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" Abstract

The first four chapters of this report primarily
provide an extensive, critical review of the literature:-
with regard to selected aspects of the criterion-
referenced and mastery. testing fields. Major topics
treated include: (a) definitions, distinctions, and
backg:-ound, (b) the relevance of classical test theory,
(c) validity and procedures for test construction, and
(d) test reliability. '

Chapter V provides a treatment of criterion-refer-
enced and mastery item analysis and revision procedures
when items are scored in the classical correct/wrong
manaer. Chapter VI treats. an alternative to the
classical procedure for administering and ‘scoring items.
This procedure employs the subjective probabilities
typically associated with confidence testing in order
to obtain pseudo-classical scores. These sgores, which
have not been considered elsewhere, appear to be very
useful for item analysis purposes in that they have most
of the advantages and few of the disadvantages of both
classic 1 scores and subjective probabilities.

Chapter VII provides an analysis of a set of data
collected to illustrate many of the statistics and
procedures discussed in Chapters V and VI, especially.

One of the appendices to this report provides the
manual for an extensive test scoring and item analysis
program hat uses student sub’ective probabilities as
input.
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CHAPTER 1
’ Introduction

Rationale for and Overview of Research Reported Here

In the last decade there has been considerable
discussic.), debate, research, and development surrounding
criterion-referenced testing and mastery testing. Inevi-
tably, the issues have been discussed from philosophical,
theoretical, and practical points of view. Some persons have
been primarily concerned about comparing these new testing
techniques with norm-referenced techniques; some have argued
thac there are no important differences among these teci~-
niques; others have argued that there ares important differ-
ences; and still others have assumed that there are important
differences and proceeded from there.

Thus, the modus operaundi among researchers who have
worked in the areas of criterion-referenced and mastery test-
ing has differed considerably, and this is probably desirable,
in gemeral. However, this fact, the relative yowth of these
testing techniques, their apparent popularity, and their
somewhat unrestrained use have all interacted to confuse
certain issues and to render very d4ifficult an answer to the
question, "What do we know about criterion-referenced testing?"
Relatively little of what we know is found in textbooks or
even in the pooular journals that treat measurement and
testing. As might be expected, some of the best work is
found in unpublished manuscripts and reports.

Thus, one purpose of thie document is to provide an
overview of the literature on criterion-referenced and
mastery testing, especially with regard to statistical
measures, criteria, and procedures for criterion-referenced
reliability, validity, and item analysis. Any such review
of the literature is bound to be somewhat biased by the
author's subjective judgment, and it is virtually impossible
to reference all the work rerformed in any of these areas,
However, an eifort has been made to identify the most impor-
tant, or potentially important references.

Another purpose of this report is to discuss procedures
for identifying criterion-referenced and mastery test items
that requ.-e revision. It is the feeling of this author
that this is a fundareantally important topic, in that:
(a)consideration of the probvlems involved here helps to
clarify the important issues in criterion-referenced
reliability and validity, aad (b) any measurement technique
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can oniy be valid and useful to the extent that the
measuremetn instruzent, and, hence, the test items are
at least minimally acceptable.

The proposal that formed the initial statement of the
research reported here also indicated tnat several different
kinds of item administration and scorirg procedures would
be considered in terms of their applicability for criterion-
referenced and mastery testing. At the time the proposal
was writtern, this author felt that the typical correct/
wrong scoring nrocedure for objective items left much to be
desired, especially for many applications of criterion-
referenced testing., In particular, this author felt that
confidence testing, or one of its variants, might offer
significant advantages to criterion-referenced testing.

The research discussed in the later chapters of this report
seemns to support these beliefs,

Definitions, Distinctions, and Background

Norm-referenced testing. Measurement theory traditionally
has been concerned with the accurate estimation and inter-
pretation of an individual’s score in relation to the scores
of other individuals who have taken, or who might potentially
take, a given test. In fact, many psychometricians have
historically taken the position that "a test (that is) not
discrininating amnong examinees ... i8 not a useful measuring
instrument (Lord and Novick, 1968, p. 252)." However, it
should be noted that very ifew psychometricians define
measuremnent in a manner that necessitates this discriminating
function of a test. (See, for examvle, the definition of
measurenent provided by Lord and Novick, 1968, p. 17.) 1In
other words, historically, most psychometricians have cor.=-
cerned themselves with tests whose purpose is to maximally
discriminate among subjects with regard to some underlying
characteristic, trait, or construct; hence, the ability of a
test to provide a basis for making statistical statements
avout the distinctions among students has, for rany, become
an operational definition of "useful measuremént instrument,"
Furthe:rmore, tiiis point of view has necessitated that the
interpretation of a student's score be "... dependent on the
relative pcsition of the score in comparison with other scores
(Pophan and Husek, 1959, p. 3)." Tests of this kind are
currently referred to as norm-referenced tests. The term
"norm-referenced" is somewhat inavnpropriate in that the
‘norm group’ in traditional test theory usually has a specific
- definition or connotaticn that is not nececsarily consistent
with the term "“"norm-referenced"; however, here, as elsewhare
in this report, our concern is with describing terms in an

1=2




unambiguous manner, not changing their names.

Criterion=referenced testins -- background., Now, there
can be no argument about the usefulness of norm=referenced
" testineg; however, researchers for a number of years have noted
that certain ourocses and uses oY tests do not fit very well
into a norm-rererenced framework. Flanagan (1951) and
Gardner (1962) voirted out some distinctions between what are
now called norm-retereacecd and criterion-referenced tests;
Ebel's (1952) work on "content standard scores" is also
frequently referenced as a precursor to criterion-referenced
testing. Eowever, Glaser (1953) and Glaser and Klaus (1962)
are the earliest references that specifically consider
criterion-referenced tests, as such; the latter, in the
opinion of this author, is still one of the best introduc-
tions to the distinctions between norm-referenced and
criterion-referenced tests,

It is interesting to note the historical proximity
between criterion~referenced testing and programnmed instruc=-.
tion, which provided a motivating factor in the development
of new instructicnal systems and educational technology.

This chronological proximity is probably not mere coinci-
dence, since, as Coulson adn Cogswell (1965) note, changes

in testing procedures are a natural consequence of changes

in teaching :zethode In fact, most criterion-referenced testing
is closely associated with some kind of instruction, espec-
tally individualiced or adaptive instruction. (See, for
example, Nitko, 1971, and Hazbleton, 1973.)

There are several lessons to be learned from this
frequently cccuring relationship tetween criterion-referenced
testins and instruction, First, it should be noted that this
relationsniy car easily confound the interpretability of
criterion-refercnced measurements, In fact, one of the
difficulties with most of the literature is a needless
confusion of instructicn and measurement This is not to
say that instruction and measurement cannot and should not
interact. This author has even stated elsewhere that many
of the vproblems in instruction will not be resolved until
fundarental issues in measurement are adequately treated
(Brennan, 1973b). However, at least at the presznt time,
in the opinion of this author, it is necessary to recognize
the distinctions b2tween neasurement and instruction, if we
are to advance the cause of eith:r., The relationship
tetween criterion-referenced and instruction may also provide
an explanation f:r the rather uneven interest, if not the
apathy, of many vsychometricians with regard to criterion-
referenced testin~e From a practical point of view, good
rritericn-referenced test data for a reasonably large number
of subjects is quite rare, or not readily available to
psychometricians for analysise For one thing, the collection
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and analysis of criterion-referenced test data is often
somewhat over-shadowed by the dayv-to=-day exigencies of
providing instruction tc students. Also, many psychometri-
cians werk in environments that remove them from the testing
issues that often arise in instructional contexts; hence,
such psychometricians are often removed from the issues that
motivate much of the work in criterion-referenced testing.

Criterinn-referenced testing -- definitions. Many
definitions of a criterion-retferenced test have been pro=-
posed in the literature, For example:

"A pure criterion-referenced test is one consisting
of a sample of production tasks drawn from a well=-
defined population of performances, a sample that may
be used to estimate the proportion of performances in
that population at which the student can succeed
(Harris and Stewart, 1971, p. 1)."

"A critericn-referenced test is one composed of itexs
keye? to a set of behavioral o-iectives (Ivens, 1970,
Pe 2)o"

A criterion-referenced test is one that is deliberately
constructed so as to yield measurements that are directly
interpretable in terms of specified performance standards
(Glaser and Nitko, 1971)."

The last definition seems to be the one that is most uni-
versally accepted, the second is one of the most general
definitions, and the first Zs one of the most specific.

This author vrefers the last definition; however, many
criterion-refzrenced tests appear to satisfy all definitions;
and, trerefore, arguments atout the "best" definition may be
of more theoretical than practical concern. From another
point o: view, houwever, it should be noted that some tests
which are criterion-referenced under one definition may not
be criterion-refereaced under another definition,

Critericn-roferenced testing -- characteristics. Among
the most rrequently cited characteristics of a criterion-
referenced test are: (a) test items are associated with
specific behavioral objectives, (b) the resulting neasure=-
ment scale is an absolute, as opposed to, a relative scale,(c)
a student's score is cavable of being interpreted indepen=
dent of tne scores of other subjects, and (d) there is a
specified benavioral criterion (or criteria) for acceptable
performance. It is worth considering some of these character=-
istics in more detail,

ew, criterion-referenced test
o be associated with

ie author does not believe

'5 (1971) definition of a

From a vpractical roint of vi
items are almost aiways claiwzed t
specific objectives, However, th
that anytning in Glaser and itke's
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criterion-referenced test necessitates that criterion-refer-
enced items must necessarily be associated with the typical
kinds of presently available, explicitly stated pehavioral
objectives. This is not an argument against behavioral
objectives; rather it is an admonition not to needlessly
constrain the definition of a criterion=referenced test by
demanding that criterion-referenced test items reflect
particular kinds of behavioral objectives. Nevertheless,

it is critical that some behavioral criterion for acceptable
performance be specified.

Glaser (1963) discusses the issue of absolute versus
relative standards in the following terms:

"The scores obtained from an achievement test provide
primarily two kinds of information. One is the degree
to which the student has attained criterion performance,
for example, whether he can satisfactorily prepare an
experimental report, or solve certain kinds of work
problems in arithmetic. The second kind of information
that an achievement test score provides is the relative
ordering of individuals with respect to their test
performance, for example, whether student A can solve
his problems more quickly that student B. The principal
difference between these two kinds of information lies
in the standard used as a reference. What can be
called criterion-referenced measures depead upon an
absolute standard of quality, while whet can be termed
norm-referenced measures depend upon a relative
standard (Glaser, 1963, p. 2)."

We stated above that norm-referenced tests are ‘speci=-
fically constructed to yleld scores that allow for maximum
discrimination among subjects. More precisely, such measures
are intended to provide a basis for making distinctions
among subjects over a continuum of ability. &Sventhough the
interpretation of a subject?s criterion-referenced score is
independent of the scores obtained by other subjects; it is
not gquite true to say that all criterion-refecrenced tests
are not intended to identify differencee among subjects.
However, the differences to be identified are of a very
specific nature. That is, e criterion-iseferenced test is
often intendea to distinguish between two groups of subjects:
those who have and those who have not achieved the specified
performance standard. For the most part, criterion-referenced
tests that have thii; intended purpose fall into the realm
of mastery testing.

Thus, norm~referenced and criterion-referenced tests
differ with regard to the desired nature of the discrimi-
nations among subjects., An analogy may help clarify this
point. In describing the length of a table, I may say that
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it i8 either greater than or not greater than six feet long;
or I may say that it is longer than 80 percent of the tables
~in the school cafeteria. The latter is analogous to the norm-
referenced kind of discrimination. Also, note that the
criterion-referenced statement makes use 0of an absolute
measurement scale, while -the norm-referenced statement does
not.

Mastery testing. That part of Glase and Nitko's (1971)
definition of a criterion-referenced test that refers to a
“gpecified performance standard" has been a subject of con-
siderable confusion and misunderstanding in the literature.
The standard should be specified and it should be amenable

to measurement of some kind (hence, the word “performance');
but the standard need not be a single score, the standard
need not be high, and certainly the standard need n.t be
perfect mastery, or anything close to perfect mastery. Now,
it is often true that the standard chosen is a single "high"
score, and, thus, in many cases, there is little operational.
difference between a criterion-referenced test and a mastery
test; however, the difference between these two kinds of
tests - is a potentially real and important one. This distinc-
tion should be recognized even if, in particular circum- _
stances, the distinction is not made. For example, the tests
used in the National Assessment Program (see Merwin and
Womer, 1969) can be considered to be criterion-referenced,
but they are not a typical example of mastery tests. In

this report we will make the distinction between criterion-
referenced and mastery testing when we deem it to be
critical; otherwise, we will use the term Y“criterion-
referenced" instead of "mastery," since the latter is a
special case of the former,

The impetus for, and original work in, mastery testing
was presented by Bloom (19€8) as part of a general model for
mastery learning., Perhaps the best-known references on the
topic ars Bloom (1971) and Block (1971). The latter presents
& review of the literature which has recently been updated by
the same author (Block, 1973). From a measurement viewpoint
the outstanding issue in a discussiun of mastery testing is
the cut=-off value (cutting score, passing score, mastery
cut=off, or criterion) chosen as the basis for classifying
stuents as masters or non-masters. Enmrick (1971),

Kriewall (1969), and Millman (1972) have all treated this
issue to some extent. However, there seems to be a subtle
difference between Glasar and Nitko'!s ''specified performance
standard" and the basis upon which some persons recommend

" choosing a mastery cutting score. At least sometimes, the
mastery cutting scores appear to be based partially upon
characteristics of the test score distribution. Such proce-
dures, in the opinion of this author, run the risk of
confounding the definition of mastery with the irrelevant
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information provided by the test score distribution. For
example, taken tc extremes, such a procedure might, after
the fact, classify all persons above the median as masters,
in which case, mastery learning is guaranteed to be effec=-
tive (and not effective) for fifty percent of the stidents.

The word "criterion." Another issue with regard to
general terminology and background for this report concerns
the word "criterion.' This word, for some time, has had
several denotatiorns or connotations in test theory; and
with the advent ofcriterion-referenced and mastery testing
the pctential ambiguities have increased. In classical
test theory, the word "“criterion" usually refers to some
external measure that provides a standard against which
a particular test is compared; in this sense, the word
“ecriterion" is often associated with criterion, statistical,
or empirical validity (Brown, 1970). Also, in both classical
testing and mastery testing the word criterion is sometimes
synonymous with a cutting score, cut-off score, or "accepta=-
ble" score magnitude. In criterion-referenced testing, the
word "criterion' refers generically to "“the standard %or
sriterion) against which a student's performance is com=
pared (Glaser, 1963, p. 519)." Nitko (1971) discusses these
distinctions in somewhat greater depth., Once these distinc-
tions are recognized, the context of a given discussion
usually resolves any ambiguities.

Criterion-referenced tests and scores. It is almost
inconceivable that a z-score,AT-score, stanine, or per-
centile rank would be a criterion=-referenced score, whereas
“number of items correct" or “proportion of items correct
might be. Nevertheless, the actual student score reported
T8, of itself, never sufficient to warrant saying that the
score 18 criterion-referenced. Such a statement can be made
only if the test is (or can be Iinterpreted as) = criterion-
referenced test and the score reported reflect: the specified
performance standard. ‘

Merely viewing a test is not sufficient to identify it
as critericn-referenced or norm-referenced; one must also
know the manner in which it was constructed, the purpose
for which it will be used, and the way in which student
scores are constructed and interpreted, Furthermore,
practically any test has the potential for belng either
criterion-referenced or norm-referenced. ~hus, for example
Ebel (1962) has suggested a procedure for deriving criterion=
referenced information from a norm-referenced test,

Ebel's limitations.of criterion-referenced testing.
Surprisingly, Ebel is also a generally vocal critic of
criterion-referenced testing. In Ebel's view, the major
limitations of criterion-referenced tests are: '(1) they do
not tell us all we need to know about achievement, (2) they
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are difficult to obtain on any sound basis, and (3) they are
necessary for only & small fraction of important educational
achievements (Ebel, 1970, p. 8)." The last objection is,

I think very ambiguous in that Ebel does not define what

he means by "important educational achievements.' As a
counterexample, in my experience, most teachers and those
working with instructional systems, when asked to character-
ize a '"good" test for their purposes, invariably list
characteristics of criterion-referenced tests. Ebel's first
“"limitation" is, at best, misdirected in that very few
regearchers would want to argue that any testing technique
is likely to be sufficient in providing us with "all we need
to know about achievement (italics ours)." Ebel!s second
limitation is at least partially true, but it is not true
that is prohibitively difficult to obtain good criterion-
referenced measurements. Finally, in the opinion of this
author, Ebel's three supposed limitations of criterion-
referenced measurement are equally, if not more, appropriate
comments about norm-referenced measurement. But even if one
agrees that Ebel's statement of limitations is valid, this,
in itself, is not a justification for eliminating the use

or development of criterion~referenced testing, as some
might claime The issue is not which kind of testing is
better, but rather, which kind of testing is appropriate,
under what circumstances, and for what purpose.

1 for the Use of Achievement Data and Time Data in

Since criterion-referenced and mastery tesiing are often
closely associated with an instructional system, it is
desirable to consider the role of these testing techniques
in an instructional system; at the same time it is useful
to to consider the potential role of norm-referenced testing
in an instructional. In this section, we briefly consider
these issues; the reader is referred to Bremnan (1973a) for
& more complete discussion.

_Here we restrict ourselves to a consideration of
achievement data and time data for evaluating the cognitive
"aspects of an instructional system. Given the current state-
of=the-art. one might argue that achievement data and time
data often provide the most useful and interpretable infor-
mation with regard to decision-making in an instructional
system; nevertheless, it should be noted that a complete
evaluation of an instructional system necessitates the col=-
lection and use of other types of data, as well.

Objective-related modules. One reason that so mueh of
the literature on evaluating particular instructional systems
lacks generalizability to other instructional systems is that
the unit of analysis for the purpose of collecting data and
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making decisions i1s apt to vary considerably from system to
system; and, often enough, the unit of analysis varies even
within the same system. ’

In some systems the unit of analysis is merely the amount
of instruction that occurs in some specified time period; in
other systems the unit of analysis corresponds with the in=-
struction for some group of objectives which are taught
together in some sequence for pedagoglical reasons. In both
of these cases, the unit of analysis corresponds with
obvious physical characteristics of the system, and, there-
fore, the unit of analysis typically involves a number of
different instructional objectives. However, the kinds of
decisions that must be made in evaluating and revising an
instructional system necessitate a consideration of all of
the data and instruction relating to each separate objective,
no matter when the data are collected or where the instruc-
tion occurs within the system. ) '

In short, the basic unit of analysis in an instructional
system should be the objective. 1In order to emphasize this
fact and facilitate the collection and analysis of data for
decision-making, it is theoretically and practically useful
to view an instructional system as corsisting of a discrete
number of objective-related modulese As employed here, the
phrase "objective=related module'" refers to all of those
factors in an instructional system that are directly related
to a particular instructional objective. Note especially that
the term "module' is not used here as a descriptive character=-
istic of the physical layout of an instructional system.

The central aspects of an objective-related module are the
objective itself and the instruction intended to teach the
objective. In addition, an objective-related module contains
all of the data directly relevant to the particular objective.

This conception of an instructional system in terms of
objective-related modules may appear too theoretical or too
trivial, at first glance; however, for purposes of evalua=-
tion, the concept of an objective-related module has several
advantages over many other ways to outline and describe
. an instructional system. First, and most importantly, this
concept directly implies that the objective is the basic unit
of analysis in an instructional system., Second, the objec~-
tive~related module concept emvhasizes the relationship
between the objective, instruction, and data.” Third, any
instructional system can be described in terms of objective-
related modules, regardless of how the instruction is
sequenced or packaged. Fourth, the objective-related module
concept greatly facilitates an understanding of many of the
issues and problems surrounding the collection and use of
data in instructional systems.
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Purposes of data collection. Any discussion of data
immediately raises two questions: for what purpose should
such data be collected and what kind of date should be
collected? Here we restrict the scope of these two. ques=
tions to the domain of evaluating cognitive achievement in
an instructional system.

In general, of course, one can say that data is collec=-
ted in the environment of an iunstructional system for the
purpose of evaluation, where, according to Stufflebeam (1971)
Y"evaluatior is the process of delineating, obtaining, and
providing useful information for Jjudging decision alter-
natives (p. 267)."

More specifically, one could say that data should be
collected for the purposes of diagnostic, formative, and
summative evaluation (Bloom, Hastings, and Madaus, 1971).
If one considers evaluation as a decision-making process,
then the diagnostic-formative-summutive trichotomy refers
primarily to potential decision-making functions of evalua-
tion. However, we prefer to emphasize that the purpose of
collecting data in the environment of an instructional
system is to make decisions with regard to specific aspects
of the instructional system, namely: (a) instruction,

(b) students, and (c) test items. That is, we prefer to
emphasize the object of the decision-making process, as
opposed to its function. Emphasizing the object of the
decision-making process seems to identify more clearly the
specific nature of the decisions that typically need to be
made in an on-going instructional system.

Decisions about instruction are usually of primary
importance; i.e.,, one wants to assess the effects of instruc-
tion especially for the purpose of identifying instruction
that requires revision. Such decisions are often viewed as
part of the process of formative evaluatione 1In order to
make decisions concerning whether or not instruction should
be revised, we argue here that data should be obtained
which can be used to determine instructional effectiveness,
efficiency, and retention.

Decisions about students typically include decisions
concerning student placement and certification. Such
decisions are often viewed as part of the processes of
diagnostic and summative evaluation, respectively.

Decisions about test items also need to be made in
instructional systems. Specifically, one needs to deter-
mine the reliability and validity of tests used as part of
the instructional systen. '

Types of data. One can identify at least eight differ-
ent types of data for an objective-related module that pro=-
vide meaningful sources of information for decision-making.
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These types of data listed in the order in which they would
vsually be obtained, are as follows:

(a) Prerequisite test data, which indicates whether or
not a student has the background characteristics (attainment
of previous objectives, aptitude, etc.) thought to be neces-
sary in order to achieve the objective for the module;

(b) Pretest data, which measures a student's performance
on the objective prior to instruction;

(c) Instructional time, which is the length of time a
student spends undergoing instruction for the objective;

(d) Criterion-referenced posttest data, which measures
a student's performance on the objective immediately after
instruction; :

(e) Norm-referenced posttest data, which is collected
immediately after instruction and measures student perform-
ance relative to the performance of other similar students;

(f) Retention time, which is the length of time inter-
vening between the posttest (usually criterion-referenced)
and a subsequent retention test (usually criterion-refer=-
enced;

(g) Criterion-referenced retention test data, which is
collected some time after instruction and measures student
performance on the objective for the module; and

(n) Norm-referenced .etention test data, which is
collected some time after instruction and measures student
performance relative to the performance of other similar
students, '

It is oftzen assumed that only criterion-referenced
or mastery test data provide meaningful information for
evaluation decisions with regard to instructional systems.
Certainly criterion-referenced data is more important that
norm-referenced data in the context of an instructional
system; however, nora-recferenced data sometimes provides
useful additional intformation for decision-making (see
Brennan, 1973a, for more detail concerning this issue),

A table for relating data tyne an . use. These data

for an objective-related module are displayed in Table t.1
- which, in addition, indicates those types of data that are

of primary imrortance for making decisions with regard to

instruction, students, and test items. In essence,

Table 1.1 provides a kind of taxonomy of achlievement and

time data that are useful in evaluating instructional

systems. It is of course quite possible that a particular
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objective-related module. may not contain all of the data
indicated in Table 1e1. It is also possible that, in a
particular objective-related module, a test may, in fact,
consist of only one item. Clearly, when not all of the above
data are available, not all of the decisions indicated in
Table 1-1 can be made.

Observations from Table 1-1. Viewing our data in :
the manner indicated in Table 1-1 illustrates and reinfor-
ces the following observations,

(a) Decisions regarding instructional effectiveness
necessitate a consideration of both pre-~ and posttest data.
Decisions regarding mastery and/or grading involve a
congideration of elther pretest or posttest performance,
but not both == at least not in typical circumstances,

(b) Decisions regarding the efficiency of instruction
necessitate a consideration of instructional effectiveness
and the instructional time intervening between pre- and
posttest. The importance of instructional time in learning
has been treated by Carroll (1963, 1973); in fact, this
issue is one of the primary motivating factors in Bloom's
mastery learning model,

(c) Norm-referenced tests can serve a useful function
in grading students. This author suggests that a student's
grade he based on both norm=referenced and criterion-
referenced information, since grades seem to be used as
both a measure of what a student knows and as a measure of
how much a student knows compared to what other students know.

(d) Decisions about validity and reliability are
relevant: for all kinds of tests. Furthermore, decisions
about validity and reliability should be made for the
"change'" scores indicated by instructional effectiveness
and retention.

These and other points concerning the issues raised
by Table 1=1 are treated in much greater depth
. by Brennan (19733).




CHAPTER II

Classical Test Theory

in Criterion-Referenced Testing

Background .

There seems to be some question in the minds of
some researchers concerning the applicability of the
classical test theory model to criterion-referenced
testing. This is a potentially serious concern in that,
if the assumptions of classical test theory are not met
be criterion-referenced tests, then psychometricians
evaluating such tests have virtually lost -the benefit of
over fifty years of test theory development. Even if
criterion-referenced tests meet the assumptions of clas-
sical test theory, this is not a guarantee that the
classical results and theorems form a sufficient theo-
retical basis for criterion-referenced tests; however,
this problem is not nearly as serious as the problem of
assumptions. Some aspects of the applicability of
classical test theory have been discussed by Popham and
Husek (1969), but they have not discussed the validity
of the assumptions of classical test theory in rela-
tion to criterion-referenced tests. Therefore, it seems
appropriate to analyze the assumptions of classical
test theory in order to determine if any of these assump-
tions are not met by criterion-referenced tests.

In the author's opinion, the assumptions that we
will discuss are often misunderstood or not fully
appreciated. For example, many educators seem to have
a virtual psychological fixation on the normal curve:
Such educators tacitly assume that the normal curve is
a'sine qua non for classical test theory. As will be
shownm however, this is not the case -- the assumptions
of classical test theory are distribution free.

Notation

Unfortunately, there is no standard notation used
by all writers who work in the field of classical test
theory. The notation used by Gulliksen (1950) is simple,
but not always sufficient; the notation used by Lord
and Novick (1968) is very precise but perhaps more
complicated than necessary for most researchers and
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practitioners. Therefore, an effort will be made to
combine the most favorable aspects of both schemes of
notation in the hope that the reader will be able to
apply the adapted notation scheme to bcth of the
above basis references,

Let 7 be the observed score for the i-th person
on test g,g where K is the total number of items
on test g and N is 9 the total number of persons; i.e.,

K
g

L u

X - .
gi j=1 gij '’

where Usey is the score on item j of test g for person i.

Let T i be the true score for the i~th person on
test gq. g The assumptions that will ke stated later
serve to define whzt we mean by "true score." One of
the theorems that can be proved is that, in the classical
test theory sense, the true score is the expected value
of the observed score.

Let E i be the error score for the i-th person on
test g. E_,, called the "error of measurement," is
the result of’ various chance or random factors that
cause a person to answer correctly items he does not
know or to answer incorrectly items he does know. Note
ti:at the errors accounted for by E_ . are chance errors,
not systematic errors. g1

It is worth noting that T " is a fixed quantity for
person i, but X_ . and E_. are random variables. If
the same rerson were given the same test a number
of times, and if after each testing the person's "brains
were washed" we would expect that the person's observed
scores and error scores would show some variationi
however, the person's true score is constant by defini-
tion. :

Assumptions

The following assumptions express the posited

relations between T and E ..

Xg1+ Tqir gi



Al: Definition of Random Error

E. =X

gi gi - Tgi or X =T . + Egi;

gi gi
A2: Zero Average ‘Error

EE i) = 0 in every non-null subpopulation of
gt persons;

A3: Zero Correlation between True Score and
Error Score

D(Tgi. Egi) = 0;

A4: Definition of Parallel Tests -- parallel
tests £,9, and h are defined as tests for

which
(L) Tey = Tgy = Thy o
2 2 2
(11) o (Ef) = O (Eg) = g (Eh) , And

(111) o (Tgi T og) = p(Tgy Tyy) = p(T i Tyy) s

AS5: 2ero Correlation between Errors on Parallel
Tests -

p(Egi’Ehi) = 0 for parallel tests g and h;

A6: 2Zero Correlation between Errors on One Test and
True Scores on a Parallel Test

p(E Thi) = 0 for parallel tests g.and h.

gi’

In the above assumptions Al - A6, §{ indicates the expected
value over persons in the subpopulation of persons under
consideration, p indicates the correlation in the popula-
tion of persons, and ¢ indicates the standard deviation

in the population. The subscripts f, g, and h are
reserved for parallel tests.

The sei uf assumptions Al - A6 is actually more than
sufficient., For example, Gulliksen (1950, pp. 6-13) does
not list A4 (iii) and A6 as assumptions, since it is
possible to prove both of these relations from the other
assumptions.
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Assumptions Al - A6 are primarily based upon a
consideration of the errors of measurement E .. It is
also possible to state the above assumptionsgl in
terms of the true scores, but the assumptions then become
somewhat more difficult to understand, and the resulting
thecrems necessitate more complicated derivations.
Furthermore, we wish to concentrate upon errors of
measurement since they form the crux of several
arguments présented later in this chapter.

Let us now analyze the meaning of these assumptions.

Assumption Al - deflnltlon of. random error.

the observed, true and error scores for a (randomly
chose) person i. We are, in effect, saying that error
score is the simple difference between true and observed
score. Since, however, only X is directly observable,
the linear relationship 9 contains two unknown
quantities and is,therefore, undefined without additional
information.

Assumgtlon A2 -- zero average error. Assumption.
A2 states that given any non- nuli_SGbpopulatlon of
persons (where the population is countably infinite)
the expected value of the error scores cver persons is
zero. In practice, the larger the number of cases in the
distribution, the closer this assumption will be approx-
imated. This assumption implies two important results:

(a) In the entire population of persons, the
expected value of error scores is zero, and

(b) In.every subpopulation consisting of persons
with the same true score, the expected value of the
error scores is zero.

The latter result may be written mathematically as:

g(zgi| Tg) =0 ;

i.e., the expected value of E_. for given true score T
is zero, or the regiression of error scores on true
score is a horizontal straight llne passing through

" the origin.

Assumptions Al and A2 serve to define what is
meant by true score. Also not that these assumptions
iaply that



Assumption A3 -- zero correlation between true scores
and errcr scores. Assumption A3 states that the correlia-
tion between true and error scores in the population
is zero. This means that we assume that there is no
reason to expect positive (negative) errors to occur
more frequently with high /low) true scores than with
low (high) true scores. Note that Assumption A3 does
not mean that error scores are distributed independently
of true scoré. If errors are uncorrelated, "this
merely means that the product-moment correlation is
zero; if they are independent, this means that the
frequency distribution of errors of measurement is the
same regardless of the examinee's true score (Lord,
1959a; pp. 331).

Assumption A4 -- definition of parallel tests.
Assumption A4 serves to define what we mean by parallel
tests. Parailel tests are tests that have (i) the
same true scores, (ii) the same population variances,
and (iii) identical intercorrelations. Of course, if
there are only two parallel tests, then (iii) becomes
meaningless. The concept of parallel tests may initially
appear to be of secondary importance; however, parallel
tests play an impor:ant role in classical test theory.

Assumption A5 -- zero corrzelation between errors
on parallel tests. Assumption A5 states that the popu-
Tation correlation between random errors of measurement
on parallel tests is zero. ’

Assumption A6 -- zero correlation between errors
on one test and true scores on a parallel test. Assump-
tion A6 states that population correlation between
random error scores on one test and true scores on a
second parallel test is zero.

Classical Assumptions and Criterion-Referenced Testing

We stated in passing that the assumptions of clas-
sical test theory are distribution-free, then we went
on to discuss each of these assumptions. Note that none.
of the above assumptions necessitate any knowledge abocut
the distribution of observed, true, or error scores. This
fact, in addition to the very general nature of the
assumptions themselves, seems to argue quite strongly that
the classical test theory mcdel is appropriate for
criterion-referenced tests. At least, this author knows
of no definition of criterion-referenced testing that,
de facto, involves a violation of the classical test



theory assumptions.

There is, however, at least one potential problem
with the classical test theory assumptions in certain
criterion-referenced and mastery testing situations.
ConsiC .r the subset of persons whose true score eguals the
highest possiblc true score for the test under consi-
deration. From Assumption A2 we know that the expected
value of the error scores for persons with the highest
possible true score must be zero. 1In order for this to
be true, positive and negative errors must be offsetting,
but the highest possible true score equals the highest
possible observed score. Therefore, all errors about
the highest possible true score must always be zero.

This conclusion seems difficult to support. It is
somewhat analogous to saying that brilliant people are
naver subject to chance or random errors in their field
of expurtise.

Incidentally, this reservation about the classical
test thaory model is theoretically valid in norm-
referenced testing situations as well as in criterion-
referenced testing situations. However, in most norm-
referenced testing situations the probability that a
person will have the highest possible true score is
rare; whereas this is not always true in criterion-
referenced and mastery testing situations. Thus, the
above reservation is potentially more serious for
criterion-referenced tests than for norm-referenced tests.
In either case, however, this author is not convinced
that the reservation noted above is a devastatubg criti-
cism of the classical model. Perhaps models can be
posited that obviate this problem, but, in the meantime,
the classical test theory model seems to provide a
reasonable initial model for considering criterion-
referenced tests.

It is useful to keep in mind three facts about the
classical model: (a) X =T + E, (b) errors are random
errors, and (c) a person's true score is the expected
value of a large number of observed scores for that
" person. We wish to note one other aspect of the
classical test theory assumptions. None of the assump-
tions necessitate that items be scored in the usual
correct/lncorrect manner. We will refer to this scoring
procedure as the "classical scoring procedure”"; however,
the classical scoring procedure is not a necessary
condition for classical test tneory.
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W:2ak and Strong True Score =xodels

Nc matter how one applies the classical test theory
mcdel, it is clear that its assumptions do not consti-
tute a very strong statistical framework for evaluating
any test. 1In fact, the classical assumptions together
with thecrems that can be proven from these assumptions
constitute a "weak" true score model, weak in the sense
that all results are distribution-free (lord, 1965).
However, it is a truism in mathematics that the weaker
the assumptions, the weaker the results (Novick, 1966).
In the last ten years, therefore, psychometricians
such. as Lord, Keats, and Novick have attempted to develop
somes strong true score models for tests. (Lord and
Novick, 1968, is perhaps the best reference for the
currently available strong true score models.) These
models make stronger assumptions than Al - A6 in the
previous section, and the results that can be derived
are likewise stronger,

Actually, one true score model (although it is
seldom called a "txrue score model”) has been in vogue
for a considerable length of time. Many researchers
(e.g., Gulliksen, 1950) have noted that in order to
make use of the errors of measurement, it is necessary
to make certain assumptions about the distribution of
these errors (Gulliksen, 1950, p. 17). 1In the typical
test theory situation it is usually assumed that these
errors of measurement are normally distributed, inde-
pendently of the true score, with mean zero in the
population and constant population variance. It is
primarily these assumptions that have led some naive
users of classical test theory to mistakenly assume that
classical test theory relates only to normally
distributed test scores.

Characteristics 9£ Errors 9£ Measurement

It is instructive to consider the implications of
. only the classical assumptions upon errors of measure-
ment. Assumptions A2 and A3 imply that

E =0,
g ( Tg)

qil

i.e., the regression of errors on true score is linear.
More specifically, the best fitting line (in a least
squares sense) 1s a horizontal straight line passing
through the origin. Note that this does not mean that




error scores are distributed independently of true scores;
i.e., the distribution of error scores around any given
true score 1s not necessarily the same. This means that
the errors of measurement are unbiased; it does not mean
that the variances of the errors of measurement around
the true scores are equal.

Tabls -2~-1 represents the observed scores and error
scores for three true scores, where we assume that there
are only three true scores and there are only as many
people in the population as there are observed (or
error) scores. Figure 2-1 repreésents the regression of
these error scores on the true scores. The regression
line is the line identical with the T-axis. Note that it
is clearly true that £(E_.) = 0 since {(E i| T) =0
for every true score T .9% Since the 9 9.

-»~regression line is hor¥zontal, its slope is zero and
consequently p(T ., E_.) is also zero. Finally, note that
the variances gt 91 of the errors of measurement
around the different true scores are not equal.

Now, it can be shown that

E(xgil Tg) Tq

implying that the regression of observed scores on

true scores is also linear (Lord and Novick, 1968,

p. 65). Moreover, this regression line passes through

the origin and its slope is equal to unity. Figure 2-2

shows a graph of this regression line for the data given

in Table 2-1.

Neither one of the above regressions (represented
by Figures 2-1 and 2-2, respectively) is however, the
primary regression of interest. The test evaluator is
usually primarily concerned about £(T .| X ), the regres-
sion of true scores on observed gt 9 "scores, in
order to estimate a student's true score from his
observed score. However, this regression can be non-
linear, and consequently neither the true score nor the
observed score distribution is necessarily normal (Lord
and Novick, 1968, pp. 500-505). .

Figure 2-3 shows a plot of the distribution of true
scores (ordinate) versus the distribution of observed
scores {(abscissa) for the data in Table 2-1. The six
circled points in Figure 2«3 represent three sets of
(two) observed scores that map into different true
scores. For example, according to Figure 2-3 an observed
score of 12 can indicate a true score of either 10 or 20.
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Table 2-1
The Relation Between True, Observed, and

Error Scores (Synthetic Data)

e ———— . o ————  —— — — —

True Observed Error

score score score 14 (E I'r ) £ (x |T )
T - X _ E gi' g gi'' g
8 gi gl
10 6 -4 0 10
1C 7 -3 0 10
10 8 -2 0 10
10 9 : -1 0 10
10 10 0 0 10
10 .11 1 0 10
10 12 2 0 10
10 13 3 0 10
10 14 4 0 10
20 12 -8 0 20
20 14 -6 -0 20
20 16 -4 0 20
20 - 18 =2 0 20
20 20 0 0 20
20 22 2 0 20
20 24 4 0 20
20 26 6 0 20

20 28 8 0 20
30 28 -2 0 30
30 29 -1 0 30
30 30 n 0 30
30 31 1 0 30
30 32 2 0 30
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Errors of Measurement

Figurs 2+l
The Regression of Error
Scores on True Scores
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Note.--The data for the above figure are given in
Table 2-1. The abscissa represents krue score T and
the ordinate represents error scére E. Note that the
variances of the errors of measurement about gach of

the true scores are not equal.
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Figure 2-2
The Regression of Observed Scores on True Scores
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Note.--The data for the above figure are given in Table
2-1. The abscissa represents true score T and the ordinate repre-
sents observed score X, Note that the variances of the errors of

measurement about each true score ‘are not equal.
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Figure 2+3
The Regression of True Scores on Observed Scores
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Note.--The data for the above figure are given in Table 2-~1. The
‘ordinate represents true score T and the abacissa represents observed
score X. The circled points represent three sets (pairs) of observed
scores that map into different true scores. For exampleg an observed

score of 12 can indicate a true score of 10 or 20.




A gimilar situation occurs for observed scores of 14 and
28, The fact that certain observed scores do not map
into unique true scores indicates that £(T_;| X ) is

not linear. If this is not clear, - g g
consider the following:

10 ,
i

= 14
E(Tgil xg 12, )

E T . 6 < X < 11
15 ’

E(Tgil xg = 13) = 10 ,

e(rgil 16 < X < 26) = 20,

E(Tgil xg = 28) = 25, and
T 29 < X_ < 32) = 30 .

BTyl 29 < X5 < 32) =

The above expectations certainly do not constitute a
linear function. A linear best-fitting regression line
could be forced to fit thedata, but this would not be
"the" best-fitting curve for the data; "the" best-fitting
curve would be curvilinear.

Normal Error Model

- The results shown in Figures 2-1, 2-2, and 2-3 are
based only upon the assumptions of classical test theory.
Consequently, these results are distribution-free. Note
expecially that these results do not make any assumptions
about the distribution of the errors of measurement.
Gulliksen (1950, p. 17) notes that in order to make use
of the errors of measurement we must make some assumptions
about the frequency distribution of these errors. The
assumptions that we will now discuss form the rationale
behind the theory for norm-referenced tests that rely
upon normally distributed true and observed score distri-
butions.

When, in addition to the assumptions of classical
test theory, we assume that (a) the errors of measurement
are distributed independently of true score, (b) the
errors of measurement are distributed normally with
mean zero and constant variance,'and (c) the regression
of true scores on observed scores is linear, then both
the true and observed scores must ‘be normally distri-
buted (Lord and Novick, 1968, p. 503) with

2 2 2

9 = 9% T %
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In practice, the lastassumptioi (the linearity of
the regression of true on observed scores) is often
neglected (Gulliksen, 1950, Section 2.11), without
serious difficulty. It can be shown that the linear
regression of true scoxes on observed scores is given

by .
E(Tgil xg)_= (1 = pyyluy * pxxXg , where

2, 2
Pxx ™ Brx = Op / Oy or

: 2
Pxx * Pxr

In both cases Pxx is called the reliability coefficient
(which is also the correlation between parallel
measurements).

Assumptions (a) and (b) are indicated in Figure 2-—4.
Note the difference between the distributions of the
errors of measurement indicated in Figures 2~1 and 2-4.
In both figures, £ (E il T ) = 0, but in Figure 2-4
the errors of g 9 measurement have a specific
distributional form (i.e., the same normal distribution)
for each true. score Tg.

Assumptions (a), (b), and (c) above thus provide
the basis for a strong true score theory of test scores
that results in normally distributed true and observed
scores. In practive, these assumptions are the ones
most frequently made (either consciously or unconsciously)
about errors of measurement. These are the assumptions
that make it possible to evaluate and interpret most of
the currently available norm~referenced tests.

The Relevance of Normality Assumptions to Criterion-

Referenced Tests

There is no doubt that the normality assumptions
presented ir the previous section are very useful for
many testing purposes; however, these assumptions do not
seem to be applicable for many criterion-referenced
testing situations. Lord states:

The assumption that each error is distributed

N(O,oz) independently of true score is probably
quite adequate for many purposes. However, it is
clea; that these assumptions cannot be met when the
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Figure 2-4
The Assumption of N(O,dré) Distributed

Errors of Measurement
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Note.—In the above figure we agsume that there are u.nly
thcea possible true scores on a (hypothetical) test. The errors
of measurement about each true score are normally distributed with

mean zero and constant variance d‘é.
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true sccre, expressed as a proportion of the
number of items in a test, is near zero or near‘
one If n is the number of test items, and »/n
is some small number like .01, it is intuitively
obvious, in view of the fact that the observed
test score can never be negative, that the
distribution of the errors of measurement will ip
all probability be skew, and that the standard
deviatioa of this distribvtion will surely be less
than if the true score were not so near to zero
(Lord, 1959b, p. 475).

Similarly, if the true score expressed as a proportion
cf the number of items corvect is near unity, then the
distribution of the errors of measurement will be less
than if the true scores were not so close to unity. If,
in either case, it were assumed that the errors of
measurement were distributed independently of true score
with constant variance about each true score, this wouid
imply that certain (postulated) observed scores would,
in fact, be unobtainable. (See Figure 2-5.) Lord (1960)
discusses in some depth the consequences of assuming
that errors of measurement are distributed

2
N(0,0p)
independently of true score.

Since. for many criterion-referr~ced tests, many
of the students get most of the items correct, it is
obvious that we often expect the true proportion of
items correct for at least some student to be near unity.
Thus, on the basis of the arduments presented above, it
should je clear that the normality, constant variance,
and independence assumptions presented in the previous
section are not always applicable. for criterion-referenced
tests. The next section describes assumptions that are,
however, quite appropriate for such tests.

The Binomial Frror Model

Recall that the normal error model assumes that
(a) the errors of measurement are distributed independently
of true score.and (b) the errors .of measurement are
distributed normally with mean zero and constant variance
for each true score, i.e., :

.2
N(O, OE) .
In the previous section we demonstrated that neither

(a) nor (b) is reasonable for at least some criterion-
referenced tests. ‘Tius, for such tests we are forced to
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Figure 2-5
A Consequence of Assuming N(O, d'g) Distributed

Errors of Measurement
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make assumptions about the e. -~ors of measurement. A
little over a decade ago Keats and Lord (1962) postulated
that a reasonable distributional form for the errors of
measurement (assuming that observed scores are bounded)
is the binomial distribution with its parameter equal

to a specified true score. Keats and Lord (1962) give
no indication that they were, at that time, even con-
sidering what we now call criterion-referenced tests;
however, as will be demonstrated, the implications of
this assumption correspond quite well to a working
definition of the distributional form of many criterion-
referenced test scores.

More extensive discussions of the binomial error
model can be found in Keats and Lord (1962), Keats (1964),
Lord (1965), Lord and Novick (1968) and Brennan (1970).
The last reference is intended to provide a simplified
and concise description of the binomial error model,
especially for those interested in its possible appli-
cation in criterion-referenced testing. In this report
we will merely provide a brief outline of the binomial
error model.

As far as notation is concerned, subscripts for
variables will be dropped unless they are required to
avoid ambiguity. As before, T rey resents true score,

X represents observed score, and E represents error cf
measurement. However, rather than T, the true score
number of items correct, we will be concerned primarily
with [, the true score proportion correct; i.e.,

T =T/N

where N is the number of items on the test. Note that
the observed score, X, is a discrete variable, while the
true score, f(as well as T), is assumed to be zontinuous.
Distritutions will be identified as follows:

$(X) = the distribution of observed scores,
g(z) = the distribution of true scores,
f(E[g) = the distribution of the errors of measure-
ment for given true srore » and
h(x|z) = the cbnditional distribution of observed

scores for given true score.
Recall that the binomial error model is a strong

true score model; i.e., it incorporates an assumption(c)
over and above the assumptions of the classical weak
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Figure 2=7
The Conditional Distribution of Observed Scores.
for Several Given True Scores under the
Binomial Zrror Model for a 20-Item Test

Probability

1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20

Number of Items Correct

(Observed Scores)

Note.--The above figure represents five different observed score
distributions determined by the parameter [ . This figure represents

the same information as that contained in Figure 2-=6.




true score model. The binomial error model does not,
therefore, violate any of these classical assumptions
Al -A6; all these assumptions still hold.

In addition, however, for the binomial error mndel,
it is assumed that for a given true score, r, the errors
of measurement, E are independent and have a binomial
distribution with parameter ; i.e.,

N
f£(E|g) = ( ) Cx(l - C)N-x , X=20,1, ..., N
% .

for given true score 7, where N is the number of test
items. This assumption can be stated as follows:

the conditional distribution of observed score X for
given true score § is the binomial distribution with
parameter z: i.e.,

N
h(x|g) = Xa-o¥% , x=o0,1, ..., N
X

The first of these two formulas is illustrated for
a 20-item test in Figure 2=6. It is instructive to
compare Figure 2-6 with Figures 2-1 and 2-4, which
illustrate the error assumptions for the classical model
and the "normal" modeli, respectively. The second of
these two formulas is illustrated in Figure 2-7.

Mathematically, assuming a linear regression of
true scores on observed scores, the above assumptions
imply that observed scores have a hypergeometric distri-
bution and true scores have a beta distribution. Both
of these distributions can .ake on the negatively skewed
characteristic of many criterion-referenced and mastery
test score distributions.

Several times in the above discussions we have
assumed that the regression of true scores on observed
scores is linear.” We also mentionned that this
assumption is not always true; however, Lord and Novick
(1968) claim that departures from linearily are pro-
bably not too great, in most cases. This is one reason
we have stuck with the linearity assumption. Another
reason is that any non-linear assumption about the regres-
sion of true on observed scores would necessitate rela-
tively coumplicated calculations in order to determine the
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regression equation, the distribution of observed scores,
and the distribution of true scores., A third reason is
that it seems wise to consistently assume the linearity
of the regression of true on observed scores so that the
reader can more effectively compare the test theory
models discussed.

A fairly up-to-date and extensive discussion of
applications of the binomial error model (for settings
not necessarily related to criterion-referenced tests)
is given in Lord (1965). A further extension of the
binomial error model (called the "compoind binomial

Summary and Discussion

We have reviewed the classical test theory model
and found it to be generally applicable to criterion-
referenced testing with two reservations: (a) there is
some doubt about the applicability of the model for the
subset of persons who have the highest possible true
score and (b) the model may be appropriate, but not
sufficient, for criterion-referenced testing.

Also, we have reviewed the implication of the
classical test theory assumptions upon errors of
measurement, and we have reviewed the normal and binomial
error models. We find that, for criterion-referenced
testing, if the classical model is to be used, then
the binomial error model assumptions are more appro-
priate- than the normal error model assumptions, in most
cases. However, we should note in passing.that it is
considerably more difficult and time-consuming to use
the binomial error model than to use the normal error
model.

In the context of this chapter, the normal and
binomial error models provide us with alternative ways
to estimate a person's true score given that persori's
observed score. Our discussion of error scores and
their distribution is not necessarily appropriate for
considering whether a student is above or below a
mastery cutting score. Hambleton and Novick (1973) seem
to consider this issue to be the crucial issue ia
criterion-referenced testing. It seems to me that whether
or not a person is above or below a mastery cutting score
is critical in mastery testing, but may not be critical
for criterion-referenced testing, in general. Recall that
a criterion-referenced test must have a "specified
performance standard,” but this "standard" does not
necessarily reguire a mastery cutting score. '
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L In any case, whether one is dealing with mastery
testing or its progenitor, criterion-referenced testing,
it seems to this author that the estimation of a
student's true score is a critical consideration. If

one assumes the classical definition of true score, then
the binomial error model seems appropriate; if one
agssumes a definition of true score that depends upon a
mastery cutting score, then Hambleton and Novick's (1973)
suggestions seem reasonable, but even their suggestions
depend indirectly upon the classical definition of true
score; and, finally if one assumes a different definition
of true score, then different assumptions about errors

may be necessitated.

In conclusion, our discussion of the distributions
of different kinds of scores may seem inconsistent
with previous statements about the irrelevance of
score distributions in criterion-referenced testing.
To be more specific, as far as the interpretstion of a
set of criterion~-referenced test scores is concerned, the
distributioas of observed and true scores over persons
are ‘irrelevant; however, assuming that one wants to
estimate a given person's true score, one must make
assumptions about the distribution of errors of measure-
ment for that person, or, mocre specifically, one must
make assumptions about the distribution of errors of
measurement for all persons who have an observed score
equal to the given person's observed score. Therefore,
the distribution of errors of measurement is critical
in criterion-referenced testing, eventhough the distri-
butions of observed and true scores over persons are not
relevant. It just ‘so happens that a unique description
of the distributions of true .eand observed scores is a
by-product of assuming (a) the. classical test theory
model, (b) the linearity of the regression of true
scores on observed scores, and (c) either the normal or
the binomial error model.




CHAPTER III

Validity and Procedures for Constructing

Criterion-Referenced Tests

The most important aspect of any test is its
validity; i.e., the extent towhich the test measures
what it is intended to measure. For criterion-refer-
enced tests, mmost researchers view the question of -
validity primarily as a question of content validity
(see Popham and Husek, 1969). For the most part, this
author agrees with this view. However, our concern for
content validity argues that we also consider the most
important procedures involved in constructing criterion-
referenced tests. It is these procedures ‘that provide
a basis for inferring the extent to which a test has
content validity.

For our purposes, let us consider five steps in the
developemnt of criterion-referenced tests: (a) the
establishment of a domain ofrelevant behaviors, (b) the
development of a procedure to generate items, (c) the
development of an item sampling plan, (d) the development
of a procedure to .administer items, and (e) the collection
of data and the revision of the test. 1In the following
sections, we will treat important aspects of each of
these issues and provide major references for the reader
interested in more detail. Many of the issues discussed
in this chapter and the next two chapters are also
treated from a somewhat different point of view by
Rovinelli and Hambleton, 1973.

The Development of Criterion-Referenced Tests

Domain of relevant behaviors. The first step in the
development of a criterion-referenced test entails speci-
fying and categorizing all of the behaviors which are to
be tested. Operationally, this frequently means
specifying and categorizing a set of objectives; thus,
the task is analogous to constructing a blueprint for a
norm-referenced test. A more specific approach to the
task of establishing (and using) a domain of relevant of
behaviors is called "domain-referenced achievement
testing"; Hively et al., 1973, provide an excellent
statement of this model.




Two questions usually arise when one attempts to
specify the domain of relevant behaviors: (a) how
extensive should the domain be? and (b) what is the
nature of the domain? This author knows of no
generally accepted procedure for defining the extent
of the domain. Frequently, the extent of the domain
corresponds with the extent of the subject matter to
be covered.in a certain course, in a particular
segment of instruction, or in a particular time period.
From a measurement point of view, it is probably
advisable that a domain, or each unambiguously defined
subset of the domain, contain or reference a set of
objectives which is tested by a single criterion-
referenced test. If this advice is followed, then, of
course, the objectives in a domain, or each subset of
the domain, should be closely related. When these condi-
tions prevail, the items in a given criterion-referenced
test will be testing similar objectives, and, therefore,
the interpretability of a criterion-referenced test
score will, in general, be enhanced. .

The nature of the domain may be considered as the
way in which the objectives or elements of the domain
are inter-related. When viewed in this manner, we can
say that a domain can be characterized by: (a) no
hierarchy, (b) a lirear hierarchy, or (c) a complex
hierarchy (i.e., a hierarchy having different branches).
Now, one can postulate learning hierarchies (i.,e.,
hierarchies indicating an optimum or desired order in
which objectives should be taught to students in order
to maximize learning) or knowledge hierarchies (i.e.,
hierarchies indicating which objectives are logical
pre-requisites to attaining other objectives). In these
terms, the hierarchy in our "domain of relevant behaviors"
is typically a knowledge hierarchy, which need not
necessarily correspond to a learning hierarchy for the
subject matter under consideration. It should be noted
that it is not always necessary to specify a knowledge
hierarchy even if one exists or can be postulated.
However, a knowledge hierarchy is at least useful and
often essential when one undertakes sophistocated pro-~
cedures for item sampling and/or item administration
(see discussion below). -

Procedures to generate items. At the present time,
there are fundamentally two procedures for the generaticn
of criterion-referenced test items: (a) have content
specialists write items and (b) use item forms.

In many areas of education, the item forms approach
is not feasible, from a practical point of view, at this
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time. Consequently, one must have content specialists
write test items in these areas. There are, however,
problems in having content specialists write test items.
In fact, most of the typical issues that surround con-
tent validity emanate from a consideration of whether
or not the items written by content specialists are
unambiguous measures of intended objectlves at the
intended level of difficulty. 'It is especially diffi-
cult for content specialists to write "equivalent" test
items for a given objective, aund this is frequently a
large part of the item writing task for crlterlon-refer-
enced testing,

During the last few years, an excellent theoretical
foundation for item generation has been provided by
literature on "item forms," a term originally introduced
by Hively (1962). Item forms make it possible to define
an entire class of items merely by substituting elements
of replacement sets for variable elements in the item
forms. There are at least two important advantages of
this item generation technique: (a) item forms provide
a concrete basis for generalization to a domain of
content, thus providing a sound basis for examining con-
tent validity, and (b) item forms allow for the possibility
of generating a large number of equivalent items In
addition, Nitko {1970) arques that the analysis of a
content area through the use of item forms provides a
sound basis for the "systematic study of the domain of
instructionally relevant tasks in terms of its structural
and behavioral parameters (p. 10)."

The literature indicates basically three approaches
to the construction of item forms. Hively et al (1968)
and Ferguson (1969, 1971) use item forms primarily
chavacterized by numerical replacement sets; Osburn (1968)
usas item forms that employ both numerical and non-
numerical replacement sets; and Bormuth (1970) argues
for the use of item forms that incorporate linguistic
transformational rules. All of the above researchers have,
to varying -degrees, treated the computer generation of test
items through the application of item forms. Perhaps one
of the best examples is provided by Ferguson (1969).

Item sampling. In considering item sampling in the
context of criterion-referenced tests, it is useful to
recall that: (a) each objective has at least one and
usually many "equivalent" test items associated with it
and (b) the domain consists of a set of possibly inter-
related objectives. Now in choosing items for a criterion-
referenced test there are a number of possible sampling




schemes that might be employed.’ For example, the test

might consist of : (a) all items, (b) a random sample

of items, {(c) a stratified random sample of items where
stratification occurs with regard to objectives, or

(d) a representative sample of items. Kriewall (1969)

and Lord and Novick (1968) provide a partial considera-
tion of these sampling plans.

A stratified random sample is perhaps the most
common sampling method in criterion-referenced testing:;
however, the exact nature of the sampling plan and the
sampling fractions are, unfortunately, seldom specified
in detail. One reason that stratified random sampling
is so popular is that it is practically ideally suited
to the item forms approach to the generation of test
items., Often, the item forms are the strata, and each
item form provides a method of generating a set of items
from which a random sample is drawn.

Item administration. Often, a criterion-referenced
test 1s, as are most norm-referenced tests, a fixed
entity; i.e., for each person taking the test, the items
are the same, and the order in which the items appear on
the test is the same for all persons. Sometimes the
order of administering items varies for each student, or
for several sets of students. Less frequently, different
students are given different items; in such cases, it
also frequently occurs that different students receive
different numbers of items which may -even come from
different strata. This last kind of item administration
technique can be referred to generically as "adaptive
testing." A specific kind of adaptive testing is called
sequential testing, the statistical aspects of which are
treated by Wald (1947). More recently Kriewall and
Hirsch (1969) consider sequential testing in the context
of criterion-referenced testing.

Adaptive testing (see Brennan, 1973) has been employed
in both criterion-referenced and norm-referenced testing
situations. This testing technique has been called
"tailored testing” (Lord, 1971), "branched testing"”
(Ferguson, 1969, 1971), "programmed testing” (Linn et al,
1969) and "sequential testing" (Linn et al, 1970).

These types of tests have some elements in common;

however, there are often differences among the ways

these terms are used by particular researchers. Therefore,
we will group all of the above testing techniques under

the general headimg of "adaptive testing," as distinct

from "conventional testing” in which all items are adminis-
tered to all examinees usually during a fixed-length time
period.



In general, current research cn adaptive testing can
be divided into two types: (a) adaptive testing for norm-
referenced testing and (b) adaptive testing for criterion-
referenced testing. Lord (1970, 1971) examines relevant
issues in norm-referenced adaptive testing, while
Ferguson's (1969, 1970) research treats criterion-refer-
enced adaptive testing. Linn et al (1969; 1970) incor-
porate aspects of both types of adaptive testing, although
they seem to view the achievement testing process primarily
from a norm-referenced viewpoint.

Norm-referenced adaptive testing involves tailoring
item difficulties to examinees in such a way that examinees
spend most of their time answering items at or near their
ability level. The objective is to determine an individ-
ual's relative potition on some hypothetical continuum of
underlying ability. Unfortunately, theoretical work by
Lord (1970) indicates that the types of norm-referenced
adaptive tests thus far examined have serious limita-
tions -- they do not provide "greatly improved measure-
ments for most examinees. The value of (these) tests is
primarily for those examinees for whom the conventional
test would be too eas® or too difficult (Lord, 1970,

p. 153)." Tuus, at this time, it appears that adaptive
testing offers no sigrificant advantages for the conven-
tional types of norm-referenced tests. It is interesting
to note, however, that most of the above research is of a
theoretical nature; in practice, the computerized admin-
istration of such tests might yield significant improve-
ments in reliability and validity per unit of testing
time.

In any case, testing within the context of instruction
typically involves a different kind of measurement from
that discussed by Lord (1970, 1971). 1In instruction, it
seems more appropriate, in most cases, to employ criterion-
referenced measurement instruments in such a way that
decisions can be made concerning whether or not each
student has achieved a desired level of proficiency:

In the opinion of this author, the best example of
critericn-referenced adaptive testing for instructional
decisioii-making is nrovided by Ferguson (1969). He i
postulated a knowledge hierarchy for elementary addition
and subtraction problems and developed a computerized
system that employs the theory of item forms to generate
a set of criterion-referenced test items for each of the
nodes of the hierarchy. Then, using the sequential
probability ratio test (Wald, 1947) as a primary basis
for decision-making, he created an adaptive test which,
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"when compared to ... conventional tests (for determining
proficiency in elementary addition and subtraction) ...
seems comparable or superior in all respects (Ferguson,
1969, p. 88)." Furthermore, his test was effective and
efficient for determining the proficiency of all exami-
nees, even those in the middle range of proficiency.

Thus, while the research findings for adaptive testing
in the norm-referenced context are less than promising,
the findings for criterion-referenced adaptive testing in
the context of instructional decision-making are quite
encouraging.

' Data collection and test revision. 1In a subsequent
chapter, we discuss the role of empirical data in the
revision of test items. Here, we merely outline several
issues of general importance. '

Ideally one should collect and analyze data from
all subjects who take the test in order to ideniLify test
items, and other aspects of the test, that require
revision. If this is not feasible, one can analyze data
from a random sample or representative sample of subjects;
however, one must be careful to obtain a large enough
sample so that item statistics are reasonably stable.
The experience of this author indicates that the
minimum sample size should be about 25-30 subjects, if
at all possible.

A second consideration is that empirical data should
not form the sole basis for the revision of a criterion-
referenced test. Data may indicate the potential need
for revision; however, whether or not revision 1s
actually undertaken should ultimately depend upon the
judgment of subject matter specialists who have studied
the data and weighed the trade-offs involved in revision.

A third consideration is that the process of creating
a good criterion-referenced test (or any test, for that
matter) is a cyclic process of replication and revision.
If the revision process employed is adequate, then each
revision of the test should be an improvement of the
previous version. This last statement may appear trivial;
however, it should be noted that not all rewvision
procadures necessarily result in improvement.

Some Issues Concerning the Validity of Criterion-Referenced
Tests

We mentioned at the beginning of this chapter that
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content validity is a principal concern for criterion-
reference” tests. If the procedures indicated above
are followed carefully, tiien one has a r=asonable
¢xpectation of obtaining a criterion-referenced test
having content validity. Perhaps the most crucial
issue is what Dahl (1971) calls "objective-item con~-
gruence", i.e., the extent to which the criterion-
referenced -items are appropriate measures of the objec-
tives in the domain of intended behaviors.

The critical nature of objective-item congruence
provides, I think, an important argument. in favor of
the item forms approach to the generatinn of test items.
The item form is usually an operational definition of the
objective, and the item form provides a basis for
generating the test items for the objective; hence, one
has a strong logical basis for arguing that the test has
content validity (in the sense ot objective-item con-
gruence) when one uses the item forms approach to the
generation of test items. There is, however, one
caution that should be noted concerning the use of item
forms -- the items resulting from a particular item form
are not necessarily equivalent in a statistical sense.
For example, it is not necessarily true that items
generated fror the same item form will all have the same
(empirical) difficulty level.

When subject matter specialists generate jitems, it
becomes ne.essary to employ some judgmental .rocedures
21 vrder to asses:s the content validity of the criterion-
referenced test. Such judgmental procedures usually
entail assessing the extent to which subject matter
specialists, wr cking independently, agree that the test
has objective- _tem congruence. There are a number of
procedures for assessing agreement between or among
judges. The reader may be interested in referring to
Light (1973) for an excellent review of the literature
in this area. Three potentially useful techniques,
in the opinion of this author, have been discussed by
Lu (1971), Hemphill and Westie (1950), and Brennan
and L.ght (1973).

Another issue relating to the gquestion of validity
involves the nature of the student scores on the test.
A cr’ erion-referenced test, by definition, necessitates
"measurements that are directly interpretable in terms
of specified performance standards (Glaser and Nitko,
1971)." Therefore, the extent to which a criterion-
referenced test is valid depends upon the extent to
which scores reported on such a tes. are interpretable in
terms of specified performance standards. For example,



one may be concerned about the proportion of items, from
a given domain, to which a student knows the answer.

In this case, a student's score is wvalid to the extent
that the observed proportion is free of random and
systematic errors of measurement. Or one may be concerned
about whether or not the true (in the sense of "actual")'®
proportion cf items to which the student knows the
answer is above. or below some mastery cutting score.

In this case, students' scores are valid to the extent
that both random aind systematic errors of classification
(of students above and below the mastery cutting score)
are eliminated.

The above observations point to a central relation-
ship between reliability and validity for criterion-
referenced tests (or any test, for that matter). This
relationship may be stated as follows: a test is
reliable to the extent that scores resulting from it are
free c¢f random errors of measurement; a test is valid to
the extent that scores resulting from it are free of
both random and systematic errors of measurement.



CHAPTER IV

Reliability of Criterion-Referenced Test Scores

The most frequently considered statistical issue
surrounding criterion-referenced measurement involves
the reliability of such measures. In this chapter,
we review fundamental ideas ibout reliability, we consider
several problems in employing norm-referenced reliability
measures for criterion-referenced tests, and we provide
a critical review of most of the reliability measures
that have teen suggested for criterion-referenced tests.

Classical Notions about Reliability

In the classical test theory model, reliability is
defined as either (a) the squared correlation between
true scores and observed scores or (b) the ratio of the
variance of true scores to the variance of observed
scores. (Gulliksen, 1950, and Lord and Novick, 1968,
treat the theory of reliability in considerable detail.)
Neither of these two theoretical definitions of relia-
bility can be applied directly since they involve the
unobservable true scores discussed in Chapter II.

However, under the classical test theory model it
can be shown that reliability is also equal to the corre-
lation between parallel tests, where parallel tests are
defined statistically as tests that have equal means,
equal variances, and equal intercorrelations (if there
are more than two tests involved). Therefore, one method
of determining reliability is to obtain the correlation
over persons on parallel tests, this 1s called a measure
of equivalence.

Another measure of reliability is called a measure
of stability, which is the correlation over persons of
two separate administrations of the same test, with the
assumption that no learning occurs between the first and
second administrations.

A third measure of reliability is called internal
consistercy. Typical measures of internal consistency
are Kuder and Richardson's (1937) Formulas 20 and 21,

: Cronbach's Coefficient Alpha (1951), and Hoyt's (1941l)
Reliability Coefficient. For the classical correct/
wrong scoring procedure these coefficients (with the
exception of Formula 21) all provide identical results.




O“.her kinds of internal consistency measures include
measures of homogeneity and spiit-halves coefficients.
Some authors consider measures of internal consistency
as different from measures of reliability (e.g., Brown,
1970); most authors, however, treat measures of internal
consistency as a special kind of measure of equivalence.
A critical point to recognize is that measures of
internal consistency employ only one administration of
one test.

A measure of reliability in and of itself is essen-
tially a statistic characterizing the extent to which a
test 15 a dependable measurement instrument. However,
indirectly a reliability coefficient provides a basis for
making inferential statements about true scores and
observed scores. (See discussion of errors of measurement
in Chapter II.)

Also, although we usually consider reliability as a
measure involving a test of fixed length, one can use the
Spearman-Brown Prophecy Formula to estimate the reliability’
of a test of any length. An important special case is the
reliability of a one-item test, which is mathematically
equal to the intraclass correlation coefficient for the
test of full length. The reader interested in new and
important developments concerning these and other related
issues should consult Cronbach et al (1972).

Another important issue in reliability theory involves
the reliability of change scores. (Sece, for example,
Harris, 1963, Tucker et al, 1966, and Cronbach et al, 1970).
For exampie, one typically judges the effectiveness of an
instructional system in terms of pretest-posttest changes
in student performance. Therefore, in order to judge the

.effectiveness of an instructional system one needs to know
the reliability of these change scores. This is a very
complicated issue and one that has not received a great
deal of treatment from a criterion-referenced testing
viewpoint.

Problems in Using Norm-~Referenced Reliability Indices
for Crlte?ﬁon—ﬁeéerenced Tests

A few years ago Popham and Husek (1969) stated:

", .. it is obvious that a criterion-referenced test
should be internally consistent. If we argue that
the items are tied to a criterion, then certainly
the items should be quite similar in terms of what
they are measuring. But although it may be obvious
that a criterion-referenced test should be inter-
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nally consistent, it is not obvious how to assess the.
internal consistency. The classical procedures

are not appropriate. This is true because they are
dependent upon score variability. A criterion-
referenced test should not be faulted if, when
administered after ‘instruction, everyone obtained

a perfect score. Yet, that would lead to a zero
internal consistency estimate, something measurement
books don't recommend.

In fact, even stranger things can happen in
practice. It is possible for a criterion-referenced
test to have a negative internal consistency index

- -and still be a good test.

Other aspects of reliahility are equally cloudy.
Stability might certainly be impcrtant for a
criterion-referenced test, but in that case, a test-
retest correlation coefficient, dependent as it is
on variability, is not necessarily the way to assess
it. Some kind of confidence inierval around the
individual score is perhaps a partial solution to
this problem.

The reader should not misinterpret the above
statements. If a criterion-referenced test has a
high average inter-item correlation, this is fine.
If the test has a high test-retest correlation, that
is also fine. The point is not that these indices
cannot be used to support the consistency of the test.
The point is that a criterion-referenced test ‘could
be highly consistent, either internally or tempor-
arily, and vet indices dependent upon variability
might not reflect that consistencv. (pp. 5-6)"

Clearly, the major issue that Popham and Husek
consider is the very real possibility that a set of
criterion-referenced test scores may not display much
variance. In this case, the classical measures of relia-
bility are apt to be inappropriate.. This is perhaps the
most frequently cited reason for the need to develop new
measures of reliability for criterion-referenced tests.

Another frequently cited reason for developing new
indices is that criterion-referenced tests frequently
employ a mastery cutting score that is intended to be
independent of the distribution of observed (and true)
scores. The presence of this cutting score argues that
an important issue in the reliability of mastery tects
involves the extent to which the test is a dependable
instrument for assessing whether or not persons surpass
the mastery cutting score.




These are the two most frequently cited reasons for
pursuing the development of new measures of reliability
for criterion-referenced tests. Our discussion of parti-
cular indices in the next section will build upon and, in
some cases, further refine these reasons.

Criterion-Réeferenced Reliability Indices

The literature contains a number of suggested statis-
tics for estimating the reliability of criterion-ref-
erenced test scores. In thissection we describe most of
these indices and, when appropriate, we comment on their
characteristics, strengths, and weaknesses.

Ivens' agreement indices. Ivens (1970) argues that
measures of reliability for criterion-referenced tests
should be independent of test score variance; therefore,
the measures he proposes are based upon a consideration
of different kinds of agreement.

First, Ivens considers reliability using the concept
of within subject equivalence of total scores. '"For each
subject, the raw scoure for the two administraticns,
either test-retest.or parallel forms, (is) converted into
percent-correct scores, For each examinee, the absolute
difference between the percent correct on the two admin-

istrations (is) obtained. ... The actual reliability index
(consists) of reporting ... the percent of subjects with
percent-difference scores cf 2 given size or less (Ivens,
1970, p. 11)." This measure can be expressed algebrai-
cally as follows: Let

Xijl = the response of person i (i = 1,2, ..., N),

to item j (j = 1,2, ..., K)

on test 1 (1 = 1,2) where

1 = 1 means the first administration of the
test (or the first of the two parallel
tests) and :

'l = 2 means the second administration of the
test (or the second of the two parallel
tests,

.~

A - 1 if |Xi.l - X <z ¢

0 if lxi.l

where ¢ is some tolerance limit in the
range 0 <= ¢ <= 1.0.

i.2]

- X3 0l > e

I



Now, the reliatility (in the sense of agreement) over
persons, given a tolerance limit of ¢ is:

AP(c) = (1L/N) T A,
i~l

Note that AP(c) is a proportion, and there are as many
possibly different values of AP(c) as there are values of
c. If we plotted AP(c) against ¢, then we would observe
that AP(c) is a monotonically non-decreasing function of
¢. Thus, in order to report AP(c) in its entirety, we
should report something like a plot of AP(c) for

0 <= ¢ <= 1.0. If this procedure is not followed, then,
at a minimum, one could report several selected values

of AP(c).

Second, Ivens considers test reliability as the
average of the individual item reliabilities where item
reliability is expressed by calculating the proportion
of subjects whose item scores {pass-fail or correct-
wrong) are the same on the test and the retest, or on the
test and the parallel form. Using this line of reasoning
the reliability for item j is defined as:

Al

(1/N) I Aij , where

i i
1 if X = X..
hy - 191 32
C if X. ij1 # X132

Thus, test reliability is defined as:

AT (1/K) I AI.
3 ]
[1/(NK)] £ L A..
iy
(1/N) I [(1/K) L Aij]

1 =
- <

The measure AI is very appealing in that it is a linear
function of item reliabilities. Thus, for example, if

one knows the reliability of each of the items in an item
bank, then one can estimate the reliability for any test
(i.e., for any subset of items that might be selected from
the item bank).




Ivens' measures have several appealing characteristics.
First, they are distribution-free. Second, they do not
depend upon test score variance. Third, they are simple
to calculate. Fourth, they can be used to calculate
measures of stability or equivalence. Fifth, they are
relatively easy to interpret.

From a different point of view, we note that these
measures have certain characteristics that some may
consider undesirable. First, they are not interpretable
in terms of the ratio of true score variance to observed
score variance; therefore, they are not measures of
reliability under the classical test theory model. Second,
Ivens' indices are not likely to provide a great deal of
help to the researcher interested in estimating a person's
" true score, which is, indirectly, a typical function of a
reliability index under the classical test theory model.

Berger-Carver mastery agreement., Berger (1970) and
Carver (%5707*considér a method similar to Ivens'
agreement indices for assessing the reliability of a
criterion-referenced test. In the Berger-Carver case,
however, a subject's score is treated as a dichotomous
variable; i.e., a subject is placed into a mastery or a
non-mastery group depending upon whether the subject
surpassed or failed to surpass some minimum performance
level, or mastery score. On a test-retest or parallel
forms basis, a subject's two scores constitute an agree-
ment if they result in the same classification; and the
reliability measure is the agreement proportion over
subjects. Letting

A = the number of subjects who scored above the
mastery cut-off on both the test and retest
(or both parallel forms),

3 = the number of subjects who scored below the
mastery cut-off on both the test .and the
retest (or both parallel forms), and

L\

N = the tutal number of sub jects,

the Berger-Carver mastery agreement (reliability) measure
can be expressed as:

BC-MA = (A + B)/N
A major ccnceptual difference between the BC-MA-

statistic and Ivens' indices is that the BC-MA statistic
involves a mastery cut-off, while Ivens' indices do aot.
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Another difference is that, for the BC-MA statistic, a
student's total test score functions as an intermediate
score -- intermediate to scoring the student 1 (master)
or 0 (non-master). In most other respects, the advan-
tages and disadvantages noted for Ivens' measures apply
to the BC-MA statistic as well.

Marshall's index of separation. Marshall (1973)
proposed an index based upon the assumption that the
population taking a criterion-referenced test is the union
of two subpopulations, either of which mayv be empty. FTYor
the "knowledgeable" subpopulation, the expected value of
a person's score is assumed to be equal to the number of
items in the test; for the "not knowledgeable" subpopu-
lation, the expected value of a person's score is assumed
to be equal to zero. Marshall's index of separation is.
defined as:

N

SEP = 1.0 - (4/nN) L (X; - Xi/n), where-
i=1
n = the number of test items,
N. = the number of persons, and
X; = a person's total score (number of items correct)

on the test.

This index has a range of zero to one, and it is related
to the variance of the total scores by the formula:

SEP = 1.0 - 4[3g - ((N-1)/(n?N))s’], where
P = mean proportion correct over items (i.e., mean
_ item difficulty) and
qQq=1-0p

Marshall notes that the index of separation stays constant
at 1.0 when (a) total scores are all zero, (b) total scores
are all n, and (c) total scores are half zero and half n.
Thus, Marshall's index of separation obviates one of the
objections to classical reliability indices for criterion-
referenced tests -~ namely, the classical formulas give

a reliability of zero when the variance of total scores

is zero.



Harris' index of efficiency. Harris (1972a) proposed
an index of eff1c1ency defined as:

Eff * go= 33

where the between-groups and the within-groups sums of
squares are determined by the two groups resulting from
dichotomizing subjects into masters and non-masters.

Harris states that the purpose of his index is "to measure
how well the test sorts defined samples of students into
(mastery and non-mastery) categories and possibly to
measure its efficiency in this sense (Harris, 1972a, p. 4)."
Harris points out that EFF can be viewed as the ratio of
true score variance to observed score variance if a
subject's true score is defined as the mean of that -
subject's group (mastery group or non-mastery group).

- Hambleton-Novick indices. Hambleton and Novick (1973)
state that "in most cases, the pertinent question (in
criterion-referenced testing is whether or not the indi-
vidual examinee has attained some specified degree of
competence on an instructional performance task (p. 160)."
Hambleton and Novick interpret the "specified degree of
competence" as a mastery score.

In order to consider the reliability index they
propose, we must first review their decision-theoretic
approach to criterion-referenced measurement. This ap-
proach is considerably different from other approaches
reported in the literature, and, in the opinion of this
author, the decisiqn-theoretic approach has much to rec-
commend it, at least from a theoretical v1ewp01nt for
mastery testing. Their approach is similar, in some
respects, to the "quota-free'" selection problem discussed
in Cronbach and Gleser (1865). "That is, .there is no quota
on the number of individuals who can exceed the cut-off
scores or threshold on a citerion-referenced test ,
(Hambleton and Novick, 1973, p. 163)." Again, it should
be noted that Hambleton and Novick are using the term
"crit?rion-referenced test” in the sense of "mastery
test.'

Quoting from Hambleton and Novick (1973):
"The primary problem in the new instructional

models, such as individually presecribed instruc-
tion, is the one of determining if 7., the student's

true mastery level, is greater than a specified
standard n . Here, m. is the "true" score for an
, individual” 1 in some” particular well specified
lfRi(i content domain. It may represent the proportion of
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items in the domain he could answer successfully.

Since we cannot administer all items in the domain,

we sample some small number to obtain an estimate

of 7., represented as #.. The value of ©n_ is the some-
what~™ arbitrary - . 1 threshold © score

used to divide individuals into the two categories
described earlier, i.e., Masters ard Non-masters.

Basically then, the examiner's problem is to
locate each examinee in the correct category. There
are two kinds of errors that occur in this
classification problem: False positives and false
negatives. A false-positive error occurs when the
examiner estimates an examinee's ability to be above
the cutting score when, in fact, it is not. A false-
negative errcr occurs when the examiner -estimates an
examinee's ability to be below the cutting score when
the réverse is true. The seriousness of making a
false-positive error depends to some extent on the
structure of the instructional objectives. It would
seem that this kind of error has the most serious.
effect on program efficiency when the instructional
objectives are hierarchial in nature. On the other
hand, the seriousness of making a false-negative
error would seem to depend on the length of time a
student would be assigned to a remedial ‘program
because of his low test performance. (Other factors
would be the cost of materials, teacher time, facil-
ities, etc.) The minimization of expected loss would
then depend, in the usual way, on the specified losses
and the probabilities of incorrect classification.
This is then a straightforward exercise in the mini-
mization of what we would call threshold loss.

In an attempt to view the above discussion in a
more formal manner, suppose we take some criterion
level T and define a parameter w such that

w 1 if b no

w=01f m < 7= .
o

Persons having ww values of one are those who
have true ability levels equal to or greater than
the criterion level 7 _, and those having w values of
zero are those whose © 7 values are below T .
Now if we obtain an estimate of w.,, then an © estimate
of w would te obtained in the following way:
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Q
Q

1, if ﬂi > n_and

0, if ﬂi <w

Defining our error of estimation as (8 - w), the
difference between. the estimated and the true value,
it is clear that the error takes on one of three
values; +1, -1, 0, correspbonding to whether we make
a faISe-p051t1ve error. a false-negative error, or

a correct classification. Also, note that the
squares of the errors and their absolute values are
identical. Thus, any procedure that minimizes
squared-error loss (SEL) in the w metric also mini-
mizes absolute-error loss (AEL) in that metric. The
criterion-referenced measurement problem is, thus,
one of determining an estimator & of w by deéetermining
an estimator ® of m with a threshold loss function
and converting this to ¢n estimate of w . ... Note
that with threshold loss, the estimate ® of m is not
a single number but one of two intervals [0, T ) or
[mgs 110 ... The minimization of SEL and © AEL
in” the w metric 1is equivalent to the minimization of
threshold loss for m in the special case where the
losses associated with false positives and false
negatives are equal (pp. 163-16u4)."

In order to make use of the procedure indicated above,
one must obtain estimates for the 7, In order -tc accom-
pllsh this, Hambleton and Novick suégest a Baye51an solution
that involves using the "direct information provided by the
student's ... score (and) the collateral information con=
tained in the test data of other students. (Another possi-
bility and one worthy of future research is that of using
the student's other subscale scores and provious history
as collateral information.) (p.165)."

- Using the above approach, Hambl~ton and Novick suggest
two reliability coefficients. Firsi, assuming the existerce
~of two tests that are parallel in the w metric, let
A

A

score for person i on first parallel test and

1i

2i score for person i on second parallel test.

Then, one possible reliability coefficient is the correla-
tion, over pcrsons,for the two parallel tests; i.e.,

HN-CORR = corr(@li, c2i)




Another measure of reliability they suggest is the propor-
tion of times that the same decision is made with the two
pParallel measurements; i.e.,

HN-MA

A/N , where

A = number of times ali z aZi’ and

N == total number of subjects.

Clearly, these two measures are measures of equivalence;
analogous measures of stability can be constructed
directly.

“The critical problem in the Hambleton and Novick
procedure involves the estimation of the w. scores, which
are the "true" scores ‘for the individuals.~ {("True score"
is never defined by Hambleton and Novick; therefore, we
assume here that they mean true score in the classical
sense.) I* should be noted that the authors' suggested
Bayesian solution to the problem s, at the present time,

- an unsolved problem, since the most appropriate available
procedure (Novick, Lewis, and Jackson, 1973) doces not use
a threshold loss function, according to Hambleton and Novick.

Livingston's coefficient. Livingston's (1972b) coef-
ficient has undoubtedly received more attention (and criti-
cism) than any other criterion-referenced rellablllfy
measure that has been reported in the literature. See, -
for example, Livingston (1972a,b,c), Harris (1972b, 1973),
and Shavelson et al. {(1972). Livingston's reliability
coefficient can be expressed as:

L V) (R .0
LIV = > where
V(X) + (X = C)

r any "norm-referenced reliability coefficient"

tt based upon the classical test theory model,
C = a mastery cutting score,
X = mean score over persons, and

V(X) = variance over persons.

Much of the discussion of LIV has involved some degree of
misunderstanding about the nature of the c¢oefficient;
therefore, let us list a few characteristics of LIV:

(a) LIV involves a consideration of the expected
squared deviation of a person's score from C, as distinct
from the expected squared deviation of a person's score
from X (the latter being a definition of variance).
Therefore, LIV involves an "atypical" squared error loss
function.-
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(b) The range of LIV is [0,1], and LIV is, therefore,
similar to classical reliability coefficients, Tops in this
respect. LIV equals r,, when C = X, and LIV >
when C # X. ,

(c) LIV is idertical to a classical reliability
coefficient when that coefficient is based upon two
populations with means equally distant above and below C
(Harris, 1972b). -

(d) The classical standard error o! measurement is
the same for both LIV and r .; therefore, the (usually)
larger value of LIV does "~ not imply a more dependable
estimdte of a person's true score, in the classical sense,
nor does it imply a more dependable determination of
whether or not a true -score falls above or below C
(Harris, 1972b). However, the usually larger value of
LIV does imply "a more dependable overall determination
of whether each true score falls above or below the
criterion level, when this decision is to be mad-= for
every individual score in the distribution (Livingston, .
1972a, p. 31)."

(e) In geireral, there is no algebraic transformation
of the observed test scores that produces a set of scores
such that, when these scores are used in a classical
reliability forpmula, the result equals LIV. One is
tempted to think that this might be true if one used the
deviation scores X. - C, but, since these scores are
linear transformatfon cf the X, scores, the classical
reliability of the deviations * scores eq'131ls the classi-
cal reliability of the original Xl scores.

In the opinion of this euthor, the net result of
these observations seems to be that LIV has some useful
descriptive properties, if one accepts that Livingston's
"atyplcal" squared error loss function is meaningful and
appropriate. (Hambleton and Novick, 1973, are two
researchers who seriously question the kind of squared
error loss used by Livingston.) However, it is clear that
LIV relies upon test score variance, and this character-
istic is a negative factor, in the minds of many
researchers. Alsn, it is clear that LIV does not enhance
our ability to estimate a person's .true score, even when
LIV is very much greater that its corresponding classical
reliability coefficient.

In short, this author sees no compelling reason for

generally abandoning the use of LIV as some might suggest;
however, this author also feels that LIV should not be
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considered as the answer to the guestion of measuring
the reliability of a criterion-referenced test. Also,
users of LIV should be very careful to interpret and
use this coefficient correctly. It is extremely easy
to increase the value of LIV by mnving C farther away
from the mean; however, this should be done if and only
if there is a substantively defensible reason for doing
so. Finally, the reader shouid. note that LIV is really
a ccefficient for mastery testing, not for criterion-
referenced testing, in general.

Ozenne's sensitivity indices. Ozenne (1971) claims
that in a criterion-referenced testing situation the
important question is, "How effective has instruction
been?" The rationale for his first sensitivity index lies
ir "the implicit assumption that if there is a difference
in level of response on the two (testing) occasions, ...
such a difference is due to the intervening instruction
(Ozenne, 1971, p. 17)." 1In Ozenne's model the two
testing occasions under consideration zre the pretest and
the posttest. More explicitly, the model under consi-
deration is:

= n'+ aj + B, + (aB)jk + where

¥iyx K €iyk’

7 = population parameter,

aj = effect due to persons, j =1,2, ..., N;

Bk = effect due to occasions (i.e., effect due to
instruction), k = 1,2;

(aB);k = effect due to interaction of examinees (persons)
J and cccasions factors; and

eijk = error of measurement.
Using this model, Ozenne's first sensitivity index is:

'MsoccasiOns - MSinteraction

SENSl =

- . + .
MSoccas. MSlnter. N Mserror‘

This index is, in e{fect, the variance due to instruc-
tional effects (the occasions effect) divided by the sum
of tue variances due to instructional effects and e.rors
of measurement.
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Ozenne's second index of_sehsitivity is given by
the formula:

MSireatment ~ MSsubjects w. treatment

SENS, =

- MS + N'MS

MS subjs.w.treat. error

treat.

This index is intended to be used when one has two
different treatment groups =-- one group receiving
instruction and the other not. The underlying statis-
tical model is:

.. = + . + .
Yle ™ Bk + a](k) ele , where
7 = population parameter;
Bk = effect due to treatments, k = 1,2;
aj(k) = effect due to persons nested within
treatment k; and
eijk = error of measurement.

Other suggested indices. 1In addition to the
Berger-Carver mastery agreeme : statistic, Carver (1970)
suggests thac, "the reliability of a single form of a
criterion-referenced device could be estimated by
administering it to two comparable groups. The percen-
tage that met the criterion is one group could be
compared to the percentage that met the criterion in the
other group (p. 56)."

Cox and Graham (1966) and Ferguson (1971) suggest
"use of the coefficient of reproducibility for reliability
estimation when the criterion-referenced test items are
assumed to form a Guttman Scale.

Discussion. It seems appropriate to suggest some
statements, of a comparative nature, concerning the above
indices. .

First, all of the above indices, except those
suggested by Ivens, Marshall, and Ozenne, are, more
precisely, indices for mastery tests, since these indices
depend, one way or the other, on the specification of a
mastery cutting score. For these mastery test reliability




indices, it is important to observe that the fundamental
or primary student score under consideration is often
ambiguous. For example, is the fundamental score the
number (or percentage) of items correct, or the extent
to which this srore is above or below the mastery score,
or merely whether or not this score is above or below
the mastery score? Another way to view this issue is

to ask the question, "What is the appropriate error of
measurement?" Only Hambleton and Novick (1973) address
this issue in any depth. 1In short, there is a
conside.able lack of test theoretic justification
(classical or otherwise) for many of the suggested
reliability indices for mastery tests and, for that
matter, criterion-referenced tests, in general.

Second, several of the above indices (Marchall's,
Harris', Livingston's, and possibly Hambleton and Novick's)
depend, directly or indirectly, upon the variance of
student scores. Many researchers feel that the variance
of student scores should exert no, or minimal, influence
upon judgments about a criterion-referenced test's
reliability or validity.

Third, since Marshall's, Harris', and Livingston's
indices involve oily one administration of a test,
they cannot be con: idered measures of stability. For
the most part, thes.: indices seem to be measures of
the extent to which -he test is dependable in its
ability to classify sibjects as masters or non-masters.
Therefore, in a sense, these measures are analogous to,
whz2t are usually called measures of internal consistency.
Also, at least Livingsten's index can be interpreted
as & measure of equivalence.

Ffourt only Ozenne's SENSl index incorporates both
pre- and po.ttest scores; therefore, this index
may appear to have the potential for assessing the
reliability of change scores, whereas the other indices
clearly co not have this poterntial. However, Ozenne's SENS1
index is primarily a measure of instructional effective-
ness, not ¢ measure of the reliability of criterion-
referenced change scores. Also, it should be noted
that Ozenne's second index is not really a reliability
index either; Ozenne's second index is merely another
measure of instructional effectiveness. 'One could
certainly argque, therefore, that Ozenne's indices should
not even be discussed in this chapter; eventhough other
researchers have mistakenly considered Ozenne's indices
to be measures of reliability.




Marshall (1973) provides additional -information
and insight into the characteristics and function of
many of the above indices.

In the opinion of this author: (a) Hambleton and
Novick's indices have the most appealing theoretical
rationale of those indices proposed for mastery tests,
but one important statistical problem remains to be
solved before these indices will be generally useful,
(b) Livingston's index is mathematically similar to
classical reliability indices, but it employs a
questionable theoretical basis and is somewhat diffi-
cult to interpret, (c) the indices attributable to
Harris and Marshall may have practical utility, but
this has not yet been demonstrated, and, in addition,
both of these indices may be questionable from a
theoretical point of view, (d) Ozenne's indices are
not really reliability indices, eventhough they have.
been treated as such by some authors, and (e) Iven's
indices, as well as tHe Berger-Carver index, are
appealing in several respects, and 1Iven's indices are
tFr> most appropriate available indices for a criterion
referenced test when a mastery cutting score is not
employed, but none of these indices has yet received
sufficient critical examination by researchers and
practitioners. 1In short, many important issues
surrounding the reliability of criterion-referenced
measures remain unsolved problems, or, at best, these
issues have not yet received adequately complete
treatment in the literature. )
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CHAPTER V

Criterion-Referenced Item Analysis

~and Revision Procedures Employing
Classical Scoring

The differences between criterion-referenced
and norm-referenced testing have led most researchers
to conclude that norm-referenced item analysis proce-
dures are of guestionable value in criterion-referenced
testing situations. (See, for example, Popham and Husek,
1969, Popham, 1971, Cox and Vargas, 1966, and Brennan,
1970.)

Yet, clearly, a criterion-referenced test can be
no better than the items it contains. Therefore, if"
We are to develop reliable and valid criterion-
referenced tests, we need statistics to describe the
performance of students on items, we need statistics
for assessing item reliability and validity, and we
need procedures for identifying poor or undesirable
criterion-referenced test items. These topics are the
subject of this chapter. Specifically, in this chapter
we will consider: (a) item statistics for criterion-
referenced tests, (b) a procedure for identifying
criterion-referenced test items and instruction that
require revision, and (c! the use of item analysis
tasles in cri‘terion-referenced testing situations. 1In
practically all cases, in this chapter, the statistics
and procedures we discuss entail the use of the classical
correct/wrong scoring procedure. Other scoring proce-
dures are considered in Chapter VI.

The subject of item analysis and revision procedures
for criterion-referenced tests is especially crucial
and especially difficult. It is especially crucial in
that the validity of a criterion-referenced test is very
closely tied to the validity of the individual items.
It is especially difficult in that: (a) there are few,
if any, objective, empirically-based criteria for "good"
criterion-referenced test items, and (b) even if such
criteria did exist, empirical data can identify items
that may require revision, but empirical -data can seldom,
if ever, dictate that an item must be revised or elimi-
nated. Thus, at least at the present time, any total
evaluaticn of a criterion-referenced test item necessi-
tates a considerable amount of subjective judgment on the
part of subject matter specialists.




The statistics and procedures discussed below have
been culled from the literature or developed by the
author. Thus, they represent a statement of the state-
of-the-art in criterion-referenced item analysis and
revision procedures, basically from an empirical point
of view. However, it should be understood that there
is considerable discussion and even some disagreement
among researchers concerning the applicability of these
statistics and procedures. Much work remains to be
done. :

Item Statistics

In this section we consider item statistics rele-
vant to criterion-referenced testing. Most of the
statistics discussed here are reported in the litera-
ture; the others were developed by the author and
are offered for consideration. The reader will note
that we consider two kinds of statistics for ‘items:

(a) measures of state (i.e., measures that reflect
student performance at one point in time) and

(b) measures of change (i.e., measures that reflect
student performance at two points in time). Also, for
both of these possibilities we consider statistics for
describing the reliability and validity of an item.

Most of the literature that discusses criterion-
referenced item statistics treats these statistics as
measures of state; however, criterion-referenced tests
are often used to assess change, especially a3 the issue
of change relates to the effectiveness of an instruc-
tional system (see Chaptar I).

Measures of state. For the most part, in criterion-
-referenced testing, measures of state are expressed as
difficulty levels or, less frequently, as error rates.
The difficulty of an item is defined as the proportion
of students who get an item correct., As such, the term
- "difficulty level” is somewhat of a misnomer in that if
difficulty level is high then the item is easy, and if
difficulty level is low then the item is "difficult."
Since difficulty level is a proportion, its Yange is
zero to one.

Error rate is defined as the proportion of students
who get an item incorrect; it is mathematically equal to
one minus the difficulty level, and its range is also
zero to one. Thus, error rate contains all of the




information that difficulty level contains, and error
rates do not suffer from the interpretation problem
encountered with difficulty levels.

Measures of change. It is not our intent here to
indulge in a lengthy discussion of the measurement of
change. We have previously discussed this issue to
scme extent, and it will be a subject of further discus-
sion later, Here we merely want to identify major
references relating to the measurement of change in
criterion-referenced testing situations.

One of the earliest empirical studies using
criterion-referenced test data was performed by Cox
and Vargas (1966). The index they considered was
simply the difference between posttest difficulty level
and pretest difficulty level. Hambleton and Gorth (1971)
and Popham (1971) have also examined this index, and,
in addition, Popham (1971) has considered various other
statistics that depend upon change scores. For the
moet part, these authors have treated the indices they
analyzed in a manner similar to the way discriminatien indices
are treated in norm-referenced testing. That is, the
indices have been viewed primarily as statistics for
identifying "bad" or "atypical" criterion-referenced
test items. ‘

It should be pointed out that one could also argue
that these indices are measures of instructional effec-
tiveness. 1In fact, in criterion-referenced testing
situations in instructicnal environments, Ivens (1970)
and Brennan (1970) treat measures of change primarily
as measures of instructional effectiveness, and only
secondarily as indices for identifying poor criterion-
referenced test items. The measure of item change

. proposed by Ivens {1970) has been introduced in Chapter
IV _and will be discussed again below. Brennan (1970)
has suggested the consideration of indices called
"percentage of maximum possible gain" and "percentage
of maximum possible effectiveness."

, Item reliability -~ measures of state. For the
classical test theory model, the reliability. of an item
(in an internal consistency or equivalence sense) is
usually calculated Ly determining the intraclass correla-~
tion coefficient using Hoyt's (1941) analysis of variance
framework. This technique has been considerably extended
recently by the work of Cronbach et al (1972). The
intraclass correlation coefficient may be an appropriate




measure for criterion-referenced item reliability (in

an equivalence sense) if: (a) the variance of the total
scores over items is not close to zero, (b) all items
are measures of the same objective, and (c) one accepts
(and the data fulfil) the implicit assumptions entailed
in using the intraclass correlation coefficient as a
measure of criterion-referenced item reliability.

In the following paragraphs we consider a number of
indices that have been proposed specifically for the
purpose of calculating item reliability in criterion-
referenced situations.

Ivens' (1970) measure denoted AI. in Chapter IV
provides us with a measure of iten J reliability, in
either an equivalence or stability sense, when all
subjects take both parallel items or when all subjects
are administered the same item twice, respectively.

Since this index is a reliability (R) index for a measure
of state (S), let us denote this index as RS.

Now suppose we have two items which are intended
to be equivalent measures of a particular objective.
It is not always feasible or desirable to have subjects
take both items, yet we usually do want a measure of item
reliability. Let us now consider a procedure, offered
by this author, for obtaining item reliability, given
two supposedly parallel items, when (a) all students are
randomly assigned to one of two groups, and (b) students
in group one respond to the "first" item and students in
group two respond to the "second" item.

Let us denote persons in group one as:
Aj y J=1,2, ..., n

and persons 1n group two as:

Bk , k =1,2, ..., n.
Now, if we considered students A. and B, to be the same
persons when j = k, we could J ~alculate the

index RS and have a measure of item equivalence. However,
since the order of the persons' subscript is arbitrary,
the resulting index is only one of a large number of
possibilities; for example, we could just as well have
considered Al and 82' A2 and B3, ooy An and Bl to be the

same person., However, we can extend this rationale to
obtain what may be a reasonable index.



The procedure is as follows: (a) calculate RS for
each distinct way of pairing persons in group one with
persons in group two and (b) average the RS indices in
order to obtain RS*, which will denote the desired
measure of equivalence. This procedure can also be
applied when there are unequal numbers of subjects in
groups one and two, say

ny, = number of subjects in group one, and
n, = number of subjects in group two, where
n2 2 nl .

The procedure indicated above is, however, cumbersome
because there are

(nz)(n2 - l)(n2 - 2) *** (n, - + 1)

2~ M
different ways of pairing the n, subjects in group one
with subjects in group two.

Therefore, it is fortunate that the above procedure
is mathematically equivalent to calculating RS when we

treat
Al and Bl' AZ and Bl ‘e Anl and B1
Al and B2 AZ and B2 ces Anl and B2
A, and B A_ and B .o A and B
1 ny 2 ny ny n,
as n,n, different subjects. That is, we examine all

possible pairs of subjects, where a pair is defined as
one person from each group. If the item score for both
persons in a pair is the same, then that constituces an
-agreement, and RS* 1s the number of agreements divided
by the total number of pairs. Letting

¢, = number of subjects in group one who got
"first" parallel item correct, and

c, = number of subjects in groumn two who got
"second" pa-allel item correct,

it can be shown that:
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The index RS* has a range of zero to one.

Another measure of item reliability (strictly in
the sense of equivalence) is suggested by Sabers and

Kania (1972). Let us identify the two supposedly

parallel items as items j and j', and let us display
the data in the following form:

Item j'
Pass Fail
Pass A I . B
Item j
Fail c ‘ D
where A = number of students who passed both items,
B = number <t invalid passes on item j,
C = number of invalid passes on item 3j', and
D = number of students who failed both items.

Sabers and Kania define the "index of item precision"
for items j and j', respectively, as:

fav]
i

1l - B/N
and P.,=1-C/N,

where N is the total number of subjects.




Using these two indices of item precision, Sabers and
Kania define the item reliability coefficient as:

RS** = 0,5(P Pj.)(l - |P_j - pj.l) .

)
This coefficient (which they call the XI coefficient of
item equivalence) has a range of zero to one. Sabers
and Kania claim that the higher the value of RS** "the
greater the degree of agreement between the decisions
made by the two forms."

The reader will note that all of the above techniques
are applicable only when we have two parallel items or
two administrations of the same item. A procedure
suggested by Brennan and Stolurow (1971) is applicable
for any number of parallel items. Brennan and Stolurow
note that, in classical test theory, the statistical
criteria for K parallel tests are that the K means, the
K variances, and the K(K~1)/2 intercorrelations be equal.
When one has K items, instead of K tests, the same
criteria would seem to be appropriate. If item scores
constitute a multivariate normal distribution, then the
above assumptions can be tested using a procedure
developed by Wilks (1946). However, in most criterion-
referenced testing situations one cannot justifiably
assume that item scores constitute a multivariate normal
distribution. 1iIn suct cas.s, in order to test the
equality of the K means and the K variances one can
use Cochran's Q test (see Siegel, 1956); however, this
author knows of no appropriate statistical procedure
for testinag the equality of the intercorrelations in
the absense of a multivariate ncrmal distribution of
item scores. Therefore, in most <riterion-referenced
testing situations, at least at the present time,
researchers will have to make subjective 3judgments
about the equality of item intercorrelations.

Item validitv -- measures of state. The usual
measure of item validity is a discrimination index,
which compares item scores with scores on some criterion.
For most criterion-referenced tests, total test score is
‘usually the only available, appropriate criterion. A
number of correlationa. type discrimination indices have
been reported in the literature; however, for criterion-
referenced testing they have the disadvantage of being
severely affected by small amounts (or lack of) variance
in the distribution of item and/or test scores. (See
Brennan, 1970, for a more complete discussion of such
indices.) Therefore, this author recommends use of the




following index discussed in detail by Brennan (1972}:
VS = (cu/nu) - (Cl/nl) , where

c.. = the number o0f students in the upper group

u who got the item correct,

¢, = the .number of students in the lower group
whc got the item correct,

n, = the total number of students in the upper
group, and

n, = the total number of students in the lower

group.

In Brennan (1972) the VS index is called the B index:
here, we have chosen the designation "VS" to indicate
that the index relates to item wvalidity (V) for

measures of state (S). This index has a lower limit

of -1 and an upper limit of +1. For masterv testlng,
upper and lower groups would usually be defined in terms
Oof the mastery cutting score. It may be appropriate,

in some cases, to eliminate from consideration students
Close tc¢ the mastery cutting sccre, since such students
are on the borderline of mastery.

Both Popham and Husek (1969) and Brennan (1972)
agree that for criterion-referenced testing: (a) nega-
tively discriminating items are undesirable, (b) non-
discriminating items are not necessarily bad items,
and (c) positively discriminating items may indicate
iraffective instruction. Brernnan (1972) also points out
that if all students get an item correct, then the VS
index equals zero. Therefore, if it is desirable that
all students get an item correct, the the "ideal" value
of VS is zero, and, hence, the ideal item is a non-
discriminating item. Following this line of reasoning,
even positively discriminating items (and certainly
negatively discriminating items) indicate that either the
test item or instrvction may require revision.

Item rellabllltv -- measures of change. In order

to address this lssue, let us define the following:

xil = pretest response (0,1) of person i to the
first administration of an item (or to the
first of two parallel itens),

wm
1
[+]




Xi2 = pretest response (0,1) of person i to the
second admininstration of an item (or to the
second of two parallel items),

Y., = posttest response (0,1) of person i to the
first administration of an item (or ic the
first of two parallel items),

<
L

i2 poéttest response (0,1) of person i to the
second administration of an item (or to the
second of two parallel items}),

o
it

i1 Yil - Xi1 =0, 1, or -1, and

Di2 = Yi2 - Xi2 =0, 1, or fl .

Now, the reliability of an item as a measure of
char.ge can be expressed as the number of subjects for
whom D.l = D12 divided by the total number of subjects.
To be consistent with our designation for other
indi¢es, let us denote this index of item reliability (R)
for a measure of change (C) as RC; the reader will note
that the range of RC is from zero to one.

It is important to notice that , for the RC index, if

Dil = Di2 = 0 for all subjects i,

then RC = 1; i.e., the change score reliability of the
item is perfect eventhough, for every student, no
change has occurred. This is not a contradiction.

The fact that RC = 1 merely ijindicates that the item is
perfectly reliable when used as a measure of change;
this fact does not say anything about the amount of
change or the direction of change.

Item validity -- measure of change. In order tc
construct such an index, we must have some criterion
for change. One possible criterion (although not
necessarily a good one) is the set of student scores,
each of which is an average item change score, where an
item change score 1s defined as posttest item score minus
pretest item score. Using the notation in the previous
section #nd replacing the second subscript by an item
suhscript j, a person's average c¢hange score is:

Di- ‘1/K)j£1(Yij - Xij) , where




j=1,2, ..., K items, and

-1 <D, < 1.
— l —
Using the above scores (or some other change
score criterion if availakle and appropriate) one can
define upper and lower groups. Then one can compare
the trichotomized item change scores with the dichoto-
mized criterion change scores using the following table:

Item Change Score

-1 0 1
Upper -
Group P(U,-1) | P(U,0) P(U,1)
Lower
Group P(L,-1) P(L,0) P(L,1)

In this table P(U,-1) means the proportion of students
in the upper group who got an item change score of =-1;
the other cells are interpreted in a similar manner.
Using the above table one can examine the validity of
the item as a measure of change; however, no single
statistic with a range of -1 to +1 appears to be
readily available from this table for the purpose of
assessing the extent to which the item is a wvalid
measure of change. Of course, one could obtain a single
statistic merely by correlating item and critericn
change scores, but the appropriateness of such a pro-
cedure needs to be examlned for criterion-referenced
tecting situations.

Other possible indicesfor assessing item validity
as a measure of change include Jenkins' (1956) triserial
correlation coefficient and Saupe's /1966) change index.
The latter is defined as:

Corr(Yi+ - Xi+, Yij - xij)’ where

Yij = posttest score for person i on item j,

X,y = pretest score for person i on item j,

Yi+ = total number of items correct on the posttest
for person i, and

xi+ = total number of items correct on the pretest

for person i .
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Also, Ivens (1970) suggests two indices that might

be used to assess item validity as a measure of change;
however, Ivens' indices involve three sources of infor-
mation -- pretest, posttest, and retest (or retention
test).

It should be noted that the interpretation of any
of the above indices is, or course, confounded by the
presence of intervening i1nstruction between pretest and
posttest. Therefore, 1f the item does rot appear to be
valid when used to measure change, the problem may lie
with the item, the instruction, or both.

A Decision Process for Identifying Criterion-Referenced
Items and Instruction that Require Revision

In order to put the proposed decision process
into a conceptual context, let us assume that we have
an instructional program teaching a set of terminal
objectives. Chronologically, each terminal objective
is tested by a pretest item that occurs beforz the
objective has been taught and a posttest item that
occurs "some time after" the objective has been
taught. Furthermore, we will assume that all of the
items testing any objective are identical or equivalent.

In the final analysis, using item performance
data, we want to identify those test items and sec*+ions
of instruction (relevant to a given objective) that
require revision. The decision process we propose will
not necessarily tell] the evaluator how to revise items
and/or instruction, but the process wiil provide obiective
rules for deciding what to revise. (A previous version
of the process proposed here is provided by Brennan
and Stolurow, 1971).

Types of data and decision. Most of the decision
rules ﬁlscuggea below make use of error rates and
discrimination indices. An observed error rate for an
item is the proportion of subjects who get the item
incnrrect; theretore, error rate is equal to one minus
difficulty level. There are a numoer of discrimination
indices that have been propcsed in the literature;
however, the applicability of many of{ them in criterion-
referei.z;ed testing situations is open to question.
Therefore, in general, we suggest using Brennan's (1972)
B discrimination index (designated as VS in




the previous section of this chapter).

For many of the proposed decision rules we will
assume that error rates are classified as either
high (H) or low (L), and that the evaluator predeter-
mines dn appropriate cut-off point between high and
low error rate. For any given objective, the cut-offs
for the error rates discussed below must be identical
in order to apply the rules ihat will be specified.
Also, in most cases, the cut-offs chosen will probably
be the same for all objectives; however, occasions can
arise when certain objectives should have a higher
(or lower) error rate cut-off than other objectives.
For example, items testing very crucial objectives
might be assigned a cut-off of 0.10, while other items
might have a cut-off of 0.25.

Discrimination indices will be classified as
either positive (+), negative (-), or non-discriminating
(0). By positive and n2gative indices we mean indices
that discriminate significantly (at some appropriate
a level) in the positive and negative directions, respec-
tively.

Before instruction we can obtain two kinds of data
for each objective that has a pretest item: -

(a) the Theoretical Error Rate (TER), which is the
expected proportion ,f students getting a pretest item
incorrect simply on the basis of random guessing;

i.e., if "a" is the number of possible answers to an item,
then

TER = (a - 1)/a .

For example, if an item has tive alternatives, we would
expect 80 percent of the students to get the item
incorrect simply by guessing randomly. Items that have
a virtual infinitude of possible answers have TER = 1;
however, the evaluatc. should be careful not to assume
that every free-response op open eaded test item has
TER = 1. Very often such items are so worded that only
two or three answers are possible, in which case TER =
0.50 or TER = 0.67.

(b) the Base Error Rate (BER), which is the observed
propcrtion of students getting a pretest item 1ncorrect.



After instruction we can obtain two types of data
for each objective that has a posttest item: (a) the
Posttest Error Rate (PER) and (b) the Posttest Discrimi-
nation Index (PDI).

In subsequenu sections we will anlayze the decisions
that can be made on the basis of the above data. Then
we will discuss the decisions that can be made based
upon the arithmetic dif "erences between various error
rates,

For each decision rule presented we will give our
reasons for specifying whether test items or instruction
relevant to a give objective should be revised (R),
questioned (?), or not revised (NR). These decisions
should not, however, be interpreted too strictly; the
-evaluator will still have to use some degree of
subjective judgment. For example, when we say, in
subsequent discussions, that an item should be revised
(R), we mean that our best guess on the basis of the
data is that the item should be revised, but the evalua-
tor must make the final decision. Also, when we say
that an item (or instruction) is questionable (?), we
mean that the data are not sufficient to make a definite
judgment about whether or not the item (or instruction)
should be revised.

One additional consideration deserves mention.
Ideally, one would validate his test items prior to
using them in an instructional system; however, this is
often not feasible, especially when criterion-referenced
tests are used 1in an irstructional svstem. Therefore,
in most cases, evaluation must take into account the
possible invalidicy of both test items and instruction.
For this reascn, most of the decision rules that will
be presented are based upon the assumption that we have
ne a priori reason to believe that test items are more
valTd than instruction or vice-versa.

Pretest data. It 15 not likely that only pretest
data would be used to make deccisions about test items,
yet it is useful to consider the types of decisions
that are apgropriate con the pasis of such data.

Rule 1l: 1If TER and BER are both the same
(i.e., H,H or L,L) then no necessity for revision is
indicated. In this case, the ohserved error rate (BER),
which is not affected bv instruction, 1s approximately
the same as the expected error rate (TER).

Rule 2: 1f TER 1~ low (L) and BER is high (H),




there is no indication that revision is required. This
rather anomalous case could arise if the particular
objective for the item involved concepts that are typi-
cally misunderstcod. For example, many students (in

the author's opinion) believe that "inflammable" and
"flammable" have different meanings. If an item were
constructed testing whether or not "inflammable" and
"flammable" have the same meaning, and if this item were
given prior to instruction, it is quite possible that
more students would get the item incorrect than we would
expect on the basis of the theoretical error rate (TER).
In this case, there is no reason to revise the item;
rather, we expect that the instruction will correct the
students' misinformation.

Rule 3: TIf TER is high (H) and BER is low
(L), then the item will probably need to be revised.
In this case, students, without benefit of instruction,
are performing considerably batter than expected.
It appears that the item itselif may be teaching or
that one or more distractors are so easy that many
students can pick the correct answer largely by a
process of elimination. It is also possible that the
item is not at fault and the objective, while being
easy for most of the students, is considered to be an
integral part of the total set of objectives. 1In this
case, of course, the item would not be revised.

These rules, as well as all other rules that will
be discussed, are given in abbreviated form in Table 5-1.

Posttest data. As a result of administering a
posttest two types of data can be collected: the
Posttest Error Rate (PER) and Posttest Discrimination
Index (PDI). Since these data are collected after instruc-
tion, theoretically decisions can be made about either
test items or instruction or both. However, from a
practical point of view, if revision seems to be required,
if is difficult to specify with any confidence that
the fault .ies solely with the test item or solely with
instruction. In short, based upon posttest data, we
can usually say whether or not something is wrong, but
given only the posttest data it is difficult to pinpoint .
the problem.

Pule 4: If PER = L and PDI = 0, then neither
the item nor the instruction need to be reviced. This
is the best possible situation, since ‘he optimal condi-
tions for both error rate and discrimination index are
fulfilled; i.e., at the end of instruction we hope that



TABLB 5-1

Rules for Decision-Making

Error Rates Decision?
Rule :

No. . TER BER PER PDI Item Instruction

1 H H NR -

L L NR --

2 L H NR --

3 H L R -

4 L NR - NR

5 L + ? ?

L - ? ?

6 H - R R

H + ? R

H 0 ? R

8 DER > OF R --

DER < 0 NR --

S PMPG < cd -- R.

pMpG > <9 -- NR

4nNR" means no revision required; "R" means revision
is required; "?" means the data are not sufficient to make
a sound judgment about whether or not revision is required.

. bDER is significantly greater than zero for a one-
tailed test of significance.

°DPER is not significantly greater than zero for a
one-tailed test of significance.

dc is a cut-off chosen by the evaluator.

w
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most of the students get the posttest item correct
(PER =L), and that the item is non-discriminating (PER
= 0).

Rule 5: If PER = L and PDI = + or -, then
both the item and the instruction are guestionable.
The fact that FDI is clearly non-zero indicates a pos-
gsible need for revision.

Rule 6: If PER = H and PDI = -, then both the
item and instruction should be revised, since PER = H and
PDI = - is the worst possible situation that can occur.

It is possible that either the item or the instruction
is at fault, but not both; however, we assume here that
the most universally applicable decision is to check
both the item and the instruction to see what revisions
are needed.

Rule 7: If PER = H and PDI = + or 0, then the
instruction should be revised and the item should be
gquestioned. Whenever error rate is high after instruc-
tion, something is wrong, but without additional
information we do not know whether the fault definitely
lies with the item or the instruction. However, the
author believes that evaluators are apt to be more confi-
dent about test items than they are about instruction;
it is also possible chat the test items have been pre-
viously validated or partially validated. Therefore,
in this case, it seems reasonable to place a less strin-
gent decision on the item than on the instruction. It
should be noted, however, that perceptions can be biased;
i.e., the test item could be at fault. It is certainly
advisable to analyze *“he nature of any validation or pre-
validation activity for its applicability in the present
context since sampling, testing, and teaching conditions

- can vary considerably.

Decisions based upon differences between error rates.
Most of the foregoing decision rules are dependent upon
the evaluator's choice of a cut-off between high and low
error rate. Dichotomizing error rate in this way clearly
facilitates the identificati»n of appropriate decision
ruies, and, in many cases, tuhe simplicity of the technique
will probably ortweigh any loss of precision. However,
we can also specify an additional pai: of decision rules
that fake into account o- ntitative d:fferences between
error rates. ©One of tt -+ rules incr:-ases the
precision of previous decisions, the other provides
essentially new information. We will call these error
rates "derived" error rates to distinguish them from




N

the "raw" error rates discussed in the previous sections.

Let us consider two limitations of the high/low
classification procedure for error rates. Suppose
that Theoretical Error Rate (TER) and Base Error Rate
(BER) for a given objective are both classified as
high (H), while the Posttest Error Rate (PER) is clas-
sified as low (L). Clearly, any actual arithmetic
differences between TER and BER will not affect the
decisions we have thus far proposed. Also, since BER
and PER are merely classified as high and low,
respectively, we will not have a gquantitative measure of
how much learning has actually taken place.

Rules 1-3 are useful for making decisions based
upon categorical differences between BER and TER, but
we can make more accurate decisions by actually computlng
the difference between these error rates. Let

DER = TER -BER,

where DER stands for "Difference Error Rate." If DER = 0,
then the observed error rate on the pretest (BER) is
identical to the expected error rate on the pretest

(TER). If DER < 0, then fewer students are getting the
item correct than we would expect on the basis of random
guessing. Finally, if DER > 0, then more students are
getting the item correct than we would expect on the basis
of random guessing. As discussed previously, the last
possibility is often an unfavorable situation, since it
can mean that the item somehow "gives away" the correct
answer,

We can test the significance oa a positive
difference between BER and TER by computing

DER -~ (1/2X)

VTER(1 - TER)/N

where N is the total number of students in the sanple.

‘The term -1/2N 1s a correction for dlscontlnulty and, as

such, cun be dropoed if the sample size is large. Note
that when TER = 1 Z is undeflned in this case, any value
of DER > 0 can be considered significant. Again, however,
one should be careful not assume that TER = 0 just because
the format of the item is free-response. Once 2 is
calculated its significance can be tested by comparing

the value of Z with the normal curve standard score at

an appropriate z-lecvel for a one-tailed test. llote tha“
~e are only interested in positive values of DER.



We can now specify more precise version of
Rules 1-3,

Rule 8: If the value of DER is significantly
greater than zero, then the item should be revised.
In all other cases no revision is required.

None of the decisions discussed up to this
point has made use of any measure of gain in knowledg:?
relevant to a given nbjective that results from the
instructional system. It is probably true that gain
is not as important as final performance on the posttest,
in must instructional systems; however, if students
experience relatively little gain as a result of
experiencing instruction, one can legitimately guestion
the value of the instructional system itself. Thus,
measures of gain have long been a subject of considerable
interest in the field of instructica.

A simple measure of gain for an objective is the
difference between pretest error rate (BER) and posttest

error rate (PER). This measure has been suggested by
Cox and Vargas (1966); however, it has one serious
limitation -- gains of the same magnitude do not mean

the same thing. Consider a gain of 0.50 resulting from
BER = 1.00 and PER = 0.50 and again of the same magnitude
resulting from BER = 0.50 and PER = 0.00. In the former
case, the instructional system has failed to preduce

50 percent of the gain in performance that could be
achieved, while in the latter case, the instructional
system has produced as much gain as possible given the
entry level of the students. Thus, in the former case,
some revision of the instruction may be desirable, while
in the latter case, no revision in the instructional system
is required on the basis of these data.

The above, rather trivial example, illustrates that
simple gain does not provide a very meaningful basis for
revising instruction. A better measure is percent of
maximum possible gain for an objective defined as:

BER - PER
PMPG = @—m8M8—— ' :
BER

In order to make use of this measure the evaluator must
specify a cut-off that determines whether or not a given
value of PMPG indicates a neced for revision.




Rule 9: 1Ir PMPG < c, where c is a cut-off speci-
fied by the evaluator, then the instruction should be
revised. The cut-off ¢ need not bethe same for all
objectives. 1If PMPG > ¢, then, on the basis of PMPG,
there is no indication that instruction needs to be
revised. -

The literature contains many in-depth discussions
concerning the problems and pit-falls assoclated with
measures of gain. See for example Cronbach and Furby
(1970), DuBois (1962), and Harris (1963). Most of this
li*2rature, however, treats measures >f gain in the
context of their use in inferential statistics or
correlational analysis. While we appreciate the impor-
rvance of these issues, we hasten to add that measures of
gain, merely as descriptive statistics, can provide
useful information to evaluators. .2 believe that the
use of PMPG, as data for evaluation purposes, is a
case in point. Also, since, in criterion-referenced
testing, we assume an absolute measurement scale, many
cf the objections to measures of gain are less crucial.

Use of Item Aralysis Tables

An item analysis table indicates the number or
percent of students who chose each of the alternatives
of a test item. Further, in most cases, the students
who responded to the item are partitioned into groups,
based upon their performance on the total test. Thus,
for example, if each student is put into either a
"lower" or an "upper" group, then one can identify the
number (or percent) of students in the lower and/or
upper group who chose each alternative. Such tables,
and their use in norm-referenced testing situations, are
treated in practically every 1ntrodurtory text in
educational measurement.

Item analysis tablecs can alsc be quite useful in
criterion~referenced testing situations. Let us now
consider some of the issues involved in constructing and
‘using such tables. :

(a) The classification of students into groups
should be meaninoful for the criterion-referenced test.
For norm-referenced tests typical ways of partitioning
students include, for example, placing the top 50 percent
of the students in the upper group and the bcttom 50
percent in the lower group, or partitioning students into
lower, middle, and upper thirds. These procedures are

(%2
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not appropriate for criterion-referenced tests, because
the group into whicih a student js classified can be
determined only by reterenceto the scores of other
students. For criterion-referenced testing, the group
into which a student is classified should be uniquely
determined by the student's test score, independent

of the scores of cther students. In mastery testing

this usually means t.nat students who exceed the mastery
cutting ccore are defined as the u»per group of students,
and all other students constitute the lower group.

Thus, f,r criterion~referenced item analysis tables,
groups are defined according to ranges of criterion-
referenced or mastery test scores. 1In many cases, only
two groups (upper and lower) are used; however, item
analysis tables often provide more useful and inter-
pretable information if one incorporates a "middle" group
that contains students whose test score is on the border-
line of mastery, acceptable behavior, or criterion
performance.

(b) In interpreting criterion-referenced .tem
analysis tables one should remember that if all students
get all items correct, then all cells but one in every
item analysis table will be empty. Furthermore, if all
students get an item correct, then the only cells that
will be non-empty are those associated with the correct
alternative. These observations may appear trivial; how-
ever, they do emphasize an important consideration --
in criterion-referenced testing, the fact that few, or
no, persons choose an incorrect alternative (distractor)
does not necessarily indicate that the alternative
should be revised.

(c) For the sake of discussion let D(U,L) be the
difference between the proportions of students in tha
upper and lower groups whc choose a distractor, D.

One would usually expect D(U,L) to be equal toc or less
than zero; therefore, if D(U,L) is very much greater
than zero, the di tractor or the item itself may require
revision. Analogous statements referring to the correct
alternative a.:> contained in the abhove discussion
‘ccncerning item validity and the B discrimination index.

(d) The process of analyzing criterion-referenced
test items that require revision, can be conceived as a
two-stage process. The first stage entails the use of
decision rules such as those discussed in th previous
section of t.is chapter; the second stage entails a
detailed consideration of the item ana.ysis table(s
(It is sometimes useful to study the iteri analysis



tables for both the pretest anu posttes’ administrations

of the item.) Unfortunately, at least at the present

time, tha use of item analysis tables is probably more an
art than it is a science. Nevertheless, careful subjective
analysis of item analysis tables will often reveal the
presence of problems that are not apt to be evident from
the typical kinds of descriptive statistics for items.



CHAPTER VI

ég Alternative to the Classical

Administration and Scoring Procedure

For Arnalyzing Criterion-Referenced Test Items

In Chpater V we considered, in some detail, proce-
dures for anaiyzing criterion-referenced test items when
students are forced to pick one and only one alternative
and scored either correct (1) or incorrect (0). With
very few exceptions, researchers in the field of
criterion-referenced testing have concerned themselves
only with this classical procedure for the administration
and scoring of items

For norm-referenced testing classical correct/
incorrect administration and scoring procedures seem to
be reasonably effective and useful. However, norm-
referenced tests are usually relatively long; the scores
from such tests are often normally distributed; floor
and ceiling effeccs seldom occur in norm-referenced tests;
and, most importantly, one is not very much concerned
about the precise proportion of items a student can
answer correctly -- rather, one is concerned about the
ability of the test to distinguish among subjects. Each
of these characteristics of a norm-referenced test argues
directly or indirectly that the classical correct/incorrect
procedure is reasonably adequate (or, at least, not
grossly inadeguate) for many norm-referenced tests.

On the other hand, criterion-referenced *“ests are
usually short; the scores from suvch tests are often
negatively skewed -- even severely so; ceiling effects
are very common; and, most importantly, one is funda-
mentally concerned abou: accurately estimating the pro-
portion of items to which a student knows the answer
(or possibly some other score). This emphasis on accurate
estimation of a student's score is especially critical in
criterion-referenced testing because theére is seldom any
'~ external criterion measure for judging validity.

Thus, in criterion-referenced testing it is very
important to use every possible means of eliminating
random (and systematic) errcrs of measurement . In
particular, it seems tc th‘s author that it is important
to eliminate (or, at least, be able to estimat. the effect
of) guessing. Now, it is very clezr that, a considerable



amount of student guessing frequently occurs when a
student if forced to pick one and only one alternative
and the classical correct/incorrect scoring procedure is
used; moreov=r, when the classical procedure is used, it
is very difficult, if not impossible, to ascertain the
magnitude of the effect of giessing upon student scores.

Furthermore, since criterion-referenced tests are
frequently shorc, it seems desirable to obtain as much
informations as possible from each item; yet, using the
classical procedure for administering and scoring an
item, one merely knows whether or not the student got
the item correct. 1In particular, using the classical
procedure one does not obtain information with regard to
the relative attractiveness of each alternative for each
student. This kind of information can be very useful
in determining whether or not to revise a criterion-
referenced test item. Thus, the classical procedure some-
what limits the amount of information we obtain with
regard to any given criterion-referenced test item.

In short, from a criterion-referenced testing view-
point, this author feels that the classical procedure for
administering and scoring an item has two serious limita-
tions: (a) scores obtained using this procedure incor-
porate an indeterminable amouat of guessing and (b) this
procedure provides very little information with regard to
any given item especially when relatively small numbers
of students take the item. These points imply that when
we use the classical procedure 7 .,r criterion-referenced
testing, we may have less than adequate information for
determining whether or not a criterion-referenced test
item requires revision.

Therefore, it is worthwhile to consider alternatives
to the classical procedure. There are a number of points
of view from which one could consider different procedures
Here we are interested in the ability of the procedure
to aid us in item analysis. That is, our goal is to
identify a procedure for administering an item that
provides us with optimum data for determining whether or

" not the jitem needs to be revised; and, if possible, these
data should aid us ir pinpointing the nature ¢€ any )
difficulties with the item. For this purpose, we consider
two potential procedures which we call the "elimination
procedure" anc. the "confidence procedure." We find that
the confiderce procedure is the better of the two for
our purposes.




It should be noted that here we are not concerned
about the kinds of scores typically obtained from the
elimination and confidence procedures; rather, our
primary concern is with the nature and amount of data
collected when such procedures are used. Also, we do
not assume that once an item is administere. using one
procedure it will always be administered using that
precedure. .In fact, when we consider the confidence
procedure, the manner in which we interpret the data
provides us with a kind of guessing-free estimate of
a person's classical score. Thus, once an item has
been validated using the confidence procedure, one can
administer the item using the classical procedure.

Two Alternatives to the Classical Procedure for
Administering ltems

Elimination procedure. Coombs et al (1956) suggest
a procedure for administering and scoring a test based
upon having students eliminate alternatives that they
consider to be incorrect. Since a student may eliminate
any number of alternatives for a.ay test item, the
elimination procedure provides some information about
the relative attractiveness of each alternative.
However, the information provided is somewhit ambiguous
in that, for example, if a student eliminates two alter-
natives, we so not know whether or not the student feels
more uncertain about one alternative than the other.

Also, let us consider the elimination procedure from
another roint of view. As indicated previously, we are
interested in a procedure's ability to provicde us with
a kind of guessing-free estimate of a person's classical
score. Let us call such an estimate a PCl score,
indicating the probability (P; that a person's classical
(C) score on an item is unity (l). If we know, for
example, that a person guessed randomly on a four-
alternative item, then PCl should be 0.25. The qguvestion
is, "Can the kind of data collected using the elimination
procedure provide iLs with an adeguate basis for estimating
a student's PCl score for an item?"

Suppose, for exemple, that a student eliminates
two alternatives for a four-alternative item. If we
could assume that, when forced to pick one and onlv one
alternative, the student wauld randomly pick one of the
two non-eliminated alternatives, ther the PCl score for
the student for the item would be 0.50. However, this
assumption ‘s not necessarily valid; in fact, one could
argue that PCl m‘ght be any value be“tween 0.50 and 1.00.

6-3




Thus, it does not appear that the elimination procedure
provides an adequate basis for estimating a student's

PCl score for an item. Consequently, if the student

were administered the item a large number of times,

we don't have a very good basis for estimating the number,
or proportion, of times the student would get the item
correct under the classical scoring procedure. If the
item is administered K times, this proportion should be
K-PC1l.

Confidence procedure. In confidence testing, one
obtains from each student a suvbjective prcocbability that
each alternative of a test item is correct. There are
a number of techniques that car be used to obtain these
probabilities either directly or indirectly. This author
prefers the technique usually called the "star" method
in which a student is told to distribute a fixed number
of "stars" or points over the alt:2rnatives of a test
item. For example, students might be told to distribute
twelve points over the alternatives of a four-alternative
item. The table helow irdicates scme of the ways students
might perform this task aund the associated (subjective)

probabilities.

No. of Points Probabilities

A* B C D A* B C D PC1l
§l 3 3 3 3 .25 .25 . .25 .25 .25
82 4 4 0 .33 .23 .33 .00 .33
S3 3 6 ] 0 .59 .50 .00 .00 .50
S4 12 C 0 0 .00 .00 .CO .00 1.00
S5 5 5 1 1 .42 .42 .08 .08 .50
S6 S 2 4 1 .42 .17 .33 .08 1.00

The re: .er interested in a more in-depth discnssion
of confidenc testing can consult de Finetti (1965;, 1
Echternacht 1972), Savage (1971), and Shuford et al (1966).
A great dea. of the literature on conr.dence testing
involves d.; ‘ussion of various procedures fcr scoring such
tests, but :'is 1is not our concern in this chapter.

lAppencix A to this report is a manual for DEC-TEST,
a computer program that analyzes confidence test data
in great de=zail. Further, the introduction to this manual
provides a Jdescription of confidence testing and elimination
testing as these procedures are typically used.




Here we are concerned about the nature of the data
(i.e., the probabilities) collected for each item and
for each student.

Each probability indicates how confident the
student is that the particular alternative is the correct
answer for the item. Using these probabilities we can
obtain PCl scores from the following rules:

i

Let M the magnitude of the highest probability

for a particular student for a giver item,

A = the number of alternativcs for the item,

P(a) = the probability associated with alternative
a {fa=-1, 2, ..., A), and
* = the correct alternative.
Now,
PCl = 0 if P(*) # M;
PCl = 1/K if P(*) = M and there are (K-l)other
alterratives having P(a) = M; and
PCl = ] if P(*) = M and there are not other
alternatives having P(a) = M,

See the table on the previcus page for examples of PCl
scores. Note, in particular, that the third and fifth
studencs both have PCl = 0.50 eventhough M = 0.50 for
the third student and M = 0.42 for the fifth student.

Thus, PCl scores are readily available from the
subjective probabilities one obtains using the confi-
dence testing procedure. Furthermore, wher one uses
confidence testing as a procedure to rcollect data for
items, one obtains, for each student, a probability
associated with each alternative for cach item. Thus, one
has a great deal of information for each item -- much
more information than if students pick one alternative
or eliminate alternatives.

In short, the confidence procedvre seems to be
superior to the elimination procedure, at least for out
purposes here.




Item Analysis Tables from the Confidence Procedure

Conisder the synthetic data for a hypothetical
item presented in Table 6-1. The item has four alternatives,
"A" is the correct answer, and the twenty students are
partitioned into lower and upper groups of ten students
each. The confidence probabilities are indicated for
each alternative and for each student. We emphasize that
these are synthetic data, and they are not necessarily
indicative of a good criterion-referenced test item,
we use these data merely to illustrate our discussion.

For each confidence probability in Table 6-1, there
its a pseudo-classical score. A pseudo classical score
for an alternative is defined as the probability that a
student would pick the alternative if the student were
forced to choose one and only one alternative for the
item under consideration. Thus, the pseudo-classical
score for an item is the pseudo-classical score for the
correct alternative; also, the pseulo-classical score for
an item is 1dentical to the PCl score discussed previously.

Usi.ig the data in Table 6-1, one can construct the
item analysis tables given by Tables 6-2 and 6-3, where
Table 6-2 uses confidence probabilities and Table 6-3 uses
pseudo-classical scores. Both tables present frequency
distributions: -of scores on alternatives, with associated
totals, means, and standard deviations. Clearly, Table
6-2 provides nore 1information, and a somewhat different
kind of information than Tablie 6-3; and, both tables
provide much more information than is available from item
analysis tablers based upon the classical correct/incorrect
scoring procedrre. This additional information can be
quite useful in deciding what (if anything) is wrong with
a criteriorn~-referencad test item.

Now, let us summarize a few points implicit in our
discussion thus far. We are assuming that once an item
is validated it probawuly will be administered using the
classical corre-t/incorrect scoring procedure. However,
in order to vaiidate the item we are suggestiiag that the
evaluator collect confidence probabilities for each
alterncative, translate these probabilities to pseudo-
classical scores for each alternative, and generate tne
pseudo-classical item analysis table. This table indicates
the probability the each student would pick each alter-
native using the classical correct/incorrect scoring
procedure; thus, using this table one can analyze the
probable effect of guessing upon the performance of other
similar students who take the item using the classical
procedure for i1t m administration and scoring. Further,
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TABLE 6-1

Synthetic Data

Confidence Pseudo-classical?

Stu- Probabilities scores

dent

No. A* B C D A* B C D
1 .25 .25 .25 .25 .25 .25 .25 .25
2 .25 .25 .25 .25 .25 .25 .25 .25
3 .40 .40 .10 .10 .50 .50 .10 .10
- 4 1.00 .00 .00 .00 1.00 .00 .00 .00
S Y5 .30 .20 .20 .20 .50 .00 .50 .00
C 6 .50 .50 .00 .00 .50 .50 .00 .00
NE 7 .30 .30 .10 .30 .33 .33 .00 .33
8 .20 .70 .00 .10 .00 1.00 .00 .00
9 .40 .20 .00 .40 .50 .00 .00 .50
10 .00 .00 ..00 .00 .00 1.00 .00 .00
Sum-—Lb 3.60 3.80 1,00 1.60 3.83 3.83 1.00 1.33
Mean-L .36 .38 .10 .16 .38 .38 .10 .13
SD-L .25 .27 .12 .13 .28 .45 .17 .18
11 .25 .25 .25 .25 .25 .25 .25 .25
12 1.00 .00 .00 .00 1.00 .00 .00 .00
13 1.00 .00 .00 .00 1.00 .00 .00 .00
" a 14 .70 .20 .00 .10 1.00 .00 .00 .00
o3 15 .60 .00 .20 .20 1.00 .00 .00 .00
&2 16 .50 .50 .00 .00 .50 .50 .00 .00
oL 17 .40 .50 .00 .10 .00 1.00 .00 .90
18 .50 .50 .00 .00 .50 .50 .00 .00
19 .80 .10 .10 .00 1.00 .00 .00 .00
20 .30 .30 .30 .10 .33 .33 .33 .00
Sum-—Ub 6.05 2.35 .85 .75 6.58 2.58 .58 .25
Mean-U .61 .24 .09 .08 .66 .26 .06 .03
SD-U .25 .20 11 .09 .37 .32 .12 .08
Sum-—Tb 9.65 6.15 1.85 2.35 10.41 6.41 1,58 1.58
Mean-T .48 .31 .09 .12 " .52 .32 .08 .08
SD-T .28 .25 .12 .12 12 .34 .15 .15

a . .

A pseudo-classical score for an alternative repre-
sents the probability that a student would pick the
alternative if the student were forced to pick one and
only one alternative for the test item.

bL, U, and T mean the lower, upper, and total groups,
respectively.
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if one wants a detailed display of the certainty with
which students choose any alternative, one can generate
the item analysis table based upon the ccnfidence
probabilities.

Admittedly, the 1deas discussed above require
detailed procedures for item administration, scoring,
and analysis; however, the additional time and effort
required can, I think, be very worthwhile for the process
of validating items.

An Application of PCl Scores in the Classical Test
Theory Model

Recall that under the classical test ‘thezory model
X =T + E, where X, T, and E are observed, true, and
random error scores, resnectively. Now, we have
described the PCl item score for a student as a kind of
guessing-frce estimate cf a person's classical score,
and guessing is usually interpreted as one kind of
random error. If we assume that guessing is the only,
or the principal, kind of random error that concerns
us, then a PCl score is a kind of true score and we
can cnalyze the effect of guessing upon classical scores
by using the classical test theory model directly. Thus,
in this section we will let

X =0 or 1 (classical observed score),
T = PCl item score, anrd
E = random error due to guessing.

Basic statistics. Note that when one typically uses
the c(lassical test theory model, one has observed scores,
and one wants to estimate true scores; however, in this
cace, we already have the true scores, and we must esti-
mate the observed scores. Now, if the item were admin-
istered to student i a total of K times we would expect
student i to get the item correct K.T. times, and we would
expect student i to get the item incoriect K- (1-T.)
times. Therefore, if N is the total number of subjects

1 N
— T K-Ti {(6.1)
KN i=1

X

0

=T

2]
|

10



and si = — § KeT. =~ TZ
KN i=1
=T - 72
=T(1-T . (6.2)

For an example of these statistics see Table 6-4 which
uses the synthetic data presented in Table 6-~1 and
assumes, for the sake of illustration, that X = 12.

Table 6-4 also indicates the error scores associated
with each observed score for our synthetic data. The
mean and variance of thie error scores are given by:

1 K N .
E=—— ¢ I (X.. =-T..)
KN j=1 i=1 13 13
1 N 1 N
=— I KT, - = IT,
KN i=1 * N i=1
=T =T
=0 (6.3)
1 K N v
and sé = — I T (Xi' - Tl )2
KN j=1 i=1 I J
1 N 1 K 5
= e E [— Z ( s . - ) ]
N i=l K j=1 *J 13
1 N 1 K 2 K 1 K
=— I [ - IX. == LX T+~ LT |
N i=1 K j=1 *3 Kk j=1 13 I g 5=1 1]
1 N 2 1 ,
= — I | Ti - — (K.T.) + — (K-T)) ]
N i=1 K K 1
1 N : ,
= — (’I‘i - Ti)
N i=1
1 N
=- I T,(1 -7T) (6.4)
N i=1
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Now, let us demonstrate that 52 = Sé + sé .

X
l1 N _ 1 N
sé +sl=1- 1 o - TP) o+ (- ¢ T, (L -T) ]
N i=1 N i=1
1 1 1
='-£T2-T2+—z'ri-—z'ri2
N 1 N i N i
=T - T
=T - T)
= g2
=s2 .

Thus, we have demonstrated that, by interpreting
our PCl scores as true scores we can express the mean and
variance of observed scores in terms of the true scores.
Furthermore, we have shown that the variance of the
observed scores does indeed equal the variance of the
true scores plus the variance of the error scores.
The mean and variance of the observed, true, and error
gscores are provided in Table 6-4. For reference now
and later, the reader should note that, for our synthetic
data

20
£ T; = 1l0.41 ,

i=1

20 ,

I T{ = 7.9053 , and
i=1

20 ,

I T = 6.8687
i=1 *
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Reliability of a one-item test. Using the above
results, we can express the rellability of a one-item
test as:

2
Ty = Sp / sy

[N

T(l1 - T)

rpl - NeT- -
- (6.5)
N°—2

-3

For our synthetic data,

0.124
r = = 0.498 .
11 5.249

The reader should keep in mind that riy is the
proportion of variance in observed scores not due to
guessing, whereas (1 - rll) is the proportion of variance
in observed scores due to guessing. Now, we call 1
the reliability of a one-item test; however, if there
are random errors operating other than those due to guessing,
thearll will be an upper- limit to the "true" reliability
of the item,

In order to estimate the reliability of a test con-
sisting of K replications of the item, we can use the
Spearman-Brown Prophecy Formula

Kr .
Teg = 11 (6.6) .
l - (K - l)rll

Another way to view the reliability of a one-item
test is to ask how many items of a similar nature would
have to be administered in order to obtain a given level
of reliability. This question can be answered by



re-arranging the terms in thk. Spearman-Brown Prophecy
Formula in order to cet

rgx‘l - T1y) |
K = .r {6.7)

T3l - Tgg!

where, 31 this case, Iyk is the level cf reliability
desirzd and K is the number of items necessary to
acrieve this level of reliability. Using our synthetic
aata, if we set YK = 0.90, then
0:90(1 - 0.498)
K = = 9.072 .,
0.498(1 - 0.90)

One further statistic, of a reliability nature, may
be of interest. It can be shown that the probability that
a randomly selected student would maintain his or her
observed score on L = 2 or 3 administrations of the same
item is:

P. =1 - s2 . , (5.8)

For our synthetic data,

1 - 2(0.125) 0.750

o
I

0.635 .

and P 1 - 3(0.125)

3

Regression of observed scores on true scores. The
standar error of measurement 1s the square root of the
expression in (6.4), which is also equal to

SE = SX,/l - rll . (6.9)

For our synthetic data,

E J0.125 = 0.354

J0.249 /1 - 0.498 = 0.354 .

2]
]

0
i
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The reader should recall that the standard error of
measurement is associated with the regression of observed
gscores on true scorec, as indicated, for our synthetic
data, in Figure 6-1. This regression is used to predict
observed scores from.txue scores. As such, this regres-
sion can be used to establish a confidence interval around
the expected difficulty level of the item, where diffi-
culty level is based on the classical scoring procedure
and is merely the proportion of subjects who get an item
correct.

Regression of true scores an observed scores. The
other regression of interest 1s the regression of true
scores on observed scores. From classical test theory,
this regression is:

T = T(1 - r,,) + r,.X (6.10)

11 11

~
where T is the estimated value of T assuming a linear
regression of true on observed scores. The standard
deviation of errors about this regression is called the

standard error of estimate and denoted se . For the
kind cf data considered here, it can be shown that
) IT - T2 NeT? - (z7T) 2
s = [\ — ] [ ] (6.11)
est N NET - (IT)?
<2,
- "E 11

Now, since there are only t¢wo possiktle observed scores
for an item (0 and 1) it is also true that

2 2 2

Sest = YoSesti(0) * “¥1%est (1) ’ where (6.12)
Sist(O) = the variance of the errors about the
- regression line when X = 0
2
gr? - 17l LT - IT? ,
- - 1= , (6.13)
N - IT N - LT

wg =1 - T, . (6.14)



FIGURE 6-1

Regression of Observed Scores on True Scores
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2 .
= the variance of the error scores

s
est (1) about the regrecsion line when X =1
rr3 rr?]?
= —— - —_— , and ‘ - (6.15)
iT IT
w, = T (6.16)

Figure 6-2 provides, for our synthetic data, the regres-
sions of true scores on observed scores, as well as the
values of the statistics indicated in (6.11), {6.13), and

(6.15).




FIGURE 6-2

Regression of True Scores on Observed Scores
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CHAPTER VII

Data Aralysis

In this chpater we define, present, and discuss
a set of data that were collected in order to illustrate
some of the issues, statistics, and proceuures consi-
dered in previous chapters. The data reported should
not be considered as necessarily indicative of either
"good" or "bad" criterion-referenced tests or items.

Design for Data Collection

In the fall of 1972 and the spring of 1973 two
forms (A and B) of a 25-item criterion-referenced test
for a course in educational measurement were admin-
istered in both the pre- and posttest mode to 113
students.

In order to understand the design used for admin-
istering these tests, the reader willlfind it useful
to refer to the format of Table 7-la”. 1In this table
(and other tables to be discussed in this chapter)
the following notation is used: .

Factor Level Description
A2 ay .te§t administered
_using SCoRule
A2 a, test aeministered .
using "star" technique
B2 bl’bZ’b3’bl blocks of subjects
C <4 Form A of test
C Cy Form B of test
D d1 Pretest
D d2 Posttest

Also, note that a "." in place of a subscript indicates
the mean over all levels of the factor being considered.

1All tables referenced in this chapter can be found
at the end of tiie chapter.

2Factors A and B should not be confused with forms
A and B oﬁ the Pretest and the Posttest.
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The reader should note several important facts
about this design:

(a) If we collapse the levels of the A factor,
we see that subjects in the first block received
Pretest A and Posttest A, subjects in the second block
received Pretest & and Posttest B, subjects in the
third block recieved Pretest B and Posttest A, and
subjects in the fourth block received Pretest B and
Posttest B. Furthermore, note that subjects were
randomly assigned to blocks.

(b) The discussion above indicates that the design
is a (balanced) repeated measures design in which half
of the available cells are empty- i.e., each subject
ctook one form of the Pretest and one form of the Posttest,
and, thus, no subject took both forms of either the
Pretest or the Posttest. 1In the opinion of this author,
the constraints incorporated in the design are realistic
in that it is often not feasible to obtain repeated
measures for equivalent tests in the real world of
course development and evaluation. '

(c) Although the constraint mentioned above is
realistic, it is, nevertheless, somewhat restricting.
For example, we cannot obtain direct measures of the
equivaleunce of the two forms of the Pre-~ and Posttests,
Also, when we examine summary statistics for tests and
items, these statistics sometimes will be based upon
different or partially overlapping samples of subjects.

The actual items administered to subjects are
provided in Appendix B (see footnote 1, below). All
items are four-alternative objective items which had not
been subjected to ‘any previous validation or revision
procedures. Therefore, these items are not necessarily
"good" items. In fact, one of the purposes of this
chapter is to illustrate a procedure discussed in
Chapter V that might be used to collect data, report
statistics, and identify items that may require revision.
All test and item data were analyzed using DEC-TEST,
which is described in Appendix A, and SPSS.

lNote that Forms A and B of' the Posttest actually
contained 50 items; however, items 26-50 (identified
2as 2C26 to 2ZC50 in Appendix B) were the same items in
both forms, and none of these items was intended to be
equivalent to any item numbered 1 to 25. Therefore, for
the purposes of this chapter, we shall treat only items
1l to 25.
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Another important aspect of the data collection
procedure involves the way in which students responded
to test items. For each item, each student identified
the alternative he or she would pick if forced to pick
one and only one alternative; also, each student
indirectly reported his or her subjective probabllltles
for each alternative for each item. Subjects in level a;
reported actual log scores (range of 0 to 100)
for each alternative using a mechanical device called
a SCoRule; these log scores were later transformed inteo
Subjective probabilities using a formula provided in
Appendix A (see p. A-28). Students in level a, used the
twelve-point "star" system for reporting their
subjective probabilities (see Chapter VI and/or p. A-27).
The reader unfamiliar with confidence testing, the
logarithmic scoring.system, subjective probabilities, and/
or the "star" system would be well-advised to study
pages 6-1 to 6-10, and the first secticn of Appendix A.

Summary Statistics for Subjects and Tests

The procedure whereby subjects responded to items
may be summarized by saying that subjects did two
things -- they picked one alternative and they indirectly
reported subjective probabilities. The "pick one" proce-
dure allows us to calculate a classical correct/wrong
(l or 0) item score for each subject, while the
"subjective probability" procedure (typically con51dered
in conjunction with confidence testing, admissible
probability measurement, or decision-theoretic testing)
allows us to calculate or estimate a number of different
item scores for each subject. (See Section I of ZXAppendix
A, especially pages A-11 to 2-14.)

Tables 7-la,b,c to 7-6a,»>,c report means and
standard deviations over tests and persons for six
different types of subject srores. In these and other
tables, the different scores for a subject are identified
as:

VAR(1)

Arithmetic mean of item confidence scores;
i.e., each subject's score is the arithmetic
mean of the subjective probabilities
associated with the correct answer tc¢ each
item. (Range = 0 to 1.)

VAR (2) Geometric mean of item confidence scores;
i.e., each subject's score is the geometric
mean of the subjective probabilities

associated with the correct answer to each
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item. See Appendix A, p. A-3 for formulas.
(Range = 0 to 1.)

VAR (3) Arithmetic mean of item log scores; i.e.,
each subject's score is the arithmetic mean
of the log scores associated with the correct

answer to each item. (Range = 0 to 100.)

VAR (4) Arithmetic mean of item elimination scores,
which are estimated from the subject's
subjective probabilities using a procedure
described in Chapter VI, p. 6-3, and
Appendix A, pp. A-12 to A-14.

(Range = =1 to 1.)

VAR(5) Arithmetic mean of item pseudo-classical
scores, which are estimated from the
subject's subjective probabilities using
the procedure described in Chapter VI,
pp. 6-4 to 6-5, and Appendix A, p. A-14.

(Range = 0 to 1)

Arithmetic mean of classical item scores,
which are determined directly from the
"pick one" procedure. (Range = 0 to 1.)

VAR (6)

Table 7-7 reports means, standard deviations, and
reliabilities for each of the four tests and for each
of the six different kinds of subject scores. The
reader should note that we report these reliabilities
mainly for the sake of comple:eness. We do not claim
that any of these tests consist of a homogeneous set of
items, which is a logical pre-requisite to a meaningful
internal consistency reiiability.

Tables 7-1 to 7-7 are presented for the reader who
is interested in comparing the six different types
of scores discussed above. For our purposes, in this
chapter, we will concentrate primarily upon pseudo-
classical scores. Recall that pseudo-classical scores
are estimated classical scores which are determined from the
subjective probabilities assigned by subjects to the
alternatives of test items. As indicated previously,
pseudo-classical scores are much less affected by
guessing than are classical scores, one can directly
determine A kind of item reliability from pseudo-classical
item scores, and pseudo-classical scores are easily
interpreted. Pseudo-classical scores , in fact, appear
to have most of the advantages and few of the disadvantages
of both classical scores and subjective probabilities.
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In short, in the opinion of this author, pseudo-classical
scores have considerable promise as a basis for
validating criterion-referenced, mastery, and possibly
norm-referenced test items. It should be noted that once
an item has been validated using pseudo-classical scores,
one can logically consider subsequently administering

and scoring the validated item using classical proce-
dures; however, it is somewhat  more difficult to justify
validating an item using log scores, subjective proba-
bilities, or elimination scores, and then subsequently
administering and scoring the item using classical
procedures. ' : .

Test means and standard deviations using pseudo-
classical scores are presented in Tables 7-5a,b,c.
Note that Tables 7-5b and 7-5c are primarily different
ways of displaying the data in the cells »f Table 7-5a.
Let us now consider three hypotheses fo:r both the
Pretest (Table 7-~5b) and the Posttest (Table 7-5c)
aspects of these data: ’

{(a) There are no differences among means for those
subjects who used the SCoRule (level a,) versus those
subjects who used the star technique (level a2)
for recording responses to items.

(b) The two forms of the test have equal means.

(c) There are no differences among the means for
subjects in each of the four blocks. Recall that
subjects were randomly assigned to blocks, and, *herefore,
we would not expect to find any such differenc .

The results of testing these hypotheses are indicated
in Tables 7-8 and 7-9, which are based upon the data in
Tables 7-5b and 7-5c¢, respectively. (See footnote 1,
below.) In both Tables 7~-8 and 7-9, the first six
contracts are related to the first hypothesis, the
seventh contrast is related to the second hypothesis,
and the last two contrasts are related to the third
hypothesis. All contrasts were defined a priori.

-

1In Tables 7-8 and 7-9, the columns labelled "orth
t" and "Bonf t" provide an indication of significance
levels for multiple comparisons using the orthogonal t-
test procedure and the Bonferroni t-test procedure,
respectively. (The latter is also called Dunn's proce-~
dure.) Strictly speaking, for these analyses, the ortho-
gonal t-~test procedure is too liberal in declaring signi-
ficant differences. The Bonferroni procedure is more
conservative. '
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Let us now examine what the data reveal about
each hypothesis:

(a) There is a significant main effect for Factor A
on the Pretest but not on the Posttest. One half of the
Pretest contrasts that compare levels of A are signifi-
cantly different from zero using the orthogonal t-test
procedure for multiple comparisons. For all but one
of the Pretest and Posttest contrasts, there is an
indij.cation that students in level a, achieved higher
scores than students in level a,. In short, there
is a definite trend for subjects who use the
star technique to achieve higher scores than those who
use the SCokule, and this trend is more pronounced on
the Pretest than on the Posttest. Probably these results
indicate that students understand the star technique
better than they understand the use -of the SCoRule.

(b) Contras* number seven in Tables 7-8 and 7-9
indicates that the difference between the means for
Forms A and B, for both the Pretest and the Posttest, is
not significant. The reader should note, however, that
differences between forms are confounded with differences
between blocks. The best we can say is that we have no
direct evidence to reject the hypothesis that forms
are equivalent.

(c) There is a significant main effect for Factor B
on the Posttest but not on the Pretest. Contrast number
nine in Table 7-9 indicates that the significant :Posttest
difference is primarily a result of the difference
between the means for subjects in the second and fourth
blocks (i.e., subjects who took Posttest B). Since
subjects were randomly assigned to blocks, the author has
no explanation for this result, other than the rather
obvious statement that random ~assignment does not
guarantee equality of means. (Note that Table 7-5c indi-
cates that block b, for the Posttest has a considerably
lower mean than any other block for the Posttest,
incluiling blocks associated with Posttest A.)

In the next two sections we will analyze each of
the items that make up both forms of the criterion-
referenced Pretest and Posttest. In these sections we
will continue to emphasize pseudo-classical item scores,
although we will, on occasion, report statistics based
upon subjective probabllltles associated w1th items
and classical item scores.
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Item Equivalence

Let us review the nature of each of the tests
considered here. There are two forms (A and B) of the
Pretest and two forms (A and B) of the Posttest.

Pretest A and Posttest A are identical, item by item,
and the same is true of Pretest B and Posttest B.

if we let "i" be a generic item number, then item i on
Form A (in both the Pre- and Posttest) is intended to be
equivalent to item i on Form B (in both the Pre- and
Posttest). In brief, there are two different tests,

or sets of items (Form A and Form B) administered at two
differeat times (Pretest and Posttest). Consequently,

a complete analysis of item equivalence must consider
the issue of equivalence for each item for both the
Pretest and Posttest mode.

If we generalize from classical procedures for
testing the equivalence of two tests, we wonld test the
equivalence of two items 1in, say, the Posttest mode, by
administering both items to the same set of subjects
at the time of the Posttest. Then, if the means and
standard deviations of the two items were the same, we
could claim that the two items are equivalent, and the
correlation between the item scores for the two items
could be interpreted as a coefficient of equivalence
for the item. However, the design used to collect our
data will not permit such a procedure since, as indica-
ted previously, the same subjects never take both forms
of an item in either the Pretest or the Posttest mode.
Also, for this reason, we cannot use Cochran's Q-test
(discussed in Chapter V, p. 5-7) to test item equivalence
when items are scored in the 'classical correct/wrong
manner. '

In short, we cannot obtain a direct measure of iten
equivalence for the two forms of any item given the
design for data collection employed here. However, since
subjects were randomly assigned to blocks, and since,
for the most part, there are no- - significant differences
between block means for the Pre- and Posttests, we can
partially consider the statistical issue of item equiva-
lence by examining the differences between Form A and
Form B item means and standard deviations. Tables 7-10
to 7-12 present the appropriate item statistics when items
are scored using subjective {confidence) probabilities,
classical scores, and pseudo-~classical scores, respec-
tively.
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Let us consider Table 7-12, which is based upon
speudo~-classical item scores, in some detail. The means
reported can be interpreted in a manner similar to
item difficulty levels. The difference between means
for the two forms of any item is tested using a t-test
for independent samples. The equivalence of item stan-
dard deviations is tested using the FMAX statistic,
which is the ratio of the larger variance divided by the
smaller variance, and which has an F-distribution. Since
we are performing multiple tests of significance it is
advisable to distribute the a-level (.05) equally over
all 25~items; thus, it is advisable to consider a differ-
ence or FMAX value to be significant only if p<.002 =
.05/25,

In addition to comparing means and standard devia-
tions for the two forms ofany item, when we use pseudo-
classical scores, we can also compare the item relia-
bilities discussed in Chapter VI. These reliabilities
are provided in Table 7-13.

We can summarize the critical information in
Tables 7-12 and 7-13 in the following manner.

Item Pretest Differences in: Posttest Differences in:
No. MnT's SD's r's Mn's SD's r's
2 X x
3 i X
7 X
9 X
11 x x X
13 X
14 X
15 X
21 X X
22 X X
23 X x
24 ' ‘ x X

n,n

In the above table, an "x" appears only if p<.002, and
the items listed are only those for which at least one
pretest or posttest difference is cignificant at p<.002.
Clearly there is some evidence that the twd forms of

some items are not equivalent, for either the pretes+%
mode or the posttest mode or both modes. Note that if
two items are equivalent when administered in the pretest
mode, this does not guarantee that the items will be
equivalent when administered in the posttest mode, and
vice-versa. '




Data for Identifying Items tﬁat-max Require Revision

In Chpater V the author specified a procedure for
identifying items that may require revision. The basic
data (or summary statistics) and rules for this procedure
are summarized in Table 5-1. The results of applying
this procedure (with some modifications and additions)
to the items discussed in this. Chapter are indicated in
Tables 7-14 to 7-17. The reader should note that for
each of these Tables: (a) each item was scored using
the pseudo-classical scoring procedure; (b) pretest and
posttest item reliabilities are considered as data for
decision-making, along with the data discussed in
Chapter V; (c) the Theoretical Error Rate (TER) is 0.75
for all items, since all items have four alternatives;
and (d) an "x" indicates that revision may be required
on the basis of the indicated rule.

The reader will note from the title for each of
the four tables that: (a) the data reported-in Table 7-14
are for the 31 subjects who took Form A for both the
Pre- and Posttest, (b) the data reported in Table 7-16
are for the 28 subjects who took Form B for both the
Pre- and Posttest, and (c) for Tables 7-15 and 7-17
the sets of subjects who took the Pre- and Posttests are
not the same, although there is a considerable degree of
overlap.

It should be noted that the decision rules specified
in Tables 7-14 to 7-17 are, in several cases, based upon
the author's subjective judgments with regard to the
context within which the items were used. For example,
there is no "objective" basis.for saying that an item
may need revision if PMPG<.50 -- others might argue for
a cut-off value of, say, 0.40 or 0.60. It is also possi-
ble that another evaluator examining the same items
might choose to add other statistics and/or decision
rules, or an evaluator might even choose to eliminate
certain statistics and/or rules. The important issues
are that: .(a) the decision rules be specified prior to
an examination of the data, (b) the actual rules and
cut-offs chosen have at least a logical basis for being
stated, and (c) the procedure used for examining item
data be systematic and, as much as possible, replicable.

A cursory analysis of Tables 7-14 to 7-17 will
convince the reader that PMPG is often less than 0.50
and PER is often greater than 0.40. Thus, at a minimum,
the instruction for the information tested by many of
these criterion-referenced items has not been as effectlve
as the author had hoped.




The actual task of determining which itemns to
revis:> and what kinds of revisions to make involves:
(a) vsing the item statistics and tests discussed in
the previous section of this Chapter in order to deter-
mine those pairs of items that do not appear to be
equivalent and (b) usirg statistics and rules of the
kind reported in Tables 7-14 to 7-17 (as well as other
supporting data such as item analysis tables) in order
to determine which particular items and what aspects of
such items require revision.

At the risk of being repetitious, we wish to state
again that even if the data indicate that revision may
be required, one must study the item carefully to
determine what, if anything, needs revision. For
example, there appear to be problems with both forms
of item 21; yet, after analyzing the data, the item
analysis tables for the two forms of the item, and the
actual items themselves, no obvious problem with either
item was apparent. Therefore, the author intends to
retest both forms of item 21 at some future time, and if
the same situation still prevails, then the author will
eliminate or completely rewrite both items.
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- TABLE ‘7-la .

Means and Stardard Deviations =-- Pretest and Posttest

VAR(l) = Arithmetic Mean of Item Confidence Scores

Pretest . Posttest
Fm A Fm B Fm A Fm B N
cldl czd1 cldz _ c2d2
a,b, .312 .555 ' 21
.060 .142
a,b, .373 .602 ' 10
.07C .092
a,b, .332 .499 19
.046 .150
a,b, .342 .516 9
.037 : .116
a b, .330 535 Y
.049 .109
a,by .332 . 545 9
.064 .119
-a;b, .322 .493 20
a,b, ' .370 .625 8
.064 .141
ab .333 .333 .556 .518 113
e .057 .061 .120 .153




TABLE 7-1b

Means and Standard Deviations -~ Pretest

VAR(l) = Arithmetic Mean of Item Confidence Scores

Fm A Fm A Fm B Fm B Both

by b, b, b, b,
a, .312 .332 .330 .322 .324
.060 .046 .049 .066 .056
N=21 N=19 N=17 N=20 N=77
a, .373 .342 .332 .370 .354
.070 .037 .064 .064 .050
N=10 N=9 N=9 =8 N=36
a .332 .335 .331 .336 .333
¢ .068 .043 .053 .068 .059
: N=31 - N=28 N=26 . N=28 N=113

TABLE 7-1lc
Means and Standard Deviations -- Posttest
VAR (1) = Arithmetic Mean of Item Confidence Scores
P

Fm A Fm B Frr A Fm B Both

b, b, b, b, b,
ay .555 .499 .535 .493 .521
.142 .150 .109 .166 .144
N=21 N=19 N=17 N=20 N=77
a, .602 .516 .545 .625 : .571
.082 - .116 .119 .141 .120
N=10 N=9 N=9 N=8 1=36
a .570 .505 .538 .530 .537
¢ .128 .138 110 .168 .138
N=31 N=28 N=26 N=28 N=113
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TABLE 7-2a

Means and Standard Deviations -- Pretest and Posttest
VAR(2) = Geometric Mean 9£ Item Confidence Scores
Pretest ‘ Posttest

.Fm A Fm B Fm A " Fmn B N
¢4 ¢4y c14; c,4,
alb1 .266 ) 393 21
0040 0119 . . *
azb1 .251 .375 10
.061 .070 )
alb2 .248 .374 19
.049 .139
a2b2 .239 .344 9
.039 . .102 .
alb3 .236 .385 17
.034 .101
a2b3 .267 .3€2 9
.049 .133
alb4 .247 . .382 20
.045 .136 :
a2b4 .289 .478 8
.032 .123
ab .253 .253 .383 .387 113
e .047 .044 .107 .133
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TABLE 7-2b

Means and Standard Deviations -- Pretest

VAR (2) = Geometric Mean of Item Confidence Scores
Fm A Fm A Fm B Fm B Both

by b, by by b,
ay . 266 .248 .236 .247 . 250
.040 .049 .034 .045 .043
N=21 N=19 N=17 . N=20 N=77
a, .251 .239 .267 .289 . 260
.061 .039 .049 .032 .049
N=10 N=9 =9 N=8 N=36
a, .261 .245 .247 .259 .253
.048 . 045 .042 .045 .045
N=31 . N=28 N=26 A N=28 N=113

TABLE 7-2c
Means and Standard Deviations -- Posttest
VAR(2) = Geometric Mean of Iten Confidence Scores
- — : -

Fm A Fm B Fm A Fm B Both

bl b2 b3 b4 b,
a, .393 .374 .385 .382 .384
.119 .139 .101 .136 .123
N=21 N=19 N=17 N=20 N=77
a, .375 .344 .362 .478 .387
.070 . .102 .133 .123 .115
N=10 N=9 N=9 N=8 N=3€
a .387 .364 .377 .410 . 385
¢ .105 .127 w111 .137 .120
N=31 N=28 VN=26 N=28 N=113




v

- TABLE 7-3a Lt e

Means and Standard Deviations -- Pretest and Posttest
' VAR(3) = Arithmetic Mean of Item Log Scores

=

Pretest - Posttest
FmA . FmB fm A Fm B N
cld1 czdl | cld2 . czdz_; -
a;b,  70.936 78.687 3
. 3,727 7.124 . -
ajb,  68.233 78.402 .10
a,b, 69.263 77.245 19
3.792 7.504 |
asb, 68.629 | : 75.892 - 9
] 3.626 | . .7.019
a b, 68.430 78.578 T 17
: 3.184 5.650
ak, ST 70.928 . 76.836 ' © 9
4,298 6.965 :
ab, . 69.315 1 77.953 20
a b, . 72,930  83.365
.24 2.413 " 5,395
ab  69.757 6€9.841  78.312 78.189 113
<+ 4,543 - 3.892. 6.090 7.213
o 7-15 -




TABLE 7-3b

Mear< and Standard Deviations -- Pretest

VAR(3) = Arithmetic Mean of Item Log Scores

Fm A Fm A Fm B Fm B Both
bl b2 b3 b4 b.

a; 70.936 69.263 68.430 69.315 69.549
3.727 4,792 3.184 4,137 4.044

N=21 N=19 N=17 N=20 N=77

a, 69.233 68.629 70.928 72.930 70.327
6.254 3.626 4,298 2.413 4,601

N=10 " N=9 N=9 N=8 N=36

a 70.387 69.059 69.295 70.348 69;797
. 4.653 4,393 3.724 4,040 4,226
N=31 N=28 N=26 N=28 N=113

TABLE 7-3¢
Means and Standard Deviations =-- Posttest-
VAR (3) = Arithmetic Mean of Item Log Scores
Fm A Fm B Fm A Fm B Both
bl b2 b3 b4 b.

a 78.687 77.345 78.578 77.953 78.141
7.124 7.504 5.650 7.154 6.820

N=21 N=19 N=17 N=20 N=77

a, 78.402 75.892 76.836" 83.365 78.486
3.929 7.019 6.965 7.054 6.326

N=10 N=9 N=9 ~ N=8 N=36

a 73.595 76.878 77.975 79.500 78.251
. £.202 7.254 6.055 7.054 6.640
N=31 N=28 N=26 N=28 N=113




TABLE 7-4a

Means and Standard Deviations -- Pretest and Posttest

VAR (4) = Arithmetic Mean of Item Elimination Scores

.Pretest Posttest
Fm A Fm B Fm A Fm B N
¢19 c,dy c 4, cyd,
a;b; .150 .552 21
.124 .200
a,b,; .269 .624 10
. .112 .098
a;b, .194 .444 19
.102 .213
a,b, .212 .458 9
.079 172
a;by .186 .563 17
.091 . .158
abg .196 .526 ' 9
.132 .199
a,b, 171 .525 20
.106 .200
a,b, .243 .648 8
. .105 ] .138
ab .194 .191 .564 .504 113
e 114 .106 172 .201




TABLE 7-4b

Means and Standard Deviations -- Pretest’

VAR(4) = Arithmetic Mean of Item Elimination Scores

Fum A Fm A Fm B Fm B Both

by b, by b, b,
a, .150 .194 .186 171 .174
.124 .102 .091 .106 .106
N=21 N=19 N=17 N=20 N=77
a, .269 .212 .196 .243 .231
J112 ".079 132 .105 .108
N=10 N=9 =9 N=8 N=36
a .189 .200 .189 .192 .192
¢ 131 .094 .104 .109 .110
N=31 N=28 N=26 N=28 N=113

TABLE 7-4c’
Means and Standard Deviationé -~ Posttest ‘

VAR(4) = Arithmetic Mean of Item Elimination Scores

Fm A Fm B Fm A Fm B Both
by b, b, b, b,

a, .552 .444 .563 .525 .521
. 200 .213 .158" . 200 .197

N=21 N=19 N=17 .  N=20 N=377

a, .624 .458 .526 .648 .563
.098 172 .199 -.138 .168

N=10 N=9 N=9 N=8 N=36

a .575 .448 .550 .560 .534
‘ .175 .198 .170 .190 .188
N=31 N=28 N=26 . N=28 N=113
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TABLE 7-5a

Means and Standard Deviations -- Pretest and Posttest

VAR(5) = Arithmetic Mean of Item Pseudo-Classical Scores

.Pretest Posttest
Fm A Fm B Fm A Fm B N
¢4, cdy ¢4, SPLP)
a,b, .360 .658 ' 21
.086 .132
a,b, .424 .700 S 10
_ .081 .069
a;b, .378 _ .569 19
.071 .156 .
a,b, .403 ' .573 9
.046 , .108 :
a;b, _ .367 .666 17
0071 . A. 115 *
a,b, .386  .634 9
.096 .143
a,b, - .357 .626 20
.078 . .150
a,b, .427 .737 . 8
.091 .097
ab .383 .376 .664 .614 113
e .077 .082 118 .148




TABLE 7-5b

Means and Standard Deviations ~- Pretest

" VAR(5) = Arithmetic_Mean of Item Pseudo-Classical Scores

t—
—

FmA  FmA Fm B Fm B Both
b, . b, by b, b,
ay .360 .378 .367  .357 .365
.086 .071 071 .078 .076
N=21 N=19 N=17 N=20 N=77
a, .424 .403 . 386 .427 .410
.081 .046 .096 091 .079"
N=10 =9 =9 =8 N=36
a .381  .386 .374 .377 .380
.088 .064 .079 .086 .079
N=31 N=28 N=26 N=28 N=113
TABLE 7-5c
" Means and Standard Deviations -~ Posttest

VAR (5) = Arithmetic Mean of Item Pseudo-Classical Scores

Fm A Fm B Fm A Fm B Both

by b, by b, b
a; - .658 . .569 .666 .626 .630
. 132 L1567 .115 - .150 .142
N=21 N=19 N=17 N=20 © N=77
a,’ .700 .573 .634 .737 .660
.069 .los .143 .097 .120
N=10 =9 =9 =8 N=36
a .672 .570 .655 .658 .639
¢ .116 .140 .123 .144 .136
N=31 N=28 N=26 N=28 N=113
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TABLE 7-6a

Means and Standard Deviations =-- Pretest and Posttest

VAR(6) = Arithmetic Mean of Classical Scores

Pretest Posttest
Fm A Fm B Fm A - Fm B N
cldl czdl cld2 czdz
a;by .404 .691 21
.089 : .118 -
a by .464 .700 10
.076 .063
ab,  .444 © .63¢ 19
.080 : .146
a,b, .418 .578 9
.098 . , . .104
a;b, .419 .678 17
.108 .122 .
ab, .449 .662 ' 9
.115 o122
a,b, .414 B .644 20
.090 ' . .135
a,b, .430 . .760 .8
. .102 : 117
ab .429 .424 .685 .646 . 113
e ¢ .087 .100 .110 .139




TABLE 7-6kb

Means and Standard Deviations -- Pretest

VAR(6) = Arithmetic Mean of Classical Scores

Fm A Fm & Fm B Fm B Both
by b, b, b, b,
a, .404 .444 .419 .414 .4290
.089 .080 .108 .090 .091
N=21 N=19 - N=17 N=20 N=77
a, .464 .418 .449 .430 a4l
.076 .098 .115 .102 .095
N=10 N=2 N=9 =8 N=36
a .423 .436 .429 .419 .427
* .089 .085 .109 .092 .093
N=31 - N=28 N=26 . N=28 N=113
TABLE 7-6¢
Means and Standard Deviations -- Posttest
VAR(6) = Arithmetic Mean 92 Classical Scores
Fm A Fm B Fm A Fm B Both
b, © b, . b, b, b,
a, .691 .634 .678 .644 .662
.118 .146 .122 J135 131
N=21 N=19 N=17 N=20 N=77
2, .700 .578 .662 .760 .673
.063 .104 122 117 .118
N=10 =9 _ N=9 =8 - N=36
a .694 .616 .672 .677 .666
. .103 .135 .120 .139 .126

N=31 N=28 N=26 N=28 N=113
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TABLE 7-7

Test Reliabilities for Six Different Types of Scores

Pretest A (N=59). Pretest B (N¥54).
Mean . SD r ) Mean SD r
VAR (1) .333 .057 .547 VAR (1) .333 .061 .599
VAR (2) .253 .047 .324 " VAR(2) . .253 .044 Fodeokk
VAR(3) 69,757 4.543 . 218 VAR(3) 69.841 3.892 .049
VAR (4) .124 .114 .430 ~ VAR(4) .191 .106 .229
VAR(5) .383 .077 .371 VAR(5) T .376° .082° ,.395
VAR(6) .425 .087 -.041 VAR (6) .424 .100 .130
Posttest A (N=57) Posttest B (N=56)
Mean sD r , Mean SD r
VAR (1) .556 <120 .799 VAR{l) .518 .153 .892
VAR(2) .383 .107 .359 VAR (2) .387 .133 .733
VAR(3) 78.312 6.090 .442 VAR(3) 78.189 7.213 .677
VAR (4) .564 172 677 VAR (4) .504 .201 .756
VAR(5) .664 .118 .631 VAR (5) .614 .148 .757
VAR (6) .685 .110 .474 VAR (6) .646 .139 .646

Note.--All reliability coefficients, except those for
VAR(2), were calculated usiag Hoyt's analysis of variance
technique. When a subject's score is the geometric mean
of the subjective probabilities associated with the correct
answers to items [VAR(2)] , one cannot employ Hoyt's
technique for calculating reliability; therefore, for VAR(2),
we report odd-even split-halves coefficients.

**** jndicates that the coefficient could not be
calculated.

Note.--One can calculate Livingston's reliability
coefficient for any criterion score or cut-off wvalue
using the means, standard deviations, and reliability
coefficients reported above. .
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CHAPTER VIII

Summary and Suggestions

Summarz'

Since this report is quite long (much longer, in
fact, than the author had intended) and, in many cases,
quite detailed, it seems advisable to provide the reader
with a brief summary of each of the chapters.

Chapter I. The major purposes of this chapter
are to provide a context within which this report fits,
and to introduce the reader to distinctions in termin-
ology. We indicate, for example, that distinctions can
be made between criterion-referenced testing and mastery
testing, in that mastery testing can be viewed as a :
specific kind of criterion-referenced testing. However,
this distinction is not maintained very well in the
literature; thus, in order to avoid confusion with
previous literature, we have, in general, reserved the
term "mastery" for those issues, statistics, etc. that
have previously carried the label "mastery."

Chapter II. The major purpose of this chapter is
to examine the relevance of classical test theory to
criterion-referenced and mastery testing. We find that
the classical test theory assumptions are general enough
to form a basis for criterion-referenced and mastery
testing; however, we question whether or not these
assumptions are sufficient. Furthermore, we find that
the binomial error model is more likely to be appropriate
for most criterion-referenced tests than is the normal
error model.

Chapter III. In this chapter, which is primarily
2 review of the literature, we consider the concept of
validity with respect to criterion-referenced and mastery
testing. We find that content validity is of paramount
concern for criterion-referenced and mastery testing,
since there is seldom available any extra-test criterion
measure. Consequently, the validity of a criterion-
referenced or mastery test is, from a practical point of
view, very clearly tied to the procedur: whereby the
test is developed. We find that the "i:em forms" proce-
dure is highly desirable in that - this procedure
guarantees a certain degree of "objective-item congruence.'




Chapter IV, 1In this chapter, which is primarily
a review of the literature, we consider the concept of
reliability with respect to criterion-referenced and
mastery testing. Reliability issues are probably the
most frequently discussed quantitative issues surrounding
criterion-referenced and mastery testing. We report,
criticize, and compare.each of the major reliability
indices that have been proposed in the literature, and
we find thdt there is considerable disagreement (or,
perhaps, confusion) among researchers with respect to
reliability issues. In particular, researchers have
often failed to distinguish between (a) reliability
indices for criterion-referenced and mastery tests,
(b) reliability in the sense of stability, equivalence,
or internal consistency, and (c) reliability for measures
of state and measures of change. There is also some
evidence for confusion between indices for test reliability
and indices for instructional effectiveness.

Chapter V. 1In general, the first four chapters treat
criterion-referenced and mastery testing without directly
considering issues that are specific to an analysis of
individual items. Chapters V, VI, and VII, on the other
hand, are primarily concerned with the analysis of
criterion-referenced ard mastery items, E_E se.
Chapter V we discyss statistics that have been suggested
for analyzing such items, and we present a procedure for
identifying items that may require revision. The proce-
dure discussed necessitates calculating a set of statistics
for each item and defining a set of rules to specify how
to employ the item statistics in order to identify items
that appear to require revision.

Chapter VI. For the most part, Chapter V involves
the explicit assumption that items are scored in the
classical correct/wrong manner. In Chapter VI we consider
alternatives to the classical procedure. Specifically,

we consider elimination scoring and various scoring
procedures that entail the collection of subjective proba-
bilities form each student for each alternative of an

item. We find that elimination scoring is of questionable
value in the analysis of criterion-referenced and mastery
items, but scoring procedures that entail subjectiwve
probabilities appear to have promise. 1In particular,

we define and examine a new kind of score called a "pseudo-
classical score" which appears to be quite useful as a
basis for examining the reliability and validity of
criterion-referenced and mastery items.



Chanter VII. 1In this chapter we present a statis-
tical analysis of a set of item data which we use to
illustrate many of the statistics and procedures
discussed in Chapters V and VI.

Appendix A. 1In this appendix we present the manual
for DEC-TEST, a Fortran IV computer program written by
the author. DEC-TEST uses subjective probabilities in
order to calculate a number of student scores over items
(typically associated with confidence testing or admissible
probability measurement) and a number of item scores
(including confidence, elimination, and pseudo-classical
scores). Also, DEC-TEST has an extensive capability for
item analysis. The manual in Appendix A provides and
extensive guide to the use of DEC-TEST, a detailed
explanation of all outputs, scores, and statistics, and
an introduction to the use of subjective probabilities in
testing.

Suggestions for the Researcher

It is probably safe to say that there are no
definitive answers to any issye in criterion-referenced
or mastery testing; thus, in a sense, every issue is a
potential topic for research. However, I would like to
identify a few issues which I feel are critical or often
overlooked:

(a) We need better statistical and non-statistical
models for considering criterion-referenced and mastery
testing -- models in which assumptions and criteria are
stated clearly a=4 unambiguously. For example, I believe
that we need a test-theoretic model for criterion-refer-
enced testing that incorporates both random error and
systematic error and that employs a definition of true
sccre which is different from the classical definition.

(b) We need more integrated theoretical and practical
work concerning the reliability and validity of crlterlon-
referenced and mastery tests.

(c) We need alternative procedures for item construc-
tion. 1In particular, we need a better capability of
constructing item forms for disciplines other than
mathematics and the physical sciences.

(d) We need much more consideration of alternative
procedures for scoring items and defining criterion
performance. At the present time, almost exclusively,



items are scored in a correct/wrong (1,0) manner and
criterion performance is defined in terms of number of
items correct. This implies that we are only concerned
about whether or not a student can recognize or recall
a correct answer, and we are not concerned about things
like the degree of certainty tnat a student associates
with his or her response. At any rate, it is difficult
to believe that the classical correct/wrong procedure
is the best, or the only appropriate, method for
scoiing items and defining criterion performance.

.e) We need more consideration of issues surrounding
the identification of inadequate criterion-referenced
and mastery test items and procedures for revising such
items.

Suggestions for the Practitioner

Chapter II, Chapter VI, parts of Chapter VII, and
Appendix A are probably of marginal concern at the present
time for most practitioners. However, the author feels
that most practitioners should be familiar with the
issues treated in the remaining parts of this report.

In particular, attention should be given to Chapters

I, 117, and V. Also, the bibliography provided on the
next few pages should be especially useful to most
practitioners. The issue of reliability treated in
Chapter IV is exceedingly important; however, it is
unfortunately true that there is no gererally accepted
procedure for calculating the reliability of a criterion-
referenced or mastery test. Thus, the author suggests
that practitioners study Chapter IV but be very cautlous
in using or interpreting any single index of reliability.
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Preface

Methods of Administering and Scoring a Test

Classical Testing. The classical method of admin-
istering and scoring a test item necessitates that a student
indicate which alternative he or she believes is correct.

If the student picks the correct alternative, then the
student receives one point, otherwise, the student receives
zero points. This very simple procedure forms the basis

for much of classical test theory, and this procedure is
quite useful for many purposes. However, this procedure
clearly does not provide differential Information about the
relative attractiveness of each alternative for the student.
One way to approximate such information is through elimina-
tion scoring; one way to actually accumulate such informa-
tion is through decision-theoretic testing.

Elimination Testing. In elimination testing, the
student indicates which alternatives he or she believes
are incorrect. The student gets the highest possible item
score (usually 1.0) when he or she eliminates all alter-
natives except the correct answer; the student gets the
lowest possible item score (usually -1.0) when- he or she
eliminates only the correct answer. If neither one of these
two extremne conditions prevail, then the student gets an
intermediate score that is determined according to a specific
scoring rule. Thus, elimination scoring provides some
information about the relative attractiveness of each alter-
native; but, for example, if a student eliminates two alter-
natives, we do not know whether or not the student feels
more uncertain about one alternative than about the other.

Decision-Theoretic Testiqg% In decisior-theoretic
testing a student responds to a test item by .providing
reported (observed) probabilities for ‘each alternative for
the item, such that the reported (observed) probabilities
sum to unitv. Although there are a number of ways an item
can be scored in a decision-theoretic testing framework, the
scoring system employed by DEC-TEST is the logarithmic

1What we refer to as 'decision-theoretic testing" has
been called, among other things, "confidence testing,"
"valid confidence testing," and "admissible probability
measurement." Echternacht (1972) and Savage (1971) provide
reviews of relevant literature concerning this topic.
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scoring system. This system, as described in detail by
Shuford et al. (1966), has a number of useful properties.
One such property is called the "reproducing" property,
which implies that a student will maximize his or her
expected score if and only if the student's reported
(observed) probabilities are identical to his or her
degree-of-belief (true) probabilities. For example, if
a student's degree-of-belief (true) probabilities for a
three-alternative item are 0.50, 0.25, and 0.25, respec-
tively, then the student will maximize his or her
expected score only if he or she responds with reported
(observed) probabilities of 0.50, 0.25, and 0.25, respec-
tively.

According to Savage (1971):

Proper scoring rules hold forth promise as more
sophisticated ways of administering multiple-choice
tests in certain educational situations. The student
is invited not merely to choose one [answer] (or
possibly none) but to show in some way how his opinion
is distributed over the [answers], subject to a proper
scoring rule or a rough facsimile thereof.

Though requiring more student time per item, these
methods should result in more discrimination per item
than ordinary multiple-choice tests, with a possible
net gain. Also, they seem to open a wealth of cppor-
tunities for the educational experimenter.

Reasons for Programming DEC-TEST

One of the principal reasons why the author undertook
to program DEC-TEST was to examine each of the three
s;orlng systems discussed above, especially with reupect
to their differential usefulness for item analysis in both
norm-refernced and criterion-referenced situations. 1In
order to do this DEC-TEST accepts decision-theoretic test
data and estimates how a student would respond under
elimination testing and classical testing rules. DEC-TEST
can then perform an item analysis for each item for each
type of testing procedure.

Other resons that motivated the author to program
DEC-TEST include: (a) a desire to provide the capability
of obtaining a detailed analysis of student and item
performance under decision-theoretic testing, (b) a desire
to provide the capability of comparlng estimates of relia-
bility for the three types of .esting procedures discussed
above, and (c) a desire to provide the capability of
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examining a number of different issues concerning the
use of decision-theoretic testing as a tool for
measurement and evaluation.

Features of DEC-TEST

DEC-TEST is a computer program for Decision-Theoretic
Testing and the Analysis of Item Data. DEC-TEST was
programmed using the FORTRAN IV, Level G, compiler on the
IBM-370/155 computer at the State University of New York
at Stony Brook.

DEC-TEST can accept any one of five dif rent kinds of
input, and it can produce as many as forty fo.r different
outputs. Both students and items can be identified alpha-
numerically, student identifications can be sorted, missing
data features are available, items can be weighted, and
items can have 2-5 alternatives. Included in the different
kinds of possible output are: (a) listings of control cards,
input data, and observed probabilities, {t) 102 variables
for each student (calculated, printed and/or punched),

(c) sophisticated item analysis routines for decision-
theoretic, elimination, and classical testing, (d) eight
different rosters of student item scores (calculated, printed,
and/or punched), and (e) eight different kinds of reliability
analyses plus a summary of all reliability apalve<es,

We caution the user of DEC-TEST in that many of the
scores calculated and outputs provided are of very recent
origin and require further study before their usefulness
and/or validity will have been demonstrated.

Using this Manual

This manual is not intended to provide a completely
detailed description of decision-theoretic testing. Many
statements are made without an acssociated proof, and many
parts of this manual assume some familiarity with decision=-
theoreiic testing, classical test theory, statistics, and/or
intermediate algebra. This manual is intended to be
technically accurate, but technical accuracy sometimes
militates against simple explanations.

For the most part, knowledge of FORTRAN IV is not
requi. 2d for running DEC-TEST. An exception to this
general rule occurs in the definition of object-time format
statements (see Sections II and III). Also, some know-
ledge of the IBM Job Control Language (JCL) is required
(see Section VI).
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Terminology and notation with regard to decision-
theoretic testing, at the present time, have not been
standardized. For example, "true confidences" or '"true
probabilities," as used in this manual, have been called
elsewhere "degree-of-belief probabilities," "state proba-
bilities," "internalized probabilities,”" and "personal
probabilities'"; "observed probabilities” have been called
elsewhere "reported probabilities" and "assigned proba-
oilities." Whether or not the terminology and notation
used here represents the "best" choice is open to question;
however, it is the author's intention that the terminology
and notation used in' this manual be consistent. One slight
inconsistency known to the author is that the word "student”
is used interchangeably with "subject."

Acknowledgements

The author would like tou give special thanks to
DR. Emir Shuford, who is currently employed by the Rand
Corporation. Dr. Shuford has spent a considerable amount
of time discussing decision-theoretic testing with the
author, and Dr. Shuford is responsible in whole or in
part for much of the theoretical work that forms the basis
for the student variables that are calculated Ly DEC-TEST.

The author would also like to express his gratitude
to Dr. David McMullen of the State University of New York
at Stony Brook. Dr. McMullen has provided the author with
many constructive criticisms of DEC-TEST from a user's
viewpoint. For the most part, these criticisms have Leen
taken into account in the current version of DEC-TEST.

Any errors in this manual or in DEC-TEST itself are

totally the fault of the author, and should not be attri-
buted to either of the above-mentioned persons.

Sample Input and Output

Sample input and output can be obtained from the
author by writing to him at the following address:

Dr. Robert L. Brennan
Department of Education
SUNY at Stony Brook

Stony Brook, New York 11790

The author will also provide a source deck upon request,
at a fee to cover cost of punching deck, handling and
shipping.
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I. Introduction to DEC-TEST and
Decisicn-Theoretic Testing

In the following paragraphs of this section, we
provide an introduction to the subject of decision-
theoretic testing, which allows us to establish a nota-
tional scheme for subsequent sections. Also, we intro-
duce the user to fundamental student test scores reported
by DET=-TEST. Finally, we discuss different kinds of item
scores based upon decision-theoretic scoring, elimination
scoring, and classical scoring.

Section V of this manual may be considered as a
continuation of Section I, in that Section V provides a
discussion of, and formulas for, all of the 102
Individual Subject Scores reported by DEC-TEST. Thus,
some users may find it beneficial to read Section V
immediately after Section I.

Logarithmic Scoring System used by DEC-TEST

In decision-theoretic testing, the student assesses
the "confidence" he or she has in the correctnéss of each
of the alternatives for each item and expresses this
"confidence" (directly or indirectly) in terms of proba-
bilities. Let

his observed probability for

1J  student h ¢(h =1, 2, ..., N), for

item i (1 ¢£#1, 2, ..., K), fer
alternative j (j =1, 2, ..., ni), where

P

N

number of students who took test,

K = number c© items on test, and

]

n. number of alternatives for item i,
3 (2 <= ni <=z §).

Note that, in DEC-TEST, the number of alternatives for an
item must be 2, 3, 4 cr 5. Now, it can be shown *hat if
a linear scoring system (e.g., sum of probabilit.-=s3
associated with correct answer or a linear function of
this sum) were used, then it would be in a student's best
interest to use probabilities of 1.0 and 0.0, only,
regardless of the student's "true confidence" in each of
the alternatives. By "best interest" we mean that the
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student would, in the long run, maximize his or her score,
given his or heﬂ actual knowledgg of the answers to the
test items., Thus, & linear scoring system would motivate a
student to guess.

In decision-theoretic testing we seek (as one of our
goals) the elimination of guessing by defining a scoring
system such that it is in the student's best interest to
respond with probabilities that are isomorphic with the
student's true confidence in each of the alternatives to
every item. Shuford et al. (1966 ) have shown that, to
fulfill these requirements, one can use a logarithmic
scoring function defined as:

SIS A
Lhi

A; log Phi* + B, , where

log score for student i,

log = 1og10,
Ai’ Bl = parameters for log scoring function
(discussed below and in Section III --
Third Input Card), and
Phi* = observed probability associated with

correct answer (j = #*) on item i for
student h.

Actually, L, . has a lower limit equal to -« when P, .,

0.0. Therefore, we truncate the function at a convenient
point Ci’ 0.0 <Ci< 1.0, such that the lowest porsible

value for Lhi is

Lhi = Ai log Ci + Bi .
Now, B. is actually the hlghest possible value of Lh
so the range of Lh is

Ai log Ci .

DEC-TEST allows the user to specify as many different
sets of values for Ai’ Bi’ and Ci ac there are different

item types. An item type is defined as the number of alter-
natives an item has. Thus, for example, if a test is
composed of two and three alternative items, then the number
of different item types is two, and two (possibly different)
sets of values for Ai’ Bl, and C may be specified.

o "'owever, in this section, for lllustratlve purposes, we
[R\(:xll use A = 50, Bi = 100, and C = 0.01 for all items, i,




regardless of the number of alternatives. The scoring
function we will use is, thus,

Lhi =‘50 log Phi* + 100

with a truncation value (Iowest acceptable value of Phi*)
of 0.01, and a range of 100 "points" for each item.

Consider the item parameters and observed probabilities
for student h in Table A-l. Note that w. is the weight for
item i, and recall that * indicates the &orrect alternative.
The log scores, Lhi’ for each of the items are given in
Table A=2. The weighted sum of these scores is

K

Lows Ly

iz=1

2 L,

(1)€100) + (1)(3E) + °** + (2)(95)

810,

where "+" indicates "sum." The weighted average of the
log scores is -

K
(3) Lh. Lh+ / E W,

i=1 *
= 810/10
= 81,
where "." indicates "average."

Now, it can also be shown that:

K

(4) Ly, = Ai log 1[.H P

< K
4 hi,,,EXP(wi)]E)(}'*‘(l/.)_: w;)} + B,
i=1 i=1

where '"LXP" means "exponential"; i.e., L is the log
score thet results when the geometric ' mean cf the P
(terms within braces in (&), above) replaces P, ., in
(1), above. TFor out illustrative data, the 1
geometric mean is:

hi#

[¢1.000Y¢0.05)% «++ (0.40)2(0.80)27 %
EXPL1/(L + 1 + ¢« + 2 + 2)]



TABLE A-1

Illustrative Data:
Observed and Adjusted Probabilities

Item Parameters Obs, Probs. Adj. Probs.

1 omg W * |Pnyy Prio Phis Pyt Puia ﬁhi}
1 2 1 1 [1.00 0,01 |0.79 0.14

2 2 1 1 0.05 0.95 0.17 0.76

3 2 1 1 |0.60 0,40 0.53 0.40"

by 2 1 1 |0.45 0.55 0.43 0450

5 2 1 1 |0.50 0,50 0.47 0u47

6 3 1 1 [0.20 0,40 0.40 |0.27 0e40 0.40
9 3 2 1 |0,40 0,30 0.30 | 0.40 0.33 0.33
8 3 2 1 |0.80 0,20 0,01 |0.66 0.27 0.14

v
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(0.00013824)EXP(0.1)

0.u411

L, and the geometric mean (sometimes transformed

linearly) are probably the two most common scores for
decision-theoretic testing.

Clarification. In the foregoing discussion of the
logarithmic scoring system, we assumed that a student
responded with, what we call here, "observed probabilities."
Actually, DEC-TEST allows the user to employ any one of
five different kinds of input, which are first converted
to "original probabilities," Rhi" and then converted to
observed probabilities P_... )" These conversion proce-
dures are discussed latePlin detail. Here we merely note
that the task of converting input to original probabilities
involves straightforward cransformations, whereas the task
of converting original to observed probabilities is one of
resolving inconsistencies. A typical inconsistency results
when the sum of the original probabilities does not equal
unity. In this case, if the discrepancy is big enough
(as defined by the user via the DCT parameter -- see
Section III), the user can perform either one of two dif-
ferent types of normalization procedures (see NORM para-
meter in Section III) in order to produce the observed
probabilities. The careful reader probably noted that
for items numbered 1 and 8 in the illustrative data, the
sum of the observed prcbabilities does not equal unity;
however, the observed probabilities reported in Table A-l
ar. legitimate results given one type of normalization
procedure available to the user of DEC-TEST.

Realism Line and Adjusted Probabilities

One obvious question when using decision-theoretic
testing is, "To what extent is a student being realistic
in the assignment of his or her probabilities?" If a
student is totally realistic, then, for each of the pro-~
babilities he or she uses, the proportion of times each
probability is correct will equal the probability itself.
Graphically, as indicated by the solid line in Figure A-1,
this implies that the Ideal “ine (meaning ideal realism)
has a slope of 1.0 and an intercept of 0.0 . To the extent
that this is not true, then the student is unrealistic,
to . ome degree.



TABLE A-3

Illustrative Data:
Proportion of Times that Distinct

Observed Probability Values are Correct

Observed Weighted Number of Times Proportion of

Probabiiity Observed Probability is: Times PhiJ
Phij Used Correct Is Correct
1.00 ) 1 1,00
0.95 ) o . 0,00
0.80 2 2 1.00
0.60 1 1 1.00
0.55 ‘ 1 0 .00
0.50 2 1 0,50
0.45 1 1 1,00
0.40 5 2 0.40
0.30 b 0 0.00
0.20 3 1 1033
0,05 1 1 1,00

v 0.01 3 0] 0.00
Totals 25 10




FIGURE A~1

Illustrative Data
Ideal Line and Realism Line
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Viewing our observed probabilities as indicated in
Table A-3, we can plot the points in Figure A-l. Now,
using least squares analysis to obtain a best-fitting
straight line for these points, we obtain the Realism
Line in Figure A-1, which has a slope of 0.656 and an
intercept of 0.138 . (Formulas for the slope and inter-
cept are provided in Section V.) Clearly, student h is
somewhat unrealistic; in fact, student h is somewhat over-
confident. (Some thought will convince the user that
whenever the slope of the Realism Line is less than 1.0,
the student is "over-confident." See Section V for other
indicator's of over- ard under-confidence.)

Now, if the student had been more realistic, th
student's observed probabilities would have been less
extreme. For example, from the equation for the Kealism
Line, we note that, 0.138 + 0.656(0.80) = 0.66, which
can be interpreted as meaning that the student would have
been more realistic if he or she used 0.66 in place of
0.80. These new probabilities are called "adjusted
probabilities" and denoted

= +
(5) phij ap Bhphij , where
a, = intercept of Realism Line for student h,
) and
Bh = slope of Realism Line for student h.1

The set of adjusted probabilities for our illustrative
data is provided in Table A-1 .

Now, using (5), above, it can be shown that:

) 2 niA . )
(6 P.. = I P, ..
hi+ j=1 hij
= ng%y By
1

We do, however, in practice impose two constraints
on (5); namely, if

A A
Phij < Ci » we set Phij = Ci , and if
A A

Phij > 1.0, we Set Phij - 1.0 3
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If all items on a test have the same number of alternatives,
then the sum represented by (6), above, wil] equal 1.0

for all items and for all students who took the test.
However, for our illustrative data we have both two- and
three- alternative items; therefore, the sum of the adjusted
probabilities for any given item is not 1.0 . In fact,

for this da*a,

A

phi+ = 0.93 for items with two alternatives, and
A . . . N

phi+ = 1.07 for items with three alternatives.

Now, recall that the use of the log scoring function
enables a student to maximize his or her score if the
student 1s realistic. Since the adjusted probabilities
are '"more realistic" than the observed probabilities, it
follows that, if

A
Phi* replaces P .,

in (1), then, fer a reasonably large number of items,

A

L, (weighted mean of :djusted log scores) should exceead
bi e - A

Lh (weighted mean of observed log scores). The Lhi

scores are found in Table A=2, and their weighted mean
A

Lh is about 82. Thus, by being more realistic, student
h could increase his or her average log score by

approximately 82 - 81 =1 "point."l

Taking the geometric mean of the Shi* and using it
in (1) gives approximately 0.44. Thus, the difference
is geometric mean probability scores is approximately
O.44 - 0.41 = 0.03. Note that differences of 1 "point"
and 0.03 are relatively small; yet, the difference in
slopes between the Tdeal Line and the Realism Line 1is
reasonably large (0.344). This discrepancy demonstrates
the need for cauticn in over-ig@@rpreting the meaning
of differences between sliopes,#specially for very small
amounts of data.

lAs indicated previously, the sum of the adjusted
probabilities for an item is not necessarily equal to 1.0
Therefore, adjusted log scores, based upon adjusted pro-
bability scores, are somewhat biased when not all items in
a test have the same number of alternatives. However, in
the author's experience, any bias that exists in

A A . .
Ly, or Lh. 1s very slight, for most data.
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Ttem Scores Computed by DEC-TEST

We have discussed above four different scores for
item i for student h which are computed by DEC-TEST:

Phi* = Phi = observed probebility associated
wlth correct answer,

Lpjw ° Ly = observed log score (associated
with correct answer),

Prsw ® Py ° adjusted probability associated
with correct answer, and

Lpge = Ly; = adjusted log score (associated

with correct answer).

Note that, throughcut this manual, we use "A" *t¢ indicate
that a variable makes use of adjusted probabilities.

We will now consider six other item scores g:nerated
by DEC-TEST. '

Perceived Entropy and Perceived Information. One of
the distinct advantages of decision-theoretic testing is
that the availability of probabilities associated with
each alternatove for an item allows us to interpret
student respcnses in terms of information theoretic
principles (see, for example, Shannon & Weaver, 1949). Thus,
perceived entropy for item i for shudent h can be defined
as:

i

~ 3

(7) ENhi = “j:l Phij 1082 P

hij

Note that a gcod translation of "entropy" for our purposes
is "uncertainty." Now, since the sum of observed proba-
bilities for an item should equal unity, the maximum pos-
sible amount of perceived information is:

(8) MIv. = 10g2 n. o,

which implies that perceived information for item i is
given by:

(9) Ihi = MIhi - ENhi
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Using Table A.l, the user can verify the values for
perceived entropy and perceived information given in
Table A 2. Note that Ihi = 0.0 when all observed proba-
bilities equal l/ni (See, for example, Item No. 8.)

Actual Entropy and Actual Inrormation. Using adjusted
probabilities we define actual = entropy in a manner
arnalogous to that used to define perceived entropy; namely,

A nl A
(10) EN,. = -~ L P

7
hi =1

nij 1782 Phij

Now, in order to define actual information, we need
to know the maximum possible amount of actual information,
which is, in general,

A
(11) MI = -(nja, + Bh)[logz(niah + Bh) - log{ni)]

hi h
in fact, (11) reduces to (8) when all items have the same
number of alternatives, in which case the sum of the
adjusted probabilities for any item equals unity.

Using (10) and (11), actual information is defined as:

N A N
(12> Ihi = MIhi - LNhi

Using Table A-1, the user can verify the values for
actual entropy and actual information given in Table A-2.
Note that, for this data:

.S

MIhi = 1,027 for items with two alterr.atives, and
A N . .

MIhi = 1.59]1 for items with three alternatives.

Elimination Scores. Coombs et al. (1956) suggest
a procedure for scoring 2 test based upon considering the
daiternatives tial a siudaiit eliminates, i.e., judges to be
incorrect. For this scoring system, a student receives
l/\ni - 1) points for each incorrect alterrnative

1Even formula (11) is apt to be somewhat inaccurate
in that we never allow an adjusted probability to be less
that the truncation value for the log scoring function, and
we never allow an adjusted probability to be greater than
unity. However, any bias in (11) is usually very slight.
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eliminated and loses 1.0 point for eliminating a correct
alternative; thus, an unweighted item score falls between
-1.0 and 1.0

Now, using the observed probabilities for item i,
one can estimate a student's elimination score for
item i, which we designate as E ;o

There is, however, one problem in this estimation
procedure, which can be illustrated by considering the
observed probabilities for Item No. 4,

- [ 4 -

Phul = 0.45 and Phu? = 0.55 ,
in the illustrative data in Table A.l. If student h had
taken this item under elimination scoring rules, would
student h eliminate only alternative-1l, both alternatives,
or neither alternative? Actually, if student h eliminated
both alternatives or neither alternative, the elimination
score for the item would be the same, nemely, 0.0
However, whether or not student h will eliminate alter-
native-1 depends upon whether or not, for elimination
scoring purposes, student h would consider probability
differences of 0.55 - 0.45 = 0.10 meaningful and sigri-
ficant.

Thus, in order to estimate an elimination score from
the observed probabilities for an item, the user of
DEC-TEST must first assign a value to

RETO = tolerance for elimination scoring.

This single value for RET0O is used by DEC-TEST to

estimate elimination scores for all items, for all students.
Letting PMAX be the magnitude of the largest observed
probability for item i, for student h,, Ehi is determined

by applying the following algorithm to each of the n.
alternatives of item i for student h:

(a) If (P ;. + RETO - PMAX) >= 0.0 , add 0.0 ;

(b) If (Phjj + RETO - PMAX) < 0.0 and j = %,
subtract 1.0 ; or

(c) If (Phij + RFETO - PMAX) < 0.0 and j # %,
add 1/(ni - 1).

Note that (b) and (c¢) indicate eliminated alternatives.
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For example, if RETO = 0.10, then student h would not elim-
inate any of the probabilities for Item No. 4, resulting

in Ehu = 0.0 . See Table A=2 for other examples. :

Classical Scores. For the classical scoring system,
the student 1s forced to pick one and only one alternative.
Using the observed probabilities, we can estimate a
student's item score for the classical system. The
procedure is as follows: if item i has & (R <= n,)
highest probabilities, one of which is associated with
the correct answer, then the classical unweighted item
score for student h is

C

ni 1/% ; otherwise,

C

hi n.o

For example, since, for Item No. 5, both observed proba-
bilities are 0.50 (one of which is obviously associated with
the correct answer , since the item has only two alterna-
tives), C = 1/2 = 0.50; i.e., if forced to pick only

one alterggtive, student h has a 50-50 chance of pickirg
the correct answer and getting 1.0 point. Note that

Chs = 0.0 , since neither of the two highest probabilities

15 associated with the correct answer.
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II. Summary of Contiol Cards
and Student Data

The control cards and student data constitute the
input to DEC-TEST. All control cards except the Item Type
Key, Answer Key, and Item Cards must be on logical unit
LUCC, which is specified in the main-line program of DEC~-
TEST. Usually, LUCC = 5, since most installations use
logical unit 5 for reading punched 80-column cards (the
usual medium for control cards) in FORTRAN; however. this
value can be altered (see Sectior VI).

No knowledge of FORTRAN 1is necessary for setting up
the control cards except for those control cards that are
object=time formats,

For most of the control cards, the following information
is provided: (a) data field (card columns), (b) variable
identification, and (c) a brief description of the variable
and its possible values. '

Unless othoerwise specified in the description of the
variable, variables beginning with I, J, K, L, M, or N
are integers, and other variables are real variables. The
values of integor varliables should be right=justified inte-
gers without any decimal point., The values of real variables
should be (a) right justified integers or (b) decimal numbers
including the decimal point. Technically, decimal numbers
need not be right-justified, but it is usually desirable to
right-justify them anyway. When A-format is specified (see
Fun(5) and JT(i) in the First Input Card and the Item Cards,
respectively), any alphabetic or numeric (alphanumeric)
character may be used.

Note that, for most of the control cards, columns 1-10
are not used by DEC~-TEST. For such control cards, these
columns may be employed by the user for card identification.
Often, descriptions of variables in the following cards end

‘" wath "(0,1)". In these cases, the possible values for the
variable are "O" meaning '"no" or "absent" and "1" meaning
"yes'" or "present."

The user is cautioned that for integer and real variables,
FORTRAN interprets blaniks as "O" and "0,0", respectively.
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First Input Card (required)

Column Variable Description

11-15 RUN(5) Five character run identifi-
cation (A-format)

16=20 K Number of items

21=25 N Number of students (stucent
records)

0 = until end ot file

26=30 INC No. of column: ior student
identification (0= INC & 24)
O = no student identifications

31=-35 INCS No, of columns for sort
(0= INCS = INC = 24)
O = no sort

36-40 IBGS First column for sort
(1f INC # O and INCS £ O,
1 £ IBGS = INC € 24 and
IBGS + INCS - 1 = INC)

41=45 IXTRA Additional student variable (0,1)
L6=55 XMS Missing data code
56=60 MSD Technique for handling missing

data for an item
0 = alternatives for missing
item transformed to
observed probabilities
of 1/no. of alternatives
1 = skip item

61=65 IOTH Number of object=-time format
cards for Heading (1 = IOTH £ 2)

66-70 I0TD Number of object-time format
cards for Student Data Input
(1 := IOTD = 10)

71=75 INVAR Number of student veriables on
Second Input Card(s)
0 = ten default student
variables
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(2) Second Input Card (required)

Columnsg Variable Description

11=15 IPT Kind of student data used
. as input
1 = probabilities
100 X probabilities
star method
log scores
log scores in which,
for all items,
Ay = 590, Bi = 100,

Cy = 0,01, and scores
of 100 -are input as 99

AN E—g VN V)
nnnn

16=25 DCT Tolerance for decisicn-
theoretic testiag

26=30 NORM Normalization procedure

0 = no normalizaticn

1 = normalize over all
probabllities for
item, except those
equal to truncation
value

2 = normalize over all
probabilities

56=60 LUCD Lozical unit for reading
Item Cards or Item Keys

61=65 LUSD Logical unit - For reading
St'dent Data Input

66=70 LUPT Primary logical unit for
printing :

71=75 LUPT2 Secondary logical unit
for printing

76~80 LUPC Logical unit for punching
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(3) Third Input Card (required)

Cclumns Va-iable Description

16-20  AB(32)  Hieh ocore } o
21=27 AB(2, 3) Truncation valuej &alternatives
28=-32 AB(3,1) Low score

o R4y Eean L) S
45=49 AB(4,1) Low score four

T L O
62=66 AB(?,I) Low score five

g BEE En L) M

Note: If scoring function to be used is such that
log scrre = 0.0 when probability associated
with cu.rect answer is 1/no. of alternatives,
then AB(ni,B) may be left blank and will be

automatically calculated by DEC-TEST.

(4) Item Analysis Definition Card =-- Decision-Theoretic
Scoring (required)

Columns Vériable Description
11=15 IDCV Criterion variable number
16=-20 IDGPr Groupting parameter

1 percent of subjects

2 = score range
21-30 RDL(1) LIMIT(1) Y Low grou
31=40 RDL(2) LIMIT(2) P} Middle gp
. 41-50 RDL(3) LIMIT(3) ) yioh gp
' 51=60 RDL(4) LIMIT(4)
iti - Scorin
(5) Item Analysis Definition Card Elimination g
Zrequired§
Columns Variable Description
11=15 IELV Criterion variable number
16=20 IEGP Groupting parameter

{1 = percent of subjects
2 = Bcore range
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Columns Variable Description

21=30 REL§ 1) LIMIT(1)
71-40 REL(2) LIMIT(E)} Low 5’°“P}Middle
4150 REL(3) LIMIT(})} High g &p
51=-60 REL(4) LIMIT(4)J "-&1 8P
61=70 'RETO Tolerance for elimination
scoring
(6) Item Analysis Definition Card -- Classical Scoring
requIreE§
Columns Variable Description
11-15 ICLV Criterion variable number
16=20 ICGP Grouping parameter
' = percent uf subjects
2 = score range
21=30 RCL(1) LIMIT(1)
31-40 RCL(2) LIMIT(Z)} Low group Middle
41-50 RCL( 3) LIMIT(})} High group Ep
51=60 RCL(4) LIMIT(Y)
(7) First Qutput Card (required) -
Columns Variable Description
11=12 I8(1) Print input
0 = no
1 = long version
2 = short version
13=13 Ip(2) Print and/or punch observed
. , probabilities
O = no .
1 = print long version
2 = print short version
3 = print long version
and punch all observed
‘o probabilities
4 = print short version and
punch all observcd
probabvilities
5 = punch all observed
provcavilities
15=16 I9(3) Print scores for each indi-

_ vidual subject (C,1)
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Columnsg Variable Description

17=18 I5(4) Print rosters of student
scores
0 = no

1! = print minimum (10,
INVAR) scores

punch all INVAR scores
both 1 and 2

2
3

19=20 18(9) Item analysis indices for
decision-theoretic scoring

0 = no

1 = using observed proba-
bilities and observed
log scores »
using adjusted proba-
bilities and adjustea
log scores
3 = both 1 and 2

(AV]
1]

21=22 I18(10) Item analysis indices for
elimination scoring (0,1)

23=24 Ig11) Item analysis indices for
classica. scoring_(0,1)

25=26 16(12) Roster of item scores using
observed probabilities
0 = no
1 print
2 punch
3 both print and punch
27=-28 18(13) eee using adjusted proba-
bilities (0,1,2, Or 3)
29=30 18(14) ees Using observed 1log
scores (0,1,2, Or 3)
31=32 19(15) ees using adjusted log
scores (0,1,2, or 3)
33=-34 16(16) eee using elimination
scores (0,1,2, or 3}
35=36 1I9(17) ees using classical
scores (0,1,2,0r 3)
37-38 IM18) .es using perceived
information (0,1,2, or 3)
39-40 I8(19) ess using actual
information (0,1,2, or 3)
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U3=LYy
45=46
47-48
49-50
51=52
53= 54
55=56

57-58

(8) Second Qutput Card (required)

Columns

10-14
15-18
19-22
23-26
27-30
31-34
35-38
39-142
I 3=146
47=50
51=54
55-58
59-62
6366
67-70

Variable

Reliability analysis
u61n§ observed probabilities

probabilities (0,1)
eee using observed log
eee using adjusted log
eee using elimination
eee using classical

eee Using perceived
information (0,1)

information (0,1)

Variable Description
18(20)
(0,1

18(21) ese uUsing adjusted
ig(2a2)

scores (0,1)
1p(23)

scores (0,1)
1g(ay)

scores (0,1)
18(25)

scores (0,1)
12(26)
19(27) eees using actual
19(28)

Summary of reliability
analyses (including
Livingston's coefficient)
(0,1)

Description

oS
SR

PoNN PN PN PN N PN PN NN PN PN PN N PN
-t md e s =2 VD) O] NN IANTY -

NS AN = O ooy

N S N N N

TR

e R R Ry oy
[VIEIT Vs sAEaEmEEEsES
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These are subject variable
numbers used for the

rosters of subject scores;
DEC-TEST expects INVAR of
these variable numbers to

be specifieds If INVAR?> 15,
then use as many additional
cards as may be ‘required,
Subsequent cards follow the
same format as indicated here,
The first variable on the
first subsequent card would
be J@(16), the seconc J@P(17),
etc.



(9) Third OQutput Card (required, but blank cerd may be
used 1 28) = 0)

Columns

1=5

6~=10

11=15
16=20
21=25
26=30
21=35
36=40
L1=45
4,6=50
21=55
56=60
61=65
'66=70
71=75
76=80

Variable
'CTT(1,1)
CTT(1,2)
CTT(2,1)
CTT(2,2)
CTT(3,1)
CTT(3,2)
CTT(4,1)
CTT(4,2)
CTT(5,1)
CTT(5,2)
CTT(6,1)
CTT(6,2)
CTT(7,1)
CTT(7,2)
CTT(8,1)
CTT(8,2)

Description

First criterion score for
Livingston's Reliability
Coefficient when reliability
analysis uses Observed
probabilities

Second ... Observed probs,
First ... adjusted probs,
Second ... adjusted probs,
First ... Observed log scores
Second ... Observed log scores
First ... adjusted log scores
Second .., adjusted log scores
First (.. elimination scores
Second ... €limination scores
First ... classical scores
Second ... Classical scores
First ... perceived information
Second ,.. perceived info,
First ... actual information
Second ... actual_information

(10) Object-Time Format Card(s) for Heading (required)

(11)

(12)

Object-Time Format Card(s)
(re

for Subject Data Input

quired -- use A and F format)

Obiect=Time Format Card for Answer Key and Item

Type Key (r

required, but blaak card may

be used if

TCDS = 1 ~-- use I format)

(13) Item Keys wefinition Card (required)

Columns

11=15

16=20

21=25

Variable

ITCDS

ITKEY

ITSCO

Description

Item cards parameter
1 = one item card for
each itenm
2 answer key and item
type key only

Order of answer key and
item type key

1 = answer key first

2 = item type key first

Scores for each item (0,1)



Columns Variable Description

26=30 ITDEC Decision-theoretic item
analysis for each item
0 no

1 using observed probs,

2 using adjusted probs,.
3 both i and 2
31=35 ITFLI Elimination item analysis

for each item (0,1)

36~=40 ITCLA Classical item anelysis
for each item (0,1)

Note: If ITCDS = 1, then the remaining paramoters
are ignored by DEC-TEST and may be left blank,

(14, 15) Item Keys (required only if ITCDS = 2)

No keys should be present if ITCDS = T,
Both keys must conform to format specified
by user in (12).
Both keys must be on logicai urnit LUCD
Answer Key comes first if ITKEY = 1,
Item Type Key comes first if ITKEY = 2,
Answer Fay is IT(1,2), 1 = 1, 2, eee, Ko
Item Type Key if is IT(1,3), 1 = 1, 2, eee, K

1)

No item cards should be present if ITCDS = 2
Number of cards must equal K,

Carde must be on logical unit LUCD.

Each card must conform to the following format:

(16) Item Cards (required only if ITCDS

Columns Variable Description
7=-10 JT(1i) User-detined item identi-
fication (A=-format)
a 11=15 IT(41,2) Correct answer
(v £ 17(i,2) £ IT(4,3) )
16=-20 IT(i,3) liumber of alternatives
(2 v IT(i,}) < 5)
21=25 RIT(1) Item weight ~= if all items
have equcl weight, let
"RIM1) =1




Columns Variable Descri:.tion

26=30 IT(1,4) Split-halves key for
reliability analyses
0 skip item
1 first half
2 second half

31=35 IT(1,5) Unweighted student scores
on item (0,1)

36-~40 IT(4,6) Decision-thecretic item °
analysis
0] no
1 using observed probs.

dun

2 using adjusted probs.
3 = bothk 1 and 2
L1=45 IT(1,7) Eiimination scoring item

analysis (0,1)

4,6=50 IT(4,8) Classical scoring item
rnalysis (0,1)

(17) Student Data (required)

All data for one student constitute a student record
which must confcrm t2 the format specified by
the user in (11).

DEC-TEST expects N student records unless N = O,
in which cose all student data is read until
an end of file cude, /*, is encountered.

All student data must be or logical unit LUSD.

(18) Erg of File Card (required)

The laat card (or, preferably, the next to thc last
ca~d) in the deck input to DEC-TEST should contain
/* in coiumne 1 and 2, respectively, and blanks in
th remaining 78 columase.

(17) En. of Job Card (optional, but desirable)
Pr ferably, the last card in *he deck input to
DI*--TEST should contain // in columns 1 and 2,

roccectively, and blanks in the reinaining 78
C(..1mMNSe
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ITI. Detailed Description of Control Cards

The following pages provide a more detailed descrip-
tion of the parameters and variables defined by the user
by means of the control cards.

(1) First Input Card (required)

RUN(5): a five-character alphanumeric run identifi-
cation printed in the top left-hand corner of printed
output and punched in the first five columns of punched
output.

K: the number of items to be analyzed.

N: the number of student records input to DEC-TEST.
N is not the number of cards containing student data.
The Object-Time Format Card(s) for Subject Data Input
defines one student record. If N = 0., then all student
data 1s read until an end of file code 1is encountered,
and DEC-TEST counts the number of student records.

INC: +the number of columns for student identifica-
tion.” 0 € INC< 24. If INC = 0, then the s.udent data
contains no student identification information, and
DEC-TEST identifies students only according to a sequential
student number; i.e., the first record of student data
encountered is for student number 1, the second record for
student number 2, ..., 6 the last record encountered is for
student number N.

INCS: the number of columns used for sorting student
identifications. If student identifications are alphabetic
(e.g., names), the sort results in an alphabetization
for the number of columns speci. ied. 0 £ INCb € INC = C
if INCS = 0,then no sort is performed. If INC = 0, then
INCS is ignored and may be left blank by the user.

IBGS: the first column for sorting the student identi-
fications. Unless INC = 0 or INCS = 0, the columns sorted
are columns IBGS to (IBGS + INCS - 1) in the student identi-
fications. If INC = 0 or INCS = 0, then IBGS is 1ignored
and may be left blank by the user. If INC # 0 and INCS # O,
then 1€ IBGS < INC % 24 and IBGS + INCS - 1 % INC.

IXTRA: If IXTRA = 1, then the Object-Time Format
Card(s) for Subject Data Input specifies an additional
student variable input to DEC-TEST. This variable is
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available as a criterion variable for item analysis; it is
treated just like any other student variable. If IXTRA = 0,
then no additional student variable is included in the
student input data.

XMS and MSD: XMS is the code used to identify missing
data ~in the set of data input tc DEC-TEST. XMS may be any
real number consistent with the format specified by the
Object-Time Format Card(s) for Subject Data Input; however,
the user should be careful that XMS is not a valid score
value for input. For example, if XMS is left blank, XMS is
set to 0.0 by FORTRAN, but 0.0 may be a valid score value.
Note that we are using the word "score'" here to mean the
score for alternative j on item i for student h. MSD is the
technique for handling (processing) missing data for student
h for item i. If MSD = 0 and the score values input for each
of the n; alternatives for item i equal XMS, then {or the
student * under consideration, each alternative is assigned
an observed probability of

Phij = 1/mi s 3 =1, , . ng

If MSD = 1 and the values input for each of the n; alter-
natives for item i equal XMS, then, for the -
student under consideration, item i is skipped.

I0TH: the number of Object-Time Format Cards for
Heading. 1 < IOTHs 2 .

IOTD: the number of Object-Time Format Cards for
Subject Data Input. 1 < IOTD ¥ 10.

INVAX: the number of student variables on the Second
Output Card(s). O < INVARS 102. If INVAR = 0, then any
values on the Second Output Card are ignored;-furthermore,
stude  © variables numbered 6, 8, 62, 77. 72, 395, 90, 100,
99, and 10. are reported in the rosters of student scores
if I0(4) = 1 or 3 and/or punched out if I®(4) =2 or 3.

(2) Second Input Card (required)

IPT: the kind of student data used as inpu* to DEC-TEST.
The user can employ any one of five different kinds of input
to DEC-TEST. The first three kinds of input are probabilities
or linear transformations of probabilities, and the last twec
kinds are log scores. Note that DEC-TEST expects an input
score (perhaps XMS) for each alternative, for each item, for
each student. The kinds of input are as follows:

(a) If IPT = 1, then probabilities are used as input.

A-26




(b) If IPT =2, then prcbabilities multiplied by 100
are used as input.

(c) If IPT - 3, then the star method is used as input.
In one of the original articles on decision-theoretic
testing, de Finetti (1965) suggested that students could
be told to respond to an item by distributing five
stars or points over the set of alternatives for an item.
If, for example, an item has five alternatives, and a
student assigns one star or point to each alternative,
then the probabilities associated with each alternative
would be 0.20. DEC-TEST allows any total number of stars
or points .o be used for any item. That is, the total
number of stars or points may differ for each item and/or
for each student. DEC-TEST adds up the numbers (stars)
assigned to each alternative for each item by each student
and uses th.s total as the divisor for calculatinglproba—
bilities fo~ the item for the particular student.

(d) If IPT = 4, then log scores are used as input.

In general, the formula for a log score for student h
on alternative j of item 1 is

with a truncation value of Ci where

R, .. = original probability for student h,
hij for item i, for alternative j.

1

From a practical point of view, it is usually wise to
tell the students that they should use a single, instructor-
specified total number of points for all item$ on the test.
Such a procedure simplifies the task for the students. Then,
if any student uses a different total number of points for
any item, by intent or by mistake, DEC-TEST will routinely
make appropriate adjustments, as indicated above.

The author has found that students readily understand this
response strategy, Whereas they sometimes have difficulty
when asked to respond with log scores (IPT = 4 or 5)
directly. Also., the author has found that, wren the items
on a test have two, three, or four alternatives, twelve
points is a convenient number to use for distribution over
the alternatives of an item. Since twelve is divisible by
two, three, and four, students can always indicate 'no
knowledge" (i.e., a probability equal to 1/n;). Furthermore,
twelve stars allow for a reasonably dense range of proba-
bilities, and hence log scores.
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Note that the original probabilities (designated by an upper
case "R") are to be distinguished from the obtserved
probabilities (designated by an upper case "P"); for further
information about this distinction, see Section I and the
discussion of DCT . Also, note the distinction between the
log score for alternative j of item i, as given above, and
the log sccre for item i, as given in Section I; i.e., the
two log scores are equal only when j = * (the correct answer).
The scoring function given above is actually a family of
scoring functions, each member of which is determined once
Ai’ Bi’ and Ci are specified (see Third Input Card).

In DEC-TEST, these parameters must be the same for all.
items having the same number of alternatives.

(e) If IPT = 5, then the scores used as input are

log scores in which A. = 50, Bi = 100, and the truncation
value C. = 0.01 for all items, regardless of the number of
alternatives. Furthermore, a score of 100 is input as 99.

Using this procedure, each score for each alternative
occupies no more than two positions (e.g., two card columns).
Thus, this procedure is very useful when students yse a
SCoRule (a device for converting probabilities to log )
scores with Ai = 50, Bi = 100, and Ci = 0.01) to record log

scores which are then punched on cards for input to DEC-TEST.

DCT: tolerance for decision theoretic testing. The
first major computation performed by DEC-TEST involves
converting (if necessary) the input student data to original

probabilities Ryi3 - DNote that, for this conversion

procedure, any origipal probability less than the
truncation value Ci 1s automatically converted to Ci'

If we let Zh" be a generic input score for student h,
for item 1, for alternative j, then:

(a) If IPT = 1, Rhij = Zhij 5
(b) If IPT = 2, Rhij = Zhij/]OO 5
= 3, R . = .. o e . 3
(¢) If IPT * T his Zhlj/§7hlj 3
m o= 1 = N . - . 3
(da) If IPT 'ty Rhij 10.0 EXP[(Bl Zhl])/Ai] 3y and
(e) If IPT =

5, then whenever Zhij = 99 and all other

scores for item i, for student h are 0, change
the "99" to "100" and use the formula for Rhi'
in (d), above, letting A, = 50 and B, = J
100. 1 N

>
1
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Now, theoretically,

nj
I R .. =1.0
j=l hl:]
for each item, for each student. In practice, however,

this is not always true; for example, students sometimes
err in recording their responses, which results in the

sum of the original probabilities for an item not equaling
1.0. If such errors are slight, then there is little:cause
for concern; however, large errors can be troublesome and
usually indicate that a student is not following directions

for recording responses., If, for student h on item 1,
n,
i
AB .0 - L) >
S(1 jil Rhlj) DCT,

where ABS means "absolute value,'" then DEC-TEST calls this
a validity check for student h and allows the user to
perform a normalization procedure for the original
probabilities. TFor example, suppose that DCT = 0.04 and
the original probabilities are 0.00, 0.63, and 0.u4l. The
probability 0.00 is automatically converted to 0.01; then,
since

ABS{1.0 - (0.01 + 0.63 + 0.41)} = 0.05 > 0.0u,
a validity check occurs.

NORM: the normalization procedure for items when a
validity check occurs. Note that normalization is never
performed for an item unless a validity check for that
item occurs,

(a) If NORM = 0, then no normalization is performed
and the original probabilities are simply called the
observed probabilities.

(b) If NORM = 1, then normalization is performed over
those alternatives for the item that are greater than the
truncation value. Tor example, suppose C. = (.01,

DCT = 0.04, NCRM = 1, and the original * probabilities
for a three-alternative item are 0.01, 0.63, and 0.u41.

A validity check occurs (see discussion of DCT) and the
original probabilities are transformed to 0.01,

0.63/1.04 = 0.6058, and 0.41/1.04 = 0.3942 . These new
probabilities are called observed probabiljties. Note that
the sum of the observed probabilities not equal to 0.0l
(the truncation value) is exactly 1.0
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(c) If NORM = 2, then normalization is performed over
all alternatives, with the constraint that none of the
resulting observed probabilities is allowed to be less than
the truncation value C,. For example, if C, = 0.01, DCT =
0.04, NORM = 2, and ! the original 1 probabilities
for a three-alternative item are 0.01, 0.63, and 0.u41, °
then the observed probabkilities become 0.01,
(0.63)(0.99)/1.04 = 0.5997, and (0.41)(0.99)/1.04 = 0.3903
If, on the other hand, the original probabilitie: were
0.01, 0.55, and 0.42, then the observed probabilities would
be 0.01/0.98 = 0.0102, 0.55/0.98 = 0.5612, and
0.4 /0.98 = 0.4286 . Note that these new probaktilities are
called observed probabilities and they sum to exactly 1.0

LUCD: 1logical unit for reading item cards or item keys.

LUSD: 1logical unit for reading Student Data Input,
including student identifications and the additional
student variable, if present.

LUPT: primary logical unit for printing all output
except that printed on LUPT2.

LUPT2: secondary logical unit for printing, which is
used to print Individual Subject Scores and the Summary of
Reliability Analyses.

LUPC: 1logical unit for punched output. Output
designated as punched output can, of course, be written
on any medium (e.g., cards, tape, disc, or drum); however,
all "punched" records will be written as 80-column card
images.

(3) Third Input Card (required)

The third input card reads in values for a matrix
AB(ni,a), n, s 2,3,4, or 5 (number of alternatives for an

item) and a = 1,2, or 3 (parameters for log scoring function).
Recall that, in general,

= .. + B, .
Lhij Ai log Rhlj Bl

In terms of the matrix notation introduced above

Bi = AB(ni,2),
Ci = AB(ni,3), and
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From the last equation, it should be clear that

AB(ni,l) z Ai log Ci + Bi ;
i.e., the lovest score fcr the log scoring function for
item type 1 (here, items having the same number of alter-
natives have the same item type) is obtainec when Ry s
is set to the truncation value C.. Thus, once the 1]
user specifies the low score, hiéh score, and truncation
value, DEC-TEST has or can calculate the log scoring
function parameters A., B, and Ci‘ For example, if *

i
AB(ni,l) = 1.0,

AB(ni,2) = 100.0, and

AB(ni,3) = 0.01, then

Bi = 100.0, Ci = 0.01, and

Ai = -(100.0 - 0.0) log O.Ql = 50.0 .

If the scoring system for item type i is such that
Lhij = 0.0 when Rhij = Phij = l/ni, then AB(ni33) may be

left blank and will be calculated by DEC-TEST using the
formula:

AB(n.,3) = 10.0 EXP log| —
. AB(n,2) n;

Clearly, in this case, the lowest score should be negative.
For example, if

10.2 and AB(4,1) =" -~10, then

AB(4,2)
10.0 EXP[(20/10) log (1/4)] = 0.0625,

AB(4,3)

Au = -20 / log 0.0625 = 16.6096,

By

If the test being analyzed does not make use of items
having i alternatives, then AB(ni,l), AB(ni,Z), and
AB(ni,3) may be left blank.

1t

10, and Cu = 0.0625
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(4-6) Item Analysis Definition Cards (required)

There are three kinds o Item Analysis Definition
Cards. These cards define item analysis procedures when
items are scored according to decision-theoretic scoring
rules, elimination scoring rules, and classical scoring
rules, respectively. The parameters defined by each card
are identical in meaning, except for the inclusion of
RETO (tolerance for elimination scoring) in the card for
item analysis under elimination scoring rules.

Criterion variible. Any one of the 102 variables
described in Section V may be chosen, by number, as the
criterion variable for item analysis. The criterion
variable functions in a manner similar to total test score
in typical item analysis procedures. Variables numbered
77, 100, and 99 are common choices for decision-theoretic,
elimination, and classical item analyses, respectively.
Note that the "additional student variable" is available
as a criterion variable for item analyses.

Grouping and limits. In order to perform item analysec,
subjects must be assigned to groups in either one of two
ways. If the grouping parameter equals 1, the-first step
in the grouping procedure involves rank ordering students
on the criterion variable. Then, the lowest

100.0[LIMIT(2) - LIMIT(1)]%
of the students constitute the "lower" group, the next lowest
100.0[LIMIT(3) - LIMIT(2)]%

of the students constitute the "middle" group, and
the highest .

100.0[LIMIT{2) - LIMIT(3)1]%

constitute the "upper" group. For example, if LIMIT(1) =
0.00, LIMIT(2) = 0.33, LIMIT(3) = 0.67, and LIMIT(4) = 1.00,
then the lower group is the lowest 33% of the distribution,
the middle group is the next lowest (middle) 34% of the
distribution, and the upper group is the highest 33% of the
distribution of students.

If the grouping parameter equals 2, then letting a

generic score for student h be S,, the lower group consists
of all students for whom
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LIMIT(1) «= Sh < LIMIT(2),

the middle group consists of all students for whom

LIMIT(2) <= Sh < LIMIT(3),

and the upper group consists of all students for whom

LIMIT(3) <= Sh <z LIMIT(4).
Note that when the grouping parameter- equals 2, the limits
chosen must correspond to potential values of the criterion
variable if the grouping procedure is to have meaningful
results.

Whether the grouping parameter equals 1 or 2, any of
the three groups can often be eliminated by setting that
groups limits equal. Note, however, that if either the lower
group or the upper group contains no students, then several
f the item statistics usually reported cannot be calculated;
in such cases a sequence of #*'s is prlnted for the uncalcu-
latable statistics.

RETO. RETO is the tolerance for elimination scoring.
DEC-TEST nust always have a value for RETO. If the user
leaves RETO blank, then RETO is set to 0.0 automatically
by FORTRAN. See Section I for a consideration of the
function of RETO in elimination scoring. (Section I also
describes the procedure for classical scoring given the
observed probabilities.)

(7) First Output Card (required)

The First Output Card, as described in the Summary of
Control Cards and Student Data =- Section II, is for the
most part self-explanatory. Note, however, that™punch"
should be interpreted as "write" on some medium (e.g.,
cards, tape, disc, or drum) defined by the user. For
further, information see the opening paragraphs of Sect:ion
IV and the descriptions of each of the various outputs.

(8) Second Output Card (required)

The Second Output Card lists, by number, the student
variables to be printed and/or punched in the rosters of
student scores (Output Nos. 6 and 36 in Section IV, respec-
tively). The number of student variables expected by
DEC-TEST is specified by INVAR on the First Input Card.

A-33



If INVAR = 0, then the Second Output Card may be left
blank.

Note that 0 <= INVAR <=102, but only fif*teen subject
variables can fit on one card; thus, more than one card may
br required. Each required additional card follows the
same format as the original Second Output Card. Tor
example, if INVAR = 20, then two cards are required =-- one
containing the first fifteen subject variable ' numbers and
a subsequent card containing the last five subject variable
numbers in the first five fields. Also, note that the order
in which the subject variable numbers are specified is
immaterial.

Lf INVAR = 0, then, as a default, the subject variables
specified by DEC~TEST are numbers 6,8, 62, 77, 72, 95, 90,
100, 99, and 101. These variables will be punched out if
I® {(4) = 2 or 3 and/or they will be printed (with verbal
identifications as opposed to numerical iden+ifications)
if Ip(4) = 1 or 3.

If INVAR # 0, then all INVAR variables will be punche’
out if IO(4) = 2 or 3. If IP(4) = 1 or 3 and if INVAR ° 10,
only the first 10 subject variables specified will b< printed
in the rosters of subject scores. If IP(4) = 1 or 5 and
0 < INVAR <= 10, all subject variables specifiec¢ will be
printed.

{9) Third Output Card (required)

DEC-TEST allows the user to specify two criterion
scores for calculating Livingston's Reliability Coefficient
for each of the eight possible tynes of reliability
analyses available in DEC-TEST.

See Output No. 34 ("Summary of Reliability Analyses")
in Section IV for a discussion of Livingston's Reliability
Coefficient. This is the only output that provides
Livingston's Coefficients; these coefficients are not
contained in Output Nos. 25-32 ("Reliability Analyses").

Livingston's Coefficients will be printed (and,
therefore, two criterion scores are required) only if
I0(28) = 1 and the corresponding Reliability Analysis
(controlled by I®(20) to I8(27)) is requested. If IPB(28) = 0
and/or if I®(20) to I10(27) are all equal to 0, then the
Third Output Card may be left blank and will be ignored.

Note that if DEC-TEST expects a criterion score and the
user leaves such a score blank, then the criterion score is
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set to "0", which is ar acceptable value for calculating
Livingston's Reliability Coefficient.

(10) Object-Tinme Format Card(s) for Heading (required)

DFC-TEST expects IOTH (see First Input Card) Object-
Time format Cards for a Heading that is placed at the top
o€ each page of printed output. In order to have a heading
printed, the FORTRAN rules for object-time format statements
must be followed. At a minimum, this card should cortain
the characters (1H )- . This card (these cards) should
define only one line of print. :

(11) Object-Time Format Card(s) for Subject Data Input
(required)

DEC-TEST expects IOTD (see First Input Card) Object-
Time Format Caid(s) for describing a record of Subject
Data Input. All of the data for a particular subject
should be contained in one record, and FORTRAN rules for
object-time format statements should be followed.

The principles that should be followed in.specifying
this object-time format are:

(a) In general, the data ir a student record should
be ordered as follows: subject identification, respanses
for first item, responses for second item, ..., responses
for Kth item, additional student variable.

(b) If INC = 0, then no subject identification is
expected. If IXTRA = 0, then no additional student variable
is expected. (See First Input Card.)

(¢) Student identification information is specified
in A-format. The number of A-format characters must :qual
INC.

(d) Item responses and the additional student variable
(if present) are specified in F-format.

(e) Note that the format must take into account
responses for all alternatives to all items. For example,
if one has a 25-item test and each item has four alterna-
tives, then (25)(4) = 100 responses are expected for each
student; thus, the object-time format must specify 100
responses, not 25, and each student record must contain 100
responses.
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(12-16) Cards Providing Item Information (subset required)

These final control cards provide DEC-TEST with
information concerning the characteristics of each item
and the kinds cof analyses for each item desired by the
user. This information can be conveyed in two ways:
(a) a "long description" that provides this information
for each item individually or (b) a "short description" that
provides similar information for all items at once.

Long Description. When the user wants to specify
information for each item individually, then the user
should let ITCDS = 1 in the Item Keys Definition Card and
leave the remaining parameters on this card biank (if
specified, these parameters are ignored anyway); leave
blank the Otject-Time Format Card for Answer Key and Item
Type Key (if a format is specified, the format is ignored
anyway); not include an Item Type Key or an Answer Key --
no cards for these keys, not even blank ones; and provide
one Item Card for each of the K items. Each item card
allows the user to specify for each item:

(a) a four character alphanumeric identification of
the item that is printed on item analysis output. (A
sequential item number is always printed on such output,
whether or not the user specifies an alphanumeric item
identification.)

(b) the correct answer for the icem expressed as an
integer between "1" and the number of alternatives for
the item; i.e., 1 <=IT(i,2) <= IT(i,3). The ccrrect
answer must be specified for each item.

(c) the number of alternatives for the item expressed
as an integer between "2" and "5"; i.e., 2 <= IT(i,3) <= 5.
The nurber of alternatives must be specified for each item.

(d) the item weight which may be any real number.
If the item weight is set to '"0" or lef* blank, then, in
effect, the item under consideration is excluded in the
calculation of student scores.

(e) the split-halves parameter, which is used for
reliability analyses, only. If this parameter is "1" or
"2", then the item is placed in the first or second "half"
of thes test, respectively; +f this parameter is "0",
then the item is eliminated from consideration in reliability
analyses. Note that the number of items in the first and
second "halves" of the test need not be equal.
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(f) four parameters for controlling whether or not the
user desires each of the five possible analyses (or outputs)
provided by DEC-TEST for each item. Each of these analyses
(or outputs) is described in Section IV. ‘

Note that DEC-TEST expects item cards on logical unit
LUCD (se2e Second Input Card).

Short Description. The short description ig "short"
in that the K item cArus sre not required; however, cards
12-15 are required. :

The Object-Time Format Card for Answer Key and Item
Type: Key must be specified according to the FORTRAN rules
for object-time formats. The format should be specified
using I-format, not F-format.

ITCDS in the Item Keys Definition Card should be set
to "2", and the remaining parameters in the card must
be specified. ITKEY allows the user to specify which
comes first in the user's control cards =-- the Item Type
Key (ITKEY = 2) or the Answer Key (ITKEY = 1).
ITSCA, ITDEC, ITELI, and ITCLA are analogous to IT(i,5),
IT(i.6), IT(i,7), IT(i,8) in the Item Cards. For example,
if ITSC® = 1, then Output No. 8 (Unweighted Student Scores

on Item -- see Section IV) is printed for each and every
item; the same result would occur if the long description
were used and IT(i,5) = 1 for all K items.

The Item Type Key and the Answer Key are placed in
the control card deck in the order specified by ITKEY.
They both must conform to the Object-Time Format Card for
Answer Key and Item Type Key, and both keys must be on
logical unit LUCD (see Second Input Card).

Note that the short description dees not allow the

user to define alphanumeric item identifications, item
weights, or split-halves. When the short description is
used, the orly item identification is a sequential item
number (i.e., the first item in a student record is labelled
item number 1, the second '+ item is labelled item number 2,

.., the last item is labelled item number XJ);' -all item
weights are set to "1.0"; and an odd-even split-halves is
automatically provided.
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Iv. Qutput

DEC-TEST provides 44 different kinds of output. .
In this section we provide a brief description of these
kinds of output in the order in which they are received
by the user. This section is intended to be used along
with sample output.

Note that Output Nos. 1-32 are printed on logical
unit LUPT, Qutput Nos. 33 and 34 are printed on logical
unit LUPT2, and Output Nos. 35-~44 are punched on logical
unit LUPC. Although we uce the words "print" and "punch",
the user controls the medium on which output is written.
DEC-TEST has been programmed so that outputs on LUPT and
LUPT2 occupy no more than 132 characters in width,and
outpute on LUPC are 80-column card images.

Each of the different kinds of punched output is
identified by a header card(s), and output printed on
LUPT is identified by a page number in the upper right-
hand corner. For all output, a sequence of *'s replacin}g
the value of some score or variable indicates that the
score or variable cannot be calculated for the particular
set of data being analyzed. For example, if a-variable
has a standard deviation of zero, the the correlation
between this variable and some other variable cannot be
calculated.

Also, note that all standard deviations and variances
reported are biased estimates.

In the following pages we provide an output number
(used only for the purposes of this manual), an output

title, and a description for each of the ul different kinds
of output generated by DEC-TEST.

(1) Title Page -- always printed.

(2) Control Cards =-- always printed

This is ar interpreted pseudo-listing of the control
cards input to DEC-TIST. No*e in particular that the
Item Type Key and Answer Key (used when ITCDS = 2) are not
printed in the manner in which they are submitted to
DEC-TEST. However, the information provided by these keys
is contained in the lines that begin "DATA FOR ITEM NO";
also, when ITCDS = 2, the other values on these lines of
printout are obtained from the Item Keys Definition Card
or assigned automatically by DEC-TEST.
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(3) Student Data: Input

This output is printed in its entirety if I®(1) = 1.
If I8(1) = 2, then only the first three and last three
student records are printed.

The total number of responses (in the gense of alter-
natives) for each student is:

Thus, for example, if there are 25 items each with four
alternatives, then the 100 responses made by each student
will be printed on nine lines (12 responses on the first
eight lines, and 4 responses on the last line). If

IXTRA = 1, then the additional student variable will be
the last value printed for each student.

The subject numbers reported are sequential subject
numbers reflecting the order of the student records in the
input data.

(4) Messages

This output is self explanatory. It is printed only
if one or more students skip all items or all but one item.

(5) Student Data: Observed Probabilities

This output is printed in its entirety if IG(2) = 1 or 3.
* If I8(2) = 2 or 4, then only the first three and last three
stucent records are printed. .

If the Messages output has occurred, then certain
subjects have been eliminated ard, therefore, do not appear
here. In this case, the number of students for whom proba-

' bilities are reported will be less than N, which is, techni-
cally, the number of student records input to DEC-TEST.
Since OQutput No. 5 constitutes the primary data matrix used
to derive all future outputs, subsequent use of N in most
outputs (exceptions are clear from the context of the
output) refers to the reduced number of students. Note also
that, if the Messages output occurs, the subject numbers
indicated in Output No. 5 usually will not correspond
exact%y with those indicated in Output No. 3 (Student Data:
Input).
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The probabilities reported have been normalized, if
a validity check occurred and normalization was requested.
If MSD = 1, and if a student skipped an item, then XMS
appears in place of an observed probability for each of the
alternatives for the item for that student. If MSD = 0 and
a student skipped item i, then 1/n. appears as the observed
probability for each of the alternatives for item i
for that student.

The listing of the observed probabilities corresponds
with the listing of Student Data Input (output No. 3),
except for the fact that Student Data Input also contains
the additiosnal student variable if IXTRA = 1.

(6) Roster of Student Raw Scores -- printed if I@(4) * 1 or 3

For information concerning the actual variables printed
out see Section III -- Second Output Card(s).

If a sort was requested, this output will reflect the
result of the sorting procedure. Subject numbers to the left
of the parentheses are the 'sorted subject numbers"; i.e.,
numbers that indicate students' positions in the sorted
roster. Subject numbers within parentheses are the
sequential subject numbers from Student Data Observed
Probabilities (Output No. 5).

(7) Roster of Student z-Scores =-- printed if I@(4) = 1 or 3

This output corresponds with Output No. 6. The scores
reported are non-normalized z-scores with a mean of 0.0
and a standard deviation of 1.0

(8) Unweighted Student Scores on Item i -- printed if
ITSCO = T or IT(1i,5) = 1

See Output No. 6 for a discussion of subject numbers.
See Section I for a discussion cf scores reported. Note
that, if MSD = 1, then the sample size reported includes
only thcse students who did not skip item i. This output
provides the raw data for Output Nos. 8-12. The symbol
"#" next to an alternative in Output Nos. 8-12 indicates
the coriect answer. Also, for these outputs, the first
alternative is labelled "A", the second "B", etc.; ’
the item numbers reported are sequential item numbers;
and beside the sequential item numbers, in parentheses,
are the user-defined item identifications, if any.
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(9) Item Analysis for Item No. i Using Decision-Theoretic
Scoring with Observed Probabilities -- printed iF
ITOEC = T or 3, or if IT({(i,8) = | or 3

This output is divided into four parts and uses the
data given in Output No. 8. The four parts are:

(a) Item Analysis Table. This is a three dimensional
frequency distribution iIn which each entry represents the
number of students in a particular group (lower, middle,
upper, or total -- see Section III, Item Analysis
Definition Cards) who responded with observed probabilities
in a particular interval, for a particular alternative.

Let Ni, é, Né, and N& be the number of subjects in

tne lower, middle, upper, a i total groups, respectively.
Now, the means and standard deviations L:low this table
are based upon the observed probabilities not classified
into intervals. Thus, for example, the mean observed
probability for students in group g on alternative j is:

Nl

1 g
P . F e r P . where -
(@3 T o h Pres
g
3 =1, 25 cuny ny alternatives for item i,

g =1, 2, 3, 4 groups, and
h =1, 2, ..., Né subjects in group g.
(b) Item Analysis Indices. The formulas for each of

the nine indices are given below. Here (and elsewhere in
this manual) j = * refers to the correct answer.

(1) Arithmetic mean item score using observed
probabilities:

AMP = P yu » O <= AMP <= 1.

(2) Difference discrimination index for arithmetic
means using observed probabilities:

DDAP = P (a4 - P_(1)a » -1 <= DDAP <= 1.
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(3) Geometric mean item score using observed proba-
bilities:

N'
U
GMP = [ g Ph(u)*l EXP(l/NQ) s 0 <= GMP <= 1,

h=1

(4) Difference discrimination index for geometric
means using observed probabilities:
!
N3
ppgp = {L nm P

)*J EXP(1/N})}
h=1

h(3

Ny
- {£h21 Ph(l)*] EXP(l/Ni)} R

where -1 <= DDGP <= 1,

(5) Correlational discrimination index using observed
probabilities (CDP): the Pearson product moment
correlation coefficient between observed proba-
bilities associated with the correct answer and
scores on the criterion variable.

(-1 <= CDP <= 1.)

(6) Average information (AVI): the arithmetic mean of
the perceived information for each student
reported in OQutput No. 8. (0 <= AVI <= log, ni)?

(7) Arithmetic mean item score using observed log

SCcores:
1 My
AML = ory [hil (3; log Ppoyye * Byl
y
= A; log GMi' + By
t
1 Hy
=z — I L .
' - h(u)¥*
NH h=1
=L (yya >
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where, in general,

Lh( Yo = log score for student h in group g
€7  for the correct answer to item i, and’
. + . = = .
Ai log C1 Bl <= AML < Bl

(8) Differnece discrimination index for arithmetic
means using observed log scores:

DDAL = [L (334 - L (1y41/(-A; log C.) ,

where the denominator is the range of the log
scoring function, and, therefore,
-1 <= DLCAL <= 1.

(9) Correlational discrimination index using
observed log scores (CDL): the Pearson product
moment correlation coefficient between obseérved
log scores associated with.the correct answer
and scores on the criterion variable.

(-1 <= CDL <= 1.)

(c) Pearson Product Moment Correlation Coefficients.
These are correlations between the probabilities
associated with all possible pairs of alternatives for
each of the four groups.

(d} Fre uency Distribution of Perceived Information.
Note that—?ﬁg—IlmJts of the class intervals for informa-
tion vary depending upon the number of alternatives that
the item has.

{10) Item Analysis for Item No. i Using Decision-Theoretic

Scoring with Adjusted Probabllltles -- printed If
ITDEC = 2 or 3, or if IT(i. ) 2 or 3

The format for this output is identical to that for
Output No. 9. For an explanation of Output No. 10,
merely make the fcllowing replacements in the explanation
for Output No. 8: "observed" becomes "adjusted";

~
"perceived" becomes "actual"; "P" becomes "P"; and "L"

A
becomes "L'".

(11) Item Analysis for Item No. Using Elimination Scoring
-- printed if %TEEI 1 or IT(I 7) = 1

This output is divided into three parts and uses the
data in OQutput No. 8. The three parts are:
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(a) Item Analysis Table. The table is self-explana-
tory, with the exception of average item score, "AVE IT
sC", for group g which is:

N'
Eg E h
w e
g h=1 h(g) , er

ASE
Eh( y = elimination score fer student h in
g group g (for item i)

g = 1,2,3,4 groups (lower, middle, upper,
and total, respectively), and

Né = number of students in group g.

(b) Item Analysis Indices. The formulas for each of
the four indices are given below.

(1) Average item score:
ASE = ASEu sy =1 <= ASE <= 1.

(2) Standard deviation of item scores: -

1
SDE = — [
Nd-l h

(3) Difference discrimination index:

t
T (ASE)?

Eh(u) - —'—- ] ’ SDE >= 0.
1 Nl+

nmMm 2

DDIE = (ASE.;J - ASEl)/2.0, -1 <= DDIE <= 1.

The denominator, 2.0, is the range of the
possible elimination scores (unweighted)
for an item.

(4) Correlational discrimination index (CDIE): the
Pearson product moment corrclation coefficient
between elimination scores and criterion
variable zcoyes for f*tern 1, (-1 <= CDIE <= 1.)

(c) Freguency bLictributici oi .11 Possible Combina-

tions of Eliminated Alternatives. This part of Output
No. 11 1s se.f-explanatory.
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(12) Item Analysis for Item No. i Using Classical Scoring
-- printed Xf ITCLA = 1l or IT(i,8) = I.

This output is divided into two parts and uses the .
data in Output No. 8. The two parts are:

(a) Item Analysis Table. This is, in essence, a
standard item analysis tabie. The presence of fractional
values can be explained through an example. Suppose that,
for a three-alternative item, a student's observed proba-
bilities are, in order, 0.40, 0.40, and 0.20. The student's
clascical score will be 0.50, 0.50, or 0.00 depending upon
whether the first, second, or third alternative is the
correct answer. Thus, 0.50 is added to the frequency counts
for the first and second alternatives in order to provide
our '"best guess" concerning the number of students who
would choose each alternative if students were forced to
pick one and only one alternative.

(b) Item Analysis Indices. Let us express the average
item score for students in group g as:

NV
1 g
ASCg = §7 hil Ch(g) s Where -
g

Ch(g) = classical score for student h in group g,

g =1, 2, 3, 4 groups (lower, middle, upper,
and total, respectively), and
Né = number of students in group g.

Thie formulas for the four indices are as follows:
(1) Average item score:
ASC = ASCu ’ 0 <= ASC <= 1.

(2) Standard deviation of item scores:

N (asc)?
SDC = |——T[ % C - — 1, sDC >z 0.
= NL'+
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(3) Difference discrimination index:

DDIC = ASC ASC s -1 <= DDIC <= 1,

3 1

(4) Correlational discrimination index (CDIC): the
Pearson product moment correlation coefficient
between classical scores and criterion scores
for item i. (-1 <= CDIC <= 1.)

(13) Item Analysis Indices for Decision-Theoretic Scoriné
Using Observed Probabilitles and Log Scores -- printed 1
IE(§§ = 1l or 3

Indices are printed for item i only if ITDEC = 1 or 3,
or if IT(i,6) = 1 or 3. See Output No. 9 for a description
of the indices reported. '

(14) Item Analysis Indices for Decision-Theoretic Scorin
Using Adjusted Frobabilities and Log Scores -- printed 1%
IZI§§ = 2 or 3 -

Indices are printed for item i only if ITDEC = 2 or 3,
or if IT(i,6) = 2 or 3. See Qutput No. 10 for a description
of the indices reported. -

(15) Item Analysis Indices for Elimination Scoring --
printed if 1I@(10) = 1

Indices are printed for item i only if ITELI = 1 or
IT(i,7) = 1. See Output No. 11 for a description of the
indices reported.

., (16) Item Analysis Indices for Classical Scoring --
printed if IE(ElS = 1

Indices are printed for item i only if ITCLA = 1 or
IT(i,8) = 1. See Output No. 12 for a description of the
indices reported.

(17-24) Rosters of Students by Weighted Item Scores

Output No. Data Used Printed if
17 Observed Probabilities If(12) = 1 or
18 Adjusted Probabilities IA(13) = 1 or
19 Observed Log Scores IB(14) =1 or
20 Adjusted Log Scores IP(15) = 1 or
21 Elimination Scores IA(16) = 1 or
22 Classical Scores I6(17) = 1 or
23 Perceived Information If(18) = 1 or

= 1 or

24 Actual Inofrmation I9(19)
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Note that these rosters report weighted item scores.
Formulas for calculating the unweighted components of

these scores are found in Section I. The unweighted scores
. A ~N B
are 2e51gnated as Phi*’ Ehi*’ Lhi*’ Lhi*’ Ehi’ Chi’ Ihi’

and Ihi, ﬁ:spectively. Their weéighted counterparts are

W Phl*
K, then unweighted scores and weighted scores are identical.

wiphi*’ etc. Clearly, if we = 1.0 for i = 1, 2, ...,

Ten scores are printed on each line. The first score
reported is for item number 1, the second score for item
number 2, etc. If MSD = 1 and an item was skipped by a
student, then 999.999 is printed to indicate missing data.
See Output No. 6 for a discussion of subject numbers.

(25-32) Reliability Analyses

Cutput No. Data Used Printed if
25 Observed Probabilities Ip(20) = 1
26 Adjusted Probabilities I9(21) =1
27 Observed Log Scores I0(22) =1
28 Adjusted Log Scores - If(23) =1
29 Elimination Scores I0(24) = 1
30 Classical Scores IP(25) = 1
31 Perceived Inofrmation If(26) = 1
32 Actual Inofrmation I9(27) = 1

Each of the above outputs provides a Hoyt Analysis of
Variance Reliability Analysis as well as a Split-Halves
Analysis. In addition, for Output Nos. 25 and 26, DEC-TEST
provides a 8plit Halves Analysis where the student score
equals the geometric mean of the pPObabllltleS associated
with correct answers.

If MSD = 1 and any item scores are missing (identified
as 999.999 in Output Nos. 17-24), then, for Output Nos.
25-32, all missing item scores are transformed to the item

scores that would result if Phij = l/ni . In effect, this

transformation has the same effect on Output Nos. 25-32
as setting MSD = 0 in the First Input Card.

In the following paragraphs, we explain the reliability

analysis output, in general, and provide selected formulas.
For these purposes let us define
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Xhi = unweighted generic item score for
student h on item i, where

h=1,2, ..., N and
izl, 2‘ LR 'Y K' ]

One caveat is in order. If the split-halves parameter for
item i, IT(i,4), equals "0", then, for reliability analyses,
item i is skipped. In this case, the actual number af items
used for reliability analyses will be less that K (the
number of items input to DEC-TEST); hence, we use K' as

the total number of items under consideration here.

Hoyt Analysis of Variance. Many discussions of Hoyt's
(1941) procedure for calculating reliability are available.
See, for example, Guilford (1954) which also provides an
excellent treatment of most of the coefficients and scores
reported in Output Nos. 25-32.

The general element of the matrix that forms the raw
data for calculating Hoyt's Reliability Coefficient is

wixhi' The coefficient itself, which is identical to

Cronbach's (195)) Coefficient Alpha, is:

Mean Square (Remainder)
rtt(Hoyt) =1 .- .

Mean Square (Examinees)

Now, to explain the way in which standard errors of
measurement are reported in Reliability Analyses, let

K'
X = I w.X,. = weighted total score for
h+ iz1 1 hi student h,
Kl
Xh = Xy / I w, = weighted mean score for

j=1 1 student h,

SD(Xh+) = standard deviation of weighted student
+ total scores, and

standard deviation of weighted student

SD(Xh )
) n.ean scores.
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In general, the standard error of measurement is:

SEM = 8 {1 - r

tt
When "s" is replaced by SD(Xh ) in the above equation, we
get the standard error of measurement for student

total scores, which is printed to the left of the
parentheses in Output Nos. 25-32. When "s" is replaced

by SD(X, ) we get the standard error of measurement for
student’ °. mean scores, which is printed within parentheses.
All standard errors of measurement are reported by DEC-TEST
in a similar manner.

Split-Halves. If IT(i,4) = 1, then item i goes in the
first alf"; if IT(i,4) = 2, then item i goes in the second
"half." In the table "STUDENT SCORE # SUM OVER ITEMS" 'is
analogous to Xh+ and "STUDENT SCORE = MEAN OVER ITEMS" is

analogous to Xh . Thus, SD(X ) and SD(Xh ) are

referred to as the "STANDARD DEVIATION" for the "TOTAL"
test when "STUDENT SCORE = SUM OVER ITEMS", and the
"STANDARD DEVIATION" for the "TOTAL" test when "STUDENT
SCORE = MEAN OVER ITEMS", respectively.

Now, let -
r = correlation between two halves,

Sq4 ° standard deviation of differences using
total student scores (placed to left of
parentheses in output)

Sq. ° standard deviation of differences using

’ student mean scores (placed within paren-
theses in output),

a = proportion of total item weights in first
"half", and

b ¢ 1 - a = proporticn of total item weights in
t second "half".

Using this notation, Horst's Reliability for Parts of Unequal
Length can be expressed as:

r[\/r2 + L4ab(1l - r2) - r]

r, . (Horst) = >
tt 2ab(1l - r*)
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Rulon's, Flanagan's, or Guttman's Reliability is:

) 2 2
Ptt(Ru;on) = 1 - {sd, / [SD(Xh+)] } .

Sglit—Halves where Student Score Lquals Geometric
Mean of Probabilities Associated with Correct Answer.
Since, the subject score is a (geometric) mean, all
entries in the output thzt dcpend upon "STUDENT SCORE =
SUM OVER ITEMS" are filled with *'s. The geometric
mean score for student h on the total test is:

K K
(M [X; EXP(w.)]} EXPCL / 1

hi

w.) ,
1=1 j=1 1

- A -
where Xhi 1s replaced by Phi* or Phi* depending upon

whether one is considering Output No. 25 or 26, respec-
tively. Similar formulas can be constructed to calculate
a student's score for the first and second "half" tests.
Rulon's Reliabilit; Coefficient is meaningless for this
kind of data, and. therefore, all results depending upon
it are replaced by *'s. The user should be aware that
the validity of using geometric means in a split-halves
analysis is questionable, at best.

(33) Individual Subject Scores -- printed if I®(3) =1

DEC-TEST provides 102 scores for each individual
subject, which are identified, in general, as VAR(1l)
to VAR(102). The most important of these scores are
treated in Section I; all scores are considered in
Section V and formulas for such scores are provided.
Note that this output is printed on logical unit LUPTZ2,
and page numbers are not providea. The calculations that
produce this output are performed just prior to the
printing of Out>ut No. 6.

(34) Summary of Peliability Analyse< {(with addition of
Livingston's Coefficients). -

This output is printed if I®(28) = 1 and at least
one of the parameters I#(20) to IP(27) equal 1.
Furthermore, a summary is provided only if the corresponding
"complete" Reliability Analysis was requested.
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The "USER DEFINED CUT-1" and USER DEFINED CUT-2"
values are the criterion scores supplied by the user
in the Third OQutput Card. These values are used to
calculate L1V1ngston 8 (1972) Reliability Coefficient
defined as:

Ty V(xX) + (X - C)

1

r t(Liv)

, where
VIX) + (X - C)?

any one of the reliability coeffi-
clients reported in Output Nos.
25-32,

]
"

tt

(@]
L]

criterion score for Livingston's
Reliability Coefficient,

X 3 mean, over subjects, of scores, and

v(Xx) variance, over subjects, of scores.
Now, reliability is, in geneiral, unaffected by

whether the underlying student score is Xh+ or Xh .

(See discussion of Reliability Ar.alyses, Output Nos.
25-32 for the notation used heve.) However, for this
output we use X, as the raw score for calculating

X and for defining C ("CUT-1" or "CUT-2" in output); thus,
we use:

- 1
X = X = - , and
N

vV(X)

[sn(xh.n2 .

This choice results in‘i'having clearly defined limits.

Specifically,
B when the scores used are the limits gf.z are
observed probabilities 0¢= X «= 1
adjusted probabilities 0¢= X <= 1
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when the scores used are the limits of ¥ are
observed log scoresl A. log C. + B.

or L i i i,
adjusted log scores <= X <= Bi
elimination scores -1 <= X <= 1
classical scores 0 <= X <= 1
perceived information2 0 <= X
actual information T

[N

1Technically, the limits provided are cnly an approx-
imation for adjusted log scores for a test in which not
all items are of the same item type (i.e., not all items
have the same number of alternatives).

Furthermore, for both observed and adjusted log scores,
the limits provided are exactly correct only if A., B., and
C. are identical for each item. If this is not 1
tfue, then the lower limit is:

K' K'
[ifl Wy (A; log c;, * Bi)] / 151 Wwe

and the upper limit is: .

K' X'
I w.B, /L ow.,
i=1 * i=1 7

The experience of the author indicates that, eventhough
the l:mits provided in the body of the text may not be
exact.iy correct, for a given test, these limits are almost
always a good enough approximation for practical use.

2Technically, the upper limit provided is only an
approximation for actual information for a test in which
not all items are of the same item type; nevertheless,
even in this case, the author's experience indicates that
the 1limit provided in the body of the text is a good
enough approximation for practical use.
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Now, referring to the formula for rtt(Liv), note that

rip(Liv) = v if X = C 3

i.e., Livingston alleges that his coefficient gives the
reliability that would result if C were the mean of the
test. Thus, when choosing potenti-~l values of C for the
Third Output Card, the user should choose values within
the limits reported above for the various interpretations

of X.

In short, this output reports

Pyy = rtt(LiV) - when C = i;
rtt(Liv) when C = "CUT-1", and
rtt(Liv) when C = "CUuT-2"

for each of the different reliability coefficients (rtt)
reported 1n Qutput Nos. 25-32.

(35) Observed Probabilities - Punched -- punched if If(2) =
3, “, Or‘ 5 -

Note that, if I®(2) >= 3, then all observed probabili-
ties for all subjects are punched. There is no provision
for punching out observed probabilities for the first three
and the last three students, only. Thus, this output is
analogous to Output No. 5 when I6(2) = 1 or 3.

The format for card output is as follows:

Columns Description

1-5 Run identifitation, RUN(S)

6 Blank

7-30 Student identification

31-33 Sequential card number for
student = SCN

34-35 Blank

36-40 | Observed probability: (1)(SCN)

41-45 Observed probability: (2)(SCN)

76-80 Observeda probability: (9)(SCN)
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Note that each.card'contains a maximum of nine
observed probabilities (punched using format F5.3).

(36) Roster of Student Raw Scores - Punched -- punched if
I0(4)"= 2 or 3

For information concerning variables punched out, see
Section III -- Second Output Card(s). Output No. 36 is
similar to Output No. 6.

The format for card output is as follows?

Columns Description
1-5 : Run identification, RUN(S)
6 Blank
7-30 Student identification
31-34 Sorted student number
35 (
36-39 Sequential student number
40 )
41-43 Sequential card number for
student = SCN

45-53 Score number: (1) (SCN)
54-62 Score number: (2)(SCN)

* 63-71 Score number: (3)(SCN)
72-80 Score number: (u4)(SCN)

Note that each card contains a maximum of four
scores. The scores are punched in the order indicated
by the sequence of vapiables in the Second Output Card(s).
**  Scores are punched using format F9.3 .
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(L7-44) Rosters g£ Students by Weighted Item Scores =
Punched

DEC-TEST provides eight such punched rosters.

Output No, Data Used Punched If
37 Observed Prcbabilities I0(12) = 2 or
38 Adjusted Probabilities I@(13) = 2 or
39 Observed Log Scores I6(14) = 2 or
40 Adjusted Log Scores I8(15) = 2 or
4l Elimination Scores I0(16) = 2 or
42 Classical Scores I9{(17) = 2 or
43 Perceived Information I0(18) = 2 or
Ly Actual Information I0(19) = 2 or

These outpute are analogous to Output Nos. 17-24,
respectively.

The format for card output is as follows:

Columns Description
1-5 Run identification, RUN(S5)
6 Blank
7-30 Student identificaticn
31-34 Sorted student number
35 (

) 36-39 Sequential student number
40 )
41-43 Sequential card number for

student = SCN

a 4y-52 Item number: (1) (SCN)
53-61 Item number: (2)(SCN)
62-70 Item number: (3)(SCN)
71-79 Item number: (u4)(SCN)

Note that each card containc a2 maximum of four
scores (punched using format F9.3) .
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V. JIndividual Subject Scores

DEC-TEST provides 102 Individual Subject Scores
(for each student), labelled VAR(1l) to VAR(102) in
Table A-4. Many of these scores have been introduced
in Section I, and formulas for all scores are provided
later in this section. Note that all scores except VAR(1l),
VAR(101), and VAR(102) take item weights into account.
Table A=5 provides the Individual Subject Scores Output
(Output No. 33) for a hypothetical student using the:
illustrative data introduced in Section I.

For the purposes of discussion, we will divide the
Individual Subject Scores Output into five parts, and
discuss each part separately.

VAR(2) to VAR(16): Variables Relating to Reference Lines

The Ideal and Realism Lines have been discussed in
Section I. The extent to which a student is unrealistic
is indicated by VAR(8) as well as by

VAR(S) - VAR(6) = 1.0 - VAR(6) . -
However, note that:

VAR(8) >= 0.0, whereas
1.0 - VAR(H)

0.0 if student is completely
realistic,

1.0 - VAR(S6)

A4

0.0 if student is over-confident,
and

1.0 - VAR(6) < 0.0 if studemt is under-confident.

Therefore, VAR(8) ic a measure of the magnitude of unrealis-
tic student performance: whereas, 1.0 - VAR(6) is a measure
of both the magnitude and direction of unrealistic student
performance. For the illustrative data, VAR(8) = 11.7499
degrees and 1.0 - VAR(6) = 1.0 - 0.65563 = 0.3u4437.

Thus, this hypothetical student is over-confident.

The Base Line is the estimated ''realism" line if the
student had always assigned a probability of 1.0 to a single
alternative for each item and 0.0 to the other alternatives.
In a sense, therefore, the Base Line is the "realism" line
for classical scoring as opposed to decision-theoretic
scoring.
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TABLE A-4

Variable Numbers
Scores for an Individual Subject

INTERCEPT SLOPE
IDEAL LINE VAR(2)  VAR(5)
REALISM LINE VAR(3) VAR(%)
BASE LINE VAR(4)  VAR(?)

) DEC. DEG. DEG. MIN.
ANGLE BETWEEN IDEAL LINE AND REALISM LINE VAR(8) VAR(11) VAR(14)
ANGLE BETWEEN IDEAL LINE AND BASE LINE VAR(9) VAR(12) VAR(15)
ANGLE BEiwEEN REALISM LINE AND BASE LINE VAR(10) VAR(13) VAR(16)

PROBABILITY NO. TIMES NO. TIMES PROPORTION
INTERVAL USED CORRECT CORRECT
0.0¢=P< 0,1 VAR(17) VAR(27) VAR(37)
0.1¢=P< 0,2 VAR(18) VAR(28) VAR(38)
0.2¢=P< 0.3 VAR(19) VAR(29) VAR(39)
0.34=P< 0.4 VAR(aog VAR(320) VAR(40)
0.4¢=P< 0.5 VAR( 21 VAR{31) VAR(41)
0.5¢<=P< 0,6 VAR(22) VAR(32) VAR(42)
0.6¢=P< 0,7 VAR(23) VAR(BB% VAR(43)
0.7¢=P< 0,8 VAR(24) VAR(3Y4 VAR( 44 )
0.8<=P< 0,9 VAR(25) VAR(35) VAR(45)
0.9¢=P<=1,0 VAR(26) VAR(36) VAR{46)
IDEAL LN REAL., LN BASE LN
AVERAGE S.S. OF DEVIATIONS FROM VAR(47) VAR(48) VAR(49)
OVER ALL ITEMS PER ITEM
ACTUAL  PERCEIVED ACTUAL  PERCEIVED
ENTROPY (UNCERTAINTY) VAR(50) VAR(53) VAR(SG; VAR(59)
INFORMATION VAR(51) VAR{ 54) VAR( 57 VAR(60)
MAX. POSSIBLE INFO, VAR(52) VAR(55) VAR(58) VAR(61)
COEFFICIENT OF BIAS = VAR(62)
LG SC LG SC . AR MN GM MN
OVER PER PROB. PROB,~
ITEMS ITEM SCORE SCORE
POSSIBLE IMPROVEMENT FROM:
BETTER USE OF INFO, VAR(63§ VAR(?72) VAR(81) VAR(90)
MORE INFCRMATION VAR( 64 VAR(7?73) VAR(82) Var{91)
SCORE RESU TING FROM:
BETTER USE OF INFO. VAR( 65) VAR(74) VAR(83) VAR(92)
MORE INFORMATION VAR(66) VAR(75) VAR(8L) VAR(93)
T0'ALL POSSIBLE IMPROVEMENT VAR(67) VAR(76) VAR(85) VAR(94)
OBSERVED SCORE VAR(68) VAR(77) VAR(86) VAR(95)
HIGHEST POSSIBLE SCORE VAR(69) VAR(78) VAR(87) VAR(96)
SCORE STUDENT EXPECTS VAR(70) VAR(79) VAR(88) VAR(97)
SCORE FOR NO KNOWLEDGE VAR(71) VAR(80) VAR(89) VAR(98)
CLASSICAL SCORE = VAR(99) ELIMINATION SCORE = VAR(100)
NUMBER OF VALIDITY CHECKS = VAR(101)
NUMBER OF ITEMS SCORED = VAR(102)

ADDITIONAL STUDENT VARIABLE = VAR(1)
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TABLE A=-5

Illustrative Data:

Scores Ior Individual Subject

INTERCEPT SLOPE

IDEAL LINE 0.0 1.000)10
RFALISM LINE 0.131173 3.65%63
BASE L INE 0.23233 341667
DEC. JESe DEG. MIN.
ANGLT RETWEEN IDEAL LINE AND REALI $A LINE 11.743) 11, 45, ~
ANGLE BETWEEN IDEAL LINE AND BASE LINZ 22.33)1 22. 23,
ANGLE BETWEEN REALISM LINE AND BASE LINE 1).63J2 10. 38.
PROGABILITY NN. TIMES Yl. 1IYES PRIPCORTICN
INTERVAL USED CIRRECT CORRECT
0.0<=P <0.1 4.0 l.) 02500
0.1<’p <Q,.2 0.0 Je) Je
0.2<=P <0.3 3.0 1) J.3333
0.3<3p <0.4 4,0 J.) 0.0
o.q(sP <9.5 6.0 ‘.) 0. 5000
0.5¢=P <0,.6 3.0 1.3 343333
Oob<’p <0,7 1.0 1«9 1.0000
0.7<=P <0.8 0.0 Je) J.0
‘).8<=p <009 2.0 2,.) 100000
O.9<=P<=100 200 l.) \)05000

[3=28L LN REAL. LN BASE LN

AVFRAGE S S« OF DEVIATINNS FROM Jel552 “Jdell27 C. C899
OVER ALL [ TEH4S PFR ITEM

ACTUAL PERCEIVID AC TUAL PERCEIVED

ENTROPY (UNCERTAINTY) 11.64678 3.5871 1.1668 0.9557

INFORMAT [ON 1.2570 J.3817 Je 1257 0.3368

MAX. POSSIBLF INFO, 12,5248 12.9243 1.2925 1.2S825

COEFFICIENT OF Bl 25 = 16.330

LG sC , LG sC- AR MN GM MN
OVeER PER PROB. PRCH.
1TEMS [TEM SCORE SCORE
POSSIBLF IMPROVEMENT FR(M:
RETTER {SE 0OF INFO. 14,75 ¢C le73 -0 .041 0. C29
MIRE INFORMATION 178.,17¢ L7.813 0.521 Q. 560
SCORF RESULTING FROM:
HETTER ySE 7F INFQ. 821 .322 Jcel32 Q.479 VP AYAN]
MORE INFORMATION S58%.21¢( 73521 1.041 C.S71
1(ITAL POSSIBLE IMPRNOVEMENT 162.54¢ 13.237 Q.480 Je 589
NRSERVED SCORE 807,032 33.703 0.520 Co4ll
MIGHFST PUSSIBLE SCORE 10CC,.CCC 19).00) 1 .000 1. 000
SCIRE STUDENT EXPECTS 856.13) £5.615 ).583 0.516
SCORE FNR NU KNOWLEOGE 805,452 €J.546 ODefl? 0.408
CLASSICAL SCORE = 6,500 ELIMINATICN STORE = 2.000
NUMBER OF VALIDJITY CHECKS = D

NUMBER OF 17TZwxS SCCREN = 8.
ADDITICNAL STUIENT VARIABLE = #%#¥%kx
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VAR{17) to VAR(49): Distribution of Observed Probabilities

VAR(17) to VAR(46) constitute the distribution of
observed probabilities collapsed into ten class intervals
of length 0.10 .. These variables, therefore, provide the
grouped data version of the kind of information presented
in Table A=3 for the illustrative data.

VAR(47) to VAR(49) provide the average sums of
squares of the grouped data points about each of the
three reference lines. VAR(47) and VAR(49) are of
questlonable utility; however, VAR(48) provides an indi-
cation of the extent to which the least squares Realism
Line is a good fit for the observed probability data
points.

VAR(50) to VAR(62): Information Theoretic Measures of
Student Performance '

This section of the output contains three parts:
(a) information measures over all items (i.e., for the test);
(b) information measures per item (i.e., for the average
over items); and (c) the Coefficient of Bias.

Part (a) can be graphically displayed as the Information
Square in Figure A=2, which can be interpreted in terms of
the Arabian proverb:

He who knows and knows that he knows,
He is wise, follow him.

He who knows and knows not that he knows,
He is asleep, awaken him.

He who knows not and knows not that he knows not,
He is a fool, shun him.

He who knows not and knows that he knows not,
He is a child, teach him.

Since each variable in part (b) is a simnple function of
a corresponding variable in part (a), part (b) can also
be graphically displayed in terms of the Information
Square.

The Coefficient of Bias, VAR(62), prov1des another
indication of the extent to whlch a student is unrealistic.
Note that:
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FIGURE A=2

Illustrative Data:

Information Square

VAR(55)=

VAR(52) = .
12.9248 Wise 12.9248
o
O
P
o
1]
E
O
'™
=
(]
—~t
[is]
-3
g VAR(54 )=
g 3.3677
VAR(S51)=
1.2570
0.0 0.0

Child

Note.--The top horizontal line represents maximum
possible actual and perceived information; the bottom
horizontal line represents no information. The dashed
line connects perceived and actual information.
Numerical values reported are for the illustrative
data. Be careful to grapg "information," not "entropy."
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-100.0 <= VAR(62) <= 100.0

VAR(62) 0.0 if student is completely

realistic,
VAR(62) > 0.0 if student is over-confident, and
VAR(62) < 0.0 if student is under-confident.

For the illustrative data, VAR(62) = 16.330; therefore,
the student is over-confident, which is consistent with
the conclusion we reached when we observed that

1.0 - VAR(6) = 0.34437 > 0.0 . Another indication of
over~confidence, on the part of our hypothetical student,
is provided by the fact that the slope of the dashed line
in the Information Square is greater than 0.0.

The user should be cautious in the interpretation of
information and entropy measures in that the scale for
these measures is non-linear (specifically, logarithmic --
base 2); hence, it is easy to fall into the error of over-
and/or under-interpreting differences in magnitudes for
these measures.

VAR(63) to VAR(98): Primary Test Scores

This section of the output provides four sets of nine
scores each, involving: (a) log scores over all items;
(b) log scores per item (average over all items);

(¢) arithmetic mean probability scores; and (d) geometric
mean probability scores. In general, parts (c) and (d)
involve taking probabilities asscciated with the correct
answers and calculating arithmetic and geometric weighted
means,respectively. Note that all scores reported take
item weights into account.

Parts (a), (b), and (d) provide essentially the same
information using different measurement scales. Perhaps

lAnother consideration is that, when not all items
have the same number of alternatives, the maximum possible
amount of actual information is not equal to the maximum
possible amount of perceived information (see Section I).
DEC-TEST handles this discrepancy by transforming actual
information to the scale of perceived information (gee
formula for VAR(S50)). .
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the most interesting scores reported are those that reflect
a partitioning of total possible improveanent (i.e., increase)
in test score into improvement if the student makes better
use of his or her information (i.e., if the student is more
realistic) and improvement if the student had more informa-
tion. Thus, in effect, the user can provide the student
with quite detailed information concerning what the student
might do to improve his or her score, as well as the poten-
tial effect of such action. TFigure A=3 provides a student
profile for selected geometri- mean probability scores, for
the illustrative data introduced in Section I. All nine
geometric mean prcbability scores reported in the output
are directly or indirectly represented in Figure A=3,
Similar profiles could be constructed for the log scores

in parts (a2) ard (b) of this section of the cutput.

Part(c) provides arithmetic mean probability scores.
These scores are provided for comparative research purposes,
only. Such scores are not appropriate for decision-theoretic
testing, since they are based upon a linear scoring system.
One glaring indication of this lack of appropriateness is
that "POSSIBLE IMPROVEMENT FROM BETTER USE OF INFORMATION"
is almost invariably a negative score indicating that
students would almost always get lower (arithmptic mean
probability) scores if they were more realistic.

VAR(99) to VAR(102), VAR(1l): Secondary Test Scores

The formulas for these scores are either self-
expianatory or they provide a reference to an explanation.

lon rare occasions, "POSSIBLE IMPROVEMENT FROM BETTER
USE OF INFORMATION" for parts (a), (b)), and (c) may have a
small negative value. Such negative values should be inter-
preted as 0.0 , since they are, for the most part, & result
of rounding errors.
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Formulas for Individual Subject Scores

The following is a list of the formulas for the 102
Individual Subject Scores reported by DEC-TEST. There
are, of course, 4 number of aigebraically equivalent
expressions for each of the equations listed here. For
the most part, the actual equations provided are the ones
actually used in programming DEC-TEST; however, these
particular algebraic expressions may not always provide
the mos* intultively appealing definition of the variables.
Thus, the user may wish to re-structure the algebraic:
expression for certain equations.

The formulas provided are listed in a sequential
manner, according to the variable numbers; i,e., VAR(1l),
VAR(2), ..., VAR(102). However, the user should note
that a particular VAR may be a function of a subsequently
definred VAR; for example, VAR(64) is a function of VAR(67).
Thie slight inconsistency is merely a result of the
particular numbering scheme used to identify variables.

For the most part, the notational scheme used in *he
following formulas has already been introduced in
Section I. The user should, however, note the fcllowing
additions and minor modifications:

(a) the student subscript identifier, h, is dropped,
since all formulas provide sccres for one subject;

(b) the limits for subscripts i (i =1, 2, ..., K)
and j (J = 1, 2, «c., ni) are not specified, since they
remain constant;

. (c¢) i' (i* =1, 2, ..., K) is used as an additiovnal
item subscript;

(d) 2 is used as a general purposé subscript, which
is defined and/or given appropriate limits each time
it is used;

(e) "INT" means "integer value";

(f) "ABS" means "absolute value";

(g) “"EXP" means "exponential';

(h) "ATAN" means "arc-tangent expressed in radians"; and

(i) "*" ig used as a multiplication operator as well
as the indicator for correct answer.
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VAR(1)

VAR(2)

VAR(3)

VAR(Y4)

VAR(S)

VAR(6)

VAR(7)

VAR(8)

VAR(9)

VAR(10)

VAR(1l)

VAR(12)

Score on Additional Student Variable

0.0

L Wi (1.0 - VAR(7)] / Iw.n

z LA (1.0 - VAR(6)] / g w.ng

{1 i

2
LwPy-UIw) /L wnl

i i

l_l

2 . 2
;(wi L Pij) - [(z wi) / T y.ni]

i J

1 1 1

VAR(99) - [(z w)? / I wn,]

'Y

>}
1

2
pX W, - [(; wi) /T wini]

i i

180
ABS { — ATAN
L

180
ABS { — ATAN
L

1

. VAR(s)'}
1.0 VAR(6) |

1
()
o

]

-+

()
o
]

VAR(7)'}
VAR(7) |

()
o
-+

{]ﬁu [VAR(B) - VAR(7)
ABS ATAN

n

INT[VAR(8)]

INT[VAR(9)]

1.0 + VAR(6)*VAR(7)
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VAR(13) "= INI[VAR(30)]

VAR(14) = INT{[VAR(8) - VAR(11)]%60 + 0.5}

VAR(15) = INT{[VAR(9) - VAR(12)J%60 + 0.5}

VAR(16) = INT{[VAR(10) - VAR(13)]%60 + 0.5}

VAR(17) to VAR(26)

weighted number of times observed
probability in given interval was
used by student

VAR(27) to VAR(36) = weighted number of times probabil-
ities in given interval were asso-

ciated with correct answer

VAR(36 + &) = VAR(26 + &) / VAR(1l6 + &) , (& =1, 2, ...

10
VAR(47) = £ VAR(16+2){[VAR(2)+VAR(S)I*[(2/10)~0.05]
2=1
- VAR(36+2)}2 / L w.n,
ill
10
VAR(48) = T VAR(16+2){[VAR(3)+VAR(6)]*[(2/10-0.05]
2=1
- VAR(36*£)}2 / L wgn,
« X 1
1
10
VAR(49) = £ VAR(16+2){[VAR(4)+VAR(7)1I*[(£/10-0.05]
2=1
- VAR(36+1)12 / I w.n.
ill
: *
[g(wi % Pijl°g2pij)] [§ wilogz(ni)]
VAR(50) =

i wi{(niah*Bh)[logz(niah+0h) - logz(ni)]}

VAR(3)

where ah

VAR(6)

"

and Bh
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VAR(51)

VAR(52} - VAR(50)

VAR(52) = i wilqu(ni)

VAR(53) = -i Tw, g Pijlog2(315)3

VAR(S54) = VAR(55) - VAR(53)

VAR(55) = VAR(52)

VAR(55 + 2) = VAR(49 + ) / i Wo o, (2 =1, 2,
VAR(62) = {[VAR{54) - VAR(51)] / VAR(55)}%100.0
VAR(63) = VAR(65) - VAR(68)

VAR(64) = VAR(67) - VAR(63)

VAR(6S) = i {w, [Ailog(gi*) + Bi]} ]
VAR(66) = VAR(68) - VAR(64)

VAR(B7) = VAR(68) - VAR(68)

VAR(68) = ? {w; [A;log(P;y) + B;1}

VAR(6S) = ? w.B,

VAR(70) = i Wy {§ Pij [Ailog(Pij) + Bi]}

VAR(71) = ? w, [A;log(1.0/n;) + B.]

VAR(71 + ) = VAR(62 + ) / L w, , (2 =1, 2,

1
1
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VAR(96)

VAR(97)

VAR(98)

VAR(99.

VAR(100)

VAR(101)

VAR(102)

1.0

10.0 ;xpftg w, I Pijlog(Pij)] /T weyl

i 3 i
nni{p,. EXP [w.P,. / T w.,)
ij ij i 13 i i!
. EXP (-w. / I .
2 [n1 XP ( W, / L, wl.)]

estimated we.ghted number of items correct
if student forced to respond to each item
with one and only one choice of correct
answer. (See Section I.)

estimated weighted elimination score for
test. (See Section I.)

unweighted number of validity checks.
(See gectlon III -- DCT)

-

unweighted number of items scored.

If MSD 0 , VAR(102) = K ;

If MSD = 1 , VAR(102) <= K ;
i.e., an item is not scored

if the input responses for all
alternativec equal "XMS", the
code for missing data.
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VI. Technical Data and Information

Structure 9£ DEC-TEST

DEC-TEST consists of a MAINLINE program, 16 sub-
routines, and a BLACK DATA subprogram. Table A.6 lists
selected technical characteristics of each program unit.
The principal function of MAINLINE is the assignment.of
user-defined values for modifiable assignment statements
and modifiable dimension statements. INPUT serves as the
principal program unit (subroutine) for reading control
cards and student data, as well as for branching to other
subroutines.

As indicated in Table A-6, DEC-TEST requires 124,294
bytes of main storage if no overlay structure is used.
If the overlay structure indicated in Table A~6 and
Figure A=7 is used, then DEC-TEST requires 70094 bytes of
main storage; i.e., DEC-TEST requires the number of bytes
necessary to store Segment 1 and Segment 5. Thus, the use
of the overlay structure saves 124,294 - 70,094 = 54,200
bytes. However, these figures do not include:- (a) bytes
required for user-defined matrices and vectors and
(b) additional bytes (overhead) required by FORTRAN for
execution of DEC-TEST.

User-Modifications of DEC-TEST

Figure A=-4 provides a partial listing of the
MAINLINE program for DEC-TEST. Both the modifiable dimen-
sion statements (MAI 7 to MAI 19) and the modifiable
assignment statements (MAI 30 to MAI 33) can .be altered
by the user prior to compilation of DEC-TEST. Figure A-5
provides a worksheet for making such changes and deter-
mining the total number of bytes required by DEC-TEST.
Note that, in order to execute DEC-TEST, the user needs
additional bytes (overhead) required by FORTRAN; for this
purpose, in most cases, 10,000 bytes should be more than
sufficient.

In Figures A-4 and A=S
NDIM = maximum number of students for a run,
KDIM = maximum number of items for a run, and

IADIM = maximum number of responses (alter-
natives) for a student.
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TABLE A=6

Structure of DEC-TEST

— _— __—— " "> " — —— =

a ' No. No. of No.
Program Abbre-b Seg- of |, Source of
Unit viation ment Bytes Statements Cards
MAINLINE MAT 1 760 32 53
INPUT INP 1 22516 382 524
PAGER PAG 1 42y 11 - 13
STDV STD 1 472 8 10
CORR COR 1 5u8 7 10
SEM SEM 1 470 8 10
BLACK DATA BLK 1 6 10
other 1 } 25994 0 0
COVER cev 2 2500 70 83
IpSDI I18S 3 2768 58 )
SETUP SET ) 4938 150 165
SCORE SCo 5 18912 460 493
UML UML 6 2352 63 75
IADCT IAD 7 10292 258 295
IAELIM IAE 8 6100 163 177
IACLAS IAC 9 4400 111 123
SUMRY SUM 10 3528 o9y 108
SXITEM SXI 11 899y 257 277
RELIAB REL 12 8328 244 268

Totals: 124,294 2384 2769
2a11 "program units" are subroutines except for
MAINLINE, BLOCK DATA, and "other." "Other" includes
. FORTRAN supplied subroutines, functions, , etc.
required by DEC-TEST.
bThese abbreviations are found irr columns 72-74 of ~

the source deck for DEC-TEST. Each card in the source

deck is uniquely identified by the appropriate abbre-

viation followed by a sequential (within subroutine) card
'+ number in columns 76-80.

“The segment numbers refer to the overlay structure
for DEC-TEST. During program execution, if the user employs
the overlay structure, then me .n storage contains Segment 1
(root segment) and one of the Segments 2-12.

9The number of bytes required by user-defined matrices
and vectors is not included here. The number of bytes for

"other" includes FORTRAN supplled subroutines, functions,
etc. required by DEC-TEST

€"No. of cards" equals "no. of source statements" plus
number of comment cards plus number of continuation cards.
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FIGURE A-5

Worksheet for User-Defined Matrices,
Vectors, and Assignment Statements

A —— —

NDIM = KDIM = IADIM = LUCC =

4

No. of bytes for user-defined matrices and vectors
NDIML (4) (IADIM) + 2121 + (164)(XDIM) + 182
[(u)( ) + 2121 + (164)(__ ) + 182

= bytesd
Variable User No. of
Dimensions Dimensions Locations No. of Bytes
X(NDIM,IADIM) X( s )
Z(NDIM+2,20) Z(__,720)
R(NDIM, 20) R(_, 20)
RIT(KDIM+1) RIT(_ ) .
T(XDIM,32) T ,32)
RS(KDIM) RS(T )
RT(KLIM) RT(T ) -
JT(KDIM) JT( )
Subtotal-1l X4 = bytes
Y(NDIM,24) Y( y 2u)
IYSRT(NDIM) IYSRT( )
IT(KDIM+1,9) IT( , 9)
MS{KDIM) S(T ) __
IDDM(NDIM) IDDM( )
Subtotal-2 X2-= bytes
No. of bytes for user-defined matrices and a
vectors (Subtotal-l + Subtotal-2) = bytes
'~ Number of bytes required
by DEC-TEST using overlay (70094 bytes)
or not using overlay (124294 bytes) = bytes
Tot-1 = bytes

4These two values should be identical.
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These are the only three variables required to define
matrix and vector dimensions. Note that each element of
the first eight matrices (or vectors) is a real variable
occupying four bytes of main storage; while each element
of the last five matrices (or vectors) is an integer
variable occupying two bytes of main storage. Thus, the
first eight matrices (or vectors) are associated with
DIMENSION statements; while the last five matrices (or
vectors) are associated with INTEGER*2 statements.

Also, note that the number of elements (or locatlons)
for a matrix is the product of its dimensions.

As indicated at the beginning of Section II, LUCC,
the logical unit for reading (most of) the control
cards, may be altered in the MAINLINE program.

Figure A~6 provides an example of the worksheet in
Figure A-5. For this example, the total number of bytes
required to execute DEC-TEST, using the overlay, is about
137984 + 10000 = 147984.

JCL for DEC-TEST at SUSB

Figure A-7 provides a listing of the JCL (Job
Control Language) statements necessary to compiIé, link-
edit, and execute DEC-TEST at the SUSB (State University
of New York at Stony Brook) Computing Center. At SUSB
logical unit numbers 5, 6, and 7 are defined in the
catalogued procedure for FORTGCLG as logical units for
reading punched cards, printing, and punchlng, respec-
tively. Any other required logical unit must be defined
by the user with a //GO.FT ... statement (see Fortran
Programmer's Guide or JCL Manual).

If (in addition to compiling, linkeditirig, and
executing DEC-TEST) one wanted to store a DEC-TEST load
module (say D5950) in a catelogued dataset (say TESTAID)
on a disk (say USER0l), then the following statement
would be placed immediately before the //LKED.SYSIN DD *
card in Figure A~7:

//LKED.SYSLM@D DD DSN=USER.TESTAID(D%950),DISP=(QLD,KEEP),
// SPACE=(TRK,(5,5,2) ,RLSE) ,VOL=SER=USER01,UNIT=3330
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FIGURE A-6

Example of
Worksheet for User-Defined Matrices,
Vectors, and Assignment Statements

— - v ——

NDIM = 589 KDIM = 50 IADIM = 200 LUCC = 5

No. of bytes for user-defined matrices and vectors

NDIM{ (u) (IADIM) + 212] + (le4)(XDIM) + 182

__590(u)(_200) + 212] + (164)(__50) + 182
68090 bytes?

Variable ‘ User No. of
Dimensions Dimensions Locations No. of Bytes
X(NDIM,IADIM) X( 59,200) 11800
Z(NDIM+2,20) 72("61, 20) 1220
R(NDIM,20) R(75Y, 20) 1180
RIT(KDIM+1l) RIT(TSI) .51
T(KDIM,32) T(50,32) ~ 1600
RS(KDIM) RS(750) 50
RT(KDIM) RT(50) 50 -~
JT (KDIM) JT(T50) 50

Subtotal~l 16001 X & 64004 oytes

Y (NDIM,24) Y( 59, 24) 1416
IYSRT(NDIM) IYSRT( 59) 53
IT(KDIM+1,9) IT(ST, 9) 453
MS(KDIM) MS(750) 50
. IDDM(NDIM) IDDM( 59) 59
Subtotal-2 2043 X 2 = 4086 Dbytes
No. of bytes for user-defined matrices and a
vectors (Subtotal-l + Subtotal-~2) = 68090 bytes
i« Number of bytes required
by DEC-TEST using overlay (70094 bytes)
or not using overlay (124294 bytes) = 70094 bytes
Total = 138184 bytes

4These two values should be identical.
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FIGURE A~7

JCL to Compile, Linkedit, and Execute DEC-TEST with Overlay

———
—————

111212222233333
135791357913579135738 :}’ Card Columns

// (job card)

// (account card)

// EXEC FORTGCLG,PARM. LKED"ﬂVLY'
//FORT.SYSIN DD #

(source deck)

/* ’
//LKED.SYSIN DD *

ENTRY MAIN —j
INSERT MAIN,INPUT,PAGER,STDV,CORR,SEM
OVERLAY ALPHA

INSERT COVER

OVERLAY ALPHA

INSERT I@SDI

OVERLAY ALPHA

INSERT SETUP

OVERLAY ALPHA Overlay--These
INSERT SCORE statements in
OVERLAY ALPHA conjunction with
INSERT UML PARM.LKED="'@VLY"'
OVERLAY ALPHA on EXEC card
INSERT IADCT accomplish the
OVERLAY ALPH.. overlay.

INSERT IAELIM
OVERLAY ALPHA
INSERT IACLAS
OVERLAY ALPHA
INSERT SUMRY . : R
OVERLAY ALPHA
INSERT SXITEM
OVERLAY ALPHA
INSERT RELIAB
/%
//Gp.FT__FO001 DD SYSAUT =+ FT cards--Positions
. underlined should

be filled in with

logical unit numbers

required for user's
y run of DEC-TEST

//GO.FT FOO1 DD SYS@UT=--
//Gp.FTG5F001 DD *

(DEC-TEST control cards and student data

/a‘c
//
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Once this is done, the user can execute DEC-TEST using
the following JCL statements:

// (job card)

// (account card)

// EXEC PGM=D5950

//STEPLIB DD DSN=USER.TESTAID,DISP=9LD
//FT__FOOl PD SYSOUT=+-.-

//FT F001 DD SYS@UT=--.
//FTOSF00L DD *

(DEC-TEST control cards and student data)

/*
//
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APPENDIX B

Test+ Items Used for This Studv

The following is a list of test items used in this s+udy.
An "*" begide an alternative indicates the correct answer.
The following identification scheme for items is employed:

(a) Items identified as ACOl to AC25 are criterion-
referenced items for test A, which was used as a
pretest for some subjects, as a posttest for other
subjects, and as both a pre- and posttest for still
other subijects.

(b) Items identified as BCOl to BC25 are criterion-
referenced items for test B, which was used a a
pretest for some subjects, as a posttest for other
subjectc, and as both a pre- and posttest for still
other subjects. Note that ACyy is intended to be
equivalent to BCyy, where "yy" is any item number
(01 to 25).

(c) Items identified as 72C26 to ZC50 are criterion-
referenced items which all subjects took in the
posttest mocde, only. None of the ZC items are
intended to be equivalent to any AC or BC item.

AC Items
AC0l Objectives have not been defined for which of the following
domains?
A. affective
B. cognitive
* C. objective
D. psychomotor

AC0Z Which of the following terms 1is least accep:able for
instructional cbjectives which are to be measured through
multiple-choice test i1tems?

A. recognize
B. differentiate
T. 1identify

* D. 1list

AC03 Which of the following is most correct? Instructional’

objectives should:

A be stated in terms of teacher behavior

B. end with an active verb

C relate *O one or two processes only

D represent intended direct outcomes of learning
experiences




ACOu

ACOS

ACO®

ACO7

ACOS

ACOS9

ACl0

Which of the following 1is not correct? '"Standardized"
tests provide a standard for:

A. excellence

B. timing

C. scoring

D. administration

The word '"criterion"” in '"criterion-referenced test"
usually refers to:

A. a cut-off value, such as 85% correct

B. a set of objectives

C. some type of norms

D. another test

The assignment of numerals to objects or events according
to rules is a difinition of:

A. measurement

B. evaluation

C. Testing

D. Validation

In educational measurement, the underlying scale of

measurement is usually:
A. nominal

B. ordinal

C. interval

D. ratio

The percentage of students who get an item correct is
called: '

A, difficulty level

B. error rate -

C. theoretical difficulty level

D. theoretical error rate

A statistic used tc show nhow shairply an item differentiates
between the students who sccred highest on a test and the
students who scored lowest is called a (an):

A, difficulty level

B. error rate

C. discrimination index

D. out-off value

Which of the following i1s not a possible value of the
standard deviation of a set of scgres?

A, 0.0d
B. 100.03
C. 0.01
D. ~1.00



ACl1

ACl12

ACl13

ACl1l5S

The 50th percentile is also called the:
A. standard deviation

B. mean :

C. semi-interquartile range

D. median

Which of the following is not a possible value for the
Pearscn product-moment correlation coefficient?
A. 0.00

B. 0.50
c. =-1.00
D. 1.28

If test scores are distributed normally, what percent
of the scores will exceed a score falling one standard
Ceviation below the mean?

A. 16%
B. 3u4%
C. 68%
D. 8u%

Which of the frilowing estimates of reliability is most
clearly assiciated with test homogeneity? -

A. Kuder-Richardson

B. Test-Retest

C. Equivalent-Tests

D. Split-halves

Which of the following estimates of reliability is most
clearly associated with the Spearman-Brown Prophecy
Formula?

" A. Kuder-Richardson

ACl6

AC17

AC18

B. Test-Retest
C. Equivalent-Tests
I'. Split-halves

The average score that a person would make over repeated
trials on the same test is his:
A. reliability

.B. true score

C. obtained score
D. error variance

The standard deviaticn of the distribution of error
scores 1is called the:

A. reliability o-f the test .

B. reliability error

C. standard error of estimate

D. standard error c¢f measurement

The extent to which a test truly represents the area of
knowledge under consideration is its:

. face validity

. content validity

. criterion validity

. construct validity

OO >



AC19

AC20

AC21

AC22

AC23

*

AC2u

*

AC25

The type of validity that is partlcularly relevant when
evaluating p2rscnality measures is:

A. content validity

B. construct validity

C. criterion-related validity

D. face validity

If raw scores on a test are normally distributed, the
greatest difference in raw score points will be between
percentile ranks: .

A. 1 and 5

B. 25 and 30

C. 50 and 655

D. 90 and 85

Ernest scored at the 99th percentile on the entrance test
at Cascede College. The best interpretation of his score
is: ) .
A. He should obtain higher grades than 39 percent of

the students.

B. He should obtain high grades with relatlvely little
effort.

C. His score 1s comparable to an IQ of about 130.

D. He scored higher than 99 percent of the students

taking the test.

Which of the follow1ng scores is expressed in raw score
units?

A. stanines.

B. p=2rcentile points

C. normalized standard scores

D. percentile ranks

The mean and standard deviation of the distribution of
Z scores are, respectively:

A. 0 and 1.

B. 10 and 3

C. 50 and 10

.D. 100 and 15.

The first question to be asked when evaluating a standard-
ized achievement test is: _

A. What is the editcrial quality of the test?

B. What does the test measure?

C. How reliable is the test?

D. Are equivalent forms of the test avallable°

If a test is valid, then the test:
scores must be normally distributed
must be reliable

must be relatively long

must have national norms

o0 w>»



BCO1

BCO2

R

BCO3

BCOu4

BCOS

BCO6

BCQ7

BCO8

Objectives have not been defined for which of the following
domains?

A. psychological

B. cognitive

C. psychomotor

D. none of the above

Which of the following terms is least acceptable for
instructional objectives which are to be measured through
multiple-choice test items?

A. recognize

B. recall

C. 1identify

D. differentiate

Which of the following 1s most correct? Instructional
objectives should:

A. end with an active verb

B. be stated in terms of teacher behavior

C. start with an active verb

D. be stated in terms of student behavior

Which of th2 following is not correct? "Standardized
tests provide a standard for:

A. timing

B. scoring

C. precision

D. administration

The word "criterion' in 'criterion-referenced test!'
usually refers to:

A, a sei ol objectives

B. criterion validity

C. students' scores on a previous test

D. a standardized achievement test

The assignment of numerals to objects or events according
to rules is a definition of:
A. evaluation

-B. testing

C. measurement
D. statistics

In educational measurement, we usually assume that the
scale of measurement is:

A. nominal .

B. ordinal

C. interval

D. ratio

The number of students who get an item correct divided
by the total number of students is called:

difficulty level

error rate

theoretical difficulty level

theoretical error rate

Ucdu:>
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BCog

BC1l0

BCl1

BCl2

BC13

BClu

BC1l5S

BC16

A statistic used to show how sharply an item differentiates
between students who score high on a test and students

who score low is called a:

A. discrimination index

B. standard dsviation

C. correlation coefficient

D. standard error of measurement

Which of the following is not a possible value of the
standard deviation of a set of scores?

A. 10.01
B. 0.00
C. -0.01
D. 201.00

The median is also called the:
A variance

B. 50th percentile ,
C semi-interquartile range
D mode

Which of the following is not a possible value of the
Pearscn product-moment correlation coeffié¢ient?
A. -0.0001

B. -1.0000
C. 0.9999
D. 1.0001

If test scores are distributed normally, what percent
of the scores will exceed a score falling one standard
deviation above the mean?

A. 16%
B. 3u4%
C. 68%
D. B8u%

Which of the following estimates o¢f reliability is most
clearly associated with internal consistency?

A. split-halves

B equivalent-tests

C. Kuder-Richardson

D test-retest

Which of the following estimates of reliability typically

employs the Spearman-Brown Prophecy Formula?
Kuder~Richardson .

B. parallel-tests

C. Split-halves

D. coefficient alpha

The average score that a person would receive over
repeated administrations of the same test is his:
A. theoretical score

B observed score

C. true score

D error score



BCl17

BC18

BC19

BC20

BC21

BC22

BC23

BC2u

%

The standard deviation of the distribution of error
scores is called the:

A. standard deviation

B. reliability of the test

C. error deviation

D. standard error of measurement

The type of valldlty most appropriate for achievement
tests is:

A. face valldlty

B. content validity

C. construct validitv

D. criterion validity

The type of validity most clearly assoctiated with
theories of personality is:

A. face validity

B. content validity

C. criterion validity

D. construct validity

If raw scores are normally distributed, the greatest
difference in raw score points will be between percentile
ranks: .
A. 1 and 5

B. 48 and 52

C. 70 and 74

D. 94 and 98

Jerry scored at the 75th percentile on the SAT-Mathematics
test. The best interpretation of his score is:

_A. he scored higher than 75 percent of the students

who took the test.

B. he scored higher than 25 percent of the students
who took the test.

C. his IQ is above average

D. his IQ is below avcrage

Which of the following scores is expressed in raw

"score units?

A. T-scores
B Z-scovres

C. percentile points

D. percentile ranks

The mean and standard deviation of z-scores are respectively:
A. 5 and 2

B. 650 and 10

C. 100 and 16

D.

none of the above

The most important aspect of a standardized achievement
test is its:

A. content

B. reliability

C editorial quallty

D. cost



BC2S5 If a test is valid, then the test must be
A. relatively long
* B. reliable
C. standardized
D. normally distributed

2C26 Which is the best example of a free-response test?
* A. an essay test
B. a matching test
C. a multiple-choice test
D. a short-answer test

ZC27 In a pure power test, test takers would not differ in the:
A. number of items attempted .
B. number of items answered correctly’
C. percent of items answered correctly
D. time taken to complete the test

2C28 Which of the following types of tests is least apt
to be used in order to rank order students?
A. norm-rz2ferenced test
B. standardized test
*# C. criterion-referenced test
D. non-standardized test

Z2C29 In educational measurement, we usually tacitly assume
that the underlying scale of measurement is:
A. nominal
B. ordinal
* C. 1interval
- D. ratio

ZC30 The percentage of students that we expect will get an
item wrong if everybody guesses blindly is called:
A. difficulty level
B. error rate
C. theoretical difficulty level
* D. theoretical error rate

ZC31-Which of the following is a positively skewed distribution?

/\/\\/\

ZC32 In which of the following distributions do the mean,
median, and mode always coincide?
* A, Normal
B Positively skewed
C. Bimodal
D J-shaped




ZC33

ZC34

2C35

ZC36

Which of the following is not an index of the dispersion
of a set of test scores?

A. the mean

B. the standard deviaticn

C. the variance

D. the range

An index measuring the degree of relationship between
two different measures for a- group of individuals is a:
A. correlation coefficient

B. standard error of measurement

C. discrimination index

D. standard deviation

If high values of X are associated with low values of Y,
and low values of X are associated with high values of Y,
then: ' ; :

A. Pyy = 0

B. ny:’ 0

C. rxy< 0

D. ©ryy is undefined

Which of the following statements is true?

A. Different méthods of computing a reliability co-
efficient will give the same result.

~B. Very hard tests generally have hlgher reliabilities

2C37

ZC38

than very easy tests.

C. A longer test is generally more reliable than a
shorter one.

D. Older tests, which have been used more, are generally
more reliable than newer ones.

Which of the following estimates of reliability takes
into account the most sources of variation?

.A. Test-Retest without time interval intervening.

B. Test-Retest with time interval intervening.
C. Equivalent-Tests without time interval intervening.
D. Equivalent-Tests with time interval intervening.

The reliability of a test refers to:

A. how accurately the test measures the - trait it is
designed to measure.

B. the precision with which the test measures whatever
it measures.

C. how accurately the test categorizes people into
defined groups.

D. how much faith you can put in the test scores.



ZC39 Mary has taken an intelligence test during each of the
last three years. Her scores on successive testings
were 121, 118, and l1l4. The most reasonable explanation
of these results is:

A. Her scores are dropping as competition gets rougher
at older age levels.
B. A personal problem is probably interfering Wwith her

performance.
C. The test used is not good as it does not measure
consistently.
* D. The scores are within the range expected on repeated
testings. '

ZC40 Which or the following is most useful fo; estimating a
person's true score?
A. the reliability of the test.
* B. the standard error of measurement
C. the mean of the test
D. the standard deviation of. the test

ZC41l Scores on a final exam in introductory psychology are
correlated with scores on a well-known norm-referenced
test in psychology. The resulting correlation zoefficient
is evidence of the final exam's:

A. face validity
B. <content validity

* C., criterion validity
D. construct validity

ZC42 Which of the following is not an essential requirement
of a criterion measure?
A. Measure an important component of the task
B. measures reliability

* C., measures more than one behav1or
D. 1is free from bias
ZC43 The weakest link in most valldlty studies is the:
A. predictors
* B. criterion
C. sample
D. wvelidation technique
ZC44 The correlations between predictors and pzrformance in
an auto mechanics lab are: compulsivity, +.26; mechanical
comprehension, +.33; intelligence, +.05; English grades,
-.43. The best predictor of performance in the lab is:
A. compulsivity scores
B. mechanical comprehension
C. 1intelligence
* D. English grades




Z2C45

<Cy6

. 2C47

2C438

Z2C49

2Cs50

If, when predicting college grades from a college ad-
missions test, rxy = 50, we zan say that:

A. 25 percent of the variance in grades is predictable
from the test scores.

B 50 percent of the variance in grades is predictable
from the test scores.

C. Using the test will reduce prediction errors by
S0 percgent.

D Predicting from the test will be 25 percent better
than chance predictions.

A test has a mean of 45 and a standard deviation of 10
points. If the distribution of scores is approximately
normal, the range of scores in a class of 50 students
would be from approx1mately

A. 40 to 50

B. 35 to 55

C. 25 to 65

D. 15 to 75

Norms are most useful for:

A. selecting the best qualified workers

B. comparing a person to his immediate competitors.
C. studying the extent of individual dlfferences

C. computing the validity of a test.

Which of the following are least useful for evaluating
college students?

A. age norms

B. grade norms

C. percentile norms
D. standard scores

Consistency of measurement is often called:
A. reliability

B. wvalidity

C. variance

D. skewness

In preparing students to take standardized achievement

batteries, the teacher should:

A. drill the students on the material to be covered on
the test.

B. briefly explain the nature and purpose of the test.

C. keep remlndlng the students how important the test
will be.

D say nothing in advance of the test so students will
not become anxious.
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