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Multivariate analysis is that branch of statistics which is devoted to
summarizing the relationships of sets of dependent variables. _ It includes,
for example, érincipal cémpewent'ahalysis or discriminant analysis, where
the problem is developed in the statistical context of determining a linear
combihation of a given set of variables that has a larger variance than any
othgr'linear combination, or that best differentiates among several groups.
The detailed theory and trends of extensive use particularly in behavioral
science research will be introduced by such books as those by Cooley and
Lohnes [1971], Rulon [1967] and Tatsuoka [1971].

Those techniques will be useful in the realm of EEG pattern analysis,
since the individual patterns-méy be assumed to be single points located in
3 multidimensional_space. Hence, several multivariate techniques have al-
:eady been taken up recently in this field: step-wise discriminant anal*sis
[SWDA] to average evoked potentials [Donchin et al., 1970}, component analy-

sis to spectra, and the like. Particularly, it is with the hope that appli-
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cation of mult.variate analysis will facilitate an dealing with taxonomic
or classification problem‘of EEG.

The purpose of this report is to describe sections of our studies in

making use of the multivariate mathematical models to quanticative discrim-

ination of EEG patterns among the groups of normal and several types of
mentall retarded. We outline the preliminary approach in applying the

techniques of principal component analysis and discriminant analysis,
1. MATERIAL AND DATA PROCESSING

Thirty-eight EEG pattern samples of 10 second epoch during resting
coadition were extracted from three groups of mentally retarded, namely,
the predisposed [Group P], the exogenous [Group E] and the Down's syndrome
[Group D], who ranged in age from 7 to 41 years. Those typical samples of
each group, 11, 13 and 14 respectivelx. were selected from more than four
hundred cases of -the mentally retarded that were clinically examined. "The
subjects with evidence of aﬁy epileptic and other neurological signs were
excluded in seléction.

As controls, 32 norma! samples ranging from 4 days to 20 years of age
were also used [Group N], which consisted of the youngef 17 sémples ranged
up to 6 years [Group N;] and the other 15 samples matched in age to the re-
tarded [Group N»2]. These were extracted from the Gibbs' Atlas [1951]..

Data processing was performed in three steps. In the beginning, EEG
patterns were digitized by A/D conversion of sample waves on the magnetic
tape and were punched automatically in 8 bit paper tape for computer pro-
cessing, using TEAC R-QOO/ ATAC 501-10/ TH-800 system at the laboratory.

The binary coded decimal outputs thus obtained were then used to




computer processing on‘multiple variables, listed in Table 1, to gain over-
all informations 6f each pattern, Figure 1 shows the flow of data process-
ing except that in auto/cross correlation and speétrum~ana1ysis, and its
computer.program is also given in the Appendix.

The final step is to apply the component analysis and the discriminant
analysis to sample values of variables obtained. Since the variables to
use should be limited in number at these procedures, due to £he limit of
computer memory, 26 variables were selected. Those’aré marked by X; to Xzg.

A

2. COMPONENT ANALYSIS
Suppose the random p-dimensional vector X' = [xl,xz,..,xp] has the
variance and covariance matrix I. We shall assume that the mean vector is
0 and x's have the unit variance. The object of component analysis is to
economize in the number of variates, and for that, is to seek for a linear
combination nf type Z = q'X¥ which maximizes variance.
Let a be a p-dimensional column vector such that a’a = 1. Taen the

variance of Z is

E[a'X]? = E[a'XX'a] = a'la = a'Ra [1]

where A is the correlation matrix.
To determine the normalized linear combination a'X with maximum vari-
ance, we must find a vector g satisfying q'a = 1 which maximizes [1]. In

order to get a solution, we should seek for a satiéfying
[R-Aa=0 - [2]

where A is a Lagrange multiplier. If a satisfies [2] and a'a = 1, then the




variance of g'X¥ is A. Thus for the maximum variance we should use in [2)

the largest A, namely, A;.

Let a; be a normalized solution of

[R - MIla=0. [3]

Then I; = q'X is a linear combin&tion with maximum variance, and is called
the first component. Furthgrmore, we may find another vector a, correspond-
ing to the second largest root A, of [2], such that Z, = a,'X has maximum
variance of all linear combinations uncorrelated with Zy+ 27 is called the
second component. This.procedure is carried on, and we may .thus transform
to.new variates Z,, Z,,.., Z, which are uncorrelated ang have variances 1,

P
A25++s Ap in decreasing order.!

The results are shown in Table 2. It describes the coefficients of
first seven linear combinations, which we obtained when applying the compo-
nent. analysis to 70 EEG samples simul‘’ .sously. The leading four extracted

components, Z,, Z;, Z3 and Z, account respectively for 23.0, 16.6, 13.3 and

8.9 per cent of the total variance, and evidently 75 per cent are accounted

-for by the seven components given in Table 2.

Multiplying each coefficient by /73 we have the correlation coefficient

rij of Zth variable and jth component; therefore, the signs of the coeffi-

cients and their relative magnitudes are useful to examine the nature of com- .

ponents.? In the present results, it may be observed that Z, sums up infor-

mation on ''general development‘of EEG". Likewise, Z,, Z3, Zy,.. may be named

1 To get a solution of [2] with a'a

1 we. must have R - AT singular; in

other words, A must satisfy |r - AI| = 0. The function |R - AI| is a poly-
nomial in A of degree p. Therefore, the equation |R - AI| = 0 has p roots;
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respectively "frequency versatility", "amount of irregular slowing", "a-
mount of beta-activities at the occipital region", and so vn [See Figure 2].

Figure 2 depicts the scatter diagrams representing relations between
component scores and ages for Groups P, E, D and N. The lines and broken
lines are showing the regression of the scatter diagrams for Group N. What
is evident from these diagrams is that Groups 'E and D are retarded in regard
to Z; as compared with Group N, Furthermore,'it_is clear that Group D keeps
high amount of occipital beta-waves, contrary to the result of decreasing of
}those waves aftér 15 years in the other groups. However, definite tendencies
éannot be observed in Group P; that will be one of topics for further dis-
cussion, |

Thus, owing to reduction in the dimensigns, the classification 6f EEG
patterns may be discussed economically in terms of a set of fewer new var-
iables, namely, components. But we think it is satisfactory to cunsider ‘that
the discriminant analysis will be more effective tvo the classification prob-

iem, which will be described in the next section.
3. DISCRIMINANT ANALYSIS

Suppose we have the the vector of p-dimensional measurements X' = [x1,

X250, xp] on an individual. ' We shall now consider the assignment of that

2 The covariance of Z; and X is ‘E[(a;'X)X'] = aj'EUX'] = a;'R. The vari- -

ance cf Z; is Aj, then the correlation coefficient Ri' = [:lj’f°’ rpj]

should be ai'®  ai'hi .
d Jd "d
R4' = = =a;'"x; ,
;A

since Raj = Ajaj is derived from |R - AjIlaj‘= 0.




individual into ore of two normal populations, namely, m; : N[uy, £] and
T, :.N[uz, L], where Mg = [uf,..., u;] is the vector of means of the ith
population [ = 1, 2] and £ is the matrix of variances and covariances of
each popalation. |

In this’case, if the observation ¥ is actually from m;, the linear
combination Z = q’¥ should be distributed according to one-dimensional nor-

mal distribution Nla'u;, a'ta]. Then the problem is to classify into either

"1 Or m to minimize the distance [q'X - a'uz|, between la'x - a'u;| and

Ia'k. - a'LZIa

Since the probability of misclassification, in this case, is the mono-

tonic decreasing function of the Mahalanobis' distance between n; and 1,

, [ - a'uy)?
A€ =

[4] ..x

5

a'ta

the most appropriate weight g’ = [@1y00e, ap] may be obtained by seeking for

@ SO as to maximize under the restriction of
a'ta = 1. BT
Thus we find |
a=Ke M uy - yp] [6]

where K is the constant. The linear function Z = g'X, thus obtained, is the

well-known discrimin.at function, that is to differentiate best the obser-

vations from two populations, 1 and n,,
The same result may be reached by a different route. The th normal

density function is

Py[X] = expl- 20X - ug] 57K - ug]] [7]

<}

r..

[2n]2 |z|2
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Then.the ratio.of densities is

PLLX]  expl- 3IX - wm]'E-l(X - wy])

Po[X]  expl- X = up]'E-1[X - yy]]

(8]

= explX'z- [y - wa) - luy + wzl-E-1[uy - o],

The region of classification into m;, which we denote by R, is the set of_X's
o

for which [8] is 2 k [for k suitably chosen]. Since the logarithmic function

is monotonic increasing,“ihe inequality can be written in terms of the log-

arithm of [8] as
X'w " uy - wp) - %{u1 * up) Ty - wo) 2 log k. [9]

If we denote the left-hand side as U, and if m; has the density [7]
[2 = 1, 2], che best regions of classification are given by

Ryt U2 log k

Rz: U< log k . [10]

" If a priori probabilities q; and q; are known, then k is.giVEn by

22— [11]

qQ C[Z/I] ’

where C[1/2] is the cost of misclassifying-ap individual from no as from
7, and C[2/1] is that in the opposite direction. |
In the particular case of the two populations being equally likely
and the costs being equal, k = 1 and log k = 0. Then the regions of classi-
fication ingo nl.and T2 are respectively

Ry U20
Rzt U<oO0.,
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If the first term of U will be denoted as a, namely,

¢ ="My - wg] , [13]
then we obtain

U=X'qg- %{Nl + ugl'a [14]

The first term is the discriminant function previously introduced.

Transforming U sligatly, we get

U= [X'2- ey - Sqetyy) - [xfeely, - > w2z lug]. [15]
Let us now define
fL = X'ty - %-u%t'lui , o [16]

then U may be stated as

U=f£f - £f5 . [17]3
We may then rewrite the classification procedure as

Ri: £ 2 £, -
Ra: f1 < fo, [18]
With using f;'s, we may proceed to the classification among m popula-
tions [m > 3]. The population Tk corresponding to the greatest £, say fy,
among m £;'s will be the most appropriate population, to which X should be
allotted, 1In sﬂch a case, the probability of correct classification into
ng is |

exp[f; - max f;]
Py = ~ [19]

21 exp[f; - max £;] .

o

1

3 'The Mahalanobis' distance between X and the centroid of n;, if we denote

this by D2;, should be D2; = [X = u;]'s~'[x - bel = X'27lx < 2f;. Hence, we

may also write f; = %{X'Z‘IX -D%) and U = £f; - F, = %{Dzz - D%,].

..8..




Things to be investigated will be divided into two cases: the one is
allotting an individual EEG sample to one of two populations, namely,_;he‘
Z_normal and the mentally retarded in general, and.the another is allotting
to one of four populations: P, E, D and N, These are schematically illus-
trated in Figure 3.

The purpose of the analysis is to seek for p linear functions of the
variables, f;, 7 equals one to p, so that a-sample.nhs%rvation can be al-
lotted to appropriate one of p populations, according to which of the f'é
is thé greatest when the sample values are substituted, Therefore, £
might be called a measure of proximity to population ., As.is evident
from the upper diagram, in case of two populéti;ns,';here fo allocate a
sample will be decided according to the value of the function U which -we
have by taking f, from f1. If the value of U is positive, the sample
'should be allotted to the mentally retarded, and if negative, to the nor-
mal,

The table. in Figure 4 shows the weights and the constant term of U,
which we found by computation in case of two populat1ons, using the sample
data. At tha , Group N, alone were used for the normal, for the sake of
matching in age to Groups P, E and D. The values given to the whole samples
by the discriminant function Z obtained in this way are also distributed in
Figure 4, It is evident that two distributions for the mentally retarded
samplcs and for the normal are clearly separated. Therefore, the probabil -
ity of hisclassification seems to be estimated as extremely low,

When we proceed to discrimination among four populations, however, re-
sults are more complicated. Table 3 shows the coefficients and the constant
terms of the four linear functions £f1, £2, f3 and f,, whi;h we obtaingd by

computation., From the values given to the samples by four functions, prob-
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abilities of assignment to each one of four populations may be computed

for each sample. These probabilities are tabulated in Table 4. The samples
hévihg a some amount of probabilities, large and small, to be assigned tc
the other groups are added by dashed lines. Probabilities of assignment to
the normal are 1 for all normal EEG samples, but it can be seen that two
samples of Group P and Gfoup D, namely, P-7 and 6-14, are misclassified to
the popupation E with the probabilitiés of 0.618 and 0.945 respectively.
Besidés, complicated problem on classification may be pointed out for the
sample E-6. The EEG patterns of those complicated samples classified to E
are shown in Figure 6, comparing with.E-s that iﬁ typical of Group E.

Thus, it is concluded that members o." any groups of the mentally re-
tarded were not misclassified to Group N at least in this study. However,
the general veracity of thﬂ; conclugion is doubtful because such a result
can be drawn merely from sampling bias, which should be the subject for a
future study. We assume that the sampling bias of the normal EEG was the
primary factor affecting the result. -

Figure 5§ gives the two-dimensional chart for f, through f3 with ;éSpect
to which the individuals.of the mentally retarded can be classified into
three regions such that

Rp: Uz > 0; U2 >0
Rg: Uiz < 0; Uz >0 [20]
Rg: Up3 < 05 U3 <0,

where Uyp = £} - f5, Uj3 = f; - f3 and Uz3 = f5 - £3. The space is divided
by three boundary lines, Uy, = 0, U3 =0, Up3 = Uj3 - Ujp = 0, intersecting
at a single point. |

The dots, squares and circles represent members of Groups P, E and D,
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respectively. and those added by sample numbers are the practically or

probabtly misclassified ones given in Figure 6, What is evident from Figure
5 is that Group E lies in :lose ﬁroximity to Group D, when compared with
the relationt of P to E and P to.D, It is consistent with the.results of
the component analysis shown in Figure 2, and such a result can be expected

on. pathological and empirical grounds [Hirai and Izawa, 1964].

4. DISCUSSIONS

The following points are left as fufure'problems: the one is what sort
of multidimensional variables should be introduced tc¢ identify and differ-
entiate an individual EEG pattern exactly, énd the unbiased sampling also
should cérefully be considered; that is another point,

The results of multijvariate statistical analysis may be said to depend
finally on those two poiﬁts. It may be true that the variables we intro-
duced are mere preliminary ones; for that reason, further strict discussion,
from physiological as well as statistical point, will be required on select-
ing appropriate Qariables. As to the sampling, as well, it becomes a seri-
ous problem that we used the normal EEG samples of the Gibbs' Atlas; those
samples seem to be biased to fewer amount of fast waves and versatility,
which will act in favor of discrimination from samples of the mentally_re-

tarded.

The discriminant analysis may also be accomplished by finding the weights
a that maximize the discriminant criterion A, defined by the ratio of the be-
tween-groups to within-groups sums-of-squares of a linear combination «'X.
The criterion A should be

8§y a'Ba

SSw a'lWa

A [21]
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where B and ¥ are the between-groups ¢nd within-groups SSCP matrices, re-

spectively, The necessary.condition for maximizing A reduces to
(6 - AW]o = C [22]

which is equivalent to

[W-1B - AI]la = 0 | [23]

provided, as will generally be true, fhat W is non-singular.

Thui. when this equation is solved, we get non-zero eigenvalues, which
will be.denoted as Ay, A2,.., *p in descending order of magnitude, and r as-
sociated eigenvectors aj, @2,.., Gp. The elements of those eigcnvectors !
may be used as combining weights'to form r uncorrelated discriminant func-
tions, the entire set of which constitutes the discriminant space |Rulon,
1967; Tatsuoka, 1971].

For this attempt, the.severe restrictions of normality and identical
dispersion matrix in each group are not required; in this respect, this
method exceeds that we used, apart from the discussions of discriminatory
powef. It seems to be a worthwhile subject to seek relationship between

two methods in applying to EEG patterns.
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, | Table 1.
Variables employed for data processing.

A: Intra-area Variables [LP § LO]

: . LP LO
1 X1 - mean wave frequency N 18 X14 mean wave frequency
2 X2 SD of wave frequency 19 X15 SD of wave frequency
3 X3 ‘mean wave amplitude 20 X16 mean wave amplitude
4 X4 SD of wave amplitude 21 X17 SD of wave amplitude
5 weighted mean of frequency! 22 weighted mean of frequency
6 weighted mean of amplitude? 23 -~ weighted mean of amplitude
7 sum of D+A3 24 sum of D*A
8 mode of frequency [1]% 25 mode of frequency [1]
9 mode of frequency [2] | 26 mode of frequency [2]
10 Xg  sum of 6 amplitude 27 X18 sum of 6 amplitude
11 X6 sum of a amplitude 28 X19 sum of o amplitude
12 X7 sum of 8; amplitude 29 x20 sum of B; amplitude
13 " total amount of 8 waves® 30 total amount of 6 waves
14 total amount of u waves 31 total amount of o waves
15 total amount of Bj waves 32 total amount of B; waves
16 auto-correlation 33 auto-correlation
17 auto-spectrum i 34 auto-spectrum
X8 power of 4-7 Hz Xz1 power of 4-7 Hz
X9 power of 8 Hz Xo5 . power of 8 Hz
~x10 power of 9-10 Hz x23 power of 9-10 Hz
X11 power of 11-12 Hz Xz4 power of 11-12 Hz
x12 power of 13-19 Hz Xz5 power of 13-19 Hz
X13 peak frequency x26 peak frequency
B: Inter-area Variables [LP-LO]
35 cross-correlation 36 - cross-spectrum

-using amplitude as weight

using wave duration as weight

D*A: wave duration multiplied by amplitude

[1] frequency which shows the highest peak of sum of amplitude
[2] frequency which shows the highest peak of wave numbers
5 band-width: 6{4-8 Hz], a[8-13 Hz] § B8y [13-20 Hz]

F W N e

.14-
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Table 2,

Results of component analysis applied to EEG samples.

Z1 Z2 23 24 zs 26 2,

1 C-,164 7 -,265 -.214 .165 .168 -.150 .188

2 -.109 -.333 -.168 -.135  ,145 -.219 .101

3 -.005 213 -.367 -.275 -.176 .104 -.054

4 -.037 .022 -.233 -.438 -.203 -.116 .050

5 141 .228 -.332 -.205 -.105 .088 -.101

6 -.350 .045 -.022 -.080 -.171 1,032 -.030

7 -.123 -.168 -.193 -.352 «,024 -.228 .019

8 .099 .254 -.112 079+  -,063 -.078 157

9 -.132 .136 102~ ,189 -.238 -.277 441

10 -.278 134 113 .051  -,112 .243 151
11 -.315 .068 . 082 .027  -,024 .306 .109
12 -.247 .050 -.007 -.372 .049 123 .326
13 -.294 117 .080 -.020 .145 -.189 -.242
14 -.196 -.274 .087 -.157 .166 -.095 -.039
15 -.037 -.392 -.180 041 -,225 .092 11
16 -.082 .190 -.389 .269 -.024 -.012 -.206
17 -.001 .044 -.352 - 223 .428 -.007 137
18 144 .299 -.239 .048 236  ,003 .088
19 -.288 .106 -.088" .072 -.008 «,256 -.376
20 -.093 -.280 -.307 .196 .007 .078 -.030
21 .000 -.188 -.205 ~  ,301 -.510 .259 .017
22 -.108 .240 -.002 187 -.165 -.373 .214
23 -.269 .109 .073 123 -.117 -.192 .048
24 -.234 , 045 .067 .070 .103 .378 -.192
25 -,226 110 -.102 -.011 .330 .279 .328
26 -.308 .013 -.011 .058 -.003 -.034 -.311
xj 5.980 4,335 3.476 2,335 1.292 1.231 1.121

Aj/26 .230 .166 133 .089 .049 .047 043

zxj/zs .396 .530 .620 .669 717 .760

.16-
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xj case of 2 populations

case of 4 populations

Figure 3. Schematic diagrams of the discriminant analysis

.18.
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mean vactor My mean vector'u2 weight a

PEQ N2 in U
1 0.05248 -0,13295 -0.24660
2 0.47658 -1,20733 0.31724
3 0.11252 -0,28506 0.28110
4 0.10907 -0.27633 -0.18618
5 0.10331 -0,26169 -0,17325
6 -0,05692 0.14419 -0.05455
7 0.17885 -0,45310 -0.00081
3 -0.17876 0.45286 -0.06425
) -0,26807 0.67913 -0,01910
10 -0.21218 0.53752 -0,11437
11 -0.21247 0.53827 -0,11831
12 -0.06747 0,170941 0.15645
13 -0.18181 0.46056 0.08145
14 0.09548 -0.24187 =-0.05142
15 0.33489 -0.84836 0.11653
16 -0,02507 " 0.06351 0.17912
17 - 0.07079 -0,17935 ~-0.04060
18 -0.09239 0.,23402 -0,04485
19 -0.07713 0.19539 -0.01324
20 0 70712 - =0,52471 0.05940
21 0.05433 -0.,13765 -0,07203
22 -0.26977 0.68342 -0.04468
23 -0.11415 0.28916 0.00912
24 -0,01476 0.03741 0.10985
25 -0.07969 0.20190 -0,07484
26 -0,13377 0.33889 -0.10360
constant term of U -0.18768
Mahalanobis' distance 44 ,11321
0.00000

prob. of mis :lassification

osore of dlesrimianat fusetien

°o‘ 8 ” [}
‘( °4~ - " .. ] ""’.’. ¥
] " - "
L ng¥ iy ¥
wl Gl AR :
oFkwn , .
0,8 pocscsnsccccnnccnnsscssnna .-o.‘-.-”-. --------
0,0 b ' .
[}
ob b, . ol e, N}y
[ ] ’ ° :
.°0. ° ()
] _ 10 Y 20 i Age

1oouaMion solm 10,40110 By -0AMID I\ <0.17019 By 0,098 K
i 8‘,:33 n w'gm: 1 DAY 10 0 A0 By <0083 '}‘
. 3\ 0
gaz 1 :::os;“ d‘: ohiss 107 0:ohs 518 so.ooms 1) 123 +0.10083 3 1
” 31

Figure 4, Results of discriminant analysis
in assignment into two populations
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Table. 3.
Coeffic1ents of four linear functions of the variates f

when a sample will be allotted to i
one of four populations,
£ £ £ £a
1 -3.21223 -1.70721 -4.73777 8.25725
2 5.51442 1.50793 5.75684 -10,72541
3 3.1579% 3.56681 4.56734 -9,.66987
4 1.87781 =5.30259 -3.32030 6.31740
5 -1.88480 -0.36555 - -4,13029 - 5.55404
6 -1.16677 -1.0983% - -0.27543 2.06444
7 -1.34622 -0.55439 1.15727 0.38750
8 -1.08231 ~2.64588 0.44676 2.66974
9 0.48790 -0.28345 -0.69710 0.53852
10 -0.31535 -2.60035 -1.62966 4.00583
11 -1,3460C8 -1.40560 -1.97901 4.05245
12 0.69760 3.79400 1.90643 -5.57898
13 -0.32422 2.90533 0.74993 «2.98014
14 1.45954 -2.00025 -1.09966 1.68953
15 1.32677 8.80853 -3.23178 -5.59030
16 0.20775 - 1.60024 4.44757 -5.68913
17 1.35211 -1.14910 -1.28686 - 1.20499
18 2.31651 -0.27492 -2.60211 .0.96760
19 1.86774 2.47589 -3.25302 -0.47992
20 ~ =0.15522 0.44112 1.66944 -1.82678
21 -0,08244 -3.60310 0.27595 2.92482
22 -1.46977 0.65849 -1.00890 1.44881
23 -0.82224 1.83958 -0.50786 . -0,51727
24 3.50552 . 1.92631 0.07033 -4.30573
25 -1.09734 =2.54092 0.04611 2.96390
26 0.45734 -4,19572 -0.63146 3.39018
cl -3.81538 -2.53466 -11.07762

-5.22886

! The second term of function f
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Table 4,

BEST COPY AvAILABLE

Probabilities of classification when samples will be
allotted to each one of four populations.

P P P P
1l — 4
1 0.99993 0.00001 0.00007 0.00000
2 0.99939 n.00042 0.00019 0.00000
3 1.00000 0.00000 0.00000 0.00000
4 0.99824 0.00025 0.00151 0.00000
5 0.99918 0.00023 0.00059 0.00000
6 0.97467 0.00082 0.02.51 0.00000
J1.2El ___0.00876_ 0.01791 ______.0.37250_ _ ____ 0.00083
8 1.00000 0.00000 0.00000 0.0000J
Qo......0.80300 0.01264_ 0.18436_______. 000000
0 ... 0.83053_ . ____ 0.01064_ ___ __._ 0.1>883_ ______. 0.00000
11 0.99989 0.00002 0.00011 0.00000
1 0.00001 0.99966 0.00034 0.00000
2 0.00115 0.96988 0.02897 0.00000
3 0.00065 - 0.99599 0.00336 0.00000
A 0.16471 .. ___ 0.82509_ __ _ .. 0.01020 ______. 0.00000
5 0.00008 0.99881 0.00112 0.00000
So.....0.37708 0.41097_______. 0.21195__ ... 0.00000
Joeoo....0.00014 o 0.79351 ~ 0.20636________ 0.00000
8 0.00004 0.93902 0.06094 0.00000
9 0.00007 0.96553 0.03440 0.00000
10 0.00001 0.97994 0.02005 0.00000
11 0.00006 0.99872 0.00121 0.00000
12 0.00005 0.93809. 0.06186 0.00000
13 0.00090 0.99364 0.00546 0.00000
Joo.0.29930 __0.00114 0:69956________0.00000
2 0.00526 0.00026 0.99448 0.00000
3 . 0.00033 0.00056 ©0.99911 0.00000
Ao, .0:14899 003791 0.81310 _____. 0:00000
5 0.00034 0.02543 0.97423 0.00000
6 0.00010 0.03347 0.96643 0.00000
R 0,00019___ ____. 0.18173_____._. 0.81808 ______. 0,00000
8 “0.00202 0.00227 0.99571 0.00000
Q... 0.00034 - 0,28947 0.71019______ .. 0.00000
10 0.01906 0.00422 0.97652 0.00021
11 0.00000 0.00026 0.99974 0.00000
12 0.00081 0.00575 0.99344. 0.00001
13 0.00023 0.07799 0.92179 0.00000
14 »F 0.00027 0.94497 0.05476 0.00000

.........................




BEST COPY AVAILABLE
Table 4. : C
Probabilities of classification when samples will be
allotted to each one of four populations,
[continued)
P P2 | P3 . 2
Ny 1 0.00000 0.00000 0.00000 1.00000
-2 0.00000 - 0,00000 0.00000 1.00000
3 €.00000 0.00000 0.00000 1.00000
4 0.00000 0.00000 0.00000 1.00000
5 0.00000 0.00000 0.00000 1.00000
6 0.00000 0.00000 0.00000 1.00000
7 0.00000 0.00000 0.00000 - 1,00000
8 0.00000 0.00000 0.00000 1.00000
9 0.00000 0.00000 0.00000 1.00000
10 0.00000 0.00000 0.00000 1.00000
11 0.00000 0.00000 0.00000 1.00000
12 0.00000 0.00000 0.00000 1.00000
13 0.00000 0.00019 0.00000 0.99981
14 0.00000 0.00000 0.00000 1.,00000
15 0.00000 0.00000 0.00000 1.00000
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Figure 5. The regions separating the three

groups of the mentally retarded
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BEST COPY AVAILABLE

EEG ANALYSIS ( HISTOGRAM METHOD )

DIMENSTON FNM(10,3),D(16),X(700,2),R(3),AV(2),8D(2),ASP(30,2) ,FREQ

1(2) ,AMP(2) ,SF (2) ,SA(2) ,TH(2) ,BE(2) ,

2N (2) ,NUM(700) +NSP (30,2) ,NAV(2) ,NSD (2) ,NTH (2) ,NAL(2) ,NBE (2)

DO 10 J=1,3

READ (2, 101) (AM(T,J),I=1,10)
101 FORMAT (10A8)

10 CONTINUE
L=l
J=1
16 Il=0
14 READ(2,102) (D(I),I=1,16)

102 FORMAT (16F5.0)

DO 12 I=1,16
IF (D(I).EG.0.01) GO TO 13
Il=Il+l
12 X(I1,J)=D(I)
GO TO 14
13 I2=I+1
N(J)=I1
IF (J.BQ.2) GO T0 15 .
J=2
IF (I.BQ. 16) GO TO 16
Il=0 -
DO 17 I=12,16
Il=I1+1
17 X(I1,J)=D(I)
GO TO 14

'15 IF(N(1) .LE.N(2)) Ns-nm

IF(N(1) .GT. N(Z)) NS=N(2)
- Cov=0.0
DO 18 J=1,2
AV(J)=0.0
SD(J)=0.0
DO 18 I=1,NS
AV (J)=AV (J)+X(1,J)
18 SD(J)=SD(J)+X(I,J)**2
DO 19 I=1,NS
19 COV=COV+X (I,1)*X (I, 2)
Sh=NS

R(1)= (COV*SN-AV (1) *AV (2) )/SQRI'( (SD (1) #SN=-AV (1) ##2) *

1(SD(2) *SN=AV (2) #*2) )
DO 20 J=1,2
NO=0

NS=N (J)
FREQ(J)=0.0
AMP (J)=0,0
SF(J)=0.0
SA (J)=0.0
NTH(J)=0
NAL (J)=0
NEE(.7)=0
TH(J)=0.0
AL(J)=0.0

.24-




BE(J)=0.0
Do 21 I=1,30
ASP(I,J)=0.0

21 NSP(I,J)=0
DO 22 I=1,700

22 NUM(I)=I

32 I=l
K=1

25 Il=I+l :
IF (X(I,J) .LT.X(I1,J)) GO TO 23
I=I+l )
IF (T.EQ.NS) GO TO 24
GO 10 25

23 X(K,J)=X(1,J)
MN1=X(I'J)
KS=NUM (I)

27 I=I+l .
IF(I.BQ.NS) GO TO 24
Il=I+1
IF (X(I,J3) .GT.X(I1,J)) GO TO 26
GO TO 27

26 XMAX=X(I,J)
K1=NUM(I)

29 I=I+1
IF(I.2Q.NS) GO TO 24
T1=T41
IF (X(1,7).LT.X(31,J3)) GO TO 28
GO TO 29

28 XMIN2=X(I,J)
K2=NUM(I)
Gl=FLOAT (K1-KS)
G2=FLOAT (K2~-KS)
A=XMAX-XMIN1=-G1* (XMIN2-XMIN1) /G2
Gl=60.0/G2
MF=Gl
FREQ(J) =FREQ(J) 4G1
AMP (J)=AMP (J) +A

. SF(J)=SF (J)4G1#**2

SA (J)=SA (J) +A%*2
NO=NO+1
IF (MF.LT.1) GO TO 30
IF (MF.GT.30) GO TO 30
ASP (MF,J)=ASP (MF,J)+A
NSP (MF,J) =NSP (MF,.J) +1

30 NUM(K)=KS
K=K+1
NUM (K) =K2
XMIN1=XMIN2
X (K,J)=XMIN2
KS=K2
GO TO 27

24 TF(K.LT.3) GO T0 31
NS=K
GO T0 32

31 BN=NO
FREQ(J) =FREQ(J) /BN

-25..




AMP (J)=AMP (J) /BN

SF (J) =SF (J) /BN~-FREQ (J) **2
SA(J)=8A (J) /BN=AMP (J) **2
DO 33 I=4,7

TH(J) =TH(J) +ASP(I,J)

33 N'I'H(J)"M'H(J)-!-NSP(I J) &
DO 34 I=8,12
AL(J)=AL(J)+ASP(I,J)

34 NAL(J)=NAL(J)+NSP(I,J)
DO 35 I=13,19
BE (J)=BE (J) +ASP (I,J)

35 NBE(J)‘NBE(JHNSP(I J)

20 CONTINUE
. DO 36 J=1,2
AV(J)=0.0
SD(J)=0,0
NAV (J)=0
NSD(J)=0
DO 36 I=1,30
AV (J)=AV (J) +ASP(I,J)
SD(J)=SD (J) +ASP(I,J) **2
NAV (J)=NAV (J) +NSP (I,J)

36 NSD(J)=NSD(J)+NSP(I,J)**2
Cov=0.0
NO=0
COVaCOV+ASP (I,1) *ASP(I,2)

37 NO=NO+NSP(I,1)*NSP(I,2)

R(2)=(COV*30,0~AV (1) *AV (2) ) /SQRT ( (SD(1) *30,0=AV (1) **2)
1% (SD(2) *30,0-AV(2)**2))
COV=NO
DO 9 I=1,2
AV(I)=NAV(I)
9 SD(I)=NSD(I)
R(3)=(COV*30.0-AV (1) *AV(2) ) /SQRT( (SD(1) *30, 0-AV(1)**2)
1% (SD(2)*30.0-AV(2)**2))
WRITE(3,300) (FNM(I,L),I=1,10) :
300 FORMAT (1H7,10A8/1H2,2X, Jomm FREQ. ,10X,2HSD, 3X, OHMEAN AMP,,
110X, 2HSD, 2(7x SHI'HE'I‘AﬂX SHALPHA, 8X ,4HBETA) )
DO 38 J=1,2
WRITE(3,301) FREQ(J),SF(J) ,AMP(J),SA(J),TH(J),
1AL(J) ,BE(J) /NTH (J) ,NAL (J) ,NBE (J)
301 FORMAT(1H2,7F12.4,3I12)
38 CONTINUE
WRITE(3,302) (R(I),I=1,3)
302 FORMAT (1H3,1X,11HCORRELATIN,3F12.4)
IF (L.EQ.3) GO TO 11
L=lstl
J=l
IF (I2.EQ.17) GO TO 16
Il=0
DO 39 I=I2,16
Il=Il+l
39 X(I,J)=D(I)
GO TO 14

11 sTOP

END
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