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ABSTRACT

POLYFACT is a learning program that attempts to factor multivariable

polynomials. The program has been successful in factoring polynomials

(in simplified form) with a maximum of 84 terms, each term consisting of

as many as five variables and a maximum degree of 67. The complexity of

this learning task placed unusual requirements on the representation of

heuristics. By using the first-order predicate calculus notation, we

enable the creation and modification of heuristics dynamically during

program execution. Constraints on the creation process are implemented

in a series of tables by which one can alter the flexibility given to the

program. Execution of heuristics begins with a translation of the predi-

cate calculus representation to a reverse Polish string, followed by the

interpretive evaluation of the Polish string. A general procedure for

developing and implementing the predicate calculus representation is

suggested.
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I. INTRODUCTION

This paper describes a new method for representing heuristics in a

learning program. This method has been implemented in the program,

POLYFACT [1], that determines the symbolic factorization of multivariable

polynomials with integer coefficients. We uFe a slight variation of the

first-order predicate calculus for both the external and internal repre-

sentation of the heuristics. The notation is essentially that of the

predicate calculus with only a minor difference involving domain speci-

fication for the assignment of values. This method of representation

meets the need for representing complex heuristics facilitating dynamic

interpretation and modification during program execution.

The effectiveness of learning schemes implemented in learning programs

depends on the representation of heuristics chosen. We believe the repre-

sentation described in this paper affords tht programmer the capability to

implement more powerful learning schemes than previous techniques.

The primary purpose of this paper is to describe the representation of

heuristics in first-order predicate calculus notation. In Section II we

discuss other representations of heuristics and provide a brief description

of the first-order predicate calculus. We provide the motivation for the

development of this representation by briefly discussing the factorization

scheme implemented in POLYFACT in Section III. Section 1V discusses the

requirements of heuristics, describes the first-order predicate calculus

representation, and the creation, modification, and execution of heuristics.

II. ELEnENTS OF THE PROBLEM-SOLVING TASK

The complex learning task confronting POLYFACT initially prompts the
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consideration of the type of learning to be incorporated within the program.

A second consideration involves the heuristics by which learning is imple-

mented. With the type of heuristics determined, the representation of

heuristics becomes a prominent consideration. We consider each of these,

i.e. the type of learning, the heuristics by which learning is effected,

and the representation of heuristics, to be elements of the problem-solving

task.

Learning

Programs that learn must be capable of modifying themselves usually by

altering the heuristics that guide their actions. Learning involves the

need to change the mode of attLck on a problem by modifying present heuristics

or creating new ones. Learning also involves the selection of particular

heuristics applicable to certain problem states or situations and an

ordering is usually associated with these heuristics.

Learning programs should have heuristics that are: (1) easily modi-

fiable, and (2) sufficiently powerful to represent complex actions. The

learning schemes implemented in many learning programs [2], [3], [4] are

not purposed toward extending the potential of the program beyond that pro-

vided by the designer. For this reason these programs do not employ a

representation of heuristics that allows program modification beyond the

normal adjustment of weights in a linear evaluation function.

In many cases learning has been studied in a simple environment so that

more attention can be paid to the learning schemes than the problem environ-

ment. It is not clear that learning schemes developed for use in simple

environments can be extended successfully to more complex environments. We
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believe that a complex environment contributes to a more realistic approach

to studying learning. The implementation of learning in POLYFACT is des-

cribed in Section III.

Representation of Heuristics

Previous Representation Szhemes

The representation of heuristics should permit their use in several

problem environments since much effort goes into developing heuristics and

methods for executing them. Previous programs have incorporated heuristics

generally in one of three forms: an integral part of the program code,

(2) linear evaluation functions whose coefficients are modified through

learning, or (3) a production language like that used by Waterman [5].

(Waterman provides an excellent discussion on the automatic learning of

heuristics.)

Heuristics in the first form usually are so interwoven with the program

code that it is difficult to identify the heuristics much less manipulate

them. Heuristics in the form of linear evaluation functions are typical

of heuristic search programs that attempt to determine solutions by search-

ing graphs. Samuel's checker program [2] remains the most successful learning

program using this form of learning. The third form is utilized by Waterman

[5] who has provided the impetus for developing machine learning of heuristics

by devising a representation of heuristics in a production language. These

productions are similar to those used to describe phrase structure grammars

and can be dynamically created, modified, and executed.
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BEST COPY AVAILABLE

First-Order Predicate Calculus

The reader desiring a comprehensive description of the fir:;t-orjer

predicate calculus should consult other sources, e.g. Korfhage [ I Or

Mendelson [7]. We attempt only to furnish a brief introduction to the

principal characteristics. beginning with a few definitions.

The sralbols, constants, and variables require some intorprt ti

The individual variables and the individual constants represent elements of

a domain or set. The constants represent specific elements wherea:, the,

variables do not. The symbols (a) and (, ), where a can be any individual

variable, are called respectively the universal and existential quantitier.,

and are the formal equivalents of "all" and "some".

A term is defined as follows:

(1) Individual constants and individual variables are term-..

(2) If n is a function and t
l

, t e terms;,
2'

t are_ ster,,, thenfl

_n
ti (ti, t2,, tn) is a term.

(3) The only terms are those formed by (1) and (2).

A propositional variable is a variable that has either a true or lal!,e

value. A string is an atomic formula if it is either

(1) A propositional variable standing alone, or

(2)Astringoftheform0(t1, t2"
Frl

a

predicate and t1, t2, to are terms.

A well-formed formula (wff) is defined as follows:

(1) An atomic formula is a wff.

(2) If A is a wff and a is an individual variable, then (1)A

and (az)A are wffs.
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(3) If A and B are wffs, then'-(A), (A)-)(11), (A)A(B),

(AvB), and (A)Ii(B) are wffs.

(4) The only wffs are those obtainable by finitely many

applications of (1), (2), and (3).

The exiression to which the quantifier is applied is called the scope

of the quantifier. The occurrence of an individual variable x is bound

if it is an occurrence of (x), (3x), or within the scope of a quantifier (x)

or (3x). Any other occurrence of a variable is a free occurrence. An

occurrence of an individual variable is bound by the innermost quantifier

on that variable within whose scope the particular occurrence lies.

III. OVERVIEW OF POLYFACT

Our discussion of POLYFACT is limited to the aspects of this learning

program that relate to the requirements for heuristics and the consequent

motivation for using the predicate calculus as a representation form. A

complete description of POLYFACT is given in the dissertation of one of

the authors (Claybrook [1]). The primary objectives in the development of

POLYFACT were:

(1) to design a multivariable polynomial factoring program that could

be used as a vehicle in a complex learning environment,

(2) to develop a powerful representation for heuristics permitting
dynamic creation and modification,

(3) to show that learning through the dynamic modification of heuristics

can be used successfully in a complex environment to increase the

efficiency of the program, and

(4) to demonstrate the use of a classification scheme enabling the
program to extend itself to newly classified polynomials and fur-
nishing a mechanism for implementing localized learning.

We are primarily interested in discussing (2) above, but we emphasize that
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the other objectives were responsible for causing the development of the

representation discussed in the remainder of this paper.

The factorization scheme [8] implemented in POLYFACT relies on the

fact that a reducible polynomial can be written as the product of two factors,

one with M-terms and one with N-terms. During a factorization attempt the

M-term factor is sought, and the N-term factor is determined by division of

the M-term factor into the subject polynomial. Then both factors are saved

and later reduced.

POLYFACT attempts to minimize the amount of searching for the M-term

factor by: (1) building a model for each polynomial, (2) using learning

for term selection to initiate the factorization process, and (3) using

learning to select term possibilities in the M-term factor. The model-

builder is not described in this paper since it has no direct bearing on

the representation of heuristics, but its importance to the factorization

scheme in POLYFACT is considerable.

Classification of Polynomials

POLYFACT classifies polynomials according to certain features that each

exhibits. Through classification the capability exists for applying specific

heuristics to a designated polynomial. Two types of features are used in

classification: surface features and hidden features. Surface features are

those features that can be determined by visible examination of the subject

polynomial. Hidden features are those features not immediately visible to

either a human or a pattern recognition program. The hidden features are

detected during a factorization attempt, i.e. during the factorization of a

polynomial characteristics are discovered that are not obvious from the

initial examination.



rhe detection of hidden features duril a tac!lori7ation atte

results in a reclassification of the polvnom111 uhless the currtnt t.ict.uri-

zation attempt is successful. The reclassilicatiol process is a power!1

one since it provides the capability to appi. ,liferent sets of'heuristi,

to a single polynomial during its factorizati

POLYFACT also uses the classification mecLanism as a means for extend-

ing itself to factor newly classified polynomials. It does this 'y borrowing

heuristics from a previously classified polynomial with similar features.

Each classified polynomial has its own indeendent set of heuristics. thus,

learning can be associated independently wit t ,1 class of polenomial.

One problem generally associated with locali7eu learning via a classificatiou

scheme is the amount of memory require,1 to store all the individual -.ets (3!

heuristics. We have solved this problem by 1veloping a representation of

heuristics that can be easily encoded into a tc,rm requiring; little memory

and then decoded for expansion, into the predicate calculus notation prior

to execution. This idea of encoding ...1 subsequent dQ' :oding r quires the

:::uristi-s to be composed of distinguishable cotnvnents that can be easily

manipulate'.

Learnin in POLYFACT

We have stated that the amount of searching for the M-term factor is

reduced by using learning to aid in the sele,:Lion of a term to initiate the

factorization process and to select term poihilities for the M-term factor.

The primary objective in term selection is to noose a term that load to a

small search space. The heuristic associ;Ite.1 with directing learning in

term selection utilizes the presumption that the Lem exhibiting the itze!4t.

number of possibilities leads to the minimul7 scarch space.
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The learning associated with term selection is as follows. After a

factorization attempt is complete, the number of possibilities in each term

of the polynomial is determined. The features of the term(s) with minimum

number of possibilities have their frequency count(s) increased. Then

heuristics are constructed dynamically (and ordered) to reflect the import-

ance of the features in selecting a term 1 to initiate the factorization

process, i.e. if a feature has the highest frequency count, then all terms

that do not have this feature are removed from consideration for T. The

order of the heuristics for term selection can vary during program exeuction

since POLYFACT adapts to the sequence of input polynomials.

The possibilities that can be selected as terms in the M-term factor

are ranked according to their apparent merit in determining the correct

M-term factor, and during a factorization attempt the highest ranked pos-

sibilities are selected. The features for possibility selection determine

the rank of each possibility. After a polynomial has been factored, each

of the terms in the M-term factor is examined to determine its set of char-

acteristic features. A binary vector is created with nonzero entries

indicating the features present. Then a heuristic is constructed in first-

order predicate calculus notation using as predicates those features

characterizing the M-term factor.

To facilitate the construction of this set of heuristics, a matrix is

maintained providing a history of the features of terms that have appeared

in factors of previous polynomials. After the vector of features has been

created for a term, it is compared with each row in the matrix to determine

if the vector is already present. If so, the frequency count for the match-

ing row is incremented. If the vector is not in the matrix, it is added and
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the corresponding heuristic is created.

When these heuristics are used to rank the possibilities, a binary

vector is created with nonzero entries appearing 4n the vector positions

corresponding to the predicates in the satisfied antecede When an ante-

cedent is satisfied the vector (created by the satisfied antecedent) is

compared to each row in the history matrix. If the vector is in the matrix,

the rank of the possibility is the frequency count, kept as an augmented

column entry in the matched row; otherwise, the rank is zero.

The possibility selection heuristics are maintained in complete predi-

cate calculus notation and also in the encoded matrix form. The matrix form

is conwnient for determining the need for modifications to the heuristics.

The term selection heuristics are kept in an encoded form for all classes of

polynomials and then expanded prior to execution.

Analysis of a Factorization Attempt

Regardless of failure or success, the results of each factorization

attempt are analyzed. During this analysis, POLYFACT determines if the

heuristics for term and possibility selection require modification and

whether or not the polynomial warrants reclassification in the case of

failure. The learning associated with term and possibility selection can

be ended after an appropriate training period if the user desires. Then

heuristics are not modified after a factorization attempt until the learning

indicator is reset.

As one can determine from the above discussion, the demands on the

heuristics in POLYFACT necessitate a representation that can be easily

manipulated and modified during program execution. The predicate calculus
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notation satisfies these requirements and we believe that this representation

allows the implementation of learning schemes more complex than described

in the literature.

Nature of the Heuristics in POLYFACT

The creation and modification of all the heuristics in predicate cal-

culus notation are directed by the learning programs in POLYFACT. The set

of heuristics determined by the classification scheme for a particular

polynomial guides the actual factorization attempt. Each set of heuristics

consists of several subsets, with each subset having a specific function to

perform. These subsets are responsible for:

(1) selecting a term T to initiate a factorization attempt,

(2) creating the set S of all possibilities in the term T,

(3) ranking the possibilities in the set S according to their probable
merit in creating the M-term factor,

(4) selecting a possibility P from S, where P is the first term in
the H-term factor,

(5) creating the set S' of possibilities used to complete the M-term
factor,

(6) ranking the possibilities in S', and

(7) creating the remainder of the M-term factor (terms 2 through M)
by the selection of terms from S'.

We make no attempt here to describe the details associated with creating the

sets of possibilities referred to above. Instead, we refer the reader to

[1] or [8].

IV. HEURISTIC REPRESENTATION USING THE PREDICATE CALCULUS
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Requirements of Heuristics BEST COPY AVAILABLE

The representation of the heuristics is probably the key to the success

of any heuristic program (with or without learning). Representation of

heuristics in a complex problem-solving environment prompts several con-

siderations:

(1) The heuristics must be capable of representing complex actions.

(2) The creation, modification, and execution of heuristics should be

relatively simple tasks.

(3) An appealing property of a representation scheme is that it con-
serve storage.

(4) The representation should allow at least a partial solution of
the credit-assignment problem [5].

(5) The heuristics should be modular, i.e. the representation should
allow the construction of heuristics from distinguishable com-
ponents.

(6) The representation should allow heuristics to be referenced as
individuals or as members of designated sets of heuristics.

(7) The heuristics should permit dynamic manipulation during program

execution.

(8) The final consideration is the flexibility of the representation,
i.e. the ability to interchange the components that comprise the
heuristics in the event that heuristics are changed by the designer.

Some of the above considerations for the representation of heuristics

require discussion and/or justification. The first consideration is moti-

vated by the realization that many of the actions performed in learning

programs such as POLYFACT require a comprehensive analysis of the problem

situation, i.e. several criteria must be considered, often simultaneously,

to assure that all prior conditions are satisfied before performing an action.

The second consideration does not necessarily imply the decisions related

to the actual creation and modification of heuristics to be simple; however,

once these decisions are reached for particular heuristics, the procedures
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should be mechanical in nature and relatively simple to execute.

The third and fifth considerations are complementary. If the heuristics

are modular, they can be represented in an encoded form to conserve storage.

This is especially important in heuristic programs that use classification

mechanisms for implementing localized learning.

The fourth consideration, solution of the credit assignment problem, is

included because of its importance to learning mechanisms. Representation

of heuristics in a learning program must enable the assigning of credit for

success among the many heuristics of potential use in solving a particular

problem.

In (6) above we are suggesting that each heuristic should be an entity

with an individual identifier. The practice of associating an identifier

.pith each heuristic is useful when learning is implemented in different parts

of the program. The heuristics peculiar to each area can be referenced and

executed as required by a standard execution program.

Of the eight considerations stated above, the final four, i.e. con-

siderations numbered 5 - 8, constitute significant requirements beyond those

usually placed on the representation of heuristics. These four requirements

are essential for the dynamic creation and modification of heuristics during

program execution. In attempting to satisfy these requirements, we have

developed the predicate calculus representation described below.

First-Order Predicate Calculus Representation

In treating the creation, modification, and execution of heuristics, we

provide a general description of the first-order predicate calculus repre-

sentation. While we believe the representation to offer distinct general
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Advant, wLt recogni.:e thJt other applications might foster details that we

du not consider. Consequently, we limit the description of implementation details

to only the few taken from POLYFACT to illustrate certain ideas.

General Form

The notation is identical to that of first-order predicate calculus except

for a minor difference involving domain specification for the assignment of

values. In the implementation of the predicate calculus notation, a heuristic

can have one of two general forms:

(1) NAME (D(MAIN
1.

) (DOMAIN
2
)...(DOMAIN

k
) ((ANTECEDENT

1
C CONSEQUENT].)

00 (ANTECEDENT
n

C CONSEQUENT
n
)) $, or

(2) NAME ((ANTECEDENT1 C CONSEQUENT].) 0 (ANTECEDENT2 C CONSEQUENT2)

0...0 (ANTECEDENTn C CONSEQUENTn))$.

In either of the above forms, the same antecedent or consequent can occur

several Limes; but the same antecedent-consequent pair should occur but once.

The first form has a non-null domain; whereas, the second has a null domain.

One of the functions of the non-null domain is to specify an ordered set from

which the values for the variable (indicated in the domain field) are taken.

Some of the variables in the antecedent-consequent pairs can be free, i.e.

their values are specified elsewhere. Each bound variable must appear as an

argument in at least one antecedent or consequent, i.e. each variable specified

in a domain must appear as an argument in at least one of a predicate, a func-

tion, or a consequent. The domain as defined in this paper corresponds to the

quantifiers in predicate calculus notation; however, in predicate calculus

notAtion the domlin i not included as a part of the quantifier. The order of

domain precedence is identical to that of the quantifiers.

Each antecedent is a single predicate or a logical combination of predicates
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connected by conjunction ('A' = AND) and/or disjunction ('O' = OR) operators.

Each predicate is a logical function and can be referenced with arguments that

are constants, variables, or functions. 'C' is the conditional operator, and

the conseqaent is always the name of a routine (or procedure) that is executed

when the corresponding antecedent is satisfied.

To illustrate the representation of heuristics in the predicate calculus

notation, we use an example taken from the term selection heuristics in POLYFACT:

H1.1 (E T IN IPTRSO) ((N Hl(G11(T), MINDEG) C FIX123)) $

This heuristic consists of the components:

H1.1 is the NAME of the heuristic,

(E T IN IPTRSO) is the DOMAIN of the heuristic,

N is the negation operator,

H1 is a predicate that is 'TRUE' if G11(T)
equals MINDEG,

Gll is a function whose value is the degree
of term T,

T is a bound variable,

MINDEG is a constant function, i.e. a function
whose value is constant during the exe-
cution of the heuristic,

C is the conditional operator, and

FIX123 is a CONSEQUENT.

Internal Structure of Heuristics in POLYFACT

The heuristic with name H1.1 resets the use flag (the use flag is used to

indicate membership in a set) of each term T with degree exceeding MINDEG in

the set IPTRSO. The value of MINDEG is the degree of the milimum degreed term

in IPTRSO. IPTRSO is the set of terms in the input polynomial to POLYFACT.
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Each individual heuristic in POLYFACT is represented internally as a

right-linked list. The value of each cell in the list is an alphanumeric

string of characters representing a token in the heuristic. The tokens in

the heuristic are individual entities such as 'H1.1', 'C', 'E', 'T', 'IN',

'IPTRSO', etc. The internal representation of heuristic H1.1 is shown in

Fig. 1.

The heuristics corresponding to a particular classification in POLYFACT

are similar in representation to H1.1. All heuristics in a set are linked

together as a left-linked list with the subsets comprising the total set

delimited by a cell with value '?'. Generally an entire subset of heuristics

is executed; however, by using the name of a heuristic and a pointer to

the total set of heuristics, an individual heuristic can be referenced,

i.e. any single heuristic can be executed provided its name is known.

"Insert Fig. 1 here"

Creation and Modification

We have emphasized that the learning process in POLYFACT is through

the dynamic creation and modification of heuristics. Tables are used to

define constraints on the creation of heuristics. Although these constraints

could be null, giving the learning program total responsibility for the

creation decisions, some limits seem appropriate for most applications.

In both the creation and modification of heuristics, tables serve to specify

relationships between predicates, consequents, domains, etc. The data in

these tables can be read from input cards, thereby adding a note of flexi-

bility to their creation.



Fig. 1. Internal representation of heuristic H1.1
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The consequent-predicate table gives the correspondence between each

consequent and the predicates that can be used to form an antecedent-

consequent pair. The consequent-domain type table specifies the correspon-

dence between each consequent and the sets from which values for a variable

are selected. Each bound variable must be an argument in a predicate (within

an antecedent) or consequent. Normally, we can expect the variable in a

domain field to be used as an argument in specific antecedent-consequent

pairs designated in this table.

The domain type-variable-set table defines the variable-set pair

associated with a domain type. The domain is determined by the variable

and the set from which the values of the variable are taken. The purpose

of this table is to prevent heuristics with a given type of domain from

using predicates and consequents associated with another type of domain.

In addition this table might prevent the creation of heuristics which have

a certain mixture of domains.

These three tables are used by the routines that create and modify

heuristics. The implementation of these tables for the creation of

heuristics can be simplified by having entries that are pointers to lists

containing the variables, predicates, consequents, etc. in symbolic form

rather than storing the symbolic names of these tokens in the tables.

Associated with the translation from infix predicate calculus notation

to Polish postfix notation, which is described in subsequent paragraphs, is

a predefined symbol table. This symbol table has an entry for each token

that can appear in a heuristic. Three attributes are associated with each

token: (1) token type, (2) number of arguments, if any, associated with the

token, and (3) an index. The token type identifies the token during the
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translation process, i.e. it indicates whether a token is an operator or a

variable. The function of each of these other two attributes is discussed

later. An example of the predefined symbol table is given in Table I.

"Insert Table I Here"

In Table I, the token N (negation symbol) has type 1, a single argument and

an index value of 1. Gil is a function and has type 2 (all functions are

of type 2). All predicates are of type 3, and all formal parameters such

as T,F,IPTRSO, etc. are of type 17.

In addition to the tables several parameters provide information for

the creation routines:

'Sinn) = 1 : add a predicate to a heuristic

ISBTYP = 2 : add an antecedent-consequent pair to a heuristic

NEWSET = 1 : a new set of heuristics

NEWSET = 0 : an old set of heuristics

the heuristic is a new one

gives the number of the antecedent-consequent pair

to which a new predicate is to be added, or it gives

the position in a heuristic for the addition of a

new antecedent-consequent pair

INUM = 0 :

INUM 0 0 :

IVDEX :

ISDEX :

ICDEX :

IANTC :

NAME :

pointer to a variable

pointer to a set in the domain field

pointer to the consequent

pointer to the antecedent

name of the heuristic to be modified



TABLE I

EXAMPLE OF SYMBOL TABLE ORGANIZATION

,

4-4111
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: pointer to the heuristic with name NAME

: poiater to the set of heuristics created.

Whenever a consequent or domain is required in the construction of a

heuristic, the particular entity is formed (as in the case for domains) or

simply copied (as is the case for consequents) from the 1Lits of tokens,

thereby never allowing any of the original tokens to be destroyed. A11 of

the parameters described above are used by the creation routines. Note

that IANTC is a pointer to the antecedent and not a pointer to a predicate.

he antecedent is determined before the actual creation of a heuristic is

performed since it can be a logical combination of predicates and is usually

determined by the learning programs.

Each heuristic is represented in fully parenthesized form so that no

ambiguities can result as modifications are made to the heuristics. A

heuristic can have the following form:

NAME (DOMAIN) ((ANTECEDENT' C CONSEQUENT') 0

(ANTECEDENT2 C CONSEQUENT2) 0 (ANTECEDENT C CONSEQUENT3)) $ .

Initially this heuristic consists of one antecedent-consequent pair. Modifi-

cation for this heuristic results in the addition of antecedent-consequent

pairs. During the execution of this heuristic, execution is accomplished

for the first consequent whose antecedent is satisfied. This execution

process is similar to the COND statement in the LISP language [9].
:tek)-04

The order of the antecedent-consequent pairs in a heuristic can be

important, especially when more than one antecedent can be satisfied per

execution. With multiple antecedents the parameter INUM becomes crucial,

and some procedure is required to determine its value and to establish the

reordering when antecedent-consequent pairs are sided to a heuristic. To
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increase the flexibility, the creation and modification programs can insert

a heuristic between two already existing heuristics in a set, thereby changing

the order of execution. When the insertion process is necessary in POLYFACT,

the name of the predecessor for the heuristic must be specified. Insertion

is aczomplished easily in POLYFACT since only left-linked pointers must be

altered.

Within POLYFACT the heuristics are created and modified dynamically

during program execution. However, if the predicate calculus representation

is used in a heuristic program not requiring this capability, then the

heuristics can be created by reading the parameter values in the above list

from input cards. An alternative procedure would be to input the heuristics

in the first-order predicate calculus representation.

We remind the reader that any symbol in the predefined symbol table

can be used as an entity in a heuristic. For example, the formal arguments

in a predicate can be different from one use to the next. In most instances

the user requires come method of controlling which entities are allowed to

be selected during creation, and he can control this selection by the use of

the tables described earlier. The modular form of the representation allows

the designer to increase the entities available for heuristic construction

by adding them to the input stream.

Execution of Heuristics

Each time a heuristic is executed, it is translated into a reverse

Polish string and then executed interpretively. Interpretive execution of

the heuristics in POLYFACT is necessary since they are modified dynamically.

However, the execution routine is quite straightforward.
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Whenever a heuristic or subset of heuristics is to be executed, a

pointer to this set is passed to the execution routine. The heuristics that

contain non-null domains select elements from the sets given in the domains.

In the selection of elements from a set, a heuristic can consider all ele-

ments in the set, and the elements can be selected serially or randomly. In

this case, the domains have the form:

( E T IN IPTRSO ),

where the E indicates that all elements (T) in the set IPTRSO are selected

during the execution of the particular heuristic. A heuristic with a non-

null domain can also consider elements from a set until an antecedent

satisfied. The corresponding consequent is then executed and activation of

this heuristic is terminated. This type of domain is represented as:

( EA I IN IPTRSO ).

We refer to the execution routine as procedure EVAL. EVAL is responsible

for determining when the execution of a subset of heuristics is to cease.

It is also responsible for identifying the sets within each domain field and

monitoring the order in which elements are selected from these sets. For

example, assume that the heuristic currently executing is:

H1.3 (EA F IN IFPTR1) ( EA T IN IPTRSO) (011(L11(T,F),TF) C SUB1))$

The execution of heuristic H1.3 ceases the first time an antecedent is satis-

fied, i.e. the consequent SUB1 is executed at most once. The execution of

the heuristic formed by replacing EA by E in the innermost domain in heuristic

H1.3 can cause multiple executions of the consequent SUB1. Note that the

nested domains give the same effect as nested loops. i.e. elements are selected

from the inner domain more rapidly than the outer domain.

The precedence functions in Fig. 2 are used in the translation algorithm.



BEST COPY MAILABLE

x F(x) G(x)
15FUNCTION (OR SUBROUTINE) 13

PREDICATE 14 14
N 12 13
A II II
0 10 10
C 9 9
( $ 7
1 7 7U.-- 6 6

30



Fig. 2. Precedence functions for parsing algorithm
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The translation algorithm in Fig. 3 is similar to that of Graham [10]. The

o and y symbols in Fig. 3 are the current token and top of stack token,

respectively.

"Insert Fig. 2 here"

"Insert Fig. 3 here"

The translation process is carried out in the following manner:

(1) The translation algorithm processes each token in the heuristic

in a left to right manner. A pointer to the corresponding token

in the predefined symbol table is determined.

(2) The algorithm uses the precedence functions in Fig. 2 to determine

whether to output the token (actually the symbol table pointer

replaces the token in the reverse string) to the reverse string

or place it on a stack.

(3) When all tokens have been scanned and the stack is empty, the

Polish string has been formed and each token is represented by

its symbol table entry pointer.

EVAL changes the contents of each cell in the string to obtain the

token type, number of arguments, and the index. Once each cell in the

string contains this information, EVAL is ready to begin execution of the

heuristic. Even if a heuristic is executed several times, e.g. a heuristic

with domain (E T IN IPTRSO), the translation process is performed only once.

We use the following heuristic to illustrate the translation process:

H1.2 (E T IN IPTRSO) (( N Hl(G11(T),MINDEG) A N H1(G21(T),MINVAR)C FIX123)) $ .

rip



BEST COPY AVAILABLE

( START

STACK '$'

GET TOKEN

PUT a
IN STRING



Fig. 3. Translation algorithm for first-order predicate calculus



BEST COPY AVAILABLE

NO > YES

POP STACK



Fig. 3. Continued



22

This heuristic is translated into the following ordered set:

{T,C11,MINLEG, H1,N,T,C21,MINVAR,H1,N,A,C,FIX123} .

One should note that the translation from infix to postfix notation is not

strict; this is illustrated by the relative positions of C and FIX123. A

strict translation to postfix notation would result in FIX123 C. Since we

want to execute the consequent FIX123 only if the antecedent is true when

the token C is encountered (indicating that the antecedent value has been

determined), we check the value of the antecedent. An antecedent value of

"TRUE" triggers execution of the consequent, otherwise execution is omitted.

This small variant in postfix notation simplifies the execution process

since EVAL always executes a function or subroutine when its name is

mentioned in the reverse Polish string.

The final executable form of the Polish string above is shown in

Fig. 4. If IP is a pointer to any cell in the list, then LLINK(IP) is

the token type, LLINK(IP+1) is the number of arguments and RLINK(IP+1) is

the index. Since POLYFACT is implemented in FORTRAN, the index is for a

computed GOTO; however, generally speaking the index is an indicator where
:Nem

control in EVAL is to be transferred for some specified action to take place.

"Insert Fig. 4 here"

EVAL (in POLYFACT) has a statement number which corresponds to each

index in the predefined symbol. table. When the Polish string is executed,

the index entry in each cell indicates the statement number to which control

is transferred causing some action. The action may be: (1) stack an argu-

ment, (2) reference a predicate and stack the resulting logical value, (3) call



BEST COPY AVAILABLE



Fig. 4. Executable form of Polish string
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a consequent type subroutine, or (4) perform a logical operation and stack

the result. If a function, predicate, or subroutine has arguments, then the

entry LLINK(IP+1) in the corresponding cell is nonzero. In this case before

the routine is executed, the arguments are popped from the argument stack

and placed in their respective positions in the parameter list of the

routine. This process allows the arguments in a predicate or the functions

in a heuristic to vary from one execution to the next.

V. SUMMARY

The task for which POLYFACT Is designed is complex. Factorization of

multivariable polynomials is an exceedingly difficult problem for humans.

An integral part of the internal strategy of POLYFACT is the ability to

create and to modify heuristics dynamically, i.e. during program execution.

This ability places extraordinary requirements on the scheme for representing

heuristics; yet the first-order predicate calculus notation has proved

effective.

We believe the predicate calculus representation to be sufficiently

powerful and flexible to function effectively in problem-solving environments

other than the factorir-tion of polynomials. For someone considering the

use of the representation, we can sketch a step-wise description of our

development (assuming the potential user has formulated his problem):

(1) Determine the heuristics for attacking the problem.

(2) Describe the heuristics formally, if possible, in first-order
predicate calculus notation.

(3) From (2) determine the domains, variables, constants, functions,
predicates, and consequents.
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(4) Write the necessary programs for the functions, predicates, and
consequents described in (3).

(5) Write an execution program for translating and executing the
heuristics.

(6) Write the routines for creating and modifying the heuristics.

(7) Create the cross-reference tables or give the program the capa-
bility for learning the correspondences.

Specific aspects of the relationships between heuristic representation

and other elements of tha problem-solving task in POLYFACT might prove use-

ful to others. In particular, the cross-reference tables to define con-

straints on the creation of heuristics seems an effective approach. One can

apply these tables so as to effect quite sophisticated learning mechanisms.

Also, one might want to consider a different interpretation for the termina-

tion of the execution of heuristics than the one we proposed in Section IV.

For example, we could interpret the execution of a heuristic with domains

(EA F IN IFPTR1) (E T IN IPTRSO) to cease Lhe first time an antecedent is satis-

fied. The implementation of this interpretation is more difficult and less

natural than the one we propose. Finally, we believe the predicate calculus

representation enables a more comprehensive implementation of learning than

is described in previous research.
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