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A3STRACT

POLYFACT is a learning program that attempts to factor multivariable
polynomials. The program has been successful in factoring polynomials
(in simplified form) with a maximum of 84 terms, each term consisting of
as many as five variables and a maximum degree of 67. The complexity of
this learning task placed unusual requirements on the representation of
heuristics. By using the first-order predicate calculus notation, we
enable the creation and modification of heuristics dynamically during
program execution. Constraints on the creation process are implemented
in a series of tables by which one can alter the flexibility given to the
program. Execution of heuristics begins with a translation of the predi-
cate calculus representation to a reverse Polish string, followed by the
interpretive evaluation of the Polish string. A general procedure for
developing and implementing the predicate calculus representation is

suggested,
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I. INTRODUCTION

This paper describes a new method for representing heuristics in a
learning program. This method has been implemented in the program,
POLYFACT {1], that determines the symbolic factorization of multivariable
polynomials with integer coefficients. We ure a slight variation of the
first-order predicate calculus for both the external and internal repre-
sentation of the heuristics. The notation is essentially that of the
predicate calculus with only a minor difference involving domain speci-
fication for the assignment of values. This method of representation
meets the need for representing complex heuristics facilitating dynamic
interpretation and modification during program execution.

The effectiveness of learning schemes implemented in learning programs
depends on the representation of heuristics chosen. We believe the repre-
sentation described in this paper affords the¢ programmer the capability to
implement more powerful learning schemes than previous techniques.

The primary purpose of this paper 1s to describe the representation of
heuristics in first-order predicate calculus notation. In Section II we
discuss other representations of heuristics and provide a brief description
of the first-order predicate calculus. We provide the motivation for the
development of this representation by briefly discussing the factorization
scheme implemented in POLYFACT in Section III1. Section 1V discusses the
requirements of heuristics, describes the first-order predicate calculus

representation, and the creation, modification, and execution of heuristics.

Ii. ELEMENTS OF IHE PROBLEM-SOLVING TASK

The complex learning task confronting POLYFACT initially prompts the




censideration of the type of learning to be incorporated within the program.
A second consideration involves the heuristics by which learning is imple-
mented. With the type of heuristics determined, the representation of
heuristics becomes a prominent consideration. We consider each of these,
i.e. the type of learning, the heuristics by which learning is effected,

and the representation of heuristics, to be elements of the problem~solving

task.

Learning

Programs that learn must be capable of modifying themselves usually by
altering the heuristics that guide their actions. Learning involves the
need to change the mode of attick on a problem by modifying present heuristics
or creating new ones. Learning also involves the selection of particular
heuristics applicable to certain problem states or situations and an
ordering is usually associated with these heuristics.

Learning programs should have heuristics that are: (1) easily modi~-
fiable, and (2) sufficiently powerful to represent complex actions. The
learning schemes implemented in many learning programs [2], [3], [4] are
not purposed toward extending the potential of the program beyond that pro-
vided by the designer. For this reason these programs do not employ a
representation of heuristics that allows program modification beyond the
normal adjustment of weights in a linear evaluation function.

In many cases learning has been studied in a simple environment so that
more attention can be paid to the learning schemes than the problem environ-
ment. It is not clear that learning schemes developed for use in simple

environments can be extended successfully to more complex environments. We
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believe that a complex environment contributes to a more realistic approach
to studying learning. The implementation of learning in POLYFACT is des-

cribed in Section I1II.

Representation of Heuristics

Previous Representation Schemes

The representation of heuristics should permit their use in several
problem environments since much effort goes into (developing heuristics and
methods for executing them. Previous programs have incorpnrated heuristics
generally in one of three forms: (1) an integral part of the program code,
(2) linear evaluation functions whose coefficients are modified through
learning, or (3) a production language like that used by Waterman [5].
(Waterman provides an excellent discussion on the automatic learning of
heuristics.)

Heuristics in the first form usually are so interwoven with the program
code that it is difficult to identify the heuristics much less manipulate
them. Heuristies in the form of linear evaluation functions are typical
of heuristic search programs that attempt to determine solutions by search-
ing graphs. Samuel's checker program [2] remains the most successful learning
program using this form of learning. The third form is utilized by Waterman
[5] who has provided the impetus for developing machine learning of heuristics
by devising a representation of heuristics in a production language. These
productions are similar to those used to describe phrase structure grammars

and can be dynamically created, modified, and executed.




BEST COPY AVAILABLE

First-Order Predicate Calculus
The reader desiring a comprehensive description of the tirst-order
predicate calculus should consult other sources, e.f. Korfhage [6] or
Mendelson [7]. We attempt only to furnish a brief introduction to the
principal characteristics. beginning with a tew definitions.
The svabols, constants, and variables réquire some interpretation.
The individual variables and the individual constants represent elements ot
a domain or set. The constants represent specific elements whercas the
variables do not. The symbols (3) and (), where @ can be any individual
variable, are called respectively the universal and existential quantificrs.,
and are the formal equivalents of "all" and "some".
A term is defined as follows:
(1) Individual constants and individual variables are terms.
(2)y 1f f? is a function and tys Lyt " tn are terms, then
£ (t,, t,y**", t ) is a term.
J 1 2 n
(3) The only terms are those formed by (1) and (2).
A propositional variable is a variable that has either a truc or talse
value. A string is an atomic formula if it is either
(1) A propositional variable standing alone, or
(2) A string of the form F? (tl, tz,"', tn). where F? is a
predicate and t]. ty,*** t, are terms.
A well-formed formula (wff) is defined as follows:
(1) An atomic formula is a wff.

(2) If A is a wff and a is an individual variable, then (:)A

and (32)A are wffs.
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(3) 1If A and B are wffs, then ~(A), (A)>(B), (A)A(B),
(AvB), and (A)s(B) are wffs.
(4) The only wffs are those obtainable by finitely many
applications of (1), (2), and (3).
The exrression to which the quantifier is applied is called the scope
of the quantifier. The occurrence of an individual variable x is bound
if it is an occurrence of (x), (3x), or within the scope of a quantifier (x)
or (3x). Any other occurrence of a variable is a free occurrence. An
occurrence of an individual variable is bound by the innermost quantifier

on that variable within whose scope the particular occurrence lies.

III. OVERVIEW OF POLYFACT

Our discussion of POLYFACT is limited to the aspects of this learning
program that relate to the requirements for heuristics and the consequent
motivation for using the predicate calculus as a representation form. A
complete description of POLYFACT is given in the dissertation of one of
the authors (Claybrook [1]). The primary objectives in the development of
POLYFACT were:

(1) to design a multivariable polynomial factoring program that could
be used as a vehicle in a complex learning environment,

(2) to develop a powerful representation for heuristics permitting
dynamic creation and modification,

(3) to show that learning through the dynamic modification of heuristics
can be used successfully in a complex environment to increase the
efficiency of the program, and

(4) to demonstrate the use of a classification scheme enabling the
program to extend itself to newly classified polynomials and fur-
nishing a mechanism for implementing localiized learning.

We are primarily interested in discussing (2) above, but we emphasize that



the other objectives were responsible for causing the development of the
representation discussed in the remainder of this paper.

The factorization scheme [8) implemented in POLYFACT relies on the
fact that a reducible polynomial can be written as the product of two factors,
one with M-terms and one with N-terms. During a factorization attempt the
M-term factor is sought, and the N-term factor is determined by division_of
the M-term factor into the subject polynomial. Then both factors are saved .
and later reduced.

POLYFACT attempts to minimize the amount of searching for the M-term
factor by: (1) building a model for each polynomial, (2) using learning
for term selection to initiate the factorization process, and (3) using
learning to select term possibilities in the M-term factor. The model-
builder is not described in this paper since it has no direct bearing on
the representation of heuristics, but its imporctance to the factorization

scheme in POLYFACT is considerable.

Classification of Polynomials

POLYFACT classifies bolynomials according to certain features that each
exhibits. Through classification the capability exists for applying specific
heuristics to a designated polynomial., Two types of features are used in
classification: surface features and hidden features. Surface features are
those features fthat can be determined by visible examination of the subject
polynomial. Hidden features are those features not immediately visible to
either a human or a pattern recognition program. The hidden features are
detected during a factorization attempt, i.e. during the factorization of a
polynomial characteristics are discovered that are not obvious from the

initial examination.
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The detection of hidden features durin, 2 tactorization attenp: TELIREIEN
results in a reclassification of the polvnemiil unless the current tacrori-
zation attempt is successful., The reclussitication process is a powertul
one since it provides the capability to appl: littferent sets of heuristics
to a sinyle polynomial during its factorizati.n.

POLYFACT also uses the classification mechanism as a wmeans lor extend-
ing itself to factor newly classified polvnomisls. It does this "v borrowing
heuristics from a previously classified polyncemial with similar featurcs.
Each classified polynomial has its own indwpendent set of heuristics. Thus,
learning can be associated independently wit!s «.on class of polvnomiale.

One problem generally associated with localisea learning via a classitication
scheme is the amount of memory required te store all the individual -cts ol
heuristics. We have solved this problem by doveloping a representation of
heuristics rhat can be easilv encoded into a torm requiring little memory

and then decoded for expansiorn into the predicate calculus notation prior

to execution. This idea of encoding «.d subsequent decoding roquires the
t-uristi-s to be composed of distingulshable components that can be ecasily

manipulatel.

Learning in POLYFACT

We have stated that the amount of searching for the M-term factor is
reduced by using learring to aid irn the selevtion of a term to initiate the
factorization process and to select term possibilities for the M-term factor.
The primary objective in term selection is to cnoose a term that leads to a
small search space. The heuristie associatt with directing learning in
terz selection utilizes the presumption that the term exhibiting the tuwest

number of possioilities leads to the minimunm search space.,
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The learning associated with term selection is as follows. After a
factorization attempt is complete, the number of possibilities in each term
of the polynomial is determined. The features of the term(s) with minimum
number of possibilities have their frequency count(s) increased. Then
heuristics are constructed dynamically (and ordered) to reflect the import-
ance of the features in selecting a term 1 to initiate the factorization
process, i.e. if a feature has the highest frequency count, then all terms
that do not have this feature are removed from consideration for T. The
order of the heuristics for term selection can vary during program exeuction
since POLYFACT adapts to the sequence of input polynomials.

The possibilities that can be selected as terms in the M-term factor
are ranked according to their apparent merit in determining the correct
M-term factor, and during a factorization attempt the highest ranked pos-
sibilities are selected. The features for possibility selection determine
the rank of each possibility. After a polynomial has been factored, each
of the terms in the M-term factor is examined to determine its set of char-
acteristic features. A binary vector is created with nonzero entries
indicating the features present. Then a heuristic is constructed in first-
order predicate calculus notation using as predicates those features
characterizing the M-term factor.

To facilitate the construction of this set of heuristics, a matrix is
maintained providing a history of the features of terms that have appeared
in factors of previous polynomials. After Lhe vector of features has been
created for a term, it is compared with each row in the matrix to determine
if the vector is already present. If so, the frequency count for the match-

ing row is incremented. ILf the vector is not in the matrix, it is added and

oy
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the corresponding heuristic is created.

When these heuristics are used to rank the possibilities, a binary
vector is created with nonzero entries appearing ‘n the vector positions
corresponding to the predicates in the satisfied antecede:i. When an ante-
cedent is satisfied the vector (created by the satisfied antecedent) is
compared to each row in the history matrix. If the vector is in the matrix,
the rank of the possibility is the frequency count, kept as an augmented
column entry in the matched row; otherwise, the rank is zero.

The possibility selection heuristics are maintained in complete predi-
cate calculus notation and also in the encoded matrix form. The matrix form
is convonient for determining the need for modifications to the heuristics.
The term selection heuristics are kept in an encoded form for all classes of

polynomials and then expanded prior to execution.

Analysls of a Factorization Attempt

Regardless of failure or success, the results of each factorization
attempt are analyzed. During this analysis, POLYFACT determines if the
heuristics for term and possibility selection require modification and
whether or not the polynomial warrants reclassification in the case of
failure. The learning associated with term and possibility selection can
be ended after an appropriate training period if the user desires. Then
beuristics are not modified after a factorization attempt until the learning
indicator is reset.

As one can determine from the above discussion, the demands on the
heuristics in POLYFACT necessitate a representation that can be easily

manipulated and modified during program execution. The predicate calculus




10

notation satisfies these requirements and we believe that this representation
allows the implementation of learning schemes more complex than described

in the literature.

Nature of the Heuristics in POLYFACT

The creation and modification of all the heuristics in predicate cal-
culus notation are directed by the learning programs in POLYFACT. The set
of heuristics determined by the classification scheme for a particular
polynomial guides the actual factorization attempt. Each set of heuristics
consists of several subsets, with each subset having a specific function to
perform. These subsets are responsible for:

(1) selecting a term T to initiate a factorization attempt,

(2) creating the set S of all possibilities in the term T,

(3) ranking the possibilities in the set S according to their probable
merit in creating the M-term factor,

(4) selecting a possibility P from S, where P is the first term in
the M-term factor,

(5) creating the set S' of possibilities used to complete the M-term
factor,

(6) ranking the possibilities in S', and

(7) creating the remainder of the M-term factor (terms 2 through M)
by the selection of terms from S'.

We make no attenmpt here to describe the details associated with creating the

sets of possibilities referred to above. Instead, we refer the reader to

[1] or [8].

IV. HEURISTIC REPRESENTATION USING THE PREDICATE CALCULUS
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Requirements of Heuristics BEST COPY AVA"-ABLE

The representation of the heuristics is probably the key to the success

of any heuristic program (with or without learning). Representation of
heuristics in a complex problem-solving environment prompts several con-
siderations:

(1) The heuristics must be capable of representing complex actions.

(2) The creation, modification, and execution of heuristics should be
relatively simple tasks.

(3) An éppealing property of a representation scheme is that it con-
serve storage.

(4) The representation should allow at least a partial solution of
the credit-assignment problem [5].

(5) The heuristics should be modular, i.e. the representation should
allow the construction of heuristics from distinguishable com-
ponents,

(6) The representation should allow heuristics to be referenced as
individuals or as members of designated sets of heuristics.

(7) The heuristics should permit dynamic manipulation during program
execution.

(8) The final considecration is the flexibility of the representation,
i.e. the ability to interchange the components that comprise the
heuristiecs in the event that heuristies are changed by the designer.
Some of the above considerations for the representation of heuristics
require discussion and/or justification. The first consideration is moti-
vated by the realization that many of the actions performed in learning
programs such as POLYFACT require a comprehensive analysis of the problem
situation, i.e. several criteria must be considered, often simultaneously,
to assure that all prior conditions are satisfied before performing an action.
The second consideration does not necessarily imply the decisions related

to the actual creation and modification of heuristics to be simple; however,

once these decisions are reached for particular heuristics, the procedures

P
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should be mechanical Iin nature and relativelv simple to execute,

The third and fifth considerations are complementary. If the heuristies
are modular, they can be represented In an encoded form to conserve storage.
This 1is especially important in heuristic programs that use classification
mechanisms for implementing localized learning.

The fourth consideration, solution of the credit assignment problem, is
Included because of its importance to learning mechanisms. Representation
of heuristics in a learning program must enable the assigning of credit for
success ameng the many heuristics of potential use in solving a particular
problem.

In (6) above we are suggesting that each heuristic should be an entity
with an individual identifier. The practice of associating an identifier
with each heuristic is useful when learning is implemented in different parts
of the program. The heuristics peculiar to each area can be referenced and
executed as required by a standard execution program.

0f the eight considerations stated above, the final four, i.e. con-
siderations numbered 5 - 8, constitute significant requirements beyond those
usually placed on the representation of heuristics. These four requirements
are essential for the dynamic creation and modification of heuristics during
program execution. In attempting to satisfy these requirements, we have

developed the predicate calculus representation described below.

First-Order Predicate Calculus Representation

In treating the creation, modification, and execution of heuristics, we
provide a general description of the first-order predicate calculus repre-

sentation. While we believe the representation to offer distinct general

U ]
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advantages, we recognize that other applications might toster details that we
do not consider. Consequently, we limit the description of implementation details

to only the few taken from POLYFACT to illustrate certain ideas.

General Form
The notation is identical to that of first-order predicate calculus except
for a minor difference involving domain specification for the assignment of
values. In the implementation of the predicate calculus notation, a heuristic
can have one of two general forms:

(L) NAME (DUMAIN]) (DUMAINz)"'(DOMAINk) ( (ANTECEDENT, C CONSEQUENTl)

1
Qe+ 0 (ANTECEDENTn C CONSEQUENTn)) $, or

(2)  NAME ((ANTECEDENT1 C CONSEQUENTl) Q0 (ANTECEDENT, C CONSEQUENTZ)

2
0-«-0 (ANTECEDENT, C CONSEQUENTn))$.

In either of the above forms, the same antecedent or consequent can occur
several times; but the same antecedent-consequent pair should occur but once.
The first form has a non-null domain; whereas, the second has a null domain.
One of the functions of the non-null domain is to specify an ordered set from
which the values for the variable (indicated in the domain field) are taken.
some of the variables in the antecedent-consequent pairs can he free, i.e.
their values are specified elsewhere. Each bound variable must appear as an
argument in at least one antecedent or consequent, i.e. each variable specified
in a domain must appear as an argument in at least one of a predicate, a func-
tion, or a consequent. The domain as/defined in this paper corresponds to the
quantifiers in predicate calculus notation; however, in predicate calculus
notdation the domain is not included as a part of the quantifier. The order of

domain precedence is identical to that of the quantifiers.

Each antecedent is a single predicate or a logical combination of predicates

)
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connected by conjunction ('A' = AND) and/or disjunction ('0' = OR) operators.
Each predicate is a logical function and can be referenced with arguments that
are constants, variables, or functions. 'C' is the conditiomal operator, and
the consequent {is élways the name of a routine (or procedure) that is executed
when the corresponding antecedent is satisfied.

To i1llustrate the representation of heuristics in the predicate calculus
notation, we use an example taken from the term selection heuristics in POLYFACT:

H1.1 (E T IN IPTRSO) ((N H1(G1l1l(T), MINDEG) C FIX123)) $

This heuristic consists of the components:

Hl1.1 is the NAME of the heuristiec,

(E T IN IPTRSO) is the DOMAIN of the heuristic,

N is the negation operator,

H1 is a predicate that is 'TRUE' if G11(T)

equals MINDEG,

G11 is a function whose value is the degree
of term T,

T is 1 bound variable,

MINDEG is a constant function, i.e. a fuaction
' whose value is constant during the exe-
cution of the heuristic,

C is the conditional operator, and

FIX123 is a CONSEQUENT.

Internal Structure of Heuristics in POLYFACT

The heuristic with name Hl1.l resets the use flag (the use flag 1s used to
indicate membership in a set) of each term T with degree exceeding MINDEG in
the set IPTRSO. The value of MINDEG is the degree of the mi1imum degreed term

in IPTRSO. IPTRSO is the set of terms in the input polynomial to POLYFACT.

AT u,

.-



15

Each individual heuristic in POLYFACT is represented internally as a
right-linked list. The value of each cell in the list is an alphanumeric
string of characters representing a token in the heuristic. The tokens in
the heuristic are individual entities such as 'Hl1l.1', 'c', 'E', 'T', 'IN',
'IPTRSO', etc. The internal representation of heuristic Hl.l is shown in
Fig. 1.

The heuristics corresponding to a particular classification in POLYFACT
are similar in representation to Hl.l. All heuristics in a set are linked
together as a left-linked list with the subsets comprising the total set
delimited by a cell with value '?'. Generally an entire subset of heuristics
is executed; however, by using the name of a heuristic and a pointer to
the total set of heuristics, an individual heuristic can be referenced,

i.e. any single heuristic can be executed provided its name 1s known.
"Ingert Fig. 1 here"

Creation and Modification

We have emphasized that the learning process in POLYFACT is through
the dynamic creation and modification of heuristics. Tables are used to
define constraints on the creation of heuristics. Although these constraints
could be null, giving the learning program total responsibility for the
creation decisions, some limits seem appropriate for most applications.
In both the creation and modification of heuristics, tables serve to specify
relationships between predicates, consequents, domains, etc. The data in

these tables can be read from input cards, thereby adding a note of flexi-

bility to their creation.



Fig. 1. 1Internal representation of heuristic Hl.1
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The consequent-predicate table gives the correspondence between each
consequent and the predicates that can be used to form an antecedent-~
consequent pair. The consequent-domain type table specifies the correspon-
dence between each consequent and the sets from which values for a variable
are selected. Each bound variable must be an argument in a predicate (within
an antecedent) or consequent. Normally, we can expect the variable in a
domain field to be used as an argument in specific antecedent-consequent
pairs designated in this table.

The domain type-variable-set table defines the variable-set pair
associated with a domain type. The domain is determined by the variable
and the set from which the values of the variable are taken. The purpose
of this table is to prevent heuristics with a given type of domain from
using predicates and consequents associated with another type of domain.

In addition this table might prevent the creation of heuristics which have
a certain mixture of domains.

These three tables are used by the routines that create and modify
heuristics. The implementation of these tables for the creation of
heuristics can be simplified by having entries that are pointers to lists
containing the variables, predicates, consequents, etc. in symbolic form
rather than storing the symbolic names of these tokens in the tables.

Associated with the translation from infix predicate calculus notation
to Polish postfix notation, which is described in subsequent paragraphs, is
a predefined symbol table. This symbol table has an entry for each token
that can appear in a heuristic. Three attributes are associated with each
token: (1) token type, (2) number of arguments, if any, associated with the

token, and (3) an index. The token type identifies the token during the

L 2. I
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translation process, i.e. it indicates whether a token is an operator or a
variable. The function of each of these other two attributes is discussed

later. An example of the predefined symbol table is given in Table I.

"Insert Table I Here"

In Table I, the token N (negation symbol) has type 1, a single argument and
an index value of 1. Gl1l is a function and has type 2 (all functions are
of type 2). All predicates are of type 3, and all formal parameters such
as T,F,IPTRSO, etc. are of type 1l7.

In addition to the tables several parameters provide information for

the creation routines:

ISBTYP = ] : add a predicate to a heuristic

ISBTYP = 2 ¢ add an antecedent-consequent pair to a heuristic

NEWSET = 1 a rew set of heuristics

NEWSET = 0 an old set of heuristics

INNM =20 ¢ the heuristic is a new one

INNM # 0 : glves the number of the antecedent-~consequent pair
to which a new predicate is to be added, or it gives
the position in a heuristic for the addition of a
new lntecedent-conse?uent pair

IVDEX : pointer to a variable

ISDEX : pointer to a set in the domain field

ICDEX : pointer to the consequent

IANTC : pointer to the antecedent

NAME : name of the heuristic to be modified




TABLE I

EXAMPLE OF SYMBOL TABLE ORGANIZATION

(YR |
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IPHRT : pointer to the heuristic with name NAME

IHEURT : poiater to the set of heuristics created.

Whenever a consequent or domain is required in the construction of a
heuristic, the particular entity-is formed (as in the case for domains) or
simply copied (as is the case for consequents) from the lists of tokens,
thereby never allowing any of the original tokens to be destroyed. All of
the parameters described above are used by the creation routines. Note
that IANTC is a pointer to the antecedent and not a pointer to a predicate.
ihe antecedent is determined before the actual creation of a heuristic is
performed since it can be a logical combination of predicates and 1is usually
determined by the learning programs.

Each heuristic is represented in fully parenthesized form so that no
ambiguities can result as modifications are made to the heuristics. A
heuristic can have the following form:

NAME (DOMAIN) ((ANTECEDENT; C CONSEQUENT,) O

(ANTECEDENT, C CONSEQUENT,) 0 (ANTECEDENT 5 C CONSEQUENT3)) $ .
Initially this heuristic consists of one antecedent-consequent pair. Modifi-
cation for this heuristic results in the addition of antecedent-consequent
pairs. During the execution of this heuristic, execution 1s accomplished
for the first consequent whose antecedent is satisfied. This execution

process is similar to the COND statement in the LISP language [9].

The order of the antecedent-consequent pairs in a heuristic can be
important, especially when more than one antecedent can be satisfied per
execution. With multiple antecedents the parameter INUM becomes crucial,
and some procedure is required to determine its value and to establish the

reordering when antecedent-consequent pairs are added to a heuristic. To

fut @



19

increase the flexibility, the creation and modification programs can insert

a heuristic between two a)veady existing heuristics in a set, thereby changing
the crder of execution. When the insertion process is necessary in POLYFACT,
the name of the predecessor for the heuristic must be specified. Insertion

is accomplished easily in POLYFACT since only left-iinked pointers must be
altered.

Within POLYFACT the heuristics are created and modified dynamically
during program execution. However, if the predicate calculus representation
1s used in a heuristic program not requiring this capability, then the
heuristics can be created by reading the parameter values in the above list
from input cards. An alternative procedure would be to input the heuristics
in the first-order predicate calculus representation.

We remind the reader that any symbol in the predefined symbol table
can be used as an entity in a heuristic. For example, the formal arguments
in a predicate can be different from one use to the next. In most instances
the user requires some method of controlling which entities are allowed to
be selected during creation, and he can control this selection by the use of
the tables described earlier. The modular form of the representation allows
the designer to increase the entities available for heuristic construction

by adding them to the input stream.

Execution of Heuristics
Each time a heuristic is executed, it 1is translated into a reverse
Polish string and then exccuted interpretively. Interpretive execution of
the heuristics in POLYFACT 1is necessary since they are modified dynamically.

However, the execution routine is quite straightforward.




Whenever a heuristic or subset of heuristics is to be executed, a
pointer to this set is passed to the execution routine. The heuristics that
contain non-null domains select elements from the sets given in the demains.
In the selection of elements from a set, a heuristic can consider all ele-
ments in the set, and the elements can be selected serially or randomly. In
this case, the domains have the form:

( ET IN IPTRSO ),
where the E indicates that all elements (T) in the set IPTRSO are selected
during the execution of the particular heuristic. A heuristic with a non-
null domain can also consider elements from a set until an antecedent ..s
satisfied. The corresponding consequent is then executed and activation of
this heuristic is terminated. This type of domain is represented as:

( EA 1T IN IPTRSO ).

We refer to the execution routine as procedﬁre EVAL. EVAL is responsible
for determining when the execution of a subset of heuristics is to cease.

It is also responsible for identifying the sets within each domain field and
monitoring the order in which elements are selected from these sets. For
example, assume that the heuristic currently executing is:

H1.3 (EA F IN IFPTR1) ( EA T IN IPTRSO) ((H1(L11(T,F),TF) C SUB1))$S
The execution of heuristic Hl.3 ceases the first time an antecedent is satis-
fied, i.e. the consequent SUBl is executed at most ;nce. The execution of
the heuristic formed by replacing EA by E in the innermost domain in heuristic
H1.3 can cause multiple executions of the consequent SUBl. Note that the
nested domains give the same effect as nested loops, i.e. elements are selected
from the inner domain more rapidly than the outer domain.

The pre:edence functions in Fig. 2 are used in the translation algorithm.

”~y
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BEST COPY AVAILABLE

X F(x) G(x)

FUNCTION (OR SUBRQUTINE) 15 I5
PREDICATE 14 14

N 12 13

A L }

Q 10 10

C 9 9

( 8 7

) 7 7

] 6 6

).
L»)



Fig. 2. Precedence functions for parsing algorithm
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The translation algorithm in Fig. 3 is similar to that of Graham [10]. The
0 and vy symbols in Fig. 3 are the current token and top of stack token,

respectively.
"Insert Fig. 2 here"
"Insert Fig. 3 here"

The translation process is carried out in the following manner:

(1) The translation algorithm érocesses each token in the heuristic
in a left to right manner. A pointer to the corresponding token
in the predefined symbol table is determined.

(2) The algorithm uses the precedence functions in Fig. 2 to determine
whether to output the token (actually the symbol table pointer
replaces the token in the reverse string) to the reverse string
or place it on a stack.

(3) When all tokens have been scanned and the stack is empty, the
Polish string has been formed and each token is represented by
its symbol table entry pointer.

EVAL changes the contents of each cell in the string to obtain the
token type, number of arguments, and the index. Once cach cell in the
string contains this information, EVAL 1s ready to begin execution of the
heuristic. Even if a heuristic 1s executed several times, e.g. a heuristic
with domain (E T IN IPTRSO), the translation process is performed only once.

We use the following heuristic ;o illustrate the translation process:

H1.2 (E T IN IPTRSO) (( N H1(G11(T),MINDEG) A N H1(Gz1(T),MINVAR)C FIX123)) § .

“»,
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STACK '§'
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PUT O
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Fig. 3. Translation algorithm for first-order predicate calculus
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Fig. 3. Continued
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This heuristic is translated into the following ordered set:
{1,G11,MINLEG, H1,N,T,G21,MINVAR,H1,N,A,C,FIX123} .

One should aote that the translation from infix to postfix notation is not
strict; this is illustrated by the relative positions of C and FIX123. A
strict translation to postfix notation would result in FIX123 C. Since we
want to execute the consequent FIX123 only if the antecedent is true when
the token C is encountered (indicating that the antecedent value has been
determined), we check the value of the antecedent., An antecedent value of
"TRUE" triggers execution of the consequent, otherwise execution is omitted.
This small variant in postfix notation simplifies the execution process
since EVAL always executes a function or subroutine when its name is
mentioned in the reverse Polish string.

Ihe final executable form of the Polish string above is shown in
Fig. 4. 1f IP is a pointer to any cell in the list, then LLINK(IP) is
the token type, LLINK(IP+l) is the number of arguments and RLINK(IP+1) is
the index. Since POLYFACT is implemented in FORTRAN, the index is for a
computed COTO; however, generally speaking the index is an indicator where

-

control in EVAL i{s to be transferred for some specified action to take place.

"Insert Fig. 4 here"

EVAL (in POLYFACT) has a statement number which corresponds to each
index in the predefined symbo® table. When the Polish string is executed,
the index entry in each cell indicates the statement number to which control
is transferred causing some action. The action may be: (1) stack an argu-

ment, (2) reference a predicate and stack the resulting logical value, (3) call
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Fig. 4. Executable form of Polish string
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a consequent type subroutine, or (4) perform a logical operation and stack
the result. If a function, predicate, or subroutine has arguments, then the
entry LLINK(IP+l) in the corresponding cell is nonzero. In this case before
the routine is executed, the arguments are popped from the argument stack
and placed in their respective positions in the parameter list of the
routine. This process allows the arguments in a predicate or the functions

in a heuristic to vary from one execution to the next.

V. SUMMARY

The task for which POLYFACT is designed is complex. Factorization of
multivariable polynomials is an exceedingly difficult problem for humans.

An integral part of the internal strategy of POLYFACT is the ability to
create and to modify heuristics dynamically, i.e. during program execution.
This ability places extraordinary requirements on the scheme for representing
heuristics; yet the first-order predicate calculué ;otation has proved
effective.

We believe the predicate calqglus representation to be sufficiently
powerful and flexible to function é}fectively in problem-solving environments
other than the factori--tion of polynomials. For someone considering the
use of tﬁe representation, we can sketch a step~wise description of our
development (assuming the potential user has formulated his problem):

(1) Determine the heuristics for attacking the problem.

(2) Describe the heuristics formally, if possible, in first-order
predicate calculus notation.

(3) From (2) determine the domains, variables, constants, functions,
predicates, and consequents.
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(4) Write the necessary programs for the functions, predicates, and
consequents described in (3).

(5) Write an execution program for translating and executing the
heuristics.

(6) Write the routines for creating and modifying the heuristics.

(7) Create the cross-reference tables or give the program the capa-
bility for learning the correspondences.

Specific agpects of the relationships between heuristic representation
and other elements of tha problem-solving task in POLYFACT might prove use-
ful to others. In particular, the cross-reference tables to define con-
straints on the creation of heuristics seems an effective approach. One can
apply these tables so as to effect quite sophisticated learning mechanisms.
Also, one might want to consider a different interpretation for the termina-
tion of the execution of heuristics than the one we proposed in Section IV.
For example, we could interpret the execution of a heuristic with domains
(EA F IN IFPTR1) (E T IN IPTRSO) to cease Lhe first time an antecedent is satis-
fied. The implementation of this interpretation is more difficult and less
natural than the one we propose. Finally, we believe the predicate calculus
representation enables a more comprehensive irnlementation of learning than

is described in previous research.
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