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1. Introduction

Many experiments have been performed to examine the

application of term classifications to information retrieval.

It has been shown by Salton [1], Spark, Jones and Jackson [2]

and many others that a substantial improvement in system

performance is obtained over simple term retrieval by using

automatic thesaurus construction. The construction is

generally based on the co-occurrence of terms in documents.

It has been pointed out by Doyle [3] that such construction

may have a number of difficulties. To avoid these difficulties,

Jackon [4] has proposed a formal construction of term classes

known as pseudo-classification in which the correlations of

relevant documents which are not retrieved are raised and those

of the irrelevant documents which are retrieved are lowered.

Such construction is based on a given correlation function,

a set of requests and the relevance judgementof the documents

with respect to these requests and is outlined as follows. If

a document is relevant to a request but the correlation between

the document and the request is not sufficiently high for the

document to be retrieved, then it is likely that some of the

terms used in the request, though similar in meaning to, are

distinct from those in the document. If term classes are

formed such that two distinct terms in the same class

constitute a class 'match', then the terms in the request and

those in the document which are related semantically may score
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enough class 'matches' so as to raise the correlation between

the document and the request and thus enable the document to

be retrieved. Similarly, if a document is irrelevant to a

request but the correlation between the document and the

request is high enough for the document to be retrieved, then

terms in the query and those in the document are likely to

score some class 'mismatches' to bring down the correlation

so as to preclude the retrieval of the document. It is

hoped that the construction will bring about the situation

where every relevant document is retrieved and every

irrelevant document is rejected. As pointed out by Jackson [4],

whether a classification derived from a given set of queries

and a given set of relevance judgement agrees with that derived

from another set of queries and another set of relevance

judgement has yet to be explored.

In this paper, the computational complexity of the formal

construction is examined. While the construction is shown to

be 'difficult' computationally, heuristic methods are tried

on a set of data to find out what improvement this classification

model can possibly have over simple term retrieval.
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2. Problem Definition

We shall assume all document and request vectors are

binary. The formal construction of term classes will be

formulated as follows.

Definition 2.1. A document D is retrievable (not retrievable)

by a request R if f(D,R)>T (f(D,R)sT), where T is a pre-set

constant, and f is a matching function measuring the closeness

between the document D and the request R. Normally, the value

of f is determined by the number of terms in common and the

number of terms not in common between the D & the R.

However, if we want f to also measure the similarity in

meaning of the terms in D and in R, f will have to satisfy

some more properties. The exact properties which f should

possess will be given later.

Definition 2.2. If D = (al,a2,...,am) and R = (bi,b2,...,bm)

are two binary vectors, then

D n R = (ci,c2,...,cm)

D R = (di,d2,...,dm)

R - D = (eve2,...,em) and

D u R == (fl,f2,....fm)

are defined as follows.

ci = Imin{a.,b.}

d. := al . b.

ei b a.

f. = max{a.,h.}

a _ b if a b
to z b

0 otherwise.
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We now introduce term "classes" with the intention of

putting terms in D-R and those in R-D which are similar in

meaning into the same term "classes". We assume certain

subsets of the set of index terms to be. called "classes".

These may overlap, so that a term can belong to more than one

class. With each term t we associate a vector

t = (tl,t2,...,tk) where

1 if term i is in the ith class

0 if term i is not in the ith class

d if don't care or don't know.

ti

The word "class" will remain undefined and we shall assume

that it is synonymous to the word "interpretation". Since a

term may have more than one interpretation, it may have more

than one "1" in its k-ternary vector. This is consistent with

our ordinary usage of words.

Let us call this vector, the class vector of the index

term t.

Definition 2.3. Given two index terms A and B and their k-

ternary class vectors (al,a2,...lak) and (bi,b2,...,bk), we

define the class vector representing AuB by C =

where

=lor bi =1

0 ifneithera.=lnorb.=1.
C
i

= 1 1

and at least one of them = 0

d if al. = b. d.
1
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Note that the above definition makes a '1' dominate a

'0'. This is natural because a positive response is much

more important than a negative one.

Definition 2.4. The number of term matches between a document

D and a request R is the total number of l's in DnR.

The number of term mismatches between a document D and a

request R is the total number of l's in (D-R)u(R-D).

Definition 2.5. The class match vector, C = (ci,c2,...,ck),

of two class vectors A = (a
l'

a
2' .. "

a
k

) and B = (bl,b2,...,bk)

is defined by

if st bi and a ,d

ci

0 otherwise.

Remark:Ifa.= bi =0 i.e., a (0,G) condition, then there

is a class match between A and B. However, if A and B are

document vectors instead of class vectors, then there is no

term matches according to definition 2.4. This is because in

general there are too many (0,0) conditions in documents,

while the number of class matches due to (0,0) conditions is

a lot less. (See definition 2.3 and diagram 2.1 for the

construction of class vectors for D-R and R-D). If we take

the approach that a (0,0) condition is a match but is less

important than a (1,1) condition for both term and class

matches, then a slight modification of the theory developed

later will carry over.



The class mismatch vector D = (dl,d2,...,dk) of the two

vectors is defined by

di

1 if a., * b. and neither a
i
= d

nor bi = d

0 otherwise.

6.

The situation in which (ai = 0, bi = d) or (ai = d, bi = 0)

or (ai = de bi = 1) or (ai = 1, bi = d) or (ai = di bi = d)

corresponds to a no match condition, i.e., a no match is neither

a class match nor a mismatch.

Definition 2.6. The number of class matches between two class

vectors is given by the number of l's in their class match

vector. Similarly the number of class mismatches is given by

the number of l's in the class mismatch vector.

Based on the above definitions, we require f, the matching

function, to be non-increasing in the number of class and term

mismatches and non-decreasing in the number of class and term

matches.

Remark: The reason why we impose the condition of non-decreasing

instead of increasing in the number of class and term matches is

that we want to include most natural matching functions in the

class we defined. An example showing that the stricter condition

is not appropriate is:

b
i'Tb'

a- a-Let the function f = iTE + TET where a and b are

the number of term matches and mismatches, respectively,

and a' and b' are the number of class matches and mis-

matches. It is easily seen that when b' = 0, increasing
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a' will not increase the value of f.

Similar remarks apply to the condition of non-increasing

in the number of term and class mismatches.

When we calculate the matching function value f(D,R),

we first have to find the total number of term matches and

mismatches. We have to delete the terms in common between the

D and the R when calculating the number of class matches and

mismatches because any term in DnR would automatically

contribute considerably to the number of class matches and

the effect would dominate that due to other terms.

A diagram illustrating how f(D,R) is calculated is shown

in Diagram 2.1.

Definition 2.7. An assessment matrix, Z, of m documents and n

requests is a binary matrix of order mxn. The assessment

matrix Z will correspond to the user's relevance judgement,

i.e.,

Z(i,j)= 1 if the user judges that Di is relevant

to R3 .

0 otherwise.

A (D,R) pair, say (D1,R.3 ), satisfies assessment iff one

of the following conditions is satisfied:

i) When Z(i,j) = 1, f(DieRi) > T

ii) When Z(i,j) = 0, f(Di,Rj) s T .
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Step 1 Obtain n R, D - R and R D.

Step 2 From D n R, obtain the number of term matches.

Step 3 From D - R and the term classification matrix,

obtain the class vector of D - R (using

Definition 3.1.3 iteratively), denoted by

(D - R)C

Step 4 From R D and the term classification matrix,

obtain the class vector of R - D, denoted by

(R - D)C .

Step 5 From (D - R) and (R - D), obtain the number of

term mismatches.

.:cep 6 From (D - R)C and (R - D)C obtain the number

of class matches and mismatches.

Step 7 From the number of class matches and mismatches

and the number of term matches and mismatches,

calculate f.

Diagram 2.1. To Calculate MIR).
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Thus, if a (D,R) pair satisfies assessment, then D is

retrievable by R iff D is relevant to R.

The problem we are trying to solve is posed as follows.

Given m documents, n requests, an assessment matrix Z,

and a threshold T, find a k-tuple class vector for each index

term such that as many (D,R) pairs satisfy assessment as given

by the matrix Z as possible. This is the same as saying that

as many of the relevant documents are retrieved and as many as

the irrelevant documents are rejected as possible.

Let us call this problem the satisfiable assessment

problem.

If there is a matrix C whose rows represent the index

terms and whose columns represent the classes, then the above

problem is the same as manipulating the entries of C so that

as many entries of Z are satisfied as possible. Let the

matrix C be called the term classification matrix. Usually,

some of the terms are known to have certain semantic relations

with some other terms, i.e., some of the entries of the matrix

C are fixed. Thus, the satisfiable assessment problems reduces

to fixing some entries of the matrix C, while varying other

entries so that as many of the entries of Z are satisfied.

Let us call this problem the satisfiable assessment problem

with a partial solution. We shall show in the next section

that the satisfiable assessment problem with a partial

volution is 'difficult' computationally.
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3. The Computational Compleallx21the Problem.

[The results of this section were obtained jointly with

S.K. Sahni.]

Cook [5] introduced an equivalent class of 'difficult'

problems known as the polynomialcompleteproblems. St, far,

no one has obtained a polynomial algorithm an algorithm

with the number cf. operations bounded by a polynomial function

of the length of the input) for any one of these problems.

However, all of these problems can be solved by a non-deterministic

Turing machine in polynomial time. Whether there is

deterministic polynomial algorithm for any of these problems

depends on whether we can simulate an arbitrary non-deterministic

Turing machine in polynomial time by a deterministic Turing

machine running also in polynomial time. While we are unable

to settle the above question, we will show that the satisfiable

assessment problem with a partial solution is polynomial complete.

All of the above mentioned 'difficult' problems are

polynomial reducible in the sense that if P1 and P2 are any two

of these problems and P1 can be solved in time f(n), with input

n, then P
2 can be solved in time f(p(n)) where p is a polynomial

function. A polynomial complete problem is deciding whether a

given formula in conjunctive normal form having at most 3

literals per clause is satisfiable (to be explained later). (see [5]).

From this, one can easily show that satis,...oility with exactly

3 literals per clause is polynomial complete, see (6]. Thus
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all we need to claim that our problem is polynomial-complete is

to show that there is a deterministic polynomial algorithm for

our problem iff there is one far the exactly 3-literal

satisfiabiiity problem.

An example showing a formula in con:;unctive normal form

is as follows.

Example 3.1. (Xlvii2vX4) A (X5vX2vi
9
vX

11 1
) A (?C VX

3
vX

9
).

This formula has three clauses, namely (X1vrC2vX4), (X5vX249vX11)

and (X1vX3vX9). Each of the letters or its complement is called

a literal. Thus X
1, 2

R or X
11

is a literal.

Definition 3.1. A formula is satisfiable iff under some

assignment of 0-1 values to the variable, every clause of the

formula has the value '1'.

In the above example, the assignment xl = x2 = x3 = 1

results in each clause having the value 1 and so the formula

is satisfiable.

The main result of this sect:I.on is:

Theorem 3.1. The satisfiable as3essment problem with a

partial solution is polynomial complete.

Proof: For a proof of this theorem see Appendix 1.

Since any problem which can be solved by a random access

machine in deterministic polynomial time can also be simulated

by a Turing machine in deterministic polynomial time, the above

problem is also polynomial complete when considering a random

access machine.
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4. Heuristic Methods

In the last section, we showed that was very likely

that our problem would require exponential time. In this

section, we shall present some heuristic methods which run

in relatively little time as compared to an exhaustive

enumeration algorithm but do not guarantee that the number

of (D,R) pairs satisfying assessment would be the maximum

possible.

Notation 4.1. Let {Cii}i.lem be the term classification

j=101

matrix where i denotes the term, j denotes the class.

C1j1
3c4 means10 ans that is changed from x to y. There are

six such operations, namely Op(Cij,041), Op(Cij,04d). OP(Cijel+d),

thOp(Civ1-0.0),Op ,d+1) and Op(Ci ,40) Let x1 be the i. .(Cii
j
d

term, y, the j th class. Let (D-R)C and (R-D) be the class

vectors of (D-R) and (R-D), respectively. If A is a vector,

let Ai be its ith component. We shall consider every vector

as a set in the following sense. If Ai=1 and A is a document

vector, then xicA. If Ai =d or 0, then xicA. Similarly

if A,1=1 and A is a class vector, then y,EA.

Having defined the above six operations, we shall make

use of them as follows. Suppose we are given a (D,R) pair.

If the pair satisfies assessment, then there is no need to

apply any operation. If D is judged relevant to R but

f(D,R)sT, then an operation or a sequence of operations is

applied to the pair so as to increase the value of f(D,R).
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Similarly, if f(D,R) T but D is judged irrelevant to R, then

another operation or sequence of operations is chosen to

decrease f(D,R). Sometimes, a single operation may not be

able to bring about any change on a given (D,R) pair. For

example, (D-R) has term terms t1 and t2 with the class vectors

of t
1

and t
2

having a '1' in the j th
position. Thus (D-R)

j
=1.

Suppose the desired change is to convert (D-R), from 1 to 0.

Then neither the operation Op(Ctli,14.0) nor the operation

Op(C
t2

114.0) can make (D-R),=0. However Op(C
tij

11+0) followed

by Op(Ct_j,14.0) or the operations in the reverse order convert

C 2(D -01) with

x,y and j fixed while varying i, applied to a (D,R) pair which

brings about a desired change in exactly one of (D-R), and (R-D),

is called a composite operation.

We shall assume that the matching function f is monotonically

increasing in the number of class matches and monotonically

decreasing in the number of class mismatches. This restriction

will be removed later on. One observation we can make is that

whether f(D,R) increases, decreases or remains unchanged after

an application of an operation or a composite operation is

completely independent of the function, f, being chosen.

This observation is stated as follows.

Theorem 4.1. Let f and g be.two matching functions. If fl

and gl are the two matching function values of a given (D,R)

pair and f
1

and g
1
are their values respectively after an
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application of an operation or a composite operation, then
1

f1<
fl <=> gl < gl

1 1

fi = fi <=> gi = g1

1

fl fl <=> gl gl

Proof: It is sufficient to prove the theorem for the case of

a composite operation. Let the composite operation be

Op( Cij , x-'y) for a number of i's. For any given (D,R) pair,

the composite operation can at most change the value of (D-R) c

and (R-1D), i.e., (D-R) c
and (R-D)

c
remain unchanged if t#j.

thConsidering the j class between (D-R), and (R-D), before the

operation is applied, there are three possibilities, namely,

a class match, a no match, and a class mismatch. After the

application of the operation, we also have the same three

possibilities. Thus, an application of a composite opera :ion

produces one and only one of the following nine changes. 1)

a class match is converted to a class match; 2) a class mismatch

to a class mismatch; 3) a no match to a no match; 4) a mismatch

to a class match; 5) a no match to a class match; 6) a mismatch

to a no match; 7) a class match to a mismatch; 8) a class match

to a no match; 9) a no match to a mismatch. For the first 3

cases, any matching function remains unchanged. For the next

three cases, any matching function increases and for the last

three cases, any matching function decreases.

Based on this theorem, we shall design an algorithm

which is completely independent of the matching function to

be chosen.
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We now examine whether any arbitrary given (D,R) pair can

possibly satisfy a given assessment. If DsR or RED, then

either (D-R) or (R-D) is empty, which implies that either

(D-R)C or (R-D)C contains don't care entries only. Suppose

(D-R)C contains don't care entries only, then any (R-D)C will

not give rise to a class match or mismatch. Thus no change in

the term classification matrix can alter the value of f(D,R).

Let us consider another situation. The highest value which

f(D,R) can take on is to have all class matches and no class

mismatch. If D is judged relevant to R and f(D,R) takes on

its maximal value but f(D,R)sT, then no change in the

classification matrix can make (D,R) satisfy assessment.

Similarly if D is judged irrelevant to R and the minimum value

of f(D,R) is greater than T, then whatever change in the term

classification matrix will not make (D,R) satisfy assessment.

Let the highest and lowest values of f(D,R) be fiuGH and fLow

respectively. Based on the above discussion, we obtain the

following proposition.

Proposition 4.2. A given (D,R) pair cannot satisfy assessment

under any term classification matrix iff one of the following

conditions is satisfied

i) (D,R) does not satisfy assessment under some term

classification matrix and either DgR or RsD.

ii) D is relevant to R and fHIGHsT

iii) D is not relevant to R and f >T.LOW
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If condition (i) is satisfied, it is likely that the user

gives a false assessment of the (D,R) pair. If either condition

(ii) or condition (iii) is satisfied, then we should increase the

number of classes so that f
HIGH can be increased and f

LOW can be

lowered. Thus, conditions (ii) and (iii) give us an indication

of the minimum number of classes to be chosen.

Definition 4.1. A (D,R) pair which cannot possibly satisfy

assessment is called a discarded pair.

The next thing we consider is how we should go about

increasing or decreasing f(D,R) for a given (D,R) pair. Since

decreasing f(D,R) is analogous to increasing it, we shall

consider increasing f(D,R) only. Let (D-R) C and (R-D)C be

(dird2,...,dn) and (ri,r2,...,rn) respectively. It is sufficient

to examine changing the class vector of (D-R) only, since the

other 'case i.e., changing the class vector of (R-D) is very

similar. The first class of (D-R) c
and (R-D)C is scanned. If

di=yd, then no operation applied on the first class can

increase f(D,R). If d1 =r1 =d, then it takes at least two

operations to make the first class a class match. Since later

operations applied to other (D,R) pairs may make either

d1 or r1 a non-d entry, we will postpone making any change

for d
1
and r1. If d

1
#r

1
and we want to use an operation of

theform0p(Civvoy)withx.le D-R, we have four cases, namely

d1 =0, r1=1; di=d, r1=1; di=d, r1 =0; and d1 =1, r1 =0. (For the

other cases, i.e. (d1=0,r1=d) and (d1=1,r1=d), changing d1

will not increase f(D,R)). We now consider the case
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1
=1,r

1
=0)

i such that

in detail.

xi eD-R and

17.

When Op(Cii,10) izs applied to all terms

Cii=1, (D-R) will be set to 0, which will

then increase the number of class matches by 1. Athough this

operation helps the current (D,R) pair to satisfy assessment, it

may deteriorate other (D,R) pairs. Thus, we may not want to

apply this operation until some other criteria are satisfied.

Four strategies will be given later, which will decide whether

a given operation should be applied or not. Suppose the

operation Op(Cii,10) is decided not applicable, then we should

try operation Op(Ci1,14d). This operation may no improve the

(D,R) pair as much as Op(Cill1+0) but on the other hand, it has

more chance of being decided applicable. Suppose that Op(Cii,l+d)

is decided applicable but the improvement is not sufficient to

make (D,R) satisfy assessment, then we should try Op(Cii,d4.1)

forsomeisuchthatx.eD-R and =d. Note that the failure

of Op(Cii,1-0) for all i such that xieD-R and Ci1 =1 may not

necessarily imply the failure of Op(Cii,l+d) for all i such

that xi!:D-R and Cil=1, succeeded by Op(Cii,d40) for some i

such that xieD-R and Cii=d. Suppose that the operation is

applied but the improvement is still not enough. Then the

next class is considered. If all the classes have been

considered but the (D,R) pair does not satisfy assessment,

then we repeat the process for the class vector of (R-D).

If the (D,R) pair still does not satisfy judgement, then the

(D,R) pair is stacked and will be handled later on.
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Diagrams 4.1 and 4.2 give the flowcharts for increasing and

decreasing a given (D,R) pair. Before we proceed further,

we will give a detailed example showing how a (D,R) pair is

processed.

Example 4.1. Let the matching function be

Oar
'

f(D,R) = cos(D,R) +
4

x 0.1a1+b

where a' and b' are the class matches and mismatches between

(D-R) C and (R-D) C, respectively.

D = (0,0,0,0,1,1,1,1)

R = '0,1,110,0,1t1,0) .

Let the assessment be D not relevant to R. So, we want

f(D,R) s the threshold T=0.46.

The term classification matrix, C, before this (D,R)

pair is processed is

TIM&

classes

1 1 d 0 d

d 0 0 1 0Od0d1
C = terms d d d 0 1

0 0 d d 1

1 1 0 1 0

1 0 1 d 0

1 d d d 0

(D-R) =

(D-R)C = (0,0,d,d,i) u (1,d,d,d,0)

= (1,0,d,d11)
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To increase f(D,R)

Let (D-R)
c

= (di,d2,...,dn) and (R -D)C = (ri,r2,...,rn)

lir

No

4 possible cases

Yes

case 1

41_,7 =1

r =

case 2 case 3

d =0

riga

Try Op(Cij,1.0)

for all xiCD-R

and C
ij

=1

Is operation allowed
by criterion (i.e.
strategy 1,2,3 or 4
given later)?

Yes

Does (D,R) satisfy
assessment?

dies

A

j=j+1
(i.e. examine
next class)

case 4

di=d1r =1

No Try Op(Cii,l.d)

for all xie(D-R)

and C
ij

Nal

j>n?

Yes

Have all the
terms in (R-D)
been tried?

Yes I No

The (D,R)
pair is
stacked

Interchange
(D-R) and
(R-0) and
interchange

(D-R)
c

and

(R-D)

Is operation
No

o to A No allowed by
criterion?

Yea
V

1

The (D,R) pair Yes
is acceptable

No

Try Op(Cii,d4.0)

for some XicD-R

and C
ij

sed

V

1

Is operation
allowed by
ivriterion?

I

Yes

to Al

Does (D,R)
satisfy
assessment?

No

Is (0-

je

Al

Ys
go to

Diagram 4.1. (The other cases are similar to case 1).
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To decrease f(D,R)

Let (D -R)C (d1,d2,d3,...,dn) and (R-D) (r1,r2,...,rn)

Is (d ,r ) one

of the following
4 cases?

Yes

4 po2sible cases

case 1

rj1

Identical to
case 1 in
Diagram 4.1

case 2

dj =0

r,0

case 3

d d

r

3341.
(i.e. examine
next class)

case 4

rj 0

Try Op(Cijod.°)

for some x CDnR

which has not been
attempted.

Identical to
corresponding
part of Diagram
4.1

Is operation
allowed by
criterion?

Yes

Does (D,R) satisfy
assessment?

Yes

The (D,R) pair is
acceptable

every operation
of the form Op(Cij,(140)

for x
i
EDnR have been

tried?

No
Go to

Diagram 4.2. (Case 3 is done in detail)

Yes
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(R-D) = (0,1,1,0,0,0,0,0)

(R-D)C = (d,0,0,1,0) u ((.',d,O,d11)

(0,0,0,1,1)

From (D-R)C and (R-D)C, we have a'=2 and b'=1

f(D,R) = cos(D,R) + 4.2-1
x 0.14.2+1

= 0.5 + .0778 = 0.5778

Since f(D,R)>T, we want to decrease f(D,R). There is already

a class mismatch in the first class. Thus we scan the second

class. We would like to change the second class of (D-R)C to

a 1 so that we can have a mismatch in the second class. Thus

the class chosen is 2. The term chosen is the first non-zero

term of (D-R) whose secon4 class equals 0 or d, i.e. term 5.

Thus the operation is Op(C52,0.+1) or Op(C52,d41).

Suppose that the operation is not allowed for not

satisfying certain criteria. Then the next term chosen is

term 8 of (D-R). Thus the operation is Op(C82,d4l), since

the second class of term 8 is d.

Suppose that the operation is again not allowed. Theu

we would like to change the second class of (D -R)C to a d so

that we will not have a class match in the second class. The

term we choose is the first non-zero term of (D-R) whose class

equals 0. Thus the operation is Op(C52,04.d).

Suppose the operation is allowed by the strategy. The

operation is applied and the new classification matrix becomes
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Classes

1 1 d 0 u

d 0 0 1 0

0 d 0 d 1

terms d d d 0 1

0 d d d 1

1 1 0 1 0

1 0 1 d 0

1 d d d 0

Now, a' = 1 and b' = 1.

The new f(D,R) = 0.5600 and we still have to decrease

f(D,R).

The other operations attempted are listed below:

Op(C53, d+1) which is not allowed;

Op(C83, d1) which is not allowed;

Op(C54, d0) which is allowed.

At this stage, f(D,R) = 0.5333 and we still nave to decrease

f(D,R). The next operation is

Op(C55, 1+0) which is not allowed.

The next operation is Op(C55, l+d). Since this operation

fails, there is no need to try Op(C85, 0*.d). After this

operation, we interchange (D-R) and (R-D) and also (D-R)C

and (R -D)C and other operations are tried.

Now, we present the four strateg:.es which decide whether

a given operation is applicable or not.

Definition 4.2. A (D,R) pair responds favorably to an

operation or a composite operation if one of the following

conditions is satisfied
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i) if D is relevant to R, then one of the following

must be satisfied

a) the number of class mismatches is decreased

and there is no decrease in the number of

class matches

b) the number of class matches is increased and

tnere is no increase in the number of class

mismatches.

ii) if D is not relevant to R, then one of the following

must be satisfied

a) the number of class matches is decreased and

there is no decrease in the number of class

mismatches

b) the number of class mismatches increases and

there is no increase in the number of class

matches.

iii) there is no change in the number of class matches

or mismatches.

A (D,R) pair responds strictly favorab to an operation

or a composite operation if either (i) or (ii) is satisfied.

Definition 4.3. An acceptable (D,R) pair is one which

satisfies assessment under the current term classification

matrix.

A stacked (D,R) pair is one which does not satisfy

assessment under the current term classification but may
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possibly satisfy assessment under some other classification

matrix.

Each of the strategies which we will present ensures

that any operation, if applicable, nelps the present (D,R)

pair in satisfying assessment but also guarantees that the

previously processed (D,R) pairs behave "reasonably well".

Hopefully more and more (D,R) pairs are brought into assess-

ment as more and more operations are performed.

Strategy 1. All acceptable and stacked pairs which were

processed previously respond favorably and tne present (D,R)

pair responds strictly favorably.

Definition 4.4. A (D,R) pair is undisturbed by an operation

if tne operation does not change the pair which satisfies

assessment into one wilicn does not.

Thu:), a (D,R) which does not satisfy assessment is

undisturbed by any operation. While strategy 1 does not allow

any deterioration of any (D,R) pair which can satisfy assess-

ment, strategy 2 will certain deterioration, provided it is

not "too bad".

Strategy 2. All acceptable (D,R) pairs which were previously

processed are undisturped and the current (D,R) pair responds

,;:ictly favorably.
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Uefinition 4.5. The number of favorable changes on a (U,R)

pair is counted in the following way.

i) if D is relevant to R, then each of the following

changes is counted as one favorable change

a) there is no change in the number of class

matches and the number of class mismatches

decreases by 1.

b) there is no change in the number of class

mismatches and the number of class matches

increases by 1.

ii) if U is not relevant to R, then each of the following

changes is counted as a favorable change

a) there is no change in the number of class matches

and the number of class mismatches increases

by 1.

b) there is no change in the number of class

mismatches, and the number of class matches

decreases by 1.

Thus, if D is relevant to R and a mismatch is converted to a

match, then the number of favorable changes is 2.

The number of unfavorable changes on a (D,R) pair is

counted as above except that the words 'relevant' and 'not

relevant' are interchanged in (i) and (ii).

The number of favorable changes on a set of (D,R) pairs

is given by the sum of all favorable changes on each (D,R)

pair in the set. The number of unfavorable changes on a set
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of (D,R) pairs is calculated similarly.

Strategy 3. The number of favorable changes on all acceptable

and stacked pairs is greater than the number of unfavorable

changes on all acceptable and stacked pail's.

While strategy 2 does not allow any (D,R) pair which

satisfies assessment to deteriorate "too badly", strategy 3

allows ueterioration of any (D,R) pair to any degree provided

that the set of all (D,R) pairs which can possibly satisfy

assessment "improves" on the whole. Generally, Lnis will

improve system performance as measured by recall and precision

effectively. When a (D,R) pair is judged to be relevant

(irrelevant) anu all documents wnich rank nigher (lower) than

D with respect to R are relevant (irrelevant) to R, increasing

(decreasing) the rank of D any further will not improve recall

ana precision. Thus a better strategy than strategy 3 would

be to count a change on a (D,R) pair as favorable only if

tnere is at least one irrelevant (relevant) document whose

rank is higner (lower) than U and it is possible for D to

pass such a document in ranking. However, any method

attempting to implement that would involve sorting the

correlation coefficients of documents with respect to each

request and a lot of computing time is required. To avoid

it, we use the following definition in specifying strategy 4.
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Definition 4.6. A favorable change in a restricted domain

on a (D,R) pair is a favorable change which satisfies one

of the following conditions.

i) if D is relevant to R, f(D,R)<T
2
before the

operation is applied.

ii) if D is not relevant to R, f(D,R)>Ti before the

operation is applied.

T
2
ana T

1
are constants (T

2
>T

1
) specifying the restricted

domain we are interested in. Any document whose correlation

coefficient with R is greater (less) than T2 (T1) is assumeu

to be relevant (irrelevant) to R. Thus, increasing (decreasing)

f(D,R) beyond T2 (T1) would not improve recall and precision.

Strategy 4 The number of favorable changes in restricted

domain on all acceptable and stacked pairs is greater than

the number of unfavorable changes on all acceptable and stacked

pairs.

Diagram 4.3 illustrates how all the (D,R) pairs are

processed in the first cycle. At the end of the first cycle,

there are 3 sets of (D,R) pairs, a set containing acceptable

(D,R) pairs, one containing stacked pairs and the last one

containing discarded pairs. In the second and subsequent

cycles, attempts are made to change stacked (D,R) pairs into

acceptable ones by going through the same flowchart but

processing the set of stacked pairs only. However, when a

strategy is applied, all pairs except those discarded are

taken into consideration. The stopping criteria for the
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Go toT
A

Go to A

This pair is
No saved in

a stack
marked stacked

Does the operation
satisfy the condition

of the strategy being used?

Yes

Does the pair
satisfy assessment? '

Yes

!Accept the pair and
save it in a stack
marked acceptable

... Go to A

Diagram 4.3. Main program for cycle 1.

lo
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strategies arc as follows. For strategies 1, 3 and 4, the

algorithm halts iff no operation is made between the last

cycle and the present one or there is no stacked pair. For

strategy 2, the algorithm halts iff there is no increase in

the number of acceptable pairs between the last cycle and

the present one or there is no stacked pair.

We will show that all the strategies converge.

Proposition 4.3. Strategy 1 converges in a finite number of

steps.

Proof: Let f = the number of favorable changes in all acceptable

and stacked pairs. f is bounded above by the number of (D,R)

pairs times the maximum number of favorable changes a (D,R)

pair can possibly have. f is monotonically increasing in the

number of operations made because each operation which is

applied must increase f by at least 1. A monotonic increasing

function which takes on integer value and is bounded above

must converge in finite number of steps.

Proposition 4.4. Let f = the number of acceptable (D,R)

pairs. Since the number of acceptable (D,R) pairs is less

than or equal to the number of (D,R) pairs, f is bounded above

by the number of (D,R) pairs. By the definition of strategy 2,

f either increases or it remains the same from the itil cycle

to the
(i+i)st

cycle. In the latter case, strategy 2 stops.

For tae former case, strategy 2 stops 'oy an argument similar

to that of Proposition 4.3.
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Proposition 4.5. Strategy 3 (4) stops in a finite number of

steps.

Proof: Let f = the number of favorable changes (in restricted

domain) on all acceptable and stacked (D,R) pairs - the number

of unfavorable changes on the same pairs. Then apply an

argument similar to that of Proposition 4.3.

We are now in a position to modify the algorithm whose

flowchart is described by diagram 4.3 if the matching function

f is non-decreasing in the number of class matches and non-

increasing in the number of class mismatches. If f were a

monotonic function, then an operation which will help a (D,R)

pair to satisfy assessment would be one which increases the

number of class matches or decreases the number of class mis-

matches in the case D is relevant to R and which either decreases

the number of class matches or increases the number of clasp

mismatches in the case D is not relevant to R. If f is only

non-decreasing in the number of class matches and non-increasing

in the number of class mismatches, then in order to decide

whether an operation really helps a (D,R) pair to satisfy

assessment, we not only have to check the above conditions but

also compute the value of f and see whether any change has been

made. This is the only change we have to make in the algorithm

(see the box marked with * in diagram 4.3).
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5. Experimental Results

In this section, we shall compare the performance of the

four strategies with the performance of a matching function

which does not make use of the concept of class matches and

mismatches. The function chosen is the cosine function used

in the SMART Project [6]. In Diagram 5.2, this function is

referred to as fl. The matching function which uses the

concept of class matches and mismatches is f2(D,R) = cos(D,R) +

k
1
a'-b'

kla'+b' k
2
where a' and b' are the number of class matches and

mismatches, respectively and and k2 are constants. The

comparison of the two matching functions will be carried out

in two ways: the percentage improvement of the new function

using a particular strategy over the cosine function in terms

of the number of (D,R) pairs satisfying assessment and in terms

of precision and recall.

In Dirtgram 5.2, the results are shown with kJ. = 4 and

k
2

= 0.1. In Diagram 5.1, the aocuments and the request pairs,

the assessment of the pairs and the threshold are given.

The percentage improvement of a particular strategy over

f
1
is given by the formula {(no. of (D,R) pairs satisfying

assessment using that strategy) - (no. of (D,R) pairs

satisfying assessment using fl)}1{no. of (D,R) pairs satisfying

assessment using fl)}x100%. The number of (D,R) pairs

satisfying assessment by fl and by the other strategies is

shown in Diagram 5.4.
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D
1

= (0,1,1,0,1,0,0,1) R
1
= (0,0,1,0,1,0,0,1)

D
2

= (0,0,0,0,1,1,1,1) R2 = (1,0,1,1,0,0,1,1)

D
3

= (0,1,0,1,0,1,0,1) R
3
= (0,1,1,0,0,1,1,0)

D
4

= (1,0,1,0,1,0,1,0)

D
5

= (1,1,1,1,0,0,0,0)

D
6

= (0,0,1,1,0,0,1,1)

D
7

= (1,1,0,0,1,1,0,0)

D
8

= (1,1,1,0,0,1,0,1)

D
9

= (0,1,0,0,1,0,1,1)

D
10

= (0,1,0,1,1,0,1,0)

The number of terms = 8 , the number of classes = 5

Threshold T = 0.46 .

Assessment matrix Z =

1 0 0

0 1 0

0 0 1

1 1 0

0 1 0

0 0 1

1 1

0 0 0

1 0 1

0 1 0

Diagram 5.1.
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Number of (D,R) pairs given = 30

Number of (D,R) pairs discarded using f2 is 6

i.e., there are 6 (D,R) pairs which can never

satisfy assessment using f2 with the parameters

4 and kki = - k2 = 0.1 .

Number of (D,R) pairs satisfying assessment by

f
1

f
2
with

strategy 1

f
2
with

strategy 2

f
2
with

strategy 3

f
2
with

strategy 4

16 17 22 21 20

Initial term classification matrix C

terms

0

d

0

d

1 d

0 d

d 0

d d

0

1

d

0

d

0

1

1

0 0 1 d d

d d 1 1 0

1 0 1 d 0

_1 d d

classes

d 0

f
1

= cosine function

kial-b'
f2 (D,R) = cos (D,R)

( k
1
a +b ) k2

Diagram 5.2.
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0.0 0.2 0.4 0.6

Recall

Diagram 5.3.

0.8 1.0
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Percentage improvement of strategy i over the cosine
function in terms of the number of (D,R) pairs

satisfying assessment

Strategy 1 Strategy 2 ;

I Strategy 3 Strategy 4

6.25 37.5 31.25 . 25

Diagram 5.4.

Percentage improvement of strategy i over the cosine
function in terms of Recall and Precision

Strategy 1 Strategy 2 Strategy 3 Strategy 4

-4.3 6.6 13.1 13.1

Diagram 5.5.
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The percentage improvement of the strategies ever fl is given

by Diagram 5.5. The precision and recall curves for the

strategies and the cosine function are plotted in Diagram 5.3.

There are a number of parameters that we can vary in

performing the above experiments. The first variation involves

changing the initial term classification matrix. The results

are shown in Diagrams 5.6 and 5.7. The second parameter

varied is the order in which the (D,R) pairs are processed.

Diagrams 5.8 and 5.9 show the results when all the (U,R)

pairs are processed in reverse order. Next, we vary the

constants and k2. From the above (D,R) pairs, we find

the highest value which cosine (D,R) can have among all (D,R)

pairs is .6708 when both (U -R) and (R-D) are non-empty. If

the highest value which f2(D,R) is allowed to reach is 1,

then we should choose k
2
= 1 - 0.6708 = .3292. Since the

number of classes equals 5, using k1 = 4 would imply that

if there is a match, then f2(D,R).?.fl(D,R). Thus, we should

lower k
1

to 2 if we want class mismatches to have some

importance as compared to class matches. The results of

using k2 = .3292 and ki = 2 are shown in Diagrams 5.10

and 5.11. The computing time for the four strategies in

the above experiments is shown in Diagram 5.12.

By looking at the experimental results, strategy 2

is far superior to strategy 1 in terms of the number of (D,R)

pairs satisfying assessment. This is not at all surprising



Percentage improvement of strategy i over the cosine
function in terms of the number of (D,R) pairs

satisfying assessment

Strategy 1 Strategy 2 Stratgey 3 I Strategy 4

25 31.25 31.25 31.25

A different initial term classification matrix is used

Diagram 5.6.

Percentage improvement of strateyy i over the cosine
function in terms of Recall and Precision

1

Strategy 1 Strategy 2 Strategy 3 Strategy 4

i

4.3 10.3 13.3 11.7

A different initial term classification matrix is used

Diagram 5.7.

37.
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Percentage improvement of strategy i over the cosine
function in terms of the number of (D,R) pairs

satisfying assessment

Strategy 1 Strategy 2 Strategy 3 Strategy 4

6.25 25 12.50 31.25

The (D,R) pairs are processed in reverse order

Diagram 5.8.

1 Percentage improvement of strategy i over the cosine
function in terms of. Recall and Precision

Stritegy 3 Strategy 2 : Strategy 3 Strategy 4

6.6 -0.9 16.8 16.8

The (D,R) pairs are processed in reverse order

Diagram 5.9.
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Percentage improvement of strategy i over the cosine
function in terms of the number of (D,R) pairs

satisfying assessment

Strategy 1 Strategy 2 Strategy 3 Strategy 4

43.75 62.5 50 56.25

Constants k
1

= 2 k
2

= .3292

Diagram 5.10.

Percentage improvement of strategy i over the cosine
function in *.erms of Recall and Precision

Strategy 1 Strategy 2 Strategy 3 Strategy 4

12.5 22.0 22.6 22.5

Constants k
1

,= 2 k
2
= .3292

Diagram 5.11.
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Computing time of the different
strategies in the above experiments

1

Strategy 1 Strategy 2 Strategy 3 Strategy 4

Original
matrix 23.70 sec. 32.23 sec. 48.75 sec. 39.53 sec.

Altered
matrix 13.93 sec. 12.83 sec. 22.24 sec. 27.07 sec.

(D,R) pairs
processed
in reverse
order

17.35 sec. 14.89 sec. 39.09 sec. 43.42 sec.

Changing
k
1 1

k
2

to

k
1
= 2

'

k
2
= .3292

45 sec. 30.17 sec. 77.96 sec. 77.81 sec.

Diagram 5.12.
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because any operation that is allowed in strategy 1 is also

allowed in strategy 2 under the same term classification

matrix, and strategy 1 is restricting too many operations

to be applicable. In the experiments that we ran, strategy

2 is even better than strategy 3 in the number of (D,R) pairs

satisfying assessment, but strategy 3 is better than strategy

2 in terms of recall and precision. Strategy 3 guarantees

that any operation that is applied improves the global

. conditio,1 of all the (D,R) pairs while strategy 2 is more

interested in the satisfiability of the current (D,R) pair.

Strategy 2 allows an operation which deteriorates some of

the (D,R) pairs that have been processed, provided that the

deterioration in each pair is not "too much". The operation

may hurt the global behavior of the (D,R) pairs and thus on

the whole, we expect strategy 3 to be superior in recall and

precision. Strategy 4's performance should be better than

that of strategy 3 but it is not easy to fix the values of

the thresholds T
1
and T

2
to obtain good results.

When the parameter k2 is changed from 0.1 to 0.3292,

most of the (D,R) pairs which were discarded when k2 = 0.1

become available for processing. Thus, the performance of

all the strategies improves significantly. On the other

hand, a lot more operations have to be performed and the

computing time increases considerably. When the other

parameters are changed, i.e., changing the initial term
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classification and the order in which tne (D,R) pairs are

processed, strategy 2 still performs very well in the number

of (D,R) pairs satisfying assessment, and strategies 3 and 4's

performance remains well in terms of recall and precision.

When a different initial term classification matrix is used,

the performance of strategy 1 improves from 6.25% to 25% in

terms of the number of (D,R) pairs satisfying assessment.

In general, we believe that the strategies which are

designed for a particular purpose (strategy 2 maximizing the

number of (D,R) pairs satisfying assessment and strategies 3

and 4 improving recall and precision) are rather independent

of the order in whic. the (1),R) pairs are processed and also

of the initial term classification matrix. (A particular

initial term classification matrix may make one strategy

perform a lot better and another one a lot worse. But a

randomly generated one with mostly don't cares as entries

will give approximately the same result each time.) On the

other hand, the performance of strategy 1 is highly dependent

on the above parameters.

We shall try strategy 3 on a subset of the ADI collection

which has 82 documents and 35 requests. The first five

requests are chosen and the (D,R) pairs are chosen satisfying

one of the following conditions (i) D is relevant to R or

(ii) D ranks within the top twenty documents in correlating

with R. The number of (D,R) pairs satisfying the above criterion
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equals 103. The number of terms and classes used is 1187

and 20, respectively. The results are shown in Diagram 5.13.

The chosen tnreshold =0.25 with constants k
1
= 3 and

k
2
= 0.1. The initial term classification matrix is too

large to be given nere. The total number of (D,R) pairs is

103 and strategy 3 accepts 101 pairs and 2 pairs are discarded

(with no stacked pairs). The computing time spent is 44 minutes,

but the improvement obtained is unexpectedly good. It has a

110.9% improvement over the cosine function.

6. Computation Time of the Heuristic Methods.

In this section, we shall give a rough estimation of the

computing time of strategy 3. In the experiments shown in

the last section, we saw that strategy 3 usually takes more

time than the other strategies. Thus a rough bound for

strategy 3 would serve as a bound for other strategies.

Let the number of (D,R) pairs be n. Let the average

number of terms in a document be p and that in a request be q.

Suppose the number of classes is r.

If D is relevant to R; then the number of favorable

changes in one class is at most 2, namely changing a mismatch

to a no match and then from a no match to a class match.

Similarly if D is not relevant to R, there are at most 2

favorable changes per class. Thus the total number of

favorable changes for a (D,R) pair is at. most 2r, implying

that the total number of favorable changes for all (D,R) pairs

is bounded by 2rn. From the i th
cycle to the (i +l)St cycle,
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at least one operation is applied. Taerefore, the number of

favorable changes increases by at least one. So, the number

of cycles is at most 2rn. Now in each cycle, all the stack

pairs are processed rad the number of stack pairs is less

than or equal to n. For each pair, the number of operations

that may be favorable (but not necessarily applied) is at most

2(p+q)r, because there are at most 2 favorable changes for

each class and each favorable change may be caused by any one

of the (p+q) terms (the cardinality of (D-R)u(R-D) is bounded

by (p+q)). For each operation which may be applicable, we

have to go through all acceptable and stacked pairs, which

is not more than n. If (D-R), (R-D), (D-R)C and (R-D) c

are stored, then checking whether a given operation is

favorable to a pair or not takes constant time. Thus the

total time taken is

(2rn) [r]

number no. of
of (D,R)
cycles pairs

processed
per cycle

[ 2(p+q)r] [n] = 0(n
3
r
2
(p+q))

no. of
operations
considered
for each
(D,R) pair

no. of
(D,R)

pairs
to be
checked
to decide
whether an
operation
is applicable
or not

Tnis is really a large number when tae number of (D,R)

pairs is large or the number of classes is large. but this

number does not represent the actual running time of strategy

3. In the first cycle, the computing time is 0(n2r(1.0-q)).
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For each cycle after the first cycle, the number of stacked

pairs is extremely small and for practical purposes, can be

assumed to be bounded by a constant. Thus the amount of

computer time spent per cycle after the first cycle is

0((p+q)rn). In all the experiments performed, than number of

cycles was at most 4 and in many cases, the number went down

to 2. A more realistic situation is to assume that the number

of cycles is a constant. Under that assumption, the computing

time spent is 0(n2
r(p+q)) + 0((p+q)rn) = 0(n2 (p+q)r). The

computer times usea in the different experiments confirm tne

above calculation.

7. Conclusion

The formal construction of term classes is saown to be a

difficult process computationally. The approximation to the

construction by the heuristic methods, especially the tnird

strategy, is verifieu by experimental results to be a

sufficiently close one. However, the computer time required

by the heuristic metaods is still too large for any real

document collection. Future research should be directed at

getting better heuristic algorithms. Our next set of

experiments will be aimed at finding out whether the construction

obtained by a given set of queries and user's assessment agrees

with that obtained by a different set.
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APPENDIX

(The results of this appendix were obtained jointly

with S.K. Sahni.]

Theorem 1. For every formula in conjurxtive normal form

having exactly three literals per clause, there exists a

set of documents D's, a set of requests R's, a matching

function f, a threshold T, an assessment matrix Z and a

partial solution for the satisfiable assessment problem

such that the formula is satisfiable :. all (D,R) pairs

are satisfied.

Proof: Let P be a formula in conjunctive normal form with

n variables x
11
x x

n and m clauses cl,c2,...,cm. Thus

m
P is of the form A ci. Further, each clause ci has

i=1

exactly three literals and is of the form cil v ci2 ci3

where c.. is either a variable or its complement. We shall

show how to obtain a set of (D,R) pairs, a matching function

f, a threshold T, an assessment matrix Z and a partial
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solution such that all (D,R) pairs are satisfied iff tae

formula P is satisfiable.

Corresponding to each clause ci there will be one Ri

and one D.1 . We shall have 3n +m distirct terms:

{ g.}m ; {t }n
; {z }n and {z }n

.

3 1'- '-13 3- 3- 3 j =1=

For each clause ci D. and R. as follows. R.1 1 1 1

and Di have four terms each. The terms of D. are given by

i) yi is in Di

ii) z
i

is in D
i

iff the literal x
i

occurs in c
i

.

iii)ziisinDiifftheliteralx.occurs in c..
1

ThetermsofR.are given 1.)y

i) gi is in Di

ii) ti is in Di iff the variable xi is in clause ci

(variable x
i
occurs in c

i
iff either tae literal

x.
1

or the literal x
i
occurs in c

i
).

Each class vector has (n + 1) components and let the

partial solution be specifieu as follows.

i) for the terms gi,g2,...,gm, the class vector for

each such term is (di,d2,...,dn,1) where each d.
1

is u.

ii) for the terms t1,t2,...,tn, the class vector

for a term, t-
1

is

(d1 ,d2,...,d.
1

,.,. for 1-;i n-1
y1 d1+1"'"dn+1)

where yi is to be assigned 0 or 1 and each di

is d.



iii) for the terms zi,zz...,zn, the class vector for

zi is

(d1 ld204100,di..1,1fdi+1,41,01,dn+1)*

-

1
iv) for the terms z ,z2"'"zn' tae class vector for

.M

zi is

i+i""cin+1)*

49.

The yi as appeared in (ii, above corresponds to the

variable xi of formula P, i.e., xi=yi,

The matching function f is given by f(Di,Rj) = 4a'-b'

where as and b' are the crass matches and mismatches between

the class vectors of (Di-Rj) and (Rj-Di), respectively. The

threshold T is U and the entries of the assessment matrix are

all l's.

We will first shown that all (D.,R.) pairs with i*j

satisfy assessment. For i*j, gic(Di-Rj) and gje(Rj-Di).

Thus the class vector of (D.-R.) = (X,X,X,...,X,1) where X

can be 0, 1 or d but the number of non-d entries among the

X's is 3. This is because each clause has exactly 3 literals

and each term which corresponds to a literal has exactly 1

non-d entry by the above construction. Similarly the class

vector of (R.-D.)=(X,X,X,...,X,1), with the same condition

on X. There is at least one class match between (R. -Di)C

and (Di-Rj)C because there is already a class match in the

(n+l)st position. Since the number of non-d entries in
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each class vector is 4 (including the 1 in the (1+1)st

position), the number of class mismatches s3. By the matching

function f given above, f(D.,R.3 ):21>0 and thus satisfies

assessment.

For i=:i=t, we are considering the document revuest pair

(pity. By the construction above, (0.-R.) '

"1"2"*"6n+1)
where

1 if literal x
P

c clause ce

6
P

= 0 if literal ii
P

c clause ce

d otherwise.

and there are exactly 3 non-d entries among the d's.

Similarly, .(Ri-Di)C = (-wl'w2""'wn+1) where

(y if x or x e clause cZ
I P

w
P

=

d otherwise.

and there are exactly 3 non-d entries among the Ws.

The positions in which the y's occur in (Ri-Di)c

are exactly where the non-d entries in (Di-Ri)c occur.

Thus if c.
1

= (X
1 3
v X

2
) then

and

(D.1 -R..1 )c = (1,1,0,d,...,d)

(Ri-Di) c = (171.1r2fy3.d,...,d).

If the above clause is satisfiable, then xl = 1 or
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x
2
= 1 or x

3
= U

=, yl = 1 or y2 = 1 or y3 = 0

<=> there is at least a class match between (D
i
-.)

and (R.-D )C

<=> f(D
i
,R.) -! 1 > 0

<=> the (D,R) pair satisfies assessment.

Since this is true for &LI clauses and all {(D ,R.)}m
i i=1

pairs and all t(D
i
,R

j
))

i*j
pairs satisfy assessment, the

formula is satisfiable iff all (D,R) pairs satisfy assessment.

Note that the above construction can be done in deterministic

polynomial time.

Lemma 2: If the satisfiable problem with a partial solution can

be done in deterministic polynomial time, then we can decide if

all the (D,R) pairs can be satisfied.

Proof: Let the number of (D,R) pairs be k. The maximum

number of (D,R) pairs satisfying assessment =k iff all (D,R)

pairs can be satisfied. Therefore, deciding whether all (D,R)

pairs can be satisfied involves comparing the maximum number

of (D,R) pairs satisfying assessment with k.

Theorem 3: If there is a deterministic polynomial algorithm

for the exactly 3 literal satisfiability problem, then there

is one for the satisfiable assessment problem with a partial

solution.

Proof: If there is a deterministic polynomial algorithm for

the exactly 3 literal satisfiability problem, then any non -

determini ;tic turing machine running in polynomial time can
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be simulated by a deterministic turing machine in polynomial

Lime (see [5]).

We shall construct a non-deterministic turing machine

which checks if the number of (D,R) pairs satisfying assess-

ment is greater than a given number.

Let the input of the non-deterministic turing machine to

be constructed as follows.

#0 all the (D,R) pairs, their assessment and a partial solution

where g is a number.

The non-deterministic turing machine guesses which terms

are in which classes. Then it checks if the number of (D,R)

pairs satisfying assessment is greater than g. Tf it is,

then it accepts; otherwise, it rejects. This non-deterministic

turing machine runs in polynomial time because by definition

of non-determinism the guess is always correct and the time

required to check the number of (D,R) pairs satisfying assess-

ment is pn7.ynomial.

By hypothesis, there is an equivalent deterministic

turing machine running in deterministic polynomial Am.

Let us give this deterministic turing machine the

following input.

1

#k-i# all the (D,R) pairs, their assessment and a partial solution 1

where k is the number (D,R) pairs, and i=1.
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The deterministic turing machine mu.. halt in polynomial

time and either accepts or rejects the input. If it accepts,

then by the construction of the taring machine, all the (D,R)

pairs are satisfied. If it does not accept, then i is

incremented to 2. The above process is repeated until the

least value of i is found ,such that the deterministic turing

machine accepts the input. Note that when i. = k + 1, the

turing machine must accept and thus the process takes no

more than polynomial time. When the least value of i is

found such that the turing machine accepts, the maximum

number of (D,R) pairs satisfying assessment = (k - i + 1) .

Prom the above theorems, we obtain the following results.

Th,,..orem 3.1 The satisfiable assessment problem with a

partial solution is polynomial complete.
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