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Statement of Focus

Individually Guided Education (ICE) is a new comprehensive system of
elementary education. The following components of the IGE system are in
varying stages of development and implementation: a new organization for
instruction and related administrative arrangements; a model of instructional
programing for the individual student; and curriculum components in prereading,
reading, mathematics, motivation, and environmental education. The develop-
ment of other curriculum components, of a system for managing instruction by
computer, and of instructional strategies is needed to complete the system.
Continuing programmatic research is required to provide a sound knowledge
base for the components under development and for improved second generation
components. Finally, Systematic implementation is essential so that the prod-
ucts will function properly in the IGE schools.

The Center plans and carries out the research, development, and imple-
mentation components of its IGE program in this sequence: (1) identify the
needs and delimit the component problem area; (2) assess the possible con-
straintsfinancial resources and availability of staff; (3) formulate general
plans and specific procedures for solving the problems; (4) secure and allo-
cate human and material resources to carry out the plans; (5) provide for
effective communication among personnel and efficient management of activi-
ties and resources; and (6) evaluate the effectiveness of each activity and
its contribution to the total program and correct any difficulties through feed-
back mechanisms and appropriate management techniques .

A self-renewing system of elementary education is projected in each
participating elementary school, i.e., one which is less dependent on external
sources for direction and is more responsive to the needs of the children attend-
ing each particular school. In the IGE schools, Center-developed and other
curriculum products compatible with the Center's instructional programing model
will lead to higher student achievement and self-direction in learning and in
conduct and also to higher morale and job satisfaction among educational per-
sonnel. Each developmental product makes its unique contribution to IGE as
it is implemented in the schools. The various research components add to the
knowledge of Center practitioners, developers, and theorists .
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I
Introduction

Man organizes his complex environment
by making the same response to certain non-
identical stimuli. This mode of organizing and
responding to our environment has been termed
conceptual behavior. There are many types of
concepts. Formally, a class concept can be
defined as a rule or relationship between cer-
tain stimulus characteristics (relevant attri-
butes) which results in the partitioning of the
stimulus set into two or more groups. The
simplest concepts generate two groups: those
stimuli associated with the concept (positive
instances), and those stimuli not associated
with the concept (negative instances). It is
with such two-group classifications that this
paper is primarily concerned.

The important characteristics entering
into the definition of a class concept are the
relevant attributes and the logical rule. In a
sense, these two aspects of any class con-
cept are independent. For example, many
different class concepts can be generated by
requiring the joint presence of any of a num-
ber of different pairs of relevant attributes
(e.g., one possible relationship is a conjunc-
tion: red and square, blue and triangular, yellow
and hexagonal, etc.). Similarly, several dif-
ferent class concepts may be generated using
the same two relevant attributes, but changing
the relationship (e.g.: red and square; red or
square or both; if red, then square, etc.).
Given this essential independence of com-
ponents, two main kinds of conceptual prob-
lems can be distinguished, attribute identifi-
cation (AI) and rule learning (RL). In AI tasks
S is given information about the rule and must
identify the relevant attributes. In RL, the
relevant attributes are specified for S; his
task is to identify the relationship between
them (the rule).

The rules mentioned above refer to a
system of rules based upon the logical truth
table and the calculus of propositions (Hay-
good & Bourne, 1965). Given that there are

at least two dimensions with at least two
values per dimension, the selection of the
two relevant attributes (one attribute from
each of two dimensions) reduces the entire
stimulus population to four classes. For ex-
ample, given the relevant attributes red and
square, the resultant four classes become
(a) those patterns which are both red and
square, (b) those patterns which are red but
not square, (c) those patterns which are not
red but are square, and (d) those patterns
which are neither red aor square. These four
classes correspond to the logical truth table,
in which the symbols T (true) and F (fete)
represent the presence or absence of the
relevant attributes (Haygood & Bourne, 1965).
Thus, the four classes outlined above can be
described in more general terms as Tr, TF,
FT, and FF respectively.

It has been shown that of the 16 possible
ways of assigning the four classes to the two
response categories (Table 1), only ten are
unique and non-trivial (Neisset & Weene,
1962; Haygood & Bourne, 1965). These ten
are shown in Table 2. Two of the ten are uni-
dimensional rules, based on the presence or
absence of a single attribute: the Affirmative
(Aff) rule and its complement, Negation (Neg).
The remaining eight rules are bidimensional
in nature, described by a relationship be-
tween an attribute from each of two dimensions:
the Conjunctive (Cj), Inclusive Disjunctive
(Dj), Conditional (Cd), and Biconditional (I3d),
and their complements.

Tasks and Variables

Until recently, investigations of the ac-
quisition and utilization of concepts were
mainly concerned with the variables thought
to affect AI performance. As a result, a num-
ber of variables, such as the effects of num-
ber of relevant or irrelevant dimensions

1



TABLE 1

SIXTEEN UNIQUE BIDIMENSIONAL PARTITIONS OF A STIMULUS POPULATION
FORMING THE CALCULUS OF PROPOSITIONS

Truth-Table Class

(Dj) (Cd)
Partition (Rules)

(Bd) (Cj)

Response Category Assignments

TT

TF

FT

FF

+

+

+

+

+

+

+

+

+

+

+

OD

+

+

+

-

OD

-

+

OD

+

-
-

+

-
-
+

+

-
+

+

-

-
+

-
+

+

-

-

00

+

-

OD

OD

+ 00

OD

00

OD

TABLE 2

CONCEPTUAL RULES DESCRIBING BINARY PARTITIONS OF A STIMULUS POPULATION

Primary Rule Complementary Rule

Name
Symbolic Verbal

Descriptiona Description Name
Symbolic Verbal

Descriptiona Description

Affirmative R All red patterns
are examples
of the concept.

Negation R All patterns which
are not red are
examples.

Conjunctive R fl S All patterns which
are red and square
are examples.

Alternative
denial

R I S All patterns which
are either not red
or not square are
examples.

Inclusive
disjunctive

R U S All patterns which
are red or square
or both are ex-
amples.

Joint denial R 4 S All patterns which
are neither red
nor square are
examples.

Conditional R If a pattern is red
then it must be
square to be an
example.

Exclusion R n § All patterns which
are red and not
square are ex-
amples.

Biconditional R S Red patterns are
examples if and
only if they are
square.

Exclusive
disjunctive

R U S All patterns which
are red or square
but not both are
examples.

aR and S stand for red and square (relevant attributes).
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(Bourne, 1957; Bulgarella & Archer, 1962;
Walker & Bourne, 1961), response system
complexity (Walker & Bourne, 1961; Kepros,
1965), stimulus redundancy (Bourne & Hay-
good, 1959), as well as intra- and inter-
dimensional variability (Battig & Bourne. 1961),
have been investigated in AI. In most studies
performed prior to 1965, it was tacitly as-
sumed that the underlying rule in the AI task
did not affect the variables in question.

Haygood and Bourne (1965) were the first
investigators to establish the independence
of RL tasks and Al tasks. Proceqding from the
assumption that there are two mwor compo-
nents of any conceptual task (the relevant
attribute[s] and the rule), Haygood and Bourne
instructed independent groups of Ss in two
ways: one group of Ss was given the relevant
attributes and was required to learn the rule
(RL), while a second group was given the rule
and was required to identify the relevant at-
tributes (AI). The major result of interest was
that, given the relevant attributes, some rules
were harder to identify than others and that
the speed with which the important attributes
(AI) were identified was greatly affected by
the underlying rule. Establishing that RL and
AI are independent tasks opened the way for
a more thorough investigation of the variables
thought to affect primarily RL or AI. Since
Haygood and Bourne (1965), a number of
studies have made it clear that the RL or AI
tasks may reveal quite different functions
under the manipulation of certain variables
(e.g., type of stimulus information, or amount
of relevant or irrelevant information).

Typo of Stimulus Information

Bourne and Guy (1968b) investigated the
effects of type of stimulus information (all
positive instances, all negative instances,
or mixed positive and negative instances) on
RL and AI performance. Their findings indi-
cated that in Al, performance was in general
optimal when instances from the smaller,
more homogeneous, category were presented.
Category homogeneity depends upon the num-
ber of truth table classes that are ccntained
in a response category. Homogeneity in-
creases as the number of truth table classes
involved in a single response category de-
creases. 'or example, the positive category
is the most i,omogeneous for the Cj rule, be-
cause it contains only TT's, while the nega-
tive category contains three classes of in-
stances (TF's, FT's, and FF's). Similarly, the
negative category, containing only TF in-
stances, is the most homogeneous for the Cd
rule, while the positive category contains

TT's, FT's, and FF's. Therefore, Conjunctive
AI performance was optimal when all positive
instances (TT's) were presented, while Condi-
tional AI performance was best when all nega-
tive instances (TF's) were presented. RL per-
formance, on the other hand, was best in all
cases when S was presented with a mixed se-
quence of positives and negatives.

Bourne and Guy (1968b) explained the
differing RL and AI results in terms of the
unique requirements of each task. In RL, S's
task is to identify an unknown relationship
between two particular attributes. Since this
task involves learning the categorization of
at least one instance from each truth table
category, a mixed sequence of positives and
negatives (containing TT's, TF's, FT's, and
FF's) was more useful than a sequence of all
positives or all negatives which necessarily
contains some subset of the four truth table
classes. In AI, on the other hand, Ss must
identify the unknown relevant attributes with-
in the structure of a given rule. In other
words, S must test a nu tier of possible at-
tribute combinations in order to reach solu-
tion. In this task, stimulus sequences from
the smaller, more homogeneous category were
the easiest since S was faced with fewer at-
tribute combinations as well as fewer dis-
tinctly different patterns to remember.

Amount of Ito Want or
irrolovant Information

Studies investigating a second variable,
namely the effects of varying the amount of
relevant or irrelevant information, have re-
vealed different results under conditions of
RL and AL Kepros and Bourne (1966) demon-
strated an increase in difficulty with increases
in number of relevant or irrelevant dimensions
in an AI task (based on the 13d rule). Further-
more, although several problems were given,
no significant improvement was obtained with
practice, indicating that the increased diffi-
culty is a relatively stable phenomenon (at
least for the number of problems given). Ex-
plication of these results can again be given
in terms of the requirements of the AI task.
In order to solve, S may have to test the rele-
vance of each dimension. Increasing the
number of dimensions (either relevant or ir-
relevant) increases the length of the testing
process, thereby increasing task difficulty.

Logically, increasing the number of ir-
relevant (and possibly relevant) dimensions
should not affect RL, since Ss are told which
dimensions are relevant at the outset of the
problem. This information should eliminate
the dimensional testing process described

3



above in the context of the AI task. Experi-
ments have, in general, supported the above
analysis. Bower and King (1967) investigated
increasing the irrelevant information in an RL
task (Ss were each given three problems on
the same rule). Increasing the number of ir-
relevant dimensions increased the difficulty
of only the first problem, suggesting that some
amount of practice (Problem 1) may be neces-
sary for Ss to learn to ignore all but the rele-
vant attributes. However, this practice may
not always be needed. A similar study by
Haygood and Stevenson (1967) varied the num-
ber of irrelevant dimensions (0, 1, or 2) under
conditions of AI and RL. While the well docu
mented decrement in performance with in-
creases in the amount of irrelevant information
was shown in AI, this manipulation had no
significant effect in RL.

Rules

Previous experiments (Bourne, 1967, 1970;
Haygood & Bourne, 1965; Bourne & Guy, 1968a;
Conant & Trabasso, 1964; DiVesta & Walls,
1969) have shown that for a naive S the spe-
cific logical rule involved largely determines
the difficulty of a problem (for both RL and
AI). Furthermore, rule effects in both tasks
are similar in form (the order of difficulty of
certain rules is the same). There are at least
two possible determinants of such rule effects
in AI.

The first and most obvious possibility is
that this ordering may be due at least partially

4

to S's difficulty in fully understanding the
given rule from instructions. To illustrate,
the information provided in AI is mainly !n-
formation about the rule. It may be quite dif-
ficult for S to grasp the "givens" of the prob-
lem through instructions, and this may be
especially true for more difficult rules. There-
fore, during the AI task S may be placed in a
situation in which he is not only trying to
identify the attributes, but may also be at-
tempting to completely understand the rule.
It may be this residual rule learning which
produces the effect. However, another study
(Ingison, in preparation) designed to reduce or
eliminate AI rule effects through pretraining
cn several RL problems failed to do so, despite
the fact that Ss at the highest pretraining
levels showed no rule effects by the final RL
problem.

A second reasonable explanation of rule
effects in AI tasks can be given in terms of
Ss' familiarity with the AI task itself. It is
possible that Ss require some amount of prac-
tice in applying a rule in AI problems , in order
to reduce overall rule differences in AI. Opti-
mal selection strategies specific to the under-
lying rule in the AI task have been identified;
they develop with practice on successive
problems involving the same rule (Laughlin,
1968; Laughlin & Jordan, 1967). This suggests
that there might also be optimal reception
strategies specific to each rule. The present
experiment was designed to investigate this
possibility. Subjects were trained on several
AI problems in an attempt to reduce or elim-
inate rule effects on an AI transfer task.



Method

Subjects and Design

Subjects were 36 twelfth-grade volunteers
from the public schools of a semi-rural com-
munity in Wisconsin. Each S was assigned
by each E to one of six independent conditions
by means of three randomized sequences de-
signed to place one S in each cell before
placing a second S in any cell. The experi-
mental design was a 2(rules: Dj or Cd) x
3(pretraining levels: 0, 4, or 8 pretraining
problems prior to a transfer AI task) x 2(experi-
menters) factorial. A total of three Ss were
assigned to each cell depA)ed by the design.

Materials

The stimulus population contained a total
of 27 different stimuli, resulting from enumer-
ation of three dimensions of three levels each.
The specific dimensions and levels were size
(large, medium, and small), shape (triangular,
square, and hexagonal), and color (red, yellow,
and blue). Example cards illustrating the rules
involved for each AI problem were presented
on 5" x 7" index cards.

Problems

Since a total of nine different problems
was called for by the design, nine pairs of
relevant attributes were chosen, one value
from each of two dimensions. Selection of
attributes was restricted to the use of each
dimension six times and each level of any
dimension twice. This procedure resulted in
three solution types. In other words, out of
the nine pairs of attributes required, three
involved a color and a shape, three involved
a color and a size, and three involved a size
and a shape.

Further restrictions involved the order in

which the problems were presented to Ss. Two
problems of the same type were not presented
to S in succession; rather the three solution
types were altzrnated (e.g., a color-shape,
a size-shape, and a size-color). In addition,
the problems for each pretraining condition
were arranged in a manner such that the final
problems prior to trartafer involved the same
relevant attributes. Table 3 presents the
exact attributes relevant to solution, as well
as the order in which each pair occurred.

One final consideration in the construc-
tion of the problems was the arrangement of
stimulus sequences such that, theoretically,
the informational content was the same per
block of trials regardless of the rule involved.
It can be demonstrated that different rules may
require different numbers of trials to obtain
sufficient information to solve an Al problem.
Table 4 presents a step-by-step information
analysis with specific examples. In the
present study, sufficient information to solve
an AI problem involving the Di rule required
at least four stimuli in order to present the
theoretically minimum necessary information:
a TF, an FT, and two ET's. The TF and the
FT served to present the two relevant attri-
butes as well as a certain amount of irrelevant
information (the TF and FT were chosen so
that their irrelevant values were not the same).
The two FF instances logically eliminated all
but the relevant attributes. For the Cd rule,
two TF's and one TT theoretically present
sufficient information to solve the problem.
The two TF's were chosen to vary on dimen-
sions other than the first T value, identifying
the first relevant attribute (that attribute
common to both TF's). The second function
of the TF's was to identify four other attributes
which must be irrelevant, by definition. The
TT instance then identified the second rele-
vant attribute, as it was chosen to contain
an irrelevant attribute already omitted. Since
it contained the first T value and was positive,

5



TABLE 3

RELEVANT ATTRIBUTES FOR EACH PROBLEM

Number of Pretraining Problems
4 8

Problem Number

Relevant
Attributes

Transfer
Problem 5 9 Large Square

Pretraining
Problems

4

3

2

8 Medium Triangle

Yellow Hexagon

6 Large Blue

5 Small Red

4 Medium Square

3 Red Hexagon

2 Blue Triangle

1 Medium Yellow

TABLE 4

BASIC UNITS OF INFORMATION FOR EACH RULE UNDER AI

Basic
Rule Unit

*DJ TF +

FT +

FF -

FF -

*Cd TF -

TF -

TT +

Specific Example Stimuli Steps in Logical Elimination

Medium Blue Square

Large Red Triangle

Large Blue Triangle

Large Yellow Square

Medium Blue Hexagon

Medium Yellow Square

Medium Red Square

One or two of the attributes are relevant.

Because there is no overlap in attributes, one
attribute from each pattern must be relevant.

Since this stimulus is negative, it can contain
no relevant attributes. Therefore, eliminate
Large, Blue, and Triangle.

Similarly, eliminate Large, Yellow, and Square.
The only attributes left are Medium and Red.

One of the attributes is relevant.

Color and shape vary, so Medium must be
relevant.

This stimulus is a positive instance that con-
tains Medium. Therefore, it must be a TT,
and contain the second relevant attribute.
Since Square was present in a TF, the second
relevant attribute must be Red.

6
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TABLE 5

UNITS OF INFORMATION AND RESPONSE ASSIGNMENTS
FOR EACH RULE

Dj Cd

1. TF + 1. TF -
2.
3.

FT +
FF - Basic unit 2.

3.
TF -
TT +

Basic unit
4. FF - 4. FT +
5. TT + 5. FF +
6. FF - 6. TF -
7. TF + 7. FF +
8. FF - 8. TF -

it was by definition a TT instance, and S
could identify the second relevant attribute
by elimination.

Stimulus sequences were constructed
using the constraints described below. The
minimum stimuli theoretically necessary to
solve each problem were identified. These
basic units were expanded to form informational
units by the following manipulation... Each in-
formational unit contained at least one instance
of each truth table category and an equal num-
ber of positive and negative instances. In
addition, the informational units for each rule
were required to be equal in length. The re-
sulting information units were eight trials
long. Table 5 presents the basic and informa-
tional units for both rules.

Procedure

Subjects were tested individually. In-
structions were read to each S and, in addi-
tion, appropriate example cards were provided

by E. Stimuli were presented on slides and
projected by means of a carrousel projector.

A modified reception paradigm was em-
ployed in which sets of trials with the answers
given (study trials) were alternated with sets
in which S was required to classify each pat-
tern (test trials). Eight study trials (one com-
plete informational unit) alternated with four
test trials (one from each truth table class)
throughout the problem. The Ss responded
verbally on test trials, and E provided feed-
back for S. Each slide remained on the screen
for approximately 4-5 seconds. The Ss were
given up to 72 test trials on each problem to
reach a criterion of 16 correct test trials in a
row. Those Ss not reaching criterion at this
time were given the solution by E and required
to demonstrate this solution by reaching the
criterion of 16 correct. At this time, S was
taken to the next problem. Thus, no Ss were
eliminated from the analysis. Table 6 shows
the number of Ss failing to reach criterion in
72 test trials on each problem.

7



TABLE 6

THE NUMBER OF SUBJECTS FAILING TO REACH SOLUTION

Pretraining Condition

ule

Di Cd

Problem
Number

Number
Failing

Problem
Number

Number
Failing

Zero Pretraining Problems 1. 1. 1

Four Pretraining Problems 1. 2 1. 5

2. 2 2. 4
3. 0 3. 3

4. 0 4. 4
Transfer 5. 0 Transfer 5. 1

Task Task

Eight Pretraining Problems 1. 2 1. 5

2. 0 2. 2

3. 0 3. 0

4. 0 4. 2

5. 0 5. 2

6. 0 6. 1

7. 0 7. 1

8. 0 8. 1

Transfer 9. 0 Transfer 9.
Task Task

8



III
Results

Results were analyzed first in terms of
performance on the final (transfer) AI problem.
In addition, performance across pretraining
problems was assessed. Four dependent mea-
sures were used: total trials to the last error,
total errors, total trials to the last error on
each truth table class, and total errors for
each truth table class. The degree to which
the variables of sex and experimenter con-
tributed to the overall variance was assessed
by means of a 3(pretraining levels) x 2(rules)
x 2(sexes) x 2(experimentas) analysis of
variance on total final problem errors, Further,
a 2(rules) x 2(sexes) x 2(experimenters) x 5
or 9(problems) repeated measure factorial was
performed. No main effects or interactions
involving either sex or E obtained significance
in the analyses. Data from both Es and both
sexes were pooled or all further analyses.

The results of the total trials to the last
error and total errors analyses in no way con-
tradicted the results of the measures involving
truth table as a variable. Therefore, since
truth table effects are generally interesting,
only the results of those analyses in which
truth table is included as a variable will be
reported here. In addition, because the errors
analyses were more sensitive than the trials
analyses (although they in no way contra-
dicted them), only the results of the errors
analyses will be reported.

Final Problem Analysis

Performance on the final AI problem was
analyzed by means of a 3(pretraining condi-
tions) x 2(rules) x 4(truth table classes) re-
peated measures analysis of variance. Con-
trary to the prediction that increasing amounts
of AI training would siqtlificantly reduce or
eliminate rule effects in AI, the interaction
of pretraining and rule did not reach signifi-
cance F(2,30) = 1,57, p < .22, indicating

that performance of Ss at all pretraining levels
was similar. Further, no linear trend was ap-
parent for this effect.

The main effect of pretraining, F(2,30) =
8.84, p < .001, reached significance in almost
all analyses. Error means at each pretraining
level were 13.83, 5.75, and 4.58 for the 0, 4,
and 8 pretraining problems conditions respec-
tively. Tukey HSD tests were computed, re-
vealing significant differences only between
the 0-problem condition and all others , p < .01.
It would appear from these data that as few as
four AI pretraining problems are sufficient to
reduce errors significantly on subsequent AI
tasks.

The main effect of rule also attained sig-
nificance, F(1,30) = 5.97, p < .02. Error means
for each rule are 1.42 (DJ) and 2.61 (Cd), re-
vealing the difficulty of the Cd rule. In sum,
the results thus far indicate that, at least for
the pretraining levels employed in the present
study, rule effects are not eliminated through
AI training.

In agreement with previous research (e.g.,
Bourne & Guy, 1968a), truth table was found
to be significant, F(3,90) = 3.14, p < .04.
Error means for each truth table class are
1.34(TT), 2.33(TF), 1.53(FT), and 2.83(FF).
These data were further analyzed by means
of Tukey HSD tests, which revealed that the
TT class was significantly easier than both
the TF (p < .05) and the FF (p < .01). The FT
class, in addition, was easier than the FF

< . 01).
Truth table also interacted with rule,

F(3,90) = 3.12, p < .04. Table 7 presents the
error means associated with this interaction.
The most difficult class for the DJ rule is the
FF, while the most difficult class for the Cd
is the TF. In both cases, the most difficult
truth table class was that which must be as-
signed to the negative response category.
Apparently, Ss focus on and attain more
easily those truth table classes which are

9



TABLE 7

ERROR MEANS FOR THE INTERACTION OF
TRUTH TABLE AND RULE

Rules
Truth Table Classes

TT TF FT FF

Dj

Cd

.39

2,28

.72

3,94

1.33

1.72

3.22

2.50

c.ssigned to tne positive response category.
No further afects were obtained in the final
problem analysis.

Successive Problem Analyses

Data were further analyzed by moans of
two repeated measures analyses on successive
AI problems. First, the data of all Ss receiving.
five AI problems was pooled. This analysis
inottAed data from those Ss in the four pre-
training problems condition, as well as data
from the first five problems given the eight
pretraining problems condition Ss. In addi-
tion, performance over nine AI problems was
assessed, utilizing only the data of those Ss
in the eight pretraining problems condition.

Five Successive Al Problems

A 2(rules) x 4(truth table classes) x
5(problems) repeated measures analysis of
variance was performed on errors. The effects
of rule, truth table, and the interaction of
these variables were as previously reported.
Rules varied reliably, F(1,22) = 6.24, p < .02.
Error means were 2.02(Dj) and 3.69(Cd), again
reflecting the overall ease of the Di compared
to the Cd rule. Truth table also reached sig-
nificance, F(3,66) = 4.75, p < .01. Means for
each truth table class are 1.70, 3.14, 1.67,
and 3.21, for the TT, TF, and FF respectively.
Tukey HSD analyses performed on this data
revealed the FT to be easier than the TF or
FF, while the TT was easier than the FF only.
Furthermore, the interaction of rule and truth
table also attained significance, F(3,66)
8.04, p < .001. Table 8 presents the error
means for this interaction. In keeping with
previously described findings, it can be seen
that these effects primarily reflect the greater
difficulty of the truth table class which is
assigned to the negative category (rF for the
Dj; TF for the Cd).

Finally, the main effect of problems
reached significance, F(4,88) = 3,10, p < .04.
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TABLE 8

ERROR MEANS FOR THE INTERACTION OF
RULE AND TRUTH TABLE

Rules
Truth Table Classes

TT TF FT FF

Di

Cd

.60

3,34

2.09

5.12

1.73

2.79

3.07

3.55

Error means are 3.49, 2.82, 2.02, 2.61, and
1.04 for Problems 1 through 5 respectively.
Trend analyses performed on these data re-
vealed a significant linear trend (p < .01),
indicating that each successive AI problem
required fewer errors to reach solution. Ap-
parently, Ss tend to benefit from each suc-
cessive AI problem, due to such factors as
warm-up, learning to learn, and the possible
development of general or rule-specific AI
strategies.

Nine Successive Al Problems

A 2(rules) x 4(truth table classes) x
9(problems) repeated measures analysis of
variance was performed on errors to criterion.
In agreement with previously reported effects,
rule attained significance, F(1,80) = 6.19,
p < .03. Error means were 1.48 and 3.44 for
the DJ and Cd rules, respectively. The main
effects of truth table, in contrast to previous
analyses, did not reach significance, F(3,30) =
3.38, p < .07. However, the interaction of
truth table and rule obtained significance,
F(3,30) = 5.58, p < .02. Table 9 presents the
error means associated with this effect. The
most difficult truth table classes are again
those which are assigned to the negative
category. Further, it can be seen that the
form of the truth .able main effect, although
nonsignificant, is similar to previously-
reported truth table effects. No other effects
reached significance in this analysis.

TABLE 9

ERROR MEANS FOR THE INTERACTION OF
TRUTH TABLE AND RULE

Rule
Truth Table Classes

TT TF FT FF

Di

Cd

.24

2.92

.92

2.67

1.22

2.19

3.55

3.00



Iv
Discussion

The major prediction in the present study
was that pretraining on several AI tasks in-
volving the same underlying rule would re-
duce or eliminate rule effects in a subsequent
AI task. As evidenced by the absence of a
rule by pretraining interaction, the results
show no clear effect of various levels of AI
training in reduction of rule differences.
Typical rule effects were present in transfer
for both pretraining conditions.

The investigation of rule effects under
conditions of RL and AI discussed earlier in
this paper is particularly relevant to the focus
of the present study, since the same relative
rule difficulty has been found (e.g., Haygood
& Bourne, 1965) in both tasks. Several pos-
sibilities as to the cause, or causes, of such
similarity in relative rule difficulty can be
identified. Other work (Ingison, in prepara-
tion) has shown that relative rule differences
in RL and AI are probably not due to familiarity
with the rule per se. The present results
further suggest that such similarities are not
due to practice on AI problems involving the
same rule, at least for the pretraining levels
utilized in the present experiment. The ques-
tion still remains as to the possible nature of
the one or more critical factors involved in AI
rule effects.

One possibility is that still more rule-
specific AI training is needed in order to ef-
fect a reduction of rule differences in AI. Tt

is possible that overtraining to a high degree
may be necessary to effect a reduction in rela-
tive rule differences in AI tasks through the
development of rule-specific AI strategies.
A second possibility is that S must possess a
certain repertoire of skillsa repertoire which
may include rule familiarization in RL or Al
in order to eliminate rule differences in AI.
There are several variations of such composite
skills which may provide the key to reducing
rule differences in AI. One possibility is to
instruct or train S about the truth table in

addition to rule familiarization in either RL or
Al or both. It is possible that attainment of
solution in AI tasks requires a facility with
truth table coding in order to reduce relative
rule effects. Knowledge of the truth table as
well as the rule may be valuable in AI, as it is
possible that knowledge of the exact pattern
types placed in each response category will
facilitate identification of the relevant attri-
butes, especially for the more difficult rules.

To illustrate, Ss may be highly trained
on one rule and yet relatively naive about the
truth table classes, as in a two-category prob-
lem no clear distinction between the classes
placed in the same response category is re-
quired. Thus, Ss can solve the problem by
clearly defining one response category and
placing all other patterns (by elimination) in
the second category. For example, the Cj
might be expressed thus: if both attributes
are present, it is positive; all other patterns
are negative. Truth table trained Ss, on the
other hand, should have a more developed
knowledge of the differences among individual
classes contained in each response category.
The Cj might be expressed in this way: if both
attributes are present, it is positive; if only
the first attribute, the second attribute, or
neither is present, it is negative. On this
basis, certain performance differences be-
tween truth table naive and truth table sophis-
ticated Ss might be expected in AI tasks.
Naive Ss might be able to gain information
effectively from only one response category
(the smallest or best defined category). Due
to the undifferentiated nature of the classes
in the second response category, Ss may gain
little information about the relevant attributes
from these instances. Armed with a better
developed idea of the classes of stimuli in
each response category, sophisticated Ss are
in a better position to gain information ef-
ficiently from both the positive and negative
categories in an AI task.
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Such differences in the capability of
utilizing information from both response cate-
gories would be especially important for
more difficult (e.g., Cd) rules. The Cd rule
requires utilization of information from both
response categories for efficient identification
of attributes. In the Cd rule, the negative
category may be the most efficient source of
information about the first relevant attribute,
since all TF's have this attribute in common,
but the positive category must also be searched
for the second attribute. As efficient use of
both categories may be helpful in solving AI
problems involving this rule, truth table sophis-
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ticated Ss might be expected to solve more
quickly. Few, if any, differences in the per-
formance of truth table naive and truth table
sophisticated Ss would be expected for the
Dj rule, as thi6 rule depends less on informa-
tion gained from boll: response categories
that is , the Dj would probably be solved by
both groups by a strategy of comparing the
TT's, TF's , and FT's to each other to identify
the invariant relevant attributes. The exact
nature of such composite skills and the effect
such skills may have on relative rule diffi-
culty in AI remain to be determined in further
studies.
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