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Introduction

The purpose-Of this paper is to review discriminant analysis in

terms of (1) formulations, (2) interpretations, (3) uses, (4) issues and

problems in applications, (5) recent developments and conceptualizations,

and (6) general references and computer programs.

A complete review of literature related to the development of various

aspects of discriminant analysis will not be attempted in this paper. Excel-

lent reviews have already been written which take the interested reade

from the pre-Fisher conceptualization of the two-group classification problem,

thru K-group formulations, to the use of discriminant analysis as a more

general multivariate data analysis technique. The very comprehensive review

by Hodges (1950), which focuses on the use of discriminant analysis for

classification-purposes, covers an historical development in the Pearsonian

stage, dealing with measures of resemblance; the Fisherian stage, dealing with

the linear discriminant function; the NeymanPearson stage, dealing with

probabilities of misclassification; and the Waldian stage, dealing with

risk and minimax ideas in classification. The review by Tatsuoka and

Tiedeman (1954) covers developments in the area of classification as well

as the relationship of discriminant analysis to other aspects of multivariate

data analysis. In particular, they review C. R. Rao's conceptualization

of the problem, extensions of R. A. Fisher's linear discriminant function,

and the integration of the two. A brief review of early work in classifica-

tion is provided by Ottman, Ferguson, and Kaufman (1956), along with an

application of Rao's classification equations. A more recent review of

classification theory and methodology is given by Das Gupta (1973).

The review includes sections on the early history of classification
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[basically a summary of Hodges' review], general classification problems and

theory (including empirical Bayes approaches), multivariate nor al class 1-

cation, and non-normal distributions and nonparametric methods. An exten$ive

and fairly recent bibliography is provided; references are listed for each

section.

The formal relationship of the mathematics underlying the linear

discriminant function -- "function" here is not used in a mathematical sense- -

to other techniques in the domain of multivariate analysis was noted some

years ago by, e.g., Bartlett (1947) and Tintner (1950), and more recently

by Cooley and Lohnes (1971), Tatsuoka (1971), Van de Geer (1971) and Mulaik.

(1972). Despite the relationship, applications of "discriminant analysis"

have in the past been somewhat divorced-from other multivariate techniques,

with classification being the primary concern. However, the use of-discrim-.

inant analysis as an aid in characterizing group differences is seen as a

Very important extension from that as a mere classificatory tool. In his

brief review, Tatsuoka (1969) states that the extension of discriminant

analysis "...as a follow-up to MANOVA is probably one of the most significant

developments in multivariate analysis during the past ten years. [p. 742]."

Specific-uses of discriminant analysis in relation to multivariate analysis

of variance (MANOVA), and methods of interpreting (linear) discriminant

functions are cogently reviewed by .Tatsuoka (1973a).

In a somewhat restrictive view discriminant analysis had been considered

in light of a mathematical problem. In this sense the idea was to simplify

a multivariate situation to a univariate one. That is, given K well -.

defined groups and p measures on each individual in each group, the objectiye

was to determine a (linear) composite of the-p measures which would maximize

the between -group variance of the composite relative to the within -group
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variance. Once mathematical formulations of the basic problem were, in

some ways, satisfactorily performed, applied statisticians and data analysts

began to utilize them in various ways.

Aspects of Discriminant Analysis

In different areas of applica,: ns the term "discriminant analysis" has

come to imply distinct meanings, uses, roles, etc. In the fields of learning,

psychology, guidance, and others, it has been used for prediction (e.g.,

Alexakos, 1966; Chastian, 1969; Stahmann, 1969); in the study of classroom

instruction it has been used as a variable reduction technique (e.g., Anderson,

et al., 1969); and in various fields it has,been used as an adjunct to

MANOVA (e.g., Saupe, 1965; Spain and D'Costa, 1970). The term is now be-

ginning to be interpreted as a unified approach in the solution of a reasearch

problem involving a comparison of two or more populations characterized by

multi-response data.

Discriminant analysis as a general research technique can be very useful

in the investigation of various apsects of a multivariate research problem.

In the early 1950's Tatsuoka and Tiedeman (1954) emphasized the multi-phasic

character of discri6inant analysis: "(a) the establishment f s nificant

group-differences, (b) the study and 'explanation' of these ferences,

and finally (c) the utilization of multivariate information from the samples

studied in classifying a future individual known to belong to one of the.

groups represented jp. 414]." Essentially these same three problems related

to discriminatory analysis were mentioned some years later by Nunnally (1967,

p. 388).

As a means of clarity in communication in this paper, four aspects of

a "discriminant analysis" will be considered. They are (1) separation --
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determining inter-group significant differences in terms of group centroids,

(i.e., mean vectors); (2) discrimination -- studying group separation with

respect to dimensions and to (discriminator) variable contribUtion to

separation, (3) estimation -;-.obtaining estimates of inter-population dis-

tances (between centroids) and of degree of relationship between the response

variables and group membership, and (4) classification -- setting up rules

of assigning an individual to one of the pte-determined exhaustive popula-

tions. It should be noted that this terminology differs from that used by

other writers. Of course, separation is usually thought of in terms of

significance testing via MANOVA; in fact one -way MANOVA and "discriminant

analysis" are sometimes considered-synonymous (McCall, 1970, p. 1373).

Discrimination as used here actually refers to methods of interpreting linear

discriminant functions and their coefficients. This term has been used by

others as the equivalent to what in this paper is called classification

(Kendall, 1966, 1973; Kshirsagar, 1972). Rather than "classification

Rao (1965) uses "identification," while Kendall (1966, 1973) and Hartlien-

(1971) use "classification"-as what is often referred to by behavioral

scientists as "cluster analysis." The inclusion of estimation as an addi-

tional aspect was done for the purpose of emphasizing supplementary means

of interpreting the results of a discriminant analysis.

Separation

The basics of MANOVA as a confirmatory (in the sense of significance

testing) data analysis technique have been quite thoroughly covered in

various books and technical papers and will not be discussed here.

The formal equivalence, mathematically speaking; of MANOVA and some

aspects of-discriminant analysis was alluded to in the last section.
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When the purpose of "research" is that of, drawing Conclusions-and inves-

tigating scientific problems of group comparisons it has been Suggested

that "discriminant analysis" not be identified as a.tool of educational

research. Rather, it has been claimed that discriminant analysis applied

to practical problems of optimal classification of individuals into groups.

[See Bock (1966, p. 822).] In/some investigatory situations, nevertheless,

it may seem reasonable to use one-way.MANOVA as a preliminary step to,

or a first phase of, a discriminant analysis. The classical argument

is that unless the investigator is assured of group differences to begin

with, it is senseless to seek the linear composite to be used for (discrim-

ination or)classification purposes. However, even though a value of any

one of many possible MANOVA statistics might tend to support the null

hypothesis of mean homogeneity, it is possible that for one reason or

another the'data support the alternative hypothesis.

If the mean differences among the criterion groups are all zero, no

differentiation is of course possible in the normal case with equal dis-

persons, but it might be worth examining this special situation in the

case of unequal dispersions. Bartlett and Please (1963) and Desu and

Geisser (1973) cover ways of looking at this problem when there are only

two groups.

In considezing the role of MANOVA in a "discriminant analysis" the '

most important factor is the purpose of the analysis being performed and

the questions one has of the data. The design of the study, including

sampling, data collection, and questions ("contrasts" if youllike),

specify the data analysis technique(s). If the investigation entails

some type of sampling of individuals with the notion of drawing conclusions,

. /

in an inferential sense., about levels cf performance or about locations of
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distributions, then MANOVA may be quite appropriate. his analysis may

be followed up by what we have called discrimination and estimation

methods. In this context,. the variables whose means are being compared are

the dependent variables while the independent variable(s) is(are) the group-

ing variable(s). -On the other 'hand, the study may be one of prediction (of.

group membership), where the predictors are the independent variables and

the dependent variable is a grouping variable: In this latter situation,

there is no manipulation of the grouping variable,.with the groups being

formed a priori. Here, MANOVA may not be called for; the investigatOr

proceeds directly to obtaining classification statistics.

Discrimination

A great deal of research in-the-behavioral sciences deals with the

.comparisons of different groups of individuals in terms of one or more

measures. What characterizes a "group" depends, at least in part, on

whether or not the grouping variable is manipulable -- as is experimental

versus ex post facto studies'. The MANOVA technique is often used in both

of.these situations when the data collection design is assumed to be.

appropriate._ The omnibus null hypothesis tested in a one-way MANOVA

design. is that'of the equality.of the populatiOn centroids. When the pop-

ulations are significantly separated, subsequent and more detailed study of

the group differences. would definitely be.Called for. One foIlOw-up technique

is that which we label as "discrimination"; others, such as multivariate

multiple comparisons, are discussed elsewhere (Stevens, 1973; Tatsuoka,

1973a). Stevens (1972b) reviews four methods of analyzing between-group

variation, one of which is based on linear discriminant functions.



Linear Discriminant Functions

The procedures used in discrimination center around linear discriminant

functions .(LDFs). The mathematics behind LDFs is presented in various NoOks

and papers (see e.g., Tatsuoka, 1971; Porebski, 1966a). One resulting

formulation may be briefly deSCribed as follows. -A linear composite of

measures on p random variables for individuals in K criterion groups,

[1] + + vipEr -v,

is determined so that MSHy/MSEy is maximized/or, equivalently, SSHy/SSEy is

maximized. Here MSHy and MSEydenote the hypothesis and error mean squares

with respect to Y-scores, respec ively. (The "hypothesis" in a one -way

MANOVA design refers to the betw en-group source of variation.) To obtain

the v-values in [1], the largest non-zero characteristic root (or eigen-

Value), X
1,

of E-111 is computed; i.e.,+the largest value of X is obtained

from the. determinantal equation,

[1] IE-111 -XII 0.

The (pxp) matrices, E and H, are the error or within-groups and hypothesis

or between-groups sums of squares and cross-products (SSCP) matrices,

respectively. Then the (pxl) eigenvector, 24, associated with Xi is found

by solving the set:of p equations,

[3] (E-1H -X1 I) vi = O.

The elements of vi are (within a constant of proportionality) the coefficients

of the linear composite in [1]. As is well known, there may be more than

one LDF. The succeeding roots, A2 > X
3

> > X
s

[where* s = min (K- l,p)],
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yield discriminant functions that are mutually uncorrelated (in the total

sample). The successive functions are determined so as to maximize relative

separation after preceding functions are "partialled out."

In .Van de Geer's (1971) integration of various multivariate techniques,

the term "canonical discriminant factor analysis" is used to describe the

process of extracting the LDFs. Harris (1954) and Pruzek (1971) use the

term "dispersion analysis."

As we will see later, a means of interpreting LDFs is based on the

number of functions to be considered. Here, as in interpretation of results

in other domains of multivari te data analysis, parsimony is an objective.

Data represented in a geometry-of two-space, say, are more manageable and

easier to interpret than if represented in spaces of higher dimensions:

Thus, it behooves. the researcl-er to.-discard discriMinant functions which

are judged not,to contribute to group separation. This judgment can be

subjective, in terms of the propOrtion'of the total discItiminatory power

of p measures contained in a set of functions, or it can,be based on

statistical significance teets.\ The former judgment is based on, ratios

of individual eigenvalues to the sum of the eigenvalues. In the

literature the process of testing the significance of a function has been

lacking in clarity. First of all, Kendall (1968) has pointed out that

such tests are "...not so much tests of the functions al tests of homogen-

eity (of population centraids) t,y the use of the functions. If heterogeneity is

found, the functioni ipso facto, is significant iu the sense that it

discriminates between real differences inan optimal way (except that

we use estimators of dispersions and means instead!of the unknown parent

values) [p. 159]." Secondly, what hypothesis is of interest has not



been clearly stated in some writings. The issue on what hypothesis is

being tested pertains' to testing the significance of individual functions

(or eigenvalues), or testing the significanee:of_a set of functions after

. partialling out the complimentary set of functionS that has earlier been

judged to be significant.. [The mechanics of both'tents are given by

Tatsuoka (1971, pp. 164-165). Two sources which leave the reader wonder-

ing which ,hypothesis is being tested are Eisenbeis and Avery (1972 pp. 63,

92-93),4ind Rulon, et al. (1967, p. 308). The test statistics reported in

these latter two references .Are slightly in error N rather than N-1 is

used in the test statistics, for one error.] The-chi-square statistics

used for these two hypotheses are different, but in a practical sense the

conclusions are usually the same. That is, if it is concluded that the

mth eigenvalue (1 < m < s) is the smallest one which is signifiCant then

we usually will conclude thitthe last s-m eigenvalues (or functions)

as a set with the first .m removed do not yield significance (See. Harris, 1974.)

9

Requisite Data Conditions

The validity of the generally used MANOVA tests of equal population

mean vectors depends upon the conditions of multivariate normality and

equal covariance structure being met (Bock and Haggard, 1968, pp. 110-

113). The referrent distributions used-for the\yarious test statistics

yield probability statements which may be.somewhet distorted when

either or both of the two conditions'are not met. 1p a degree and direc-

tion of distortion are not known. The multivariate analogue of the

Behrens-Fisher problem (normality with unequal dispersions) is discussed

by Anderson (1958, pp. 118-122). Ito (1969) ,has proposed alternative

MANOVA tests, to be used when either or both of the mentio7ed conditions
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are violated; these tests show considerable promise for large samples.

,See also, James (1954).

Tests for assessing the fit of data to both multivariate.norMality

and equal covariance are available. The tenability of the normality

conllition is typically assessed via goodness-of-fit tests, which call

for large samples. Lockhart (1967) has proposed a partial testing pro7

ceaure for the small sample case; more recent empirical studies have

been made by Aitkin (1972). and Malkovich and Afifi (1973). A test of

the equality. of the group covariance matrices proposed by G.E.P. Box is

presented by Cooley and Lohnes (1971, p. 229). The practical application

of this latter test, and related concerns, are discussed by Porebski

(1966b).

Interpretation of LDFs

We proceed, then, with our discussion of discrimination under the

assumption that the two requisite conditions are, at least, tenable.

Having established the dimensionality of the reduced space, it is of interest

to give some interpretation of the, say, r "significant" LDFs. One very

useful means of interpretation is provided by graphic methods. Even though

the LDFs are mutually uncorrelated, they are not geometrically mutually

orthogonal in the spaces, of the predictor variables (Tatsuoka, 1971, pp.

163, 169). [In fact, the angle of separation between vectors representing-

two LDFs is.an angle whose cosine is the inner product.of the two corres-

ponding (normalized) eigenvectors.1 However, it is customary and convenient
..

to graphically represent the K group-centroids On the r LDFs by means of

1

a rectangular coordinate system.. The experience of-this writer has shown

ilthat r is very seldom greater than two. That s, :two LDFs genera .yam
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account for a great portion of the discriminatory power of the discrimin-

atots and, hence, a two-dimesional-representation gives a fairly accurate

picture of the configuation of the groups in the p7dimensional spaces. Of

course, if r = 1, one can merely examine the numerical values of the K

(pX1) mean vectors, Y, to determine which groups or clusters of groups are

separated from which other groups or clusters. If -r = 2, a two-dimensional

plot is helpful in interpreting the dimensions along which the K groups

were found to/differ. For example, consider the plot in "Figure 1.

--Insert Figured About Here--

From the gtaph it is clear that the first LDF discriminates Groups_j2 and

4 from Groups 1, 3, and 5; whereas the second LDF-discriMinates Groups

1, 2, and .5 from Groups 3 and 4. If r > 2, pairwise two-dimensional plots

r:7y be used.

In making an interpretation of the resulting rIDFs, a substantive

meaning of each function (or "canonical factor" or "canonical veriate")

is sometimes attempted. Two approaches have been employed. The first,

in the sense of tradition,, is based on magnitudes of-function'coefficients

that are applicable to standardized-scores. These "standardized weights"

are found by multiplying each raw score coefficient-by-the Within-groups

standard de:kation of the correspon ,ling variable':

14] v* v
mj

where e
JJ

=is the jth diagonal element of E, m and j = 1,...0p.

These weights have been considered by some writers (Tatsuoka, 1971, p..170;

McQuarrie and GrotelueSchen, 1971) as if they were- factor loadings.
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Such a use of standardized weights as a means of interpreting LDFs has

been criticized by Mnlaik (1972, pp. 403, 422, 427) and Tatusoka (1973a,

p. 280). This use of standardized weights may be questioned on theoretical

grounds: these weights are actually partial coefficients and, hence, do

not pertain to the common parts among the discriminators; two. discriminators

having large positive weights-would not-necessarily have anything in common

which contributed to group separation.

The second approach that has been proposed for making, a substantive

or psychological interpretation of the LDFs is to use the correlations of

the discriminato5a with the functions. The values of these correlations

depend upon the data matrices used. The LDF coefficients may be obtained

by using a "within- groups" formulation as reflected in equation [3], or

via a "total- group" formulation which, in essence, is a canonical correla

tion attack on the problem (Tatbuoka, 1971, p. 177). The matrix product

used to get the (pxs) total-group (canonical) structure matrix is simply

RV ,

.
where R. is the (pxp) correlation matrix based on T (= E + H), and V

is the (pxs) matrix consisting of the s LDF coefficient vectors. The

structure matrix containing the within-groups correlations is given by

[6] = D
1

C V* ,

where D
2

= [diag C], C is the (pxp) within-groups covariance matrix

[ = ERN-K)], and V* is the (pxs) matrix of s LDF standardized weight

vectors; As might be expected, the correlations determined by [5] will

be larger than corresponding correlations in [6]. In terms of labeling.
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the functions, the resulting interpretations based on [5] or [6] will be

the same. Such interpretations are, at best, a very crude approximation

to any identifiable psychological dimensions.

Darlington, Weinberg and Walberg (1973) contend that the choica

between standardized weights and correlations for interpreting LDFs

ought to be based on the practical consideration of sampling error; they

argue that because of greater stability, correlations ought to be empha-

. sized-, at least in some cases. In a Monte Carlo study, Huberty and Blommers

(1972) concluded that neither statistic, when based on.the,leading LDF, was

.
very stable in a cross-validation sense; this conclusion was not fully

supported by Thorndike and Weiss (1973). More will be said on this in the

section, "Generalizability."

There has been some attempt to achieve greater interpretability by

rotating LDFs. Tatsuoka (1973a, pp. 301-302) briefly reviews two studies

in which rotation was used; the matrix to be rotated in one study (Anderson,

Walberg, and Welch, 1969) consisted of the (total-group) variable - LDF

correlations, and in a second (McQuarrie and Grotelueschen, 1971) consisted

of standardized weights. It is questioned by the present writer whether

or not rotation of suleh canonical factors will, in most situations, be

of great help in interpretation.` Tatsuoka (1971) states that rotation

(of a structure matrix,'at least) "...requires further scrutiny aild theoret-

.ical justification...[p. 301]." The issue of oblique versus orthogonal

rotation of LDFs is a theoretical one yet to'be resolved. Two general

methods of rotation are discussed by Hall (1969); one method which attempts

to arrive at an interpretable taxonomy of variables involves an orthonormal

rotation of a structure matrix.
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This discussion of LDF interpretation may be closed with.a caveat:

unless an investigation deals with variables having Some common psychological

grounds, attempting to substantively interpret the LDFXs) may be wasted effort.

Thus if substantive interpretation of the function(s) is important to an

investigator, his initial choice of variables ought to be made carefully.

The problem of variable contribution to group separation in discriminant

analysis is a sticky one, as it is in multiple regression analysis (Darlington,

1968). It may be argued that the variables act in concert and cannot

logically be separated., As far as an index to measure the "importance" or

the size of the "effect" of a variable,is concerned, no completely satis-

factory proposal has been made. Traditionally the statistic used to assess

the contribution of each variable (in the company of all others) has been

its standardized weight. The variable LDF correlations discussed previously

in terms of substantive interpretation have also been suggested to.order

variables in terms of their contributions to separation. In a discussion

which only involved the leading LDF, Bergmann (1970) argues that if

correlations for only some of the variables are large (in absolute value),

and small for others, then the former variables contribute essentially to'

group separation. If the order in which variables are entered into the

analysis can ,be determined a priori, then the step-down procedure of

Roy and Bergmann (1958), discussed by Bock and Haggard (1968) and Stevens

(1973), can be used for-testing the significance the contribution of each

newly entered variable:

This section is closed with a proposal for a procedure of analyzing

/
data for the purpose of discrimination involving K (>2) groups. This

,

"hierarchical analysis," which is only appropriate when the grouping variable
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is clearly categorical as opposed to being ordinal, may be described as

follows. First of all, the variables are screened (as discussed in the

next section); suppose that after this screening there are p variables

remaining. As in equation [3], the eigenvector, v , associated.with the
-1

largest eigenvalue of E-1H is determined. The correlations between each

discriminator and the linear composite of all p variables, v- ' X , are

then found -- the first column of St., in [6]. An argument for using only

the first LDF is presented by Bargmann (1969, p. 573). The variables are

ordered on the basis of the absolute values of these Correlations. The

ordered array is then examined for a "breaking point" (or possibly several,

if p I;\large) between large and small absolute values*. If a disjunction

occurs, -then the variables fall into two classes with respect to discrim-

ination. New (leading) LDFs for the two subsets of variables are calculated,

and the process is repeated until no new subsets can be generated. (At epch

step'variable - LDF correlations are determined and a substantive interpre-

tation may be attempted.) A hierarchy of sets of variables, based on

directly,observable and, hence, interpretable measurements can be thus

established.- This, it may be argued, is preferable to an interpretation

of residual discrimination -- that associated with v , say, after the elimi-
-2_

nation of an artificial variable.

Variable Selection

The process of selecting variables in discriminant analysis, as in

any multivariate analysis, can be considered before or after the main

analysis. If Cochran's (1964) conclusions can be extended from the two-

group to the K-group case, the operation of-discarding noncontributing

discriminators at the outset-may be hazardous. However, many statisticians
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suggest that unless a variable is "significant" in a univariate sense, it

is probably wasteful to include it in a multivariate analysis,'even if it

correlates appreciably with good discriminators. Grizzle (1970) recommends

that variables which do not have a reasonable expectation of containing

information about group differences should not be included in the analysis;

this would prevent a loss of power. The argument presented is based on the

idea that the deletion of a non-significant variable does not change the

largest characteristic root,(A from equation [2]) very much. To conclude,

preliminary to data collection variables ought to be chosen judiciousl)k

on the basis of theory and prior research (Tatsuoka, 1969, p. 743). Then\

following collection of data on the p chosen variables, p univariate analyses

are performed; those variables not yielding significance at a low proliabil-

ity level are deleted prior to the multivariate analysis. A possibly

extreme situation is as follows. Assuming univariate ANOVAs.are appro-

priate, clearly if the "signal-to-noise" ratio (F-value) for a variable

is less than unity, eliminating the discriminator from fuqher consideration

is the sensible' thing to do.

The problem-of variable selection or deletion may also be of interest

after the initial multivariate analysis has been carried out. In many

situations involving discrimination the inves igator is presented with more

discriminator variables than he would like and there arises the question

of whether'they are all necessary and, if not, hich of them can be dis-

carded. That is, having obtained the linear composite, the investigator

may ask if the data might not have been adequately explained by using a

subset of the original p discriminators. -The objective\is to include as

many variables as possible so that reliable results may be obtained, and
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yet as few as possible so as to keep the costs of acquiring data at a

minimum. Reasons for reducing the number of discriminators may be summar-

ized as follows [see Horst (1941) for_elaboration]: (1) to

obtain fundamental and generally applicable variables, (2) to avoid

prohibitive labor, and (3) to increase the sampling stability of the

LDF(s). On the last reason Horst mentions that as the ratio of the number

of discriminators to the number of individuals increases, "...there is a

tendency for the accuracy of .(discrimination) to decrease if the weights

determined on 'the first sample are applied to a second group [p. 102]."

There is a dearth of literature covering the problem of variable

selection or-reduction in multiple-group discriminant analysis. No reason-

ably optimal procedure has yet been. developed for discarding'variables;

reasonable in the sense of amount of-calculation, and optimum in the sense

that the selected variables would yield the maximum amount of separation

among the groups for that number of variables. Of course, one could con-

sider all possible subsets of the original p variables, but, just as in

multiple regression analysis, this is very expensive. Six "selection"

procedures were reviewed by Huberty (1971a). The objective of one procedure

,is to.obtain a subset of variables that may be considered representative

Of the complete set (Bergmann, 1962a). "Representativeness is based on

c(maXimuM likelihood) factor analysis of the discriminator within- groups

intercorrelation matrix, followed by an oblique rotation of the. resulting

fa4tora. The usual eigenanalysis (see equation [.3]) is then-performed on

the variables that .define each factor. Correlations between each of theeie

variables and the first (or leading) LDF are determined; :i.e., the first

column of S in equation 16]. Variables are then selected that load on
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each factor and correlate highly with the respective leading LDF. Another

procedure, suggested by Horst (1965, p. 555), involves a principal component

analysis of the discriminator within-groups intercorrelation matrix, follo4ed

by an orthogonal rotation of the resulting components. A subset of variables

is selected such that each component will be adequately represented in the

subset. Variables are selected which have the highest loadings (in absolute

value) on each of the components; persumably, no variables'are selected which

have high loadings on more than one component. The other four procedures

discussed yield some type of ordering of the predictors; they are based

on (1) standardized-weights for the first LDF, (2) univariate F-ratios,

(3) discriminator versus (first) LDF correlations, and (4). an ordering

provided by the 81.1D 7M stepwise program (Dixon, 973).

An empirical comparison of the six procedures using two sets of data --

K = 3 and p = 13 for one set and .K = 5, p = 17 for the other -- was made using

the criterion of the proportion of correct reclassifications of individuals

across all procedures for subsets of a given size. It was found that the

stepwise procedure yielded the best subsets in,the sense of most accurate

classification. It should be pointed out that an objective of the.procedures

involving a dimension (i.e., factor or component) analysis is to select a

subset that is representative of the total set. Selecting a representative

subset and one that will have nearly the same discriminatory power as the-

original set will not necessarily characterize the subset selected

simultaneously.

As suggested in the preceding section of the present paper, standard-

ized weights associated with a given LDF (first or otherwise) may be used

to assess the contribution of each 'variable (in the company of all others)

to the separation accomplished by that LDF. This method of assessment may

be extended to obtain a measure of the relative contribution of each
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variable to the total set of LDFs. The set of weights are weighted by a

function of the proportion of discriminatory power accounted for by each LDF.

The measures to be used-are given by the pxl vector

[7] a = V*

where V* is the pxs matrix defined in [6], and A is the sxl vector of eigen-

values of E-1 H. Another proposal is made for ordering variables, with respect

to group separation, on the basis of the variable versus LDF correlations.

The measures to be considered are somewhat analogous to "communalities" in

factor analysis. These are given in the pxl vector,

[8] b = [diag SS'] ,

where S is the pxs structure matrix defined in [5] or [6]. The jth element

in b is the sum of squares of the "loadings" in the jth row of S.

Various' selection schemes need to be researched further. The need exists

Sor empirical studies. of other stepwise procedures; e.g., that proposed by

Dempster (1963), which is-a forward stepwise procedure with the variable order-

ing determined by a principal component analysis. Hall (1967) has proposed

a forward procedure involving multivariate analysis of covariance (MANCOVA)

which, in essence is the same as that used in the BMD stepwise program;

th'i.variables already in the analysis are the variates while the remaining

variables are the covariates. A variation of this use of MANCOVA to select

the most effective discriminators is given in a study by Horton, Russell,

and More (1968). See also, Smith, et al. (1972). Hotelling's trace statistic

was used as a criterion for selecting variables in a forward manner by

Miller (1962). There is some argument fof using a "backward" scheme, iaheie
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variables are deleted from, rather than added to, the analysis [see

Mantel (1970)]. It would also be of interest to study the appropriateness

of the measures in [7] and/or [8] as indicators of variable contribution.

Eisenbeis and Avery (1972) suggest a variable selection method which

incorporates a number of techniques used jointly. Such a combination method

may be described as follows. Determine variable orderings based on a number

of different techniques -- e.g., stepwise, standardized weights, variable-

LDF correlations, backward elimination. To determine an upper bound on the

number of variable6 to be retained, a minimum arbitrary acceptance level of

the reduction-in discriminatory power using a set of size q instead of all

p variables is set. Eisenbeis and Avery support the one percent significance

level of a MANCOVA F-statistic as a criterion. Other criteria such, as a

significance level of Hotelling's trace statistic, or a specified proportion

of correct classifications yielded by the set of entered variables may also

be used. This may give t (the number of techniques used) different subsets

of size q. Two different approaches may now be taken to arrive at a single

subset. One approach, mentioned by Eisenbeis and AVery (1972, p. 82), is to

determine those of the q variables and of the p-q variables that are common

across the different techniques. The latter variables, say m!in number, are

discarded from further consideration,:and-thormer, say n:in number, are to

be included in the final subset of size q. To obtain the final subset of size

then, the best

by considering

that suggested

q-n are selected out of the p (m+n) questionable variables

all possible4sUbsets of size 4- A second approach, similar to

by Draper and Smith (1966, p. 172) for use in multiple regression,

..is to consider all possible subsets of size q from the-p original variables.

Finally, it is noted that after a. subset of variables has been

selected it is:desirable to reanalyze the data only on the selected
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variables so as to assess their relative contribution. This is particularly

true when theassessment is based on standardized weights; the rank-order

of the selected variables as a set by themselves may be different from

their rank-order when considered in the company of all the original discrim-

inators.

Generalizability

Even though discrimination involves basically exploratory techniques,

very often its users attempt to generalize results to other.sets of subjects,

other variables, or other situations. Generalizability may be thought of

in terms of statements of inferences from sample results to some population,

and in terms of stability of the obtained results over repeated sampling.

Mulaik (1972) emphasizes the caution with which one proceeds in making

inferences when treating LDFs as factors. One warning is that with the

formulation of [3], the LDFs obtained pertain to the variables after

variance in them due to group differences has been removed from:them.

Thus, such dimensions do not reflect variance whichexistd in the variables

on which the groups differ and "...may,in some contexts give misleading

characterization of the nature of the discriminant functions 1p. 4281."

Not much conclusive evidence, has h en found regarding the stability

of results in discrimination studies. In a Monte ;arlo investigation

designed to study the. comparative stability of standardized weights and

variable-LDF correlations, Huberty and Blotmers 11972). found that neither

index held up to any great extent under repeated sampling. (It should be noted

that only the leading LDF was considered in that study.) Two sets of

live data were used in a study by Thorndike and Weiss (1973) who

Concluded that if an investigator "uses a single sample and attempts
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to interpret the canonical components (LDFs) ..'., he may be interpreting

nothing more than sample-specific eovariation [p. 131]." They did conclude,

however, that component loadings (variable-LDF correlations) are4consistent

in cross-validation and in this sense are more stable and more -useful

than standardized weights. Stevens and BarcikoWski(1974) concluded from

a Monte Carlo study that in some situations (depending upon variable

intercorrelations) standardized weights are more stable than variable-
1

canonical variate correlations, and in other situations the reverse holds.

Problems of generalizability due to instability of some results

appear to point to the need for replication of studies and 'cross-validation

of findings. Of course, the use of simple (or double) cross-validation

techniques call for relatively large samples. [Tatsuoka (1970, p. 38)

suggests that in a usual discriminant analysis the size of the smallest

group be no less than the number of variables used, p. This may be a bit

conservative.] To use cross-validation techniques it is recommended that

the smallest n-value be at least as large as 3p. Then in the cross-

validation process, a random one-third of the total number of observations

may be withheld from each group to/serve as a "holdout sample." Horst

(1966) points out the dilemma into which one is placed when using cross-

validation techniques: "If we develop a procedure and then cross-vilidate

it, we have ipso facto not developed the best procedure possible from the

available data [p. 140]."

Specific 'Uses of LDFs

The use of LDFs as an aid in the interpretation. of MANOVA results

was mentioned in the "Introduction" of this paper as a major breakthrough

in multivariate analysis. Uses of LDFs in factorial MANOVA are illustrated
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by Jones (1966) and Saupe (1965) who point out that multiple LDFs are use-

ful in interpreting the source of significant interaction effects as well

as the source of significant main-effect differences. Both of_these writers

base their interpretations of LDFs on standardized weights in preference

to variable-LDF correlations. Some writers (e.g., Timm, 1970 prefer the

use of simultaneous test procedures (Gabriel, 1968) for studying significant

differences, while others (e.g., Tatsuoka, 1973a) prefer the LDF approach.

Tatsuoka (1973a, p. 284) also suggests that LDFs may be helpful in

deciding when to terminate a clustering procedur- such as that of Ward

(1963). At each stage of the analysis the LDFs based on the clusters (of

individuals) determined to that point can be examined for interpretability.

Discrimination procedures were used by Rock, Baird, and Linn (1972) as

a follow-up to a cluster analysis involving areas of study of college

students. In addition to univariate F-values, discriminator-LDF correla-.

tions were considered in assessing relative contribution of the variables

to the obtained first LDF.

Techniques of discrimination have been shown to be of help in the

study of pattern recognition. The research of Kundert (1972) illustrates

the use. of an LDF in assigning scale values to ategories of a response

/Fvariable, irrespective of the manner in which the categories may be ordered:-

Discrimination in Two-Group Case

The. relationship between multiple=group disCriminant analysis and

canonical correlation was pointed out previously. The lower level relation-

ship between two-group discriminant analysis and multiple correlation has

been the subject of many writings. The proportionality of the raw score

coefficients for the two analyses was shown by Michael and Perry (1956).

More recently this pro6f has been vastly simplified via.the use of matrix
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notation (Healy, 1965; Porebski, 1966a; Cramer, 1967; Tatsuoka, 1971,

pp. 171-173). Because of this relationship, many of the methods used in

interpreting a regression analysis are applicable in two-group discriminant

analysis. _Collier (1963) showed that tests used in deleting variables in

regression analysis and in discriminant analysis are equivalent, while

Huberty (1972b) showed that predictor variables may be equivalently ordered

(with respect to contribution to separation) by univariate F-ratios and

by within-groups variable versus LDF correlations. Cochran (1964),

Weiner and Dunn (1966), and Urbakh (1971) have also studied the problem

of eliminating variables.in the two-group case.

In studying discrimination between two groups of foreign graduate

students in business administration, Grimsley and Summers (1965) applied

tests of significance of the LDF coefficients -- see Kendall (1968, p. 163)- -

in determining the most effective combination of discriminators to differ-

entiate between success and failure groups. Recently, Eisenbeis, Gilbert,

and Avery (1973) studied the problem of variable assessment and selection

in the context of a specific empirical problem. They concluded that the

various selection methods studied "...could yield radically different infer-

ences about the relative power of individual variables [p. 218]." It was

also concluded that "... the assessment of the relative performance of

the different subsets also varies depending upon whether the goal is to

select the subset that maximizes differences between group means or to

choose the combination of variables that yields the best classification

results [p. 218]." Huberty (1974b) has shown the forwal equivalence

between a test for deleting variables which is based on distance and

a test based on MANCOVA for the two-group case. Implications of this

equivalence for interpretation of results of multi-group analyses were
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were discussed in the section, "Variable Selection."

Discrimination Research Applications

No attempt will be made to review all studies in behavior research

that incorporate discrimination procedures. Rather, selected journal articles

--

will be cited so as to acquaint the reader with (1) some research situations --

i.e., types of subjects, criterion groups, and discriminators -- for which

discrimination may be helpful, and -(2) the discrimination techniques being used.

No critique of the substantive discussions and conclusions presented in the

articles will be attempted. The articles reviewed are in addition to those

discussed earlier in this paper and all appeared in 1968 or later. Huberty

(1969) cites 30 studies reported from 1963 to 1968 in which discriminant

analysis techniques were used.

The entire focus of one study was a two-group simple MANOVA, although

the analysis technique was described as a "multiple discriminant analysis.1!

Williams (1972) used six factor scores on a semantic differential for differ-

ing socioeconomic status groups -- low versus middle -- of 181 fifth grade

inner city school children. Another study (Maw and...Magoon, 1971) involved

a 2x2 MANOVA design with sex and curiosity as the grouping variables. Twenty-

six measures on affective, cognitive, personality, and nocial trait variables

were obtained on the four groups of middle class white fifth-graders. Since

sex-by-curiosity interaction was not significant,-thd-associated LDF was

not considered for interpretation. The variable-LDFcbrrelations (the

---
type was not specified explicitly) were used in interpreting the sex.and

the curiosity LDFs. Canonical correlations for sex and curiosity, each

versus the 26 variable composite, -were also examined.

Two studies were found in which the LDF interpretation was based on

standardized weights. Project TALENT data were used by Schoenfeldt (1968).

in a study involving a random selection of about 300 students in each of

six post high school education groups. Measures on 79_variables were
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available; after preliminary screening, 26 were selected for use. A

64-item study strategy questionnaire.was used by Goldman and Warren (1973)

to obtain data'On 538 university students who were in four different under-
-

graduate major areas. In the study, the weights were used both to assess

relative contribution to separation and to give meaningful interpretation

to the resulting LDFs. Two-dimensional plots of group centroids were used

in both of these studies as an aid to interpretation. A third study which

used discriMinant "weights" was reported by McNeil (1968)., What weights

these were was not made explicit. Here, 521 sixth grade children in four

subcultural groups were considered for Separation by six factors which

resulted from a "factor analysis" of 20 semantic differential scales.

Discriminator-LDF correlations were utilized in two studies for purposes

-of LDF interpretations. Field, et al. (1971) obtained measures on 57

undergraduate Australian students using an 18-item questionnaire assessing

teaching behavior. These data were examined to evaluate discrimination

among six teachers, including one "ideal" teacher. Substantive interpreta-

tions of the LDFs were made. Bausell and Magoon (1972) used data on 29

items of the Purdue Rating Scale for Instruction for approximately 2000

sophomore to senior university students for purposes of differentiating

four criterion groups defined by student expected grades. Total-group

variable -LDF correlations were used to substantively interpret the LDFs,

as well as to assess the "importance" of the discriminators. They also

incorporated the statistic, 1 - A, for interpretive purposes. See also,

Whellams (1973).

The discriminant analysis techniques used by Chapin (1970) were not

clear. In his study of four groups of mathematids teachers (determined by
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principal ratings) on whom personal and academic measures were obtained, he

states, "After extensive sorting through 40 variables, it was found that only

a few variables contributed significantly to the discriminant analysis [p. 161)."

The two remaining studies to be briefly reviewed use a large number of

criterion groups. Baggaley, Isard, and Sherwood (1970) used 17 groups

(14 academic, three "miscellaneous") of university juniors; ten personality

measures were obtained on each of 628 students. These investigators

examined "normalized" vector coefficients for relative variable contribu-

tion, and to meaningfully interpret the LDFs. A two-dimensional (why

two?) plot was given. A set of 26 personal and academic measures for

college undergraduates was used by Burnham and Hewitt (1972) to differentiate

among 16 occupational groups in a follow-up study. Univariate Student

t-values were considered to assess relative contribution of the discrim-

inators.

From a statistical point of view, criticisms of the methdology

used or of the reporting in some of these studies are possible. It

is recognized, however, that writers and/or editors may have reasons for

not including all the details of the techniques used.
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Estimation

To restate, estimation is that aspect of discriminant analysis that

pertains to characterizing inter-group distance and strength of relationship,.

Measures of Distance

About 1920 K. Pearson proposed his coefficient of racial likeness-

(CRL) as a measure of distance which was subsequently used mostly in crani-

ology. In the middle to late 1920's G. /4.. Morant suggested a corrective

IN factor to be applied to the CRL to offset effects due to varying sample

sizes; at about the same time, P. C. Mahalanobis proposed a Euclidean dis-

tance measure. [See.Rodges (1950, pp. 5-25) for a more complete development

of the history of distance measures.] The distance between two population

centroids may be expressed as

[(V V E-1
1 2

Y
1

2
"2

)]1/2

where u
k

is the centroid of population -k, and E is the covariance matrix

common to the two populations. The quantity A has become known as

Mahalanobis' generalized distance, and the square of the sample distance,

[9] D2 - (X - X ), s-1 (X - X )
-1 -2 -1 -2

is often referred to as Mahalanobis' D2 statistic. The (pxp) matrix S in

[9] is defined by (N
1

+ N
2
-2) S = E; Xk is the centroid of group k.

Although S is an unbiased estimator of E , it should be noted that D2

is not an unbiased estimator of A2 (Rao, 1949). Since an unbiased esti-

mator of A2 often results in negative estimates of the square, its use

is discouraged. In presenting a logical derivation.of D as a distance
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measure, Rao (1952) points out that D "...is applicable only to groups

in which the measurements are normally distributed [p. 355)."

If significant group separation is found, it is possible to gain some

insight regarding group differences by simply calculating the Euclidean dis-

tance (as in (9)) between all pairs of centroids. If, for example, distances

between all-pairs of K-1 of the groups are small, yet at the same time,

the kth group is distinctly separated from the other K-1 groups, it is clear

that the only separation taking place occurs between the kth group and its

complement, i.e., the other K-1 groups. These pairwise group distances are

often given in the output of computer programs -- e.g., the BMD 7M program

(Dixon, 1973).

It may be noted in passing that a transformation of each D2 statistic

may be used as a test statistic in the two-group case. This transformation --

see Rulon and Brooks (1968, p. 69) -- may be considered as an alternative to

Hoteiling's T2 or Wilks' A statistics.

As will be apparent later, the distance function D2, or a variation

thereof, appears in most multivariate classification schemes. That is, a

measure of distance between an individual's data point, X, and the kth

group centroid is of interest. This measure, assuming a common population

covariance matrix, E, is given by

zicx 110]1/2

and the sample distance is given by

[101, Dk = 2k), 1 &)]1/2
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RiS (1952, p. 257) gives a generalization of Mahalobis' D2 statistic

(labeled "V" by Rao):

W = E Nk - S-1 (Te
k

TO
k=1

where X is the (pxl) vector of predictor means across all K grOups. It

can be shown that W can be used as a chi-square statistic with p(K-1) degrees

of freedom to test the hypothesis of.equality of the K population mean vectors.

As Rao points out, the W statistic may be'partioned into independent chi-

square statistics so as to judge the significance of information lost when

-some variables are deleted. This criterion is equivalent to Hotellings'

trace statistic, the use of which was proposed by Miller (1962) for

variable selection -- see Friedman and Rubin (1967, p. 1162). The value

of W is part of the output of the BMD 5M program (Dixon, 1973). It turns

out that when K = 2, W = D2 !1,N,/ (N. + N2).

Measures of Discriminatory Power

As most researchers who have toyed with univariate measures of associ-

ation know, the numerical values of most proposed indices for a given set

of data are nearly the same. This has also been shown to be the case in

the multivariate situation by Ste'iens (1972a) and Huberty (1972a). Mul-

tivariate measures of strength of relationship, or of discriminatory power,

that have been proposed are : (1) 1 - A [Wilks' statistic], (2) U/(14-13),

where U = tr (E-1H), (3) U'/(1+U'), where U' = (N-p-1)U/N, and (4) an

extension of Hays' (1973) omega squared. Tatsuoka (1973b) has studied the

properties of this last measure which he proposed earlier (Tatsuoka, 1970)

and which may be expressed as
41V
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(42 al_
mult

01-10A-1 + 1

The intent of Tatsuoka's more recent study was to develop an unbiased

estimate of

[11] 1.02 1 - 1E1=
mult + A Al/K1

where E is the (pxp) covariance matrix common to the K populations, and A

is a (pxk) matrix of effect parameters .,-.. the (j,k)th element of A is the

deviation of the kth population mean from the general mean for the Jth

variable. (Formula [11] expresses theproportion of generalized variance

of the p variables attributable to differences among centroids.) Since

various attempts to develop such an estimate were ofno avail, an attempt

was made to develop a formula for correcting the (positive) bias in to'
mult'

Empirical results led to a "rule-of-thumb" correction to be used with small

samples:

[12] (:)2

w2multmult
- p2 +

3N

(K-1)2 (1-
mult

It'was found that W2
mult

itself can be used when w2
mult

<.30. and N/p > 100

>.50 and N/p > 50; however, neither situation is typical ofor w hen w2
mult

that found in educational research. Formula [12] was deemed to be adequate,

at least when p(K-1) < 4.9 and 75 < N < 2000.

Another index of discriminatory power which has received some attention

is the proportion of correct classifications across all K groups (Cooley and

Lohnes, 1971, p. 329). In a multiple discriminant situation this indicator of

strength of predictive validity may be-more_appropriate than a correlative

measure. This statistic will be discussed in some detail later.
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Classification

noted previously, the original intended purpose of "discriminant

analysi and the linear discriminant function (LDF) was that of classifi-

cation. Given a s mple of individuals (or objects) from each of two or

more popul tions, e want to construct a method of assigning A new indivi-

dual to the correct population of origin on the basis of measures on p

variables. lassification procedures are used to solve prediction problems;

given measures on the p predictors it is of interest to predict membership
r.

in one of the natural or preexisting groups. A more formal view is that

classification is used to answer the question: Given an individual with

certain measurements, from which population did he emanate? In this sense,

the problem of classification may be considered a problem of "statistical

decision functions" (Anderson, 1958, p. 126). The p predictors are the

independent variables and the single criterion is the grouping variable,

the latter being, of course, nonmetric. Illustrations of the use of

multivariate classification in behavioral research are given later.

Requisite Information

Various methods of multivariate classification have been proposed.

The use of these methods presupposes that the user has knowledge of certain

information. This information may in the form of: (1) the density

function which best describes the data on hand,. (2) restrictions on data

conditions necessary to select the most appropriate method, (3) prior

probabilities of group membership, and (4) misclassification costs.

The early work in discriminant analysis, specifically. that on LDFs and

generalized distance, was based on multivariate normal probability distribu-

tions. The general theory of classifitation is not, however, dependent
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upon multivariate normality. General distribution-based rules of assign-

ing individuals to populations (so that probabilities of misclassification

are minimized) are discussed by Anderson (1958, pp. 142-147) and Overall

and Klett (1972, Ch. 12). Parametric andrnonparametric density estimators

were used to estimate the non-error rate of an arbitrary. Classification

rule and to construct a rule which maximized estimated probability of

correct classification by Glick (1972). Insofar as could/be determined,

little work has done with classification rules involving.continuous

predictors other than those based on normality.

Assuming multivariate normality, a linear classification rule may

be used when it can be further assumed that the condition of equal covar-
,

lance structures across the K groups is met. As will be shown later,

differences in covariances, as well as differences /in means, can be utilized.

in making predictions about group membership, and in estimating error rates.

A helpful consideration to be taken when coofronted with the problem

of classification is that of prior probabilities of group membership. Such

a probability is that of drawing at random an individual of each group

from the total population of all K groups. Taking the approach of fre-

quentists, these priors are relative frequencies of indiViduals of each

of the K populations in the total population. From sample data, then,

these probabilities are estimated by Nk/11', k [Tatsuoka (1971,

n. 225-226) discusses problems in using such estimates.] Priors may

also be estimated by using Markov models as suggested by Lohnes and

Gribbons (1970); alternatives to these suggestions were considered in

an empirical study by Lissitz and Henschke-Malon (1972).

Typically, in educational research differential costs of misclass-.

flying individuals into the K groups are ignored -- ignored in the sense
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that equal costs are assumed. This is not too surprising since quantifica-

tion of costs of misclassification in educational research may be difficult,

even though only relative costs are important.

Classification Rules

Various parametric and nonparametric rules of classification have been

proposed. In most of these rules some notion of "distance" comes into play;

that is, an individual is assigned to that group whose centroid is closest

to the data-point representing him. "Closeness" is measured by a-probabil-

istic notion of "distance," as opposed to the geometric Euclidean distance

measure discussed in an earlier section. The use of the LDF for classifica-

tion purposes in the two-group situation was initially based on simple

Euclidean distance -- assuming multivariite normality and equal covariance

structure, an individual was assigned to the group with the mean discriminant

score nearer to his discriminant score. Fisher's LDF as a classification

statistic was not at first considered in reference to a probabilistic model.

The relationship of posterior probability of group membership to the LDF

was noted by Welch (1939) when he proved that the assignment procedure

based on the LDF minimizes the probability of misclassification under

certain restrictions. Von Mises (1945) extended Welch's notions to the

K-group case, and removed the restriction that probabilities of misclassi-

fication per group be equal.

The classification statistics discussed in this paper will be stated

in terms of estimates of population parameters; in so stating, no claim is

made that an optimum solution is' obtained. Further, only the situation

of equal costs of misclassification will be considered. Assuming

multivariate normality and identical population covariance matrices, the
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distance measure [10] has been used as a classification statistic -- as

well as a criterion in cluster analysis (Friedman and Rubin, 1967). An

individual, with score vector Xi is assigned to that group, k, for which

the distance measure

[13] Dik 7 [(14 lik)1 S-1 (14 - 1&)111

is least. These measures may be transformed to "centour scores" which

are functions of probabilistic distances (Cooley and Lohnes, 19/1, p. 265).

For a givA^ individual, the assignment is based on the largest centour.

An inadequacy of [13] is that differential prior probabilities, pk,

of group membership are ignored. Using the multivariate normal distribution

function and retaining the equal covariance condition a modification of

[13] becomes

[14] Lik -1/2 ln(SI -1/2 Dik + In pk .

The more popular form of a "linear discriminant score" (Rao, 1965, p. 488),

[14a] L
ik

= s-1 E4 kS -lx + ln pk

is equivalent to [14], since the terms - kin( S1 and x'
1

S-1X
1

are common

to all k. Thus, individual i is assigned to that population whose corres-

ponding sample yields the largest value of the classification statistic [14].

Such a rule minimizes the number of misclassifications, in a parameter

sense, and is equivalent to a rule which assigns the individual with

measures X
1

to that population for which the posterior probability of

population membership is largest. Some writers [e.g., Eisenbeis and Avery

(1972, p. 18)] prefer to express the classification statistic as a posterior
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probability:

[15]
Pik"

P
k

exp (-1/2 D2 )
ik

K
E p , elcp (-1/2 Dik 1)

k=1

[Statistics [14] and [15], which are equivalent in the sense of classifica-

tion results, are, in turn, equivalent to those reported in Rule IV by

Cooley and Lchnes (1971, p. 269) and in Rule 5.6 by Eisenbeis and Avery

(1972, p. 19).] Expreisions [14] and [15] lead to what is sometimes

referred to as the "linear classification rule"; [14] is linear in that

L
ik

is linear in Xi. Equation [15] exemplies the Bayesian conditional-.

probability model.

Another linear rule based on posterior probabilities of group member-

ship under the present conditions has been proposed. The formula used to

compute the posterior probabilities is based on "Case E. E
k

= E but

unknown, u unknown," presented by Geisser (1966, p. 155). [See also Cooley be

Lohnes p. 269).] Geisser's work resulted is i..he classification

,Statistic,

[16] Q
ik K

h
ik''

k'E=

p

Pk hikik

where h
ik

is the "predictive density of a future observation (vector) given

the available data:. and is proportional to

P/2
k

N D2
k ik

N +
[1 +

(N
k

+ 1) (N - K
]

-(N-K + 1)/2
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It has been shown (Huberty, 1971b) that when the Nk-values are identical

statistics [14] and [16] yield the same results. Of course, since for a

given individual the denominators of [15] and [16] are constant, only the

maximum values of the numerators need be considered in making assignments.

However, actually obtaining the probabilities may provide information in

addition to tklat\Of mere number of correct and incorrect classifications.

For example, a vector of or or Qik- values of (.80, .15, .05) versus a

vector or (.48, .46, .06) would lead to the same decision, namely, assign

-to group 1. However, it may be informative to examine such "cctors to

determine those individuals, and their characteristics (as reflected in X-

vectors), who are misclassified. Also, by examining the probability vctors,

it can be determined the group that an individual is most like (highest value)

and the group he is most unlike (lowest value).

Under the condition of unequal covariance matrices, variations of the

above three classification statistics are called for. If equal covariance

structure cannot be assumed, then S in [13] is replaced by the sample

covariance matrix for each group:

[17] Dik = [(X - )' S
k
-1 (X - A);1/2 .

-1

Taking into account different group covariance matrices, the counterpart

of [14] may be expressed' as a "quadratic discriminant score,"

[18]
ik

= -1/21 -1/2(Oik)2 + In p
-k

Again, this classification statistic may be transformed to a statistic

that yields posterior probabilities of group membership:
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[19]
Pk Sk

I 121 exp [-1/2(Dik )2]

i K

=11(

Pk, IS
le
1-11 exp E-1/2 (Dike)2]

1

[See Tatsuoka (1971, p. 228) for a discussion of the transformation of [18]

a.

to a posterior probability.] Formulas [18] and [19] lead to what is sometimes

called the "quadratic cfassification rule," since [18] is quadratic in Xl.

A second quadratic rule -- [18] and [19] yield identical results, as do

' 411,

[14] and [15] --'has been proposed s also built on posterior probabil-

ities of group membership. The proba.i ities are based on a Bayesian density

specified in Geisser's.(1966, p. 154) "Case C. Ek unknown, j

(See also, Press, 1972, p. 375.) The posterior probabilities are given by

[20) k ik
(Il

p g

k K
kE

Pk'..° gik

where is a density proportional to

N
k

/2
r(2) Nk olk)2 -Nk/2

r
/

k l(N

k
+ 1

-
2 k

1)S
k

N
2

- 1 j
k'

---
It can be shown that [20] and [19] (and hence [18)) yield identical results

when the N
k

-values are the same.

Horst (1956a) considered a formulation of the classification problem

involving separate regression equations contrasting each criterion group

in turn with all others. In finding the regression equation corresponding

to group k, the dichotomous criterion variable assumes the value 1 for

individuals in group k and 0 otherwise. To estimate the coefficients used

in Horst's "least squares" multiple classification method, the total co-

variance matrix of the predictors is involved. The following classification
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k
-values are identical:-

[21]
Yik 12IC

where b is the (pxl) vector of sample coefficients for group k,

= T-1 u
--k -k
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with_T - H+E and u the vector of deviation score cross-products of the

predictors and the (dichotOmous) criterion, the deviations being taken from

the grand means, and Yk = N
k
IN = 1 /k. The statistic [21)- ieadg to a decision

rule which assigns an individual to-that population for which his correspond-

ing composite score is nearest unity. A modification of [21] is required

with different N
k
-values (Horst, 1956b).

For ease of reference the seven statistics presented are given in

Table 1.

--Insert Table 1 About Here--

With this apparent variety of classification statistics available,

which does one use? Assuming the condition of multiirariate normality is

tenable, the choice seems to depend ,..Lpon whether or not the added condition

of equal covariance structure is also tenable, and whether or not differen-

tial priors are to be involved. Din added criterion of choice may be

one's preference for use of statistics based on the classical approach or

on the Bayesian solution of Geisser (1964, 1966) and Dunsmore (1966). The

Bayesian solution is simpler to come by in that it is not based on any

complicated distribution theory.] In a Monte Carlo study where both

noncross-validation and cross-validation results were reported Huberty

and Blommers (1974) concluded that the rule based on [21], or its modi

fication for unequal Nk-values does not yield as great accuracy as that
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yielded by the other rules considered. Knutsen (1955), however, concluded

from a single sample that this rule was more accurate than the rule based

on [14]. Huberty and Blommers (1974) also found that by incorporating

prior pr\abilities into a rule, classification accuracy is enhanced --

rules based on [13] or [17] vp,-sus those based on [14] or [18]. They

further concluded that rules based on [16] and [19] yielded nearly the

same results; no comparison of [16] and [15] was made, but since sampling

was made from populations with a common covariance matrix, it is conjectured

that these two statistics would yield similar accuracy of classification.

So, in the linear case -- when covariance matrices are taken to be equal --

either [14] (or [15]) or [16] may be used as classification statistics with

expected results very similar.

Insofar as could be determined no studies have been undertaken to

compare the efficiency of [18] (or [19]) to that of [20]. Cooley and

Lohnes (1971, pp. 270-272) report the results of some Monte Carlo classi-

fication studies in which the efficiencies of [14], [16], and [19] are

compared. (Their "Anderson method" is equivalent to that based on [14].)

Their results reported do not suggest the superiority of any one of the

three' statistics; they do conjecture, however, that the rule based on

[19] "...might suffer more from capitalization on chance differences in

covarilnces [p. 272]." It is noted in passing that the equivalence of

[14] and [16] with equal Nk-values and pk Nk/N 1/K for all k ( Huberty,

1971b), was empirically verified by Cooley and Lohnes (1971, p. 272) when

these statistics led to the same proportion of correct classifications.

A description and application of a simulation program designed to

obtain estimates of different types of misclassificatiln probabilities

and to compare linear and quadratic classification rules is given by
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Michaelis (1973). The different misclassification probabilities are those

discussed in a subsequent section, "Estimating Error Rates." It was assumed

that all prior probabilities and misclassification costs are equal. The two

multivariate normal classification rules used were, in essence, those based

on [14] (the linear rule) and on [18] (the quadratic rule), disregarding the

In p
k

terms. In the simulatioo process, the model parameters were chosen

to be equal to parameters which had been estimated from real data. The

basic model considered was'one where K 5 and p 8 with unequal population

covariance matrices. Sample sizes of 30 and 100 per group were used. Both-

"internal" classification," where the parameter estimates are based on the

samples classified, and "external classification," where the parameter

estimates are based on a sample other than that classified, were used. As

might be expected, quadratic classification yielded the better results. The

difference between the results of internal and external classification was

found to be substantially larger for the quadratic than for the linear rule,

especially for the smaller sample size. This is presumably due to the fact

that the number of estimated parameters is much smaller in the linear rule.

For all simulated larger samples (Nk = 100) the external quadratic classi-

fication gave better results than th..! corresponding linear classification,

although the estimation of the parameters was not yet very good, as could

be seen from the differences between internal and external results --

especially for quadratic classification. Even with the smaller.sample

sizes, where the differences between internal and external analysis are

very large, in most samples external quadratic classification gave better

results than the corresponding linear classification. In conclusion,

Michaelis recommends both an internal and an external classification

in each practical application. The differences between the two resulting

proportions indicate an interval in which the "true error" can be expected
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to lie. Further, if the two proportions differ greatly, one could expect

to achieve better classification of independent samples by increasing

the sample size. Results of several other simulation experiments are

graphically reported. This is an excellent reference, for anyone interested

in timulation experiments in multivariate classification.

A few writers have advanced arguments in favor of using classification

statistics based on LDFs rather than on the original predictors (Cooley

and Lohnes, 1962, p. 139; Tatsuoka, 1971, p. 232; .Elsenbeis and Avery,

1972, p. 56). Briefly, the arguments presented for using such "reduced

space" procedures are: (1) the linear transformation (when covariance

matrices are equal) preserves the overall structure as well as distances

in the reduced (or discriminant) space of dimension r min(K-1,p), and

computations are easier; (2) since most often, r < 2, computations are further

reduced, and interpretations are simpler; (3) the Central Limit Theorem

implies that the distribution of the linear discriminant scores for each

group approaches normality;and (4) classifications may be more consistent

over repeated sampling because of ,relatively greater stability of statistics

based on LDFs.

In their empirical study, Huberty and Blommers (1974). found that the

decision rule based on [19] with discriminant scores as input did better

over repeated sampling than with original predictor scores. From the results

of another empirical study, where the conditions of.normality and equal

covariance matrices were controlled, Lachenbruch (1973) concluded that a

reduced space classification method works about as well as the method based on

[14] if the population means are collinear or nearly so. Otherwise, [14)

proved much better. In that study, the sample size and the pk-values

were taken to be equal across the groups. Lohnes (1961) used 1171 in
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classifying three sets of real data in both the original spaces of the predic-

tors and in the discriminant space. The equal covariance structure condition

was not met for at least two sets -- results were not presented for the

third data set. For all three sets it was concluded that the two methods

produce comparable classification results.

Four different classification rules were investigated in an empirical

study -- using data on engineering students -- by Molnar and Delauretis

(1973). The statistics used may be expressed as (1) [17] in the discrimin-

ant space, (2) [19] in the discriminant space, (3) [14] with equal pk-values

[the equivalent of the statistic used in the BMD 5M program (Dixon, 1973)],

and (4) [15] which is equivalent to that used in the BMD 7M program. The

second statistic yielded slightly better results than the first for

one set of data. The first, third, and fourth statistics did equally well

for a different data set. The purpose of such comparisons is not clear;

conclusions about the relative efficiencies of the rules cannot be made

from such a study. For the first set of data involving three groups, three

two-group classification analyses were also carried out.

In addition to discussing the use of LDFs in classification, Overall

and Klett (1972, Ch. 14) indicate that another orthogonal transformation

may be useful for classification purposes. The transformation is obtained

via a principal components analysis of the within-groups covariance matrix,

S. The use of two LDFs and four principal components were compared for

a set of data involving three criterion groups, 16 predictors, and nearly

3000 individuals. Results-of maximum likelihood classification -- as

from 1151 except that priors are not considered -- applied in the two,

reduced spaces (of two and four dimensions) were very similar.

'Much more empirical work needs to be done in the multi-group case of.
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assessing the efficiency of the various classification statistics under

different conditions. Comparisons within the set of linear rules, within

thelset of quadratic rules, and across the two sets remain problems for

future study, as do those involving the use of different priors and non-

normal distributions. Eisenbeis and Avery (1972, p. 53) conjecture that

the use of linear versus quadratic techniques will affect the classification

less than variation in prior probabilities. In a two-group study Anderson

and Bahadur (1962) pointed out that deviations from normality may affect

the results of quadratic classification much more than those of linear

classification. The study of reduced space classification using different

orthogonal transformations of the raw data in the dimension reduction

may also be of interest.

Efficiency of Classification

The results of any classification analysis may be summarized in a

KxK classification table (or "confusion matrix"). The two dimensions of

the square matrix are actual group membership and predicted group member-

ship. One set of diagonal elements of such a cross-tabulation matrix give

the number of "hits" or correct classifications for each grepp. Data from

this matrix may be used to test whether the classification procedure used

is significantly better than a purely random partitioning of the decision

space; i.e., better than if assignments of individuals to groups were

based on chance alone. Since the only entries in the confusion matrix

of interest for this.test are those on one of the diagonals, the usual

Pearson chi-square test is not appropriate. Significance by this test is

a necessary but not sufficient condition for concluding that the number

of correct classifications is greater than would be expected by chance.

Three statistics have been proposed for testing the efficiency of
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a classification procedure; the referent distribution that/bay be used for

all three is the standard normal. They are reported by Lubin (1950), McHugh

and Apostolakos (1959), and Press (1972, p. 382). (The second reference

has a minor error in a formula used.) None of these tests is strictly

appropriate since the same data are being used to test the procedure as to

define the procedure. If sufficient data are available, it might seem more

appropriate to use a holdout sample to assess efficiency; however, as will

be noted in the next two sections, better methods are available. The

hit rate yielded by these better methods may then be compared to the expected

hit rate based on chance alone, E pk (Nk/N).

The efficiencies of two different classification procedures applied to

the same data may be compared via McNemar's test of related proportions.

This test, and an extension of it proposed by W. G. Cochran for use in

comparing more than two procedures, are discussed by Hays (1973, pp. 741,

773).

Estimating Error Rates

Most of the work done with methods of estimating proportions of

classification errors deals with the two-group situation. Much of this

research will be reviewed in the next section.

Three types of errors may be associated with a classification rule:

(1) true error, (2) actual error, and (3) apparent error (see Hills, 1966).

True (or optimal) error is the long-run frequency of misclassifications

using a classification rule which assumes population parameters are known.

Actual error is the long-run frequency of misclassification using a rule

which uses estimates of the unknown parameters. Apparent error is the

7-
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proportiOn of the "norming sample" misclassified by a rule which uses

parameter estimates.-- internal classification. As will be shown in the next

section, estimators of true error and of actual error are simply formulated

in the two-group case; however, the formulation for estimators in the multi-

group case are complicated, indeed (Glick, 1972). For large samples, true

error and actual error will be approximately equal, and an estimator of

one could be used for the other. Apparent error has often been used as an

estimate of these two types of error. As might be intuited, since classify-

ing the norming sample with a rule determined by this same sample is quite

likely to capitalize on chance, apparent error may grossly underestimate

actual or true error.

A better estimate may be obtained by \extending a technique (Lachenbruch,

1967) which was proposed for the two-group\case. This ("jackknife")

technique requires the application of a classification rule N ( IRENk) times,

withholding a different vector of measures etch time. The individual whose

vector was withheld is then reclasOlied usin the statistics based on the

other N-1 sets of measures. The proportions (4 misclassified individuals

from each group are used as estimates of the co7ditional probabilities of

misclassification. One minus the ploportion of isclassification across all

K groups may be used as a measure of the discrimn tory power of the predictors.

Such a measure informs a researcher how well a se of predictors differen-

tiates the criterion populations, and it may serve as a yardstick in

determining whether the addition of new variables o the deletion of old

ones is warranted (Geisser, 1970, p. 60).

Classification in Two-Group Case

Rather than considering two linear discriminant s&)res (i.e., values_

of L
ik

in [144), only one comparison is involved when/there are only
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two criterion groups. The classification decision can be made by computing

[22] L - L
i2

= - 312) S-1 X

where

c 11(i1 ' - R1
1 2 2 + In p

2
- in

pl

It is noted that the vector of coefficients of the si gle LDF (see [3]) may

be taken as

- V
v
1

= (X
1 2

- X ) S-1 .

The decision rule is to assign individual i to the first population if

V
1

X
1

c, and to the second population if v
1
X
1

< c. The formal equiva-

lence of two-group discriminant analysis and multiple regression analysis,

where the criterion variable is measured by group membership, was mentioned

previously in this paper. When the number of individuals in each of the two

groups is the same, classification based on [22] is identical to that based

on [21] for K = 2.

It is in the two-group case where most work has been done in assessing

the robustness of linear classification rules to various departures from

assumptions. Investigations of linear rules for unequal covariance matrices

have been performed by Kossack (1945), Smith (1947), and Gilbert (1969).

Studies involving the classification of non-normal data are reviewed in

a later section. See also, Lachenbruch (1966).

The use of prior probabilities or "base rates" in a univariate classi-

fication scheme was used about twenty years ago by Meehl and Rosen (195)

in a two-group study. This use of unequal priors to increase classification

accuracy was critiqued by Cureton (1957). Overall and Klett (1972, pp.

265-267) discuss unequal base rates used jointly with LDF scores in
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graphically determining appropriate cut-off points for classification into

one of two groups. Alf and Dorfman (1967) determine a cut-off score for a

single predictor or a weighted sum of predictors such that the expected

value of the decision procedure is maximized, taking gains and losses asso-

ciated with correct and incorrect assignments into account. See also,

Gregson (1964).

Considerable theoretical and empirical research has been reported that

deals with estimating probabilities of misclassification in the two-group

case. Hills (1966) has given an excellent account of the problems inOblved

in estimating various error rates in multivariate two-group classification

problems. Hockersmith (1969) reviews numerous methods of estimating true

and actual error -- refer to the preceding section -- and reports the

results of a Monte Carlo study comparing the accuracy of the methods. The

comparative accuracy of the methods depends upon the number of predictors,

group size, and distance between the two population centroids. It was
--

generally concluded that a method using a holdout samge, where a subset

of the original set of observations is classified using the rule determined

by the remaining observations (the norming sample), was inferior to the

others. As might be expected, it was concluded that apparent error was a

poor method in nearly all situations studied. If one method were to be-

selected when the normality condition is questionable, it would be the

"U method" .suggested by Lache

ceding section of this paper.

ruch (1967) which was described in the pre-

If the normality condition is met, a method

which combines the features of the U method and the use of the normal

distribution is recommended; here an estimate is taken as

[23] 1/2[1)
+ (1) (L

2
/s

L2
)] ,
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where (1) is the standard normal distribution function, Lk is the mean of

the Nk values of [22] in group k each based on N1 + N2 -1 observations,

and s, is the standard deviation of such values for group k. Other specific
Lk

conclusions were reached which, along with the general conclusions, were

comparable to those of Lachenbruch'and Mickey (1968) in a somewhat similar

study. See also the three papers by Sorum (1971, 1972a, 1972b).

Results of studies by Lachenbruch (1968) and Hockersmith (19o9)

have also led to conclusions regarding sample size. The recommendations made

are dependent upon the number of predictors, the distance between the two

populations, and the tolerance between the estimated and optimum error rate.

Tables are provided by both writers which indicate a desired common sample

size in different situations. Using [23] as an error rate estimate, sample

size requirements are summarized by Lachenbruch (1968) as follows: (1)

for large tolerance only small samples are needed; small tolerances imply

the need for large samples; (2) groups widely separated need smaller samples

for classification than groups that are close together; and (3) as the number

of parameters'increases, the required sample size to number of parameters

decreases. Hockersmith (1969) draws similar conclusions, and specifically

states that for the better error rate estimates, "...a sample size of

40 in each group could be used to insure with some confidence that the

estimate of (true) error will be within a tolerance of .05 [p. 80]."

See also, Dunn (1971).

Specific Uses of Classification

Classification has at times proved helpful when used in conjunction

with other multivariate data analysis techniques. A use of classification

procedures in a predtli:on study is given by Lissitz and Schoenfeldt (1974);,
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riors, were used as weights

inden (1973) transformedin a multivariate prediction model. Roger

values obtained from [13] to probabilities of group membership that were

used as classification s atistics so as to test the efficiencies of three

grouping (or clustering methods on a given set of data. 'A classification

procedure was also use by Schoenfeldt (1970) to validate a clustering

method. It is noted that the purpose of this latter type of study is to

define groups rather than to predict group membership; thus the usual tests

of significance used in discriminant analysis do not apply (Friedman and

Rubin, 1967, p. 1167).

Jackson (1968) studied two methods of estimating unknown values in

discriminant analysis and used as his criterion of comparison the proportion

of correct classifications (one minus apparent error) yielded by each

method. The criterion of one minus apparent error was also used by

Huberty (1971a) in assessing the effectiveness of various methods of

selecting a subset of predictors of a given size.

The close relationship of multivariate classification techniques to

"profile analysis" is pointed out by Overall and Klett (1972, Ch. 15).

Classification Research Applications

As in the section on discrimination application8, only selected

journal articles in behavioral research dealing with applications of classi-

fication procedures will be reviewed. Two sets of studies are reviewed:

(1) studies dealing almost exclusively with classification, and (2) studies

using both discrimination and classification techniques.

Only one study selected (Doerr and Ferguson, 1968) carried out classi-

fication in the reduced space. Eight vocational test scores and five interest

inventory scores for 982 high school students were used for assignment of
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individuals into one of eight vocational course groups. The null hypothesis

of MANOVA was rejected. Two "significant" LDFs were determined by examining

the ratios of the individtial eigenvalues of-E-1H to their sum, i.e., to the

trace of E-1H. A random 10% (from each group) was used for cross-validation
Ok

purposes.; both internal and external classification results were reported.

The classification statistic used was not indicated; presumably it was [19]

in the reduced space -- no priors were specified.

In some studies, conducted'for the purpose of prediction where the

dependent measure is nominal, the classification statistic is not made ex-

plicit. In a study by Stahmann (1969) it was merely stated that, "Multiple

discriminant analysis was used as a classification procedure ...fp. 110],"

That study involved approximately 500 bachelor degree graduates in five fields

of study; ten academic test scores, nine occupational interest inventory

scores, and two self expressions of major field were used as predictor measures.

Neither equality of covariance matrices nor centroids was considered. A

holdout sample was employed for validation purposes; the proportion of the

original sample was not specified. External classification results were re-

ported for one data set, while internal classification was used for two other

sets of data. Fourteen measures, seven of which were academic test scores,

>01T1 160 college freshmen were used by Chastian (1969) to predict membership

on one of four classes, two-audio-lingual.and two "cognitive." The hypothesis

of eqtal mean vectors was rtjeated. Total and separate group correlation

matrices were given. Intetnal clasiification results via an unknown statistic

were tabled; the need for external classification was noted, however.

Pearson's chi-square statistic was used to assess the efficiency of classifica-

tion. Multiple regression techniques were used with the same predictors, but

to answer a different question.

Four "intellective" and 30 "nonintellective" variables were used by
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Keenen and Holmes (1970) in predicting membership in one of three groups

(graduates, withdrawals, failures) of 364 college freshmen. The classifica-

tion statistic used is [17]. A 50 percent holdout sample was used to

validate the classification procedure; internal and external classification

results were reported. The correlational statistic, 1-A, was considered

since its use "...is presently felt to be more meaningful than F (a trans-

formation of A) in evaluating the results of a discriminant analysis [p. 93]."

See Alumbaugh, Davis, and Sweney (1969) and Cohen (1971) for examples

of two-group classification studies.

Five studies will now be mentioned that utilized both discrimination

and classification techniques; for these studies only the statistical

techniques used will be discussed. All but one of the studies reported

only internal classification results. The classification statistic was not

specified by Kirkendall and Ismail (1970), Southworth and Morningstar (1970),

or Asher and Shively (1969). In the first study Wilks' A was used to

test for centroid differences among the three populations. Standardized

weights were used to assess variable contribution to the lone LDF which

was retained due to the percent of "total among-group,variatiOn" absorbed.

The generalized Mahalonobis distance statistic -- labeled W in the present

review -- was used in the second study to test the null hypothesis of

MANOVA. It was not specified which LDF weights were used to sort out the

two most effective discriminators. Asher and Shively substituted mean

values of variables within each of their four groups for missing data.

Three LDFs were statistically significant, !nit only two wen.. considered

since'the two associated eigenvalues accounted for nearly 97% of the trace

of E-1H. The type of weights used for interpretive purposes was not made

explicit.
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Standardized weights were used by Neal and King (1969) and Wood (1971).

Following the use of WilkP lambda statistic, Neal and King carried out both

an internal and external classification using, presumably, statistic [19]

priors were not specified. A "chi-square Goodness of Fit test" was usedrio

determine if the observed distributions, via both internal and external

classification, could have been obtained by chance. The results of the

statistical classification were compared to those of a "configutal analysis"

by means of a "chi-square contingency test," The BMD 5M program was used

by Wood for his group assignment procedure; that is,'-statistic [14] lacking

the in pk term. The coefficients of the classification equations-, [14a],

were "scaled" to determine the "relative discriminatory power for each vari-

able."

Other Issues, Problems, Developments

Regression Analysis and Classification

The formal relationship between multiple regression analysis_ and two-

group discriminant analysis was noted previously in this paper. -There

have been a few studies which have attempted to compare the classification

efficiencies of the two methods on a given set of data. In-one study

(Alexakos, 1966), college grade-point average was used as-the criterion'

measure for both analyses; in two other studies - (Dunn,. 19:(); Bledsoe, 1973)

the criterion measure is different for the two analyses. -In the first

study the classification method used was not.made clear; Dunn used the

statistic Oven in [13], while Bledsoe used [15]. From a statistical view-

point, the appropriateness of such comparisons appearsOestioneble. Use

of the same criterion measure in both analyses would ignore requirements for

one or the other; also, the results of such a comparison could be different

depending upon the classification statistic used. Using different criterion
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measures implies that the statistical predizrions would not be comparable.

Some substantive knowledge may be gained from such comparinons, however.

Of course, the two analyses answer different and, perhaps, interesting

questions (Tiedeman, 1951). [See Rulon, et al. (1967, pp. 323-336.]

A hybrid of the regression and discriminant analyses which has consider-

able intuitive appeal is a "joint probability model" which was originally

proposed by Tatsuoka (1956). This model considers information concerning

group membership in combination with that concerning success or productivity

in a group. This is an extension of the classification problem in terms of

applications to vocational and educational guidance. The approach is dis-

cussed and illustrated by Tatsuoka (1971, pp. 237-242) and Rulon, et al.

(1967, Ch. 10). As attractive as this approach may appear, it has not

enjoyed widespread use; the Lissitz and Schoenfeldt (1974) study referred

to earlier used the idea, though it was not very helpful.

Non-Normal Data

Although most research in discriminant analysis using non-normal data

has dealt with classification, some work has been done in the area of

discrimination. Variable selection was the concern of Elashoff, Elashoff,

and Goldman (1967) with dichotomous discriminators in the two-group case,

and of Hills (1967) with dichotomous and polychotomous variables in the

case of two or more groupS. The selection procedure used by Hills was

based on one of the nearest neighbor allocation rules of Fix and Hodges

(1951); this latter report gives some of the first work in nonparametric

discriminant analysis. A theoretical paper by Raiffa (1961) deals with

the problem of (sequentially) selecting from items wh\ch are scored 0-1,

a subset which will discriminate two groups of individuls about as well

as the original set.
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General non-parametric or distribution-free, as well as specific

discrete and other non-normal, univariate and multivariate classification

procedures have been very adequately reviewed by Das Gupta (1973). Various

procedures have been develoned to classify individuals or observations

characterized by various types of variables. For example, Solomon (1961)

and Cochran and Hopkins (1961) developed classification techniques for

categorical variables; Bargmann (1962b) developed a technique to clapsify

time dependent data; Kendall (1966) and Kossack (1967b) developed techniques

for ordinal data; Fix and Hodges (1951) developed a non-parametric technique

for variables with unspecified distributions. Applications of non-parametric

techniques in behavioral research have been very limited; two applications

of the analysis of Cochran and Hopkins have been reported by Toms and

Brewer (1971) and Kruglick and Brewer (1974). See also, Overall and Klett

(1972, Ch. 16).

A multivariate classification procedure which can handle different types

of predictor variables has been proposed and illustrated by Henschke, Kossack,

and Lissitz (1974). The technique used, which is an extension of that pro-

posed by Kossack (1967a) for the two-group case, accommodates rltiple groups

and three different types of variables: interval, ordinal, and' nominal.

It involves the transformation of each variable type in an appropriate fashion

so as to convert it to an essentially measureable variable with equal group

covariance matrices. The transformation of the nominal variable is based

on that used by Bryan (1961). Once the transformations are completed a

LDF is formed, and a Bayes classification rule is used. For a single

set of data they found their generalized classification procedure to be

"clearly superior" to the statistic [161 used on the same data by Lohnes

and Gribbons (1970).
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Other comparisons of the efficiencies of normal-based and nonparametric

classifiction rules for the K-group case are needed. Empirical studies

extending comparisons made in the two-group case by Fix and Hodges (1952),

Gilbert (1968), Gessaman and Gessaman (1972), and Moore (1973) would be

four possibilities. Another possibility is.an extension of the Lachenbruch,

Sneeringer, and Revo (1973) study.

Incomplete Data

A number of methods have been proposed for handling the problem of

parameter estimation when data values are missing or unknown in a multivariate

analysis. Afifi and Elashoff (1966) provide an extensive review of the

literature dealing wits this problem. The estimation of covariance and

correlation matrices for a single population was studied by Timm (1970).

Must studies of this kind assume the data are missing at random (see Rubin,

1973).

As in other areas of discriminant analysis, most research dealing. ith

incomplete data has been done for the two-group case. Jackson (1968)

presents results of an empirical study where both the number of variables

and number of individuals were very large. Her preliminary findings

suggest that the far simpler method of using means for missing values gives

results comparable with those of an iterative regression estimation technique.

Probabilities of-correct classification under eight methods of handling

(randomly) missing values were studied by Chan and Dunn (1972) using Monte

Carlo methods. The mean substitution method (again) and a principal

component method were found, in/general, to be superior to the

other methods for cases considered,. These writers caution that their results

may not hold up with non-randomly missing data, with non - normal populations,
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and with unequal population covariance matrices. For a third study involving

only two criterion groups, see Smith and Zeis (1973). See also McDonald

(1971).

Use of T Versus E

In an early section of this paper a formulation for obtaining coefficients

of LDFs was expressed in terms of the within-groups SSCP matrix, E (see

equation [21]). Computationally, it would be equivalent to use

T-1H - OII = 0 ,

which would lead to vectors of coefficients; which are proportional to those

obtained using E (Rozeboom, 1966, p. 562; Porebski, 1966a). In their

formulations a few writers prefer the use of T, while most writers use E:

The use of the T matrix was suggested by-Ottman, Ferguson, and Kaufman (1956)

in obtaining classification equations as an alternative to those given by

L
ik

- In p
k

(see [14a]). The classification statistic proposed by these

writers is It;T-IX - 1QT-11. They claim that one of the principal and

unique advantages of such a formulation is that "...once the data for the

general population are available, the.general population can be further

subdivided and more equations developed for an indefinite number of sub-

populations [p. 80]." The modified statistic is easily amenable for

dropping, adding, or adjusting any of the criterion groups.

In discrimination the important consideration in deciding which SSCP

or covariance matrix(ices) to use pertains not to computation but to

inferences the researcher wishes to make. Of course, inferential statements

are related to the sampling design of the investigation. If the different

groups being studied do not represent natural subgroups of some larger pop-

ulations -- e.g., an experimental study involving different treatments --
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then it might seem appropriate to use T. However, when attempting to

subFstantively interpret the LDFs in such a situation the use of T is

irrelevant since the LDFs have no population counterpart (Mulaik, 1972,

p. 428).

Reporting Discriminant Analysis Results

No matter which purpose or combination of purposes an analysis is to

serve, it is recommended that the following be reported1- (1) method of

sampling, (2) data collection procedures including cleat descriptions of

measures used, (3) number of individuals in eachcrit6rion group, (4) means

and variances (or standard deviations) on each variable for each group, and

over all groups combined, and (5) the pxp correlation matrix based on E.

In addition, the computer program(s5 used -- e.g., from a package, or

self-written -- should'be specified.

When separation is considered, univariate statistics (e.g., ANOVA

F-values or the transformed correlational indices such as w2) should be

reported. Some assessment of the equal group covariance structure condition

is recommended, such as group covariance matrix determinants or value of

a test statistic. The statistic used in testing the null MANOVA hypothesis

should be reported.-- the type as well as a numerical value.

For discrimination the reporting of the above; information plus more

is recommended. First of all, the coefficients should be given, indicating

whether they are applicable to raw scores or stanOrdized scores. Also,

if discriminator versus LDF correlations are used, they ought to be reported,

indicating whether they are based on the total-group formulaticn-[5] or the

within-groups formulation j6). If it is inferred that some discriminators

could be deleted.in subsequent similar studies, coefficients for the retained
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variables should be recomputed and reported. If the researcher favors the

interpretation of functions beyond that associated with the largest root of

E-1H, then it is recommended that two-dimensional plots of centroids be

presented.

Further, assuming significant separation is determined, reporting an

estimate of the proportion of variance of the p variables that is attributable

to centroid differences is recommended. Estimates of pairwise group distances

(between centroids) using [91 may also be informative.

Certain information ought to be made explicit when reporting results

of a classification study. Here too, values used in assessing group covar-

iance structure should be reported. Reporting the classification rule or

statistic used is also advised along with the priors used. It is further

recommended that a table of hits and misses be given using both an internal

and an.external classification method.

General References

The sources cited here are restricted to those that can be used as

references for discrimination and classification. All of them were referred

to at least once earlier in this paper.

To date, the best references, in the opinion of this writer, for dis-

cussions on discrimination are not found fn books on multivariate methods.

Four of these, in order of preference, are Tatsuoka (1973a), Porebski,

(1966b), Bargmann (1970), and Bock and Haggard (1968). In the Tatsuoka

chapter, issues and problems in interpretation of LDFs are scattered through-

out. A very readable discussion of the basic mathematics involved in

discrimination and of an approach to interpretation is provided in a pamphlet

by Tatsuoka (1970). An elaboration, of this coverage is also provided by
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the same writer (Tatsuoka, 1971). Brief discussions are given in two chap-

ters by Cooley and Lohnes (1971, Chs. 9 and 12) and at the very end of the

fine book by Mulaik (1972). Tatsuoka.'s interpretations are based on stan-

dardized weights, while Cooley and Lohnes and Mulaik prefer the variable-

LDF correlations. Eisenbeis and Avery (1972) give a good discussion of the

problem of variable selection;

Tatusoka (1971) also provides a coverage of classification procedures,

including a good discussion of posterior probabilities of group membership.

An excellent general discussion of classifications based on posterior

probabilities is given by Overall and Klett (1972), while Eisenbeis and

Avery (1972) provide a discussion of the estimation of error rates. For

the educational researcher, these latter two books suffer from the drawback

of the lack of appropriate illustrations; Eisenbeis and Avery also have some

annoying errors in their expressions for a few statistics. The books by

Cooley and Lohnes (1971) and Press (1972) are the only ones of those re-

viewed that present Geisser's classification statistic based on posterior

odds -- [16] in the former and [20] in the latter. The book edited by

Cacoullos (1973), basically one on multivariate classification, contains

at least six very readable papers, all referred to earlier, plus a rather

extensive bibliography at the end of the book. The review by Das Gupta is

highly recommended.

Computer Programs

One or more of a number of statistical computer "packages" are readily

accessible at most institutions -- BMD, OSIRIS, SAS, and SPSS are popular

packages. The three "discriminant analysis" programs in the BMD.package

(Dixon, 1973) have been reviewed quite extensively elsewhere (Huberty,

1974a). The single program in the IBM Scientific Subroutine Package (SSP)
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is the same as the BMD 5M program, "Discriminant Analysis for Several Groups."

The discriminant "functions" yielded by the BMD multi-group programs are

the equations as in [14], not those found via [3].

There are some books that list a number of computer programs (e.g.,

Veldman, 1967; Cooley and Lohnes, 1971; Overall and Klett, 1972). As can

be determined from the description given, the output of Veldman's discriminant

analysis program (DSCRIM) includes the variable-LDF correlations as given in

[6] and the group centroids. To classify individuals using Veldman's

program it is necessary to use his cluster analysis program (HGROUP) which

uses the statistic [13]. The discriminant analysis program of Cooley and

Lohnes (DISCRIM) yields standardized weights, variable-LDF correlations as

given in [5], the value of 1-A, and "communalities" as given in [8]. Their

classification program (CLASIF) utilizes the method of Geisser [16] for

internal classification with prior probabilities defined by group sizes

relative to N. The equality of the population covariance matrices is

tested with their MANOVA program; however, no quadratic classification results

are possible. The discriminant analysis. program of Overall and Klett

provides output similar to that of Cooley and Lohnes, plus pairwise distance

measures (see [9]). The statistic used in their classification program is

[15]; internal classification is also possible in a reduced space deter-

mined by orthogonal transformations of the original p measures.

A discriminant analysis program is also given by Eisenbeis and Avery

(1972). This program, which is reportedly available from The University of

Wisconsin for a cost, provides considerably more outpOt information for

purposes of variable selection and of classification than those previously

mentioned. No variable-LDF correlations are computed, however. The test



62

of equal covariance matrices is carried out, followed by the use of either

a linear [14] or a quadratic [18] classification statistic; reduced space

classifications are also optional. The Lachenbruch (1967) jackknife method

of estimating the probability of misclassification is used in this program.

The combination method of variable selection described in an earlier

section is utilized.

A new BMD program, discussed by Dixon and Jenrich (1973), is now

available; it requires some special hardware, and may be obtained for a

small cost. The program has three very promising added features: proviiion

for (1) more meaningful gra hic interpretation of results, (2) the handling

of the unequal covariance st ucture situation, and (3) specifying relative

costs of misclassification as well as differential prior probabilities

for each group.

There are a few very general multivariate programs (e.g., those by

Elliot Cramer and by Jeremy Finn) that are available to users. A program

called MUDAID, which is used extensively at The University of Georgia,

is an updated version of that by Applebaum and Bargmann (1967); it is now

used mostly on the CDC 6400. The Cramer, Finn, and Bargmann programs are

used basically for separation anddiscrimination, with varying outputs.

Other individual specific computer programs useful in discriminant analysis

are available. Refer7ces to many programs can be found in the journals,

Educational and Psychoiogiczi Measurement and Behavioral Science.
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