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MODELS OF INDIVIDUAL TRAJECTORIES IN COMPUTER-ASSISTED INSTRUCTION

FOR DEAF STUDENTS1

P. Suppes, J. D. Fletcher, and M. Zanotti?

Stanford University

In this report we present a new approach to evaluation of curricu-

lum. Many of us who have been engaged in curriculum reform efforts have

been dissatisfied with the wait-and-see approach required when classical

evaluation of a new curriculum is used. We have in mind evaluation by

comparing pretests and posttests, with an analysis of posttest grade-

placement distributions as a function of pretest distribution and expo-

sure in some form to the new curriculum.

In line with approaches used in other parts of science, it is natu-

ral to ask if a more predictive-control approach could be used and made

an integral part of the curriculum to ensure greater benefits, especially

for the disadvantaged or handicapped student. The approach discussed in

this report is aimed precisely at this question. The strategy is to de-

velop a theory of prediction for individual student progress through the

curriculum, to use this predictive mechanism as a means of control by

regulating the amount of time spent on the curriculum by a given student,

and to thereby achieve set objectives for the grade-placement gains of a

student. Such an approach also calls for individualization in the objec-

tives of a course, for it is unrealistic to expect all students to make

the same gains in the same amount of time, or to expect that the slowest

students can cover as much material as the best students simply by
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spending additional time in a course. Consequently, even with a differ-

ential approach to the amount of time each student may spend in the cur-

riculum, it is still not reasonable to impose a uniform concept of

grade-placement gain on all students.

Another important feature of our approach to the prediction of stu-

dent progress is to separate the global features of the curriculum (de-

scribed in the next section) by a simple differential equation from the

global individual parameters characteristic of the individual student.

In many. respects, the estimation of the global individual parameters

corresponds to the fixing of boundary conditions in the solution of dif-

ferential equations in physics. In our case the boundary conditions cor-

respond to the characteristics of the individual student and the differential

equation itself to the structure of the curriculum. We do not know if the

differential equation that fits the structure of the elementary-mathematics

computer-assisted instruction (CAI) curriculum developed at Stanford over

a number of years will be the characteristic differential equation of

other curriculums. The generality of the qualitative assumptions from

which the differential equation is derived provides some grounds for op-

timism, Examination of individual student trajectories in other courses

will be required to test this optimism. (In the remainder of this report

we shall often talk about student trajectories rather than student progress

in order to give the sense of a definite path as a function of time that

we are predicting for the individual student.)
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THEORY

As we have already emphasized, our analysis is aimed at the global

performance of the student. The fact that we are considering only his

global progress, and not his performance on individual exercises, makes

it possible for us to state general axioms about information processing

from which we may derive the basic stochastic differential equation that

we believe is characteristic of many different curriculums, especially

curriculums that are tightly articulated and organized in their develop-

ment. Certainly this is a characteristic of the CAI mathematics drill-

and-practice curriculum considered in this report.

In our axioms we speak of new pieces of information. We did not

want to use the technical concept of a bit of information, for in many

instances the new information introduced at a given point in the curric-

ulum constitutes in a literal sense a number of bits. The axioms are

formulated in such a way that very little about information is assumed.

A deeper analysis would aim at providing more structure to the theory

of information outlined in our axioms. At the global level considered

here it does not seem necessary.

The first axiom deals with a student's rate of processing or sampling

information in a course. The second axiom postulates what happens to the

student's mean rate of processing information when a new piece of infor-

mation is introduced. The third axiom deals with the basic assumption

about the rate of introducing new information. The fourth axiom assumes

that the student's current position in a course is closely related to

the sum of information introduced up to this point, and the fifth axiom
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makes a similar assumption about his rate of progress in the course.

(Readers not interested in the technical statement of the axioms and the

derivation of the basic differential equation should skip to the end of

this section.)

For statement of the axioms and later use, we define the following

quantities:

y(t) = position of student in the course, and at t = 0 we

set y = 0 for present purposes, but later consider

a translation;

y(t) = rate of progress through the course;

A(t) = cumulative amount of information introduced in the course

up to time t;

A(t) = rate of introduction of informal on in the course;

s(t) = student's rate of processj.ng or sampling information.

The five general axioms are formulated as follows.

Axiom 1. A student's mean rate s(t) of processing or sampling

information is directly proportional to the rate of introduction of in-

formation in a course and inversely proportional to the total amount of

information introduced up to time t, i.e., s(t) is proportional to

A(t)/A(t),

Axiom 2. Upon introduction of a new piece of information a student's

new mean rate of processing information is decreased by an amount equal

to the product of his current rate and the difference of his current rate

and his asymptotic rate, i.e., for a small interval of time h

s(t h) = s(t) - [s(t) - s(m)] s(t)
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Axiom 3. The probability of a new piece of information being in-

troduced for a given student at time t is independent of t and the

previous introduction of information.

Axiom 4. The position of a student in a course is directly propor-

tional to the total information introduced thus far in the course, i.e.,

y(t) is proportional to A(t).

Axiom 5. The rate of progress of a student in a course is directly

proportional to the rate of introduction of information in the course,

i.e., y (t) is proportional to A (t).

Of the five axioms, it is clear that Axiom 2 is the least satisfac-

tory in form. It could be formulated this way. The decrease in rate of

processing upon introduction of a new piece of information falls off

quadratically in the rate of processing. What we do not like is the ab-

sence of a more fundamental qualitative characterization of the rate as-

sumption expressed in this axiom. Although we have given some thought

to a reformulation of Axiom 2, we have not been successful in finding

a genuinely better alternative.

We are reasonably satisfied with the other four axioms and believe

that they have a natural intuitive content that does not require explicit

discussion.

We turn now to the derivation of,the basic stochastic differential

equation. We emphasize that the equation is stochastic; it is a mean

stochastic equation and not a deterministic one. Although the basic

assumptions of the theory expressed in the five axioms permit us to
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derive more details about the behavior of students than is expressed in

the mean stochastic equation, we shall not look at additional details

in this report.

By Axiom 3, the introduction of new information is a Poisson pro-

cess, let us say with parameter X. Thus by Axiom 2, with probability

Xh in a small time interval h:

s(t + h) = s(t) - [s(t) - s(m)] s(t) , (1)

with probability o(h) more than one piece of information is introduced,

and with probability 1 - Xh - o(h):

s(t + h) = s(t) , (2)

whence from (1) and (2), and setting s(m) = 0, which seems intuitively

sound,

s(t + h) - s(t) 2 o(h)
- Xs(t)2 +

Hence, as h 0, we obtain the differential equation

whose solution is

By Axiom 1

but by Axiom 4

;(t) = - Xs2(t) ,

s(t) = l .T
t ci

k1A(t)
s(t) =

A(t) '
k
1
> 0 ,

y(t) = k2A(t) , k
2
> 0
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and by Axiom 5

whence, combinfng results,

y(t) = k3A(t) , 0 ,
k3

k
y(t)

Y(t) Xt + cl '
k >0 .

Integrating this last eauation, we obtain

In y(t) = In (),t + cl) + In 1b11

and so

k4/X
y(t) = b

1
(Xt + ^

1
)

Here if t = 0, y(t) = 0, and so cl = 0. Assuming the student has

some knowledge, c, of the course at t = 0, we take as our final equation

y(t) = btk + c .

As already indicated, the parameters b, c, and k are meant to be es-

timated separately for each individual student.

METHOD

The Mathematics Strands Curriculum

Assessment of the pedagogical effectiveness of the Institute's

elementary mathematics curriculum on achievement among hearing-impaired

students was resorted in Suppes, Fletcher, Zanotti, Lorton, and Searle .

(1973). The present assessment is based on the kind of highly individ-

ualized study of trajectories outlined in the introduction of this report.

We briefly describe the strands program. A more detailed description

is to be found in the report just referred to, or in Suppes, Goldberg,

Kanz, Searle, and Stauffer (1971).
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The objectives of the strands program are (a) to provide supplementary

individualized instruction in elementary mathematics at a level of diffi-

culty appropriate to each student's level of achievement, (b) to allow

acceleration in any concept area in which a student demonstrates pro-

ficiency, and to allow repeated drill and practice in areas of deficiency,

and (c) to report a daily profile of each student's progress through the

curriculum.

A strand is a series of exercises of the same logical type (e.g.,

horizontal addition, vertical subtraction, multiplication of fractions)

arranged sequentially in equivalence classes according to their relative

difficulty. The 14 strands in the program and the grade levels spanned

by each strand are shown in Table 1. Each strand contains either five

Insert Table 1 about here

or ten equivalence classes per half year, with each class labeled in

terms of grade-placement (GP) equivalent. Data collected during several

years of the earlier drill. and- practice mathematics program at Stanford

were used to arrange the equivalence classes in an increasing order of

difficulty and to ensure that new skills (e.g., regrouping in subtraction)

were introduced at the appropriate point.

In addition to ordering the equivalence classes within a strand, we

had to determine how much emphasis to give each strand at a given grade

level. To determine this emphasis, we divided the curriculum into 14

parts, each corresponding to a half year. A probability distribution

was defined for the proportion of problems on each strand for each half

year. The final proportions in terms of time and problems for each half

year for each strand are shown in Table 2.
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TABLE 1

Grade Level Spanned by Each Strand in

the Elementary Mathematics Program

Strand Content Grade level

NUM Number concepts 1.0-7.9

HAD Horizontal addition 1.0-3.9

HSU Horizontal subtraction 1.0-3.4

VAD Vertical addition 1.0-5.9

VSU Vertical subtraction 1.5-5.9

DOM Equations 1.5-7.9

MEA MeasUrement 1.5-7.9

HMU Horizontal multiplication 2.5-5.4

LAW Laws of arithmetic 3.0-7.9

VMU Vertical multiplication 3.5-7.9

DIV Division 3.5-7.9

FRA Fractions 3.5-7.9

DEC Decimals 4.0-7.9

NEG Negative numbers 6.0-7.9
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Insert Table 2 about here

A student's progress through the strands structure is purely a func-

tion of his own performance and is independent of the performance of other

students; in fact, his progress on a given strand is independent of his

own_ performance on other strands. A scheme defining movement through a

strand uses the pattern of correct and incorrect responses to insure a

rate of movement that reflects performance.

Ecuipment

The central computer processor was the Institute's PDP-10 system

located on the Stanford campus. 7)/--line, real-time communication was

maintained with the participate.:.:, schools located in California, Florida,

Oklahoma, Texas, and the District of Columbia by means of dedicated

telephone lines,

The student terminals were KSR Model-33 teletypewriters. The tele-

typewriters communicate information to and from the central computer sys-

tem at a rate of about ten characters per second. All of the elementary

mathematics exercises were typed at the terminal under computer control,

and keyboard responses were given by the students. The details of ex-

ercise format and student responses are described in Suppes, Jerman, and

Brian (1968) and Suppes and Morningstar (1972),

Students

The students participating in this experiment were chosen from the

entire population of students who were enrolled in one of three resi-

dential schools for the deaf in California, Florida, and Texas and who

10



TABLE 2

Proportion of Time and Proportion of Problems for Each Strand for Each Half Year

Strand
Half year

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

NUM PT 50 24 24 17 10 5 7 7 8 11 14 10 15 15.

PP 36 18 16 12 10 4 8 8 10 14 20 10 19 19

HAD PT 26 21 21 9 14 9

PP 32 28 26 10 14 8

HSU PT 14 10 16 9 4

PP 18 14 16 10 4

VAD PT 10 10 9 19 19 7 8 2 3

PP 14 12 12 22 20 6 10 2 4 2

VSU PT 9 8 15 22 10 13 3 3

PP 12 12 18 20 8 10 2 4

EU PT 17 12 16 17 14 17 7 5 7 7 8 15 15

PP 10 10 12 16 12 20 8 8 12 12 10 19 19

NEA PT 9 10 8 8 11 7 7 5 5 5 5 5 5

PP 6 8 6 6 6 8 8 8 8 8 6 6 6

HNU PT 7 3 8 5 3 2
PP 10 6 14 10 6 C

LAW PT 3 5 5 3 3 3 1 1 8 8
PP 4 6 6 4 6 6 2 2 10 10

VMU PT 10 5 14 6 8 7 5 8 8

PP 14 6 16 8 4 4 2 4 4

DIV PT 15 22 34 48 33 40 13 14 14

PP 18 10 16 16 6 8 2 3 3

FRA PT 6 4 15 13 20 17 18 10 10

PP 4 4 214. 22 32 32 26 10 10

DEC PT 7 5 4 11 7 36 10 10

PP 8 6 6 14 10 38 10 10

NEG PT 2 4 15 15

PP 4 4 19 19

Note.--PT =proportion of time; PP = proportion of problems.



were receiving daily CAI sessions in the elementary-mathematics strands

curriculum through the Institute's computer system in 1971-72. The degree

of hearing loss among the students was essentially that adopted for ad-

mission standards by the schools; generally this loss averages at least

60 decibels in the better ear. All of the students from this population

whose average GP was between 2.0 and 5.9, who had received more than

twenty mathematics strands sessions and who were not assigned to the

evaluation study already reported in Suppes et al. (1973), participated

as subjects in the experiment. Complete data were obtained for 297 of

the 355 students who began the experiment.

The on-line colle:Aion of. data for these students began on February 14,

1972 and ended on May 5, 1972. Proctors supervising students' use of com-

. puter terminals were encouraged to have students take more than one CAI

session per day where feasible, and especially to increase the number of

sessions taken by students whose GP calibrated by the strands curriculum

was low. Proctors and teachers were further encouraged to set GP objec-

tives for individual students and to encourage them to take an adequate

number of sessions to meet these GP objectives in terms of the GP calibra-

tion built into the strands mathematics curriculum.

Measures of Achievement

Three measures of achievement were taken. First, the final GP at

the end of the experiment on the mathematics strands curriculum was im-

mediately available. Second, the modified on-line Stanford Achievement

Test called MSAT, developed at the Institute and described in detail in

Suppes et al. (1973), was administered. Both of these measures were

12



obtained for 297 6f the 355 students who began the experiment. In addi-

tion, the Stanford Achievement Test (SAT) was administered off-line by the

participating schools. Results on the computation section are available

for 206 students and on the concepts and applications sections for 107

students.

RESULTS

Descriptive Statistics

We first describe for the 297 students who completed the experiment

their beginning GP position in the mathematics strands curriculum and then

their ending position. At the beginning of the experiment the mean posi-

tion was a GP of 3.41 with a standard deviation of .828 and a range of

2.09 to 6.00. At the end of the experimental period the mean GP was 4.07

with a standard deviation of .844 and a range of 2.40 to 7.33.

During the experimental period, the mean number of CAI sessions

averaged across the 297 students was 51.98 with a standard deviation of

15.91 and a range running from 25 to 146.

External Measurements of Achievement

In Table 3 the results of linear regressions are shown, using the

final strands-curriculum GP of each student as the independent variable

Insert Table 3 about here

and the various external measures as dependent variables. Table 3 also

shows the correlations between the final GP position of the students and

the scores on the MSAT, SAT computation, SAT concepts, and SAT applications

13
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as described earlier. In all cases the F ratios are significant at

p < .01. The correlation of .86 between the MSAT and the final GP for

the 297 students is about as high as one could expect in any experiment

of this sort. The correlation of .80 for the 206 students who completed

the SAT computation section is also high.

The regression equation, for example, for the SAT computation section

can be used to provide quite good predictions for what may be expected

from students on the SAT computation section, given their final GP posi-

tion in the mathematics strands curriculum. Such a regression equation,

can be useful as a predictive device in deciding how much supplementary.

drill and practice a student needs to show a reasonable GP gain as mea-

sured by a standard achievement test. On the other hand, it is the basic

theoretical thrust of the present report to show how this essentially

empirical regression approach can be improved by developing a theoretical

model for student trajectories that permit better extrapolation, especially

nonlinear extrapolation, of the effects of an increased number of CAI ses-

sions, in order to determine the consequences of additional aki sessions.

Note that this theoretical approach uses a linear regression equation for

the purposes of predicting an external score on a standard achievement

test, but the theory enters in terms of deciding how many sessions a stu-

dent should have to reach an agreed-upon objective measured in terms of

strands GP.

In a previous evaluation study on the use of the mathematics strands

curriculum by hearing-impaired students, reported in Suppes et al. (1973),

the simple correlation of the strands final position of the 312 students

in that experiment and the MSAT scores was .762. The corresponding simple

15



correlation coefficient, not the correlation obtained from the regres-

sion equation, in the case of the present experiment for the 297 stu-

dents was .797. As would be expected, the correlation obtained from

the regression equation, with one more parameter free to estimate, is

higher than either of the simple correlations. What is worth noting

about these figures, however, is that in all three cases the correla-

tions aie around .8.

A regression of a different sort was used in Experiment 1 for the

MSAT GP. The regression was run with the posttreatment MSAT as the de-

pendent variable and with two independent variables, the pretreatment

MSAT GP for each student and the number of CAI sessions. In this case

the multiple correlation from the regression was .811, which again is

close to those just mentioned, but in this case only the number of CAI

sessions directly entered the regression and the GP itself did not. Of

course, introduction of the pretreatment MSAT GP corresponds to the

introduction of what is known generally from the literature to be a

powerful predictive variable, namely, the pretreatment GP of the stu-

dent on some standard measure.

Finally we should mention that the F-ratios in Table 3 are suffi-

ciently high to warrant the judgment that the regression equations not

only have a good correlation with a significant F-ratio, but also that

the F-ratio is adequate to justify the use of the regression equations

for predictive purposes. They are, in all cases, significant beyond

p = .01 and in fact satisfy the four-times-significance-level rule

sometimes quoted as desirable for predictive purposes.
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Tests of the Theory

We turn now to tests of the theory and concentrate on the general

equation for individual student trajectories resulting from the solution

of the basic stochastic differential equation, which was itself derived

from some simple qualitative postulates about information processing.

We emphasized earlier that we take the differential equation to be char-

acteristic of the course, but the three individual parameters present in

the final equation are in principle to be estimated for each student in-

dividually. Recall that the basic equation is:

y(t) = btk + c .

In estimating individual parameters and fitting individual curves

to individual student data, we have used three basic measures to evaluate

the fit of the theory. The first and most important is the mean standard

error in predicting the observation points for each student. The second

is the mean absolute residual, that is, the mean absolute difference in

the predictive and observed observations for each student, and the third

is the mean of the maximum residuals for each student. To be explicit,

leto..ij be observation i for student j and t.. be the correspond-

ing theoreticalprediction.Then.thestandarderrorofn.predictions for

student j is:

n.

1/2
Standard error = [l/n. oij - t..)

2
]

1=1

and the mean standard error for the sample population of students is

just the mean of their standard errors. To obtain the mean absolute

residualforthesamplepopulation,Twejustreplace(o..-t..)
2

by
ij
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lo..ij -tij l and do not take the square root; finally, in the case of the

mean of the maximum residuals, we first find for each j

m. = max lou - t..ij I ,

andthentakethemeanofthem.'s, i.e.,

n

_1

n

j

Regarding the number of observations per student, we fitted the

theoretical curve by using the session number on which the student moved

.1 of a GP. The GP for each student averaged across the 14 strands was

computed only to .1 of a GP, and thus the times of change in recorded GP

were the significant observations to use in fitting the theoretical curves.

These observations may be regarded as defining a step function for the

student's progress. In these terms, we fitted the theoretical curve to

the points of discontinuity (i.e., change) in the step function. The

average number of such points per student was approximately 12.

Before turning to the presentation of numerical data, we want to

give a sense of how extremely close the fits of the theoretical curves

are to the observed points for individUal students. In Figures 1 to 4

we have presented results for four students whose exponents k vary

Insert Figures 1-4 about here

over a wide range. In particular, for one student the k value is taken

at the limit, that is, we use the equation y = b in t c, and for

another student the other extreme of k = 1.00. We include as the third

student that student whose standard error was the largest, namely, .197.

18
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Fig. 1. Student with equation y.= b In t + c, with b = 1.00

and c = -.34.
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Fig. 2. Student with k = 1.00, b = .0122, and c = 1.69.
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Fig. 4. Typical student with k = .40, b = .50, and c = .95.
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It is apparent from the extremely close fits of the predicted curves to

the data that these curves should be usable for predictive purposes.

The most important of the three estimated parameters for each student

is the exponent k that enters in the basic equation. To give a sense

of the effect of using the same k for all students and to see how the

mean standard error varies with the variation of k, we show in Table 4

the results of letting k range from .05 to 1.00. We have also included

the limiting case of the log model.

Insert Table 4 about here

As can be seen from this table, the mean standard error varies from

.0856 for k = 1.00 to a minimum of .0602 for k = .45. In the third

column we show the range across students of the standard error. Even in

the worst case, that with k = 1.00, the top of the range is still only

slightly more than one-quarter of a GP. The mean absolute residuals

shown in the fourth column also have a relatively small value, running

from a minimum of .0452 for k = .40 or k = .45 to a maximum of .0645

at k = 1.00. The ranges of the absolute maximum residuals, shown in

the fifth column of Table 4, correspond closely to the ranges of the

standard error.

At the bottom of the table we have shOwn the fixed value of

k = .47357 that arises from taking the mean of the best individual k's.

This mean fixed k is close to the minimum shown in the table in terms

of standard error, that is, with a standard error of .0604; the same is

true of the range of the standard error and the other data.
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TABLE

Evaluation of Fit of Theory Using Same Exponent k for Each Student,

but Individual Parameters b and c

k
Mean stand.

error
nge SERare

Mean abs.
residual

Range abs.
mean residual

In .0776 .0163-.2082 .0594 .0118-.1603

.05 .0740 .0148-.1994 .0565 .0104-.1620

.10 .0708 .0134-.2020 .0540 .0094-.1662

.15 .0679 .0124-.2047 .0516 .0086-.1704

.20 .0654 .0118-.2075 .0496 .0079-.1745

.25 .0634 .0117-.2105 .0480 .0079-.1787

.3o .0618 .0121-.2136 .0466 .0078-.1828

.35 .0608 .0128-.2168 .0457 .0083-.1869

.40 .0603 .0141-.2201 .0452 .0094-.1909

.45 .0602 .0158-.2235 .0452 .0107-.1949

.5o .0606 .0175-.2270 .0455 .0121-.1989

.55 .0616 .0161-.2305 .0462 .0117-.2028

.60 .0629 .0146-.2341 .0472 .0110-.2067

.65 .0646 .0134-.2377 .0486 .0097-.2105

.70 .0668 .0128-.2414 .0502 .0094-.2142

.75 .0693 .0128-.2452 .0521 .0092-.2179

.8o .0721 .0133-.2489 .0542 .0096-.2215

.85 .0752 .0143-.2527 .0566 .0107-.2251

.90 .0785 .0149-.2565 .0591 .0105-.2286

.95 .0819 .0142-.2603 .0618 .0097-.2320

1.00 .0856 .0136-.2641 .0645 .0090-.2354

.47357 .0604 .o166 -.2251 .0452 .0114-.1968
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In Table 5 we compare the results for this population mean of in-

dividually best k's with the mean standard error for the individually

Insert Table 5 about here

best k's, and we can see the improvement we get from going from approxi-

mately the best k that must be constant across students with individually

estimated k's. The improvement in the mean standard error is significant,

moving from .0604 down to .0458. There also is a corresponding improve-

ment in the range as shown in the third column of Table 5, as well as a

good improvement in the mean of the absolute residuals, moving from .0452

to .0343. A similar improvement obtains for the mean of the maximum ab-

solute residuals.

Figure 5 shows how relatively flat the mean standard error is when

a fixed parameter k is used for the entire student population; the

data are graphed from the second column of Table 4. This figure shows

Insert Figure 5 about here

well enough that if a fixed k is used for the entire population there

is no necessity to have a highly exact estimate of it. Any value in the

range from .3 to .6 will give about as good an estimate as any other, with

a possible improvement of not much more than two parts in a thousand.

When several parameters are estimated for each student, it is natural

to ask what can be said about the joint distribution of the parameters.

In the present case, perhaps the most interesting comparison is to use

the mean fixed k = .47357 for the entire population and to study the

properties of the joint distribution of the coefficients b and c.
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Fig. 5. Graph of mean standard error as a function of the

parameter k.
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The scatter plot of this joint distribution is shown in Figure 6. As is

evident from the figure, there is a negative correlation between the two

Insert Figure 6 about here

coefficients, with r = -.5772. The absolute value of the correlation

is low enough to show that we cannot eliminate one of the coefficients

and achieve as good predictive results.

In Figure 7, we show the histogram for the distribution of the

exponent k when individually estimated. It is clear from the figure

Insert Figure 7 about here

that there is a wide range of best k values, and in this respect there

is great student variability. On the other hand, this variability must

be approached with caution because, as we have seen from the flatness of

the curve in Figure 5, considerable variation in the range of k will

affect only slightly the fit of the predicted curve to the observed data.

Indeed, it is clear that even with fixed k = .47357 the mean standard

error is well within an acceptable limit.

DISCUSSION

From some simple and unquestionably too schematic assumptions about

information processing, we have derived a stochastic differential equa-

tion for the motion of a student through a CAI elementary mathematics

curriculum. The constants of integration were estimated for each student

individually, and a reasonable fit of the theory to the data was obtained
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in terms of mean standard error. We believe that the kind of global

model exemplified in this work has an important, but, as yet, generally

unrecognized contribution to make to educational psychology. Most of

the quantitative research in educational psychology has been concerned

with the microscopic processing of items by students, or with the char-

acteristics of tests. Without doubt, much has been accomplished in both

of these areas--the first in terms of learning theory and the second in

terms of test theory. What has been missing is a dynamical theory of a

student's broad progress through a given curriculum. What we have at-

tempted to provide in the present report is a test of a dynamical equa-

tion of motion derived from qualitative principles. We hope the theory

will be tested in other areas of the curriculum. We recognize that one

of the difficulties of application is making the kind of detailed analysis

of curriculum that lies back of the strands mathematics curriculum used

in the present study.
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