
DOCUMENT MUNE

ED 104 397 IR 001 801

AUTHOR Grignetti, Mario C.; And Others
TITLE Mixed-Initiative Tutorial System to Aid Users of the

On-Line System (NLS).
INSTITUTION Bolt, Beranek and Newman, Inc., Cambridge, Mass.
SPONS AGENCY Air Force Systems Command, L.G. Hanscom Field, Mass.

Electronic Systems Div.
REPORT NO ESD-TR-75-58
PUB DATE 30 Nov 74
NOTE 135p.; For a related document, see IR 001 803

EDRS PRICE MF-$0.76 HC-$6.97 PLUS POSTAGE
DESCRIPTORS *Artificial Intelligence; *Computer Assisted

Instruction; Computer Programs; Computers; Computer
Science Education; *Demonstrations (Educational);
Individualized Instruction; Han Machine Systems; *On
Line Systems; Time Sharing; *Tutorial Programs

IDENTIFIERS Coiputer Software; Natural Language Processing; NLS
SCHOLAR; *Text Editors

ABSTRACT
NLS - SCHOLAR is a prototype system that uses

artificial intelligence techniques to teach computer-naive people how
to use a powerful and complex text editor. It represents a new type
of computer-assisted instruction (CAI) system that integrates
systematic teaching with actual practice; i.e., one which can keep
the user under tutorial supervision while allowing him to try out
what he learns on the system he is learning about. NLS - SCHOLAR can
also be used as an on-line help system outside the tutorial
environment, in the course of a user's actual work. This capability
of combining on-line assistance with training is an extension of the
traditional notion of CAI. The techniques used are general and can be
applied to the teaching of a wide variety of computer related
activities. (Author)

ESD-TR-75-5 8

MIXED-INITIATIVE TUTORIAL SYSTEM TO AID
USERS OF THE ON-LINE SYSTEM (NLS)

Mario C. Grignetti
Laura Gould
Catherine L. Hausmann
Alan G. Bell
Gregory Harris
Joseph Passafiume
Bolt, Beranek and Newman, Inc.
50 Moulton Street
Cambridge, MA

30 November 1974

Prepared for

U.S DEPARTMENT OF HEALTH.
EDUCATION A WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
OUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEN OR OPINIONS
STATEO DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EOUCATION POSITION OR POLICY

Approved for public release;
distribution unlimited.

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION
L. G. HANSCOM AIR FORCE BASE, BEDFORD, MA 01731

,e,

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and

the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

"This technical report has been reviewed and is approved for
publication."

5 Mae-
SYLVIA R. MAYER/GS-14
Project Scientist

FOR THE COMMANDER

SYLVIA R. MAYER/GS-14
Task Scientist

/

f
R.BERT W. O'KE Colonel, USAF
tDirector, Info -tion Systems
Technology App ations Office
Deputy for Command & Management Systems

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)-- ---_

REPORT DOCUMENTATION PAGE
READ INSTRUCTIONS

BEFORE COMPLETING FORM

T.71EPORT NUMBER

ESD-TR-75-58

2. GOVT ACCESSION NO. 3. RELIFIEtiT'S CATALOG NUMBER

4. TITLE (and Subtitle)

MIXED-INITIATIVE TUTORIAL SYSTEM TO AID
USERS OF THE ON-LINE SYSTEM (NLS)

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e)

Mario C. Grignetti Alan G. Bell
Laura Gould Gregory Harris
Catherine 1.... Hausmann Joseph Passafiume

8. CONTRACT OR GRANT NUMBER(e)

F19628 -74 -C -0088

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Bolt, Beranek, and Newman, Inc.
50 Moulton Street

.

Cambridge, MA

10. PROGRAM ELEMENT. PROJECT,_TASK
AREA 6 WORK UNIT N,a4138g

Program Element - 627
Project No. 2801
Task 04.03

11. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Mangement Systems
Hanscom AFB, M.' 01731

12. REPORT DATE

30 November 1974
13. NUMBER OF PAGES

131
14. MONITORING AGENCY NAME 6 ADDRESS(If different from Control/leg Office)

N/A

IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

15e. DECLASSIFICATION/DOWNGRADING
SCHEDULE

N/A
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

t7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Artificial Intelligence, Computer Assisted Instruction, Natural
Language Processing, Semantic Grammar, Semantic Network,
Tutorial Supervision, On-Line Assistance, Question Answering

20. ABSTRACT (Continue on reverse aide if necessary and identify by block number)

NLS-SCHOLAR is a prototype system that uses Artificial Intelli-
gence techniques to teach computer-naive people how to use a
powerful and complex editor. It represents a new kind of Computer
Assisted Instruction (CAI) system that integrates systematic
teaching with actual practice, i.e., one which can keep the user

under tutorial supervision while allowing him to try out what he
learns on the system he is learning about. (over)

nr, FORM
101/ 1 JAN 73 1.4/

EDITION OF 1 NOV 65 IS OBSOLETE

4
Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. NLS- SCIIOLAR can also be used as an on-line help system outside
the tutorial environment, in the course of a user's actual
work. This capability of combining on-line assistance with
training is an .extension of the traditional notion of CAI.

The techniques ased in NL:)-SCLOLAR are general and can be
applied to the teaching of a wide variety of computer related
activities.

5

Unclassified
SECURITY CLASSIFICATION OF THIS RAGE(When Data Entered)

TABLE OF CONTENTS

Page

PREFACE 3

SECTION I - INTRODUCTION 5

What is NLS-SCHOLAR
Why an NLS-SCHOLAR system
Demonstrating NLS-SCHOLAR capabilities
Annotated protocol
How does it work

SECTION II - NLS-SCHOLAR AS A TUTOR 26

Introduction
Teathing NLS fundamentals: The Primer
Endowing NLS-SCHOLAR with "awareness"
The LISP-NLS system

SECTION III - STUDENT/QA AND TUTOR/QA SYSTEMS 39

Questions and Answers: an Overview
Student/QA

The Parser
Parsing in Detail
Retrieval
Output

Tutor/QA
Tutor/QA System's Organization
The Form-Completer
The Answer Comparer

Future Considerations

SECTION IV - TASK EVALUATION 60

SECTION V - SYSTEM ORGANIZATION. 64

Overall Organization
Error Analysis
How the System Works
Student Aids
Debugging Aids

SECTION VI - CONCLUSIONS 73

References. 75

Appendix - Complete Scenario (Primer) 77

2

PREFACE

The United States Air Force is relying more and more on

computer based systems for many of its management,

logistics, resource allocation, planning, and command and

control functions. Many of these computer based systeis are

extremely powerful, but part of their large potential

usefulness remains untapped because of their complexity.

A case in point is the oN Line System (NLS), a powerful

tool for planning and communication developed by the

Augmentation Research Center of the Stanford Research

Institute. NLS is a computer based system for writing,

editing, publishing, and disseminating information of all

kinds. Many Governmental agencies including several Air

Force facilities, access it through the ARPA computer

network. NLS is currently being evaluated by the Air Force

as a paradigm for the use of a computer based Management

Information System. In particular, one group at the Rome

Air Development Center is using NLS experimentally as part

of that evaluation.

Although NLS is a complex system providing many options

to its users, those who have become proficient with it find

it very easy and powerful to use. However, gaining that

proficiency is usually very difficult and time consuming,

and there is a real need for computer aids to help people

with the learning process.

3

7

Recognizing the generality of this problem, the Air

Force has established as one of its Technical Needs the

development of computer based training and decision aids to

help people learn how to use these systems. In the ,

following report we describe the work done at Bolt Beranek

and Newman on a system, called NLS-SCHOLAR, designed to meet

that Technical Need: ESD-TN-Human Performance Aiding in

Command, Control and Management Data Systems.

4

8

SECTION 1 - INTRODUCTION

What is NLS-SCHOLAR

NLS-SCHOLAR is a quasi-operational CAI system that uses

Artificial Intelligence techniques to help people learn how

to use the powerful structural editor of NLS. NLS, the oN

Line System [1] developed by Douglas Engelbart and his

co-workers at the Augmentation Research Center of the

Stanford Research Institute, is a sophisticated modular

system which is being increasingly used as an aid in

writing, re-organizing, indexing, publishing, and

disseminating information of all kinds. It is a very large

system made up of many subsystems,. and NLS-SCHOLAR deals

with EDIT, its most important and most frequently used

subsystem.

SCHOLAR, conceived and first developed by the late

Jaime R. Carbonell, is an interactive mixed-initiative CAI

system that deals with the geography of South America. It

is capable of answering freely interspersed questions posed

by a student in the course of a tutorial session, and it

uses teaching strategies similar to those of good human

tutors [2,3,4] .

In trying to apply SCHOLAR to other domains of

knowledge, such as computer networks [5] and structural

editors, we have uncovered new problems that require

5

9

radically different approaches. Therefore, NLS-SCHOLAR,

. although preserving the flavor and interaction

characteristics of SCHOLAR, is an almost entirely new

system, its underlying philosophy and approach owing much to

Brown's SOPHIE system [6,7].

Why an NLS=SCHOLAR system

NLS is a powerful system for preparing and distributing

documents that offers many rewards to people who have

learned how to use it well. However, its complexity and the

multiplicity of its options make learning NLS difficult,

time consuming, and at times discouraging for people who are

not habitual computer users. With the increased

availability to NLS now afforded by the ARPA network and,

above all, with NLS playing a fundamental role in the NSW

project [8] there is a real need for on line aids to help

non-programmers both to learn and to use NLS.

NLS-SCHOLAR is designed so that it may perform either

as an on-line helper and question answerer, or as a tutor.

When used as a tutor, NLS-SCHOLAR behaves in a very friendly

way: in the course of a lesson, students can ask questions,

proceed at their own pace, make mistakes safely, ask for

help, and give up and be rescued by the system.

In tutorial mode learning is made easy and comfortable

by relying heavily on ostensive teaching. New information

6

is presented to the student by means of an expository part,

presenting examples and showing students (ow to do things.

The tutor lets students edit text by themselves and helps

them correct their mistakes; it answers questions or

perfarms commands posed by students in a comfortable subset

of English; it asks questions and evaluates students'

answers; and it presents tasks for students to perform which

are then evaluated and commented upon.

As with most CAI systems, learning takes place in

complete privacy; students are left alone in a tete-a-tete

with the system with nobody witnessing their mistakes,

ignorance, or lack of sophistication in the use of computer

systems. This relaxed (and relaxing) situation helps the

learning process enormously. But unlike most CAI systems,

NLS-SCHOLAR is designed so that it can also be used as an

on-line help system, so that users can ask questions arising

in their actual work with NLS, and expect NLS-SCHOLAR to be

aware of what they are doing and answer accordingly. This

is especially useful for sporadic users, or for people who

have not used NLS for a long time and have forgotten some of

its conventions.

NLS-SCHOLAR is designed to be a stand-alone tutorial

and help system. A student's prior knowledge requirements

are simply to know how to log in, and follow the basic

instructions contained in a 2-page handout. The information

7

contained in these instructions is itself a part of the

system's domain of knowledge. For example, the student is

told how to erase a character that he has typed, but if he

forgets how to do it he can ask NLS-SCHOLAR.

Demonstrating NLS-SCHOLAR's capabilities

The flavor of NLS-SCHOLAR is best conveyed with the

help of a demonstration protocol which was actually obtained

on-line using the latest version of the system. First, a

few helpful comments.

The demonstration of interactive capabilities we want

to perform cannot be done "in vacuo"; questions asked by

students or by the system, as well as tasks proposed and

evaluated arise more naturally and make more sense in the

course of a lesson. When used as a tutor, the system is

driven by a fixed Agenda which presents to the student

carefully sequenced morsels of NLS knowledge and know-how.

Since this is a demonstration protocol, our "student"* is

very obliging and does the appropriate things at the right

times to make explicit specific characteristics of the

system.

NLS-SCHOLAR uses two bodies of text as its working

examples, one a breakfast menu and the other a dinner menu.

In the course of a lesson, students learn how to change the

*Actually one of the authors.

contents (and appearance) of these menus by performing

editing operations. Menus were chosen as examples because

of their direct appeal and general intelligibility, their

natural hierarchical structure, and the shortness of their

entries which makes them very easy to work with.

In the interest of brevity*, the protocol starts at a

point well along in the student's learning of NLS -- he has

been told about NLS files, how to load them, print them,

delete and insert statements in them, etc. He is about to

be taught how to use the Substitute command to effect a

change in the breakfast menu (see Figure 1).

Readers familiar with NLS may fail to recognize it as

the system depicted in the protocol. This is because

NLS-SCHOLAR teaches the use of a newly emerging version of

NLS, which is not yet generally available.

*For a complete demonstration protocol, see the Appendix.

9
I ..1

.14.n.11

FIGURE 1 - THE BREAKFAST FILE

I JUICE
LA ORANGE
IB GRAPEFRUIT

2 CEREAL
2A OATMEAL

2A1 WITH RAISINS
2B CREAM OF WHEAT
2C CORN FLAKES

3 EGGS '

3A SCRAMBLED
3B FRIED

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY

3C BOILED
4 BEVERAGE

4A HOT CHOCOLATE
4B TEA

4B1 WITH LEMON
4B2 WITH SUGAR AND CREAM

4C COFFEE

14 10

FIGURE 2 - THE PROTOCOL

SUBSTITUTE WORD IN STATEMENT

Before we end this lesson, I'd like to show you how to change the
content of statements which have already been inserted in your file.

You've learned how to correct errors by deleting an entire statement
and inserting a new one in its place. The Substitute command may be
used to change just a word or even a single character at a time. For
example, here's how you can change a word in statement 2A1 so that it
reads WITH DATES instead of WITH RAISINS.

EDIT C: (Su)bstitute C: (W)ord in C: (S)tatement at A: (2A1
)(<CR>);
<New WORD> T: (DATES)(<CR>);
<Old"WORD> T: (RAISINS)(<CR >);

Finished? Y/N: (Y) OK: (<CR>);
Substitutions made: 1

EDIT C: (Do)ne OK: (<CR>);

NLS-SCHOLAR performs a command for the student much as a

human tutor would by leaning over the student and typing
the command on the student's terminal. Parentheses enclose

what the "tutor" actually "types" separating it from the

echoes and responses printed by NLS.
<CR> is just a symbol to denote that the "tutor" depressed the

RETURN key. The semicolon is NLS's echo to a <CR>.

You can see that I've specified that I want to substitute one word in
statement 2A1 for another; the new word DATES is to be
substituted for the old word RAISINS.
(There is no restriction that the items substituted for
one another be of the same length.)

To do this I typed only 'Su W S 2A1 <CR>' to produce the first line; I

typed 'DATES <CR>' and 'RAISINS <CR>' to produce the second and third.
The remaining characters are all printed by NLS.

NLS asks 'Finished?' since more than one substitution can be made at a

time. If I had typed 'N' for no instead of "Y' for yes, it would have
prompted for another <New WORD> and <Old WORD> pair.

After I typed 'Y' NLS asks for further confirmation with OK:
to which I responded with a <CR>.

When the command has been executed, NLS tells how many substitutions
have been made. If there had been two instances of RAISINS in
statement 2A1, both would have been changed to read DATES.

Statement 2A1 is now the current statement. Please print it.

11 15

TASK 41

EDIT C:1.
==>WITH DAT

EDIT C: T
2A OATMEAL

EDIT C: _ %

2A1 WITH DATES
EDIT C: Done OK: _;

Student typing is underlined.

The student confuses the \ command, which
prints the current statement, with the / command
that shows the current position of the control
marker. Realizing his mistake, he fumbles with
the other one-character commands he can
remember. First he tries 4. which prints the
previous statement (2A), and makes
it become the current statement.

Next the student depresses the LINE FEED
key which echoes as %, giving him the next
statement (2A1), making it current.

You printed too many statements.
This is what I wanted you to print:
2A1 WITH DATES

Please redo just the printing
part of this'task. Your file is unchanged.

The task is evaluated.

NLS-SCHOLAR is really determined to getthe student to review
how to print the current statement.

continuation of TASK 41

EDIT C: *What command prints the current statement?*

THE USER PRINTS THE CURRENT STATEMENT USING THE
\ COMMAND.

Failing to remember the appropriate one-character command,
the student gives up and asks for help.
Questions can be asked anytime it is the student's turn to type.
NLS-SCHOLAR answers this question by retrieving information from
its own internal, descriptive data base.

continuation of TASK 41

EDIT C: _),_

2A1 WITH DATES
EDIT C: Done OK:_;

QUESTIONS?

* * The student chooses to ask no questions at this time.

3.2

Try the Substitute command yourself by substituting the word
OAT for CORN in the statement containing "CORN FLAKES".

TASK 42

EDIT C: *What statement contains "CORN"?*

THE STATEMENT CONTAINING "CORN" IS:
2C CORN FLAKES

The student wants to know what the correct statement number is

for him to type. The system obtains the answer by actually
looking into the student's work space -- the answer is not stored
(it cannot be!) in the internal data base.
The system interprets correctly most of the common
paraphrases of this type of question, e.g.
"What is the statement containing..."
"What statement contains..."
"Where is...", etc.

continuation of TASK 42

EDIT C: ,substitute C: Word in C: Statement at A: ac;
<New WORD> T: CORN;
<Old WORD> T: OAT;

Finished? Y/N: Y OK:__;

Substitutions made: 0
EDIT C: Done OK:_;

The student switches around the

so no change is made.

You should have altered the file
so that this part of it

2B CREAM OF WHEAT
2C CORN FLAKES

3 . . .

would look like this:
2B CREAM OF WHEAT
2C OAT FLAKES

3 . . .

-But you did not alter the file.

Please try to repair your
mistake. The file is as you left it.

13

new and the old words,

NLS-SCHOLAR shows the student
what the result of this command
should have been if he had
performed the task correctly
as opposed to the result which
he obtained. With this
information, the student
can "debug" his performance
of tne task.

1.7

continuation of TASK 42

EDIT C: Substitute C: Word in
<New WORD> T: OAT;
<Old WORD> T: CORN;

Finished? Y/N: Y OK:_;
Substitutions made: 1

EDIT C: Done OK:_;

TASK 43

EDIT C: Print OK:/C:._;
2C OAT FLAKES

3 EGGS
3A SCRAMBLED
3B FRIED

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY

3C BOILED
4 BEVERAGE

4A HOT CHOCOLATE
4B TEA

4B1 WITH LEMON
4B2 WITH SUGAR AND CREAM

4C COFFEE
EDIT C: Done

C: Statement at A: 2C;

NLS allows the student to type as
little or as much of each
command as he likes, providing
it is unambiguously denoted.
Here he chooses to type all of it
since the command is so short.

You printed too many statements.
This is what I wanted you to print:
2C OAT FLAKES

Please try to print what I
wanted. The file is as you left it.

continuation of TASK 43

EDIT C: \
2C OAT FLAKES

EDIT C: Done OK:_;

Good. The noun 'WORD' refers to the fact that whole words are
involved, not just parts of words; but it does not imply that a single
word only may be provided as either the <New WORD> or the the <Old
WORD>. Use the Substitute command to change statement 2A1 again, this
time to read WITH BROWN SUGAR AND CREAM instead of WITH DATES and
print your result.

14 18

1

TASK 44

EDIT C: Substitute C: Word in C: Statement at A: ?Al;
<New WORD> T: WITH BROWN SUGAR AND CREAM;
<Old WORD> T: DATES;

Finished? Y/N: Y OK:_;
Substitutions made: 1

EDIT C: Done OK:_;

I wanted you to change
this part of your file:

2A OATMEAL
2A1 WITH DATES

2B . . .

into this:
2A OATMEAL

2A1 WITH BROWN SUGAR AND CREAM
2B . . .

But you changed this part of it:
2A OATMEAL

2A1 WITH DATES
2B . . .

into this:
2A OATMEAL

2A1 WITH WITH BROWN SUGAR AND CREAM
213 . . .

I have restored the file as it was
at the beginning of this task. Please start over.

TASK 44

EDIT C: *How does one do this?* The student is lost
and asks for help.

THE USER TYPES 'SUBSTITUTE ', FOLLOWED BY 'WORD ',
'STATEMENT ', '2A1', <CR>, 'BROWN SUGAR AND CREAM',
<CR>,
'DATES', <CR>, "Y', <CR>, '\', A <SPACE>, 'DONE ',
AND <CR>.

15

1.9

NLS-SCHOLAR can show him what to do, as well as...

continuation of TASK 44

EDIT C: *Please do it for me*

...actually do it for him!

EDIT C: (Substitute) C: (Word) in C: (Statement) at A: (2A1
)(<CR>);
<New WORD> T: (BROWN SUGAR AND CREAM)(<CR >);
<Old WORD> T: (DATES)(<CR >);
Finished? Y/N: (Y) OK: (<CR>);
Substitutions made: 1

EDIT C: (\)

2A1 WITH BROWN SUGAR AND CREAM
EDIT C: (Done) OK: (<CR>);

QUESTIONS?

* *

Please print the file starting with statement 1 so you can see the
effect of the changes we have made.

TASK 46

EDIT C: *Tell me how to print the file.*

THE USER PRINTS AN NLS FILE FROM THE CURRENT STATEMENT
TO THE END OF AN NLS FILE USING THE PRINT COMMAND,
PROCEDURE: HE TYPES 'PRINT FOLLOWED BY <CR>.

An alternative to asking how to do a specific task
(in this case TASK 46) is for the student to find his own
way by asking more general kinds of questions.

continuation of TASK 46

EDIT C: *what does current statement mean?*

THE CURRENT STATEMENT IS TdE STATEMENT AT
WHICH THE CM IS CURRENTLY POINTING.

16

continuation of TASK 46

EDIT C: *Where does the CMpoint to now?*

THE CURRENT POSITION OF THE CM IS:
= 3B + 1

continuation of TASK 46

EDIT C: *How do I move the control marker?*

THE USER MOVES THE CM USING A CM MOVING COMMAND.

continuation of TASK 46

EDIT C: *What are the CM moving commands?*

EXAMPLES OF A CM MOVING COMMAND ARE THE JUMP COMMAND,
THE < COMMAND, AND THE > COMMAND.

continuation of TASK 46

EDIT C: *How de jump to statement 1?*

THE USER MOVES THE CM USING THE JUMP COMMAND,
PROCEDURE: HE TYPES 'JUMP ', FOLLOWED BY '1', AND

<CR>.

The student has asked many questions to re-familiarize
himself with the information necessary to perform
TASK 46. He now feels able to proceed to do it.

17

'1

continuation of TASK 46

EDIT C: Vamp to A: 1;

EDIT C: Print OK:/C:_;
1 JUICE

1A ORANGE
1B GRAPEFRUIT

2 CEREAL
2A OATMEAL

2A1 WITH BROWN SUGAR AND CREAM
2B CREAM OF WHEAT
2C OAT FLAKES

3 EGGS
3A SCRAMBLED
3B FRIED

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY

3C BOILED
4 BEVERAGE

4A HOT CHOCOLATE
4B Tn

4B1 WITH LEMON
4B2 WITH SUGAR AND CREAM

4C COFFEE
EDIT C: one OK:__;

QUESTIONS?

How do I print just branch 3?

THE USER PRINTS BRANCH 3 USING THE PRINT COMMAND,
PROCEDURE: HE TYPES 'PRINT ', FOLLOWED BY
'BRANCH ', '3', <CR>, VIEWSPECS, AND <CR>.

* *

Answer obtained by simple deductive inferencing.

REVIEW OF LESSON TWO

Lesson Two has introduced the following commands:

Insert command
Create command
Substitute command for words in statements

for characters in statements
for characters in branches

18 22

QUESTIONS?

NLS The student can summon NLS in order to practice
(or just to play) without fear of messing up his
work.

...USING A DISPOSABLE COPY OF YOUR CURRENT FILE

EDIT C: Print OK:/C: Statement at A: a;
V:._;

2B CREAM OF WHEAT
EDIT C: Substitute C: Character in C: Statement at A: 2B

;

<New CHARACTER> T: U;
<Old CHARACTER> T: EA;

Finished? Y/N: Y OK:_;
Substitutions made: 2 The student replaced the characters

EA for U.

EDIT C: \
2B CRUM OF WHUT
EDIT C: Print OK:/C: Branch at A: "EGGS";
V:__;
3 EGGS

3A SCRAMBLED
3B FRIED

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY

3C BOILED
EDIT C: Substitute C: Character in C: branch at A:

<New CHARACTER> T: *;
<Old CHARACTER> T: .:11;

Finished? Y/N: Y OK:_;
Substitutions made: 3
EDIT C: Print OK:/C: C: Branch at A: 12;

3B FRIED
3B1 SUNNY*SIDE*UP
3B2 OVER*EASY

EDIT C: Done OK: ;

...THROWING AWAY THIS COPY

3.;

The student leaves NLS returning to the
'QUESTIONS?' level. The "Transparent overlay" on
whicn he has scribbled disappears without trace.

19

0:3

Print branch 3B, please Commands can be issued in
natural language.

...USING A DISPOSABLE COPY OF YOUR CURRENT FILE

EDIT C: (Print) OK:/C: (Branch) A: (3B) (<CR>);
V: (<CR>);

3B FRIED
3B1 SUNNY-SIDE-UP The Tutor demonstrates how to do it.
3B2 OVER-EASY Notice that the file is in its original

EDIT C: (Done) OK: (<CR>); state.

...THROWING AWAY THIS COPY

**

It has also introduced the following concepts:

echoing
field
level
level zero
L: prompt
level adjustment

up (u)
down (d)
same (<CR>)

repeat mode
<CTRL-B>
question mark facility

QUESTIONS?

What can I type after L:?

THE USER TYPES <CR>, "u", "d", OR A COMBINATION
OF "u" AND "d" AFTER THE L: PROMPT.

What statements are at level 2?

THE STATEMENTS AT LEVEL 2 ARE:
1A 1B 2A 2B 2C 3A 3B 3C 4A 4B 4C

What would be the level of statement 14ac3?

THE LEVEL OF STATEMENT 14AC3 IS:
3

20 24

How does it work

Much of NLS-HCHOLAR's knowledge is derived from stored

data and from a set of built in routines that manipulate and

retrieve those data in response to queries. The data base

is a semantic network of descriptive information that is

represented in attribute-value format. It contains

descriptions of actions and their purposes, descriptions of

the procedures necessary to accomplish these actions, and

descriptions of their effects and consequences. For

example, the semantic network contains a representation of

the description of the purpose of, and the procedure for

issuing, the delete command. An English rendition of the

this attribute-value representation would be: "The purpose

of the delete command is to delete a structure unit", and

"The procedure (for deleting a structure unit) is for the

user to type the word DELETE, followed by the name of a

structure unit, its address, and two carriage returns." The

semantic network also contains many other kinds of

attributes, among them the definition of 'concepts, and the

interrelationships between concepts such as "A statement is

an instance of (or a name of) a structure unit."

The retrieval routines, initiated by a query, search

the semantic network for information relevant to the query.

For example, if a student wants to know what the delete

command does, his question would translate into a query that

21
orr''
0...er)

would essentially mean: "Find the purpose of the delete

command". The retrieval routines would attempt several

different matching procedures that would finally yield: "The

purpose of the delete command is to delete a structure

unit."

The retrieval process is assisted by built-in

"reasoning" strategies that are called upon when the

matching procedures fail. In fact, in many cases the

desired information is not stored specifically as demanded

by the query, but may be inferred from available

information. For example, if the query were for the

procedure for deleting a statement, our matching procedures

would fail. However, the system would still be able to

derive an answer via simple deductive inference; it knows

that a statement is a kind of structure unit, and it knows

how to delete a structure unit, therefore the procedure is

to "type DELETE, followed by STATEMENT, etc."

It is important to observe the introspective character

of this form of cognition. We have a) a data base that is

static, internal, and is made out of symbols, and b) a set

of built-in inference strategies and retrieval routines that

operate on those static, internal, symbolic representations.

Inferencing and retrieval mechanisms such as the ones

just described are the seat of the abstract "thinking"

abilities of NLS-SCHOLAR. As such, they are not yet very

22

powerful, and much can be (and will be) done to improve

them.* However, it is important to stress here that there is

more to "intelligence" than powerful manipulation of

symbols.

People's intelligent behavior is not based solely on

internal representations and conceptualizations and their

attendant reasoning processes. A person's data base is not

only memory, and his "retrieval routines" are not solely

introspective: he uses the world as a data base and his

senses to retrieve information from it. I don't need to

have in my head a representation of what is behind my chair;

if I need to know, I can just turn around, look, and see!

Due to the fact that NLS-SCHOLAR deals with a "world"

(NLS's world) with which it shares much of its own being,

(i.e. it is a program that deals with the use of another

computer program) it was relatively easy to endow it with

some of this latter kind of "intelligence". For example, to

make NLS-SCHOLAR "aware" of the state of the student's work,

all we had to do was design the system so that it could use

NLS as a sort of sensor. Thus when the student, lost in

tho,ught, asks a question about his work space (such as 'What

was the address of that statement that contained "DESSERT"?'

or simply "Where is "DESSERT"?') NLS-SCHOLAR manufactuies an

*Much work has been done on this problem in the SCHOLAR
system that deals with the geography of South America [9].

23

27

apposite command, has it executed (invisibly) by LISP-NLS

(see below), and uses the result to construct an answer.

Moreover, NLS-SCHOLAR is designed to use LISP-NLS as its

seat of pragmatic inferential knowledge. For example,

sometimes it is easier t'_ lbtain an answer by actually

"doing" and then "looking and seeing", rather than by

deducing the answer via logical inferences. This method is

very powerful -- sometimes it is not just easier to do than

to deduce: it is the only way we know of deriving an answer.

A new breed of "intelligent" CAI systems based on this

approach has been pioneered by Brown and his SOPHIE

system [6,7] .

NLS in INTERLISP [10], and to wait until NLS-SCHOLAR reaches

have taken elaborate precautions to ensure that this switch

can be done with a minimum of re-programming. All exchanges

NLS-SCHOLAR can both describe and do things.

number of reasons, we preferred to write our own version of

delete a statement) and then use this procedure to

that NLS-SCHOLAR actually uses the real NLS system. For a

a stable state before interfacing it with the real NLS. We

synthesize an NLS command and have it executed. Thus

knowledge. That is, it can use its semantic network and

reasoning routines to infer a procedure (such as how to

NLS-SCHOLAR can also combine the two forms of

In the above discussion we carefully avoided asserting

24

between NLS-SCHOLAR and our LISP-NLS take place at the

surface language level (the system does manufacture

NLS-executable command strings that are then executed by

LISP-NLS) and we have consistently resisted the temptation

to short-cut this path.

25 29

SECTION II - NLS-SCHOLAR AS A TUTOR

Introduction

Having evolved from SCHOLAR [2,3], NLS-SCHOLAR is an

interactive, mixed-initiative system that is capable of

answering freely interspersed questions posed by a student

in the course of a tutorial session. However, the

differences in subject matter (text editing, computer based

systems vs. geography of South America) and in aim

(learning how to use a system vs. learning descriptions and

names) are of such magnitude that NLS-SCHOLAR and regular

SCHOLAR differ substantially in a number of important ways.

Consider first the differences in subject matter. Most

people know the fundamental concepts and relations of

geography, so that teaching the geography of South America

doesn't have to start by introducing the concepts of

country, capital, government, etc., and the relations

between them, e.g. that countries have capitals, that

governments reside in capitals. Rather, the instantiation

of these relationships can be taught right away, e.g. that

Colombia is a country in South America, and that its capital

is Bogota. People's common knowledge of geography also

enables them to ask meaningful and instructive questions

from the start. Few people, however, know the fundamental

concepts, relations, and operations that characterize the

26
30

.

use of a computer based text editing system, and they cannot

learn very much about it by asking questions because they do

not know what to ask for or how to ask for what they want to

learn. Consequently, teaching must begin at a more basic

level.

Instructive interactions must be based on an underlying

conceptual structure that is common to the tutor and the

student. If this underlying structure is rich (as in the

case of geography), teaching is simple, and learning can

benefit considerably from the student's being able to ask

meaningful questions from the start. If the structure is

shallow (as in the case of text editing systems) it must be

built up before teaching can qo very far. Therefore, one of

the main goals of our work in NLS-SCHOLAR was to design and

implement a tutorial mode especially adapted to this

purpose.

Consider now the differences in aim. Most people can

learn the geography of a region without much manipulation of

the new facts that they learn. These facts sort of fit in

fixed slots that are there beforehand and that represent

well understood concepts. Few people, however, can really

learn to edit text without practicing, that is without being

able to perform editing operations and without being able to

ask questions about the state of their Work. Therefore, the

other main goal of our work was to develop the means to

3i 27

couple closely the "NLS world" with NLS-SCHOLAR, so that the

student could be put in contact with NLS, while NLS-SCHOLAR,

overseeing all this, could bring about SCHOLAR-like

abilities to help the student when needed.

In what follows we describe how NLS-SCHOLAR teaches the

fundamental concepts underlying text editing with NLS, and

how it interfaces with NLS so that students can practice

what they learn while remaining under tutorial supervision.

Teaching NLS fundamentals: The Primer

As discussed above, teaching people how to use a text

editing system is entirely different from teaching them

about the geography of a region. Therefore, for a SCHOLAR

system to teach NLS effectively, a new set of tutorial

strategies had to be developed in order to cope with the

more basic concepts that must be introduced to the student.

Following a now well established path for developing

these strategies [11], we set out first to find out how

human tutors teach NLS and what are the most important and

effective methods that good teachers use. We first studied

the course offered at BBN by members of the Augmentation

Research Center, and one of us (Laura Gould), having had

considerable experience in teaching the use of computers to

Humanities students, undertook to teach NLS to a small

number of students (methbers of BBN's secretarial staff). An

32 28

analysis of the protocols of the teaching sessions pointed

to several problem areas.

The difficulties of teaching NLS concepts solely by

symbolic and formal descriptions can be appreciated in the

following example concerning the way NLS files are organized

and function.

Consider this portion of the DINNER file:

2 ENTREE
2A FRIED CHICKEN
2B PRIME RIBS
2C SALMON

2C1 WITH CREAM SAUCE
2D SCALLOPS

2D1 BROILED
2D2 FRIED

The structure of NLS files is such that statement numbers

represent slots or shelves that are provided by the system.

If we remove a statement, another statement which follows it

may be "promoted" to take its place, causing a reassignment

of statement numbers. For example, after deleting the

statement containing the PRIME RIBS, the file would be left

as:

2 ENTREE
2A FRIED CHICKEN
2B SALMON

2B1 WITH CREAM SAUCE
2C SCALLOPS

2C1 BROILED
2C2 FRIED

29

33

This action and its effects can undoubtedly be described

formally without referring to any actual file. But how much

simpler it is to do it by way of an example!

The main conclusion that we extracted [12] was that

while effective teaching still depended on describing facts,

actions, purposes, procedures, etc. symbolically, the most

effective elements of the teaching situation were the

ostensive ones, namely:

1) teaching by letting the students do things by

themselves and helping them correct their mistakes.

2) teaching by way of examples

3) teaching by demonstrating actions (the tutor typing

commands for the student, for example, when a

complicated new command is being introduced or when

the student is unable to proceed),

The Primer is like a scenario for the form NLS-SCHOLAR

adopts when in tutorial mode. It is the consequence of

skillfully organizing, segmenting, presenting and sequencing

knowledge about NLS in a manner that results in easy and

comfortable learning. (For a complete version of the

Primer, see the Appendix.)

In tutorial mode, NLSSCHOLAR consists of an

agenda-driven sequence of tutorial units. The elements of

these tutorial units are:

34 30

a) delivering information

b) asking Questions of the student

c) showing examples

d) demonstrating actions

e) 'requesting the student to perform tasks and exercises,

evaluating them, and making the appropriate comments

to the student

f) pausing to answer questions from the student

Elements a) and f) are always present.-

The way things work is as follows. NLS-SCHOLAR

presents exposition, embedded in which is a series of tasks.

Fairly frequently, the system stops to ask whether there are

any questions, by typing QUESTIONS? in the margin and then

printing an asterisk on the next line. If the student has

no questions he types an asterisk followed by a <CR> and the

exposition continues. If he has a question he type it

directly following the "*" and terminates it with another

"*" and a carriage return (<CR>) in typical SCHOLAR fashion.

When the question has been answered, NLS-SCHOLAR prints

another "*" in the margin indicating that it expects another

question. If the student has no more questions, he types

*<CR> and NLS-S,:HOLAR proceeds.

Whenever a tack is proposed, NLS-SCHOLAR puts the

student in touch with NLS. This causes the herald EDIT and

31 35

the prompt C: to appear as EDIT C: in the left margin. The

student can then type one of four things:

(1) an NLS command term

(2) a "?" to obtain a list of all command terms which are

possible at that point

(3) a "*" to indicate that he wants to ask a question

(4) "DONE <CR>" to indicate that he has completed the

task and wishes to have it evaluated

If he does (1) his actions will be stored for later

evaluation. When his command is terminated, a new EDIT C:

will appear in the margin.

If he does (2) a list of possible command terms will be

printed. He should then type one of them and proceed with

his command.

If he does (3) his question will be answered and a new

EDIT C: will appear.

If he does (4) his performance of the task will be

evaluated. If he has done the task correctly he will be

praised and the exposition will continue. If he has done

the task incorrectly his mistake will be pointed out to him,

his file restored to its form before the task was initiated

and he will be asked to do it again. He may ask the system

to show him how to do it, or even ask the system to do it

36
32

for him if he is in real trouble.

Occasionally NLS-SCHOLAR will ask a question of the

student. At such a point, a "*" is printed in the left

margin, NLS-SCHOLAR waits for the student to answer the

question, and then evaluates his answer.

Endowing NLS-SCHOLAR with 'awareness'

In order to make NLS-SCHOLAR 'aware' of what a user

does with NLS, we had to develop a coupling that enabled

NLS-SCHOLAR to use NLS to 'sense' the state of a user's

file. This coupling constitutes an exceedingly powerful

tool. First, observe that it makes it possible for the

student to ask questions not only about descriptions,

definitions, procedures, etc. (such as "What is a prompt,"

"What does viewspec n do," or "How do I delete a statement")

but also about the current state of the student's work (such

as "What is the content of statement 3A", or "Where is the

Cm now" or "Print the current statement" all relative to the

present state of the student's file). Thus, in addition to

searching for answers in a semantic network in the

"standard" SCHOLAR way, we gain the ability of interrogating

the NLS world as well. Second, this coupling provides an

easy way of performing a type of inference that would be

very hard to perform deductively. Suppose a student asked

'If 1 deleted statement 3A1, what would then be the number

3 7
33

of the statement containing "TOMATO"?' Finding the answer by

deductive reasoning is possible but difficult. Obtaining

the answer by "sotto voce" deleting statement 3A1 and then

seeing where the "TOMATO" statement ends up..is much easier

and very powerful. In Third, it becomes possible to

evaluate easily a student's solution to a proposed task --

all the system has to do is to have available the correct

sequence of commands for the task, perform them on a fresh

copy of the current file, and then compare the results (in

terms of the state of this new NLS file) with the student's

file.

The -NLS system

In order for NLS-SCHOLAR to teach NLS ostensively in

the manner we have described, and in order for it to answer

questions about the current state of the student's work, it

is clear that NLS itself must be incorporated and interfaced

with NLS-SCHOLAR. However, although using the real NLS for

this purpose was entirely feasible (everything is on TENEX),

we decided instead to implement the EDIT subsystem of NLS in

INTERLISP. The reasons for this early decision were

manyfold:

a) NLS was undergoing changes (it still is)

b) building a communication interface would have consumed
a larger fraction of our limited funds than
implementing our own LISP-NLS

c) the real NLS is a very complex system and we wanted to
test the feasibility of our approach in an environment

as 34

we understood well

d) since NLS-SCHOLAR is written in INTERLISP,
inter-process communication and control would be
facilitated

The results were very beneficial. As it turned out, it

was not only simple indeed to make NLS-SCHOLAR talk to

LISP-NLS, but we learned a great deal from designing it such

that interfacing NLS-SCHOLAR with the real NLS will require

a minimum of re-programming. We fully realize that if our

system is to attain the degree of operational usefulness it

is capable of, it will have to be within the context of

normal usage of the real MLS. This we expect to accomplish

in the near future.

LISP-NLS is capable of performing almost all of the

commands in the editing subsystem of NLS, and to users of

NLS-SCHOLAR it looks exactly like the real thing. Rather

than attempting to describe its inner workings, let us

instead describe it operationally, from the point of view of

performing the functions required by NLS-SCHOLAR.

The top function of LISP-NLS is called NLSPARSE and it

takes as an argument a single character. When a command is

being issued for LISP-NLS to perform, the command string is

fed to it character by character. NLSPARSE digests the

character and returns as a value a list of three elements.

The first element is a parameter used to determine what to

39 35

do next (feed the next character, signal that the command

has b.en completed, etc.). The second element is the

"echo", i.e. what NLS normally prints when one types a

character (the character itself plus whatever prompts and

heralds may be required at the time). For example, in

expert mode, typing "I" as the first character of a command

results in NLS echoing "Insert C:". The third element

appears only after the character that completes a command

has been fcd to NLSPARSE and it contains the response (what

NLS normally prints as a result of executing the command)

plus a wealth of data about the state of the NLS file as a

result of having performed the command. These data are: the

parsed command string, a representation Cl the file's

structure, the position of the control marker, the state of

the viewspecs, and a list of what was printedi by means of

any of the various print commands available in NLS. These

data are used by the task evaluation machinery to figure out

whether or not a student performed a task correctly.

Observe that the passing of characters and the

confinement of output to "echoes" and responses makes it

possible to use LISP-NLS very flexibly. Input characters,

for example, can be fed to it as one normally would to NLS,

namely by typing them on a terminal. Alternatively, they

may be fed to LISP-NLS by retrieving them from the data base

(having commands stored under each task in the data base

makes it possible for NLS-SCHOLAR to simulate the typing of

36

commands by a human tutor).

Echoes and responses can be similarly controlled. For

example, when the Question Answering system synthesizes a

command to LISP-NLS, echoes are not used at all and

responses are not printed directly but are handed back to

the Question Answering system to be used in constructing a

response to the student.

- - . - - -

In addition, a context manipulation machinery allows

the storing and retrieving of environments, and the creation

of .new ones. This is necessary when, for example, the

student asks a question that requires the Q/A system to

synthesize a command that could alter the state of his file.

For example, if the student asked "What is the content of

statement 3?" and the control marker were positioned at

statement 1, the Q/A system would have to synthesize a

command that would result in the CM being positioned to

statement 3 in order to answer the question. However, all

evidence of this command's execution must be removed -- in

particular the control marker must be repositioned to

statement 1 -- or the student will be confused by the state

of his file which has been manipulated without his

knowledge. Saving the student's environment, performing

invisible commands on a disposable copy of it and restoring

the environment afterwards, solves the problem. Other

exanples of context manipulation can be seen in Section IV,

37

1.1
*1........

in the description of the task monitoring machinery.

12,

38

SECTION III - STUDENT/QA AND TUTOR/QA SYSTEMS

Questions and Answers: an Overview

In the course of a lesson, or in the course of their

own independent work, users of NLS-SCHOLAR can ask questions

for the system to answer. In the course of a lesson the

system also generates questions for the student to answer

and then evaluates.those answers. The system. that answers

student-generated questions is called Student/QA, while the

system that generates questions and evaluates a student's

answers is called Tutor/QA. For consistency, Tutor/QA must

be aole to generate the same set of questions that

Student/QA can answer. This enables Tutor/QA to perform

answer evaluation by simply passing off the question it

generates to Student/QA to derive the correct answer. This

correct answer can then be compared to the student's answer

and appropriate action taken.

Because both the Student/QA and Tutor/QA systems

involve the same set of requests, we have designed both to

use the same representation of the meaning of a request. In

this way, Student/QA responds to a student's request by

parsing it into this representation, or "semantic form".

This semantic form is just a LISP procedure which, when

executed, derives the answer. "Semantic forms" are also

used by Tutor/QA to produce a question to present to the

39 ,i3

student (i.e. one which if the student had asked it would

have parsed into the identical form). At the same time it

evaluates this semantic form to derive the answer and

compares it with the student's answer. Both what these

forms look like, how they are derived, and what it means to

evaluate them and get an answer will become clearer in the

following discussion of the two systems and their interplay.

Student/QA

Student/QA is responsible for answering students'

questions about the EDIT subsystem of NLS and about the

current state of his NLS file. It derives its answers from

two sources of information: a data base containing static

descriptions, and NLS itself (actually LISP-NLS).

Like previous SCHOLAR systems, NLS-SCHOLAR has a data

base organized as a semantic network containing definitions

and examples of concepts, descriptions of procedures, etc.

This semantic network represents time-invariant factual

information about NLS and has been structured so as to

facilitate the kinds of inferences required for answering

questions such as:

WHAT IS A HERALD?
GIVE ME SOME EXAMPLES OF STRUCTURE UNITS.
HOW DO I PRINT THE NEXT STATEMENT?
HOW DO I DELETE THE LAST CHARACTER THAT I'VE TYPED?

But in order for NLS-SCHOLAR to respond to some of the real

44 40

needs of a student engaged in learning NLS, it becomes

necessary for Student/QA to handle questions relating to

what the student is doing, i.e. the state of the student's

work with his NLS file. A few questions of this type are:

WHAT IS THE CONTENT OF STATEMENT 3A?
WHERE ARE THE "SCALLOPS" NOW?
WHAT STATEMENTS ARE AT LEVEL 3?

None of these questions can be answered with the static

information in the semantic network (although this static

-inforinatiOnis sometimes used to synthesize' a' iplan- for

obtaining the answer). The semantic interpretation of this

type of question instead results in a call to LISP-NLS to

perform a series of synthesized NLS commands (executed

invisibly to the student). This means that there must be a

system (discussed in Section V) which saves the student's

environment, performs the synthesized commands, restores the

student's environment, and hands back the result of

executing these commands to Student/QA which in turn

responds to the student.

The Parser:

The NLS-SCHOLAR parser performs a top-down,

semantically directed case analysis of a sentence based on

the grammar described in BNF form in Figure 3. This method

is much like that used in the SOPHIE system [6,7]. The

parser produces a semantic form that contains information

similar to that derived from the "English Comprehender" of

41 45

NET-SCHOLAR [5], including the assignment of case

relationships existing between the main verb and the noun

phrases of the input sentence. In addition, this method

determines the general category that the request falls into

(a request for a definition, a request for a procedure, a

request for the address of some word in the current file,

etc.) For example, for the request:

HOW DO I DELETE STATEMENT 2A?

the semantic form would look like:

(QFIND/PROCEDURE ((AGENT USER)
(VERB DELETE)
(OBJ STATEMENT (ADDR 2A))))

The semantic form of all requests is a LISP function which

can be EVALuated, (that is, QFIND/PROCEDURE is a LISP

function to find a procedure in the data base; it takes a

case-structure parse as its input, retrieves the correct

information from the data base and calls the Output package

to output the answer in sentence format). To give a better

idea of this process, we will follow through parsing,

retrieval and output for the request:

HOW DO I DELETE STATEMENT 2A?

Parsing in Detail:

The parser first does a pre-scan of the sentence. This

pre-scan does spelling correction (using the routines from

the BBN INTERLISP DWIM facility [13]), abbreviation

42

checking, and compound word checking, making words like

"DELETE COMMAND" into a single concept "DELETE\COMMAND".

This prescan rewrites the input as "HOW\DO\I DELETE

STATEMENT 2A".

Parsing proper begins at this point. The description

will be best understood by following it through with the BNF

description of the grammar in Figure 3. In fact, the

parsing is almost isomorphic to the grammar, and
. . .

many of the LISP functions that make up the parser have the

same names as the elements of the grammar.

The top-level function <REQUEST> first checks to see if

the sentence is a request for the definition of something.

In our case it isn't. It continues its depth-first search

until it reaches <PROCEDURE/REQ> which first checks to see

if the sentence begins with the concept "HOW\DO\I". This

succeeds and RESULT, a global variable that keeps track of

the parse, is set to:

(QFIND/PROCEDURE (AGENT USER))

"HOW\DO\I" is removed from the string. The parser then

tries to locate an <ACTION/SPEC>, that is, a <VERB> plus any

number of <OBJ>'s, with the remaining string "DELETE

STATEMENT 2A".

43

,

FIGURE 3 -- A BNF DESCRIPTION OF THE GRAMMAR

<REQUEST>:= <DEFINE/REQ>
<WHATIS/REQ>
<CONTENT/REQ>
<PARTS-IN-PART/REQ>
<PARTS-IN-LEVEL/REQ>
<PROCEDURE/REQ>
<INSTR/REQ>
<POSITION/REQ>
<NLS/ACTION/REQ>

<DEFINE/REQ>:= DEFINE <NOUN>
WHAT DOES <NOUN> MEAN
WHAT'DOES'<NOUN> STAND FOR'
WHAT DOES <NOUN> DO

<WHATIS/REQ>:= WHAT IS THE PURPOSE OF <NOUN>
WHAT IS THE CONTENT OF <STR+ADDR>
WHAT IS THE LEVEL OF <STR+ADDR>
WHAT IS THE ADDRESS OF <STR+ADDR>
WHAT ARE EXAMPLES OF <NOUN>
WHAT IS THE DEFINITION OF <NOUN>
WHAT IS <CURRENT/PART>
WHAT IS <STR+ADDR>
WHAT ARE <NOUN>
WHAT ARE <STRUCTURAL> AT <LEVEL/PART>
WHAT ARE <STRUCTURAL> IN <FILE/PART>
WHAT IS <NOUN>
**ALSO 'TELL\ME, GIVE\ME, TELL\ME\ABOUT TN
PLACE OF 'WHAT IS'

<CONTENT/REQ>:= WHAT <STRUCTURAL> CONTAINS <STRING>

<PARTS-IN-PART/REQ>:= WHAT <STRUCTURAL> ARE IN <FILE/PART>

<PARTS-IN-LEVEL/REQ>:= WHAT <STRUCTURAL> ARE AT <LEVEL/PART>

<PROCEDURE/REQ>:= HOW\DO\I <ACTION/SPEC>
TELL\ME\HOW\TO <ACTION/SPEC>
TELL\ME\ABOUT <ACTION/SPEC>

<INSTR/REQ>:= WHAT [NLS\COMMAND] <ACTION/SPEC>

<POBITION/REQ>:= WHERE AM I
WHERE IS THE CM
WHERE IS <STR+ADDR>

<NLS/ACTION/REQ>:= <ACTION/SPEC>
DO IT
DO <TASK>

48
44

WHAT HAPPENED
WHAT IS WRONG
HOW\DO\I DO THIS TASK
W\DO\I DO <TASK>

ME\HOW\TO DO THIS
HO
SHOW\

<TASK>:= TASK <NUMBER>

<NUMBER>:= 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7

<ACTION/SPEC>:= <VERB> [<OBJ>]

! 8 ! 9

<VERB>:= ANY WORD IN THE DATA BASE WHOSE PART OF SPEECH
INCLUDES "VERB"

<OBJ>:= <NOUN/PHRASE> [<OBJ>]
<RELATIONAIT> <NOUN/PHRASE> [<OBJ>]

<RELATIONAL>:= ABOVE ! AFTER ! AT ! BEFORE ! BELOW
FOLLOW ! FOLLOWING ! FOR ! FROM
IN ! NEXT\TO ! OF
THROUGHOUT ! TO ! USING ! WITH

THE/BEGINNING/OF ! THE/END/OF ! FOLLOWING

<NOUN/PHRASE>:= <NOUN>
<STR+ADDR>

<STR+ADDR>:= <FILE/PART>
THE <STRUCTURAL> <STRING>
THE <TEXTUAL> <STRING>
<CURRENT/PART>
<STRING>

<STRUCTURAL>:= STATEMENT ! BRANCH ! PLEX ! GROUP

<TEXTUAL>:= WORD ! CHARACTER ! VISIBLE ! INVISIBLE

<CURRENT\PART>:= THE CURRENT\STATEMENT
THE NEXT\STATEMENT
THE BACK\STATEMENT
THE CURRENT\VIEWSPECS
THE CURRENT\ADDRESS
THE CURRENT\STATEMENT\NUMBER
THE CURRENT\POSITION\OF\THE\CM
THE CURRENT\FILE

<FILE/PART>:= STATEMENT\O
STATEMENT <ADDRESS>
BRANCH <ADDRESS>
PLEX <ADDRESS>
CROUP <ADDRESS> <ADDRESS>

45

<ADDRESS>:= AN ATOM WHOSE FIRST CHARACTER IS A NUMBER

<LEVEL/PART>:= LEVEL <NUMBER>

<TASK>:= TASK <NUMBER>

<STRING>:= ACTUAL PIECE OF TEXT IN QUOTES ("")

<NOUN>:= ANY WORD IN THE DATA BASE WHOSE PART OF SPEECH
INCLUDES "NOUN"

50
46

<ACTION/SPEC> finds the verb "DELETE" and then succeeds

in finding a sentence object that matches <FILE/PART> under

<NOUN/PHRASE>. <ACTION/SPEC> appends to RESULT the

expression (VERB DELETE) (OBJ STATEMENT (ADDR 2A)). Parsing

is now completed having reached a terminal state in the

grammar. The value for RESULT is:

(QFIND/PROCEDURE ((AGENT USER)
(VERB DELETE)
(OBJ STATEMENT (ADDR 2A))))

RESULT is now EVALuated retrieving the correct procedure

from the data base and calling the Output package to

construct the sentences to be typed out to the student.

There are objections to having a non-general parsing

algorithm, but for NLS we believe that the pros outweigh the

cons. This algorithm is fast* and it can be expanded (it

has been changed already many times) to cover the types of

questions we discover our students asking most often. If

experience with the SOPHIE system, which is used for

electronic troubleshooting, is a good indication of what we

may expect, then we shall not run into too much difficulty

with this kind of parser.

* A typical request parses in ms.

47

Retrieval:

As discussed previously, we are dealing with a new and

quite interesting facet of knowledge: that of the

interaction of static and dynamic information. When the

student asks "WHAT DOES CTRL-X DO?" the answer is a static

piece of knowledge retrievable from the semantic network.

But when the student asks "WHAT IS THE CURRENT STATEMENT?"

the answer will not be found in the semantic network; it

depends on what the student is doing and must be extracted

from his work space. When a request is found to require

information about the state of a student's file, the

necessary NLS commands are formulated by the top-level

retrieval function; LISP-NLS is called to perform the

commands and to return the result of performing them. In

this case, the retrieval function QFIND/CONTENT requests

LISP-NLS to perform the NLS command "\" which returns the

contents of the current statement.

These two examples elucidate the need for two kinds of

"data bases": a static semantic network and a dynamic NLS

file. So far we have seen their use in separate and clearly

distinguishable cases. However, when the student requests

the Tutor to perform a specific NLS command for him (for

example, he may say "PLEASE PRINT BRANCH 6A FOR ME") then

the two data bases must interact in order to produce a

response. To fulfill that request, Student/QA must first

48

.i.,74'

find the procedure for printing branches. This procedure is

very general and static so it is stored in the semantic

network. Loosely speaking, it states that one should type

"PRINT", followed by the name of the structure unit to be

printed, its address, <CR>, viewspecs, and <CR>. To obtain

an answer, Student/QA must use this general piece of

knowledge as a plan to synthesize a legal NLS command. It

must now "instantiate", according to the information

supplied in the student's request, the name of the structure

unit, its address, and the viewspecs. For this request, the

NLS command formulated would be:

Print Branch 6A <CR> <CR>

Instantiation is made possible by having a set of

instantiation variables containing the current instance of a

number of generic concepts. This collection of instances is

cleared before a question is asked, and is filled in (if

required) during the parsing of the request. Before an

answer is constructed or an NLS command synthesized,

Student/QA checks to see if the instantiation variables were

filled in during parsing, and if so, uses them in place of

the generic terms.

In this example all the generic terms in the procedure

had to be instantiated; that is, the generic term "structure

unit" is the word "BRANCH", the address is "6A", etc. This

is because without instantiating all these generic terms,

49

the NLS command would not be considered legal -- LISP -NLS

would not be able to perform it. Sometimes instantiating

specific terms for more general ones is not really critical,

but is more a matter of producing a better response to a .

student's question. For example, statements, branches,

groups and plexes are all instances of structure units. The

procedure for, say, deleting a statement is not stored

individually since the procedure is the same for deleting

any structure unit. Only- the general rule is stored.

Because of this, instantiation of certain objects in the

semantic network is preferable (but not essential) so that

questions like "HOW DO I DELETE A STATEMENT" do not get

answered "THE USER DELETES A STRUCTURE UNIT WITH THE DELETE

COMMAND".

Output:

The Output package is essentially the same as that of

NET-SCHOLAR with one important addition. We wished to allow

items to be instantiated to produce a meaningful response or

a "legal" NLS command. In the semantic network this shows

up as a new ,structure made up of three elements: $INS, a

variable, and a piece of regular SCHOLAR data base. (See

Figure 4.)

When the Output system encounters a list beginning with

$INS, like ($INS XADDSTR ADDRESS), it checks to see if the

Lilt 50

second item, in this case the variable XADDSTR, has a value

(set during the parse). If so it uses this value in

constructing the answer. Otherwise it uses the third item,

. ADDRESS, a generic term like any ragular piece of SCHOLAR

data base.

L

For example, in the question "HOW DO I DELETE A

STATEMENT?" the parser sets the variable XOBJ to STATEMENT,

and the variable XOBJSTR to .-STATEMENT'. Retrieval finds

the piece of data base answering the general question "HOW

DO I DELETE A STRUCTURE UNIT?" which is the procedure listed

in Figure 4. This is sent off to Output which creates a

sentence with the appropriate instantiated elements. (XOBJ

and XOBJSTR are instantiated: that is, their values,

STATEMENT and 'STATEMENT' respectively, are used. No value

for XADDSTR was assigned during the parse (the student

didn't specify a specific address) so the third item in the

$INS list, the generic term ADDRESS, is used. The response

is:

THE USER DELETES A STATEMENT USING THE DELETE COMMAND.
PROCEDURE: HE TYPES 'DELETE', FOLLOWED BY 'STATEMENT', AN
ADDRESS, <CR>, AND <CR>.

51

FIGURE 4 - DATA BASE ENTRY FOR "DELETE\COMMAND"

DELETE\COMMAND
(PURPOSE (I 2)
(DELETE
NIL
(AGENT NIL USER)
(OBJ NIL ($INS XOBJ ($EOR STRUCTURE\UNIT STRING\UNIT)))
(INSTR NIL DELETE\COMMAND)
(PROCEDURE
NIL
(TYPE
NIL
(AGENT NIL USER)
(OBJ
NIL
($SEQ "DELETE "

($INS XOBJSTR
($EOR (NAME NIL (OF NIL STRUCTURE\UNIT))

(NAME NIL (OF NIL STRING\UNIT))))
($INS XADDSTR ADDRESS)
<CR> <CR>)))))

Tutor/QA

The Tutor/QA system was designed to make use of the

same semantic form that the Student/QA system produces

during a parse. This integration allows us to make use of

Student/QA's retrieval functions to derive the correct

answer to a Tutor-generated question so that this answer can

be checked against the student's. Thin integration of both

QA systems is illustrated in Figure 5. In this diagram the

blocks represent the specialists some of which are shared

among both systems. The arcs are labelled with both inputs

to various blocks and their outouts. Also some tests are

made explicit on the arcs, like whether it was the student

or the Tutor who initiated the request.

:Ski 52

730561V
r2t;t4.4.u0,

7P.12is

Intaants

ate tic"

C
.

r..14.
1,m

1 41,
"'? ."#1-.42' e 1,:vio:o!

etJr14:)

) .0.1.1
tit .U

W
0.1

M

s...
c.-.

,:;.:

..3.,: w
t.,

....

4.1.n
.-0+

.no
11

ifi4
.5.se,,,,, 0,

S
ure la.v.t,),41

I
pfrv

"
r:4,..-^"

H
i

.1-,..
.., .

1,,olkin-IvIsS
I

4'
I

S
.' N

 dS
il

1

._
i'-'----------______-,

- -
I

.0.1D
>

01.; F ,p.on
i'",'

The path from Initiator to Parser to Evaluator to

Output is that of the Student/QA system, that is, the

Initiator is the student. (This pathway is marked by

double-line arcs.) Tutor/QA's integration of its pathways

with this one will be made clearer in the following section.

Tutor/QA System's Organization:

This system is activated by a call to Tutor/QA to

generate a suitable question to ask the student. The

general type of question is designated by the agenda, and is

represented as an incomplete semantic form exactly like that

produced by the parse of a student's request in Student/QA

but with several operands represented as variables whose

values have yet to be filled in.

This form is handed to the Form-Completer who chooses

"good" values for the variables in the incomplete semantic

form. It often arrives at "good" choices by taking a look

at the current NLS file with a callto LISP-NLS. Once a

semantic form is complete (all variables filled in), then

two activities take place simultaneously. One is a call to

the Evaluator who evaluates the semantic form, ie
retrieves the correct answer. The second is a call to the

De-Parser, a specialist who takes the semantic form and, in

a sense, de-parses it; it reverses the process done in

Student/QA by going from the semantic form back to its

i8
54

canonical surface representation. This surface

representation (the question phrased in "English") is then

presented to the student. The student's response to it is

compared with the correct answer derived from the Evaluator.

The Answer Comparer decides whether the responses are

equivalent. It responds to the student appropriately and

returns a message to Tutor/QA as to how the student did with

this question. Tutor/QA can then decide whether it feels it

should generate another question of this type (if the

student did poorly), or whether it should return so that the

lesson may continue. If the decision is made to go on,

Tutor/QA exits returning control over to the system

executive. If it decides to continue asking similar

questions until the student has gained sufficient

familiarity with the concept that it is trying to get

across, Tutor/QA calls the Form-Completer once again to

generate new values for the variables and the entire process

begins again.

It should be noted that at the point when the student

is asked the Tutor-generated question, he may in turn ask a

question of his own (which activates Student/QA), work

directly with the NLS file with a call to NLS, or quit for

continuation at a later time.

D5

The Form-Completer:

This specialist of the Tutor/QA system takes the

incomplete semantic form and fills in values for the

variables until the form is completed. Each type of

semantic form has its own Form-Completer specialist. For

example, the semantic form:

(QPARTS-IN-PART STATEMENT (BRANCH (ADDR XXX)))

requires that an address "XXX" of a branch in the NLS file

be found. (The English interpretation of this form is the

question, "WHAT STATEMENTS ARE IN BRANCH XXX?") A call is

made to LISP-NLS to find a "good" branch, i.e. one that

exists and that has at least one substatement. Other forms

require calls to LISP-NLS to find good plexes, statement

contents, levels of statements, etc. to use to fill out

their semantic forms.

Some semantic forms require filling various cases. In

a QFIND/INSTR semantic form (from "What command 'verbs' an

'object"), the cases Agent, Verb, and Object must be

filled. Since the question is directed to the student, the

Agent case is filled automatically with "user". The Verb is

randomly chosen from a list of verbs like move, copy,

delete, print, etc. The selection of the Object is, of

course, dependent on the Verb. To find an appropriate

Object, the semantic network is queried. The chain of

inferences that must be drawn for the verb "move" is as

6

follows: The Instrument for the verb "move" is retrieved,

MOVE\COMMAND. Under MOVE\COMMAND is the Object on which it

works, STRUCTURE\UNIT. Since its part of speech is a CN

(concept noun) an example of it must be retrieved (XN). In

the entry for STRUCTURE\UNIT are examples, STATEMENT,

BRANCH, GROUP, and PLEX. The Object is chosen randomly from

among these four, say BRANCH. The semantic form is now

complete:

(QFIND/INSTR ((AGENT USER)
(VERB MOVE)
(OBJ BRANCH)))

One last check is made to make sure that this semantic form

has not been generated previously (to keep from asking the

same question more than once). With this completed semantic

form Tutor/QA simultaneously proceeds with the work of the

De-Parser which derives the English surface representation

of the request to present to the student, ("WHAT COMMAND

MOVES A BRANCH?"), and the Evaluator which evaluates this

form to derive the correct answer.

The Answer Comparer:

For each kind of semantic form there is an Answer

Comparer specialist. At present, the semantic forms which

Tutor/QA handles are such that answers to them are simple

lists of items like "3A 3A1 3A2" as opposed to entire

sentences (like the response to the question "How do you

delete statement 3A1?" -- "I first type "delete" followed by

57 Ci .X.

the word "statement", 3A1 and a carriage return. Then I

type another carriage return after I see the OK: prompt.")

Obviously the latter response from the student would be much

more difficult to analyze, requiring a detailed parse and

interpretation of the meaning of all the sentences involved,

to say nothing of the detailed matching procedure that would

be needed to see if that meaning was eouivalent to the

correct answer produced by the Evaluator.

Concerning ourselves with the former type of reply, the

Answer Comparer 'looks at the match of the two responses,

noting whether items are missing or extra in the student's

reply. It then reports to the student appropriately and

reports back to Tutor/QA how the student performed.

Future......_ ____

The shared representation in Student/QA and Tutor/QA

allows the addition of a very powerful mechanism, a history

list, one list containing all Tutor-generated requests and

the other all Student-generated requests, both in semantic

form representation.

The first thing that falls out of having this feature

is the ability in Student/QA mode to answer a student's

procedural question and then to be able to respond to "DO

IT" by picking up the top-most semantic form of a procedure

request on the Student history list and executing it.

58

A

I

Although we now handle in a very limited way such "DO IT"

requests, we have always assumed that such requests refer to

performing the current task. Obviously this is inadequate.

Second, the history list feature provides us with the

ability in Tutor/QA mode to recognize a "cheating" question

by the student and to block it if we wish. For example, the

Tutor asks:

WHAT STATEMENTS ARE AT LEVEL 2?

(a question produced from the semantic form

(QPARTS-IN-LEVEL (LEVEL 2))

Instead of responding, the student asks:

WHAT ARE THE STATEMENTS AT LEVEL 2?

This request is simply a paraphrase of the Tutor's question.

We recognize this by comparing the parse (semantic form) for

it with the form at the top of the Tutor's history list.

(They will, of course, be the same.) We may then decide

either to answer the question or to refuse to answer

allowing him to ask other questions, but not one that parses

into the same form as the Tutor's question.

The history list feature also gives the Tutor a simple

repository for the questions it has asked -- a place to

check on already-asked questions to keep from repeating

itself.

59 3

SECTION IV - TASK EVALUATION

Task evaluation is potentially one of the most fertile

areas of NLS Scholar, and at the same time is potentially

one of the most overwhelming, due to its close connections

with the nebulous areas of searching the space of

discrepancies, learning from selected discrepancies,

emulating the tutor's example and even simulating (crudely)

a student's probable misunderstanding.

At present, task evaluation is limited to a comparison

of the correct file, which it generates from the correct

stored command sequence, with the student's file. It

reports to the student the scope of his error by printing on

his terminal the discrepant sections of his file and the

corresponding sections of the correct file. Some

sophistication is achieved by using "sensitive state" flags

to limit the level of error description to terminology

consistent with the student's current knowledge. In

addition, there are specialist-reporters for file structure

. and content, CM position, viewspecs and printing which allow

for special description of errors in these areas.

Sensitive states

Sensitive state flags affect how an error is reported.

They are associated in the data base with each task. For

example, the tasks in Lesson 1 have the flag CMLEVELGAG

60

64

associated with them because the student has not been told

about branches and this prevents the CM specialist-reporter

from pointing out same-branch relationships.

Other implemented sensitive state flags behave as

follows. CMPLEXFLG enables the CM specialist-reporter to

point out simple same-plex relationships. VSDESCRIBEFLG

causes the vie'spec specialist-reporter to talk about levels

and lines, rather than xis, b's, etc. #RETRIES is really a

counter flag that provides a limit on the length of time one

can spend doing and redoing a task. The default is

initially set to 2 trials.

Specialist-reporters

Four specialist-reporters have been implemented

covering file structure and contents, CM position, viewspecs

and printing. Our design strategy in each has been to

classify and describe the extensional discrepancies between

what was expected of the student and what the student

actually did. In each case, some suitable range of error

types and format for description was chosen to fit the

particular aspect of the error. An analysis of each

separate area yielded four independent formulae, with one

exception: a generalized list-comparison algorithm was found

to be applicable to exploring any two lists for insertions,

omissions, and content errors, regardless of the form of

61

information ultimately to be extracted.

The specialist-reporter for file structure and content

performs an analysis of the files into three cases: change

extraneous, change omitted, and change incorrect or faulty.

We have found it profitable to compare the student's file

with the initial one, the target file with the initial, and

then to compare the comparisons. The information extracted

by this specialist is whichever section of the file is to be

printed in order to show just the discrepant parts.

In doing viewspecs evaluation, a more detailed

error-typing was possible. It was possible to add

"overdone" and "underdone" classes (too much or too little

printed). This not only produced output that was more to

the point; it also permitted an appropriately selective task

continuation criterion.
die

Retrial vs. Repair

Often it is more instructive to fix one's mistakes than

to try again; but up until now, we have leaned towards

retrial rather than repair. In general, this decision as to

whether to stick with the present mistake is a difficult

one. It involves having special knowledge .abodit 'each

command and about how much background and understanding can

be presumed in the student.

62

Extensional vs. Intensional Information

In the present task evaluation system, only extensional

information is used; that is, we look at the results of

executing a sequence of commands, i.e. the NLS file itself,

rather than looking directly at the sequence that produced

it. Although this approach has proved quite effective,

there is much power to be gained from analyzing the

intensional information contained in the command sequence

itself. This analysis would use knowledge from the data

base to report to the student the consequence of an

incorrect command sequence.

For example, if the correct command sequence requires

the word "plex" and the student types "branch", the command

sequence analyzer would report the error possibly using

information from the data base to construct an explanation

of the meaning of "branch" vs. "plex" and any other special

information it deemed useful to review. This type of

explanation provides a unique method of reviewing

information about the use of NLS at points in the lesson

where such review is obviously needed (at points where the

student errs). data base of the ffieaning of "branch" vs.

"olex".

63

67,

SECTION V - SYSTEM ORGANIZATION

Overall Orianization

The overall organization of NLS-SCHOLAR is represented

in Figure 6. There is a system executive which controls and

supervises the functioning of the four main modules of the

system (DELIVERY, STUDENT /QA, TUTOR/QA, TASK MONITOR). The

EXECUTIVE services these modules' requests and provides

communication paths among them. When in tutorial mode (the

normal mode in NLS-SCHOLAR), the EXECUTIVE is driven by the

AGENDA which is a LISP representation of the Primer and is

produced automatically from the Primer's content.

The DELIVERY module is very simple; it retrieves the

string the EXECUTIVE wants to print to the student and

prints it. If a question is asked of the student by the

system, the ANSWER EVALUATOR is called to judge the

correctness of the student's answer. TUTOR/QA can also call

STUDENT/QA to allow the student to ask other questions

rather than immediately answering the question posed to him.

The TASK MONITOR is called either by EXECUTIVE when a

task must be set up for the student to perform, or by

STUDENT/QA, when an NLS command must be performed to use the

response in constructing an answer.

TASK MONITOR can perform commands in a number of

68 64

IE
X

E
C

U
T

IV
E

4-
--

--
--

1
A

G
E

N
D

A

D
E

LI
V

E
R

Y
T

U
T

O
R

 O
/A

i
A

N
S

W
E

R
E

V
A

LU
A

T
O

R

1

i

C
O

N
T

E
X

T
M

O
N

IT
O

R

F
S

K
E

V
A

LD
U

A
T

O
R

A
N

T
E

R
R

O
R

 R
E

P
O

R
T

I

...
1

W
O

R
K

-S
P

A
C

E
 ti

ll.
-

S
P

E
C

IA
LI

S
T

S

--
-1

i

C
O

M
M

A
N

D
F

IL
E

C
O

N
T

R
O

L
V

IE
W

P
R

IN
T

E
D

S
E

Q
.

S
T

R
U

C
T

U
R

E
M

A
R

K
E

R
S

P
E

C
S

IN
F

O
.

different ways:

a) normally, by allowing the student to type on his

terminal as in standard NLS use.

b) invisibly, by passing commands to LISP-NLS without any

trace of their performance showing up in the student's

terminal. The STUDENT/QA system often uses this mode

as does the TASK MONITOR.)

c) in tutorial mode, imitating what a human tutor would

do if he typed commands on the student's terminal.

This is done by surrounding with parentheses what

NLS-SCHOLAR "types" for.the student.

The function that is responsible for all this, and the only

one that has access to LISP-NLS is called INTERFACE.

When used in mode (a), TASK MONITOR uses CONTEXT

MONITOR to make a copy of the initial state of the NLS file,

and then puts the student in contact with LISP-NLS to allow

him to type in his commands. When the student has finished,

the state of his NLS file is saved for later use. Then TASK

MONITOR obtains a target file, i.e. a representation of

what the state of the NLS file would be if the student had

performed the task correctly. TASK MONITOR does this by

performing the correct command sequence for the task, which

is stored in the data base. These commands are performed

invisibly to the student, and they act on the copy of the

student's file that was saved before. When this is done,

the state of the file (TARG), the initial state of the file

66

70

(INIT), and what the student obtained with his commands

(ST' , are delivered to TASK EVALUATOR and ERROR REPORT.

Error Analysis

ERROR REPORT is responsible for analyzing the three

file (INIT, STU, and TARG), deciding if significant errors

have occurred, and if so, figuring out how to report these

errors to the student. To do that, a function named TASK

EVALUATOR is called. TASK EVALUATOR in turn can call

several specialists to analyze the files and discover any

errors that the student may have made in terms of the

structure of the file, its content, the final position of

the control marker, the state of the viewspecs, and whether

or not he printed correctly whatever the task might have

required.

An error in structure is always crucial and must be

reported to the student. Therefore, an important function

of ERROR REPORT is to provide him with a description of the

error that is adequate for him to realize his mistake and

"debug" his task commands. For example, the structure

specialist operates by first checking if any differences

exist between the student's file and the target file. If

this is the case, then an environment of the error that is

common to both files is determined. In order to frame the

environment of the error, some statements immediately

67

preceding this environment in the initial file, and some

statements following it, may be printed out to him.

How the system works

Let us now clarify this description with an example.

Consider the protocol presented in Section I. EXECUTIVE

retrieves from the AGENDA its "instructions", which in this

case consists of delivering the text headed by "SUBSTITUTE

WORD IN STATEMENT", performing a task as if the tutor were

demonstrating how to do it, delivering some more text, and

finally giving the student a task to perform.

When NLS-SCHOLAR demonstrates to the student how to

perform a command, EXECUTIVE calls TASK MONITOR, hands it

the correct command sequence for the task, and instructs it

to print out, using the parenthesis notation that we have

adopted to show the student what the "tutor" is actually

typing. TASK MONITOR then sets up the appropriate call to

INTERFACE, and LISP-NLS performs the commands. Since the

task in this case is guaranteed to be correct, there is no

need to let ERROR REPORT intervene, and TASK MONITOR returns

to the EXECUTIVE. After more text has been delivered, and

TASK 41 completed, the EXECUTIVE calls STUDENT/QA to handle

student questions.

Consider, for example, the question the student asks:

What statement contains "CORN"?

68

Here, TASK MONITOR returns to the EXECUTIVE which then calls

STUDENT/QA. This question concerns the state of the NLS

file and cannot be answered with information stored in the

semantic network. Therefore, STUDENT/QA constructs a

command for LISP-NLS to execute and uses the results in

constructing an answer. In our case, STUDENT/QA calls TASK

MONITOR and asks it to perform the commands JUMP 0 and then

JUMP "CORN" and \ (back slash), which in NLS cause the

control marker to jump to the statement containing "CORN"

and print its address and content. The command is performed

invisibly and the response is returned to STUDENT/QA which

then extracts the address and constructs the answer. The

context manipulation machinery meanwhile took care of

protecting the student's environment by providing a scratch

copy of it on which these commands were performed.

At this point the EXECUTIVE again turns to the AGENDA

to find out what to do next. In this case, the AGENDA

requires delivering more text ("Use the Substitute command

to change statement 2A1..."). Let's see what happens when

the student performs this substitution task. TASK MONITOR

is c, led, and it orders INTERFACE to let the student talk

directly to LISP-NLS. After he types "Done", TASK MONITOR

saves the students environent and sets up the NLS file to

its initial state by calling CONTEXT MONITOR.

In this way, TASK MONITOR can now use the preferred

69

`.0
.,*

:4)

command sequence to find out what the NLS file should look

like if the task were performed correctly. TASK MONITOR

does that by performing invisibly (via the appropriate call

to INTERFACE) the preferred command sequence on the initial

file, thus obtaining the target file. With the student,

initial, and target files now obtained, TASK MONITOR calls

ERROR REPORT and TASK EVALUATOR. The structure specialist

detects a difference in branch 2A and returns to ERROR

REPORT, which figures out how to tell the student what

happened. ERROR REPORT does that by synthesizing a command

to print branch 2A of the target file, and this command is

performed, without echoes being shown, via a return to TASK

MONITOR and a call to INTERFACE. After that, control

returns to ERROR REPORT which synthesizes another print

command to describe what the student did instead, and the

same sequence is repeated. ("But you changed this part of

it...") this time using the student's file. After all this

is done, TASK MONITOR asks CONTEXT MONITOR to restore things

to their initial state and the student is requested to

perform the task again. The structure specialist detects a

difference in branch 2A and returns to ERROR REPORT, which

figures out how to tell the student what happened. ERROR

REPORT does that by synthesizing a command to print branch

2A of the target file, and this command is performed,

without echoes being shown, via a return to TASK MONITOR and

a call to INTERFACE. After that, control returns to ERROR

70'24

REPORT which synthesizes another print command to describe

what the student did instead, and the same sequence is

repeated. ("But you changed this part of it...") this time

using the student's file. After all this is done, TASK

MONITOR asks CONTEXT MONITOR to restore things to their

initial state and the student is requested to perform the

task again.

Student Aids

Several facilities have been developed to facilitate

the use of NLS-SCHOLAR in tutorial mode. The CONTROL module

allows the stdent to type *NLS* to the Question Answering

system at anytime, and gain access to NLS for free play and

interaction, without disturbing the state of his file and

therefore not altering the progress of the lesson. The

student may type *RESTART* to restart Performing a task,

with all the commands performed so far being forgotten. He

can type *QUIT* to quit a lesson at anytime, without waiting

for the end of it; he may type *PROCEED* to continue it

again.

Debugging Aids

NLS-SCHOLAR contains a DRIBBLE facility to aid in the

debugging of the system. Whenever someone uses NLS-SCHOLAR,

a complete record of the transaction is kept on a protocol.

71

file. Also, whenever a sensitive portion of the program

fails, a message (via SNDMSG) is sent to the person who

wrote that part of the program, and relevant information

about the failure is written in a special file in the

programmer's directory so that he may examine the problem

and correct it.

NLS-SCHOLAR can be run in human-backed mode, when

special arrangements have been made. This mode allows a

human expert watch (via linked terminals) the

student/computer dialog, and step in when the system fails.

For example, if the Question Answering system fails to

understand a question by the student, the human expert can

provide the answer by typing it in his own terminal.

76 71

SECTION VI - CONCLUSIONS AND RECOMMENDATIONS

The "finality" of the present report is only an

administrative technicality; much remains to be done before

NLS-SCHOLAR can be considered finished and ready to use as a

stand-alone Help and Tutorial facility. However, we have

made good progress towards that end, and we feel that even

now, in spite of the systems's limitations, it could be

useful to its users. We believe that NLS-SCHOLAR offers

some very positive advantages that could make it worthwhile

to its users, even in its present, unfinished state: the

lessons are very nicely organized, and the systems's ability

to present examples, show how to do things, and propose

tasks which it then evaluates and comments upon, is very

powerful.

To make the system operational requires work in the

following aspects:

1) A heterarchical, rather than hierarchical control

structure is needed to allow the student more freedom

and flexibility

2) Expanding the tutorial facilities to cover the most

commonly used and useful commands in the NLS editing

system.

3) Inproving the way mistakes are pointed out, by showing

the student what's wrong with his solution rather than

point out what's wrong with his result.

73

4) Improving the system's human engineering aspects and

efficiency of operation, i.e. enabling students to

proceed with the lessons at their own pace, quitting

and resuming a lesson whenever they want.

We expect that in the next phase of our work, having

upgraded the system along the lines described above, we will

be able to come to grips with the real problems that a

system of this sort encounters in an operational

environment.

74

REFERENCES

[1] "TNLS Users' Guide" November 1973, obtainable from

Augmentation Research Institute, Menlo Park, Calif.

94025.

(2] Carbonell, Jaime R. "AI in CAI: An Artificial-Intelligence

Approach to Computer Assisted Instruction" IEEE Transactions

on Man-Machine Systems, MMS-11, New York, December 1970.

(3] Carbonell, Jaime R. and Collins, Allan M. "Mixed-Initiative

Systems for Training and Decision-Aid Applications"

ESD-TR-70-373, November 1970.

[4] Collins, Allan M., Warnock, L.H. and Passafiume, J.J.

"Analysis and Synzhesis of Tutorial Dialogues" in

Advances in Learning and Motivation Vol. 9, G.H. Bower,

Ed., Academic Press, in press.

(5] Grignetti, Mario C. and Warnock, Eleanor H. "Mixed-Initiative

Information System for Computer-Aided Training and

Decision-Making" ESD-TR-73-290, September 1973.

(6] Brown, John Seely, Burton, R.R., and Bell, A.G. "SOPHIE:

A Sophisticated Instructional Environment for Teaching

Electronic Troubleshooting (An Example of AI in CAI)"

bBN Report No. 2790, March 1974.

(7) Brown, John Seely and Burton, Richard R. "SOPHIE: A

Pragmatic Use of Artificial Intelligence in CAI" Proceedings

of the National ACM Conference, San Diego, California,

November 1974.

(8] Watson, Richard W. "National Software Work Developments

A Technical Proposal". SRI-ARC Journal #23352, July 1974.

(9] Carbonell .R. and Collins, A.A. "Natural Semantics in

Artificia. ntelligence" in Proceedings of the Third

International Joint Conference on Artificial Intelligence,

Stanford University, 1973. Reprinted in the American

Journal of Computational Linguistics, 1, Mfc 3, 1974.

75

(10) Teitelman, Warren; et al. "INTERLISP Reference Manual",

1974.

[11] Collins, A.M., Passafiume, J.J., Gould, L., Carbonell, J.G.,

"Improving Interactive Capabilities in Computer-Assisted-

Instruction," Cambridge Massachusetts: Bolt, Beranek and

Newman, BBN Report No. 2631, 1973.

C's :li
CLifij 76

APPENDIX

Complete Scenario (Primer)

This Appendix is meant to fulfill two roles:

a) a complete version of the didactic material

available at present under NLS-SCHOLAR, and

b) a more complete demonstration protocol than the one

presented in Section I.

In this regard, the reader will find far more descriptive

user-system interactions, especially with respect to the

Print and Viewspec Specialist-Reporters (see TASK 54 and

following).

LESSON ONE

INTRODUCTION

Hello. Welcome to your first lesson about WLS - the 'oil Line System'
developed by Douglas Engelbart and his staff at Stanford Research
Institute.

I'll be describinr some parts of this system to you, showing you how to
use it, and rivinr you tasks to perform.

From time to time I'll stop and ask if you have any questions by
printing 'QUESTIONS?' in the marRin, followed by a on the line
below. If you have no questions at that point, just type another '*'
followed by a <CR> and I'll continue. If you do have a question, type
it in after the '*' and terminate it with a and a <CR>. I'll try
to answer it and then I'll print another '*' so you can ask another
question if you wish. When you have no more questions, type '* <CR>'
and I'll continue.

QUESTIONS?

What does <CR> stand for?

<CR> IDENTIFIES THE RETURN KEY ON A KEYBOARD.

**

NLS is a text-processing system which is used as an aid in writing,
re-organizing, indexing*, publishing, and disseminating information of
all kinds.

NLS is a very larre systen made up of many subsystems. In what follows
I will introduce only song of the file-handling, text-editing, and
simple printing commands which are used in the EDIT subsystem.

You will be presented with a series of tasks to perform using the EDIT
subsystem of NLS. Everytime I propose a task for you to do, I'll put
you in touch with NLS so it can execute your conmands. When I do
the characters EDIT C: will appear in the left narrin, like this:

EDIT C:

The characters EDIT C: are printed by NLS. The EDIT part is a
'herald' irdicating that you are talking to the main subsystem of NLS,
the one called EDIT. The C: part is a 'prompt' indicating that the
EDIT subsystem is waiting for you to type a command.

After you finish typing in your command, NLS will perform whatever
action you requested. When this action has been conpleted, NLS will
print another EDIT C: in the margin, indicating that it is awaiting

your next command. When your task is completed -- when you don't wish
to give any more conmands -- type 'Done <CR' to tell NLS that you wish
re to continue.

If' you make a mistake while typing a command you can repair it by
typing <CTRL-A>, or you can start over by typing <CTRL-X>. Typing

<CTRL-A> will erase the last character you typed. It's kind of like

78

the backspace on a typewriter, and you can use it successively twice to
erase the last two characters, three times to erase the last three,
etc.

Typing <CTRL-X> will cancel the entire command and will allow you to
start over.

QUESTIONS?

What are the file handling commands?

EXAMPLES CF A FILE-HANDLING COMMAND ARE THE LOAD COnAND,
THE UPDATE COMMAND, AND THE CREATE COMMAND.

Give me sone examples of printing commands.

EXAMPLES OF A PRINTING COMMAND ARE THE PRINT COMMAND,
THE <LF> COMMAND, THE COMMAND, AND THE \ COMMAND.

What does the <LF> command do?

THE <LF> COMMAND PRINTS THE NEXT STATEMENT.

What is a statement?

A STATEMENT IS THE BASIC STRUCTURE UNIT OF AN NLS FILE.

What is a prompt?

A PROMPT IS A SIGNAL FROM NLS THAT IT IS AWAITING AN INPUT STRING
FROM THE USER.

How do I complete a task?

THE USER COMPLETES A TASK USING THE DONE COMMAND,
PROCEDURE: HE TYPES 'DONE', FOLLOWED BY A <SPACE>,
AND <CR>.

How does one cancel a cornnand ?

THE USER CANCELS THE CURRENT ILLS COMMAND USING
THE CTRL-X COMMAND.

* *

NLS FILES

In order to begin using tJLS you will need to specify which 'file' of
information you want to work with. Each file is sort of like a
notebook or folder in which you can keep information; you may keep a

79

different notebook (file) for each separate subject in which you are
interested.

Files are automatically stored when you are not using them. Before you
can work with a file you must 'load' it from storage. Each file has a
name so you may refer to it easily.

I'd like to show you the file named DINNER so you can see how an NLS
file is structured. Your first task is to load this file so you can
work with it. When the EDIT C: appears, type the command:

Load File DINNER <CR>

As this single command completes the task, type:

Done <CR>

when the next EDIT C: appears.

Note that you should terminate each part of the command with a space;
you should terminate the entire command with a carriage return. Please
be sure to type a space between 'Done' and the <CR>.

The characters that you type on your terminal will be interspersed with
some 'prompts' that NLS will print between your words. Please don't
let tnis disturb you.

TASK 1

EDIT C: Load C: File T: DINNER ;

(NLS-SCHOLAR, DIUHER.LULS;3,)

EDIT C: Done OK:_;

NLS prints a C: prompt whenever it expects a-command term. Most ,:LS
commands, like the Load command, are composed of two command terms,
usually a verb followed by a noun.

NLS prints a T: prompt whenever it expects you to type some text, in
this case the name of the file to be loaded.

The file DINNER is now the current file with which you are working.
Any editinc' commands which you use will automatically apply to that
file until a different file is loaded.

QUESTIONS?

What does the C: mean?

THE C: PROMPT IS A PROMPT THAT INDICATES
THAT NLS 1S WAITING FOR A COMMAND TERN FRON
THE USER.

What is the T: prompt for?

THE T: PROMPT IS A PROMPT THAT INDICATES
THAT NLS IS WAITING FOR SOME TEXT FROM THE USER.

PRINTING A FILE

Your next task is tc use the Print command to see the content of the
DINNER file. You do that by typing 'Print <CR>'. (Again, please don't
be disturbed by the prompts.) After the entire file has been printed,
don't forget to type 'Done <CR>' when the EDIT herald appears again.

TASK 2

EDIT C: Print OK: /C:_;
<NLS-SCHOLAR>DINNER.LNLS;3, 28-AUG-74 08:28 CLH ;

1 SOUP
1A TOMATO
1B VEGETABLE
IC CREAM OF MUSHROOM

2 ENTREE
2A FRIED CHICKEN
2B PRIME RIBS
2C SCALLOPS

?C1 BROILED
2C2 FRIED

2D SALMON
2D1 WITH CREAM SAUCE

1 DESSERT
3A PIE

1AI RHUkARE,
3A2 BLUEBERRY

qb STRAWBERRY SHORTCAKE
3C ICE CREAM

3C1 PEPPERMINT
3C2 HAPLEOUT
3C3 CHOCOLATE

EDIT C: Done OK:_;

Please tear the paper off here and place it on the table beside you so
you can refer to this file easily in the future.

After 'Print' you could type various nouns indicating that only part of
the file is to be printed. But if no noun is supplied, then the single
command term 'Print', followed by a <CR>, will print the entire content
of a newly-loaded file.

The mysterious primpt OK:/C: which NLS printed above indicates that it
expects either confirmation (OK:), which you provided by typing <CR>,
or another command tern (CO. We shall return to the nouns that you
can type after 'Print' later.

QUESTIONS?

What can I type after Print?

THE THINGS THAT CAN FOLLOW PRINT ARE:
Branch Statement Plex Group

How do I pr'nt a statement?

THE USER PRINTS A STATEMENT USING THE PRINT COMMAND,
PROCEDURE: HE TYPES 'PRINT ', FOLLOWED BY
'STATEMENT ', AN ADDRESS, <CR>, VIEUSPECS, AIJD
<CR>.

**

OUTLINE STRUCTURE

Let's look now at the information in the file. Notice that there is a
heading at the top of your file which consists of some identifying
information.' The first part within the angle brackets, NLS- SCiiOLAR, is
the 'directory name'. Directories are used to group together and index
file names. The second part, DINNER, is the 'file name'. The third
part, LNLS, an extension of the file name. The fourth part is a
version number. Thus the heading' tells you that this is the first

version that's been made of the file named DINNER.LNLS which is in the
NLS-SCHOLAR directory.

The rest of the heading consists of the date and the time of the file's
creation, and the initials of the person who created it.

This information is supplied by NLS as the content of a special
statement called 'statement zero. It is the only statement whose
initial content is supplied by NLS instead of by the user.

FollowinF statement zero, you can see that an NLS file is structured
like a standard indented outline. The numbers on the left are called
statement numbers . Statement zero is the only one whose statement

numver is not visible. The text following each statement number is
called a 'statement'. The statements in this example are very short;
however, statemnts nay contain up to 2000 characters each and often
consist of an entire paragraph of text.

The statement is the basic 'structure unit' of an NLS file. Larger
structure units called 'branches', 'groups', and 'plexes' are formed
from sets of statements. Of these, only branches will be of interest
to us initially.

The DINNER file has three main branches: branch 1, branch 2, and
branch 3. Branch 1 consists of all statements whose statement numbers
beFln with 1; branch 2 of all statements whose numbers begin with 2;
branch 3 similarly. The file contains several smiler branches as
well.

(Yr) 82

WHAT STATEMENTS ARE IN BRANCH 3A? (Please put spaces between the
statement numbers and terminate your list with a "*" followed by a
<CR>.)

3A1 and 3A2

CORRECT. HOWEVER, YOUR ANSWER IS INCOMPLETE.
3A1 AND 3A2 ARE O.K.
YOU COULD ALSO INCLUDE 3A.

WHAT STATEMENTS ARE IN BRANCH 1?
1, 1A, 1B, and 1C.

VERY GOOD.

Individual statements may be inserted, deleted, moved, transposed, and

copied within the file. Larger structure units like branches ray be
similarly manipulated.

Within a statement the basic "string units" are "words' and

"characters". A word has its usual intuitive definition; a character
is any individual symbol (letter, number, punctuation mark, space,
etc.) you can type on your keyboard. Individual words and characters
may also be inserted, deleted, changed, etc.

The terms statement, branch, plex, group, word, and character are
important because they are the nouns used as the second term of many

NLS commands.

Statement numbers are used to indicate the relative position of each

statement within the file. They are one kind of "address" by which you
may specify or "point to" a particular statement. Statement numbers
are assigned by the NLS system and may be changed by NLS when new
statements are inserted or old ones deleted.

QUESTIONS?

What statements are in branch 3A?

THE STATEMENTS IN BRANCH 3A ARE:
3A 3A1 3A2

Give me a definition of statement zero.

STATEMENT 0 IS A STATEMENT AT THE BEGINNING
OF EVERY NLS FILE CONTAINING IDENTIFYING
INFORMATION.

What i3 the content of statement zero now?

THE STATEMENT 0 IS:
<NLS-SCHOLAR>DINNER.LNLS;3, 28-AUG-74 08:28 CLH ;

83 87

**

DELETING A STATEMENT

To see how statement numbers are changed by NLS, let's pretend that
we've run out of tomato soup, rhubarb pie, and strawberry shortcake and
wish to delete these items from our menu. I'll delete the statement
containing "TOMATO", using* the Delete command.

EDIT C: (Delete) C: (Statement) at A: (1A)(<CR>);
OK: (<CR>);

EDIT C: (Done) OK: (<CR>);

I typed:

Delete Statement 1A <CR>

to produce the first line; the remaining characters were printed by
NLS. Whenever I type something, I'll indicate it by enclosing it
within parentheses.

You're already familiar with the C: prompt for command term. The A:
prompt is for an address; here I provided the statement number of the
statement to be deleted. Notice that I typed a <CR> after this address
to terminate the command. If I had typed an address which did not
exist in the file, such as 1D3, NLS would have printed a '2'. Then it
would have given me another A: prompt so I could supply a valid address
instead.

HLS asks OK: because it wants to confirm that I really nean to delete
statement 1A. (Once a statement has been deleted, it may be impossible
to recover its content.) I gave confirmation by typing <CR>; if it
wasn't OK I would have cancelled the command by typing <CTRL-X>.

QUESTIONS?

**

Your next task is to delete the statement containing "RHUBARB".
Before you start on that I'd like to remind you that there's another
place at which you can ask questions -- wherever there's an EDIT herald
in the margin. Instead of giving a command term you can type an
asterisk indicating that you wish to ask me a question. Then type in
your question, terminating it as 'usual with another asterisk. I will
attempt to answer your question and will then return you to NLS which
will print another EDIT herald in the margin. At that point, you can
either ask another question by typing an asterisk, or you can type a
command term. Thus if you don't know how to perform a given task, you
can ask questions about it.

Please use the Delete command to delete the statement containinr
"RHUBARB" from the menu.

88 84

TASK 3

EDIT C: *What is the address of the statement containing "RHUBARB"?*

THE ADDRESS OF THE STATEMENT CONTAINING "RHUBARB" IS:
3A1

continuation of TASK 3

EDIT C: *Where is the "RHUBARB"?*

THE ADDRESS OF "RHUBARB" IS:
3A1 + 7

continuation of TASK 3

EDIT C: *Where is the "TOMATO"?*

I CAN'T FIND AN ADDRESS FOR THAT.

continuation of TASK 3

EDIT C: Delete C: Statement at A: 1A1;
OK:_;

EDIT C: Done OK:_;

Very good. How delete the statement containing "STRAWBERRY SHORTCAKE".

TASK 4

EDIT C: Delete C: Statement at A: 3B;
OK:_;

EDIT C: Done OK:_;

Fine. Now the statements containing "TOMATO", "RHUBARB", AND
"STRAWBERRY SHORTCAKE" have all been deleted from the DINNER file.

QUESTIONS?

**

DELETING A BRANCH

Now let's suppose we've run out of scallops as well. Watch me try to
delete the statement containing "SCALLOPS".

85

EDIT C: (Delete) C: (Statement) at A: (2C)(<CR>);
OK: (<CR>);
ILLEGAL DELETE
EDIT C: (Done) OK: (<CR>);

NLS refused to delete statement 2C because it has the two
.

substatements' 2C1 and 2C2. It is not possible to delete any
statement having substatements.

In order to remove the statement "SCALLOPS" from our menu we will have
to delete the whole branch 2C, not just the statement 2C. (This is
reasonable since "BROILED" and "FRIED" apply only to the statement
"SCALLOPS" anyway.) Do that now, using the Delete command w_th
'Branch' as the noun instead of 'Statement'.

TASK 6

EDIT C: Delete C: Branch at A: 2C;
OK
EDIT C: Done OK:_;

ULS will also refuse to delete (or to move) statement zero or branch
zero since the information in statement zero is needed at the head of
the file.

QUESTIONS?

THE RENUMBERED FILE

Now let me show you what happens when I try to delete the statement
containing "BLUEBERRY" which used to follow the statement containing
"RHUBARB" on the menu.

EDIT C: (Delete) C: (Statement) at A: (3A2)(<CR>);
? A: (<CIRL-X>) 41
EDIT C: (Done) OK: (<CR>);

ILLS prints '?' because the DINNER file no longer contains a statement
with address 3A2. I typed <CTRL-X> after the A: to cancel the command
instead of providing, a new address. (Note that <CTRL-X> echoes as JO.)

When the statement containing "RHUBARB", 3A1, was deleted, the
statt .ent ontaininc! "BLUEBERRY" which was formerly 3A2 was 'promoted'
to become statement 3A1. So to delete the statement containing
"BLUEBERRY" we would have to delete statement 3A1 again.

Because some statements may be renumbered in this way whenever a
deletion occurs, it is important to update your view of the file.

Let me print the modified DINNER file for you now so you can see that

8 6

all our deletions have indeed occurred and what effect they have had on
the numbering of the file.

EDIT C: (Jump) to A: (0)(<CR>);
EDIT C: (Print) OK:/C: (<CR>);

<NLS-SCHOLAR>DINNER.LNLS;3, 28-AUG-74 08:28 CLH ;

1 SOUP
1A VEGETABLE
IB CREAM OF MUSHROOM

2 ENTREE
2A FRIED CHICKEN
2B PRIME RIBS
2C SALMON

2C1 WITH CREAM SAUCE
3 DESSERT

3A PIE
3A1 nLUEBERRY

3B ICE CREAM
3B1 PEPPERMINT
3B2 fIAPLENUT
3B3 CHOCOLATE

EDIT C: (Done) OK: (<CR>);

Please tear off the paper again to compare this file with its earlier
version.

Note how the statement numbers have been changed by NLS. You can see
that many statements have been renumbered ("promoted"), some of them
acquiring, the statement numbers of the deleted statements. Although
statements 1A, 2C, 2C1, 3A1, and 3B were all deleted, these statement
numbers still exist in our file -- but ;he statements contents are now
different.

QUESTIONS?

What is the purpose of that jump command that you typed?

THE JUMP COHMAND MOVES THE CM.

What is the CH?

THE CM IS THE CONTROL HARKER THAT POINTS AT THE CURRENT CHARACTER.

THE CONTROI., MARKER (CH)

You may have noticed that instead of just typing "Print <CR>" as before
to print the DINNER file, I typed "Jump 0 <CR>" first. The reason for

87 9,.11.

this is as follows.

Whenever you are working with a file there is always a pointer called
the 'control marker' (CH) which points directly at some character in
the file. It indicates the current address within the file -- the
place where you are currently working.

Host editing commands cause the CH to be moved. For example, when a
file is first loaded the CH points to the first character of the file.
When you insert or delete some statements, the CH is moved.

The Print command followed by <CR> actually prints the content of the
current file from the current position of the CH all the way to the
end. Thus when a file is newly-loaded, 'Print <CR>' causes all of it
to be printed. Tho Print command does not change the position of the
CM.

QUESTIONS?

CH COHANDS

The Jump command is used to move the CH anywhere within the current
file. I moved the qm to the beginning of statement 0 so that the whole
file would be printed.

Use the Jump command yourself now to move the CH to the statement
containin- "CLUEBERFiY ". (Please be sure to consult the latest version
of the DINNER file as the statement numbers have been changed.)

TASK 7

EDIT C: Jump to A: 3A1;
EDIT C: Done OK:__;

To see the effect of this command, type just a single period, followed
by a space, after the EDIT herald.

TASK 8

EDIT C: . =3A1 +1
EDIT C: Done OK: ;

This one-character command may be used following any EDIT herald to
find the current position of the CH. The first number after the equals
sign is the statement number; the second number after the plus sign is
the character position within the statement to which the CH is
pointing. Thus the CH j.s now positioned at the first character of
statement 3A1.

QUESTIONS?

* *

By using the Jump commanc in conjanction with the Print command you can
start printing the current file wherever you like. Please use these
commands now to print just the threo ice cream flavors on your menu.

83 (:).-Z

TASK 9

EDIT C: Jump to A: 3B1;

EDIT C: Print OK:/C: ;

3B1 PEPPERMINT
3B2 MAPLENUT
3B3 CHOCOLATE

EDIT C: Done OK: ;

Now use the command again to see what has happened to the CM.

TASK 10

EDIT C: =3B1 +1
EDIT C: Done OK:__;

This shows you that 'Print <CR>' does not cause the CM to be moved.
The current position of the CM is still 3B +1 where you moved it with
the Jump command.

QUESTIONS?

CONTENT ADDRESSING

The address of a statement may be specified in a number of different
ways. One thing you may type after an A: prompt, as you've seen, is a
statement number.

Another thing you may type is a <CR>, which means that the address you
want is the current address.

A third thing, you may do is to specify the statement you want in terms
of its content rather than its statement number. For example, to jump
to the statement "BLUEBERRY", instead of typing:

Jump 3A1 <CR>

you could type:

Jump "BLUEBERRY" <CR>

with virtually the same effect. Using a content string as an address
relieves you from having to keep track of the current statement
numbers.

Try content addressing now by jumping to the statement "CHOCOLATE".
Remember that your content string must be enclosed in double quotes and
followed by a <CR>.

TASK 11

EDIT C: Jump co A: "CHOCOLATE";
EDIT C: Done OK: ;

89

You can determine the statement number of this statement by using the .

command again. Remember that this command is terminated by a space,
rather than a <CR>. Try that now.

TASK 12

EDIT C: =3B3 +0
EDIT C: Done OK:_;

Note that the CH is pointing to the ninth character of statement 3}*33,
not to its first character. When content addressing is used, the CM
always points to that character of the statement which matches the last
character of the content string.

QUESTIONS?

* *

Now see what happens when I try to use content addressing to jump to
the statement "FRIED CHICKEN".

EDIT C: (Jump) to A: ("FRIED CHICKEN")(<CR>);
? A: (<CTRL-X>)##

EDIT C: (Done) OK: (<CR>);

Here NLS is telling you that it can't find a statement containing
"FRIED CHICKEN" and it asks for another address. (I cancelled this
command by typing a <CTRL-X> after the second A: prompt.)

This is puzzling since "FRIED CHICKEN" is the content of statement 2A.
NLS can't find this statement because it always starts searching at the
current address (in this case 3B3 +0) and stops searching when it
reaches the end of the file.

When using content addressing, you must always be sure that the CH is
pointing to a statement which is earlier in the file than the one you
want to find. One way to be sure is to adopt the habit of always
moving the CH to statement zero before using a content address. Try to
jump to the statement "FRIED CHICKEN" again, by jumping to statement
zero first.

TASK 13

EDIT C: Jump to A: 0;
EDIT C: Jump to A: "FRIED CHICKEN";
EDIT C: Done OK:__;

Good. Now print the current position of the CM to determine where you
are.

TASK 14

EDIT C: =2A +13
EDIT C: Done OK:__;

When using content addressing it is not necessary to type the entire
content of the statement or even an entire word. Any string of

a
90

consecutive characters which uniquely identifies the statement is
sufficient. The file is searched sequentially and the first statement
which contains the content string is selected. If the current position
of the CM is statement zero, statement zero is searched first, then all
statements of branch 1, followed by all statements of branch 2, etc.

QUESTIONS?

ONE-CHARACTER COMMANDS THAT PRINT

The statement at which the CM is pointing is called the 'current
statement. You can print the current statement using the \ command.
The procedure is to type "\" followed by a space. Try that now and see
what happens.

TASK 15

EDIT C: \

2A FRIED CHICKEN
EDIT C: Done OK:__;

The statement directly before the current statement is said to be
"back" from it. To print the back statement you can use the t command.
The procedure is to type the single character 'T' followed by a space.
Try it.

TASK 16

EDIT C t

2 ENTREE
EDIT C: Done OK:__;

The t command moves the CM. Use the . command to find the current
position of the CM.

TASK 16A

EDIT C: . =2 +1
EDIT C: Done OK:__;

As you can see, the current statement is now statement 2.

The statement directly after the current statement is said to be 'next"

to it. To print the next statement, you can use the <LF> command. The
procedure is to type the key which says 'LINE FEED', followed by a
space. (The LINE FEED key will be denoted as <LF>; it will echo as

'%".) Do that now.

TASK 17

EDIT C: %

2A FRIED CHICKEN
EDIT C: Done OK:__

91

ft.." 4.4,

As you may have expected, the <F> command also moves the CM. What do
you think the current statement is now? (Be sure to terminate your
answer with '* <CR>'.)

2A

THAT'S RIGHT.

QUESTIONS?

* *

UPDATING YOUR FILE

That's about enough for the first lesson. Before quitting, however,
you should-'update' your file so that the changes you and I have made
during this session will be incorporated into the DINNER file. At
present these changes are stored in what is called its 'modification
file', rather than in the main file itself. Type:

Update File <CR>

and all the information in the modification file will become part of
the main file.

TASK 18

EDIT C: Update C: File OK:/C: ;

EDIT C: Done OK:__;

Good. The modification file is now empty, ready to receive new
changes. There is no need t90 specify that the main file is to be
stored away for further use. NLS does that automatically for you
whenever you load a different file to work with, or when you leave NLS
(or logout).

QUESTIONS?

* *

REVIEW OF LESSON ONE

Lesson One has introduced the following commands:

Load command
Print command
Delete command foo statements and branches
Jump command
Update command

(print the current statement)
(print the back statement)

<LF> (print the next statement)
(print the current position of the CM)

If you are unsure about any of these commands, this would be a good
time to ask questions about them.

1.4":
92

QUESTIONS?

**

Lesson One has introduced the following concepts:

structure unit
string unit
statement
branch
word
character

NLS command
one-character command
command term
control marker (CM)
<CR>
<CTRL-X>
<LF>

herald
prompt

C:

T:

A:

OK:
OK:/C:

current statement
next statement
back statement
statement zero
substatement

file
file name
current file
modification file
outline" structure

file specification
directory
extension
version number

address
statement number
content addressing
current address
current position of the CM

Agait if you have questions about any of these concepts, please ask

them now.

QUESTIONS?

* *

93

If you would like to practice what you have learned you may now print
or modify any part of the DINNER file that you wish. The modification
file that you create by doing that will not be kept, so your file will
not be permanently changed. However, you must not use the Update
command or your file may not be in a suitable form for doing Lesson
Two.

When you don't wish to give any more commands, or ask any more
questions, type 'Done <CR>. after the EDIT herald.

TASK 19

EDIT C: Done OK: ;

Lesson Two will teach you more about the structure of NLS files. It
will teach you how to insert statements, how to create a new file, and
how to modify existing statementL without deleting them. Au revoir.

94

LESSON 2

ECHOING

Hello. Nice to meet you again.

I'd like you to start by loading your DINNER file again and printing it
so we can see how to insert some more statements into it.

Before you do that, though, I'd like to confess that in Lesson One both
you and I did more typing than was really necessary to indicate which
commands we wanted. To specify each command term you need to type only
enough characters to identify that term uniquely. As soon as enough
characters are typed, you may hit the space bar and NLS will 'echo' the
rest of the characters, just as if you had typed the entire command
yourself. If you haven't provided enough characters, NLS will ring a
bell indicating that it needs more and will wait for you to provide
them. (Three characters are always sufficient.) Similarly if you type
a character which cannot possibly result in a valid command term, a
bell will ring and the character will not be accepted.

To see how this works, use the Load command to load the DINNER file.
Use as few characters in 'Load' and in 'File' as is possible for
recognition. (Please remember to type 'Done <CR>' afterwards.)

TASK 20

EDIT C: Load C: File T: DINNER;
(NLS-SCHOLAR, DINNER.LNLS;2,)

EDIT C: Done OK: ;

Please print this file so you can see its content. Again, practice
using only a few characters to specify 'Print'.

TASK 21

EDIT C: Print OK:/C: ;

<NLS-SCHOLAR>DINNER.LNLS;2 1- OCT -74 08:28 CLH ;

1 SOUP
1A VEGETABLE
IB CREAM OF MUSHROOM

2 ENTREE
2A FRIED CHICKEN
2B PRIME RIBS
2C SALMON

2C1 WITH CREAM SAUCE
3 DESSERT

3A PIE
3A1 BLUEBERRY

3B ICE CREAM
3B1 PEPPERMINT
3B2 MAPLENUT
363 CHOCOLATE

EDIT C: Done OK: ,

Please tear off the paper here so you can refer to this file easily.

95 99

Note that the information in statement zero has been changed to
indicate that this is version 2 of the file rather than version 1.
Every time a file is updated, its version number is incremented by 1.

QUESTIONS?

* *

LEVELS AND FIELDS

Let's look more closely at the structure of this file, by examining the
composition of the statement numbers.

Statement numbers are composed of alternating 'fields' of digits and
letters. The number of fields specifies the 'level" of the statement
within the file. For example, statement 1A is at level 2.

What is the level of statement 3B3?
(Please remember to terminate your answer with '* <CR>..)

3

THAT'S RIGHT.

What statements are at level 1?

1 2 3

VERY GOOD.

Although the statement number C) consists of only one field, statement
zero is not at level 1. Statement zero is an exception to the general
rule. It is at level zero, the highest level in the file. Since all
statements are at a lower level than statement zero, branch zero
consists of all the statements in the file.

QUESTIONS?

* *

Level numbers are never used in specifying NLS commands. However it is
important to understand what they mean. When you insert a new
statement in a file you must specify which statement it is to follow
and also any difference in level between the new statement and the one
before it.

Differences in level are described with the terms 'up' and 'down'. For
example, if you wished to insert a statement to be numbered 1A, you
would specify that it was to follow statement 1 one level down. If you
wished to insert a statement 2 you could specify that it was to follow
statement 1 at the sane level.

If a branch 1 already existed which looked as follows:

1

1A
1B

1B1

96
100

It would also be possible to insert statement 2 by saying that it
followed statement 1B one level up, or that it followed statement 1B1
two levels up.

All insertions may be specified using only the terms 'down' and
'same'; ; however 'up' is provided as an added convenience.

QUESTIONS?

INSERTING A STATEMENT

To insert a new statement in a file, one uses the Insert command and
gives the address of the statement after which the insertion is to be
made.

Let me show you how to change our dinner menu by inserting 'VANILLA' as
the first choice of ice creams.

EDIT C: (I)nsert C: (St)atement to follow A: (3B)(<CR>);
L: (d)(<CR>);
T: (VANILLA)(<CR>);

EDIT C: (Do)ne OK: (<CR>);

I typed only 'I St 3B <CR>' to create the first line above. (I could,
of course, have used the content address "ICE" instead of '3B' if I
preferred.) You're already familiar with the C: and A: prompts which
this line contains.

The L: prompt indicates that NLS needs to know whether an adjustment in
level is needed. That is, whether the new statement is to be at the
same level as the one before it, or whether one must go up or down to
reach the level desired for the new statement. In this case I typed 'd
<CR>' for down to indicate that the new statement is to be after
statement 3B one level down. That is, it is to be numbered 3B1.

The T: prompt, as you know, means that NLS is expecting some text. In

this case I typed 'VANILLA <CR>', the content of the statement to be
inserted.

QUESTIONS?

**

When using the Insert command, you must remember to type a <CR> after
you type the address, the level adjustment, and the text.

In all the tasks which follow, you may use either a statement number or
a content address after the A: prompt. You will probably make fewer
errors, however, if you stick to the statement numbers. (If you make
an insertion you don't intend, you can use the Delete command to remove
your error.)

Please practice the Insert command yourself by inserting APPLE as the
first choice of pies.

s 4f ' 4'
97

TASK 22

EDIT C: Insert C: Statement to follow A: 3A;
L: d;
T: APPLE;

EDIT C: Done OK:__;

Please print the file again to see whether this insertion has been made
properly, and how the statement numbers have again been changed. Since
only the desserts have been altered, please start printing at statement
3.

TASK 23

EDIT C: Jump to A: 3;

EDIT C: Print OK:/C:__;
3 DESSERT

3A PIE
3A1 APPLE
3A2 BLUEBERRY

3B ICE CREAM
3B1 VANILLA
3B2 PEPPERMINT
3B3 HAPLENUT
3B4 CHOCOLATE

EDIT C: Done OK: ;

Fine. As you can see, NLS has inserted a new statement 3A1 with the
content "APPLE" and a new Statement 3B1 with the content "VANILLA". It
has renumbered (-demoted') the statements which follow at the same
level.

QUESTIONS?

**

Let's see now how to add a list of beverages to the end of our dinner
menu. Suppose we begin by inserting the heading BEVERAGE as a new
statement right after DESSERT and at the same level with SOUP, ENTREE,
and DESSERT.

What will its statement number be?

4

YOU ARE CORRECT.

You can cause NLS to assign statement number 4 to the new statement by
inserting it after 3 and at the same level. You indicate 'same' by
typing a <CR> after the L: prompt to indicate that no level adjustment
is needed. Hake a new statement 4 now with the content BEVERAGE.

TASK 24

EDIT C: Insert_, C: Statement to follow A: 3;

L:__;
T: BEVERAGE;
EDIT C: Done OK: _;

1.()P; 93

The statement you've just inserted is the current statement, so you can
see if you've inserted it correctly by simply typing '\' followed by a

space. Do that now.

TASK 25

EDIT C: \

4 BEVERAGE
EDIT C: Done OK:

Good. There are two other ways in which you could have specified this
new statement with exactly the same result. You could have inserted a
statement after 3B one level up, or after 384 two levels up. 'Up' is
indicated by typing 'u <CR>' after the L: prompt. More than one up or
down is specified by typing the desired number of u's or des before
typing a <CR>.

QUESTIONS?

**

Now let's insert the actual beverages themselves -- TEA and COFFEE.
These are to be the second-level substatements of statement 4; they are
to acquire the statement numbers 4A and 48. See if you can insert
these two statements yourself without further instruction. Print each
statement directly after you have entered it to check what you have
done.

Insert now the first beverage, TEA, and print the result.

TASK 26

EDIT C: Insert C: Statement to follow A: 4;

L: d;
T: TEA;

EDIT C: \

4A TEA
EDIT C: Done OK: ;

Good. Now insert the second beverage, COFFEE, and print it also.

TASK 27

EDIT C: Insert C: Statement to follow A: 4A;

L:__;
T: COFFEE;

EDIT C: \

4B COFFEE
EDIT C: Done OK:___;

Fine. Note that the text we've been inserting has been so short that
it fits easily on a single line. However, statements may occupy
approximately 25 lines since they may contain up to 2000 characters.
When typing in some long text, do not hit a <CR> when you come to the

end of a line as that will terminate the Insert command. Just keep

typing and NLS will automatically return the carriage to the beginning

:103

99

of the next line for you.

Please print the entire file once more so you can see its completed
structure.

TASK 28

EDIT C: Jump to A: 0;
EDIT C: Print OK:/C:__;

<NLS-SCHOLAR>DINNER.LNLS;2 1-OCT-74 08:28 CLH ;

1 SOUP
1A VEGETABLE
1B CREAM OF MUSHROOM

2 ENTREE
2A FRIED CHICKEN
2B PRIME RIBS
2C SALMON

2C1 WITH CREAM SAUCE
3 DESSERT

3A PIE
3A1 APPLE
3A2 BLUEBERRY

3B ICE CREAM
3B1 VANILLA
3B2 PEPPERHINT
383 MAPLENUT
384 CHOCOLATE

4 BEVERAGE
4A TEA
4B COFFEE

EDIT C: Done OK: ;

Please update this file to incorporate our changes into its main copy.

TASK 29

EDIT C: Update C: File OK:/C:__;
EDIT C: Done OK:;

QUESTIONS?

CREATING A FILE

Now that the dinner menu is completed, I'd like to show you a menu for
breakfast. To see its content, load and print the file BREAKFAST.

TASK 30

EDIT C: Load C: File T: BREAKFAST;
(IlLS- SCHOLAR, BREAKFAST.LNESO,)

EDIT C: Print OK:/C: ;

<NLS-SCHOLAR>BREAKFAST.LNLSO i-OCT-74 03:50 CLH ;

1 JUICE
1A ORANGE
1B GRAPEFRUIT

104 100

2 CEREAL
2A OATMEAL

2A1 WITH RAISINS
2B CREAM OF WHEAT
2C CORN FLAKES

3 EGGS
3A SCRAMBLED
3B FRIED .

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY

3C BOILED
4 BEVERAGE

4A HOT CHOCOLATE
4B TEA

4B1 WITH LEMON
4B2 WITH SUGAR AND CREAM

4C COFFEE
EDIT C: Done OK: ;

Please tear off the paper here, so you can refer to this file in what
follows.

The DINNER file has been automatically stored away and BREAKFAST is now
the current file.

Your next job is to create a new file named MYBREAKFAST, and to insert
statements into it until it's the same as the BREAKFAST file which you
just printed.

To create a new file, use the Create command. Specify that the name of
the file is to be HYBREAKFAST. Please do that now.

TASK 31
. .

EDIT C: Create C: File T: MYBREAKFAST;
(NLS-SCHOLAR, MYBREAKFAST.LNLS;1,)

EDIT C: Done OK:__;

Good. Now the file BREAKFAST has automatically been stored away and
the file YBREAKFAST has become the current file.

QUESTIONS?

**

INSERTING STATEMENTS IN A NEW FILE

Although this file is new, it is not truly empty. To see its content,

use the Print command.

TASK 32

EDIT C: Print OK:/C:__;
<NLS-SCHOLAR>MYBREAKFAST.LNLS;1 .1-OCT-74 08:30 CLH ;

EDIT C: Done OK:_.;

101

You can see that NLS has already provided a statement zero for this
file and filled it with identifying information. This is always done
automatically whenever a new file is created.

The existence of statement zero is important since it provides an
initial statement in the file after which an insertion can be made.
Remember that when inserting a statement you must specify an already
existing statement which your insertion is to follow. You must always
start a new file by inserting statement 1 after statement zero, because
statement zero is the only statement in the file.

Since statement zero is at level zero, the highest level of the file,
what should you type after the L: prompt of an Insert command to
insert statement 1 after statement zero?

d

VERY GOOD.

Start now to copy the BREAKFAST file by inserting statement 1 with the
content "JUICE" in the NYBREAKFAST file.

TASK 33

EDIT C: Insert C: Statement to follow A: 0;
L: d;
T: JUICE;

EDIT C: Done OK:__;

Good. Your file now contains statement 0 and statement 1, which has
the content "JUICE". Proceed to insert the next first-level heading,
"CEREAL", as statement 2. Print the statement as soon as you've
inserted it by using the '\' command.

TiViK 34

C: Insert C: Statement to follow A: 1;

L: _;
T: CEREAL;

EDIT C: \

2 CEREAL
EDIT C: Done OK:___;

Fine. Now insert the re.laining headings, "EGGS" and "BEVERAGE", as
statements 3 and 4. Print each one as soon as you've inserted it.

TASK 35

EDIT C: Insert C: Statement to follow A: _2;

L:

T: EGGS;
EDIT C: \

3 EGGS
EDIT C: Insert C: Statement to follow A: 3;

L:__;
T: BEVERAGE;

102

EDIT C: \

4 BEVERAGE
EDIT C: Done OK: ;

QUESTIONS?

**

REPEAT MODE

OK. Now let's go back and fill in the lower level statements of the
file. Tnis task presents no new problems and constitutes a review of
what you've learned earlier.

But again, I'd like to confess that you did more typing than was
necessary. If you wish to use the same command repeatedly, you can
terminate the command by typing <CTRL-B> instead of <CR>. This puts
you into what is called 'repeat mode'. Let me show you how that works,
with the Insert command by inserting the two juices, "ORANGE" and
"GRAPEFRUIT", as statements 1A and 1B.

EDIT C: (I)nsert C: (St)atement to follow A: (1)(<CR>);

L: (d)(<CR>);
T: (ORAUGE)(<CTRL-B>)-B A: (1A)(<CR>);
L: (<CR>);
T: (GRAPEFRUIT)(<CR >);

EDIT C: (Do)ne OK: (<CR>);

At the end of the first text, "ORANGE", I typed <CTRL-B> instead of

<CR>. (Note that this echoes as -B.) This indicated that I wanted to

repeat the Insert command. So NLS proceeded as if I had typed 'I St '

and gave ne an A: prompt asking for the address. I then proceeded as
usual, typing a .<CR> at.the.end of the second text, "GRAPEFRUIT".

QUESTIONS?

**

Try using repeat mode to insert the remaining statements of branch 2.
Statement 2, with content "CEREAL", already exists in the MYBREAKFAST
file. Proceed to insert after it all the statements .under it, reading

them from the BREAKFAST file. Remember to type <CTRL-B> rather than
<CR> to terminate every text but the last. When you've entered the end
statement of the branch, statement 2C, type <CR> to return to the EDIT

herald. Please begin now.

TASK 36

EDIT C: Insert C: Statement to follow A: 2;

L: d;
T: OATHEAL-B A: 2A;

L: d;
T: WITH RAISINS-B A: 2A1;

L: u;

T: CREAM OF WHEAT-B A: 2B;

L: _;
T: CORN FLAKES;

EDIT C: Done OK:__;

Great. Please print your file starting with statement 2 to see what it

looks like. art?
103

TASK 37

EDIT C: Au1112...to A: 2;
EDIT C: Print OK:/C:__;

2 CEREAL
2A OATMEAL

2A1 WITH RAISINS
2B CREAM OF WHEAT
2C CORN FLAKES

3 EGGS
4 BEVERAGE

EDIT C: Done OK:__;

QUESTIONS?

CURRENT ADDRESS

Let's proceed with the MYBREAKFAST file by inserting the remaining
statements of branch 3. This task is virtually the same as that of
inserting the statements of branch 2, but let me show you one more way
of making it even shorter.

Instead of typing a statement number or a content address every time an
A: prompt appears, you can often type just a <CR>. This indicates that
the address you want is that of the current statement. Since one often
inserts statements in sequential order, the address you want to follow
is usually the current address. Let me :show you how this works.

EDIT C: (I)nsert C: (St)atement to follow A: (3)(<CR>);
L: (d)(<CR>);
T: (SCRAMBLED)(<CTRL-B>)-B A: (<CR>); L: (<CR>):
T: (FRIED)(<CTRL-B>)-B A: (<CR>); L: (d)(<CR>);
T: (SUNNY-SIDE-UP)(<CTRL-BWB A: (<CR>); L: (<CR>);
T: (OVER-EASY)(<CTRL-B>)-B A: (<CR>); L: (u)(.<CR>);
T: (BOILED)(<CR>);
EDIT C: (Do)ne OK: (<CR>);

After every A: prompt except the first I simply typed <CR> to indicate
that each new insertion is to follow the one before. When the address
is specified in this manner, NLS puts the L: prompt on the same line,
changinp the format so that the T: prompt is always at the left.

Print the file starting at statement 3 to see that these insertion3
have been made properly.

TASK 38

-EDIT C: !limo to A: 2.;

EDIT C: Print OK:/C: ;

3 EGGS
3A SCRAMBLED
3B FRIED

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY

3C BOILED

104

:108

4 BEVERAGE
EDIT C: Done OK:;

QUESTIONS?

**

Try using the current address in conjunction with repeat mode to finish
the MYBREAKFAST file by inserting the remaining statements of branch 4.

TASK 39

EDIT C: Insert C: Statement to follow A: 4;

L: d;

T: HOT CHOCOLATE-B A:__; L:__;
T: TEA-B A:_; L: d;
T: WITH LEMON-B A:___; L: _;
T: WITH SUGAR AND CREAM-B A: _; L: u;

T: COFFEE;
EDIT C: Done OK: _;

Please update and then print the completed MYBREAKFAST file, starting
with statement 0, so you can compare it with the BREAKFAST file.

TASK 40

EDIT C: Update C: File OK:/C:__;
EDIT C: Jump to A: 0;

EDIT C: Print OK:/C:__;
<NLS-SCHOLARMYBREAKFAST.LNLS;2 1-OCT-74 08:55 CLH ;

1 JUICE
1A ORANGE
1B GRAPEFRUIT

2 CEREAL
2A OATMEAL

2A1 WITH RAISINS
2B CREAM OF WHEAT
2C CORN FLAKES

3 EGGS
3A SCRAMBLED
3B FRIED

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY

3C BOILED
4 BEVERAGE

4A HOT CHOCOLATE
4B TEA

4B1 WITH LEMON
4B2 WITH SUGAR AND CREAM

4C COFFEE
EDIT C: Done OK:__;

You can see that the files are identical except for the information in
statement 0.

QUESTIONS?

**

105

SUBSTITUTE WORD IN STATEMENT

Before we end this lesson, I'd like to show you how to change the
content of statements which have already been inserted in your file.

You've learned how to correct errors by deleting an entire statement
and inserting a new one in its place. The Substitute command may be
used to change just a word or even a single character at a time. For
example, here's how you can change a word in statement 2A1 so that it
reads "WITH DATES" instea of "WITH RAISINS".

EDIT C: (Su)bstitute C: (W)ord in C: (S)tatement at A: (2A1)(<CR>);
<New WORD> T: (DATES)(<CR>);
<Old WORD> T: (RAISINS)(<CR >);

Finished? Y/N: OK: (<CR>);
Substitutions made: 1

EDIT C: (Do)ne OK: (<CR>);

You can see that I've specified that I want to substitute one word in
statement 2A1 for another; the new word "DATES" is to be substituted
for the old word "RAISINS". (There is no restriction that the items
substituted for one another be of the same length.)

To do this I typed only 'Su W S 2A1 <CR>' to produce the first line; I

typed 'DATES <CR>' and 'RAISINS <CR>' to produce the second and third.
The remaining characters are all printed by NLS.

NLS asks Finished? since more than one substitution can be made at a
time. If I had typed 'N' for no instead of 'Y' for yes, it would have
prompted for another <New WORD> and <Old WORD> pair.

After I typed 'Y' -- which you won't see because it isn't echoed -- NLS
asks for further confirmation with OK: to which I responded with a
<CR>.

When the command has been executed, NLS tells how many substitutions
have been made. If there had been two instances of RAISINS in
statement 2A1, both would have been changed to read DATES.

Statement 2A1 is now the current statement. Please print it.

TASK 41

EDIT C: /
==>WITH DAT

EDIT C: I

2A OATHEAL
EDIT C: %

2A1 WITH DATES
EDIT C: Done OK:_;

106

You printed too many statements.
This is what I wanted you to print:
2A1 WITH DATES

Please try to print what
wanted. The file is as you left it.

continuation of TASK 41

EDIT C: *What command prints the current statement?*

THE USER PRINTS THE CURRENT STATEMENT USING THE
\ COMMAND.

continuation of TASK 41

EDIT C: \

2A1 WITH DATES
EDIT C: Done OK:;

QUESTIONS?

**

Try the Substitute command yourself by substituting the word "OAT" for
"CORN" in stat;',ment 2C, "CORN FLAKES".

TASK 42

EDIT C: Substitute C: Word in C: Statement at A: 2C;
<New WORD> T: CORN;
<Old WORD> T: OAT;

Finished? Y/N: OK:_;
Substitutions made: 0
EDIT C: Done OK:_;

I wanted you to change
this part of your file:

2B CREAM OF WHEAT
2C CORN FLAKES

3 . . .

into this:
2B CREAM OF WHEAT
2C OAT FLAKES

3 . . .

But you did not make any changes to your file.

Please try to finish this task.
You may continue where you left off.

107

continuation of TASK 42

EDIT C: Substitute C: Word in C: Statement at A: 2C;
<New WORD> T: OAT;
<Old WORD> T: CORN ;

Finished? YIN:__OK:_;
Substitutions made: 1

EDIT C: Done OK:_;

You should have altered the file,
so that this part of it

2B CREAM OF WHEAT
2C CORN FLAKES

3 . . .

would look like this:
2B CREAM OF WHEAT
2C OAT FLAKES

3 . . .

But you altered this part of it
2B CREAM OF WHEAT
2C CORN FLAKES

3 . . .

to look like this:
2B CREAM OF WHEAT
2C OATFLAKES

3 . . .

I have restored the file as it was
at the beginning of this task. Please start over.

TASK 42

EDIT C: Substitute C: Word in C: Statement at A: 2C;
<New WORD> T: OAT;
<Old WORD> T: CORN;

Finished? Y/N:__OK:_;
Substitutions made: 1

EDIT C: Done OK:_;

Now print your result.

TASK 43

EDIT C: \

2C OAT FLAKES
EDIT C: Done OK:_;

Good. The noun "WORD" refers to the fact that whole words are
involved, not just parts of words; but it does not imply that a single
word only may be provided as either the <New WORD> or the <Old WORD>.

108 -1 -"P

Use the Substitute command to change statement 2A1 again, this
time to read WITH BROWN SUGAR AND CREAM instead of WITH DATES' and
print your result.

TASK 44

EDIT C: Substitute C: Word in C: Statement at A: 2A1*
<New WORD> T: WITH BROWN SUGAR AND CREAM;
<Old WORD> T: DATES;

Finished? Y/N:__OK:_;
Substitutions made: 1

EDIT C: Done OK:_..;

What I wanted you to do
should have transformed this:

2A OATMEAL
2A1 WITH DATES

2B . . .

into this:
2A OATMEAL

2A1 WITH BROWN SUGAR AND CREAM
2B . . .

But what you did transformed this:
2A OATMEAL

2A1 WITH DATES
2B . . .

into this:
2A OATMEAL

2A1 WITH WITH BROWN SUGAR AND CREAM
2B . . .

Please try again. I have
restored the file to its original state.

TASK 44

EDIT C: *How do I do this confusing task?*

THE USER TYPES 'SUBSTITUTE ', FOLLOWED BY 'WORD ',
'STATEMENT ', '2A1', <CR>, 'BROWN SUGAR AND CREAM ,

<CR>, 'DATES', <CR>, 'Y', <CR>, '\', A <SPACE>,
'DONE ', AND <CR>.

continuation of TASK 44

EDIT C: *Please do it for me*

109

EDIT C: (Substitute) C: (Word) in C: (Statement) at A: (2A1
)(<CR>);
<New WORD> T: (BROWN SUGAR AND.CREAM)(<CD);
<Old WORD> T: (DATES)(<CR>);

Finished? Y/N: OK: (<CR>);
Substitutions made: 1

EDIT C: (\)

2A1 WITH BROWN SUGAR AND CREAM
EDIT C: (Done) OK: (<CR>);

QUESTIONS?

* *

SUBSTITUTE CHARACTER IN STATEMENT

Another noun which may follow the verb 'Substitute' is 'Character'.
Thus one may make substitutions in terms of a single character; or a
string of characters as well as in terms of words. Watch what happens
when I substitute the characters "EA" for "U" in statement 2B, CREAM OF
WHEAT.

EDIT C: (Su)bstitute C: (C)haracter in C: (S)tatement at A: (2B
)(<CR>);
<New CHARACTER> T: (U)(<CR>);
<Old CHARACTER> T: (EA)(<CR>);

Finished? Y/N: OK: (<CR>);
Substitutions made: 2
EDIT C: (\)

2B CRUM OF WHUT
EDIT C: (Do)ne OK: (<CR>);

QUESTIONS?

SUBSTITUTE CHARACTER IN BRANCH

Rather than substituting a word or character in just a single statement
you may make the substitution for all statements of a branch. Try that
now by substituting asterisks (*) for all the hyphens (-) in branch 3B.

TASK 45

EDIT C: Substitute C: Character in C: Branch at A: 3B;
<New CHARACTER> T: :;

<Old CHARACTER> T: .71;
Finished? Y/N:__OK:_:
Substitutions made: 3
EDIT C: Done OK:_;

You should have altered the file,
so that this part of it

110

3B FRIED
381 SUNNY-SIDE-UP
3B2 OVER-EASY

3C . . .

would look like this:
3B FRIED

3B1 SUNNY*SIDE*UP
3B2 OVER*EASY

3C . . .

_But you altered this part of it
3B FRIED

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY

3C . . .

to look like this:
3B FRIED

3B1 SUNNY:SIDE:UP
3B2 OVER:EASY

3C . . .

I have restored the file as it was
at the beginning of this task. Please start over.

TASK 45

EDIT C: *Do this task,please*

EDIT C: (Substitute) C: (Character) in C: (Branch) at A: (3B
)(<CR>);

.

<New CHARACTER> T: (*)(<CR>);
<Old CHARACTER> T: (-)(<CR>);

Finished? Y/N: OK: (<CR>);
Substitutions made: 3
EDIT C: (Done) OK: (<CR>);

The message 'Substitute in Progress' is printed by NLS to indicate that
it is busy working. There is no practical limit to the number of
substitutions which may occur as the result of a single Substitute
command. Using branch 0 as the address results in the substitution(s)
being made over the entire file.

Please print the file starting with statement 1 so you can see the
effect of the changes we have made.

TASK 46

EDIT C: *Tell me how to print the file*

THE USER PRINTS AN NLS FILE FROM THE CURRENT STATEMENT
..,..11.,,.

111

TO THE END OF AN NLS FILE USING THE PRINT COMMAND,
PROCEDURE: HE TYPES 'PRINT FOLLOWED BY <CR>.

continuation of TASK 46

EDIT C: *what'does current statement mean?*

THE CURRENT STATEMENT IS THE STATEMENT AT
WHICH THE CM IS CURRENTLY POINTING.

continuation of TASK 46

EDIT C: *Where is the control marker now?*

THE CURRENT POSITION OF THE CM IS:
= 3B + 1

continuation of TASK 46

EDIT C: *How do I move the CM?*

THE USER MOVES THE CH USING A CM MOVING COMMAND.

continuation of TASK 46

EDIT C: *What are the CM moving commands?*

EXAMPLES OF A CH MOVING COMMAND ARE THE JUMP COMMAND,
THE COMMAND, AND THE > COMMAND.

continuation of TASK 46

EDIT C: *What does the jump command do?*

THE JUMP COMMAND MOVES THE CM.

continuation of TASK 46

EDIT C: Jump to A: 1;

EDIT C: Print OK:/C:_;
1 JUICE

1A ORANGE

112

1B GRAPEFRUIT
2 CEREAL

2A OATMEAL
2A1 WITH BROWN SUGAR AND CREAM

2B CRUM OF WHUT
2C OAT FLAKES

3 EGGS
3A SCRAMBLED
3B FRIED

381 SUNNY*SIDE*UP
3B2 OVER*EASY

3C BOILED
4 BEVERAGE

4A HOT CHOCOLATE
4B TEA

4BI WITH LEMON
4E2 WITH SUGAR AND CREAM

4C COFFEE
EDIT C: Done OK: ;

QUESTIONS?

How do I print just branch 3?

THE USER PRINTS BRANCH 3 USING THE PRINT COMMAND,
PROCEDURE: HE TYPES 'PRINT ', FOLLOWED BY
'BRANCH ', '3', <CR>, VIEWSPECS, AND <CR>.

THE QUESTION MARK FACILITY

You can now practice further with the Substitute command, trying
different combinations of command terms and making more than one
substitution at a time by typing N instead of Y after FINISHED?.

Yod may also wish to practice further using content addressing, and to
insert, delete, and create new files.

As you do this, you may benefit from using the question mark facility.
After any C: prompt you may type '?' and NLS will provide you with a

list of all command terms which are valid at that point. You may then
type one of them and proceed.

If you type '?' after an EDIT C: you will be presented with a complete
list of NLS verbs; this is probably more information than you desire.

We will use the BREAKFAST file in Lesson 3, so that should not be

modified. However you may change the IIYBREAKFAST file, which is the
current file, in any way that you wish. Please play with the file,
trying out the various commands you have learned. Type 'Done <CR>' as
usual when you're all finished.

.......,...4.:21

113

TASK 47
)

EDIT C: Done OK: ;

QUESTIONS?

NLS

t

...USING A DIS?OSABLE COPY OF YOUR FILE

EDIT C: Print OK:/C:__C:__
CURRENT ALTERNATIVES ARE:
Branch Statement Plex Group
---- ##
EDIT C: S
CURRENT ALTERNATIVES ARE:
Substitute Set Show
---- ##
EDIT C: D
CURRENT ALTERNATIVES ARE:
Delete Done
----_##
EDIT C: Substitute C:
CURRENT ALTERNATIVES ARE:
Character Word Visible Invisible
Text
----__##
EDIT C: Done OK:;

...DISPOSING OF THIS COPY

REVIEW OF LESSON TWO

Lesson Two has introduced the following commands:

Insert command
Create command
Substitute command for words in statements

for characters in statements
for characters in branches

QUESTIONS?

It has also introduced the following concepts:

echoing
field
level
level zero

114

e

L: prompt
level adjustment

up (u)
down (d)
same (<CR>)

repeat mode
<CTRL-B>
question mark facility

QUESTIONS?

What is a field?

A FIELD IS A SEQUENCE OF CONTIGUOUS LETTERS OR CONTIGUOUS DIGITS
WITHIN A STATEMENT NUMBER.

What statements are at level 2?

THE STATEMENTS AT LEVEL 2 ARE:
1A ifs 2A 2B 2C 3A 3B 3C 4A 4B 4C

What is the level of statement 14AC3?

THE LEVEL OF STATEMENT 14AC3 IS:
3

What is the level of statement zero?

THE LEVEL OF STATEMENT 0 IS:
0

Define repeat mode

REPEAT MODE IS A METHOD OF REPEATING THE INSERT COMMAND WITHOUT

HAVING TO DO EXTRA TYPING.

How do I use repeat mode?

THE USER REPEATS THE INSERT COMMAND USING
REPEAT MODE,
PROCEDURE: HE TYPES <CTRL-B> AFTER THE INSERT COMMAND.

Lesson Three will introduce selective printing, viewspecs, groups,
plexes, and commands which move and copy structures. Au revoir.

115 ,A,..4,,...

LESSON THREE

REVIEW OF PRINTING COMMANDS

Hello. Welcome back.

I'd like to start this lesson by reviewing what you know about
printing.

In Lesson One you learned how to move the CM with the Jump command, and
to print the current statement by typing a one-character command. What
character prints the current statement?

* \ *

Right. What character prints the back statement?

*Tie

Good. What character prints the next statement?

%

That's right. You also learned how to print the entire content of a
file by moving the CM to statement zero and typing simply 'Print <CR>'.
If you wanted to print only part of a file you moved the CM to the
place at which you wanted to begin; then 'Print <CR>' caused the file
to be printed from there to the end.

QUESTIONS?

MODIFYING THE PRINT COMMAND

How I'd like to show you how to use the Print command to produce more
selective printing.

Instead of typing a <CR> directly after 'Print', you may type a noun
specifying the kind of structure unit you want printed. Thus you may
print a single statement by typing 'Print Statement' or an entire
branch by typing 'Print Branch'. Let me show you how this works by
printing branch 3 of the BREAKFAST file.

Please load the BREAKFAST file for me so I can begin.

TASK 48

EDIT C: Load C: File T: BREAKFAST;
(NLS-SCHOLAR, BREAKFAST.LNLS;2,)

EDIT C: Done OK: ;

Thank you. Now I'll print branch 3.

EDIT C: (Pri)nt OK:/C: C: (B)ranch at A: (3)(<CR>);
V: (<CR>);
3 EGGS

3A SCRAMBLED
3B FRIED

_,..r....5%)

116

I

.

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY

3C BOILED
EDIT C: (Do)ne OK: (<CR>);

NLS prompts with OK:/C: to indicate that you may type either a <CR> or
a command term. When I typed 'B' for branch, it echoed the C: prompt
again to indicate that I had chosen a command term. It then prompts
with A: for address because it needs to know which branch is to be
printed.

The V: prompt stands for 'viewspecs' which I'll describe presently. I

typed a <CR> to indicate that no change in viewspecs was needed.

Use the Print command yourself now to print branch 3B, a sub-branch of
branch 3 consisti.ig of all statements whose numbers begin with 3B. For
the present, just type a <CR> whenever the V: prompt appears.

TASK 19

EDIT C: Print OK:/C: C: Branch at A: 3B;

V:__;
3B FRIED

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY

EDIT C: Done OK:__;

Good. Similarly you can print just a single statement at a time by
using 'Statement' as the noun following 'Print'. Try that now by
printing statement 3B1.

TASK 50

EDIT C: Print OK:/C: C: Statement at A: 3B1;

V:__;
3B1 SUNNY-SIDE-UP

EDIT C: Done OK:__;

Note that this gives the same effect as 'Jump 3B1' followed by the '\'

'command.

QUESTIONS?

* *

VIEWSPECS

The V: prompt appears whenever you modify the Print command. It asks

whether you wish to change the 'viewspecs'. Viewspecs control the way
in which you view a file. For example, they control whether the
statement numbers are printed or not, whether indenting is done or not,
whether only first level statements of the file are shown or all
statements, whether blank lines are printed between statements or not,

etc.

ULS provides a standard set of 'default' viewspecs which are suitable

for most purposes. It also allows the user to specify the viewspecs

which he would like to have as the standard ones and to change these

LI.2.1..
117

standard viewspecs during the course of his work. For this primer I've
chosen to set the standard viewspecs so that statement numbers are
printed to the left of each statement, 3 spaces are indented for each
level, and all lines and all levels of the file appear, and no blank
lines are printed between statements.

When you type just a <CR> after a V: prompt, it means that you are
satisfied with the standard viewspecs. If you want to change them for
this command only, you type a sequence of one or more 'viewspecs' after
the V: prompt. Each viewspec controls a different aspect of the
appearance of the file. Note that the file itself is not modified,
just your view of it.

The viewspecs are arranged in alphabetically contiguous pairs. The
first of the pair specifies that a particular viewspec feature is to
be 'on', whiXe the second specifies 'off'. For example, viewspec A
turns indenting on, while viewspec B turns indenting off.

To print branch 3 with statement numbers off (viewspec n) and indenting
off (viewspec B), you could do the following:

EDIT C: (Pri)nt OK:/C: C: (B)ranch at A: (3)(<CR>);
V: (Bn)(<CR>);
EGGS
SCRAMBLED
FRIED
SUNNY-SIDE-UP
OVER-EASY
BOILED

EDIT C: (Do)ne OK: (<CR>);

You can see that the appearance of the file is changed considerably
even though the content has remained the same.

Viewspec B and viewspec n remain in effect for this command only. They
are automatically changed back to the standard viewspecs viewspec A,
indenting on, and viewspec m, statement numbers on --- as soon as the
printing is completed. (Note that m and n are lower case characters --
you will not be aware of this if you are working with an upper case
only terminal.)

You can see that the standard viewspecs have not been changed if you
print branch 3 again, typing <CR> after the V: prompt to indicate the
standard viewspecs. Please do that now.

TASK 51

EDIT C: Print OK:/C: C: Branch at A: 3;

V: ;

3 EGGS
3A SCRAMBLED
3B FRIED

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY

3C BOILED
EDIT C: Done OK:__;

QUESTIONS?

* *
118

VIEWING SELECTED LEVELS

A more powerful use of viewspecs involves viewing certain levels of the
file selectively. For example, to gain a general idea of a file's
content, you could view only the first-level statements. This is done
with viewspec x, which causes only the first line of each first-level
statement to appear. (Here all our statements are so short that they
occupy only one line anyway. But remember that statements may contain
up to 2000 characters.) The standard viewspec is its companion,
viewspec w, show all lines and all levels.

Print branch 0 now -- the entire file -- with viewspec x in effect.
(Note that this is a lower case 'x'. If you are using an upper case
only terminal, you must use the shift character '!' before the 'x' to
indicate lower case -- that is, you must type '!x', but only a capital
X will be echoed.)

TASK 52

EDIT C: Print OK:/C: C: Branch at A: 0;

V: x;
<NLS-SCHOLAR>BREAKFAST.LNLS;1 01-OCT-74 08:20 CLH ;

1 JUICE
2 CEREAL
3 EGGS
4 BEVERAGE

EDIT C: Done OK:

Viewspec b, show one level more, may be used to increase the number of
levels which are visible. Each instance of a 'b' causes one more level
to be added. Print the entire file again, showing levels 1 and 2 by
using viewspes: b in conjunction with viewspec x. Note that you will
have to type the 'x' before the 'b' siftee the levels must first be set
to one and then increased. This is one of the few cases in which the
order in which the viewspecs are specified is of importance. (Note
also that this is a lower case 'b' so remember to use the shift
character '1' before each 'b' if you are working with an upper case

only terminal.)

TASK 53

EDIT C: Print OK:/C: C: Branch at A: 0;

V: xb;
<NLS-SCHOLAR>BREAKFAST.LNLS;1 01-OCT-74 08:20 CLH ;

1 JUICE
1A ORANGE
1B GRAPEFRUIT

2 CEREAL
2A OATMEAL
2B CREAM OF WHEAT
2C CORN FLAKES

3 EGGS
3A SCRAMBLED
3B FRIED
3C BOILED

4 BEVERAGE

1-3

119

4A HOT CHOCOLATE
4B TEA
4C COFFEE

EDIT C: Done OK: ;

Very good. If you had typed 'xbb' then three levels of the file would
have been shown.

QUESTIONS?

THE &I: IEWSPECS COMMAND

To change the standard viewspecs so they will remain in effect for more
than one command, you use the Set Viewspecs command. The viewspecs
which you supply following the V: prompt of this command will remain
in effect until you change them with another Set Viewspecs command.
I'll change the standard viewspecs now to show one level only, turn
statement numbers off, and turn blank lines on.

EDIT C: (Se)t C: (V)iewspecs V: (xny)(<CR>);
EDIT C: (Do)ne OK: (<CR>);

Viewspec y turns blank lines on, while its companion viewspec z turns
blank lines off. These are both lower case characters.

Now to show the effect of my changing the standard viewspecs, print the
whole BREAKFAST file again, using <CR> after the V: prompt to indicate
that you want the standard viewspecs.

TASK 54

EDIT C: Print OK:/C: C: Branch at A: 0;
V:,41

<NLS-SCHOLAR>BREAKFAST.LNLS;2, 21-MAY-74 21:37 AGB2 ;

JUICE

CEREAL

EGGS

BEVERAGE

EDIT C: Done Ox:_;

Good. Now print branch 4 without changing any viewspecs to see that
these viewspecs persist through more than one command.

TASK 55

EDIT C: Print OK:/C: C: Branch at A: 4;
V: g
4 BEVERAGE

EDIT C: Done OK:_.;

1,4:4120

I

*

4

$

With regard to the V: viewspecs,
I did not want you to change the V: viewspecs;

but you set the V: viewspecs to m.

Please try again. I have
restored the file to its original state.

TASK 55

EDIT C: *What are the current viewspecs?*

THE CURRENT VIEWSPECS ARE:
levels: 1 , lines: 1 , hjnyACFHJLP

continuation of TASK 55

EDIT C: *What does viewspec m do?*

VIEWSPEC m TURNS STATEMENT NUMBERS ON.

continuation of TASK 55

EDIT C: Print OK:/C: C: Branch at A: 4;

V:_;
BEVERAGE

EDIT C: Done OK:,j

Now please change the standard viewspecs back the way they were:

-- show all levels
-- turn statement numbers on
-- turn blank lines off
so that we can proceed.

TASK 56

EDIT C: *How do I turn blank lines off?*

VIEWSPEC z TURNS BLANK LINES OFF.

continuation of TASK 56

EDIT C: Set C: Viewspecs V: z;

EDIT C: Done OK:_;

With regard to the standard viewspecs,
I wanted you to turn the blank lines off,
to turn the statement numbers on,
to show all levels,
and to show all lines;

but you only turned the blank lines off.
That is not sufficient.

Please try to repair your
mistake. The fileis as you left it.

t..

continuation of TASK 56

EDIT C: *What viewspec turns statement numbers on?*

VIEWSPEC m TURNS STATEMENT NUMBERS ON.

continuation of TASK 56

EDIT C: Set C: Viewspecs V: mcr;
EDIT C: Done OK:_;

With regard to the standard viewspecs,
I wanted you to turn the blank lines off,
to turn the statement numbers on,
to show all levels,
and to show all lines;

but instead you turned Lhe blank lines off,
turned the statement numbers on,
showed all levels,
and showed 2 lines.

Please try to finish this task.
You may continue where you left off.

continuation of TASK 56

EDIT C: *What viewspec shows all lines?*

THE USER SHOWS ALL LINES USING VIEWSPEC w.

continuation of TASK 56

EDIT C: Set C: Viewspecs V: w;
EDIT C: Done OK:_;

122

4

Though I was expecting something
slightly different, your answer is also correct.

QUESTIONS?

* *

THE SHOW VIEWSPECS COMMAND

A common error in using NLS occurs when the student thinks some of his
statements are missing. He supposes they have not been inserted
properly or have somehow been deleted. Actually they may be
temporarily invisible because of the viewspec setting. To determine
the current setting of the viewspecs, use the Show Viewspecs command.
Please try that now to see what is printed.

TASK 57

EDIT C: Show C: Viewspecs
levels: ALL, lines: ALL, hjmzACFHJLP
EDIT C: Done OK:__;

The 'levels: ALL, lines: ALL' means that viewspec w is in effect.
(If viewspec x had been in effect, the message 'levels: 1. LINES: 1'

would have appeared.) The remaining viewspecs are simply listed in
alphabetical order with the lower case ones preceding the upper case
ones.

Each viewspec that is printed has a companion viewspec which is not
printed because it is not in effect at this time. In addition, some
viewspec pairs are not printed at all. For example, neither viewspec
b, show one level more, nor its companion viewspec a, show one level
less, appears here because information about their setting is

represented in the value of LEVELS.

As you can see, there are a great many viewspecs. If you are
interested in what they control you may look them all up on the NLS Cue

Card. However, the ones that have been introduced here are likely to

be sufficient for most purposes.

QUESTIONS?

* *

Now that the viewspecs are set to the original standard viewspecs,
please print the entire BREAKFAST file again so we can refer to it in

what follows.

TASK 58

EDIT C: Print OK:/C: C: Branch at A: 0;

V:__;
<NLS - SCHOLAR >BREAKFAST.LNLS;1 01-OCT-74 08:20 CLH ;

1 ,F ICE
A uRANGE

123
f,,,t.:.1

1B GRAPEFRUIT
2 CEREAL

2A OATMEAL
2A1 WITH RAISINS

2B CREAM OF WHEAT
2C CORN FLAKES

3 EGGS
3A SCRAMBLED
3B FRIED

3B1 SUNNY-SIDE-UP
3B2 OVER-EASY

3C BOILED
4 BEVERAGE

4A HOT CHOCOLATE
4B TEA

4B1 WITH LEMON
4B2 WITH SUGAR AND CREAM

4C COFFEE
EDIT C: Done OK: ;

Please tear off the paper here for future reference.

THE MOVE COMMAND

You've seen at the end of Lesson Two how to edit a file by using the
Substitute command to change tile content of an individual statement or
of all statements in a branch. Now I'd like to show you how to change
the structure of your file by changing the position of the statements
rather than their content.

The Move command causes a structure unit (statement, branch, plex, or
group) to be moved from its present address Lo one which you specify.
For example, if you wanted to make "BOILED" eggs the first kind listed
under "EGGS" in your menu, that could be done as follows:

EDIT C: (Mo)ve C: (S)tatement from A: (3C)(<CR >);
to follow A: (3)(<CR>);
L: (d)(<CR>);

EDIT C: (Do)ne OK: (<CR>);

Note that the method of specifying the new address is the same as that
used by the Insert command; you must give the address to be followed
and specify whether a change in level is needed.

Please print branch 3 now with the standard viewspecs so you can see
how it has been altered.

TASK 59

EDIT C: Print OK:/C: C: Branch at A:

3 EGGS
3A BOILED
3B SCRAMBLED
3C FRIED

3C1 SUNNY-SIDE-UP
3C2 EASY-OVER

EDIT C: Done OK:__;

124

3;

When a structure unit is moved it no longer appears at its old address,
only at the new one.

QUESTIONS?

**

Suppose that you wanted to make "FRIED" the first kind of "EGGS"
instead of the last. Try that now and see what happens.

TASK 60

EDIT C: Move C: Statement from A: ag;

to follow A: 3;

L: d;
ILLEGAL MOVE
EDIT C: Done OK:__;

The message 'ILLEGAL MOVE' was printed because it is not possible to
move a statement having any substatements. (This is similar to the
situaton with the Delete command which you encountered in Lesson One.
This message will also appear if you attempt to move statement zero.)
In any event, the entire branch describing fried eggs should be moved,

not just its first statement. Please do that now.

TASK 61

EDIT C: Move C: Branch from A: 3C;

to follow A: 3;

L: d;
EDIT C: 'Done OK:__;

Good. Now please print branch 3 once more to see its new appearance.

TASK 62

EDIT C: Print OK:/C: C: Branch at A: 3;

V:__;
3 EGGS

3A FRIED
3A1 SUNNY-SIDE-UP
3A2 EASY-OVER

3B BOILED
3C SCRAMBLED

EDIT C: Done OK:__;

QUESTIONS?

THE COPY COMMAND

The Copy command has the same effect as the Move command except that
the structure unit which is copied appears at both the old address and

the new.

125

Try the Copy command by copying the beverages to that they will appear
both as the first branch of the file and the last.

TASK 63

EDIT C: Copy C: Branch from A: 4;
to follow A: 0;
L: d;

EDIT C: Done OK:;

To see what has occurred, print the file showing one level only.

TASK 64

EDIT C: Print OK:/C: C: Branch at A: 0;
V: x;
<NLS-SCHOLAR>BREAKFAST.LNLS;1 01-OCT-74 08:20 CLH ;

1 BEVERAGE
2 JUICE
3 CEREAL
4 EGGS
5 BEVERAGE

EDIT C: Done OK:___;

,

Now please delete that first branch since we don't really want the
branch "BEVERAGE" twice on the menu.

TASK 65

EDIT C: Delete CI Branch at A: 1;

OK: ;

EDIT C: Done OK: ;

QUESTIONS?

* *

THE TRANSPOSE COMMAND

Two structure units can be interchanged by using the Transpose command
and specifying the two addresses involved. To see how this works,
transpose the two statements "ORANGE" and "GRAPEFRUIT".

TASK 66

EDIT C: Transpose C: Statement at A: 1A;

and A: 1B;

OK: ;

EDIT C: Done OK:;

Good. Now print branch 1 to observe the result.

TASK 67

126
1,10

4

EDIT C: Print OK:/C: C: Branch at A:
V: ;

1 JUICE
1P. GRAPEFRUIT
1B ORANGE

EDIT C: Done OK: __;

To make a larger change, please transpose branches 2 and 4.

TASK 68

EDIT C: Transpose C: Branch at A: 2;

and A: 4;

OK: _;
EDIT C: Done OK: ;

Please check your result by printing the entire file.

.TASK 69

EDIT C: Print OK:/C: C: Branch at A: 0;

V: _;
<NLS-SCHOLAR>BREAKFAST.LNLS;1 01-OCT-74 08:20 CLH ;

1 JUICE
1A GRAPEFRUIT
1B ORANGE

2 BEVERAGE
2A HOT CHOCOLATE
2B TEA

2B1 WITH LEMON
2B2 WITH SUGAR AND CREAM

2C COFFEE
3 EGGS

3A FRIED
3A1 SUNNY-SIDE-UP
3A2 EASY-OVER

3B BOILED
3C SCRAMBLED

4 CEREAL
4A OATMEAL

4A1 WITH RAISINS
4B CREAM OF WHEAT
4C CORN FLAKES

EDIT C: Done OK: __;

You can see that the beverages are now in branch 2 while the cereals

are in branch 4. The branch "JUICE" and the branch "EGGS" are still
numbered as before.

There is no restriction that the statements or branches which are
tranposed be at the same level, but for many applications this will be

the case.

QUESTIONS?

127

OTHER STRUCTURE UNITS

So far the only structure units we've manipulated have been statements
and branches. There are two other kinds of structure units in NLS --
plexes and groups. Since both are defined in terms of bl'anches, let's
be sure that the concept of branch is well understood.

A branch consists of all statements whose statement numbers begin with
the same fields as those specified. Thus branch 2B2 consists of all
statements whose statement numbers begin with 2B2. If there are no
other statements whose numbers begin that way, then branch 2B2 consists
only-of statement 2B2.

Another way of describing a branch is to say that it consists of a
specified statement, and all its substatements, and all their
substatements, etc. You can see from this definition why branch 0
consists of all statements in a file.

In order to understand what a plex is, the term 'source' must be
defined. Source is the inverse of substatement. The source of a
statement is always one level higher than the statement itself. The
source statement is obtained by removing the last field from the
specified statement number. Thus the source of statement 282 is
statement 28; the source of statement 1/1 is statement 1. The source
of all first-level statements (1,2,3,4) is statement zero. Since there
is no statement which is one level higher than statement zero, it has
no source.

QUESTIONS?

* *

PLEXES

A plex is a set of branches, much as a branch is a set of statements.
A plex consists of the specified branch together with all other
branches which have the same source. Thus plex 3A consists of branches
3A, 3B, and 3C in our BREAKFAST file; that is, all the kinds of eggs.
Plex 3A, plex 3B, and plex 3C are all designations for exactly the same
thing.

In the most recent BREAKFAST file, what statements are in plex 2A?

2A 2B 2B1 2B2 2C

THAT'S FINE.

A plex is a useful concept since it allows you to manipulate a set of
statements all below a certain level. Use the term plex to delete all
the particular kinds of cereals, while leaving the heading CEREAL
intact.

TASK 70

EDIT C: Delete C: Plex at A: 4A;
. ..._

OK:....;

EDIT C: Done OK: __ ;

Please print the branch "CEREAL" to view your results.

128
,).*.i;-4-24:4

TASK 71

EDIT C: Print OK:/C: C: Branch at A: !L.;

4 CEREAL
EDIT C: Done OK:__;

Note that deleting plex 1 (or 2 or 3 or 4) would delete everything in
the file except statement zero.

QUESTIONS?

**

GROUPS

A group consists of a set of contiguous branches of a plex. To define
a group, two addresses must be given: the first branch and the last
branch. The group then consists of the first branch and the last
branch and all other branches, if any, that lie in between. Thus the
group 2 through 3 consists of all the statements in branches 2 and 3;
the group 4A through 4C consists of statements 4A, 4A1, 4B, and 4C.

What statements are in group 3A through 3C?

3A 3A1 3A2 3B 3C

YOU ARE CORRECT.

Note that the two addresses given to specify a group must have the same
source. If this is not the case, the message ILLEGAL GROUP will be
printed.

Use the term group to delete all eggs except scrambled eggs from the
breakfast menu

TASK 72

EDIT C: Delete C: Group at A: 3;
through A: 3B;
OK:__;
EDIT C: Done OK: _;

Good. Please print the branch "EGGS" to see your results.

TASK 73

EDIT C: Print C: Branch at A: 3;

V:__;
3 EGGS

3A SCRAMBLED
EDIT C: Done

QUESTIONS?

129

Try using either 'group' or 'plex' to incorporate the juices into the
branch "BEVERAGE". That is, move the statement containing "GRAPEFRUIT"
and the statement "ORANGE" so that they are the first choices of the
BEVERAGES. Then delete the statement "JUICE".

TASK 74

EDIT C: Move C: Group from A: 1A;
through A: 1B;
to follow A: 2;
L: d;

EDIT C: Delete C: Statement at A: 1;

OK: ;

EDIT C: Done OK:__;

Test your result by printing the branch "BEVERAGE" of the file.

TASK 75

EDIT C: Jump to A: 0;

EDIT C: Print OK:C: C: Branch at A: "BEVERAGE"
V:__;
1 BEVERAGE

1A GRAPEFRUIT
1B ORANGE
1C HOT CHOCOLATE
1D TEA

1D1 WITH LEMON
1D2 WITH SUGAR AND CREAM

1E COFFEE
EDIT C: Done OK:;

QUESTIONS?

REVIEW OF LESSON THREE

Lesson Three has introduced the following commands:

Printcommand for structure units
Set Viewspecs command
Show Viewspecs command
Move command
Copy command
Transpose command

QUESTIONS?

**

It has introduced the following viewspecs:

a show one level less
b show one level more

130

m turn statement numbers on
n turn statement numbers off

w show all lines, all levels
x show one line, one level

y turn blank lines on
z turn blank lines off

4 A turn indenting on
B turn indenting off

QUESTIONS?

**

It has introduced the following concepts:

ir

I

viewspecs
standard viewspecs
V: prompt

shift character
illegal move

source
substatement
group
plex

QUESTIONS?

* *

This introduction to the EDIT subsystem of NLS is now complete. Please
feel free now to use the system as much as you like and to ask any
questions which may arise. Type 'Done <CR>' when you're finished, as
usual.

TASK 76

EDIT C: Done OK: ;

I've enjoyed talking to you. Goodbye.

131

