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EDITOR'S PREFACE

This is the ninth of a series of Yearbooks which the National
Council of Teachers of Mathematics began to publish in 1926, The
titles of the preceding Yearbooks are as follows:

1. A Survey of Progress in the Past Twenty-five Years.

. Curriculum Problems in Teaching Mathematics.

Selected Topics in the Teaching of Mathematics.

Significant Changes and Trends in the Teaching of Mathematics
Throughout the World Since 1910,

. The Teaching of Geometry.

. Mathematics in Modern Life,

. The Teaching of Algebra.

. The Teaching of Mathematics in the Secondary School.

Bound copies of all except the first two Yearbooks can be secured
from the Bureau of Publications, Teachers College, Columbia Uni-
versity, New York City, for $1.75 each postpaid. 'The first Year-
book is now out of print and the second is obtainable only in paper
covers ($1.25 postpaid). A complete set of Yearbooks (No. Two to
No. Nine) inclusive will be sent postpaid for $11.00.

The purpose of the Ninth Yearbook is to present some of the most
important ideas connected with relational and functional thinking.
The tendency now in American schools is to organize the work
around the function idea, and it is hoped that the contents of this
volume will be stimulating and helpful to teachers of mathematics
in the schools.

I wish to express my personal appreciation as well as that of the
National Council of Teachers of Mathematics to Professor H. R.
"Tamley, for permitting us to publish his contribution as the Ninth
Yearbook of a series that is becoming increasingly important and
helpful to the field.

-.Bo»»

00~y Orvn

W. D. REeve
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I
INTRODUCTION

The science of mathematics. The science of mathematics has
to do with certain fundamental concepts of number and space, with
logical propositions derived from these concepts and with practical
applications of the propositions so derived to everyday computa-
ton tnd measurement, Tlus the science of mathematics is both
abstract and concrete, It is abstract in the sense that it is a logical
structure based upon certain postulated foundations: it is concrete
in the sense that it can be brought into correspondence with our in-
tuitive notions of number and space and with a rational iv.terpreta-
tior of the physical universe ir which we live.

In recent years there has becn a tendercy to extend the boundary
of abstract mathematics to th: utmost possible limit, with the re-
sult that it is now impossible to determine where pure mathematics
ends and formal logic or philosophy begins. Russell maintains that
it is idle to seek a boundary between mathematics and logic, since
the two subjects are fundamentally indistinguishable. “If there are
still left those who do not admit the identity of logic and mathe-
matics, we may challenge them to indicate at what point, in the
successive definitions and deductions of Principia Mathematica,
they consider that logic ends and mathematics begins. It will then
be obvious that any answer must be quite arbitrary.” This logical
bias of modern pure mathematics is reflected in the definiticas that
have been given of the term ‘mathematics’,

Russell’s defin’tion is as follows: “Mathematics is the class of
all propositions of the form ‘p implies ¢', where p and q are proposi-
tions, containing one or more variables, the ~ame in the two proposi-
tions, and neither » nor g contain any constants except logical
constants,”™ a definition that gives us little or no escape from tle
contention that “mathematics is deduction by logical principles

! Russell, B, Introduction to Mathematical Philosopiiv, p. 104. London, 1924,
* Russell, B, The Principles of M. thematics, p. 3. Cambridge, 1903. ‘These are
the openitg words of Russell's classic treatise.
1
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from logical principles.” A less complete but more concise defini-
tion of mathematics is that of Benjamin Peirce: “Mathematics is
the science that draws necessary conclusions.””® That Peirce con-
ceived this definition in the broadest possible sense is shown by
his assertion that “mathema ics, under this definition, belongs to
every inquiry, moral as well as physical.” Whitehead, while giving
general assent to Peirce's definition, suggests that we add “from
the general premises of all reasoning,” and that we define mathe-
metics us “the science concerned with the logical decuction of con-
sequences from the general premises of all reasoning.”* \We may,
without undue violence to the spirit of Peirce’s statement, modify it
in one particular and assert that mathematics is the science of
nccessary relations. This modified form is admittedly less con-
clusive than the original, but it does suggest the idea of fwnc-
tionality—which has been aptly called by Klein the ‘soul’ of
mathematics—and it readily admits a concrete as well as an ab-
stract interpretation.

Any justification of this definitior. would require a critical anal-
ysis of the wurds ‘necessary’ and ‘relation’. Young® has pointed
out, in his discussion of Peirce's definition, that what we com-
monly designate ‘logical necessity’ is sumething that can, in some
cases, at least, be determined only by its consequences; in other
words, that in the final issue the validity of our reasoning appears
to rest on no surer basis than the fact that no contradiction has
ever been found. This may be an unacceptable doctrine to the pure
logician, but it ne~d not cause any concern to the teacher of school
mathematics. Klein® has urged that we do not regard even the
axioms of matl'ematics as arbitrary assumptions but as common-
sense statemen's (verniinftige Sdtze), which find their justification
in their consistency with experience. A similar thought has been
expressed by Veblen in his treatment of the validity of hypotheses :
‘“The writer is inclined to believe that the truth of a statement can
be determined unly by testing all its consequences, so that the real

¥Pci--e, B. “Linsar Associative Algebia.”  American Journal of Mua.iematics,
Vol. IV, p. 97, 1881.

¢ Whitchead, A, N. Article on “Mathematics" in the Encyclopaedia Britannica
(Fourteentn Edition), Vol. XV, p. 87, 1929.

$Youny, J. W. The Fundamental Concepts of Algebra and Geomelry, p. 220, New
Yok, 1923,

“Klein, F. Elemenlarmatiematik von hisheren Standpunkte aus, Band II (Geomelrie),
p. 334, Leipzig, tg2s.
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test of the validity of the hypotheses of geometry is in the validity
of the theorems.”" \W'e may leave the solution of this problem to
the logicians* and proceed, on the reliable assumption, that there
does exist a substantial correspondence between the commonly ac-
cepted axioms of mathematics and the world of our experience.

Concept of relation. The word ‘relation’ is more easily compre-
hended than defined. \Vhitehead attributes to the objects of ex-
ternal reality a ‘relational essence’, involving the possibility of
realization as relatedness. “The meaning of the terii ‘possibility’
as applied to A [an external object] is simply that there stands
in the essence of A a patience for relationships to actual occasions.
This patience cannot be rewarded by ingression, or this potentiality
become actual as relation, except through the activity of the mind
which relates. This dynamic charactcr of relation s expressed in
Spearman’s definition, “A relation is an attribute which mediates
between two fundaments.”’® According to Spearman a fundament
is any ‘‘character” of things, simple or complex, concrete or ab-
stract; it many even be a relation already determined between other
fundaments.

The concept of relation is fundamental to human thought, As
Whitehead has remarked: “If anything out of relationship, then
complete ignorance as to it,”** It is through the cognition of re-
lations that the mind transcends the particular and immediate and
learns to apprehend and appreciate the abstract and remote, When
man first used words to identify things, and numbers to designate
quantities of things, Lie showed that he was capable of thinking in
terms of general abstract relations. \When he used the word ‘spesr’
to direct attention to a certain type of weapon, he showed a definite
capacity for mathematical logic; for from the variable class of
objects ‘spear’, he had abstracted the element ‘spear’, ar1 sym-
bolized it by a word. Thus were language and mathematical logic
born together. Modern mathematical logic has much to do with
classes, and in particular with ‘variable classes’. “This fact, that

T Veblen, O. The Foundations of Geometry, p, 4. Monographs of Moder . Mathe-
matics. New York, 1927,

$ Ramsay, F. P, “Mathematical Logic.” Mathematical Guzelle, Oct, 1926, p, 183,
Sce also T'he Foundations of Mathematics, p. 356. London, 1g;1.

® Whitchead, A. N, Sesence and the Modern World, PP 198, 199. Cambridge, 1927,

19 Spearman, C. E. The Nalure of ‘Intelligence’ and the Principles of Cognition, p. 03,
London, 1923,

W Whitehead, A, N, 0p. dil., p. 32.




4 THE NINTH YEARBOOK

the general conditions transcend any one set of particular entities
is the ground for the entry into mathematics, and into mathematical
logic, of the notion of the ‘variable,’ "** and the variable is “perhaps
the most distinctly mathematical of all notions,'s According to
Russell, “pure mathematics is the class of propositions, which are
expressed exclusively in terms of variables and logical constants,”¢

Relations may be of many different types and may have many
different kinds of uses. The fundaments or raw materials of rela-
tions consist in whatever entities we choose to include in our dis-
cussion. They may be, and often are, relations between other re-
lations. The pure mathematician usually restricts the range of his
fundaments to number and space: he may;, if he is interested in t).e
endurance of his pattern, add the concept of time. The applied
mathematician would at least require the further concept of mass.
The most important relation with which we are concerned in mathe-
matics is that of order. *“There are parts of mathematics which do
not depend on the notion of order, but they are very few in com-
parison wich the parts in which this notion is involved.”” (Rus-
sell.') st is important to add that the concept of order, either
explicit or implicit, is essential to an adequate theorv of variables,
and, therefore, to an adequate theory of functions. Cantor has
shown this in his Transfinite Mengenlehre,

The purpose of mathematical analysis is to investigate the mutual
relations existing Detween certain variable ciasses and to establish
laws pertaining to these relations, In the absence of some arrange-
ment of the quantities concerned, mutual relationship can have no
meaning. When we state that a variable x approaches a value @,
we assert that every quantity of the variable is nearer «, according
to some order of arrangement, than every previous quantity, Such
a statement would be devoid of meaning, if the word ‘previous’
carried no implication of order. The concept of a limit, which
underlies all higher mathematics, is a serial conception.®  When

¥ Whitchead, X, No Op. eit, p. 2n

S Russelly Bo The Principles of Mathematics, p, 3o,

“Russell, B, *“The Philosophical Importance of Mathematical Logic.”  7%e
Monist, Vol. XXIII, p. 487, October, 1914, _

' B. Russell, in a discussion of the importance of this concept, savs: ¢ In former days
it was supposed and philosophers are still apt to suppose that guantity was the funda-
mental notion 1 mathematics,  But nowadays quantity is hanished altogether,
except from one little corner of geometry.”  From Mysticism and Logic, p. qr.
Louauon, 121

WRuesell, B Tatroduction to Mathematical Philosophy, p. 29.
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we state that twa variables are in functional relationship we as-
sume that they are arranged, although the order of arrangement
may differ according to the purpose of our inquiry.!'t It s strange
that the notion of order, which lies at the very heart of mathematica
and science, should have received so litile attention in school mathe-
matics. It is true that number sequence and number grouping are
now empliasized in early number teaching but, as a general rule, no
further reference is made to order until the student is introduced to
directed numbers or progressions. School mathematics in the past
has been too closely identified with the sign of equality. School
mathematics in the future will deal more often with inequalities:
with order, arrangement, and system; classes and groups; corre-
spondence and correlation; similarity and symmetry; and relation,
variation, and function. And there is not a term among these
which cannot be Lrought inte intimate association with life.

The notion of function. The notion of function, like that of
relation, is one of the most elementary in human thought. The
rhythm of the seasons and the changing features of the trees must
have suggested even to primitive man some kind of correspondence.
At all events there came a time when he began to till the soil, con-
fident in the belief that sced-time and harvest had their appro-
priate seasons. He learned by experience, and learning by experience
is, in a real mathematical sense, a functional activity, When the
child realizes that fire burny or shows by his movements that he
appreciates rhythm, he has succeeded in educing a correspondence
between two variables; in other words, he Las learned to think
and act in functional terms.

The word ‘function’ has now become almost commonplace in
everyday speech, but it is net always used in the mathematical
sense.  When we speak of ‘the function of the teacher' or ‘the
function of the liver.” we use function as synonymous with a duty,
or a service, that the teacher or the liver is expected to perform,
without imputing to either any necessary association with mathe-
matics, But when we assert that ‘the teacher's temper is a function
of his liver’, we imply a correspondence between the state of the
one and the condition of the uther, which could be expressed with
equal precision of thought by a mathematical cquation. Tt is this
meaning of the word ‘function’ that is to be our particular con-

Op. cit,, p. g1 "“The fact that n class may have many orders is Jue ta the fact
that there can be many relations halding among 1. embers of one single class.”
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cern in this study. J function is, then, a correspondence between
two ordered variable classes.

The world is becoming, as Klein has expressed it, “functionally
minded.” Newspapers and magazines are using, to an increasing
extent, not only the functional language but also the functional tools
of the mathematician.!® Ve read, for example, that public health,
the weather, the bank rate, unemployment, the incidence of crime
and the condition of trade are all functions of many variables, known
or unknown. Such assertions are often accompanied by statistical
data and graphical representations of the concomitant rising and
falling of related variables entering into the case. Industry and
commerce, economics and politics are becoming saturated with func-
tional ideas, so much so, that there is an increasing demand for
men with an expert knowledge of ‘functional economics’. That
being the case, it is our duty to take cognizance of the fact and to
reorganize our mathematical teaching so that our youth may re-
ceive the knowledge and the discipline that it needs to meet the
changing times. As Kilpatrick has reminded us, “We must have
a philosophy that not only takes positive recognition of the fact
of change but one that includes within it change as an essential
element.””® Functional mathematics will go a long way to meet
this demand, for change is the very essence of function, whether
we regard the term as an activity or as a mathematical correspond-
ence, A dynamic concept merits a dynamic mode of treatment.

Criticisms of mathematics curricula, In recent years school
mathematics has frequently been called upon to defend its right
to membership in the society of approved school subjects. It hus
been asserted that the disciplinary and cultural values of mathe-
matical education have been greatly overestimated. Some critics3®
while recognizing the dependence of the modern world on the work
of the professional mathematician, contend that the average con-
sumer needs only a modicum of mathematics for his daily needs,
and that the educational values of school mathematics are incom-
mensurate with the time and effort usually devoted to that subject.
Challenges such as these are to be welcoined, if they carry us beyond

1t See, for example, Adams, James Truslow, * Diminishing Returns in Modern
Life." Harper's Magazine, April, 1930.

19 Kilpatrick, W. II.  Education for s Changing Civilization, p. 41. New Yok, 1928,

2 Bowden, A, O. The Consumer's Uses of Arithmetic. New York, 1929. See also
revicws of Bowden’s thesis in the Mathematics Teacher, Vol. XXII, March, 193o0.
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defense reactions to serious self-examination and reform® When
we view the “ituation dispassionately we have to admit that some
of the arguments of our critics are difficult to refute. We cannot
deny that school mathematics in the past has been largely con-
cerned with the mechanical and the abstract and almost wholly un-
related to the child’s natural interests and future needs. Algebra
generally began with arithmetical substitutions, often of a meaning-
less kind, and conlinued, by a relentless logical procedure, through
the fundamental operations, factors, and the like, to quadratic equa-
tions. The treatment of geometry, uatil quite recently, was just as
formal and uninspiring. The Euclidean discipline, excellent as it
was for the few who could profit by it, proved in the large majority
of cases to be ineffective, partly because it was administered too
soon, but largely because it was an abstract study of a static
universe.

Status of the teaching of mathematics. Although progress has
been slow, it has been none the less sure. Thoughtful teachers are
now awakening to the fact that, if school mathematics is ever to
meet the demands of modern life, or even to win the respect of
the average man of affairs, it must be made more dynamic and
functional. They are also beginning to realize that, in endeavoring
to satisfy the exigencies of our modern world, they are securing,
even more effectively than hitherto, those very objectives which, at
first sight, they seemed to be in danger of losing. Broadly consid-
ercd, the aims of most teachers of mathematics may be summarized
under three main headings: utilitarian, disciplinary, and cultural.
Functional mathematics affords us an ideal medium through which
these aims may be realized. The purpose of this study is to examine
the function concept in all its bearings and to justify the claim

" Sce (he Mathematics Teacher for 1929, 1930, 1931 far the following articles:

Reeve, W. D, “The Universality of Mathematics,” Vol XXIII, p. 71, February,
1930.

Betz, William. “Whither Algehra? A Challenge and a Plea," Val. XXIII, p. 104,
February, t930.

Langer, S. K. “Algebra and the Development of Reason,” Vol, XXIV, p, 28j,
May, r93r1.

Shaw, J. B. “XMathematics as a Fine Art,” Vel, XXIII, p. 104. March, 1930,

Judd, C. M. “Informational versus Coinputational Matheratics,” Vol, XXII.
p. 187, Arril, 1929,

Kempner, A. J. “The Cultural Value of Mathematics," Vol XXII, p. 129, March,
1920,

See also The Sivth Vearbook, National Council of Teachers of Mathematics, which
is a stirring apologia for raathematical education.

\
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that has just been made, by showing that the conception of function
may be regarded as the natural coirdinating principle of all school
tathematics.

Nature of the remainder of this study. In Chapter II we trace
the history of the terms ‘variable’ and ‘function’ and discuss, from
the purely mathematical standpoint, the meaning of fumctionality.
In Chapter III we examine the logical and the psychological bases
of functional thinking in general. This leads to a general dis-
cussion of the psychology of reasoning. Chapter IV is devoted to
an outline history of the developnent of functional thinking in
the schools of Europe and America. Chapter V extends the history
of the subjects to an examination of modern textbooks in school
mathematics. Chapter VI is preliminary to Chapter VII, in which
a course of general mathematics, with the function concept as its
central theme, is outlined. In Chapter VI some mathematical con-
cepts, other than the function concept, which enter into the course
of study developed in Chapter VII, are discussed. In the first
part of the chapter a general discussinn of these concepts is given.
This is followed by detailed examination of the course proposed.

In Appendix A is given a Test of Mathematical Relations which
was submitted to several hundred children in English elementary
schools, and in Appendix B, a more advanced Test on. Functional
Relations for secondary schools.



II
VARJABLE AND FUNCTION

Original concept of a variable. Although the germ of the in-
tegral calculus is to be found in the work of Archimedes, the concept
of the variable did not definitely enter mathematical thought until
the close of the seventeenth century. The word ‘variable’ seems
to have been first used by Leibniz, who wrote, in the introduction
to his Analyse:

Those quantities are called variable which continually increase or diminish

and on the contrary those are constant, which remain the same while others
change.!
This concept of the variable, as a quantity which varies or is a
function of duration, was already implicit in Newton’s AMcthod of
Fluxions. Newton'’s “fluent” which corresponds to the variable
of Leibniz, was conceived as a quantity which varied with, or was
a function of, real or imaginary time. In 1687, he wrote in his
Principia:

Now those quantities which I consider as gradually and indefinitely in-
creasing I shall hereafter call fluents or flowing quantities.?

That Newton had the idea of the variable before 1687 is shown
in a reference to fluents in the Quadratura Curvarum:

Calling these velocities of the motions or increments Fluxions and the gener-
ated quantities Fluents, I fell by degrees upon the Method of Fluxions, which
I have made use of here in the Quadrature of Curves, in the years 1665 and
1666.°

Thus a fluxion was the rate of change of a fluent or variable quantity.
To-day Newton’s theory of fluxions would be called the Theory of
Continuous Functions. Although great progress was made in the

1 Leibniz, . W. Quoted by L'Hospital in Analyse des infiniment petits, p. 1. Paris,
1696,

* Newton, I. AMethod of Fluxions, pp. 20, € (‘ranslated by John Colson). Lon-
don, 1738,

¥ Newton, I. Traclatus de Quadratura Curvarum, 1671. Introduction (translated by
John Stewart). London, 1704.

5
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development of function theory during the two centuries follow-
ing Newton and Leibniz, the term ‘variable’ retained the meaning
given it by Leibniz—‘“a quantity which varies.”

The changing interpretation of a variable. The first sugges-
tion of a change of any significance is to be found in the work of
Biermann:

We will suppose that certain elements have values fixed once for all; other
elements take values of our system of quantities in turns. The former
quantities are called constant or unalterable, the latter variable or alterable.$

The important feature of this definition is that the variable is not
defined as a quantity but as an aggregate of elements selected from
a set of existing quantities.

Definitions couched in similar terms are to be found in most of
the treatises on analysis published during the following twenty
vears, Thus René Baire writes, “In mathematics we represent by
a letter a number capable of taking different values. We then say
that we have a variable,”5 and Bauer, “We distinguish between
con:tant and variable quantities. ‘The former have a fixed value,
the latter can take any assigned values.”® The same thought is
contained in a more complete definition by Burkhardt,

A number is said to be altcrable or variable, when in the course of an in-
vestigation one value after another is assigned to it, and to be constant when
the value first assigned is retained through the whole investigation.?

Harnack introduced a further refinement into the concept of the
variable when he urged 1hat we dissociate the variable entirely from
its concrete embodiment and look for its essence, not in the thing

represented, but in the abstract number values assumed by the
variable,

A quantity is said to be a variable when it is able to assume different nu-
merical values. As in arithmetical investigations we no longer consider the
things given in number, so in the conception of a variable quantity we have
to free ourselves entirely from considering what this quantity represents
(distance, temperature, tension of vapoury.  Everything measurable in nature
can enter into calculation as a variable quantity.!

¢ Biermann, O, Theorie der analytischen Functionem p. s. Leipzig, 1887,

® Baire. René. Lecons sur les théories générales de I'analyse, Vol. I, p. 20. Dijon, 1907,

¢ Baver, G, Vorlesuneen wueber Algebra, p. 7. Leipzig, 1910

7 Burkhardt, H. Algebraische A nalysis, p. 37. Leipzig, 1903.

*Harnach, A, Intraduction to the Study of the Calsulus, p. 15 (translated from the
German). London, 1897,
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Many mathematicians of the present day incorporate this con-
dition in their definitions of the variable; others, taking their stard
on a broader logical basis than number, regard it as an unnecessary
restriction.?

According to Molk, Weierstrass was the first to define a variable
as a symbol. In a course of lectures given in Berlin between the
years 1861 and 1865, he defined a variable as follows:

A real variable is a symbol which represents the different elem-ats of an
assemblage of real numbers, Each of these clements is one of *ne values

which the variable can take; the assemblage itself constitutes the domain of
the variable.!0 .

The first published definition of the variable as a symbol is
that given by Pringsheim :

By a real variable we understand a symbol to which is assigned successive
different numerical values.!

Similar definitions were given by Weber Pierpont, and others, Thus
Weber writes, “If % is a symbol for which any number we choose
can be put, we then call x a variable,” and Pierpont says, “A
symbol which takes on more than one value, in general an infinity
of values, is a variable.'”13

None of these definitions imposes any restriction or indicates any
specification of the field of selection of the variable. Tannery. how-
ever, proceeds more cautiously. He writes:

It is well to modify this notion of a variable . ... This is not a letter that
can take any values whatsoever but anyv values whatsoever belonging to a
certain ensemble. There are functions which are only defined for the integral
and positive values of the variable.4

The same thought was implicit in one of Tannery’s earlier works:

Let us consider an ensemble (X)) of distinct numbers and look upon these

* Russell, B. Principles of Mathematics, Chap. VIII. Cambridge, 1903.

W Molk, J.  Encyclopédie des sciences mathématiques pures el appliguées, Tome 2,
Vol. I, Fasicule 1, p. 16. Paris, 1900,

W Pringsheim, A. Article on “The Foundations of General Function Theory.”
Lncyklopddie der mathematischen Wissenschaften, Band 1I, p. 8. Leipzig, 1889,

2 Weber, H. Encyclopidie der elementaren Algebra und Analysis, p. 185. Leipzig,
1900,

1 Pierpont, C. Lectures on the Theory of Functions of Real Variables, Vol. I, p. 118,
Boston, 1903,

WTannery, J. De lu méthode dans les sciences en mathémaliques pures, p. t1. Paris,
1999,
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numbers as values which can be assigned to a letter (x), which we designate
a variable,!®

Writers of modern textbooks on analysis and treatises on func-
tion theory seem to have added very little to the definitions 'hat
have been quoted. Some prefer to leave the term ‘variable’ unde-
fined, others to illustrate it by a few selected examples. Young de-
fines a variable as follows:

A variable is a symbol, which represents any one of a class of elements.
The elements may or may not be numbers.!¢

The following may be taken as typical of the definitions found in
modern textbooks :

A variable is a quantity to which an unlimited number of values can
be assigned in an investigation (Granville, Smith, and Longley!?)

When a quantity is permitted to assume different values in a given problem,
it is called a variable. (Miles and Mikesh'®)

A letter capable of taking up various values. (Walmsley")

A magnitude to which, in the course of any given process, different values,
are assigned is said to be a variable. (Lamb®) .

A symbol for a changing quantity. (Czuber®)

Perhaps the most comprehensive and complete definition to be found
in modern mathematical works is that given by Hobson:

If we suppose that an aggregate of real numbers is defined, the aggregate
being either enumerable, or of the power of the continuum, such an aggregate
is said to be the domain, or field, of a real variable. It is necessary for the
purposes of analysis to be able to make statements applicable to each and
every number of the aggregate and which shall be valued for any particular
number that may be, at will, selecte’. This is done by employing the real
variable, denoted by some symbol other than those used to denote real num-
bers, and the essential nature of the variable consists in its being identifiable
with any particular number of its domain.2

¥ Tannery, J. Introduction d la théorie des fonclions d'une variuble, p. 220. Paris,
1904.

1 Young, J. W. Lectures on the Fundamental Concepls of Algebra and Geomelry,
p. 193. New York, 1912 and 1923,

17 Granville, Smith, and Longley. Elements of the Differential and I ntegral Calculus,
p. 1. Boston, 1929.

18 Miles, E. J. and Mikesh, J. S. Caleulus, p. 3. New York, 1930.

1 Walmsley, C.  Mathematical Analysis, p. 134. Cambridge, 1920.

¥ Lamb, H. An Elementary Course of Infinitesimal Calculus, p. 1. Cambridge, 1924.

¥ Cauber, E. Vorlesungen diber differentiol-und-integral Rechnung, p. 13. Leipzig,
1926.

# Hobson, E. W. The Theory of Functions of ¢ Real Variable, p. 256. Cambridge,
1921,
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Historical background of the term ‘function’. It is frequently
stated in books on function theory that the term ‘function’ was
tust used by Descartes to denote powers of a variable (x), such as
%, x%, etc., but there seems to be no basis for this statement. It is
true that the function concept is implicit in Descartes's Géometrie,
but he Joes net actually use the term “function’. He does, however,
mention two important functional ideas : one, that “unknown quanti-
“ies can be »¢pressed in terms of a single quantity”?8 (as powers)
and the other, that a curve pictures the dependence of one variable
on another. [Fermat*' brought out the concept of dependence even
more definitely but he, again, does not mention the word ‘function’.
It now seems to be agreed that we owe the term ‘function’ to Leib-
niz,** who used it to denote variable lengths (abscissae, ordinates,
tangents, and normal:), ~elated in a definite way to variable points
of & curve.  For exainple, he asserts that “a tangent iz a4 function
of a curve” and that ""a function is a fact asserted by an equation.”2
In his earlier writings James Bernouilli used the term in a some-
what similar sense, but in 1718 he took us a step furthe- whea he
wrote, “We name a quantity composed in any manner whatever of
a variable magnitude and constants, a function of the variable mag-
nitude.”** In 1;:0, he distinguished for the first time between alge-
braic and transcendental functions. In these definitions Bernouilli
seems to imply that there are three distinct classes of quantities -
variable quantities, constant quantities, and functions, As we shall
see later, this distinction is not a correct one. The credit of having
introduced, for the first time, the familiar f(x) notation goes to
iculer  ile defines a function as an analytica! expressicn:

A function of a variable quantity is an analytical expression compose | in
some way of that variable quantity and of numbers or constant quantities.?

# Descartes, René.  Géomelrie (livre premier), p. 301, DParis, to37.

M Fermat, P. de. Varie Opera mathematica, p. 1. Toulouse, 1679.

® Miiller, V. Biblivtheca mathematica, Vol. 11, p. 285. Leipzig, 1901,

See also Pringsheim, A. and Mclk, J.  Encycdopedie des sciences mathématiques,
Tome 2, Vol, I, Fasicule 1, p. 1. Paris, 1909.

* Leibniz, G. W. Considérations sur la différence qu’il y a entre lanalyvse ordinaire
et le nouveaw calcul des transcendantes, 1694. See also Opera Omniu, Vol, 111, p. 302,
Geneva, 1768; and Leibnizens mathematische Schriften, Book V, p. 307,

7 Bernouilli, J.  Par. Mem., 1718, p. 106. See also Opera, Tome 11, pp. 241, 255,
Lausanne et Geneve, 1742; and Opera, Tome II1, p. 174.

B BEuler, L. Inlroductio in anaiysin infinitorum (translated by J. B, Labey), Vol. I,
p. 4. Lausanne, 1748. See also Commentaria Academiae Pelropolitance ad annos
1734-5, Tome VII, pp. 186-37. Petropoli and St. Petersbourg, 1743, “Si f(x/a 4 ¢)
denolet funclionem quamcumque ipsius (x/a + ¢)."
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This definition defines a function as a compound expression of the
variable—as we find it, for example, in the statement that ax®+
bx+ c is a function of x—an error that has since been repeated by
many writers of textbooks on higher algebra. Burnside and Panton
open their treatise on the theory of equations with the words, “A
mathematical exnression involving 1 quantity is called a function
of that «quantity.”?® In his Introductio in analysin infinitorum,
Euler gave an acute analysis of elementary functions and dis-
tinguished for the first time between implicit and explicit functions
and uniform and multiform functions. Lagrange, in his Theorie
des fonctions analytiques (1797), extended Euler’s notation by
using f, F, ¢, x, etc., followed by parentheses to designate func-
tions. He defines a function as “a property of a series of powers
of the independent variable.”80

Development of the concept of functionality. It is an in-
teresting fact that the next developments in this subject came, not
from pure mathematicians but from mathematical physicists, who,
while working with physical facts, found that the existing mathe-
matical tools were inadequate for their purposes, D’Alembert
(1797), in his discussion of the oscillations of strings, and Fourier
(1807), in his analysis of trigonometric series, both stressed the need
of a more general type of correspondence than any previously pro-
pounded. We owe to Fourier®! the conception of a single function
defined in different intervals by different analytical expressions, In
1829 Lejeune-Dirichlet, in a celebrated memoir dealing with the
convergence of Fourier's series, gave a definition of a function,
which, with slight modifications, has been accepted by mathema-
ticians ever since:

Let by a and & be understood two fixed values and by x a variable quantity,
which gradually assumes all values lying between a and b. Now, if a single
finite y correspond to every x, in such a way that while x continuously passes
through the interval g to b, y = f(z) likewise varies gradually, then y is called
a continuous function of x for this interval. It is quite unnecessary that v
in this entire interval should be dependent upon x according to the same law;

indeed, we need never think of a dependence expressed in terms of mathe-
matical operations,®

¥ Burnside and Panton. Theory of Equations, Vol. I, p. 1. Dublin, r912.

1 Lagrange, J. L. Oeuvres de Lagrange, Vol. IX. Paris, 1881.

® Fourier, J. B. J. La Théorie analytique de la chaleur, Chap. III, Sec. 6. Paris,
1822. See also Oenvres, Vol. I, pp. 11, 135. Paris, 1889.

2 Dirichlet, G. Lejeune. * Ueber die Darsteltung ganz wiilkiirlicher Functionem durch
Sinus-und Cosinusrethen.” Werke, Vol I, p. 135. Lerausgegeben von L. Kronecker,
Berlin, 1839.
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Thus, for the first time, “Dirichlet gave the word funci :n a sig-
nificance independent of any assumption of the possibility of an
analytical representation.”®® At the same time he gives the func-
tion a definite graphical interpretation, for he continues:

Considering » and ¥ as abscissae and ordinates, a continuous function
appears as a connected curve in which only one point corresponds to every
abscissa between ¢ and &.  This definition does not attribute to the various
parts of the curve a common law. We can think of the curve as made up of
heterogeneous parts or as described entirely without law. Thus a function
is to be regarded as completely determined for an interval, only if it is defined
graphically for the whole extent of the interval or is subjected to mathe-
matical laws valid for the several parts of the interval.

In this memoir Dirichlet laid the foundation of the modern Theory
of Functions. But, more important for our present purpose, he
gave a wider meaning than hitherto to the whole concept of func-
tionality, linking it up on the one hand with physics and on the
other hand with geometry. Henceforth physical interpretation and
graphical representation became recognized parts of the technique
of analyzing functions. Little advantage was taken of this lead,
as far as school mathematicc was concerned, until Klein,3¢ in an
article on the graphical representation of functions, subjected the
function co::cept to a searching analysis, and at the same time ini-
tiated a movement towards functional thinking which has pro-
foundly influenced the teaching of mathematics in Germany and
elsewhere.

Dirichlet’s definition has been criticized by later writers,3® some-
times on the ground that it is inadequate for the needs of modern
analysis, and at other times on the ground of its excessive generality.
Harkness and Morley write:

This definition, in contrast tc those used before Dirichlet’s time, errs on the
side of excessive generality, for it does not itself confer properties on the
functions. The functions so defined must be subject to restrictive conditions
before they can be used in analysis. Nevertheless, this definition forms and
must continue to form the basis of researches upon discontinuous functions

See also Repertorium der Pkysik, Lerausgegeben von Heinrich W. Dove und Ludwig
Moser, Band I, p. r52. Berlin, 1337. S. F. Lacroix had already given a somewhat
similar definition, but not nearly so general. (Differeniial Calculus, p. 1.)

8 Dini, U. Journal fur Mathematischen, Vol. IV, p. 157. See also Grundlagen fir
eine Theorie der Functionem einer veranderlichen reelen Groesse, p. 48. Leipzig, 1892,

U Klein, F, “Ueber den allgemeinen Functionbegriff und dessen Darstellung durch
eine willknerliche Curve.” ifathematischen Annalen, Vol. XXII, p. 249, 1883.

% Hankel, H. Untersuchungen ueber die unendlichen oft oszillierenden und unsietigen
Fun*!isnem, p. 5. Tubingen, 1870.
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of a real variable. In Dirichlet’s sense J(%) is a function of x throughout an
interval when, to every value of x within the jnterval belongs a definite value
of f(x). A value of ¥ which makes the function infinity is excluded.’

Hobson, however, supports Dirichlet :

An adequate definition of a function for a continuous interval (2, b) must
take the form first given to it by Dirichlet.”

Modern concept of functionality. These definitions of a func-
tion are found in modern textbooks :

If to each value of x of an interval of the x-axis or of a set of points by any
prescribed rule, a definite y is made to correspond, then we may say that y is
« function of x defined in that interval and write y = f(x). (Knopp®)

To-day the notion of function is considered to be identical with the notion
of correspondence between two ensembles, Suppose a number # runs through
the points of an ensemble and the movement of x makes a certain other num-
ber y take fixed values, it is said that the variable y is a function of the variable
x. (d’Ahhemar®)

One variable quantity is said to be a function of another, when, other things
remaining the same, if the value of the latter be fixed, that of the former
becomes determinate. (Lamb%)

¥y is a function of x, when, x being given, y is determined. (Appell*)

If x be a variable which takes on a certain set of values of which the totality
may be denoted by [x] and, if y is a second variable the value of which is
uniquely determined for each x of the set [x], then » is said to be a function
ot x defined over the set [x]. (Wilson%)

Let @ and b be any two real numbers, where b > 4. If to every value of x in
the interval @ < x < b there corresponds a real number ¥, then we say that y
is a function of x in the interval (a, b) and we write ¥y = f(x). (Carslaw®)

If, to each point of the domain of the independent variable x, there be made
to correspond in any manner a definite number, so that all such numbers form
a nev: aggregate which can be regarded as the domain, or field, of a new variable
¥, this variable y is said to be a (single valued) Sunction of y.

In this definition no restriction is made a priori as regards the mode in which,

% Harkness and Morley. A Treatise on the Theory of Functions, pp. 51, 53. London,
1393.

3 Hobson, E. W, 0p. cit., p. 250.

% Knopp, K. Theory and A pplications of Infinite Series (translated by L. C .Young).
London, 1930.

¥ d’'Ahhemar, R. Legons sur les principes de I'analyse, P. 24. Paris, 192a.

‘*Lamb, H. An Elementary Course on Infinitesimal Caleulus, p. 13. Cambridge,
1919.

“ Appell, P.  Eléments d'analyse mathimatique, p. 1. Paris, 1921.

¢ Wilson, E. B. Advanced Calculus, p. 40. Boston, 1912,

9 Carslaw, H. S. Introduction to the Theory of Fourier's Series and Integrals (3rd
edition). London, r930.
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corresponding to each value of x, the value of y is assigned; and the conception
of the functional relation contains nothing more than the notion of determinate
correspondence in its abstract form, free from any implication as to the mode of
specification of such correspondence. In any particular case, however, the
special functional relation must be assigned by means of a set of prescribed
rules or specitications, which may be of any kind that shall sufiice for the
determination of the value of y corresponding to each value of . (Hobson#)

Interrelation of mathematics and logic. This survey of the his-
tory of the fundamental terms of our subject would be incomplete
without some reference to the influence of mathematical philosophy
on logic—and the reflex influence of logic on mathematics. All
the definitions so far quoted have had a strictly mathematical im-
plication. It should be observed, however, that the function con-
cept need not be 1estricted to numbers or to those problems which
we are accustomed to style mathematical. Thus the logical propo-
sition, ‘All men are mortal’, could al.o be expressed, ‘If x is a man,
then x is a mortal, for all values of #’, which is essentially a mathe-
matical form.% Here x is a variable in the true mathematical sense,
since it may connote a particular man or any man belonging to
the class ‘man’. Again, since two variables are related in the state-
ment, the proposition is, in the mathematical sense, a functional
expression, Russell has given the name “propositional function”
to a statement of this kind.

By a propositional function we mean something which contains a variable x
&énd expresses a proposition as soon as a value of x is assigned to x. That is to
say, it differs from a propuosition solely by the fact that it is ambiguous: it con-
tains a variable of which the value is unassigned. It agrees with the ordinary
functions of mathematics in the fact of containing an unassigned variable;
where it differs is in the fact that the values of the functions are propositions.

Elsewhere Russell defines a propositional function as follows :

A propositional function is simply any expression containing an undeter-
mined constituent, or several undetermined constituents, and becoming a
proposition as soon as the undetermined constituents are determined. If I
say that ‘x is a man’ or ‘x is a number’, that is, a propositional function; so is
any formula of algebra, say (x + y) (x—y) = x2--y2.0

The word ‘undetermined’ used in this definition is to be preferred

Y Hobson, E. W. 0p. ¢it., p. 257.

* Russell, B.  Introduction to Mathematical Philosophy, Chap. XV. London, 1924,

‘¢ Whitehead, A. N. and Russell, Bertrand. Principia Mathematica, Vol. I, p. 38.
Cambridge, 1g10.

7 Russell, B, *The Philosophy of Logical Atomisms.”  The Monist, Vol. XXIX,
p. 192, April, 1910.




18 THE NINTH YEARBOOK

to the word ‘ambiguous’ used in the previous extract, for the inde-
terminate character of the variable is its main characteristic, while
the characteristic of a mathematical function is that there is a
determinate correspondence specified by the functional relation be-
tween the variables. Thus the characteristic notion of a variable is
that it may be identified with any term of a particular ensemble:
“the notions of any and of denoting are presupposed in the notion
of a variable.’"8

Let there be some proposition in which the phrase ‘uny ¢’ recurs, where @
is some class. ‘Then in place o1 ‘any a' we may put x, where ¥ is an undefined
member of the class u—in other words, any a. The proposition then be-
comes a function of x, which is unique when x is given.®
The example, ‘All men are mortal,’ will serve to exemplify the role
of the function concept in formal logic and in everyday speech; it
will also serve to show how closely functional thinking is related to
intelligent thought in general. This aspect of functional thinking
has been the subject of close analysis by Russell, Whitehead, Freye,®®
Royce,*! and others."

Examination of definitions. Having completed this hiscorical
survey of the meaning of the terms ‘variable’ and ‘function’, let us
now proceed to examine some of the definitions that have heen
quoted. Tt will be noted that most of the definitions enunciated
up to the time of Biermann, implicitly or explicitly, define a varia-
ble as a guantity. This is an erroneous corception. Quantities of
the same kind constitute a variable class, but the variable itself is
neither a quantity, nor a set of quantities composing a class. “If n
stands for any integ :, we cannot say thut # is 1, nor yet that » is
2. nor yet that it is any particular number. In fact, # just denotes
any number and this is something quite distinct from each and all
of the numbers.”®® When we state that the variable % is a maxi-
mum at the point P, we do not assert that any quantity (x) is a
maximum at the point P, but that, at the point P, ¥ has a maximum

® Russell, B. The Principles of Mathematics, p. 89.

9 Op. cil., p. 263

¥ Frege, G. Die Grundlagen der Arithmetik. Breslau, 1884. See also Funclion und
begrif. Breslau, 1893.

* Royce, J.  Encyclopaeldia of the Philosophical Sciences, Vol. I London, 1913.

“ Kempe, A, B. ‘Memoir on the Theory of Mathematical Form.” Philosophical
Transac’s , Vol. CLXXVIL Sce also ““On the Relation be'ween tie Logical Theory
of Classes and the Geometrical Theary of Points.” Proceedings of the L. 3. S, Vol. XXI.
Sec also Peano, G, Formulaire de mathématigues. Turin, 1895-1908.

% Russell, B, 0p. cil., pp. go, 91.
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quantity. Similaily, when we state that the variable x approaches
a limit L, we do not aseert that any quantity « approaches L as a
limit. On the contrary, a limit is a quantity which may or may not
belong to (he variable. Neither can we define a variable as ‘a set
of quantities’, or a ‘variable class’, for the relation ¥ = ax* would
then be meaningless; we cannot square a set of (uantities. What
makes the definition of a variable difficult is the fact that the same
word is used to indicate the variable itself and the quantities which
compose it. Dirichlet defines a variable as a quantity, but he re-
fers to “a single finite y" and “every x,” showing that according
to his conception of the term, a variable is not itself a quantity, but
it is composed of quantities, Similarly, we cannot define a variable
as a number even when we restrict our inquiry to the numbers of
pure mathematics. A variable is not ¢ number but is constituted
of a group of objects possessing the attribute of number.

Again, it will be noted that most of the definitions, from Bier-
mann’s to the most recent, define a variable as a symbol of some
kind. ‘That this is also an erroncous conception may be seen by
arguments similar to those that we have just used. ‘The letter x,
by which the varialle is identified, is a sign, or if taken as a
functional instrument, . symbol,* to indicate the existence of a
variable class of mathematical quantities, just as the word ‘chair’
is a sign, or a symbol, to designate a variable class of social im-
plements. Mathematical symbols, like words, may be looked upon
as linguistic units, ucting as functional substitutes for a variable
class of a certain kind. But the symbol is not the variable, nor
is the variable a symbol. We must distinguish between mathemati-
cal symbols and what they denote, just as in everyday speech we
distinguish between names and what they denote. Mathematics
is a symbolic science, but it Is not a science of symbols. Failure
to recognize this fact has been responsible for many a wrong atti-
tude towards mathematics.

Definition of ‘variable'. ‘The result of this discussion, then, is
that the word ‘variable’, though conveying a delinite meaning, must
itself remain undefined. We may, however, define a variable, as

% We distinguish between sign and symbol and use the latter word, in the Aristo-
telian sense, as an instrument of communication, “The words *sign’ and ‘symbol’
correspond to Aristotle’s semeion and symbola. The latter word had a distinet social
implication.

Sec Ogtlen, C. K. and Richards, I. A, The Meaning of Meaning, London and New
York, 1927,
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we define an angle, not by stating what it is, but by specifying
its constitution, So we suggest the following statement :

An aggregate of mathematical quantities constitutes a variable.
The variable can be identified with any of the number-values of
the aggregate, and is usually symbolized by a letter, whick may be
used as a functional substitute for the variable.

[n this definition the word ‘aggregate’ is used in its technical sense.’

Definition of ‘function’ Although the definitions of the term
‘function’, which we have cited above, have been framed to suit
the particular types of investigation (e.g., Wilson's for the theory
of point sets), they show a striking similarity of form, All of them?®®
give, implicitly or explicitly, the idea of determinate correspondence
within a certain domain. Few of them specify any condition of
order, but leave the order to be implied. The arrangement of the
cuantities of a variable in order is essential but it is a matter of
convention. Any variable can be put into a functional relation
with any other variable or variables by adopting a convention that
will make the variables alike in order and put the quantities of the
variable in determinate correspondence. Correspondence can gener-
aliy be effected in more than une way.

We set down, then, as the essential characteristics of a functional
relationship: order and correspondence. Thus when we state that
the variables v and ¥ are in functional relationship within a certain
interval, we assert that, there is an order of the 3’s and an order
of the «’s, which may be brought into correspondence, so that when
x has a quantity of a certain value, ¥ has a corresponding quantity
of a certain value. So we arrive at the following definition:

Two variables y and x are in functional relation when there is a
determinate correspondence between the guantities xy, xs, X3, . . .
of the x variable and the quantities v1, yo, vs, . . . of the y variable,
the order of the arrangement of the quantities of the two variables
being alike.

The function is defined, when the domain of the independent vari-

38 In this definition of a variable we assume that a variable has at least two number-
values. Cantor, in his Theory of Aggregates, asserts that a single element may con-
stitute an aggregate.

See Cantor, (i, “Beiirder sur Begrundung der transfinilen Mengenlehre.”  Muthe-
malischen Annalen, Vol, XLVI, p. 484.

¢ With the exception of such a definition as “any expression containing r is a
function of x," which is still popular in textbooks of algebra.
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able and the rule which enables us to compute the corresponding
values of the dependent variable are specified. 1t should be noted
that we have given a definition of a functional relation rather than
that of a function. Although the word *function’ must continue in
use, it would make for clearer thinking in schouls if the longer
expressicn were used instead.

The specification of order and correspondence as essential quali-
ties of a functional relationship suggests the idea of correlation,
Russell employs this concept in his treatment of functions, when
he states that, in specifying a function, “the independent variable
is to be a series. The dependent variable is then a series by correla-
tion, and may also be an independent series. For example, the posi-
tions occupied by a material point at a series of instants form a
series by correlation with the instants, of which they are a func-
tion.”3? Thus the notion of correldfion comes in naturally.,

Examples of functional relationship. Betore we leave this
part of our subject it will not be out of place to insist that our best
examples of functional relationship and correlation come through
the study of concrete examples of physical change. When we
state that the extension of a strained spring is a function of the
tension applied, or that the distance traversed by a body falling
from res* is a function of the time that has elapsed since it started
or that the density of a gas is a function of its volume and pressure,
we are :xpressing functional relationships between certain denomi-
nate quantities, which can actually be measured. If there is even
an element of truth in Rignano's contention®® that thinking is the
mental execution of a series of experiments, it is important that
the experiments should be such that the pupil v:ill readily appreci-
ate or sense them. Again, there is much to he gained by studying
the relationships between the variables involved in a physical
change, not as examples of cause and effect, as is so often done
in the science classroom, but simply as examples of functional cor-
relation. Viewed in this way even Mill's® canon of Concomitant
Variations hecomes but the expression of a functional relationship.,
School mathematics has suffered much in the past by being treated
merely a~ the science of abstract symbolism. We urge that it be
studied rather as the science of concrete relations.

87 Russell. B. 0p. cit., pp. 264-65. .
SYRignano, E. The Psychology of Reasoning, Chap. IV. London, 1923,
B Mill, J. S, A System of Logic, p. 263. London., 1854.
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THE PSYCHOLOGY OF THE FUNCTION CONCEPT

Shortcomings of mechanistic psychology. A careful survey
of the available literature on the psychology of mathematics re-
veals the fact that, while there is an abundance of reliable material
on the abilities and skills of elementary mathematics,! there is
a dearth of material on the psychology of mathematical reasoning.

Thorndike has analyzed both the nature and the constitution of
arithmetical and algebraic abilities with characteristic insight and
thoroughness, but his inquiries have been concerned with the ac-
quisition of the technical skills of mathematics, rather than with
the conduct of mathematical reasoning. Indeed, he draws no dis-
tinction, except of degree, between these two abilities, for he writes:

Reasoning is not the negation of ordinary bonds, but the action of many of
them, especially the bonds with subtle ele ments of the situation. Some out-
side power does not enter to select and criticize; the pupil's own total repertory
of bonds relevant to the problem is what selects and rejects.?

In a later discussion of the same topic he confirms this view:

These higher powers are in reality the cooperation of many connections of
bonds selected and given proper weight for some purpose.?

Still later, he says:

I conclude, therefore, . . . that there exists no fundamental physio-
logical contrast between fixed habits and reasoning.4

' Thorndike, E. L. The Psy.hology of Arithmetic. New York, 1922, See also The
Psychology of Algebra. New York, 1928.

See also Rugg, H. O. and Clark, J. R. “Scientific Method in the Reconstruction
of Ninth Grade Mathematics.” Supplementary Educational Monographs, Vol. 11,
No. 1, 1918,

Everett, J. P. The Fundamental Skills of Algebra. New York, 1928.

Symonds, P. M. “The Psychology of Errors in Algebra.” Mathematics Teacher,
Vol. XV, p. 03, 1922.

Schreiber, E.  *“A Study of the Factors for Success in First Year Algebra.” Mathe-
matics Teacher, Vol. XVIII, p. 154, 1925.

Judd, C. H. Psychology of Secondary Education, p. 107. New York, 1927.

* Thorndike, E. L. The Psychology of Arithmetic, p. 194.

* Thorndike, E. L. The Psychokogy of Algebra, p. 251.

{Thorndike, E. L. Human Learning, p. 160. New York, 1931.
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This conclusion certainly possesses the great virtue of simplicity,
but it is not a simplicity that stimulates the imagination, By scien-
tific or logical simplicity we usually mean either simplicity in a
generalization or formula, or simplicity in the elements of which
the formula is constituted. Thorndike seems to have purchased
simplicity in the former at the cost of greater complexity in the
latter, for the familiar ‘bonds’, which were first presented to us as
rather patient correlates of habits, now appear as functional agents,
having the power, not only of discrimination, but also of coopera-
tion in the production of abstract reasoning, Qur elements seem
to have grown niore complex in our hands® Such ‘dispositional
plasticity’ we are prepared tc recognize, but only when associated
with a definitely conativistic conception of the mind. But we are
at present concerned not so much with the nature or structure of
the mind, as with the lo ico-psychological schema or pattern to
which the mind, however we conceive it, conforms, when it is per-
forming its highest functions.®

Examination of the concept of functionality by analogy.
Let us begin our discussion with a brief examination of the logical
bases of our subject. Here we shall make use of an analogy drawn
from the main concepts of our thesis.

We have already seen that the concept of functionality has four
main components or elements : class, order, variable, and correspond-
ence. We say that two variable clusses are in functional relation,
when there is a determinate correspondence between the elements
of the two classes, these elements being arranged in some prescribed
order.

Class. In any mathematical discussion the class of the entities
with which we are dealing is either specified or implied. When we
specify our class to be, for example, ‘the class of natural numbers
(C)’. we have in mind a definite set of clements which we repre-
sent by the symboi>: 1. 2, 3,. ... We include in this class all
natural numbers and exclurde everything else: consequently, any

& We are reminded of a rematk made by dddington that “whilst it iz reasonable
to explain the complex in terms of the simple, this necessarily invalves the paradox
of explaininig the familiar in terms of the unfamiliar.”-- Fddineton, A. . © The Mean-
ing of Matter and the Laws of Nature According to the Theory of Relativity,” 3 ind,
New Series, No, 116, p. 143, Oct.. 1920,

* Cf Koftka, Ko The Growti of the Mind, pp. 12225 and Chap. IV, Lon lon and
New York, 1925.

See also Rignano, T Tie Pyychology of Reasoning, p. 22. London and New York,
1923,
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given number N either belongs to the class C or it does not so be-
long (The Law of the Excluded Middle.) 1In all classification there
is a dichotomous separation, expressed or implied, of the class
from the nonclass, or, in psychological terms, of ‘figure’ from
‘ground’. In ordinary speech, however, a discrete classification of
this kind is not always possible. When we classify a color as blue,
we have in mind a more or less definite concept, which we desig-
nate ‘blue’, but we should have some difficulty in deciding when a
range of color shades ceases to be blue, and becomes either indigo
or white. A particular shade of blue will occupy a position or
grade between these two extremes. Similarly, when we assert that
a certain boy is clever, we place him in a class, the extremes of
which are obviously difficult to define. In fact, it may almost be
said of the boy that he does and he does not belong to the ‘clever’
class, Tllustrations of this kind could be multiplied indefinitely,
warning us that, when we have given an object a name, we have
not necessarily particularized its character. Mathematical educa-
tion should aim at obviating vagueness; it is a science of close
specification as well as of exact procedures.”

Order. Now the elements of a class may be arranged in order,
according to some specific attribute or quality, thus making possible
subclasses and gradations of our main class. For example, the
class of natural numbers may be arranged in ascending or descend-
ing order, or, again, as primes and nonprimes. Similarly, a class
of students may be graded in order of merit, as A, B, and C, ac-
cording to some arbitrary or accepted scale of evaluation. The order-
ing of a mental series is essential, if we are te reason about the
series at all.

Continuity. As a special case of the concept of order we have
that of comtinuity, which is fundamental in everyday logic as it
is in mathematics. Russell has said, “The notion of continuity
depends upon that of order, since continuity is merely a particular
type of order.””® The class of real numbers, the class of points of a
line, the class of blues or greys, clever people or stupid people, all
suggest the same thought, that of gradation and continuity within a

?This is not an argument against the Law of the Excluded Middle tmt against jts
thoughtless application. As J. M. Keynes has remarked: * The so-called fundamental
laws of thought are to be regarded as the foundation of all reasoning in the sense that
consecutive thought and coherent argument are impossible unless they are taken
for granted.” Formal Logic, p. 450. London, 1906,

® Russell, B. Mysticism and Logic, p. 91. London, r921.
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particular class® We say that an ordered class is continuous, in
the mathematical sense, if it is ‘dense’ and if it satisfies Dedekind’s
Postulate of Sequence.!’® It may be noted that this concept of con-
tinuity, which countenances no gaps, stands in contrast to that of
the class itself with its discrete bounds. A continuous set of ele-
ments may, of course, be separated into discrete classes at will, as in
the case of the Dedekind schnitt (Dedekind cut).

Again, we may note that specification within a continuous se-
quence implies a point of balance between two bounds or extremes.
Sometimes these extremes carry the implication of opposites or of
opposite classes or subclasses within a class, for example, in such
terms as rich and poor, high and low, good and bad. Whether
we judge a person to be rich or poor, depends, first, on the mean-
ing we attach to these terms, and, second, on the degree to which
the person approximates to one or other of the opposite extremes.
In the ultimate issue, therefore, our estimate or judgment of a
given quality will depend upon usage or experience. Schiller has
said: “There is imposed upon every logic which aspires to be more
than an artificial word-game, a far-reaching and unavoidable de-
pendence on experience.”!! This is certainly true of the logic of
life. Failure to recognize the existence of a continuity or a con-
tinuous sequence inevitably leads to confusion of thought. As illus-
trations from the realm of logic and psychology we niay mention
such antitheses as percept and concept, deduction and induction,
analysis and synthesis, judgment and infe ence, individual and
social, subjective and objective, which often lead us to useless dis-
putations as to whether a particular example belongs to one or the
other, whereas the real question in most cases should be: To what
degree does each enter?

The importance of the concept of continuity is seldom recognized
by writers on formal logic, who generally confine their attention to
clear-cut legical classes and ignore the fact that, in the logic of
life, such sharp dichotomous divisions are seldom manifested.
Among philosophical thinkers Dewey, perhaps more than any ot'ier,
seems to have taken special care to avoid this error. On almost
every page of his Democracy and Education, to cite but one of his

* Whitehead, A. N. The Axioms oy Descriptive Geametry, Chap. 1. Cambridge
Mathematical Tracts, No. 5. London, 1914.

18 Young, J. W. Fundamental Concepts of Algebra and Geometry, p. 82.

U Schiller, F. C. S. “The Value of Formal Logic.” 3Mind, New Scries, No. 162,

p. 46, Jan,, 1932,
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works, he has given practical expression to the concept of con-
tinuity, although he has not formulated that concept as a principle.
A single quotation will suffice:

Any activity with an aim implies a distinction between an earlier incomplete
phase and a later completing phase; it implies also intermediate steps. To
have an interest is to take things as entering into such a continuously de-
veloping situation, instead of taking them in isolation. . . . The word interest
suggests, etvmologically, what is befweer — that which connects two things
otherwise distant.'

Schiller, the most persistent exponent of the ‘personal’ method in

logic, has defined Dewey’s attitude as follows:

Dewey shewed that there was a glaring contrast between the theory of
Formalism and the practice of the Sciences, between the precepts of Logic as
to how men ought to acquire knowledge and the methods by which they
actually succeeded in doing so.13

Limit. Associated with the concept of continuity is that of the
limit. In this connection it is important to note that the modern
conception of a limit does not specify whetiier or not a variable is
equal to its limit. All that this conception requires is that the
numerical value of the difference between the variable and its limit
shall become and remain less than some arbitrarily assigned posi-
tive number, 1n other words, that the variable shall converge to
the limit. e suggest that the mathematical notion of a limit has
its counterpart in psychology. A concept, for example, may be
looked upon as the limit of a variable class of percepts, and, being
of the nature ot . limit, it is not necessarily identical with any par-
ticular element of the class. Again, a causal series of events may
be taken as an illustration of a doubly-bounded infinite sequence.
Consider the causal series involved in the stimulus-response situa-
tion: kitty-kitty—meow-meow. Here we have a continuous series
of events, spatial and temporal, with end-points in the stimulus
and response, respectively. These end-points are mathematical
limits of the series S—> R, to which there is no first or last term.
What, then, is the first term of the stimulus or the last term of
the response series? Again, what j5 the stimulus? Is it a single
term of an infinite sequence or its summation? Surely the latter.
The same is true of the response. Again, since the S R series is

* Dewey, J. Democracy and Education, Pp. 149, 161, New York, 1920,
1 Schiller, F. C. S. 0p. cit,, p. 53.
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W

continuous, where is the point of separation of S and R? A little,‘,‘
reflection will show that there is no point of separation. The %

stimulus is meaningless apart from the response and the response
meaningless apart from the stimulus. The total situation S-> R
is a mathematical whole, with mathematical limits as its end-points.

Variable. OQur third component of functionality is the variable,
which we have defined as an aggregate of mathematical elements.
Thus. the class of natural numbers constitutes a variable, which
may be represented by a symbol identifiable with each and every
element of the class. Similarly the word ‘man’ is a variable symbol,
by which any one of the class of men may be identified. Names
are symbols of the variables of human discourse. In mathematical
logic the variable is identified with elements of a set of quantities,
which, in the large majority of cases, vary or differ, but which may
also be constant. So, in the logic of everyday use, one term may be
used to denote an element of a varied or ordered sequence, another
to denote an object of a constant class. Thus the word ‘blue’, as
we have already seen, may do duty for a large variety of shades
of blueness, but Wedgwood blue is, so we are told, the same the
world over. Thus, to the word ‘blue’ a quantitative estimate may be
applied. A particular blue may be estimated a dark or a light blue,
somewhere in the interval indigo to Chinese white. This quantita-
tive estimate is applicable to all logical classes which imply an
ordered sequence cr a continuity.’*1 Bridges!'® has made practical
use of this idea in her judgment of the emotional characteristics of
young children. According to her, the emotional condition of an

“Ogden, R. M. Psychology and Education, p. 314. New York, 1926.

In his discussion of “Thinking and Reason,” Ogden has suggested both the jdea of
gradation and that of quantitative estimate. ‘“Steps will then appear in the gradient.
.+« Whenever a serial order of steps appears, we have the possibility of quantifica-
tion.”

18 Since the above discussion was written, the writer's attention has been drawn to
a haok entitled The Technique of Controversy by B. B. Bogoslovsky (I.ondon and New
York, 1928). This book is a highly original and practical treatment of the logic of
evervday thinking.  Boguslovsky's Principle of Polarity, his Principle of Partiai
Functionim;, and his Principle of Quantitative Indices have a close reseinblance to
the principles suggested by us. They have been worked out with a wealth of detail
that give great force to the main thesis. Bogoslovsky's terms are expressive of their
inner meaning and could be applied, with advantage, to the concepts that we have
defined.

¢ Bridges, K. M. Thke Sacial and Emotional Development of the Pre-School Child.
London, 1931.

1
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infant at any particular moment may be estimated quantitatively on
the scale of excitement, between the opposite extremes distress and
delight. Watson uses a similar scale ranging between fear and
affection.

Correspondence. Finally, we come to the idea of a correspond-
ence between variables, which we designate a function. As we
have scen, the essential characteristic of a function, beyond that
of the variable, is correspondence. Since every element of the
variable class of natural numbers can be put into correspondence
with the elements of another variable class of numbers, known as
the ‘squares’ of the natural numbers, one class is a function of
another. This correspondence is usually symbolized by an equa-
tion: y = 2% The notion of function need not, however, be re-
stricted to mathematical classes. As Russell has said: “The notion
of function need not be confined to numbers, or to the uses to which
mathematicians have accustomed us; it can be extended to all cases
of one-many relations, and ‘the father of x’ is just as legitimately a
function of which x is the argument as is ‘the logarithm of .17

Some of the correspondences of pure mathematics are definite
and precise, others involve the factor of probability, leading us to
what is known as ‘statistical inference.’!* Correspondences of both
types are met with in life, fron the unequivocal statement of fact,
to the more hypothetical inductions from experience. Dewey’s
“complete act of thought” is, in its ultimate analysis, a functional
process of the second kind.!®

The concept of correspondence naturally suggests the relation
of cause and effect, which is not usually considered to be a mathe-
matical relation. Nevertheless, the data upon which judgments of
causation are based are strictly mathematical. Newton himself in-
sisted on this point and maintained, in his Principia, that when
enunciating formulas he was merely expressing correlations of
observed facts. Russell maintains that there is nothing more in
the notion of cause than a spatio-temporal continuity between se-
quent events® and he. therefore. reconymends that the use-of the
term be abandoned. “The word ‘cause’ is so inextricably bound
up with misleading ascociations as to make its complete extrusion

7 Russell, B. Iniraduction to Mathemaiscai Phiiosaphy, p. 46.

1*Keynes, J. M. A4 Treative on Probability, p. 32;. London, 1922,

Y Dewey, J. How We Think. London, 1928 and 1933, See also Demacracy and
FEducation, p. 176, New York, 1923.

* Russell, B. The dnalysis of Mind, Chap. V. London, 1928,
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from the philosophical vocabulary desirable.”® While we are ur-
willing to go to this extreme, we suggest that, as a first rule of scien-
tific method, mathematical relations derived from physical observa-
tion should be interpreted as correlations rather than illustrations
of preconceived relations of cause and effect.

Before we leave this part of our subject, let us note that, just as
the concept of continuity brings into our terms of speech an ele-
ment of uncertainty, or even of ambiguity, so it brings uncertainty
into our judgment, The proposition, ‘Mathematics is essential to
the modern world’, may be an acceptable conclusion to most teachers
of mathematics, but it involves the variables, mathematics, essential,
and modern world, the exact meanings of which few, if any, feel
capable of defining.

One problem of practical interest is whether, in functional think-
ing, one type of logical pattern is dominant or not. It has been
generally accepted in the past that the syllogism is, as Leibniz has
expressed it, “a kind of universal mathematics,” and that all mathe-
matical thinking is syllogistic. Against this view there have re-
cently appeared many dissentients. Brown, in an article, “Mind
and Mathematical Ability,” says, “One fact that has been definitely
placed beyond doubt, by recent experimental investigation, is that
men do not, as a rule, think syllogistically.”*2 ¥, by syllogistic
reasoning, he means the syllogistic form of argument, then he is
undoubtedly right, but we submit that the syllogism may sometimes
be found where its presence is not suspected. There is often an im-
plied syllogism, even in apparently simple statements of fact. The
statements: ‘Newton was a genius’, and ‘Even Newton was falli-
ble’, will illustrate the point. Ballard seems to be on safer ground
when he asserts that “Every attempt to press mathematical rea-
soning into the syllogistic mould has failed.”™ This is certainly
true, for to do so would be to ignore all those mathematical truths
that are the products of inductive reasoning. Induction s the
method of discovering general truths; deduction the method of
expounding them.

Induction and deduction. Several attempts have been made
to determine which of the two methods of teaching, the inductive

3 Russell, B.  Mysticism and Logie, p. 180, London.

# Brown, W. *“Mind and Mathematical Ability.” 3find and Personality, p. 112.
London, 1926,

* Ballard, P. B. Teaching the Essontials of Arithmetic, p. 10. London, 1928.
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or the deductive, is the more efticient in the development of con-
cepts. The issue is still in doubt. The evidence given in the studies
of Winch,> Hull,® Fisher,?® and Fowler?” is certainly conflicting.
The most recent of these studies is that of Fowler, who has main-
tained the superiority of the deductive method: “The results of
the whole series of experiments have shown that the deductive
method of teaching, where there is an explanation of the relation-
ship to be taught and immediate reference to particular cases, is
much better than the inductive one.”?” So many variable factors
entered into this investigation, that the results can hardly be ac-
cepted as conclusive. One cannot help feeling that the inductive
exercises were too difficult for the subjects to whom they were
given.

In functional thinking?® the deductive and inductive methods of
reasoning are naturally and justly blended, for while the main
objective is the establishment of a generalization, the process is
tested and reinforced at all points by deductive inference.

Functional thinking involves a similar blending of the operations
of analysis and synthesis; for functional thinking is creative think-
ing, and creative thinking cannot proceed without the exercise of
both operations. Kant has said, “To separate is to unite,” By
separating the function into its elements, we tend to make it a
unity. In this respect functional mathematics stands superior to
the mathematics of the traditional type, which was, at least in
its presentation, almost exclusively synthetic. Functional mathe-
matics invites us to discover, rather than to verify truth,

The psychology of functional thinking. Let us now examine
the psychology of our subject more closely.

In its ultimate analysis functional thinking is thinking in terms

#Winch, W, H. Indurtive versus Deductive Methods of Teaching. Baltimore, 1913,

% Hull, C. L. “Quantitative Aspects of the Evolution of Concepts.” Psychological
Monographs, No. 123. 1920.

26 Fisher, S. C. “The Process of Generalizing Abstraction.” Psychological Mono-
gruphs, No. go. 1416,

¥ Fowler, H. L. *The Development of Concepts: An Investigation into Methods
of Teaching.” British Journal of Educational Psychology, Vol. I, p. 13, Feb., 1931,

28 Note that we are using the term ‘functional thinking’ as the cquivalent of *think-
ing in terms of fundamenis present as rariables functionally relaied in the mathe-
matical sense.”  Although the view expressed in this chapter has certain resemblances
to functional psychology (see Carr, H. “Functionalism.” Psychologies of 1930
Worcester, Mass., 1930), the term ‘functional thinking’ is simply another expression
for thinking mathematically,
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of relations.® This does not place functional thinking in any ex-
clusive category, for it may be said that all thinking is thinking in
terms of relations® The special character of functional thinking
is the nature of its relations, which are, as we have seen, concerned
with correspondences between variable classes. Functional think-
ing is not the special privilege cf man, for it is true of functional,
as of perceptual, thinking, that “the difference between the per-
ceptions of a dog and the thoughts of a sage is a difference not in
the nature of the process but in its range and complexity and in
the materials with which it works.”s+ Mlany interesting illustra-
tion~ of this fact have been given in recent years by the exponents
of the Gestalt psychology.

In discussing the subject of relational thinking we naturally turn
to Spearman, who has made an exhaustive study of cognitive activity
in all its aspects. Spearman has shown that all relational thinking
can be reduced to the operation of three fundamental principles,
which he styles “noegenetic principles.”32 The first principle states
that one has an apprehension of one's own experience, or power, to
a greater or less degree, to observe what goes on in one’s own mind;
the second principle (Eduction of Relations) states that “The men-
tally presenting of any two or more characters, simple or complex,
tends to evoke immediately a knowing of relation between them’ ;33
and the third principle (Eduction of Correlates) states that “The
presenting of any character together with any relation tends to
evoke immediately a knowing of the correlative character,”s* It
is with the second and third of these principles that we are more
immediately concerned. Representing the relation R between two
fundaments : and B in the symbolic form 4 <> R <> B, the prin-
ciple of the eduction of relations states that, when 4 and B are
given, R may be educed (A > R<-B), and the principle of the
eduction of correlates that, when 4 and R are givea, B may be

9 \We may state that 4 is related to B, when 4 possesses an attribute which could
not exist in the absence of B,

3 Vailati and Russell have both pointed out that geometrical thinking is relational
thinking. Sce Whitehead, A. N. The Axioms of Descriptive Geomelry, p. 1. London,
1914,

93‘ Nunn, T. P. Education, s Date and First Principles, p. 207. London, 1930.

#Spearman, C. The Nuture of ‘Intelligence’ and the Principles of Cognition, London
and New York, 1923. (Second edition, 1927.) See also The Abilities of Man: 1Their
Nature and Measurement, Chap. XI. London and New York, 1927,

W Spearman, C. The Nature of ‘Intclligence’ and the Principles of Cognition, p. 63,

% Spearman, C. Op. cil., p. 91.
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educed (4->R~>B). The ability to continue an arithmetical
series 2, 4, 0. . . . requires the exercise of both types of eduction.
In the first instance, R is a function of 4 and B and in the second,
B is a function of 4 and R.

The tundaments, or raw materials, of the relations with which
we are here concerned are certain mathematical elements and re-
lations derived from these elements. In mathematical thinking
these fundaments and their cognized relations become organized
into mental patterns, or schemata, more or less stable, more or Jess
clearly abstracted. In the lower forms of life schemata are used
only in immediate perceptual situations: in the higher forms the
schemata have greater stability and can thus be successfully directed
towards an absent or remote situation. The ability of man to re-
tain schemata, when removed from their perceived fundaments,
may be justly regarded as an index of his intelligence. A child of
low intelligence cannot see that, if A is as tall as B, and B is as tall
as C, then 4 is as tall as C, not because he is unable to cognize
the relations between the fundaments in pairs, but because, while
cognizing the relationship of B and C, he cannot carry and integrate
the relationship of 4 and B into the new schema. It is only when
4 and C are placed in juxtaposition, either concretely or imagina-
tively. that the new schema is established.

When {wo comparable fundaments are presented to us, we im-
mediately proceed to educe a relation of some kind between them.
This relation may be educed with varying degrees of abstraction,
from the vaaque cognition that there is a similarity or a difference
betwezn the fundaments to conscinus discrimination and definition.
For example, one child on being presented with the series, 5, 8, 11,

<« said. “Getting bigger”: another remarked, “Going up by
threes.” Again, some children. on being presented with the se-
quence, r 2 3.2 34,245 ..., merely sensed the thythm of the
number-grouping; others, in addition, cognized the actual number
relationships. In the vast majority of relation-schemata various de-
grees of particularization are possible. ‘This is of the greatest im-
portance in teaching,

[t is inportant to note that relations may be usable although not
completely abstracted. This was one of the most interesting re-
sults of the tests given in Appendix A. Many of the pupils tested,
when asked why they had continued the series. 2, 4,6, ..., with
the numbers 8 and 10 (in arithmetical progression), and the series,



PSYCHOLOGY OF THE FUNCTION CONCEPT 33

3 4, 8 ..., with the numbers 16, 32 (in geometrical progres.
sion), remarked, at first, that they did not kaow3® But they were
able to use the correct relation. This ability to use relations that
have not been fully abstracted has been noticed by Spearman, who
writes:

Codperation between the preparatory phase of obtaining relations and the
pplicative phase of educing correlates becomes especially intimate and
obvious when the transition from the one phase to the other occurs in a direct
manner. This happcias whenever the relation—although still, as ever, the
vital factor in the whole process—nevertheless does not happen to arrive at
the stage of being abstracted from its fundaments (or even perhaps from
individual oceurrence at all).  Despite thus remaining still embodied in certain
concrete and particular cases, it nevertheless can already be appiied to further
cases no less concrete and particular,

The possibility of such dirrct transference has been already noticeable in all
our classes of experimental examples. Most prominent of all in this respect
was the test of Analogies. In ordinary life, also, the most conspicuous in-
stunces are those designated as ‘inference by analegy.' ‘l'o this class must be
ascribed almost all pre-scientific deduction and eve. canduct. By its means
men must have learnt to seck shelter on secing the sky grow black, countless
ages before they could formulate any abstract relations of meteorology. 3¢

As a general rule, we may state that when two fundaments are
presented and maintained together the relations or schemata tend
to undergo progressive clarification. This is analogous, in the psy-
chology of perception, to the Gestalt Law of Priignanz (pregnancy),
that perceptual configurations tend to become more and more
sharply defined. The progressive clarification of a relation may
imply a form of mental maturation, whereby the relation becomes
gradually and unconsciously strengthened, or that the state of ab-
straction is, in the true mathematical sense, the limit of a series of
cognized relations which have become progressively 1ore complex,
The interpretation of a graph offers an excellent illust, ation of pro-
gressive clarification, from the elementary cognition of geometrical
form to the complete analysis of the equation of the graph. Spear-
nan maintains that “abstraction is the climax of eduction™:

‘The explanation of the whole matter, then. seems to be that all cognitive
growth -wlether by eduction of relations or by that of correlates -consists
in u progressive clarification; the mental content emerges out of a state of utter
indistinguishability and ascends into ever-increasing di-tinguishability,  So
soon as any ilem of mental content has become sutheiently clear and dis-

% Examination showed that they had not menorized the geometrical series at
any time previously,

#Spearman, €. 0p. cit., p. 104,
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tinguishable, then and then only it admits of being abstracted; that is to Say.
it cun be intended’ apart from its context. And when this happens, it can
be thought of separately and given a name.”

The end of abstraction is, then, to reinforce the schema and to
convert it into a more stable configuration, thereby enabling it to
serve as a fundament for higher schemata, Thus the schema be-
comes a ‘disposition pattern’, possessing a certain purposive in-
tegrity. In the process of abstraction the concept acts as if it had
acquired a momentum in the direction of its clarification. As it
continues to function in this direction, it becom. still further
clarified, and the fundaments from which it was derived acquire a
fuller and fuller meaning. This is what Dewey means when he
says that a concept is essentially “operational.”

Now, although the process of clarification is unidirectional, it
gives 1ise to a reverse reciprocal action. It is as if the funda-
ments .{ and B were held by tensile forces to the relation R in such
a way that the abstraction of the relation from the fundaments
tended to produce a compensating stress towards them. Suppose,
for example, that 4 and B are related through R according to the
formula 4 <> R <> B, and that subsequently the abstracted rela-
tion R is applied to new fundaments 4’ and B’ to give us 4’ <> R
<=> B’, then, not only will the relation F be strengthened in the new
situation, but the original fundaments 4 and B will also tend to be
reciprocally strengthened. Such a reciprocal activity may be con-
ceived to be the first half-period of a sustained oscillation. Thus, by
a process of mental interlacing, the whole series of schemata be-
comes integrated, each new set of related funr.aments acting re-
ciprocally on all that have preceded it.

This principle of reciprocal activity is of fundumenta! importance
in functional thinking. In the endeavor to relate two sets of varia-
bles the mind is in a state of tension or indetermination between
the elements of the variables and oscillates between them, until
the law of correspondence has been abstracted or established. This
state of indetermination is not blankness but active and creative
thinking, Functional thinking involves a two-fold operation of
analysis: one we shall describe as a horizontal analysis, an analysis
of the order of the variable itself, and the other as a vertical
analysis, or an analysis of the correspondence between the ordered
variables. TIllustrations of these two procedures will be given later.

¥ Spearman, C. The Abilities of Man, p. 216.
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So far we have heen dealing with the structural aspect of our
subject, our main purpose being to study the schematic form of
functional thinking. As we have already indicated. schemata are
to be regarded not merely as structures having a static configuration
but rather as dynamic entities having a directional or purposive in-
tegrity. The best physical analogy we can give is that of the £as
vortex ring, which not only has a visible sti ictural form, but also
possesses intrinsic kinetic energy. This energy becomes manifest
only when the ring reacts to an external stimulus. The efticiency
of schemata depends partly upon their complexity and stability
and partly on their purposive or purposeful energy, or on what
McDougall has called “the selectivity of the desire.”

Psychological aspect of the reasoning process. We now turn
our attention from the schemata themselves to their mode of activ-
ity in the conduct of functional thinking.

As we have already indicated, the term ‘function’ may be used
either to denote an operation or 1o express a correspondence. In
mathematics the word is used almost exclusively to define a corre-
spondence between two or more variables. When we speak of the
function of a mathematical sign or symbol, we have in mind \he use,
of such a sign or symbol employed.as an operator: when we state
that v is a function of x, we are expressing the fact that there is a
determinate correspondence between all the nuraber values rep-
rescnted by the symbol v and those represented by the symbol .
In either case, the word ‘function' has a dynamic implication. This
is obvious when the word is used to indicate an operation, but a
little reflection will show that, even when used in the second sense,
the notion of activity is implicit, for correspondence requires, first,
the arranging of the elements of our variable in order. and. second,
the placing of corresponding elements together to determine their re-
lationship.  Function is thus an operation or experiment in thought,

Rignano. in his study, The Psychology of Reasoning. maintains
that all reasoning is nothing else than a series of operiations or
experiments performed in the mind, and that the logical process
of thought is identical with perceptual reality itself. “To think
of making un experiment allows us to perform in imagination, with
very great rapidity, not only this single experiment but a very great
and practically infinite series of experiments, mentally varied in
certain of their conditions and so to verify that they all give the
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same result.”$® This imagined experiment he calls, following Mach,
a “thought experiment” (Gedanken experiment). Reasoning may
be regarded, in a very real sense as the process of observing or ‘see-
ing’ relationships.

Rignano applies this idea of the thought experiment to the whole
range of mathematical reasoning. ‘“Reasoning,” he says, “in addi-
tion to being a true thought experiment takes further the form of
determinate classificatory operations (comprising inclusions, ad-
junctions, intersections, etc., of classes) performed upon mate-
rials already produced and presented to the mind by the preceding
creative act of the combining imagination. The form of deduc-
tion by means of operations performed upon classes to which any
reasoning whatever can thus be reduced is nothing else than a kind
of cataloguing of the results of determinate experiments after these
laws have alrcady been mentally performed by the combining
imagination.”® According to Rignano, any form of deduction is a
static mode of regarding the products of a dynamic process,

Miller, nearly fifteen years before, had expressed a similar thought
when he regarded “the act of thought as the preliminary imagining
in advance of all the results of one of our particular modes of pro-
cedure.”® Others have also emphasized the dependence of pure
thought on prior perceptual experience. Mach says: “It is erro-
neous to assert that the straight lire is recognized as the shortest
line by mere visualization. 1t is true that we can reproduce in
imagination, with perfect accuracy and reliability, the simultaneous
change in form and length which the string [line] und.rgoes. But
this is nothing more than a reviviscence of a prior experiment with
bodies, an experiment in thought.”#! We find the same idea in the
work of Hollingworth, who regards thought as the use in the solu-
tion of problems of substitutes u. symbols for the real objects and
processes that belong to the problem. The symboi may be ‘an

" Rignano, E. The Psychology of Rea<oning, p. 84. London and New York, 1923.
This book is an claboration »f a paper: *‘Sur la methode d’enseignement des mathe.
matiques et des sciences pour la formation du futur maitre.” See also Revuwe de
mela physique el de morale, May, June. 1910,

% Rignann, E. The Psychology of Rearoning, p. 196.

O Miller, I K. The Psychology of Thinking, pp. 133-34.  New York. 190q.

Y NMach, E. Space and Geometry in the Light of Phy-iological, Psychological and
Physical Inguiry, p. 62 (translated by T, J. McCormack). Chicago, 1906, For a
criticism of Mach's philosophy, sce Cohen, M. R. Reason and Nature, p. 40. london,
1931.
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object, a word, a diagram. a mathematical symbol, or a mental
image’ ¥

Dewey has made the thought experiment the basis of his philos-
ophy of instrumentalism, In his Quest for Certainty, he says, “All
conceptions, all intellectual descriptions, must be formulated in
“terms of operations, actually or imaginatively possible.” And he
proceeds:

The signiticant difference is that of two types of possibility of operation,
material and svmbolic, This distinction, when frozen into the dogmau of two
orders of Being, existence and essence, gives rise to the notion that there are
two types of logic and two criteria of truth, the formal and the material, of
which the former is higher and more fundamental. In truth, the formal
development is a specialized ofishoot of material thinking, It is derived
ultimately from acts performed, and constitutes an extension of such acts made
possible by symbols, on the basis of congruity with one another.®

Piaget distinguishes between two types of thought experimen’,
The first is mereiy productive, being the repetition in imagination of
experiences that have actually occurred: the second is productive or
creative and involves the abstraction of an extrinsic relation and its
application to new and varied cases** But the difference is one
of degree rather than of kind. In functional thinking both types
of thought experiment are active.

Our purpose in quoting these authorities is partly to uphold the
thesis that mathematical reazoning is ideal experiment, and partly
to support the view that school mathematics <hould be taught as
the symholic expression of actual or potential activity : in other
words, that school mathematics should he presented as a concrete
and dynamic. rather than as an abstract and static. science. We do
not think that the function concept can be grasped by the average
student in any other way. Mathematics is the projection of life
upon the plane of human imagination.

Ideal relations. Now, the conduct of experiment involves the
following main activities: the collecting of data, the arrangement
of the data according to some attribute or quality, the identifica-
tion of the data by name, and the interpretation of the data so
organized in terms of relations or correlations that have been found
to subsist between them. In other words, experiment involves the

2 Hollingworth, H. I.. The Psychology of Thought, pp. 4. 11. New York., 1926,

 Dewey, . The Quest for Certainty, p. 160. New York. 1929.

“ Piaget, J. Judgment and Reasoning in the Child, p. 235. London and New York,
1928.
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recognition of the mathematical concepts : class, order, variable, and
correspondence. These concepts are implicit in Spearman’s “ideal”
relations, those relations which we recognize as universal, or which
we associate with all types of fundaments. Spearman’s ideal rela-
tions are those of likeness, conjunction, and evidence s

The simplest of these ideal universal relations is that of like-
ness. It is important to note, however, that fundaments may show
the relation of likeness when taken in one context and unlikeness
when taken in another. For example, real numbers are alike in
one context (as real numbers) but unlike in another (as rationals
and irrationals). Similar triangles are alike as to shape, but, in
general, they will be unlike as to size. It is inevitable that the
terms ‘like’ and -unlike’ should be used somewhat ambiguously,
but care should be taken, especially in elementary mathematics, to
qualify the terms whenever they are used.*s

The relation of likeness gives us the concept of a class. Mathe-
matics begins with the formation of classes of elements that are
mutually alike. And just 4s the mathematical fundaments of which
a variable is constitute. may be alike or unlike in different
contexts, so the same fundaments may, on different occasions,
be constituents of different classes. In view of the fundamental
importance of the class in mathematics, particularly in the de-
velopment of the idea of the variable, we have given special at-
tention to it.

The first, and perhaps most important, characteristic of mathe-
matical classes is the possibility of arrangement in order, which
we have already specified as order of value, order in space, and
order in time. The concept of the variable is possible only when
ordered sequences exist. Order in time is usually accepted as in-
tuitive. For us, as for Newton, time flows uniformly. But it flows
uniformly because events succeec one another uniformly; in other
words, because events in space and time are correlated. Guyau
claims that the concept of order in time is not temporal but spatial.
“In truth, when we localize an event in time, we attach our points
of reference to space, and our short-cuts are in reality spatial short-
cuts, representations of mental pictures, with the distances vaguely
imagined, which receive definiteness by means of number. Our

¢ Spearman, C. Tie Nulure of ‘Inteliigence’ and the Principles of Cognition, p. r2.

‘¢ The relation of lik, ness between sets of numbers and geometrical forms is brought
aut in several of the tests, especially in Nos. 5 and 6.
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representation even of time itself, our image of time, is in a spatial
form.”" There is much truth in this statement, for as Bergson has
said, “Man invariably spatializes time.” It is important to note,
however, that to conceive time in spatial form requires the ability
to conceive space, and also number, in ordered sequence. In the
course that we have outlined we begin with the arrangement of
numbers or things in order of value or magnitude (tabular arrange-
ment). We then represent this arrangement as order in space
(graphical arrangement). At a later stage we represent order in
time, both in tabular and in graphical form. Thus tabulation and
graphical representation enter as essentjal processes in the (de-
velopment of the concept of the variable.

Closely connected with the idea of order is that of rhythim, which
we may define as an ordered sequence of contrasts in number, space,
and time. Sonnenschein defines rhythm as follows: “Rhythm is
that property of a sequence of events in time, which produces on
the mind of the observer the impression of proportion between the
durations of several events or groups of events of which the se-
(uence is composed.”® Whitehead has given an important place
to rhythm in the stabilization of reason. “The rhythm of life is
not merely to be sought in simple cyclical recurrence. The cycle
clement is driven into the foundation. and varieties of cycles and
cycles of cycles, are elaborated. The cycle is such that its own
completion provides the conditions for its own mere repetition,’ ™
According to Whitehead, the function of rhythm is to delay fatigue
and thus to facilitate reason. The attractiveness of rhythm was
well illustrated in the remarks of the pupils who took the tests de-
scribed in Appendix A. In the oral examination with Test I every
pupil noticed the rhythmical character of the numbers and several
remarked that they were easily able to continue the series when they
found that the numbers were “like the beat of a drum.” ~like canc-
ing.”” “like music.”” The satisfaction derived from the detection of
the rhythm was evident. In most cases the pattern of the rhythm
functioned as a conceptual unit, The apprehension of the groups in
rhythmical form seemed to facilitate thought by giving stability to
the fundaments. There is no doubt that we have lost much in
mathematical teaching by not appealing 10 rhythm more frequently:.

 Guyau, J. M. Geurse de Uidee de temps,p 09, Paris, 1922,

9 S-nnenschein, E. A, What is Rhythm? p, 16, London, 1923,
“ Whitehead, A. N, The Function of Reason, p. 17, Princeton, 1929,
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In the course that we have outlined we have not specified where ad-
vantage may be takcn of the child’s rhythmical sense. It may be
noted, however, that illustrations of rhythm are to be found, not
only in the subject matter of mathematics, but also in the mode of
mathematical expression. For example: When comparing two
similar triangles ABC and X¥Z, we write ‘B _BC_C4
AY Yz 2ZX
. AB XV . ‘s .
rather than 3" V7 The former, in addition to being more

comprehensive, is more easily grasped, partly because it is hori-
zontally cyclic and partly because it is vertically rhythmic.

The second of Spearman’s ideal universal relations is that called
conjunction, the relation which is expressed in the act of combina-
tion and the obverse act of division. This relation is the basis
of the concept of quantity, whether concerned in counting or in
measuring. It presupposes some relation of likeness, for quantities
can only be combined or conjoined, when they possess like quali-
ties. We may attach a meaning to the summation 1 ft. 4 1 yd.
but we cannot give meaning to 1 ft.+ 1 hr., except by an arti-
fice. This restriction to conjunction has to be borne in mind
in all number theory, for example, in dealing with complex
numbers or in vector algebra. The Hankel-Schubert Principle
of Permanence is a recognition of the possibility of such im-
permanence of operation. The relation of conjunction, as Spear-
man has remarked, “when taken with its obverse aspect of division,
as also its special case of ordination . . . supplies the whole basis
of arithmetic (inciuding algebra) and half that of geometry.”s® Tt
is the foundation of all summation and integration, and, incidentally
of the concept of the mean. In its obverse aspect it implies the
operations of division and differentiation. Thus the relation of
conjunction is the basis of mathematics as a calculus.%!

The third of Spearman’s ideal universal relations is that of
evidence. Spearman is careful to distinguish between the cog-
nizing of a relation by evidence and the cognizing of a relation of
evidence’2 The former type of cognition is inherent in all rela-
tional thinking; the latter, as Spearman has observed, “especially

$0 Spearman, C. Op. cil., p. 72.

B We suggest that mathematics should be viewed from three fundamental stand-
points: (1) as function, (2) as a calculus, and (3) as a logic.

# Spearman, C. Abilities of Man, p. 168. See also The Nature of ‘Intelligence’ and
the Principles of Cognition, p, 72.
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belongs to reasoning.” The important character of the cognition of
a relation of evidence is not the schema employed in reasoning, but
the mind’s critical analysis of the schema’s functioning. In cogniz-
ing a relation of evidence, the mind is critically examining its own
processes. This examination is, in substance, a thought experiment,
based ultimately on the inexorable law of nature that two bodies
cannot occupy the same position in space at the same time. And
if they cannot occupy the same position in space they have an order
in space, and an order ‘. space makes both geometry and physics
possible. The law of ..npenetrability, which forbids two bodies to
occupy the same position in space is the simplest expression of the
law of causation. Claremont has made the direct perception of cau-
sation the fundamental factor in intelligence. He writes, “The ulti-
mate intelligence factor is the power to become aware of the necessity
in the very nature of things of certain causal relationships,”s® and,
again, “Intellig=nce is a faculty by which the mind becomes aware
of such inexorable interconaections between things and events, and
that in the ‘intelligent activity’ .uch awareness is made use of
(se, it is a factor producing or modifying such activity).”s* A
similar thought is contained in a statement of McDougall that ¢ ‘In-
sight’ is the grasping of, or intuition of, relations, more especially
relations of time, space, and causality.”’s®

The beginning of, and the incentive to, reasoning is incomplete-
ness. There is a gap to be filled, a deficiency to be made good, an
incompatability to be rectified, or an inconsistency to be put right.
Such a sense of incompleteness is a call to action, to complete, fuliil,
rectify, or put right, as the case may be.

Application of the principles. The bearing of the principles
that we have just reviewed on the psychology of functional think-
ing will now be obvious. Let us suppose that we have two rows
of corresponding numbers, which we label # and y rows,

i LI N I I N

y|II4lolrélzs

From an examination of the numbers in the x row which we shall
designate a horizontal analysis, we educe certain relations, such

& Claremont, C. A, Intelligence and Mental Growth, p. 25. New York, 1928.
W Ibid., p. 31,
% McDougall, W. Modern Materialism and Emergent Evolution, p. 37. New York,

1929,
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as ‘increasing order’, or ‘progression’, or ‘geing up by o4e's’, the
degree of particularization depending on the efficiency of our re-
lational cognition. Then, from an examination of the y row (hori-
zontal analysis), we educe other relations, such as ‘increasing
order’, or ‘increasing, but not uniformly’, or ‘all squares’. Now
from an examination of the numbers in the same columns, which
we shall call a vertical analysis, we educe the relations 4 = 2 X 2
or 4=2% g=3--6 or g=3%; and so forth. Finally, we use the
relations themselves as fundaments. and educe the general relation
that numbers in the ¥ column are the squares of corresponding
numbers in the x column. We express this relation in the form of
an equation, y == 1%,

At first sight, the ahove reasoning seems to employ only the
Principle of Relation Eduction, but a closer scrutiny of the mental
processes involved will show that this is not so. The Principle
of Correlate Eduction cannot be eliminated from the examination
either of series or of correspondence. When we note, for example,
that 4 is a perfect sguare, we carry this relation in a predictive
fashion to our next number, 9. Again, when we note that 4 = 2%, we
anticipate and then verify the fact that the relation g = 3* will
follow. Thus our procedure conforms exactly with Dewey's de-
scription of “a complete act of thought,” for at each stage of our
reasoning we cariy with us . tentative hypothesis, which we verify.
elaborate, or modify as we proceed. Into this problem the trial-and-
error form of thinking naturally enters, but the hypotheses are so
well controlled that the experience may truly be described as re-
flective thinking.

Before we leave our first example, let us note that the principle
of correlate eduction is implied in the generalization, v - x*, for
this equation implies the possibility of enlarging our table of cor-
responding numbers by interpolation and extension. In this way
we are able to elaborate new correspondences. all of which follow
the law of relationship given in the following data:

s | e |

y 6.25 i I 36 ' 40
Graphical Representation. Second. graphical interpretation of
function illustrates relation-correlate thinking. The statement that
two variables, x and y. are connected by the relation y = x2 conveys
little of its inner meaning to the student who has not been taught

x 1.5

2.28
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to interpret the relation through its graphical form. The graph may
be regarded as a mathematical symbol, expressing, in its entire form,
relations which would otherwise be only vaguely sensed or which
would altogether escape notice. Thus the graph exists not merely
to illustrate, but to. add meaning to, the function which it sym-
bolizes. Like all mathematical symbols, the graph is a functional
substitute for a class, usually a large class, of arithmetical relations.
That being so, it should be valued for the light it can throw on the
properties of functions, rather than for its own intrinsic merit of
beauty.

With the aid of the graph we are able, without undue fatigue, to
apprehend the functional correspondence of related variables. Just
as logical thought may be looked upon as the correlate of a series of
experiments, potentially performed, so the graph may be regarded
as a concrete entity kinaesthetically sensed. Rignano maintains
that this is true of all symbols, “Behind symbolism we caa sce the
content of quantitative, we should almost say, tangible, operations
or experiments, thus symbolized.”s® 1In the experience of most peo-
ple the graph has a dynamic rather than a static significance; it is
a path along which the thinker moves as he transfers his attention
from point to point. The cognition of graphical relation resolves
itself into the kinaesthetic imaging of potential motion.

Motion and the function concept. This leads us to our third
example of functional thinking, the study of motion itself. When-
cver we envicage the motion of an object, we are thinking in
functional terms, for the concept of motion is a two-variable (space-
time) concept. It is not difficult to see that the principles of re-
lation and correlate eduction are both active when an observer
watches a moving object. He not only notes that the object is
‘here’ and ‘there’ at successive instants, but he also anticipates or
predicts the position of the object at later instants. When a marks-
man directs his aim ahcad of a moving target, he is thinking in
terms of relation-correlate eduction. He fires at the target in
the expectation that the space-time re'ationship already observed
and estimated will continue in operation. The study of motion
leads us to some excellent examples of functional thinking and
forms a natural starting-point for the idea of ‘rate of change' or
the concept of the ‘derivative’,

We have already symbolized the eduction of relations by the

% Rignano, K. Op. cit,, p. 193.
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formula 4 = R <~ B8 and the eduction of correlates by 4> R-> B
where .1 and B are fundaments, and R the relation subsisting be-
tween them. We may now symbolize functional thinking by the
formula x <> F <>y, where x and y are no longer single number-
values but variables. This formula indicates that functional think-
ing is oscillatory in character, for not only is y a function of #, but,
reciprocally, x is also a function of v. This is true of the process
of formulating functions, as will be seen from our first example,
for the eduction of the function required, first, the analysis of both
sets of numbers as variables (horizontal analysis) and second, the
comparison of corresponding numbers of the two variables (vertical
analysis). The latter process is a two-way oscillatory activity, for
the x and ¥ rows are interrelated. It is this oscillatory character
of functional thinking that gives it its peculiar charm.

Examination of the general aims. In the introduction to this
study we summarized the aims of mathematical teaching under three
main heads—utilitarian, cultural, and disciplinary. We have now
to inquire: How far are these aims capable of realization through
functional mathemotics? Of the utilitarian value of functional
mathematics there can be no question. The function is t*e mathe-
matical correlate of physical change, expressing in symbolic lan-
guage the relationships that accompany change in the physical
world about us. One may say that the utilitarian value of func-
tional mathematics is commensurate with the utilitarian value of
physical progress.

The cultural value of functional mathematics can hardly be con-
sidered apart from that of mathematics in general. David Eugene
Smith has appraised the value of mathematics in an article both
eloquent and profound. He shows that mathematics did not come
into being to satisfy utilitarian needs. *“It seems rather to have
had its genesis as a science in the minds of those who followed the
courses of the stars, to have had its early ~pplications in relation
to religious formalism and to have had its first real development in
the effort to grasp the Infinite.””” That mathematics has beauty
has not been generally appreciated. F2w who are not devotees would
be ready to claim that “the true spirit of delight, the exaltation,
the sense of being more than man, which is the touchstone of the
highest excellence, is to be found in mathematics as surely as in

¥ Smith, D. E. “Mathematics in the Training for Citizenship.” Tiird Yearbook,
National Council of Teachers of Mathemaltics, p. 18. 1928.
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poetry. . . .”% If beauty is an attribute of culture, then cultural
mathematics can claim to provide, in a special degree, the food of
culture, for order, rhythm, symmetry, harmony, and unity, which
are among the accepted qualities of beauty, are also among the
popular concepts of functional mathematics,

That mathematics has disciplinary value some are disposed to
doubt. They maintain that the days when it was believed that ac-
curacy, judgment, and reasoning were specific abilities that could
be developed by appropriate training and discipline have long since
passed away. Others, while admitting that the doctrine of formal
discipline has been rudely shaken, still cling to the belief that there
is something in “the human worth of rigorous thinking.” This sub-
ject was considered to be a matter of such vital importance that
the National Committee on Mathematical Requirements made a
special study of “The Present Status of Disciplinary Values in Edu-
cation,” giving the results of experiment and inquiry up to the year
1922, Mary experimental stulies of this subject have been made
since 1901, when Thorndike and Woodworth undermined our faith
in the doctrine of transfer.® Some of these have been vitiated by
faulty technique, others have beeu discounted because they do not
touch the real problem. Those that may be considered valuable
and unobjectionable as to procedure seem to point to a conclusion
which may be summed up in the words of Burt: “A common ele-
ment is more like'” to be usable if the learner becomes clearly
conscious of its nature and of general applicability: active or delil-
erate transfer is far more effective and frequent than passive, auto-

8 Russell, B. Mysticism and Logic, p. 61.

¥ Whipple, G. M. Tuweaty-Seventh Yearbook of the National Society for the Study of
Education, Part 11, pp. 186-97. Bloomington, IIl., 1928.

Sandiford, P. Educational Psychology, pp. 270 -89. London, 1928,

Orata, P. D. T'he Theory of Identical Elements. Columbus, Ohio, 1928.

Inglis, A. Principles of Secondary Education. New York, 1918.

Betz, W. “The Transfer of Training, with Particular Reference to Geom: try,”
The Fifth Yearbook, National Council of Teachers of M athematics, p. 149, 193c.

See especially Meredith, G. P. ‘“‘Conscious of Method as a Means of Tiansfer of
Training.” Forum of Education, Vol. LXXVII, Feb., 1927, London.

Woodrow, H. “The Effect of the Type of Training upon Transference.” Journul
of Educational Psychology, Vol. XXIII, March, 1927,

Johnson, Elsie P, “Teaching Pupils the Conscious Use of the Technique of
Thinking.” Mathematics Teacker, Vol. XVII, April, 1924,

*¢ Thorndike, E. L. and Woodworth, R. 8. “The Influence of Improvement upon
the Efficiency of Other Functions.” Psychological Review, Vol. VIII, pp. 247-61;
384-95: 553-64, 1901.

Sce also Thorndike, E. L. Educational Psychology, Vol. I, pp. 350-4 34e
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matic, or unintentional transfer. This seems especially true where
the common element is an elenent of method rather than of mate-
rial, an idcal rather than a piece of information.”® In other words,
method of procedure, consciously accepted as a desirable ideal, is the
key to ‘he problem of transfer,

The bearing of this conclusion on our present problem will be
obvious, when we remember that functional mathematics is neither
a technical skill nor a formal discipline but a mode of thinking.
It may, and often will, involve many skills, but its real domain is
to Le found in the concomitant changes of correlative variables
and the relations that subsist between them. If we seek the mate-
rial of transfer in the common elements of mathematics and life,
we find them in the concepts: class, order, variable, relation, cor-
respondence, correlation, and function.

Universality of functional thinking. Although it is the main
purpose of this study to discuss the place of the function concept
in mathematical education, it will not be entiicly irrelevant to sug-
gest that this important concept can be extended to the teaching
of other school subjects, The criticisms that have been levelled
against school mathematics may be directed, in varying degrees of
accuracy, against all the other school subjects. Some of these
subjects possess the virtue of being more obviously useful, but it
cannot be denied that, as far as methods of instruction are con-
cerned, they are in no better case than mathematics.

The methods of functional thinking are universal in their appli-
cation. In the teaching of the physical and biological sciences, the
applications of the function concept are obvious. In the biological
sciences the concepts of class or type and order are fundamental,
Biology is the study of dynamic types. We may note, further. that
to observe and interpret the corresponding changes in the associated
variables of Nature is one of the recognized methods of science.
‘The scientific method is the function concept in action. The boy
who observes and records the daily growth of a plant, or who records
the concomitant variations in the pressure and volume of a given
mass of gas, is thinking in functional terms. In the teaching of
geography, the notion of functionality is no less important. Geog-
raphy is no longer conceived as the study of the earth, but the
study of man upon the earth; it is the study of man in relation

8 Burt, C. L. Formal Training: The Piyehological A spect, . 3. Report of a Com-
mittee of the British Associztion for the Advancement of Science. Bristol, 1930.
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to his whole environment, immediate and remote. Here again we
have two variables functionally related.

At first sight, history seems to be less accommodating to our
general thesis but, if history means anything at all, it surely means
the study of the relations between the immediate present and the
historical origins of the present. Events on the historical time flux
or continuum are functionally related, and should be studied not
merely as events, but as events related to other events. The main
aim of history teaching should be to study the relationships be-
tween the complex present and its less complex origins in the past;
in other words, to study our social evolution, Such a study of
history might well include “number stories of long ago.""* Note,
too, the reciprocal effect of such a procedure, for the process of re.
constructing the past by an examination of the present not only en-
larges our conception of the past but intensifies our understanding
of the present,

Even less obvious is the anolication of the function concept to
the teaching of the mother ¢ - ue, but a little reflection will show
that the possibilities of usiny (his concept in the teaching of com-
position and functional grammar are almost as grea. as in the
teaching of mathematics. As a simple example, let us place side
by side two sets of words:

red, glowing, big, sharp. blue, pretty
knife, flower, girl. sky, stick, sun

Here we have two variable classes, adjectives and nouns, which
can be associated by a one-to-one correspondence, so that to each
adjective there correspunds, though not uniquely, a noun. When we
ask the pupil to select adjectives appropriate to each noun. or nouns
appropriate to each adjective, we are giving him an exercise in the
discrimination and the appreciation of wurds, which is of the great-
est value. Many combinations are possible but there will be only
one that the pupil will himself judge to be the best.

These remarks will be sufficient to indicate a general principle
of instruction, the pos:ibilities of which have never heen adequately
explored.

2 Smith, DL E. Numher Storiee of Long dgo. New York, 1910,
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THE HISTORY OF THE FUNCTION CONCEPT

Introduction. In this chapter we propose to trace the main
currents in the development of the function concept! in school
mathematics. Although many references tu functions are to be
found in textbooks and pedagogical journals published in the latter
part of the nineteenth century, it was not until the beginning of the
present century that functional thinking became recognized as a
concept of vital importance. Our discussion might well begin with
the year 1goo. It may not be unprofitable, however, to review the
events that led up to the demand for the function concept in school
mathematics. It will be found that, in all the countries with which
we shall be concerned, the ground was being prepared for the con-
cept of functionality by the addition of graphs and even of the ele-
ments of analytical geometry and the calculus to the school programs.

! This chapter is not intended as an exhaustive stuay of the subject. An effort
has been made to select only the personalities and events which seemed to be in the
main stream of development. The materia! for this survey has been gathered chiefly
from the following works:

Commission Internationale de I'Enseignement Mathématique, Sous-Commission
Francaise. Rapport. See especially Vol. II, “L’'Enseignement secondaire,” by C.
Bioche,

Internationale Mathematische Unterrichts-Kommission. Abhandlungen sber den
mathemaltischen Unterricht in Deutschland. F. Klein, editor. Die hiheren Schulen in
Norddeutschland. Band I,

Klein, F. Vorirdge ither den mathemalischen Unterricht an den hiheren Schulen.
I.eipzi;;, 1907, Bearbeitet von R. Schimmack. (Usually referred to as Klein-Schim-
mack.

Lietzmann, W, Methodik des mathematischen Unlerriclés, Teil 1. Leipzig, 19o6.

Schimmack, R. Die Entwickelung der mathematischen Unicrrichisreform in Deutsch-
land. 1907-1910.

See also the following journals:

L'Enseignement mathématique (Paris).

Zeilschrift fir mathematischen und naturwissenschafdichen Unterricit (Leipzig).

The Mathematical Gazette (London).

The Mathematics Teacher (New York).

School Science and Mathematics (Illinois).

The first of these journals was recognized as the off 4l organ of the Internationale
Mathematische Unterrichts-Kommission, which is referred to by the initials, I.M.
U. K.

48
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THE ReErorM MOVEMENT IN GERMANY

The idea that the function concept should be made the central
theme of school mathematics may be said to have originated with
Klein. Others before him had advocated the inclusion of-variables
and functions in the school program, and even as early as 1873,
Oettingen had suggested that “the notion of the function”? should
form an essential part of all mathematical work in schools, but
Klein was the first to press the view that functional thinking
(funktionales Denken) should be the binding or unifying principle
uf school mathematics. In this principle Klein had given conscious
expression to a thought that had bcen vaguely conceived by more
than one reformer before him.

Beginning of the movement. For the beginning of the Reform
Movement in Germany we have to go back to the Prussian Lehrplan
of 1816, sometimes referred to as the Siivern Lehrplan?® which
served for many years as the ideal ultimate standard of school
mathematics in Germany. The course outlined in this Lehrplan
was an ambitious one and included analytical geometry, trigo-
nometry, and the elements of the calculus. It fell, however, under
its own weight, for owing to the low standards then obtaining in
the schools, it proved to be quite beyond the powers of any but the
ablest students. By a special ordinance of 1834 the Siivern Lehr-
plan was considerably modified. The course was made less exacting
and spherical trigonometry and conic sections were removed alto-
gether,

Schellbach and Balzer. Among the great_st influences for the
extension of functional mathematics during the next half-century
were the textbooks of Schellbach and Balzer. In 1843 Schellbach
published a textbook on conic sections and a collection of mathe-
matical problems,* in which he stressed the idea of the variable, and
in 1865 Baltzer® published his Die Elenmiente der Mathematik, in
which the function concept figured prominently. It is worth noting,

2 Qcttingen, A.v. Uber den mathemutischen Unlerricht in der Schule. 1873. Festrede
zur jahresfeier der stiftung der Universtdt Dorpat.

3 After one of its authors, J. W, Stivern. The initiator of the plan was W, v. Hum-
boldt.

¢ Schellbach, K. II. Die Elemente der Kegelschnitte. Berlin, 1843. See also Mathe-
matische Lehrstunden, Berlin, 1844. Bearbeitet von A. Bode und E. Fischer, 186o0.

s Baltzer, R. Die Elemente der Mathematik, Band 1, Arithmetik und Algebra. Leipzig,
186s. Band II, Planimetrie, Sterevmetrie, Trigonometrie. Leipzig, 1883,
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however, that neither of these writers represented functions by
graphs. Partly through his books and partly through his writings
on the pedagogy of mathematics, Schellbach exerted a profound
influence on the reform movement during the latter half of the last
century. In particular he did muck to simplify the methods of
the calculus.®

Results of Franco-Prussian War, The reform movement in
Germany received a great impetus after the War of 1871, Shortly
after the termination of the war there arose a public demand for
new schools of the type of the Realschule and a demand within the
schools for the modern spirit in mathematics and science. These
demands led to important inquiries concerning the real aim of
mathematical teaching in the Gymnasium and Realschule. TIn 1873
the Prussian Minister of Education summoned a conference? to dis-
cuss the question of mathematical education in all its bearings. At
this conference Bertrand and Gallenkamp strongly advocated the in-
troduction of analytical geometry and the calculus, partly for their
cultural and partly for their disciplinary values. These proposals
were regarded as impracticable and idealistic and received the sup-
port only of the enlightened few. A few years later, support for
the reform movement came from an unexpected quarter. Du Bois
Reymond, a public-spirited man of science and an enthusiast for
classical training, charged the Gymmasia with neglect, asserting that
they had fallen far hehind the times in mathematical studies. He
pointed out that, while analytical geometry and the calculus were
becoming more and more popular in the Realschule, they had been
excluded from the Gymnasiu. A strong plea was made for mathe-
matics as an instrument of general culture. The representation of
functions by curves, for example, offers a new world of ideas, and
teaches the use of one of the most productive methods by which
the human mind has increased its power. This indictment coming
from one who was highly respected both as a scientist and as a
man of affairs created a great iinpression, but there were few who
were prepared to support the proposals of Du Bois Reymond
actively.

¢ Schellbach, K. H. 0p. cit. Schellbach had the honor of being the first master of
a gvmnasium to examine in mathematics at a public examination.

See also Klein and Schimmack. 0p. cit., p. 88,

Lictzmann, W. Methodik des mathematischen Unterrichls. Uber dic Zukanft der

Mathematik an unseren Gymnasien, pp. 18, 21, Berlin, 18%>,
* Der Landevschulkonferens. Berlin, 18573, See also Klein-Schimmark, Op. cit., p. 88.

L
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Up to this time the appeal for functional mathematics had been
made chiefly on cultural grounds, but towards the end of the
century utilitarian considerations began to dominate the situation.
Ever since the conclusion of the War of 1871 there had been a
gradual development of technical education, carrying with it a
demand for mathematics of a more practical type. Graphical
methods began to take the place of algebraic analysis, and text-
books soon began to reflect the change of outlook. Bardey’s
Aufgabensammlung® led the way with an appendix on graphical
representation, and other textbooks soon followed the example.
In 1882 the new Prussian Lehrplan, which had been awaited with
expectancy by the lecaders of the reform movement. made its ap-
pearance, but it proved to be a disappointment. As Klein has said,
“It satisfied nobody.”” Superficially, it seemed to be an improve-
ment on the curriculum then in force, but actually there was no
essential difference. Graphical work was not mentioned and analyti-
cal geometry was not included, although analytical methods were
permitted in certain theorems in conic sections. In the Oberreal-
schule, analytical conic sections and the calculus were recognized
as optional subjects but were not made obligatory. The reformers
complained that the new Lehrplan favored the Gymnasia at the
expense of the Realschule and that it did not encourage prac:ical
mathematics, which was of such vital importance in industrial life.10

Influential periodicals. Among the steadiest influences for the
reform of mathematical education about this time was undoubt-
edly the Zeitschrift fiir mathematischen und naturwissenschaftlichen
Unterricht, a mathematical and scientific journal for teachers edited
by Hoffmann. The editorial articles of Hoffmann were among the
strongest and sanest influences for the reform of mathematical
teaching in Germany for many years. In an article published in
1887'1 he made an appeal for the development of graphical meth-
ods in all the schosls and urged that, since official programs are

8 Bardey, K. dufiahensammlung--Arithmetik und Alcebra. Ueipzig, 1381, This
popular wark lias heen revised many times, first by F. Pictzker and O, Presler in 19o3,
and in its madern form by W. Lictzmann and P. Ziihlke in 1925 and 1930. Bardew’s
works have exerted a profound influence on the development of functional math-
ematics in Germany.

? Klein-Schimmack. 0p. cit. p. y3.

10 Pietzker, V. “L’Enseignemen! mathémalique en Allemande”. L' Enseignement
mathématique, 1q01, p. 1.

W Zeitschrift fir mathematischen und naturwizsenschaftlichen Unlerricht, Sept., 18%5.
The Zeitschrift was founded by J. C. V. Hoffmann in 1870,
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bound to be conservative, the writers of textbooks should take the
lead in the matter. In the discussions that followed the publica-
tion of the article frequent references were made to the function
concept and it was evident that this concept was gradually being
recognized as an important objective in mathematical teaching.
Another strong advocate of functional mathematics was Simon, who,
at the 1897 meeting of the Forderungsverein,'? an organization for
the advancement of mathematical and scientific studies, urged that
the function concept, “the most far-reaching and important idea of
algebra,” be an integral part of the course from the beginning,
Felix Klein. At the beginning of the present century Felix
Klein, Professor of Mathematics in the University of Gottingen,
had become the recognized leader of the reform movement in Ger-
many. Klein was equally distinguished as a mathematician and
as an authority in the pedagogy of mathematics. In 1893 in
an address before the International Congress of Mathematicians
(Chicago), he drew the attention of teachers to the vital impor-
tance of functional thinking in school mathematics. This theme
he further developed in various conferences of teachers in the years
that followed, but he received little active support. A carefully
considered statement of his views was published in rgoz in one
of two articles written in codperation with Gotting,!® and in a
series of studies produced in conjunction with Riecke!* an ab-
stract of this discussion appeared two years later. In the latter
publication Klein developed the whole subject of functional mathe-
matics and asserted that “an elementary treatment of the function
concept and an introduction to analytical geometry and the differ-
ential and integral calculus ought to be in the regular course of
all types of high schools.””® Tn 1go4 an important conference of
mathematicians and scientists was held at Breslau,!'® when Klein
again urged the importance of the function concept, claiming that
“the function concept graphically presented should form the central

12 Forderungsverein. Verein zur Farderung des Unterriches in der Mathematib und
den Naturwissenschaften, founded in 1So1.

WKlein, F. *“Uber den mathematischen Unterricht an den hiheren Schulen.” Jahres-
bericht der Deutschen Mathematikervereinigung, Vol. XI. p. 128. 1902,

Gotting, E. “ Uber das Lehrsiel im mathematischen Untervicht an hoheren Realans-
sigllen.  Ibid., p. 192.

WKlein, F. and Riecke, E. Neue Beitrige zur Frage des mathematischen uynd
puysikalischen Uniterrichis und den hoheren Schulen, Pp. 33, 48. Lcipzig, r9o4.

W 1bid., p. 7.

18 Naturforscherversammlung. Vorschidge. Breslau, 19o4.
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notion of mathematical teaching, and that, as a natural conseque:ce,
the elements of the calculus should be included in the curriculum of
all nine-class schools.”?” Klein impressed the conference so strongly
that a committee was appointed, known as the Breslauer Kommis-
sion, to formulate definite proposals for the reform of mathe-
matical teaching in the schools and special reference was made to
the concept of functionality. The proposals of the commission were
presented to the general conference at Meran in 1905 in a form
now known as the Meraner Lehrplan.!® These proposals, which
may be callec the charter of modern mathematics in German
schools, set forth the aims of mathematical teaching as follows :

. . . to bring the course of teaching more closely in line with the natural
process of mental deveicpment than formerly, to develop as far as possible the
faculty for contemplating natural phenomena from a mathematical point of
view, and to make the pupil more and more conscious of the continuity of the
subject as he passes from stage to stage—a psychological, utilitarian, and
didactic principle,!®
The unifying principle which made this centinuity possible was
defined to be “education in the habit of functional thinking.”® To
this was added, “the development of the ability for space per-
ception.” Thus the Meraner Lehrplan crystallized in a slogan—-
functional thinking—principles that had hitherto been only vaguely
conceived.

Klein followed up the advantage thus gained and for several years
conducted a vigorous campaign on behalf of functional thinking.
The substance of his addresses «t the Meran Conference and after-
wards are contained in his Vortrdge siber den mathematischen Unter-
richt and in the reports of the International Conference of Mathe-
maticians held at Rome in 1908.2! Tn these discussions Klein claimed
that the function concept was, not simply a mathematical met#kod,
but the heart and soul of mathematical thinking.

It is my conviction that the function concept in its graphical form should
be the soul of mathematical study in the schools.?

17Klein, F. Bericht an die Breslauer Naturforscherversammlung tiber den Stand
des mathematischen und phvsikalischen Unterrichts an den hoheren Schulen.

Appendix to Klein-Schimmack. Op. cit, p. 108.

18 Der Meraner Lehrplan fiir Mathematik (1905).

See also Klein-Schimmack. 0p. cil., p. 208.

Lietzmann, W. Methodik des mathematischen Unlerrichts, p. 232.

1% Klein-Schinmack. 0p. cit., p. 210,

20 I'hid., p. 208

M See also L'Enscignement mathématique, 1908-1912.

# Klein-Schimmack. 0p. cit., p. 34.
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That he interpreted the term ‘function concept’ in the broadest
sense is evident from the illustrations he gives of its application.
He writes:

The function concept, which was considered to be the central point of
mathematical study in the Obertertia, should remain, still, the pivotal idea.
Logarithmic theory, trigonometry, etc., all depend, without question, on this
concept. It is so with modern geometry. The concept of change as an
observable translation of points will convince the student of this generaliza-
tion. . . . The function concept gives us a splendid opportunity to study
figures as continuously varying structures in space.®

Finally, he shows that the function concept leads naturally and
easily to the calculus:

There is no reason why this {the calculus] should be considered difficult for
the pupil.  The elementary principles of the differential and integral calculus
certainly do not belong to ‘higher analysis’ but to elementary mathematics —~
not only so, they should b an essential element of school mathematics.®

Klein repeatedly insisted that an elementary knowledge of the
calculus should be regarded as the legitimate gnal of school mathe-
matics :

The elements of thc infinitesimal calculus, treated properly, provide far
more suitable material for mathematical education at school than that hetero-
geneous and lifeless subject matter, which nowadays is so repellent to those boys
who have no particular ability for mathematics. The calculus would naturally
arise from a fundamental and fruitful trcatment of the idea of function, an
idea admittedly of high importance and deserving of a central position.
Further, the calculus is indispensable to a clear comprehension of numerical
physical phenomena; and, from the standpoint of mental training, is an
essential element of mathematical education.2s
We quote this passage at length because it is an excellent sum-
mary of Klein’s views on mathematical education in relation to the
function concept, the calculus, the correlation of physics and mathe-
matics, and the doctrine of mental discipline.

In his discussion of the value of functional thinking Klein showed
a keen insight into the psychological implications of his subject.
He took care, for example, to discriminate the logically from the
psychologically sinple (elementary) and showed that the idea of
functional relatiunship, being fundamental to life, is therefore psy-
chologically simiple aud in that sense elementary.®8 As we have

B rhid., p.o128,

HIhid., p.11z.

25 [hid,, p. 1135,
25 [hid, porrt.
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already indicated above, Klein also supported the doctrine of men-
tal training,*” maintaining that the heart of that doctrine was to
be found in methods of conceptual thinking--a conclusion that is
very close to present-day thought on that subject.

The Meran proposals were further discussed by the Breslauer
Kommission and a report was presented to a general conference of
the Natural Science Society held at Dresden in 1907.2» At the con-
clusion of this meeting the commission was dissolved and a more
widely representative committee was formed to continue the work.
This comn.ittee, known as the Deutsche Ausschuss fiir Mathema-
tischen und Naturwissenschaftlichen Unterricht (D.A,M.N.U.) was
representative of several mathematical and scientific interests.2® Its
original membership included the names of Klein, Gutzmer, Schot-
ten, Stiickel, and Treutlein, all prominent figures in the world of
mathematics and science. Of these, by far the most active was
Klein, who developed his ideas on mathematical reform in a series
of holiday courses for teachers. The substance of these lectures was
afterwards embodied in his Elementar-mathematik *® a work of the
highest originality and scholarship.

Influence of the Fourth International Congress. The reform
movement entered upon a new phase when the Fourth International
Congress of Mathematicians met in Rome in 1908. At this meeting
of the Congress, David Eugene Smith, of Teachers College, Colum-
bia University, suggested the appointment of a special committee
“to study and compare the tendencies in the teaching of mathe-
matics in various countries and to report to the next meeting of the
Congress to be held in Cambridge in 1g912.” This suggestion was
accepted and a committee known as the Internationale Mathema-
tische Unterrichts Kommission (I.M.U.K.} was appointed, with
Klein as its chairman3' This committee drew up a constitution for

T Ibid., pp. 137, 1,45

28 Naturforscherversa nmlung.  Dresdener Vorschiage, Chiap. 11, 1907,

B Schriften des Dewtschen Awsschusses fiir den mathemalisehen und naturwissen-
schaftlichen Unterricht,  Leipzig, 1907,

30 Klein, I, Flementarmathematik von hoheren Stand punkie aus. Band 1, drithmetik,
Algebra, Annlysic, 1924, Band LI, Geometrie, 1923,

See wlso Klein, Foand Gutamer, Ao Rapport de la commisciion d'enseignement des

naluralistes el medicins, Dresden, 1907,

N L Enseignement mathématigne, Oct., 1908, Report on the Internationale Math-
ematische Unterrichts Kommission,

Auts del IV congresso internazionale dei mathematici Roma, 1908, Vol, 111, Rome,
1909.
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the commission and stimulated the formation of subcommittees in
each country.®* The French mathematical journal, L'Enscignement
mathématique, edited by Fehr, was recognized as the official or-
gan of the commission,

With characteristic thoroughnes:. the German subcommittee pre-
pared an elaborate series of reports on the teaching of mathematics
in Germany, with a detailed history of its development.® Valuable
reports were also prepared by the subcommittees of the other nations
represented on the commission.34

With the publication of these reports the case for functional
thinking may be said to have been firmly established in German
schools. Since that time considerable progress has been made, partly
in broadening the function concept so as to embrace the whole
school program and partly in widening its field of application.?3
For several years before his death in 1920, Klein urged that the
distinction between pure and applied mathematics should be less
rigid and that mathematics and physics should be looked upon as
“auxiliary sciences,” with the function concept as the natvral bond

between them.
The Mathematical Congresses of 1gro-11. At the meetings

B Fehr, H. Berichle und Milleilungen verenlazt durch die Internationalen Math-
ematischen Unlerricht Kommission. Vorberichl iber Organisation und Arbeitsplan der
Kommission. Leipzig, 1900.

See also L'Enseignement mathémalique, 1908, p. 326.

B Schriften des Deutschen Unlerausschusses der internationalen wmathematischen
Unterrichi-Kommission Abhandlungen iiber den mathemalischen Uniterricht in Deulschland.
Herausgegeben von F. Klein. Leipzig und Berlin, 1gog~1912.

M Commission Internationale de I’'Enseignement Mathématique, Sous-Commuission

Francgaise. Rapport, Vols. I-V, 1911.

See also United States Brreau of Education. Budletin, 1911-1917. Washington,
D. C.

Board of Education, London. “The Teaching of Mathematics in the United
Kingdom.” Special Reports on Educational Subjects, 1911-1912.

Valuable reports were also received from Ausiria, Hungary, Spain, Belgium, Switzer-
land, Russia, and Japan. Altogether twenty-four countrics were represented.  For
the full list sce Proceedings of the Fifth Imternatianal Congress of Mathematiciuns.
Cambridge, 1013. -

3 See, for example:

*The Wiirttemherg Lehrplan (1912). W, Lietzmann. L M. U, K. Abhandlungen II.

The Buayer Lehrplun (1g914). (Zeitschrift fisr malhemalischen und naturwissenshafl-
licken Unlerrichts, 1915.)

The Prussiun Lekrplan or Richtlinien (1925). (Richtlinien fir die Lehmpline der
hioheren Schulen, Aimntliche ausgabe, Beilage zum Zentralblatt fiir die gesamte Un-
terrichtsverwaltung in Preussen, 1925, Heft 8. Berlin) A general survey is given
in Lietzmann's Methodik des mathematischen Unlerrichls, p b1,
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of the Congress of Mathematicians held in Brussels in 1910, and
again in Milan in 1911, Klein brought forward proposals for the
fusion of the different branches of mathematics and made sugges-
tions for a course of general mathematics for students of physics
and the natural sciences.3¢ At the latter conference he reported that
the various German States had begun to reorganize their teaching of
mathematics to bring it in line with the general conclusions arrived
at during the meeting of the congress in Rome. He also empha-
sized the fact that great liberty had been given the teachers in
the interpretation of the conclusions of the congress.3? Representa-
tives of other countries, reporting on the application of the function
concept to the work of their schools, stressed the value ¢f concrete
illustrations in functional mathematics and the vital importance
of early and careful preparation, Ratz, a representative from Hun-
gary, stated that “The notion of function ought to be prepared
for with much care, and sufficient time must be allowed the pupil
in which to familiarize himself with the new ideas.”8® At this meet-
ing Lietzmann brought forward the question of mathematical rigor
which had arisen from experience in the teaching of mathematics
-from the functional standpoint. He cl. ified the prevailing points
of view under four heads: (1) strictly logical (Peano, Hilbert),
(2) empirical-logical (Euclid, Veronese, Enriques-Amaldi), (3) in-
tuitive-inductive (Borel, Behrendsen-Gotting), and (4) intuitive-
experimental (Perry). No general conclusions were reached, but
opinion seemed to incline towards the inclusion of al] types, begin-
ning with the intuitive-experimental in the elementary stages and
ending with the strictly logical in the last school year, Lietzmann,
who favored this course, was strongly supported by Klein,3®
Lietzmann’s contribution. Before we leave this part of our
subject, reference should be made to the conspicuous work of Lietz-
mann in popularizing the function concept and in systematizing
functional methods for school use. This he has done, partly through
his textbooks, which, as we shall see, are among the most sugges-
tive that have been published up to the present time, and partly
through his writings on the teaching of mathematics. His Methodik
des mathematischen Unterrichts (two volumes) is a work of outstand-

3¢ L'Enseignement milhémalique, 1911, p. 353
37 Ibidn p' 454.
38 I'bid., p. 456.
3 Ibid., p. 4358,

-
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ing merit, covering the whole field of mathematical teaching4® In
this work there is perhaps the most exhaustive treatment of the
function concept that has yet appeared. An even more immediately
useful work is his Funktion und graphische Darstellung** a read-
able and helpful handbook for the practical teacher. Among his
published articles special reference may be maae to one on the cal-
culus, which formed the basis of an important discussion on the place
of the calculus in the schools? at the meeting of the Congress of
Mathematicians held in Paris in 1g14.

TuE REForM MOVEMENT IN FRANCE

Judging by the articles that have appeared in mathematical and
pedagogical journals, the reform movement in France has developed
in a different direction from that of the German movement toward
functional thinking. 1In recent years teachers of mathematics in
France have been concerned with methods of approach to the teach-
ing of geometry and with questions of mathematical rigor, rather
than with the inculcation of functional ideas in algebra or analysis.
This does not mean, however, that they have not been alive to the
importance of the function concept; they seem, rather, to have
accepted graphs and functions as the natural and logical develop-
ment of the work they had already been doing. We find that graphs
were freely employed in French schools before the end of last
century.!3 The fact that ‘the graphs of certain functions’ appeared
in the official program of 1902, and were accepted without dispute
as-an improvement long overdue, is sufficient evidence that teachers
of mathematics were prepared for the change and needed no per-
suasion.

Y Lietzmann, W. Methodik des mathematischen Unterrichts, Teile I, IN. Leipzig,
1920,

See also the volumes of the Abkandlungen to which reference has already been made,

Stoff und Mcthode des Rechununterrichls in Deutschland. Leipzig, 1o11.

Die Organisation des mathematischen Unterrichts in den Preussischen Volks und
Mittelschulen. Leipzig, 1919. In this book he shows how the function concept has
been brought even into elementary school mathematics.

“ Lietzmann, W. Funktion und graphische Darstellung. Bresla., 1924.

@ Lietzmann, W. ‘' Die Einfiihrung der Elemente der Differential und I nlegralrechnung
in die hoheren Schulen.” Zeilschrift fiir mathematischen und nalurwissenshafllichen
Unterrichls, 1914, p. 145.

See ulso L'Enseignement mathemalique, 1914, p. 246.

@ Klein, ¥, Eiementarmathematik, p. 475.

See also L' Enseignement muthématique, 1903. Articlescn the official program of 1902,
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The introduction of the concept of motion—Méray. To-
ward the end of the last century French mathematicians were
much exercised over the admission of intuitive methods in geometry,
particularly those which involved the concept of motion. Intujtive
methods had been employed by Legendre in his famous Eléments
de géométrie’* (1794), but they had never been fully accepted
by the rigorists. In 1874 Méray published his Nouveaux éléments
de géométrie,*® in which he went much further than Legendre by
making the idea of motion the basis of his whole conception of
geometry. As Borel said later, “Geometry became the study of a
group of movements.”® As an illustration of the application of this
idea we may take Méray’s definition of parallelism, “Two lines are
parallel when a simple translation of the one suffices to superimpose
it upon the other.”*" Although Méray succeeded in introducing his
method into several normal schools,*® it was not until 1904, thirty
years after the publication of his book, that his methods became
officially recognized. In that year the Frenc1i Association for the
Advancement of \S‘eience in their meeting at Grenoble recommended
Méray’s method. A year later the “Instructions” to teachers in-
cluded in the official program of studies added a note to the effect
that teachers “should make a constant appeal to the idea of trans-
lation,” and the program was modified to suit that idea

In this struggle for recognition, Meéray received the strong support
of two eminent mathematicians. In 1903 Borel published a r:-
markable book on geometry, in which he based his procedure on
Méray’s concept of translation and added some valuable sections
on graphical representation.®® This book met with instant success
and did more than argument would have done to popularize Méray’s
methods. In 1908 Bourlet followed with an excellent book, which

“Legendre, A. M. Eléments de gbombirie. Paris, 1794.

¥ Méray, C. Nouveaux éléments de géoméirie, Dijon, 1874. A new edition (en-
larged) was published in 1903.

% Rarel, E. L'Enseignement mathém atique, 1908, p. 386.

¥ Méray, C. Op. cit,, p. 12.

@ Méray, C, “Justification des procédes ei de Vordinnance des nouveaux éléments on
géométrie.” L'Enseignement mathématique, 1go4, p. 8g.

Perrin, R, “La Méthode de M. Méray pour Venseignement de la géomélries.”
L'Enseignement mathématique, 1903, p. 441.

9 Plans d'études et programmes d'enseignement dans les bycées et colléges de garcons.

Parls, 1gos.
% Borel, E. Elémentaire géoméirie. Paris, 1903,
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was virtually a revision of the Nouveaux ¢’éments* This book,
in a revised and modified form, is still a popular textbook in France.
Inrecent years there has been a tendency in son:e quarters to modify
the Méray method, and in others to abandon it altogether.

At first sight this discussion seems to have very little bearing
on our main thesis, but this is not so. A little reflection will show
that it is all part of a general movement towards a dynamic con-
ception of school mathematics. As we shall see later, the idea of
‘motion’ makes possible the functional treatment of geometry.

In addition to his treatise on geometry Méray published, about
the same time, an important work on analysis,”® which exerted a
powerful influence on the development of functional mathematics.
This work proved so successful that it was afterwards expanded
into a treatise on analysis of four volumes’® Méray's general out-
look on the subject of functionality is given in an article published
in La Révue bourguignonne in 1892. He writes:

Algebra is not a special form of calculus, . . . it is the theory of rational
functions (and also of irrationals). I would open the minds of pupils to these
notions relative to variables and functions that are disguised in elementary
mathematics, ™

Laisant expressed the same thought more fully in a very illumi-
nating series of articles on the philosophy and teaching of mathe-
matics, published in 18¢8:

Algebra has for its aim the calculus of functions. in contrast to arithmetic,
which is the culculus of values. It is, therefore, necessarv, before everything
else, to present this notion of.functionality, which is fundamental to all
mathematical theory. The idea of variability, the idea of law, comes spon-
taneously to our minds in the following way: Things change and these changes
are the immediate causes of other changes. For our present object it is im-
portant to come down from such generality and to apply this observation to
measurable things. that is to say, to quantities to which alone mathematics
is related.  Among the natural quantities the variable is an excellent example

" Bourlet, C. Eléments de géomélrie. Paris, 1908.

See also Bourlet et Ferval. Géométrie.  Paris, 1903.

Bourlet, C. Conrs abrége de séométrie. Paris, 1906. See also * Théorie des paralleles
hasée sur lu tronslation reclili,ne.”” Nouteaux annales de mathématiques, 1go7.

2 Méray, C. Noureau trécis d’analyse infinitesimale. Paris, 1872.

¥ Méray, C. Legons nouvelles sur Panalyse infinitesimale et ses applications gé-
oméiriques. Parts 1, 2 (189s), Part 3 (1397), Part 4 (189%).

W Méray, C. “Considérations sur Penseignement des mathématiques.” La Revue
bourguienonsie de Uenseignement supérieur, 1392.

Sce also L'Enseignement mathématique, 19or. p. 172.



HISTORY OF THE FUNCTION CONCEPT 61

of something about which we have an instinctive conception long before we
know how to measure it.*

Introduction of the function concept. As we have al-
ready indicated, it is not at all certain when functional mathe-
matics began to be taught in French schools, "' 1goz, largely
under the influence of Darboux, graphs and funct.ous appeared in
the official programs.® Among the topics included 1n the program
of the Ecole Polytechnique are to be found the functions & and
the logarithmic function, the limit of (14 1/m)™,  derivatives,
maxima and minima, and the elements of analytical geometry 7
These programs have been modified several times since, but always
in the direction of increased emphasis on functionality. They have
also become increasingly more practical, thus obviating an early
criticism that they were “too theoretical and abstract.”®®

It seems likely, that in the practical interpretation of the function
concept, French mathematicians have been indirectly influenced hy
Klein and his school, but few references to Klein's work are to be
found beyond comments and discussions on the work of the Inter-
nationale Mathematische Unterrichts Kommission. Giitzmer, in an
obituary notice on the death of Klein, wrote:

Functions were introduced into France in the program of tgoz, under the
influence of G. Darboux. These notions have now become general in the
German States.  The reform carried out in France s extended to Germanw,»

David Eugene Smith made a similar statement in a paper read be-

fore the meeting of the International Commission held at Cam-
bridge in 1912:

Starting in France within the last twenty vears and vigorously advocated
in Germany within the last decade, it has much to recommend it, if reasonably
treated.®

 Laisant, C. A, La Muathématique-Philosophie-Enseignement, p. 36. Paris, 1395,

8 Plan détudes et programmes d'enseignement dans les lycées et collér-s de gar¢ons,
Paris, 31 Mai, 1902, This plan was madified in 1903,

¥ Les nouveanx programmes de I'école polvtechnique de Paris. Oct. 15, 1922,

For a criticism of these programs sce L' Ensefgnement mathématique, 1903, p. 7.

¥ Commission Internationale de 1'Enscignement Mathématique. Sous-Commission
Francaise. Rapport (C. Bioche) p. 11. Paris, 1911, Sur la place ¢! l'importunce des
mathematiques.

¥ Gitzmer, A.  L'Enseignement mathématique, 1920, p. 234,

®Smith, D. E. “Intuition and Experiment in Mathematical Teaching." Pro-
ceedings of the Fifth International Congress of Mathematicians, p. 617, Cambridge,
1912.
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Fehr, however, seems to suggest that the real impetus towards func-
tional thinking came from Germany:

The idea [of the function] is not new; it is the order of the day in Germany,
+ ++ One can say that in these days, for the chemist as for the botanist,
for the doctor and biologist as for the lawyer, a profound knowledge of the
notion of the variable is indispensible, for without it a great number of funda-
mental properties would remain inaccessible.®

In reply to the question as to what should be included in a func-
tional program for schools he cites: cordinates and graphs, statis-

tics, the discussion of the functions ax, ax?, ax®, &, 1 _, -‘-'?c—"-'——b,
r x+a ax+ ¥
log x, sin x, cos #, and the elements of the differential and integral
calculus. All these topics have since been included in the French
official programs. In addition, we find the graphs of such functions
2 ax®+ bx + ¢

as ax* 4+ bx?+ ¢ and I O

The Calculus in the French secondary school. In France
discussions of the concept :f functionality have centered round
the question of the calculus. It is strange that, although teachers
of mathematics had accepted, almost without question, simple
graphical r.ethods, they were not nearly so ready to give the same
welcom? to the calculus, in spite of the recommendations of
eminent mathematicians. As Laurent wrote, “Why go through
intri~ate algebraic and geometrical processes, when the calculus will
do the same thing much more easily,”s?

Tanrery, one of the most highly respected of French writers on
mathematics, made a similar plea in an article contributed to the
Revue pedagogique:

The second procedure, which is excellent, but deraands a marked effort,
consists in learning some integral calculus before studying the measurement
of these volines., Integral calculus! In the secondary school!l Yes, I am
not joking. The effort needed to learn what a derivative is, an integral, and
how by means of these admirable tools surfaces and solumes can be evaluated,
is certainly less than the effort heretofore demanded of a child to establish the
equivalence of oblique and right prisms, of two pyramids (the staircase figure,
vou know, that is so tiresome to make), then the insupportable volumes of
revolutior ®

S Fehr, H. “I1 notion de fonction dans Penseignement mathématique des égalev
moyennes.” L'Enseignement mathématique, 1905, p. 177.

® Laurent, H. “Considérations sur "enseignement des malhématiques dans les classes
speciales en France.”” L'Enseignement mathémaiique, 1899, p. 38.

® Tannery, J. “L'Enseignement mathématique.” Revue pedagogique, 1903,
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Elsewhere Tannery has discussed the value of functional thinking
in a passage that is so broadly comprehensive that it is worth quot-
ing:

One has not even a slight idea of what mathematics is, one does not suspect
its extraordinary scope, the nature of the problems that it proposes and solves,
until one knows what a function is, how a given function is studied, how its
variations are followed, how it is represented by w curve, how algebra and
geometry mutually aid each other, how number and space illustrate one
another, how tangents, areas, volumes are determined, how we are led to create
new functions, new curves, and to study their properties.  Precisely these
notions and methods are needed to read technical books in which mathematics
is applied.

They are simple and easy so far as essentials are concerned, easier than
many demonstrations that we do not hesitate to give to pupils. demonstra-
tions that are long and complicated and that have no bearing beyond what
they prove. These methods should penetrate more and more into clementary
instruction, both to abridge and to strengthen it

With the publication of the official program of 1905 the intro-
duction of analytical geometry and the calculus into the schools
was no longer open to dispuie.®® That the calculus had secured
an established place in French schools by 1914 was evident from
the discussion that took place at the meeting of the Congress of
Mathematicians held in Paris in 1914."%  Since then the tendency
has been to bring the calculus lower and lower in the school grades,
although the latest official program prescribes the calculus only for
the classe de mathématiques.®

Nomography. Beicre we leave this part of our subject, reference
should be made to the growing popularity of nomography in French
schools, largely through the stimulus given to that subject by
D'Ocagne®™ and Massau. At the meeting of the Internationale
Mathematische Unterrichts Komm.ission held in Cambridge in 1912,
Runge made a strong plea for tne introduction of nomographical
methods, which, as he stated, were taught only in French schools.®

# Tanuery, J.  Notions de mathématiques. Paris. 1003.

8 Commission Internationale— Sous- Commission Francuise. Rapport aux classes de
mathématiques speciales et de centrale des lycées (E. Blutels, p. 11, g1t

88 I’ Enseignement mathématigue, Oct., 1914.

¢ Programme: Officiels du 3 Juin, 1925.—Enseignement secondaire des garcons et
des jeunes filles,

¢* D'Ocagne, M. Traité de nomographie. Paris, 18g9. See also Culcnl graphique
de nomographie. Paris, 1914.

* Runge, C. The Mathemalical Training of the Physicist in the University, Inter-
nationale Mathematische Unterrichts Kommission. Cambridge, 1912,
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No doubt teachers of mathematics in other countries have lost much
by neglecting to explore this branch of graphical mathematics.?

THE RerForM MOVEMENT IN OtHER CONTINENTAL CCUNTRIES

Austria, Hungary, and Italy. The history of the movement to-
wards functional thinking in other continental European countries
has followed lines similar to those that we have already traced in
Germany and France. Stated broadly, the reform movement in
Austria and Hungary has corresponded to that in Germany, and
the movement in Italy to that in France.” Switzerland, as one
would judge by its position, has been influenced by advances in both
countries.”

We do not propose to give details of these movements beyond
citing the names of a few of those who have made substantial con-
tributions to our subject. In Austria the names of Czuber, Dintzl,
Wertlinger, Suppantschitsch, Hocevar, Mocnik, Jarosch, and Falk
are outstanding.™ Dintzl was not only one of the original members
of the Internationale Mathematische Unterrichts Kommission, but
is also the author of several very valuable textbooks. No one has

™0 See Maclean, J. Graphs and Statistics. Elementary Applications of Mathematical
Methods. Bombay, 1926. An original and suggestive approach to advanced school
mathematics of a special type.

" “Significant Changes and Trends in the Teaching of Mathematics throughout the
World since 1910.”” The Fourth Yearbook, National Council of Teachers of Math-
emalics, 1929,

See also similar articles in L'Enseignement mathématique, 1929, 1930, which are in
some cases fuller than the above, although written by the same authors.

Fehr, H. Commission internationale de Penseignement mathématique. Rapport
préliminaire sur 'organisation de la commission et le plan général de ses travaux.
Geneéve, 1908,

Stamper, A. W. A History of the Teaching of Eiementary Geometry. New York, 190g.

2 Brandenberger, K. Der matheriatischen Unterricht an den Schweizerischen Gym-
nasien und Realschulen. Bale, Gendve, 1917. The concept of functionality is givea
great prominence in the chapter, **Methods of Teaching.”

See also Fehr, H. L'Enseignemen: mathématique en Suisse. Gendve, IQIL.

La Notion de fonction dans 'enseignement mathématique des écoles moyennes, Con-
ference held at Zurich in 1go4.

Smith, D. E. “Intuition and Experiment.” Proceedings of the Fifth International
Congress of Mathematicians, p. 623. Cambridge, 1912. ““In Switzerland the graph-
ical representation of equations and functions is general, as in other countries, and
is extended to the idea of limits.”

™ Commission internationale, sous-commission Aulrichien. Berichte tber den
mathematischen Unterricht in Oesterrich. Wien, 1912,

Sec also Simon, O. *“L'Enseignement au gymnuase Autrichien.” L'Enseignement
muthématique, 1902, p. 157,
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contributed more than he has to the broader understanding of func-
tional thinking in Austria. In Hungary we find the names of Beke,
Mikola, Szénes, Ritz, Veress, and Goldziher, several of them au-
thors of popular textbooks.™ Goldziher is joint author with David
Eugene Smith of a valuable bibliography of mathematical litera-
ture. Teachers of school mathematics in Italy, largely through
the stimulus of Peano, Veronese, Enriques and Amaldi, Ingrami,
Castelnuovo and de Paolis, have been concerned with the founda-
tions of geometry rather than with ‘unctional mathematics in gen-
eral. About 1880 a reaction set in against the application of rig-
orous methods to school geometry® Sannio and d'Ovidio, de
Paolis, Lazzeri and Bassani, following, it seems, the lead of Helm-
holtz, advocated the introduction of intuitive ideas, including the
concept of motion. On the side of mathematical rigor are ranged
the names of Veronese, Enriques and Amaldi, de Franchis and
Ingrami’® Present tendencies seem to favor the rigorists, for the
textbooks of Enriques and Amaldi, de Franchis. Rosati and Bene-
detti, and Severi are all based on the more rigorous approach. Ref-
erence should also be made to the A4lgebra of Marcolongo and the
Nozioni di Mathematica of Enriques and Amaldi.” The latter is
one of tne soundest and clearest expositions of advanced school
mathematics in any language.

Spain and Russia. Of the spread of the reform movement to

"“Ratz, M. L. L'Enseignement mathématique, 1911, p. 456.

See also Goldziher, C. “Austria.”” The Fourth Yearbook, National Council of
Teachers of Mathemalics. The writer is greatly indebted to Professor Goldziher for
detailed information concerning the progress of functional thinking in the schools of
Austria, Hungary, Germany, and Italy. Of this information we have been able to
include only a small part.

Beke, E.  Uber den Jetrigen Stand des mathematischen Unlerrichts wnd die Reform-
bestrebungen in Ungarn. Internationale Mathematische Unterrichts Kommission.
Roma, 1909.

B.ke-Mikola. Abhandlungen iber die Reform des mathematischen Untersichts in
Ungarn. Leipzig and Berlin, 1911,

Mikola-Ratz. A figcvenyek és az infinitesimdlis szdmildsok elemei (Elements of
functions and of the calculus). Budapest, 1914.

" Loria, G. L'Enseignement mathématique en Italie. Paris, 1905,

SecalsoLictzmann, W, “Dije Grundlagen der Geomelriein I"terricht” (mit besonderer
Beriicksichtigung der Schulen Italiens). Zeitschrift fiir » athematischen und natur-
wissenschaftlichen Unterricht, 1908, p. 157.

" Scorza, G. Sui libri di lesto di geomelria per le scuole .. condaire superiori. Roma,
1914.

See also L’Enseignement mathémalique, 1914, p. 251.

" Amaldi, U. and Enrigues, I, Nozioni di Matheratica. 2 vols. Bologna, 1921,
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Spain and Russia™ very little reliable information is available.
That modern Russia is alive to the importance of the concept of
functionality is evident from the following extracts taken from
books recently published by the state press.

The development of the ~oncept of functional dependence must penetrate
every branch of mathematics of the secondary school and this must be the
pivotal concept of thecourse. . . . Klein has said that ‘Elementary mathe-
matics is that mathematics which is within the grasp of a youth of school
age of average intelligence.’ If that is so, the calculus can claim to be ele-
mentary,”

The function concept is specifically mentioned in the school pro-
grams of 1926 and in the course of study for teacher-training in-
stitutions we find the following:

Special importance to be attached to the development and furthering of the
idea of functionality from two points of view and two methods of attack, the
analytical and the graphical. . . . The whole program is built upon two ideas,
that of the fusion of the different branches of mathematics and on the concept
of the function.8?

Textbooks embodying these ideas have been prepared by Voro-
netz,5! Friedman®? and Boehm.

THE REFoRM MOVEMENT IN ENGLAND

It may safely be asserted that in no other country in the world
is so much individual liberty allowed the schoolmaster as in Eng-
land.82 There are in England no official programs, no fixed courses
of study. One consequence of this liberty is an extraordinary vari-

de Galdeano, 2, G. L’'Enseignement mathématique en Espa;ne. Commission
Internationale, 1911,

Bobynin, V. V. “L’'Enseignement mathématique en Russie. L'Enseignement
mathémalique, 1903, p. 247.

Commission Internationale. Bericht fiber den mathematischen Unterrichi an den
Russischen Realsciuden.

™ Leifert, L.  Pedagogitchesky Sbornik (Pedagogical Essays), Vol. IIIL., p. 218,
Moscow. 1923. The article is on the reform of mathematical teaching after the
Revolution. The author surveys the work of Klein, Perry, and Borel. He states
that Klein's Elementar .Mathematik has been translated into Russian.

For the references to and the translation of these passages, the writer is indebted
to Mr. Aaron Bakst of Teachers College, Columbia University.

19 Projekty Programm Shkoly II Stupeni; and Sbornik Matertaloff po Pedagogits-
sheskomu  Obrazovaniu (Utshebnye Planyi Programmy Olya Pedagogitsheskikh
Pekhnikumoff. Programis of projects for schools of the second grade: a compilation
of materials for pedagogical training.) Published by the U, S. S, R., 1926,

8 Voronetz, V, Posobie po Mathemalike. 1926.

® Friedman, W. G, Posobie po Mathematike. 1927.

8 Sce Wolff, G. Der mathematische Unterricht der hiheren Knabenschulen Englands.
Leipzig, 1915.
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ety of standards and methods; another is an almost entire absence
of anything suggestive of a reform movement. To each of these
generalizations it is necessary, however, to make an important quali-
fication: to the first, the natural restriction that comes of con-
formity to‘the requirements of University Entrance Examinations ;8
and to the second, a notable exception in the Perry Movement.85

Influences at work for reform. For our present purposes we
may take the Perry Movement (1gox) as our starting-point, Pre-
vious to rgor the course of study for ordinary mathematics con-
sisted of arithmetic, algebra (to the quadratic), and Euclid (Books
I to III), and for scholarship mathematics, of higher algebra, trig-
onometry, Euclid (Books I to XI), geometrical conic sections, and
the elements of the calculus. In the older scholarship examination
papers we seldom find references to graphs, the word ‘locus’ being
used instead. Thus we have: “Find the locus represented by the
equation:

y =sin x4+ cos x.”
And again, “Find the locus represented by the equation:

¥ — (@ — 2} {2+ (b~ 3)%} = {(ax+ by)2 = (224 y7)}2»

Chrystal's dlgebra,® which was regarded as the indispensable ref-
erence book of the specialist, paid considerable attention to the
graphical representation of funciions.8?

The Mathematical Association. Perhaps the greatest influ-

#1In England, secondary school students, as a rule take two examinations; the
first, or School Certificate Examination, at the age of about 16 to 17, and the second,
or Higher Certificate Examination at the age of 13 to 19.

University scholarships are awarded on the results of a special scholarship examina-
tion. The standard of the scholarship examination is extremely high, the object being
to select the most promising students for advanced university studies.

% Perry, J. “The Teaching of Mathematics.” Address at meeting of the British
Association for the Advancement of Science, Glasgow, 1go1. Published as a separate
volume, with full report of the discussion in Discussion on the T eaching of Mathemalics,
British Association, 19or. London, rgoa.

See al¥o Perry, J. *“The Teaching of Mathematics.” Nature, 1900, p. 317; 1901,
P. 592 1902, p. 484. ““The Rational Teaching of Mathematics.” Nuture, 1901,
p. 367. ““The Teaching of Mathematics.”” Educational Review, 1902, p. 158.

Jackson, C. 8. Discussion on the Perry Movement. Internationale Mathematische
Unterrichts Kommission, 1912, See also Mathematical Gazelte, Vol. VI, p. 384,
Dec,, 1912.

8 Chrystal, G. Algebra (an elementary textbook), Vols. I and II. First published
in 1886. This work will remain one of the classivs of elementary mathematics.

" The more ambitious students also studied Burnside and Panton’s Theory of
Equations.
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ence in the development of mathematical teaching in England has
been the Mathematical Association,® through its official organ,
the Mathematical Gazette. In the first number of the Gazeite
(1894), the editor, E. M, Langley, wrote: “But we intend to keep
strictly to ‘Elementary Mathematics’: while not absolutely exclud-
ing Differential and Integral Calculus our columns will; as a rule,
be devoted to such school subjects as Arithmetic, Algebra, Geometry,
Trigonometry, and Mechanics.™® It was not long before this
restriction had to be removed, for the calculus soon began to claim
a place among the ‘elements.’

Perry's address. In 1gor John Perry in an address before tha
British Association at Glasgow, put in a vigorous plea for a reform
of mathematical teaching in the schools. Perry claimed that school
mathematics had failed to arouse “enithusiasm, individuality, and
inventiveness” because it was largely a study of abstractions. He
strongly urged the adoption of a more practical course of school
mathematics, including formulas, logarithms, the use of squared
paper, and the calculus. His own words are worth quoting:

As examples of methods necessary even in the most elementary study of
nature I mention: the use of logarithms in computation: knowledge of and
power to manipulate mathematical formulae; the use of squared paper; the
methods of the calculus. Dexterity in all of these is easily learned by young
boys.%

Perry's method was what would be termed in America a labora-
tory, or workshop, method. So accustomed have we become to
scale drawing, practical measurements, graphical work, field work
and intuitive geometry in the teaching of elementary mathematics,
that we are apt to forget the difference between classroom pro-
cedure to-day and thirty years ago, when Perry made his appeal.

Criticisms of Perry's premises. The discussion that followed
Perry’s address was largely concerned with his references to the
teaching of geometry. Some criticized his proposals because they
were unpsychological ®! and others because they showed too strong
a bias toward engineering.”® In these discussions Perry received

% The Mathematical Association (London) was a development of The Association
for the Improvement of Geometrical Teaching, founded in 1871,

* Langley, E. M. Editorial. Mathematical Gazette, No. 1, London, April, 1894.

% Perry, J. Discussion on the Teaching of Mathematics, p. 11. Lundon, 1902.

# The doctrine of formal training was generally accepted at this time. Euclid

was considered to be the medium par excellence for such training.
¥ Perry was nimself a professor of engineering.
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the strong support of Forsyth, one of the foremost pure mathema-
ticians of England.

During tte following year the Mathematical Gazette opened its
columns to articles on the whole subject of the reform of school
mathematics. In one of his editorials the editor described Perry’s
address as “a picturesque exaggeration,” but he found himself in
agreement with his main contentions.®® He urged teachers “to give
up Euclid” and to substitute methods that appealed to intuition.
Godfrey, Siddons, and other well-known teachers pointed out that
some of Perry’s suggestions (the use of squared paper, logarithms,
etc.) had already been included in their courses.®* In 1902 the
Mathematical Association issued a well-considered report on the
teaching of arithmetic and algebra, in which it was recommended
“that graphs should be introduced as early as possible and should
be used extensively,”® 1In the same year a special British Associa-
tion Committee on the Teaching of Mathematics made the follow-
ing observation: “The general idca of cotrdinate geometry can be
made familiar by the use of graphs and many of the notions under-
lying the methods of the infinitesimal calculus can similarly be
given to comparatively youthful students long before the formal
study of the calculus is begun.” Henceforth, the history of the
movement for graphs and the calculus was that of steady progress.
One of the questions that arose was whether the calculus should
be treated as a separate subject or as part of the course in algebra.
Bryan urged that teachers should “abolish the study of the calculus
as a separate subject” and introduce it as a part of algebra and
apply it to all the subjects of the mathematical course: trigonometry,
geometry (tangents to curves), and mechanics.??

Acceptance of Perry’s proposals. On reading the history of
the teaching of mathematics in England, one is struck by the fact
that proposals for reform, apparently revolutionary in character.
were so readily accepted by the teachers of mathematics. The
reason is, as we have already suggested, that the new methods were

¥ Langley, E. M. “The Teaching of Matuematics.” Mathematical Gazette, Dec.,

1901, P. 105,
¥ See also the discussion on Langley’s paper on page 106 of the same issue.
" Mathematical Association. “Report of the Committee on Arithmetic and

Algebra.” Mathematical Gazette, March, 1902, p. 183.

* British Association. Report of the British Association Commitlee on the Teacking
of Mathematics. London, 1902.

" Bryan, G. H. “To Teach the Calculus as Early as Possible.” Mathematical
Gazelte, Dec., 1903, p. 351.




70 THE NINTH YEARBOOK

accepted, not because they had the support or advocacy of an em-
inent mathematician or because they had behind them the authority
of some legislative body, but because they had received the sanction
of teachers who had already succeeded in putting them into prac-
tice. The movement for the calculus in schools was initiated in
the schools themselves. Thus, from the first years of its existence
the AMathematical Gazette became a clearing house for ideas that
had already been developed in the classroom,

In a special report of the Mathematical Association on advanced
school mathematics®® (1go4) the introduction of analytical methods
in conical sections was recommended and also “an early introduction
to the differential and integral calculus and the free use of the
same in subsequent work.,”®® 1In a later report (1908), this com-
mittee recommended the following subjects for scholarship examina-
tions: analytical geometry, the calculus (total and partial differen-
tiation), integral calculus, plane curves, maxima and minima, curve
tracing, and differential equations.1%°

Godfrey’s report. Although the word ‘function’ was freely used
in the more advanced textbooks at this time, it was used as the
equivalent of an algebraic expression. The concept of functionaliy,
although implicit in much of the work done in schenls, had not yet
appeared in mathematical literature. The first definite reference
to the importance of functionality seems to have been made by
Godfrey in a paper, “The Teaching of Algebra,” in which he said,
“Another fundamental idea is that of functionality.” He summed
up this part of his subject with admirable conciseness as follows:
“Whenever one measurable thing depends on another measurable
thing, you have a case for functionality, you have an equation
and a graph. To the mathematical eye, life is full of functions and
graphs,”101

In a discussion on a draft report on Godfrey's paper, many mem-
bers of the association showed that they were fully alive to the

% Mathematical Association. “Report of the Mathematical Association on Ad-
vanced School Mathematics.” Mathematical Gazette, May, 1904. p. §3.

% Tt is interesting to note that it was stated that *‘the use of differentials shall be
permitted.”

100 Mathematical Association. “Report of the Committee of the Mathematical
Association on the Cuurse for Scholarships.”  Muthematical Gazetle, March, 190,
p. 218.

100 Gndfrey, C. °*‘The Teaching of Algebra. What is Educational and What is
Technical?”  Mathematical Gasetle, March, 1910, p. 230.
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importance of functional thinking, Siddons, in introducing the
report, said,

The idea [of functionality] is, we think, the most important that a boy has
to acquire in his elementary mathematics.

Nunn supported this view in the following words

There can be little doubt that the idea of functionality is one of the most
important that a boy can carry away from the course of elementary algebra.
The various typical curves serve as visual symbols of the abstract
relations which the boy has studied in the concrete instances of the physical
laboratory of everyday life.1%

Interest in the concept of functionality, particularly in its rela-
tionship to the calculus, was stimulated by the publication of the
papers on mathematical education in England prepared for the Inter-
national Commission on the Teaching of Mathematics (1911-1912),
These papers dealt with a variety of topics, but only four or five
of them are germane to our present subject.

Godfrey’s interpretation of graphic work. Godfrey, in a paper,
“The Algebra Syllabus in the Secondary School,” gave a very com-
prehensive picture of the rdle of functionality in mathematics and
in life, bringing out very forcibly the dynamic character of func-
tional thinking. On the subject of graphs, he wrote:

We don’t want the boy to think merely of a set of spots on the paper, and a
nicely-drawn curve . . . , a pattern just sitting quietly on the paper with no
life in it; we want him to think dynamically rather than statistically; to think
of the x as changing, or flowing, continuously, and the x (or 1/x, or whatever
the function may be) flowing consequently; to move his pencil point along the
curve, and watch the x and y waxing and waning according to the law of
their functional relationship.

He then goes on to discuss the importance of the idea of function-
ality in life:

We live in an atmosphere of functionality. When the study of physics is
begun, we have to inquire what is the functional relationship between the
length of the spiral spring and the suspended weight, between the pressure
and the volume of the enclosed gas, between the inclination of the plane and
the force needed to support the weight, between the attraction and the distance
apart of two magnetic poles; all these and many other opportunities arise out
of correlating physics with mathematics via functionality.!%

1% Mathematical Association. “Draft Report on the Teaching of Algebra and
Trigonometry.” Mathematical Gazette, March, 1911, p. 232,
1% Godfrey, C. *“The Algebra Syllabus in the Secondary School,” pp. 12, 13.
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Other articles of importance, In the same series, Barnard ex-
amined some of the fundamental concepts of algebra, such as func-
tion, limit, continuity, and the like, from the standpoint of school
mathematics, and so supplemented Godfrey’s paper on the technical
side,104

One of the most suggestive of these papers was that of Jackson,
“The Calculus as a School Subject,” in which .= examined the
whole subject carefully. Among the topics touched upon was that
of rigor, in the discussion of which the writer suggested a compro-
mise between extreme opinions on that subject, his criterion of a
good method being one that would leave nothing to be “unlearned”
by the student later. Among other topics he criticized certain “de-
fective” proofs of the formula for the derivative of x", particularly
that which depended for its derivation on the Binomial Theorem.15
In an article contributed a year later to the Mathematical Gazette,
Jackson gave some valuable suggestions on methods of procedure.108
This article emphasizes the importance of preparing for the calculus
by using finite differences. This article will still repay careful study.

The only other article of the series which calls for special men-
tion is “Examinations for Mathematical Scholarships,” by Macaulay
and Greenstreet."” 1In this paper specimens of scholarship examina-
tion papers set by various colleges of the Cambridge, Oxford, and
London Universities in 1910 are given. These examination papers
give a better idea of the scope of higher school mathematics in
England than could possibly be obtained from textbooks or courses
of study.

No. ; of the series of papers prepared for the Internationale Mathematische Unter-
richts heinmission. London, 1911,

See also “The Teaching of Calculus in Public and Secondary Schools.” Math-
ematical Gasette, p. 235. Jan., 1914. A plea for the calculus for the average boy.”

Godfrey and Siddons. The Teaching of Elementary Mathematics, pp. 163, 221.
Cambridge, 1931.

!% Barnard, S. “The Teaching of Algebra in Schoals.”” No. 22 of the series of
papers prepared for the Internationale Mathematische Unterrichts Kommission.
London, 1912.

16 Jackson, C. S. “The Calculus as a School Subject.” No. 20 of the series of
papers prepared for the Internationale Mathematische Unterrichts Kommission.
London, 1914.

19 Jackson, C. 8. “The Calculus as an Item in School Mathematics.” Math-
ematical Gasette, Dec., 1913; Jan., 1914; March, 1g14.

1% Macaulay, F. S. and Greenstreet, W. J. ‘“Examinations for Mathematical
Scholarships.”  Nao. 14 of the series of papers prepared for the Internationalen Mathe-
matischen Unterricht Kommission. London, 1g12.
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These special papers seem to have been the stimulus for the pub-
lication of a number of constructive articles and books on func-
tional mathematics by leading professors of mathematics and teach-
ers of sciiool mathematics. Among these we find the names of
Whitehead,'*® Nunn,1® Carson,}!? Neville,!! Picken,'? and others.
Space will not admit even a survey of the contributiuns made to our
subject by these authorities, but no discussion of the function con-

Y Whitchead, A. N, “Presidential Address to London Branch of Mathematical
Association.”  Mathematical Gazelte, March, 1913, p. 89, A contribution of very great
importance.

See also ““ Presidential Address, Mathematical Association.” Mathematical Gazette,
January, 1916.

“The Principles of Mathematics in Relation to Education.” Proceeding of the
Fifth International Congress, p. 449. Cambridge, 1912,

An Imtroduction to Mathematics, London, to11.

999 Nunn, T. P. The Teaching of Algchra (including Trigonometry). London,
1914, 1919, 1927.

See also Evercises in Algebra. Part I (1013), Part II (1914).

“The Calculus as a Subject of School Instruction.” Proceedings of the Fifth Inler-
national Congress, p. 532, Cambridge, 1912,

See also the following articles in the Malhematical Gasette:

*“The Arithmetic of Infinites.,” Dec., 1910; Jan., 1911.

*“The Sequence of Theorems in School Geometry,” May, 1922.

*“The Aims and Methods of School Algebra.” Dec., 1911; Jan., 1912.

“The Differentiation of a=.” May, 1926.

“Asymptotes.” May, 1929,

o See the following articles in the Mathematical Gazetle:

Carson, G. St. L. “Some Unrealised Possibilities in Mathematical Education.
March, 1g912.

“The Various Uses of Graphs,” p. 265. March, 1914. An acute analysis of the
problem,

“Intuition.” March, 1913,

See also Muathematical Fducation. Tondcn and Boston, 1913.

1 See the following articles in the Aathematical Gazette:

Neville, E. H. “The Tracing of Conics.” Jan., 192r.

“Limits in Geometry."” May, 1931.

“The Cubic Equation as a Relation between Complex Variables." March, 1927,

See also many valuable reviews of mathematical books by the same authors.

U2 Picken, D. K. The Number System of Arithmetic and Algebra. Melbourne, 1923

See the following articles in the Mathematical Gazette by the same author:

“Ratio and Proportion.” Jan., May, 1920.

“The Approach to the Calculus.”” Oct., 1927.

“Parallelism and Similarity.” Oct., 1924.

“Some General Principles of Analytical Geometry.” July, 1923.

“The Complete Angle and Geometrical Generality.” Dec,, 1922,

1 See the foll wing articles in the Mathematical Gazelle:

Dobbs, W. J. “Cotrdinate Geometry in Schools.” Jan., Marel, 1g:20.

Phillips, . G. “The Teaching of Differentials.” July, 1931.

“The Teaching of Analysis.” Dec., 1929,

Knowles, W. “The Teaching of Easy Calculus to Boys.” March, May, 1914.
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cept in schoal mathematics would be complete without a reference
to Nunn’s Teaching of Algebra.

Nunn’s Teaching of Algebra. This great work, worthy of a
place among the classics of educational literature, has exerted a
profound influence on the teaching of mathematics, not only in Eng-
land, but also in America. One has only to compare present-day
textbooks of mathematics with those of twenty years ago, when
Nunn's Exercises in 4lgebra was in the making, to realize the truth
of this statement. Formal exercises in substitution, addition, sub-
traction, multiplication, and division, simple equations, and ‘prob-
lems leading to simple equations’ have given way definitely and
finally to formulas, graphical representation, the graphs of statistics,
and the graphs of functions, all of which are included in the first
section of Exercises in Algebra.

Nunn’s Teaching of Algebra is, in essence, a treatise on the mathe-
matical concept of functionality; it is more, it is a treatise on func-
tional thinking in life:

Mathematical truths have always two sides or aspects. With the one,
thev face and have contact with the world of outer realities lying in time
and space. With the other, they face and have relations with one another.
. . . The history of mathematics is a tale of ever-widening development of
both these sides.!™

And, again:

Progress has brought about. and, indeed, has required, division of labour.
A Lagrange or a Clerk Maxwell is chiefly concerned to enlarge the outer do-
minion of mathematics over matter; a Gauss or a Cantor secks rather to
perfect and extend the minor realm of order among mathematical ideas them-
selves. But these different currents of progress must not be thought of as
independent streams. One never has existed and never will exist apart from
the other. The view that they represent wholly distinct forms of intellectual
activity is partial, unhistorical, and unphilosophical.1

Nunn does not often use the term ‘functionality’, but no one could
read this volume without comprehending its inner meaning. In
the forefront of his discussion he places the variable. Some of his
temarks on the subject of variablcs are worth quoting:

Evervone knows that mathematics is essentially concerned with ‘variables’.
.« . Whit is not generally noticed is that variables are almost as common
outside mathematics as within. Thus. in the statement:*The King of England’
is a variable in exactly the same sense as 1" in the formula V = .4/.116

W Nunn. T. P. The Teaching of Algebra, p. 16.
"s Ibid., p. 16, s 1hid., p. ;.
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Nunn gives an important place, indeed, to the variable, when he
says:

The invention of variables was, perhaps, the most important event in human
evolution. The command of their yse remains the most signiticant achieve-
ment in the history of the individual human being.?

If the concept of the variable was given pride of place among
the concepts of mathematics, that of the function, the connection be-
tween variables, was made subordinate to it only by the fact that
it was rather more complex. The idea of the function dominates
the first chapter (on graphical representation) ; it is no less promi-
nent in the second chapter where the formula is discussed :

In trying to give an account from the numerical standpoint of the concrete
things with which his formulas deql, the young algebraist can hardly fail to
notice and to become interested in the fact that ‘variables’ of widely different
character are yet often bound to one another by identical quantitative laws.
From that moment onwards it is natural to give an increasing amount of
attention to these general forms of connexion between variables. Eventually—
under the rather forbidding name of ‘functions’—they may become the main
object of study s
In other words, the function concept is a strand, which, by holding
the variable threads together, unifies and strengthens the whole,
A novel feature of the course proposed is the introduction of the
concepts of the calculus at a very early stage. Nunn reverses the
usual order of presentation of this subject and takes the integral
calculus first under the guise of ‘area functions,’1*

Our conclusion, after a careful survey of the relevant literature
is that The Teaching of Algebra is the most convincing treatise on
the function concept in school mathematics that has yet appeared.

THe RerorM MoVEMENT IN AMERICA

The reform movement in America may be said to have begun with
E. H. Moore’s presidential address to the American Mathematical
Society in 19o2.120 Although the function concept was not men-

W rhid,, p. 5.

W Ihd., p. 1.

W Ihid., p. 247,

10 Moore, E. H. *'On the Foundations of Mathematics.” Bulletin of the American
Mathematical Societv, Vol. X, p. 402. 1902,

See also Seience, Vol XVIT, p. jor.

The First Yearbook, National Council of Teachers of Muathematics, p. 32, New York,
1926,
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tioned in that address, many mathematical concepts incidental to
functional thinking were strongly emphasized. The idea of func-
tional relationship was brought out by Moore, a few years later,
in an illuminating article on the use of squared paper. This article,
which describes some unusual methods of graphical representation,
will still repay careful study.!*®* As in Germany, so in America,
we have to go to the meeting of the International Commission of
1908, for the beginning of the movement towards ‘functional think-
ing.’ Some years elapsed before the full import of Klein’s thesis
began to be fully realized in America. but the way was being pre-
pared for its acceptance by the growing attention to graphical work
in schools.

The function concept. Among the first exponents of the func-
tion concept in America were David Fugene Smith and E. R,
Hedrick. The former has always been sympathetic but cautious
in his utterances on this subject and has shown an unwillingness
to accept any doctrine wholeheartedly until it has proved its worth
in practical experience. His observations on the subject of the
function concept will be of special value to us, seeing that they
come from one whc has been for many years in close touch with
the theory and practice of mathematical education in other coun-
tries. The following is taken from a repc-t presented to the Fifth
International Congzrese held in Cambridge in 1912:

The secor.d imyortant question relates to the treatment of the function
concept. Here the réle of intuition, in the first steps, is more ctearly defined,
since we have no wei-ii 2 body of knowledge to be set aside. The chief
argument for the clabora on of the function concept seems te be that the
calculus has already fou < - ~lace in the schools under our consideration. and. if
it is to hold its placean+ untinue togrowin streng*h. we must cease to impose it
merely from above—we mu.. ;repare for it from below. The notions of limit.
variability, rate. fanction, and graph must be so gradually introduced that
when the calculus is reached theyv will be met s we meet familiar friends. 12

Important contributions to the function concept.  Hedrick's
first important contribution to the subject appeared about a year

12 Moare, E. . “Cross section Paper as a Mathematical Instrument.*” School
Science and Mathematics, Vol. VI, p. 4710 1926, See also School Review, Vol VI,
P. 317, 1006,

2 Smith, D. E. Report of an inguiry into “Intuition and Experiment in Math-
ematical Teaching in the Secondary Schouls,”  Proceedings of the Fifth Intern. omal
Congress of Mathematiclans, p. 616. Cambridge, 1912, See also L'Enseicnement
mathémalique, 1912, p. §t4.
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earlier than this. In 1911, he wrote an article, “On the Selection
of Topics for Elementary Algebra,” in which he stressed the vital
importance of functional ideas in elementary algebra. Few discus-
sions of this subject have revealed such insight into the real implica-
tions of the function concept as this. One is tempted to quote ex-
tensively from Hedrick’s article, but the following passages will
indicate the temper of the whole:

The chief direct value of algebra, in fact the real subject .uatter of algebra,
aside from the rather iasigniticant chapter of shorthand which I have men-
tioned, consists of variable quantities, the relations between variable quantities,
and the acquisition of the ability to control and interpret such relations.

Algebra emerges strengthened and beautified, no longer needing an
apologist, but manifesting itself as a true need of the modern worid, which
is, both in its manifold scientific enterprises and in its everyday atfairs, vitally
interested in controlling and interpreting the relations between varying
qua .ti: <18

It is doubtful whether any more eloquent statement of the value
of algebra has appeared in American pedagogical literature since
these: words were written. Judging by the lack of comment follow-
ing the publication of this article, one would conclude that teachers
of mathematics had missed its real significance. Comparatively
'2w references to the function concept or to functional thinking
wre to be found in American mathematical literature for the next
ten years. It must not be inferred, however, that progress was
not being made. Relevant and cognate ideas were being discussed
under the titles of graphs and formulas. In many articles, notably
those of Dines,'** Lunn,™* Kinney,*¢ Nyberg,'®? and Jackson,!#®
attention was being drawn to the furdamental importance of rela-
tional thinking ji the treatment of grapis and formulas. Thus
teachers were well prepared to receive Hedrick's second article which

" Hedrick, E. R, “On the Selection of Topics for Elementary Algebra' Schoo!
Science and Mathematics, Vol, 11, p. 7. Jan. 1911.

™ Dines, I. I.. “The Developnient of the Funetion ¢ ancept.” SNchool Science and
Mathematics, Vol. XX, p. 99. Feb., 1o10.

3 Lunn, L. F. A Suggestive Approach to the Use of the Functianal Notatjion.”
School Science and Mathemat! s, Vol. XVIIL, P. 450, May, 1o,

1 KRinney, J. M. *The Function Concept in High School Mathematics.”  Malh-
emalics Teacher, Vol. XV, p. 434, Dec.. 1922,

T Nyberg, J. A, “The Teaching of Graphs.,"  Soiool Sdence and Mathematics,
VYol. XX p. 144, Feb,, 1921,

“Teaching Formulas in the Junior High School.™ Skl Sefence and Mathemaltics,
Val. XXI, p. 129, Mav, 1901,

# Jackson, Dunham. “Variables and Limits.”" Mahematics Teacher, Vol, IN,
Pt Sopt, oo,




78 THE NINTH YEARBOOK

appeared in the Mathematics Teacher of April, 1922, and for the
recommendations of the National Committee on Mathematical Re-
quirements on the function concept, which immediately followed
it. Just as the report of the National Committee on Mathematical
Requirements!3® is generallv recognized as a landmark in the his-
tory of American mathema al education, so Chapter VII of the
report, “The Function Concept in Secondary School Mathematics,”
is recognizcd as the first authoritative statement of the case for
functional thinking t - . found in American mathematical litera-
ture. The first draft of this chapter was prepared by Hedrick him-
self, and was, in its main essentials, similar to the article to which
we have referred. In this epoch-making report the National Com-
mittee laid a foundation for mathematical education that will stand
the test for many a year to come. It could hardly be otherwise
with an aim so broadly conceived:

The primary purposes of the teaching of mathematics should be to develop
those powers of understanding and of analyzing relations of quantity and of
space which are necessary to an insight into and control over our enviionment
and to an appreciation of the progress of civilization in its various aspects,
and to develop those habits of thought and of action which will make these
powers effective in the life of the individual.’

The fundamental importance of the functional relation is clearly
set forth in the body of the report as follows:

The one great idea which is best adapted to unify the course is that of the
functional relation. The concept of a variable and of the dependence of one
variable upon another is of fundamental importance to everyone. It is true
that the general and abstract form of these concepts can become significant
to the pupil onlv as a result of very considerable mathematical experience
and training. ‘There is nothing in either concept. however, which prevents
the presentation of specific concrete examples and illustrations of dependence
even in the early parts of the course.!®?

The special chapter, “Function Concept,” is a comprehensive

9 Hedrick, E. R, *¥unctionality in Mathematical Instruction in Schools and
Colleges.”  Mathematics Teacher, Vol. XV, p. to1. April, 1922

See also Webb, Harrison. * Professor Hedrick's Report on the Function Concept.”
Mathematics Teacher, Vol. XV, p. 3t ;. Oct., 1922,

% National Committee on Mathematical Requirements (a committee of the
Mathematical Association of America). The Reorganization of Mathematics in
Secondury Educalion, 1923.

BUIhid., p.o1r,

12 Ihid., p. 12.
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treatment of the whole subject. It begins by emphasizing the im-
portance of functional thinking in life and then proceeds to show
that the concept of functionality is implied in any rational treat-
ment «f formulas, equations, graphs, variation and proportion, con-
gruence and similarity, and that not only algebra, but @/l the sub-
jects of the mathematical curriculum come within its purview. The
vital importance of relational thinking in everyday life is well ex-
pressed in the following passage:

Indeed, the reason for insisting so strongly upon attention to the idea of
relationships between quantities is that such relationships do occur in real
life in connection with practically all of the quantities with which we are
called upon to deal in practice. Whereas there can be little doubt about the
small value to the student who does not go on to higher studies of some of the
manipulative processes criticized by the National Committee, there can be
no doubt at all of the value to all persons of any increase in their ability to
sce and to foresee the manner in which related quantities affect each other.

To attain what has been suggested, the teacher should have in mind con-
stantly not any definition to be recited by the pupil, not any automatic
response to a given cue, not any memory exercise at all, but rather a determina-
tion not to pass any instance in which one quantity is related to another, or
in which one quantity is determined by one or more others, without calling
attention to the fact, and trying tc have the student “see how it works."
These instances occur in literally thousands of cases in both algebra and
geometry 18

Wrong interpretation of the function concept. It is difficult
to understand why, after the publication of such a thoroughgoing
discussion of functional thinking, so many writers of school text-
books should have fallen into the error of supposing that the func-
tion concept was synonymous with the graphical representation of
functions. Yet such has been the case. Few seem to have grasped
the idea that the function concept is a mode of thinking rather
than a method of illustration. In the ten years that have elapsed
since the preliminary report of the National Committee was pub-
lished in 1922, several writers have pointed out this fact, but none
of them have dealt adequately with the psychological or philosoph-
ical bases of their subject.

More recent contributions on the function concept. Of the
writers who have made outstanding contributions to the literature
on this subject in recent years special mention must be made of
the work of Georges and Breslich. On the practical side, the work

B Ibid., p. 63,
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of Swenson'®* in the Wadleigh High School, New York, and of
Vevia Blair and Vera Sanford, in the schools associated with
Teachers College, seems to be outstanding. To David Eugene
Smith, partly through his writings and partly through his guidance
of experiments on the teaching of the calculus,'¥ we owe much of
our knowledge of the deeper meaning of functional thinking.

The writings of Georges are remarkable for their detailed anal-
ysis of certain mathematical abilities. Among the contributions
that he has made to the subject of functional thinking the most
valuable is that contained in an article contributed in 1929 to
School Science and Mathematics.*® In this article he gives an ex-
haustive list of abilities which may be included in the term ‘func-
tional thinking’. According to Georges, functional thinking in-
volves three main abilities. First, the ability to recognize mutual
dependence between variables and varying quantities; second, the
ability to determine the nature of the dependence or relationship
between variable quantities; and, third, the ability to express and
interpret quantitative relationships.13” In other words, the recog-
nition, interpretation, and utilization of relationships are the heart
and soul of functional thinking. The writer goes on to discuss
the mathematical implications of these abilities, in the formation
of concepts, the acquisition of skills and the development of mathe-
matical habits of thought. He proceeds:

¥ “wenson, Jo AL “Selected Topics in Caleulus for the High School.”  The Third
Yearbook, National Council of Teachers of Mathematics. p. 102

Swenson, Jo A A Course in the Calerdus for Secondary Schools, with New and Orig.
sndd Treatments of Many Topics (Together with the Records of Seven I{igh School Classes
in this Course), unpublished Doctor's dissertation, Teachers College Library, New
York,

Noraaard, M. A, “Introductory Caleulus as a High School Subject. The
Third Yearbook, National Council of Teackers of Mathematics, P93, New York, 1923,

8 Nondgaand, M. A Op. cit., pp. o1 o2

Ruosenhberger, No B, The Place of Flementary Calculus in the Senior H igh Schonl
Mathematics.  New York. 1921.

138 Georzes, Jo 80 A Supplementary Project in Functional Graphs.” Mathematical
Teacher, Vol. XIX, p. 174, Murch, 1920, Ilustrated with a project on the graphs
of cubic equations.

See also the following articles in Scheol Science and Mathematics:

“Functional Relations and Mathematical T'raining.” Vol. XXIV. p. 09, Oct., 1926,

“The Properties of Relationships in Elementary Mathematics,” Vol, XXX, p. 251,
March, 1930.

*On the Nature of Algebraic Larpuage.” Vol. XN VI, P. 135, March 1928,

BT Georges, J. 8. Functional Thinking as an Objective in Mathematieal Educa-
tion."" Schaol Scivnce and Mathematics. Vol. XXIX, pp. 508 and vor, May, June, 19.29.
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The various mathematical concepts, principles, processes, and methods
which directly or indirectly contribute to the formation of correct habits of
functional thinking, to the acquisition of <kills in the nuianipulation of quanti-
tative method and the developmenr of ability in the expression and interpreta-
tion of functional relationships are classiied .5 (1) measurement, {2) repre-
sentation, (3) variation, (4) relationships, (3) transformations, and (6) gen-
cralization,

The term ‘transformation’ is used in rather a special sense. Ac-
cording to Georges, relationships, whether between abstract mathe-
matical elements or facts of experimentation, are statements of
algebraic transformations (variations). “The mathematical theory
of transformation is the logic of functionality,” This article, and
others by the same writer, must rank among the most valuable con-
tributions that have been made to the subject of functional thinking,

No less stimulating have been the contributions made by Bres-
lich, who combines a wide acquaintance of classroom technique with
an accurate knowledge of mathematical theory. In a valuable
article!3s contributed to the Third Y'carbook of the National Coun-
cil of Teachers of Mathematics, he analyzed several popular mathe-
matical textbooks for the purpose of ascertaining the extent to
which functional ideas are stressed and came to the conclusion
that the function concept was not receiving the emphasis it de-
served. He attributed this lack of emphasis to the tendency to
relegate functional ideas to isolated chapters and sections, and
gave some practical suggestions for a more systematic treatment
of the whole subject. Breslich has given a much more elaborate
discussion of the function concept in his recent book. Problems
in. Teaching Secondary School Mathematics.*® In this book he
goes back a step further than most writers and discusses functional
thinking in elementary arithmetic. This discussion contains some
very valuable suggestions on tabular arrangement, correspondence,
and dependence in their application to arithmetic. The rest of his
discussion covers familiar ground, but there is a wealth of illus-
tration which should prove of very great value to the practical
teacher.  The bibliography at the end of each section of the dixs-
cussion gives the authors and titles of practically every article on

B8 Breslich, I, R, “Devaloping Funetional Thinking in Seeondary School Math-

ematics.”  Tae Third YVearbook, National Council of Teachers of Mathematics, p. 4..
10:8,

W Breslich, E. R, Problems in Teaching Secondary Nchool M.athemati, s. Chicago,
Wi,
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the subject of functional thinking in American mathematical
journals,!40

Space will not permit us to review the literature on the func-
tion concept in detail, but we shall select a few articles which seem
to call for special comment. David Eugene Smith has stressed the
vital impo'‘ance of functional dependence in the Lesson of De-
pendence™ He maintains that “the dependence of one quantity
upon another is a phenomenon which has escaped only the most un-
tu.ored savage. . . . Our lasting pleasures depend upon success in
life, our success depends upon our efforts and upon our inborn
qualities and so on through all that enters into our life here and
hereafter.”

In the collection of essays known as Monographs of Modern
Mathematics, Bliss has discussed the function concept in its strictly
mathematical bearings. Examples of functions of several types,
continuous and discontinuous, are given, as well as illustrations of
the interdependence of the derivative, the antiderivative and the
definite integral. This part of the subject is treated bv Bliss in
an admirably lucid manner. The article has been written from
the point of view of the pure mathematician, rather than from that
of the classroom teacher. In the Introduction the author deplores
the lack of unity in school mathematics:

Topics related perhaps inherently but with no indicated relationships
follow each other in a confusion of radicals. exponents. progressions, imagin-
aries, probabilities, and other algebraic conceptions, in a way which must
fend to develop a very disjointed understanding on the part of the beginner.™?

Then he proceeds:

It is one of the purposes of the present paper to show that this lack of unity
may be remedied with the help of a very important conception which is called
the function,

" Since the above was written, The Seventk YVearhook, Nationel Couneil of Teachers
of Mathematics has appeared, with a valuatle article by Breslich, “Measuring the
Development of Functional Thinking in Aliebra.”

Other articles in The Seventh Fearbook on the funetion coneopt are:

" The Funetion Coneept in Elementary Aleebra, ™ by N, 1. Lennes, a useful survey
of the subject, and a very interesting and original article, ** The Function Concept und
Graphical Methods in Statistics ard Feonomics,” by W. Lictzmann, of the University
of Gottingen,

HEsmith, DL FC The Lesson of Dependence,” Matiematics Teacher, Vol, XNI,
peorrgs April, 1es,

W Rliss, Go AL The Funetion Coneept and the Fundamental Notions of the
Calenlus.™  Monagra phs on Fopics of Modern Mathematics Relevant o the Elementar y
Ficld, p. 204, Lundon, 1g2;.
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In this endeavor he has been, in a certain degree, successful, but he
has only particularized a unity that has been recognized ever since
the time of Dirichlet. There is very litile in the article which
would not be known to any teachgr of mathematics who had studied
the elements of function theory. The author has not included in his
discussion thos: elementary mathematical ideas and skills, which
teachers of eleraentary mathematics have sought to bring under the
unifying conception of functionality. There is a danger lest we
should assume the function concept to be an elementary form of
function theory. The report of the National Committee on Mathe-
matical Requirements has warned us against this assumption, “It
will be seen that in what follows there is no disposition to advo-
cate the teaching of any sort of function theory."!43

In recent years there has been an increase in the number of
articles of a practical nature emanating from the mathematics class-
room. Of these we may mention the contributions!t of Blank,
Booher, Christofferson, and Dresden. Miss Blank attacks her sub-
ject in a very broad way and bases her treatment on the idea of
variation. She warns us against the danger of treating function-
ality as a chapter in mathematical study:

Variability of functionality is, as it were, one of the themes of the symphony
coming up again and again, always in a new guise equally interesting. equally
novel, related to the formar version in the different key, familiar yet almost
unique, often coming upon one unawares.

Truly a case has been made for mathematics as a branch of aes-
thetics! Miss Booher uses Ligda’s Teaching of Elementary Algebra
as the basis of her method of selecting problems for class work.
She maintains that the notion of functionality (not the term)
should be present in school algebra from the first lesson, for “the
ability to see relationships is the very essence of intellizence.”
Her method includes plenty of oral discussion of formulus, prac-
tice in tabulation and in graphical representation. Somewhat simi-

W8 The Reorganization of Mathematics in Secondary Edueation, p. 04

W See the following articles in the Mathematics Teacier:

Blank, Laura. “Variability and Functionality in High School Mathematics,”
Vol. XXI, p. 405, Nov., 1920.

Booher. Eleanor K. “The Use of the Function Concept in First Year Algebra,”
Vol. XVIII, p. 80, Feb,, 1020,

Christofferson, H. C. “The Graph as a Means of Picturing Relationships,” Vol.
X, pe o227, April, 1928,

See also Dresden, A. ae Place of the Function Concept in Secondary School
Mathematics.”  School Science and Mathematics, Vol. XXVII, p. 570, June, 1927,
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lar suggestions are advanced by Christofferson, who shows how
the graphical representation of relationships can be used to vitalize
school mathematics: “The use of graphs to show the trend of statis-
tical data, to help scientific experimenter in deriving formulas, to
solve maximum and minimum problems, and to picture all sorts
of relationships is a powerful tool in mathematics.”

No discussion of the function concept in American schools would
be complete without a reference to the work of Swenson, who per-
haps more fully than any other, has exemplified the spirit of the
function concept in his own teaching. The writer has had the
privilege of intimate association with him over a period of nearly
two years, during which time he followed, with increasing admira-
tion, his work, both in the classroom and on the lecture platform.
He has also had the still greater privilege of many hours of profit-
able discussion with him. His articles, *Selected Topics in Calculus
for the High School”!** and “Graphic Methods of Teaching Con-
gruence in Geometry, "% and his doctor’s dissertation, A4 Course in
the Calculus for Secondary Schools, with New and Original Treat-
ments of Many Topics, give a general idea of his method of approach,
but they do not convey a real impression of the vitality of his teach-
ing. In his hands the function concept pulsates with life.

W Swenson, J. The Third Vearbook, National Council of Teachers of Mathemtics,
p. 1oz

M Swenson, Joo The Fifth Vearbook, National Cowncil of Teachers of Mathemalices,
p. 90,



V

THE FUNCTION CONCEPT AND THE SECONDARY
SCHOOL

A study of representative textbooks. When we seek to deter-
mine the influence of any new educational idea upon the life and
work of the schools, we usually follow one or more of several
courses. e may visit the schools and, by personal observation
and inquiry, form an estimate of the extent to which the new idea
has been accepted. or study syllabi and programs. records and
reports, and accept these as reliable indicators of the best current
practice, or examine the textbooks in common use, working on
the assumption that what is written in the books will be taught in
- the schools. We have, from force of circumstances, followed the

third of these courses, and have examined, as comprehensively as
was possiblc'./tche most popular textbooks in use to-day. This
method is admittedly less reliable than that of first-hand observa-
tion. but it provides us with useful evidence upon which compari-
sons can be made. When due allowance has been made for the
laz of inertia, textbooks do give some indication of the spirit of
the age. In some schools, of course, the teaching is far in advance
of that of the best textbooks; in others, it is far behind.

In the task of selecting books representative of those in current
use in Furopean schools we have received great assistance from
eminent teachers in the countries concerned. Not onlyv did these
teachers go to considerable trouble to make selections for us, but
they also supplied valuable observations on the progress of mathe-
matical teaching in their schools. In this chapter we briefly re-
view some mathematical textbooks extensively used in secondary
schools in Furope and America.

GERMANY
The moxst modern texthooks of mathematics for secondary schools
in Germany show unmistakable evidence of the influence of Klein,
This i generally acknowledged in the preface. where statements, to
85
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the effect that the function concept as conceived by Klein is the
underlying principle of the book, are sometimes to be found. The
influence of the Meraner Vorschlige is seen, not only in the em-
phasis that is now being placed on the notion of function, but
also in the obvious endeavor of the authors to relate the mathe-
matics of the school to the practical problems of life. An attrac-
tive feature of some of the recent books is the large number of
practical examples taken from physics, chemistry, and the social
sciences,

It is impossible to give a unified sketch of German mathematical
textbooks, since the books show a bewildering variety of treat-
ment. Each type of school, as well as each grade, seems to possess
its appropriate textbook. An additional difficulty is that no spec-
ified plan of study is obligatory upon all types of schools. The
Prussian Department of Education has recently issued a standard
Ricktlinien, upon which the schools are expected to base their
work, but this official program is suggestive rather than prescrip-
tive. The result is that, while most of the books follow the Richt-
linien in their general plan, they vary greatly both in content and
in their treatment of the subject matter. Roughly, the books may
be divided into two types: those which are revisions of standard
works by popular authors, and those that have been specially de-
signed to exemplify and inculcate the spirit of the reform move-
ment. Of the books belonging to the two types, those of the sec-
ond are undoubtedly the more interesting,

From a very long list we select the following:

Lehrbuch der Mathematik mit Aufgaben, by Behrendsen, Gatting,and Harnack

L Unterstufe Teil I. Geomelrie. 1930.

This book written for students of classes Quarta to Untersckunda (13 to
16 vears) is a very interesting and stimulating volume, for in it we find a
just blending of the concrete and the abstract, the static and the dynamic,
the intuitional and the rigorous. Plane and solid geometry, congruence and
similarity, geometrical and algebraic proofs are found side by side to the
obvious interest and benefit of the student. The book is not treated in a
definitely functional manner, but many functional ideas are included: as, for
example, in the discussion on the variation of the third side of a triangle with
the variation of the opposite angle. the containing sides being of constant
length.  An excellent feature of the book is the clear account of conical and
orthogonal projection, leading to descriptive geome'ry. The second half of
thebookis largely algebraic.  In this we find the elements of coordinate geometry
and several probiems introducing the idca of a limit, e.g., the circumference of
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a circle as the limit of the perimeter of a polvgon. A chapter on trigono-
metrical functions completes the book.

IL Unterstufe Teil 11, Arithmetik und Algebra. 1920,

In this book, for classes Unterteria to Untersckunda {14 to 16 vears), the
function concept is given special attention, but almost entirely as the graphical
representation of algebraic functions. A strong foundation is laid in number
theory, leading to simple equations of one or two unknowns. This is fullowed
by a very thorough treatment of the graphs of linear functions. The graphs
of the quadratic, cubic, and reciprocul functions are also very clearly pre-
sented.  In this book the function concept is prominent, but it cannot be said
to be the central theine of the book.

II1. Oberstufe Teil 1. 1q:8.

This book has been written as a general textbook of mathematics for the
Obersckunda and Prima (18 and 19 vears). A great many mathematical
ideas are gathered together in one volume: trigonometry, solid guumetry
(including stereometry), analytical geometry, algebra and complex variables.
function theory. and the elements of the differential calculus. A special
section is devoted to assurance mathematics and the elements of actuarial
suience.  As one would expect from such a program, the idea of the function
figures prominently, but no attempt is made to develop the notion of the
function as a definite concept.  All the elements are present for a first-rate
textbook on the function concept. but the concept itself has not been crystal-
lized. 1In this book, as in the previous volume. a function is taken to be
equivalent to a= algebraic expression and its graphical representation.

IV. Oberstufe Teil 11, 1929.

This is a continuation of Volume I of the series ard is intended for the
highest class, the Prima. The book is divided into three sections: function
theory, analvtical geometry, and projective geometry. Function theory
includes differential and integral calculus and algebraic serics (Binomial,
Taylor's, Maclaurin's) and analytical geometry is synonymous with analvtical
conic sections, including the general conic.  The course on projective geometry
embraces the main theorems of *‘modern geometry’, the complete quadrilateral,
poles and polars, Pascal's and Brianchon's theorems. The treatment is
comprehensive, but it is less thorough than that of representative English
textbooks on the same subjects.

The remark that we have made with regard to the first volume of the
Oberstufe applies also to this: The function concept is present, but is not
fullv manifest.

Elemente der Mathematik, by Reidt-Wolll-Kerst.

L Unierstufe.  Arithmetik und Algebra. 1930.

This volume covers niuch the satae ground as the correspoading book in
the Behrendsen series. A large ort of the book is devoted to the formal
operations of algebra, but much has been made of graphical representation,
both in the appropriate places in the development of the subject (e, lincar
and quadratic equitionsy and in a special section on statistical graphs at the end
of the book. The authors seem to us to reverse the normal psychological
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and logical urder. It is surely more interesting and more educative to lead
up to the graphs of functions through statistical graphs, which have the
advantage of a natural concrete implication. than to take these subjects in the
reverse order. The impression conveyved by this book is that of an effort to
revive an old body by the infusion of a new spirit, but the result is still domi-
nantly old.

11. Unterstufe. Geometrie. 1929.

This book corresponds to Behrendsen's Unterstufe I, and presents the same
material in much the same wayv. Functional ideas, which were to be found in
many places in the first series, are not to be found in this. There are, however,
other features, such as the determination of area and volume by integration,
correspondence in projection, and a discussion of limits, which are very valu-
able. The book abounds in practical problems and has many interesting
concrete teaching devices. In this respect it seems to us to be superior to other
German books of the same grade.

11, Oberstufe. Arithmetik, Algebra und Trigonomelrie. 1028,

In this book we have one of the best examples of functional mathematics in
school tcxtbooks. In every chapter we find analytical processes claritied
and enforced by graphical and other geometrical illustrations, The first part
of the book deals with assurance mathematics and statistical analysis. These
have be 1 very clearly presented. The statistical chapter includes sections
on prohability, the binomial series, and the exponential function. By a series
of well-chosen examples the student is finally led to the equation of the normal
frequency curve. The next section begins with number theory and leads on
to complex functions and the theory of equations (treated graphically). ‘The
most satisfving part of the book is that dealing with the ditferential and integral
calculus, where the main concepts are .developed in an admirable manner
with the aid of graphical illustrations. A chapter on spherical trigonometry
completes a most interesting and well-planned book.

IV. Oberstufe. Geomelrie. 1928,

‘T'he first half of this book is devoted to projective and perspective geometry,
and the second to analytical geometry. The whole book is characterized by
the same careful planning and clear exposition that we have marked in Volume
I11 of the series. The treatment of the rirst section does not ditfer in anv great
degree from the usual: much greater advantage could have been taken of the
idea of function in the movement of dgures and in places where the notion
of limits could have been emploved.  The second section. by the very nature
of the subject, is a treatise on the function concept but the authors seem more
concerned to emphasize the facts resulting from the analysis than the concept
itself.  In this sense the treatment falls short of that of Volume III.

Aufgabensammlung und Leitfaden fur Arithmetik, Algchra und Analysis. 1930.

L. Ausgabe A: fiir Anstalten realer Richtung =Unterstufe, by W, Lietzmann.
This book, which is based on Bardev's famous Aufy rhensammiung comes
nearer to catching the real spirit of the function concept than any other modern
German textbook. The author has for sume vears been looked upon as one of
the most energetic leaders of the reform movement and this book, although
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based upon a very old work, incorporates the new spirit most successfully,
This is scen. not only in the prominence given to graphical representation
(statistical and functional), but also in the excellent problem material, which
is taken from mechanics, physics, chemistry, and commerce, as well as from
pure mathematics. These examples have obviously been chosen to express
the concept of function in a concrete form. The book covers the same ground
as others written for this grade, but in a much more satisfving manner. A
feature of the bouk is that the whole argument is carried on by a well-graded
series of examples. without any explanations or ‘worked examples’. The
necessary explanation is given in a Leilfuden, or Theory Manual, at the end.
This contains all the essentials of the theory in the form of a concise summary.

1L Ausgade B: fur Anstalten realer Richtung—Obersiufe, by W, Lietzmaan and
P. Zihlke.

An extension of the above book, this carries the subject to the Prima stage.
The same features, to which we have referred in connection with the more
elementary volume, are to be found in this. The book abounds 1n problems
from science and commerce, all systematically arranged under such headings
as velocity, work, moments, optics, and electricity. These problems are so
selected that they exemplify functional dependence in a practical form. Thus
the function concept is inherent in the material of instruction.

Rechnen, fiir hohere Lehranstallen, Teile 1. 2, 3. by G, Wolff and B. Kerst. 1930.

These books have been selected as examples of the application of the func-
tion concept to elementary arithmetic. In this respect they are superior to
any other books on this subject that have come und.r our notice in any
language.  Almost from the first page, excrcises are given on the art of tabula-
tion. These lead on ta the reading and interpolation of results from tables.
This feature of the book is excellent and constitutes a much better exercise in
arithmetic than the formal drill that is almost universally found in schools
to-day.  Geometrical and graphical illustrations are emploved freelv. not
as skills to be acquired but as teaching devices to elucidate the theory,  The
problem material has been well selected. Many of the examples are taken
from real life and show a lack of artiticiality that is exhilarating.  The idea
of approximate estimation is ntroduced very early and is used constantly
throughout the course. The result i+ that when the subject “approximations'
is dealt with later, the <tadent has all the relevant fdeas in readiness.  These
books are an excellent preparation for functiond mathematics in the secondary
school.

Fraxce

Perhaps in no other country dees the work of the schools con-
form so closely to the official educational program as in France.
The same remark may be made regarding the textbooks of mathe-
matics, the most recent of which are almost invariably written
“entirely in conformity with the official programs of 3rd June,
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1925.” In splie of this restriction upon the materiul that may be
included in the course, French textbooks show a great variety of
treatment of the subject matter. Some written by university pro-
fessors follow a direct logical order and abound in problems of an
abstract type; others written by professors of lycées hring the
subject Into closer contact with the realities of life, including that
of the classroom. The chief characteristic of French mathematical
books is the lugical development of the subject matter and the rigor
of the treatment. Very little is taken for granted. Although, as
we have already seen, algebraic and trigonometrical functions have
been included in the official programs for iany years, the textbooks
do not show any definite bias in the direction of functional think-
ing. Graphs are used, and used effectively, to illustrate the results
of analysis, but not as instrumunts for the development of the
thought. The term ‘analytical function' occupies a prominent place
in French textbooks, but generally as a synonym for an algebraic
expression. From the large number of books available, we have
selected for review those which, in the opinion of several eminent
teachers, were deemed to be most popular. These buoks are used
in colléges and lycées of secondary grade, which aim at preparing
students for the daccalauréat, the entrance examination to the Uni-
versity. The secondary course {s of seven years (sixth class to first
class, followed by a special class known as classe de mathématigues).

Algédre (classes de 3¢, 2¢, 1¢), by Borel et Montel. 1926.

The mathematical textbooks of Borel have been deservedly popular, not
only in France, but also in other Eurcpean countries. Translations of his
books have appeared in Germany, Russia, Bulgaria, and even in Japan.
This book, which is designed to meet the needs of those who have aiready
learned the clements of algebra, surveys the whole field, from positive and
negative numbers to the graphs of homographic functions, The treatment
is strictly logical and analytical, but geometrical diagrams and graphs are used
to illustrate the argument frequently. The first part of the book deals with
positive and negative numbers and the fundamer.tal skills and concepts of
algebra. Velocity is introduced to illustrate the product of two signed num-
bers. The rest of the book is almost entirely devoted to vuriables and func-
tions, a variable being defined as follow:: ““We call a number which can take
different values a variable.” The treatment is dominantly algebraic, but the
results obtained by analysis are {llustrated, sometimes in a very illuminating
way, by graphs. In the theory of quadratic equations, which has been most
exl austively treated, the eraphs are particularly efective. Another in-
teresting section is that on homograpnic functions and their graphs. An
attractive feature of the book is the appeal to kinematics for problem material.
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Algdive (claste de mathématiques), by Borel and Montel. 1919

The first half of this book is a résumé, with harder exampies, of the Alpibre
for lower classes, supplemented by a detalled treatment of inequalities, systems
of equations, and the variations of functions. The second half of the book
is devoted to the elements of the calculus. Here the treatment is masterly,
By clear logical steps the pupil is led from the derivatives of polynomials to
thoss of trigonometric functions, homographic functions, rational fractions,
and irrational functions. ‘The examples are taken largely from mechanics and
are sufliciently difficult to tax the powers of the ablest students. ‘The work
is {llustrated throughout by graphs.

Pricis d'arithmibtiqus (classes de bs, se, 40, 3¢) (1928), and Précis de glombivie
Pune (classes ds 40, 30) (1925), by P. Chenevier.

These books are typical of those used in the junior classes of sscondary
schools in France. In the book on arithmetic, functional notions 1ppear in
the discussion on proportion, interest and problems, but the idea is not carried
far. The elements of algebra come into the program as generalized arith-
metic. The treatment of geometry is, from our point of view, niore interesting.
The author states, in the preface, that he has abandoned the Méray methods
of proof that depend upon the displacement of figures (e.g., in the parallel
theorems), but he freely employs the notion of limits (tangents to a circle, the
circumference of a circle as the limit of inscribed and circumscribed poly-

gons).

Cours d'algdbre (classes de 3e, 2¢, 1¢,) by P. Chenevier. 1926.

This book covers the same ground as the correiponding work of Borel and
Montel. Gruphs have been treated in great detail, the author's contention
being that the graph is to be looked upon “not as a vague schema of a trend or
a useful picture,’" but as a precise representation of a functional law. from
which much may be learned. Special care has been taken to lead up to difficult
concepts gradually. Thus the term ‘increases indefinitely’ is used from the
beginning in preparation for the concept ‘approaching infinity’. The treat-
ment of logarithms is particularly i+ .eresting.

Cours de glomdtrie p.ane (classe de 2¢) (1927), and Cours de géoméirie dans
Vespace (classe de re) (1928), by P. Chenevier.

These books, taken together, form a comprehensive treatment of the whole
of clementary geometry. The author states that he has abandoned “displace-
ment'’ methods of proof as given by Méray, but he uses the ideas of transla-
tion and rotation very eflectively, not in demonstrating logical proofs, but in
showing how a great variety of cases may be developed as i!lustrations of one
general theorem.  Although he does not use superposition in his proofs of con-
gruence, he shows that any triangle, assumed unalterable as to shape may be
moved to a new orientation by a single translation and a single rotation.
Again, the author makes constant appeal to the idea of limits, his demonstration
of the idea that the circumference of a circle may be regarded as the limit
between the perimeters of the inscribed and circumscribed polygons being
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particularly stimulating. Functionality is strongly emphasised in the second
of the two volumes, where algebraic proofs are employed.

Cours de glomdivie (clusse de mathdmaliques), by P. Chenevier. 1929,

‘This is an excellent summary of higher geometry for schools, including all
that we usually wmclude under the term ‘modern geometry’, together with
conic sections, analytically treated. Functinnal {deas are to be found, but
the book Is not designed to bring out this aspect of geometrical thinking.

Arithmétique (classes Ge, se) and Eitments de gloméirie plane (classes ge, 3¢),
by Brachet and Dumarque. 1929,

In the first of these books arithmetic is given a broad meaning, for the
book contains arithmetic, algebra, and the elements of practical geometry in
about equal proportions. The treatment is clear and the applications practical,
but there is no attempt to develop functivnal ideas. In the Géométrie, the
authors use motion proofs freely. In this, as in most French books, the
parallel postulate assumed is the following: “T'wo perpendiculars at different
points of a given line cannot meet.”

Arithmétigue (classe de muthématigues), by Brachet and Dumarque. 1929,

The word ‘arithmetic’ is given & much wider connotation in France than in
any other country. Arithmétigue, as we have it here, covers the whole field of
algebraic numbers, their coustitution and their operations. The subject {s
rigorously treated and, while it includes many ideas with which we aie familiar
in our achools (irrationals, imaginaries, powers, and approximations), it also
treats many topics that find no place in our school mathematical studies.
The 1ast part of the book, for example, deals with continued fractions, modular
classes, congruences, indeterminate equations, and the theory of groups (in-
cluding Abelian groups). Although the functional notation is employed
throughout, the book is not a treatise on function, nor is it designed to develop
functional ideas. It deals with mathematicul computation or calculus. In
this regard it is a necessary supplement to the study of analysis.

Précis d'algébre (¢lasse de mathématiques), by Brachet and Dumarque. 1930.

This book covers the same ground as the other books for the same class to
which we have referred. As the title suggests, the book is a summary of the
cssentials of higher algebra, rather than a readable treetise.  The treatment
is concise and, at the same time, thorough. Considerable space has been
given to the concept of the variable, which is defined as follows: “If x is a letter
capable of taking various numerical values, we say that it is a variuble.”
One of the most interesting chapters is that on the limit of a function of one
variable, in which most of the common cases of limits, e.g., sin x/x -» 1, when
x - 0, which are to be used in later analytical work, are treated.

HuNGARrY

Although, under the stimulus of a popular journal for high school
students and under the inspiration of a number of progressive teach-
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ers, the movement for mathematical reform has progressed very
rapidly in Hungary, textbooks do not seem to reflect the influence
of that movement to any marked extent. Graphical methods and
some functional ideas have been introduced into elementary books
on arithmetic and algebra, but the function concept as we conceive
it, and as it seems to be understood by the leaders of the reform
movement in Hungary, does not figure prominently. This is prob-
ably due to the fact that in Hungary, as in England, analytical
geometry and the calculus are studied from separate books on those
subjects, whereas in Germany and France the whole of the analyti-
cal work is cobrdinated in one general course of study. More in
consonance with the reform movement is au excellent series of ele-
mentary textbooks by Professor A. Szenes, and an equally admirable
series of advanced books by Professor P. Veress.

Mennyiséglan (ssdmian—kinywiltelion és algebra—Mérian), Rése I, I, IIT A,
III B, by A. Szenes. 1920-1927.

The first of these volunies deals wainly with the fundamental operations of
arithmetic. Numerous examples of great practical interest, culled from
actual records of vital statistics, are given to be treated graphically. Com-
parisons are made between the agricultural and economic condition of the
country, its exports an.l imports, and its transport facilities before and after
the war, which suggest an effort to correlate mathematics with national
economics. The second part of the book deals with elementary geometry,
which is developed, in a very attractive manner, through practical surveving
and design.

The second volume takes us through the fundamental skills of algebra,
which are very clearly presented by graphical methods. The most intcresting
part of the book is the treatment of proportion, direct and indirect, which is
very skilfully developed through practical examples. Graphs are used with
great effect in the treatment of profit and loss, taxes, insurance, and household
accounts,

The third volume contains an admirable treatment of positive and negative
numbers, somewhat similar to that given by Nunn.  Altogether the algebraic
section of this book is in accordance with the best modern practice, The
section on geometry is mainly a study of nmicnsuration (evlinder, cone, ephere,
ete.) and of the main geometrical concepts (puint, hine, parallels, and symmetry ),
As in the first volume, much use is made of surveying. The second part of the
book deals with more advanced arithmetic and algebra and with the elements
of demunstrative geometry.

In this buok much attention is given to graphs. Some of these are con-
cerned with railway timetables in the manner suggested by Klein, A feature
of these four volumes is their practical outlook. In the earlier books most
of the problems are taken fromw business life and in the later books from
physics,
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Elemi mennyisiglan (elgebra és geomeiria), a gimnéslumok és (edlgimndsiu.
mok. VII Osstalya Sadmére, by Pal. Veress 1930.

1. I Kstet (V11 clams).

In the introduction to this series the author acknowledges his indebtedness
to Klein. He says, " The only works which influenced me during the writing
of these books were those of Felix Klein on the reform movement. In the
introductory part of my geometry I also had recourse to the textbooks of
Borel-Stickel.” The end=avor of the author has been to fuse algebra and
geometry with the help of the function concept.

The first volume, intended for the higheat class, opens with a section on
codrdinate geometry (straight line, circle, ellipse, parabola, hyperbola). This
is followed by an elementary treatment of the calculus. The concept of func-
tionality is not definitely developed until the question of limits arises in con-
nection with the derivative. Thenceforth functional ideas are brought in
freely. ‘The section on integration is excellent. The integral is introduced as
the reverse of differentiation and is developed almost immediately after as a
summation. The treatment is not rigorous, but the question of rigor is dis-
cussed in order that students mny realize that the proofs need modification,
if they are to stand every test of the rigorist. The last part of the book is
devoted to solid geometry but calculus methods are not employed although
the ground was ready for them. On the whole, a successful effort has been
made to clarify the function concept.

IL. 11 Kitet (VI Class).

The book opens with numbers and series (A.P., G.P.) but the usual treatment
has been improved by a very thorough study of interpolation. Interpolation
from the graph is used later in the chapter on logarithms and exponentials.
‘The discussion then goes to business mathematics (interest, annuities, rent,
insurance, and assurance). Here functional ideas are very well illustrated.
Graphs are used to clarify what would otherwise be difficult theories. There
is again another sudden break into trigonometry (all six ratios), the treatment
differing little from the usual. There is, at the end, an interesting chapter on
practical trigonometry (surveying, etc.). On the whole, the function concept
comes in for attention in this book, but it is not a codrdinating theme, for
very little cotirdination is evident.

III. 711 Kdtet (Classes IV and V).

This book is a sound, but rather conventional, introduction to secondary
school mathematics. The opening section on elementary algebra may be de-
scribed as formal and old-fashioned. It opens with expressions and substi-
tutions, and proceeds, very much in the style of thirty years ago, through the
fundamental rules to equations. The second part of the book deals with ele-
mentary geometry. In this part there is an interesting chapter on loci, but
otherwise the treatment lacks life. The next part of the book is devoted to
graphs, the elements of codrdinate geometry, and the applications of graphs
to practical problems. This part of the book is excellent, dependency and
function being the keynotes of the discussion. The last section includes a
miscellaneous section on Pythagoras’ Theorem, irrationals, and imaginaries.

There is much good material in this book, and many illustrations of func-
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tional mathematics, but it cannot be said to show up the function concept
to the fullest advantage.

AusTRIA

As we have already seen, teachers of mathematics in Aus‘. ia were
very quick to catch the spirit of the reform movement ir. Germany.
This has been due partly to the work of the Austrian members of
the LM.U.K,, among whom the most active was Dintal, and partly
to the influence of the books of Klein and Lietamann. The Gov-
ernment Regulations of 19og contained specific references to the
function concept and prescribed a course which definitely kept
that concept in view. Teachers were directed to make the connec-
tions between algebra and geometry as close as possible, thus facili-
tating the general application of the concept of denendence. Every
encouragement is given in the early study of the subject “to meas-
ure, cut, fold, construct, and draw"” that the concepts and the rules
to be developed from these evercises should be rendered clear.!

Austrian textbooks show a marked tendency to follow the Ger-
man models; in fact, in some schools books by Lietzmann and others
have been adapted for use in Austria. The more recent books con-
sist largely of coliections of problems, the theoretical material of
the ordinary textbook being included in an appendix, called the
Leitfaden® This, as we have already observed, is becoming the
popular practice in Germany. The aim is to make the formulation
and transcribing of principles entirely the work of the class or of
the individual student. We have selected for review only one series,
by E. Dintzl, which illustrates the concept of functionality admi-
rably.,

Mathematisches Unterrichiswerk fur Mittelschulen (\' and VI Klasse), by E.
Dintzl. 1929.

Arithmetik,

This book, based on a popular textbook by Mocnik and ¥iolevar, is one of
the most successful attempts to base middle school mathen. .cs on the func-
tion concept. As the author has stated in the preface: *Especially strong
emphasis has been placed on the function concept.” The term ‘arithmetic’ is
used in the wide sense common in French and German schools. In this book
we find very little of what we should designate arithmetic; we find rather the

1 Falk, K. "Mathematical Education in Austria ** The Fourth Yearbook, National
Council of Teachers of Mathemalics, p. 6.

L' Enseignement mathématique, August, 1939, p. 253.

t Lietzmann, W. and Jarosck, J. Arithmetik, (Klasse 2-8). Wien, 1929, See also
Geometrie. Wien, 1930.
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clements uf ulgebra and of intuitive and of demonstrative geometry. In the
section on algebra the function concept occupies a prominent pluce. At every
stage the oppuortunity is taken to bring out the signiticance of functionality,
and in the special sections on graphical representation the treatment is ex-
cellent. Here we find the graphs of the function y = ¢, for negative as well
as for positive alues. The treatinent of grometry, which is no less interesting,
includes numerical computation, nomography, and the use of millimeter and
logarithmic paper. Altogether this is one of the most ‘nteresting books on
functional thinking that we have examined.

Hilfsbidcher fir den Muthematik Unterricht an hokoren Lehrenstullen, by K.
Dintzl. 1930.

Geomelrie. (Erster Teol),

This series of books for the higher classes of the secondary school is, like the
Arithmetik, noted above, definitely based on the concept of the function. The
book, however, is more than this; it is a remarkably fresh and stimulating
treatment of the whole subject of school geometry. It is sound in substance,
well connected, and clearl, presented. A remark should t+ made regarding
the attractive setting-out »f the subiect matter. The diagrams, which are
most clearly and artisticall: drawn, are of very great help in the elucidation of
the text. In the section on the movement of figures by translation and rota-
tion, the figures have been so clearly drawn, in lines of various thicknesses,
that verbal explanation seums almost unnecessary.

‘The book covers the main essentials of demonstrative geometry, with an
abundance of originals for the excrcise of the student. ‘The last part of the
book is devoted to conic sections. In his treatment of this subject the author
combines ordinary gcometrical with algebraic methods in a most interesting
way.

Arithmetik.  (Zueit-r Teil).

This book ‘s, without a doubt, one of the most satisfactory books on the
function concept to be found in any language. From the first page to the last
the idca of functionality is evident. Not only is the concept of th. function
implicit, but the word ‘function’ is used, so simply and natarally, that it be-
comes no more difticult to the students than expression or coctlicient. In the
first paragraph we are told that “the atmospheric pressure is a function of the
tuse,” and are then given other examples to show what function really means.
The table of contents, *Linear Functions, The Functiun y = x» for positive
and necgative Values of n, The Root Function, The Quadratic Function, The
Exponential and Logarithmic Functions, ana Complex Numbers,” may give
some indication of the ground covered in the book, but jt gives no adequate
idea of the ¢onvincing manner in which cach topic has been treated. The
chapter on exponential and logarithmic functions is parti:ularly interesting,
for the functions @*, e*, and log ¥ arc thoroughly discussed both algebraically
ard graphically, before the logarithiaic rules are deduced.® This is, perhaps,
- slower approach to the use of logarithmic tables than the conventional

3 See also Nunn, T. P, “The Growth Curve and the Gunter Scale.”  Exercises sn
Algebra, Vol, 1, p. aty,
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method, but it makes for a clearer understanding of the whole subject. Aay
teacher who has tried both methods will not doubt the advantage of the me:hod
here followed. At the end of the bouk there is un Appendix, containing sta-
tistical tables of various kinds, excellent material from which to select data
for graphical problems.

Avithmetik, (Dritter Teid).

‘The excellent features of the second volume, to which we have referred, are
also manifest in thiy extension of that work. The book is, in substance, an
elementary treatise on analysis. ‘The first section deals with series (arith-
metic, geometric, logarithmic), and wi h the subject of interpolation. ‘This
leads on *o interest and annuities, f1. which the usual formulas are detived,
Inrgely with the aid of graphs. A short discussion on infinite scries follows.
This Is treated graphically and is illustrated by geometrical and physical
problems in a very interesting manner.

‘The major part of the book?® is devoted to the elements of the differentiul
and integral calculus. After a short discussion on limits. the student is led to
an understanding of rate of change through a problem in kinematics, which is
worked out in great detail. Only after this discussion of the concrete problem
is the differential cocefficient introluced. ‘The rest of the book follows the
usual course: the derivatives of a* (positive, negative, fractional), sin ¥, cos x,
tan x, log «, a", e, are treated simply and clearly. The section on the integral
calculus is introduced through a question in mechanics (work), the main con-
cept being developed as a problem in summation. The applications are taken
mostly from solid yeometry and mechanics. ‘This is followed by a chapter of
miscellancous theorems (Rolle's theorem, Newton's formula for the approxi-
ination of the roots, methods of iteration), the solutions of which are based on
the work already done in the calculus. The last chapter is a very concise
summary of the main ideas of probability and the theory of statistics. These
two volumes on Arithmetik, taken togelier, form one of the most satisfying
treatments of the function concept th.it we have found among schoul textbooks.

ENGLAND

A comparison of mathematical textbooks used extensively in Eng-
land to-day with those of thirty years ago does not reveal the
striking changes that one finds in the textbooks of Germany and
Anierica. There are several reasons for this. As a general rule, the
teacher of mathematics in England uses a textbook as a source of
examples, rather than as a treatise on mathematical procedure. He
prefers that his pupils should get their methods from him, rather
than from a particular .extbook. His chief consideration, there-
fore, in choosing a book, is the variety and gradation of its prob-
lem material. lie may, for that reason, prefer to retain a textbook,
which provides him with an abundance of graded examples and to
supplement it with a small book on some special topic. One finds,
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for example, Durell and Siddons' Graph Book used to make up
the deficiencies of a textbook of algebra, which seems to have under-
gone little change in the editions of twenty years. Another rea-
son for this apparent conservatism among English teachers is
that, in preparing their pupils for examinations, they are often
guided Ly past examinations, rather than by the published sylla-
bus of the examination. Question papers vary so greatly, es-
pecially in the higher examinations, that it wonld hardly be possible
to build a textbook “strictly in conformity with examination re-
quirements.” As a consequence, many teachers make their own
textbook in accordance with their needs. Again, there is & tendency
in England to encourage students to refer to the more advanced
treatises for theoretical discussions of their subjects. In this way
the school textbook is subordinated to works of a more profound
type. It is not an uncommon experience to find that students
preparing for the higher school examinations have read fairly ex-
tensively into the books which they *vill use as textbooks in their
university courses,

In recent years there have appeared several new books written
to mcet the needs of the pupils attending the new central and
senior schools, These schools are designed for those who are not
destined for the university, and for whom, therefore, the matricu-
lation examination has not the same absorbing interest. These new
books show a freshness of treatment that is encouraging; intuitive
and graphical methods are freely employed and the whole subject is
brought into close relationship with life.

From a long list we have selected only those books which have
emphasized some aspect of the function concept. We have omitted
special books on analytical geometry and the calculus for schools,
of which there are many. Some of these aim defix. .tely at develop-
ing functional ideas through the subjects considered.

Excrcises in Algebra (including Trigonometry), Part I (1913 and 1925), Part
II (x914); and the Teaching of Algebra (1914), by T. P. Nunn.

We have alrcady referred to these books in our historica. survey of the de-
velopment of the idea of functionality in English schools, They represent,
we consider, an outstanding contribution to our problem,

It has been objected by some, that these books are too difficult for the
average schoolboy, and by others, that the methods employed are too subtle
for any but the superior teacher, but the writer has seen boys of less than
average intelligence, in the hands of a mathematics teacher of only moderate
ability, so engrossed in their algebra lesson (the Growth Curve and the Gunter
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Scale) that they could with difficulty be persuaded to give their attention to
another subject. We are convinced that the books are not so difficult as they
are tnusual.

Exercises in Algedra Is not the work of a theorist, but of a practical teacher,
who, while possessing a profound knowledge of the philosophy underlying his
subject, has neverthcless made the psychology of the pupil his first considera.
tion. The books lack the attractive format of the popular textbook, but they
atone for this lack by the inherent interest of their problem material. Although
the author does not lay particular emphasis on the function concept, or func-
tionality, these terms being seldom mentioned, there is hardly a page in
the whole work, which does not demand functional thinking, in an extromely
active faim. The titles of the first section of Part I give us a basis for this
statement. They are: “graphical representation, formule, direct proportion,
inverse proportion, proportion of squares and cubes, joint variation, and
trigonometrical formulw.” All these topics are treated in & definitely func-
tional manner. Moreover, the topics themsclves arc knit together by a unifying
thought, that of functional relationship.

Space will not permit of a detailed description of the contents of these vol-
umes, but we may refer to sume of the sections which seem to us to be of
particular value. Among tliese, we include: " directed numbers, the growth
curve and the Gunter scuue, arca functions and Wallis's Law (Integration),
the trigonometry of the sphere (map projections), exponential functions and
their derivatives, functions of a complex variable, limits, wave motion and
harmonic analysis, and the elementary theory of statistics.” Allof these subjects
have been treated in a highly original and scholarly manner. In only one of
these topics, directed numbers, has Nunn's method of treatment been ex-
tensively explored by mc-ern textbook writers. ‘This is probably due to the
fact that the other topics are vutside the scope of elementary mathen.atics, as
the term ‘elementary’ is generally understood. We venture to suggest that
teachers of mathematics can still find much that is worthy of their attention
in Exercises in Algedra.

Elementary Algebra, Vols. T and 11, by Godficy and Siddons, 1928.

We have already noted in Chapte: V that Godfrey was among the carliest
advocates of functional thinking in school mathematics. In the Introduction
to this book the importance of functionality is stressed: *‘ The idea of graphical
solution is certainly important, but this is not the fundamental idea that should
underlie the use of graph- ‘al representation. ‘T'he fundamental idea is that of
functionality, the continuous change of f(x) as x changes, the intcrdependence
of two variables. This idea should be at the back of the teacher’s mind all the
time, and the pupil should be led—very gradually—to realise it with incrcasing
distinctness.” This fundamental idea has been given due consideration
throughout. There is much in the book which may be styled formal, but every
opportunity has been taken, in the treatment of formulas, equations, graphs,
and variation, to press home the idea of dgpendence and functionality. The
treatment of graphs given * Volume I is particularly thorough. In Volume II
there is an unusually full discussion of variation, the various simple types of
relationship being treated as cases of functional dependence. In this section
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is to be found one of the most comprehensive discussions of variation in school
mathematical textbooks, ‘T'his work may almost be deacribed as a treatise on
algebra, from the simplest notions of generalised arithmetic to the more difficult
concepts of the caleulus.  No attempt has been inade to treat the function
concept as the unifying theme of the whole course, but a pupil who works
through these books will know what it ineans to think in functional terms,

A New Algedra for Schools (Parts I and 11), tos0, and & New Aigebra for
Schools (Part 1T1I), tys1, by C. V. Durell,

"I'he author of these books on school algebra is recognised as one of the meit
progressive teacher, of mathematics in England.  One writer hus asserted
that we may accept the textbooks published by Durell during the past ten or
fifteen vears as reliable indicators of the best current practice in English schools
during that period. _

His books are mathematically accurate and show a fine appreciation of the
problems and ditliculties of the classroom,  Always a little in advance of
the time. they are sulliciently conservative to satisfy the requirements of
those whose main objective is the examination, A reviewer of the first of
these two volumes has described it as “the ideal textbook. Whether one
would agree with this encomium would depend on one’s conception of an kleal
textbook. Uf clarity and interest of treatment and range and gradation of
examples be our criteria, then this book may justly claim a high place among
modern testbooks.  E, however, material for functional thinking be our
objective, then this book will need to be supplemented.  Graphs and functions
find u place. it is true, but they are presented is examples of algebraic technique
rather than as instruments of functional thinking This is untortunate, for no
writer of the present day has the ability to present functional material in o
more interesting way than the author of these volumes. This assertion is
based upon an examination of the Graph Book, by Durell and Siddons, which
is one of the most attractive presentations of graphs and their meaning yet
published. It may justly claim to be the wdeal textbook for graphical work in
schools, Itis to be hoped that it is the forerunner of the ideal textbouk on the
function concept, yet to be published,

A New Algebra, by Barvard and Child, 1925,

From the point of view of mathematical rigor this may be regarded as one
of the most accurate of school textbooks,  Partly for that reason and partly
because of ity interesting style, the book is one of the most popular in English
schools,  In their teeatment of functions and limits, rational and irrational
numbers. rational functions. limits and values, the authors have shown an
appreciation of Jogical rigor which is rarely found in school texthooks.  Fune-
tional dependence is stressed in the appropriate places, but this thought by
no means dominates the book.  In the chapters on approximation, variiation,
graphs, and approsimate roots, the idea of dependence is brought out clearly;
the chapter on variation being particularly thorough.

The aim of the authors is admittedly the logical development of the subject
matter.  Tn pursuing this aim they have been eminently successful,  The

< Mathematical Gazetle, Oct, 1931, . 455,
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treatment given to functional dependence may be considered adequate, but
one cannot but feel that the function concept could have been given a more
prominent place without impuiring the logical excellence of the whole.

The student who works through this book will be well prepared to take up
more advanced studies in mathematics; moreover, he will have nothing to
unlearr. Whether he will have grasped the great lesson of relationship, espe-
cially that of mathematics to the world about him, is rather doubtful.

Elementary Algebra, by Baker and Bourne. 1930

This book, one of the most popular of English textbooks, ie the most recent
of a number of revisions of a book first jssued in 1904. From a superficial
examination of the first and last editions, one would be inclined to draw the
conclusion that there is little difference between the old and the new, but this
is not so. The new material in the book deals almost entirely with functions.
Graphical work is introduced much carlier and treated much more fully than
formerly; there is much new material on variation; and the algebraic function
has been very thoroughly treated in Part II. This book may be said to be
representative of the type of algebra most extensively used in “nglish schools.
It covers the whole ficld from the very elements of algebra to fairly diflicult
work on the calculus, The abundance and variety of its problom material are
remarkable. This is one of the reasons for its great popularity. Some of the
examples are extremely easy, others are difficult enough to tax the powers of
the ablest students. It should be mentioned that the authors of this book
were among the first to introduce graphical work into English schools. Some
vears ago the chapters of their Elementary Algetra dealing with graphs were
published as a separate volume. This book stood for many years as the
standard textbook on the subject of graphs.

School Certificate Algebra, by G. W. Spriggs. 1030.

In the introduction to this bool the author shows that he is conversant with
recent tendencies in mathematical teaching. “Too much time has been spent
in the past on the tricks of sireplifving expressions and solving equations, and
their application to the actual material of mathematics has been too long
deferred-~in most cases it is nevar made. The essence of the study is function-
ality, and, until this conception Las been reached. there is practically no scope
for the utilization of the skill tha. has been so laboriously acquired.” In the
actual working out of this principle Ye has shown rather more caution than is
necessi y. Nevertheless, he has sicceeded in infusing something new even
into the formal purts of school algeb-a. 1In the chapters, “The Formula” and
“The Equation, Functious, and Series,” he hasgiven remarkably clearillustrations
of functional mathematics. In these chapters his debt to Nunn is obvious.
Under “The Gradient of Graphs,” he has included a unit of the caleulus, in
sufficient detail to enable the student to determine algebraic maxima and
minima by using the first and second Cerived functions. In certain respects
the book reminds one of some of the more r2cent German books, “The geometrical
representation of the convergence and ‘su n toinfinity® of progressions is similar
to that given in modern (ierman texts. ‘The presentation of the subject matter
is fresh and stimulating. Had the author been a little less concerned with ““the
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best traditional practice,” he would have produced a book of functional mathe-
matics of great value.

Common Sense Algebra for Juniors, by Potter and Rogers. 1928,

This book is one of the most successful elementary textbooks published in
recent years. The aim of the authors is very clearly stated in the preface:
“This is in consonance with the general aim of the book, which is to emphasise
JSunctionality and change, an avenue to the methods of the calculus, which is
now generally recognised as being the only real mathematical approach.
Graphs and graphic methods are introduced at an early stage, at first with
statistics and uadirected numbers and quantities, and later with directed
numbers.” The result is a very attractive and stimulating book. The authors
have had a wide experience of mathematical work in elementary and secondary
schools, one as an inspector, and the other as a teacher. This is evident, not
only in the development of the subject matter, which is psychological rather
than logical, but also in the many excellent teacking devices. Students be-
ginning algebra could not fail to be interested in the subject as it is presented
in this book. ‘There is much in the book that may be considered formal, but
the functional idea is given a very prominent place. In another book, Graphs
and Their Applications by Potter and Larrett (r93r), we have one of the
most successful attempts to develop functional ideas through the graph.
Column graphs, travel graphs, conversion graphs, and graphs of functions are
treated with admirable clearness.

A School Algebra, by A. M. Bozman. 1931,

In the Introduction to this book the author discusses the place of functions
in school mathematics and gives it as his opinion * that those absorbing branches
of mathematical study—analytical geometry and the calculus—are not sub-
jects appropriate to the school course in algebra.” He strongly advocates a
preparation for these subjects by attention to graphs and gradients. The book
is developed in accordance with this conclusion. There are some excellent
chapters on graphs, statistics, travel graphs (loci), and functions. These are
among the best that we have seen in English books. The rest of the book does
not call for special comment,.

A First Course in Algebra, by W. G. Borchardt. 1924.

This book follows what is now being recognized as a modern course: formulas,
equations, generalized arithmetic, graphs (statistical and functional), directed
numbers, quadratic equations (graphically illustrated), and formal algebra of
a more difficult type. No functional aim has been specified, but the book
would readily lend itself to functional treatment. The material is ready for a
first-rate book on the function concept, but that concept has not been con-
sciously develcped.

A School Algebra, by H. S. Hall. 1926.

No review of English mathematical textbooks would be complete without
some reference to the works of H. S. Hall. Many successful teachers of to-day
learned the foundations of their subject through Hall and Knight's Higher
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Algebra and Hall and Stevens’ Geomelry, both standard works in their day:.
A School Algebra is ir.cluded in this review, not because of its functional ideas,
but because it represents one of the first attempts (first published in 1912) to
meet the demand for a fuller treatment of graphs and functions. The point of
view of the author is given in the Preface: " Graphs are interwoven with the
text, not so much for their own sake as for the purposes of illustration.” Thus
it follows that graphs are treated as a separate subject, rather than as a method
of vxplicating algebraic equations or of developing the idea of functionality.

AMERICA

Even to the casual reviewer of school textbooks, the influence of
the report of the National Committee on Mathematic Require-
ments on American mathematical textbooks will be apparent.
Practically all revisions of works published before 1923, and all
new works published since then, bear the impress of that epoch-
making report. In soine cases the influence of the report has been
a superficial one; chapters on graphical representation, variables,
and functions have been added in response to a demand, but their
inclu ‘on has not changed, in any essential feature, the formal char-
acter of the whole. In other cases, the influence has been more
marked, for lately there have appeared books of entirely new form
and embodying a new spirit. This is particularly true of books
published since 1928, which, from the point of view of functional
thinking, are a distinct advance on those of the older type. The
impression created by a close study of American textbnoks is that
in many cases the authors have tried to satisfy too many demands.
While endeavoring to follow the recommendations of the National
Committee, they have at the same time tried to meet the require-
ments of the New York Regents’ Examination and the examination
of the College Entrance Board. The consequence is that the spirit
of the National Committee’s recommendations is in danger of being
stifled by the formal exigencies of college examinations. Recent re-
visions of the requirements of these examinations lead one to hope
that this conflict of objectives will, in the future, be obviated.

Although functional ideas are to be found in most of the text-
books published before 1923, we are confining our attention to those
published since that date. Of the large number of books examined,
comparatively few can be reviewed here. These have been divided
into two classes: First, popular textbooks which, through several
revisions, have stood the test of time; and, second, textbooks which
have not such a wide influence as the above, but which seem to
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make a definite contribution to the subject of functional thinking in
school mathematics.

It should be noted that we shall be concerned mainly with the
presence of functional ideas in the textbooks under review. We
have omitted all reference to other excellent features which have
made some of these books deservedly popular. When we desig-
nate a book as superior, we have in mind its superiority from the
point of view of its functicnal program.

New Elementary Algebra, by Wells and Hart. 1928,

This book, the latest of a series of revisions of a popular textbook, is an
illustration of the effort to graft new teaching on an old stem. Bar graphs and
other functional ideas are introduced in the first chapter, and the graphs of
elementary functions are fully treated later, but the bulk of the hook is devoted
to the formal skills of algebra. The book contains functional notions, but it
is not permeated with them.

Modern Algebra, by Wells and Hart. 192q.

In this book the authors are rather more successful than in the earlier work
noted above. In the introduction thew state: “Attention is called o the
chapter on Functional Relationship. The desire to place in the hands of teachers
and pupils a satisfactory treatment of this subject, which has come to be
stressed in recent years, was one of the chief reasons for writing this new
text.” True to this desire the authors have given an exposition of functional
relationship, which reveals a clear understanding of the difficulties involved,
and obvious acquaintance with class technique. The excellence of this section
of the book only serves to bring out more clearly the more formal character
of the rest of the book. In this book the function concept certainly finds
recognition, but it is incidental rather than constitutional.

New Mathematics, by J. C. Stone. 1929.

In the Introduction the author states that ‘the underlying purpose of a
course in elementary algebra is to develop the power to represent quantitative
relationships by formnulas and equations; the power to interpret such expres-
sions of relationship; and to develop the skills needed in the computation which
is required in using formulas and equations.” This aim has been satisfactorily
realized, In the first part of the book tne author treats the formula, its inter-
pretation, and its graphical representation, clearly and exhaustively. The
idea of functionality is developed b problems in which concomitant changes
in variables are thoroughiy discus: 1. "Uhe author then passes over to the
treatment of the formal skills of algebra ard returns to graphical representation
in a later chapter. Had the spirit of the opening chapters been maintained the
result would have been a work of great value. .

A Second Course tn Algcbra, by Stone and Mallory. 1931

In this the authors get much nearer to the functional ideal. In the Intro-
duction they claim that *‘the idea of functional relationships is the unifying
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featus Of the text,” but we do not feel that they have substantiated the claim.
The iuca of functionality has been well brought out in the chapters on linear
systems, linear and quadratic gruphs, ratio, proportion and variation, but it
can hardly be called a unifying feature of the text.

Elementary Algebra, by Edgerton and Carpenter 1929,

This is & commendable attempt to graft the new upon the old. The book
opens with a chapter on graphical representation by bar, segment. and cen-
nected line graphs. ‘The treatment is thorough, so much so that tlie material
seems almost suflicient for a whole term'’s work. This is followed by an almost
equally thorough treatment of the formula, leading to a discussion of the
function and dependence. We pass from these rather searching chapters to
the formal rules of algebra which, from the+point of view of difliculty, cannot
be compared with the earlier chapters. T+he book is badly balanced. A re-
arrangement of the material would add greatly to the value of the book.

A First Book in Algebra, by Durell and Arnold. 1928.

This book is also based on an earlier edition of a book of extremely formal
type. The authors claim that “the Function Concept, or dependence, is
demonstrated and emphasized throughout,” but it is difficult to see how this
claim can be substantiated. Even in the chapter on the formula, the idea of
dependence is not strongly emphasized. Separate chapters are devoted to
the graphs of functions and dependence, and here the treatment is clear and
incisive, but the book is, on the whole, devoted to the formal skills of algebra,
rather than to its functional ideas.

Modern Algebra.  First Course, by Schorling and Clark. 1929.

The editor of the series states that, besides being in agreement with the
recommendations of the Nativnal Committee, ‘‘this textbook is striciuy in
accord with the teaching of modern psychology.” The particular conclusion
of modern psvchology, by which the authors have been guided, is that pupils
learn facts in which they are most interested and which are related to their
everyday needs. In applving this principle they have given us a book of con-
siderable originality in which the formal processes of algebra are introduced
through practica! problems and developed in such a way as to lead to an ap-
preciation and an undersianding of mathematical ideas. This is shown in
several places; for example, where the formula, equations, and graphs are
developed through statistical problems. On the whole, a successful attempt
has beer made to exemplify functional ide s by means of practical problems,
but the function is not the theme of the book.

Modern Algebra. Second Course, by Schorling, Clark, and Lindell (1920).

In this volume the authors have tried to satisfy the needs of candidates for
the College Entrance Pxaminations and at the same time to preserve the
psychological features of the First Course. ‘The result is disappointing, for the
freedom and spontaneity of treatment which characterized the first volume
have been almost obliterated in the more formal and conventional material
demanded by the colleges. The coicept of functionality, so generously illus-




106 THE NINTH YEARBOOK

trated in the more elementary wotk, has been relegated to the chapters on
graphical representation,

Elementary Algebra. First Vear Course (1915) and Second Year Course
(1917), by Cajori and Odell.

These books have been included in our list, although published more than
ten years earlier than those discussed above, because they were definitely in
advance of their time. In the preface the authors acknowledge their debt to
Nunn and state, in the preface to the series, that ‘“the concept of a function
does not receive isolated and abstract treatment; it is presented as a funda-
mental idea in proportion, variation, and graphics. Its connection with
problems of everyday life is firmly established.” Although the books lack the
attractive appearance of the modern textbook, the fundamental concepts of
the subject have been treated more clearly than in any other American text-
book that has come under our notice. Functionality may be said to be, if not
the only, at least the main, theme of the book. Attention may be drawn to
the treatment of the logarithmic function, which has been developed, in a
most effective manner, by a graphical method.

A New First Course in Algebra, by Hawkes, Luby, and Touton. 1926.

This book is a popular one, and justly so, for it is clear and accurate and
abounds in good teaching devices. But the authors have not caught the
functional spirit. In the Introduction they state: ‘“A new feature is Chapter
II on graphs, where the fact is recognized that graphs have an informative use,
which is widely exemplified in recent periodicals and the daily press.”” The
result is that graphs are looked upon as illustrations, rather than essentiai
mathematical symbols from which relationships may be interpreted and even
deduced.

A New Second Course in Algebra, by Hawkes, Luby, and Touton. 1926.

This book possesses some very good features, but these relate to the method
of exposition, rather than to the philosophy underlying the subject. The
authors seem to have gone out of their way to dissociate mathematics from the
physical phenomena which mathematical symbols represent. “In the study
of algebra we are concerned with the mathematical formulas in terms of which
the physical relations are expressed rather than the actual phenomena them-
selves.” This is, we maintain, an entirely wrong attitude. School mathematics
divorced from reality leads to futility. The function concept has not been
given the prominence that its importance deserves. Functions and graphs
are not introduced until almost the middle of the book (Chapter XII). The
attention given to the function concept is, on the whole, rather perfunctory.

First Course in Algebra (1924) and Second Course in Algebra (1926), by
J. A. Nyberg.

These are among the most popular of mathematical textbooks, but they
are written on conventional lines. The author does not claim to have given
any special attention to the function concept, but graphs are introduced as
illustrations of statistical data and as representations of algebraic fu..ctions.
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First-Year Algebra, by Milne and Downey. 1924

In the Introduction the authors state that “the graph is represented with a
view to giving the pupils an adequate understanding of the various types in
common use.” Just as undue emphasis on scientific facts results in the neglect
of scientific methods, so undue attention to graphical types tends to a neglect
of their functional significance, as it has in this case.

Essentials of Algebra, by Smith and Reeve. 1924.

It may be confidently asserted that, when this book was published, it repre-
sented the most comprehensive treatment of the function -oncept to be found
in American textbooks. Its irfluence has been great, not only upon the schools
in which it has been used, but probably even more upon later writers of mathe-
matical texts. The Essentials of Algebra is a course of unified mathematics
and stresses, as its title suggests, the essentials of algebra—formulas, graphs,
directed numbers, and equations. The treatment throughout is fresh and
stimulating. A scholarly presentation of the fundamental concepts is com-
bined with a fine appreciation of sound classroom procedure. In its general
plan this book is more like the best German books of that time, both in spirit
and in content, than any other American books that we have examined.

General High School Mathematics, by Smith, Reeve, and Foberg., 192 3.

The same e:cellent features which we have noted in the Essentials of Algebra
are to be found in this more advanced textbook of general mathematics. The
book is a unified course of algebra and geometry, in which every opportunity
is taken to bring out the notion of correspondence, in such subjects as formulas,
similarity, symmetry, and the graphical representation of function. This
must rank as one of the earliest and at the same time most successful attempts
to unify mathematics.

Beginners’ Algebra (1922) and A Second Course in Algebra (1924), by Com-
stock and Sykes.

Although the authors would probably not now claim that “the function is
presented explicitly as the central and controlling idea,” the books represent
a commendable attempt to infuse the function concept into the dry bones of
formal algebra. The chapters on graphs and functions are particularly good
and embody the fruits of practical experience in teaching those subjects. As
in the large majority of books published about the same time, graphs are used
to illustrate rather than to develop the idea of function. In the chapter on
logarithms, for example, the graph of the logarithmic function is presented
after the algebraic treatment has been completed and not before, as we find
it in Nunn’s Algebra.

As we have already indicated, American mathematical textbooks
published since 1928 show a striking contrast to those published be-
fore that date. In the most recent works the function concept which
had previously been largely incidental, began to show signs of be-
coming constitutional. It may be claimed by the writer of the
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modern textbook, with greater justice than formerly, that the func-
tion concept is the unifying principle of the whole course. This
improvement we may attribute to several influences, all of which
may ultimately be traced to the report of the National Committee
on Mathematical Requirements. Not only has this report pro-
foundly influenced the thought of teachers and textbook writers
throughout the country, but more important for the dissemination
of new ideas, it has also influenced those who are responsible for
the mathematical syllabi of the great public examinations. No bet-
ter exemplification of the spirit of progress ir mathematical studies
could be «iven than a comparison of the College Entrance Require-
ments of 1920 with those of 1930-31, in spite of the fact that some
of the later syllabi were admittedly a compromise between the old
and the new. The attitude of the Regents of the University of
the State of New York is expressed in the following extract from
the syllabus of 1930:

And while it would be foolish to minimize the indispensable nature of skills
and of sound habits, it is equally true that the teacher who ignores the tremen-
dous significance of meanings, attitudes, and ideals will at best secure satisfactory
cxamination results but will accomplish very little for the permanent education
of her pupils. Hence a modern teacher is constantly urged to give due atten-
tion to the real message and cultural significance of the subject she is teaching.®

This extract is typical of the broad vision and liberal pirit of the
whole. We venture to suggest that those responsible for the syllabi
of College Entrance Examinations should go a step further and
prepare, perhaps as alternatives to the conventional examinations,
question papers exemplifying more fully the modern spirit in mathe-
matical teaching.

Among the books published since 1928 which are not revisions of
older texts, those of Betz, Breslich, Strayer and Upton, and Engel-
hardt and Haertter deserve special notice. In each of these a praise-
worthy attempt has been made to develop the function concept as
the central theme of the book.

Algebra for To-day. Second Course, by W. Betz. 193r1.

This book is a continuation of a more elementary book, -lgebra for To-day,
First Course, which does not call for special comment. 1In the Introduction to
the Second Course, the author states that *“ he functional program of algebra,
in its three-fold aspect, is stressed from the very baginning and is made the
central theme of the entire course.” In his endeavor to present the function

¥ The University of the State of New York. Syllabus in Elementary Algebra, p. 3.
Albany, 1930.
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concept as essentially a mode of thinking the author has been most successful,
The keynote of the whole book is dependence, which is stressed in practically
every section of the work. Formulas equations, and graphs are all functionally
treated. Graphs are shown to be not mere illustrations but rather expressions
of thought. At the end of the book there is an excellent summary entitled,
The Study of Relationships, In this chapter all the main types of functional
method are called in review: tables, formulas, graphs, equations, variation, and
functions, including trigonometrical functions.

Senior Mathemalics, Book III, by E. R. Breslich. 1929,

Although this book contains much that may be styled formal, it presents
the formal material in quite a fresh way. As one would expect from an author
who has contributed so much to the existing literature on functional thinking,
the function concept has been given special prominence. One feels, however,
that opportunities have been missed. There are places in the book where the
treatment could have been improved by an appeal to the principie of depend-
ence. Attractive features of the book are its clarity and its freedom from the
artificiality that mars so many books on elementary mathematics. The sections
on the graphs of functions are treated in a masterly way.

Modern Algebra (Ninth Year). Strayer-U plon Junior Mathematics, by C. B,
Upton. 1930

This must be ranked as one of the best treatments of the function concept
in elementary textbooks. In the Introduction the authors state: *“The study
of relationships between quantities as expressed by the formula, the equation,
and the graph is an important feature of this text. In the treatment of each
of these topics particular care has been taken to show the dependence of one
quantity on another and to bring out the idea of a mathematical law.” In
this endeavor the authors have been eminently successful. The idea of de-
pendence is emphasized on almost every page and is reinforced constantly by
an appeal to graphs. A feature of the book is the way in which mathematical
function has been related to physical function, in other words, to life. In this
book the formal skills of algebra are given their due weight. They are treated
as means to an end, not as ends in themselves. The end is functional thinking.

First Course in Algebra (1026) and Second Course in Algebra (1929), by
Engelhardt and Haertter.

These books make a rather striking contrast. In the First Course there are
chapters on graphs, ratio, proportion, and variation all effectively treated from
the functional standpoint, but the rest of the book is developed along con-
ventional lines. In the Second Course we have one of the best efforts vet made
to knit school algebra together by means of the function concept. The book
opens with the formula and statistical graphs, including the frequency histo-
graph. There is an excellent chapter on function and variation, in which the
results of the previous chapters are gathered together. Here we get the quad-
ratic, the cubic, and the inverse function all introduced through problems from
life and illustrated by the appropriate graphs. Later in the book the main
principles of analy'tical geometry are developed. The graph of the logarithmic
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function is used in a most effective manner in dealing with interpolation be-
tween known values. This book must be ranked as one of the most satislying
of available textbooks of functional thinking.

High School Mathematics, by J. A. Swenson. 1923,

Although this is not among the most recent of the books designed to ex-
emplify the function concept, it is included in this list, because it is the first
fruits of the labor of one who has done much to establish functional thinking
in American schoois. Superficially viewed this book covers much the same
ground as the conventional textbook, but a closer inspection will show that the
examples have been carefully designed to bring out the concept of functionality.
In the early part of the book the idea of corresponding change is brought out
through carefully graded examples. This is reinforced, a little later, by the
graphical representation of related variables. This part of the subject has
been treated very clearly, Of particular interest is the chapter on variation,
which contains enough material for a substantial treatise on that subject.
Here, as elsewhere, the treatment shows the skill of the practical teacher.
This book contains much of value that could be copied with advantage by
other writers of mathematical textbooks.



VI
THE FUNCTION CONCEPT IN PRACTICE

The function concept and elementary thought and practice.
Before we enter upon the final stage of our study, that of out-
lining a course of school mathematics, embodying the function con-
cept as its central principle, we shall discuss certain implications of
that concept in their relationship to elementary mathematical
thought and practice. In the proposed course an attempt has been
made to fuse the subjects, algebra and geometry, into a mathemati-
cal unity; in other words, to develop a course of general mathe-
matics. Such a synthesis is possible, not because the two subjects
possess any natural similarity of content, but because they evoke
a natural similarity of concept. For numbers and points at least
have this in common: similar relationships can be found to subsist
between them. The Dedekind-Cantor axiom is a simple recogni-
tion of this fact. Many other illustrations will be found in an
article by Huntington, “The Fundamental Propositions of Algebra,”
which, as far as logical principles are concerned, could equally well
be read as an exposition of the fundamental propositions of geom-
etry. It may be objected that the course, as outlined, does not
make sufficient provision for exercise in the fundamental skills
of algebra and the elementary disciplines of geometry. The posi-
tion taken in this matter is that the formal skills and disciplines
of mathematics should be treated as means to an end, not as ends in
themselves ; that, in a course which arouses the interest of the stu-
dent and challenges his thinking, the technical skills may almost
be left to take care of themselves. Where there is no felt need,
there is no sense of value. The course itself is a modification, in
the light of further observation and study, of one worked out in

! Huntington, E. V. Young's Monographs on Topics of Modern Mathematics, Chap.
IV. London, 1927.

Cf. Veblen, O., ‘A System of Axioms for Geometry.” Transactions of the American
Mathematical Society, Vol. V, p. 346, with Huntington, E. V., “A Complete Set of
Postulates for the Theory of Absolute Continuous Magnitude.” Transactions of the
American Mathematical Society. Vol. III, p. 264.
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the secondary school classroom, over a period of several years.
Experience showed that proficiency in algebraic techniques was
quickly acquired, when such proficiency was essential to the de-
velopment of the subject in hand. Not only so, it was found that
the more important formal skills were given deeper meaning in
the process. It seemed that the temper of the workman’s tools
could be fully appreciated only in their use.

Practical and concrete nature of the course. It will be found
that the course shows a strong bias towards the practical and the
concrete. Many of the concrete problems have been taken from
mechanics or from some other branch of physical science. Many
others, in ways not actually specified, readily lend themselves to
concrete treatment. Mechanical problems not only admit a wide
choice of problem material, but also insure a clearer understanding
of functional correspondence than would otherwise be possible.
Mechanics is functionality in concrete form. As Whitehead has
said, “We should civilize and clothe ideas” by investing them in
concrete form, always remembering, of course, that “mathematical
training consists in making these ideas precise and the proofs ac-
curate.”* Klein has said that ‘“for a thorough and fruitful treat-
ment of the function concept, the fundamentals of mechanics may
be taken as necessary material,”® With this opinion we are in full
agreement. It is not clear whether Klein restricts the term ‘me-
chanics’ to kéinematics, or whether he also includes kinetics, which
involves the concept of mass. In our course we have confined our
attention almost exclusively to kinematics, not because of any
unwillingness to include kinetics, but because the space-time con-
cept provides us with all the functional material we need.

The concepts of time and space. There are many reasons,
philosophical and practical, why the concept of time should be an
integral part of school mathematics. The similarities and con-
trasts between space and time have been pointed out by many
prominent writers. David Eugene Smith! in an interesting sum-
mary of Schopenhauer’s discussion of the duality of space and time,
tells us that space is homogeneous and continuous, infinitely di-

t Whitchead, A. N.  ““The Principles of Mathematics in Relation to [lementary
Teaching,"" Proceedings of the Fifth International Congress of Mathematicians, Vol.
1L, p. 453. Cambridge, tgra.

3 Klein, F. and Shimmack, R, Vortrage siber den Mathematischen Unterricht, p. 113,

¢ Smith, D. E. *Time in Relation to Mathematics.” Mathematics Teachker, Vol.
XXI, p. 253. 1928
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visible, infinitely extended, empty and indeterminate; so also is
time, Space is permanent and static; time is transient and progres-
sive, Space makes geometry possible; time makes algebra possible.
The last statement suggests a remarkable paper by Sir William
Rowan Iamilten, in which he contrasts geometry, as the science of
pure space, with algebra, as the science of pure time. “Now the
notion or intuition of ordcr in time is not less but even more deep-
scated in the human mind than the notion or intuition of order in
space. A mathematical science may be founded on the former as
pure ard as demonstrative as the science founded on the latter,"™
Modern «-imntific thought carries abstraction even further, when
it merges space and time in a single concept. “Henceforth space
by itself, and time by itself, are doomed to fade away into mere
shadows, and only a kind of union of the two will preserve an
independent reality.”” If we are right in maintainir, that the great
concepts of higher mathematics should find a place in school mathe-
matics, if only in a rudimentary form, we are certainly right in
including time, as one of the most fundamental of them. As Nunn
has expressed it, “Motion is simply ‘zeometry p s time'. and any
reason which justifies the study of geometry as a branch of mathe-
matics must justify the inclusion of kinematics,”s

Since we have decided to treat of concrete bodies in space, rather
than of space in the abstract, we shall be concerned often with
the study of real things in motion. Geometrical figures will be
presented, not merely as abstract and static entities, but as the
geometrical correlates nf solid bodies. capable of motion, as solid
bodies are. Points will appear as the geometrical correlates of
particles, capable of motion, as particles are. This dynamical con-
ception of geometry seems to have been held by Newton, to whom
a curve was “a nascent entity awaiting generation in thought,” We
use the sume idea in common speech when we say that a point
‘moves along a curve’ or ‘passes through a maximum or a minimum
value’,  Theoretically there should be little objection to such a
conception of a point, since it fulfils two generally recognized con-

* Hamilton, W. R. *“The Theory of Conjugate Functions, or Alzebraic Couples
with a Preliminary Essay on Algebra as the Science of Pure Time.”  Transactions
Royal I'rish Lceademy, Vol XVIII, p. 206, 1837.

® Broad, C. D, Scfentific Thought, Chap. 11. London, rg27.

! Minkowski, 2. “Rawum :nd Zeit.” The Principles of Relatimty, p. ;5. London,

1923. (Edited by A, Einstein).
$Nunn, T. P. The Teaching of Algebra, p. 1751,
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ditions, one, that points must bear to each other the relations that
geometry ordinarily requires, and the other, that points must be
so related to lines, areas, and volumes that the ultimate analysis
Jf lines, areas, and volumes into sets of points can be rationally
interpreted.  Our conception is Whitehead's “extensive abstraction”
in an elementary form? The purist may object that the concrete
particle will be so potent that its less substantial correlate will be
ignored. The answer to this objection is that no great harm will
be done. The student will appreciate the more abstract concept
when, and only when, he feels the need of it. To proceed ‘from
the concrete to the abstract’ is a fairly safe maxim.

Relatic..: hetween the elements of a single class, The func-
tion concept may be defined in general terms as a determinate cor-
respondence between variable classes. This suggests that we be-
gin our study with the notion of a class. Young has pointed out
that “in the abstract formulation of any mathematical science the
notion of a class (or set) and belonging to a class are fundamen-
tal."1v A class is constituted when from objects of a group, at least
two in number, a common characteristic or resemblance is ab-
stracted. We commonly ascribe to a class of objects attributcs,
to distinguish each such mode of resemblance. Color, size, and
form are attributes of classes, Classes of objects also possess
the attribute of sumber, which is as truly an attribute of a class
as color or size. "Number is what is characteristic of numbers, as
man is chaacteristic of men."’! In mathematics we are concerned
with abstract classes (numbers and points) and with concrete or
denominate classes (3 books, 3 meters, 3 grams). Both abstract
and concrete classes may be further divided into subclasses. Thus
the class of positive integers may be subdivided into the clas:
of even integers and the class of odd integers, or the class of
primes and the class of nonprimes, while the class of mathematics
books may be subdivided into arithmetic, algebra, and geometry or
into ancient and modern. When we partition classes into sub-
classes we form a manifold classification.'* The operation of class
formation or classification, of great importance in statistical analysis,
is also of fundamental importance in science, medicine, and sociol-

* Whitchead, Ao No The Concept of Nuture, p. 75, Cambricie, 1921,

" Noung, J. W, Fundumentat Concepts, p. §9.

U Russell, B. Zatroduction to Mathematical Philosophy, p. 11,

Byyle, G, Uo o Inteadietion to the Fheory of Statistics, Chap. Vo London, 1927,
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ogy; indeed, in all departments of life. It is the person with the
‘tidy’ mind who knows where things are to be found. In view
of its great importance we have included manifold classification as
a definite topic in the course. The formulation of classes by
attributes and the further estimation of classes as values lead us
to the concept of the variable, the type or representative of any or
all of the elements of a class. The elements regarded as uantities
constitute a variuble class. One of the most important facts about
variables is the order of the quantities of which the variable is
constituted. Some arrangement of order, potential or actual, is
necessary before we can recognize the mutual relationships of the
quantities of the variable. As we have seen, there may be for any
class more than one possible order. For the purposes of pure mathe-
matics all that is necessary is that an order should be recognized,
but for school mathematics the arrangement should be made a
practical exercise in tabulation. So we present the student with
sequences in which arrangements can be tabulated according to
their order of value, order in space, or order in time. We introduce
him not only to the symbols expressing ‘greater than', ‘equal to’,
and ‘less than' (>, ~. <) but also to ‘after’, ‘simultaneous with’,
‘before’, ‘succeeds’, ‘abreast of'. and ‘precedes’. This leads us quite
naturally to the idea of a series, in which the mode of arrangement
is defined, and, at a later stage, to the concept of a limit. Inci-
dentally, we become familiar with such terms as bounded, un-
hounded, first term, last term, lving between, infinite, and converging
series. The familiar notation ¢ > x > b, to express either the fact
that ¢ lies between @ and b or the fact that x has a value intermediate
between a and b, is introduced early in the course.
Correspondence between the elements of two classes. Hav-
ing discussed velations between the elements of a single class, we
then proceed to the correspondence between the elements of two
classes. of which one-to-one, or one-one, correspondence, is a spe-
cial case. The elementary idea of correspondence leads to analyti-
cal functions and correlation, on the one hand, and to geometrical
similarity and symmetry, on the other. If one of our classes is a
value-class and the other a time-class, we shall have as our functions
velocity and acceleration. If one of our classes is a number-class
and the other a point-class, we shall he led to the idea of an array.
In the early study of correspondence, therefore, we include such
topics as: the correlation of value-classes. grometrical similarity




16 THE NINTH YEARBOOK

(including congruence), kinematics, graphical representation, and
statistical arrays.

Some debatable topics in geometry. A few remarks may be
ventured at this point on some debatable topics in geometry, In
our scheme, we have, in agreement with the best modern thought,
omittea all reference to superposition. The case against super-
position has been very clearly expounded in the report of the
Mathematical Association (British), The Teaching of Geometry in
Schools.*®  Russell has summed up the modern view as follows:
“The apparent use of motion is deceptive: what in geometry is
called a motion, is merely a transfererce of our attention from one
figure or set of elements to another. Actual superposition, which
is nominally employed by Euclid, is not required.” Why, then,
continue to use a method of proof which is not only no easier than
others, but is also admittedly inferior to them? Our method is to
accept as a postulate the Principle of Congruence that “any figure
(plane or solid) may be exactly reproduced anywhere,” and to
proceed on the logical truism that, if a figure is determined, with-
out ambiguity, by a particular set of specifications, then any figure
of the same kind conforming to the same specifications is congruent
with it. Thus, if two sides and the included angle of a triangle are
sufficient data to determine a triangle without ambiguity, then
any two triangles having two sides and the included angle corre-
spondingly equal are congruent. Laisant, as long ago as 18gg,
expressed the same idea as follows: “Two figures constructed with
the same data, in the same manner and on the same scale are con-
gruent. This is equivalent to a theory of congruence; dare we say,
the only reasonable theory of congruence.”1s

It may be objected that our criticism of the method of super-
position is hardly consistent with our dynamic conception of mathe-
matics in general, in which we include the motion of figures. This
inconsistency is only apparent, for, as the report to which we have
referred states: “This argument leaves it open to us to use the
motion of figures. To the mathematician, a moving body is a body
whose positions are correlated with those of a real variable and a
moving point s a correlation between some class of positions in

" Mathematical Association.  The Teacking of Geometry in Schools, p. 28, London,
m’2‘*1111'11., p. 35.

B Laisant, C. A. “Congruence el similarité.” L'Enseignement  mathématique,
Vol. 1, p. 342. DParis, 18¢gg. Reflections sur le premier enseignement de la geometrie,
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space and some range of values of a real variable. If the name of
‘time’ be given to the variable, that is only in Newton's phrase ‘for
the sake of perspicacity and distinction,” and no logical dependence
on physical motion is involved even remotely.”® \lotion is simply
a one-to-one correspondence between a certain class of points and
certain time-intervals. All that we do in following a motion is to
transfer our attention from one figure or a set of figures to another,

We now come to the much-debated question of a parallel-postu-
late. ‘This is not the place for a lengthy discussion of this impot-
tant topic but the issue may be narrowed, as far as school
mathematics is concerned, to three possibilities. We may accept,
as in England and other European countries, the time-honored
postulate of Fuclid, which is usually modified to the form known
as Playfair’s Axiom; we may, if we wish, adopt the form usually
adopted in American schools: “One, and only one, straight line
can be drawn from an external point parallel to a given straight
line” ;!7 or we may accept the recommendation of the Mathemati-
cal Association, following the lead of Nunn., and postulate the
Principle of Similarity: “Any figure can be reproduced anywhere
on an enlarged or diminished scale.”'* For reasons that have been
clearly stated in tle report and for others in line with the main
contentions of this thesis, we have adopted the third of these
postulates. Our experience has convinced us that many advantages
accrue from the early introduction of similarity into the school
course, not the least of them being that questions concerning
parallels come out of the work on similar triangles quite naturally
(Ex. 132). In this way parailelism is seen to be only another case
of correspondence. Although, in the treatment given in the report,
the concepticn of ratio is not definitely involved, with the advan-
tage that the question of commensurability does not arise, we

18 Mathema'ical Association. Op. cit., p. 34.

17 Or, if we prefer it, the axiom more popular in France: “One, and only one, perpen-
dicular can be crawn from an external point to a line."”

18 Nunn, T. P. ““The Sequence of Thearems in Schaol Geametry.” Matiematical
Gazette, May, 1922, p. 63, or, Mathematics Teacker, Qct., 1925. These articles are
warthy of careful study. See also Mathematical Association, The Teaching of Geomelry
in Schools, p. 35, and the discussion on the report, Matdemutical Gazette, May, 1924,

.73
P Picken, D. K. “Parallelism and Similarity.”  Mathem-atical Gazette, Oct., 1024, p. 103,

Hill, M. J. M. “The Postulate of Parallels.” Mathematical Gizetle, Jan., 1925,

. 271,

P Birkhaff, G. D. and Beatley, R, A New Approach to Elementary Geometry.”
The Fifth Yearbook, National Council of Teachers of Mathematics, p. 6, 1930.
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have included ratios and intercepts in our program. It will be
noted that in this, as in other topics, examples from solid geometry
are placed beside examples from plane geometry (Ex. 135 to 137),
the contention being that no distinction should be drawn between
plane and solid geometry, when the two can be treated similarly.

The graph. We have already seen that the function concept is
often assumed by textbook writers to be synonymous with graphical
representation. These writers seem unaware of the fact that it is
possihle to treat the subject of graphs in such a mechanical way
that the real notion of function may be entirely overlooked. Al-
though we have ziven the function concept a much broader inter-
pretation than the writers referred to, we have to recognize that
the ¢raph is one of the most useful instruments of functional think-
‘ng. But the conception of the graph, like that of the function,
is not a subject that can be disposed of in a lesson or even a series
of lessons: it is essentially a mode of thinking, and as such should
be an integral part of the whole course. In our suggested course
we have approached the subject gradually, so that, when the
student comes to deal with the graphs of functions, he will have
at his command all the elementary concepts and the technical
skills that he needs. 1In the variation array, the frequency his-
tograph, the curve of best fit, and in the discussion of direct and
inverse variation, all the essential ideas of graphical representation
have been presented. It is important that the graph of a function
should be looked upon, not as a line connecting a number of plotted
points, but as a functivnal whole which expresses, in its entirety,
certain generalized concepts of number and space. Among these
concepts is that of a correspondence between variables. So the
graph is treated as an entity functionally related to the axes of
reference. If the graph is changed relative to the axes, the rela-
tionship must of necessity be changed: or, if the axes are changed
relative to the graph, the relationship must likewise be changed.
Thiz method of treating functions has been followed by the writer
for many years, and always with gratifying results.'® The basis
of the method is the well-known operation of the transformation
of coordinates. By a succession of simple illustrations, with the
graphs of v = ax, v = 1%, y=- x3, v = 1/x, and x2 + 3? = r?, the stu-
dent is led to the general theorem that the graph of the equation

17 The idea was first suguested in 1008 by Profesenr E. J. Nansen, Emeritus Pro-
fessor of Mathematics, Mclbourne University, in a course of lectures.
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y— b=f (x— a) may be derived from that of y = f(x) by (1) a
translation of the graphical form a distance 4 a in the x direction and
(2) a further translation a distance 4- & in the y direction. The same
concept is brought out later in the course, when the wave equation
¥y = asin (x — ot) is derived from the wave form y = ¢ sin x by a
translation of the wave form at a uniform velocity -4- v along the

" x-axis. There is danger, of course, that these operations, like the

drawing of graphs through plotted points, may become mechanical,
but the student will at least grasp the idea that all functions of the
same form may be represented by graphs of the same configuration,
and that all these graphs are members of a common family.

The formula. No discussion of the function concept in school
mathematics would be complete without some reference to the
formula. We do not propose to dwell at length on this aspect of
elementary mathematics, however, because its importance now
seems to be generally recognized. Most modern textbooks follow
the lead first given by Nunn and place the formula in the fore-
front of their teaching. “Formal work in algebra ... is here
planned to begin with lessons intended to cultivate the formula as
an instrument of mathematical statement and investigation.”?® The
formula is preéminently a functional instrument, for it expresses
in symbolic language a relationship between two or more variables,
one of the variables being determined, when all the others are
known. The cultivation of the formula, like that of the graph, in-
volves two main processes, one of formulation and the other of
interpretation. And the knowledge derived from the interpreta-
tion often exceeds that apprehended in the formulation. The
formula and the graph may both be regarded as generalized ex-
pressions of relationships, capable of a general as well as of a par-
ticular interpretation. This is not generally recognized. Just as
we lose the functional concept of the graph as a whole, if we con-
fine ourselves to the consideration of particular points, so we lose
the functional meaning of the formula, if we restrict our attention
to the substitution of particular values. The formula, like the
graph, is a functional whole. So, in the suggested problem mate-
rial we find, for example, that a squared term is more potent in
its influence upon the whole, than a factor of the first degree. This
we regard as a very important part of the training given by the
study of the formula. In the area formula A =/lw, the factors

® Nunn, T. P. 0p. cit., p. 63.
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! and w have equal potency; an increase of 10 per cent in either
would produce an increase of 10 per cent in the area. This is not
so in the case of the formula v = =2/ where the factor r is more
potent than the factor 4. Similarly, in dealing with the formula
C = E/R, we may discuss the direct and inverse potency of E and
R in determining C. Such a discussion of a formula should pre-
cede all mechanical exercise in substitution; it should also precede
any formal treatment of the equation, as a relation of equality be-
tween variables. The general character of the equation, as distinct
from the particular, has been strongly emphasized by Thorndike,
who makes “a clear distinction, almost a contrast, between the
equation as an organization of facts to find some unknown or hidden
fact and the equation as an expression of a relation between vari-
ables.””?! 1In the opinion of Thorndike these two aspects, which
are by nature different, should be kept distinct; he advises that
“the two aspects of the equation should be kept distinct from the
start and to a large extent throughout: that they should, other
things being equal, be given diiferent names, taught at different
times and in different ways and with different applications.” With
this we do not agree. Our conviction is that the particular and
tne general should as far as possible be fused together; that the
student should be led through the particular to the general, and
that an analysis of the general should precede further applications
to particular cases.

Carson expresses a similar view in an article on the uses of
graphs in which he stresses the importance of general concepts in
mathematical teaching:

Although it is not of great difticulty, this discussion of shape is of the
utmost importance, and deserves full and careful treatment. Apart from a
vital application in the drawing of graphs, it forms a true origin for the con-
cept of a function, for the sequence of changes is exhibited as one whole, and
appears as a distinct entity, namely, a function.?

Summary. Let us now consider the course we have outlined in
a little more Jetail.*®* We begin, as we have stated, with the idea

2 Thorndike, E. .. and others. The Psychilagy of Algebra, Chap. IV, p, 126, New
York, 1928,

2 Carson, G. St.I.. *“The Various Uses of Graphs.” Muthematical Gazelle, March,
1914, p. 266,

3 The references in this chapter are to the typical problem material in the next
chapter (A Course of Study based on the Functinn Concept). It should be noted
that only onc example of each type of problem is given,
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of a class, which we illustrate by a number of simple examples,
no formal definition of a class keing desired at this stage. Through
Ex. 1 we learn to subdivide and tabulate classes according to par-
ticular attributes (color and subject), and so to form a manifold
distribution. We now arrange two classes, weight and length, in
ascending or descending order and get our first notion of corre-
spondence (Ex. 2). Even at this early stage we may prepare for
the concept of the variable by using letters to represent the class.
Thus we may write H for height (any height included in the class)
and L for length. The idea of correspondence is brought out more
definitely in the related numerical series of Ex. 4. When dealing
with such series we may, if we so desire, refer to them as arithmet-
ical or geometrical series or sequences. In Ex. 5, 6, 7, we have
the correspondence of points and lines, giving us similarity and
symmetry. (Colored crayons help to make these correspondences
more easily understood.) The idea of correspondence, which
is fundamental to our subject, is still further developed in Ex. 8.
In this exercise the boys are arranged in an array, tallest on the
right, shortest on the left, facing the observer, and from the num-
bers and the graph obtained, some important statistical concepts
are derived: the variation array (or ogive) 2t median, mean, and
deviation from the mean. Thus we get, early in the course, an
introduction to graphical representation through a problem which
naturally suggests the form o the graph. In studying this example
the student may confine his attention to the changes in only one
of the variables (the ordinate), since the other variable is a set of
equally spaced intervals. This example does us valuable service,
for it is used again in Ex. 11 and r2, through which we approach
the subject of directed numbers. The idea of growth, which is
also functional, is brought out in Ex. ¢, when the whole graph of
Ex. 8 is raised two inches. More difficult examples of growth would,
of course, follow.

Concept of the mean. The concept of the mean is of funda-
mental importance. Not only is the elementary idea important in
itself, but the generalized concept is found in the formula for the:
area of a trapezium, the Prismoid formula, Pappus’ Theorem, the
formulas for the Center of Gravity and the Center of Pressure.

* We prefer the term ‘variation array’ to the more usual ‘ogive’, since it suggests
an array of quantitics of varying values.
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Closely related to the idea of the mean is that of integration, which
we introduce at a very early stage in our treatment of areas. A
word may be said with regard to the method of int.oducing the
mean. We suggest that it be approached through the rucssed mean.
Suppr.e, for example, we require the mean of three heights (in
inches), s4, 57, 60o. We guess the mean, or average, as 57 and show
that the deviations above and below this guessed mean balance.
Wt now take 54, 57, 61 and again guess 57 to be the mean. In
this case we notice that our positive deviation exceeds our negative
devii.tion by 1. It seems natural to conclude that our mean is
greater than s7. A little reasoning would lead us to conclude that
the mean is 57 1/3 and we verify this conclusion as we did before.
We further note that any guessed mean would lead us to the same
result, For example, we may take our guessed mean to be the
lowest number of all, s4, and still get the same result; we may
even take our deviations from zero and arrive, finally, at the
usual method of computation, which is epitomized in the formula
M =3N/n. By approaching the subject in this way, we are led to
a real understanding of the principle involved, and we prepare the
way later for a discussion of errors.

Directed numbers. We now come to the important topic of
directed numbers,?® using for our introduction the figures of Ex. 8.
The procedure is as follows: Instead of numbering the array from
the end, we number it from the middle (a common drill-procedure).
We then label the boys on the right plus and those on the left minus,
and read their numbers: positive 1, positive 2, . . . , and negative
1, negative 2, and so on. The labels thus given to these positive
and negative numbers naturally suggest right and left directions or
opposites. These terms are now introduced, and exercises in their
use given (Ex. 12, 13, 14). Finally we develop the meaning of the
plus and minus signs as operators (Ex. 1s). This could be done
with the aid of Ex. 8, but not as convincingly as with Ex. 1s.
When we combine an operation with a direction, we are faced with
the necessity for a rule of signs. Thus we find the rule of signs
illustrated for the first time in connection with the addition and
subtraction of directed numbers. The procedure is fully exemplified
in Ex. 16. Our second illustration of the rule of signs follows al-

25 The term “directed number’ we owe to Sir T. P. Nunn. The treatment given in

this section is, in the main essentials, the same as that given in his boo', The Teuch-
ing of Algebra, Chap. XVIII,
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most immediately in connection with Ex. 19 and 20, in which we
introduce parentheses.

Generalized arithmetic. Having surveyed the above important
concepts and processes, we are now in a position to generalize our
arithmetic. This we proceed to do in Ex. 21, using problem mate-
rial similar to that already used in arithmetical form (Ex. 22,
27). It is important, in this connection, to stress the fact that an
algebraic letter not only represents @ number, but any number of a
particular ensemble. When the student has acquired a little facility
in the use of letters to represent numbers, he may be introduced
to that powerful instrument of functional thinking—the formula.
Here, as we have already indicated, it is important to bear in mind,
first, that the letters represent quantities of a certain variable class,
and, second, that all the variables are factors entering into a bal-
anced situation. Thus the formula A4 = lw, for the area of a rec-
tangle, not only tells us that if the length is 5 ft. and the width 4
ft., the area is 20 sq. ft., but it also tells us that the length and
the width are factors (equally potent) upon which the area de-
pends, that ‘the greater the length, the greater the area, the width
being constant’, and ‘the greater the width, the greater the area,
the length being constant’. and that ‘the area depends on the length
and the width to equal degrees’. Without this conception of func-
tional dependence, substitution exercises of the conventional type
are of little educative value. As stated elsewhere, the concept
of dependence is of the first importance and we cannot begin too
early to lead the student to acquire it. This concept cannot be
acquired in a single lesson or a course of lessons. It must be woven
into the fabric of the course. Examples 31 to 36 indicate some of
the ways in which this may be done. The range of topics could, of
course, be multiplied almost incefinitely.

Derivation of formulas. Up to the present our formulas have
been taken from various departments of life, but no attempt has
been made, except in very general terms, to derive them from first
principles. Tt is not wise, however, to pursue this policy exclu-
sivelv. Geometry and mechanics provide us with many extremely
useful formulas, which can easily be built up at this elementary
stage. We therefore leave this part of our subject for the time
being and ti:ke up the study of geometry.

The study of geometry. Here we begin with the ideas of
translation and rotation and with geometrical form (Ex. 37 to 39).
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In discussing these terms the opportunity is taken to include such
interesting and useful exercises as Euler’s Theorem, the point-line
formula, correspondence between an area and a line, curves of pur-
suit, and the mechanical tracing of curves, the chief purpose being
to enable the student to become acquainted with some important
geometrical terms (Ex. 40 to 43). Conical projection also enters
to illustrate further the idea of correspondence. This we consider
a most valuable method of developing the perception and intuition
of space relations.

Example 45 is an ilJustration of an interesting exercise in section-
drawing which requires some degree of ‘space intuition’. Experi-
ence seems to show that, when this type of exercise is omitted from
early mathematical teaching, the ability to visualize sections or con-
tour lines of solid forms may remain undeveloped.

We are now ready to introduce time as a variable. We begin
with some very simple problems on linear motion and calculate for
certain defined intervals the change of distance (A s) corresponding
to a certain change of time (A #). From the numbers so obtained
we derive the rate of change of distance with time (A s/ A t) in Ex.
48. Thus the notation of finite differences is introduced very early
in the course.

We now come to the definition of an angle. In Ex. 51 to 53 it is
shown that the angle is a figure, but not only <o, it is a figure which
may be conceived as having been generated by the rotation of a
line, just as the line was conceived as generated by the movement
of a point. In the Course of Study we have drawn a distinction
between the angle as a figure and the measure of an angle and have
used the term ‘rota’ of an angle to correspond with the ‘length’ of a
line in linear measurement. Tt should be noted that, in this part
of the work, the class is taught to use a circular protractor. It
would make for much clearer thinking if a circular protractor could
be used exclusively in elementary work. An interesting group lesson
with angles is suggested in Ex. 54. In this example practice is
given in measuring lines and angles and the ideas of scale meas-
urement and graphical representation are reinforced. Son.e interest-
ing field work (Ex. 55) may now be done, the way thus being pre-
pared for trigonometry which follows later. Another important idea,
that of the locus, may be conveniently brought in at this stage (Ex.
59), as part of the field work. Incidentally, Ex. 59 serves as a prep-
aration for the s.s.s = s.s5.s. case of congruence (Ex. r13c¢.). The re-
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lationships between angle, arc, and radius are now discussed. In Ex.
6o we show that the arc is proportional to the radius when the
angle is fixed; in Ex. 61 we show that the arc is proportional to the
angle when the radius is fixed. On the analogy of the formula,
A =lw, we assume that 4 == 6r or 0 = .4./r, and reserve the com-
plete discussion of this equation until we introduce radian measure.
Analogous to linear velocity we get angular velocity, as an inter-
esting and very important extension of the idea of rate of change.
The idea of angular velocity is usually conridered to be too diffi-
cult for elementary work, but we have not experienced this difficulty.
On the contrary, pupils of the junior high school level are keenly
interested in computing the number of revolutions per minute of a
turning body. It should be noted that angles are not restricted to
360°.

The next section on orthogonal projection may seem, at first
sight, an unnecessary digression, but it is introduced at this point
for the following reasons: (1) It keeps alive the notion of corre-
spondence and supplements the work on conical projection. (2) It
provides material for the study of some interesting geometrical
forms (ellipse, parabola, etc.). (3) It prepares the student for
the trigonometrical ratios, sine and cosine, through horizontal and
vertical projection. (4) It facilitates the discussion of the angle
between two planes, and the angle between a line and a plane (Ex.
68 to 74).

Graphical representation. We now enter upon a more thorough
study of graphical representation. In our first example (Ex. 73)
the graph is regarded as the pictorial or geometrical representation
of a verbal statement, having the formula as its counterpart in the
realm of numbers. Example 75 should be carefully discussed, for
from it the following concepts may be derived: corresponding
change, rate of change, slope, gradient, constant and variable gradi-
ents, interpolation, maxima and minima, point of inflexion. the
graph as a ready reckoner, and the graph as the representation of
a function. Following this are examples of most of the conven-
tional graphical forms: the bar graph (Ex. 8, 81), the sector
graph (Ex, 84), the line of best fit (EX. 835). The bar graph is
not studied as an end in itself, but as a means to an end—the fre-
quency histograph or frequency distribution of «tatistics. This we
consider to be a very important part of the work, which should be
linked up quite definitely with the work already donc on the varia-
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tion array. Even more important for elementary teaching is the
line of best fit, which is fundamental to the physical and statistical
sciences. This part of the work should be done in the physics
laboratory. The opportunity should be taken at this stage to dis-
cuss liability to error, and to impress upon the student the fact that
the line of best fit is an average in geometrical form, indicating a
general trend, and that it need not pass through any one of the
plotted points.

Areas and volumes. Up to the present we have been mainly con-
cerned with quantities of a single dimension. We now pass on
to ereas and wvolumes, which we introduce through the already
familiar conception of the generator and directrix. This method of
approach naturally suggests integration as the operation of continu-
ous summation (Ex. gg9). As a very interesting application of in-
tegration, we include the summation of an arithmetical progression.
The method suggested is that due to Nunn.*® The area of a tri-
angle may be regarded as an important special case of such a
progression. We are now quite prepared to extend our ideas of
direction to include the notion of directed areas or length-length
products, and to follow a third illustration of the rule of signs (Ex.
102). Incidentally, the algebraic identities a(b+c¢) = ab+ ac,
(a+4b) (a—b) =a*— b2, and (a+ b)% = a®+ 2ab 4 b? are illus-
trated graphically (Ex. 103). The last of these identities is useful
in discussing the derivation of the square root of a number.*” Our
next illustration of a product will be a rate-time product, leading
to the formula S = v¢, which, when the relevant factors are all di-
rected quantities, again illustrates the rule of signs (Ex. 108 to
110),

Before we proceed to study comgruence and similarity, we dis-
cuss the intersections of three lines forming a trilateral or tri-
angle, and of four lines f :rming a quadrilateral or quadrangle (Ex.
r12). It is important that this broader conception of triangles and
quadrangles should be given when the terms are first presented.
The same remark applies to the introduction of the parallelogram
(Ex. 133). The three ordinary cases of congruence are illustrated
in Ex. 113. This part of the work will naturally be followed by
simple originals depending upon congruence (Ex. 114 to 119). Ex-

# Nunn, T. P. Op. cit., Chap. XIX, p. 199. See also Lictzmann-Ziihlke.

Aufgabensammlung und Leitfaden Oberstufe, Leitfaden, p. 3. Leipzig, 1930.
1 Nunn, T. P. 0p. cit., Chap. XVI.
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ample 116 deserves special consideration. It is a valuable exercise
for developing a functional attitude towards the subject of con-
gruence. The three-angle case (g,a,¢) leads us immediately to the
idea of similarity as correspondence of form. The essentials of
the similarity of figures are clearly brought out in Ex, 123 and 124.
Incidentally, the opportunity is taken to discuss proportion—first, as
the equality of ratios; and, second, as the equality of rates (Ex. 128
to 131). We now proceed to the study of parallels (Ex. 132 to 136),
using the equal-angle theorem of similarity as our fundamental
theorem. It will be noticed that the examples on parallelism are
taken from solid, as well as from plane, geometry.

Trigonometrical functions. OQur next section is a short unit on
the three main ¢rigonometrical functions, which we treat in a man-
ner that has almost become conventional. We have taken care,
however, to introduce the subject in such a way that the value of
the new symbolism in the economy of thought will be appreciated
(Ex. 138 to 140 and 151 to 153). The Theorem of Pythagoras,
which we have not so far needed, falls into its natural place in this
section of the work and is treated in several different ways. The
fundamental equation sin® 8 4 cos? 6 = 1 is then presented as the
Theorem of Pythagoras :n trigonometrical form

Variation. We now take up, much more thoroughly than is usual
in elementiry; mathematics, the study of direct and fnverse varia-
ticn,  Direct variation will already be familiar to the student, but
it must now be studied, geometrically and algebraically, as an ex-
ample of functional relationship. The two problems suggested (Ex.
146 and 147) are designed to bring out this relationship both con-
cretely and analytically. From the tables of values of x and y, it is
seen that, whereas in the case of direct variation the two sets of
numbers increase or decrease in the same sense, in the case of in-
verse variation, they vary in a contrary sense (Ex. 147).

Graphs of algebraic functions. The general line of approach to
the graphs of algebraic functions has already been indicated. e
first of all draw, as carefully as possible, the graph of the function
4 = x? and, cutting along the line of the graph, make a tracer, or
parabolic edge. By appropriate translations this tracer may be
employed to give us the graph of, say, y — 2 = (x — 3)2? (Ex. 164).
Further, if we keep the x units to their original length, and alter
the y units to half their previous length, the trace of y = 2 will
now represent y = 2x° (Ex. 165). Retaining these rew units we
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may translate the tracer and so devive the graph of the function
y—2=2(x — 3)*. It is important to note, although this has not
been suggested in the examples, that the graph of ¥ = 2x* could be
obtained 1rom that of y == x* by a uniform elongation of the ordi-
nates of the latter in the v direction. This may actually be demon-
strated with a sheet of india rubber. Similarly, by a contraction
of the ordinates, the graph of y == &% could be made to fit the func-
tion y = Lix%

A similar method of treatment may be applied to the graphs of
the cubic function y = 2* and of the rectangular hyperbola y = 1/x.
Finally, we derive from first principles the equation of the circle,
and from it that of the ellipse (Ex. 198). It will be noticed that
the form of the ellipse is obtained from that of the circle by the
expansion or contraction of the ordinates in a definite ratio. The
equation of the ellipse may be derived from that of the circle by
expressing this operation of deformation in algebraic form. For

if we replace v by ‘[: v in the (quation. x*-}-y? = a® we derive

a2 n
aoowe

.+ “ = 1. This method of treatment brings out very clearly
d )

the essential character of the ellipse as a ‘deformed circle’, or, if
we prefer it, as the projection of a circle on a plane. We suggest
that, for elementary mathematics, the ellipse be defined in this way:.



VII
A COURSE BASED ON THE FUNCTION CONCEPT

The function concept the central theme. In the following
pages we have outlined a course of school mathematics embodying
the function concept as its central theme. The first two years' work
is specified in some detail, as this constitutes the basis of the whole
course. The suggested course has been supplemented by defini-
tion and brief explanations of the mathematical terms employed and
by typical problems for school work.

The purpose of these Definitions and Concepts is partly to indi-
cate the general philosophy underlying the course ar 1 partly to
show that the function concept is not the only concep. to be con-
sidered in a mathematical course. It has already been suggested
that the main themes or disciplines of elementary mathematics are
functionality, calculus, and logic. The concept of the calculus in-
cludes those of the mean, differentiation, and integration. These
concepts, in their elementary form, have been given a place even
in the work of the first year. The purpose of the problems, given
under Typical Problem DMaterial, is to indicate methads of ap-
proach not usually employed. Many of the problems will be
found to be stereotyped and even commonplace. They have been
included to show how easily the old material may be incorporated
in a modern structure. No indication has been given of the num-
ber of problems of a particular type that will normally be re-
quired, This will depend partly on the needs of the individual and
partly on his interests. In the statement of the definitions mathe-
matical rigor has frequently been sacrificed to immediate needs.
The professional mathematician would probably be unwilling to
accept the definitions given of the point, the line, and the plane,
but he may be willing to concede that pupils taught on these lines
will have no more to unlearn than those taught by other methods.
Definitions should not be memorized by the pupil ; they are intended
as a general background for the teacher. The suggested course is
well within the capacity of a normally intelligent class.
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Suggested Course

The notion of a class.
Element of a class.

Correspondence between
classes.
One-to-one
ence.

correspond-

Order as a relation:
(a) In value.
(b) In space.
(c) In time.
Linear order and cyclic
order.
The concepts ‘greater
than’ and ‘less than.’
Series.
Simple serial relations.

SUGGESTED

THE GROUNDWORK OF

Definitions and Concepts

A number of entities or things having a specific
attribute or quality car be said to belong to a cer-
tain class, sct, or assemblage. We shall use the
first of these terms.

The natural numbers form a class; so do the
points of a line.

A class may consist of concrete quantities (ro
books), destominate quantities (10 cm., $10), and
absiract quantities (10, 14).

Each item of a class is called an element of that
class.

Two classes are said to be in one-to-one corre-
spondence when each element of the one class can
be paired with one, and only one, element of the
other class, and vice versa.

Two classes may be put into one-to-one corre-
spondence in more than one way.

The order of a class is specified as a relation of
some kind among the members of the class. Right,
left; sooner, later; preceding, following; etc., are ex-
amples of such relations. We may have order in
value, order in space or position, and order in time.
Order may be linear or cyclic (reentrant).

The concepts ‘greater than’and ‘less than’ can
be applied only to quantities of the same kind.

When successive elements of a class are con-
nected by the same kind of relation they form a
series or sequence. Each element of a series is
called a ferm.!

1 For a detailed discussion see, Knopp, K. Theory and Application of Infinite

Series.

(Translated from the German by R. C. Young.) London, 1928.
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Course
ELEMENTARY MATHEMATICS

Typical Problem Material

1. Ina library there are 30 books on mathematics, 40 books on history, and
25 books on geography. Of the mathematics books 10 are red, 12 green, and
the rest blue; of the history books 20 are green, ¢ blue, and the rest red; of the
geography books 11 are blue, g red, and the rest green. Tabulate the books
according to color classes. How many books belong to the red class?

Arrange as follows:

l Mathematics History Geography

This is called a ‘manifold distribution’.
(a) How many green books were neither on mathematics nor on geog-
raphy?
(b) How many books were neither green nor historical?
For further examples see Appendix B, Ex. I and II.
Many other examples may be taken from business statistics, e.g., cost of
different qualities of materials.

2. The weights of eight boys were 81, 80, 92, 100, 95, 118, 137, 120-(pound),
and their corresponding heights 52, 49, 57, 60, 54, 64, 68, 62 (inch). Arrange
these figures in two corresponding columns: (a) the order of increasing heights,
and (b) the order of decreasing weights. The measurements could be taken
from the pupils themselves. Repeat with other physiral measurements.

3. In a final examination in history and geography it was found that 10
boys were placed in the same order of merit. The scores were:

History: 87, 23, 47, 58, 79, 63, 52, 72, 37, 68
Geography: 25, 43, o1, 68, 77, 37, 56, 82, 61, 50
Rearrange these numbers so that they correspond in decreasing order of merit.

4. Can you find laws or relations for the following series of numbers:
(@ 1,234, 5 and 3,6, 9, 12, 15?
(b) 3, 5,7, 9, 11 and 1, 2, 4, 8, 16, 322
Do the series have correspondence? If not, complete the correspondence.
Continue each series for three more terms.
For further examples, see Appendix B, Ex. V.,
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Suggested Course

Similarity and symmetry
as correspondence.?

First ideas of geometrical
form.

An array.

Numbers as distinguish-
ing marks or labels of
things.

Dedekind-Cantor Axiom:

Correspondence be-
tween the points of a
line and the domain of
real numbers.

Elementary  statistical
concepts.

The variation array and
variation curve.
(a) Average or mean,
(b) Median.
{c) Upper and lower

limit.

Positive and negative
numbers,
(a) Symbols of order.

? Young, J. W. Article on “Symmetry.”

THE NINTH YEARBOOK

Definitions and Concepts

Two classes are said to be similar when they are
of the same kind and when there is a one-to-one
relation which correlates the terms of the one class
each with terms of the other class.

Things arranged in order form an array.

The items in an array may be distinguished and
identified by numbers. Numbers may thus be
used as [abess.

Dedekind-Canior Axiom: “ Any real number can
be represented in a unique manner by a point on a
line, and conversely.”

Measures of any trait of natural objects selected
at random and arranged in order of magnitude
form a variation array.

The mean and the mediun.

Positive and negative numbers may be used
as symbols of order. A sequence of five things may
be labelled: 1, 4, 3, 4, 5, 0r —1, —2, —3, —4, —5,
or —5, —4, —3, —2, —1I, or by any other scheme

Fifth Yearhook, National Council of

Teachers of Mathemalics, 1929, p. 145.
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Typical Problem Material

§. Draw sketches of two similar houses of different sizes. (The word
‘similar’ is taken as intuitive; its meaning will be clarified in the performance
of the exercise.)

Color some corresponding parts with the same color. Join some corresnond-
ing points. Make also cardboard or paper models of similar houses.

6. Draw two geometrical figures on the blackboard, similar in their main
features but lacking certain correspondences. Ask members of the class to
complete the figures. Similar exercises may be taken with algebraic forms.

7. Draw a symmetrical figure on the blackboard and ask the class to show
the correspondences. Develop the idea of symmetry and illustrate with
seference to architecture, ornaments, etc. Show that a symmetrical figure
may be made to correspond part to part by folding. Give plenty of practice
in making geometrical designs, similar or symmetrical.

8. The heights of 21 boys in a scout troop *vere measured as follows: 64,
63, 62, 61, 62, 60, 45, 52, 72, 62, 61, 69, 66, 63, L ,,, 59. 53, 54. 56, 40, §7 (inch).
Arrange these heights in increasing order, shortest on the left, tallest on the
right. For example:

(This may be done with the class itself as a playground exercise.)
Find the average or mean height. [For procedure see Chap. VI, page 121.]

9. Using graph paper, draw a line, which we shall call an axis and mark
cqually spaced points on it: 1,2, 3,4, . . . Erect at each of these points
vertical lines to represent the heights ¢. the boys of Ex. 8 drawn to scale.
Join the tops of these lines by a curve (variation curve). What is the height
of the middle boy of the array (median)?

If each boy grows 2 in. taller in a year, what will the variation curve look
like then?

ro. Similar examples: weights of boys in class, marks in examinations,
lengths of leaves on a plant.

Show that natural objects selected at random often approximate to the same
form of variation-array. Discuss cases in which this does not apply.

11. The 21 boys of Ex. 8 are renumbered from the middle, or median, boy
(rr). If 11 becomes 1, 12 becomes >, and so on, how shall we number the
old numbers 10,9, 8, 7,.. . ?

(We give g the number 1 but put a minus sign (=) in front of it to distinguish
him from 11, whom we call + 1.)

The old and new numberings will now appear as follows:
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(b) Symbols of direc-
tion.

Directe . numbers.

Vector.

(c) Symbols of oppo-
sites.

(d) Symbols of opera-
tions.

Definitions and Concepts

of identification, as long as we specify the numbers
by giving them definite meanings. Thus, we may
say: 3 is on the right of 2, or 3 is greater than 2,
or —3 is on the right of —2, or —3 is on the right
of —4. No necessary suggestion of direction is
implied.

The class of numbers is thus divided into two
subclasses, the class of positive numbers and the
class of negative numbers.?

Plus and minus signs may be used as signs of
‘direction’, e.g., right, left; North, South; hence,
ago. The position or number which separates the
plus numbers from the minus numbers is called
the origin or point of reference (zero, equator, now).
The number zero may be looked upon as a member
of both the class of positive and the class of
negative numbers.

Numbers which carry the conception of direction
as well as of magnitude are called directed numbers.*

A quantity which can be represented in mag-
nitude and direction by a line is called a vector
quantity and the line so representing it is called a
veclor.

The origin or point of reference separates a class
into two opposite subclasses. Plus and minus signs
are used to distinguish opposites.

Plus and minus signs are used to indicate the
algebraic operations of addition (+) and subtrac-
tion (—).

Two or more quantities of the same kind may
be compounded by addition. The quantities so
compounded are called components and the result
of compounding them is called the resultant.

Thus  (43) + (+5) = (+8)
(+3) + (=5) = (=2)

/]

3 See Picken, D. K. The Number System of Arithmetic and Algebra, Chap. 11I.

Melbourne, 1924.

¢Nunn, T. P. The Teaching of Algebra, including Trigonomelry, Chap. XVIII.

London, 1927.
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Typical Problem Material

ol 1 2 3 4 5 6 7 8 9 10 I

New .| =9 | =8| =7 | =6| —=5| =4 | =3 ]| =2 | =1 o | +1
1

Od........ 12 | 13 | 14 | 15 | 16| 17 | 18 | 19 | 20 | a1

New ....... +2 | 43| 44| +s5 | +6 | +7 1 +8 | 4o | +10] +11

How would a work-party previously numbered (4, 8, 12, 16) now be
numbered?
How many places or paces are there between — 7 and+ 3; ~ 4 and + 8?

12. (Referring to Ex. 11.) If we say that the plus numbers are to the
right and the minus numbers to the left of zero (the origin), is ~ 3 to the right
of =67 Is —3 to the right of —1? Is — 7 to the right of + 7?

(When numbers like — 3, — 7,4+ 7 have the implied notion of direction, they
are written (—=3), (=7), (+7) and are called directed numbers.)

13. Arrange the following temperatures in increasing order: 61, 81, 71, 56,
43, 91, 69, 52, 75, 84, 49. Find the average, or mean, temperature and the
difference, or deviation, of each reading from the mean, with the appropriate
sign. Add the plus and minus signs to the deviations.

14. Write down the opposites of: right, up, above, ascent, North, East,
more, add, credit, profit, hence, ahead, raise, to, in, early, quick, forward,
advance, Anno Domini, high, elevation, heavy, dense, condense, acceleration,
attraction, clockwise, and arrival. Give simple numerical excrcises on these
terms and their opposites.

15. A boy, starting from a stairway landing, made the following four
journeys:
(a) He went up 20 steps, and then went up r2 steps.
(b) He went up 20 steps, and then down 12 steps.
(¢) He went down 20 steps, and then up 12 steps.
(d) He went down 20 steps, and then went down 12 more steps.

How many steps was he from the landing in each case?
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Association and commu-
tation.

Parentheses.

Generalized arithmetic.

Definitions and Concepts

When the resultant and all but one of the com-
ponents are given, the remaining component can
be found by subtraction, the complement of addition.

Thus (+8) ~ (+3) = (+5)
(=2) =~ (=5) = (+3)

The above examples illustrate the Rule of Signs.®

The ways in which such operations are per-
formed depend on the nature of the physical facts
from which the quantities are derived.

To the operations of addition and subtraction
the laws of association and commutation apply.

Plus and minus signs are also used to indicate
vector addition and subtraction:

Thus TB+ BC= T

AB—- AC= (B
Payenthieses may be regarded as envelopes or
enclosures within which quantities are grouped for

convenience. An operation affecting one quantity
within the parentheses affects the whole.

Thus 2(3+ 5) =23+ 2'§
3+s 3.5
PR

The letters a, b, ¢; 4, B, C, etc., used in algebra
are simple forms of verbal statements about physi-
cal quantities measurable in terms of certain arbi-
trarily chosen units.* Since algebraic letters
represent linguistic units involving numbers, they
are subject to the laws and operations both of
logic and of arithmetic.

$Young, J. W. The Fundumcntal Concepls of Algebra and Geometry, p. 113. New
York, 1925. ““Let it be emphasized that there can be no such thing as an a priori
proof of these laws of signs, but that they are pure conventions, finding their justifica-
tion on the logical side in their consistency with previous assumptions and on the
practical side in their serviceableness.”

¢ Nunn, T. P. Op. cil., p. 6. “Such symbolism as (@ +b)2 mat+2ab+ 8%, . ..,
may be regarded as verbal statements about numbers expressed for a special purpose

in a conventional form.”
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Typical Problemn Material

16.(a) A boy, starting from home, went § mi. East, and then 3 mi. East.

How far was he from home at the end?

(b) The boy went 5 mi. East, and then 3 mi. West. How far was he
from home?

(¢) The boy started out for a place 5 mi. East. In the first hour he went
3 mi. East. How much further did he have to go?

(d) The boy started out for a place § mi. East. Ii the first hour he
cycled 7 mi. East. How much further did he have to go?

(e) The boy started for a place 5 mi. East. In the first hour he went,
by mistake, 3 mi. West. How much further did he have to go?’

17. Further suggested topics: temperature changes, profit and loss, time
lines, mechanics, baseball scores; also problem< using vector notation.

18. How many years are there between 500 B.C. and 500 A.D.? Between
500 A.D. and 1930 A.D.? Express the result in mathematical form.

19.(a) The length of a sheet of paper i3 ¢ in. and the width 7 in. Write
the length ot the perimeter in parentheuical form,
(b) Thirty boys went for a hike, taking in their haversacks some sand-
wiches. Each boy had 2 bread-and-butter, 3 jam, and 4 egg sandwiches.
Express the total number in parentheses.

20. Find the value of 7(50 —~ 32), R(s0 + 32 — 8:), 3(169 — 156) in two ways.

21. Generalized arithmetic should not be regarded as a new chapter in school
mathematics, bu* as an integral part of the development of the subject. Any
statement which can be expressed in the numbers of arithmetic can also be
expressed in the symbols of algebra.

For example, Ex. 16 may be written:

(a) A boy, starting from home, went @ mi. East, and then b mi. West.
How far was he from home at the end?

(b) The boy went x mi. East and then y mi. West. How far wus he from
home?

Again, Ex. 19 could be written:

(a) The length of a sheet of paper is / in. and the width 6 in. Write
the length of the perimeter in parenthetical form.

22, Find the value of 2(3¢ + sb), 6(76 + 3b) — 4(6a + 2b).
7Nunn, T. P. Op. cit., Chap. XVIIL
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Nondirected and directed
numbers.

Opposites.

The formula.

Functional relation.

Dependency.

The subject of a formula.

Changing the subject of
a formula.

Definitions and Concepts

As we have nondirected and directed numbers
in arithmetic, so we have nondirected and directed
numbers in algebra. For example, S = (44)
+ (+b) is the result of compounding two directed
numbers (+a) and (+5). The signs within the
parentheses are signs of ‘direction’ and those be-
tween the parentheses are signs of ‘operation’.®

The numbers (+a) and (—da) are opposites, if )
(+a)+ (-a) = o

A formula is the symbolic expression of a verbal
statement of equality or inequality. For example,
a > b may express in shortened form a statement
such as: The rumber a is greater than the number
b or the point g is to the right of the point b.
Again, A = 'w may symbolize the statement:
“The area of a rectangle is the product of its
length and its width.”

A formula may be looked upon as the expression
of a particular relation and of a general or func-
tional relation, of which the particular relation is
a special case.

A term of a formula is said to depend on, or be
a function of, other terms of the formula when,
the latter terms being known, the former is thereby
determined.

That term in a formula which depends upon
other terms in the formula in such a way that,
when the independent terms are known, the de-
pendent term can thereby be determined, is called
the subject of the formula.?

It is customary to place the subject of a formula
alone on the left-hand side of the sign of equality
or inequality. Any term may, according to our
convenience or need, be taken to be the subject of
the formula. Thus the formula, cost = price
X quantity (or c¢= p-n), may also be written

p=c/rorn=c/h.

® For the origin of the term ‘directed numbers’ see Nunn, T. P., 0p. cil., Chap.

XVIIL

* Nunn, T. P. 0p. cil., p. 77 and Chap. X.
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Typical Problem Material

23. In four successive hours a man motored (in miles): (+ @), (+ ), (+ ),
—d). How many miles did he motor altogether?

24, If S = (30 +b) — (26 — b) and @ = + 3, b = — 2, find the value of S.
28. Add (3a+ b+ 2¢), (@ = b+ 3¢), (a+ 26— ).
26, Subtract 56~ 4b + 2¢ from 2a ~ 7b - 3c.

29. Tt is given thai P = 3p — 4. Put in two coluinns the values of p and P
when p=o0, 1, 2, 3, 4, 5. Illustrate graphically and interpolate other values.

28. If f(x) is short for 3z + 4, find f(1), f(2), £(3), f(4), (5). Gfaph the values.
29. What is the opposite of S ft. up, ¢ yd. West, ¢ yr. ago, a lb. lighter?
30. Show that S ft. up is the same as —S ft. down. Use concrete device.

31. The cost of a consignment of jam is given by the formula C= np,
where p is the price per jar and # is the number of jars in the consignment.
Draw up a table and a graph showing the cost ofr,2 3 ... 12 jars, when
the price is 20c. a jar. What is the price per jar if 10 jars cost $2.502 How
many jars can be bought for $2.00, if the price is 18c. per jar?

32, (a) The interest I get from a certain sum of money placed in the bank
depends upon or is a functionof ... and . ...
(b) The cost of painting a cylindrical tank dependsupon .. .,...,
and. ...

33. Discuss the factors upon which the following depend:
(a) The weight of a rectangular block of metal.
(b) The price of certain mining shares.
(c) The exchange rate between America and England.
(d) The speed of an automobile or an airplane.
(e) The health of any boy in the school.
(f) The yield of wheat in a field.
(8) The distance a ball would fall from rest in a given time.

Write 1 our conclusions as follows: The weight of a rectangular block of
metal is a function of the length, width, and height of the block, and the density
or specific gravity of the metal.

Which of the factors you have mentioned tend to increase, and which to
decrease, the thing you are discussing?

Discuss the degree to which the factors enter in Ex. 33 (a), (d), and (g).
(See also Ex. 3s.)
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Formula building:
(a) Variables.
(b) Dimensions,
(c) Relations — direct
and indirect.

Motion ¢° a material
body.
(a) Translation.
(b) Rotation.

Definitions of
(a) Particle.
(b) Point.
(c) Lineand direction,
(d) Curve and dircc-
tion.
(e) Angle.

Definitions and Concepts

The cultivation of the formula involves not only
the facility to interpret and apply formulas but
also the ability to collect matcrials for formula
building. This includes the discussion of possible
Jactors or variubles, the degree to which they enter
into the formula, i.e., the dimensions, and the type
of relationship, whether direct or #nverse (the more
« . + the more and the more . . . the less).

Thus the mass of a cylinder depends upon the
radius (to the second degree), the length (to the
first degree), and the relative density.

When all parts of a physical body have like
motion relative to fixed axes of reference, the body
is said to have motion of ranslation; when different
parts of the body have different motions, the body
is said to have motion of rotation.

(a) A particle is the smallest conccivable ma-
terial body. A particle can have a motion of
translation, but not of rotation.

(b) The geometrical correlate of the physical
body is the geometrical figure; the geometrical
correlate of the particle is the pent.

(c) Any two points 4 and B Jetermine a siraight
line (AB) and a direction AB.

The_concepts ‘straight line’ (4B) and ‘direc-
tion’ AB are thus directly associated. One im-
plies the other. A direction AB implies an oppo-
site direction BA. A straight line may be limited
(line segment) or unlimited (infinite). An infinite
half-line, that is, a line of unlimited length termi-
nated in one dircction is called a ray.
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Typical Problem Material

34. The simple interest on a principal P for # years at r %, per annum is
Prn

given by the formula: 7 =

1

Make a table showing the simple interest on $300.00 for any number of

years up to 10, at 4% per annum. Draw a graph representing the interest
for any year up to 10 years.

Find a formula giving the rate per cent per annum, when the principal and
the simple interest are given.

35. Find the value of the subject of each of the following formulas, the
values of the other terms being given:

(a) The airplane formula: R = KSV?, when A = 005, S = 25, V = 120.
Check the result by making S the subject of the formula. If I be doubled,
what will be the change in R?

(b) The falling body formula: S = 15gf*, when g = 32 and ¢ = 9. Check
the result by making g the subject of the formula.

(c) The power sk f¢t formula: M = Ii:—’_-a when d = 5 and r = 8o.
5
Check the result by making r the subject of the formula.

36. (a) Write down a formula giving the area of the four walls of a room
when the length, width, and height are given. If the length be doubled, how
will the area be affected?

(b) Write a formula to enable a man to calculate his salary after n
years, if his salary begins at x dollars, and increases at the ratc of y dollars
a year after the first year.

37. Give illustrations of bodies which have
(a) Translation without rotation.
(b) Rotation without translation.
(c) Translation and rotation.

38. The following exercise is intended as a class demonstration:
What kind of geometrical shape would you get in each of the follow-
ing cases?
(a) Rotating a rectangle of wire about one side.
(b) Rotating a rectangular disc about one edge.
(c) Rotating a triangle about one side.
(d) Rotating a circle about a diameter,
(e) Translating 5 .iicle perpendicular to its own plane.
(f) Translating a triangle perpendicular to its own plane.
(8) Translating a sguare along a line not perpendicular to its own length.

(The geometrical terms ‘rectangle’, ‘perpendicular’, and ‘plane’ need not
be mentioned but should be indicated by action,)
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A curve as the path of
u moving point-par-
ticle,

Projection:
(1) Conical projection.
(2) Section.
(3) Similarity.

Definitions and Concepts

A line segment is measurable in terms of a unit
or standard of length. The measure of the line
scgment is a real number.

‘T'he study of geonietry may be upproached from
the nonmetrical or descriptive, or from the metrical
standpoint. In the former case the most useful
approach is through a study of geometrical forms,
solid and plane, and through ‘projection’.

Any line, straight or curved, may be regarded
as a continuous set of points, specifiable as the
path of a moving particle. Continuity is here ac-
cepted as intuitive,

(d) A straight line (hereafter called a line) has
the same direction at all its points; two directions
belong to & curve at any point, except an end-

point.

P.. Py, . .. is a system of points in a plane S.
O is any fixed point outside S; the lines OPy, OPy,
. . meet & second plane S’ at the corresponding
points Oy, (O, . . . . Then the system of points
Or, Qa . . . on 8 is the conical projection of the
system of ponts Py, Py, . . . on § with respect to
the point O, which is called the verfex of projection.
The lines 0P1 Ql, OPg Q|, e form a PG#CI:I or
a sheaf of rays. The figure formed by a plane cut-
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Typical Problem Material

39. Examine models, preferably those prepared by the class as a project,
of the following geometrical forms:
(a) Prisin on triangular, quadrilateral, and pentagonal bases.
(b) Pyramid on triangular, quadrilateral, and pentagonal bases.
(c) Combination of prisms and pyramids.
(d) Combination of prisms and prisms (e.g., octahedron).
Make three columns for faces (F), vertices (V), and edges (E).
Add the number of faces and vertices together (F + V) and note the relation-
ship to the number of edges (E). Verify Euler’s Theorem: F + V = E 4 2,
Discuss the case of the triangle and rectangle. (The names of geometrical
solids, except prism and pyramid, need not be introduced.)

40. (a) Draw a number of lines on paper and count the number of points
of intersection. Enter in your book: number of lines (L), number of points
(P). Show that number of points (P) = LL:—!)-

(b) Mark a number of points on paper and join them with lines. Enter
in your book: number of points (P) and number of lines (L). Show that
PP-1)

2
Note here as elsewhere, the idca of duality.

number of lines (L) =

41. Fold a square sheet of paper so as to make 4 squares. Put a point
inside each square. Connect all the points in succession by a bruken line
without allowing the line to cross itself. Repeat with the square divided into
9, 12, and 16 parts. (See Young, J. W., Fundamental Concepis, page 168.)

42. (a) A boy was cycling along a straight road; a dog in a neighboring field
saw the boy and ran directly towards him. What kind of curve did the dog
follow in his pursuit of the boy? Draw the positions of the boy and the dog
after, say, 1, 2, 3, 4, 5, 6 sec. 'This curve is called a curve of pursuil.

(b) Three dogs A, B, C are at three different points in a field. A sees
B and chases him, B sees C and chases him, C sees 4 and chases him. Describe
the path of pursuit of one of the dogs.

43. Drawing certain well-known curves mechanically, e.g., circle, ellipse (string
method), parabola, spirals (tnwinding thread on cotton reel), cycloid, epicy-
cloids, and the like. Make mechanical contrivances todemonstratesomeof these.

44. (a) Using a small electric torch, project upon a wall shadows of plane
and solid objects (rectangle, circle, cube, sphere, etc.). Note the form of the
figures produced in various p:sitions. By means of strings, or thin india-
rubber cords, show the directions of the rays through corresponding points of
the object and shadow.

(b) Make a small spherical frame of wire to represent the meridians of
longitude and the parallels of latitude of the earth. Place a small electric
lamp at the center and draw the projections of the meridians and parallels
on plane and cylindrical shects of paper. (Map projection)
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ting the pencil is called a plane section. There is
a one-to-one correspondence between the points
and lines of the sections of a pencil of rays.
When the planes S and S’ are parallel, the geo-
metrical figures so obtained are similar.
Motion of a particle— The motion of a particle requires (a) direction
Translation. and (b) speed for its complete specification.
(a) Direction. The direction of motion of a particle at any in-
(b) Speed. stant is one of the directions belonging to the line
of motion at the point corresponding to the given
instant,
The speed, or velocity, of a particle is the time-
rate of change of position.
s—s" As

t—-t At
Velocity may be constant or variable.

Ratio and rate. A ratio is a relation between two quantities of
the same kind; a rate is a relation between two
quantities of different kinds."

1yd. .- .1 yd
Thus —L is a ratio; < isa rate.l!
1in ec

Thus v= fors =yf,and vy =

Velocity is a rate.
‘ Two quantities of different kinds have neither

sum, nor difference, nor ratio.!?

Rate of change. The rate of change i a variable y with respact
to a variable x within a given interval is obtained
by dividing the change in y (Av) by the corre-
sponding or concomitant change in x (Ax).

1 Wallis, J. Treatise on Algebra, 1685. *Quantitivs are of the same kind if they
are comparable, i.e., if it can be proved that one is greater than, equal to, or less

than the other.”
1 Henderson, J. B. “The Stroud System of Teaching Dynamics.” Mathematical

Gazetle, May, 1924, p. 99.
1t Picken, D. K. “Ratio and Proportion.” Mathematical Ga:zetle, Jan and May,

1920; May, 1924.
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Typical Problem Material

45. Examine the form of plane sections of a sphere, cube, cone, and pyramid.
Ask the class to draw figures of imaginary plane sections of other figures (contour
lines).

46. As a class project make similar models of a single-room house, using as
the unit of measurement 1 in., 1}4 in., 2 in., etc., to the foot, show that meas-
ures of corresponding parts are in the same ratio.

47. Simple problems on the speeds of vehicles (automobiles, airplanes, ships),
and the distance traversed in a given time. Use line diagrams drawn to scale
to illustrate the problems.

48. A boy cycled from 4 to X passing certain villages B, C, D, E, and F on
the way. The distances of each village from . and the time oi arrival (starting
at noon) are given in the following table:

Place Distance from A (mi.) Time from noon(hr.)
F: B o noon
B ... 30 1.30
¢ 50 2.30
D ... 6o¢s 3.30¢
E ...... 8o 4.30
F ... 100 5.00
X ... 120 5.30

Fird the boy’s rate of cycling during each stage of the journey, thus:
Make two new columns headed As (change in distance) and At (change
in time), and fill in the columns, As and a¢, for each interval AB, BC, etc.

- .
Find the rate of cycling —A-E for each interval.

49. A boat moves along a river, with velocity V (miles per hour) relative to
the water. The velocity of the water relativ2 to the bank is v mi. per hour.
Show that the distance traversed by the boat in time ¢ is (V + )¢ or (V — v)t.

Calculate the distance travetsed upstream in 4 hr., when V = 10 mi./hr.
and v= Y4 mi./hr.

s0. The following formula gives the velocity (v) of a stream at the bottom
of a river when the velocity (V) at the surface is given: v = V — 24/V + 1.

Calculate the velocity of the water at the bottom of the river when that
at the surface is 144 ft./min.
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An angle.

Pasch’s Axiom.

Direction.

The cycle or complete ro-
tation.

Right angle.

Definitions and Concepts

(e) When a physical body rotates, i.e., moves
in such a way that different parts of the body have
different motions, it is said to move through an
angle.

If we take an indefinitely thin rod as the simplest
form of extended physical body, the line is its
geometrical correlate.

Any two lines in the same plane constitute an
angle. The term ‘angle’ is here defined as a geo-
metrical figure having no necessary association
with magnitude.

“Let 4, B, C, be three points, not lying in a
straight line, and let L be a straight line in the
plane ABC and not passing through any of the
points 4, B, or C. Then, if L passes through a
point of the segment A B, it must also pass through
a point either of the segment BC or of the segment
AC.” (Pasch’s Axiom)

Again, “Let A4, B, C be three points, not lying
in a straight line, and let L be a straight line pass-
ing through 4 and not passing through the points
Bor C. Then L lies between AB and AC, if it cut
the segment BC.” From this axiom we derive the
concepts ‘greater than’ and ‘less than’ as applied
to angles.

An elementary conception of direction may be
regarded as intuitive. This is implied in the state-
ment that a straight line has the same direction at
all its points.

Any two directions in a plane determine an
angle.

Just as the length of a line is measured in terms
of a unit length span between two arbitrarily
chosen points, so the magnitude of an angle is
measured in terms of a unit angle span between
two arbitrarily chosen directions. To find the
measure of a line, we ‘translate’ our unit; to find
the measure of an angle, we ‘rotate’ our unit.

The unit angle is the degree, which is 1/360th
part of a complete rotation, or cycle (C).

The right angle (R) is one-fourth of the cycle.
Thus C = 360° = 4R.
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Typical Problem Material

5t. Cut out a paper circle of 2-in. radius. Fold the paper dividing the
circle into 2, then 4, then 8 equal parts. Mark the creases with a pencil,
thus making 8 equal angles at the center. Now divide the circle into 6 equal
parts (by spacing the radius round the circumference). Now divide the
circle into 24 equal parts (60°— 45°). Discuss the division of the circle into
360 equal parts. Measure the angles so drawn with a protractor.

52. Cut out two circles, each of 2-in. radius, and with the aid of a protractor,
divide one of them into parts so that it may serve as a circtdar protractor.
Make radial cuts to both circles (along the zero line in the case of the circular
protractor) and fit them together so that the sizes of the sectors may be varied
at will. Turn over to the unmarked side, guess the magnitude, or ‘rota’, of
the angle of the sector, and write the guess down. Turn to the marked side
and test your guess. Enter your work thus:

Difference
Guess Test (with proper sign)

53. (a) Draw a number of angles on your book; guess the number of degrees
in each, and test your guesses with a protractor. Write down the difference
between the guess and the test in each case, with the appropriate sign, thus:

Guess Test Difierence

(b) Make a clock-face protractor with two hands marked in degrecs.
Draw an angie on the blackboard. Turn the hands of the clock until the
angle between them is, according to estimation, equal to the angle drawn on
the blackboard. Compute the angle of the clock-face by taking the difference
of the ‘readings’. Test the estimate by measuring the given angle with an
ordinary protractor. Repeat with angles of various sizes (up to 360°).

Repeat Ex. 53 (a) using 4 rotating wheel. Take angles greater thau 360°.
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The ‘rota’ of an angle.

Fundamental assump-
tions regarding angles.
(1) Right angles.

(2) Vertically opposite
angles.
(3) Directed angles.

(4) The complete
angle.

The circle.

Points of the compass.

THE NINTH YEARBOOK

Definitions and Concepts

There is no term for an angle correspondit.z to
the length of a line. We suggest the use of a tern,
such as ‘rota’, which suggests ‘amount of rota-
tion’, Thus, the rota of any angle of an equi-
lateral triangle is 60°.

Fundamental assumptions regarding angles are:

(x) All right angles are equal.

(2) When two lines intersect, the vertically
opposite angles are equal.

(3) The rota of an angle may be .uite or infinite,
positive or negative.

Angles greater than 36.° may be conveniently
represented on a Riemannian Surface.®

(4) Two directions determine eight angles in
all.“

If a finite line OA rotate round a fixed point O:
the point A traces a circle. The line O is called
the radius, or the radius vector.

The points of the compass should be studied
practically. (See Ex. 54.)

18 The Riemann Surface may be illustrated with a soap film on a spiral frame. See
Boys, C. V., Soap Bubble, London, 1912.
WPicken, D. K. “ The Complete Angle and Geometrical Generality.” Malk-

emalical Gazeite, Dec., 1922.
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Typical Problem Material

54. The Points of the Compass. (A group lesson.)

Divide the class into groups of three or four pupils each. Procure a number
of light blackboards (or drawing-hoards with paper), vne for each group.
Place the boards upon the workbenches or desks. Procure a number of small
compass needles. Ask the class to draw a number of lines North—South and
East—West, dividing the board into a set of rectangles or squares. (The
idea of parallelism should be brought out here.) Draw a few lines in the N.E.-
S.W. direction, and others in the N.W.-S.E. direction. Problems like the
following may be given:

(a) A scout went 3 mi. North, 2 mi. East, and then 3 mi. South—East.
Show, by a scale drawing, his final position. Measure his distance from his
starting-point and indicate his direction from the North—South line.

(b) A ship sailed 50 mi. 1n the direction N.32° E., changed its course and
sailed 40 mi. in the direction N.20° W.  FKind its position relative to its starting-
point. (The above classroom technique may be frequently used in this work.)

55. Field Work.!¢

Use of plane table and alidade to make a map or plan of the school ground.
Compare the plans drawn by various groups and show that they are similar
(i.e., the angles are equal and the sides proportional).

The map may be used as an illustration of conical projection.

18 Shuster, C. N. *‘The Use of Measuring Instruments in Teaching Mathematics.”’
Third Yearbook, National Council of Teachers of Mathematics, 1928, p. 215.

Swainson, O. W. Topographic Manual, p. 38 ff. United States Coast and Geodetic
Survey, Washington, 1928,
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Locus.

Angle and corresponding
arc.

Angular motion.

An,.e of inclination.

Definitions and Concepts

The circle is the locus of all points in a plane
equidistant from a given point.

The angle at the center of a circle is proportional
to the subtended arc.

The circumference of a circle is proportional to
the radius of the circle. (C = 2m.)

The arc subtended by a given angle is propor-
tional to the radius of the circle.

Analogous to the velocity of a particle along a
line, we have the angular velocity of a line (rod)
round a point,

(<)
Thus w=‘—0r9=wt.

0e—6" a8

t—=¢ al’
Angular velocity may be variable or constant.

Two rays OX and OV divide the plane which
contains tiem into two regions. These rays de-
tetmine two angle rotas which are in general
unequal and which are known as the two angles of
inclination of the two rays. The angles of incli-
nation of two co-terminal rays are supplementary.

And w =
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Typical Problem Material

§6. Draw two lines AOA’, BOB’, such that AQ = O4’, and BO = OB’
Join AB and A’B’ and mecasure them. Show that AR = A’B’. Show that
the greater the angle (up to 180°) between the lines, the greater is the length
of the line AB.

$7. Draw two intersecting lines and see how many different angles you can
find. Measure them.

§8. Exercises on circles. Designs with circles.
(The purpose of these excrcises is partly to give the pupil experience in the
use of compass and partly to show the connection of geometry with design.)

59. A treasure was hidden in a field 4o ft. from one tree and 3o ft. from
another. The trees were 25 ft. apart. Draw a plan showing possible
positions of the treasure. If the trees were in a direct North—South line and
the treasure was to the East of the trees, where was it situated?

6o. Draw four concentric circles, Make two columns, Radius and Cor-
responding Arc, and show that for a given angle at the center, the arcs are
proportional to the radii, i.e., s1/5; = ri/rs.

61. Drawa circle. Measure some angles at the center and their correspond-
ing arcs. (5,/s3 = ©1/6;.) Measure the rate of change of angle with arc in
each case.

62. How many times would a wheel of 14-in. diameter turn when traveling
1 mi. along a road?

63. A gear wheel of 10-in. radius turns at the rate of 1oo r.p.m. A second
wheel of 5-in. radius bears on the first. How many revolutions does the
second wheel make in 5 min.?

64. The pedal wheel of a bicycle of s-in. radius is connected by a chain to
the rear sprocket wheel of 1}4-in. radius, The radius of the rear wheel is 14
in. How far would the bicycle go in 1o min., if the pedal is turned one
revolution every 2 sec.?

If the pedal wheel were increased from 5 in. to 6 in. in radius, how much
further would the bicycle go in the same time?

65. Show that (a + 8) + (2a — 8) = 3a is true of angular motion. (Use the
divided circles of Ex. 52.)

66. The angle through which a wheel revolves in a certain time is given in
the following table:

Angle (0) (deg.) .............. 30 60 9o 110 130
Time (&) (sec.) ............... { 2 3 4 15

Angle (8) (deg.) .............. 140 175 225§ 280 6oo
Time (¢) (sec.) .....ovvvvn..n.. 6 v ) I 20
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Projection.
Orthogonal projection.

Horizontal and vertical
projections.

Perpendicular to a plane.

Angle between a straight
line and a plane.

Angle betwcen two
planes.

Graphical representation.

(a) The graph as a pic-

torial representa-

tion of a verbal
statement.

THE NINTH YEARBOOK

Definitions and Concepts

Py, P,, . . . is a system of points in a plane S.
01, Qs, . . . are the feet of the perpendiculars from
Py, P,,. . .toaline XY (oraplane §’). Then the

. is called the orthogonal
. on the line

system of points (i, O, . .
projection of the systen. Py, Py, . .
XY (or the plane §’).

The orthogonal projections of a system of points
Py, P, . .. on horizontal and vertical lines (or
planes) are called horizontal and vertical projec-
tions of the system of points.

A line is perpendicular to a plane when it is per-
pendicular to any line which it meets in the plane.
If ON be the projection of the line OP on the
plane OXY, then the angle between the line OP
and the plane OXY is the angle PON.

The angle between two planes is the angle be-
tween two intersecting lines, one in each plane,
each perpendicular to the line of intersection of
the planes, This angle is called the angle of in-
dination of the two planes.

Graphs may be used as pictorial representations
of verbal statements. A graph has its own ‘story’.
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Typical Problem Material
Draw two more tables showing change in angle (A ©) and the corresponding

. s s 13 k3 9 .
change in time (4 ¢) for each interval, Find the ratio %7 in each case.
67. Calculate the angular velocity (in degrees per second) of a top which
makes 600 r.p.m,

68. (a) Imagine a shower of rain (or the sun’s rays) falling vertically.
What would be the shape of the dry patch (or the shadow) made by a circular
disc, a square disc, an ellipse, a sphere, etc., when placed at certain inclinations
to the ground?

(b) Make cardboard models, with projection lines of thread, to illustrate
projection.,

__69. Show that the sum of the orthogonal prejections of a number of vectors
AB, BC,CD, ... MN on a line XY is equal to the projection of the vector
AN on the same line.

70. Draw a circle and make angles (POX) 30° 45°, 60°, 90°, 120°, 135°, 150°,
180° from an initial radius OX. Measure the projection ON of the radius
vector OP upon the line OX for each position of OP. Tabulate the results
in two columns, Angle and Projection.

Find the angle for which the projection is 0.4, 0.5, 0.6 of the length of the
radius vector.

71. A ship sailed 50 mi. in the direction 32° E. of N. How far was it North
of its starting-point, and how far East?

72. A ship sailed 80 mi. in the direction N.30° E. on the first day of its
passage. 85 mi. N.35° E. on the second day, and go mi. N.40° E. on the third
day. Find the total distance traversed as measured by the log, the effective
distance from the point of departure and the total ‘northing’ and ‘easting’.

73. With a straight stick and a number of threads (or with an umbrella
frame) make a framework to represent a right circular cone. Find the angle
between the generating lines and the base.

74. Take the models of houses used in Ex. 46. Find the inclination of the
roof and of the roof edge to the ground.

75. The Graph of a Story.

A boy motorcycled from 4 to X, passing certain villages 4, B, C, D, E, F
on the way. The distances of the villages from A, their heights above sea
level, and the boy’s time of arrival at them are given in the following table:
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Interpolation from the
graph.

Graphs representing rat¢
of change.

Definitions and Concepts

When a graph shows a general trend it is pos-
sible to estimate, to a certain degree of approxima-
tion, values of the variables between the given
data. This process of estimation is called inter-
polation. A graph may be regarded as a ‘ready
reckoner’, since unknown values of the variable
may be interpolated between ascertained or given
values.

Examples illustrating rates of different kinds are:

As . Ak
speed 37 and slope (gradient) =

Example illustrating constant rate and constant
gradient.



A COURSE OF STUDY 15§
Typical Problem Material

Bl Distance from Height above Time Taken
Ace A (mi.) Sea Level (ft.) (sec.)

A .. o 10) noon)
B ....... 30 50 1.30
C....... 50 200 2.30

D .. ... 6o ¢- 6oo ph 3.30¢4
E ....... 8o 1,000 4.30
F ... .. 100 900 §.00

D, G 120 700 5.30)

(a) Make a scale drawing of the journey on graph paper, showing the
distances between the villages horizontally (20 mi. to the inch), the correspond-
ing heights above sea level vertically (800 ft. to the inch).

(b) Tell the story of the journey from the point of view of the cyclist,

How far from A would you expect the boy to be at a height of 400 ft. above
sea level? Where would the journey be most difficult? Where easiest?

(¢) Make i-om the data three new columns, Change of Distance (as),
Change of Altitude (ak), and Change of Time (A¢) for each interval.

76. Using the data of Ex. 73, work out for each interval the following:

Change in height Ak

(a) = : e or —
Corresponding change in distance  a s
Change in distance As

(b) = ; ——— oF —
Corresponding change in time A ¢

© Change in height Ak
¢ Corresponding change in time = A ¢

-3—-’;’ is the rate of change of height with distance (gradient) between the points
considered.

i—': is the rute of change of distance with time (speed) between the same
points.

3—}: is the rute of change of height with time between the same points.

77. Water flows into ~ *ank of go-cu. ft. capacity at the rate of 5 cu. ft.
per minute.
(a) Make a table with columns showing the volume of water in the tank
(V) for each second of time (£) up to the time the tank overflows.
(b) Draw a graph showing how much of the tank is filled each minute.
(¢) Find, from the graph, how much water was in the tank at the end
of 617 min,
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Growth curve,

Graphical representation.
(b) Bar graph.

Definitions and Concepts

Example illustrating normal growth: since
growth is cont’ 'tous and gradual the curve of
growth will be : .mooth curve,

Reference should be made to automatic record-
ers of meteorological phenomena, crescographs (e.g.,
J. C. Bose’s magnetic crescograph).

A bar graph or column diagram may be looked
upon as a broadened line graph. In a bar graph
the bases are equal, the relative magnitudes of the
quantities represented being proportional to the
lengths or to the areas of the bars.
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Typical Problem Material

(d) Draw two new columns, Change in Volume (A V) and Change in
Time (4 ¢), and find the rate of change of volume with time.

78. The following measurements of the height of a plant were taken
every Monday morning for nine weeks:

Date ................... June 1 | June 8 | June 15| June 22 | June 29
Height (inch) ............ 1.0 2.2 4.4 7.2 1.8
Date...........coviiiiiiiii July 6 | July 13| July 20 | July 27
Height (inch) .................... 13.. 15.0 15.6 16.0

(a) Draw a graph showing the height of the plant each week.
(b) Draw a graph showing the rafe of growth of the plant each week.
(c) When was the height gin.? When was the rate of growth greatest?

(This example may be prepared for by observing for several weeks the growth
of a tulip, or othe quick-growing plant. Further examples may be taken from
the medical statistics of the school, when such are available and from tables
giving normal weights of babies during the first year of life, and the heights
of children during schuol age.)

79. Make a formula and draw a graph to represent the simple and com-
pound interests on $200 at 45, per annum for 6 yr.

8o. During a severe rain storm a rain gauge measured the fall in inches
as follows:

Time ......... ' 9 a.m. 10 a.m. Ira.m. | 12noon 1p.m,
| ‘ ,

Inches ........ I o 1 ) §. 2 P15

Time ...ooovvvve i 2 p.m. 3 pm. 4 p.m. 5p.m.

Inches ............. 3 515 5 6

Draw a bar graph to represent the day's fall.

81. The following figures show the growth of trade in the United States
between the years 1850 and 1910. Make a bar graph or column diagram to
represent these statistics.  (The money is in millions of dollars.)
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Frequency distribution,
Class interval.
Frequency histogram.
Frequency polygon.
Frequency curve.

Definittons and Concepts

The frequency histogram is a special form of the
comparison bar or column graph. It should be
given special attention in the school course, since
it is widely used in economics, politics, and educa-
tion. The frequency polygon is a polygon drawn
through the middle points of the tops of the bars
of the frequency histogram,



A COURSE OF STUDY 159

Typical Problem Material

1860 1870 1880 I 1890 1000 1910

Year . 1850

—Importsi 180" | 260 440 645 705 855 1.610
Exports - 130 230 445 845 870 1,410 1,780
*$180,000,000,

In each cace draw a bar graph to represent the rate of increase of import and
export trade.

82. On an examination the number of candidates obtaining scores between
o and 10%, 109 and 209, and so on, were given as follows:

Percentage ......... o-10 10-20 20-30 30-40 4050
Frequency .......... 2 12 30 47 54
Percentage ......... 5060 60-70 70~8o0 8c—go 9o-100
Frequency .......... 48 29 13 3 | 1

1 1

Draw a ‘frequency histogram ' of the bar graph to represent the results.
(Use a base-line class interval of one-half of an inch.)

Which parts of the graph would you mark: excellent, very good, good,
only fair, bad, or would you grade A, B, C, D, and E?

83. A teacher gave the following scores to a class on an examination:

Pupil I Score for Each Question (maximum to)
Ao ! 2 1 3 3 4 4 5 6
B ..... .. 4 5 5 7 6 7 8 8
C........ 4 2 3 4 7 8 6 8
D........ 5 4 5 6 7 8 8 6
E........ 5 6 7 5 6 9 7 9
F.oo...... 3 5 6 5 6 7 6 4
G ... 2 3 4 5 7 6 7 6
H........ 4 5 6 6 6 7 6 5
| G 5 3 4 6 7 7 8 7
J oo 5 6 5 7 8 6 7 8
K ........ 3 4 5 6 7 6 7 9

Make a frequency histogram of the scores and draw a frequency curve to
represent them.,
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Graphical representation
by angles or sectors.

Grapbhical representatinn.
«¢) The statistics of
experiment.

Line of best fit.

The frequency curve as
the line of best fit.

Automatic recorders.

Surfaces.

A plane.

THE NINTH YEARBOOK

Definitions and Concepts

Angles or sectors of circles may be used to repre-
sent magnitudes relatively.

In all experimental data derived from measure-
ments, errors of various kinds are inevitable. Some
of these are due to variations in the material
measured, others to ‘personal’ errors or errors of
observation.

The line of best fit to experimental data is the
line which best represents, in graphical form, the
general trend of the data obtained in an investi-
gation.

The frequency curve is the line of best fit to the
vertices of & given frequency polygon.®

When a variable changes with time, the values
of the variable may often be recorded automati-
cally by a self-recording device. Examples of such
devices are found in self-recording crescographs,
barometers, thermometers, rain gauges, etc.

A surface may be looked upon as a continuous
set of points marking the boundary between two
continuous regions of spzce. It is the geometrical
correlate of the indefinitely thin sheet. At each
point of a surface there is, in general, an unlimited
number of directions belonging to the surface.

A plane is a surface such that at any point of the
surface all the directions lie wholly on the surface.
(a) Two intersecting lines

(b) Three =oints not lying

on the same line

(c) A lire and a point not

lying on the line

determine one and
only one plane.

18 Kelley, T. L. Statistical Method, Chap. VII. New Yurk, 1928.
Elderton, W. V. Frequency Curves and Correla‘ion. Iondon, 1906.
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Typical Problem Material
84. Draw an angle or sector graph to show the proportion of calcium, carbon,
and oxygen in a sample of chalk (calcium carbonate) weighing 100 gm., which
contains calcium (40 gm.), carbon (12 gm.), and oxygen (48 gm.).

8s5. An india-rubber band, 4o cmn. long, was stretched by weights and its
length was measured for each weight applied, thus:

Weight suspended (gm.)| o 5 10 1§ 20 25 30

Ler<* . of band (cm.)..| 40.0 | 41.8 | 43.4 45.6 1 47.2 | 49.0 { 50.8

(a) Make a line of best fit among the plotted points of these readings
and show that it bears out, approximately, Hooke’s Law: “ The extension is
proportional to the weight applied.”

(b) What weight would you expect to stretch the band to 48 cm.?

(c) What will be the length of the band when 27 gm. are suspended?

86. Draw a frequency curve for the data given in Ex. 79.

87. Attach a piece of thread to the top of a growing plant, pass it over a
fixed pulley and suspend a small weight at the other end to keep the thread
tight. Fix a light pointer radially to the pulley and note the position of the
end of the pointer daily. This is a simple crescograph.

88. Discuss the type of surface obtained in the following cases:
(a) Translating a thin stick along a line perpendicular to its length.
(b) Translating a circular ring along a line perpendicular to the plane
of the circle,
(c) Translating a iriangle, rectangle, etc., along a line not in the same
plane.
(d) Rotating a line (7) round a circle perpendicular to its length, (ii)
round a circle not perpendicular to its length.
(e) Rotating a line about a point outside the line.
(f) Rotating a line about one end (circle and cone); a circle about a
diameter (sphere).
(The pupil should be asked to imagine the result before he sees it demon-
strated in concrete form.)

89. Discuss the type of surface obtained in the following cases:
(a) ‘Translating a line along a line perpendicular to itself, the line
‘gradually’ decreasing in length.
(b) Translating a circle (or a triangle) perpendicular to itself, the circle
‘gradually’ decreasing.
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Plane generated by the
movement of a line,
(a) Generator.

(b) Directrix,

Area.

Indices.

Algebraic multiplication.
(a) Nondirected num-
bers.

Square root.

Difference series.
Arithmetic progression.

Area by integration,

THE NINTH YEARBOOK

Definitions and Concepts

Since any two intersecting lines determine a
plane, a plane may be ‘generated’ by the transla-
tion of a line (generator) in any direction (direc-
trix) except that of its own length.

The measure of a surface in terms of a unit is its
area.

The area of a rectangle is given by the product
of its length and its width or 4 = w.

The formula 4 = a-a for the area of a square of
side ¢ may be written A4 = a@%

The following identities may be illustrated
graphically:
a(b+c¢) =ab+ ac
alb—¢) =ab—ac
(a40) (a—-b)=a*~b?
(a+ b)*= a2+ 20b+ &

To calculate square roat geometrically in simple
cases.!?

A series is an expression of the form uy, u3, . . .
u,, where the terms #;, u3, . . . %, obey some low
of progression. In the simplest case where uy, w,
uy . .., etc, differ by a constant quantity, the
series is called a difference series, or an arithmetic
progression.

An arithmetic progression may be conveniently
illustrated by a bar graph having equal steps in
height. The sum of an arithmetic progression may
be computed in terms of the area of the graph.!®

Since a plane may be generated by the transla-
tion of a line in any direction except that of its
own length, an area may be computed by a process
of integration.

17 Nunn, T. P, 0p. cit., Chap. VIII,

130, cil.,, Chap. XIX,
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go. Illustrate with a soap ﬁlf\z‘ou a rectangular frame with one movable
side, \

or1. Draw an irregular closed Peure on square paper and calculate its area
by counting squares. Find thc arva of a circle in the same way.

92. Write a formula for the area of the four walls of a room given the length,
width, and height of the walls.
What will the formula be if the length and width are increased by 10%;?

93. Write formulas for the areas of rectangular figures of various shapes (L
shape, T shape, cross, etc.).

If the length and the width of a rectangle are both increased (or decreased)
10%, by how much is the area increased (or decreased)?

04. The length of a rectangle is 26.54 in. to the nearest .or in., and the
width 17.67 to the same degree of accuracy. Find the area.!®

95. Factors:
ou+ 6b = 3(3a + 2b)
22X 18 = (204 2) (20 =2) = 400 — 4 = 396
(e+d—ct=(@+b+c)(a+b—c)
(a+ b2 =a*+ 226+ B*

g6. (a) Complete the following expression so that it becomes a perfect
square: x? 4+ 2ox. Illustrate with a diagram.
(b) One side of a rectangle was 20 in. longer than the other side. The
area was 500 sq. in. Find the dimensions of the rectangle.
Show that (5.3) > V/27.5 > 35.2.
(c) Find the length of a side of a square when the area is 30 sq. ft.

97. A man dug a trench 2 ft. wide at the following rate: 40 ft. on the first
day, 42 ft. on the second day, 44 ft.on the third, and so on for 6 days. Draw
a bar graph (with the trenches side by side) to illustrate the amount of
ground dug. Findthe total length dug and show that it is given by the formula:

S= g(a <+ 1), where S is the total length, # the number of days, ¢ the length
dugon the first day, and / the length dug on the Jast day.

98. Find the sum of: 5, 8, 11 . . . to 20 terms.
Find the sum of the first » natural numbers.

99.(a) Take a number of strips of wood of the same width and lergth, and
with them form a rectangle. Keeping the bottom fixed, ‘shear’ the rest so
as to form (1) a parallelogram; (2) irregular ‘parallelograms’ with curved
sides.

¥ Goodwin, H. M. Precision of Measurements and Graphical Methods. New York,
1920,
Junes, I1. S, Moderr Arithinelic, p. 260. London, 1930.
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Area of a triangle.

Space.

Volume.

Parallelopiped or cuboid.

Algebraic multiplication.

(b) The product of di-
rected numbers.

(1) Directed areas

or length-
length prod-
ucts.

Definitions and Concepts

Consider a rectangle as made up of a number of
thin rectangular strips of the same width integrated
together. The area is the sum of the areas of these
strips, i.e., is equal to the product of the generatrix
and directrix. Similarly, the area of a parallelo-
gram may be derived from that of the rectangle by
‘shearing’ the strips. It will then be seen that the
area of the parallelogram is equal to the area of
the rectangle of the same base and height.

The area of a triangle may be determined in
three different ways:

(@) As half the area of the corresponding rec-
tangle or parallelogram.

(b) As the integration of a number of thin strips
of the same width and gradually decreasing lengths.

(c) As the arerage length of strip multiplied by
the height.

A=141h

The area of a trapezoid is equal to the average
of the parallel sides multiplied by the height.

Space may be looked upon as the aggregate of
all points. Space holds within its domain all
points, lines, and surfaces.

The measure of space, in terms of a unit, is
volume.

The volume of a rectangular parallelopiped or
cuboid is given by the formula V = lwh.

A volume may be generated by the translation
of an area. As in the case of the area of a rec-
tangle, the volume of a cuboid may be computed
by dividing the cuboid into a aumber of thin
rectangular discs and infegrating them.

Since a length may be treated as a directed
quantity, an area or length-length product may,
by a suitable convention 2, to sigas, be wreated as
a directed quantity.

(+4) = (+a) (+b)
(=) = (+a) (—b)
(=) = (=a) (+b)
(+:1) = (=0) (=)
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Typical Problem Material

Show that the area is the same in each case: 4 = lw, where ¢ is the length
of the base and w the width.

(b) Draw a triangle with base 3 in. and vertical height 2 in. Divide
the triangle into strips by drawing a number of equally spaced lines (about
a dozen) parallel to the base. Show that the area of the triangle is equal to
the height of the triangle multiplied by the average length of the parallel lines.

100. Show, by using a number of strips of wood of the same wicdth but de-
creasing lengths, that the area of a trapezoid is equal to the average lcngth
of the parallel sides multiplied by the height.

Find the area of trapezoids in simple arithmetical cases.

tor. Illustrate the volume of a cuboid as the integration of a number of
rectangular cardboard discs of the same area. Shear these discs and obtain
the volumes of other figures of the same area of base and vertical height.

to2. If a rod (+4) be moved perpendicular to its length a distance (+ b),
it may be said to trace out a positive area (+ ). What sign would you give
the area in the following cascs?

(a) (+a) moving a distance (~b)
(b) (~b) moving a distance (+a)
(c) (~b) moving a distance (—u)
(d) (—a) moving a distance (~¥)
(e) (—a) moving a distance (+b)

Show that (+.4) = (+a) (+b) = (—a) (=b).
And (=) = (=a) (+b) = (+a) (=0).
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Suggested Course
Rule of signs.

Algebraic fractions.

(2) Rate-time
products.

The rule of signs.

The quotient of two di-
rected numbers.
Ratio and rate.

THE NINTH YEARBOOK

Definitions and Concepts
These equations illustrate the Rule of Signs.

Graphical representation of fractions by divid-
ing lines, areas, volumes.

Proof that MobA== of md = md,
7 ”n )

The product of a nondirected and a directed
number is a directed number, e.g., momentum
mass X velocity. The product of two directed
numbers of different kinds is a directed number,
e.g., distance = velocity X time, i.e,, s = o,

(+3) = (+v) (+9)
(=$) = (-v) (+9)
(=5) = (+v) (-8
(+5) = (-v) (=)

These equations again illustrate the Rule of
Signs.

The quotient of two like directed numbers is a
ratio. The quotient of two unlike directed quanti-
ties is a rate.

The equations

(+3) = (4+v) (+8) = (=v) (=0

and (=35) = (+9) (=0 = (=) (+9)
suggest the equations

() _ (o 29

(™

—$ +s
and G = (=) = =
From which follows also:

a -a (—a) (+a)

b b T T (=)
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Typical Problem Material

103. Apply the idea of directed area to the equations:
alb+c¢) =ab+ac
(a4 b) (a—b) = g~ 12, )
104. Draw a rectangle to represent a rectangular block of ground of area ..
Show that two-thirds of a block is the same as one-third of two blocks or

two blocks divided by three. Thus:z ofd= iof 24 = 334-

Repeat with circles.

Show that -’L‘ofA -1 of mA = ﬂ-.
n ” n

105. When one-third of a bottle of a medicine 4 was added to one-fourth
of a bottle of the same size of another medicine B, the mixture was found to
measure 314 oz. Find the numbe. of ounces of medicine A and B will each
hold when full.

I 1 1 %Y
106. If - + v-?provethatfau_{_v-
nE .
IfC= Fyrp, express E in terms of C, R, and n.
. . . . a b
107. Reduce the following to a single algebraic fraction: iy + 7

108. Two automobiles, P and N, are moving in opposite directions at the
rate of 30 mi. per hour (}3 mi. per minute). They pass a certain mile-post
at the same time. Assuming that they maintain a constant rate, and using
the formula s =uf to determine the distance traversed, find

(a) Where P was 6 min. before passing the mile-post.

(b) Where P will be 6 min. after passing the mile-post.

(c) Where N will be 6 min. after passing the mile-post.

(d) Whe.e N was 6 min. before passing the mile-post.
Show that (+3) = (46) (+34) = (~6) (-14).

And (-3) = (=6) (+4) = (+6) (~19).

109. A man, named 4, saves money at the rate of $20.00 a month; another
man, named B, loses money at the same rate. Compare their financial posi-
tions five months ago and five months hence with their positions to-day.
Write down a formula to represent each person's financial position.

110. A man, named A, saves money at the rate of $20.00 a month, and
another man, named B, loses money at the same rate. “When was 4 $100.00
worse off; when will he be $100.00 better off? When was B $100.00 better off;
when will he be $100.00 worse off?
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Suggested Course
Triangles or trilateral.

Principle of Duality.

Quadrangle and quadri-
lateral,

Congruence.

Principle of Congruence.

Examples of congruence.

Definitions and Concepts

Three noncollinear points 4, B, C determine a
{riangle. Since any two points determine a line,
three noncollinear points (4, B, C) determine
three lines (¢, b, ¢) through the points A, B, C
taken in pairs. The line segments 4B, BC, C4
are the sides of the triangle, and the angle seg-
ments BCA, etc., the angles of the triangle. Three
nonconcurrent lines determine a {rilateral.

A triangle has three sides.

A trilateral has three vertices.

Four points, 4, B, C, D, no three of which are
collinear, “'~termine a complete quudrangle; four
lines g, b, ¢, d, no three of which are concurrent,
form a complete guadrilateral. These exaraples
illustrate the Principle of Duality.

A complete quadrilateral has, in general, six
vertices and three diagonals.

Two figures A and B are congruent when the
points of 4 and B have one-to-one correspondence
and the distance between any two points of 4 is
equal to the distance between the corresponding
points of B.

In the case of plane closed figures, the areas are
also equal.

“Any figure (plane or solid) can be exactly re-
produced anywhere’’ (Principle of Congruence).®
Two figures which can be ‘constructed’ to the same
specifications in only one way (i.e., uniquely) are
congruent. Equal lines, equal angles, vertically
opposite angles, rectangles having equal length
and breadth, cuboids (parallelopipeds) having
equal dimensions, etc., are congruent.®

Assumption. 'Through a point on a line there
exists one and only one perpendicular to the line.

Axiom. If PQ is a given line-segment and OX
a given ray, we can find one, and only one, point
-4 on OX such that O4 = PQ.

Axiom. If PORis a given angle and OX a given
ray in a given plane, we can find one, and only one,
ray 04 in the plane and on a given side of 0X,
such that angle AOX = angle PQOR.

Assumption. Two circles will intersect, if at all,
in two points, one on either side of the line joining
their centers.®

2 Mathematical Association, The Teachingof Geamelry in Schools,p. 35. Lordon, 1925.
% Forder, H. G. The Axioms of Geomelry. For a discussion of congruence based
on the congruence of point couples, see Mathematical Gazette, March, 1929, p. 321.
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Typical Problem Material

If they both had $500.00 in the bank six months ago, tabulate in two columns
their banking accounts for the following twelve months, the present date
being July 1. Draw a graph to represent the monthlv variations.

111, The formula s = o/ gives the distance s traversed by a cyclist, when
the velocity and time are known.
(a) If the velocity is increased 1097, by how much is the distance in-
creased?
(b) If the time is increased 10C%, by how much is the distance increased?
(c) If both velocity and time are increased 10%, by how much is the
distance increased?

112. Show that a complete quadrilateral has six vertices and three diagonals.

r13.(a) Copy the triangle A BC, given AB, BC, and the angle ABC.
Measure and compare the remaining side and angles and the arca of the
original triangle and the copy.
(b) Copy the triangle ABC given 4B and the angles ABC and CA4B.
Show that the two triangles are congruent.
(c) Copy the triangle 4 BC when the three sides are given and show
that the two triangles are congruent.
(d) Copy the triangle 4EC, right-angled at B, when the hypotenuse
and one other side are given,

114. Make a prism having edges 3’, 4/, 5’ at the base. and 4, §’, 6’ at the apex.
Compare results obtained by the class and find out how many different forms
are possible.

r15. If two equal lines are drawn to a line or a plane from a point outside,
they are cqually inclined to the perpendicular from the point.

116. Draw a number of triangles, A BC, 4'BC, A”BC, etc., having a common
base B and equal sides AB, A’B, A”B, etc. Measure the third side, A,
A'CLA7CL ete. Show that the greater the angle A4 BC, the greater is the
third side. Draw up a table of your measurements of angles and third sides
and graph them.®

117. Draw a triangle A 8C having given the angle B equal to 60°, and the
sides 48 and B( in the ratio of 3:5. How many such triangles can be drawn?
Increase each of the given sides by 25C%; what difference does this make to the
shape of the triangle?

8 Swenson, J. A, “Graphic Methods of Teaching Congruence in Geometry." Third
Yearbook, Nutional Council of Teachers of Mulkemaltics, 1929, p. 9.6
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Suggested Course Definitions and Concepts

Congruence of triangles. Fundamental Congruence Theorem.

If two triangles 4ABC and A'B'C’ have AB
=24'B’, AC= A'C’, and angle BAC = angle
B'A’C’, the triangles are congruent, i.e., BC =
B'C’, angle ACB = angle A'C’'B’, angle CBA =
angle C'B’A’, and the area magnitudes of the two
triangles will be equal. (s, 4, 5)

The following additional cases of congruent tri-
angles may be exemplified practically (a, s, a),
(s, s, 5), (s, 8, @, ambiguous case).

As an important special case of the s, s, a
theorem we consider two right-angled triangles,
which have their hypotenuses and one other side
in each given equal.

Isosceles Triangle Theorem. 1f two sides of a
triangle are equal, the angles opposite these sides
are equal, and conversely.

The image of a geometrical figure in a plane
mirror is symmetrically congruent with it. This
is true also of non-Euclidean gecometry.®

Loci: Loci. (1) The locus of a point equidistant from
(a) Points equidistant two given points is « line (the perpendicular bi-
fron two given sector of the line joining the points).

points.

(b) Points equidistant (2) The locus of a point equidistant from two
from two given intersecting lines is a line (the bisector of the angle
lines. made by the two intersecting lines).

Similarity. ““Any figure car be reproduced anywhere on any

Principle of Similarity. enlarged or dimirished scale” (Principle of Simi-

larity)
Similar figures. Two figures, .! and B, are similar when the

poiats of .1 and B have one-to-one correspondenc.e,
and the distance between any two points of A4
bears a constant ratio to the distance between the
corresponding points of B.

Two triangles are similar, when they have their
corresponding angles equal, and the sides about
the corresponding angles proportional.

8 Fletcher, W. C. *A Method of Studying Non-Euclidean Geometry.” Math-
ematical Gazelle, March, 1923, p. 261.

1 Mathematical Association, The Teaching of Geomelry in Schools, p. 35. London,
1925,

Nunn, T. P. “The Sequence of Theorems in School Geometry.”  Muathematics
Teacher, Oct., 1925. See also  Mathematical Gazetie, May, 1922,
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Typical Problem Material

118. Scout or surveying problem: capable of being solved by assuming the
main congruence theorems, e.g., computing the width of a river or the height
of a building.

119. Simpie originals, including the common theorems relating to circles, e.g.:

(2) Equal chords of a circle are equidistant from the center, and,
conversely, Chords nearer the center are greater than those more remiote.
Show by 1easurement,

(b) The angle in a semicircle is a right angle.

() Symmetry—point and line symmetry.

(d) Simple constructions, ¢.g., to bisect a line, to bisect an angle, to
draw a circle passing throeugh three nencollinear points.

120. Show that we can draw s many circles as we like through one or two
points, but only one thraugh three points,

121. A treasure was buried 1or v -ds from each of two trees or 5o yards
from each of two intersecting fences Where was it> Ho'v many possibls
cases are there?

122, Illustrate similar figures with reference to scale drawings, maps, models
of houses, etc., of various sizes.

A pbotograph 4 by s in. was enlarged to 1o by 1217 in. How
tall would a figure 1 in. high become when enlirged? How large would an
area of 3 sq. in. become or enlurgement?

123. Cut out four rectangles exactly equal in size; picce them together so
as «0 make a larger rectangle.  Show that the larger rectangle is similar to the
original.

124. Cut out four triangles equal in all respects to a tiiangle ABC. Piece
them together so as to make a trizngle 'B'(" simdar to ABC.  Repeat with
nine such triangles instead of four. Compare the sides and areas of A'B'C’
and the original triangle A BC.

RIC

Aruitoxt provided by Eic:
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Suggested Course
Similar triangles.

Proportion.

Parallel lines,

Parallel planes.

Corresponding angle the-
orem,.

A+ B+ C=138°
The same direction,

Definitions and Concepts

(a) Given two (or three) angles in each triangle
equal. If ABC and A’B’C’ are two triangles hav-
ing angle .{ = a. gle 1’ and angle B = angle B,
then angle C= angle (" and the sides 4:b:c =
a’b ¢’ (a, g, a).

(b) Given one angle in each triangle equs! and
the sides about the given angles proportionai
(s.a.s).

(c¢) Given the sides proporticnal (s.5.5).

If P, P, . . P., a set of quantities of one kind,
correspond to (1, (%, . . . (. another set of quan-
tities also of one kind, so that Py : Py 1. .. : P,
=0 Qs ... Qa then Py, Py, L Pyaresaid to
be proportional to (h, (s, . . . Q. Proportion is,
therefore, a relation of equality between ralivs.
Again, if the P's and Qs are quantities of di..rent
kinds and Py Pr= Oy 2 Qy, then Py/Qy = Py,/Qs.
Thus proportion is also a relation of equality be-
tween rafes.

Hilbert's Axiom of Parallels. 1f Lisany straight
line and .1 a point not on L, then there exists in the
plane § determined by L and 4 one and only one
straight line L’, which contains 4 but does not
meet L. The line L’ is said to be parallel to L3

If §is a plane and o a point not on S, then
there exists once and only one plane ', which con-
tains .1 but does not meet S. The plane 8’ is said
to be parallel to §.

If two co-planar Liaes be cut by a transversal
in such a wav that the corresponding angles are
equal, the two lines are parallel, and, conversely,
if two patallel lines are cut by a transversal, the
corresponding angles are equal.

The sum of the three angles of a triangle is 180°.

Two co planar lines have the same direction if
they are equally inclined in the same sense to any
transveesal crossing them,

w Hilhert, D. Grundiagen der Geomelrie, p. 2. Sceventh edition.  Leipzig, 1930,

ERIC
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Typical Problem Material

125. AB("is a given triangle, 4'B"is a giv iinc. On A'B’ draw a triangie
equiangular to ABC. Show that the sides about the equal angles are pro-
portional. '

126. Draw two triungles, 1BC an'  "?°C’, having given that the angle .1
is equal to the angle A" and the sides .. .out the equal angles are proportional.
Compare the other sides and angles.

127. Draw a triangle ABC with its sides 3. 4. 5 in.  Draw an enlargement
of this triangle with its sides 177 times those of ABC. Compare the angles.

128, Draw a pentagon and make a 3 : 2 enlargement of it without using
a protractor: (a) similarly situated and (b) symmetrically situated.

129. Three partners divide the profits of their business amounting to
$24,000.00 in the ratio of 3 : 4 : 5. How much did each receive?

130. A train traveling at a uniform rate goes 160 mi. in 375 br. How long
will it take to go 300 mi? State in the form: 300, 160 = x-31,.
A train traveling at a uniform rate goes s mi. in £ hr. How long will it take

to go 55 mi.2 s mi.? Z’-:S mi.? ymL?
3 If a:d=1c:d, show that a:c =6 :4d, and ad = be.
Ifo+bia—=b=cH+d:ic—d,show that a :6 = ¢ : d.
Hlustrate this with a geometrical diagram.

132.  Draw two similar triangles B, B’A(" having the angle .4 comnion
and the other angles corresponding.  Produce BC and B’C” and note that they
do not meet when produced (parallel lines).

135 Draw two parallel transversals to two parallel lines (parallelogram).
How many equal angles, can you tind?>  How many equal line-segments can you
find?

134. The theorems known as: “the alternate angle theorem’, ‘the two
right-angle theorem’, “the angle-sum theorem’ should be deduced from the
fundamental assumption.

135. The theorem of equal intercepts for @) parallel lines. b)Y parallel
planes  Keep one of the transversals fixed and “move’ the other into various
positions, including that in which a telangle is formed with the fixed transversal
and the parallels.

ERIC

Aruitoxt provided by Eic:
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Suggested Course
Parallelogram.

Equal intercepts the-
orem:
(a) Paralle] lines.
(b) Parallel planes.
Proportional intercepts
theorem:
(a) Parallel lines.
(b) Parallel planes.

Indirect measurement.
Trigonometrical ratios.

(a) Tangent of an
angle,
Gradient.

Table of tangents.

THE NINTH YEARBOOK

Definitions and Concepts

A parallelogram is the figure formed at the inter-
sections of two pairs of parallel lines.

A set of parallel lines cutting a transversal at
equal intervals, will cut any other transversal at
equal intervals. Similar theorem for a set of
parallel planes.

A set of parallel lines cutting one transversal
at intervals in the ratios a:b:c: . . ., will cut any
other tra-sversal in the same ratios.

Indirect measurement is facilitated by the use
of trigonometrical ratios.

Determination of the height of an inaccessible
object by the length of the shadow, using

{(a) Similar triangles, and

(b) The tangent of the angle of elevation.

The angle between a line drawn in any given
direction and the horizontal is called the slope of
the line. The gradient is defined as the tangent
of the angle of slope.

The gradient of a straight line with reference to
another line is constant at all points on the line.
The gradient of a curved line varies from point to
point. If ABC is a triangle right-angled at C, AC
being horizontal, then

-

BC . .
tan 4 = 'R; or BC = AC tan 4.

Thus tan A is the factor by which we multiply
the *horizontal advance’ A C to get the correspond-
ing *vertical rise’ BC.

Practice should be given in the use of a table of
langents and in estimating tangents from a graph.
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Typical Problem Material

136. If one of the parallel lines (of Ex. 135) is now translated, still parallel
to the others, we have the theorem of proportional intercepts for (a) parallel
lines; (b) parallel planes.

137. Divide a given line in the ratios 3 : 4 : 3.

138. The shadow of a tall chimney measured 8o vd. At the same time of
day the shadow of a vertical stick ro ft. high measured 16 ft.
(a) Find, by similar triangles, the height of the chimney.
(b) Measure the ‘angle of elevation’ of the chimney, or the altitude
of the sun, from the end of the shadow (32°).
Repeat as a ‘project’ with a number of trees, telegraph poles, ctc.

139. The angle of elevation of the top of a building from a point on the
ground, 160 ft. from the building, was 32°. Find the height of the building.

140. An inclined plane was built at an angle of 32° with the horizontal,

Find the quotient of the ‘vertical rise' and the ‘horizontal advance’ or the
) vertical height

The ratio ———- -—--=-— varies with the angle

horizontal distance St

and is called the tangent of the angle. {tan 32° = 5/8, or 0.625.)

’

gradient of th: plane.

141. Two boys, using a clinometer, proceeded to measure the height of the
top of the school flagstaff as follows: They sclected a point on the plavground
and found that the angle of elevation of the staff was 35°.  On walking 5o yd.
towards the flagstaff, they found the angle of elevation to be 42°. Find the
height of the flagstatf abowve the ground, given that tan 35° = 0,7, tan 42° = 0.9,
and that the observer's eve is 5 ft. above the ground. Verify your answer by
making a scale drawing on graph paper.

142. On graph paper draw & circle ¢f unit radius O (1 in. or any length to
represent a unit), Draw a line .1P perpendicular to O4.  Mark off angles
0°, 10° 20° 30° 40%, 50° %50° 70° 80° o° and measure the corresponding
perpendiculars P.4.  Arrange the angles and the perpendiculars in a table.2s

The graph or the table may be looked upon as a ready reckoner to give
the tangent of any angle less than go®. (Note that 0o® has no tangent.)

143. A cathedral spire is situated due North of a point P, From a point
Q, 120 yd. due Fast of P, the spire lies in a direction N.18°W.  Find the distance
from £ to a puint on the ground immediately below the top of the spire.  Find
the height of the spire, given that its angle of elevation from 2 is 14°.  Make
a model.

——— —

16 Strayer and Upton,  Modern Algebra, p. 250. New York, 1930,
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Suggested Course

The gradient of two
planes.

Tangent of an angle
greater than 180°,

The Theorem of Pyth-
agoras.

Trigonometrical ratios.
The sine and the cosine
of an anzle.

Definitions and Concepts

The gradient of two planes is the tangent of the
angle of inclination of the two planes.

The tangent of an angle in the second quadrant
(between go°® and 180°) is negative.

The Theorem of Pythagoras states: *“ The square
on the hypotenuse of a right-angled triangle is
equal to the sum of the squares on the other two
sides.”

Thus a?+ 8 = 2,

The sine and the cosine of an angle may now be
introduced:
sin oA = b/c, sin B = q,’c.
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Typical Problem Material

144. Explain with the aid of a model or a diagram, why a horse, when
pulling a load up a steer hill, walks in a zigzag path.

145. OP is a vector revolving from an initial line X'OX. ON is the pro-
jection of OP on X'ONX. Make four columns giving: angle POX, PN. ON,
PN, 0N, and fill in the columns when the angles are 0°, 30°, 60°, 90°, 120° 150°,
180°. Since I'¥ is always on the same side of the line X'OX, we may mark it
+; the sign of O.V will depend on whether it is on the QX or the OX” side of O.

146. Draw a number of triangles having sides (4, b, ¢) of lengths (¢m.):
3.4 5,0r5. 12,13, 0r 8 15,17, ete. Measure the angle C in each case. Write
in three columns the values of g2, 2 2 See if you can detect any relation-
ship between them (424 82 = (%), Find other sets of numbers that will show
the same relationship. (a = m? — w3, b= 2mn, ¢ = m? -+ 5%, where m and »
are integers, will give other sets.)

147. Draw a triangle having sides equal to 3. 4, 5in.  Draw squares on the
three sides (22, 82, ¢?).  See if vou can, by cutting one or more of the squares
¢? and &2 fit them so that they together equal ¢ in area.

148. Draw a perpendicular from the angle ¢ to the hypotenuse AB of the
right-angled triangle ABC. Show by similar triangles that ¢f 4 62 = 2,
(Theorem of Pythagoras). (Ex. 146, 147, 148 represent three stages in the de-
velopment of Pythagoras' Theorem. They have been set down here in con-
secutive order but in practice Ex. 148 woull be postponed a little.)

149. A scout troop walked 6 mi. direct East from their base 0, and then 8
mi. direct North to a pluce . How far was the troop from the base at the
end?

r50. Using Ex. ryr. find the distances between the top of the tlagstaff and
the observer's eye, when the two angles were being read.

121, Referring to Fx. o, draw a sketeh and tind the *bearing® of .1 from 0.
Write the answer in two ways: North so many degrees tast, and Fast so many
degrees North,

t52. On the rirst day out s scout troop withed 6 mi. ¥, and then 8 mi. N,
and on the second day 5 mic E.and then 0 mic N Draw o sketeh of the
journey and find () the distance of their final position from the base; and (b)
their tinal bearing from the base,

155 .\ scout troop of eight bovs, taking their bearings from the base O,
were t ! to spremd out, between Faat and North, inca fan tike formation,
cach a distance of 100 yedl 7). The hearings of the eight boys from O were
107, 207 307, g0’ 500, 007, 70", 8o North of Fua-t. Draw a1 sketeh of the
formation and measure the distance of cach boy East o) and North (v) of the
base 0. Put vour results down in columns:

O

RIC
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Suggested Course

Trigonometrical identi-
ties.

Projections:
The cosine law.

Proportional variation:
(3} Direct varirtion,
(b) lnverse variation

Definitions and Concepts

The fundamental identities of elementary
trigonometry:
tan . = sin A,/cos 4, sin? 4 +cos? 4 = 1,

The projection of a plane area 4 on a plane P
is A cos 0, where © is the angle between the two
planes .4 and P.

If P represent a set of quantities Py, P, . . .,
all of one kind and  a set of quantives Qi, Qs

. . also of one kind, and if the P’s and Q's taken
in pairs be related in such a way that Pa/P,=
(OmsQa, we then say that P wries directly as Q, and
write P « (. Again, if Pmi:Pa = (s:0n, we say
that P varies inversely as ), and write P = 1/Q.
Since P and Q are types of sets of quantities they
are called varfables. (For the definition of a vari-
able, sce page 20.) Now, in the case of direct
variation, we have Pu/Qn= Pa/Qa. Putting
cach of these expressions equal to &, a number de-
pendent on the units of P and Q, we have Pa=
kQmor P = k(). Thestatements P« Qand P = £Q
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Typical Problem Material

Angle I x y | x'y I y'r

The ratios x/r and y/r are called the sine and the cosine of the angles con-
cerned. Look up a book of tables of the sines and cosines of angles and check
the accuracy of your results.??

154. Find the angles whose sines are o.500, 0.707, and 0.866: (2" by a draw-
ing and (b) from tables.

155. If a, b, ¢ are the sides of a right-angle triangle, the hypotenuse of which
is C, show that sin A = cos B, cos . = sin B, tan 4 = sin 4 - cos 4,tan B =
sin B/cos B, sin A/a = sin B/b.

156. Drawa circleof 1-in.radius. Draw tworadii0.{ and OB havinganangle a
between them, From B drop a perpendicular BN to O4d; from A erect a
perpendicular AP to 04 to meet OB produced in P. Using Pythagoras’
Theorem, prove the following identities:

(a) sin?a 4 cos? @ = 1 ‘
(b) tan @ = sin a/ 4/1 = sin%a = /1 — Cosla /cosa
(¢) sin @ =tan @/ V1 + tan’a

157. Using squared paper, mark equally-spaced points along an axis *o
represent the angles 0° 10° 20°% ... go°% Draw at each of these points,
ordinates corresponding to the sines of the angles taken from a sine table.
Connect the ordinate points and so make the ‘curve of sines’,

158. (a) Show that the projection of a plane area A on a plane P is A cos a,
where a is the angle betweeu the planes A and P. (Note: Use a squire or a
rectangle to begin with.)

(b) Find the area of an ellipse by the method of projection,

159. Direct Variation.

A4
P
8, -
A~
B [remmememmemem e :
5|
8 :
£ i
7 [}
Y i
0 X A A, A A X

! [ rinteresting extensions of these ideas to problems in navigation see Nuan, T. P.
0p. cst., Chap. XIII.




180 THE NINTH YEARBOOK

Suggested Course

Direct variation,
Physical probiems.

Graphical representation.
(d) Graphs as ready-
reckoners,

Definitions and Concepts

are equivalent. Similarly, the statements P = 1,’Q
and I’ = k/Q arc equivalent.

The functional character of direct variation is
best studied through physical problems, in which
the relationship “the more . . . the more’ and ‘the
less . . . the less' are illustrated concretely.

The graph of direct variation is a straight line.
The graph of inverse variation is an hyperbola.
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Typical Problem Material

Draw a number of rectangles O 4,P,B), O A,P:8., etc., each having the OB
side equal to half the O side. Cut these rectangles out and place them so
that they have one right angle common (at 0). Show that the corners P,
Py, Py, . . . lieon a line through 0. Draw any other rectangle O4 PB from
P and show that OB = 404, or v = ',x, where OB = vand Od = 2. Any
one of the rectangles (say 0.4 PB) may be used a. a fvpe of a rery large number
of similar rectangles. Note that the sides and area of these rectangles vary, bul
the ratio of the sides y,'x does not tary; iu other words, ¥/ x is conslant = k say;
then y = kx. This is called direct variation, the sides of the rectangles being in
direct proportion. ‘The sides 0.1 and OB (x, y) being types of many possible
pairs of sides, are called varigbles.

160. OP represents a straight inclined plane supported by stakes 4,8,
A2B:, 4By, ete, and in each case 4B = 1;04,
4
y=)
8

i
0 B A A A K&

(a) Show that the length of the stake varies as the distance of its foot
from O in each case.

8

i
0.4’ , A'B

|
(b) Make two columns x and y and fill in the figures for cach stake.
Show that in cach case A'B" O.0" = constant, or v = Ty,
(¢) Mauhe two more columns Ay and Ax amd find Ay ax.

161. Example of direct variation.
Write the following in the two forms, P = Q and P = kQ:
(a) The circumference of a circle varies directly as its radius.
(b) The interest on a sum of money varies directly as the .ate per cent
and also as the time.
(c) Thearea of a triangle of given altitude varies directly as the length
of the base.
(d) The weight of a body of given size varies directly as the density
of the material.
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(d) Graphs and ready-
reckoners (continued).
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Typical Problem Material

(e) The speed of a falling body varies directly as the time it has been
falling.

(f) The stretch of an elastic spring varies directly as the force applied.

(8) The amcunt of water flowing into a bath varies directly as the
time, if the pressure is constant,

(h) The length of arc of a circle varies directly as the angle subtended
at the center.

162. Graphs as ready-reckoners.

(a) Example 160 shows that the graph of direct variation is a straight
line. Draw a graph to enable you to read off quickly the circumference of a
circle when the radius is given.

(b) Draw a graph to enable you to reckon the interest on a sum of
money at the rate of §¢% per annum for any number of years up to ten.

(c) Draw a graph to represent the formula » = 32.4, where vis the speed
of a falling body (feet per second) and ¢ is the time (second) that the body
has been falling.

163. Inverse variation.*
You are given that the aiva of a rectangle ix 6 sq.in., hut nothing more
about the sides 0 { and 08. How many rectangles can you make having
this area?

X
|
]
[}
i
[}
\
8, A
\
\
\
]
[}
\
{ \
Bl-=-1-3P
(Y
A
2, TN
AN
i R
gﬂ ; e B
G ==cc S N
L

X
0 AAA A A A A

*This problem should be given immediately after Fx. 100, before Ea,
101 and 162 are given.  Direct and inverse proportion should be introduced
together and treated as a whole,  Numerous examples of both ty pes may be
found in physical experiments,

RIC

Aruitoxt provided by Eic:
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Suggested Course Definitions and Concepts
Inverse variation. The functional character of inverse proportion,
Physical problems. as in the case of direct variation, is best studied

Examples of inverse vari-  through physical problems in which the relation-
ation. ship “the more . . . the less’ is seen concretely
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Typlcal Problem Material
Make three columns as follows:

s ’ By
0A ok Area

! 6 6

H] 3 6

3 ] ]
elc etc. etc.

Cut out rectangles O.4,\P\B), OA 1By, . . . and place them so that they
have one right angle common (at 0). Show that the corners Py, Py, P, . . .
lie on 8 curve (called a hyperbola). Take any point P on the hyperbola and
make a rectangle 0.4 PB which may be regarded as a tvpe of & very large
number of rectangles all of area 6 sq. in.

Noic that the sides of these reclangles wary, bul the product of the sides of arca
xy doe: mot wary; in other words, xy is coustant (1.e. = 4); s0 y = k/r.

This is called inverse varintion, the sides are in inverse proportion.

Make two columns as follows:

conmsan. J ey

a ' s

1/1 = 1,000

1/2 = 0.5000

1/3 = 0.343

1/4 = 0.240

1/¢ = 0.200

1/6 = 0.167
ete.

e e e 0w O
Pomwmmooo

Draw a graph of the corresponding numbers in the two columns, x and 1.
The graph shows that % and 1/x are directly proportional.

164. The following experiment was made with an automobile tire pump.
A pressure gauge was attached to the open end of the pump, and the pressure
read off for various positions of the piston. ‘The volume of air and the cor-
responding pressure are recorded as follows:

- mes seeeam ¢ 6es n e ke - - e v teemaem c aes .- e e i s

Volume of air (cudn.) ........... . 3 6 l 0 l 12

- me e e e - 2 et t M e e -

Pressure (atmospheres) ............| 8 oo | 4 00 ! 267 l 2 00

B RIS DN SR O T LI P

——- LR R LT LD PP oy ma el i s ete— . e e

Volume of air (cu.dn.) ............. 15 18 l 2t l 24
| R

B T T P SOt

Pressure (atmospheres) ............| 1 6o I 1Ay

S b e o fr s Gl e Y P i e Chmt 4ttm s be § e meafa mime smeeimi e 28 88 caebrm e eamn oo e
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Suggested Course

Graphical representation.
(e) Graphs of func-
tions.

Functions of a single
variable.

The lincar function y =
ax.

P
N

Definitions and Concepts

A set of quantities belonging to a certain domain
constitutes a variae, The variable s* mbol may be
indentified with any particular me*aber of the do-
main. Such a variable is called an independens
varigble. If, to each element of the domain of an
independent variable #, there corresponds, in any
manner a definite quantity, ». that all such quan‘i-
ties constitute a new set, which can be regarded
as the domain of a new * ariable v, then y is raid
to be a function of 5. Tae variable y is called a
dependent variable.

‘T'wo variables y 0:1d x are in functional relation
when there is a cor espondence between the quan-
titles xy, 1, . . . of the x variable and the quan-
tities v, s, . . . of the y variable and this cor-
respondence fo'lows a prescribed rule.

‘The equati,n y = ax expresses the simplest form
of functions. relationship and is represented graph-
ically by a line passing through the intersection of
the axes of codrdinates,

The function y = ax is called a linear function
of . The constant a is the tangent ot the slope
or the gradient of the line relative to the % axis.

If A yis the ‘vertical rise’ corresponding to the
‘horizontal advance’ A 2, then a = 4 /4 x. When
¢, the angle of slope, is less than qo®, (position
.1 B), tan ¢ is positive; when ¢ is greater than go®,
and less than 180° (position A'B’), tun ¢ is nega-
tive. ‘Thus when the line ascends from left to
right (positive slope), ¢ Is positive; when it de-
scends from left to right (negative slope), a is
negalive,
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Typical Problem Material
Draw a graph of these readings and find the law of variation between them.

165, Examples of i“verse variation. Express each as a formula!

(») The time taken to teavel a certain distance varivs inversely as the
rate,

(b) The number of days required to dig a trench varies inversely as
the number of men emploved.

() The number of buuks that can be bought for $10¢ 00 varies inversely
us the price of cach book,

(d) The time required for a given sum to realize $1,000.00 interest
varics inversely as the rate per cent.

(e) The force required to lift a heavy weight with a lcver varies
inverscly as the length of the lever; similarly, for wheel and axle.

() The length of .wire that can be drawn from a given quantity of
copper varies inversely as the arca of cross-section of the wire.

166. A boy had a trolley running on rails OX' (or a block of wood aliding
on a table) from a starting-point O, He erccted a vertical pol on the trolley
and by means of pulleys and string made a device enabling him tu lift a weight
(W) through a distance () always equal to half the distance (*) traversed by
the trolley along OX. Draw a graph of the path traced out by W relative
t; a fixed background. Could you make an arrangement to demonstrate
this?

Since the vertical ris2 (v) of the weight depends upon the horisontad advance
(2) o{J lthe trolley or blok, y .3 called the dependent and x the independent
variable.

167. Draw the graphs of y = 'jx, v 2¢v, y= — I{x, ym — 2x. In each
case make columns showing change in x(Ax) and change in y(ay) for six
points on the graph. Calculate ay/ ax.

168. Draw the graphs of the equations y = ';x and v= ;¥ + . Show that
they are parallel.  Consider the graphof y = !;x to be a thin rod. How could
you get that of y = !jx+ 5 from it> Show that it passes through the point
(0, 3).

169. Draw the graphs of y = !4x 4- 10 and y = ',x — 8,

Draw the graph of y = !';x — gor y = }35(2 — 8) and show that it is a line
parallel to y = !,x, pussing through the point (8, o).

170. Draw the graphs of the functions y = ;x +6and y= ;x - 4.




Suggested Course

‘Translation of the graph
of y = ux,
gu7ing (1) y=ax b
by vertical
and (2) y = a(x =)
by horisontal transla-
tion.

Solution of lineur equa-
tions by graphs.

The parabolic function
y = ax?

Derivation of the graphs
ofy—bmaxtand y =
a(2 —¢)! from the
graph of y = ax?

Symmetey of the para-
bola.

Derivation of the graph
of ¥ = gx* from that of
y= X2,

Graphical solution of
quadratic equutions.

THE NINTH YEARBOOK

Definitions and Concepts

Since the equation y = ax expresses y as & func-
tion of x, the equation y = ux + b also expresses
y as a function of s.

The graph of y—~ b= ax or y= ax+ b is ob-
tained by translating the graph of y = ux, a distance
+4 in the positive y direction (vertical translation).

Similarly, the graph of y = a(x - ¢) is obtained
by translating the graph of y = ax, a distance +¢ in
the positive # direction (horizontal translation),

The graoh of y=bdma(x~¢c) or y = alx =¢)
+b is derived fiom y = ax by performing each of
the above operations in turn in either ord:

Thus y = ax, y = ax 4 b, y= a(v — ¢c) are par-
allel lines.

Since x and ¥ can have any values we please,
\\ic may find y when x is given, and x when y is
given.

'The graph of the function y = ax'is a parabola;
that of y= ax*+ b is the same parabolic form
translated in the positive y direction, a distance
+b, and that of y = a(x ~ ¢)?, the same parabola
translated in the positive x direction a distance +c.

A geometrical ‘trace’ of the function y = x?
drawn to given units, when cut out, will fit the
graphs of the functions y m x? 4 b, y = (x - ¢)?
and y = (v — c)?+ b, drawn to the same scale.

The parabola y = a? is symmetrical about the
y-axis.

The ‘trace’ of the function y = 2* drawn to
given units will serve to represent the graph of
y = ax?, if the original ¥ unit is unaltered, and
the v unit is changed in the ratio of 1:0. The
graph of y = — x? may be looked upon as the
mirror image of ¥ = x? in the x-axis.

The graph of o parabolic function may be used
to solve quadratic equations.

v
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Typical Problem Material

171 Put the equation 3x — 4v = 6 in the form y = ax + d and draw its
graph.

/2. Draw the graphs of y = — ax, yw < x4 g, y= = 2(x - 4), on the
same graph paper.

173. Solve the equations 2 = }{x, g = !5y + 10, 6 = }§(x - 8), by using
the graphs of Lx. 136.

174. A boy had a trolley running on rails OX, from a starting-point 2. He
erected a vertical pole on the trolley and placed a pulley at the top. He then
passed a picce of string over the pulley and fixed (wo uhequal weights at the
ends. He started the trolley off from O with uniform speed and arranged so
that the vertical rise (y) of the smaller weight was exactly equal to the square
of the horizontal advance (x) of the trolley, Draw a §raph to show the path
of the rising weight relative to a fixed background. Could you make an
arrangement to demonutrate this?

175. Draw the graphs of y = 2!, ve 45, y= 2= 5, and show that a
translation of the first will lead to the other two.

176. Draw the graph of y = (x — 3)! and show how it is related to that of
y= x4 Draw the graph of y = (x — 3)' 4 5.

177. Cut out a ‘trace’ of the function v = 2 and show that it will fit the
graph of the equation y = (¥ = 4)t = 4.

178. Cut out a ‘trace’ of the function v = x? to given units. Now draw
the graph of ¥ = 3%, using the same * unit as before, and the length of the
¥ unit one-third of its previous value. Show that the ‘trace’ of the function
¥ = 22 will now fit the new graph.

179. Draw the graph of y = 3(x — 2)* — 5, using the trace of y = x3, Draw
the graphs of y= — 2, y= — 2?4 5, vy — (x = )2,

180. Sulve by graphs: 4 = (x — 4)?, 6 = (x = 4), 10 = (x — a)%

181. Solve graphically: 42— 3x 4+ 2= 0, #'= 3t — 4 = o,
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Suggested Course

The graph of y = us' +
bx + ¢

The line y= dx ¢ is a
tangent to the parab-
ola y=axt4 bx+ ¢

Factors of trinomials.

The Factor Theorem.

The cubic function.

Graph of y = ax’,

‘The graph of y = ax*+
bx + ¢.

Definitions and Concepts

Since the expremsion y = ax® 4 da 4 ¢ can he
put in the form vy = ax? 4 (bx 4 ¢), it is poss™ie
to build its graph by drawing the line y = dx ¢ ¢
and adding at each point of the line so obtained
ordinates appropriate to y = axt,  For example. to
draw the graph of y = 3 4 x — 6, we first clraw
the graph of y = x — 6, and add, at each point of
the line, ordinates appropriate to y = x. Thus
we get the parabola shoin above.

Since the parabola is cverywhere above the
line, except at the point A, the line is tangent to
the parabola at the point 4. Thua the line
ym 2~ 6is a tangent to the parabola y = 2' 4 &
—6 at the point (o, —6).

It will now be advantageous to give some exer-
cise in finding the factors of simple trinomial ex-
pressions,

An elementary idea of the Factor Theorem
should now be given: If, in the expression ax* +
bx + ¢, a be substituted for x and the expression
vanishes, then (2 -- a) is a factor of the expression,

‘I'he graph of a cubic equation may be introduced
through a practical problem. The general method
of procedure is already known to the class.

The graph of the function y = ax? has a point
of infiexion at the origin. The graph of y — b =
a(x ~ ¢)? may be derived from that of y = ax* by
two ‘translations’ of the Jatter.

The line y = bx 4 ¢ is an inflexional tangent to
the graph of the function y = gx¥ 4 bx + ¢.
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Typlcal Problem Material

182. The time of swing of & pendulum ix related to its length by the f~rmula
§ = 9.8 7% where ! is the length of the pendulum in inches, und T the .ime of
& complete swing in seconds. Draw a graph which will cnable you to alculate
the time of swing when the length is given. Verify practically,

183. Draw the graph of the equation y = v - 6.

At each point of the Line 1o obtained, add ordinates correspo ding to y = #,
The result will give the graph of y = s 4 x - 6,

Place the trace of the graph y = x? (to the same units) upon the new graph
and note that it is congruent withit. Note also that the new parabola meets
the line in one and only one point. The linc and parabola fouch at this point.
The line i« suid to be a tangemt to the parabola.

184. Draw the graph of y = ). ‘Take a number of points on the graph
and estimate their ‘codrdinates’. Make columns as follows:

] y l ax ay Ay/Ax

Show that ay/Ax is not constan..

185. Repeat Ex, 191 using the graph of v = 11+ x — 6.

For a number of points find ay, ax, and differences between these a's, called
second c.ifferences, Aty and Atx. Note that a®y a' is constant in each case.

186. Find the roots of the equation '+ x — 6 = o,

187. Find the factors of the expression x? + x ~ 6.

188. I hold in my hand a rectansular block of wood, the cross-section of
which is a square. ‘The volume of the block is 34 cuin. I saw off a small
cube from the block and I find that the remaining piece is 6 in. long. Find
the dimensions of the block.?

189. Draw the graphs of
y=a,
y=x+sory~g5=21,
y=(—2+s0r(y=35) = (x— g
100. Draw the graph of the line y = £ — 10. At selected points of this
graph add ordiriates corresponding to the function y = x* and so derive the
graph of y = x3 4+ x — 10. (Note that when «x is negative, x? is also negative.
The points of the graph for negative values of x will, therefore, lie below the
line y = x — 10. Note also that the line y = x — 1c is an inflexional tangent
to the graph of ¥y = 23 4 x — 10.)

' This problem was set the writer's class, in their first year of algebra, Ly Professol
John Perry,
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Suggerted Course Definitions and Concepts

The hypetoolic function. ‘The graph of y = a/x has already been studied.
The graphs of y = a/2+ bor y = b = a/x, and

y- ’—:-c may be derived from that of y = a/# by
simple translations.

‘The graph of v = g-

The equation of a circle. The equation of a circle of radius r with origin
as center ia:

AP,

The equation of a circle of radius r, having its
center at the point (g, ) is:

(x=a)t+ (y— )=,

The equation of an el- The equation of an ellipse of semidiameters a
lipse, and b, referred to the origin as center, is:
2

at b'-'x
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Typlcal Problem Material

19t. Draw the graph of v = 1/x, and cut it out. Using this trace, draw
the graphs of y = 1/x+ Bor y—=8m 1/x, yw 1/(x~3) and y= t/(x = 3)
+8ory—8m=1/(x—y).

XY= t
192 Druwthegruphof,v-x_s-x+x~301,\-—1- '

193. Draw the graphof y = 10 = ;—:—5 or (x — 8)(y = 10) = 1,

194. Refer back to Ex. 153, Using the figures obtained for ¥, y,and », work
out 2%, y%, 7!, and show that 2 4 y = 2,

(Most books on trigonometry give a table of squares.)

Can you give any reason why this equation must necessarily be true?

19s. Extend the above problem and allow the scout troop to radiate from
the base O in all directions like the spokes of a wheel. Let the easting be
marked +x and the westing —x, the northing +y and the southing —y. Then
show that in all cases x*+ y* = %, This is called the equation of the circle
of radius r, having O as its center.

Check this equation by taking a number of points on it.

1of. Draw a circle of 1-in, radius with its center at the origin. Draw
a.other circle of 1-in. radius with its center at the point (2, o) or imagine the
fi st circle translated a distance 2 in. along the x-axis. Shuw that the equation
o. this circle is (x = 2)'+ 1 = 1.

Draw another circle of radius 1 in. with its center at the point (o, 3) or
translate the original circle 3 in. along the y-axis,

Show that the equation of this circle is 34 (y — 2) = g,

19;. Draw the circle (x = 2)'4 (y = 3)? = 1.

198. Draw a circle and any dia'neter 4’04 to it. Erect a number of
perpendicular ordinates PiQy, Po(s . . . to 4’0 cutting the circle at Py,
Py, ... Bisect these ordinates at Ry, Ka,.... Join R, Ry, ....by asmooth
curve, This curve is called an ellipse. Repeat by doubling the ordinates.

799. As in Ex. 198, draw ordinates PiQ), PQ: . . . and divide these
ordinates in the ratio of 1:2 at points Ry, R, . . . . Join these points and get
another ellipse. Repeat with the ratios 2:3 and 3:2, etc.

200. Draw a circle x? + V¢ == @+, and change all the v's in the ratio a/b. Show
that the equation of the .livse o formed is 2%/¢?+ 3?2/6* = 1, (For most
classes this exercise woull come later.)




APPENDIX A
TESTS OF ELEMENTARY MATHEMATICAL RELATIONS

These tests, involving simple arithmetical and geometrical re-
lations, were designed to discover how far elementary school chil-
dren, without any previous teaching or practice, could cognize mathe-
matical relations and educe their correlates. No information or
suggestions were given the pupils to whom the tests were admin-
istered beyond the instructions at the head of each test. These
instructions were read by the teacher. The time allowed for Tests
I to 5 was three minutes, for Test 6, fifteen minutes, and for Test
7, five minutes,

The tests were administered to 240 school children attending
London elementary schools. The average age was 11 years 2
months and the average 1.Q. was ro2. None of the children had
ever had any algebra or graphical work before taking the test.
They had studied a little intuitive geometry in the form of geomet-
rical drawing.

As the tests were designed chiefly for the purpose of throwing light
on the pupil’s method of educing relations, a personal introspective
inquiry was conducted with forty of the subjects. The tst was
given in the ordinary way, but at the end of each test the pupils
were asked to describe the method they had followed in arriving
at their solutions. No comments or corrections were made by the
experimenter. The remarks were taken down in det:il and a note
was also made of eye movements, to ascertain whether the rela-
tions were “held” at the first reading or not.

A summary of the observations made by the pupils is given at
the end of each test. This by no means gives a comolete account
of the many interesting observations made. The most important
general observations were the following:

1. Rhythm was sensed in all the tests with series. Frequently the rhythm
was likened to music.

2. Relations were wsed, although not consciously abstracted. In some
cases the relations were completely abstracted with difficulty, but the pupil

194
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was convinced of the correctness of his correlutes in spite of his inability to
state the relation satisfactorily.

3. The more intelligent student nbstracted the relation more quickly
than the less intelligent ~~  ‘cwiried’ the relation more clearlyv as he used it.

4. Algebraic expressions did not present the difticulty that had been an-
tlclp;lcd. It was cvident that likeness of algebraic form was readily under-
atood.

§. In most cascs the gruphs were interpreted with great facility, although
the pupils had never received any instruction in graphical representation.

6. ‘The pupils, without exception, remarked that they found the tests
interesting. Several suggested that their school urithmetics should contain
problems ~{ a similar kind. Many of the pupils seemed to derive satisfaction
from the fact that they conld test their own conclusions without recourse to
a set of ahswers.

STATISTICAL ANALYSIS OF THE RESULTS

The test; were scored as fillows:

Test Score Totul
S One point for each question 10
2..... . Une point for each question 12
3o : One point for each question 8
derens : One point for cach question 10
5. ..., One point for each connection 23
y SO Half of a point for cach part

. each question 17
So

Several solutions were possible in Test ;.

MEANS AND PRODBABLE ERRORS oF THE TESTS

Test Mean Possille Score P.E.
7.01 10 1.47
F 7.62 12 1.61
K S §.52 8 1 o8
d o 6.80 10 1.0t
[ 17.78 23 3.54
B 11.70 17 1.58

CORRELATIONS WITH INTELLIGENCE

Test Correlution with Intelligence  PE,
S 32 .039
2. ... e .41 .036
3 40 .033
N .50 .028
S .81 .01}

T . 30 .050
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MATHEMATICAL RELATIONS
Tesr 1

Look at the following rows of numbers. Notive that there are blank spaces
on the right showing where some numbers have been rubbed out. You have
to write the correct numbars in the blank spaces.

? 3 3 R J
& 2 2 3 3 2 2 308 . . 9 _.
3 3 33 4 4333 44 - - L
4 O 1 0 2 2 O0 3 3 3 0 . —— o
S 1 2 0 2 " 0% 40 4 8§ o — — ..
o.sosousoooso...___.._.
77 6 06 006 06 006 o0 .. — . .
8. 5§ 1 50490 48 41 - . _ _
9 9 1 8 27 36 4 — — . _
0. 3 2 1 43 25 4365 4 - - .

" Tesr a2

In the following lines are two blank spaces, showing where two numbers
have been crased. \Write the correct numbers in the blank spaces.

L ¢ 4 6, _, _.
2, $ 8 1, .,
.“ 19) IS) !!p —) ——
& 26, a1, 16, _—, .
5' ’b ‘l 8) — —
6. 64, 32, 16, __,
7 !) \3! 9! S § e
8. !I ‘!1 -:l w—y —
2 4
. H - 18
10 4 9 — ey 24
2, 6, —, s4, 162, __
113 5 _
12. 3 ‘l 8' 2 3 ]

Test §
From the four numbers given on the ri
sclect one number that will go best in the bla
1. 2,10,..., 6,8
3,018, _,
7021, 35 14, —

13, -~ 33, 43, 63
'ln 3. S) - ) —
"4 81
x
U Rt Rt Rt
¥y
X+ 2y, 22 + 3y,
3+ 4y, 4%+ 5y, .
a+d a—~d 2a+ 3d,
20— 3d, 36+ sd, ..

ght of

(¥, ] o

o

each of the following lines,

nk space. \Vriteit in the blank space,

13,12, 3, §
15, 14, 7, 11
4, 12, 2R, 11
23,12, 7, 14
4.5 8.5
32 16 32 64
P2 g
s
5% + 4y, 5% + 6y, 6x 4 gy,
6x 4 6y
3u -t 4d, 30+ 6d, 3u — 5d,
3u - 6d
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Tasr 4
Ia each of these lines there is one wrong number. Cross it out,

1 L4 1L 13

4 1,2, 4,0, 10

RPN & MR 119§ T -1

4. ’71 21, 15iu 4

S 3,027, 80, 243

6. L,.2,3 45
2X 4% 4% §x 6%

8. x4 2y, 28+ 3y, 3¢+ Sy, 44 <, 53+ 6y
9. T+ yx—=9 22+ 3y, 28— 3y, 3¢+ 8y, 3¢+ 6y
10. 2(a+10), 3(2a+b), 4(30 + b), 5(4a + 20), 6(5a + b)

Test §

Look at the following rows of figures arranged in pairs. Each number on
the top row has a partner on the bottom row, but not usually directly under-
neath. These partners have some feature in common, for example, 15 and
23 both ead in 5. You have to draw lines between the partners that are
somewhat alike, thus: 15

N
a5

.18 21 24 I 7 13

36 a5 37 23 42 22
2, 20 7 34 45 22 54 64

17 1 49 16 30 56 25
3 x sa 3y 3% ay 7b

v ax 4x 3b 6a 5y

4 (x+y)  (+2y)  (+y+z)  (x—2y) (24 2xv)
R+ (k-3 (x43y) @+ (4 2y + 32)

TrsT 6
1. The heights of ten boys were taken (in inches) as follows:
A% C D E F G H 1 ]

c———

6s 53 62 47 6 st 60 64 40 57

(a) Arrange the boys by letter on the line below, putting the tallest on the
right and the shortest on the left.

(b) Without doing any calculation guess the average height of the ten boys.
Answer:
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2. ‘Ten boys obtained the following scores in English and Arithmetic:
A B ¢C D E F G H I

e

English.............. 72 70 68 64 62 6o §8 s4 St 48
Arithmetic. .......... &t 77 14 68 so 62 6o 8 68 1

() Examine the figures und find which boy did much better in Arithmetic
than in English compared with the other boys. Answer: ______
(b) What score would you have expected this boy to get? Answer: _
(c) Which boy did not do ¢s well in Arithmetic as in English compared
with the others? Answer:
(d) What score do you think this boy should have obtained in Arithmetic?
Answer: . ..
3. After his final examination T'om made the drawing given here to show his
score in each subject.  Write down, as nearly as you can, his scores in

(a) Arithmetic: .
(b) English: R
(c) History: —n
(d) Geography: - ......

80
1
i ™
60 b o
S L . iy
40 i
li-:éfl
iy
20t S
-l
o—=:
S

&

4 This is a sketch of a road over a hill. The place marked O is at sea level
aud the heights above sca level are marked, in feet, on the scale at the side.
The distances of places on the road are marked horizontally in miles,

ce/

400 8

300
200
/100

7 8
Mi/es
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(a) How high is {4 above sea level? Answer: ____

(b) How high is B above sea level? Answer: —

(c) How far is 4 from O in miles> Answer: _ _ __

(d) How far is the highest point above sea level? Answer: ____

(¢) How long would a man take to go from A to B at the rate of 3 mi, an
hour? Answer: ____

§. Look carefully at the following rows of figures marked x and y. Inecach
case the number in the y line is ubtained from the number above it in the  line
by a simple calculation, Can you find out how it was done> If so, fill in the
spaces under 8 and 10,

(@ « 1 2 3 4 [ 6 Vi 8 9 10

] o

y 2 4 6 8 |10 |12

(b) = 1 2 3 4 | 3 6 | 8 | o 10

(© = 1 2 3 4 5 6 7 8 9 10

d = 1 2 3 4 5 6 Vi 8 0 10

y 2| 3 34| 4 4k s
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6. ‘'he above chart shows you the wages paid and the profits made by a
qrocer from 1920 to 1930. Answer the following questions:

(a) How much wa: gaid in wages in 19217 ( ) In 1924? ( )
In 19297 ( )

(b) What \xcrc the profits in 1922? ( ) In 19297 ( ) In
19307 ( )

(c) In which year were the wages greatest? ( )

(d) In which year werc the profits greatest? (
(e) Look at the chart carefully and find out which of the following state-
ments are true and which false. 1f true, wrile frue; if false, write false.
(i) Generally speaking, better wages result in better profits. An-
swer:
(ii) Good profits always go with good wages. Answer:
(ili) Generally speaking, profits exceed the wages paid. Answer:

(iv) Profits always exceed the wages paid. Answer:
(v) The year of greatest profits was the year of greatest wages.
Answer:

TeST 7

(a) In each of the following rows there are four figures, one of which is out
of place because it does not possess the feature that the other three have.
Cross out the wrong figure.

(b) Having done that, look to the right-nand side of the page and note the
figures given there. In each case part of the figure has been rubbed out.
Complete the figure so that it will be like tl e three that you have left on the
left-hand side of thzs page.

/S N/
/N 1N A
N LD
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AXDE o
¢ g@ —

Aok

TEsT 8

The following pairs of figures were drawn exactly alike, but some parts were
afterwards rubbed out. Draw the missing parts so that figures will again

be alike.

(Specimen Examples Only)
(O AO ]
2A__ OO QO X

|
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Imagine the line drawn dewn the middle of the page to be a mirror, and the
figures on the right to be reflections of the figures on the left as seen in th.
mirror,  Draw in the missing parts so that the figures will be alike,

A O X LU & ]
A ‘ O

>
. o

Q7 >

—

OBSERVATIONS ON THE TESTS
INTROSPECTIVE EXALIINATION

TEST 1

This test was designed to test the ability of the pupil to cognize groups of
numbers arranged in serial order.

Observations

1. In all cases of correct response the numbers were visualized as groups,
e.g., (120), (230), (340). In most cases these groups were connected rhythmi-
cally. In No. 3, for example, the numbers were given as (333 - 44), the
three 3's taking about the same time to repeat as the two 4's. In practically
every case the rhythm had to be sensed before the series could be continued.

2. Many interesting interpretations were given of the relations of the numbers
in No. 9. As a general rule, the pupils saw that 94 1= 10 8+ 2= 10,
7+ 3 = 10,and soon. Inseveral cases they noted that 9 — 1 = 8, 9g—2=7,
9= 3=06. Inonlya few cases did they read 9, 8, 7, 6 in descending order and
1, 2, 3, 4 in ascending order.

3. Judging by eyve movements, the only scries read twice were 6, 7, and g.
The more backward had to read these lines several times.

TesT 2

The purpose of this test was to examine the pupil's ability to detect relations
and to educe correlates to the relations.
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Observations:

1. A striking feature of the responses, especially to the first six examples,
was the insistence that the answers came ‘in a flash’, or ‘almost without think-
ing." When questioned, all the pupils gave the correct relations, but insisted
that they had not thought them out before.

2. Examples 1 and § made an interesting comparison. In each case the
blanks were filled in without hesitation. When asked how they did No. 1,
most replied: ‘Went up by twos’, and No. 5, ‘Doubled each time’. When
asked why they had added 2 in the one case und doubled in the other, they
replied: ““It couldn’t be anything else.” On further questioning they admitted
that they had “adding’’ in mind at first but they quickly changed to *“ doubling.”

3. Trial-and-error methods were dominant in No. ¢, 10, and 11. There was
conscious effort to find a relation, which was followed by great satisfaction
when they ‘got it’. Many different methods of arriving at the results were
shown.

4. All stated that the problems were ‘interesting’, because once they had
‘found the connection’, they could fill in the blanks easily. Satisfaction was
felt by the pupils that they were arbiters of their own work. They knew that
their results were correct.

TEsT 3

The purpose of this test was to give exercise in relation finding of several
kinds. Several examples involving algebraic expressions were given to test
the ability of the pupils to detect algebraic configurations. None of the pupils
examined orally had previously had any algebra.

Cbservations:

1. Several who had done only moderately well in the earlier tests scored
full points on this test. They attributed their success to the fact that they had
a definite and limited choice of responses.

2. Although none had done any algebra, all except one did No. 6, 7, and 8
correctly. They cognized the expressions as wholes, as like configurations.

3. The word ‘like’ was used in various ways, as: ‘all odd numbers’, ‘all
even numbers’, ‘all ending in the same number’, ‘all divisible by 7°.

TEST 4
This is similar to the other tests but requires a different kind of responase.
Observalions:

1. In reply to No. 1, several crossed out 4, because all the other numbers
were ‘primes’; the majority crossed out r1, taking the numbers as a progression.

2. Several observed that the series of No. 5 “got bigger quickly’ and so
decided that they must ‘“multiply.”

3. To No. 3 the most popular response was to cross out 8 ‘““because all the
other numbers are odd.” Only a few crossed out 15.

4. The examples involving algebra (6 to 10) gave little trouble to the non-
algebra pupils. As in Test 3 the algebraic expressions were treated as con-

figurations.

TEST §
This is a simple matching test, involving similarities of form and structure.
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The difficulty lay not in detecting similarities in single cases but in getting the
best possible set of connections for th. whole.

Observations:

7+ This test did not appeal to the less intelligent pupils who made whatuver
connections seemed obvious and then left the rest unconnected. The more
intelligent pupils found the test very interesting, because in some cases more
than one connection was possible. For example, in No. 1 it was possible to
coanect 7 and 42 or 7 and 37, but the selection of 7 and 42 would have left
21 and 37 unconnected.

2. For No. 2 more than one solution was possible, {e.g., in fg gg
but in practically every case 54 and 18 were connected, then 64 and §6. The
reason given for this combination was that the divisors 9 and 8 were ‘better’
then 2 and 2.

3. Although the pupils had not learned algebra, x? and y* were read as
‘x squared’ and ‘y squared’. When questioned they remarked that “if 3?
is 3 squared, then x? must be x squared.” They had had the notation 33
in work on prime numbers.

4. It was remarkable that many pupils did No. 4 without hesitation, although
they had never before seen expressions of the kind. \When they were asked to
add ¥+ 2y to 2x + y many were successful.

TEST 6
We have given samples from a large number of questions of a similar type.
The purpose of the test was to find out whether, without any previous formal
instruction or training, children of elementary school grades are able to detect
serial and functional relationships expressed in tabular or graphical form.

Observations:
The results of the test were most instructive, for they showed that

1. Even pupils of inferior intelligence experienced little difficulty in interpret-
ing the graphs. In some cases they estimated the values with considerable
accuracy. For example, in No. 3 they gave one result as ‘somewhere between
190 and 195 feet’, showing that they had given limits to their estimates.

2. In most cases kinaesthetic imagery was employed. Observations such
as the following were made: “I imagined myself on the line,” “I imagined
myself drawing the line,” *'I stood between the points,” and “I balanced the
two numbers.”

3. The pupils did the test with obvious interest and enjoyment and sug-
gested that their school arithimetic should include problems of this type.

4. The responses were given so quickly and with such confidence that one
regretted having in the past spent much time teaching the obvious. Exercises
in the interpretation of graphs should come before exercises in construction.

5. Inquestions 2(a) and 2(b) the answers were sometimes given very quickly
but the rationalization of the answers took a long time, Replies like the fol-
lowing were given: “It must be ‘I’, it couldn’t be anyone else.” When
asked to explain why ‘I’ had done better than one would have expected, the
first reply was: ‘‘He did better than H"—not “He did better than H and J.”
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The descending order of the scores in English was not mentioned, but tl.e fact
was carried over to the series for arithmetic. In not a single case did the pupil
think it necessary to state that the English scores were in descending order,
but all insisted that the scores in arithmetic should have been in descending
order. There was an obvious transfer of meaning and of attention from the
English to the arithmetic series. Yet when questions 2(b) aad 2(d) were dis-
cussed the scores in English were used as a basis. It was obvious that the -
serial character of the English scores was carried in the mind as a concept.

Test 7

This test of form discrimination presented little difficulty even to the less
intelligent.

Observations:

1. Only the more intelligent crossed out the fourth figure of No. 7. The
key to the problem was ‘symmetry’. In most cases the ellipse was crossed
out. Very few crossed out the third figure of No. 8. Again, the key to the
solution of this question was ‘symmetry’,

2. Most pupils crossed out the second figure (triangle) of No. 10, the reason
being that the triangle did not ‘look like’ the other figures.

3. It was surprising that so many saw that the key to No. 14 was ‘bisection
of the area’. When this problem was given to a class of adults, several failed
to give the correct answer.

4. The solid figures of No. 15 and 16 proved no more difficult than plane
figures. In all cases of error the figures with circular bases were crossed out.

TEesT 8

We have given a few samples from a large number of problems on similarity
and symmetry. The restoration of similar figures presented little difficulty
but the symmetrical figures proved a stumbling-block even to the more
intelligent. 1Insome cases the pupil folded the paper and worked out the cor-
respondences by an obvious ‘thought experiment’. When questioned after-
wards many stated that they put the left-hand figure face down on the right-
hand figure ‘in imagination’.

Some interesting results were obtained by comparing the first and second
parts of the test. In the first part the pupil was asked to make the two figures
alike, for example:

A OO | O X

This did not prove a difficult exercise.

In the second part of the test the pupil had to unite the two confignrations
into a composite figure to be filled in a third blank space. This proved a
stumbling-block to many, the difficulty being that the positional relations had

A OO JO X ATIOOX
to be ‘held’ and carried to a third position, whereas the first exercise consisted

simply in marking a one-to-one correspondence. The materials of the two
parts were the same.




APPENDIX B

MORE ADVANCED TESTS OF MATHEMATICAL
RELATIONS

TESTS OF MATHEMATICAL RELATIONS

TEST 1: CLASSES

I. In a certain elementary school there were 131 boys altogether. There
were 34 boys in Standard I, 32 in Standard II, 3. in Standard II1, and the
rest were in Standard IV. Of the boys in Standard I, 10 had blue eyes, 12
had grey eyes and the rest had brown eyes; of the boys in Standard II, ¢ had
grey eyes, 11 brown and the rest blue; of the boys in Standard IlI, 10 had
brown eyes, 8 blue, and the rest grey. In Standard IV there were equal num-
bers of boys with blue, grey, and brown eyes.

Fill in the following table and write at the right-hand side how many boys
altogether had blue eyes, how many had grey, and how many had brown,

Note: Standard IV is the highest class.

Standard I Standard II Standard III Standard IV Total
blue .
grey ..
brown ..
Total ... 131

1. How many boys did not have blue eyes?
2. How many boys in Standard II had neither blue nor grey eyes?
3. How many boys above Standard II had brown eyes?
4. How many boys below Standard III did not have grey or brown eves?

IL. One hundred and sixty boys sat for a scholarship examination in English
and arithmetic. The results were published in the grades A, B, and C ;A4
being the highest grade. It was found that in English 26 boys obtained A
and 89 obtained B, and that in arithmetic 31 boys obtained A and 85 obtained
B. 1t was also found that 12 boys had A4 in both subjects, 65 had B in both,
while 1o boys had 4 in English and B in arithmetic and 11 boys had 4 in
arithmetic and B in English.

207
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Fill in these numbers on the following chart and answer the questions given
below:

English.
AlBI{GC Tofo.ls‘

Arithmetic

Totals

. How many boys obtained C in English?
. How many boys obtained C in arithmetic?
. How many boys obtained C in both subjects?
4. How many boys obtained A in English, but did not obtain A in arith-
metic?
s. How many boys did not obtain B in both subjects?

[ R

II1. The heights of a number of boys (measured in inches and tenths-of-an-
inch), were given as follows:

58.2, 64.3, 57.8, 68.7, 50.0, 67.3, 51.7, §7.2,
50.0, 55.0, 60.7, 62.8, 6s.0, 534 56.7, 60.0,
623, 667, 543, 549, 640, s51.7, 635  68.2,
53-5» 573, 56.4, 59.9, 5.3, 57.5, 624,  69.0.

The boys were divided into 4 classes: from 50 to 55 (but not including ss),
from 55 to 6o (but not including 60), from 6o to 65 (but not including 65),
from 65 to 70 (but not including 70).

Write on the line below the number of boys in each of these classes.

50 55 6o 6s 70

1. How many boys were more than 6o in. in height?
2. How many boys were not above 55 in. in height? _
3- How many boys were more than §s5 in. and less than 65 in. in height?

TEeST 2: CORRESPONDENCE

IV. In a term examination in mathematics it was found that 1o boys were
placed in exactly the same order of merit in algebra and geometry. The per-
centages obtained were:

Algebra: 42, o1, 67, 49, 74, 58, 51, 61, 72, 84
Geometry: 71, 46, 53, 82, 9o, 65, 77, F3. 85 57

Draw lines connecting the corresponding scores of each boy.
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V. The following rows of figures marked » and y correspond to one another;
that is, for each number in the ¥ line there is a number in the v line, and for
each number in the y line there is a number in the x line  In ench line there are
blanks showing where certain numbers have been rubbed out. Fill in the
blanks. Having done that, write at the side, in words or in equation form, the
law or relationship between the corresponding numbers of the two lines.

¥ 1 3 s| 67
1

y|t |4 o916 36

—.“I

x| 1| 2|3 5] 6
2

Y| 3 S 9 13

x 3]s II
3 — e

y 16 | 22 | 28

x| 2|35 1T 14 20
4 i -

y| s |26]s0 290

VI. Two sets of numbers x and y are related according to a given rule,
so that, when the x number is known, the y number is determined, The x
numbers are 1, 2, 3, 4, 5. Write down the y numbers corresponding to these
x numbers when y is:

Answer

1. Twice the x number increased by 1. 1, ———e ——
2. Twice the square of the x number, 2 e m———
3. Twice the square of the x number decreased

by 2. 31 ———— i e - - ——o—
4. Three times the cube of the * number in-

creased by 2. P e T —
5 g‘he reciprocal of the ¥ number decreased

Y 1. §o e P,

6. The square of the x number increased by

twice the £ number. 6. -—-—- SRR
7. The 2 number added to its reciprocal. 7. -
8. The square of the x number added to the

square of its reciprocal, 8. e o e
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Test 3: CORRESPONDING CHANGES

VII. On the left-hand side of this page there are certain geometrical figures,
In these figures certain changes a.c made, the rest of the figure remaining the
sm....-ii dYou are asked to note the corresponding changes in the other ways
specified,

collid the
orre
Figurs Chonce Meds Chanee in® Anguw
R Height doubled, Area
1. /_\ Sides doubled, Area '
3. ——Rm \'ertex moves alonk & Area

line parallel to base,

4 A Angle B increascs, Side AC
T Q ¢
5. r) Point 4 moves along  Augle B4C
circumlereuce.
a c
6. Circles moved until  Common chord €
they touch,
A
é

(DE is parallel to BC.)  Ratio AE8: EC
C moves along line 8C.

X. Rl BCis panallel to A'C")  B'CY
¢ &'C' is l'r)r\ln\'ed from &
to_position at which
BB = {48,



Figure

'Y

10,

1

4.

is.

t6,

7.

oY

O
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MATHEMATICAL RELATIONS

Chante Mede
(A'BC'D | llel to
ABCD) 408D oves
from ARCD to pusition
ut which 04’ = 204,

(BC is a diameter) 4
moves along circumler-
eice,

(0 is the mid-point of
E{B& P moves from B
0 (.

AB revolves round 0.

Radlus of base ja-
creased 1095,

Rudius of sphere in.
creased 310%p,

C moves so thut AC+
CB is conslant,

Circle ralls along a line,
touching it.

(Cear wheels hearin
on one another) whee
g turns through angle

a1

Find the
Corresponding
Chamge 1n
Area A'BC'D

Ansuer

Bary-ACH

AP. PB

Angle ACB

Volunie of cune

VYolume of sphere

Pnsition of point ¢
(draw cusve)

Poasition of point P
(draw curve)

Angle through
which wheel ¢
turns
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TEST 41 THE INTERPRETATION OF GRAPHS

VIII. The marks obtained by 11 boys in an examination in mathematics
were represented dingrammatically as follows:

0

A -

7ol - ]
an [ I

0] N
20
20

/0
o

A B8 € O E F 6 #H 7 J A

Write down the names of the boys (by letter) in order of merit, and write
underneath the marks of each.

Order of merit: U
Marks: e —_— —

IX. The diagram below shows the exports and imports of a particular port
from 1920 to 1930. Examine the diagram carefully and answer the questions
given below.

00|
Numbers t xports)
represent
thousands 160
of pounds. 160
140 mports

&o

/90 2/ 2z 23 24 25 26 27 28 29 30

When were the exports greatest? ___
When were the imports least?

When was the yeatly rise in exports greatest?
When was the rise in exports and imports the same?
What were the exports in 19230 £______ooco.

. What were the imports in 1927? £ -,000.

. What were the imports, when the sxports were £120.0007 __._
. What were the exports, when the imports were £30,000> ______

il

U N

-
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X. The graph given below represents the equation y = §x — 3,
Y

¢
s
4
J
£z
'
2

a9 /0 /0 /2 x

]

1. Put a cross on the graph where x = 2. Find the corresponding value of y:

2. Put a small circle on the graph wherc y = 1. Find the corresponding
value of x: .

3. Draw a line parallel to the graph through the point (2, o). What is the
equation of this graph?

4. Take any two points on the graph. For these two points find the change
in x value and the corresponding change in y value, and write down the value
of the quotient

y change
corresponding x change

XI. The graph given below represents a certain quadratic equation.
b g

¢ I I

i «~ N ¢

1. What is the equation of the graph?

2. Put crosses on the graph where (x — 1) (x — 3) = 3. What are the cor-
responding values of x?
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3. As x varies from o to 1, y varies from . to _..
4. As z varies from 2 to 4, ¥ varies from — to __.
5. The value of the function ¥ is zero, where x = __,
TEST §: FURMULAS
NI Write down the formulas to find:
1. The area () of the four walls of a room,

given the length (/), wi 1th (w), and height (4). 1.
2. The area (4) of a rectanglz, given one
side (a) and the diagonal (c). 2.

3. The area (4) of the whole surface of a

circular cylinder, given the radius of the base (r)

and the height (4). 3.
4. The volume (V) of a right circular cone,

given the radius of the base (r) and the height (4). 4.
5. The dista ce (d) traversed by a train,

which goes at the rate of # mi. per hr. for the first

m hr. and v mi. per hr. for the next 5, br. 5
6. The distance (d) between two cars which

start from the same place and travel for ¢ hours

with speeds v; and v, mi. per hour: (a) in the same

direction; and (b) in directions at right angles to 6. @) ——

each other. (b)
7. The depth (d) of water in a cylindrical

tank (radius of base = r ft.) after it has been sup-

plied with water for # hours from a tap which gives

1" cu. ft. per hour, y P
8. The nth term (V) of the series 4, 7, 10,

I3, « « o & 8.
9. The nth term (V) of the series 2, 6, 18,

Sdy o v o s 9.
10. The nth term (N) of the series 2, s, 10,

17, 20, + . .. 10.

XIIIL In each of the following formulas the quantity on the left-hand side
is called ‘the subject of the formula." You are asked to find the effect on the
subject of the formula, when certain changes are made in some of the other

quantities.
Change Made in the
Formula Change Made in Term Subject
1. C =2mr r is doubled. I.
2.5 = gt ~ ¢ is trebled.
3d= \/gaz a is halved. 30—
4
4. E=R.C R and C are both doubled. 4.

]
i

2x 1/7 Lis doubled. s
8

5. ¢
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6. V= il I’ is doubled and /, b, d halved. 6 —
o ROl (a) §is increased 10%,. 70 (@) o
7. R= KRSV 1) Vis increased 1007, ()
8. f = u’flv # and v are both increased 10%. 8. . ______ ...
2
9. H= 5("7]—‘ R and C are increased 1053, 9. )

TEST 6: RELATIONS

XIV. We frequently find that one quantity depends on a number of other
quantities. For example, the interest obtained from an investment depends
on the amount invested, the rate per cent., and the time the money has been
invested. Complete the following sentences showing the dependence in each
case.

. The circumference of a circle depends on
. The area of a rectangle depends on and
3. The volume of a rectangular box depends on —____, e, and

-

[

) 4. The weight of a rectangular block depends on
——,and
5. The volume of a sphere depends on —__ _..
6. The price paid for a bag of wheat depends on and e
7. The wages received by a workman depend upon the number of
———— he works and the ._ per day.
8. The distance traversed by a bull in falling from rest depends on
and .
9. The amount of expansion of an iron rail when heated depends on

) e eaaay

y ——e——and _____,

10. The area of a triangle depends on the
is constant.
11. The volume of a given mass of gas depends on its

when the ..

and

XV. In the following examples there are several dependent factors entering
into the case. Fuil marks will be given for any two correct factors.

1. The speed of a motor car:
2. Good health: , .

3. The yield of wheat from a field: | |
4. The amount paid in income-tax: . ____ .
5. The exchange rate between England and America:
6. The cost of running a motor-car:
7
8
9

g

. Success in school work: , .
. The price of certain mining shares: ____ __ |
. The bending of a beam fixed at one end:
10. The premium paid on a life insurance policy: _____, . _ .

Y ————emee —me




