the two array words contain the string '12X,13 128688’ .

The subroutine is not machine dependent, except that a 6-character

word is assumed, so little or no conversion is required.

1RANF-1

SUBROUTINE IDENTIFICATION

Name IKANF (Initialize Random Number Function)

Language FORTRAN V
Date Feb 74
Programmer Weissmuller
FUNCTION
IRANF has two entry points. The first entry point selects and prints
a seed for the random number function, RANF, The selected seed is a
modification of the FIELDATA date and time, The second entry point
is called by RANF and keeps track of updating the seed from IRANF,
ENTRY POINTS
1. IRANF
2. GETRAN
CALLING SEQUENCE
1. CALL IRANF
a. Inputs - None
b. Outputs
(1) A seed is generated for RANF and GETRAN and,

(2) The value of the seed is printed in ¢ :tal format,

2. CALL GETRAN (ANS)
a. Znputs
(1) ANS is for output only.
b. Outputs
(1) ANS is a floating point random number between #.§ and 1.4.
SPECIAL NOTES

1, Other than using ERTRAN, this {s a rather standard FORTRAN subroutine.

88

33

JDCOPY-1

SUBROUTINE IDENTIFICATION
Name JDCOPY (Job Description File Copy)
Language FORTRAN V
Date Nov 73
Programmer Weissmuller
FUNCTION
JDCOPY will copy che Job Description file from FORTRAN unit 27 onto unit
25, Unit 25 will contain all previous Job Descriptions and will be
positioned to receive additional descriptions. This routine is called
after CYCLES in SETUP9.
ENTRY POINTS
1, JDCOPY
CALLING SEQUENCE
1. CALL JDCOPY
a. Inputs
(1) None
b. Outputs
(1) A complete covoy of all Job Descriptions will be written onto
unit 25, or
(2) The run will error termin;te on sequence error.
SPECIAL NOTES
1. This routine is standard FORTRAN except for the PARAMETER statement
for the variable dimensions which may easily be replaced.
2. This routine appears only in SETUP9 which is called from either JOBSPC
or JOBGRP, as they are currently the only programs which can expand

the Job Description file.

24

JDEOF-1

SUBROUTINE IDENTIFICATION

Name JDEOF (Find Job Description File Mark)
Language FORTRAN V
Date Nov 73

Programmer Weissmuller
FUNCTION

If two programs attempt to expand the Job Description file within a single
run, the first program will call JDCOPY to form a new copy of the file and
all subsequent programs will call JDEOF which should simply position the
new Job Description to receive additional reports, Since JOBSPC and JOBGRP
are the only two programs capable of calling JDEOF and they are rarely ever
stacked into a single run, this subroutine is not adequately checked out,
ENTRY POINTS
1. JDEOF
CALLING SEQUENCE
1. CALL JDEOF
a., Inputs
(1) None
b. Outputs
(1) The new copy of the Job Description is rewound and read until
a file mark is found, then backspaced over the file mark.
SPECIAL NOTES '

1. This subroutine is standard FORTRAN,

2. The new copy of the Job Description file must be on FORTRAN unit 25.

LASCMP-1

SUBROUTINE IDENTIFICATION

Name LASCMP (Logical Alphanumeric String Comparison)

Language FORTRAN V
Date Jun 73
Programmer Weissmuller
FUNCTION
LASCMP compares a string of FIELDATA characters against a range of
FIELDATA characters. If the test string is within the range, the
function returns a 1, otherwise a zero is returned.
ENTRY POINTS
1. LASCMP (Function: returns binary integer 1 or @)
CALLING SIQUENCE
1. ISW = LASCMP (ITEST,LOW, IHI,NWORDS)
a. Inputs
(1) ITEST is a FIELDATA character string NWORDS long.

(2) LOW is a FIELDATA character string NWORDS long.

(3) IHI is a FIELDATA character string NWORDS long.
(4) NWORDS is a binary integer giving the length in words of all
arrays.
(5) ISW is for output only.
b. Outputs
(1) ISW = 1 if the string ITEST is greater or equal to LOW and
less than or equal to IHI in che FIELDATA collating sequence.

I1SW = @ if ITEST is not in that range.

91

36

LASCMP-2

SPECIAL NOTES
1. This version of LASCMP is a FORTRAN V rewrite of an IBM 7040 assembly
language subroutine. Results are «ependent on the collating sequence
of characters on the machine used.
2. This subroutine uses the FORTRAN V FLD function on half-word

boundaries to evaluate the alphanumeric ranges.

92

LINK-1

SUBROUTINE IDENTIFICATION

Name

LINK (FORTRAN V Linkage to UNIVAC Sort Package)

Language 1100 Assewmbler

Date

Programmer UNIVAC

FUNCTION
LINK

call

is a FORTRAN V - EXEC 8 interface which allows FORTRAN to directly

the UNIVAC Sort Package. This write-up and any symbolic listings

are provided for reference only.

ENTRY PO
1,
2.
3.
4,

CALLING

1,

2,

INTS
SBUILD (Called from TABL3(entry = SOPEN3))
SRREL
SSORT
SRRET
SEQUENCE
CALL SRREL (IMAGE,NWORDS)
a. Inputs
(1) IMAGE is an array containing the record to be sorted.
(2) NWORDS is the length in words of the sort record.
b. Outputs
(1) This entry point releases one record at a time to the
sort package. Ho action is taken until SSORT is called.
CALL SSORT

a. Inputs - None

93

LINK=-2

b. Outputs
“(1) All records which were passed via the SRREL entry are
sorted in accord with the control information established
with SOPEN3. (See TABL3) Though the records are sorted
upon return from this entrv point, they are not useable
until retrieved via SRRET.
3. CALL SRRET (IMAGE,NWORDS,SEOF)
a. Inputs
(1) EOF is the FORTRAN statement number to jump to if an end
of file condition is detected on the sorted file.
(2) IMAGE and NWORDS are for output only.
b. Outputs
(1) Either, IMAGE will contain the next record from the sorted
file, and
(2) NWORDS will be the length in words of IMAGE, OR
(3) Upon reaching an end-of-file, control will jump to the
FORTRAN statement number designated by EOF.
SPECIAL NOTES
1. This subroutine is very machine dependent, but its usage is restricted
to the subroutine FSORT. If FSORT is rewritten for the user's

installation, this routine and TABL3 will not be needed.

94

LISORT~1

SUBROUTINE IDENTIFICATION

Name LISORT (Sort Pointer Array into Ascending Sequence)

»
Language FORTRAN V
Date Jul 73

Programmer Weissmuller
FUNCTION
LISORT accepts two arrays, an array of values and an array of pointers
(from 1 to NWORDS) and reorders the pointer arrav into an ascending
sequence based on the array of values. The array of values remains
unchanged.
ENTRY POINTS
1. LISORT
CALLING SEQUENCE
1. CALL LISORT (NWORDS,ARRAY,IPOINT)
a. Inputs
(1) NWORDS is a binary integer indicating the number of words
in the arrays ARRAY and IPOINT.
(2) ARRAY is an array of floating point or binary integer values.
(3) TIPOINT is an array of binary integers in ascending sequence,
usually 1 through NWORDS.
b. Outputs
(1) TIPOINT will be re-sequenced such that the contents of
1POINT(1) will be the subscript in ARRAY of the smallest
val e in ARRAY.
SPECIAL NOTES

1. This subroutine is standard FORTRAN,

95

1C0

LISORT-2

2, IPOINT may contain values such as 2@ through 3#@ if only
ARRAY(200) through ARRAY(3¢#) are to be sorted. This technique
is used to sort tasks independently from duties even though the
values for both are in the same array in some programs.

3. See LSORT for descending sequence.

LSORT-1

SUBROUTINE IDENTIFICATION

Name LSORT (Sort Pointer Array into Descending Sequence)
Language FORTRAN V
Date May 73
Programmer yeissmuller
FUNCTION
LSORT accepts two arrays, an array of values and an array of pointers
(from 1 to NWORDS) and reorders the pointer array into a descending
sequence based on the array of values. The array of values remains
unchanged,
ENTRY POINTS
1., LSORT
CALLING SEQUENCE
1. CALL LSORT (NWORDS,ARRAY,IPOINT)
a. Inputs
(1) NWORDS is a binary integer indicating the number of words
in the arrays ARRAY and IPOINT,
(2) ARRAY is an array of floating point or binarv integer values.
(3) IPOINT is an array of binary integers in ascending sequence,
usually 1 through NWORDS.
b, Outputs
(1) 1IPOINT will be re-sequenced such that the contents of
IPOINT(1) will be the subscript in ARRAY of the largest
value in ARRAY.
SPECIAL NOTES

1, This subroutine is standard FORTRAN,

97

102

LSORT-2

2. IPOINT may contain values such as 2@@ through 300 if onlv
ARRAY (2¢¢) through ARRAY(3@@) are to be sorted. This technique is
used to sort tasks independently from duties even though the
values for both are in the same array in some programs.

3. See LISORT for ascending sequence.

98

1643

MSKOP1-1

SUBROUTINE IDENTIFICATION

Name MSKOP1 (Mask Operations: Type 1)

Language FORTRAN V
Date Oct 73
Programmer yejssmuller

FUNCTION
MSKOP1 is a set of subroutines designed to handle several MASK arrays
from a Job Description File. These MASK arrays have 1 bit for each
case in a study. If a particular case is in this group, the corresponding
bit is equal to 1, otherwise it is zero. The first three entry points
are designed to create a mask array as is done in JOBGRP and JOBSPC. The
fourth entry point is designed to use existing mask arrays.

ENTRY POINTS

1. ZERMSK

2, SETMSK
3. ERSMSK
4. CHKMSK

CALLING SEQUENCE
1. CALL ZERMSK (NCASE,MASK,NWORDS)
a. Inputs
(1) NCASE is a binarv integer which is a count of the number of
cases in the study.
(2) MASK is an avray to become a mask array.

(3) NWORDS is for output only.

MSKOP1-2

b. Outputs
(1) NWORDS is a binary integer which is a count of the number
of full 36 bit computer words required to contain the
mask array for NCASE cases. Since the sign bit of the
computer word is not used NWORDS = (NCASE + 34)/35 and
truncated to the integer number.
(2) MASK will contain zeroes in the first NWORDS locations,
and is ready to receive a mask array.
2, CALL SETMSK (ICASE,MASK)
a, Inputs
(1) ICASE is a binary integer denoting the sequence number of
this case. (1 to NCASE)
(2) MASK is an array which 1is being made into a mask array.
b. Outputs
(1) The bit position in MASK identifying case number ICASE is
set to 1 signifying this case is a member of this grouo.
3. CALL ERSMSK (ICASE,MASK)
a. Inputs
(1) ICASE is a binary integer denoting the sequence number of
this case. (1 to NCASE)
(2) MASK is a mask array.
b. Outputs

(1) The bit position in MASK identifying case number ICASE is

set to @ signifying this case is NOT a member of this group.

MSKOP1- 3

4, CALL CHKMSK (ICASE,MASK,$NOT)
a. Inputs
(1) ICASE is a binary integer denoting the sequence number of
this case, (1 to NCASE).
(2) MASK is an existing mask array.
(3) NOT is a FORTRAN statement to jump to if the bit in MASK
corresponding to ICASE is not equal 1.
b. Outputs
(1) Either, control will return to the statement following the
calling sequence if ICASE is in the group in question, or
(2) Control will pass to FORTRAN statement number NOT if ICASE
is NOT in the group.
SPECIAL NOTES
1. This subroutine uses the FORTRAN V FLD function on the left of an
equals sign and will have to be rewritten into the user's assembly
language.
2. While this subroutine may test or alter several mask arrays, MSKOP2
is designed to access only one mask array.
3. The COMPILER(FLD=ABS,R) reverses the bit counter in the FLD func*tion

from a left to right count (#-35) to a right to left count (35-)

O 101

MSKOP2-1

SUBROUTINE IDENTIFICATION

Name MSKOP2 (Mask Operations: Type 2)

Language FORTRAN V
Date Oct 73
Programmer Weissmuller
FUNCTION
MSKOP2 is a set of subroutines designed to retrieve and use a single
mask arrny from a Job Description File,
ENTRY POINTS
1. GETMSK
2. GETMSM
3. USEMSK
CALLING SEQUENCE
1. CALL GETMSK (ISEQ,ID1,ID2,MATRIX,$ERR)
a. Inputs
(1) 1ISE0 is a binary integer which i{s a unique identification
number for each report or group. This number is found in
card columns 76-80 of the Request card.
(2) 1ID1 and ID2 together comprise an 8 ¢' ‘racter internal
identification code for all files under a given study.
These two words are the first two words of the Communications
Region.
(3) MATRIX is a 6 character identification code found in word 6
of the Communications Regfon. MATRIX is blank if the fnput’
file is a Historv file and 18 equal to either 'TASK¥¥' or

'TIME¥P' {f a KPATH file is the input.

102

167

MSKOP2-2

(4) ERR is the FORTRAN statement number in the calling program
to jump to if the group identified as number ISEQ is not
found or if ID1, ID2, or MATRIX fails to match the Job
Description file used.

b. Outputs

(1) Efther, the group's mask array is retrieved and ready to be
used by USEMSK, OR

(2) Control is passed to FORTRAN statement ERR,

2. CALL GETMSM(ISEQ,ID1,ID2,MATRIX, $ERR,NMEM, IDREPT, ITITLE)

a, Inputs

1)
(2)

Same as above,

NMEM, IDREPT, and ITITLE are for output only,

b. Outputs

(1)
(2)

(3)

(4)

Same as above, plus

NMEM is a binary integer count of the number of members in
the specified group.

IDREPT is a 6 character FIELDATA identification of the
requested group,

ITITLE is an 8 word FIELDATA array which contains the title

of the Report which first identified this group.

3. CALL USEMSK (ICASE,$NOT)

a, Inputs

)

(2)

ICASE 1s a binary integer which is the sequence number of a
case on either the History or KPATH file.
NOT is a FORTRAN statement number to jump to if case number

ICASE 1is not in the group specified in GETMSK or GETMSM.

1€8 :

MSKOP2~3

b. Outputs
(1) Either, control will return to the statement following the
call to USEMSK if ICASE is in the group, OR
(2) Control will jump to FORTRAN statement number NOT if ICASE
is not in the group.
SPECIAL NOTES
1., This subroutine uses the FORTRAN V FLD function and a COMPILER
directive to change the bit counter to a Right to Left count.
2. This routine is limited to processing a single mask array at a time.

For simultaneously using multiple MASKS see MSKOP1.

104

100

NEXREL~1

SUBROUTINE IDENTIFICATION
Name NEXREL (Mount Next Reel)
Language FORTRAN V
Date Sep 74
Programmer Weissmuller
FUNCTTON
NEXREL will free the tape file currently assigned and associated with a
specific FORTRAN unit, then assign another reel of a file to the same

tape drive.

ENTRY POINTS
1. NEXREL
2. NEXREM)

CALLING SEQUENCE
1. CALL NEXREL (NAME,IUSE)
a. Inputs

(1) NAME is a three word array where words 1 & 2 are the filename
in an A6,A4 -format and word 3 is the negative file cycle
(backup number) in a 1Al format. Word 3 = blank will assign
cycle ¢ (the most recent copy). All words are in FIELDATA.

(2) 1IUSE is a binary integer representing the FORTRAN unit which
is currently associ~»ted with a tape file to be freed. Also,

the file specified by NAME above is to be mounted on the tape

drive currently used by the file to be released or freed, then
associated with this FORTRAN unit,
b. Outputs
(1) Either the tape reels on the physical tape drive are switched

and the FORTRAN unit IUSE is associated with the file NAME, OR

105

10

NEXREL-2

(2) The run aborts due to an invalid NAME with the appropriate

diagnostics.

2, CALL NEXREM (NAME, IUSE)

a. Inputs
(1) The same as for NEXREL.
b. Outputs
(1) The same as for NEXREL except the new file assigned will be
an "M" or 3-reel cycled file.
SPECIAL NOTES
1. As part of the file assignment package this subroutine will probably

be replaced or obsoleted on any non-UNIVAC system,

NOHEAD-1

SUBROUTINE IDENTIFICATION
Name NOHEAD (Change Page Boundaries)
Language 1100 Assembler
Date Sep 73
Programmer Weissmuller
FUNCTION
NOHEAD was written to suppress the EXEC 8 heading lines and allow CODAP
orograms to define their own page boundaries. Generallv speaking CODAP
programs provide 5 blank lines at the top of each page instead of the
default 6 lines. Individual programs vary as to the number of blank
lines at the bottom of the page. The program DIAGRM, for example,
suppresses all page boundaries as the diagram may be several pages long.
ENTRY POINTS
1. NOHEAD
2. MARGIN
3. NOPAGE
CALLING SEQUENCE
1. CALL NOHEAD
a. Inputs - None

b. Outputs

(1) Automatic page overflow occurs at line 66 (the tear strip)
and skips 5 lines at the top of the next page.
2. CALL MARGIN

a. Inputs - None

NOHEAD-2

b. Outputs
(1) Automatic page overflow is reset to the system standard,
i.e. leave six blank lines at the top and 3 blank lines at
the bottom of a 66 line page.
3. CALL NOPAGE
a. Inputs - None
b. Outputs
(1) All automatic page overflow is suppressed. When forced, a

new page boundary is the line after the tear strip, otherwise
no boundaries are recognized.

SPECIAL NOTES
1. This is a very machine dependent subroutine, however, an assembler

subroutine at the user's installation may easily replace this one.

108

113

NRAND-1

SUBROUTINE IDENTIFICATION

Name NRAND (Random Number Generator)
Language 1100 Assembler
Date Nov 73

Programmer Hutchinson
FUNCTION

NRAND will accept a seed value and return a random number and an updated
seed value.
ENTRY POINTS
1, NRAND
CALLING SEQUENCE
1. CALL NRAND (ISEED,PROB)
a. Inputs
(1) 1ISEED is a variable which may contain any value to be uscd
as a seed to the random number generator. NOTE: "~ The value
of ISEED is updated by the subroutine and therefore a constant
may not be used. Within CODAP, some form of the time of day
in FIELDATA is generally used as a seed.
(2) PROB is for output only.
b. Outputs
(1} The value of ISEED is modified such that the next call will
yield a new random number.
(2) PROB will be a random number in floating point notation in
the range 0.9 to 1.0.
SPECIAL NOTES
1, Though this subroutine is in Assembler, it ought to be easy to rewrite

for any machine,

109

144
]
e

NRAND-2

2. This routine is used in conjunction with IRAND and SRAND within

RANDOM tor selecting random subsamples of a specified size.

Y
-
|

OMSG-1

SUBROUT INE IDENTIFICATION v
Name OMSG (Operator Messages)
Language 1100 Assembler
Date Jan 74
Programmer Rogers
FUNCTION
OMSG provides a method for a program to communicate with the system
console operator and visa versa. This routine is used by a few programs
to provide additional information to the operator. It also has the
capability to receive operator responses.
ENTRY POINTS
1. OMSG
2. OMSGW
CALLING SEQUENCE
1. CALL OMSG (NWORDS,MESAGE)
a. Inputs
(1) NWORDS is a binary integer count of the number of words ia
the MESAGE array.
{(2) MESAGE is an array which contains the FIELDATA message to
be displayed on the operator's console.
b. Outputs
(1) The first NWORDS of MESAGE is displayed on the operator's
console,
2, CALL OMSGW (NOUT ,MESOUT,NIN,MESIN)
a. Inputs
(1) NOUT is a binary integer count of the number of words in

the MESOUT array.

11

176

OMSG=-2

(2) MESOUT is an array which contains a FIELDATA message which
solicits an operator response.
(3) NIN is a variable which conta®as a binary integer which is
a limit to the number of words of response that the operator
may return. NOTE: NIN is set equal to actual number of words
returned and therefore a constant must not be used for NIN,
(4) MESIN is an array for output only,
b. Outputs
(1) The first NOUT words of MESOUT is displayed on the operat.rs
console and the routine waits for a response. (Hence, the
"W" suffix)
(2) Upon receiving a response of NIN words or less, NIN is set
equal to the number of words returmed in the MESIN array.
If an operator attempts to enter more than NIN words, his
message is erased before he completes it.
SPECIAL NOTES
1. This subroutine is very machine dependent, but its function is not
essential o the CODAP system. It may be removed with little

consequence,

1577
l;}glﬂ;‘ 112

SUBROUTINE IDENTIFICATION

Name OMSGO (Operator's Messages: Other Console)
Language 1100 Assembler
Date Jan 74

Programmer paoers
FUNCTION
OMSGO is identical to OMSG except all messages are directed to a
secondary console,
ENTRY POINTS
1, OMSGO
2. OMSGOW

CALLING SEQUENCE ~ See OMSG

OMSGO-1

OVRFLO-1

SUBROUTINE IDENTIFICATION
Name OVRFLO (DIST2X Flip-Flop Disk/Table Merge)
Language FORTRAN V
Date Dec 73
Programmer Barton
FUNCTION
When a core table of DIST2X output information is filled, OVRFLO merges
the tahle intc a flip-flop pair of mass storage files.
ENTRY POINTS
1, OVRFLO
CALLING SEQUENCE,
1. CALL OVRFLO (HINF,MAXF,N,LIMIT,KSW,ITABLE,LIN,LOU)
a. Inputs
(1) MINF is a decrement index (the table is scanned backwards).
(2) MAXF is the maximum number of standard 5-word entries in the
table,
(3) N points to the first word of the current entry,
(4) LIMIT is a constant.
(5) KSW is a flag.
(6) ITABLE is the core table,

(7) LIN and LOU are the FORTRAN unit numbers for the flip-flop files.

b. Outputs

(1) The contents of ITABLE are merged with the contents of unit LIN

onto unit LOU, and the units are then reversed,

139
114

OVRFLO-2

SPECTIAL NOTES

1. This subroutine is an expedient resulting from the conversion of DIST?¥

from the IBM 7040 to the UNIVAC 1108. Inline coding was removed to a

subroutine to r.duce the size of the main program and to eliminate a
bad transfer from a FORTRAN DO loop. Obviously, OVRFLO is highly

specialized, but reduces the machine dependence of DIST2X.

PRTDIC=-1

SUBROUTINE IDENTIFICATION

Name PRTDIC (Print Variable Dictionarv)

Lan.gage FORTRAN V

m—p——

Programmer Stacey
FUNCTION

I
Date May 73
PRTDIC will read a ptepositionea History or KPATH file and print a
standard format Variable Dictionary. This routine is used in PRDICT,

VARGEN, ;nd PROGEN.

ENTRY POINTS
1. PRIDIC

CALLING SEQUENCE
1. CALL PRTDIC (IUNIT,IOUT,NHEAD,IHEAD,NDICT)

a. Inputs

(1) TIUNIT is a binary integer representing the FORTRAN unit
associated with the History or KPATH input file.

(2) 1I0OUT is a binary integer representing the FORTRAN unit
associated with the output file, generally = 6 for the
printer or = 26 for the Report file.

(3) NHEAD is a binary integer count of the number of 14 word

FIELDATA heading cards to be printed at the top of the

first page.

(4) IHEAD is an array of 14 word FIELDATA heading cards to be

printed.

PRTDIC-2

(5) NDILT is a binary intcger count of the number of blocks

of dictionary information on the History or KPATH file.

This number is the fourth word of the Communications Region

b. Outputs
(1) The Variable Dictionary will be printed or written to the
Report file,
SPECIAL NOTES

1. This is a standard FORTRAN subroutine,

jo
N
()

117

RANDON-1

; SUBROUTINE IDENTIFICATION
Name RANDOM (Random Subsample Selector)
Language FORTRAN V
bate Nov 73
Programmer Hutchinson/Weissmuller
FUNCTION
RANDOM is a subroutine with two entry points. The first entry establishes
the random number generator seed, the size cf the total population and the
exact number of cases to be randomly selected. The second entry simply

returns a 1 or a ¢ depending on whether the current case ought to be

selected or not.

ENTRY POINTS
1. 1IRAND
2. SRAND

CALLING SEQUENCE
1. CALL IRAND(ISEED,NPOP,NSAMP)
a. Inputs
(1) TISEED is any value to be used as a seed value for the
random number generator (NRAND), The time of day in
FIELDATA is normally used.
(2) NPOP is a binary integer count of the total population
size from which the random subsample is to be selected,
(3) NSAMP is a binary integer count of the number of cases to

be randomly selected.

b, Outputs
(1) The random subsample selection routine is initialized and

SRAND may be called,
118

123

RANDOM=-2

2. CALL SRAND(INSAMP)
a. Inputs
(1) INSAMP is for output only.
b. Outputs
(1) INSAMP is a binary integer variable which is set equal
to -1 if the current case is not to be selected or is set

equal to +1 if the current case is to be selected,

SPECIAL NOTES

1. This subroutine is standard FORTRAN.

(Y
Y
K

119

RANF-1

SUBROUTINE IDENTIFICATION

Name RANF (Random Number Function)
Language FORTRAN V
Date Feb 74

Programmer weissmuller
FUNCTION
A function reference to RANF will be replaced bv a random floating
point value in the range from $#.# to 1.0 inclusively, Note: An
initialization routine IRANF must be called prior to the first refe;cnce
to RANF.
ENTRY POINTS
1. RANF (Function: floating point value (¢#.8-1.0)
CALLING SEQUENCE
1. PROB = RANF(X)
a, Inputs
(1) X is a dummy variable. It is neither used nor altered,
(2) PROB is for output only,
b. Outputs
(1) PROB will be set equal to a random floating point value
between #.f and 1.0 inclusively.
SPECIAL NOTES
1. This is a standard FORTRAN function.

2. Prior to using RANF, the routine IRANF must be called.

SUBROUTINE IDENTIFICATION
Name RANSEQ (Randomly Sequence an Array)
Language FORTRAN V
Date oct 74
Programmer Weissmuller

FUNCTION

RANSEQ will accept an input array of up to 300 items in length and

randomly resequence the array.
ENTRY POINTS
1. RANSEQ
CALLING SEQUENCE
1. CALL RANSEQ {NWORDS, IARRAY)
a. Inputs
(1) NWORDS is a binary integer specifying the number of words
in IARRAY.
(2} IARRAY is an array name which contains elements to be
resequenced.,
Outputs
(1) TARRAY will be randomly reordered.
SPECIAL NOTES
1. This subroutine uses NRAND to generate random numbers, and H2SORT

to sort an internal pointer array based on the random numbers.

SUBROUTINE IDENTIFICATION

Name

Language
Date

Programmer
FUNCTION

REPEND (Report End and Request Card Punch)
FORTRAN V
Nov 73

Weissmuller

REPEND updates the 'last report sentinel' on FORTRAN unit 2 and punches

a Request card for the report just written to the Report file, as wzll as

initializing
ENTRY POINTS
1. REPEND

CALLING SEQUENCE

the Report file for the next report.

1. CALL REPEND (ISTUDY,IDREPT,ITITLE,NREP)

a, Inputs

(1) ISTUDY is a 4 character FIELDATA code for the account or study,

(2) IDREPT is a 6 character FIELDATA identification for the Report
just written,

(3) ITITLE is an 8 word FIELDATA title that is printed on the first
line of the report,

(4) NREP is for output only,

b. Outputs

(1) A Request card is punched with the study, the report ID, the
report title, and the report number.

(2) The report number is updated on FORTRAN unit 2,

(3) NREP is a binary integer which is the updated report number.

(4) The next 'BEGIN REPORT' NREP sentinel is written to the

Report file,

129 27

SPECTAL NOTES

REPEND-2

1. This subroutine is coded in standard FORTRAN and is used by every

program which writes to the Report file.

version called REPEN}.)

1

<8

123

(JOBIND uses a special

REPEN1~1

SUBROUTINE IDENTIFICATION

Name REPEN1 (Report End and Request Card Punch)

Language FORTRAN V
Date Nov 73
Programmer Weissmuller
FUNCTION
REPEN1 updates the 'last report sentinel' on FORTRAN unit 2 and punches
a Request card for the report just written to the Report file as well as
initializing the Report file for the next report. This subroutine is
used only in JOBIND and is a modified version of REPEND,
ENTRY POINTS
1. REPEN1
CALLING SEQUENCE
1. CALL REPEN1 (ISTUDY,IDREPT,ITITLE,IVX,JREP,NREP)
a. Inputs
(1) ISTUDY is a 4 character FIELDATA code for the account or study.
(2) IDREPT is a 6 character FIELDATA identification for the Report
just written,
(3) ITITLE is a 7 word FIELDATA title that is printed on the first
line of the report,
(4) 1IVX is a 'visual control' variable value. It may be up to 6
FIELDATA characters,
(5) JREP is a binary integer which identifies the report number

associated with the group that serves as input,

129

ol

124

REPEN1-2

b. Outputs

(1) A Request card is punched with the study, the report ID, the
report title, the value of the visual ID variable (generally
case control number), the report number of the input group
and the report number for this individual job description.

(2) The report number is updated on FORTRAN unit 2.

(3) NREP is a binary integer which is the updated report number.

(4) The next 'BEGIN REPORT' NREP sentinel is written to the Report

file.

SPECIAL NOTEC

1.

This subroutine is coded in standard FORTRAN,

170

[

125

RESDRV~1

SUBROUTINE IDENTIFICATION

Name RESDRV (Reserve a Tape Drive)
Language FORTRAN V
Date Nov 73

Programmer Weissmuller
FUNCTION

RESDRV asks the operator to reserve a tape drive then indicate the drive
number to the program. This is used when creating Report and Job
Description files so that all three copies will onlv use one tape drive.
Alternate methods are being examined and this routine may soon become
obsolete, See FREES.

ENTRY POINTS
1. RESDRV

CALLING SEQUENCE

1. CALL RESDRV (IUNIT)
a. Inputs
(1) 1IUNIT is for output only,
b. Outputs
(1) IUNIT is a binary integer denoting the tape drive reserved
for this program.
SPECIAL NOTES

1. This subroutine is part of the file handling package and will probably

be replaced.

RFILE=-1

SUBROUTINFE, IDENTIFICATION

Name RFILE (Random Access File for OVRLAP)
Language 1100 Assembler
Date May 74

Programmer Rogers
FUNCTION

RFILE is a direct access file designed for the OVRLAP program. This
routine establishes OVRLAP's input as a "READ ONLY" file and prevents
the entire file from being checkpointed as well as reducing the overhead
checking inherent in FORTRAN V's direct access coding.

ENTRY POINTS

1. DEFINE
2, WRITER
3. CLOSER
4, RFADR

CALLING SEQUENCE
1. CALL DEFINE (MAXREC,MAXLRL,ISTUDY)
a. Inputs
(1) MAXREC is a binary integer count of the maximum number of
records to be written to this file,
(2) MAXLRL is a binary integer indicating the maximum length
in words of the longest record.
(3) 1STUDY is a 4 character FIELDATA code for the account or
study. This is used to generate filenames,
b. Outputs
(1) A direct access file is assigned and sufficient mass storage

area is secured. WRITER may now be called,

127

132

RFILE-2

2. CALL WRITER (IREC,NWORDS,IMAGE)
a. Inputs
(1) IREC is a binary integer index number for the record to be
written,
(2) NWORDS is a binary integer count of the number of words in
the record array IMAGE.
(3) IMAGE is the record array.
b. Outputs
(1) The contents of IM;GE is written as record number IREC in
the direct access file.
3. CALL CLOSER
a. Inputs - None

b. Outputs

(1) The direct access file established bv the call to DEFINE and
loaded with information via the calls to WRITER is closed and
reassigned as a "READ-ONLY" file. The file is now ready to be
accessed by OVRLAP via the calls to READR.

4, CALL READR (IREC,NWORDS,IMAGE)
a. Inputs

(1) IREC is the binary integer index number of the record to be
read. Note: DEFINE, WRITER and CLOSER must be called prior
to the first call to READR.

(2) NWORDS is for output only.

(3) IMAGE is an array for output only.

b. Outputs
(1) NWORDS is a binary integer count of the number of words in the

record which was stored in IMAGE.
128

133

RFILE-3

(2) 1IMAGE i{s an array which contains the record.
SPECTIAL NOTES
1. This subroutine is very machine dependent. It was necessitated bv
properties of the checkpointing svstem and the excessive error checking
of FORTRAN. This routine, along with DISK and inline direct access

FORTRAN V statements, will undoubtedly be replaced at other installations.

129

ROSTER-1

SUBROUTINE IDENTIFICATION
Name ROSTER (Roster Control Cards and Error Messages)
Language FORTRAN V .
Date Nov 73
Programmer Weissmuller
FUNCTION .
ROSTER 15 a set of subroutines designed to print control cards and error
measages.
ENTRY.POINTS
1, RESET
2. PRINTC
3. ERRMSG
CALLING SEQUENCE
1. CALL RESET
a. Inputs « None
b. Outputs
(1) Writes a new control card listing page and resets counters.
2. CALL PRINTC
a. Inputs - None

b, Outputs

(1) Rosters the last card read bv doing a re-read (FORTRAN unit @ or 3@).

(2) . :omatic page overflow if required.

3. CALL Ek. G (NWORDS, IMSG)

a. Inputs

(1) NWORDS is a binary integer count of the number of words in the

error message array IMSG.

o 130
ERIC 135

(2) 1IMSG is a FIELDATA array of up to 9 words in length which

contains an error message. IMSG is sometimes passed as a
literal delimited by quote marks.
b. Outputs
(1) The contents of IMSG are printed single spaced under the last
card rostered.
SPECIAL NOTES
1. This subroutine uses FORTRAN V's re-read ability on FORTRAN unit ¢ or
33. The re-read is accomplished by re-accessing FORTRAN's buffer for

the card file and may be coded in assembly language if necessary.

ERIC 16

RPCOPY-1

SUBROUTINE IDENTIFICATION

Name RPCOPY (Report File Copv)
Language FORTRAN V
Date Nov 73

Programmer Weissmuller
FUNCTION

KPCOPY will copy the Report file from FORTRAN unit 28 to unit 26, Unit
26 will be left positioned to receive additional reports. This subroutine
is called after CYCLES in SETUP and SETUPY.
ENTRY POINTS
1. RpCOPY
CALLING SEQUENCE

1. CALL RPCOPY

a. Inputs
(1) None
b. Outputs

(1) FORTRAN unit 26 will contain all previous reports and will
be positioned to receive more.
SPECIAL NNTES
1. This routine is standard FORTRAN with calls to the TREAD subroutine.

(REWIND ;s an entry point into TREAD).

132

RPEOF-1

SUBROUTINE IDENTIFICATION
Name RPEOF (Reposition Report File for Multiple Programs)
Language FORTRAN V
Date Nov 73

Programmer Weissmuller

FUNCTION

RPEOF will reposition a Report file if several program executions write to

a Report file within a single run. The first program in the runstream will
call RPCOPY and create a new copy of the Report file. All subsequent
programs will call RPEOF and set the new copy to receive additional reports.
ENTRY POINTS
1. RPECGF
CALLING SEQUENCE
1. CALL RPEOF (IUNIT,NREP)
a. Imputs
(1) IUNIT is a binary integer deuctirg the FORTRAN unit number of
the Report file. (generally IUNIT = 26)
(2) NREP is for output only.
b. Outputs
(1) NREP is a binary integer indicating the number of the last
report sentinel on the Report file. '
(2) The Report file is positioned to receive additiomal reports.
SPECIAL NOTES

1. This subroutine is standard FORTRAN.

RPINDX-1

SUBROUTINE IDENTIFICATION

Name RPINDX (Report File Index)
Language FORTRAN V
Date Jul 73

Programmer Weissmuller
FUNCTION
RPINDX will print an index of the Report file assigned to FORTRAN unit 28.
This subroutine is called when option 2 of the EXTRCT program is specified.
ENTRY POINTS
1. RPINDX
CALLING SEQUENCE
1. CALL RPINDX
a. Inputs - None
b. Outputs
(1) A printed index of the Report file assigned to FORTRAN unit 28.
SPECIAL NOTES

1. This subroutine is standard FORTRAN,

134

~
29
N

RUNID-1

SUBROUTINE IDENTIFICATION

Name RUNID (Retrieve Run ID and Study ID)
Language 1100 Assembler
Date Apr 74

Programmer Weissmuller
FUNCTION
RUNID will rectrieve the run ID and the account or study ID., This routine
1s used only in INPSTD and is not at all essential even there.
ENTRY POINTS
1. RUNID
CALLING SEQUENCE
1. CALL RUNID (IDRUN,ISTUDY)
a. Inputs
(1) IDRUN and ISTUDY are for output only,
b. Outputs
(1) IDRUN is a 6 character FIELDATA identification of a run. By
installation policy the first four characters are an individual's
ID code.
(2) ISTUDY is a 4 character FIFLDATA code foi the account or study.
SPECIAL NOTES
1. This is a highly specialized subroutine which is used only in INPSTD
for punching a card to be returned to the programmers for timing studies.
An attempt is being made to estimate the running time of OVRLAP from
information accumulated by INPSTD. This routine and the punched card

may easily be eliminated.

SAMSEL~1

SUBROUTINE IDENTIFICATION

Name SAMSEL (Sample Selection Subroutine)
Language FORTRAN V
Date Jun 74

Programmer Weissmuller
FUNCTION \
SAMSEL has two entry points, one for dctermining the sampling logic and one
for actually selecting based on that logic.
ENTRY POINTS
1., SAMPLE
2. SELECT
CALLING SEQUENCE
I. CALL SAMPLE (IDSAMP,IDVAR,NVAR,IERR,IPRT)
a, Inputs
(1) VARIABLE INTERACTION CARD - See Sample Selection attachment
Section I.
(2) TIDSAMP is an identification code for this sample. (Normally
sequential binary integers.)
(3) 1IERR is a binary integer error count (normally = @),
(4) TIPRT is a binary integer print flag. If IPRT = 1, PRINTC is
called and the VARIABLE INTERACTIION CARD is rostered. (See
ROSTER) If IPRT # 1, no rostering occurs.
(5) 1IDVAR is a 9 word array for output only.
(6) NVAR is for output only.
b. Outputs

(1) The VARIABLE INTERACTION CARD is read from the card reader,

o g

2.

(2)

(3)

(4)

(5)

SAMSEL-2

The IDVAR array contains a binary integer for each variable

ID found on the INTERACTION CARD. Background or VXXX variables
are flagged by making them negative. For example, if V@15 or
V15 is encountered, the corresponding element of IDVAR = -15.
Conversely, if C@15 or Cl15 is found, the proper element of
IDVAR = +15.

NVAR is the number of variable IDs found on the INTERACTION
CARD. A maximum of 9 is allowed.

1ERR is a binary integer which is incremented by 1 for each
error detected.

The INTERACTION CARD is rostered if IPRT = 1.

CALL SELECT (IDSAMP,LVALS,SREJECT,$NOFIND)

a. Inputs

(1)

(2)

(3

(4)

IDSAMP is an identification code for the desired sample. It
must match exactly an IDSAMP created by a call to SAMPLE.

LVALS is an array of binary integers equal to 1 or @. A given
element of LVALS will equal 1 if the value of the corresponding
variable specified in IDVAR is in the required range, and @
otherwise. The main program is responsible for keeping track
of variable ranges and determining whether or not a particular
case has data within these ranges. Note: The array LVALS is
altered by the subroutine.

REJECT is the FORTRAN statement number to jump to if the current
case does not meet the sample restriction requirements.

NOFIND is the FORTRAN statement number to jump to if no match

is found for IDSAMP,

137

14

SAMSEL-3

b. Outputs
(1) Either, there is a normal return from the subroutine which
indicates the case should be added to the sample, and
LVALS(1) # @, or
(2) Control is returned to FORTRAN statement number REJECT, which
means the case is not in the sample and LVALS(1) = @, or
(3) Control is returned to FORTRAN statement number NOFIND because

no match was found for IDSAMP.

SPECIAL NOTES

1,

This routine uses ERTRAN to dynamically assign FORTRAN unit 4 as a
temporary storage unit for the logical operations table. Other than

that, however, SAMSEL is coded in rather standard FORTRAN.

Section I

Columns

2

4-80

SAMPLE SELECTION-1
SAMSEL ATCH
SAMPLE SELECTION

VARIABLE INTERACTION CARD

Number of variable ranges used. (Maximum of 9) This also

specifies the number of cards in Section II.

Variables and operators optionally nested in parens.

OPERATORS - Two logical operators may be used. These will
perform a logical "AND" or a logi~al "OR". These
operators are denoted by the following special
characters:

Logical "AND" is denoted by "&".
Logical "OR" is denoted by ":" (Colon).

VARIABLES - The variable names may be abbreviated to least
number of significant characters. For examp{g,
C007 may be written "C7", V020 may be written
"v20", etc.

PARENS - 1f used, the parens must appear in matched pairs.
The use of parens will cause the enclosed expression
to be evaluated prior to all lesser or non-enclosed
expressions. The normal method of evaluating the
logical expressions is to evaluate all expressions
containing "&" (which is the logical "AND") from
left to right, then evaiuate al. expressions
containing ":" (which is the logical "OR"). 1In
other words, a logical "AND" has precedence over a

logical "OR", as is the case in most MATH or LOGIC

139

144

SAMPLE-SELECTION-2
SAMSEL ATCH

Systems. Parens may be used for readability or
to override the normal hierarchy.

Section II VARIABLE SPECIFICATION CARD (one card per variable)

Columns
2 1 = The variable is 1-6 characters in size
2 = The variable 1s 7-12 characters in size
blank = The variable is computed (Cxxx)
4= 7 Variable identification (Vxxx or Cxxx)
9-80 Variable low and high ranges. Values must be left adjusted in
their fields. Both low and high must be specified.
If cc 2 i8 1: Punch low in cc 9-14, high in cc 15-20.
1f cc 2 18 2: Punch low in cc 9-20, high in cc 21-32.
I1f cc 2 1s blank: Same as 2 except values must coatain a
decimal point.
EXAMPLES

If CO07 = Number of non-zero task responses, V003 = Grade.
3 C7&V003:V3
C007 400. 683.
1 voo3 1 3
1 Voo3 4 9
Then this setup will select all Airman First and below who perform between
400 and 683 tasks and all Sergeants and above regardless of the number of

tasks they perform.

SUBROUTINE IDENTIFICATION

Name SETUP (Standard File Setup and Assignment Routine)
Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

SETUP is the highest level subroutine in the file assignment package.
Removing or changing SETUP will obsolete the following subroutines:
ASGA, ASGAM, ASGC, ASGCM, AUTORV, CYCLES, DKSTAT, FACREJ, JDCOPY,
JDEOF, RPCOPY, RPEOF, STATUS.
Generally, SETUP establishes the relationship between the filenames on
the FILENAMES card and corresponding FORTRAN units in the calling seauence.
Additional FORTRAN scratch units may be defined which are unrelated to
the filenames on the FILENAMES card.
This subroutine, or some similar version, is called by every main program
in the CODAP system if any files are involved.
ENTRY POINTS
1. SETUP
CALLING SEQUENCE
1. CALL SETUP (I1,12,13,14,15,16,J1,J2,J3,J4,J5,NREP)
a, Inputs
(1) 11 through I6 are binary integers in the range (1¢-28) denoting
the FORTRAN unit to be associated with the corresponding
filename on the FILENAMES card.
(2) J1 through IS5 are binary integers normally in the range 224
denoting FORTRAN mass storage scratch units te be assigned.
(3) NREP is for output only,

141
146

b. Outputs

SETUP-2

(1) The FILENAMES card is read from the card reader.

(2) For an I value = 25-28 a Report or Job Description file or

files is assigned. If the I value is:

(a)

(b)

(c)

(d)

NOTE:

25: A new copy of the Job Description is created by
assigning the most recent copy of the file to FORTRAN
unit 27, assigning the oldest copy to unit 25 and copying
from 27 to 25. The most recent copy on 27 is released
and unit 25 is left mounted to receive additional Job
Descriptions., (See CYCLES, JDCOPY, .JDEOF). Note: This
action is performed onlv in the SETUP9 version, but is
included her¢ for documentation., SETUPY9 was created
because this copying requires 5000 words of core but can
only be called by JOBSPC or JOBGRP,
26: Similar to the above except the Report file is
used. Unit 28 has the most recent copy and 26 becomes
the new copy. This action is performed for each run
which contains at least one program which writes to the
Report file, (See CYCLES, RPCOPY, and RPEOF)
27: The most recent copy of the Job Description file is
assigned for input only. (See ASGAM)
28: The most recent copy of the Report file is assigned
for input only. (See ASGAM)
An "M" guffix and cycle number are added to the filename
found on the FILENAMES card for all assignments in

this range (25-28),

1.7

(3)

(4)

(5)

(6)

7

(8)

(9)

SPECIAL NOTES

SETUP~-3

For ¢1 I value = 1¢-14, an input file is assigned and the
FORYRAN unit number relationship is established. (See ASGA)
For an I value = 15-19, a new catalogued tape is assigned

for output and the FORTRAN unit number relationship is
established (See ASGC), or if the filename is eaual to
'SCRATCH', a scratch tape with the proper FORTRAN unit
designation is assigned.

For an I value = 2¢-24, a scratch tape with the proper

FORTRAN unit will be assigned.

For an I value less than 1§ (other than @) or greater than

28 an error message is printed and the run aborts.

For an I or J value equal to @, no action is taken. Note:
FORTRAN unit @ cannot be assigned to a file since the UNIVAC
FORTRAN V convention sets FORTRAN units ¢ and 3¢ as the

reread units. This convention could be overridden, but is

not within the CODAP system.

For any value of J, an attempt is made to assign a temporarv
macs storage scratch file, If the J value is not in the range
1-29 an error occurs. Moreover, no check is made to see if the
1 and J values conflict.

NREP is a binary integer set equal to the last report sentinel
on the Report file if and only if an I value of 26 is used and
a valid Report file was speéified on the corresponding field

of the FILENAMES card.

1. This subroutine will undoubtedly be replaced by any installation which

aoes not have a UNIVAC. This documentation 1is provided to ease the

rewriting involved.

143

148

SETUPS-1

SUBRO'ITINE IDENTIFICATION
Nauw SETUPS5 (File Assignments for EXTRCT)
Language FORTRAN V
Date Nov 73
Programmer Weissmuller
FUNCTION
SETUPS is identical to SETUP except an I value in the range 15-19 will
create a new 3-reel "M" suffix file rather than a normal single reel
file. (Ref SETUP: CALLINGC SEQUENCE 1bh(4) - See ASGCM)
ENTRY POINTS
1, SETUPS
CALLING SEQUENCE
1. CALL SETUPY (I1,12,13,14,15,16,J1,J2,73,34,35,NREP)

See SETUP

. 144 , .
- ERIC L

SETUP9-1

SUBROUTINE IDENTIFICATION

Name SETUP9 (File Assignments for JOBGRP and JOBSPC)

Language FORTRAN V

Date Jun 74
Programmer Weissmuller

FUNCTION
SETUFY is {dentical to SETUP except it allows a new copy of the Job
Description file to be created, Because the copying procedure requires
5000 additional words of core, this routine was formed from the stundard

SETUP,

ENTRY POINTS
1. SETUPY
CALLING SEQUENCE
1. CALL SETUP9 (I1,12,13,14,15,16,J1,12,J3,J4,J5,NREP)

See SETUP

145

SHIFT-1

SUBROUTINE IDENTIFICATION

Name SHIFT (Shift Characters Right Within Words)

Language FORTRAN V
Date Dec 73
Programmer Weissmuller
FUNCTION
SHIFT causes a given number of the leftmost characters of each of a
specified number of words in an array to be right justified with preceding
blanks within the same words.
ENTRY POINTS
1. SHIFT
CALLING SEQUENCE
1. CALL SHIFT (NCHAR,NWORD,IRAY)
a. Inputs
(1) NCHAR [s the number of characters, taken from the left, to be
shifted right. 1f NCHAR is not between 1 and 5, the subroutine
takes no action.
(2) NWORD is the number of words, starting with the first word of
the array, to be shifted within,.
(3) 1IRAY is the array (name),
b. Outputs
(1) For each word, 1-NWORD, of array IRAY the leftmost NCHAR
characters become the rightmost NCHAR characters with blanks
preceding. Of course, the original rightmost character(s) are
last.
SPECIAL NOTES
1. SHIFT assumes a 6-character word and used the FORTRAN ENCODE, but is

otherwise machine independent
146
re4
1. o2

S$1S0-1

SUBROUTTNE IDENTTFICATION

Name SISO (Source Input, Source Output Routine)
Language 1108 Assembler
Date Sep 73

Programmer Rogers

FUNCTION
SISO is a set of subroutines which allows a program to read, update and/or
write elements in a mass storage program file. SISO is only used in PROGEN
which generates a FORTRAN V program element. Calls to these routines
may be replaced by either punching cards or writing these card images to
another mass storage or tape file. This may force PROGEN to become a

two step operation: Program generation then, in another run, compilation

and excution.
ENTRY POINTS
1. See Attachment.

CALLING SEQUENCE - See Attachment.

o 147

o

Entry Points

SPREP
SPOST
SIOPN
SICLS
SIGET
SOOPN
SOCLS
SOPUT

Entry Points

PARTBL

SISO ATCH

| LIBZ.SISO (UNIVAC 1108 Assembler Language Subioutine)

~- Routines

Call the Pre-Processor routine

Call the Post-Processor routine

Open the Source Input file

Close the Source Input file

Get the next Source Input record

Open the Source Output file

Close the Source Output file

Put a record on the Source Output file

-- Data

Parameter table used by the Source Input routine and the Source
Output routine.

General Information:

The registers used in these routines (A@-A3, R1l) are not saved or
restored by the subroutine, X11 is always the linkage register.

These routines all have FORTRAN compatible calling sequences.

Any errors will cause a message to be printed and the run aborted.

148

1.5

SISO ATCH

SPREP -— Call the Pre~Processor routine

This routine calls the EXEC 8 routine PREPRO to initialize the Parameter
Table, PARTBL. It returns a list of the options specified on the processor
call card in fieldata, left adjusted, with six characters per word.

CALL SPRFP (OPTLST)

OPTLST -~ An array to receive the option list. It should be filled with
zeroes or blanks before the call. The specified options are
alphabetical, left to right.

SPOST —- Call the Post-Processor routine

This routine calls the EXEC 8 routine POSTPR to reset the assignment
status of program files.

CALL SPOST
SIOPN -— Open the Source Input file

This routine provides initialization functions for getting Source Input
records from the input program file.

CALL SIOPN

SICLS —— Close the Source Input file

file.
SIGET -- Get th& next Source Input record

This routine returns the next logical record in the input file to the
user's area, along with a flag indicating new or removed cards. When End-of
File is detected, the length parameter is set to zero.

CALL SIGET (REC,LEN,FLAG)

REC.....The receiving area for the record,

LEN.....The length in words of the receiving area,

FLAG....The flag indicating new or deleted images in the first three characters.
Possible values are:

"NFW" indicating a new image.

"-xx" where xx is a two-digit decimal number indicating the number of
images deleted prior to this image. This number cannot exceed 63.
1f more than 63 images are deleted, it will only show 63.

"BYY" if neither of the above, ille value is spaces.

SISO ATCH

~SOOPN -~ Open the Source Output file

This routine provides initialization for output to a program file.
CALL SOOPN

S0CLS -~ Close the Source Output file

This routine provides termination functions for closing the Source
Output file.

CALL SOCLS
SOPUT ~~ Put a record on the Source Output file

This routine transfers an image from the user's area to the source output
area.

CALL SOPUT (LEN,REC)

LEN.....Length of the output image.
REC.....The image area to be output.

STATS-1

SUBROUTINE IDENTIFICATION
Name STATS (Statistics on Task Responses)
Language FORTRAN V
Date May 74
Programmer Barton/Weissmuller
FUNCTION
STATS is a subroutine which was added to INPSTD in order to provide task
response statistics used to predict the running time of OVRLAP.
ENTRY POINTS
1. STATS
2. STATSS
CALLING SEQUENCE

1. CALL STATS (NZTSK)

a. Inputs
{1) NZTSK is a binary integer count of the number of non-zero
task responses made by the current case.
b. Outputs
(1) The statistics are accumulated for each call,
2. CALL STATSS (AMEAN,SD,MIN,MAX,ISUM,NCASE)
a. Inputs
(1) Successive calls to STATS
(2) AMEAN, SD, MIN, MAX, ISUM, and NCASE are for output only.
b. Outputs
(1) AMEAN is the floating point value representing the mean of
all values passed to STATS.
(2) SDh is the floating point value of the standard deviation of

the values passed.

151

£
.y

SPECIAL NOTES

STATS-2

MIN is a binary integer equal to the lowest NZTSK passed

to STATS.

MAX 1is a binary irteger equal to the highest NZTSK passed

to STATS.

ISUM is a binary integer summation of all NZTSK values passed
to STATS.

NCASE is a binary integer count of the number of times STATS

was called.

1. STATS is coded in standard FORTRAN

STATUS~1

SUBROUTINE IDENTIFICATION

Name STATUS (Tape File Status)
Language 1100 Assembler
Date Sep 73

Programmer Weissmuller

FUNCTION
STATUS is the subroutine used by all the "assign file" subroutines. This
is the routine which actually tests to see if a requested tape file is
already assigned to the run. See DKSTAT for a similar function on mass
storage files.

ENTRY POINTS
1. STATUS

CALLING SEQUENCE

1. CALL STATUS (ID,IREEL1,IREEL2,IFLAG)
a. Inputs
(1) ID is a two word array which contains the FORTRAN unit left
adjusted in FIELDATA in the first word and blank filled
through the second word. The association between the FORTRAN
unit and the external filename must be established prior to
this call.
(2) TIREEL1,IREEL2, and IFLAG are for output only.
b. Outputs
(1) IRDCL1 will contain the 6 character FIELDATA reel ID of the
first reel of the file if IFLAG = @, otherwise IREEL1 will be

a binary integer zero.

Q . 2583

STATUS-2

(2) 1IREEL2 will contain the 6 character FIELDATA reel ID of the
second reel of the file if IFLAG = @# and there are at least
two reels in the file, otherwise IREEL2 will be a binary
integer zero.

(3) IFLAG is a binary integer flag word., If IFLAG = @, the file
was already assigned when the call was made, and the reel IDs
above will contain the proper information., If, however,
IFLAG = 1, the file in question is not currently assigned and
the reel IDs are not set.

SPECIAL NOTES
1. Being part of the file assignment package, this subroutine will either

be replaced or deleted.

Q 154
MC Lasdd

SUBRTN-1

SUBROUTINE IDENTIFICATION

Name SUBRTN (Assembler Subroutine Support Package)
Language 1100 Assembler
Date Oct 73

Programmer Rogers
FUNCTION

SUBRTN is a large set of assembler subroutines used at this installation.

It is included because some programs were adopted from outside the CODAP

area and required this package. * Primarily these routines are used in

CFHIO, SISO, and READPF, all of which are themselves 1100 Assembler programs.
FNTRY POINTS

1. See Attachment

CALLING SEOUENCES - See Attachment for usage.
SPECIAL NOTES ’

1. The entry point ZERD has been modified within CODAP to be ZER@ to avoid

an entry point conflict,

155

“ 160

SUBRTN ATCH

LIBZ.SUBRTN (UNIVAC 1108 Assembler Language Subroutines)

Entry Points -- Data Handling

BINFD Binary to Fieldata (no zero suppression)

BINOCT Binary to Octal

DATETIME Current date and time of day

FDBIN Fieldata to Binary

MOVBIN Binary to Fieldata (left adjusted)

MOVFD Move Fieldata character string

MOVFD1 Move Fieldata character string (Sets A3 and X8)

OCTBIN Octal to Binary

ZERO Binary to Fieldata with zeruv suppression
Entry Points ~- Free Format Scan

ISCAN Initialize and scan ’

RESSCN Restore scan pointers

SAVSCN Save scan pointers

SCAN Scan for one field

SETSCN Set scan parameters

Entry Points -~ Character Handling

GETC Get a character
PUTC Put a character
PUTCR Put a character (Reverse)
Entrv Points ~- Data
BIN Binary value of "FIELD"
CARD Input area for SCAN
DATE Output from DATETIME
FIELD Output (FD) from SCAN (left justified, space fill)
INFO Scan information flags
TIME Output from DATETIME

General Information:

All partial word parameters to these subroutines require the following
forms directive:

ARG FCRM 12,6,18

All registers used by the data handling and scan subroutines will be
saved and restored in the subroutine. X11 is always the linkage register.

The character handling tables (GETC, PUTC, PUTCR) require initial
register scttings.

These subroutines are NOT compatible with FORTRAN's calling sequence.

156

162

SUBRTN ATCH

BINFD -~ Binary to Fieldata

This routine converts a signed binary integer value in memory to a
Fieldata character string. The result will have leading zeros and the sign
will be placed in the leftmost character position if the binary value is
negative. Positive numbers have a zero in the leftmost position.

1f the receiving storage area is too small to accomodate the value and
the sign, it will be truncated with no error indication given.

LMJ X11,BINFD
ARG SC,#,AREA
ARG NC,X,BINVAL

SCieeesss.Starting character position of the receiving area
AREA.....Base address of the FD area

NCeeeeo..Number of characters in the receiving area
XeeeeooooCptivual X register if BINVAL is indexed
BINVAL...Location of the binarv value

Example:
LMJ X11, BINFD
ARG 62,8,LINE1
ARG 9,0 ,NUM NUM = 34624

Characters 62-7¢ of LINEl will contain @@$634624. 1If NUM contained
-34624, characters 62-7§ would contain -@pp34624.

157

SUBRTN ATCH

BINOCT -~ Binary to Octal

This routine converts the contents of one word of storage to its 1~12
digit octal equ _.ent in Fieldata,

If the receiving storage area is less than 12 characters the value will
be truncated to fit,

IMJ X11, BINOCT
ARG SC,P,AREA
ARG NC,X,BINVAL

SCesavesoStarting character position of the receiving area
AREA.....Base address of the FD area

NC....s..Number of characters in the receiving area
XeesesessOptional X register if BINVAL is indexed
BINVAL...Location of the binary value

Example:

IMJ X11,BINOCT
ARG 43,p,HDR
ARG 6,§,CTLWRD CTLWRD = (idodg@1449221

Characters 43-48 of HDR will contail $4@$221, If CTLWRD contained -1,
characters 43-48 would contain 777776,

SUBRTN ATCH

DATETIME -- Current date and time of day

This routine picks up the current date and time of day from EXEC 8 and
converts them to a form suitable for printing.

M X11,DATETIME

The results are as follows with trailing spaces in DATE+2 and TIME+1

DATE YYMMDD
DATE+1,DATE+2 DD MMM YY
TiME, TIME+] HH :MM: SS

16%

159

SUBRTN ATCH

FDBIN -- Fieldata to Binary

This routine converts a Fieldata character string to a signed "inary
value. The character string is always scanned, leading spaces are ignored
and FDBIN stops scanning on the end of the field or a trailing space.

Two modes of operation are possible, (1) nonediting and (2) editing. Only
in editing mode will a numeric test be performed on the nonblank characters,

IMJ X11,FDBIN NONEDITING MODE
ARG SC,®,AREA
ARG NC,X,BINVAL

SC....sssStarting character of the input character string
AREA.....Base address of the FD area

NC..ves. Number of characters in the input string
X.eeesessOptional X register if BINVAL is indexed
BINVAL...Resulting signed binary value

IMJ X11,FDBIN EDITING MODE
ARG SC,E,AREA

ARG NC,X,BINVAL

+ ERRXIT

EceeoessesAny nonzero value
ERRXIT...Alternate return point if the editing results in an error condition.
Under this circumstance, BINVAL will contain one of the following values:

@ = FDVAL was all spaces or only a sign
1 = At least one nonnumeric character was found
2 = The sign does no. precede the value
3 = The number is more than 10 digits in length

Example:
IMJ X11,FDBIN
ARG 1,8, FIELD
ARG 12,¢,BIN FIELD=" -6 "

Location BIN will contain 777777777771 If FIELD contained
2817", BIN would contain ¢¢¢¢B¢Gﬂ54¢18.

165

Q 160

SUBRTN ATCH

MOVBIN -- Binary to Fieldata (Left Adjusted)

This routine converts a signed binary value to Fieldata and stores all
significant digits (plus the minus sign for negative values) left to right
beginning with the starting character specified in the calling sequence.
The length of the character string is returned to the calling program.

MOVBIN uses subroutine ZERO to make the initial conversion prior to
storing the character string.

IMJ X11,MOVBIN
ARG SC,$,AREA
ARG NC,X,BINVAL

SCe.ees..Starting character position of the receiving area
AREA.....Base address of the FD area

NC.......Number of characters stored by MOVBIN
Xeeeeeeo.Optional X register if BINVAL is indexed
BINVAL...Location of the binarv value

Example:

IMJ X11,MOVBIN
ARG 75,P,MSG
ARG #,8,INCT INCT = 90pofipg30971g

Characters 75-79 of MSG will contail "12345" and the number 5 will be stored
in T1 of the second parameter. If INCT had contained 7777777477¢68, characters
75-88 of MSG would contain -12345 and the number 6 would have been stored in
Tl of the second parameter.

SUBRTN ATCH

MOVFD & MOVFD]1 ~-- Move Fieldata character string

This routine will move a Fieldata character string of up to 4@95 characters
in length from one area of memory to another,.

MOVFD and MOVFD1 use both the GETC and the PUTC routines to move data.

MOVFD1 is identical to MOVFD with the exception that registers A3 and
X8 will not be restored to their original contents. Thev will be set to the
word and byte position of the first charac,2r following the receiving field.

LMJ X11,MOVFD (or MOVFDI1)
ARC NC,FBYTE, FWORD
ARG NB,TBYTE,TWORD

NC.......Number of characters to be moved

FBYTE....1st bvte position (@#-5) within FWORD

FWORD....Starting address of the sending (from) field

NB.......Number of blanks (spaces) to move following the character string
TBYTE....lst byte position (#-5) within TWORD

TWORD....Starting address of the receiving (to) field

Example:

IMJ X11,MOVFD
ARG 32,0,MSG
ARG 9,4, LINE+3

Characters 1-32 of MSG will be moved to characters 18-49 of LINE. If Tl
of the second parameter had been 5, then characters 5@-54 would have been set
to spaces after the move.

IMJ X11,MOVFD1
ARG 17,H,M1
ARG 1,p,CTMSG

Characters 1-17 of M1 will be moved to characters 1-17 of CTMSG followed
bv one space. A3 and X8 will be pointing to character position 19 of CTMSG.
In this case, the calling program could con‘ inue moving data via the PUTC
routine.

162

SUBRTN ATCH

OCTBIN -- Octal to Binary

This routine will convert a Fieldata (FD) character string to a binarv
value, Each digit will be edited for validity (@-7). Any out of range
character will terminate the scan an4 the binary value collected to that
point will be saved.

IMJ X11,0CTBIN
ARG SC,®,FDVAL
ARG NC,@,BINVAL

SC.......Starting character within FDVAL
FDVAL....Fieldata value starting address
NC.......Length of ¥DVAL

BINVAL...Result of conversion

Example:
Mg X11,0CTBIN
ARG 5,0, LINE1
ARG 6,0,80M

If LINE1l contains 'B¥¥¥73125K¥E', NUM = #73125. The blank after the 'S’
is not in range, so the scan terminates.

I

SUBRTN ATCH

ZERO -~ Binary to Fieldata with Zero suppression

This routine converts a signed binary integer value in memory to a
Fieldata character string. The result will be right adjusted in the receiving
field with all leading zeros removed. The units position of the number is
always printed. The minus sign on negative numbers will be "floated" to the
first position in front of the most significant digit,

If the receiving storage area is too small to accomodate the value and
the sign, it will be truncated with no error indication given.

IMJ X11,ZERO
ARG SC,®,AREA
ARG NC,X,BINVAL

SC......sStarting character position of the receiving area
AREA.....Base address of the FD area

NC.......Number of characters in the receiving area
Xeeesesoo.Optional X register if BINVAL is indexed
BINVAL...Location of the binary value

Example:
IMJ X11,ZERO
ARG 62,0,LINE]
ARG 9,¢,NUM NUM = binary 34624

Characters 62-7f of LINEl will contain WWW¥34624. If NUM contained a
negative 34624, characters 62-7¢ of LINEl would contain Y¥¥-34624,

269

164

SUBRTN ATCH

ISCAN -- Initialize and Scan

This routine initializes the pointers for SCAN and performs the first
scan on contents of CARD. As each new image is placed into CARD, the scan
pointers must be reset to the beginning via ISCAN.

ISCAN will initialize and perform the first scan via a call to SCAN
before returning. Therefore, the scan data fields of P'N, CARD, FIELD and
INFO apply to both ISCAN and SCAN.

A call to the SETSCN routine may be made prior to a call to ISCAN,

IMJ X11,ISCAN
+ LENGTH

LENGTH.....Location of the length of the current image

Examp le:
LA Ag, (EOF, CARD)
ER READ$

SA,H2 A§,LEN

IMJ X11,ISCAN
+ LEN

The read symbiont will return the length of the card (in words) via Ag.
It i{s in turn passed to the ISCAN routine,

165

SUBRTN ATCH

RESSCN -~ Restore scan pointers
This routine restores the word and byte position saved by SAVSCN,
LMJ X11,RESSCN

After calling RESSCN, a call to SETSCN is required.

SAVSCN —- Save scan pointers

This routine saves the current word and byte position of the SCAN
subroutine,

IMJ X11,SAVSCN

166

SUBRTN ATCH

SCAN ~-- Scan the input image for one field

This routine performs a free format scan of the image in CARD beginning
with the position of the last call to ISCAN or SCAN.

The scan pointers must be initialized by a call to ISCAN, then, all
subsequent calls to SCAN will leave the pointers set for the next entry,

IMJ X11,SCAN

The following Storage areas will contain the results of the scan operation:

FIELD....Fieldata value left adjusted with trailing spaces
BIN......Binary value of FIELD if it is numeric
INFO.....Scan information flags

T1....Length of the FD value in FIELD
$3....Type of field

1 = Alphanumeric

2 = Numeric

3 = Literal

4 = Blank (null) field
S4....EOC (End of Card flag)

= Not end of card

1 = End of card
$5....Subscript of PUNCT in punctuation list
S6....PUNCT (Punctuation mark which terminated the scan)

Example:

Assume that the image in CARD is "CARD (123)

1st scan (ISCAN): FIELD = "CARD"

BIN = ¢
INFO = ¢@ps 91 ¢6 ¢4 51

2nd scan (SCAN): FIELD = "123"
BIN = 123
INFO = QP93 02 91 05 49

SUBRTN ATCH

SETSCN -- Set Scan Parameters

This routine sets the free format scan parameters STARTC, PCTL and NPCT
for ISCAN and SCAN. SETSCN must be called prior to a call to ISCAN.

The two items set by SETSCN are the starting position and the punctuation
list. They are the tirst and second parameters for SETSCN, respectively.

IMJ X11,SETSCN
ARG BYTE,(,WORD or + ¢
ARG NPCT,$,PLIST or + §

BYTE.....1lst Bvte with word ({-5)

WORD.....1lst Word of the scan area (within CARD)
NPCT.....Numher of punctuation marks in PLIST
PLIST....Punctuaiion mark list address

If 1st parameter = + § SETSCN uses #,0,CARD
If 2nd parameter = + $ SETSCN uses 9,¢,PLIST

PLIST = ',' NPCT =

./l
l(l
vy
Ly

l+l
L.

(Yolo JL N R SRV, B SN S B o

Note: The punctuation mark list contains one punctuation mark per word (s6).
Example:

IMJ X11,SETSCN
+
ARG 2,9 ,NEWPCT

.e

NEWPCT + !

+ v;|

The starting character position for scanning the image in CARD will remain
at its normal position of character 1 and the punctuation mark list will be

changed to comma and equal.

It should be noted here that a space is always a scan terminating character
and that literals bounded by quotes are always defined. The character octal 76

may not be used since it is the end of card flag.

SUBRTN ATCH

GETC, PUTC, and PUTCR -- Character handling tables

These routines retrieve (GETC) or store (PUTC and PUTCR) character
strings from and into memory. When moving over a word boundary, X6 is
destroyed by the update routine.

GETC.....1X X7, (1,WORD)

LA A2, (1,BYTE)

EX GETC,*A2 A4 contains the mext character
PUTC.....LX X8, (1, WORD)

LA A3, (1,BYTE)

EX PUTC,*A3 $6 of A4 is stored
PUTCR. .. .LX X8, (-1,WORD)

LA A3, (1,5-BYTE)

EX PUTCR,*A3 S6 of A6 is stored

WORD.Beginning word address of ‘he character string
BYTE.....Beginning byte within WORD ($-5)

Example:

X7, (1,MSG)
X8, (1,LINE+2)
A2,(1,9)
A3,(1,3)
R1,14
GETC.*A2
PUTC,*A3
R1,$-2

SHOEEEEE

o

The 15 characters beginning with character 1 of MSG will be moved to the
15 characters beginning with character 16 of LINE.

169

TABL3-1

SUBROUTINE IDENTIFICATION
Name TABL3 (Table 3 of FORTRAN V Sort Package)

Language 1100 Assembler

Date —
Programmer UNIVAC
FUNCTION

TABL3 is a UNIVAC provided subroutine which is included for reference only. |
It is part of the FSORT - LINK package which a a FORTRAN V interface to the
UNIVAC utility Sort Package. This routine provides 16000 words of core and
200,000 words of mass storage for sorting. TABL3 is the largest non-tape
space reservation subroutine of the TABL1 - TABL6 series and is the only
one used in the CODAP systen.
ENTRY POINTS
1. SOPEN3
CALLING SEQUENCE
1. CALL SOPEN3 ($RET,$ESORT ,MAXLRL,MAXLEN,ITABL)
a., Inputs
(1) RET is the FORTRAN statement number to return to upon
completing this call.
(2) ESORT is the FORTRAN statement number to return to after
SSORT of LINK is called and all sorting is complete.
(3) MAXLRL is a binary integer deaoting the largest record length
in words tc e passed via SRREL to the sort routine.
(4) MAXLEN is . aary integer denoting the maximum number of

words required to hold all sort fields (normally 1 or 2).

170

170

TABL3-2

(5) 1ITABL is ar array containing the control information for the
sort. 1Its contents are set by a data statement and necessarv
changes are made by calling FSORT or FSORT2. Each sort field
i{s defined by six entries in the array and an integer value of
99999 signals an end to the sort fields. All values are binary
integer and denote the following attributes of the sort:

Entry 1: Word # of sort key (=1 or 2)
Entry 2: Bit position of sort key (Left to Right, =1)
Entry 3: Number of bits in sort key (=36=full word)
Entry 4: Type of sort: (usually @ or 1)
= alphanumeric
1 = binary 1108 format
2 = gigned decimal
Entry 5: Order of sort
= ascending
1 = descending
Entry 6: Significance number
1 = Major sort field
2 = Minor sort field
b. Outputs

(1) Area in core and mass storage 1ire reserved for the sort.

(2) Return address from SSORT 1is established.

(3) Tre entry points in LINK may be called.

SPECIAL NOTES
1. This is a highly specialized subroutine serving to allocate space for
the sort package. This routine will undoubtedly be replaced or deleted

at any non-UNIVAC installation.

171

176

TMICSC-1

SUBROUTINE I[DENTIFICATION
Nane ITMTLSe (Transmit Array)

Language FORTRAN V

Date May 73

Programmer CSC/Weissmuller

FUNCTION
IMTCSC causes a specified number of words from one array to be copied into
a second array,

ENTRY POINTS

1. TMTCSC

CALLING SEQUENCE
1. CALL TMTCSC (NWORDS,ITO, IFROM)
a, Inputs
(1) NWORDS is the number of words, starting with the first word in
each array, to be transmitted.
(2) 1ITO *s the receiving array.
(3) TIFROM is the sending array.
b. Outputs
(1) The first NWORDS words of ITO are made identical with the
first NWORDS words of IFROM.
SPECIAL NOTES
1. This subroutine is an elementary FORTRAN DO loop which replaces an IBM
7040 Assembly Language subroutine widely used in CODAP,
2. By using a subscript other than (implied) 1 in the ITO or IFROM argument
of the subroutine call, any block of words may receive, or be sent as,

the NWORDS words of data. In particular, different sections of the same

172

ERIC e é

TMTCSC-2

ITO array may be used to receive different “ypes of information. For
example, in CODAP this subroutine is used to gather several different

arrays and, in a series of calls, place them into a single array.

173

TREAD-1

SUBROUTINE IDENTIFICATION

Name TREAD (Tape Read of FORTRAN Print)
Language 1100 Assembler
Date Oct 73

Programmer Weissmuller
FUNCTION
TREAD will read a FORTRAN written print file from a tape. This subroutine
is used primarily for reading, copving, or printing the report file. See
DREAD for a similar function on mass storage files.,
ENTRY POINTS
1. 1READ
2. REWIND
CALLING SEQUENCES -
1. CALL TREAD (NWORDS,LINE,JSEQ, $SNEW,S$EOF)
a. Inputs
(1) NWORDS is for output only.
(2) LINE is a 22 word array for output only.
(3) JSEQ is for output onlv,
(4) NEW is the FORTRAN statement number to fump to if a new
report sentinel is read.
(5) EOF is the FORTRAN statement number to jump to if an end of
file is encountered iu an attempt to read the next line.
b. Outputs

(1) NWORDS is a binary integer which is the number of words in

the print image array LINE.

SPECIAL

1.

TREAD-2

(2) LINE contains the next print line read. It has a maximum

length of 22 words and may be printed thusly:
WRITE(6,100) (LINE(I),I=1,NWORDS)
100 FORMAT (22A6)

(3) JSEO is a binary integer which it set equal to the index
number of the current Report beingz read. This Qalue is set
only when the $NEW return is used.

CALL REWIND
a. Inputs - None

. Outputs

(1) The print image file read by TREAD is rewound.

NOTES
This is a very machine dependent subroutine and should either be
replaced or eliminated. The primary function of this subroutine is
to read print images from tape and in particular, print images in
Report File Format. [Report File Format simply means that individual
reports are preceded by a sentinel of the form "BEGIN REPORT' ,N where
N is a binary integer written out in 1A6 format.]
Both TREAD and DREAD assume FORTRAN UNIT 28 is the print image file.

This association must be established prior to calling either subroutine.

ZERBLK-1

SUBROUTINE IDENTIFICATION

Name ZERBLK (Change Zeroes to Blanks)

Language FORTRAN V
Date Mar 74
Programmer Weissmuller
FUNCTION
ZERBLK changes certain leading FIELDATA zeroes on INPSTD Task/Duty Title
Cards to blanks.
ENTRY POINTS
1. ZERBLK
CALLING SEQUENCE
1. CALL ZERBLX (ID,IDUT)
a. Inputs
(1) 1ID is an 1ll-word array containing a Task/Duty Title Card image.
(2) 1IDUT is for output omnly.
b. Outputs
(1) 1IDUT returns the duty character, and
(2) Any leading zerces in the task number are changed to blanks, OR
(3) 1If the task number field contains invalid characters the program
aborts after a diagnostic.
SPECIAL NOTES
1. The subroutine is specially written for use by INPSTD.
2. ZERBLK employs subroutines BCDBIN and ERTRAN, and the FORTRAN ENCOPY,

DECGDE, and “R" format specification.
184

176

ZERO-1

SUBROUTINE IDENTIFICATION

Name ZERO (Store Floating Point Zeroes into Array)
Language FORTRAN V
Date May 73

Yrogrammer CSC/Weissmuller
FUNCTION
ZERO fills a specified number of words in an array with floating point
zeroes.
ENTRY POINTS
1. ZERO
CALLING SEQUENCE
1. CALL ZERO (ARRAY,NWORDS)
a. Inputs
(1) ARRAY is an array for floating point values.
(?) NWORDS is the number of words, starting with the first word
in the array to be zero filled.
b. Outputs
(1) The first NWORDS words of ARRAY are set equal %o zero.
SPECIAL NOTES
1. This subroutine is an elementary FORTRAN DO loop which replaces an
IBM 7040 Assembly Language subroutine.
2. By using & subscript other than (implied) 1 in the ARRAY argument of

the subroutine call, any block of words mav be set to zero.

i82

177

ZEROI-1

SUBRCUTINF IDENTIFICATION

Name ZEROI (Store Integer Zercves into Array)

Language FORTRAN

Date Mayv 73
Programmer CSC/Weissmuller
FUNCTION
ZEROI fills a specified number of words in an arvay with integer zeroes.
ENTRY POINTS
1. ZEROI
CalLING SEQUENCE
1. CALL ZEROI (IRRAY,NVORDS)
a. Inputs
(1) 1IRPRAY is an array for integer values.
(2) NWORDS is the number ol words, starting with the first word
in the array to be zero filled,
b. Outputs
(1) The first NWORDS words of IRRAY are set equal to zero.
SPECTIAL NOTES
1. This subroutine is an elementary FORTRAN DO loop which replaces an

IBM 7040 Assembly Language subroutine.

2. By using a subscript other than (implied) 1 in the IRRAY argument

of the subroutine call, any block of words may be set to zero.

Q 178

