
DOCUMENT RESUME

ED 105 197 CE 003 485

AUTHOR Weissmuller, Johnny J.; And Others
TITLE CODAP: Programmer Notes for the Subroutine Library on

the Univac 1108.
INSTITUTION Air Force Human Resources Lab., Lackland APB, Tex.

Computational Sciences Div.
REPORT NO AFHRL-TR -74 -85
PUB DATE Oct 74
NOTE 183p.; For related volumes, see CE 003 486-487

EDRS PRICE HF-10.76 HC-S9.51 PLUS POSTAGE
DESCRIPTORS Career Ladders; Comprehensive Programs; *Computer

Programs; Informaticn Processing; *Information
Retrieval; Information Services; Information Sources;
*Information Systems; Job Analysis; Occupational
Clusters; *Occupational Information; Occupational
Surveys; Task Analysis; *Technical Reports

IDENTIFIERS Air Force; CODAP; Comprehensive Occupational Data
Analysis Programs; UNIVAC 1108

ABSTRACT
The Comprehensive Occupational Data Analysis Programs

(CODAP) package is a highly interactive and efficient system of
computer routines for analyzing, organizing, and reporting
occupational information. Since its inception in 1960, CODAP has
grown in tandem with advances job analysis methodology and is now
capable of answering most of the wide variety of.management questions
which confront CODAP users. The documentation of the Univac 1108
CODAP system is being published in a series of three technical
reports covering the control card and programing aspects of the
system. The document contains programer notes on 100 library
subroutines used by the current Univac 1108 version of CODAP. After a
table of entry points, the write-ups appear in alphabetical order on
subroutine name. Each write-up includes a summary of subroutine
functions and a list of entry points. For each entry point, a calling
sequence with descriptions of input and output arguments is provided.
Comments on peculiar requirements for conversion and use of the
subroutine close each write-up. (Author)

I I

VI
usacavasatallarifill
STATIONAL STISTIIIVTEOR

EDUCATION
110S DOCUMENT RAS MIN REPRO
DUCID saacsta as RECEIVED PROM
THE PERSON OTIOROANTRATION OTUGNI
MIND IT POINTS Of VIE* OR OPINIONS
STATED 00 nos aecassaartv REPINE
SENT OF stmt. NATIONAL INSTITUTE OT
EDUCATION simmer OR wax.,

AFIIRL-TR-7445

OAP:
PROGRAMMER NOTES FOR THE SUBROUTINE

LIBRARY ON THE UNIVAC 1101

By

Johnny 1 INaisauallat, S. USAF
elute B. Barton, A1C, USAF

C. R. Mors

COINUTATIONAL SCIENCES DIVISION
Laddand Air Farce Base, TOM W36

October 1974
latoriss newt far Pitied barmy 1973 Soistasabor 1974

APProved foe pubfic release; sistasution unlimited.

C
E

LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE,TEXAS 78235

NOTICE

When US Government drawings, specifications, or other data are used
for any purpose other than a detlmtely related Government
procurement operation, the Government thereby incurs no
responsibility rum any obligation whatsoever, and the fact that the
Government may have formulated, furnished, or in any way supplied
the said drawings, specifications, or other data is not to be regardedby
implication or otherwise, as in any manner licensing the holder or any
other person or corporation, or conveying any rights Of permission to
manufacture, use, or sell any patented invention that may in any way
be related thereto.

This interim report was submitted by Computational Sciences Division,
Air Force Human Resources !Amatory. Lsckbnd Air Force Base,
Texas 78236, under project 7734, with WI Air Force Human Resources
Laboratory (AFSC), Brooks Air Force Base, Texas 78235. Dr.
Raymond E Christal, Chief of Occupational Research Division (OR),
was project monitor, and Mr. William Main, OR, was the work unit
scientist.

This report has been reviewed and cleared for open publication and/or
public release by the appropriate Office of Information (Cl) in
accordance with AFR 190-17 and DoDD 5230.9. There is no objection
to unlimited distribution of this report to the public at large, or by
DDC to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved.

ROBERT A. BOTrENBERG, Chief
Computational Sciences Division

HAROLD E. FISCHER, Colonel, USAF
Commander

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Vets Entered)

REPORT DOCUMENTATION PAGE
READ INSTRUCTIONS

BEFORE COMPLETING FORM
1 REPORT NUMBER

AFHRL- TR -74 -85

2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

I. TITLE (and SubI MO)

CODAP: Programmer Notes for the Subroutine
Library on the Univac 1108

S. TYPE OF REPORT II PERIOO COVERED

Interim Jan 73-Sep 74

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*)

Johnny J. Weissmuller
Bruce B. Barton
C. R. Rogers

0. CONTRACT OR GRANT NUMBER(*)

S. PERFORMING ORGANIZATION NAME AND ADDRESS

Computational Sciences Division
Air Force Human Resources Laboratory
Lackland Air Force Base, Texas 78236

10. PROGRAM ELEMENT. PROJECT. TASK
AREA !WORK UNIT NUMBERS

62703F
77340116

11. CONTROLLING OFFICE NAME AND ADDRESS
HQ, Air Force Human Resources Laboratory (AFSC)
Brooks Air Force Base, Texas 78235

12. REPORT DATE
October 1974

13 NUMBER OF PAGES
180

It. MONITORING AGENCY NAME a aooFtEssot different from Controlling OW40 IS. SECURITY CLASS. (of this report)

Unclassified
15a. DECLASSIFICATION. DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different from :Upon)

I'M SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse side if necessary and letenttly by block number)
Comprehensive Occupational Data Analysis Programs
CODAP Subroutines
Computer Programs hierarchical clustering FORTRAN
occupational survey job descriptions Assembly Language
task analysis job types work analysis

20. ABSTRACT (ConHous on reverse side if nemsary and identity by block number)
The Comprehensive Occupational Data Analysis Programs (CODAP) package is a
highly interactive and efficient system of computer routines for analyzing,
organizing, and reporting occupational information. Since its inception in
1960, CODAP has grown in tandem with advances in job analysis methodology and
is now capable of answering most of the wide variety of management questions
which confront CODAP users. This documentation of the UNIVAC 1108 CODAP
system is being published in a series of 3 technical reports covering the

(SEE REVERSE SIDE)

DD 1 J EDITION OF 1 NOV 61 IS OBSOLETE

4
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (*hen Date Enloe.*

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data [Entered)

Block 20. ABSTRACT (Con' t)

control card and programming aspects of the system. A fourth report is in
preparation by the Occupational Research Division of AFHRL which covers the
research and operational applications of the CODAP system. This document
contains programmer notes on 100 library subroutines used by the current
UNIVAC 1108 version of CODAP. After a table of entry points, the writeups
appear in alphabetical order on subroutine name. Each writeup includes a

summary of subroutine functions and a list of entry points. For each entry
point, a calling sequence with descriptions of input and output arguments is
provided. Comments on peculiar requirements for conversion and use of the
subroutine close each writeup.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Whon Data &stated)

PREFACE

The authors wish to express their gratitude to all those who have

contributed to the preparation of this series of 3 technical reports:

AFHRL-TR-74-83 CODAP: Source Program Listings

AFHRL-TR-74-84 CODAP: Control Card Specifications

AFHRL-TR-74-85 CODAP: Programmer Notes

In particular, the following people have played a vital role in the

development of these documents: Dr. Raymond E. Christal, Chief of the

Occupational Research Division of AFHRL, Mr. William Phalen, also of

that Division, and of course the secretaries, Betty L. Brooks and

Laurel J. Betz, who not only typed but also helped in proofreading.

1

G

FOREWARD

The Comprehensive Occupational Data Analysis Programs (CODAP) System
has been under continuous development for the past fifteen years. In

its current form, it is a joint product of the Computational Sciences
Division and the Occupational Research Division of AFHRL. In general,
the Occupational Research Division has developed input-output specifi-
cations for programs and program modifications, while the Computational
Sciences Division has provided programming services. However, even
this distinction has not always been a clear-cut one, since suggestions
for program improvements have come from individuals in both Divisions.

Since its conception, development of the CODAP system has been under
the general direction of Dr. Raymond E. Christal, Chief of the
Occupational Research Division. Dr. Christal also personally designed
many of the programs and program modifications.

The earliest CODAP programs were written by Mr. Daniel Rigney and Mr.
Wayne E. Fisher. This version was later expanded and reprogrammed
(under contract) for execution on an IBM 7040 by Mr. Irwin R. Oats
and Mr. James R. Hills of the Computer Sciences Corporation and later
of Oats-Hills Incorporated, Houston, Texas. (Mr. Oats and Mr. Hills
have translated CODAP programs for execution on the IBM 360 and 370
series computers, under contract with the U.S. Marine Corps and the
Department of Defense.)

Since 1970 all CODAP innovations and modifications have been programmed
in-house by the Computational Sciences Division. During this period,
many new programs were added to the system, and nearly all old programs
were extensively modified. During the last two years the CODAP system
has been completely rewritten for execution on the Univac 1108. This
reprogramming was first undertaken by MSgt William D. Stacey, with the
assistance of Sgt Johnny J. Weissmuller. After MSgt Stacey's departure
from AFHRL, the translation and reprogramming were completed and checked
out by Sgt Weissmuller, assisted by A1C Bruce B. Barton. It is this

version of the CODAP system which is documented in this technical report.

Many individuals have contributed to the CODAP system, and it would be

difficult to specifically enumerate each contribution. However, the
authors would be remiss not to mention those individuals who have
participated in the mainstream effort. It is possible, with the passing

of time and the failing of memories, that the following history contains
serious omissions and inaccuracies, but it is correct in terms of
currently available information.

The hierarchical clustering programs, OVRLAP, GROUP and KPATH, were
initially designed by Joe H. Ward, Jr. and R. E. Christal, with original
programming by Daniel Rigney and Wayne E. Fisher. The remainder of the

2

7

first CODAP package was designed by R. E. Christal, with numerous
suggestions from I. R. Oats, J. R. Hills and others. This pioneering
effort included JOBGRP, JOBSPC, ASFACT, PRDICT, GRMBRS, PRTVAR, VARSUM,
GRPSUM, GRPDIF, MXTPRT, TSETUP, INPSTD, VARGEN, EXTRCT, and JOBINV.

The programming for these was accomplished by I. R. Oats, J. R. Hills
and D. W. Hartmann.

The table below lists the programs developed after the initial package:

Program

SETCHK

PROGEN

TSKNDX

AVALUE

DIST2X

CORREG

AUTOJT

PRIJOB

DUVARS

REXALL

AVGPCT

JDINDX

JOBIND

TSKGRP

DIAGRM

Initial Design

W. L. Wells

Edward L. Adams

R. E. Christal

R. E. Christal

C. R. Rogers

Joe H. Ward Jr.
Robert A. Bottenberg

William Phalen

William Phalen
R. E. Christal

William Phalen

William Phalen
Johnny J. Weissmuller
R. E. Christal

William Phalen

Initial Programming

Edward L. Adams

Edward L. Adams

William D. Stacey

William D. Stacey

Johnny J. Weissmuller

Janice Buchhorn
Kathleen Hall
William D. Stacey

Paul Aron

Computer Sciences
Corporation

William D. Stacey

Johnny J. Weissmuller

Johnny J. Weissmuller

Johnny J. Weissmuller _LJohnny J. Weissmuller

R. E. Christal Edward L. Adams

Harry Lawrence
Johnny J. Weissmuller

William Phalen
R. E. Christal
Philip Aitken-Cade

3

Johnny J. Weissmuller

Computer Sciences
Corporation

Among ()the:- individuals who have olayed a meaningful part in the

development. improvement and maintenance of the CODAP system, are
the following:

Dr. Robert A. Bottenberg
M-. Jim Souter
Mr. C. R. Rogers

Monitoring and Direction
of Programming

Mr. J. Myer Systems and Programming

Joe Morsh
Wayne Archer

Numerous Suggestions
for Program Changes

Harry Kudrick Program Execution
W. L. Wells and Suggestions for
Robert L. Vance Improvements
Bill Feltner, Jr.
Wesley C. Hill
Steve D. Poole
Terry D. Lewis

4

9

INTRODUCTION

This document contains programmer notes on the 100 library subroutines

used tn the UNIVAC 1108 version of CODAP. The philosophy behind this

subroutine package wasto isolate both machine dependence and recurrent

CODA? processing techniques.- This should allow for a functional

replacement of those operations on the user system. The information

in this report will aid programmers in deciphering the logic and control

of CODAP coding.

After the table of entry points, the writeups appear in alphabetical

order by subroutine name. Each writeup includes a summary of subroutine

functions and a list of all entry points. For each entry point, a

calling sequence is provided with descriptions of the input and output

parameters. Comments related to conversion, special applications, or

restrictions may be found at the end of each writeup under SPECIAL NOTES.

The CODAP subroutine library is divided into two logical groups, those

subroutines which are invoked by referencing the library, and those

which msst be explicitly included. The latter,are referred to as

"subprograms". Each is a specialized subroutine for only one main

program. In the case of frequent change due to experimentation, some

subroutines like RFILE (which should have been a "subprogram") were

entered in the library. This allowed easy access to a subprogram which

was used in a frequently changed main program (OVRLAP in the case of

RFILE). In general, however, the convention holds. The 81 writeups

which follow describe only those subroutines which may be used by

referencing the library. The remaining 19 subprograms do not have

writeups, as in analyzing the main programs the purpose and calling

sequence of each should become clear. The following is an alphabetical

io 5

list of the subprograms not mentioned elsewhere in this document:

SUBPROGRAM

ALPHA

APLWTS

CORALS

CRTOTP

DICTRW

DISKLD

FOTPRT

I2FA

OVLAP

PLEVEL

POSTAP

PRIMSC

PRINTR

PRINT1

REGREF

START (STRT)

TAPGEN

TPTOCR

ZEROST

MAIN PROGRAM

CORREG

VARGEN

CORREG

CORREG

VARGEN

MTXPRT

EXTRCT

DIAGRM

MTXPRT

CORREG

CORREG

CORREG

EXTRCT

CORREG

CORREG

DIAGRM

CORREG

CORREG

CORREG

Any other entry points which are not found in the following table of

entry points are either standard FORTRAN subroutines (like CLOSE or

EXIT) or they are inline subroutines which may be found at the end o! the

main program.

6

11

ENTRY POINT TABLE

This is a list of the entry points into the CODAP subroutine library.
The left-hand column is an alphabetized list of the entry points, and
in the right-hand column is the name of the element in which the entry
point may be found.

ASGA ASGA

ASGAM ASGAM

ASGC ASGC

ASGCM ASGCM

ASGCMR ASGCM

AUTORV AUTORV

BCDBIN DATACV

BIN SUBRTN

BINBCD DATACV

BINFD SUBRTN

BINOCT SUBRTN

BLANK BLANK

CARD SUBRTN

CHKMSK MSKOP1

CLOSEF CFHIO

CLOSER RFILE

COMPA COMPA

COMPC COMPC

COMPN COMPN

COMPRC COMPRC

CPI CPI

CYCLES CYCLES

DATE SUBRTN

DATETIME SUBRTN

DATETM DATETM

DEFINE RFILE

DELAY DELAY

DISK DISK

DISTX1 DIETX1

DKSTAT DKSTAT

DREAD DREAD

DSKRED DISK

DSKSTO DISK

ERII ERII

ERIIX ERII

ERRMSG ROSTER

ERSMSK MSKOP1

ERTRAN ERTRAN

FACREJ FACREJ

FDBIN SUBRTN

FIELD SUBRTN

FLD FLD

FMTGEN FMTGEN

FORMAT FORMAT

7

12

FORM2 X FORM2X

FREDEV FREDEV

FREE FREE

FREES FREES

FSORT FSORT

FSORT 2 FSORT

GETC SUBRTN

GETFIL GETFIL

GETMAS GETMAS

GETMSK MSKOP2

GE TMSM MSKOP2

GETPCD GETPCD

GETPCT GETPCT

GETRAN IRANF

H2ACND H2ACND

112 SORT H2 SORT

INFO SUBRTN

INSERT INSERT

IRANF IRANF

/NT:At INTIAL

IRAND RANDOM

I SCAN SUBRTN

JDCOPY JDCOPY

JDEOF JDEOF

LASCMP LASCMP

LT.SORT LISORT

ENTRY POINT TABLE (Con' t)

8

13

LSORT LSORT

MARGIN NOHEAD

MARGNC NOHEAD

MOVB IN SUBRTN

MOVFD SUFP.TN

MOVFD1 SUBRTN

NEXREL NEXREL

NEXREM NEXREL

NOHEAD NOMAD

NOPAGE NOHEAD

NRAND NRAND

OCTBIN SUBRTN

OMSG OMSG

OMSGW OMSG

OMSGWO OMSG#

OMSG# OMSG#

OP ENF CFHIO

OVRFLO OVRFLO

PARTBL SISO

PRINTC ROSTER

PRTDIC PRTDIC

PUTC SUBRTN

RANF RANF

RANSEQ RANSEQ

READF CFHIO

READR RFI LE

REP END REP END

REP MR 1 REPENT

RESDRV RESDRV

RESET ROSTER

REWIND TREAD

REWINM DREAD

RPCOPY RP COPY

RPEOF RPEOF

RPINDX RPINDX

RUNID RUN ID

SAMPLE SAMS EL

SBU ILD LINK

SCAN SUBRTN

SELECT SAMS EL

S ETMS K MS KOP I

S ET SCN SUBRTN

SETUP SETUP

SETUPS SETUPS

S ETUP9 S ETUP9

SHIFT SHIFT

SICLS SISO

S IGET SISO

SIOPN SISO

SOCLS SISO

ENTRY POINT TABLE (Con ' t)

9

1.4

S 00PN SISO

SOP EN 3 TABL 3

SOPUT SISO

S POST SISO

SPREP SISO

S RAND RANDOM

SRREL LINK

SRRET LINK

S SORT LINK

STATS STATS

STATSS STATS

STATUS STATUS

TIME SUBRTN

TAITCSC TMTC SC

TREAD TREAD

USEMSK MSKOP 2

WR I TEF CFHIO

WRITER RF I LE

ZERBLK ZERBLK

ZERMSK MSKOP 1

ZERO ZERO

ZERO1 ZERO1

ZERO SUBRTN

. ASGA -1

SUBROUTINE IDENTIFICATION

Name ASGA (Assign an Input File)

Language FORTRAN V

Date Nov 1973

Programmer Weissmuller

FUNCTION

ASGA will test to see if the requested file is already assigned to

this run. If it is, ASGA establishes the FORTRAN UNIT number and

returns. If it is not already assigned, ASGA issues an assignment

request. If the request is accepted and the file is assigned, the

FORTRAN UNIT number is established via the "@USE" card and control

returns to the caller. If the request is rejected, however, a message

is printed and the run is aborted.

ENTRY POINTS

1. ASGA

CALLING SEQUENCE

1. CALL ASGA (NAME, IUSE)

a. Inputs

(1) NAME is a three word array where words 1 & 2 are the

filename in an A6,A4 :ormat and the 3rd word is the

negative file cycle in Al format. Word 3 = blank will

assign cycle 0 (the most recent cycle:

(2) IUSE is a binary integer representing the FORTRAN UNIT

to be associated with the requested file.

b. Outputs

(1) The file will be assigned and associated with the correct

FORTRAN UNIT, OR

10

ASGA-2

(2) The run will abort after a diagnostic.

SPECIAL NOTES

This subroutine is very machine dependent. Its sole function is to

specify an input file and establish its association with a designated

FORTRAN UNIT. Hence this subroutine ought to be replaced by a routine

more suited to the user's installation.

11

16

ASGAM -1

SUBROUTINE IDENTIFICATION

Name ASGAM (Assign a Report or JD File)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

ASGAM will test to see if the requested file is already assigned to

this run. If it is, ASGAM establishes the FORTRAN UNIT for this copy

of the Report or Job Description file and returns. If not already

assigned ASGAM will issue an assignment request. If the request is

accepted and the file is assigned, the FORTRAN UNIT is established and

control returns to the caller. If the request is rejected, a message

is printed and the run is aborted.

ENTRY POINTS

1. ASGAM

CALLING SEQUENCE

1. CALL ASGAM (NAME,IUSE)

a. Inputs

(1) NAME is a three word array where words 1 & 2 are the filename

in an A6,A4 format and word 3 is blank or a negative file

cycle in Al format.

(2) IUSE is a binary integer representing the FORTRAN UNIT to

be associated with the requested file.

b. Outputs

(1) The file will be assigned and associated with the correct

FORTRAN UNIT, OR

12

17

ASGAN- 2

(2) The run will abort after a diagnostic.

SPECIAL NOTES

1. This subroutine is very machine dependent. Its sole function is

to specify an input file and establish its association with a

designated FORTRAN UNIT. Hence this subroutine ought to be replaced

by a routine more suited to the user's installation.

2. The subroutine is designed to handle a 3 cycle Report or Job Description

file. These files are identified externally by their "M" suffix

appended to the standard CODAP filename of exactly 10 characters. The

most current copy of cycle is (-0) and the oldest copy is cycle (-2).

The existence of a (-3) cycle implies an error on a previous run. See

subroutine CYCLES.

13

18

ASGC -1

SUBROUTINE IDENTIFICATION

Name ASGC (Assign an Output File)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

ASGC checks the MASTER FILE DIRECTORY to see if a file with this name

already exists. If none exist, a request for a blank output tape is

issued. When the request is accepted the FORTRAN UNIT is established

for the new file and control returns to the caller. If, however, another

file with this name already exists, the last four digits of the filename

are converted to binary integer, one is added and the binary integer is

reconverted to an A4 format. If this is not the fifth such attempt,

control transfers to the first test above. If the last 4 digits are not

numeric or five changes have been made, the subroutine prints a diagnostic

and the run aborts.

ENTRY POINTS

1. ASGC

CALLING SEQUENCE

1. CALL ASGC(NAME,IUSE)

a. Inputs

(1) NAME is a two word array containing the output filename

in A6,A4 format. A (+1) file cycle is always assigned,

indicating this is the most recent copy.

(2) IUSE is a binary integer representing the FORTRAN UNIT to

be associated with the requested file.

14

19

ASGC -2

b. Outputs

(1) The file will be assigned and associated with the correct

FORTRAN UNIT, OR

(2) The run will abort after a diagnostic.

SPECIAL NOTES

This subroutine is very machine dependent. Its sole function is to

specify an output file and establish its association with a designated

FORTRAN UNIT. Hence this subroutine ought to be replaced by a routine

more suited to the user's installation.

zo I5

ASGCM-1

SUBROUTINE IDENTIFICATION

Name ASGCM (Create 3 Reel Report or JD File)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

ASGCM is the same as ASGC with the following exceptions:

a. ASGCM creates 3 new tapes with an "M" suffix and leaves the

third reel mounted.

b. ASGCM requests the operator to reserve a tape drive and

indicate the unit number to the program.

c. ASGCM writes a binary 1 to FORTRAN UNIT 2 which is a running

record of the number of "BEGIN REPORT" sentenils on the Report

file.

ENTRY POINTS

1. ASGCM

2. ASGCMR

CALLING SEQUENCES

1. CALL ASGCM (NAME,IUSE)

a. Inputs

(1) NAME is a two word array containing the new Report or Job

Description filename in an A6,A4 format. For external

identification purposes, an "M" is appended to the 10

character filename signaling the operators to leave tie

WRITE rings in place.

(2) IUSE is a binary integer representing the FORTRAN UNIT to be

associated with the requested file.

16

21.

ASGCM-2

b. Outputs

(1) The file will be assigned and associated with the correct

FORTRAN UNIT, OR

(2) The run will abort after a diagnostic.

2. CALL ASGCMR

a. Inputs - NONE

b. Outputs

(1) A message to the operator to release the requested tape

drive from its reserved state.

SPECIAL NOTES

1. This subroutine is very machine dependent. Its sole function is to

create either a Report or Job Description file with two backup copies,

and establish a FORTRAN UNIT for the most recent copy. Hence this

subroutine ought to be replaced by a routine more suited to the user's

installation.

2. The subroutine is designed to handle a 3 cy!le Report or Job description

file. These files retain their WRITE ENABLE ring as they are used for

output again at a later time. (See ASGAM and CYCLES). In addition,

their external filename contains an "M" suffix to alert the operators

that the WRITE ENABLE rings are NOT to be removed.

17

22

AUTORV-1

SUBROUTINE IDENTIFICATION

Name AUTORV (Automatically Revert to Backup Copy)

Language FORTRAN V

Date Jul 74

Programmer Weissmuller

FUNCTION

AUTORV deletes the "current copy" entry in the MASTER FILE DIRECTORY for

the Report or Job Description file. This has the effect of making the

first backup copy become the most current copy. AUTORV is called only

AFTER it has been decided that the reversion is necessary. This is

determined by checking for a third backup copy (-3 cycle). If a third

backup copy is found in the MASTER FILE DIRECTORY, a reversion is

necessary since a normal termination of a CODAP run will delete the

references to the third backup.

ENTRY POINTS

1. AUTORV

CALLING SEQUENCE

1. CALL AUTORV (NAME,IUSE)

a. Inputs

(1) NAME is a two word array containing the filename of the

Report or Job Description file in an A6,A4 format. The

"M" suffix will be appended automatically.

(2) IUSE is a binary integer representing the FORTRAN UNIT

number that the subroutine is allowed to use for internal

processing associated with NAME.

18

23

AUTORV -2

b. Outputs

(1) The first backup copy (-1 cycle) will become the most

current copy (0 cycle) upon return from the subroutine.

SPECIAL NOTES

This subroutine is very machine dependent. Its sole function is to

insure that the proper reel of a 3 reel file is used for input. If

backup copies of Report and Job Description files are not maintained

this subroutine is not even needed. If the using installation does not

have the equivalent of a MASTER FILE DIRECTORY (an online index of tapes

and mass storage files), then this subroutine cannot be programmed and

the responsibility for specifying the proper reels is left to the user

of the program. (See CYCLES).

19

BLANK-1

SUBROUTINE IDENTIFICATION

Name BLANK (Fill an Array With Blanks)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

Blank is a FORTRAN DO LOOP which fills a specified portion of an array

with blanks.

ENTRY POINTS

1. BLANK

CALLING SEQUENCE

1. CALL BLANK (NWORDS,IARRAY)

a. Inputs

(1) NWORDS is a binary integer specifying the number of words to

be blanked out.

(2) LARRAY is an array name into which the blanks are to be inserted.

b. outputs

(1) IARRAY will have NWORDS of blanks inserted.

SPECIAL NOTES

1. This subroutine uses a literal ' ' to fill the array. A data word may

be established if direct use of literals is not implemented in FORTRAN

at the user's installation.

2. A call of " CALL BLANK(1O,LIST(5))" may be used to blank out only

words 5 through 14 of array LIST, leaving words 1-4 and 15-end unaltered.

20

25

CFHT06-1

SUBROUTINE IDFNTIFICAIION

Name CFHIO (COBOL File Handler I/O Interface)

Language 1100 Assembler

Date S Sep 74

Programmer Rogers

FUNCTION

This subroutine is an interface for the COBOL File Handler. It allows

for opening, reading, writing and closing of COBOL files. If a file

is not catalogued or assigned when the OPEN ro.Jtine is called, parameters

in the calling seouence set the type of equinment and the size of the

file and the appropriate request is issued.

ENTRY POINTS

1. OPEN?

2. READ?

3. WRITE?

4. CLO5EF

CALLINC SEQUENCE

1. CALL OPEN? (FIT)

a. Inputs

(1) FIT is the File Information Table. It is an array of

parameters, file control table, and buffer area. It is

used by all calling sequences. The information in the FIT

is as follows:

FIT(1),FIT(2) 12-character INTERNAL FILE NAME, left

Justified with trailing spaces.

FIT(3)-FTT(7) 30-character EXTERNAL FILE NAME, left

justified with trailing spaces. If EXTERNAL

21

FIT(8)

FIT(9)

FIT(10)

CFHIO-2

FILE NAME is spaces, CFHIO will use the

INTERNAL FILE NAME to assign the file and

no @USE will be generated.

BLOCK SIZE of the file.

LRL of the record. It is always specified

in words. When the file is closed via

CLOSEF, the LRL will be set to zero.

OPTIONS are specified as fieldata characters,

six characters per word, left to right.

S1 InpuL/Output flag

I = Input

0 = Output

S2 Buffering flag

D = Double buffering

S = Single buffering

S3 Labeling flag

0 = Omitted labels

S = Standard labels

U = User labels

S4 Open options

N = No rewind

R = Rewind

S5 Close options

L = Lock (Unload)

N = No rewind

R = Rewind

22

CFHIO-3

SA Dynamic assign flag

N = No print

P = Print @ASG and @USE statements

FIT(11) Assignment specifications in fieldata:

SI Assignment flag

C = Catalogue the file

T = Temporary file

U = Unconditionally catalogue the file

S2 Space requirement

F = FASTRAND (EXEC 8 default amount)

P = Position granularity

T = Track granularity

S3-S6 Number of granules in fieldata, left

justified with trailing spaces.

If Sl-S6 = spaces, @ASG,A is made.

FIT(12)-FIT(94) File Control Table area. This area will

be used by CFHIO and should be zero originally.

FIT(95)-FIT(N+94) Buffer area, where:

N = (BLOCKSIZE + 2) * 2 for double buffering

N = (BLOCKSIZE + 2) for single buffering

b. Outputs

(1) The file will be assigned if necessary and opened OR

(2) The facilities rejected messages will be printed, in either

case the program continues.

23

%13

CFHIO -4

2. CALL READF (F11,RECORD,SEOF)

a. Inputs

(1) FIT as described above.

(2) EOF is an alternate exit to be returned to when End-of-File

is encountered. If EOF is zero, the normal return is taken.

End-of-File is also indicated by LRL = 0.

(3) RECORD is for output only.

b. Outputs

(1) RECORD is the array containing the next logical record on

the file. The LRL is returned in the FIT.

(2) EOF is an alternate exit to be returned to when End-of-File

is encountered. If EOF is zero, the normal return is taken.

End-of-File is also indicated by LRL 0.

3. CALL WRITEF (FIT,RECORD)

a. Inputs

(1) FIT as described above with the LRL set for the output

record length.

(2) RECORD is the array containing the output image.

b. Outputs

(1) The RECORD array is written to the COBOL file.

4. CALL CLOSEF (FIT)

a. Inputs

(1) FIT as described above.

b. Outputs

(1) The COBOL file is properly closed and the LRL, is set to zero.

24

29

CFHIO-5

SPECIAL:, NOTES

1. This routine is highly specialized for the UNIVAC COBOL FILE HANDLER.

Some type of replacement will be required if FORTRAN and COBOL files

are not directly compatible.

2. All CODAP programs which use COBOL files (SETCHK,INPSTD,TSKNDX,TSKGRP,

REXALL, and ASFACT) require a cardimage file with a blocking

factor of 50. On the UNIVAC 1108 this means LRL = 14, blocksize = 751 =

(14x50 + 51 control words).

25

COMPA -1

SUBROUTINE IDENTIFICATION

Name COMPA (Compare Alphabetic Values)

Lan$ua &e FORTRAN V

Date Dec 73

Programmer Rogers/Barton

FUNCTION

COMPA compares two FIELDATA words, returning a -1,0, or 1 depending upon

their relative values. Use is particularly suited to the FORTRAN Arithmetic

IF Statement.

ENTRY POINTS

1. COMPA (Function: returns integer -1,0, or 1)

CALLING SEQUENCE

1. COMPA (LAV1,LAV2)

a. Inputs

(1) LAV1 and LAV2 contain FIELDATA words which are to be compared.

b. Outputs

(1) The Integer Function COMPA will take on the value 0 if LAV1

and LAV2 are identical. If LAV1 is lower in the FIELDATA

collating sequence than LAV2 (e.g. LAV1 = 'EARLY1' and

LAV2 = 'LATER2'), the value taken is 1. Otherwise the value

is -1.

SPECIAL NOTES

1. This version of COMPA is a FORTRAN V rewrite of an IBM 7040 Assembly

Language subroutine. Results depend upon the collating sequence of

characters on the machine used. For example, in FIELDATA, the

characters of the alphabet (A-Z) precede the alphanumeric characters

1-9, white the reverse was true of IBM.

26

at

COMPA-2

2. COMPA is used as an argument of a subroutine by the program DIST2X.

3. The function COMPA utilizes the FORTRAN FLD Function.

4. The name COMPA is declared INTEGER and EXTERNAL.

27

SUBROUTINE. IDENTIFICATION

Name

Language

Date

COMPC (Compare Alphabetic or Numeric Values)

FORTRAN V

Dec 73

COMPC -1

Programmer Rogers/Barton

FUNCTION

Foc a pair of words, COMPC returns the value from either COMPA or

COMPN, depending upon the value of a flag word in COMMON. Use is

particularly suited to the FORTRAN Arithmetic IF Statement.

ENTRY POINTS

1. COMPC (Function: returns integer -1,0, or 1)

CALLING SEQUENCE

1. COMPC (LAVC,LAVD)

a. Inputs

(1) LAVC and LAVD contain the values which are to be compared.

The two words must be either both alphabetic (e.g. FIELDATA)

or both numeric, and

(2) The flag word in COMMON must be set to 1 or 0, respectively.

b. Outputs

(1) If the value of the flag word is 0, COMPC takes on the same

value as would COMPN.

(2) If the value of the flag word is I, COMPC takes on the same

value as would COMPA. In general, COMPC returns a 0 if

the values compared are "equal", a -1 if the first value

(LAVC) is "larger", and a 1 if the second value (LAVD) is

"larger". The specific meaning of "larger" depends upon

which function, COMPA or COMPN, is selected.

28

:33

COMPC 2

SPECIA1 NOTES

1. This version of COMPC is a FORTRAN V rewrite of an IBM 7040 Assembly

Language subroutine. COMPA and COMPN are used directly by this

function.

2. The name COMPC is declared INTEGER in DIST2X.

:34

29

COMPN -1

SUBROUTINF IDENTIFICATION

Name COMPN (Compare Numeric Values)

Language FORTRAN V

Date Dec 73

Programmer Rogers/Barton

FUNCTION

COMPN compares two binary integer words, returning a -1,0, or 1 depending

upon their relative values. Use is particularly suited to the FORThAN

Arithmetic IF Statement.

ENTRY POINTS

1. COMPN (Function: returns integer -1,0, or 1)

CALLING SEQUENCE

1. COMPN (LAV1,LAV2)

a. Inputs

(1) LAV1 and LAV2 contain binary integers which are to be compared.

b. Outputs

(1) The Integer Function COMPN will take on the value 0 if LAV1

and LAV2 are identical. If LAV1 is less than LAV2, the value

taken is 1. Otherwise, the value is -1.

SPECIAL NOTES

1. This version of COMPN is a very simple FORTRAN V rewrite of .n IBM

7040 Assembly Language subroutine.

2. COMPN is used as an argument of a subroutine by the program DIST2X.

The function name is declared INTEGER and EXTERNAL.

COMPRC-1

SUBROUTINE, IDENTIFICATION

Name COMPRC (Compare Two-Word Alphabetic or Numeric Values)

Language FORTRAN V

Date Dec 73

Programmer Rogers/Barton

FUNCTION

For two ordered pairs of words, COMPRC returns the value from COMPA or

COMPN or both, depending upon the values of two flag words in COMMON.

Use is particularly suited to the FORTRAN Arithmetic IF Statement.

ENTRY POINTS

1. COMPRC (Function: returns integer -1, 0, or 1)

CALLING SEQUENCE

1. COMPRC (LAVA,LAVB)

a. Inputs

(1) LAVA and LAVB are each a two-word subscripted array

containing values which are to be compared. Corresponding

words in the two arrays must be either both alphabetic (e.g.

FIELDATA) or bech numeric, and

(2) The corresponding flag word (of a two-word COMMON array)

must be set to 1 or 0, respectively.

b. Outputs

(1) If the value of a flag word is 0, COMPRC takes on the same,

value as would COMPN for the corresponding pair of input words.

(2) If the value of a flag word is 1, COMPRC takes on the same

value as would COMPA for the corresponding pair of input words.

In general, C01'PRC returns a 0 if both pairs of corresponding

values are "equal", a -1 if LAVA(1) or LAVA(2) is "larger" than,

31

6

COMPRC-2

LAVB(1) or LAVB(2), respectively, and 1 in the reverse

instance. The specific meaning of "larger" depends upon

which function, COMPA or COMPN, is selected. If the pair

or words subscripted (1) are not "equal", the second pair

will not be examined.

SPECIAL NOTES

1. This version of COMPRC is a FORTRAN V rewrite of an IBM 7040 Assembly

Language subroutine. COMPA and COMPN are used directly by this

function.

2. The name COMPRC is declared INTE(ER in DIST2X.

32

;i7

CPI-1

SUBROUTINE IDENTIFICATION

Name CPI (Pack Characters into a Word)

Language FORTRAN V

Date April 1974

Programmer Stacay/Barton

FUNCTION

CPI generates characters from three words of information and packs

them left justified into a single word.

ENTRY POINTS

1. CPI

CALLING SEQUENCE

1. CALL CPI (NR,IAXP,LAP,LFW,NFC,KTFW,KTFC,ICMA,LOPT)

a. Inputs

(1) NR is an integer format repetition factor (e.g. the '7'

in 7A2).

(2) IAXP is the alpha format character (e.g. I,A,X,etc.),

left justified.

(3) LAP is an integer format field length (e.g. the '2'

in 7A2).

(4) ICMA is either a parenthesis or a comma, left justified

alpha.

(5) LOPT is an integer option flag. For LOPT = 0, if IAXP is 'I'

the subroutine changes it to 'A'. For LOPT = 2, IAXP is

changed to 'A' for either 'I' or 'X'. For LOPT = 1, the

IAXP input is left unchanged.

33

CPI-2

(6) KIM and KTrc are simply passed by CPI between FmTGEN

and INSERT.

(7) LFW and NFC are for output only.

b. Outputs

(1) LFW contains the left justified alpha characters generated

from ICMA, NR, IAXP, and LAP. For example, if ICMA =

'NOW ,NR=7, IAXP se 'A1MPV, and LAP=2, after a cell

to CPI, LFW would contain '(7A2141' And

(2) NFC contains the integer lumber of characters packed into

LFW. In the example above, NFC would equal 4. And

(3) ICMA is set to a left justified alpha comma, OR

(4) If NR or LAP exceeds 99, the run aborts after a diagnostic.

SPECIAL NOTES

1. This subroutine is highly specialized for use by FMTGEN to create

FORTRAN formats from CODAP FormAt Cards.

2. The subroutine is not machine dependent, except that a 6-character

word is assumed, so little or no conversion need be required.

34

:i9

CYCLES-1

SUBROUTINE IDENTIFICATION

Name CYCLES (Establish new copy of Report or JD file)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

CYCLES checks the MASTER FILE DIRECTORY to see if a third backup exists.

If it does, AUTORV is called, otherwise CYCLES continues. Next, CYCLES

checks to sAA if a new copy is already assigned to this run. If it is,

the FORTRAN UNIT is established and control returns to the caller. If not,

an assignment request is issued for the oldest backup copy, (-2 cycle).

The assignment request specifies that if the run terminates normally all

reference to this backup cycle be deleted from the MASTER FILE DIRECTORY.

This physical reel will receive a copy of the most current version plus

all information generated in this run. Its FORTRAN UNIT is set equal to

IUSE. Next, the most current copy (-0) is assigned. A FORTRAN UNIT of

28 is established if the file is a Report file (IUSE = 26) or a FORTRAN

UNIT of 27 is established if the file is a Job Description file (IUSE = 25).

At this point the physical reel ID of FORTRAN UNIT "IUSE" (the oldest

backup) is entered into the MASTER FILE DIRECTORY as a new copy of the file

(+1 cycle).

Hence, if a Report file is designated (IUSE = 26), CYCLES assigns the

most current copy to FORTRAN UNIT 28 and the new copy to be created (by

writing over the oldest backup) to FORTRAN UNIT 26 (= IUSE).

If, however, a Job Description File is designated (IUSE = 25), CYCLES

assigns the most current copy to FORTRAN UNIT 27 and the new copy to be

15

40

CYCLES-2

created (by writing over the oldest backup) to FORTRAN UNIT 25 (= IUSE).

Control returns to the caller upon assignment of the files.

ENTRY POINTS

1. CYCLES CYCLES itself does NOT copy from the current

copy to the newest copy. See RPCOPY and JDCOPY.

CALLING SEQUENCE

1. CALL CYCLES (NAME, IUSE, IASGD)

a. Inputs

(1) NAME is a two word array containing the Report or Job

Description filename in an A6,A4 format. An "M" suffix

is appended to the standard CODAP filename for external use

and to remind the operators that the WRITE ENABLE rinp

must be left in place.

(2) IUSE a binary integer representing the FORTRAN UNIT to

be associated with the newest copy of the file to be

created. Must be either 25 or 26.

(3) IASGD (output only)

b. Outputs

(1) IASGD will be set to 1 if the File was already assigned

prior to calling CYCLES, or IASGD will be set to 0 if

the subroutine CYCLES had to assign the file.

(2) Either

(a) The most current copy of the Job Description file

associated with FORTRAN UNIT 27 and the new copy to

be created is associated with FORTRAN UNIT 25

(IF IUSE = 25)

(b) The most current copy of the Report file associated with

FORTRAN UNIT 28 and the new copy to be created will be

36

CYCLES-3

associated with FORTRAN UNIT 26 (If IUSE = 26) OR

(c) The run will abort .ie to an invalid NAME being specified.

SPECIAL NOTES

1. This subroutine is very machine dependent. Its sole functioh is

to cycle new and old copies of the Report or Job Description files

in preparation to actually copy and append new information onto the

newest cycle.

2. This subroutine requires a MASTER FILE DIRECTORY (an online index

of tapes and mass storage files) or its equivalent. See AUTORV.

.37

42

DATACV -1

SUBROUTINE IDENTIFICATION

Name DATACV (Data Conversions, FIELDATA/binary)

Language 1100 Assembler

Date May 73

Programmer Weissmuller

FUNCTION

DATACV has two entry points. One entry point is used to convert

FIELDATA to binary and conversely, the other entry point is used to convert

binary numbers to their FIELDATA representation. These subroutines are

used instead of ENCODE or DECODE statements because they provide for an

error return.

ENTRY POINTS

1. BCDBIN

2. BINBCD

CALLING SEQUENCE

1. CALL BCDBIN (IBCD, IBIN, NCHAR, $ERR)

a. Inputs

(1) IBCD is a FIELDATA string of characters, left adjusted.

(2) IBIN is for output only.

(3) NCHAR is the number of characters to attempt to convert

to binary. If NCHAR=2 only the 2 left most characters will

be used.

(4) ERR is a FORTRAN statement number to which control will

be passed if the leftmost NCHAR characters of IBCD contain

a non-numeric. Note that preceding blanks are considered

to be zeroes, but that embedded or trailing blanks are

considered errors.

38

43

DATACV -2

b. Outputs

(1) IBIN is the binary integer value of the leftmost NCHAR

characters of IBCD, OR

(2) Control is transferred to statement ERR of the calling

program.

2. CALL BINBCD (IBIN, IBCD, NCHAR, $ERR, IFLAG)

a. Inputs

(1) IBIN is a full word binary integer.

(2) IBCD is for output only.

(3) NCHAR is the number of character positions available to

receive the FIELDATA representation of IBIN.

(4) ERR is a FORTRAN statement number to which control will

be passed if the FIELDATA representation of IBIN exceeds

NCHAR characters.

(5) IFLAG is a binary integer which is equal to either 0 or

1. If IFLAG = 0, preceding zeroes of IBCD will be left as

zeroes. If IFLAG = 1, preceding zeroes of IBCD will be

converted to blanks.

b. Outputs

(1) IBCD is a FIELDATA string NCHAR characters long, left

adjusted, OR

(2) Control is transferred to statement ERR of the calling

program.

SPECIAL NOTES

1. Not only is this program very machine dependent because it is in

assembler, but is is also dependent on the FIELDATA code structure.

(See attachment.) This subroutine ought to be rewritten for the

user's installation.
39

44

4144 Ilev j
.:P.,....11:$4 [PAGE REVS ON I PAGE

UNIVAC 1100 SERIES SYSTEMS 0-12

D.6. 80-COLUMN CARD CODE, SYMBOL, XS-3, FIELDATA, EBCDIC, BCD CONVERSION
TABLE

Table DG cross references printer symbols with the card punch, XS-3, Fieldata, EBCDIC, and BCD codes.

SO-Column

Card Code

High-Speed

Printer
Symbol

XS-3 Fieldata EBCDIC BCD

Octal Octal Hexadecimal Octal

12.1 A 24 06 Cl 61

12.2 B 25 07 C2 62

12-3 C 26 10 C3 63

12.4 D 27 11 C4 64

12-5 E 30 12 C5 65

12.6 F 31 13 C6 66

12-7 G 32 14 C7 67

12.8 H 33 15 C8 70

12-9 I 34 16 C9 71

11.1 J 44 17 01 41

11.2 K 45 20 D2 42

11-3 L 46 21 D3 43

11-4 M 47 22 D4 44

11-5 N 50 23 D5 45

11.6 0 51 24 D6 46

11-7 P 52 25 D7 47

11-8 Q 53 26 D8 50

11.9 R 54 27 D9 51

0-2 S 65 30 E2 22

0.3 T 66 31 E3 23

0.4 U 67 32 E4 24

0.5 V 70 33 E5 25

0 6 W 71 34 E6 26

0-7 X 72 35 E7 27

0 8 Y 73 36 E8 30

0.9 Z 74 37 E9 31

0 0 03 60 FO 12

1 1 04 61 Fl 01

Table 0-6 80Column Card Code, Symbol, XS3, Fieldata, EBCDIC, BCD Conversion Table (Part 1 of 31

40

45

41.:4 tZ'. UNIVAC 1100 SERIES SYSTEMS A I 0-13
PACE REvISION. PAC

80 Coluino
Card Code

Hi 1111 Speed

Proter
Symbol

XS 3 NI: Idea EBCDIC BCD
Octal Octal Hexadecimal Octal

2 2 05 62 F2 02

3 3 06 63 F3 03

4 4 07 64 F4 04

5 5 10 65 F5 05

6 6 11 66 F6 06

7
_
r 12 67 F7 07

S 8 13 70 F8 10

9 9 14 71 F9 11

12 + 20 42 50 60

11 - (minus) 02 41 60 40

12.0 7 23 54 6F 72

11.0 1 43 55 5A 52

0.1 J, C4 74 61 21

2.8 & 63 46 7A 00 or 60"

3 8 = 35 44 7B 13

4.8 (apos) 56 72 7C 14

58 21 '...3 7D 15

6 8 > 76 45 7E 16

7 8 @ 40 00 7F 17

12 3 8 22 75 4B 73

12 4-8 1 75 40 4C 74

12 5.8 i 17 01 4D 75

12-6R < 36 43 4E 76

12 7 8 37 03 4F 77

li 3 8 S 42 47 5B 53

11 4.8 ' 41 50 5C 54

115.8

11 6 8

,
, 01

16

02

73

5D

5E

55

56

117 -8 CI 57 04 5F 57

0 2.3 60 77 EO 32

0 3 8 (comma) 62 56 6B 33

Table 0-6 80 Column Card Code, Symbol, XS3, Fieldaw, EBCDIC, BCD Conversion Table (Part 2 of 31

41

46

4144 r:es 3
1,P.,....3tos

1

UNIVAC 1100 SERIES SYSTEMS
IPAGE REv SION PAGE

0-14

SO Column

CJ rd Code

High Speed

Printer
Symbol

XS3
Octal

Fieldata
Octal

EBCDIC
Hexadecimal

BCD
Octal

0 4 8 (61 51 6C 34

0 5 S 55 52 6D 35

0 6 S \ 15 57 6E 36

0-7 3 tt 77 76 6F 37

Blank b 00 05 40 20

NOTE

1 Symbols are for standard Univac Type 750 Series High Speed Printers

.00 is used as a stop code on tapes using even parity

Table 0-6 SOColumn Card Code, Symbol, XS-3, Fieldara, EBCD:C, BCD Conversion Table (Part 3 of 3)

42

47

DATETM -1

SUBROUTINE IDENTIFICATION

Name DATETM (Get Date and Time from the System)

Language FORTRAN V

Date Jun 74

Programmer Weissmuller

FUNCTION

DATETM will query the System to retreive the current date and time,

recode the month, reformat the information and return.

ENTRY POINTS

1. DATETM

CALLING SEQUENCE

1. CALL DATETM ; IDATE, ITIME)

a. Inputs

(1) IDATE is for output only (2 word array)

(2) ITIME is for output only (2 word array)

b. Outputs

(1) IDATE will contain the date, month, and year in an A6,

A3 format, (e.g., '12 Jan 74')

(2) ITIME will contain the current time in an A6, A2 format.

(e.g. '15:25:01')

SPECIAL NOTES

1. This subroutine is very machine dependent but should be easy to

replace on any machine.

43

DELAY-1

SUBROUTINE IDENTIFICATION

Name DELAY (Timing delay in seconds)

Language 1100 Assembler

Date Sep 73

Programmer Weissmuller

FUNCTION

DELAY will cause a program to pause for the specified number of seconds.

(30 seconds is Lhe maximum allowed.) Its primary usage is within the file

assignment routines which will solicit for a tape drive every 30 seconds

until one becomes available.

ENTRY POINTS

1. DELAY

CALLING SEQUENCE

1. CALL DELAY (NSEC)

a. Inputs

(1) NSEC is a binary integer indicating the number of seconds

to pause. (Maximum allowed is 30.)

b. Outputs

(1) Execution of the program will be suspended for the specifiied

period.

SPECIAL NOTES

1. This subroutine is very machine dependent. Moreover, if the user's

installation does not allow or provide for repeated requests for

tape drives, this subroutine may not even be needed-

44

49

DISK-1

SUBROUTINE IDENTIFICATION

Name DISK (Random Access I/O)

Language FORTRAN V

Date Aug 73

Programmer Weissmuller

FUNCTION

This subroutine's primary purpose was to serve as an interface for the

conversion of the CODAP system from an IBM 7040 to a UNIVAC 1108. The

7040 version was in assembler, so to minimize recoding, the 1108 version

was coded in FORTRAN to simulate the 7040 version.

ENTRY POINTS

1. DISK

2. DSKSTO

3. DSKRED

CALLING SEQUENCES

1. CALL DISK (NREC, LENGTH)

a. Inputs

(1) NREC is a binary integer denoting the maximum number of

random records to be written.

(2) LENGTH is a binary integer indicating the maximum length

(in words) of any given record.

b. Outputs

(1) A random access file established for FORTRAN unit 29.

2. CALL DSKSTO (NWORDS, IARRAY, IREC, ISW)

a. Inputs

(1) NWORDS is a binary integer representing the number of

words to be written to the random a-.4ss unit (29).

45

so

DISK-2

(2) 'ARRAY is the location of the first of WORDS to be written

or stored on unit 29.

(3) IREC is a binary integer specifying the index or key of

the record to be written. IREC may be any number from 1

to the NREC value specified in CALL DISK (NREC, LENGTH)

(4) ISW is a binary integer equal to 0 or 1. If ISW = 0,

DSKSTO will simulate an IBM 7040 random access routine and

block all outputs by 465 words. If ISW = 1 (actually # 0),

DSKSTO will store the information provided into a single

record.

b. Outputs

(1) NWORDS of information beginning with core location. IARRAY

will be stored in record number IREC and will be blocked

by 465 if ISW = 0, and unblocked otherwise. OR

(2) The run will abort if an IREC greater than NREC is specified.

3. CALL DSKRED (NWORDS, IARRAY, IREC, ISW)

a. Inputs

(1) NWORDS is a binary integer indicating the number of words

to be read from the random access unit (29).

(2) IARRAY is the location in core of the first available word

to receive the information just read.

(3) IREC is a binary integer specifying the index or Key of

the record to be read. Note: A request to read a record

which has not been written causes an error termination.

In DSKSTO IREC may be any number within the range 1 to

NREC, while in DSKRED, IREC must not only be in that

range, but also must have appeared in a call to DSKSTO.

46

DISK-3

(4) ISW is a binary integer equal to 0 or 1. If ISW = 0

DSKRED will simulate an IBM 7040 random access routine

and read information in blocks of 465 words. If ISW = 1

(0 0), DSKRED will read unblocked data.

b. Outputs

(1) NWORDS of information will be read into IARRAY from record

IREC of the random access unit (29). OR

(2) The run will abort if:

(a) an IREC greater than NREC is specified

(b) an IREC which was not written with DSKS7Dis specified

(c) NWORDS is greater than the number of words actually

in the specified record IREC.

SPECIAL NOTES

1. The DISK entry point must be called prior to either DSKSTO or

DSKRED, and the DSKSTO call must logically precede the DSKRED call.

2. This subroutine is very machine dependent and is in fact a replace-

ment of an IBM 7040 machine dependent routine. The value of this

routine is questionable. If the user's installation has a FORTRAN

compiler which allows direct coding of random access reads and writes,

this routine is unnecessary for new programs, but allows easy con-

version of older programs. If, on the other hand, FORTRAN does not

allow such direct references, this routine could be coded in the

user's assembler language and pretty much replace the direct

references as they appear in the UNIVAC 1108 FORTRAN V version.

3. This routine is much less powerful than direct FORTRAN V random

1/0 statements. The FORTRAN V random access statements allows

47

DISK-4

the user to specify a list of variables to be written, and the list

need not be of items contiguous in core. DSKSTO, however, will

only access sequential core locations and hence any type of

"skipping around" must be accomplished by moving all values into

a single array (if not already equivalenced). Generally speaking

these moves of one array into another are done via TMTCSC.

Moreover, in order to use DSKRED, one must know the number of

words in the Record prior to reading it. Hence it was decided

that DSKSTO and DSKRED would not be used in new programs even

though doing so would have greatly simplified conversions for

other Installations.

48

t"..r1

DISTX1 -1

SUBROUTINE IDENTIFICATION

Name DISTX1 (Binary Search for Proper Interval of Distribution)

Language FORTRAN V

Date May 73

Programmer Weissmuller

FUNCTION

DISTX1 determines within which, if any, interval on a range a given value

lies.

ENTRY POINTS

1. DISTX1

CALLING SEQUENCE

1. CALL DISTX1 (MAXN,IBOT,ITOP,IFIND,ICOMP,ISUB)

a. Inputs

(1) MAXN is the binary integer number of intervals.

(2) IBOT is the array of inclusive lower bounds, one for each of

MAXN intervals.

(3) ITOP is the array of inclusive upper hounds, one for each of

MAXN intervals. Both upper and lower bounds must be specified

in ascending order and cannot overlap, but "gaps" between

intervals are permitted.

(4) IFIND is the value to be matched against the intedis.

(5) ICOMP is the EXTERNAL-ized name of the comparison function

(e.g. COMPA or COMPN) appropriate to the value being tested.

(6) ISUB is for output only.

DISTX1 -2

b. Outputs

(1) ISUB is the binary integer interval number (array subscript

for IBOT and ITOP) within which the value lies. If the

value is not within any interval specified, ISUB = 0.

SPECIAL NOTES

1. The subroutine utilizes a binary search technique with a variable

comparator function; hence COMPA, COMPN, and/or other user-specified

functions need be supported.

50

DKSTAT -1

SUBROUTINE IDENTIFICATION

Name DKSTAT (Disk Status)

Language 1100 Assembler

Date Sep 73

Programmer Weissmuller

FUNCTION

DKSTAT is the subroutine used by all the "assign file" subroutines.

This is the routine which actually tests to see if a mass storage file

is already assigned to the run. See STATUS for a similar function

on tape files.

ENTRY POINTS

1. DKSTAT

CALLING SEQUENCE

1. CALL DKSTAT(ID,ICODE1,ICODE2,IFLAG)

a. Inputs

(1) ID is a two word array which contains the FORTRAN UNIT

left adjusted in FIELDATA in the first word and the

second word blank. The association between the FORTRAN

UNIT and the external filename must be established prior

to this call.

(2) ICODE1 is output only.

(3) ICODE2 is output only.

(4) IFLAG is output only.

b. Outputs

(1) ICODE1 will contain the equipment code associated with the

specified FORTRAN UNIT if IFLAG=0.

51

DKSTAT -2

(2) ICODE2 will contain the FILE MODE if IFLAG=0.

(3) IFLAG will = 0 if the file associated with the specified

FORTRAN UNIT is a mass storage file that is currently

assigned. Otherwise IFLAG=1. Note: A tape file fails

an sets IFLAG-1. (See STATUS)

SPECIAL NOTES

1. This subroutine is very machine dependent and should either be

replaced or eliminated. This routine is used to avoid requesting

a file which is already assigned.

2. ICODE1 and ICODE2 are never used, but are included to maintain a

calling sequence similar to STATUS, the subroutine which serves

an identical purpose for tape files.

52

si5

DREAD-1

SUBROUTINE IDENTIFICATION

Name DREAD (Disk Read of FORTRAN Print)

Language 1100 Assembler

Date Oct 73

Programmer Weissmuller

FUNCTION

DREAD will read a FORTRAN ',batten print file from mass storage.

This subroutine is used primarily for reading Reports written to

mass storage by the EXTRCT program. See TREAD for a similar function

on tape files.

ENTRY POINTS

1. DREAD

2. REWINN

CALLING SEQUENCES

1. CALL DREAD(NWORDS,LINE,JSEQ,$NEW,$E0F)

a. Inputs

(1) NWORDS is for output only

(2) LINE is a 22 word array for output only

(3) JSEQ is for output only

(4) NEW is the FORTRAN statement number to jump to if a new

report sentinel is read

(5) EOF is the FORTRAN statement number Lo jump to if an end

of file is encountered in an attempt to read the next line

b. Outputs

(1) NWORDS is a binary integer which is the number of words in

the print image array LINE

53

DREAD-2

(2) LINE contains the next print line read. It has a maximum

length of 22 words and may be printed thusly:

WRITE(6,100) (LINE(I),I=1,NW0RDS)

100 FORMAT(22A6)

(3) JSEQ is a binary integer which is set equal to the index

number of the current Report being read. This value is

set only when the $NEW return is used.

2. CALL REWINM

a. Inputs - None

b. Outputs

(1) The print image file read by DREAD is rewound

SPECIAL NOTES

1. This is a very machine dependent subroutine and should either be

replaced or eliminated. The primary function of this subroutine is

to read print images from mass storage and in particular, print

images in Report File Format. [Report File Format simply means

that individual reports are preceded by a sentinel of the form

'BEGIN REPORT',N where N is a binary integer written out in 1A6

format.]

2. Both DREAD and TREAD assume FORTRAN UNIT 28 is the print image file.

This association must be established prior to calling either subroutine.

54

59

ERII -1

SUBROUTINE IDENTIFICATION

Name ERII (Executive Request to Interactivity Interrupt)

Language 1100 Assembler

Date May 74

Programmer Rogers

FUNCTION

ERII provides a method by which operators may query the program as

to its name and/or status. This subroutine sets up a message buffer

and a separate activity which the operators may interrogate.

ENTRY POINTS

1. ERII

2. ERIIX

CALLING SEQUENCE

1. CALL ERII (ISW, NWORDS, MESAGE, IFLAG)

a. Inputs

(1) ISW is a FIELDATA "P" or "L" which sets a program switch

to either Print all operator responses or only enter them

into the Log. Basically a "P" is used for interactive

runs and a "L" is used for batch runs. All standard

CODAP programs are designed for batch runs.

(2) NWORDS is a binary integer indicating the number of words

to be printed from MESAGE. Note: Since this call is only

done once, NWORDS should be large enough to accommodate

the longest message to be written.

(3) MESAGE is an array of at least NWORDS which contains the

message to be displayed for the operators. ERII always

picks up the current contents of MESAGE, so MESAGE may be

55

CD

ERII -2

changed at any time in the main program to update the

status.

(4) IFLAG is for output only.

b. Output

(1) If the operator solicits ERII, the current contents of

MESAGE will be displayed on the console screen. To solicit

ERII, the operator must type in:

II rrrrrr X,

where "II" is the interactivity interrupt command for

EXEC 8, rrrrrr is a 1 to 6 character run identification code

and X is an operator response. X may be "P", "C" or "M".

The "P" will cause MESAGE to be printed, "C" will set IFLAG

to a non-zero value, and "M" will solicit and transmit a

message from the operator to the executing program.

(2) For the OVRLAP and GROUP programs, IFLAG is used to force

checkpoints prior to the normally scheduled time. These

programs set the IFLAG variable to zero and every time

IFLAG is found to be non-zero, a checkpoint is taken.

IFLAG is set to a non-zero value only if the operator enters

a response that begins with a "C".

2. CALL ERIIX

a. Inputs - None

b. Outputs

(1) The separate activity established by the call to ERII is

halted. This must be done in order to avoid an abnormal

termination of the run.

56

ERII -3

SPECIAL NOTES

1. This subroutine is very, very machine dependent and its sole function

is to allow program - operator interaction. In many installations

this practice is highly discouraged. ERII may be removed from the

system with very little difficulty and no ill effects will arise.

57

ERTRAN -1

SUBROUTINE IDENTIFICATION

Name ERTRAN (FORTRAN V - EXEC 8 Interface)

Language 1100 Assembler

Date -

Programmer UNIVAC

FUNCTION

,ERTRAN is a FORTRAN V - EXEC 8 Interface subroutine which allows access

to system information and processing capabilities. This is a UNIVAC sub-

routine and no symbolic coding is available. This write-up is included

for reference only.

ENTRY POINTS

1. ERTRAN (Subroutine Call)

2. NERTRN (Function: returns I/0 status word)

CALLING SEQUENCES FOR COMMON USAGES

1. CALL ERTRAN (2)

a. Inputs

(1) Binary integer number 2.

b. Output

(1) The run takes an error termination.

Note: This calling sequence is used only after an

unrecoverable error has been detected.

2. CALL ERTRAN (6, IMAGE)

a. Inputs

(1) Binary integer number 6.

(2) An array, IMACE, which contains a valid EXEC 8 control

card image which ends with the sequence "16.16 ". See attach-

ment for valid EXEC 8 control statements from ERTRAN.

58

C3

ERTRAN -2

b. Output

(1) EXEC 8 performs the requested action, OR

(2) Run aborts if requested action was not possible.

3. IOERR = NERTRN (6, IMAGE)

a. Inputs

(1) Binary integer number 6.

(2) IMAGE is an array containing a valid EXEC 8 control card

image which ends with 11.111". Normally in this usage, IMAGE

contains a request to assign a file.

(3) IOERR is for output only.

b. Outputs

(1) Either the request action is completed and IOERR = 0, OR

(2) IOERR is set equal to the error status word or zero.

Note: This Calling sequence is used in the subroutine

GETFIL.

4. CALL ERTRAN (9, IDATE, ITIME)

a. Inputs

(1) Binary integer number 9.

(2) IDATE is for output only.

(3) ITIME is for output only.

b. Outputs

(1) IDATE contains the current date in FIELDATA in for form

MMDDYY.

(2) ITIME contains the current time in FIELDATA in the form

HHMMSS.

#.4

59

ERTRAN-3

Example: If called at 7:52 p.m. and 14 seconds, on

August 19, 1974, then

IDATE = "081974" and

ITIME = "195214"

This calling sequence is used in the subroutine DATETM.

SPECIAL NOTES

1. This subroutine is obviously very machine dependent. Unlit;

sequences 1 and 4 are rather trivial and may be easily duplicated

or removed. Calling sequences 2 and 3 however, are crucial to

the file manipulation subroutines (SETUP, SETUP6, and SETUP9).

If the calling sequences 2 and 3 cannot be simulated, file assign-

ments and their associationa with the proper FORTRAN UNITS may be

forced directly onto the user of each individual program. In that

event, program documentation will have to be augmented.

60

7876
l.1.441.141E01

UNIVAC 1100 SERIES SYSTEMS
I

3 5
PAS(PC VISION P CA'

3.4.6. ERTRAN EXECUTIVE REQUEST ROUTINE

Purpose

ERTRAN routine allows the FORTRAN programmer to reference some of the executive request functions, namely
ABORTS (abort run), ERRS (error return), EXITS (normal exit), CSFS (generate control statement), SETCS (set
condition word), CONDS (retrieve condition word), and DATES (request date and time) The executive requests are
described in UNIVAC 1100 MultiProcessor System Operating System, EXEC 8 Programmer Reference, UP-4144
(current version).

FORTRAN V Reference

ERTRAN may be called by CALL ERTRAN (ergs) or referenced as a function by I = NERTRN (ergs). If the function
reference is used, the function value consists of the error or status information or zero if no error status is provided.

The reference has three forms

ERTRAN(k) for k = 1, 2, or 3

ERTRAN(k, ARG1) for k = 6, 7, or 8

ERTRAN(k, ARG1, ARG2) for k = 9, where ARG1 and ARG2 represent (INTEGER) type variables, and k determines
the executive request function.

Assembler Language Reference

ERTRAN cannot be referenced by the assemUer language programmer; however, each of the executive request
functions can be referenced directly in assembler language

Routines Referenced

NE PP" nv way of entry points NE RRS and FIELDS and executive request functions ABORTS, ERRS, EXITS, CSFS,
Sc TCS, CONDS, DATES, and PRINTS.

Description

If k = 1, the executive reauest function ABORTS is referenced. All current activities are terminated and the run is
terminated in an abort condition.

If k = 2, the executive request function ERRS is referenced. The Err Mode condition is set. If the programmer has
established an Err Mode routine, control will be returned to it. Otherwise, standard Err Mode action will occur
terminating the run.

cc
61

78 76
vANIJMISEII

UNIVAC 1100 SERIES SYSTEMS
P GE PVISION

3 6
Gt.

If k = 3, the executive request function EXITS is referenced. The routne provides normal program termination.

k = 4 and k 5 are illegal,

If k = 6, the executive request function CSFS is referenced. The routine provides the user with a means of submitting
an executive control statement image (ARG1) for interpretation and processing. The image submitted must be an array
or a Hollerith field containing one of the control statements listed below. The control statement must not be longer
than 80 characters and may be terminated by the character sequence: blank, period, blank.

@ADD

@ASG

013FIKPT

@CAT

@CKPT

!FREE

@LOG

@MODE

@QUAL

@RSTRT

@START

@SYM

@USE

Add to run stream

Assign a file

Breakpoint symbiont or.tput files

Catalog a file

Produce check point dump of this run

Deassign a file

Message to log a file

Set mode and/or noise constant for tape file

File qualification

Restart run whose check point dump was saved by @CKPT

Schedule an independent run

Queue files

Associate internal to external file name

If k = 7, the executive request function SETCS is referenced. The routine places (sets) the contents of the lower third
(bits 11.00) of ARG1 in the corresponding third of the run condition word. The lower two thirds of the run condition
word is used as a flag which can be either tested by the control statement @TEST or retrieved by the FORTRAN call
CALL ERTRAN (8, ARG1) and then tested.

If k = 8, the executive request function CONOS is referenced. The routine retrieves the condition word and makes it
available to the user in ARG1.

If k = 9, the executive request functrori O.".TES is referenced. The routine supplies the user iiith the current date and
time in ARG1 and ARG2 respectively. The date in ARG1 is in the format MMODYY where MM represents the month
(01.12), 00 the day (01.31), and YY the last two digits of the year (00-95). The time in ARG2 is in the format
HHMMSS where HH represents the hours (00.24), MM the minutes (00-60), and SS the seconds (00-60).

If k is negative or greater than 9, error termination results. Error termination also results when the CALL
ERTRAN(arg) is used and the status word is negative. When the I = NERTRN (erg) function is used, error termination
will not take place, based on the status of the operation. ERTRAN has 97 instructions and 70 data words for a total
main storage requirement of 167 words.

62

FACREJ -1

SUBROUTINE IDENTIFIcATION

Name FACREJ (Facility rejection messages)

Language 1100 Assembler

Date Oct 73

Progr mer Blakley

FUNCTION

FACREJ translates the EXEC 8 I/O status word into appropriate error

messages. The I/O status word is a 36 bit word in which each bit denotes

a particular error condition.

ENTRY POINTS

1. FACREJ

CALLING SEQUENCE,

1. CALL FACREJ (IOERR)

a. Inputs

(1) IOERR is Lhe EXEC 8 I/O status word returned by an I/O

opt ration.

b. Outputs

(1) A printed list of error messages from the 1/0 operation.

SPECIAL NOTES

1. This subroutine is extremely machine dependent. If the user's

installation has sufficient diagnostics prov'Aed by the system, this

subroutine is completely useless. It may be dropped from the system

with no ill side affects.

63

CS

FLD -1

SUBROUTINE IDENTIFICATION

Name FLD (Extract a Field of Bits) ,

Lanpaze 1100 Assembler

Date

Programmer UNIVAC

FUNCTION

FLD is a UNIVAC function in FORTRAN V which allows access to any

string of bits within a single 36 bit computer word. This function

is used to extract the "minutes" field out of a word containing the

time in HHMMSS format.

ENTRY POINTS

1. FLD (Function: returns an integer value)

CALLING SEQUENCE

1. IVAL FLD(IBIT,NBITS,IWORD)

a. Inputs

(1) IBIT is a binary integer in the range 0 to 35 which

identifies the first bit of the string to be extracted.

Bits are counted from left (0) to right (35) unless

overidden by COMPILER (FLD=R) statement which reverses

the sequence.

(2) NBTTS is a binary integer in the range 1 to 36 which

denotes the number of bits in the string tc be extracted.

(3) IWORD is an integer, real, logical, or typeless expression

from which the string is to be extracted.

(4) IVAL is output only.

64

C3

FLD-2

b. Outputs

(1) IVAL will contain the extracted field right adjusted

with leading zeroes. If "VAL" rather than "IVAL" were

used, the resulting binary integer represented by the

extracted string would be converted to floating point

notation then stored in VAL.

SPECIAL NOTES

1. Even though this is an intrinsic FORTRAN V function it could

easily be replaced by an assembler function at the use-'s

installation. Note, however, FLD may be used on the left side of

an equals sign in FORTRAN V, and this is probably not allowed in

other FORTRANs. Minor reprogramming could remove such references

if they occur.

2. If IBIT or NBITS above are not in the allowable range highly

erratic results will occur. The statement COMPILER (FLD=ABS) is

used to force these arguments to be positive values, as all

negative numbers are not in the acc'pted range.

65

FMTGEN-1

SUBROrTINV IDUNTIFIrATION

Name FMTGFN (FORIRAN Format Generator)

Language FORTRAN V

Date Apr 73

Programmer Stacey/Barton

FUNCTION

F.ITGEN reads CODAP Format Cards (see attachment) and generates FORTRAN

formats which are used to read raw data card images.

ENTRY POIN1S

1. FMTGEN

CALLING SFOCFNCE

1. CALL. FMTGEN (LOPT)

a. Inputs

(1) LOPT is a binary integer option flag which determines the type

of field specified for Task variables (T) and blanks (V).

LOPT = 0 produces an A format for T's and an X format for B's.

LOPT = 1 produces an I format for T's and an X format for V's.

LOPT = 2 produces an A format for both T's and V's; this enables

the transfer of data from card columns corresponding to blanks

on the Format Cards.

(2) The number of CODAP Format Cards must be specified in the

second- from -last word of the named COMMON area.

(3) The proper Format Card deck must he provided (see attachment).

66
0"/

4..

r:MTGEN-2

b. Outputs

(1) Most of the data and control information are passed in a

named COMMON area between `IfUEN and nrozr?,

This 5504-word area contains nrrays tor cne oui f the

generated FORTRAN format, ca- es for 1-1,1L,%,,, i pi-

Task, History, and ihee- the .ctril C;, k

tables for pointers to input ,-ar,) b,..11;:zie:, .1.

item counts, lnd cou:Its of anJ

Items iormatted, ô.

(2) Formai Card errors ti Ii cause cne ci,1 co abor, .Cc ,c

diagnostic.

SPECIAL NOTES

1. This subroutine is tailored expressly for SETCHK and INPSTD, the programs

through which data enter the CODAP system.

2. FYTCEN requires the subroutines FRTRAN, CPT and INSF4T, but is subject

to no more than the same restrictions as are these subroutines. In

particular, a 6-character word is assumed.

67

FORMAT CARDS-1

FMTGEN ATCH

FORMAT CARDS

These cards describe the SETCHKed raw data file. There must be a format

card to describe each raw data card within a case. If a case consists

of 20 raw data cards, then 20 format cards are required. There are no

restrictions on the layout of raw data cards or format cards except that

each raw data card must contain a control number in columns 1-4 and each

format card must contain 'C...' in columns 1-4. Raw data fields are defined

by the following format characters:

C Defines the beginning of the case control number. This

character must appear in column 1 of each format card.

H Defines the beginning of a history variable.

T Defines the beginning of a task variable.

Defines a continuation of any of the above. A task

variable may occupy no more than 6 columns (T

The length of task variables (in terms of columns) must

remain constant for all tasks.

0 A blank column defines a skip.

other Any other character is defined as a 'check' character.

A checi character must have a matching character in the

corresponding column of the raw data. A maximum of 500

'check' characters is allowed.

68

73

FORMAT-1

SUBROUTINE IDENTIFICATION

Name FORMAT (Retrieve Print Format)

Language FORTRAN V

Date Oct 73

Programmer Weissmuller

FUNCTION

FORMAT decodes a print format from the Variable Dictionary on the front

of a History or KPATH file. This subroutine also returns flags indicating

the type and length of variables.

ENTRY POINTS

1. FORMAT

CALLING SEOUENCE

1. CALL FORMAT(LDICT(14,N),IMAT,NCHAR,ITYPE,IFLDI,IFLD2,SERR)

a. Innuts

(1) LDICT is a two dimensional array which contains the Variable

Dictionary entries. There are 15 words per entry and up to

16 entries per block. The format is contained in the last

two words of the entry (words 14 and 15). N is number of

the entry within the current block.

(2) IMAT, NCHAR, ITYPE, IFLD1, and IFLb2 are for output only.

(3) ERR is the FORTRAN statement number to jump to if the

dictionary entry does not contain a valid format.

b. Outputs

(1) 'MAT is a two word arras, which contains the format in FIELDATA,

left adjusted with all extra blanks omitted. OR IMAT contains

' NO FORMAT ' or ' INVALID ' if the error is used.

69

FORMAT -2

(2) NCHAR is a binary integer which is a count of the non-blank

characters in IMAT.

(3) ITYPF is:

(a) -1 if the variable is alphanumeric ("A" format)

(b) 0 if the variable is binary integer ("T" format)

(c) +1 if the variable is floating point ("F" format)

(4) If ITYPE is:

(a) -1, IFLD1 is a binary integer indicating a repetition

Factor for a background variable (e.g. 1 for 1A3).

IFLD2 is a binary integer indicating the number o'

alphanumeric characters to be used (e.g. 3 for 1A3).

(b) 0, IFLD1 is a binary integer indicating the number of

decimal digits required to nrint the maximum value

(e.g. 7 for 17).

IFLD2 is not used.

(c) +1, IFLD1 is a binary integer indicating the maximum

number of spaces required to print the value of the

variable. This includes "+" or "-" and a decimal

point (e.g. 10 for F10.3).

IFLD2 is a binary integer indicating the number of

decimal digits to print following the decimal point

(e.g. 3 for F10.3).

SPECIAL NOTES

1. This subroutine uses the FORTRAN V FLD function, negative DO LOOP

indexing and ENCODES and DECODES. For those reasons it is rather

machine dependent. It may be easily replaced by an assembly subroutine.

70
t^tr-
I aj

FORMAT-3

2. FORMAT expects the format to depict a single word variable and hence

will return an invalid response to variables like SSAN (A6,A3) or

ORGANIZATION (10A6,A4).

t"ect.0'0 71

FORM2X-1

SUBROUTINE, IDENTIFICATION

Name FORM2X (Formats for DIST2X)

Language FORTRAN V

Date Dec 73

Programmer Barton

FUNCTION

FORM2X encodes a format for DIST2X output according to parameters set by

that program.

ENTRY POINTS

1. FORM2X

CALLING SEQUENCE

1. CALL FORM2X (KX,LY,FIRST,MAT)

a. Inputs

(1) KX,LY and FIRST are program-generated parameters which control

Computed GO TO chains within the subroutine.

(2) MAT is for output only.

b. Outputs

(1) MAT is an array for the ENCODE-d FORTRAN format.

SPECIAL NOTES

1. This subroutine is an expedient resulting from the conversion of D1ST2X

from the IBM 7040 to the UNIVAC 1108. IBM supported the use of a FORTRAN

statement number in the WRITE format parameter which led, via inline

Computed GO TO chains, to the appropriate fixed FORMAT statement. Since

UNIVAC does not have this capability, but allows variable formats by

ENCODE-ing the specifications into arrays, FORM2X was written to use the

same parameter values to control the contents of the words in ENCODE

lists. Obviously, FORM2X is highly specialized, but reduces the machine

dependence of DIST2X.
72

FREDEV-1

SUBROUTINE IDENTIFICATION

Name FREDEV (Free Device)

Language 1100 Assembler

Date Nov 73

Programmer Weissmuller

FUNCTION

FREDEV erases FORTRAN V's record of a unit assignment. For each FORTRAN

unit (0 thru 30) there is an entry in a table (NTAB$) which associates

the FORTRAN unit with the external file. If the external file is

de-assigned using ERTRAN during a FORTARN program, FORTRAN is not

aware of it acid it attempts to rewind the file at the end of the program.

This causes an abnormal termination. This subroutine, then, erases the

NTAB$ entry, thereby informing FORTRAN the device is no longer assigned

and should not be rewound.

ENTRY POINTS

1. FREDEV

CALLING SEQUENCE

1. CALL FREDEV (IUNIT)

a. Inputs

(1) IUNIT is a binary. integer representing the FORTRAN unit to

be released.

b. Outputs

(1) FORTRAN's record of the unit is erased.

SPECIAL, NOTES

I. This subroutine is extremely machine dependent but may not be needed

at all in other FORTRAN's. It's only usage is in the subroutine FREE.

73

73

FREE-1

SUBROUTINE IDENTIFICATION

Name FREE (Free a Pile)

Languaae FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

FREE will release a file and its associated device so that they may be

used by other runs. This is most important with tape files as the tape

drives are at a premimum.

ENTRY POINTS

1. FREE

CALLING SEQUENCE

1. CALL PREE(IUNIT)

a. Inputs

(1) [UNIT is a binary integer representing the FORTRAN unit

to be released.

b. Outputs

(1) The FORTRAN unit is freed and the device is released. (SEE

FREDEV)

SPECIAL NOTES

1. This subroutine is machine dependent to the extent that it uses

ERfRAN to interact with the system to telease a file and its device.

This ought not be di' cult to program in assembler if necessary.

74

FREES-1

SUBROUTINE IDENTIFICATION

Name FREES (Free a File, but Save the Tape Drive)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

FREES will release a tape file but retain its associated drive so that it

may be used by a subsequent assignment. This is very important as the

tape drives are at a premimum.

ENTRY POINTS

1. FREES

CALLING SEQUENCE

1. CALL FREES (IUNIT)

a. Inputs

(1) IUNIT is abinary integer representing the FORTRAN unit to

be released.

b. Outputs

(1) The FORTRAN unit is freed and the drive is retained.

SPECIAL NOTES

1. This subroutine is machine dependent to the extent that it uses

ERTRAN to Interact with the system to release a file and not its

drive.

75

FSORT -1

SUBROUTINE IDENTIFICATION

Name FSORT (FORTRAN-EXEC 8 SORT Routine)

Language FORTRAN V

Date Oct 73

Programmer Weissmuller

FUNCTION

FSORT is a FORTRAN subroutine which is called to sort all records on

a given FORTRAN unit. This routine calls LINK and TABL3 which are

routines used to access the UNIVAC Sort Package. Records are read

from the specified FORTRAN unit, passed to the sort package, then

rewritten to the FORTRAN unit in the sorted sequence.

ENTRY POINTS

1. FSORT

2. FSORT2

CALLING SEQUENCE

1. CALL FSORT (IUNTT,NWORDS,ITYPE,IORDER)

a. Inputs

(1) IUNIT is a binary integer denoting the FORTRAN unit.

(2) NWORDS is a binary integer indicating the maxiwum number

of words in the largest record to be sorted.

(3) ITYPE is a binary integer eaual to either

0 if an alphanumeric sort is desired or a

1 if a numeric sort is required.

76

8 1.

FSORT -2

(4) IORDER is a binary integer equal to either

0 if ascending sequence is desired, or

1 if descending sequence is required.

Outnuts

(1) All records on FORTRAN unit IUNIT will be in the requested

sequence based on the first word of the record.

2. CALL FSORT2 (IUNIT,NWORDS,ITYPE,IORDER,JTYPE,JORDER)

a. Inputs

(1) Same as above, plus

(2) JTYPE is a binary integer equal to either

0 if an alphanumeric sort is needed on the second variable, or

1 if a numeric sort is needed on the second variable.

(3) JORDER is a binary integer equal to either

0 if ascending sequence is desired for the secondary sort, or

1 if descending sequence is desired on the secondary sort.

b. Outputs

(1) All records on FORTRAN unit IUNIT will be in the requested

sequences based on the first two words of the records.

SPECIAL NOTES

I. This is a specialized subroutine which ought to be &enlaced by an

interface to the user's installation sort package.

2. Note: The FORTRAN unit must contain unformatted records in order

to work nroperiv as full-word sort fields are assumed.

77

L40,-1IAd

GETFIL-1

SUBROUTINE IDENTIFICATION

Name GETFIL (Get a Tape File)

Language FORTRAN V

Date Oct 73

Programmer Weissmuller

FUNCTION

GETFIL will repeatedly reissue any file assignment request passed to it.

Only tape file assignments should be requested via this subroutine as it

issues a message to the operators every two minutes which reads

"WAITING ON TAPE DRIVE. AE" The assignment request is reissued every

15 seconds until accepted or an error status other than "WAIT" is returned.

ENTRY POINTS

1. GETFIL

CALLING SEQUENCE

1. CALL GETFIL (IMAGE)

a. Inputs

(1) IMAGE is an array which contains a valid file assignment

control statement.

b. Outputs

(1) Either the tape file is assigned, or

(2) The run terminates with diagnostics.

SPECIAL NOTES

1. This subroutine is rather machine dependent but is used strictly

within the file assignment package. As the file assignment package

is apt to be entirely rewritten at each installation this routine

is not very significant.

78

83

GETMAS-1

BR(fl IDENTIFICATION

Name GETMAS (Get a Mass Storage File)

Language FORTRAN V

Date Oct 73

Programmer Weissmuller

rUNCT I ON

GFTMAS will repeatedly reissue any file assignment request nassed to it.

This subroutine will issue the request and if a "WATT" status is returned,

30 second.; later, the request will he reissued. This is repeated until

ether the request is accepted or until an error status other than "WAIT"

is returned.

EN1TY POINTS

1. GFT`IAS

CALLING SEOUENCE

I. C,ILI GIPIAS (IAGE)

a. Inputs

(I) IMAcE is an array which contains a valid file assignment

control statement

b. Outruts

(1) Either the file is assigned, or

(2) The run terminates w*tl, diagnostic,.

,SPFCIA1 NoTiS

I. This suhrc,itine is rather machine dependent 5nt is used strictly

within tie file assignment pwlag%. As the file' asignment vackage

is apt to he entirely rpwritten at each in:Adllatio:i this routine

i; not ver.: significant.

79

c4)1t.,(1

SUBROPTINE IDENTIFICATION

Name

Language

Date

GETPCD (Get Program Control Table Data)

1100 Assembler

may 74

GETPCD-1

Programmer Weissmuller

FUNCTION

CF.TPCD will retrieve information from the PCT (Program Control Table).

This table contains information about the run-id, the account being

charged, and the running time. This routine, though elegant, is by

no neans essential.

ENTRY POINTS

1. GETPCD

CALLING SEQUENCE

1. CALL GETPCD(IDEC,IVAL)

a. Inputs

(1) IDEC is a binary integer (0 -240) indicating which word of

the PCT is to be cooled into IVAL.

(2) IVAL is for output only.

h. Output

(1) IVAL will contain the contents of the appropriate word of

the PCT.

SPECTAL NOTES

1. This is an extremely machine dependent subroutine but it may he deleted

with no ill side-effects. Its primary function was to provide

independent time estimates for individual programs.

80

85

CETPCT-I

SUBROUTINE IDENTIFICATION

Name CtTPCT (Get Program Coatrol Table Data)

Language FORTRAN V

Date May 74

Programmer Weissmuller

FUNCTION

GETPCT will retrieve information from the PCT (Program Control Table).

This table contains information about the run-id, the account being

charged, and Cle running time. This routine, though elegant, is by

nn means essential.

ENTRY POINTS

1. CETPCT

CALLING SEOUF.NCE

1. CALL GF.TPCT (IOCT,IVAL)

a. Boots

(1) IOCT is a octal integer (0-0360) indicating which word of

the PCT is to be copied into IVAL.

(2) IVAL is for output only.

I

b. Outnut

(1) IVAL will contain the contents of the appropriate word

of the PC"'.

SPECIAL NOTES

1. This is an extremely machine derendent s,oroutine, but it may be

deleted with no ill side-effects. Its primary function was to

provide independent time estimates ror individual programs.

81

Sl.! EMS MEMORANDUM Ivane 1100 03 !etymon 13 I*Of 4.1

-.3.3 PROGRAM CONTROL TABLE (PCT)

The materiel presented in this subsection is a supplement to the PRM, UP-4144, Revision 2.

4.6.3.1 The Element PCT (Based On :evil 27.0)

us and +'s as well as the Reserved Word for User are explained at the end of the table.

VA TAGS

00 AA a uRIGINAL RUi IDENTITY
-

01 AB GERERATED RUN IDENTITY

02 AC :_TOTAL ACCINULATM RUN TIME FOR ALL COMPLETED TASKS__________ -__ _ --_ -----
03 AD s ESTIMATM RUN TIME (200-___ MICROSECONMS INC.)

04 AEA! AZ Ai :ACCT PRTY ABORTS
I

OPTIus. 0,HE QUEUE ADDRMS
: IND

:

05 AL AR :QUAL. 21%. START (REL) ACTIVITY NAME TBL OR 0 :

06 EA ER EC :CONTINGENCY MASK CONTIG FROG CONTINGENCY ADDR OR 0 :

: (FROG) CN :

0*: AG DI AF a CHCPU COUNT LOG MUNI][- ESI ACCNT NUMBER :

10 PM a TOTAL I/O REQUEST COUNT :
11 AN a TOTAL I/0 DATA TRANSFER COUNT s

12 AO a RESERVED FOR USER t

13 AP 1 CORE-SMOND ACCUMULATION a

14 AQ a CORE-BLOCK-SECOND

15 WAITS 001 12 WAITS CHAIN

16 AS RUN START TIME AND DATE (?DATES F)RMAT)

17 es XQT OPTIONS (BIT 25=A - -- -BIT 06Z)

20 BC a CONDITION WORD

21 BD s MOST RECENT QUALIFIER (12 CHARACTERS) A
--

22 : I"ITIA, VALUE WILL BE PROJECT IDENTITY

23 Bi a ACCOUNT NUMBER (12 CHARACTERS)

24 a (2ND WORD -- ACCT NO)

-I25 CA CB_ a CORE QUANTUM USED C4RE QUANTUM
.

26 CC : TOTAL ACCUMULATED RUN TIME (200 MICROSECONDS INC.) :

27 Q CE s REAL TIME ACTIVITY COUNT____--_ -_, [SWAP LOCK COUNTER

-]

:

30 IL CO C1,11 ITS SEG LDIPROG.TYPE1- TYPE AND LEVEL PROGRAM SIZE :

31 CL :ACT FUEL VIA AWAITS (BIT 35=ACTID35-BIT 1=ACTID1-BIT 0 ALWAYS 04
------.....

32 CH s MASK CONTROL. WORD OF EXISTING ACTIVITIES :

33 0M 1 ACTIVITY MASK OF ACTIVITY 1 :

34 00 : ACTi7ITY MASK OF ACTIVITY 2

3S a : ACTIVITY MASK OF ACTIVITY 3 :

a

a a

72 DS t ACTIVITY MASK OF ACTIVITY 32

73 DT : ACTIVITY MASK OF ACTIVITY 33 a

74 DU : ACTIVITY MASK OF ACTIVITY 34 a

75 UI I ACTIVITY MASK OF ACTIVITY 35 1

76 DW DX : RELATIVE ADDRESS OF LAST ASA CURRENT ACTIVITY COUNT a

77 III IP CP IF 1T/3 CH CORD o MAX RTL LINKAGE TO CPOOLS N :

: RUN a

82

SY STEMS MEMORANDUM systeta 1100 OS I et yam* 13 1014T 2.4-2

119112 S RUN OONTROL SECTION

TSASA JP EN :ASA iiiJOORE CLEAIGR PGE I PCT ABORT MASK

ING FLAG FLAG

101 IA.+ s. CHAIN FOR EXEC WORKERS (ASA) ATTACHED TO USER'S PCT

102 IM IN IC ID

103 10 EP

104 FQ

105 ES

106 ER EY

10? ET

110 au

El

112 BR BA IX

113 IJ IQ CD

114 JI JJ JX JL

115 VG MY WE JA

116 JD JB JC

U7 JG JE

120 JR JZ .11 JN

121 JO JR NB JI

122 JS JQ

123 J? JU JW JV

124 KA

125 KB

126 KC

127 ID

130 KE

131

132

133

134

135

136

137

140

141 KY

142 KZ

143 LB

144 LC

145 LI

146 LJ

:CHECKPOINT COUNT DISP MSG ERR FLAG DEACT COUNT s

: HANDLER :

s BUSY DO :

s NOT TERM :

:LASP PCP ABSOLUTE ADDRESS NEXT PCT AISSuurrE ADDRESS

IBANK CORE DMCRIPTOR

DRANK CORE DESCRIPTOR

RETP/11 IBANK VALUE LIB/DB SEPARATOR VALUE

CORE QUANTUM TIME

FILENAME OF PROGRAMS PF USED BY

LOADS AND PRD

:TS EXIT USED FILE HEADER TABLE REC. ADDRESS :

:TS PCTABT ' FLAG USED NUMBER OF SEGMENTS :

:TS ESI CN xI CON PM ESI OMICX ESI OONT ROUTINE ADDRESS :

ITS TIMING
I

s

MOORE-
LCORE
FLAG

INS QUART COUNT FOR OUTSTANDING I/O :

REQUESTS s

:

: PCT IT) CHAIN START PCT rra4 CHAIN END :

:TS PC? TM
I

co NOT
USE

Par TM
FLAG

ER DAC? CRAIN :

:

:ESI AC TS ES ACTIVITY COUNT :

:RUST TS

8

DEACT
ERR?

RCED
PAC

RUST BUFF ER LINK :

t

-
s SUSPEND FLAG

:TS PCTLNKISIZEINuF; FLAG

BUFFER ADDR. FOR PMD s

NOT USED :

PROGRAM START (TINE AND DATE)

PROGRAM NAME (1ST 6 CHARACTERS)

NAME (LAST 6 CHARACTERS)

PROGRAM VERSION NAME i1ST 6 CHARACTERS)

VERSION NAME (LAST 6 Ell:RACTERS)

rt KG : POSITIONS ASSIGNED TYPE 030 TRACKS ASSIGNED TYPE 030 s

KH XJ s POSITIONS ASSIGNED TYPE 031 TRACKS ASSIGNED TYPE 031 s

XL KM :~POSITIONS ASSIGNED TYPE 032 TRACKS ASSIGNED TYPE 032 :

XN KO : POSITIONS ASSIGNER TYPE 033 TRACKS ASSIGNED TYPE 033 :

AP KQ : POSITIONS ASSIGNED TYPE 034 TRACKS ASSIGN=S TYPE 034 :

KR :IS s POSITIONS ASSIGNED TYPE 035 TRACKS ASSIGN, TYPF 035 :

XII KV s POSITIONS ASSIGNED TYPE 036 TRACKS ASSIGNED TYPE 036 :

KM KX s POSITIONS ASSIGNED TYPE 037 TRACKS ASSIGNED TYPE 037 :

TIME OF LAST TRACK SECOND CALCULATION

(SCRATCH) TRACK SE ONDS TYPE 030

TRACK SECONDS TYPE 031

TRACK SECONDS TYPE 032

TRACK_SECONDS TYPE 033

TRACK SECONDS TYPE 034

83

H2ACND -1

SUBROUTINE IDENTIF CATION

Name H2ACND (Ascen,ling Sort on Right Half Word)

Language FORTRAN V

Date Mar 74

Projrammer Barton

FUNCTION

H2ACND sorts an array into ascending sequence on the right half (H2) of each

word.

ENTRY POINTS

1. H2ACND

CALLING SEOUENCE

1. CALL H2ACND (NNDUP,LPACK)

a. Inputs

(1) NNDUP is the binary integer number (f words in the array to

he sorted.

(/) LPACK is the array (name).

b. outputs

(1) The words are reordered such that the values of the right

halves of the words in subscript order gro% larger.

SPECIAL NOTES

1. This subroutine performs a straightforward bubble sort, using the

FORTPPN FLU) Function for halfword access.

2. H2NCND is called by OPTRAN.

84

89

H2SORT-1

SUBROUTINE IDENTIFICATION

Name H2SORT (Descending Sort on Right Half Word)

Language FORTRAN V

Date Dec 73

Projrammer Barton

FUNCTION

E2SORT sorts an array into descending sequence on the right half (H2) of

each word.

ENTRY POINTS

I. H2SORT

CALLING SEQUENCE

1. CALL H2SORT (NRESP,LPACK)

a. Inputs

(1) NRESP is the binary integer number of words in the array to he

sorted.

(2) -PACK is the array (name).

b. Outputs

(1) The words are reordered such that the values of the right

halves of the words in subscript order vow smaller.

SPECIAL NOTES

1. This subroutine performs a straightforward bubble sort, using the

FORTRAN FLD Function for halfword access.

2. H2S')RT is called by JOBIND.

85

INSERT-1

SUBROUTINE IDENTIFICATION

Name INSERT (Pack Characters Into Next Array Locations)

Language FORTRAN V

Date Jun 73

Programmer Stac2y/Wcissmuller

FUNCTION

INSERT packs a given number of the leftmost characters from a word

into the next available character positions of a COMMON array up to

1000 words long.

ENTRY POINTS

1. INSERT

CALLING SEQUENCE

1. CALL INSERT (KTFW,KTFC,LFW,NFC)

a. Inputs

(1) KTFW is the integer subscript of the next COMMON array

lotation.

(2) KTFC is the integer count of characters filled (0-5)

in that location.

(3) LFW contains the characters to be inserted, left justified.

(4) NFC is the integer count of characters to be inserted (1-6).

b. Outputs

(1) The specified characters are appendec to the COMMON array, and

(2) KTFW and KTFC are updated, OR

(3) If KTFW becomes greater than 1000, the run aborts after a

86

91

INSERT-2

SPECIAL NOTES

1. This subroutine is highly specialized for use by CPI and FMTGEN to

create FORTRAN formats from CODAP Format Cards. As a typical

example, suppose words 6 and 7 of the COMMON (format) array contained

the string '1200 000' and LFW contained ',13121P (so that

KTFW = 6, KTFC = 3, and NFC = 5). After a call to INSERT, KTFW = 7,

KTFC = 2, and the two array words contain the string '12X,13

2. The subroutine is not machine dependent, except that a 6-character

word is assumed, so little or no conversion is required.

ikANF -1

SUBROUTINE IDENTIFICATION

Name IRANF (Initialize Random Number Function)

Language FORTRAN V

Date Feb 74

Programmer Weissmuller

FUNCTION

IRANF has two entry points. The first entry point selects and prints

a seed for the random number function, RANF. The selected seed is a

modification of the FIELDATA date and time. The second entry point

is called by RANF and keeps track of updating the seed from IRANF.

ENTRY POINTS

1. IRANF

2. GETRAN

CALLING SEQUENCE

1. CALL IRANF

a. Inputs - None

b. Outputs

(1) A seed is generated for RANF and GETRAN and,

(2) The value of the seed is printed in c:tal format.

2. CALL GETRAN (ANS)

a. :nputs

(1) ANS is for output only.

b. Outputs

(1) ANS is a floating point random number between 0.0 and 1.0.

SPECIAL NOTES

1. Other than using ERTRAN, this is a rather standard FORTRAN subroutine.

88

f33

JDCOPY -1

SUBROUTINE IDENTIFICATION

Name JDCOPY (Job Description File Copy)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

JDCOPY will copy the Job Description file from FORTRAN unit 27 onto unit

25. Unit 25 will contain all previous Job Descriptions and will be

positioned to receive additional descriptions. This routine is called

after CYCLES in SETUP9.

ENTRY POINTS

1. JDCOPY

CALLING SEQUENCE

1. CALL JDCOPY

a. Inputs

(1) None

b. Outputs

(1) A complete copy of all Job Descriptions will be written onto

unit 25, or

(2) The run will error terminate on sequence error.

SPECIAL NOTES

1. This routine is standard FORTRAN except for the PARAMETER statement

for the variable dimensions which may easily be replaced.

2. This routine appears only in SETUP9 which is called from either JOBSPC

or JOBGRP, as they are currently the only programs which can expand

the Job Description file.

89

94

JDEOF -1

SUBROUTINE IDENTIFICATION

Name JDEOF (Find Job Description File Mark)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

If two programs attempt to expand the Job Description file within a single

run, the first program will call JDCOPY to form a new copy of the file and

all subsequent programs will call JDEOF which should simply position the

new Job Description to receive additional reports. Since JOBSPC and JOBGRP

are the only two programs capable of calling JDEOF and they are rarely ever

stacked into a single run, this subroutine is not adequately checked out.

ENTRY POINTS

1. JDEOF

CALLING SEQUENCE

1. CALL JDEOF

a. Inputs

(1) None

b. Outputs

(1) The new copy of the Job Description is rewound and read until

a file mark is found, then backspaced over the file mark.

SPECIAL NOTES

1. This subroutine is standard FORTRAN.

2. The new copy of the Job Description file must be on FORTRAN unit 25.

90

of

LASCMP 1

SUBROUTINE IDENTIFICATION

Name LASCMP (Logical Alphanumeric String Comparison)

,Language FORTRAN V

Date Jun 73

Programmer Weissmuller

FUNCTION

LASCMP compares a string of FIELDATA characters against a range of

FIELDATA characters. If the test string is within the range, the

function returns a 1, otherwise a zero is returned.

ENTRY POINTS

1. LASCMP (Function: returns binary integer 1 or 0)

CALLING SEQUENCE

1. ISW = LASCMP(ITEST,LOW,IHI,NWORDS)

a. Inputs

(1) ITEST is a FIELDATA character string NWORDS long.

(2) LOW is a FIELDATA character string NWORDS long.

(3) IHI is a FIELDATA character string NWORDS long.

(4) NWORDS is a binary integer giving the length in words of all

arrays.

(5) ISW is for output only.

b. Outputs

(1) ISW = 1 if the string ITEST is greater or equal to LOW and

less than or equal to IHI in the FIELDATA collating sequence.

ISW = 0 if ITEST is not in that range.

91

SG

LASCMP -2

SPECIAL NOTES

1. This version of LASCMP is a FORTRAN V rewrite of an IBM 7040 assembly

language subroutine. Results are iependent on the collating sequence

of characters on the machine used.

2. This subroutine uses the FORTRAN V FLD function on half-word

boundaries to evaluate the alphanumeric ranges.

92

97

LINK-1

SUBROUTINE IDENTIFICATION

Name LINK (FORTRAN V Linkage to UNIVAC Sort Package)

Language 1100 Assembler

Date

Programmer UNIVAC

FUNCTION

LINK is a FORTRAN V - EXEC 8 interface which allows FORTRAN to directly

call the UNIVAC Sort Package. This write-up and any symbolic listings

are provided for reference only.

ENTRY POINTS

1. SBUILD (Called from TABL3(entry = SOPEN3))

2. SRREL

3. SSORT

4. SRRET

CALLING SEQUENCE

1. CALL SRREL (IMAGE,NWORDS)

a. Inputs

(1) IMAGE is an array containing the record to be sorted.

(2) NWORDS is the length in words of the sort record.

b. Outputs

(1) This entry point releases one record at a time to the

sort package. to action is taken until SSORT is called.

2. CALL SSORT

a. Inputs - None

93

95

LINK-2

b. Outputs

(1) All records which were passed via the SRREL entry are

sorted in accord with the control information established

with SOPEN3. (See TABL3) Though the records are sorted

upon return from this entry point, they are not useable

until retrieved via SRRET.

3. CALL SRRET

a. Inputs

(1) EOF is the FORTRAN statement number to lump to if an end

of file condition is detected on the sorted file.

(2) IMAGE and NWORDS are for output only.

b. Outputs

(1) Either, IMAGE will contain the next record from the sorted

file, and

(2) NWORDS will be the length in words of IMAGE, OR

(3) Upon reaching an end-of-file, control will jump to the

FORTRAN statement number designated by EOF.

SPECIAL NOTES

1. This subroutine is very machine dependent, but its usage is restricted

to the subroutine FSORT. If FSORT is rewritten for the user's

installation, this routine and TABL3 will not be needed.

94

39

LISORT -1

SUBROUTINE IDENTIFICATION

Name LISORT (Sort Pointer Array into Ascending Sequence)

Language FORTRAN V

Date Jul 73

Programmer Weissmuller

FUNCTION

LISORT accepts two arrays, an array of values and an array of pointers

(from 1 to NWORDS) and reorders the pointer array into an ascending

sequence based on the array of values. The array of values remains

unchanged.

ENTRY POINTS

1. LISORT

CALLING SEQUENCE

1. CALL LISORT (NWORDS,ARRAY,IPOINT)

a. Inputs

(1) NWORDS is a binary integer indicating the number of words

in the arrays ARRAY and IPOINT.

(2) ARRAY is an array of floating point or binary integer values.

(3) IPOINT is an array of binary integers in ascending sequence,

usually 1 through NWORDS.

b. Outputs

(1) IPOINT will be re-sequenced such that the contents of

IPOINT(1) will be the subscript in ARRAY of the swallest

valte in ARRAY.

SPECIAL NOTES

1. This subroutine is standard FORTRAN.

95

10 0

LISORT-2

2. IPOINT may contain values such as 200 through 300 if only

ARRAY(200) through ARRAY(300) are to be sorted. This technique

is used to sort tasks independently from duties even though the

values for both are in the same array in some programs.

3. See LSORT for descending sequence.

SUBROUTINE IDENTIFICATION

Name

,Language

Date

LSORT (Sort Pointer Array into Descending Sequence)

FORTRAN V

May 73

LSORT -1

Programmer Weissmuller

FUNCTION

LSORT accepts two arrays, an array of values and an array of pointers

(from 1 to NWORDS) and reorders the pointer array into a descending

sequence based on the array of values. The array of values remaius

unchanged.

ENTRY POINTS

1. LSORT

CALLING SEQUENCE

1. CALL LSORT (NWORDS,ARRAY,IPOINT)

a. Inputs

(1) NWORDS is a binary integer indicating the number of words

in the arrays ARRAY and IPOINT.

(2) ARRAY is an array of floating point or binary integer values.

(3) IPOINT is an array of binary integers in ascending sequence,

usually 1 through NWORDS.

b. Outputs

(1) IPOINT will be re-sequenced such that the contents of

IPOINT(1) will be the subscript in ARRAY of the largest

value in ARRAY.

SPECIAL NOTES

1. This subroutine is standard FORTRAN.

97

102

LSORT -2

2. 'POINT may contain values such as 200 through 300 if only

ARRAY(200) through ARRAY(300) are to be sorted. This technique is

used to sort tasks independently from duties even though the

values for both are in the same array in some programs.

3. See LISORT for ascending sequence.

98

103

SUBROUTINE IDENTIFICATION

Name

Language

Date

MSKOP1 (Mask Operations: Type 1)

FORTRAN V

Oct 73

MSKOP1 -1

Provammer Weissmuller

FUNCTION

MSKOP1 is a set of subroutines designed to handle several MASK arrays

from a Job Description File. These MASK arrays have 1 bit for each

case in a study. If a particular case is in this group, the corresponding

bit is equal to 1, otherwise it is zero. The first three entry points

are designed to create a mask array as is done in JOBGRP and JOBSPC. The

fourth entry point is designed to use existing mask arrays.

ENTRY POINTS

1. ZERMSK

2. SETMSK

3. ERSMSK

4. CHKMSK

CALLING SEQUENCE

1. CALL ZERMSK (NCASE,MASK,NWORDS)

a. Inputs

(1) NCASE is a binary integer which is a count of the number of

cases in the study.

(2) MASK is an array to become a mask array.

(3) NWORDS is for output only.

99

oti

MSKOP1 -2

b. Outputs

(1) NWORDS is a binary integer which is a count of the number

of full 36 bit computer words required to contain the

mask array for NCASE cases. Since the sign bit of the

computer word is not used NWORDS = (NCASE + 34)/35 and

truncated to the integer number.

(2) MASK will contain zeroes in the first NWORDS locations,

and is ready to receive a mask array.

2. CALL SETMSK (ICASE,MASK)

a. Inputs

(1) ICASE is a binary integer denoting the sequence number of

this case. (1 to NCASE)

(2) MASK is an array which is being made into a mask array.

b. Outputs

(1) The bit position in MASK identifying case number ICASE is

set to 1 signifying this case is a member of this group.

3. CALL ERSMSK (ICASE,MASK)

a. Inputs

(1) ICASE is a binary integer denoting the sequence number of

this case. (1 to NCASE)

(2) MASK is a mask array.

b. Outputs

(1) The bit position in MASK identifying case number ICASE is

set to 0 signifying this case is NOT a member of this group.

100

MSKOP1 -3

4. CALL CHKMSK (ICASE,MASK,$NOT)

a. Inputs

(1) ICASE is a binary integer denoting the sequence number of

this case. (1 to NCASE).

(2) MASK is an existing mask array.

(3) NOT is a FORTRAN statement to jump to if the bit in MASK

corresponding to ICASE is not equal 1.

b. Outputs

(1) Either, control will return to the statement following the

calling sequence if ICASE is in the group in question, or

(2) Control will pass to FORTRAN statement number NOT if ICASE

is NOT in the group.

SPEC/AL.NOTES

1. This subroutine uses the FORTRAN V FLD function on the left of an

equals sign and will have to be rewritten into the user's assembly

language.

2. While this subroutine may test or alter several mask arrays, MSKOP2

is designed to access only one mask array.

3. The COMPILER(FLD-ABS,R) reverses the bit counter in the FLD function

from a left to right count (0-35) to a right to left count (35-0)

MSKOP2 -1

SUBROUTINE IDENTIFICATION

Name MSKOP2 (Mask Operations: Type 2)

Language FORTRAN V

Date Oct 73

Programmer Weissmuller

FUNCTION

MSKOP2 is a set of subroutines designed to retrieve and use a single

mask array from a Job Description File.

ENTRY POINTS

1. GETMSK

2. GETMSM

3. USEMSK

CALLING SEQUENCE

1. CALL GETMSK (ISEQ,IDLID2,MATRIMERR)

a. Inputs

(1) ISEQ is a binary integer which is a unique identification

number for each report or group. This number is found in

card columns 76-80 of the Request card.

(2) ID1 and ID2 together comprise an 8 c' ,racter internal

identification code for all files under a given study.

These two words are the first two words of the Communications

Region.

(3) MATRIX is a 6 character identification code found in word 6

of the Communications Region. MATRIX is blank if the input

file is a History file and is equal to either 'TASKOr or

'TIME$$' if a KPATH file is the input.

MSKOP2 -2

(4) ERR is the FORTRAN statement number in the calling program

to jump to if the group identified as number ISEQ is not

found or if ID1, ID2, or MATRIX fails to match the Job

Description file used.

b. Outputs

(1) Either, the group's mask array is retrieved and ready to be

used by USEMSK, OR

(2) Control is passed to FORTRAN statement ERR.

2. CALL GETMSM(ISEQ,ID1,ID2,MATRIX,SERR,NMEM,IDREPT,ITITLE)

a. Inputs

(1) Same as above.

(2) NMEM, IDREPT, and ITITLE are for output only.

b. Outputs

(1) Same as above, plus

(2) NMEM is a binary integer count of the number of members in

the specified group.

(3) IDREPT is a 6 character FIELDATA identification of the

requested group.

(4) ITITLE is an 8 word FIELDATA array which contains the title

of the Report which first identified this group.

3. CALL USEMSK (ICASE,$NOT)

a. Inputs

(1) ICASE is a binary integer which is the sequence number of a

case on either the History or KPATH file.

(2) NOT is a FORTRAN statement number to lump to if case number

ICASE is not in the group specified in GETMSK or CETMSM.

103

1C8

MSKOP2-3

b. Outputs

(1) Either, control will return to the statement following the

call to USEMSK if ICASE is in the group, OR

(2) Control will jump to FORTRAN statement number NOT if ICASE

is not in the group.

SPECIAL NOTES

1. This subroutine uses the FORTRAN V FLD function and a COMPILER

directive to change the bit counter to a Right to Left count.

2. This routine is limited to processing a single mask array at a time.

For simultaneously using multiple MASKS see MSKOP1.

104

109

NEXREL 1

SUBROUTINE IDENTIFICATION

Name NEXREL (Mount Next Reel)

Language FORTRAN V

Date Sep 74

Programmer Weissmuller

FUNCTION

NEXREL will free the tape file currently assigned and associated with a

specific FORTRAN unit, then assign another reel of a file to the same

tape drive.

ENTRY POINTS

1. NEXREL

2. NEXREM

CALLING SEQUENCE

1. CALL NEXREL (NAME,IUSE)

a. Inputs

(1) NAME is a three word array where words 1 & 2 are the filename

in an A6,A4-format and word 3 is the negative file cycle

(backup number) in a 1A1 format. Word 3 = blank will assign

cycle 0 (the most recent copy). All words are in FIELDATA.

(2) IUSE is a binary integer representing the FORTRAN unit which

is currently associated with a tape file to be freed. Also,

the file specified by NAME above is to be mounted on the tape

drive currently used by the file to be released or freed, then

associated with this FORTRAN unit.

b. Outputs

(1) Either the tape reels on the physical tape drive are switched

and the FORTRAN unit IUSE is associated with the file NAME, OR

105

NEXREL-2

(2) The run aborts due to an invalid NAME with the appropriate

diagnostics.

2. CALL NEXREM (tAME,IUSE)

a. Inputs

(1) The same as for NEXREL.

b. Outputs

(1) The same as for NEXREL except the new file assigned will be

an "M" or 3-reel cycled file.

SPECIAL NOTES

1. As part of the file assignment package this subroutine will probably

be replaced or obsoleted on any non-UNIVAC system.

106

NOHEAD -1

SUBROUTINE IDENTIFICATION

Name NOHEAD (Change Page Boundaries)

Language 1100 Assembler

Date Sep 73

Programmer Weissmuller

FUNCTION

NOHEAD was written to suppress the EXEC 8 heading lines and allow CODAP

orograms to define their own page boundaries. Generally speaking CODAP

programs provide 5 blank lines at the top of each page instead of the

default 6 lines. Individual programs vary as to the number of blank

lines at the bottom of the page. The program DIAGRM, for example,

suppresses all page boundaries as the diagram may be several pages long.

ENTRY POINTS

1. NOHEAD

2. MARGIN

3. NOPAGE

CALLING SEQUENCE

1. CALL NOHEAD

a. Inputs - None

b. Outputs

(1) Automatic page overflow occurs at line 66 (the tear strip)

and skips 5 lines at the top of the next page.

2. CALL MARGIN

a. Inputs - None

1172

NOHEAD -2

b. Outputs

(1) Automatic page overflow is reset to the system standard,

i.e. leave six blank lines at the top and 3 blank lines at

the bottom of a 66 line page.

3. CALL NOPAGE

a. Inputs - None

b. Outputs

(1) All automatic page overflow is suppressed. When forced, a

new page boundary is the line after the tear strip, otherwise

no boundaries are recognized.

SPECIAL NOTES

1. This is a very machine dependent subroutine, however, an assembler

subroutine at the user's installation may easily replace this one.

108

113

NRAND -1

SUBROUTINE IDENTIFICATION

Name NRAND (Random Number Generator)

Language 1100 Assembler

Date Nov 73

Programmer Hutchinson

FUNCTION

NRAND will accept a seed value and return a random number and an updated

seed value.

ENTRY POINTS

1. NRAND

CALLING SEQUENCE

1. CALL NRAND (ISEED,PROB)

a. Inputs

(1) ISEED is a variable which may contain any value to be used

as a seed to the random number generator. NOTE: "The value

of ISEED is updated by the subroutine and therefore a constant

may not be used. Within CODAP, some form of the time of day

in FIELDATA is generally used as a seed.

(2) PROS is for output only.

b. Outputs

(1) The value of ISEED is modified such that the next call will

yield a new random number.

(2) PROS will be a random number in floating point notation in

the range 0.0 to 1.0.

SPECIAL NOTES

1. Though this subroutine is in Assembler, it ought to be easy to rewrite

for any machine.

109

NRAND -2

2. This routine is used in conjunction with IRAND and SRAND within

RANDOM for selecting random subsamples of a specified size.

115

110

OMSG -1

SUBROUTINE IDENTIFICATION

Name OMSG (Operator Messages)

Language 1100 Assembler

Date Jan 74

Programmer Rogers

FUNCTION

OMSG provides a method for a program to communicate with the system

console operator and visa versa. This routine is used by a few programs

to provide additional information to the operator. It also has the

capability to receive operator responses.

ENTRY POINTS

1. OMSG

2. OMSGW

CALLING SEQUENCE

1. CALL OMSG (NWORDS,MESAGE)

a. Inputs

(1) NWORDS is a binary integer count of the number of words In

the MESAGE array.

(2) MESAGE is an array which contains the FIELDATA message to

be displayed on the operator's console.

b. Outputs

(1) The first NWORDS of MESAGE is displayed on the operator's

console.

2. CALL OMSGW (NOUT,MESOUT,NIN,MESIN)

a. Inputs

(1) NOUT is a binary integer count of the number of words in

the MESOUT array.

111

OMSG--2

(2) MESOUT is an array which contains a FIELDATA message which

solicits an operator response.

(3) NIN is a variable which conteas a binary integer which is

a limit to the number of words of response that the operator

may return. NOTE: NIN is set equal to actual number of words

returned and therefore a constant must not be used for NIN.

(4) MESIN is an array for output only.

b. Outputs

(1) The first NOUT words of MESOUT is displayed on the operat,rs

console and the routine waits for a response. (Hence, the

"W" suffix)

(2) Upon receiving a response of NIN words or less, NIN is set

equal to the number of words returned in the MESIN array.

If an operator attempts to enter more than NIN words, his

message is erased before he completes it.

SPECIAL NOTES

1. This subroutine is very machine dependent, but its function is not

essential to the CODAP system. It may be removed with little

consequence.

117
112

SUBROUTINE IDENTIFICATION

Name

Lanuage

Date

OMSGO (Operator's Messages: Other Console)

1100 Assembler

Jan 74

Programmer Rogers

FUNCTION

OMSGO is identical to OMSG except all messages are directed to a

secondary console.

ENTRY POINTS

1. OMSGO

2. OMSGOW

CALLING SEQUENCE - See OMSG

113

OMSGO-1

OVRFLO-1

SUBROUTINE IDENTIFICATION

Name OVRFLO (DIST2X Flip-Flop Disk/Table Merge)

Language FORTRAN V

Date Dec 73

Programmer Barton

FUNCTION

When a core table of DIST2X output information is filled, OVRFLO merges

the table into a flip-flop pair of mass storage files.

ENTRY POINTS

1. OVRFLO

CALLING SEQUENCE,

1, CALL OVRFLO (MINF,MAXF,N,LIMIT,KSW,ITABLE,LIN,LOU)

a. Inputs

(1) MINF is a decrement index (the table is scanned backwards).

(2) MAXF is the maximum number of standard 5-word entries in the

table.

(3) N points to the first word of the current entry.

(4) LIMIT is a constant.

(5) KSW is a flag.

(6) 'TABLE is the core table.

(7) LIN and LOU are the FORTRAN unit numbers for the flip-flop files.

b. Outputs

(1) The contents of ITABLK are merged with the contents of unit LIN

onto unit LOU, and the units are then reversed.

1`; 9
114

OVRFLO-2

SPECIAL NOTES

1. This subroutine is an expedient resulting from the conversion of DIST2X

from the IBM 7040 to the UNIVAC 1108. Inline coding was removed to a

subroutine to reduce the size of the main program and to eliminate a

bad transfer from a FORTRAN DO loop. Obviously, OVRFLO is highly

specialized, but reduces the machine dependence of DIST2X.

115

PRTDIC-1

SUBROUTINE IDENTIFICATION

Name PRTDIC (Print Variable Dictionary)

ELaimme FORTRAN V

Date May 73

Programmer Stacey

FUNCTION

PRTDIC will read a prepositioneC1 History or KPATH file and print a

standard format Variable Dictionary. This routine is used in PRDICT,

VARGEN, and PROGEK.

ENTRY POINTS

1. PRTDIC

CALLING SEQUENCE

1. CALL PRTDIC (IUNIT,IOUT,NHEAD,IHEAD,NDICT)

a. Inputs

(1) IUNIT is a binary integer representing the FORTRAN unit

associated with the History or KFATH input file.

(2) TOOT is a binary integer representing the FORTRAN unit

associated with the output file, generally 6 for the

printer or 26 for the Report file.

(3) NHEAD is a binary integer count of the number of 14 word

FIELDATA heading cards to be printed at the top of the

first page.

(4) IHEAD is an array of 14 word FIELDATA heading cards to be

printed.

14:1

116

PRTDIC-2

(5) NDICT is a binary integer count of the number of blocks

of dictionary information on the History or KPATH file.

This number is the fourth word of the Communications Region

b. Outputs

(1) The Variable Dictionary will be printed or written to the

Report file.

SPECIAL NOTES

1. This is a standard FORTRAN subroutine.

122

117

RANDOM-1

SUBROUTINE IDENTIFICATION

Name RANDOM (Random Subsample Selector)

Language FORTRAN V

Date Nov 73

Programmer Hutchinson/Weissmuller

FUNCTION

RANDOM is a subroutine with two entry points. The first entry establishes

the random number generator seed, the size cf the total population and the

exact number of cases to be randomly selected. The second entry simply

returns a 1 or a 0 depending on whether the current case ought to be

selected or not.

ENTRY POINTS

1. IRAND

2. SRAND

CALLING SEQUENCE

1. CALL IRAND(ISEED,NPOP,NSAMP)

a. Inputs

(1) ISEED is any value to be used as a seed value for the

random number generator (NRAND). The time of day in

FIELDATA is normally used.

(2) NPOP is a binary integer count of the total population

size from which the random subsample is to be selected.

(3) NSAMP is a binary integer count of the number of cases to

be randomly selected.

b. Outputs

(1) The random subsample selection routine is initialized and

SRAND may be called.

118

12:3

RANDOM-2

2. CALL SRAND(INSAMP)

a. Inputs

(1) INSAMP is for output only.

b. Outputs

(1) INSAMP is a binary integer variable which is set equal

to -1 if the current case is not to be selected or is set

equal to +1 if the current case is to be selected.

SPECIAL NOTES

1. This subroutine is standard FORTRAN.

12.4

119

SUBROUTINE IDENTIFICATION

Name

Language

Date

RANF (Random Number Function)

FORTRAN V

Feb 74

RANF-1

Programmer Weissmuller

FUNCTION

A function reference to RANF will be replaced by a random floating

point value in the range from 0.0 to 1.0 inclusively. Note: An

initialization routine IRANF must be called prior to the first reference

to RANF.

ENTRY POINTS

1. RANF (Function: floating point value (0.0-1.0)

CALLING SEQUENCE

1. PROB = RANF(X)

a. Inputs

(1) X is a dummy variable. It is neither used nor altered.

(2) PROB is for output only.

b. Outputs

(1) PROB will be set equal to a random floating point value

between 0.0 and 1.0 inclusively.

SPECIAL NOTES

1. This is a standard FORTRAN function.

2. Prior to using RANF, the routine IRANF must be called.

120

1.ai

RANSEQ -1

SUBROUTINE IDENTIFICATION

Name RANSEQ (Randomly Sequence an Array)

Languaje FORTRAN V

Date Oct 74

Programmer Weissmuller

FUNCTION

RANSEQ will accept an input array of up to 300 items in length and

randomly resequence the array.

ENTRY POINTS

1. RANSEQ

CALLING SEQUENCE

1. CALL RANSEQ (NWORDS, IARRAY)

a. Inputs

(1) NWORDS is a binary integer specifying the number of words

in IARRAY.

(2) IARRAY Is an array name which contains elements to be

resequenced.

b. Outputs

(1) IARRAY will be randomly reordered.

SPECIAL NOTES

1. This subroutine uses NRAND to generate random numbers, and H2SORT

to sort an internal pointer array based on the random numbers.

126

121

REPEND-1

SUBROUTINE IDENTIFICATION

Name REPEND (Report End and Request Card Punch)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

REPEND updates the 'last report sentinel' on FORTRAN unit 2 and punches

a Request card for the report just written to the Report file, as well as

initializing the Report file for the next report.

ENTRY POINTS

1. REPEND

CALLING SEQUENCE

1. CALL REPEND (ISTUDY,IDREPT,ITITLE,NREP)

a. Inputs

(1) ISTUDY is a 4 character FIELDATA code for the account or study.

(2) IDREPT is a 6 character FIELDATA identification for the Report

just written.

(3) ITITLE is an 8 word FIELDATA title that is printed on the first

line of the report.

(4) NREP is for output only.

b. Outputs

(1) A Request card is punched with the study, the report ID, the

report title, and the report number.

(2) The report number is updated on FORTRAN unit 2.

(3) NREP is a binary integer which is the updated report number.

(4) The next 'BEGIN REPORT' NREP sentinel is written to the

Report file.

1214;1.7.7

REPEND-2

SPECIAL NOTES

1. This subroutine is coded in standard FORTRAN and is used by every

program which writes to the Report file. (JOBIND uses a special

version called REPEN13

123

REPEN1 -1

SUBROUTINE IDENTIFICATION

Name REPEN1 (Report End and Request Card Punch)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

REPEN1 updates the 'last report sentinel' on FORTRAN unit 2 and punches

a Request card for the report just written to the Report file as well as

initializing the Report file for the next report. This subroutine is

used only in JOBIND and is a modified version of REPEND.

ENTRY POINTS

1. REPEN1

CALLING SEQUENCE

1. CALL REPEN1 (ISTUDY,IDREPT,ITITLE,IVX,JREP,NREP)

A. Inputs

(1) ISTUDY is a 4 character FIELDATA code for the account or study.

(2) IDREPT is a 6 character FIELDATA identification for the Report

just written.

(3) ITITLE is a 7 word FIELDATA title that is printed on the first

line of the report.

(4) IVX is a 'visual control' variable value. It may be up to 6

FIELDATA characters.

(5) JREP is a binary integer which identifies the report number

associated with the group that serves as input.

124

REPEN1 -2

b. Outputs

(1) A Request card is punched with the study, the report ID, the

report title, the value of the visual ID variable (generally

case control number), the report number of the input group

and the report number for this individual job description.

(2) The report number is updated on FORTRAN unit 2.

(3) NREP is a binary integer which is the updated report number.

(4) The next 'BEGIN REPORT' NREP sentinel is written to the Report

file.

SPECIAL NOTE

1. This subroutine is coded in standard FORTRAN.

125

RESDRV -1

SUBROUTINE IDENTIFICATION

Name RESDRV (Reserve a Tape Drive)

Language FORTRAN V

Date Nov 73

prakuner Weissmuller

FUNCTION

RESDRV asks the operator to reserve a tape drive then indicate the drive

number to the program. This is used when creating Report and Job

Description files so that all three copies will only use one tape drive.

Alternate methods are being examined and this routine may soon become

obsolete. See FREES.

ENTRY POINTS

1. RESDRV

CALLING SEQUENCE

1. CALL RESDRV (IUNIT)

a. Inputs

(1) IUNIT is for output only.

b. Outputs

(1) IUNIT is a binary integer denoting the tape drive reserved

for this program.

SPECIAL NOTES

1. This subroutine is part of the file handling package and will probably

be replaced.

131
126

RFILE -1

SUBROUTINE. IDENTIFICATION

Name RFILE (Random Access File for OVRLAP)

LanguaKe 1100 Assembler

Date May 74

Programmer Rogers

FUNCTION

RFILE is a direct access file designed for the OVRLAP program. This

routine establishes OVRLAP's input as a "READ ONLY" file and prevents

the entire file from being checkpointed as well as reducing the overhead

checking inherent in FORTRAN V's direct access coding.

ENTRY POINTS

1. DEFINE

2. WRITER

3. CLOSER

4. READR

CALLING SEQUENCE

1. CALL DEFINE (MAXREC,MAXLRL,ISTUDY)

a. Inputs

(I) MAXREC is a binary integer count of the maximum number of

records to be written to this fileJ

(2) MAXLRL is a binary integer indicating the maximum length

in words of the longest record.

(3) 1STUDY is a 4 character FIELDATA code for the account or

study. This is used to generate filenames.

h. Outputs

(1) A direct access file is assigned and sufficient mass storage

area is secured. WRITER may now be called.

127

13,2

RFILE -2

2. CALL WRITER (IREC,NWGRDS,IMAGE)

a. Inputs

(1) IREC is a binary integer index number fur the record to be

written.

(2) NWORDS is a binary integer count of the number of words in

the record array IMAGE.

(3) IMAGE is the record array.

b. Outputs

(1) The contents of IMAGE is written as record number IREC in

the direct access file.

3. CALL CLOSER

a. Inputs - None

b. Outputs

(1) The direct access file established by the call to DEFINE and

loaded with information via the calls to WRITER is closed and

reassigned as a "READ-ONLY" file. The file is now ready to be

accessed by OVRLAP via the calls to READR.

4. CALL READR (IREC,NWORDS,IMAGE)

a. Inputs

(1) IREC is the binary integer index number of the record to be

read. Note: DEFINE, WRITER and CLOSER must be called prior

to the first call to READR.

(2) NWORDS is for output only.

(3) IMAGE is an array for output only.

b. Outputs

(1) NWORDS is a binary integer count of the number of words in the

record which was stored in IMAGE.

128

1,33

RFILE-3

(2) IMAGE is an array which contains the record.

SPECIAL NOTES

1. This subroutine is very machine dependent. It was necessitated by

properties of the checkpointing system and the excessive error checking

of FORTRAN. This routine, along with DISK and inline direct access

FORTRAN V statements, will undoubtedly be replaced at other installations.

129

114

ROSTER-1

SUBROUTINE IDENTIFICATION

Name ROSTER (Roster Control Cards and Error Messages)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

ROSTER is a set of subroutines designed to print control cards and error

messages.

ENTRY POINTS

1. RESET

2. PRINTC

3. ERRMSG

CALLING SEQUENCE

1. CALL RESET

a. Inputs - None

b. Outputs

(1) Writes a new control card listing page and resets counters.

2. CALL PRINTC

a. Inputs - None

b. Outputs

(1) Rosters the last card read by doing a re-read (FORTRAN unit 0 or 30).

(2) omatic page overflow if required.

3. CALL Ek, (NWORDS,IMSG)

a. Inputs

(1) NWORDS is a binary integer count of the number of words in the

error message array IMSG.

130

1.:15

ROSTER-2

(2) IMSG is a FIELDATA array of up to 9 words in length which

contains an error message. IMSG is sometimes passed as a

literal delimited by quote marks.

b. Outputs

(1) The contents of IMSG are printed single spaced under the last

card rostered.

SPECIAL NOTES

1. This subroutine uses FORTRAN V's re-read ability on FORTRAN unit 0 or

30. The re-read is accomplished by re-accessing FORTRAN's buffer for

the card file and may be coded in assembly language if necessary.

131

RPCOPY -1

SUBROUTINE IDENTIFICATION

Name RPCOPY (Report File Copy)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

KPCOPY will copy the Report file from FORTRAN unit 28 to unit 26. Unit

26 will be left positioned to receive additional reports. This subroutine

is called after CYCLES in SETUP and SETUP9.

ENTRY POINTS

1. RPCOPY

CALLING SEQUENCE

1. CALL RPCOPY

a. Inputs

(1) None

b. Outputs

(1) FORTRAN unit 26 will contain all previous reports and will

be positioned to receive more.

SPECIAL NnTES

1. This routine is standard FORTRAN with calls to the TREAD subroutine.

(REWIND is an entry point into TREAD).

132

RPEOF-1

SUBROUTINE IDENTIFICATION

Name RPEOF (Reposition Report File for Multiple Programs)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

RPEOF will reposition a Report file if several program executions write to

a Report file within a single run. The first program in the runstream will

call RPCOPY and create a new copy of the Report file. All subsequent

programs will call RPEOF and set the new copy to receive additional reports.

ENTRY POINTS

1. RPEOF

CALLING SEQUENCE

1. CALL RPEOF (IUNIT,NREP)

a. Inputs

(1) IUNIT is a binary integer deactirg the FORTRAN unit number of

the Report file. (generally IUNIT = 26)

(2) NREP is for output only.

b. Outputs

(1) NREP is a binary integer indicating the number of the last

report sentinel on the Report file.

(2) The Report file is positioned to receive additional reports.

SPECIAL NOTES

1. This subroutine is standard FORTRAN.

133

RPINDX -1

SUBROUTINE IDENTIFICATION

Name RPINDX (Report File Index)

Language FORTRAN V

Date Jul 73

Programmer Weissmuller

FUNCTION

RPINDX will print an index of the Report file assigned to FORTRAN unit 28.

This subroutine is called when option 2 of the EXTRCT program is specified.

ENTRY POINTS

1. RPINDX

CALLING SEQUENCE

1. CALL RPINDX

a. Inputs - None

b. Outputs

(1) A printed index of the Report file assigned to FORTRAN unit 28.

SPECIAL NOTES

1. This subroutine is standard FORTRAN.

134

129

RUNID -1

SUBROUTINE IDENTIFICATION

Name RUNID (Retrieve Run ID and Study ID)

Language 1100 Assembler

Date Apr 74

Programmer Weissmuller

FUNCTION

RUNID will retrieve the run ID and the account or study ID. This routine

is used only in INPSTD and is not at all essential even there.

ENTRY POINTS

1. RUNID

CALLING SEQUENCE

1. CALL RUNID (IDRUN,ISTUDY)

a. Inputs

(1) IDRUN and ISTUDY are for output only.

b. Outputs

(1) IDRUN is a 6 character FIELDATA identification of a run. By

installation policy the first four characters are an individual's

ID code.

(2) ISTUDY is a 4 character FIELDATA code foi the account or study.

SPECIAL NOTES

1. This is a highly specialized subroutine which is used only in INPSTD

for punching a card to be returned to the programmers for timing studies.

An attempt is being made to estimate the running time of OVRLAP from

information accumulated by INPSTD. This routine and the punched card

may easily be eliminated.

135

140

SAMSEL -1

SUBROUTINE IDENTIFICATION

Name SAMSEL (Sample Selection Subroutine)

Language FORTRAN V

Date Jun 74

Programmer Weissmuller

FUNCTION

SAMSEL has two entry points, one for determining the sampling logic and one

for actually selecting based on that logic.

ENTRY POINTS

1. SAMPLE

2. SELECT

CALLING SEQUENCE

1. CALL SAMPLE (IDSAMP,IDVAR,NVAR,IERR,IPRT)

a. Inputs

(1) VARIABLE INTERACTION CARD - See Sample Selection attachment

Section I.

(2) IDSAMP is an identification code for this sample. (Normally

sequential binary integers.)

(3) IERR is a binary integer error count (normally = 0).

(4) IPRT is a binary integer print flag. If IPRT = 1, PRINTC is

called and the VARIABLE INTERACTION CARD is rostered. (See

ROSTER) If IPRT A 1, no rostering occurs.

(5) IDVAR is a 9 word array for output only.

(6) NVAR is for output only.

b. Outputs

(1) The VARIABLE INTERACTION CARD is read from the card reader.

SAMSEL-2

(2) The IDVAR array contains a binary integer for each variable

ID found on the INTERACTION CARD. Background or VXXX variables

are flagged by making them negative. For example, if V015 or

V15 is encountered, the corresponding element of IDVAR = -15.

Conversely, if C015 or C15 is found, the proper element of

IDVAR = +15.

(3) NVAR is the number of variable IDs found on the INTERACTION

CARD. A maximum of 9 is allowed.

(4) IERR is a binary integer which is incremented by 1 for each

error detected.

(5) The INTERACTION CARD is rostered if IPRT = 1.

2. CALL SELECT (IDSAMP,LVALS,$REJECT,$NOFIND)

a. Inputs

(1) IDSAMP is an identification code for the desired sample. It

must match exactly an IDSAMP created by a call to SAMPLE.

(2) LVALS is an array of binary integers equal to 1 or 0. A given

element of LVALS will equal 1 if the value of the corresponding

variable specified in IDVAR is in the required range, and 0

otherwise. The main program is responsible for keeping track

of variable ranges and determining whether or not a particular

case has data within these ranges. Note: The array LVALS is

altered by the subroutine.

(3) REJECT is the FORTRAN statement number to lump to if the current

case does not meet the sample restriction requirements.

(4) NOFIND is the FORTRAN statement number to Jump to if no match

is found for IDSAMP.

137

SAMSEL-3

b. Outputs

(1) Either, there is a normal return from the subroutine which

indicates the case should be added to the sample, and

LVALS(1) # 0, or

(2) Control is returned to FORTRAN statement number REJECT, which

means the case is not in the sample and LVALS(1) 0, or

(3) Control is returned to FORTRAN statement number NOFIND because

no match was found for IDSAMP.

SPECIAL NOTES

1. This routine uses ERTRAN to dynamically assign FORTRAN unit 4 as a

temporary storage unit for the logical operations table. Other than

that however, SAMSEL is coded in rather standard FORTRAN.

138

SAMPLE SELECTION-1
SAMSEL ATCH

SAMPLE SELECTION

Section I VARIABLE INTERACTION CARD

Columns

2 Number of variable ranges used. (Maximum of 9) This also

specifies the number of cards in Section II.

4-80 Variables and operators optionally nested in parens.

OPERATORS - Two logical operators may be used These will

perform a logical "AND" or a lokir:al "OR". These

operators are denoted by the following special

characters:

Logical "AND" is denoted by "6".

Logical "OR" is denoted by ":" (Colon).

VARIABLES - The variable names may be abbreviated to least

number of significant characters. For example,

C007 may be written "C7", V020 may be written

"V20", etc.

PARENS If used, the parens must appear in matched pairs.

The use of parens will cause the enclosed expression

to be evaluated prior to all lesser or non-enclosed

expressions. The normal method of evaluating the

logical expressions is to evaluate all expressions

containing "6" (which is the logical "AND") from

left to right, then evaluate alp expressions

containing ":" (which is the logical "OR"). In

other words, a logical "AND" has precedence over a

logical "OR", as is the case in most MATH or LOGIC

SAMPLE-SELECTION-2
SAMSEL ATCH

Systems. Parens may be used for readability or

to override the normal hierarchy.

Section II VARIABLE SPECIFICATION CARD (one card per variable)

Columns

2 1 = The variable is 1-6 characters in size

2 * The variable is 7-12 characters in size

blank = The variable is computed (Cxxx)

4- 7 Variable identification (Vxxx or Cxxx)

9-80 Variable low and high ranges. Values must be left adjusted in

their fields. Both low and high must be specified.

If cc 2 is 1: Punch low in cc 9-14, high in cc 15-20.

If cc 2 is 2: Punch low in cc 9-20, high in cc 21-32.

If cc 2 is blank: Same as 2 except values must contain a

decimal point.

EXAMPLES

If C007 = Number of non-zero task responses, V003 = Grade.

3 C7 &V003:V3

C007 400. 683.

1 V003 1 3

1 V003 4 9

Then this setup will select all Airman First and below who perform between

400 and 683 tasks and all Sergeants and above regardless of the number of

tasks they perform.

SETUP-1

SUBROUTINE IDENTIFICATION

Name SETUP (Standard File Setup and Assignment Routine)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

SETUP is the highest level subroutine in the file assignment package.

Removing or changing SETUP will obsolete the following subroutines:

ASGA, ASGAM, ASGC, ASGCM, AUTORV, CYCLES, DKSTAT, FACREJ, JDCOPY,

JDEOF, RPCOPY, RPEOF, STATUS.

Generally, SETUP establishes the relationship between the filenames on

the FILENAMES card and corresponding FORTRAN units in the calling seauence.

Additional FORTRAN scratch units may be defined which are unrelated to

the filenames on the FILENAMES card.

This subroutine, or some similar version, is called by every main program

in the CODAP system if any files are involved.

ENTRY POINTS

1. SETUP

CALLING SEQUENCE

1. CALL SETUP (I1,12,13,14,15,16,J1,J2,J3,J4,J5,NREP)

a. Inputs

(1) Il through 16 are binary integers in the range(10-28) denoting

the FORTRAN unit to be associated with the corresponding

filename on the FILENAMES card.

(2) Jl through J5 are binary integers normally in the range 20-24

denoting FORTRAN mass storage scratch units to be assigned.

(3) NREP is for output only.

141

SETUP-2

b. Outputs

(1) The FILENAMES card is read from the card reader.

(2) For an I value it 25-28 a Report or Job Description file or

files is assigned. If the I value is:

(a) 25: A new copy of the Job Description is created by

assigning the most recent copy of the file to FORTRAN

unit 27, assigning the oldest copy to unit 25 and copying

from 27 to 25. The most recent copy on 27 is released

and unit 25 is left mounted to receive additional Job

Descriptions. (See CYCLES, JDCOPY, JDEOF). Note: This

action is performed only in the SETUP9 version, but is

included here for documentation. SETUP9 was created

because this copying requires 5000 words of core but can

only be called by JOBSPC or JOBGRP.

(b) 26: Similar to the above except the Report file is

used. Unit 28 has the most recent copy and 26 becomes

the new copy. This action is performed for each run

which contains at least one program which writes to the

Report file. (See CYCLES, RPCOPY, and RPEOF)

(c) 27: The most recent copy of the Job Description file is

assigned for input only. (See ASGAM)

(d) 28: The most recent copy of the Report file is assigned

for input only. (See ASGAM)

NOTE: An "M" suffix and cycle number are added to the filename

found on the FILENAMES card for all assignments in

this range (25-28).

142

SETUP-3

(3) For cl I value 10-14, an input file is assigned and the

FORTRAN unit number relationship is established. (See ASCA)

(4) For an I value 15-19, a new catalogued tape is assigned

for output and the FORTRAN unit number relationship is

established (See AMC), or if the filename is eoual to

'SCRATCH', a scratch tape with the proper FORTRAN unit

designation is assigned.

(5) For an I value 20-24, a scratch tape with the proper

FORTRAN unit will be assigned.

(6) For an I value less than 10 (other than 0) or greater than

28 an error message is printed and the run aborts.

(7) For an I or J value equal to 0, no action is taken. Note:

FORTRAN unit 0 cannot be assigned to a file since the UNIVAC

FORTRAN V convention sets FORTRAN units 0 and 30 as the

reread units. This convention could be overridden, but is

not within the CODAP system.

(8) For any value of J, an attempt is made to assign a temporary

mass storage scratch file. If the J value is not in the range

1-29 an error occurs. Moreover, no check is made to see if the

I and J values conflict.

(9) NREP is a binary integer set equal to the last report sentinel

on the Report file if and only if an I value of 26 is used and

a valid Report file was specified on the corresponding field

of the FILENAMES card.

SPECIAL NOTES

1. This subroutine will undoubtedly be replaced by any installation which

does not have a UNIVAC. This documentation is provided to ease the

rewriting involved.
143

148

SETUPS-1

SUBRO9TINE IDENTIFICATION

Agittiw SETUPS (File Assignments for EXTRCT)

Language FORTRAN V

Date Nov 73

Programmer Weissmuller

FUNCTION

SETUPS is identical to SETUP except an I value in the range 15-19 will

create a new 3-reel "M" suffix file rather than a normal single reel

file. (Ref SETUP: CALLING SEQUENCE lb(4) - See ASGCM)

ENTRY Port rs

1. SETUPS

CALLING SEQUENCE

I. CALL SETUPS (I1,12,13,I4,15,16,31,32,J3,J4,J5,NREP)

See SETUP

144 -

1`k9

SETUP9 -1

SUBROUTINE IDENTIFICATION

Name SETUP9 (File Assignments for JOBGRP and JOBSPC)

Language FORTRAN V

Date Jun 74

Programmer Weissmuller

FUNCTION

SETUP9 is identical to SETUP except it allows a new copy of the Job

Description file to be created. Because the copying procedure requires

5000 additional words of core, this routine was formed from the standard

SETUP.

ENTRY POINTS

1. SETUP9

CALLING SEQUENCE

1. CALL SETUP9 (11,12,13,14,15,1601,320304,35,NREP)

See SETUP

11.5

150

SHIFT-1

SUBROUTINE IDENTIFICATION

Name SHIFT (Shift Characters Right Within Words)

Language FORTRAN V

Date Dec 73

Provammer Weissmuller

FUNCTION

SHIFT causes a given number of the leftmost characters of each of a

specified number of words in an array to be right justified with preceding

blanks within the same words.

ENTRY POINTS

i. SHIFT

CALLING SEQUENCE

1. CALL SHIFT (NCHAR,NWORD,IRAY)

a. Inputs

(1) NCHAR Is the number of characters, taken from the left, to be

shifted right. If NCHAR is not between 1 and 5, the subroutine

takes no action.

(2) NWORD is the number of words, starting with the first word of

the array, to be shifted within.

(3) IRAY is the array (name).

b. Outputs

(1) For each word, 1-NWOR1), of array IRAY the leftmost NCHAR

characters become the rightmost NCHAR characters with blanks

preceding. Of course, the original rightmost character(s) are

lost.

SPECIAL NOTES

I. SHIFT assumes a 6-character word and used the FORTRAN ENCODE, but is

otherwise machine independent
146

"1, .146

SISO -1

SUBROUTINE IDENTIFICATION

Name SISO (Source Input, Source Output Routine)

Language 1108 Assembler

Date Sep 73

Programmer Rogers

FUNCTION

SISO is a set of subroutines which allows a program to read, update and/or

write elements in a mass storage program file. SISO is only used in PROGEN

which generates a FORTRAN V program element. Calls to these routines

may be replaced by either punching cards or writing these card images to

another mass storage or tape file. This may force PROGEN to become a

two step operation: Program generation then, in another run, compilation

and excution.

ENTRY POINTS

1. See Attachment.

CALLING SEQUENCE - See Attachment.

147

Om,

LIBZ.SISO (UNIVAC 1108 Assembler Language Subroutine)

Entry Points -- Routines

SPREP
SPOST
S IOPN

SICLS
SIGET
SOOPN
SOCLS
SOPUT

Entry Points

Call the Pre-Processor routine
Call the Post-Processor routine
Open the Source Input file
Close the Source Input file
Get the next Source Input record
Open the Source Output file
Close the Source Output file
Put a record on the Source Output file

-- Data

SISO ATCH

PARTBL Parameter table used by the Source Input routine and the Source
Output routine.

General Information:

The registers used in these routines (AO-A3, R1) are not saved or
restored by the subroutine. X11 is always the linkage register.

These routines all have FORTRAN compatible calling sequences.

Any errors will cause a message to be printed and the run aborted.

148

if;:3

SISO ATCH

SPREP -- Call the Pre-Processor routine

This routine calls the EXEC 8 routine PREPRO to initialize the Parameter
Table, PARTBL. It returns a list of the options specified on the processor
call card in fieldata, left adjusted, with six characters per word.

CALL SPREP (OPTLST)

OPTLST -- An array to receive the option list. It should be filled with

zeroes or blanks before the call. The specified options are
alphabetical, left to right.

SPOST -- Call the Post-Processor routine

This routine calls the EXEC 8 routine POSTPR to reset the assignment
status of program files.

CALL SPOST

SIOPN -- Open the Source Input file

This routine provides initialization functions for getting Source Input
records from the input program file.

CALL SIOPN

SICLS -- Close the Source Input file

This routine providL:s Lermination functions for closing the crrerce Input

file.

SIGET -- Get the next source Input record

This routine returns the next logical record in the input file to the
user's area, along with a flag indicating new or removed cards. When End-of

File is detected, the length parameter is set to zero.

CALL SIGET (REC,LEN,FLAG)

REC The receiving area for the record.

LEN The length in words of the receiving area.
FLAG The flag indicating new or deleted images in the first three characters.

Possible values are:

"NEW" indicating a new image.
"-xx" where xx is a two-digit decimal number indicating the number of

images deleted prior to this image. This number cannot exceed 63.
If more than 63 images are deleted, it will only show 63.
if neither of the above, the value is spaces.

149

t
4)1

SISO ATCH

SOOPN -- Open the Source Output file

This routine provides initialization for output to a program file.

CALL SOOPN

SOCLS -- Close the Source Output file

This routine provides termination functions for closing the Source

Output file.

CALL SOCLS

SOPUT -- Put a record on the Source Output file

This routine transfers an image from the user's area to the source output

area.

CALL SOPUT (LEN,REC)

LEN Length of the output image.

REC The image area to be output.

STATS -1

SUBROUTINE IDENTIFICATION

Name STATS (Statistics on Task Responses)

Language FORTRAN V

Date May 74

Programmer Barton/Weissmuller

FUNCTION

STATS is a subroutine which was added to INPSTD in order to provide task

response statistics used to predict the running time of OVRLAP.

ENTRY POINTS

1. STATS

2. STATSS

CALLING SEQUENCE

1. CALL STATS (NZTSK)

a. Inputs

(1) NZTSK is a binary integer count of the number of non-zero

task responses made by the current case.

b. Outputs

(1) The statistics are accumulated for each call.

2. CALL STATSS (AMEAN,SD,MIN,MAX,ISUM,NCASE)

a. Inputs

(1) Successive calls to STATS

(2) AMEAN, SD, MIN, ?SAX, ISUM, and NCASE are for output only.

b. Outputs

(1) AMEAN is the floating point value representing the mean of

all values passed to STATS.

(2) SD is the floating point value of the standard deviation of

the values passed.

151

fl

STATS -2

(3) MIN is a hiKary integer equal to the lowest NZTSK passed

to STATS.

(4) MAX is a binary irteger equal to the highest NZTSK passed

to STATS.

(5) ISUM is a binary integer summation of all NZTSK values passed

to STATS.

(6) NCASE is a binary integer count of the number of times STATS

was called.

SPECIAL NOTES

1. STATS is coded in standard FORTRAN

152

1 57

STATUS-1

SUBROUTINE IDENTIFICATION

Name STATUS (Tape File Status)

Langual/e 1100 Assembler

Date Sep 73

Programmer Weissmuller

FUNCTION

STATUS is the subroutine used by all the "assign file" subroutines. This

is the routine which actually tests to see if a requested tape file is

already assigned to the run. See DKSTAT for a similar function on mass

storage files.

ENTRY POINTS

1. STATUS

CALLING SEQUENCE

1. CALL STATUS (ID,IREEL1,IREEL2,IFLAG)

a. Inputs

(1) ID is a two word array which contains the FORTRAN unit left

adjusted in FIELDATA in the first word and blank filled

through the second word. The association between the FORTRAN

unit and the external filename must be established prior to

this call.

(2) IREEL1,IREEL2, and IFLAG are for output only.

b. Outputs

(1) IREEL1 will contain the 6 character FIELDATA reel ID of the

first reel of the file if IFLAG = 0, otherwise IREEL1 will be

a binary integer zero.

I ;:,S-53

STATUS-2

(2) IREEL2 will contain the 6 character FIELDATA reel ID of the

second reel of the file if IFLAG = 0 and there are at least

two reels in the file, otherwise IREEL2 will be a binary

integer zero.

(3) IFLAG is a binary integer flag word. If IFLAG = 0, the file

was already assigned when the call was made, and the reel IDs

above will contain the proper information. If, however,

IFLAG = 1, the file in question is not currently assigned and

the reel IDs are not set.

SPECIAL NOTES

1. Being part of the file assignment package, this subroutine will either

be replaced or deleted.

154
.L.4JPJ

SUBRTN -1

SUBROUTINE IDENTIFICATION

Name SUBRTN (Assembler Subroutine Support Package)

Language 1100 Assembler

Date Oct 73

Programmer Rogers

FUNCTION

SUBRTN is a large set of assembler subroutines used at this installation.

It is included because some programs were adopted from outside the CODAP

area and required this package. 'Primarily these routines are used in

CFHIO, SISO, and READPF, all of which are themselves 1100 Assembler programs.

ENTRY POINTS

1. See Attachment

CALLING SEQUENCES - See Attachment for usage.

SPECIAL NOTES

1. The entry point ZERt has been modified within CODAP to be ZERO to avoid

an entry point conflict.

155

169

SUBRTN ATCH

LIBZ.SUBRTN (UNIVAC 1108 Assembler Language Subroutines)

Entry Points -

BINFD
BINOCT
DATETIME
FDBIN
MOVBIN
MOVED
MOVFD1
OCTBIN
ZERO

Entry Points -

ISCAN
RESSCN
SAVSCN

SCAN
SETSCN

Entry Points -

GETC
PUTC
PUTCR

Entry Points -

BIN

CARD
DATE
FIELD

INFO
TIME

- Data Handling

Binary to Fieldata (no zero suppression)
Binary to Octal
Current date and time of day
Fieldata to Binary
Binary to Fieldata (left adjusted)
Move Fieldata character string
Move Fieldata character string (Sets A3 and X8)
Octal to Binary
Binary to Fieldata with zero suppression

- Free Format Scan

Initialize and scan
Restore scan pointers
Save scan pointers
Scan for one field
Set scan parameters

- Character Handling

Get a character
Put a character
Put a character (Reverse)

- Data

Binary value of "FIELD"
Input area for SCAN
Output from DATETIME
Output (FD) from SCAN (left justified, space fill)
Scan information flags
Output from DATETIME

General Information:

All partial word parameters to these subroutine; require the following
forms directive:

ARG FGRM 12,6,18

All registers used by the data handling and scan subroutines will be
saved and restored in the subroutine. X11 is always the linkage register.

The character handling tables (GETC, PUTC, PUTCR) require initial
register settings.

These subroutines are NOT compatible with FORTRAN's calling sequence.

156

SUBRTN ATCH

BINFD -- Binary to Fieldata

This routine converts a signed binary integer value in memory to a
Fieldata character string. The result will have leading zeros and the sign
will be placed in the leftmost character position if the binary value is
negative. Positive numbers have a zero in the leftmost position.

If the receiving storage area is too small to accomodate the value and
the sign, it will be truncated with no error indication given.

LMJ X11,BINFD
ARG SCAAREA
ARG NC,X,BINVAL

SC Starting character position of the receiving area
AREA Base address of the FD area
NC .Number of characters in the receiving area
X CptiuIIdi X register if BINVAL is indexed
BINVAL Location of the binary value

Example:

LMJ X11,BINFD
ARG 62,0,LINE1
ARG 9,0,NUM NUM = 34624

Characters 62-70 of LINE1 will contain 000034624. If NUM contained

-34624, characters 62-70 would contain -00034624.

157

SUBRTN ATCH

BINOCT -- Binary to Octal

This routine converts the contents of one word of storage to its 1-12
digit octal equ -ent in Fieldata.

If the receiving storage area is less than 12 characters the value will
be truncated to fit.

LMJ X11, BINOCT
ARG SC,O,AREA
ARG NC,X,BINVAL

SC Starting character position of the receiving area
AREA Base address of the FD area
NC Number of characters in the receiving area
X Optional X register if BINVAL is indexed
BINVAL Location of the binary value

Example:

LMJ X11,BINOCT
ARG 43,0,HDR
ARG 6,0,CTLWRD CTLWRD 0000001040221

Characters 43-48 of HDR will contail 040221. If CTLWRD contained -1,
characters 43-48 would contain 777776.

I 63

158

SUBRTN ATCH

DATETIME -- Current date and time of day

This routine picks up the current date and time of day from EXEC 8 and
converts them to a form suitable for printing.

LMJ X11,DATETIME

The results are as follows with trailing spaces in DATE+2 and TIME+1

DATE YYMMDD
DATE+1,DATE+2 DD MMM YY
TIME,TIME+1 HH:MM:SS

159

SUBRTN ATCH

FDBIN Fieldata to Binary

This routine converts a Fieldata character string to a signed 'inary
value. The character string is always scanned, leading spaces are ignored
and FDBIN stops scanning on the end of the field or a trailing space.

Two modes of operation are possible, (1) nonediting and (2) editing. Only
in editing mode will a numeric test be performed on the nonblank characters.

LMJ X11,FDBIN
ARC SC,O,AREA
ARG NC,X,BINVAL

NONEDITING MODE

SC Starting character of the input character string
AREA Base address of the FD area
NC Number of characters in the input string
X Optional X register if BINVAL is indexed

BINVAL Resulting signed binary value

LMJ X11,FDBIN EDITING MODE

ARG SC,E,AREA
ARG NC,X,BINVAL

ERRXIT

E Any nonzero value
ERRXIT Alternate return point if the editing results in an error condition.

Under this circumstance, BINVAL will contain one of the following values:

Example:

0 = FDVAL was all spaces or only a sign
1 = At least one nonnumeric character was found
2 = The sign does not. precede the value
3 = The number is more than 10 digits in length

LMJ X11,FDBIN
ARC 1,0,FIELD
ARG 12,0,BIN FIELD = " 6 "

Location BIN will contain 777777777771R. If FIELD contained
2817", BIN would contain 0000000054018.

f.-.5

160

SUBRTN ATCH

MOVBIN -- Binary to Fieldata (Left Adjusted)

This routine converts a signed binary value to Fieldata and stores all
significant digits (plus the minus sign for negative values) left to right
beginning with the starting character specified in the calling sequence.
The length of the character string is returned to the calling program.

MOVBIN uses subroutine ZERO to make the initial conversion prior to
storing the character string.

LMJ X11,MOVBIN
ARG SCAAREA
ARG NC,X,BINVAL

SC Starting character position of the receiving area
AREA Base address of the FD area
NC Number of characters stored by MOVBIN
X Optional X register if BINVAL is indexed
BINVAL Location of the binary value

Example:

LMJ X11,MOVBIN
ARG 75,0,MSG
ARG 0,0,INCT INCT = 0000000300718

Characters 75-79 of MSG will contail "12345" and the number 5 will be stored
in T1 of the second parameter. If INCT had contained 7777777477068, characters
75-80 of MSG would contain -12345 and the number 6 would have been stored in
T1 of the second parameter.

161

SUBRTN ATCH

MOVFD & MOVFD1 -- Move Fieldata character string

This routine will move a Fieldata character string of up to 4095 characters
in length from one area of memory to another.

MOVFD and MOVFD1 use both the GETC and the PUTC routines to move data.

MOVFD1 is identical to MOVFD with the exception that registers A3 and
X8 will not be restored to their original contents. They will be set to the
word and byte position of the first character following the receiving field.

LMJ X11,MOVFD (or MOVFD1)
ARC NC,FBYTE,FWORD
ARG NB,TBYTE,TWORD

NC Number of characters to be moved
FBYTE 1st byte position (0-5) within FWORD
FWORD Starting address of the sending (from) field
NB Number of blanks (spaces) to move following the character string
TBYTE lst byte position (0-5) within TWORD
TWORD Starting address of the receiving (to) field

Example:

LMJ X11,MOVFD
ARG 32,0,MSG
ARG 9,4,LINE+3

Characters 1-32 of MSG will be moved to characters 18-49 of LINE. If T1
of the second parameter had been 5, then characters 59-54 would have been set
to spaces after the move.

LMJ X11,MOVFD1
ARC 17,0,M1
ARC 1,9,CTMSG

Characters 1-17 of M1 will be moved to characters 1-17 of CTMSG followed
by one space. A3 and X8 will be pointing to character position 19 of CTMSC.
In this case, the calling program could con.inue moving data via the PUTC
routine.

67

162

SUBRTN ATCH

OCTBIN -- Octal to Binary

This routine will convert a Fieldata (FD) character string to a binary
value. Each digit will be edited for validity (0-7). Any out of range
character will terminate the scan ani the binary value collected to that
point will be saved.

LMJ X11,0CTBIN
ARG SCAFDVAL
ARG NC,O,BINVAL

SC Starting character within FDVAL
FDVAL Fieldata value starting address
NC Length of tDVAL
BINVAL Result of conversion

Example:

LMJ X11,0CTBIN
ARG 5,0,LINE1
ARG 6,0,NUM

If LINE1 contains '00$073125000', NUM = 073125. The blank after the '5'
is not in range, so the scan terminates.

163

SUBRTN ATCH

ZERO -- Binary to Fieldata with Zero suppression

This routine converts a signed binary integer value in memory to a
Fieldata character string. The result will be right adjusted in the receiving
field with all leading zeros removed. The units position of the number is
always printed. The minus sign on negative numbers will be "floated" to the
first position in front of the most significant digit.

If the receiving storage area is too small to accomodate the value and
the sign, it will be truncated with no error indication given.

LMJ X11,ZERO
ARG SC,O,AREA
ARG NC,X,BINVAL

SC Starting character position of the receiving area
AREA Base address of the FD area
NC Number of characters in the receiving area
X Optional X register if BINVAL is indexed
BINVAL Location of the binary value

Example:

LMJ X11,ZERO
ARG 62,0,LINE1
ARG 9,0,NUM NUM = binary 34624

Characters 62-70 of LINE1 will contain 1601404624. If NUM contained a
negative 34624, characters 62-70 of LINE1 would contain 1600-34624.

164

SUBRTN ATCH

ISCAN -- Initialize and Scan

This routine initializes the pointers for SCAN and performs the first
scan on contents of CARD. As each new image is placed into CARD, the scan
pointers must be reset to the beginning via ISCAN.

ISCAN will initialize and perform the first scan via a call to SCAN
before returning. Therefore, the scan data fields of PTN, CARD, FIELD and
INFO apply to both ISCAN and SCAN.

A call to the SETSCN routine may be made prior to a call to ISCAN.

LMJ X11,ISCAN
LENGTH

LENGTH Location of the length of the current image

Example:

LA A0,(E0F,CARD)
ER READ$
SA,H2 AO,LEN

LMJ X11,ISCAN
LEN

The read symbiont will return the length of the card (in words) via AO.
It is in turn passed to the ISCAN routine.

1 0

165

SUBRTN ATCH

RESSCN -- Restore scan pointers

This routine restores the word and byte position saved by SAVSCN.

LMJ X11,RESSCM

After calling RESSCN, a call to SETSCN is required.

SAVSCN -- Save scan pointers

This routine saves the current word and byte position of the SCAN
subroutine.

LMJ X11,SAVSCN

171

166

$UBRTN ATCH

SCAN -- Scan the input image for one field

This routine performs a free format scan of the image in CARD beginning

with the position of the last call to ISCAN or SCAN.

The scan pointers must be initialized by a call to ISCAN, then, all

subsequent calls to SCAN will leave the pointers set for the next entry.

LMJ X11,SCAN

The following storage areas will contain the results of the scan operation:

FIELD Fieldata value left adjusted with trailing spaces

BIN Binary value of FIELD if it is numeric

INFO Scan information flags

Tl....Length of the FD value in FIELD
S3....Type of field

1 = Alphanumeric
2 = Numeric
3 = Literal
4 = Blank (null) field

S4....EOC (End of Card flag)
= Not end of card

1 = End of card
S5....Subscript of PUNCT in punctuation list
S6....PUNCT (Punctuation mark which terminated the scan)

Example:

Assume that the image in CARD is "CARD (123)

1st scan (ISCAN): FIELD = "CARD"

BIN = 0
INFO = 0004 01 00 04 51

2nd scan (SCAN): FIELD = "123"
BIN = 123
INFO = 0003 02 01 05 40

167

SUBRTN ATCH

SETSCN -- Set Scan Parameters

This routine sets the free format scan parameters STARTC, PCTL and NPCT
for ISCAN and SCAN. SETSCN must be called prior to a call to ISCAN.

The two items set by SETSCN are the starting position and the punctuation
list. They are the !first and second parameters for SETSCN, respectively.

LMJ X11,SETSCN
ARC BYTE,O,WORD or + 0

ARG NPCT,O,PLIST or + 0

BYTE 1st Byte with word (0-5)
WORD 1st Word of the scan area (within CARD)
NPCT NumhLr of punctuation marks in PLIST
PLIST....Punctuaiion mark list address

If 1st parameter = + 0 SETSCN uses 0,0,CARD
If 2nd parameter = + 0 SETSCN uses 9,O,PLIST

PLIST = NPCT = 1
1=1

2
'I, 3
(' 4

,),
5

I*, 6
1_,

7
I+, 8
1.1 9

Note: The punctuation mark list contains one punctuation mark per word (S6).

Example:

LMJ X11,SETSCN

0
ARG 2,0,NEWPCT

NEWPCT + 1,1
1=1

The starting character position for scanning the image in CARD will remain
at its normal position of character 1 and the punctuation mark list will be

changed to comma and equal.

It should be noted here that a space is always a scan terminating character
and that literals bounded by quotes are always defined. The character octal 76

may not be used since it is the end of card flag.

173
168

SUBRTN ATCH

GETC, PUTC, and PUTCR -- Character handling tables

These routines retrieve (GETC) or store (PUTC and PUTCR) character

strings from and into memory. When moving over a word boundary, X6 is

destroyed by the update routine.

GETC LX X7,(l,WORD)
LA A2,(1,BYTE)

EX GETC,*A2

PUTC LX X8,(1,WORD)
LA A3,(1,BYTE)

EX

A4 contains the next character

PUTC,*A3 S6 of A4 is stored

PUTCR....LX X8,(-1,WORD)
LA A3,(1,5-BYTE)

EX PUTCR,*A3 S6 of A6 is stored

WORD Beginning word address of -he character string

BYTE Beginning byte within WORD (0-5)

Example:

LX X7,(1,MSG)

LX X8,(1,LINE+2)

LA A2,(1,0)

LA A3,(1,3)

LR,U R1,14

EX GETC.*A2

EX PUTC,*A3
JGD R1,$-2

The 15 characters beginning with character 1 of MSG will be moved to the

15 characters beginning with character 16 of LINE.

169

TABL3 -1

SUBROUTINE IDENTIFICATION

Name TABL3 (Table 3 of FORTRAN V Sort Package)

Language 1100 Assembler

Date

Programmer UNIVAC

FUNCTION

TABL3 is a UNIVAC provided subroutine which is included for reference only.

It is part of the FSORT - LINK package which a a FORTRAN V interface to the

UNIVAC utility Sort Package. This routine provides 16000 words of core and

200,000 words of mass storage for sorting. TABL3 is the largest non-tape

space reservation subroutine of the TABL1 - TABL6 series and is the only

one used in the CODAP system.

ENTRY POINTS

1. SOPEN3

CALLING SEQUENCE

1. CALL SOPEN3 ($ RET,$ESORT,MAXLRL,MAXLEN,ITABL)

a. Inputs

(1) RET is the FORTRAN statement number to return to upon

completing this call.

(2) ESORT is the FORTRAN statement number to return to after

SSORT of LINK is called and all sorting is complete.

(3) MAXLRL is a binary integer denoting the largest record length

in words tc e passed via SRREL to the sort routine.

(4) MAXLEN is , aary integer denoting the maximum number of

words required to hold all sort fields (normally 1 or 2).

175
170

1

TABL3 -2

(5) ITABL is an array containing the control information for the

sort. Its contents are set by a data statement and necessary

changes are made by calling FSORT or FSORT2. Each sort field

is defined by six entries in the array and an integer value of

99999 signals an end to the sort fields. All values are binary

integer and denote the following attributes of the sort:

Entry 1: Word # of sort key (=1 or 2)

Entry 2: Bit position of sort key (Left to Right, =1)

Entry 3: Number of bits in sort key (=36=full word)

Entry 4: Type of sort: (usually 0 or 1)

0 = alphanumeric

1 = binary 1108 format

2 = signed decimal

Entry 5: Order of sort

0 = ascending

1 = descending

Entry 6: Significance number

1 = Major sort field

2 = Minor sort field

b. Outputs

(1) Area in core and mass storage are reserved for the sort.

(2) Return address from SSORT is established.

(3) Tie entry points in LINK may be called.

SPECIAL NOTES

1. This is a highly specialized subroutine serving to allocate space for

the sort package. This routine will undoubtedly be replaced or deleted

at any non-UNIVAC installation.

171

1.76

SUBROU1INE IDENTIFICATION

Aame IMTC.->k, (Transmit Array)

TMTCSC 1

Language FORTW.N V

DatE May 73

Proarammer CSC/Weissmuller

FUNCTION

rmTcsc causes a specified number of words from one array to be copied into

a second array.

ENTRY POINTS

1. TMTCSC

CALLING SEQUENCE

1. CALL TMTCSC (NWORDS,ITO,IFROM)

a. Inputs

(1) NWORDS is the number of words, starting with the first word in

each array, to be transmitted.

(2) ITO 's the receiving array.

(7') IFROM is the sending array.

b. Outputs

(1) The first NWORDS words of ITO are made identical with the

first NWORDS words of IFROM.

SPECIAL NOTES

1. This subroutine is an elementary FORTRAN DO loop which replaces an IBM

7040 Assembly Language subroutine widely used in CODAP.

2. By using a subscript other than (implied) 1 in the ITO or IFROM argument

of the subroutine call, any block of words may receive, or be sent as,

the NWORDS words of data. In particular, different sections of the same

TMTCSC -2

no array may t'e used to receive different types of information. For

example, in CODAP this subroutine is used to gather several different

arrays and, in a series of calls, place them into a single array.

173

TREAD-1

SUBROUTINE IDENTIFICATION

Name TREAD (Tape Read of FORTRAN Print)

Language 1100 Assembler

Date Oct 73

Programmer Weissmuller

FUNCTION

TREAD will read a FORTRAN written print file from a tape. This subroutine

is used primarily for reading, copying, or printing the report file. See

DREAD for a similar function on mass storage files.

ENTRY POINTS

1. TREAD

2. REWIND

CALLING SEQUENCES

1. CALL TREAD (NWORDS,LINE,JSEQ,$NEW,$EOF)

a. Inputs

(1) NWORDS is for output only.

(2) LINE is a 22 word array for output only.

(3) JSEQ is for output only.

(4) NEW is the FORTRAN statement number to Jump to if a new

report sentinel is read.

(5) EOF is the FORTRAN statement number to lump to if an end of

file is encountered iii an attempt to read the next line.

b. Outputs

(1) NWORDS is a binary integer which is the number of words in

the print image array LINE.

/79
174

TREAD-2

(2) LINE contains the next print line read. It has a maximum

length of 22 words and may be printed thusly:

WRITE(6,100) (LINE(I),P=1,NWORDS)

100 FORMAT(22A6)

(3) JSEO is a binary integer which is set equal to the index

number of the current Report being read. This value is set

only when the $NEW return is used.

2. CALL REWIND

a. Inputs - None

Outputs

(1) The print image file read by TREAD is rewound.

SPECIAL NOTES

1. This is a very machine dependent subroutine and should either be

replaced or eliminated. The primary function of this subroutine is

to read print images from tape and in particular, print images in

Report File Format. [Report File Format simply means that individual

reports are preceded by a sentinel of the form 'BEGIN REPORT',N where

N is a binary integer written out in 1A6 format.]

2. Both TREAD and DREAD assume FORTRAN UNIT 28 is the print image file.

This association must be established prior to calling either subroutine.

175

ZERBLK-1

SUBROUTINE IDENTIFICATION

Name ZERBLK (Change Zeroes to Blanks)

Language FORTRAN V

Date Mar 74

Programmer Weissmuller

FUNCTION

ZERBLK changes certain leading FIELDATA zeroes on INPSTD Task/Duty Title

Cards to blanks.

ENTRY POINTS

1. ZERBLK

CALLING SEQUENCE

1. CALL ZERBLK (ID,IDUT)

a. Inputs

(1) ID is an 11-word array containing a Task/Duty Title Card image.

(2) IDUT is for output only.

b. Outputs

(1) IDUT returns the duty character, and

(2) Any leading zeroes in the task number are changed to blanks, OR

(3) If the task number field contains invalid characters the program

aborts after a diagnostic.

SPECIAL NOTES

1. The subroutine is specially written for use by INPSTD.

2. ZERBLK employs subroutines BCDBIN and ERTRAN, and the FORTRAN ENCOM,

DECODE, and "R" format specification.

181

176

ZERO-1

SUBROUTINE IDENTIFICATION

Name ZERO (Store Floating Point Zeroes into Array)

Language FORTRAN V

Date May 73

Programmer CSC/Weissmuller

FUNCTION

ZERO fills a specified number of words in an array with floating point

zeroes.

ENTRY POINTS

1. ZERO

CALLING SEQUENCE

1. CALL ZERO (ARRAY,NWORDS)

a. Inputs

(1) ARRAY is an array for floating point values.

(7) NWORDS is the number of words, starting with the first word

in the array to be zero filled.

b. Outputs

(1) The first NWORDS words of ARRAY are set equal to zero.

SPECIAL NOTES

1. This subroutine is an elementary FORTRAN DO loop which replaces an

IBM 7040 Assembly Language subroutine.

2. By using a subscript other than (implied) 1 in the ARRAY argument of

the subroutine call, any block of words may be set to zero.

177

ZEROI-1

SUBROUTINE IDENTIrICATIoN

Name ZEROI (S,tore Integer Zeroes into Array)

Language rORTRAN V

Date Mav 73

Programmer CSC/Weissmuller

FUNCTION

ZEROI fills a specified number of words in an array with integer zeroes.

ENTRY POINTS

1. ZEROI

CALLING SEQUENCE

1. CALL ZEROI (IRRAY,NVoRDS)

a. Inputs

(1) IRRAY is an array for integer values.

(2) NWORDS is the number o: words, starting with the first word

in the array to be zero filled.

b. Outputs

(1) The first NWORDS words of IRRAY are set eeual to zero.

SPECIAL NOTES

1. This subroutine is an elementary FORTRAN DO loop which replaces an

IBM 7040 Assembly Language subroutine.

2. By using a subscript other than (implied) 1 in the IRRAY argument

of the subroutine call, any block of words may be set to zero.

178

