ED 104 397

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY

REPORT NO
PUB DATE -
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

" DOCUMENT RBSUME

IR 001 801

Grignetti, Mario C.; And Others

Mixed-Initiative Tutorial System to 1id Users of the
On-Line System (NLS).

Bolt, Beranek and Newmaa, Inc., Cambridge, Mass.

Air FPorce Systems Command, L.G. Hanscom Field, Mass.
Blectronic Systems Div. '
ESD-TR-75-58

30 Nov 74 .

135p.; For a related document, see IR 001 803

#F-3$0.76 HC-$6.97 PLUS POSTAGE

*Artificial Intelligence; *Computer Assisted
Instruction; Computer Programs; Computers; Computer
Science Bducation:; *Demonstrations (Educational);
Individualized Instruction; Man Machine Systems; *0On
Line Systems; Time Sharing; *Tutorial Programs
Computer Software; Natural lLanguage Processing; NLS
SCHOLAR; *Text Editors)

NLS-SCHOLAR is a prototype system that uses

artificial intelligence techniques to teach computer-naive people how
to use a powerful and complex text editor. It represents a new type
of computer-assisted instructiorn (CAI) system that integrates
systematic teaching with actual practice; i.e., one which can keep
the user under tutorial supervision while allowing him to try out
what he learns on the system he is learning about. NLS-SCHOLAR can
also be used as an on-line help system outside the tutorial
environment, in the course of a user's actual work. This capability
of combining on-line assistance with training is an extension of the
traditional notion of CAI. The techniques used are general and can be
applied to the teaching of a wide variety of computer related

activities.

(Author)

ESD-TR-75-58

N

o

M

=

o MIXED-INITIATIVE TUTORIAL SYSTEM TO AID

8 USERS OF THE ON-LINE SYSTEM (NLS)

|8W
Mario C. Crignetti
Loura Gould e et
Catherine L, Hausmann NATIONAL INSTI TUTE OF

1 ' Alan G. Bell OUCED EXACTLY 5‘1;%%5&0“32?%

Gregory Harris G BOTEr Uy ot orlwons
Joseph Passafiume S EaTion PGSITION O PoLICY = O

Bolt, Beranek and Newman, Inc.
50 Moulton Street
Cambridge, MA

30 November 1974

Approved for public release;
distribution unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION
L. G. HANSCOM AIR FORCE BASE, BEDFORD, MA 01731 .

R 00 0|

e R

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup=
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

"This technical report has been reviewed and is approved for
publication."

Syl K. Magen Suylore R Maytn-

SYLVIA R. MAYER/GS-14 SYLVIA R. MAYER/GS-14
Project Scientist Task Scientist

FOR THE COMMANDER

POl en

ROBERT W. O'KEEFE/ Colonel, USAF
Director, Infoymgtion Systems
Technology Applitations Office

Deputy for Command & Management Systems

Unclassificd
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Fnlarad}

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

{. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIFIENT'S CATALOG NUMBER
ESD-TR-75-58

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
MIXED-INITIATIVE TUTORIAL SYSTEM TO AID
USERS OF THE ON-LINE SYSTEM (NLS)

[6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) h 8. CONTRACT OR GRANT NUMBER(s)
, Mario C. Crignetti Alan G, Bell

Laura Gould Gregory Harris F19628-74-C~0088
Catherine L. Hausmann Joseph Passafiume

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :sgiﬂaAonR\.KEnsrTT.NPROJECT,_TASK
Bolt, Beranek, and Newmoan, Inc. Progrom Element - 7,
50 Moulton Street Project No. 2801
Cambridge, MA : Task 04,03

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Deputy for Command and Mangement Systems 30 November 1974
Hanscom AFB, M'l 0‘-73' 13. NUMBIESRIOF PAGES

18. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oliice) 1S. SECURITY CLASS. (of this report)
N/A UNCLASSIFIED

tSe. gg&éDASlS_IEFICATION/DOVINGRADlNG
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited,

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if neceseary and identify by block number)
Artificial Intelligence, Computer Assisted Instruction, Natural
Language Processing, Semantic Grammar, Semantic Network,
Tutorial Supervision, On-Line Assistance, Question Answering

20. ABSTRACT (Continue on reverse eide if necesesry and identify by block number)

NLS-SCHOLAR is a prototype system that uses Artificial Intelli-
gence techniques to teach computer-naive people how to use a
powerful and complex editor. It represents a new kind of Computer
Assisted Instruction (CAI) system that integrates systematic
teaching with actual practice, i.e., onc which can keep the user
under tutorial supervision while allowing him to try out what he
learns on the system he is learning about. (over)

FORM
EDITION OF t NOV 65 IS OBSOLETE P
DD san'7s 1473 Unclassified

4 SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entsred)

O

ERIC

Aruitoxt provided by Eic:

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. NLS5-SCHOLAR can also be used as an on-line help system outside
the tutorial environment, in the course of a user's actual
work. This capability of combining on-line assistance with
training is an -extension of tihe traditional notion of CAI.

The techniques usced in NLL-SCLOLAR are general and can be

applied to tic teaching of a wide variety of computer related
activitics.

2

Uinclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Enterad)

TABLE OF CONTENTS

Page

PREFACEQ000000.000 3

SECTION I - INTRODUCTION

wWhat is NLS-SCHOLAR

Why an NLS-SCHOLAR system
Demonstrating NLS-SCHOLAR capabilities
Annotated protocol

How does it work

® ® 0600000080000 0008000800008000s0s0s0s0s0s0 5

SECTION II - NLS‘SCHOLAR AS A TUTORQ.QQQQQQQQ000000000000000 26

Introduction

Teaching NLS fundamentals: The Primer
Endowing NLS-SCHOLAR with "awareness"
The LISP-NLS system

SECTION III - STUDENT/QA AND TUTOR/QA SYSTEMSsccccccccccccce 39

Questions and Answers: an Overview
Student/QA
The Parser
Parsing in Detail
Retrieval
Output
Tutor/QA
Tutor/QA System's Organization
The Form-Completer
The Answer Comparer
Future Considerations

SECTION Iv - TASK EVALUATIONOO0000.0.00000000000000000000000 60

SECTION V - SYSTEM ORGANIZATION..........Q".'...Q....QQ..Q. 64

Overall Organization
Error Analysis
How the System Works
Student Aids
Debugging Aids

SECTION VI-CONCLUSIONS000000000000000000000000000000000000 73

References.000 75

Appendix - Complete Seenario (Primer) ceccsssscssssssccsscccsss 17

PREFACE

The United States Air Force is relying more and more on
computer based systems for many of its management,
logistics, resource allocation, planning, and command and
control functions. Many of these computer based systems are
extremely powerful, but part of their large potential

usefulness remains untapped because of their complexity.

A case in point is the oN Line System (NLS), a powerful
tool for planning and communication developed by the
Augmentation Research Center of the Stanford Research
Institute. NLS is a computer based system for writing,
editing, publishing, and disseminating information of all
kinds. Many Governmental agencies includiAg several Air
Force facilities, access it through the ARPA computer
network. NLS is currently being evaluated by the Air Force
as a paradigm for the use of a computer based Management
Information System. In particular, one group at the Rome
Air Development Center is using NLS experimentally as part

£ that evaluation.

Although NLS is a complex system providing many options
to its users, those who have become proficient with it find
it very easy and powerful to use. However, gaining that
proficiency is usually very difficult and time consuming,
and there is a real need for computer aids to help people

with the learning process.

Recognizing the generality of this problem, the Air
Force has established as one of its Technical Needs the
development of computer based training and decision aids to
help peorle learn how to0 use these systems. In the
following report we describe the work done at Bolt Beranek
and Newman on a system, called NLS-SCHOLAR, designed to meet
that Technical Need: ESD-TN-Human Performance Aiding in

Command, Control and Management Data Systems.

SECTION I - INTRODUCTION

NLS-SCHOLAR is a quasi-operational CAI system that uses
Artificial- Intelligence techniques to help people learn how
to use the powerful structural éditor of NLS. NLS, the oON
Line System (1] developed by Douglas Engelbart -and his
co-workers at the Augmentation Research Center of the
Stanford Research Institute, 1is a sophisticated modular
system which is being increasingly used as an aid in
writing, re-organizing, indexing, ~ publishing, and
disseminating information of all kinds. It is a very large
system made up of many subsystems, and NLS-SCHOLAR deals
with EDIT, its most important and most freqguently used

subsystem.

SCHOLAR, conceived and first developed by the late
Jaime R. Carbonell, is an interactive mixed-initiative CAI
system that deals with the geography of South America. It
is cavable of answering freely interspersed questions posed
by a student in the course of a tutorial session, and it
uses teaching strategies similar io those of good human

tutors (2,3,4].

In trying to apply SCHOLAR to other domains of

knowledge, such as computer networks [5] and structural

editors, we have uncovered new problems that require

radically different approaches. Therefore, NLS~SCHOLAR,
. although preserving the flavor and interaction
characteristics of SCHOLAR, is an almost entirely new
system, its underlying philosophy and approach owing much to

Brown s SOPHIE system [6,7].

Why an NLS-SCHOLAR system

NLS is a powerful system for preparing and distributing
documents that offers many rewards to people who have
learned how to use it well. However, its complexity and the
multiplicity of its options make learning NLS difficult,
time consuming, and at times discouraging for people who are
not habitual computer users. With the increased
availability to NLS now afforded by the ARPA network and,
above all, with NLS playing a fundamental role in the NSW
project [8] there is a real need for on line aids to help

non-programmers both to learn and to use NLS.

NLS-SCHOLAR is designed so that it may perform either
as an on-line helper and question answerer, or as a tutor.
When used as a tutor, NLS-SCHOLAR behaves in a very friendly
way: 1in the course of a lesson, students can ask questions,
proceed at their own pace, make mistakes safely, ask for

help, and give up and be rescued by the system.

In tutorial meode learning is made easy and comfortable

by relying heavily on ostensive teaching. New information

is presented to the student by means of an expository part,

presenting examples and showing students Aow to do things.
The tutor lets students edit text by themselves and helps
them correct their mistakes; it answers guestions or
performs commands posed by students in a comfortable subset
of English; it asks questions and evaluates students’
answers; and it presents tasks for students to perform which

are then evaluated and commented upon.

As with most CAI systems, learning takes place in
complete privacy; students are left alone in a tete-a-tete
with the system with nobody witnessing their mistakes,
ignorance, or lack of sophistication in the use of computer
systems. This relaxed (and relaxing) situation helps the
learning process enormously. But unlike most CAI systems,
NLS-SCHOLAR is designed so that it can also be used as an-
on-line help system, so that users can ask gquestions arising
in their actual work with NLS, and expect NLS-SCHOLAR to be
aware of what they are doing and answer accordingly. This
is especially useful for sporadic users, or for people who
have not used NLS for a long time and have forgotten some of

its conventions.

NLS-SCHOLAR is designed to be a stand-alone tutorial
and help system. A student’s prior knowledge requirements
are simply to know how to 1log in, and follow the basic

instructions contained in a 2-page handout. The information

a

contained in these instructions is itself a part of the
system’s domain of knowledge. For example, the student is
told how to erase a character that he has typed, but if he

forgets how to do it he can ask NLS-SCHOLAR.

Demonstrating NLS-SCHOLAR's capabilities

The flavor of NLS-SCHOLAR is best conveyed with the
help of a demonstration protocol which was actually obtained
on-line using the latest version of the system. First, a

few helpful comments.

The demonstration of interactive capabilities we want
to perform cannot be done "in vacuo"; questions asked by
students or bty the system, as well as tasks pvroposed and
evaluated arise more naturally and make more sense in the
course of a lesson. When used as a tutor, the system is
driven by a fixed Agenda which presents to the student
carefully seaquenced morsels of NLS knowledge and know-how.
Since this 1is a demonstration protocol, our "student"¥ is
very obliging and does the appropriate things at the right
times to make explicit specific characteristics of the

system.

NLS-SCHOLAR uses two bodies of text as 1its working
examples, one a breakfast menu and the other a dinner menu.

In the course of a lesson, students learn how to change the

- = —— - " - -

*Actually one of the authors.

TP
S0

contents (and appearance) of these menus by performing
editing operations. Menus were chosen as examples because
of their direct appeal and general intelligibility, their
natural hierarchical structure, and the shortness of their

entries which makes them very easy to work with.

In the interest of brevity*, the protocol starts at a
point well along in the student’s learning of NLS -- he has
been told about NLS files, how to 1load them, print them,
delete and insert statements in them, etc. He is about to
be taught how to use the Substitute command to effect a

change in the breakfast menu (see Figure 1).

Readers familiar with NLS may fail to recognize it as
the system depicted in the protocol. This 1is because
NLS-SCHOLAR teaches the use of a newly emerging version of

NLS, which is not vet generally available.

*For a complete demonstration protocol, see the Appendix.

\
i
N

FIGURE 1 - THE BREAKFAST FILE

1 JUICE

2

1A ORANGE
1B GRAPLEFRUIT
CEREAL
2A OATMEAL
2A1 WITH RAISINS
2B CREAM OF WHEAT
2C CORN FLAKES
EGGS
3A SCRAMBLED
3B FRILD
3B1 SUNNY-SIDE-UP
3B2 OVER-LASY
3C BOILED
BEVERAGE
4A 1OT CHOCOLATE
4B TEA
4B1 WITH LEMON

482 WITH SUGAR AND CREAM

4C COFFEE

14 10

FIGURE 2 - THE PROTOCOL

SUBSTITUTE WORD IN STATEMENT

Before we end this lesson, I°d like to show you how to change the
content of statements which have already been inserted in your file.

You ‘ve learned how to correct errors by deleting an entire statement
and inserting a new one in its place. The Substitute command may be
used to change just a word or even a single character at a time. For
example, here’s how you can change a word in statement 2A1 so that it
reads WITH DATES instead of WITH RAISINS.

EDIT C: (Su)bstitute C: (W)ord in C: (S)tatement at A: (2A1
)(LKCR>); ,

<New WORD> T: (DATES)(KCR>);

<01d WORD> T: (RAISINS)(<KCR>);

Finished? Y/N: (Y) OK: (<KCR>);

Substitutions made: 1

EDIT C: (Do)ne OK: (<KCR>);

NLS-SCHOLAR performs a command for the student much as a
human tutor would by leaning over the student and typing
the command on the student's terminal. Parentheses enclose

what the "tutor" actually "types" separating it from the

echoes and responses printed by NLS.
<CR> is just a symbol to denote that the "tutor' depressed the
RETURN key. The semicolon is NLS's echo to a <CR>.

statement 2A1 for another; the new word DATES is to be
substituted for the old word RAISINS.

(There is no restriction that the items substituted for
one another be of the same length.)

To do this I typed only"Su W S 2a1 §CR>' to produce the first line;
typed ‘DATES <CR> " and "RAISINS <CR>" to produce the second and third.
The remaining characters are all printed by NLS.

NLS asks ‘Finished?’ since more than one substitution can be made at a
time. If I had typed ‘N’ for no instead of ‘Y’ for yes, it would have

|
\
|
You can see that I've specified that I want to substitute one word in
I
prompted for another <New WORD> and <0ld WORD> pair.
|
|
\

After I typed ‘Y’ NLS asks for further confirmation with OK:
to which I responded with a <CR>.

When the command has been executed, NLS tells how many subhstitutions
have been made. If there had been two instances of RAISINS in
statement 2A1, both would have been changed to read DATES.

Statement 2A1 is now the current statement. Please print it.

11 e

Student typing is underlined.

TASK 41 The student confuses the \ command, which
prints the current statement, with the / command
EDIT C: L that shows the current position of the control
==>WITH DAT marker. Realiaing his mistake, he fumbles with
EDIT C: 1 the other one-character commands he can v
2A OATMEAL remember. First he tries % which prints the

previous statement (24}, and makes
it become the current statement.) -

EDIT C: % Next the student depresses the LINE FEED
key which echoes as %, giving him the next
2A1 WITH DATES statement (241), making it current.

EDIT C: Done OK: _;

4

You printed too many statements. The task i8 evaluated. .
This is what I wanted you to print:
2A1 WITH DATES

Please redo just the printing
part of this ‘task. Your file is unchanged.

NLS~-SCHOLAR i8 reaqlly determined to get-the student to review
how to print the current statement.

continuation of TASK 41

EDIT C: *yWhat command prints the current statement?¥

THE USER PRINTS THE CURRENT STATEMENT USING THE
\ COMMAND.

Failing to remember the appropriate one-character command,

the student gives up and asks for help.

Questions can be asked anytime it i8 the student'’s turn to type.
NLS-SCHOLAR answers this question by retrieving information from
its own internal, descriptive data base.

continuation of TASK 41

EDIT C: A\. ’
2A1 WITH DATES
EDIT C: Done OK:_;

QUESTIONS?

= The student chooses to ask no questions at this time.

12 a5

Try the Substitute command yourself by substituting the word
OAT for CORN in the statement containing "CORN FLAKES".

TASK 42

EDIT C: *What statement contains "CORN"?#*

THE STATEMENT CONTAINING "CORN" IS:
2C CORN FLAKES

The student wants to kmow what the correct statement number is
for him to type. The system obtains the answer by actually
looking into the student's work space -- the answer is not stored
(it eannot be!) in the internal data base.
The system interprets correctly most of the common
paraphrases of this type of question, e.g.

"What is the statement containing..."

"What statement contains..."

"Where is8...", ete.

continuation of TASK 42

EDIT C: Substitute C: Word in C: Statement at A: 2C;
<New WORD> T: CORN;

<01d WORD> T: OQAT;

Finished? Y/N: ¥ OK:_;

Substitutions made: O
EDIT C: Done OK:_;

The student switches around the new and the old words,
so ne change is made.

so that this part of it what the result of this command
2B CREAM OF WHEAT should have been if he had
2C CORN FLAKES performed the task correctly
3. . . as opposed to the result which

he obtained. With this

You should have altered the file NLS-SCHOLAR shows the student
information, the student

|

|

would look like this: can "debug" his performance
2B CREAM OF WHEAT of tne task.
2C OAT FLAKES
3.

-But you did not alter the file.

Please try to repair your
mispake. The file is as you left it.

13

continuation of TASK 42

EDIT C: Substitute C: Word in C: Statement at A: 2C;
{New WORD> T: QAT;
<01d WORD> T: CORN;
Finished? Y/N: ¥ OK:
Substitutions made: 1
EDIT C: Done OK:_;

-~

TASK 43

EDIT C: Print OK:/C:_; NLS allows the student to type as
2C OAT FLAKES little or as much of each
3 EGGS command as he likes, providing
3A SCRAMBLED it 18 unambiguously denoted.
3B FRIED Here he chooses to type all of it
3B1 SUNNY-SIDE-UP since the command is so short.
3B2 OVER-EASY
3C BOILED
4 BEVERAGE
4A HOT CHOCOLATE
4B TEA
481 WITH LEMON
4B2 WITH SUGAR AND CREAM
4C COFFEE
EDIT C: Done OK:_;

You printed too many statements.
This is what I wanted you to print:
2C OAT FLAKES

Please try to print what I
wanted. The file is as you left it.

continuation of TASK 43

EDIT C:)\
2C OAT FLAKES
EDIT C: Done OK:_;

Good. The noun “WORD® refers to the fact that whole words are
involved, not just parts of words; but it does not imply that a single
word only may be provided as either the <New WORD> or the the <0ld
WORD>. Use the Substitute command to change statement 2A1 again, this
time to read WITH BROWN SUGAR AND CREAM instead of WITH DATES and
print your result.

L. 48

TASK 44

EDIT C: Substitute C: Word in C: Statement at
{New WORD> T: WITH BROWN SUGAR AND CREAM;
<0ld WORD> T: DATES; .
- Finished? Y/N: ¥ OK:_;
Substitutions made: 1
EDIT C: Done OK:_;

I wanted you to change
this part of your file:
2A OATMEAL
2A1 WITH DATES
2B o .

into this:
2A OATMEAL
2A1 WITH BROWN SUGAR AND CREAM
2B . .

But you changed this part of it:
2A OATMEAL
2A1 WITH DATES
2B . . .

into this:
2A OATMEAL

2A1 WITH WITH BROWN SUGAR AND CREAM
2B . . .

I have restored the file as it was

TASK 44

4

at the beginning of this task. Please start over.

THE USER TYPES 'SUBSTITUTE °, FOLLOWED BY “WORD
*STATEMENT °, '2A1°, <CR>, 'BROWN SUGAR AND CREAM’,
<CR>,

' ‘DATES’, <CR>, Y, <CR>, °\’, A <SPACE>, ’DONE
AND <CR>.

EDIT C: *How does one do this?¥* The student 18 lost
and asks for help.

NLS-SCHOLAR can show him what to do, as well as...

continuation of TASK 44

EDIT C: *Please do it for me*

...actually do it for him!

??IT C; (Substitute) C: (Word) in C: (Statement) at A: (2A1
<CR>);
¢New WORD> T: (BROWN SUGAR AND CREAM)(<CR>);
<01d WORD> T: (DATES)(<CR>);
Finished? Y/N: (Y) OK: (<CR>);
Substitutions made: 1
EDIT C: (\)
2A1 WITH BROWN SUGAR AND CREAM
EDIT C: (Done) OK: (<KCR>);

QUESTIONS?

* %

Please print the file starting with statement 1 so you can see the
effect of the changes we have made.

TASK 46
EDIT C: *Tell me how to print the file.*

THE USER PRINTS AN NLS FILE FROM THE CURRENT STATEMENT
TO THE END OF AN NLS FILE USING THE PRINT COMMAND,
PROCEDURE: HE TYPES “PRINT ° FOLLOWED BY <CR>.

An alternative to asking how to do a specific task
(in this case UTASK 46) is for the student to find his own
way by asking more general kinds of questions.

continuation of TASK 46

EDIT C: *what does current statement mean?#

THE CURRENT STATEMENT IS TAE STATEMENT AT
WHICH THE CM IS CURRENTLY POINTING.

16

continuatior. of TASK 46

EDIT C: *Where does the CM point to now?¥

THE CURRENT POSITION OF THE CM IS:
:3B + 1

continuation of TASK 46

EDIT C: *How do I move the control marker?¥

THE USER MOVES THE CM USING A CM MOVING COMMAND.

continuation of TASK 46

EDIT C: *What are the CM moving commands?#*

EXAMPLES OF A CM MOVING COMMAND ARE THE JUMP COMMAND,
THE < COMMAND, AND THE > COMMAND.

continuation of TASK U6

EDIT C: *How d ~ jump to sStatement 172%

THE USER MOVES THE CM USING THE JUMP COMMAND,
PROCEDURE: HE TYPES ‘JUMP °, FOLLOWED BY 17, AND
<CR>.

The student has asked many questions to re-familiarize
himegelf with the information necessary to perform
TASK 46. He now feels able to proceed to do tt.

continuation of TASK 46

EDIT C: Jump to A: 1;
EDIT C: Print OK:/C:_;
1 JUICE
1A ORANGCE
1B GRAPEFRUIT
2 CEREAL
2A OATMEAL
2A17 WITH BROWN SUGAR AND CREAM
2B CREAM OF WHEAT
2C OAT FLAKES
3 EGGS
3A SCRAMBLED
3B FRIED
3B1 SUNNY-SIDE-UP
3B2 OVER-EASY
3C BOILED
4 BEVERAGE
4A HOT CHOCOLATE
4B TEAQ
4B1 WITH LEMON
4B2 WITH SUGAR AND CREAM
4C COFFEE
EDIT C: Done OK:_;

QUESTIONS? !

#How do I print just branch 37%

THE USER PRINTS BRANCH 3 USING THE PRINT COMMAND,
PROCEDURE: HE TYPES °“PRINT °, FOLLOWED BY

4

“BRANCH “, “3°, <CR>, VIEWSPECS, AND <CR>.

Answer obtained by simple deductive inferencing.

REVIEW OF LESSON TWO
Lesson Two has introduced the following commands:

Insert command

Create command

Substitute command for words in statements
for characters in statements
for characters in branches

18

o
NV

QUESTIONS?

ENLSH The student can summon NLS in order tv practice
(or just to play) without fear of messing up his
work.

...USING A DISPOSABLE COPY OF YOUR CURRENT FILE

EDIT C: Print OK:/C: Statement at A: 2B;
Vi3
2B CREAM OF WHEAT
EDIT C: Substitute C: Character in C: Statement at A: 2B
'<New CHARACTER> T: U;
<01d CHARACTER> T: EA;
Finished? Y/N: ¥ OK:_;

Substitutions made: 2 The student replaced the characters
EA for U.

EDIT C: \
2B CRUM OF WHUT
EDIT C: Print OK:/C: Branch at A: "EGGS";
Vi
3 EGGS
3A SCRAMBLED
3B FRIED
3B1 SUNNY~SIDE-UP
3B2 OVER-EASY
3C BOILED
EDIT C: Substitute C: Character in C: Branch at A: 33
<New CHARACTER> T: ¥;
<01d CHARACTER> T: =3
Finished? Y/N: ¥ OK:_;
Substitutions made: 3
EDIT C: Print OK:/C: C: Branch at A: 3B;
Vil
3B FRIED
3B1 SUNNY*SIDE*UP
3B2 OVER¥EASY
EDIT C: Done OK: ;

... THROWING AWAY THIS COPY
The student leaves NLS returning to the

'"QUESTIONS?' level. The "Transparent overlay" on
whien he has seribbled disappears withcut trace.

19

¥Print branch 3B, please¥ Commands can be issued in
natural language.

...USING A DISPOSABLE COPY OF YOUR CURRENT FILE

EDIT C: (Print) OK:/C: (Branch) A: (3B) (<KCR>);

V: (<CR>);
3B FRIED]
3B1 SUNNY-SIDE-UP The Tutor demonstrates how to do it.
3B2 OVER-EASY Notice that the file is in its original
EDIT C: (Done) OK: (<CR>); state.

... THROWING AWAY THIS COPY

@choing

field

level

level zero

L: prompt

level adjustment
up (u)
down (d)
same (<CR>)

%
It has also introduced the following concepts:
|

repeat mode
<CTRL-B>
question mark facility"

QUESTIONS?

¥What can I type after L:?%

THE USER TYPES <CR>, ‘u’, “d", OR A COMBINATION
OF “u” AND “d” AFTER THE L: PROMPT.

®*ifhat statements are at level 27¥% .

THE STATEMENTS AT LEVEL 2 ARE:
1A 1B 2A 2B 2C 3A 3B 3C 4A 4B 4C

*What would be the level of statement 14ac3?¥

THE LEVEL OF STATEMENT 14AC3 IS:

20

[\
NeY

How does it work

Much of NLS-SCHOLAR's knowledge is derived from stored
data and from a set of built in routines that manipulate and
retrieve those data in response to gueries. The data base
is a semantic network of descriptive information that is
represented 1in attribute~value format. It contains
descriptions of actions and their purposes, descriptions of
the procedures necessary to accomplish these actions, and
descriptions of their effects and consequences. For
example, the semantic network contains a representation of
the description of the purpose of, and the procedure for
issuing, the delete command. An English rendition of the
this attribute-value representation would be: "The purpose
of the delete command is to delete a structure unit", and
"The procedure (for deleting a structure unit) is for the
user to type the word DELETE, followed by the name of a
structure unit, its address, and two carriage returns." The
semantic network also contains many other kinds of
attributes, among them the definition of '‘concepts, and the
interrelationships between concepts such as "A statement is

an instance of (or a name of) a structure unit."

The retrieval routines, initlated by a aguery, search
the semantic network for information relevant to the query.
For example, if a student wants to know what the delete

command does, his qguestion would translate into a query that

21

would essentially mean: "Find the wpurpose of the delete
command" ., The retrieval routines would attempt several
different matching procedures that would finally yield: "The
purpose of the delete command is to delete a structure

unit."

The retrieval process is assisted by built—-in
"reasoning" strategies that are called upon when the
matching procedures fail. In fact, 1in many cases the
desired information 1is not stored specifically as demanded
by the dguery, but may be inferred from available
information. For example, if the Qquery were for the
procedure for deleting a statement, our matching procedures
would fail. However, the system would still be able to
derive aﬂ answer via simple deductive 1inference; 1t knows
that a statement is a kind of structure unit, and it knows
how to delete a structure unit, therefore the procedure 1is

to "type DELETE, followed by STATEMENT, etc."

It is important to observe the introspective character
of this form of cognition. We have a) a data base that is
static, internal, and is made out of symbols, and b) a set
of built-in inference strategies and retrieval routines that

operate on those static, internal, symbolic representations.

Inferencing and retrieval mechanisms such as the ones
just described are the seat of the abstract "thinking"

abilities of NLS-SCHOLAR. As such, they are not yet very

22

b
g

powerful, and muck can be (and will be) done to improve
them.* However, it is important to stress here that there is
more to "intelligence" than powerful manipulation of

symbols.

People’s intelligent behavior is not based solely on
internal representations and conceptualizations and their
attendant reasoning processes. A person’s data base is not
only memory, and his "retrieval routines" are not solely
introspective: he uses the world as a data basé and his
senses to retrieve information from it. I don’t need to
have in my head a representation of what is behind my chair;

if I need to know, I can just turn around, look, and see!

Due to thé fact that NLS-SCHOLAR deals with a "world"
(NLS’s world) with which it shares much of its own being,
(i.e. it is a program that deals with the use of another
computer program) it was relatively easy to endow it with
some of this latter kind of "intelligence". For example, to
make NLS-SCHOLAR "aware" of the state of the student’s work,
all we had to do was design the system so that it could use
NLS as a sort of sensor. Thus when the student, lost in
thought, asks a guestion about his work space (such as ‘What
was the address of that statement that cortained "DESSERT"?’
or simply "Where is "DESSERT"?’) NLS-SCHOLAR manufactures an

- - - D - - - . -

*Much work has been done on this problem in the SCHOLAR
system that deals with the geograpby of South America [9].

23

apposite command, ha; it executed (invisibly) by LISP-NLS
(see below), and uses the result to construct an answer.
Moreover, NLS-SCHOLAR is designed to use LISP-NLS as its
seatt of pragmatic inferengial knowledge. For example,
sometimes it is easier t. obtain an answer by actually
"doing" and then "looking and seeing", rather than by
deducing the answer via logical inferences. This method is
very powerful -- sometimes it is not just easier to do than
to deduce: it is the only way we know of deriving an answer.
A new breed of "intelligent" CAI systems based on this
approach has been pioneered by Brown and his SOPHIE

system (6,7].

NLS-SCHOLAR can also combine the two forms of
knowledge. That 1is, 1t can use its semantic network and
reasoning routines to infer a procedure (such as how to
delete a statement) and then use this procedure to
synthesize an NLS command and have it executed. Thus

NLS-SCHOLAR can both describe and do things.

In the above discussion we carefully avoided asserting
that NLS-SCHOLAR actually uses the real NLS system. For a
number of reasons, we preferred to write our own version of
NLS in INTERLISP [10], and to wait until NLS-SCHOLAR reaches
a stable state before interfacing it with the real NLS. We

have taken elaborate precautions to ensure that this switch

can be done with a minimum of re-programming. All exchanges

between NLS-SCHOLAR and our LISP-NLS take place at the
surface 1language 1level (the system does manufacture
NLS-executable command strings that are then executed by
LISP-NLS) and we have consistently resisted the temptation

to short-cut this path.

SECTION II - NLS-SCHOLAR AS A TUTOR

Introduction

Having evolved from SCHOLAR [2,3], NLS-SCHOLAR 1is an
interactive, mixed-initiative system that 1is capable of
answering freely interspersed questions posed by a student
in the course of a tutorial session. However, the
differences in subject matter (text editing, computer based
systems VS, geography of South America) and in aim
(learning how to use a system vs. 1learning descriptions and
names) are of such magnitude that NLS-SCHOLAR and regular

SCHOLAR differ substantially in a number of important ways.

Consider first the differences in subject matter. Most
people know the fundamental concepts and relations of
geography, so that teaching the gecqgraphy of South America
doesn’t have to start by introducing the concepts of
country, capital, government, etc., and the relations
between them, e.q. that countries have capitals, that
governments reside in capitals. Rather, the instantiation
of these relationships can be taught right away, e.g. that
Colombia is a country in South America, and that its capital
is Bogota. People’s common knowledge of geography also
enables them to ask meaningful and instructive gquestions

from the start. Few people, however, know the fundamental

concepts, relations, and operations that characterize the

use of a computer based text editing system, and they cannot
learn very much about it by asking questions because they do
not know what to ask for or how to ask for what they want to
learn. Consequently, teaching must begin at a more basic

level.

Instructive interactions must be based on an underlying
conceptual structure that is common to the tutor and the
student. If this underlying structure is rich (as in the
case of geography), teaching is simple, and learning can
benefit considerably from the student’s being able to ask
meaningful questions from the start. If the structure is
shallow (as in the case of text editing systems) it must be
built up before teaching can go very far. Therefore, one of
the main goals of our work in NLS-SCHOLAR was to design and
implement a tutorial mode especially adapted to this

purpose.

Consider now the differences in aim. Most people can
learn the geography of a region without much manipulation of
the new facts that they learn. These facts sort of fit in
fixed slots that are there beforehand and that represent
well understood concepts. Few people, however, can really
learn to edit text without practicing, that is without being
able to perform editing operations and without being able to
ask questions about the state of their work. Therefore, the

other main goal of our work was to develop the means to

34 27

couple closely the "NLS world" with NLS-SCHOLAR, so that the

student could be put in contact with NLS, while NLS-SCHOLAR,

overseeing all this, could bring about SCHOLAR-like

abilities to help the student when needed.

In what follows we describe how NLS-SCHOLAR teaches the
fundamental concepts underlying text editing with NLS, and
how it interfaces with NLS so that students can practice

what they learn while remaining under tutorial supervision.

Teaching NLS fundamentals: The Primer

As discussed above, teaching people how to use a text
editing system 1is entirely different from teaching them
about the geography of a region. Therefore, for a SCHOLAR
system to teach NLS effectively, a new set of tutorial
strategies had to be develoved in order to cope with the

more basic concepts that must be introduced to the student.

Following a now well established path for developing
these strategies [l1], we set out first to find out how
human tutors teach NLS and‘what are the most important and
effective methods that good teachers use. We first studied
the course offered at BBN by members of the Augmentation
Research Center, and one of us (Laura Gould), having had
considerable experience in teaching the use of computers to

Humanities students, undertook to teach NLS to a small

number of students (meffibers of BBN s secretarial staff). An

analysis of the protocols of the teaching sessions pointed

to several problem areas.

The difficulties of teaching NLS concepts solely by
symbolic and formal descriptions can be appreciated in the
following example concerning the way NLS files are organized

and function.

Consider this portion of the DINNER file:

2 ENTREE
2A FRIED CHICKEN
2B PRIME RIBS
2C SALMON
2Cl1 WITH CREAM SAUCE
2D SCALLOPS
2D1 BROILED
2D2 FRIED

The structure of NLS files is such that statement numbers
represent slots or shelves that are provided by the system.
If we remove a statement, another statement which follows it
may be "promoted" to take its place, causing a reassignment
of statement numbers. For example, after deleting the

statement containing the PRIME RIBS, the file would be left

as:s

2 ENTREE
ZzA FRIED CHICKEN
2B SALMON

2Bl WITH CREAM SAUCE
2C SCALLOPS

2Cl1 BROILED

2C2 FRIED

29

This action and its effects can undoubtedly be described
formally without referring to any actual file. But how much

simpler it is to do it by way of an example!

The main conclusion that we extracted [12] was that
while effective teaching still depended on describing facts,
actions, purposes, procedures, etc. symbolically, the most
effective elements of the teaching situation were the
ostensive ones, namely:

1) teaching by letting the students do things by
themselves and helping them correct their mistakes.

2) teaching by way of examples

3) teaching by demonstrating actions (the tutor typing
commands for the student, for example, when a
complicated new command is being introduced or when

the student is unable to proceed)é

The Primer is like a scenario for the form NLS-~SCHOLAR
adopts when in tutorial mode. It is the consequence of
skillfully organizing, segmenting, presenting and segquencing
knowledge about NLS 1in a manner that results in easy and
comfortable 1learning. (For a complete version of the

Primer, see the Appendix.)

In tutorial mode, NLS-SCHOLAR consists of an
agenda-driven sedquence of tutorial units. The elements of

these tutorial units are:

34 30

a) delivering information

b) asking cuestions of the student

c) showing examples

d) demonstrating actions

e) reguesting the student to perform tasks and exercises,
evaluating them, and making the appropriate comments
to the student

f) pausing to answer questions from the student

Elements a) and f) are always present.’

The way things work 1is as fcllows. NLS-SCHOLAR
presents exposition, embedded in which is a series of tasks.
Fairly freaquently, the system stops to ask whether there are
any gquestions, by typing QUESTIONS? in the margin and then
printing an asterisk on the next line. If the student has
no questions he types an asterisk followed by a <CR> and the
exposition continues. If he has a gquestion he type it
directly following the "*" and terminates it with another
"% and a carriage return (<CR>) in typical SCHOLAR fashion.
When the question has been answered, NLS-SCHOLAR prints
another "*" in the margin indicating that it expects another
guestion. If the student has no more questions, he types

*¢(CR> and NLS-SCHOLAR proceeds.

Whenever a task is proposed, NLS~-SCHOLAR puts the

student in touch with NLS. This causes the herald EDIT and

31 L
35

the prompt C: to appear as EDIT C: in the left margin. The

student can then type one of four things:
(1) an NLS‘command term
(2) a "?" to obtain a list of all command terms which are
possible at that point
(3) a "*" to indicate that he wants to ask a question
(4) "DONE <CR>" to indicate that he has completed the

task and wishes to have it evaluated

If he does (1) his actions will be stored for later
evaluation, When his command is terminated, a new EDIT C:

will appear in the margin.

If he does (2) a list of possible command terms will be
printed. He should then type one of them and proceed with

his command.

If he does (3) his question will be answered and a new
EDIT C: will appear.

-

If he does (4) his performance of the task will be
evaluated. If he has done the task correctly he will be
praised and the exposition will continue. If he has done
the task incorrectly his mistake will be pointed out to him,
his file restored to its form before the task was initiated

and he will be asked to do it again. He may ask the system

to show him how to do it, or even ask the system to do it

4

for him if he is in real trouble.

Occasionally NLS-SCHOLAR will ask a question of the
student. At such a point, a "*" is printed in the left
margin, NLS-SCHOLAR waits for the student to answer the

guestion, and then evaluates his answer.

Endowing NLS-SCHOLAR with “awareness’

In order to make NLS-SCHOLAR ‘aware’ of what a user
does with NLS, we had to develop a coupling that enabled
NLS-SCHOLAR to use NLS to ‘sense’ the state of a user's'
file. This coupling constitutes an exceedingly powerful
tool. First, observe that it makes it possible for the
student to ask gquestions not only about descriptions,
definitions, orocedures, etc. (such as "What is a prompt,"
"what does viewspec n do," or "How do I delete a statement")
but also about the current state of the student’s work (such
as "What 1is the content of statement 3A", or "Where is the
Cm now" or "Print the current statement" all relative to the
present state of the student’s file). Thus, in addition to
searching for answers in a semantic network in the
"standard" SCHOLAR way, we gain the ability of interrogating
the NLS world as well. Second, this coupling provides an
easy way of performing a type of inference that would be

very hard to perform deductively. Suppose a student asked

‘If 1 deleted statement 3Al1l, what would then be the number

of the statement containing "TOMATO"? Finding the answer by
deductive reasoning is possible but difficult. Obtaining
the answer by "sotto voce" deleting statement 3A1 and then
seeing where the "TOMATO" statement ends up.is much easier
and very powerful. In Third, it becomes possible to
evaluate easily a student’s solution to a proposed task --
all the system has to do is to have available the correct
sequence of commands for the task, perform them on a fresh
copy of the current file, and then compare the results (in
terms of the state of this new NLS file) with the student’s

file.

The LISP-NLS system

In order for NLS-SCHOLAR to teach NLS ostensively in
the manner we have described, ard in order for it to answer
questions about the current state of the student’s work, it
is clear that NLS itself must be incorporated and interfaced
with NLS-SCHOLAR. However, although using the real NLS for
this purpose was entirely feasible (everything is on TENEX),
we decided instead to implement the EDIT subsystem of NLS in
INTERLISP. The reasons for this early decision were
manyfold:

a) NLS was underaning changes (it still is)
b) building a communication interface would have consumed
a larger fraction of our 1limited funds than

implementing our own LISP-NLS

c) the real NLS is a very complex system and we wanted to
test the feasibility of our approach in an environment

Jd8 34

we understood well

d) since NLS-SCHOLAR is written in INTERLISP,
inter-process communication and control would be
facilitated

The results were very beneficial. As it turned out, it
was not only simple indeed to make NLS-SCHOLAR talk to
LISP-NLS, but we learned a great deal from designing it such
that interfacing NLS-SCHOLAR with the real NLS will require
‘a minimum of re-programming. We fully realize that if our
system is to attain the degree of operational usefulness it
is capable of, it will have to be within the context of
normal usage of the real NLS. This we expect to accomplish

in the near future.

LISP-NLS is capable of performing almost all of the
commands in the editing subsystem of NLS, and to users of
NLS-SCHOLAR it looks exactly like the real thing. Rather
than attempting to describe its inner workings, let us
instead describe it operationally, from the point of view of

performing the functions required by NLS~SCHOLAR.

The top function of LISP-NLS is called NLSPARSE and it
takes as an arqument a single character. When a command is
being issued for LISP-NLS to perform, the command string 1is
fed to it character by character. NLSPARSE digests the

character and returns as a value a list of three elements.

The first element is a parameter used to determine what to

do next (feed the next character, signal that the command
has b:.en completed, etc.). The second element 1is the
"echo", i.e. what NLS normally prints when one types a
character (the character itself plus whatever prompts and
heralds may be required at the time). For example, in
expert mode, typing "I" as the first character of a command
results in NLS echoing "Insert C:". Tke third element
appears only after the character that completes a command
has been fcd to NLSPARSE and it contains the response (what
NLS normally prints as a result of executing the command)
plus a wealth of data about the state of the NLS file as a
cesult of having performed the command. These data are: the
parsed command string, a representation cf the file's
structure, the position of the control marker, the state of
the viewspecs, and a list of what was printed by means of
any of the various print commands available in NLS. These
data are used by the task evaluation machinery to figure out

whether o not a student performed z task correctly.

Observe that the passing of characters and the
confinement of output to "echoes" and responses makes it
possible to use LISP-NLS very flexibly. Input characters,
for example, can be fed to it as one normally would to NLS,
namely by typing them on a terminal. Alternatively, they
may be fed to LISP-NLS by retrieving them from the data base

(having commands stored under each task 1in the data base

makes it possible for NLS-SCHOLAR to simulate the typing of

commands by a human tutor).

Echoes and responses can be similarly controlled. For
example, when the Question Answering system synthesizes a
command to LISP-NLS, echoes are not wused at all and
responses are not printed directly but are handed back to
the Question Answering system to be used in constructing a

response to the student.

-

Iﬂ addition, a context ménipulaéion ﬁachiﬁeéy allows
the storing and retrieving of environments, and the creation
of .new ones. This 1is necessary when, for example, the
student asks a question that requires the Q/A system to
synthesize a command that could alter the state of his file.
For example, if the student asked "What is the content of
statement 3?" and the control marker were positioned at
statement 1, the Q/A system would have to synthesize a
command that would result in the CM being positioned to
statement 3 in order to answer the guestion. However, all
evidence of this command’s execution must be removed =-- in
particular the control marker must be repositioned to
statement 1 -- or the student will be confused by the state
of his file which has been manipulated without his
knowiedge. Saving the student’s environment, vperforming
invisible commands on a disposable ccpy of it and restoring

the environment afterwards, solves the problem. Other

exanples of context manipulation can be seen in Section 1V,

in the description of the task monitoring machinery.

SECTION III - STUDENT/QA AND TUTOR/QA SYSTEMS

Questions and Answers: an Overview

In the course of a lesson, or in the course of their
own independent work, users of NLS-SCHOLAR can ask questions
for the system to answer. In the course of a lesson the
system also dgenerates questions for the student to answer
and then evaluates_those answers. The system, that answers
student-generated questions is called Student/QA, while the
system that generates questions and evaluates a student s
answers is called Tutor/QA. For consistency, Tutor/QA must
be aole to dgenerate the same set of questions that
Student/QA can answer. This enables Tutor/QA to perform
answer evaluation by simply passing off the question it
generates to Student/QA to derive the correct answer. This
correct answer can then be compared to the student ‘s answer

and appropriate action taken.

Because both the Student/QA and Tutor/QA systems
involve the same set of requests, we have designed both to
use the same representation of the meaning of a request. In
this way, Student/QA responds to a student’s request by
varsing it into this representation, or "semantic form".
This semantic form is just a LISP procedure which, when
executed, derives the answer. *Semantic forms" are also

used by Tutor/QA to produce a question to present to the

39 33

student (i.e. one which if the student had asked it would

have parsed 1into the identical form). At the same time it

evaluates this semantic form to derive the answer and

compares it with the student’s answer. Both what these

forms look 1like, how they are derived, and what it means to

evaluate them and get an answer will become clearer in the

following discussion of the two systems and their interplay.

‘Student/QA

Student/QA 1is responsible for answering students’
auestions about the EDIT subsystem of NLS and about the
current state of his NLS file. It derives its answers from
two sources of 1information: a data base containing static

descriptions, and NLS itself (actually LISP-NLS).

Like previous SCHOLAR systems, NLS-SCHOLAR has a data
base organized as a semantic network containing definitions
and examples of concepts, descriptions of procedures, etc.
This semantic network irepresents time-invariant factual
information about NLS and has been structured so as to
facilitate the kinds of inferences required for answering
questions such as:

WHAT IS A HERALD?

GIVE ME SOME EXAMPLES OF STRUCTURE UNITS.

HOW DO I PRINT THE NEXT STATEMENT? i
HOW DO I DELETE THE LAST CHARACTER THAT I VE TYPED? -

But in order for NLS-STHOLAR to respond to some of the real

9 34 40

needs of a student engaged in 1learning NLS, it becomes
necessary for Student/QA to handle guestions relating to
what the student is doing, i.e. the state of the student’s
work with his NLS file. A few questions of this type are:

WHAT IS THE CONTENT OF STATEMENT 3A?

WHERE ARE THE "SCALLOPS" NOW?

WHAT STATEMENTS ARE AT LEVEL 3?
None of these questions can be answered with the static
information in the semantic network (although this static
information 'is sometimes ~used to syntHesize' a Pplan” for
obtaining the answer). The semantic interpretation of this
type of question instead results in a call to LISP-NLS to
perform a series of synthesized NLS commands (executed
invisibly to the student). This means that there must be a
system (discussed 1in Section V) which saves the student ‘s
environment, verforms the synthesized commands, restores the
student’s environment, and hands back the result of
executing these commands to Student/QA which in turn

responds to the student.

The Parser:

The NLS~-SCHOLAR parser performs a top-down,
semantically directed case analysis of a sentence based on
the grammar described in BNF form in Figure 3. This method
is much 1like that wused in the SOPHIE system [6,7]. The
parser produces a semantic form that contains information

similar to that derived from the "English Comprehender" of

41 -
3

NET-SCHOLAR (5], including the assignment of case
relationships existing between the main verb and the noun
phrases of the input sentence. In addition, this method
determines the general category that the request falls into
(a request for a definition, a request for a procedure, a
request for the address of some word in the current file,
etc.) For example, for the request:

HOW DO I DELETE STATEMENT 2A?
the semantic férm would look like:

¥

(QFIND/PROCEDURE ((AGENT USER)

(VERB DELETE)

(OBJ STATEMENT (ADDR 2A))))
The semantic form of all reguests is a LISP function which
can be EVALuated, (that 1is, QFIND/PROCEDURE is a LISP
function to find a procedure in the data base; it takes a
case-structure parse as 1its 1input, retrieves the correct
information from the data base and calls the Output package
to output the answer in sentence format). To give a better
idea of this process, we will follow through parsing,
retrieval and output for the request:

HOW DO I DELETE STATEMENT 2A?

Parsing in Detail:

The parser first does a pre-scan of the sentence. This
pre-scan does spelling correction (using the routines from

the BBN INTERLISP DWIM facility {131y, abbreviation

42

checking, and compound word checking, making words like
"DELETE COMMAND" into a single concept "DELETE\COMMAND".
This prescan rewrites the input as "HOW\DO\I DELETE

STATEMENT 2A".

Parsing proper begins at this point. The description
will be best understood by following it through with the BNF
description of the grammar in Figure 3. In fact, the
parsing algorithm is almosg isomorphic to the grammar, and '
many of the LISP functions that make up the parser have the

same names as the elements of the grammar.

The top-level function <REQUEST> first checks to see if
the sentence 1is a request for the definition of something.
In our case it isn’t. It continues its depth-first search
until it reaches <PROCEDURE/REQ> which first checks to see
if the sentence beqgins with the concept "HOW\DO\I". This
succeeds and RESULT, a global variable that keeps track of
the parse, is set to:

(QFIND/PROCEDURE (AGENT USER))
"HOW\DO\I" is removed from the string. The parser then
tries to locate an <ACTION/SPEC>, that is, a <VERB> plus any
number of <OBJ>’s, with the remaining string "DELETE

STATEMENT 2A".

FIGURE 3 -- A BNF DESCRIPTION OF THE GRAMMAR

<REQUEST>:= <DEFINE/REQ>
<WHATIS/REQ>
<CONTENT/REQ> *
<PARTS-IN-PART/REQ>
<PARTS-IN-LEVEL/REQ>
<PROCEDURE/REQ>
<INSTR/REQ>
<POSITION/REQ>
<NLS/ACTION/REQ>

<DEFINE/REQ>:= DEFINE <NOUN>
WHAT DOES <NOUN> MEAN
WHAT DOES '<NOUN> STAND FOR™ °~ ~ ° T
WHAT DOES <NOUN> DO

<WHATIS/REQ>:= WHAT IS THE PURPOSE OF <NOUN>

WHAT IS THE CONTENT OF <STR+ADDR>

WHAT IS THE LEVEL OF <STR+ADDR>

WHAT IS THE ADDRESS OF <STR+ADDR>

WHAT ARE EXAMPLES OF <NOUN>

WHAT IS THE DEFINITION OF <NOUN>

WHAT IS <CURRENT/PART>

WHAT IS <STR+ADDR>

WHAT ARE <NOUN>

WHAT ARE <STRUCTURAL> AT <LEVEL/PART>

WHAT ARE <STRUCTURAL> IN <FILE/PART>

WHAT IS <NOUN>

**A[LSO 'TELL\ME, GIVE\ME, TELL\ME\ABOUT IX
PLACE OF ‘WHAT IS’

<CONTENT/REQ>:= WHAT <STRUCTURAL> CONTAINS <STRING>
<PARTS-IN-PART/REQ>:= WHAT <STRUCTURAL> ARE IN <FILE/PART>
<PARTS-IN-LEVEL/REQ>:= WHAT <STRUCTURAL> ARE AT <LEVEL/PART>
<PROCEDURE/REQ>:= HOW\DO\I <ACTION/SPEC>
TELL\ME\HOW\TO <ACTION/SPEC>
TELL\ME\ABOUT <ACTION/SPEC>
<INSTR/REQ>:= WHAT [NLS\COMMAND] <ACTION/SPEC>
<POSITION/REQ>:= WHERE AM I
WHERE IS THE CM
WHERE IS <STR+ADDR>
<NLS/ACTION/REQ>:= <ACTION/SPEC>

DO IT
DO <TASK>

Q ‘3&3
‘ 44

WHAT HAPPENED

WHAT IS WRONG

HOW\DO\I DO THIS TASK
HOW\DO\I DO <TASK>
SHOW\ME\HOW\TO DO THIS

<TASK>:= TASK <NUMBER>
CNUMBER>:= 9 ! 1 ! 2 1 3141516171819
<ACTION/SPEC>:= <VERB> [<O0BJ>]

<VERB>:= ANY WORD IN THE DATA BASE WHOSE PART OF SPEECH
INCLUDES "VERB"

<OBJ>:= <NOUN/PHRASE> [<OBJ>]
- <RELATIONAL> <NOUN/PHRASE> [<OBJ>j- -

<RELATIONAL>:= ABOVE ! AFTER ! AT
FOLLOW ! FOLLOWING
IN ! NEXT\TO ! OF
THROUGHOUT ! TO ! USING ! WITH

THE/BEGINNING/OF ! THE/END/OF ! FOLLOWING

BEFORE ! BELOW

!
! FOR ! FROM

<NOUN/PHRASE>:= <NOUN>
<STR+ADDR>

<STR+ADDR>:= <FILE/PART>
THE <STRUCTURAL> <STRING>
THE <TEXTUAL> <STRING>
<CURRENT/PART>
<STRING>

<STRUCTURAL>:= STATEMENT ! BRANCH ! PLEX ! GROUP
{TEXTUAL>:= WORD ! CHARACTER ! VISIBLE ! INVISIBLE

<CURRENT\PART>:= THE CURRENT\STATEMENT
THE NEXT\STATEMENT
THE BACK\STATEMENT
THE CURRENT\VIEWSPECS
THE CURRENT\ADDRESS
THE CURRENT\STATEMENT\NUMBER
THE CURRENT\POSITION\OF\THE\CM
THE CURRENT\FILE

<FILE/PART>:= STATEMENT\@
STATEMENT <ADDRESS>
BRANCH <ADDRESS>
PLEX <ADDRESS>
CROUP <ADDRESS> <ADDRESS>

45
19

<ADDRESS>:= AN ATOM WHOSE FIRST CHARACTER IS A NUMBER
<LEVEL/PART>:= LEVEL <NUMBER)>

{TASK>:= TASK <NUMBER>

<{STRING>:= ACTUAL PIECE OF TEXT IN QUOTES ("")

<NOUN>:= ANY WORD IN THE DATA BASE WHOSE PART OF SPEECH
INCLUDES "NOUN"

46

<ACTION/SPEC> finds the verb "DELETE" and then succeeds
in finding a sentence object that matches <FILE/PART> under
<NOUN/PHRASE>. <ACTION/SPEC> appends to RESULT the
. expression (VERB DELETE) (OBJ STATEMENT (ADDR 2A)). Parsing
is now completed having reached a terminal state in the
grammar. The value for RESULT is:
(QFIND/PROCEDURE ((AGENT USER)

(VERB DELETE)
(OBJ STATEMENT (ADDR 2A))))

RESULT is now EVALuated retrieving the correct procedure
from the data base and calling the Output package to

construct the sentences to be typed out to the student.

There are objections to having a non-general parsing
algorithm, but for NLS we believe that the pros outweigh the
cons. This algorithm is fast* and it can be expanded (it
has been changed already many times) to cover the types of
guestions we discover our students asking most often. 1f

experience with the SOPHIE system, which 1is wused for

electronic troubleshooting, is a good indication of what we
may expect, then we shall not run into too much difficulty

with this kind of parser.

* A typical request parses in ms.

Retrieval:

As discussed previously, we are dealing with a new and
quite interesting facet of knowledge: that of the
interaction of static and dynamic information. When the
student asks "WHAT DOES CTRL-X DO?" the answer is a static
piece of knowledge retrievable from the semantic network.
But when the student asks "WHAT IS THE CURRENT STATEMENT?"
the answer will not be found in the semantic network; it
d;pends -on what the student is doing and must be extracted
from his work space. When a request 1is found to require
information about the state of a student’s file, the
necessary NLS commands are formulated by the top-level
retrieval function; LISP-NLS is called to perform the
commands and to return the result of performing them. In
this case, the retrieval function QFIND/CONTENT requests

LISP-NLS to perform the NLS command "\" which returns the

contents of the current statement.

These two examples elucidate the need for two kinds of
"data bases": a static semantic network and a dynamic NLS
file. So far we have seen their use in separate and clearly
distinguishable cases. However, when the student requests
the Tutor to perform a specific NILS command for him (for
example, he may say "PLEASE PRINT BRANCH 6A FOR ME") then
the two data bases must interact in order to produce a

response, To fulfill that request, Student/QA must first

find the procedure for printing branches. This procedure is
very general and static so it is stored in the semantie
network. Loosely speaking, it states that one should type
"PRINT", followed by the name of the structure unit to be
printed, its address, <CR>, viewspecs, and <CR>. Tc¢ obtain
an answer, Student/QA must use this general piece of
knowledge as a plan to synthesize a legal NLS command. It
must now "instantiate®, according to the information

supplied in the student’s request, the name of the structure

unit, its address, a2nd the viewspecs. For this reguest, the

NLS c¢ommand formulated would be:

Print Branch 6A <CR> <CR>

Instantiation is made possible by having a set of
instantiation variables containing the current instance of a
number of generic concepts. This collection of instances is
cleared before a dquestion 1is asked, and is filled in (if
required) during the parsing of the reguest. Before an
answer is constructed or an NLS command synthesized,
Student/QA checks to see if the instantiation variables were
filled in during parsing, and if so, uses them in place of

the generic terms.

In this example all the generic terms in the procedure
had to be instantiated; that is, the generic term "structure
unit" is the word "BRANCH", the address is "6A", etc. This

is because without instantiating all these generic terms,

s 49

o3

the NLS command would not be considered 1legal -- LISP-NLS
would not be able to perform it. Sometimes instantiating
specific terms for more general ones is not really critical,
but 1is more a matter of producing a better response to a
student ‘s question. For example, statements, branches,
groups and plexes are all instances of structure units. The
procedure for, say, deleting a statement 1is not stored
individually since the procedure is the same for deleting
any strzucture unit. Only- the general rule -is stored.
Because of this, instantiation of certain objects in the
semantic network is preferable (but not essential) so that
questions 1like "HOW DO I DELETE A STATEMENT" do not get
answered "THE USER DELETES A STRUCTURE UNIT WITH THE DELETE

COMMAND" .

Output:

The Output package is essentially the same as that of
NET-SCHOLAR with one important addition. We wished to allow
items to be instantiated to produce a meaningful response or
a "legal" NLS command.- In the semantic network this shows
up as a new structure made up of three elements: S$INS, a
variable, and a piece of regular SCHOLAR data base. (See

Figure 4.)

When the Output system encounters a list beginning with

SINS, 1like (SINS XADDSTR ADDRESS), it checks to see if the

second item, in this case the variable XADDSTR, has a value
(set during the parse). If so it uses this value in
constructing the answer. Otherwise it uses the third item,
ADDRESS, a generic term like any ragular piece of SCHOLAR

data base.

For example, in the question "HOW DO I DELETE A
STATEMENT?" the paiser sets the variable XOBJ to STATEMENT,
and the variable XOBJSTR to ’"STATEMENT . Retrieval f£finds
the piece of data base answering the general question "HOW
DO I DELETE A STRUCTURE UNIT?" which is the procedure listed
in Fiqure 4. This 1is sent off to Output which creates a
sentence with the appropriate instantiated elements. (XOBJ
and XOBJSTR are instantiated: that 1is, their values,
STATEMENT and “STATEMENT respectively, are used. No value
for XADDSTR was assigned during the parse (the student
didn“t specify a specific address) so the third item in the
SINS 1list, the generic term ADDRESS, is used. The response

is:

THE USER DELETES A STATEMENT USING THE DELETE COM@AND.
PROCEDURE: HE TYPES DELETE , FOLLOWED BY STATEMENT , AN
ADDRESS, <CR>, AND <CR>.

FIGURE 4 - DATA BASE ENTRY FOR "DELETE\COMMAND"

DELETE\ COMMAND
(PURPOSE (I 2)
(DELETE
NIL
(AGENT NIL USER)
(OBJ NIL ($INS XOBJ (SEOR STRUCTURE\UNIT STRING\UNIT)))
(INSTR NIL DELETE\COMMAND)
(PROCEDURE
NIL
(TYPE
NIL
(AGENT NIL USER)
(OBJ
NIL
($SSEQ "DELETE "
(SINS XOBJSTR
(SEOR (NAME NIL (OF NIL STRUCTURE\UNIT))
(NAME NIL (OF NIL STRING\UNIT))))
(SINS XADDSTR ADDRESS)
<CR> <CR>)))))

Tutor/QA

The Tutor/QA system was designed to make use of the
same semantic form that the Student/QA system produces
during a parse. This integration allows us to make use of
Student/QA’s retrieval functions to derive the correct
answer to a Tutor-generated guestion so that this answer can
be checked against the student’s. This integration of both
QA systems is illustrated in Figure 5. 1In this diagram the
blocks represent the specialists some of which are shared
among both systems. The arcs are labelled with both inputs
to wvarious blocks and their outputs. Also some tests are
made explicit on the arcs, like whether it was the student

or the Tutor who initiated the request.

)
n..vuc.:a..;.uc;.d.ivo’_oaﬁ.r:«-
ﬁ.ﬁ: 1ov3 10 wtnisg vorysalb v Divs el Grots ' juapnys

BEST COPY AVAILABLE

hl
]
1
[
! =
LY (@4
G52 Fitoys .: ' <
it rae R ‘ &
\./a»\\/ . 2
; - 235 w4 - 3Q i =
> Airwau0d 1v3aGNLS Y CTE LT R 9 SoTuaats ieem s a
230309 /I\\p/ J — _. o
e F 8 . [,
A wWe / 2 . & ~~
~F <
g3 ' .;\J
3 2 -3
%3 ! =
. 3 _
£a . . <«
N | =4
: S
~— R
S -_ m
o WS LYUINILSNI
2, p d - (1L S1NVdT) v
Tl) A 1 o tn
D, —~] L
T 3
\ LL,
3. ?
0\01, M (Ol (@]
@ < N
. S P =
£330 B () nu. —
e ug, IR &
.u.Mmﬁ. ¢ .s0 > M
P N
¢ - - ——— v L o =~ cm— = p—
MeemwalY . i = rszaém_.\\.\\‘ll/jd_ o g5l &
\greees) |] " 3
S—— BT a0 v SaiS 1300n WL - N N LAEYY Y mc_u.-v._ [
<> £ uve-Q =
—
t
[¥p)
paa |
[4
=
(&)
—
55

IC

Aruitoxt provided by Eic:

E

The path from Initiator to Parser to BEvaluator to
Output 1is that of the Student/QA system, that is, the
Initiator is the student. (This pathway 1is marked by
double-line arcs.) Tutor/QA°s integration of its pathways

with this one will be made clearer in the following section.

Tutor/QA System’s Organization:

This system is activated by a call to Tutor/QA to
generate a suitable question to ask the student. The
general type of question is designated by the agenda, and is
represented as an incomplete semantic form exactly like that
produced by the parse of a student’s request in Student/QA
but with several operands represented as variables whose

values have yet to be filled in.

This form is handed to the Form-Completer whe chooses
"good" wvalues for the variables in the incomplete semantic
form. It often arrives at "good" choices by taking a 1look
at the <current NLS file with a call-to LISP-NLS. Once a
semantic form is complete (all variables filled 1in), then
two activities take place simultaneously. One is a call to
the Evaluator who evaluates the semantic form, i.e.
retrieves the correct answer. The second is a call to the
De~-Parser, a specialist who takes the semantic form and, in
a sense, de-parses 1it; it reverses the process done in

Student/QA by going from the semantic form back to 1its

. 54
'-)('_';

presented to the student. The student’s response to it is
compared with the correct answer derived from the Evaluator.
The Answer Comparer decides whether the responses are
equivalent. It responds to the student appropriately and
returns a message to Tutor/QA as to how the student did with
this question. Tutor/QA can then decide whether it feels it
should generate another guestion of this type (if the
student did poorly), or whether it should return so that the
lesson may continue. If the decision is made to go on,
Tutor/QA exits returning control over to the system
executive. If it decides to continue asking similar
questions until the student has gained sufficient
familiarity with the concept that it 1is trying to get
across, Tutor/QA calls the Form-Completer once again to
generate new values for the variables and the en;ire process

begins again.

canonical surface representation. This sur face
representation (the guestion phrased in "English") 1is then

It should be noted that at the point when the student
is asked the Tutor-generated guestion, he may in turn ask a
question of his own (which activates Student/QA), work
directly with the NLS file with a call to NLS, or quit for

continuation at a later time.

25 55

The Form-Completer:

This specialist of the Tutox/QA system takes the
incomplete semantic form and fills in values for the
variables until the form 1is completed. Each type of
semantic form has its own Form-Completer specialist. For
example, the semantic form:

(QPARTS-IN-PART STATEMENT (BRANCH (ADDR XXX)))
requires that an address "XXX" of a branch in the NLS file
be found. (The English interpretation of this form is the
question, "WHAT STATEMENTS ARE IN BRANCH XXX?") A call is
made to LISP-NLS to find a "good" branch, i.e. one that
exists and that has at least one substatement. Other forms
require calls to LISP-NLS to find good plexes, statement
contents, levels of statements, etc. to use to f£fill out

their semantic forms.

Some semantic forms require filling various cases. In
a QFIND/INSTR semantic form (from “"What command ‘verbs’ an
‘object’"), the cases Agent, Verb, and Object must be
filled. Since the question is directed to the student, the
Agent case is filled automatically with "user". The Verb is
randomly chosen from a 1list of verbs 1like move, copy,
delete, print, etc. The selection of the Object 1is, of
course, dependent on the Verb. To find an appropriate
Object, the semantic network 1is queried. The chain of

inferences that must be drawn for the verb "move" is as

56

i)

follows: The Instrument for the verb "move" 1is retrieved,
MOVE\COMMAND, Under MOVE\COMMAND is the Object on which it
works, STRUCTURE\UNIT. Since its part of speech is a CN
(concept noun) an example of it must be retrieved (XN). In
the entry for STRUCTURE\UNIT are examples, STATEMENT,
BRANCH, GROUP, and PLEX. The Object is chosen randomly from
among these four, say BRANCH. The semantic form 1is now
complete:
(QFIND/INSTR ((AGENT USER)

(VERB MOVE)

(OBJ BRANCH)))
One last check is made to make sure that this semantic form
has not been generated previously (to keep from asking the
same question more than once). With this completed semantic
form Tutor/QA simultaneously proceeds with the work of the
De-Parser which derives the English surface representation
of the request to present to the student, ("WHAT COMMAND

MOVES A BRANCH?"), and the Evaluator which evaluates this

form to derive the correct answer.

The Answer Comparer:

For each kind of semantic form there 1is an Answer
Comparer specialist. At present, the semantic forms which
Tutor/QA handles are such that answers to them are simple
lists of items 1like "3A 3A1 3A2" as opposed to entire
sentences (like the response to the question "How do you

delete statement 3A12" -- "I first type "delete" followed by

57 GL

the word "statement", 3A1 and a carriage return. Then I
type another carriage return after I see the OK: prompt.")
Obviously the latter response from the student would be much
more difficult to analyze, requiring a detailed parse and
interpretation of the meaning of all the sentences involved,
to say nothing of the detailed matching procedure that would
be needed to see if that meaning was equivalent to the

correct answer produced by the Evaluator.

Concerning ourselves with the former type of reply, the
Answer Comparer “looks at the match of the two responses,
noting whether items are missing or extra in the student’s
reply. It then reports to the student appropriately and

reports back to Tutor/QA how the student performed.

Future Considerations

The shared representation in Student/QA and Tutor/QA
allows the addition of a very powerful mechanism, a history
list, one list containing all Tutor-generated requests and
the other all Student-generated reguests, both in semantic

form representation,

The first thing that falls out of having this feature
is the ability in Student/QA mode to answer a student s
procedural gquestion and then to be able to respond to "DO
IT" by picking up the top-most semantic form of a procedure

request on the Student history 1list and executing it.

58

Although we now handle in a very limited way such "DO IT"
requests, we have always assumed that such requests refer to

performing the current task. Obviously this is inadequate.

Second, the history list feature provides us with the
ability in Tutor/QA mode to recognize a "cheating" question
by the student and to block it if we wish. For example, the
Tutor asks:

WHAT STATEMENTS ARE AT LEVEL 2?2
(a question produced from the semantic form

(QPARTS-IN-LEVEL (LEVEL 2))

Instead of responding, the student asks:

WHAT ARE THE STATEMENTS AT LEVEL 2?

This request is simply a paraphrase of the Tutor ‘s guestion.

We recognize this by comparing the parse (semantic form) for

it with the form at the top of the Tutor’s history list.

(They will, of course, be the same.) We may then decide
either to answer the gquestion or to refuse to answer
allowing him to ask other questions, but not one that parses

into the same form as the Tutor ‘s gquestion.

The history list feature also gives the Tutor a simple
repository for the questions it has asked -- a place to
check on already-asked guestions to keep from repeating

itself.

SECTION IV ~ TASK EVALUATION

Task evaluation is potentially one of the most fertile
areas of NLS Scholar, and at the same time is potentially
one of the most overwhelming, due to its close connections
with the nebulous areas of searching the space of -
discrepancies, learning from selected discrepancies,
emulating the tutor ‘s example and even simulating (crudely)

a student s probable misunderstanding.

At present, task evaluation is limited to a comparison
of the correct file, which it generates from the correct
stored command sedquence, with the student’s file. It
reports to the student the scope of his error by printing on
his terminal the discrepant sections of his file and the
corresponding sections of the correct file. Some
sophistication is achieved by using "sensitive state" flags
to limit ‘the level of error description to terminology ‘
consistent with the student’s current knowledge. In i
addition, there are specialist-reporters for file structure

. and content, CM position, viewspecs and printing which allow

for spacial description of errors in these areas.

Sensitive states

Sensitive state flags affect how an error is reported.
They are associated 1in the data base with each task. For

example, the tasks in Lesson 1 have the flag CMLEVELGAG

associated with them because the student has not been told
about branches and this prevents the CM specialist-reporter

from pointing out same-branch relationships.

Other 1implemented sensitive state flags behave as
follows. CMPLEXFLG enables the CM specialist-reporter to
point out simple same-plex relationships. VSDESCRIBEFLG
causes the viewvspec specialist-reporter to talk about levels
and lines, rather than x°s, b's, etc. #RETRIES is really a
counter flag that provides a limit on the length of time one
can spend doing and redoing a task. The default |is

initially set to 2 trials.

Specialist-reporters

Four specialist-reporters have been implemented
covering file structure and contents, CM position, viewspecs
and printing. Our design strategy in each has been to
classify and describe the extensional discrepancies between
what was expected of the student and what the student
actually did. In each case, some suitable range of error
types and format for description was chosen to fit the
particular aspect of the error. An analysis of each
separate area yielded four independent formulae, with one
exception: a generalized list-comparison algorithm was found
to be applicable to exploring any two lists for insertions,

omissions, and content errors, regardless of the form of

01

9%

information ultimately to be extracted.

The specialist-reporter for file structure and content
performs an analysis of the files into three cases: change
extraneous, change omitted, and change incorrect or faulty.
We have found it profitable to compare the student’s file
with the initial one, the target file with the initial, and
taen to compare the comparisons. The information extracted
by this specialist is whichever section of the file is to be

printed in order to show just the discrepant parts.

In doing viewspecs evaluation, a more detailed
error-typing was vossible. It was possible to add
"overdone"” and "underdone" classes (too much or too little
printed). This not only produced output that was more to
the point; it also permitted an appropriately selective task

continuation criterion.

Retrial vs. Repair

Often it is more instructive to fix one’s mistakes than
to try again; but up until now, we have leaned towards
retrial rather than repair. In general, this decision as to
whether to stick with the present miStake is a difficult

one. It involves having special knowledge , abant ‘each

command and about how much background and understanding can -

be presumed in the student.

Extensional vs. Intensional Information

In the present task evaluation system, only extensional
information is used; that 1is, we look at the results of
executing a sequence of commarnds, i.e. the NLS file itself,
rather than looking directly at the sequence that produced
it. Although this approach has proved quite effective,
there is much power to be gained from analyzing the
intensional information contained in the command sequence
itself. This analysis would use knowledge from the data
base to report to the student the conseauence of an

incorrect command sequence.

For example, if the correct command sequence requires
the word "plex" and the student types "branch", the command
sequence analyzer would report the error possibly using
information from %the data base to construct an explanation
of the meaning of "branch" vs. "plex" and any other special
information it deemed useful to review. This type of
explanation ©provides a unigue method of reviewing
information about the use of NLS at points in the lesson
where such review is obviously needed (at points where the
student errs). data base of the meaning of "branch"” vs.

"plex".

Y

SECTION V -~ SYSTEM ORGANIZATION

Overall Organization

The overall organization of NLS-SCHOLAR is represented
in Figure 6. There is a system executive which controls and
supervises the functioning of the four main modules of the
system (DELIVERY, STUDENT/QA, TUTOR/QA, TASX MONITOR). The
EXECUTIVE services these modules’ requests and provides
communication paths among them. When in tutorial mode (the
normal mode in NLS-SCHOLAR), the EXECUTIVE is driven by the
AGENDA which is a LISP representation of the Primer and is

produced automatically from the Primer s content.

The DELIVERY module is very simple; it retrieves the
string the EXECUTIVE wants to print to the student and
prints it, 1If a aguestion is asked of the student by the
system, the ANSWER EVALUATOR is called to Jjudge the
correctness of the student’s- answer. TUTOR/QA can also call
STUDENT/QA to allow the student tc ask other questions

rather than immediately answering the question posed to him.

The TASK MOMITOR is called either by EXECUTIVE when 2
task must be set up for the student to perform, or by
STUDENT/QA, when an NLS command must be performad to use the

response in constructing an answer.

TASK MONITOR can perform commands in a number of

08 64

‘OJNI H3INYVYIN 34NLONYLS ‘03S
Q31NIYd T04.LNOD 34 GNVIAWOD

SLSITVIOZdS |-—{30VASHHOM [] STIN-dSI

1 1 1

LY¥0d3Y HOYH3 NOLINOW
aNVv JOV4YILNI
HOLVNIVAI MSVL 1X3LNOD

FIGURE 6 —-- SYSTEM ORGANIZATION

) _ 4

HO1VNIVA3
H3MSNV

/0 .
' INAANIS ¥/0 ¥010L A¥3AIN3Q

VAN3OV 3AILNI3X3

different ways:

a) normally, by allowing the student to type on his
terminal as in standard NLS use.

b) invisibly, by passing commands to LISP-NLS without any
trace of their performance showing up in the student’s
terminal. The STUDENT/QA system often uses this mode
as does the TASK MONITOR.)

c) 1in tutorial mode, imitating what a human tutor would
do if he typed commands on the student’s terminal.
This is done by surrounding with parentheses what
NLS~-SCHOLAR "types" for the student.

The fanction that is respopsible for all this, and the only

one that has access to LISP-NLS is called INTERFACE.

When used in mode (a), TASK MONITOR uses CONTEXT
MONITOR to make a copy of the initial state of the NLS file,
and then puts the student in contact with LISP-NLS to allow
him to type in his commands. When the student has finished,
the state of his NLS file is saved for later use. Then TASK
MONITOR obta:ns a target file, i.e. a representation of
what the state of the NLS file would be if the student had
performed the task <Ccoirectly. TASK MONITOR does this by
performing the correct command sequence for the task, which
is stored 1in the data base. These commands are performed
invisibly to the student, and they act on the copy of the
student’s file that was saved before. When this is done,

the state of the file (TARG), the initial state of the file

60

"7

(INIT), and what the student obtained with his commands

(ST* , are delivered to TASK EVALUATOR and ERROR REPORT.

BError Analysis

ERROR REPORT is responsible for analyzing the three
file (INIT, STU, and TARG), deciding if significant errors
have occurred, and if so, figuring out how to report these
errors to the student. To do that, a function named TASK
EVALUATOR is called. TASK EVALUATOR in turn can call
several specialists to analyze the files and discover any
errors that the student may have made in terms of the
structure of the file, its content, the final vosition of
the control marker, the state of the viewspecs, and whether
or not he printed correctly whatever the task might have

required.

An error in structure is always crucial and must be
reported to the student. Therefore, an important function
of ERROR REPORT is to provide him with a description of the
error that is adequate for him to realize his mistake and
*debug"” his task commands. For example, the structure
specialist operates by first checking if any differences
exist between the student’s file and the target file. If
this is the case, then an environment of the error that is
common to both files is determined. In order to frame the

environment of the error, some statements immediately

preceding this environment in the 1initial file, and some

statements following it, may be printed out to him.

How the system works

Let us now clarify this description with an example.
Consider the protocol presented in Section I. EXECUTIVE
retrieves from the AGENDA its "instructions", which in this
case consists of delivering the text headed by "SUBSTITUTE
WORD IN STATEMENT", performing a task as if the tutor were
demonstrating how to do it, delivering some more text, and

finally giving the student a task to perform.

When NLS-SCHOLAR demonstrates to the student how to
perform a command, EXECUTIVE calls TASK MONITOR, hands it
the correct command seaguence for the task, and instructs it
to print out, using the parenthesis notation that we have
adopted to show the student what the "tutor" 1is actually
typing. TASK MONITOR then sets up the appropriate call to
INTERFACE, and LISP-NLS performs the commands. Since the
task in this case is guaranteed to be correct, there is no
need to let ERROR REPORT intervene, and TASK MONITOR returns
to the EXECUTIVE. After more text haé been delivered, and
TASK 41 completed, the EXECUTIVE calls STUDENT/QA to handle

student guestions.

Consider, for example, the guestion the student asks:

What statement contains "CORN"?

63
"

Here, TASK MONITOR returns to the EXECUTIVE which then calls
STUDENT/QA. This qguestion concerns the state of the NLS
file and cannot be answered with information stored in the
semantic network. Therefore, STUDENT/QA constructs a
command for LISP-NLS to execute and uses the results in
constructing an answer. In our case, STUDENT/QA calls TASK
MONITOR and asks it to perform the commands JUMP 0@ and then
JUMP “CORN" and \ (back slash), which in NLS cause the
control marker to jump to the statement containing "CORN"
and.print its address and content. The command is performed
invisibly and the response is returned to STUDENT/QA which
then extracts the address and constructs the answer. The
context manipulation machinery meanwhile took care of
protecting the student’s environment by providing a scratch

copy of it on which these commands were performed.

At this point the EXECUTIVE again turns to the AGENDA
to find out what to do next. In this case, the AGENDA
requires delivering more text ("Use the Substitute command
to change statement 2Al..."). Let’s see what happens when
the student performs this substitution task. TASK MONITOR
is cc led, and it orders INTERFACE to let the student talk
directly to LISP-NLS. After he types "Done", TASK MONITOR
saves the student’s environent and sets up the NLS file to

its initial state by calling CONTEXT MONITOR.

In this way, TASK MONITOR can now use the preferred

command seguence to find out what the NLS file should look
like if the task were performed correctly. TASK MONITOR
does that by performing invisibly (via the appropriate call
to INTERFACE) the preferred command sequence on the 1initial
file, thus obtaining the target file. With the student,
initial, and target files now obtained, TASK MONITOR calls
ERROR REPORT and TASK EVALUATOR. 7The structure specialist
detects a difference in branch 2A and returns to ERROR
REPORT, which figures out how to tell the student what
happened. ERROR REPORT does that by synthesizing a command
to print branch 2A of the target file, and this command is
performed, without echoes being shown, wvia a return to TASK
MONITOR and a call to INTERFACE. After that, control
returns to ERROR REPORT which synthesizes another print
command to describe what the student 4id instead, and the
same sequence is repeated. ("But you changed this part of
it...") this time using the student’s file. After all this
is done, TASK MONITOR asks CONTEXT MONITOR to restore things
to their initial state and the student is requested to
perform the task again. The structure specialist detects a
difference in branch 2A and returns to ERROR REPORT, which
figures out how to tell the student what happened. ERROR
REPORT does that by synthesizing a command to print branch
2A of the target file, and this command 1is performed,
without echoes being shown, via a return to TASK MONITOR and

a call to INTERFACE. After that, control returns to ERROR

REPORT which synthesizes another print command to describe
what the student did instead, and the same seguence is
repeated. ("But you changed this part of it...") this time
using the student’s file. After all this is done, TASK
MONITOR asks CONTEXT MONITOR to restore things to their
initial state and the student is requested to perform the

task again.

Student Aids

Several facilities have been developed to facilitate
the use of NLS-SCHOLAR in tutorial mode. The CONTROL module
allows tlie stdent to type *NLS* to the Question Answering
system at anvtime, and gain access to NLS for free play and
interaction, without disturbing the state of his file and
therefore not altering the progress of the lesson. The
student may type *RESTART* to restart vperforming a task,
with all the commands performed so far being forgotten. He
can type *QUIT* to guit a lesson at anytime, without waiting
for the end of 1it; he may type *PROCEED* to continue it

again.

Debugging Aids

NLS~-SCHOLAR contains a DRIBBLE facility to aid in the
debugging of the system. Whenever someone uses NLS-SCHOLAR,

a complete record of the transaction is kept on a protocoI

71

file. Also, whenever a sensitive portion of the program
fails, a message (via SNDMSG) is sent to the person who
wrote that part of the program, and relevant information
about the failure is written in a special file 1in the)
programmer ‘s directory so that he may examine the problem

and correct 1it.

NLS-SCHOLAR can be run in human-backed mode, when
special arrangements have been made. This mode allows a
human expert watch (via linked terminals) the
student/computer dialog, and step in when the system fails.
For example, if the Question Answering system fails to
understand a question by the student, the human expert can

provide the answer by typing it in his own terminal.

SECTION VI - CONCLUSIONS AND RECOMMENDATIONS

The "finality" of the present report 1is only an
administrative technicality; much remains to be done before
NLS-SCHOLAR can be considered finished and ready to use as a
stand-alone Help and Tutorial facility. However, we have
made good progress towards that end, and we feel that even
now, in spite of the systems’s limitations, it could be
useful to its users. We believe that NLS-SCHOLAR offers
some very positive advantages that could make it worthwhile
to its users, even in its ©present, unfinished state: the
lessons are very nicely organized, and the systems’s ability
to present examples, show how to do things, and propose
tasks which it then evaluates and comments upon, is very

powerful.

To make the system operational reaquires work in the
following aspects: -
1) A heterarchical, rather than hierarchical control
structure 1is needed to allow the student more freedom

and flexibility
2) Expanding the tutorial facilities to cover the most
commonly used and useful commands in the NLS editing

system.

3) 1Inproving the way mistakes are pointed out, by showing
the student what’s wrong with his solution rather than

point out what’s wrong with his result.

73
??\?

4) Improving the system’s human engineering aspects and
efficiency of operation, i.e. enabling students to
proceed with the lessons at their own pace, aquitting

and resuming a lesson whenever they want.

We expect that in the next phase of our work, having
upgraded the system along the lines described above, we will
be able to come to grips with the real oproblems that a

system of this sort encounters in an operational

environment,

REFLRENCLES

(1]

(2]

(3]

(4]

(6]

(7]

(8]

(91}

"TNLS Users' Guide' iovember 1973, obtainable from
Augmentation Research Institute, Menlo Park, Calif.
94025.

Carbonell, Jaime R. "AI in CAI: An Artificial-Intelligence
Approach to Computer Assisted Instruction" IEEE Transactions
on Man-Machine Systems, :MS-11, New York, lecember 1970.

Carbonell, Jaime R. and Collins, Allan M. "Mixed-Initiative
Systems for Training and becision-Aid Applications"
ESD-TR-70-373, November 1970.

Collins, Allan ., Warnock, L.H. and Passafiume, J.J.
"Analysis and Synchesis of Tutorial Dialogues' in

Advances in Learning and Motivation Vol. 9, G.ll, Bower,

Ed., Academic Press, in press.

Grignetti, Mario C. and Warnock, kLleanor M. "Mixed-Initiative
Information System for Computer-Aided Training and
Decision-Making' LSD-TR-73-290, September 1973.

Brown, John Seely, burton, R.R., and Bell, A.G. "SOPHIL:
A Sophisticated Instructional Lnvironment for Teaching
Llectronic Troubleshooting (An Example of AI in CAI)"
bIN Report No. 2790, March 1974.

Brown, John Seely and Burton, Richard R. "SOPHIE: A
Pragmatic Usc of Artificial Intelligence in CAI" Proceedings
of the National ACM Confercnce, $an Diego, California,
November 1974.

Wwatson, Richard W. "National Software Work Developments -
A Technical Proposal'. SRI-ARC Journal #23352, July 1974.

Carbonell J.R. and Collins, A.»l. "Natural Semantics in
Artificia. ntelligence" in Proceedings of the Third
[nternational Joint Conference on Artificial Intelligence,
Stanford University, 1973. Reprinted in the American
Journal of Computational Linguistics, 1, Mfc 3, 1974,

75

79

{10] Teitelman, Warren; et al. "INTERLISP Reference Manual",
1974,

{11} Collins, A.M., Passafiume, J.J., Gould, L., Carbonell, J.G.,
"Improving Interactive Capabilitics in Computer-Assisted-
Instructicn,'" Cambridge Massachusetts: Bolt, Beranck and
Newman, BBN Report No. 2631, 1973.

APPENDIX

Complete Scenario (Primer)

This Appendix is meant to fulfill two roles:
a) a complete version of the didactic material
available at present under NLS-SCHOLAR, and
b) a more complete demonstration protocol than the one
presented in Section I.
In this regard, the reader will find far more descriptive
user-system interactions, especially with respect to the
Print and Viewspec Specialist-Reporters (see TASK 54 and

following).

LESSON ONE

INTRODUCTIOl

Hello. Welcome to your first lesson about NLS - the ‘oll Line Systen’
developed by Dourlas Enecelbart and his staff at Stanford Research
Institute.

I°11 be describine some parts of this system to you, showing you how to
use it, and rivine you tasks to perforn.

From time tco time I“11 stop and ask if you have any questions by
printing ‘QUESTIONS? in the marein, follcwed by a “¥° on the line
below. If you have no questions at that point, just type another “#°
followed by a <CR> and I'1ll continue. 1f you do have a question, type
it in after the “*° and terminate it with a “* " and a <CR>. I’1l1 try
to answer it aand then I“11 print another “*° so you can ask another
question if you wish. When you have no more questions, type “# <CR>’
and I°11 continue.

QUESTIONS?

*iJjhat does <CR> stand for?%

<CR> IDENTIFIE3 THE RETURNl KEY ON A KEYBOARD.

L3 A

IILS is a text-processing system which is used as an aid in writing,
re-organizing, indexing, publishing, and disseminating information of
all kinds.

NLS is a very larre systen made up of many subsystems. 1In what follows
I will introduce only son< of the file-handling, text-editing, and
simple printine commands which are used in the EDIT subsysten.

You wili be presented with a series of tasks to perforn usine the EDIT
subsystem of iILS. Everytime I propose a task for you to do, I°11 put
you in touch with NLS so it can execute your commands. iwhen I do ttis,
the characters EDIT C: will appear in the left narrin, like this:

EDIT C:

The characters EDIT C: are printed by HNLS. The EDIT vart is a
‘herald’ irdicatins that you are talkine to the main subsystem of NLS,
the one called EDIT. The C: part is a “prompt’ indicatine that the
EDIT subsystem is waitine for you to type a command.

After you finish typine in your command, LS will perform whatever
action you requested. ihen this action has been conpleted, HLS will
print another EDIT C: in the margin, indicating that it is awaiting
your next command. When your task is completed -- when you don’t wish
to give any more cormands -~ type ‘Done <CR>" to tell IILS that you wish
me to continue.

If you make a mistake while typing a command you can repair it by
typing <CTRL-A>, or you can start over by typing <CTRL-X>. Typing

<CTRL-A> will erase the last character you typed. ’It's kind of 1like

&4 78

the backspace on a typewriter, and you can use it successively twice
erase the last two characters, three tiries to erase the last three,
ete.

Typing <CTRL-X> will cancel the entire command and will allow you to
start over.

QUESTIONS?

#What are the file handling commands?#

EXAMPLES CF A FILE-HANDLING COMMAND ARE THE LOAD COr'{ARD,
THE UPDATE COMMAND, AND THE CREATE COIIMAND.

*Give me sonme examples of printing commnands.¥

EXAHMPLES OF A PRINTING COiMiiAND ARE THE PRINT COMMAND,
THE <LF> COMMAND, THE ~ COMMAND, AND THE \ COifMAND.

*WYhat does the <LF> command do?¥

THE <LF> COMMAMD PRINTS THE NEXT STATEMEHNT.

#Jhat is a statement?¥

A STATEMENT IS THE BRASIC STRUCTURE UNIT OF AN NLS FILE.

*¥What is a pronpt?¥

A PROHMPT IS A SIGHAL FROM NLS THAT IT IS AWAITIHG AN INPUT STRING
FROM THE USER.

¥How do I complete a task?

THE USER COMPLETES A TASK USING THE DONE COMMAND,
PROCEDURE: HE TYPES “DONE’®, FOLLOWED BY A <SPACE>,
AND <CR>.

#How does one cancel a cormnand?¥

THE USER CANCELS THE CURKENT LS COMMAND USING
THE CTRL-X CO!IALD.

* %

HILS FILES

In order to begin using HLS you will need to specify which “file” of
information you want to work with. Each file is sort of like a

notebook or folder in which you can keep information; you may keep a

79 33

to

different notebook (file) for each separate'subject in which you are
interested.

Files are automatically stored when you are not using them. Before you
can vwork with a file you must “load” it fron storage. Each file has a
name so0 you may refer to it easily.

I°d 1ike to show you the file named DINNER so you can see how an NLS
file is structured. Your first task is to load this file so you can
work with it. Vhen the EDIT C: appears, type the command:

Load File DINNER <CR>

As this single command completes the task, type:

Done <CR>

when the next EDIT C: appears.

Hote that you should terminate each part of the command with a space;

you should terminate the entire command with a carriage return. Please
be sure to type a space between “Done” and the <CR>.

The characters that you type on your terminal will be interspersed with
some ‘prompts” that NLS will print between your words. Please don’t
let tnis disturb you.

TASK 1

EDIT C: Load C: File T: DINNERK ;
(NLS-SCHOLAR, DIHHER.LHLS;3,)
EDIT C: Done OK:_3

fILS prints a C: pronmpt whenever it expects a command term. Host LS
comnands, like the Load command, are composed of two command terms,
usually a verb followed by a noun.

NLS prints a T: prompt whenever it expects you to type some text, in
this case the name of the file to be loaded.

The file DINNER is now the current file with which you are working.
Any editine commnands which you use will automatically apply to that
file until a different file is loaded.

QUESTIONS?

#ihat does the C: mean?¥*

THC C: PRONPT IS A PROMPT THAT IHDICATZS
THAT NLS 1S WAITIHNG FOR A COMMAND TERM FROL
THE USER.

#Jhat is the T: pronpt for?7¥*

2

Q 4.7
ERIC S 80

IToxt Provided by ERI

THE T: PROHPT IS A PROUMPT THAT INDICATES
THAT NLS IS WAITING FOR SOME TEXT FRO! THE USER.

PRINTING A FILE

Your next task is tc use the Print command to see the content of the

DIHNER file. You do that by typing ‘Prin
be disturbed by the pronpts.)
don’t formet to type ‘Done <CR>° when the

TASK 2

EDIT C: Print OK:/C:_;
<{NLS-SCHOLAR>DIHHER.LNLS;3,
1 SOUP
1A TOHATO
iB VEGETABLE
1C CREAi1 OF iiUSHROOM
2 ENTREE
2A FRIED CHICKEN
28 PRIME RIBS
2C SCALLOFS
2C1 BROILED
2C2 FRIED
2D SAL:ION
2D1 MITi! CREAM SAUCE
3 DESSERT
34 PIE
2A1 RHUEARS
3A2 BLUEBLDREY
A STRAUVBERRY SHORTCAKE
3C ICE CREAH
3C1 PEPPERHMINT
2C2 lIAPLEHUT
3C3 CiiOCOLATE
EDIT C: Done OK:_;
Please tear the paper off here and place
you cun refer to this file easily in the

T el e R e D

After “Print’ you could type various nouns indicating that only part of
But if no noun is supplied, then the single
comnmand term “Print’, followed by a <CR>, will print the entire content

the file is to be printed.
of a newly-loaded file.

The nysterious pronpt OK:/C:

t <CR>".

EDIT herald appears again.

28-AUG-T4 08:28 CLH ;

it on the table beside you so
future.

which NLS printed above indicates that it

expects either confirmation (OK:), which you provided by typing <CR>,

or another command tern (C:).
can type after “Print’ later.

81

We shall return to the nouns that you

3z
-3

(Again, please don’t
After the entire file has been printed,

QUESTIONS?

What can I type after Print?%

THE THINGS THAT CAN FOLLOW PRINT ARE:
Branch Statement Plex Group

*How do I print a statement?#

THE USER PRINTS A STATEMENT USIHNG THE PRINT CO!MAND,
PROCEDURE: HE TYPES “PRINT °, FOLLOWED BY
"STATEMENT °, AN ADDRESS, <CR>, VIEWSPECS, AND
<CR>.

OUTLIKE STRUCTURE

Let s lcok now at the irformation in the file. Notice that there is a
heading at the top of your file which consists of some identifyiag
information. The first part within the angle brackets, NLS-SCHOLAR, is
the “directory name’. Directories are used to group together and index
file names. The second part, DINHER, is the “file name”. The third
part, LHLS, an extension of the file name. The fourth part is a
‘version number’. Thus the headins tells you that this is the first
version that’s been made of the file named DINNER.LNLS which is in the
HLS-SCHOLAR directory.

The rest of the headine consists of the date and the time of the file’s
creation, and the initials of the person who created it.

This information is supplied by HLS as the content of a special
statement called “statement zero”. It is the only statement whose
initial content is supplied by HLS instead of by the user.

rollowines statement zero, you can see that an HLS file is structured
like a standard indented outline. The numbers on the left are called
‘statement numbers’. Statement zero is the only one whose statement
nunver is not visible. The text followine each statement number is
called 2 “statement’. The statements in this example are very short;
iowever, statem=2nts rmay contain up to 2000 characters eanh and often
consist of an entire paragraph of text.

The statement is the basic “structure unit’ of an LS file. Larger
structure units called “branches’, “groups”, and “plexes’ are formed
from sets of statements. Of these, only branches will be of interest
to us initially.

The DIillIER t'ile has three main branches: branch 1, branch 2, and
branch 3. DBranch 1 consists of all statements whose statement numbers
berin with 1; branch 2 of all statements whose numbers begin with 2;
branch 2 similarly. The file contains several snsller branches as
well.

WHAT STATEMENTS ARE IN BRANCH 3A? (Please put spaces between the
statement numbers and terminate your list with a “#° followed by a
<CR>.)

*¥3A1 and 3A2%

. CORRECT. HOWEVER, YOUR ANSWER IS INCOMPLETE.
3A1 AND 3A2 ARE O.K.
YOU COULD ALSO IHCLUDE 3A.

WHAT STATEMENTS ARE IN BRANCH 1?
1, 1A, 1B, and 1C.

VERY GOOD.

Individual statements may be inserted. deleted, moved, transposed, and
sopied within the file. Larger structure units like branches ray be
similarly manipulated.

Jithin a statement the basic “string units” are “words” and
‘characters’. A word has its usual intuitive definition; a character
is any individual symbol (letter, number, punctuation mark, space,
etc.) you can type on your keyboard. Individual words and characters
may also be inserted, deleted, changed, etc.

The terms Statement, branch, plex, group, word, and character are
inportant because they are the nouns used as the second term of many
[ILS commands.

Statement numbers are used to indicate the relative position of each
statement within the file. They are one kind of “address” by which you
may specify or “point to” a particular statement. Statement numbers
are assigned by the NLS system and may be changed by HLS when new
statements are inserted or old ones deleted.

QUESTIONS?

#i/hat statements are in branch 3A%%*

THE STATEMENTS IN BRANCH 3A ARE:
3A 3A1 3A2

Give me a definition of statement zero.

STATEMENT 0 IS A STATEHENT AT THE BEGINNIHG
OF EVERY NLS FILE CONTAINING IDENTIFYING
INFORMATION.

¥/nat is the content of statement zero now?*

THE STATEMENT 0 IS:
Q <HLS-SCHOLAR>DINNER.LNLS;3, 28-AUG-74 08:28 CLH

ERIC o 67

.
?

DELETING A STATEHENT

To'see how statement nunbers are chanred hy NLS, let’s pretend that

we ve run out of tomato soup, rhubarb pie, and strawberry shortcake and
vish to delete these items from our menu. I°11 delete the statement
containing "TOMATO", usine the Delete command.

EDIT C: (Delete) C: (Statement) at A: {(1A)(<KCR>);
OK: (<CR>);
EDIT C: (Done) OK: (<CR>);

I tvped:
Delete Statement 1A <CR>

to produce the first line; the remaining characters were printed by
HLS. Whenever I type something, I°11 indicate it by enclosing it
within parentheses.

You ‘re already familiar with the C: prompt for command termn. The A:
prompt is for an address; here 1 provided the statement number of the
statement to be deleted. HHotice that I typec a <CR> after this address
to terminate the command. If I had typed an address which did not
exist in the file, such as 1D3, IlLS would have printed a “?°. Then it
would have given ne another A: prompt so I could supply a valid address
instead.

HLS asks UOK: because it wants to confirm that I really mean to delete
statenent 1A. (Once a statement has been deleted, it may be irpossible

to recover its content.) I save confirmation by typins <CK>; 1if it
wasn't 0K I would have cancelled the command by typins <CTRL-X>.

QUESTICIS?

%

Your next task is to delete the statement containings "RHUBARB".
Before you start on that I°d like to remind you that there’s another
place at which you can ask questions -- wherever there’s an EDIT herald
in the margin. Instead of givine a command term you can type an
asterisk indicating that you wish to ask me a1 question. Then type in
your question, terminatineg it as usual with another asterisk. I will
attenpt to ansver your question and will then return you to HLS which
will print another EDIT herald in the margin. At that point, you can
either ask another auestion by typing an asterisk, or you can type a
command term. Thus if you don’t know how to perform a gfiven task, you
can ask auestions about 1it.

Please use the Delete cormmand to delete the statement containins
"RHUBARB" from the menu.

TASK 3

EDIT C: #What is the address of the statement containing "RHUBARB"?*

THE ADDRESS OF THE STATEMENT CONTAINING "RHUBARB" IS:
3A1

continuation of TASK 3

EDIT C: #Where is the "RHUBARB"?¥

THE ADDRESS OF "RHUBARB" 1IS:
3817 + 7T

continuation of TASK 3

EDIT C: #*ilhere is the "TOMATO"?*

I CAN'T FIND AN ADDRESS rOR THAT.

continuation of TASK 3

EDIT ¢: Delete C: Statement at A: 2A41;
OK:_;
EDIT C: Done OK:_;

Very good. llow delete the statement containing "STRAWBERRY SHORTCAKE".

TASK U4

EDIT C: Delete C: Statement at A: 3B;
OK:_;
EDIT C: Done OK:_;

Fine. How the statements containing "TOMATO", "RHUBARB", AND
"STRAVBERRY SHORTCAKE" have all been deleted from the DINNER file.

QUESTIOHNS?

DELETING A BRANCH

Now let’s suppose we ve run out of scallops as well. Watch me try to
delete the statement containing "SCALLOPS".

B ‘ 85 Vo
59

EDIT C: (Delete) C: (Statement) at A: (2C)(<KCR>);
OK: (<CR>);

ILLEGAL DELETE

EDIT C: (Done) OK: (<CR>); .

NLS refused to delete statement 2C because it has the two
“substatements” 2C1 and 2C2. It is not possible to delete any
statement havineg substatements.

In order to remove the statement "SCALLOPS" from our menu we will have)
to delete the whole branch 2C, not just the statement 2C. (This is

reasonable since "BROILED" and "FRIED" apply only to the sta*enment

"SCALLOPS" anyway.) Do that now, using the Delete command w.th

‘Branch’ as the noun instead of “Statement’.

TASK 6

EDIT C: Delete C: Branch at A: 2C;
OK:_;
EDIT C: Done OK:_;

HLS will also refuse to delete (or to move) statement zero or branch
zero since the information in statement 2zero is needed at the head of
the file.

QUESTIONS?

THY RENUMBERED FILE

Hocw let me show vou what happens vhen I try to delete the statenent .
containine "BLUEBERRY" which used to follow the statement containings
"RHUBARB" on the nenu.

EDIT C: (Delete) C: (Statement) at A: (3A2)(KCR>);
? A: (KCTRL-X>) #4
ZDIT C: (Done) OK: (<KCR>);

IILS prints “?° because the DINNER file no lonper contains a statenent
vith address 3A2. I tvped <CTRL-X> after the A: to cancel the command
instead of providings a new address. (Note that <CTRL-X> echoes as ##.)

When the statement containine "RHUBARB", 3A1, was deleted, the T
state .2nt ontainine "BLUEBERRY" which was rormerly 3A2 was ‘“proroted’

to bécome statement 3A1. So to delete the statement containing

"SLUEBERRY" we would have to delete statement 3A1 again.

Because some statements may be renumbered in this way whenever a
deletion occurs, it is important to update your view of the file.

Let me print the modified DINMNER file for you now so you can see that

Q
Eﬂ&ug 36

IToxt Provided by ERI

Lo
o0,
s’

all our deletions have indeed occurred and what effect they have had on
the numbering of the file.

EDIT C: (Jump) to A: (0)(<CR>);
EDIT C: (Print) OK:/C: (<KCR>);
<NLS-SCHOLAR>DINNER.LNLS;3, 28-AUG-74 08:28 CLH ;
1 SOUP
1A VEGETABLE
1B CREAM OF MUSHROOM
2 ENTREE
2A FRIED CHICKEN
. 2B PRIME RIBS
2C SALMON
2C1 WITH CREAM SAUCE
3 DESSERT
3A PIE
3A1 RLUEBERRY
3B ICE CREAil
381 PEPPERMINT
3B2 !NAPLENUT
3B3 CHOCOLATE
EDIT C: (Done } OK: (<CR>);

‘Please tear off the paper again to compare this file with its earlier
version.

Note how the statement numbers have been changed by NLS. You can see
that many statements have heen renumbered (‘promoted”), some of them
acquirine the statement numbers of the deleted statements. Although
statements 14, 2C, 2C1, 3A1, and 3B were all deleted, these statement
numbers still exist in our file -- but .he statements contents are now
different.)

QUESTIONS?

¥WWhat is the purpose of that jump command that you typed?¥

THE JUi1P COIIMMAND MOVES THE CH.

¥ijhat is the Cl?*

THE CM IS THE CONTROL HARKER THAT POINTS AT THE CURRENT CHARACTER.

THE CONTROL MARKER (CH)

You may have noticed that instead of Just typing ‘Print <CR> " as before
to print the DINNER file, I typed “Jump 0 <CR> " first. The reason for l

ERIC 8T 1 1

o

this is as follows.

whenever vou are worklnr with a file there is always a pointer called
the “control marker’ (CM) which points directly at some character in
the file. It indicates the current address within the file -- the
place where you are currently working.

flost editing commands cause the CH to be moved. For example, when a
file is first loaded the ClM points to the first character of the file.
Wlhen you insert or delete some statements, the CM is moved.

The Print cormmand followed by <CR> actually prints the content of the

current file from the current position of the CM all the way to the .
end. Thus when a file is newly-loaded, “Print <CR> " causes all of it

to be printed. The Print command does not change the position of the

CH.

QUESTIONS?

*%

Cil COlMANDS

The Jump command is used to move the Cl anywhere within the current
file. I moved the C!! to the beginning of statement 0 so that the whole
file would be printed.

Use the Junmp command yourself now to move the Cif to the statement
containin~ YCLUEBERRY". (Please be sure to consult the latest version
of the DINHER file as the statement numbers have been chanred.)

(/)

ri,

n 7
iT C: Jump to A: 3A71;
IT ¢

D
D Done OK:

9]

To see the effect of this command, type just a sinrgle period, followed
by a space, a2fter the EDIT herald.

TASK 8

EDIT C: . =3A1 +1
EDIT C: Done OK: _

This one-character command may be used following any EDIT herald to
find the current position of the Cil. The first number after the equals
siscn is the statement nunber; the second number after the plus sign is
the character position within the statement to which the Cil is
pointing. Thus the Cil is now positioned at the first character of
statenent 3A1.

QUESTIONS?

* %

By usine fhe Jump commanc in conjunction with the Print command you can
start printing the current file wherever you like. Please use these

imands now to print just the thre=2 ice crean flavors on your menu.

s G2

IToxt Provided by ERI

TASK 9

EDIT C: Jump to A: 3B1;
EDIT C: Print OK:/C:__;
3B1 PEPPERMINT
3B2 MAPLENUT
3B3 CHOCOLATE
EDIT C: Done OK:_ ;

Mow use the . * command again to see what has happened to the CH.

TASK 10

EDIT C: . =3B1 41
EDIT C: Done OK:_ ;

This shows you that “Print <CR> " does not cause the CM to be moved.
The current position of the CH is still 3B +1 where you moved it with
the Jump conmand.

QUESTIONS?

* %

CONTENT ADDRESSING
The address of a statement may be specified in a number of different
ways. One thing you may type after an A: prompt, as you 've seen, is a
statement number. :

Another thing you may type is a <CR>, which means that the address you
want is the current address.

A third thinr you may do is to specify the statement you want in ternms
of its content rather than its statement number. For example, to jump
to the statement "BLUEBERRY", instead of typing:

Jurip 3A1 <CR>

you could type:

Jump "BLUEBERRY" <CR>

with virtually the same effect. Using a content string as an address
relieves you from having to keep track of the current statement
numbers.

Try content addressing now by jumping to the statement "CHOCOLATE".
Remember that your content string must be enclosed in double quotes and
followed by a <CR>.

TASK 11

EDIT C: Junp cto A: "CHOCOLATE";
EDIT C: Done OK:_ ;

You can determine the statement number of this statement by using the
command again. Remember that this command is terminated by a space,
rather than a <CR>. Try that now.

TASK 12

EDIT C: . =3B3 +9
EDIT C: Done OK:_ ;

Note that the ClM is pointing to the ninth character of statement 3B3,
not to its rirst character. VWhen content addressine is used, the CM
always points to that character of the statement which matches the last
character of the content string.

QUESTIONS?

*%

Now see what happens whern I try to use content addressing to Jjump to
the statement "FRIED CHICKEN".

EDIT C: (Jump) to A: ("FRIED CHICKEN")(KCR>);
? h: (<CTRL-X>)##
EDIT C: (Done) OK: (<CR>);

rere HNLS is telling you that it can’t find a statement containing
"FRIED CHICKEN" and it asks for another address. (I cancelled this
command by typing a <CTRL-X> after the second A: pronpt.)

This is puzzling since "FRILD CHICKEN" is the content of statement 2A.
ILS can’t find this statement because it always starts searching at the
current address (in this case 3B3 +9) and stops searchine when it
reaches the end of the file.

iilhen usina content addressings, you nmust always be sure that the CM is
pointing to a statement which is earlier in the file than the one you
want to find. One way to be sure is to adopt the habit of always
moving the CH to statement zero before using a content address. Try to
jump to the statement "FRIED CHICKEN" again, by jumping to statement
zero first.

/
TASK 13
EPIT C: Jump to A: 0O

EDIT C: Junp to A: "ﬁRIED CHICKEN";
EDIT C: Done OK: ;

Good. Utiow print the current position of the CM to determine where you
are.

TASK 14
EDIT C: =20 +13
EDIT C: Done OK: _;

ing content addressing it is not necessary to type the entire
of the statement or even an entire word. Any string of

(
AT S

consecutive characters which uniquely identifies the statement is
sufficient. The file is searched sequentially and the first statement
which contains the content string is selected. If the current position
of the CM is statement zero, statement zero is searched first, then all
statements of branch 1, followed by all statements of branch 2, etc.

QUESTIONS?

* #

ONE-CHARACTER COMMANDS THAT PRINT

The statement at which the CM is pointing is called the “current
statement’. You can print the current statement using the \ command.
The procedure is to type "\’ followed by a space. Try that now and see
what happens.

TASK 15

EDIT C: _\
2A FRIED CHICKEN
EDIT C: Done OK: _;

The statement directly before the current statement is said to be
‘back’ from it. To print the back statement you can use the T command.
The procedure is to type the single character ‘T’ followed by a space.
Trv it.

TASK 16
EDIT C: _T__
2 ENTREE

EDIT C: Done OK: _;

The ' command moves the CM. Use the . command to find the current
position of the CM.

TASK 164

EDIT C: . =2 +1
EDIT C: Done OK: __;

As you can see, the current statement is now statement 2.

The statement directly after the current statement is said to be ‘next”’
to it. To print the next statement, you can use the <LF> command. The
procedure is to type the key which says ‘LINE FEED’, followed by a
space. (The LINE FEED key will be denoted as <LF>; it will echo as
‘4’.) Do that now.

TASK 17

EDIT C:__%

2A FRIED CHICKEN
EDIT C: Done OK:_ } 373

91

As you may have expected, the <LF> command also moves the CM. What do
you think the current statement is now? (Be sure to terminate your
answer with “* <CR>’.)

¥ON¥

———

THAT"S RIGHT.

QUESTIONS?

* %

UPDATING YOUR FILE

That “s about enoush for the first lesson. Before quitting, however,
you should- ‘update’ your file so that the changes you and I have made
during this session will be incorporated into the DINNEK file. At
sresent these chanses are stored in what is called its ‘modification
file”, rather than in the main file itself. Type:

Update File <CR>

and all the information in the modification file will becor.e part of
the main file.

TASK 18

EDIT C: Update C: File OK:/C:__;
EDIT C: Done OK:_ ;

Good. The modification file is now empty, ready to receive new
chaages. There is no need fo specify that the main file is to be
stored away for further use. NLS does that automatically for you
whenever you load a different file to work with, or when you leave NLS
(or lorout).

QUESTIONS?

* *

REVIEW OF LESSON OlE
Lesson One has introduced the followiné commands:

Load command

Print command

Delete comnmand for statements and branches
Jump conmand

Update conmmand

\ (print the current statement)

T {print the back statement)

<LF> (print the next statement)

. (print the current position of the CM)

If you are unsure about any of these commands, this would be a good
time to ask Qquestions about then.

W

<
-
to

(.L‘
J

QUESTIONS?

% #*

Lesson One has introduced the following concepts:

structure unit
string unit
statement
h branch
) word
character

NLS comnand
one-character comnand
command tern

control marker (CM)
<CR>

<CTRL-X>

<LF>

" herald
prompt
C:

T:

A:

OK:
OK:/C:

current statement
next statement
back statement
statement zero
substatenent

file

file nane

current file
modification file
outline structure

file specification
directory
extension

version number

address

statement number ¢
content addressing

current. address

current position of the CHM

Agait,, if you have questions about any of these concepts, please ask
them now.

QUESTIONS?

% #

If you would like to practice what you have learned you may now print
or nodify any part of the DINNER file that you wisa. The modification
file that you create by doing that will not be kept, so your file will
not be permanently changed. However, you must not use the Update
command or your file may not be in a suitable form for doing Lesson
Two. .

When you don’t wish to sive any more commands, or ask any nore

questions, type “Done <CR>‘ after the EDIT herald.

TASK 19

EDIT C: Done OK: ; -
Lesson Two will teach you more about the structure of NLS files. It

will teach you how to insert statements, how to create a new file, and
how to modify existing statements without deleting tnem. Au revoir.

ERIC o ogs

LESSON 2
ECHOING

Hello. HNice to meet you again.

I°'d 1like you to start by loading your DINNER file again and printing it
SO we can see how to insert some more statements into it.

Before you do that, though, I°d like to confess that in Lesson One both
you and I did more typing than was really necessary to indicate which
commands we wanted. To specify each command term you need to type only
enough characters to identify that term uniquely. As soon as enough
characters are typed, you may hit the space bar and NLS will “echo’ the
rest of the characters, just as if you had typed the entire command
yourself. If you haven't provided enough characters, NLS will ring a
bell indicating that it needs more and will wait for you to provide
them. (Three characters are always sufficient.) Similarly if you type
a character which cannot possibly result in a valid command tern, a
bell will ring and the character will not be accepted.

To see how this works, use the Load command to load the DINNER file.
Use as few characters in ‘Load” and in ‘File’ as is possible for
recognition. (Please remember to type “Done <CR>" afterwards.)

TASK 20

EDIT C: Load C: File T: DINNER;
(NLS-SCHOLAR, DINMER.LNLS;2,)
EDIT C: Done OK:__;

Please print this file so you can see its content. Again, practice
using only a few characters to specify “Priat’.

TASK 21

EDIT C: Print OK:/C:__;
<NLS-SCHOLAR>DINNER.LNLS;2 1-0CT-74 08:28 CLH ;
1 SOUP
1A VEGETABLE
iB CREAM OF MUSHROOM
2 ENTREE
2A FRIED CHICKEN
2B PRIME RiBS ;
2C SALMON
2C1 WITH CREA!1 SAUCE
3 DESSERT
3A PIE
3A1 BLUEBERRY
3B ICE CREAM
3B1 PEPPERMINT
3B2 MAPLENUT
3B3 CHOCOLATE
EDIT C: Done OK: 3

Hote that the information in statement zero has been changed to
indicate that this is version 2 of the file rather than version 1.
Every time a file is updated, its version number is incremented by 1.

QUESTIONS?

* %

LEVELS AND FIELDS

Let ‘s look more clos ely at the structure of this file, by examining the
composition of the statement numbers.

Statement numbers are composed of alternating “fields’ of digits and
letters. The number of fields specifies the ‘level’ of the statement
within the file. For example, statement 14 is at level 2.

What is the level of statement 3B3?
(Please remember to terminate your answer with "% <CR>‘.)

3

THAT°S RIGHT.

What statements are at level 1°?

#1 2 3F

VERY GOOD.

Although the statement number 0 consists of only one field, statement
zero is not at level 1. Statement zero is an exception to the general
rule. It is at level zero, the highest level in the file. Since all
statements are at a lower level than statement zero, branch zero
consists of all the statements in the file.

QUESTIONS?

* %

Level nunbers are never used in specifying NLS commands. However it is
important to understand what they mean. When you insert a new
statement in a f'ile you must specify which statement it is to follow
and also any difference in level between the new statement and the one
before it.

Differences in level are described with the terms “up’ and ‘down’. For
exanple, if you wished to insert a statement to be numbered 1A, you
would specify that it was to follow statement 1 one level down If you
vished to insert a statement 2 you could specify that it was to follow
statement 1 at the same level.

If a branch 1 already existed which looked as follows:

1

1A
1B
1B1

100

96

It would also be possible to insert statement 2 by saying that it
followed statement 1B one level up, or that it followed statement 1B1
two levels up.

All insertions may be specified using only the terms ‘down’ and
same ; however ‘up’ 1s provided as an added convenience.

QUESTIGNS?

¥* *

INSERTING A STATEMENT

To insert a new statement in a file, one uses the Insert command and
gives the address of -the statement after which the insertion is to be
made. ’

Let me show you how to change our dinner menu by inserting °“VANILLA® as
the first choice of ice creams.

EDIT C: (I)nsert C: (St)atement to follow A: (3B)(<KCR>);
L: (d)(<KCR>); :

T: (VANILLA)(<CR>);

EDIT C: (Do)ne OK: (<CR>);

I typed only ‘I St 3B <CR>" to create the first line above. (I could,
of course, have used the content address "ICE" instead of “3B" if I
preferred.) You’'re already familiar with the C: and A: prompts which
this line contains.

The L: prompt indicates that NLS needs to know whether an adjustment in
level is needed. That is, whether the new statement is to be at the
same level as the one before it, or whether one must go up or down to
reach the level desired for the new statement. In this case I typed °d
<CR> " for down to indicate that the neu statement is to be after
statement 3B one level down. That is, it is to be numbered 3B1.

The T: prompt, as you know, means that WLS is expecting some text. 1In
this case I typed ‘VANILLA <CR>’, the content of the statement to be
inserted.

QUESTIONS?

*% .
When using the Insert command, you must remember to type a <CR> after
you type the address, the level adjustment, and the text.

In all the tasks which follow, you may use either a statement number or
a content address after the A: prompt. You will probably make fewer
errors, however, if you stick to the statement numbers. (If you make
an insertion you don’t intend, you can use the Delete command to remove
your error.)

Please practice the Insert conmmand yourself by inserting APPLE as the
first choice of pies.

i

b
-
Nrs
ot
i

97

TASK 22

EDIT C: 1Insert C: Statement to follow A: 34;
L: d; T

Please print the file again to see whether this insertion has been made
properly, and how the statement numbers have again been changed. Since
only the desserts have been altered, please start printing at statement
3.

TASK 23 -

EDIT C: Jump to A: 3;
EDIT C: Print OK:/C:__;

3 DESSERT
3A PIE
3A1 APPLE
3A2 BLUEBERRY
3B ICE CREAM -

3B1 VANILLA

3B2 PEPPERMINT

3B3 MAPLENUT

3B4 CHOCOLATE
EDIT C: Done OK: _ ;

Fine. As you can see, NLS has inserted a new statement 3A1 with the
content "APPLE" and a new statement 3B1 with the content "VANILLA". It
has renumbered (“demoted”) the statements which follow at the same
level.

QUESTIONS?

%

Let’s see now how to add a list of beverages to the end of our dinner |
menu. Suppose we berin by inserting the heading BEVERAGE as a new |
statement right after DESSERT and at the same level with SOUP, ENTREE, }
and DESSERT.

What will its statement number be?
*u
YOU ARE CORRECT.

You can cause HLS to assign statement number 4 to the new statement by -
inserting it after 3 and at the same level. You indicate ‘same’ by

typineg a <CR> after the L: prompt to indicate that no level adjustment

is needed. tlake A new statement 4 now with the content BEVERAGE.

TASK 24

EDIT C: Insert C: Statement to follow A: 3;
L:

T: BEVERAGE;

\)EDIT C: Done OK: __;

T
Pe sy
._:r
R\

98

The statement you’'ve just inserted is the current statement, so you can
see if you’ve inserted it correctly by simply typing ‘\" followed by a
space. Do that now.

TASK 25
EDIT C: \
4 BEVERAGE
FDIT C: Done OK: _;

 t—

Good. There are two other ways in which you could have specified this
new statement with exactly the same result. You could have inserted a
statement after 3B one level up, or after 3B4 two levels up. ‘Up’ is
indicated by typing “u <CR>" after the L: prompt. More than one up or
down is specified by typing the desired number of u’s or d’s before
typing a <CR>.

QUESTIONS?

*%

Now let’s insert the actual beverages themselves -- TEA and COFFEE.
These are to be the second-level substatements of statement 4; they are
to acquire the statement numbers U4A and U4B. See if you can insert
these two statements yourself without further instruction. Print each
statement directly after you have entered it to check what you have
done.

Insert now the first beverage, TEA, and print the result.

TASK 26

EDIT C: Insert C: Statement to follow A: 4;
L: d; ~ T
T: TEA;

EDIT C: _\
4a TEA

EDIT C: _Done OK:__;

Good. Now insert the second beverage, COFFEE, and print it also.

TASK 27

EDIT C: 1Insert C: Statement to follow A: 4A;
L: __;
T: T COFFEE;

EDIT C: _\
4B COFFEE

EDIT C: Done OK:

Fine. Note that the text we’ve been inserting has been so shoit that

it fits easily on a single line. However, statements may occupy

approximately 25 lines since they may contain up to 2000 characters.

When typing in some long text, do not hit a <CR> when you cone to the

end of a line as that will terminate the Insert command. Just keep

typing and HLS will automatically return the carriage to the beginning
ol e ‘5

LA

99

of the next line for you.

Please print the entire file once more so you can see its completed
structure.

TASK 28

EDIT C: Jump to A: 0
EDIT C: Print OK:/C: __;
<NLS-SCHOLAR>DINHNER. LNLS 2 1-0CT-74 08:28 CLH
1 SOUP
1A VEGETABLE
1B CREAM OF MUSHROOM
2 ENTREE
2A FRIED CHICKEN
2B PRIME RIBS
2C SALMON
2C1 WITH CREAM SAUCE
3 DESSERT
3A PIE -
3A1 APPLE
2A2 BLUEBERRY
3B ICE CREAM
3B1 VANILLA
3B2 PEPPERMINT
B3 MAPLENUT
3BY4 CHOCOLATE
4 BEVERAGE
A TEA
4B COFFEE
EDIT C: Done 0OK: ;

.
?

Please update this file to incorporate our changes into its main copy.

TASK 29

EDIT C: Update C: File OK:/C: _;
EDIT C: Done OK: _;

QUESTIONS?

* %

CREATING A FILE

Now that the dinner menu is completed, I°d like to show you a menu for
breakfast. To see its content, load and print the file BREAKFAST.

TASK 30

EDIT C: Load C: File T: BREAKFAST;
(NLS-SCHOLAR, BREAKFAST.LNLS;1,)
EDIT C: Print OK:/C:_;
{NLS-SCHOLAR>BREAKFAST.LNLS;1 i-0CT-74 03:50 CLH ;
1 JUICE
1A ORAMNGE
1B GRAPEFRUIT

A

G104 100

2 CEREAL
2A OATHEAL
2A1 WITH RAISINS
2B CREAH OF WHEAT
2C CORN FLAKES
3 EGGS
3A SCRAMBLED
3B FRIED .
3B1 SUNNY-SIDE-UP
3B2 OVER-EASY
3C BOILED
4 BEVERAGE
4A HOT CHOCOLATE
4B TEA
4B1 VWITH LEMON
42 WITH SUGAR AND CREAM
4C COFFEE
EDIT C: Done OK:

- o D T T S YD YD D W D e W D G TR D e T R M YD TR T EE D S e W e YD T D W LD D TR D —D @R TR we WD we wm W WS e O em

Please tear off the paper here, so you can refer to this file in what
follows.

The DINNER file has been automatically stored away and BREAKFAST is now
the current file.

Your next job is to create a new file named MYBREAKFAST, and to insert
statements into it until it s the same as the BREAKFAST file which you
just printed.

To create a new file, use the Create command. Specify that the name of
the file is to be HYBREAKFAST. Please do that now.

TASK 31

EDIT C: ‘Create C: File T: MYBREAKFAST;

(NLS-SCHOLAR, HMYBREAKFAST.LNLS;1,)
EDIT C: Done OK:_ ;

Good. HNow the file BREAKFAST has automatically been stored away and
the file MYBREAKFAST has become the current file.

QUESTIONS?

*%

INSERTING STATENENTS IN A HEW FILE

Although this file is new, it is not truly empty. To see its content,
use the Print command.

" TASK 32

EDIT C: Print OK:/C:__;
<HLS-SCHOLAR>HYBREAKFAST.LNLS;1 .1-0CT-74 03:30 CLH ;
EDIT C: Done OK: _;

~a
.

VA
R P

101

You can see that NLS has already provided a statement zero for this
file and filled it with identifying information. This is always done
automatically whenever a new file is created.

The existence of statement zero is important since it provides an
initial statement in the file after which an insertion can be made.
Remember that when inserting a statement you must specify an already
existing statement which your insertion is to follow. You nust always
start a new file hy inserting statement 1 after statement zero, because
statement zero is the only statement in the file.

Since statement zero is at level zero, the nighest level of the file,
what should you type after the L: prompt of an Insert command to
insert statement 1 after statement zero?

% *

—

VERY GOOD.

Start now to copy the BREAKFAST file by inserting statement 1 with the
content "JUICE" in the NYBREAKFAST file.

TASK 33

EDIT C: 1Insert C: Statement to follow A: 0;
L: d;

T: JUICE;

EDIT C: Done OK

Good. Your file now contains statement 0 and statement 1, which has
the content "JUICE". Proceed to insert the next first-level heading,
"CEREAL", as statement 2. Print the statement as soon as you ve
inserted it by using the "\’ command.

TASK 34

ot or Insert C: Statement to follow A: 1

L

T: CEREAL;
EDIT C: _\
2

Fine. MNow insert the reaainine headinss, "EGGS" and "BEVERAGE", as
statements 2 and 4. Print each one as soon as you’ve inserted it.

C: 3tatenment to follow A: 2;

(@}

Statement to follow A: 3,

102 105

EDIT C: 1\ __
4 BEVERAGE
EDIT C: Done OK:_ ;

QUESTIONS?

*%

REPEAT MODE

OK. Now let’s go back and fill in the lower level statements of the
file. Tais task presents no new problems and constitutes a review of
what you’ve learned earlier.

But again, I°d like to confess that you did more typing than was
necessary. If you wish to use the same command repeatedly, you can
terminate the command by typing <CTRL-B> instead of <CR>. This puts
you into what is calleu ‘repeat nmode’. Let me show you how that works ,
with the Insert command by inserting the two juices, "ORANGE" and
"GRAPEFRUIT", as statements 1A and 1B.

EDIT C: (I)nsert C: (St)atement to follow A: (1)(<KCR>);

L: (d)(LKCR>);

T: (ORANGE)(KCTRL-B>)"B A: (1A)(<KCR>);

L: (<CR>);

T: (GRAPEFRUIT)(KCR>);

EDIT C: (Do)ne 0K: (<CR>);

At the end of the first text, "ORANGE", I typed <CTRL-B> instead of
<CR>. (Note that this echoes as "B.) This indicated that I wanted to
repeat the Insert comnand. So NLS proceeded as if I had typed ‘I St °
and gave ne an A: prompt asking for the address. I then proceeded as
usual, typing & <CR> at..the .end of the second text, "GRAPEFRUIT".

QUESTIONS?

'

Try using repeat mode to insert the remaining statements of branch 2.
Statement 2, with content "CEREAL", already exists in the MYBREAKFAST
file. Proceed to insert after it all the statements under it, reading
them from the BREAKFAST file. Remember to type <CTRL-B> rather than
{CR> to terminate every text but the last. When you ‘ve entered the end
statement of the branch, statement 2C, type <CR> to return to the EDIT
herald. Please begin now.

TASK 36

EDIT C: Insert C: Statement to follow A: 2;

d-
: DATHEAL"B A: 2A;
d;

WITH RAISINS™B A: 2A41;

———

Y
CREAM OF WHEAT"B A: 2B;

Sr\ararac

-—

CORN FLAKES;

EDIT C: Done OK: _;

Great. Please print your file starting with statement 2 to see what it

looks like. Y
103 U7

TASK 37

EDIT C: Jump to A: 2;
EDIT C: Print OK:/C:_;
2 CEREAL
2h OATHEAL
2A1 WITH RAISINS
215 CREAH OF WHEAT
2C CORN FLAKES
3 EGGS
4 BEVERAGE
EDIT C: Done OK: __;

QUESTIONS?

* %

CURRENT ADDRESS

Let s proceed with the MYBREAKFAST file by inserting the remaining
statements of branch 3. This task is virtually the same as that of
inserting the statements of vranch 2, but let me show you cne more way
of makins it even shorter.

Instead of typing a statement number or a content address every time an
A: prompt appears, you can often type just a <CR>. This indicates that
the address you want is that of the current statement. Since one often
inserts statements in sequential order, the address you want to follow
is usually the current address. Let me :how you how this works.

LDIT C: (I)nsert C: (St)atement to follow A: (3)(<CR>);
(d)(<KCr>);

(SCRAMBLED) (<CTRL-B>) "B A: (<CR>); L: (<CR>);
(FRIED)(KCTRL-B>)"B A: (<CR>); L: (d)(<CR>);
(SUNNY-SIDE-UP)(<CTRL-B>)"B A: (<CR>); L: (<CR>);
(OVER-EASY)(<CTRL-B>)"B A: (<CR>); L: (u)f<CR>);
(BOILED)(<CR>);

EDIT C: (Do)ne OK: (<CR>);

'—]'—]'-i'-]'-!l"

After every A: prompt except the first I simply typed <CR> to indicate
that each new insertion is to follow the one before. When the address
is specified in this manner, NLS puts the L: prompt on the same line,
changine the format so that the T: prompt is always at the left.

Print the file starting at statement 3 to see that these insertions
have been made properly.

TASK 38

-EDIT C: Jump to A: 3;
EDIT C: Print OK:/C:_ ;
3 EGGS
3A SCRAIBLED
36 FRIED
3B1 SUNNY-SIDE-UP
3B2 OVER-EASY
3C BOILED

104

4 BEVERAGE
EDIT C: Done OK: 3

QUESTIONS?

Try using the current address in conjunction with repeat mode to finish
the MYBREAKFAST file by inserting the remaining statements of branch 4.

* #

TASK 39
EDIT C: 1Insert C: Statement to follow A: U;
¢ d;
HOT CHOCOLATE"B A: _; L: __;
TEA"B A:__; L: d;

WITH LEMON™B A: __; L: _;
WITH SUGAR AND CREAM™B A:
: COFFEE;

EDIT C: Done OK: _;

— =

-3 =3 =3 =3 =3

\
s L ug i
|

Please update and then print the completed MYBREAKFAST file, starting
with statement 0, so you can compare it with the BREAKFAST file.

TASK 40

EDIT C: Update C: File OK:/C: __;
EDIT C: Jump to A: O
EDIT C: Print OK:/C: __;
<NLS-SCHOLAR>IYBREAKFAST.LIKLS;2 1-0CT-74 08:55 CLH ;

1 JUICE

1A ORANGE

1B GRAPEFRUIT
2 CEREAL

2A OATHMEAL

2A17 WITH RAISIHS
2B CREAM OF WHEAT
2C CORMN FLAKES
3 EGGS
3A SCRAMBLED
3B FRIED
3B1 SUNNY-SIDE-UP
3B2 OVER-EASY
3C BOILED
4y BEVERAGE
4A HOT CHOCOLATE
4B TEA
481 WYITH LEMON
4B2 WITH SUGAR AND CREAM
4C COFFEE
EDIT C: Done OK: _ ;

You can see that the files are identical except for the information in
statement 0.

QUESTIONS?
*

SUBSTITUTE WORD IN STATEMENT

Eefore we end this lesson, I'd like to show you how to change the
content of statements which have already been inserted in your file.

You ‘ve learned how to correct errors by deleting an entire statement

and inserting & new one in its place. The Substitute command may be

used to change just a word or even a single character at a time. For
example, here’s how you can change a word in statement 2A1 so that it
reads "WITH DATES" instea of "WITH RAISINS".

EDIT C: (Su)bstitute C: (W)ord in C: (S)tatement at A: (241)(<KCR>);
<New WORD> T: (DATES)(<KCR>);
<01d WORD> T: (RAISINS)(<KCR>);

Finished? Y/N: OK: (<CR>);

Substitutions made: 1

EDIT C: (Do)ne 0K: (<KCR>);

You can see that I've specified that I want to substitute one word in
statement 2A1 for another; the new word "DATES" is to be substituted
for the old word "RAISINS". (There is no restriction that the items
substituted for one another be of the same length.)

To do this I typed only “Su W S 2A1 <CR>" to produce the rirst line; I
typed ‘DATES <CR>" and “RAISINS <CR> " to produce the second and third.
The remaining characters are all printed by ILS.

NLS asks Finished? since nore than one substitution can be made at a
time. If I had typed ‘H° for no instead of ‘Y’ for yes, it would have
prompted for another <New WORD> and <0l1d WORD> pair.

After I typed ‘Y® -- which you won’t see because it isn’t echoed -- NLS
asks for Jurther confirmation with OK: to which I responded with a
<CR>.

When the cormand has been executed, HLS tells how many substitutions
have heen made. If there had been two instances of RAISINS in
statement 2A1, both would have been changed to read DATES.

Statement 2A1 is now the current statement. Please print it.

2A1 WITH DATES
EDIT C: Done OK: ;

740 106

-l

You printed too many statements.
This is what I wanted you to print:
2A1 WITH DATES

Please try to print what
wanted. The file is as you left it.

continuation of TASK 41

. EDIT C: *What command prints the current statement?¥

THE USER PRINTS THE CURRENT STATEMENT USING THE
\ COMMAND.

continuation of TASK 41

EDIT C: \
2A1 WITH DATES
EDIT C: Done OK: ;

QUESTIONS?

* #*

—

Try the Substitute command yourself by substituting the word "OAT" for
"CORN" in stat~ment 2C, "CORN FLAKES".

TASK 42

EDIT C: Substitute C: Word in C: Statement at A: 2C;
<New WORD> T: CORN;

£01d WORD> T: OAT;

Finished? Y/N:_OK:_;

Substitutions made: 0O

EDIT C: Done OK:_;

I wanted you to change
this part of your file:
2B CREAM OF WHEAT
. 2C CORN FLAKES
3. ..

into this:
2B CREAM OF VWHEAT
2C OAT FLAKES
3. ..

But you did not make any changes to your file.

Please try to finish this task.
Qo You may continue where you left off.

107 aAN

continuation of TASK 42

EDIT C: Substitute C: Word in C: Statement at A: 2C;
<New WORD> T: OAT; T
<01d WORD> T: CORN ;

Finished? Y/N: _OK:_;

Substitutions made: 1

EDIT C: Done OK:_ ;

You should have altered the file,
so that this part of it
2B CREAM OF WHEAT
2C CORN FLAKES
3. ..

would look like this:
2B CREAM OF WHEAT
2C OAT FLAKES
3. ..

But you altered this part of it
2B CREAM OF WHEAT
2C CORN FLAKES
3. ..

to look like this:
2B CREAM OF WHEAT
2C OATFLAKES
3. ..

I have restored the file as it was
at the beginning of this task. Please start over.

TASK 42

EDIT C: Substitute C: Word in C: Statement at A: 2C;
<{New WORD> T: OQAT;
<01d WORD> T: CORN;
Finished? Y/HN:__OK:_; .
Substitutions made: 1
EDIT C: Done OK:_;

Now print your result.

TASK 43

EDIT C: \ _
2C OAT FLAKES
EDIT C: Done OK: _;

Good. The noun ‘WORD® refers to the fact that whole words are

involved, not just parts of words; but it does not imply that a single
word only may be provided as either the <New WORD> or the <0l1d WORD>.

108

)
" \':

Use the Substitute command to change statement 2A1 again, this
time to read “WITH BROWN SUGAR AND CREAM’ instead of ‘WITH DATES® and
print your result.

TASK Ul

EDIT C: Substitute C: Word in C: Statement at A:
<New WORD> T: WITH BROWN SUGAR AND CREAM;
<01d WORD> T: DATES;

Finished? Y/N:__OK:_;

Substitutions made: 1

EDIT C: Done OK:_;

What I wanted you to do
should have transformed this:
24 OATMEAL
2A1 WITH DATES
2B .

into this:
2A OATMEAL -
2A1 WITH BROWN SUGAR AND CREAM
2B . . .

But what you did transformed this:
2A OATMEAL
2A1 WITH DATES
2B . . .

into this:
2A OATMEAL

2A1 WITH WITH BROWN SUGAR AND CREAM
2B . . .

Please try again. 1 have
restored the file to its original state.

TASK 44

EDIT C: *How do I do this confusing task?#

THE USER TYPES “SUBSTITUTE “, FOLLOWED BY “WORD °,
"STATEMENT “, “2A1°, <CR>, “BROWN SUGAR AND CREAM®,
<CR>, °‘DATES", <CR>, “Y’, <CR>, "\, A <SPACE>,

d

‘DONE ", AND <CR>.

continuation of TASK Ui

EDIT C: *Please do it for me*

109

??IT C; (Substitute) C: (Word) in C: (Statement) at A: (2A1
<CR>);
<New WORD> T: (BROWN SUGAR AND CREAM)(<KCR>);
<01d WORD> T: (DATES)(<CR>);
Finished? Y/N: OK: (<KCR>);
Substitutions made: 1
EDIT C: (\)
2A17 WITH BROWN SUGAR AND CREAM
EDIT C: (Done) OK: (<KCR>);

QUESTIONS?

SUBSTITUTE CHARACTER IN STATEMENT

Another noun which may follow the verb “Substitute’ is ‘Character’.
Thus one may make substitutions in terms of a single character or a
string of characters as well as in terms of words. Watch whaé happens
when I substitute the characters "EA" for "U" in statement 2B, CREAM OF
WHEAT.

-

EDIT C: (Su)bstitute C: (C)haracter in C: (S)tatement at A: (2B
) (KCR>);
<New CHARACTER> T: (U)(KCR>);
<0l1d CHARACTER> T: (EA)(LKCR>);
Finished? Y/N: OK: (<KCR>);
Substitutions made: 2
EDIT C: (\)
2B CRUM OF WHUT
EDIT C: (Do)ne OK: (<KCR>);

QUESTIONS?

SUBSTITUTE CHARACTER IN BRANCH

Rather than substituting a word or character in just a single statement
you may make the substitution for all statements of a branch. Try that
now by substituting asterisks (*) for all the hyphens (-) in branch 3B.

TASK 45)

EDIT C: Substitute C: Character in C: Branch at A: 3B;
<New CHARACTER> T: :;
<0l1d CHARACTER> T: =;

Finished? Y/N: _OK:_;

Substitutions made: 3

EDIT C: Done OK:_;

You should have altered the file,
so that this part of it

110 243

3B FRIED
3B1 SUNNY-SIDE-UP
3B2 OVER-EASY -
3C . .

would look like this:
3B FRIED
3B1 SUNNY*SIDE*{yP
3B2 OVER¥*EASY
3C . . .

.But you altered this part of it

3B FRIED
3B1 SUNNY-SIDE-UP
3B2 OVER-EASY

3C . . .

to look like this:
3B FRIED
3B1 SUNNY:SIDE:UP
3B2 OVER:EASY
3C . . .

I have restored the file as it was
at the beginning of this task. Please start over.

TASK 45

EDIT C: *Do this task,please¥*

EDIT C: (Substitute) C: (Character) in C: (Branch) at A: (3B
) (KCR>) ;
<New CHARACTER> T: (*)(<CR>);
<01d CHARACTER> T: (-=)(<CR>);
Finished? Y/WN: OK: (<KCR>);
Substitutions made: 3
EDIT C: (Done) OK: (<CR>);

*

The message “Substitute in Progress’ is printed by NLS to indicate that
it is busy working. There is no practical limit to the number of
substitutions which may occur as the result of a single Substitute
command. Using branch 0 as the address results in the substitution(s)
being made over the entire file.

" Please print the file starting with statement 1 so you can see the

effect of the changes we have made.

TASK U6

EDIT C: ¥Tell me how to print the file¥*

THE USER PRINTS AN NLS FILE FROM THE CURREN? STATEMENT
LAy

111

TO THE END OF AN NLS FILE USING THE PRINT COMI!AND,
PROCEDURE: HE TYPES “PRINT °~ FOLLOWED BY <CR>.

continuation of TASK 46

EDIT C: *what does current statement mean?¥

THE CURRENT STATEMENT IS THE STATEMENT AT
WHICH THE CM IS CURRENTLY POINTING.

continuation of TASK U6

EDIT C: *Where is the control marker now?#*

THE CURRENT POSITION OF THE CM IS:
:3B + 1

continuation of TASK U6

EDIT C: *How do I move the CM?¥*

THE USER MOVES THE CM USING A CM MOVING COMMAND. .

continuation of TASK 46

EDIT C: iWhat are the CH moving commands?#®

EXAMPLES OF A CM MOVING COMMAND ARE THE JUMP COMMAND,
THE _ COHMMAND, AND THE > COMMAND.

?
continuation of TASK 45

EDIT C: *What does the jump command do?¥

THE JUMP COMMAND MOVES THE Cil.

continuation of TASK 46

EDIT C: Jump to A: 1;
EDIT C: Print OK:/C:_;
1 JUICE
1A ORANGE

X3
-

SR

112

1B GRAPEFRUIT
2 CEREAL
2A OATMZAL
ZA1 WITH BROWN SUGAR AND CREAM
2B CRUM OF WHUT
2C OAT FLAKES
3 EGGS
3A SCRAMBLED
3B FRIED
* 3B1 SUNNY*SIDE*UP
3B2 OVER¥*EASY
3C BOILED
- 4 BEVERAGE
4A HOT CHOCOLATE
4B TEA
4B1 WITH LEMON
42 WITH SUGAR AND CREAM
4C COFFEE
EDIT C: Done 0OK: ;

QUESTIONS?

*How do I print just branch 37%¥

THE USER PRINTS BRANCH 3 USING THE PRINT COMMAND,

PROCEDURE: HE TYPES “PRINT °, FOLLOWED BY
“BRANCH “, “37, <CR>, VIEWSPECS, AND <CR>.

THE QUESTION MARK FACILITY

You can now practice further with the Substitute command, trying
different combinations of command terms and making more than one
substitution at a time by typing N instead of Y after FINISHED?.

You may alsc wish to practice further using content addressing, and to
insert, delete, and create new files.

As you do this, you may benefit from using the question mark facility.
After any C: prompt you may type ‘2’ and NLS will provide you with a
list of all command terms which are valid at that point. You may then

type one of them and proceed.

If you type “?° after an EDIT C: you will be presented with a complete
list of NLS verbs; this is probably more information than you desire.

We will use the BREAKFAST file in Lesson 3, so that should not be
modified. However you may change the HYBREAKFAST file, which is the
current file, in any way that you wish. Please play with the file,
trying out the various commands you have learned. Type "Done <CR>’ as
usual when you’'re all finished.

‘ 113

| TASK 47
EDIT C: Done OK: ;

QUESTIONS?

NLS

...USTNG A DIS>0SABLE COPY OF YOUR FILE
EDIT C: Print OK:/C: _C: .

CURRENT ALTERNATIVES ARE:

Branch Statement Plex Group
m———

EDIT C: S_

CURRENT ALTERNATIVES ARE:

Substitute Set Show

————_

EDIT C: D_

CURRENT ALTERNATIVES ARE:

Delete Done

————_ i

EDIT C: Substitute C: _

CURRENT ALTERNATIVES ARE:

Character Word Visible Invisible
Text

————_ i

EDIT C: Done OK: ;

...DISPOSING OF THIS COPY

REVIEW OF LESSON TWO
Lesson Two has introduced the followine commands:

Insert command

Create command

Substitute cormmand for words in statements
for characters in statements
for characters in branches

QUESTIOHNS?

x*%

It has also introduced the following concepts: .

echoing
field
level
level zero

L: prompt

level adjustment
up (u)
down (d)
same (<ZR>)

repeat mode
<CTRL-B>
question mark facility

QUESTIONS?

#Yhat is a field?*

A FIELD IS A SEQUENCE OF CONTIGUOUS LETTERS OR CONTIGUOUS DIGITS
WITHIN A STATEMENT NUMBER.

#lhat statements are at level 27%

THE STATEMENTS AT LEVEL 2 ARE:
1A 1B 2A 2B 2C 3A 3B 3C U4A 4B 4C

*What is the level of statement 14AC37%

THE LEVEL OF STATEMENT 14AC3 IS:
3

#What is the level of statement zero?¥

THE LEVEL OF STATEMENT 0 IS:
0

#Define repeat mode¥*

REPEAT MODE IS A METHOD OF REPEATING THE INSERT COMMAND WITHOUT
HAVING TO DO EXTRA TYPING.

¥How do I use repeat mode?#

THE USER REPEATS THE INSERT CCMMAND USING

REPEAT MODE,
PPOCEDURE: HE TYPES <CTRL-B> AFTER THE INSERT COMMAND.

* #*

—

Lesson Three will introduce selective printing, viewspecs, groups,
plexes, and commands which move and copy structures. Au revoir.

LESSON THREE
REVIEW OF PRINTING COMMANDS

Hello. Welcome bacx.

I'd like to start this lesson by reviewing what you know about
printing.

In Lesson One you learned how to move the CHM with the Jump command, and
to print the current statement by typing a one-character command. What
character prints the current statement?

"
Right. What character prints the back statement?
*1a

Good. What character prints the next statement?
*g%

That “s right. You also learned how to print the entire content of a
file by moving the CM to statement zero and typing simply “Print <CR>’.
If you wanted to print only part of a file you moved the CM to the
place at which you wanted to begin; then ‘Print <CR>’ caused the file
to be printed from there to the end.

QUESTIONS?

* %

HODIFYING THE PRINT COMMAND

Mow I'd like to show you how to use the Print command to produce more
selective printing.

Instead of typing a <CR> directly after ‘Print’, you may type a noun
specifying the kind of structure unit you want printed. Thus you may
print a single statement by typing “Print Statement’ or an entire
branch by typing “Print Branch’. Let me show you how this works by
printing branch 3 of the EBREAKFAST file.

Please load the BREAKFAST file for me so I can begin.

TASK 48

EDIT C: Load C: File T: BREAKFAST;
(NLS-SCHOLAR, BREAKFAST.LNLS;2,)
EDIT C: Done OK:

Thank you. HNow I°11 print branch 3.

EDIT C: (Pri)nt OK:/C: C: (B)ranch at A: (3)(<CR>);
Vi (KCRY);

3 EGGS
3A SCRAMBLED
3B FRIED e

116

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY
3C BOILED
EDIT C: (Do)ne OK: (<KCR>);

NLS prompts with OK:/C: to indicate that you may type either a <CR> or
a command term. When I typed ‘B° for branch, it echoed the C: prompt
again to indicate that I had chosen a command term. It then prompts
with A: for address because it needs tc know which branch is to be

. printed.

The V: prompt stands for ‘viewspecs’ which I“11 describe presently. I
typed a <CR> to indicate that no change in viewspecs was needed.

Use the Print command yourself now to print branch 3B, a sub-branch cf
branch 3 consistiag of all statements whose numbers begin with 3B. For
the present, just type a <CR> whenever the V: prompt appears.

TASK 49

EDIT C: Print OK:/C: C: Branch at A: 3B;
Ve
3B FRIED
3B1 SUNNY-SIDE-UP
3B2 OVER-EASY
EDIT C: Done OK: __;

Good. Similarly you can print just a single statement at a time by
using “Statement’ as the noun following “Print’. Try that now by
printing statement 3B1.

TASK 50
EDIT C: Print OK:/C: C: Statement at A: 3BI1;

Ve
3BT SUMNY-SIDZ-UP
EDIT C: Done OK: _;

Note that this gives the same effect as “Jump 3B1° followed by the \°
* command.

QUESTIONS?

3* #

VIEWSPECS

The V: prompt appears whenever you modify the Print command. It asks
whether you wish to change the ‘viewspecs’. Viewspecs control the way
in which you view a file. For example, they control whether the

. statement numbers are printed or not, whether indenting is done or not,
whether only first level statements of the file are shown or all
statements, whether blank lines are printed between statements or not,
ete.

ILS provides a standard set of ‘default ®~ viewspecs which are suitable
for most purposes. It also allows the user to spezcify the viewspecs
which he would like to have as the standard ones and to change these

)

117

Q

standard viewspecs during the course of his work. For this primer I ve
chosen to set the standard viewspecs so that statement numbers are
printed to the left of each statement, 3 spaces are indented for each
level, and all lines and all levels of the file appear, and no blank
lines are printed between statements.

When you type just a <CR> after a V: prompt, it means that you are
satisfied with the standard viewspecs. If you want to change them for
this command only, you type a sequence of one or more ‘viewspecs’ after
the V: prompt. Each viewspec controls a different aspect of the
appearance of the file. HNote that the file itself is not modified,
just your view of it.

The viewspecs are arranged in alphabetically contiguous pairs. The : -
first of the pair specifies that a particular viewspec feature is to

be ‘on’, while the second specifies ‘off’. For example, viewspec A

turns indenting on, while viewspec B turns indenting off.

To print branch 3 wiih statement numbers off (viewspec n) and indenting
off (viewspec B), you could do the following:

EDIT C: (Pri)nt OK:/C: C: (B)ranch at A: (2)(<CR>);
V: (Bn)(<CR>); .

EGGS

SCRAMBLED

FRIED

SUNNY-SIDE-UP

OVER-EASY

BOILED
EDIT C: (Do)ne OK: (<CR>);

You can see that the appearance of the file is changed considerably
even though the content has remained the sane.

Viewspec B and viewspec n remain in effect for this command only. They
are automatically changed back to the standard viewspecs -- viewspec A4,
indenting on, and viewspec m, statement numbers on --- as soon as the
printing is completed. (Note that m and n are lower case characters --
you will not be aware of this if you are working with an upper case
only terminal.)

print branch 3 again, typing <CR> after the V: prompt to indicate the

\
i
|
You can see that the standard viewspecs have not been changed if you
standard viewspecs. Please do that now.

TASK 51

EDIT C: Print OK:/C: C: Branch at A: 3; . |
Ve _; -
3 EGGS
3A SCRAMBLED
3B FRIED]

3B1 SUNNY-SIDE-UP
3Bz OVER-EASY
3C BOILED
EDIT C: Done OK: _; .

QUESTIONS?

LS
{
4

1138

VIEWING SELECTED LEVELS

A more powerful use of viewspecs involves viewing certain levels of the
file selectively. For example, to gain a general idea of a file’s
content, you could view only the first-level statements. This is done
with viewspec x, which causes only the first line of each first-level
statement to appear. (Here all our statements are so short that they
occupy only one line anyway. But remember that statements may contain
up to 2000 characters.) The standard viewspec is its companion,
viewspec w, show all lines and all levels.

Print branch U now -- the entire file -- with viewspec ¥ in effect.
(Note that this is a lower case ‘x°. If you are using an upper case
only terminal, you must use the shift character !’ before the “x° to
indicate lower case -- that is, you must type “!x°, but only a capital

X will be echoed.)

TASK 52

EDIT C: Print 0K:/C: C: Branch at A: 0;
Ve x;)
<{NLS-SCHOLAR>BREAKFAST.LNLS;1 01-0CT-74 08:20 CLH ;
1 JUICE
2 CEREAL
3 EGGS
4 BEVERAGE
EDIT C: Done OK: 3

Viewspec b, show one level more, may be used to increase the number of
levels which are visible. Each instance of a ‘b’ causes one more level
to be added. Print the entire file again, showing levels 1 and 2 by
using viewspec b in conjunction with viewspec x. HNote that you will
have to type the “x’ before the ‘b’ since the levels must first be set
to one and then increased. This is one of the few cases in which the
order in which the viewspecs are specified is of imporctance. (lNote
also that this is a lower case ‘b’ so renmerber to use the shift
character °!° before each “b” if you are working with an upper case
only terminal.) ¢ -

TASK 53

EDIT C: Print OK:/C: C: Branch at A: 0;
V: xb;
<NLS-SCHOLAR>BREAKFAST.LNLS;1 01-0CT-74 08:20 CLH
1 JUICE
1A ORANGE
1B GRAPEFRUIT
2 CEREAL
2A OATMEAL -
2B CREAM OF WHEAT
2C CORN FLAKES

.
?

3 EGGS
3A SCRAMBLED
3B FRIED
3C BOILED

4 BEVERAGE
a3

119

44 HOT CHOCOLATE
4B TEA
4C COFFEE

EDIT C: Done OK: _;

Very good. If you had typed ‘xbb’ then three levels of the file would
have been shown.

QUESTIONS?

THE Si” YIEWSPECS COMMAND

To change the standard viewspecs so they will remain in effect for more
than one command, you use the Set Viewspecs command. The viewspecs
which you supply following the V: prompt of this command will remain
in effect until you change them with another Set Viewspecs command.
I1°11 change the standard viewspecs now to show one level only, turn
statement numbers off, and turn blank lines on.

EDIT C: (Se)t C: (V)iewspeecs V: (xny)(<CR>);
EDIT C: (Do)ne O0K: (<KCR>);

Viewspec y turns blank lines on, while its companion viewspec z turns
blank lines off. These are both lower case characters. ’

Now to show the effect of my changing the standard viewspecs, hrint the

whole BREAKFAST file again, using <CR> after the V: prompt to indicate
that you want the standard viewspecs.

TASK 54

Vi N

\
EDIT C: Print OK:/C: C: Branch at A: 0;
<ﬁﬁS~SCHOLAR>BREAKFAST.LNLS;Z, 21-MAY-T74 21:37 AGBZ ;
JUICE

CEREAL

EGGS

BEVERAGE
EDLT C: Done OX:_j;

Good. Now print branch 4 without changing any viewspecs to see that
these viewspecs persist through more than one command.

TASK 55

EDIT C: Print OK:/C: C: Branch at A: 4;
V: m;
4 "BEVERAGE

© DIT C: Done OK:_;
ERIC A

With regard to the V: viewspecs,
I did not want you to change the V: viewspecs;
but you set the V: viewspecs to nm.

Please try again. I have
restored the file to its original state.

TASK 55

EDIT C: *What are the current viewspecs?¥

THE CURRENT VIEWSPECS ARE:
levels: 1 , lines: 1 , hjnyACFHJLP

continuation of TASK 55

EDIT C: *What does viewspec m do?¥*

VIEWSPEC m TURNS STATEMENT NUMBERS ON.

continuation of TASK 55

EDIT C: Print OK:/C: C: Branch at A: };
Vi_;

BEVERAGE

EDIT C: Done OK:_;

-- show all levels
-- turn statement numbers on
-- turn blank lines off

\
\
|
|
|
|
\
|
\
|
l
Now please change the standard viewspecs back the way they were:
so that we can proceed.

|

TASK 56
EDIT C: *How do I turn blank lines off2%

VIEWSPEC z TURNS BLANK LINES OFF.

continuation of TASK 56

EDIT C: Set C: Viewspecs V: 2
EDIT C: Done OK:_;

\.1 . PRI
ERIC 121

With regard to the standard viewspecs,
I wanted you to turn the blank lines off,
to turn the statement numbers on,
to show all levels,
and to show all lines;
but you only turned the blank lines off.
That is not sufficient.

Please try to repair your
mistake. The file.is as you left it.

continuation of TASK 56

EDIT C: *What viewspec turns statement numbers on?f

VIEWSPEC m TURNS STATEMENT NUMBERS ON.

continuation of TASK 56

EDIT C: Set C: Viewspecs V: mecr;
EDIT C: Done OK:_;

With regard to the standard viewspecs,
I wanted you to turn the blank lines off,
to turn the statement numbers on,
to show all levels,
and to show all lines;
but instead you turned ithe blank lines off,
turned the statement numbers on,
showed all levels,
and showed 2 lines.

Please try to finish this task.
You may continue where you left off.

continuation of TASK 56

EDIT C: *yhat viewspec shows all lines?¥

THE USER SHOWS ALL LINES USING VIEWSPEC w.

continuation of TASK 56

EDIT C: Set C: Viewspecs V: w;
EDIT C: Done OK:_;

L
b
v\il"

« 122

Though I was expecting something
slightly different, your answer is also correct.

QUESTIONS?

THE SHOW VIEWSPECS COMMAND

A common error in using NLS occurs when the student thinks some of his
statements are missing. He supposes they have not been inserted
properly or have somehow been deleted. Actually they may be
temporarily invisible because of the viewspec setting. To determine
the current setting of the viewspecs, use the Show Viewspecs comnmand.
Pleasé try that now to see what is printed.

TASK 57
EDIT C: Show C: Viewspecs

levels: ALL, lines: ALL, hjmzACFHJLP
EDIT C: Done OK:__ ;

The “levels: ALL, lines: ALL® means that viewspec w is in effect.
(If viewspec x had been in effect, the message “levels: 1. LINES: 1
would have appeared.) The remaining viewspecs are simply listed in
alphabetical order with the lower case ones preceding the upper case
ones.

4

Each viewspec that is printed has a companion viewspec which is not
printed because it is not in effect at this time. In addition, some
viewspec pairs are not printed at all. For example, neither viewspec
b, show one level more, nor its companion viewspec a, show one level
less, appears here because information about their setting is
represented in the value of LEVELS.

As you can see, there are a great many viewspecs. If you are
interested in what they control you may look them all up on the NLS Cue
Card. However, the ones that have been introduced here are likely to
be sufficient for most purposes.

QUESTIONS?

%2

Now that the viewspecs are set to the original standard viewspecs,
please print the entire BREAKFAST file again so we can refer to it in
what follows.

TASK 58

EDIT C: Print OK:/C: C: Branch at A: G;
Ve s
<NLS-SCHOLAR>BREAKFAST.LNLS;1 01-0CT-74 08:20 CLH ;

T JHICBRANGE

P ..~?
A O

123

a5

1B GRAPEFRUIT
2 CEREAL
2A OATMEAL
2A1 WITH RAISINS
2B CREAM OF WHEAT
2C CORN FLAKES
3 EGGS
3A SCRAMBLED
3B FRIED
3B1 SUNNY-SIDE-UP .
3B2 OVER-EAS :
3C BOILED - :
4 BEVERAGE
44 HOT CHOCOLATE .
4B TEA
4B1 WITH LEMON
4B2 WITH SUGAR AND CREAM
4C COFFEE .
EDIT C: Done OK:__; ’

P Y e e e e e e ek Y ppp———

Please tear off the paper here for future reference.

THE MOVE COMMAND

You‘ve seen at the end of Lesson Two how to edit a file by using the
Substitute command to charnge the content of an individual statement or
of all statements in a branch. Now I'd like to show you how to change
the structure of your file by changing the position of the statements
rather than their content.

The Move command causes a structure unit (statement, branch, plex, or i
group) to be moved from its present address Lo one which you specify. |
For example, if you wanted to make "BOILED" eggs the first kind listed

under "EGGS" in your menu, that could be done as follows:

EDIT C: (Mo)ve C: (S)tatement from A: (3C)(<KCR>);
to follow A: (3)(<KCR>);
L: (d)(<CR>);

EDIT C: (Do)ne OK: (<CR>);

Note that the method of specifying the new address is the same as that
used by the Insert command; you must give the address to be followed
and specify whether a change in level is needed.

Please print branch 3 now with the standard viewspecs so you can see
how it has been altered.

TASK 59 ' -
EDIT C: Print OK:/C: C: Branch at A: 3; .
Ve
3 EGGS
3A BOILED
3B SCRAMBLED
3C FRIED

§C1 SUNNY-SIDE-UP
C2 EASY-OVER

Done OK: _;

L
.

124

When a structure unit is moved it no longer appears at its old address,
only at the new one.

QUESTIONS?

* %

Suppose that you wanted to make "FRIED" the first kind of "EGGS"
instead of the last. Try that now and see what happens.

EDIT C: Move C: Statement from A: C;
to follow A: 3; . |
L: d; -

ILLEGAL MOVE

EDIT C: Dcne OK: _;

The message ‘ILLEGAL MOVE® was printed because it is not possible to
move a statement having any substatements. (This is similar to the
situaton with the Delete command which you encountered in Lesson One.
This message will also appear if you attempt to move statement zero.)
In any event, the entire branch describing fried eggs should be moved,
not just its first statement. Please do that now.

TASK 61

EDIT C: Move C: Branch from A: 3C;
to follow A: 3;
L: d;

EDIT C: "Done OK: __;

Good. Now please print branch 3 once riore to see its new appearance.

TASK 62
EDIT C: Print OK:/C: C: Branch at A: 3;
Ve _
3 EGGS
34 FRIED

3A1 SUNNY-SIDE-UP
3A2 EASY-OVER
3B BOILED
3C SCRAMBLED
EDIT C: Done OK: _;

QUESTIONS?

%* %

THE COPY COMMAND

The Copy command has the same effect as the Move command except that
the structure unit which is copied appears at both the old address and
the new.

125

Try the Copy command by copying the beverages to that they will appear
both as the first branch of the file and the 1last.

TASK 63

EDIT C: Copy C: Branch from A: 4;
to follow A: O0;
L: d;

EDIT C: Done OK: ;

To see what has occurred, print the file showing one level only.

»

TASK 64

EDIT C: Print OK:/C: C: Branch at A: 0;
Vi Xx; ;
<NLS-SCHOLAR>BREAKFAST.LNLS;1 01-0CT-74 08:20 CLH ;
1 BEVERAGE

2 JUICE

3 CEREAL

4 EGGS ’
5 BEVERAGE

EDIT C: Done OK: _ ;

Now please delete that first branch since we don’t really want the
branch "BEVERAGE" twice on the menu. -

TASK 65

EDIT C: Delete C: BRBranch at A: 1;
OK: _;
EDIT C: Done OK: ;

QUESTIONS?

* %

THE TRANSPOSE COMMAND

Two structure units can be interchanged by using the Transpose command
and specifying the two addresses involved. To see how this works,
transpose the two statements "ORANGE" and "GRAPEFRUIT".

TASK 66

EDIT C: Transpose C: Statement at A: 14;
and A: 1B;

OK:
EDIT C: Done OK: _;

Good. Now print branch 1 to observe the result.

TASK 67

1)
126

EDIT C: Print OK:/C: C: Branch at A: 1;

Ve _

1 JUICE
18 GRAPEFRUIT
1B ORANGE

EDIT C: Done OK: _;

To make a larger change, please transpose branches 2 and 4.

TASK 68
EDIT C: Transpose C: Branch at A: 2;
' and A: 4;
OK: _;

EDIT C: FDone OK:_ ;

Please check your result by printing the entire file.

..TASK 69 -
EDIT C: Print OK:/C: C: Brauch at A: 0;

Ve
{NLS-SCHOLAR>BREAKFAST.LNLS;1 01-0CT-74 08:20 CLH ;
1 JUICE
1A GRAPEFRUIT -
1B ORANGE

2 BEVERAGE
24 HOT CHOCOLATE
2B TEA
2B1 WITH LEMON
2B2 WITH SUGAR AND CREAM
2C COFFEE
3 EGGS
34 FRIED
3A1 SUNNY-SIDE-UP
342 EASY-OVER
3B BOILED -
3C SCRAMBLED
4 CEREAL
44 OATMEAL
4A1 WITH RAISINS
4B CREAM OF WHEAT
4C CORN FLAKES
EDIT C: Done OK: _;

You can see that the beverages are now in branch 2 while the cereals
" are in branch 4. The branch "JUICE" and the branch "EGGS" are still

- numbered as before.

There is no restriction that the statements or branches which are
» tranposed be at the same level, but for many applications this will be

the case.
QUESTIONS?
®%
asi

EBJ(; 127

OTHER STRUCTURE UNITS

So far the only structure units we’ve manipulated have been statements
and branches. There are two other kinds of structure units in NLS --
plexes and groups. Since both are defined in terms of biranches, let’s
be sure that the concept of branch is well understood.

A branch consists of all statements whose statement numbers begin with

the same fields as those specified. Thus branch 2B2 consists of all
statements whose statement numbers begin with 2B2. If there are no

other statements whose numbers begin that way, then branch 2B2 consists J
only of statement 2B2.

Another way of describing a branch is to say that it consists of a '
specified statement, and all its substatements, and all their

substatements, ete. You can see from this definition why branch 0

consists of all statements in a file.

In order to understand what a plex is, the term “source’ must be
defined. Source is the inverse of substatement. The source of a
statement is always one level higher than the statement itself. The
source stateient is obtained by removing the last field from the
specified statement number. Thus the source of statement 2B2 is
statement 2B; the source of statement 1A is statement 1. The source
of all first-level statements (1,2,3,4) is statement zero. Since there
is no statement which is one level higher than statement zero, it has
no source.

QUESTIONS?

%%

PLEXES

A plex is a set of branches, much as a branch is a set of statements.

A plex consists of the specified branch together with all other
branches which have the same source. Thus plex 3A consists of brancihes
3A, 3B, and 3C in our BREAKFAST file; that is, all the kinds of eggs.
Plex 3A, plex 2B, and plex 3C are all designations for exactly the same
thing.

I, the most recent BREAKFAST file, what statements are in plex 2A?
¥2A 2B 2Bi 2B2 2C*

THAT'S FINE.

A plex is a useful concept since it allows you to manipulate a set of
statements all below a certain level. Use the term plex to delete all
the particular kinds of cereals, while leaving the heading CEREAL
intact.

TASK 70

EDIT C: Delete C: Plex at A: UA;

OK: __; '

EDIT C: Done OK: _;

Please print the branch "CEREALY to view your results.

-
-3

128 G457

TASK 71

EDIT C: Print OK:/C: C: Branch at A: U;
Ve _;

4 TCEREAL

EDIT C: Done OK: _;

Note that deleting plex 1 (or 2 or 3 or i) would delete everything in
the file except statement zero.

QUESTIONS?

3 %

GROUPS

A group consists of a set of contiguous branches of a plex. To define
a group, two addresses must be given: the first branch and the 1last
branch. The group then consists of the first branch and the last
branch and all other branches, if any, that lie in between. Thus the
group 2 through 3 consists of all the statements in branches 2 and 3;
the group U4A through U4C consists of statements U4A, U4A7, 4B, and UC.

What statements are in group 3A thrcugh 3C?

¥3A 3A1 3A2 3B 3C*

YOU ARE CORRECT.

Note that the two addresses given to specify a group must have the same
source. If this is not the case, the message ILLECAL GROUP will be
printed.

Use the term group to delete all ergs except scrambled eggs from the
breakfast menu

TASK 72

EDIT C: Delete C: Group at A: 34;
through A: 3B;
OK: _

EDIT C: Done OK: _;

Good. Please print the branch "EGGS" to see your results.

TASK 73

EDIT C: Print C: Branch at A: 3;
Ve
3 EGGS
3A SCRAMBLED
EDIT C: Done OK: _ ;

QUESTIONS? T

3 P

129

Try using either ‘group’ or ‘plex’ to incorporate the juices into the
branch "BEVERAGE". That is, move the statement containing "GRAPEFRUITY
and the statement "ORANGE" so that they are the first choices of the
BEVERAGES. Then delete the statement "JUICE".

TASK T4

EDIT C: Move C: Group from A: 1A;
through A: 1B;
to follow A: 2;
L: d;
EDIT C: Delete C: Statement at A: 1;
OK: __;
EDIT C: Done OK: _;

Test your result by printing the branch "BEVERAGE" of the file.

TASK 75

EDIT C: Jump to A:
EDIT C: Print OK:C:
Vi s
1 BEVERAGE
1A GRAPEFRUIT

Qo
C: Branch at A: "BEVERAGE"

1B ORANGE
1C HOT CHOCOLATE
1D TEA

1D1 WITH LEMON
1D2 WITH SUGAR AND CREAM
1E COFFEE
EDIT C: Done OK: ;

QUESTIONS?

*%

REVIEW OF LESSON THREE
Lesson Three has introduced the following commands:

Print -command for structure units
Set Viewspecs command

Show Viewspecs conmmand

Move command

Copy command

Transpose command

QUESTIONS?

* %

It has introduced the following viewspecs:

a show one level less
b show one level nore

130

m turn statement numbers on
n turn statement numbers off

w show all lines, all levels
X show one 1line, one level

y turn blank lines on
z turn blank lines off

Q A turn indenting on
B turn indenting off
v QUESTIONS?
#*#

It has introduced the following conceptis:

viewspecs
ctandard viewspecs
V: prompt

shift character
illegal nove

source
substatement
group

plex

QUESTIONS?

#* %

This introduction to the EDIT subsysten of NLS is now complete. Please
feel free now to use the system as much as you like and to ask any
questions which may arise. Type ‘Done <CR> " when you’re finished, as
usual.

TASK 76
EDIT C: Done OK: ;

I°ve enjoyed.talking to you. Goodbye.

LA g
‘g,.(‘f.)

131

