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SUMMARY

Problem

Objectives of the Phase I research were to (1) provide in a single source, a comprehensive review and
anlysis of state-of-the-art developments in adaptive instructional models and (2) recommend which adaptive
instructional models as a subsystem of the Advanced Instructional System (AIS) were suitable for
implementation within three Air Force technical training courses (Precision Measuring Equipment,
Inventory Management, and Weapons Mechanic).

Approach

Literature searches were conducted to identify and document current trends in both the research and
development of adaptive instructional models. Professional contacts and surveys of facilities currently
exercising computer-managed adaptive instructional models were made. Based upon these information
sources and familiarity with student characteristics associated with the three designated Air Force technical
courses, specific recommendations were made for optimizing, incorporating, and implementing
instructional models within the AIS.

Results

Five Adaptive Instructional Models (AIM) useful for specific instructional tasks were recommended
for immediate implementation within the MS. Briefly, the five adaptive models and their associated tasks
were (1) Drill-and-Practiceincreases student proficiency and speed; (2) Concept Acquisitionfacilitates
concept attainment by varying the sequence, amount, and kind of examples; (3) Complex
Tutorialprovides the student with strategies with which to master rule-learning and problemsolving; (4)
Algorithmic Regressiondetails a plan of instruction for each student in the form of a prescription, assigns
resources, provides incentives, and monitors outcomes for input into the next individualized prescription;
(5) Dynamic Programming a. master instructional model which is capable of incorporating previously
mentioned models in order to optimize student progress, prOficiency, and hislialionaTiiiiiiiCes.

Two additional models were analyzed and recommended for further research prior to field
implementation within the MS. These models include (I) Natural Language Processing and (2) Automaton
Models.

Conclusions

Five state-ofthe-art Adaptive Instructional Models were recommended for inclusion within the MS.
A future technical report (Phases II & III) shall report: (I) findings of computer simulations of three of
these models, and (2) a step-by-step guide to how these models may be used to maximize student
performance while minimizing student training time and instructional resources expended.



PREFACE

This report documents a comprehensive analysis of state-of-the-art developments in
adaptive instructional models. Recommendations as to the suitability of numerous
instructional models for application in Mr Force training have been provided.

Research was accomplished in support of Project 1193, Advanced Instructional
System (MS), Task 0605, Analysis and Development of Adaptive Instructional Models
for Individualized Technical Training. Mr. Joseph Yasutake was the Project Scientist, and
Dr. Gerard M. Deignan was the Task Scientist.

Research contained herein was conducted under the provisions of Contract
F33615.72-C-I277 by Dr. Duncan N. Hansen and his staff at the Center for Computer
Assisted Instruction, Florida State University. Subsequent technical reports under this
contract shall provide computer simulations of three adaptive instructional models and
their technical training applications in Air Force settings.

Grateful appreciation is extended to two individuals for their personal
contributions during the course of this research. Dr. Marty Rockway, Technical Director,
made sound scientific suggestions in several portions of the manuscript. As evidenced by
the original statement of work, Dr. Pat-Anthony Federico provided the research impetus
and initial technical monitorship in the formative research stages of this contract. The
summary and overview was prepared by Dr. Gerard M. Deignan, Technical Training
Division, Air Force Human Resources Laboratory.
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THE ANALYSIS AND DEVELOPMENT OF AN ADAPTIVE INSTRUCTIONAL
MODEL(S) FOR INDIVIDUALIZED TECHNICAL TRAININGPHASE I

I. THE NATURE AND ROLE OF ADAPTIVE INSTRUCTIONAL MODELS

Overview

Adaptive Instructional Models (AIM) provide the means by wheeli- instructional task factors,
materials, and resources are continuously tailored or adapted to match the changing instructional needs,
skills, and interest motivations of individual studentsand seeks to do so in a cost-effective manner. Indeed,
providing more cost-effective training by maximizing individual student attainment of training objectives,
while simultaneously minimizing the completion time and costs of such training, is the primary concern of
this project.

To provide a more meaningful context for discussing the AIM, it might be helpful to describe, briefly,
the larger Advanced Instructional System (AIS) within which the AIM subsystem is embedded.

The AIS is a prototype, computer-based, individualized training system and research facility designed
to improve and maintain the cost-effectiveness of technical training. Individualization of technical
instruction, computer management of Instructional resources, and evaluation of instructional strategies are
some of the AIS provisions anticipated to contribute considerably to the effectiveness and efficiency of
technical training. Additionally, to exploit the utility of future instructional innovations, the MS will
serve as an eValuative,testbed for promising instructional technology.

Initially, the AIS shall be implemented in three Air Force technical courses: (1) Precision Measuring
Equipment, (2) Weapons Mechanic, and (3) Inventory Management. At the conclusion of this stage, the AIS
shall operate as a totally integrated computer-based system, capable of training approximately 2,100
students in the three courses with a 25-percent average reduction in training time. Furthermore, time
savings shall be accompanied by training proficiency equal to or better than former, non-AIS graduate&

For the purpose of discussion, the MS might be compared to the structures and resources of the
human body, wherein the AIM's constitute the integrated "brain" of the AIS. This particular brain
assimilates and stores information about each individual student's characteristics, and it compares such
information to current instructional tasks. Based upon this stored information, the brain scans the available
instructional material, media, and other resources to determine the level of content to present and the best
method of presenting it. The brain then composes a strategy which attempts to maximize student
performance with a minimum expenditure of student time and instructional resources.

Because this brain continuously monitors and manages not only student performance, but
instructional resources availability as well, it Is capable of learning more about each student, to include
whicn instructional methods, materials, media, and incentives are performance effective. Hence,
instructional strategy effectiveness becomes progressively more accurate. Furthermore, if certain
instructional equipment is predicted to be in short supply at a particular point in time, the brain may
prescribe an alternate instructional path which permits equipment use at a more appropriate time.
Adaptability to constraints of limited instructional resources and the proper scheduling of resources are
major determining conditions of instructional strategy effectiveness and related time savings.

The objectives of the ATM's contribute directly to the goals of AIS, namely, individualization of the
training process, computer-management of resources, use of cost-effective multimedia approaches, and
training systems modularity. Specifically, MM contributes to the following AIS goals:

Adaptiveness AIM provides for individualization of the training process based on student
characteristics and specific training strategies.

Flexibility AIM provides training alternatives in content, media, and personnel assignements.

Expandability AIM provides an updating mechanism by which more prAcient instruction can
occur.

Modularity AIM provides alternative models which can be utilized according to the appropriate
match between training task requirements and specific individual differences.



= Cost Effectiveness-- AIM attempts to optimize student motivation with incentive schemes that will
lead to significant reductions in training time.

The objectives of AIM can be stated as follows:

To provide a fine-grained monitoring of each student's performance

To provide a set of training decision rules that optimize students' motivation and progress

To provide a decision-allocation procedure that optimally assigns instructional media, material, and
incentive rewards according to each student's characteristics and performance

To provide predictions of performance and time parameters for each student

To provide for the scheduling of all instructional resources so as to minimize cost.

An extensive review of prior research and theoretical literature has led to an initial classification of
the adaptive models into seven groups. As is described in this report, five of these model groups are
recommended for immediate implementation within AIS. The remaining two model groups, being more
abstract, are recommended for additional research investigation prior to incorporation within the AIS
program. The essential features of all seven adaptive models are discussed in the following paragraphs.

The first model, Drill-and-Practice, has two primary goals, namely, (1) to improve the student's
accuracy, and (2) to increase his speed of performance. Drillandpractice models primarily provide for
appropriate problem selection and control of instructional presentation and/or student response rates so as
to achieve their overall goal. The drilland-practice models will typically be embedded in strategies for
practice following demonstration, remediation, and review. These practice strategies are especially
important in technical training environments. From an operational point of view, the drill-and-practice
model provides for a computer-based composition of a set of problems, appropriately graded and ordered as
to difficulty. To a large extent, attainment of specified criterion levels of skill performance depends upon
proper sequences and amounts of practice and review.

Concept Acquisition Models provide for the dynamic manipulation of factors related to pretask and
_within.task _variables so.as-to _faellitate,learning.processses._Pretask.variables,concern_priallwydesige,_
ability, and learning styles which are used to manipulate both the concept-content and contentdifficulty
levels. Within-task variables provide for a systematic manipulation of positive and negative examples, the
number of examples, the degree of prompting, and the nature of the correctional feedback process. Thus,
the concept acquisition models provide for extensive adaptability appropriate to the diversity of technical
concepts found within AIS.

Complex Tutorial Models provide the strategies by which rule-learning and problemsolving behaviors
can be achieved by students. The complex tutorial model utilizes a combination of multiple regression
techniques and explicit decision rules to select instructional content, examples, and problems to compose
individualized lesson sequences for a given student. The decision rules will relate such task characteristics as
rule difficulty, problem difficulty, and/or example difficulty with the student's personal profile, which
includes such variables as cognitive ability and learning style. For instruction and technical education, the
complex tutorial models provide for appropriate sequencing of the amount of practice with rule statements,
examples, and problems, especially as these are integrated into highly complex behaviors.

Algorithmic Regression Models provide for individualized prescriptions based upon task, media, and
learning variables, In essence, the regressionbased learning prescription spells out a plan of instruction for
each student. In addition, the Algorithmic Regression Models will assign appropriate incentive levels so as to
optimize the motivational state of the learner. As an added feature, these models allow for optimal
assignment of resources, given that one wants to maximize a common goal such as total progress of all
students as opposed to maximizing the progress of an individual student solely.

Dynamic Programming Models provide for a sequential or multistage decision process that can
incorporate many tasks, media, student, and resource variables. The dynamic programming models convert
these multistages into a series of singlestage problems which can then be optimized. Most importantly,
dynamic programming models provide for a hierarchical nesting of other adaptive models, and, in essence,
function as the master model for AIS.

* In addition to the above models, it was recommended that further research be directed toward
extending Natural Language Processing and Automaton Models.

10



Natural Language Models provide a conversational dialogue between the system and the student. This
dialogue requires a full representation of the student's language and mental processes. The
interactive-contingent nature of the dialogue allows for mutual information clarification and stimulates the
development of student competencies as he achieves mastery osier given training objectives. Natural
language processing models should also prove helpful in extending student evaluations to counseling
processes within MS.

Automation Models provide for the abstract theoretical representation of a student-training system.
This representation is in terms of states that are defined by input and output relationships. From a monitor-
ing and prediction point of view, automaton models represent the most advanced theoretical developments.
Unfortunately, their operational representation is still exceedingly limited. Consequently, basic research
progress wilt be necessary frijor to full implementation within AIS.

II. INTRODUCTION TO ADAPTIVE INSTRUCTIONAL MODELS

Adaptive Instructional Models (AIM's) constitute means for individually prescribing, analyzing, and
adapting instructional materials, tasks, and resources to differences among students on such dimensions as
ability and motivation. The ultimate goat is to train competent Air Force technicians in the minimum time
at a cost-effective level.

First, the AIM's serve as a representation of its characteristics and operations of the Advanced
Instructional System (MS). In that sense, AIM plays both the role of a model and of a simulation. More
explicitly, the proposed AIM shall, be implemented as synthetic training sessions which provide "Monte
Carlo" data representative of student performance plus the training outcomes anticipated for AIS, Second,
AIM's represent the mathematical tools whose formal processes and parameters allow for accurate
predictions about the outcomes and adaptations involved in the MS methods of training. In turn, the
simulation aspects of the AIM's provide guidelines which can be used in the design and implementation of
the AIS computer management system. Finally, AIM, when programmed, will provide code for the AIS
operation as well as the first concrete, explicit example of the AIS performance recording data base
necessary for contingent adaptive training procedures.

The payoff from AIM for the MS project can be viewed in both short and long-term benefits. For the
short term, the principal benefit will be the clarification of adaptive training processes. This clarification
will result from the detailed literature search and model identification provided within this document.
Another benefit is that classes of adaptive models will be identified in terms of their purpose, their formal
structure, and their potential payoffs. These elements are presented in Sections 11 through IX to allow for
an initial consideration of which adaptive models to pursue within AIS. As indicated previously, the
simulation aspects of this AIM study will provide design guidance as well as representation of actual AIS
computer operations.

As for long-term benefits, ATM's provide the conceptual basis for this individualized form of technical
training. Finally, AIM provides for a coherent paradigm for the multivariate requirements that functionally
represent student characteristics, instructional modes, task characteristics; training decision processes, and
the allocation of instructional resources.

Concept of AIM Within AIS

The AIM will play a general coordinating role in the AIS. It can be anticipated that the AIM will
structure learning prescriptions based on student and task characteristics and monitor all students' training
activities in order to provide input to the adaptive process. In addition, there is the potential for monitoring
and optimAy assigning learning resources, such as instructors, media devices, simulators, or instructional
software. Thus, AIM is inextricably involved in all phases of the AIS operational environmeiit.

AIM Characteostics

The Adaptive Instructional Models will have four properties that promote the individt, i in of the
training procc adaptivenes.s witingency, mediation, and cybernetic.

I I
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AIM is adaptive, in that the training process will be individually tailored to each student. in
operational terms, the training decisions will be made by continually choosing among instructional
alternatives as a function of differential student characteristics, as measured by the AIS training process.
The concept of adaptiveness will include the features of selectiveness since each student will be presented
with information according to his needs in light of the terminal objectives, sequenced because the materials
will be presented in an optimal sequence-for eaelf student, and paced since the student will be provided
with a rate score commensurate with his prior performance and his learning characteristics. In addition,
adaptiveness will include the concept of individually-prescribed media, amount and type of review, and use,
of remediational material.

In reference to the second feature, contingency, AIM will provide relationships which will consider
who is bang taught, what is critical in the subject matter, and how the teaching is to be done. This will
include strategies by which student character-Mies are matched with a catalog of training alternatives under
the control of computer-based algorithms so as to prescribe optimal sequences. In addition, contingency
will include the concept of individually-prescritied incentives according to performance related incentive
schedules, as well as opportunities to branch or re-enter learning sequences according to identified levels of
mastery.

The third general characteristic concerns the mediation process, which will include a wide range of
media and learning formats configured to optimize the information flow according to specifiable
subject-matter maps. In essence, the subjectmatter maps will be defined in terms of task characteristics and
will lead to an optimal matching of training resources in light of task features and student characteristics.
Mediation will include the concept of appropriate media matches as well as individual and small group
instruction. Where appropriate, the student may also be assigned to individual counseling sessions designed
to facilitate the learning process.

An empirical feedback procedure which uses student data from established criterion measures to
redefine parameters of the strategies and their embedded decision rules characterizes the cybernetic feature.
Each student will be continuously monitored by AIM so that his profile identifies his current status as well
as his hest performance within various instructional strategies. The feedback of suicess and failures will not
only be recorded for individual students but also will be aggregated so as to improve the overall modeling
process for new groups of students. This continuous updating of student performance will improve the
accuracy of both the individual learning prescription and the model's predictions of optimal learning
sequences. Thus, AIM provides data which will cybernetically improve the performance of the model itself,

Computer-Managed Instruction (CMI) Model

Asa framework, AIM must provide a proper flow so that students may be prescribed learning tasks in
an individualized sequence. As presented in Figure 1, this adaptive instructional flow can be characterized
by ten steps. The critical steps are concerned with the selection of an appropriate adaptive model and its
application in the composition of an instruction?.! prescription.

In reference to Figure 1, the AIM utilizes the following steps in individually guiding the students:

Step 1. The student's learning profile is updated based on immediately prior performance,
learning time, and associated data from similar learning tasks.

Step 2. The current task characteristics with their associated behavioral objectives are retrived.
Most importantly, these task characteristics will related propositional statements
concerning the type and kind of learning processes involved.

Step 3. All available instructional alternatives for the associated instructional tasks are retrieved.
Table I presents a list of the type of instructional alternatives which are being considered.

13
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Step 4. Any essential student characteristic data present in the computer data base are retrieved if
the data are likely to be utilized within the instructional decision process.

Step 5. An appropriate adaptive decision process based on effectiveness data from the prior
application of the model for the task and the student is selected. In essence, an
appropriate adaptive model for the task should be chosen.

Step 6. An appropriate instructional strategy is derived from the model. This strategy should
provide for selection among instructional alternatives.

Step 7. The specific instructional alternatives are identified and checked as to their availability.

Step 8. An instructional prescription is transmitted to the student.

Step 9. The instruction proceeds.

Step 10. The evaluation of the student learning will supply critical data to the updated student
learning profile and effectiveness data for the AIM's.

The flowchart can be successively applied for the task sequence. As illustrated in Steps S and 6,
the essence of the flowchart concerns the different classes of adaptive models. Each of the models can be
characterized both in terms of its purpose and its quantitative characteristics. Perhaps a brief review of the
purposes will give some idea of the essential characteristics of each class or type of model.

The primary objective of the Drill-andPractice Models is to increase the accuracy and speed of
student performance`On `14etitive tasks. The primary objective of the Simple Tutorial Models is the
acquisition of new conceptual behaviors. These behaviors may concern new definitions, dimension of
concepts, and relationships among these dimensions. Complex Tutorial Models concern task situations
involving two or more concepts, simulation representing the concepts, andjor problem-solving applications
of the concepts. The primary objective of Algorithmic Models is to provide a systematic, efficient
approximation toward some specific goal. On the other hand, Dynamic Progratrigning Modeli provide for
solutions that minimize /earning time and offer the best utilization of resources. Natural Language Models
have a primary goal of reproducing the dialogue between two human beings and, therefore, represent all the
techniques and strategies utilized by a human instructor. Finally, Automaton Models strive for the full
representation of all mental processes and their changes while training is administered.

TABLE 1. INSTRUCTIONAL ALTERNATIVES FOR ADAPTIVE MODELS

Alternative Method Advantages

Alternative media presentations

Type of interactive instruction

Entrance into a learning hierarchy

Sequence of topic; in terms of
level of difficulty

Student and system control pacing

Amount of practice

Provides for the selection of appropriate media types at choice points having two or
more available media treatments, e.g., film, slide-tape, video tape, text, lecture, com-
puter-interactive problem solving, TV, and skill critique.

Provides for selection of a training activity that has the appropriate interactive rates
and characteristics, e.g., Pt, CAI, simulation, performance with equipment, instructor,
tutorials, and student-to-student tutorials.

For those task sequences that have a generic learning hierarchy, the criteria for each
entry point in the hierarchy will be identified and students assigned entry into the
hierarchy according to their characteristics and current performance.

Provides for matching student performance characteristic with alternative topic
sequences and associated redundancy levels, whether they are summary, normative,
or elaborated.

Provides for unique student-based training time limits for an,instructionai task (student
paced) and for system pacing-assignments for computer - interactive training activities.

For each set required of a student, the number of probkri will be uniquely derived
according to his performar history.
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Relationships among Adaptive Instructional Models

The six proposed classes of ATM's are interrelated from two points of view. The first concerns
commonly shared or unique training variables; and the second, the inclusiveness of the learning and
resource allocation process. There appear to be five categoties of variables that reflect the operational'
characteristics. These are (I) task characteristics, (2) instructional mode, (3) decision processes, (4) student
characteristics, and (5) instructional resources. The category of task characteristics is highly similar to types
of learning in that there is a specification of the training requirements from an informational point of view.
Examples within this category would include items such as verbal information rules, problem sets,
psychomotor tasks, and complex simulation tasks. The critical variable Within-task characteristics concerns
learning difficulty. For example, each type of learning will be reflected in a level of performance difficulty
which 41, in turn, influence training dzcisions such as the availability of prompts or the amount of
practice. The models will vary as to the nature and complexity of the task that they can monitor and adapt.

Instructional modes include elements characteristic of a training session. such as the directions for
learning, the presentation of learning media and materials, type of student interaction (e.g., pacing), and
feedback. The critical variables in modes of instruction are concerned primarily with media, the type of
interaction, and the feedback process.

The models vary as to the number of instructional mode variations they monitor and prescribe;
drilt-and-practice varies only with respect to pacing, while alogrithmic models attempt to prescribe all the
variables.

The decision process is concerned with levels of precision and prediction according to the procedure,
be it heuristic, algorithmic, or optimization. Another way of viewing the decision processes would include
the concept of "sufficiency," Le., the degree to which the student's learning data and aptitude
characteristics are utilized in the decision process. Thus, the more frequently individualized data are utilized
In the decision process, the more complex and predictive the process becomes. Drill-and-practice models
tend to use simple decision rules, while dynamic programming models employ complete and much more
complex optimization routines.

The fourth dimension concerns student characteristics. These characteristics vary according to stable
indices such as aptitudes and trait measures, semistable characteristics such as perceptual and learning
styles, and task specific characteristics such as latency and anxiety. The models vary considerably according
to the amount of information they utilize in the process of making decisions. In addition, the models vary
in their treatment of the variable classes and the collection-update process.

The last category of variables concerns instructional resources. In essence, a model must construct a
prescription which furnishes training resources to a given individual for the purpose of achieving a given
training task. Again, models vary in the number and quantity of the resources being monitored and
allocated, whether resources are traditional texts, P1 texts, films, computer terminals, trainers,
simulators, or human instructors. For the different models, there is a range of complexities in the allocation
of resources. Thus, the five operational characteristics of task structure, instructional mode, decision
processes, student characteristics, and instructional resources provide the salient differences that aid in
distinguishing among the models and their potential for improving the training process.

Research Findings and Recommendations

It is fully recognized that in the succeeding sections of this report, specific, detailed, and operational
recommendations are frequently made asif the research findings fully justify these at present. Clearly, the
status of the research in the adaptive 'modeling area on which this report is based is far from being
informationally or theoretically sufficient to justify each of the recommendations in all ,their operational
terms. On the other hand, it is precisely these operational recommendations which are being sought. Ways
to reconcile this paradox are (1) to create the best possible interpretation of the state of knowledge, and (2)
to provide for future evaluations and revisions. It is anticipated that some of the recommendations made-in
the present report will have to be revised or dropped in the light of data accumulated in the future
operation of MS. For each of the model categories, extensive research is required to provide complete data,
interpretation, and guidelines for practice. Nevertheless, since training has to be carried on in the present,
the best available inferences from the existing data base have been made. It should'be recognized that the
remaining sections of this report do not make continuous cautionary notes regarding the incomplete data
base in order to avoid unnecessary repetition.
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III. DRILL-AND-PRACTICE MODELS

Characteristics of the Models

In general, drill-and-practice may be defined as the presentation of a series of similar items to which
the student must respond within fixed time limits. In computer-administered drill-and-practice, immediate
analysis of the response and provision for feedback to the student are possible, In the early 1900'i, there
was a great deal of emphasis on drill, in accordance with the "faculties" theory which dominated much of
the educational practice of the day (Suppes, lennan, & Briar? 1968). In a paper summarizing 48'
unpublished studies, Wilson (1925) concluded that a drill should contain the following attributes in order
to be effective:

It should be on the entire process

It should come frequently in small units

Each unit should be composed of mixed items

It should have a time limit

Examples in a unit drill should be in order of difficulty

It should include verbal problems

It should facilitate diagnosis.

Drill-and-practice sequences presuppose the prior introduction of the concept or skill being drilled.
Strategies have led to the insertion of drill-and-practice at three different points in the sequence of
instruction. These points are (1) immediately after the concept or skill has been introduced, (2) at a time
when remedial instructional treatment is required, and (3) periodically as a review of the concept or skills
previously introduced.

Drill strategies are appropriate for several different types of learning. The performance required of the
student may involve rote recall such as learning arithmetic tables, spelling words, foreign language
vocabularies, and symbols for chemical elements. Another application is to facilitate learning rules or
algorithms such as those involved in arithmetic operations, grammar, and the formation of chemical
compounds. Even high levels of learning such as the abstract reasoning involved in solving verbal analogies
or troubleshooting can also be handled using drill techniques.

The two primary goals of drill-and-practice strategies are to improve the student's accuracy and to
increase his speed of performance. Both of these goals are consistent with the objectives of AIS. During the
AIM project, three categories of drill-andpractice models have been identified as being most Useful and
feasible for the AIS. These categories include pacing, domain-sampling, and domain-exhausting. Pacing
models are characterized by the utilization of techniques for controlling the presentation rate of drills based
upon individual history. A specific model for pacing of reading is presented in this report. Much of the
literature on individualization has speculated on the value of reading at one's own pace. The model
discussed utilizes procedures which quite possibly may be more effective than learner self-pacing.

The other two types of models are more concerned with drill content rather than time. The
domain-sampling model draws items from a large pool, whereas the domain-exhausting model utilizes all
possible items (content wise). The distinction between domain-sampling versus domain-exhausting drills is
significant because the decisions within the two strategies are different for item sequence, level of
difficulty, termination criteria, and number of items presented.

Role in MS

Several applications for drill-and-practice are evident within the context of MS. In the Precision
Measurement Equipment (PME) course, drill-and-practice techniques would be useful for instruction in
basic mathematics, for teaching definitions of terms, for performing calculations (eg.., calculate voltage,
current, and resistance in a series DC circuit), for converting units of measurement, and for reading meters
(depending upon the availability of some sort of visual-display device). In the Weapons Mechanic Cou,w,
the procedure could be used for elementary topics in electricity. If visual display devices are available,
drill-and-practice techniques could be used for identifying weapons from photographs or parts of circuitry
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fiom schematics. Applications in Inventory Management include drill in the use of coding schemes and the
classification of information according to security rules.

Payoff

The payoffs for drill and practice adaptive models are consistent with major objectives for the AIS
and ate readily stated. At a general level, increases in speed and in accuracy of performance in a range of
tasks varying from simple to complex are two of the possible payoffs. These are gains above the standard
self-pacing or group-rating instructional strategies, and they increase the viability of MS goals for a
cost-effective, individualized system. Furthermore, the models are embedded in strategies for review and
remediation which are especially important in a technical training environment.

Literature Review

This section summarizes the literature related to computerized drill-and-practice models.

Drill-and-Practice implementations

Stanford Project. In January 1963, the Institute for Mathematical Studies in the Social Sciences at
Stanford University began a program of research and development in computer-based instruction. The first
operational instructional program was in elementary mathematical logic. During the 1964.1965 school year,
arithmetic drill-and-practice materials were developed and tested. This drill-and-practice program was
expanded, and it has now been implemented with thousands of students at remote terminals scattered
around the country (Suppes, Jerman, & Brian, 1968),

The Stanford curriculum was divided into concept blocks which were further subdivided into lessons
consisting of 20 items. The blocks were arranged to correspond to the topics in conventional textbooks,
and the initial instruction on all concept was given by the teacher. For each item, the student was given
three opportunities to respond correctly within a 10 second time limit before he was given the answer. The
next exercise was then presented. Feedback consisted of messages such as "WRONG," "TIME IS UP," and
"WRONG, THE ANSWER IS: ." A student would complete one lesson each day with an average of 5
minutes for each session at the terminal. Lessons were prepared at each of five levels of difficulty within
each concept block and organized according to the diagram shown in Figure 2. Those students who scored
above 79 percent correct on a lesson moved to the next higher level the following day. Students scoring
between 60 and 79 percent stayed at the same level, and those scoring below 60 percent were given a
simpler lesson at the next lower level.

Current projects at Stanford directly attack the problem of adaptation. Adaptive teaching systems
(Laubsch, 1969) which can control the learning process by item presentations in an optimal sequence have
been studied. In addition, new research has recently begun on structural variables which reflect
information-processing attributes of humans when presented with a sequence of instructional presentations
(Loftus, 1970; Atkinson & Juola, 1971; Jerman, 1971). These attributes are especially relevant to
sequencing drill-and-practice so as to maximize gains in speed and accuracy.

Kansas City. A slightly different approach to using dri11-and-practice techniques was taken by. the
Kansas City, Missouri public school CAI Laboratory. Most of the lessons were tutorial it tture, but
frequently they contained drill-and-practice sequences. The tenons were classified as either required or
elective and were organized into blocks of approximately 12 weeks' duration (40 to 60 ni. ;tm 'es/week ).
Since no attempt was made to keep students together, there was only a rough correspondeth. between
lesson topics and classroom instruction. Each block began with a lesson on using the basic operations %s oh
whole numbers, fractions, of decimals which was primarily in the drill-and-practice mode. The ui sctives of
these initial basic skill lessons were twofold: (1) to screen out those students who had not }et mastered
these prerequisite skills and, consequently, would he unable to succeed in later lessons in the block, and t 2)
to act as a refresher for those students who were already close to reaching criterion. Complex pretesting
strategies were utilized to minimize testing time. Some students were able to finish such lessons in as little
as 20 minutes, while other students required S hours or more. As time passed, the distribution of students
over lessons within a block became even greater. Wn'le this approach only individualizes instruction by
adapting to entry behaviors and allowing self - pacing, it promises great payoff for A1S, particularly in
courses where entering students vary greatly in experience and ability.
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LEVEL 5

LEVEL 4

LEVEL 3

LEVEL 2

LEVEL 1

Fig. 2. Diagram of Branching Structure Followed in Constructing Sets of
Exercises for Concept Blocks (Suppes, Jerman, & Brian, 1968).

The several lessons that were implemented in Kansas City included mechanisms to adapt the drills to
the individual students on the basis of within-course performance variables such as latency and
achievement. In a remedial drill on multiplication facts, an algorithm was included to adjust the time
allowed t)r response input on the basis of recent response latencies and the accuracy of the immediately
preceding response. Such a performancecontingent pacing condition was intended to improve the student's
speed of responding without sacrificing accuracy in a task which is basically memorizing the multiplication
table. In the same drill, a mechanism was included to note the particular stimulus items to which the
student was responding incorrectly. These items were then presented more frequently than would have
occurred by chance (ie.., if all items were composed by a random number generator). Consequently, the
student received a greater proportion of items for which it was known he needed practice. At the same
time, these difficult items (for that particular student) were interspersed with randomly composed items to
(1) give the student some successful experiences and (2) locate other troublesome items.

Several adaptive strategies were employed to determine the number of items to be presented in each
dull. These strategies were typically based on cumulative achievement indices within each drill such as (I)
continuing to present items until the student gives a specified number of consecutive correct responses and
(2) beginning with a given number of items for a drill and incrementing this index for each Incorrect
response and reducing it for each correct response until the Index either reaches zero or becomes so high
that remedial instruction is indicated.

In one lesson, the criterion for passing a drill was dynamically adjusted according to the number of
times the student had attempted that particular drill. This strategy was employed to avoid trapping a
student in an instructional sequence which was not effective for him and, concurrently, the proctot was
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notified that some alterrotive instruction should be provided for this student. In Kansas City's curriculum,
the feedback consisted of a series of hints or prompts designed to lead the student to the correct answer. It
the number of incorrect responses to an item exceeded the number of hints (usually four or five), the
student was shown the correct answer and was required to type it in before continuing to the next exercise,

In addition to these two projects drill-and-practice sequences have been developed for many different
Installations. Most numerous, perhaps because they are easiest to develop, are the drill-and-practice lessons
In elementary arithmetic skills. Stanford began its arithmetic drill-and-practice program in the spring of
1964 (Suppes, Jerman, & Brian, 1968). Other examples of arithmetic drill-and-practice may be found at
IBM Education Research Division, San Jose, California (Barnes, 1970; Dean, 1969), Leeds University
(Woods & Harley, 1971), and Wakulla County, Florida. (Hansen, Johnson, Dural!, Lavin, & McCune, 1971).

In the language arts area, drill-and-practice has been used for reading at Stanford (Atkinson, 1967),
Wakul la County, Florida. (Hansen e 1971) and City University of New York (Schiavone, Rowen, &
Farrell, 1971). Research in spelling drills has been conducted at Stanford (Fishman, Keller, & Atkinson,
1969). Drill-and-practice courses in foreign languages have been developed at State University of New York,
Stony Brooks (Morrison, Adams, 1969; Adams, Morrison, & Reddy, 1969).

A rather unusual application of drill-and-practice has been reported by Hu Wish at State University
College, Brockport, New York (Hul !fish, 1971). He proposed that drill strategies may be used to teach
abstract concepts. He described a drill-and-practice program in verbal analogies which explains the logic
behind each example in an effort to improve the students' abilities to solve them.

Learning Effectiveness

The learning effectiveness of various strategies associated with individualized learning has been
investigated along five dimensions relevant to drill and practice models. These dimensions of pacing, learner
control, massed versus distributed practice, overt correction, and item difficulty are discussed in the
following subsections.

Pacurg. Previously, the capability of learning at one's characteristic rate was generally acknowledged
to be an important aspect of individualized instruction. However, this review specifies the lack of empirical
evidence supporting self paced instruction, and the relative ineffectiveness of current alternatives to
self pacing, and discusses an alternative based on performance-contingent pacing in computer assisted
instruction.

The following review begins with a consideration of self- and fixed paced Instruction. Next to be
reviewed are those studies which investigated the effects of various externally applied tempos on
performance in programmed instruction. This review is then followed by a discussion of a Method of
maximizing learning effectiveness and efficiency in computer-based instruction by using pacing.

Learning with Self- and Fixed-Paced Instruction. Feldhusen and But (1962) presented college
students with a 37-frame linear program. Two conditions were employedone condition permitted students
to pace themselves, while the other forced the students to proceediat a predetermined pace. The pace for
the latter condition was determined by the average time per frame required by subjects who worked
through the program at a self-adopted rate. No statistically significant achievement score differences were
found between the self- and externally-paced rate employed.

Carpenter and Greenhill (1963) investigated the effects of self- and fixed-pacing on achievement in a
15-unit mathematics course. The externally-paced group was presented frames at a rate based on the
average rate of a pilot group of students who studied the program at their own rates. Under these
conditions, no differences in final achievement between the self- and externally-paced groups were
observed. In contrast to the preceding findings, evidence from a series of studies (Locke & Bryan, 1969)
consistently indicated a statistically significant performance difference in favor of externally assigned
(incremented fixed rates) as opposed to self assigned performance rates. Though incentives appeared to not
influence performance directly, such incentives were significantly related to performance intentions
measurdd prior to actual performance. It may be that incentives persuade an individual to accept assigned
difficult tasks with a subsequent increase in his performance, whereas self-selected performance rates do not
sufficiently challenge the individual's performance capabilities.
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Kress and Cropper (1964; report No. 1) investigated individual differences in learning from self-paced
programmed instruction. In this Investigation, two 100-frame science programs were administered to two
groups of eighth graders. Individual difference variables such as IQ, reading comprehension, and entry level
were investigated. Data indicated that self-adopted fast paces were related to poorer performance than the
performance of students whose self-adopted pace was slow. Most of the variability, however, occurred
among tow IQ students, suggesting that low IQ students who were permitted to pace themselves did not
benefit from self-pacing opportunities. Also, it should be pointed out that many high IQ students worked it
a slow pace; thus, they were extremely inefficient, even though they performed well, Another important
observation from the Kress and Cropper study was that students tended to be consistent in the work rate
which they adopted. The average correlation between work rates on the two instructional programs in this
study was 0.80. In addition, students were consistent in the number of errors which they made on different
programs, as evidenced by a correlation of 0.78 between the number of errors made on the two
instructional programs. These correlations may indicate that work rate is idiosyncratic in nature and
reflective of the student's characteristic reading speed and work habits.

Since the preceding study suggested that some high- and lowability students failed to profit from
self-paced rates, the use of such rates in the determination of fixed rates is dubious. It is reasonable,
therefore, that Feldhusen and .Birt (1962) and Carpenter and Greenhill (1963) found no differences
between self- and fixed paced groups. Studies which did not determine fixed paces on the basis of rates
established during self-pacing are reviewed below,

Heyel (1967) designed a study to compare the effectiveness of self-paced and group-paced instruction
in teaching a manipulative skill and related cognitive information. Students receiving the group-paced
instruction were permitted to progress only after the last person in the group responded to a frame. A
cognitive and a performance test were administered immediately and at 2 and 6 weeks following
instruction. Heyel observed no differences in performance, students using the group-paced instruction
required less time to complete the learning task than did the last individual in the self-paced group.

Cropper and Lumsdaine (1961) compared programmed instruction presented at a fixed pace with a
lecture version of the same lesson. The programmed instruction material resulted in higher achieveinent
than the lecture; however, this difference was due primarily to the highability students in the programmed
group. That is, high-1Q subjects showed large performance gains from programmed instruction, whereas
low1Q students in the programmed instruction group did not differ in performance from lowIQ students
who received the lecture. For the rate employed, this study indicated that when heterogenous students are
paced at a fixed rate, high-ability student perfor.nance increases, but low-ability student performance
remains comparatively poor. A lack of adaptability to individual differences in ability and characteristic
reading rare may be the reason that certain fixedpaced rates were found ineffective for lowability
students.

Frye (1963) argues for the use of homogenous groupings. He investigated the effects of group and
individual pacing for homogenous and heterogeneous groups on the rate of learning in programmed
instruction. All students were required to achieve the same criterion. Homogenous groupings in this study
were based on IQ and predicted algebra ability. Frye reported the following findings:

Students in the grouppaced heterogeneous group took significantly longer to complete the
program than the self-paced heterogeneous group

The homogenous group which received self-pacing did not differ from the homogenous group
which received group-pacing did not differ from the homogenous group which received
group-pacing in the time required to complete the program.

The heterogeneous group receiving grouppacing took significantly longer to complete the
program than did the homogenous group-paced students.

Thus, only where there is a wide range of abilities represented within a group of students is there a chance
that the learning rate will be retarded by external pacing procedures. However, since this study used only
the learning rate as the dependent variables,. the effects of group and individual pacing for homogenous
groups on achievement or errors are not known.
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The results of studies reviewed so far may be summarized as follows:

Self-selected rates are often inappropriate for both high- and low-ability students; however,
more definitive research is needed.

Fixed paces based on self-paced rates are incompatible with high achievement for many
students

Fixed paces not based on rates established under self-paced procedures do not improve the
effectiveness of the instruction, resulting in only small gains in efficiency

Low-ability students are adversely affected under both self and fixed-pacedinstruction.

The next section reviews those studies which employ various presentation tempos in an effort to
optimize learning effectiveness and achievement.

Variations in Tempo. Silverman and Alter (1961) conducted a study which compared two
fixed-paced groups and one self-paced group. One fixed-paced group was paced at a rate slower than
necessary for most of the students. Finding no differences between any of the groups led these investigators
to conclude (page 41) that "pacing the learner will not impair his performance if care is taken to ascertain
optimal pacing rates."

In a 1963 companion experiment, Carpernter and Greenhill investigated the effects of various
presentation tempos on performance in six programmed mathematics units. The tempos chosen were 80,
90, 100, and 110 percent of a base tempo, defined as the mean time required per frame by a pilot group
who worked through the same materials at a self-adopted rate. Measures of both achievement and attitude
toward instruction served as dependent variables. No differences in performance or attitude were reported
for any of the four pacing tempos. Nonsignificant differences in achievement were also observed in a study
by Nicholas (1966) which emOoyed rates of 50, 75, and 100 percent of a base tempo, In a more recent
study, Blackwell (1970) found"no differences in performance between students taking three (norms), slow,
fast) versions of a machine-paced sound/filmstrip program.

The effects of presentation rates ranging from 150 to 350 words/minute on learning from audio,
visual, and audio-visual modes were investigated by Jester and Travers (1966). Comprehension scores for all
modes decreased as the presentation rate increased. Similar results were observed by George (1970) and
Rossiter (1971) in studies on learning from compressed speech.

One of the most comprehensive studies on the influence of external pacing on learning from
programmed instruction was conducted by Kress and Cropper (1964, report No 2). The aims of this study
were: "determine whether students differing in ability or characteristic (self-paced) work rate experience
(the effects of external pacing differentially) and to compare the relative effectiveness of fixed- and
self-paced program instruction." In this study, eighth-grade students were presented a 100 -frame program
on electricity under either a fixed rate of presentation or in booklets at a self adopted pace. Three versions
(slow, medium, fast) of the fixed-paced presentation were prepared. Preliminary self-paced programs were
administered to determine the students' self-paced or characteristic work rates. Only those students who
reached an achievement level of 70 percent on the preliminary program were retained for the main
experiment. The observed work rate, then, was one which permitted a relatively high level of achievement.
The observed results indicated that increasing the tempo resulted in increases in average error rate, which
did not rise above 16 percent for any condition; also, there were no decrements in achievement as tempos
increased. Kress and Cropper suggest that achievement would be affected adversely if, as a result of
increasingly fast tempos, the mow rate became sufficiently high.

It was further observed (Kress & Cropper, 1964, report No. 2) that when characteristic work rates
were controlled, high-ability students performed better than low-ability students; and as tempos increased,
the differences between these groups increased as well Another finding (contrary to Kress & Gropper,
report No. 1) was that characteristically fast students outperformed characteristically slow students. This
superiority of characteristically fast students was evidenced by fewer errors and higher achievement stores.
Interestingly enough (since all students were "qualifiers"), students who paced themselves performed
poorer than students in the slow fixed-pace condition.
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These results indicate that, among other thingi, work rates may be inappropriate under both self or
fixed-pace conditions. That is, self-paced students often adopt a rate which is too fast for accompanying
high achievement, and, under fixed-pace conditions, students may be required to work at rates which are
too fast and not compatible with achievement. In addition, increasingly fast tempos appear to impair the
learning of low-ability learners.

Performance Contingent Pacing. It has already been pointed out that Kress and Cropper (1964,
report No. 1) found individual readers to be consistent in the pace they adopt. This consistency suggests
that forcing subjects to a more nearly optimal rate through an adaptive performance-contingent procedure
could have beneficial effects on later self-paced reading. If near optimal rates could be externally
established, a reader might tend to maintain the rate under self-paced conditions.

Brown and James (1972) investigated one strategy for optimizing information presentation rate. A
self-paced (SP) condition and a performance-contingent (PC) condiition were utilized. Students read 40
passages presented via cathode-ray tube and responded to three multiple-choice questions following each
passage. One group received the first 20 passages under a performance-contingent presentation condition
followed by the next 20 passages under a self-paced condition. Another group received the same two
conditions, but in the reverse order. In the performance-contingent condition, the presentation rate of the
passage was manipulated on the basis of the student's performance on the proceding passage's questions.
The following decision rules were employed:

If the student answered all three questions correctly, the rate was incremented for the next
passage

If the student answered less than two of the three questions correctly, the rate was
decremented

If the student answered two questions correctly, and if he answered all three questions
correctly on the previous passage, the rate remained unchanged for the next passage.

It is of interest to note that the SP condition following the PC condition resulted in the highest
retention performance observed and in a reading rate faster than the SP first condition, suggesting a
carryover from the PC condition into the following SP condition. This carryover effect is also seen as having
given rise to the interactions between order and pacing and to be consistent with other findings which
indicate that subjects tend to be consistent in the pace which they adopt (Cropper & Kress, 1965). Slightly
longer latencies for the PC condition indicate subjects were employing a longer recall interval as would be
expected given the higher mean presentation rate in this condition.

The apparent carryover effect and the absence of undersired effects on anxiety or attitude, coupled
with only slightly lower retention scores in the PC condition, suggest that performance-contingent pacing
could be a valuable alternative to self- or fixed-paced instruction.

Learner Control. The research on learner control over sequence has shown that those students in a
learner-control condition usually score equivalently on a posttest with those students taught under an
author-controlled sequence. It has been reported that a small percentage of students, when given the
opportunity, sequence materials differently than instructors would sequence them. Students in a
learner-control condition tend to.take equivalent or less time to learn the materials than those learning with
sequences under instructor control.

A variable of some interest is the amount of control the student should have over the instructional
sequence.

The sequencing and student-control variables have been investigated by Barnes (1970), Dean (1969),
Mager (1961), Mager and Clark (1963), Kapel (1965), Grubb (1968, 1969), and Judd, Bunderson, and
Bessent (1970). Dean (1969) using an elementary arithmetic task, reported that learner-control subjects had
superior performances and, depending upon grade level, practiced less than students given a fixed linear
task. Barnes (1970) concluded that learner control of amount of practice could lead to time savings if (1)
the learner is ready to assume control and understands his option, (2) the material is meaningful and
relevant, and (3) the learner is motivated to learn the material.
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Mager (1961) was interested in whether individual students, when given the opportunity to control
their own sequence of instruction, would generate a sequence similar to that devised by the instructor. In
his study, six adult Ss with educational backgrounds varying from a high school graduate to a Ph.D.
independently learned some electronics principles from an instructor. Complete control over the content
and sequence of the curriculum was left to the student. The Instructor answered questions and provided
instruction, examples, and problems only at the student's request. An average of four 65-minute sessions
were held for each S. It was found that (I) the learners tended to begin the course with a topic different
from that usually selected by the instructor, (2) there was some similarity between learners in content
sequences, and (3) the learner-selecthd topic sequence was not similar to that appearing in the usual
electronics curriculum. These findings suggest that motivation might be enhanced by allowing the learner
some control over sequence and content. The learner is thus studying at a point in the curriculum where he
chooses to study, and is perhaps more receptive to the material.

In another experiment in which learner-control was investigated (Mager & Clark, 1963), students in
an industrial training program were provided with a detailed list of terminal objectives. There were then
told that they could ask anyone in their department for information related to the objectives. A shorter
training time resulted for thP.; students, and it was concluded that the students were better prepared than a
group of students that had graduated from the normal job-training program. On the basis of this and other
evidence reported in their paper, the authors concluded that students can learn on their own, and that the,
adult student, at least, can be a good judga of what he needs to learn and how he should learn it.

Kapel (1965) used linear programs in history to investigate learner control of sequence with 40
ninth-grade students. One group used the PI text in the usual manner, progressing through the prograni ina
linear manner. The experimental group was encouraged td search ahead in the text at any time for
information. The Ss in the nonsearching group scored higher on, a test of initial learning, but the Ss who
were encouraged to search ahead for information were superior on a retention test administered 1 month
after completion of the program. Apparently, the learner given some amount of control over sequence can
organize materials in a manner which is more effective for his own objectives. Grubb (1968) has
hypothesized that the adult learner can 'structure such a curriculum which is suited to his own needs. The
desirability of a learner-controlled course, wherein a map is presented and the student, is permitted to
inquire into different levels of a course, was discussed. The author suggested that motivation would be
enhanced by such a procedure because the learner would be in a part of the course because he chose to be
there.

Grubb (1969) reported a test of the learner-control hypothesis. In an IBM training program, two
chapters in elmentary statistics were taught by computer-assisted instruction to 50 adults. In this program,
50 Ss were each randomly assigned to one of five conditions, Each chapter of the materials could be learned
under either a linear sequence or a sequence under the complete control of the student. All permutations of
learner control and linear format were represented, as well as a condition in which Ss could control both
between and within-chapter sequence. It was found that complete learner control produced higher mean
performance than conditions employing lesser degrees of learner control. Performance was degraded as the
degree of learner control decreased, except for the condition where learner control was permited within
both chapters, but not between them.

Learner control of instructional sequence, then, is a condition that has produced promising results.
For those students capable of sequencing materials between chapters, the option is open, and they can take
advantage of the opportunity to jump ahead or back as required. It has been shown (Mager, 1961), that
students choose different paths through a curriculum, It has also been shown (Mager & Clark, 1963; Grubb,
1969) that students perform well when choosing a sequence. Student control, then, is seen to be an
important factor in performance, at least for the materials that were investigated.

According to Judd (1970), any conclusions drawn about the relative effectiveness of the various
learner-control options must be qualified due to the students inexperiences with relatively unstructured
learning situations. He also suggests that if students are to be given the option of deciding whether or not to
enter a particular instructional segment, basing the decision in part on the results of a diagnostic pretest,
they should also be given control options within the instructional segment. Otherwise, there is a tendency
for the students that do need the instruction to avoid entering the instructional segments. Judd found that
students who were given the option of terminating instruction performed at least as well as those who were
required to reach criterion before exiting from an instructional sequence. lie therefore concludes that
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students are indeed competent judges of the amount of practice which they require on given topics. On the
other hand, allowing the students to determine which instructional topics to investigate and the order in
which these topics are taken appears to have had little beneficial effect, as compared to the predetermined
sequence. Judd further elaborates on ,this result by noting that students tend to select topics for further
study on which they have had some prior success as indicated by a higher pretest score. According to Judd,
simply introducing the student to the topic appears to greatly increase the probability that the student will
persist in studying that topic. Therefore, a degree of programmed control which at least leads the student to
the topic may be preferable in situations in which the student has relatively little competence.

Massed versus Distributed Practice. The spacing of drill exercises is another question which has been
investigated. When the items for a drill constitute a finite pool, there are many questions regarding the
optimal order and number of presentations. With the same number of presentations for each item In a
computerized spelling drill, distributed practice resulted in better performance than massed practice
(Fishman, Keller, & Atkinson, 1969).

Another issue which received considerable attention was that of the desirability of using isolated (one
concept only) versus mixed (several concepts at a time) drills. Repp (1935) recommended that isolated
drills be employed following the introduction of a new topic or for remedial work, while mixed drills are
better for maintahang skills. Suppes (1968) concluded that the optimal block size for learning a list of
simple items depends upon the relationship between rates of learning and forgetting. The block size should
be large when learning occurs faster than forgetting and small when the reverse situation is true.

Overt Correction. Overt correction may be defined as requiring the student to enter the correct
response after he is given feedback on an incorrect response. There is some evidence that requiring an adult
subject to make an overt correction response after reinforcement has no effect on his learning rate nor
achievement (Burke, Estes, & Hellyer, 1965). In an experiment with young children, however, the learning
curves for the two groups show a significantly faster rate of learning for the overt correction group
throughout the entire experiment (Suppes & Ginsberg, 1962),

Item Difficulty and Structural Variables. While drill-and-practice implies a homogeneous set of items,
there are frequently variations in difficulty within a pool of items. It, therefore, becomes necessary to
determine the difficulty of items in a fixed pool and to predict the difficulty of items to be randomly
composed. Two methods have been used to determine item-difficulty indices. One is based on an analysis of
student response behavior on previous administrations, and the other is based on an analysis of structural
variables or characteristics of the task (Maloney, 1962). For vertical addition problems (Woods & Hardy,
1971), the behavioral indices were (1) probability of success and (2) rate of work in each column. The
structural variables which proved to be significant were (1) digit size and (2) number of rows. Cohen,
Craun, and Johnson (1971) described the difficulty of spelling items, with a tentative list of 23 predictor
variables. These structural analysis variables appear to be quite promising in terms of scaling and in
sequencing items from easy to difficult.

Drill-and-Practice Models for MS

With the preceding research literature and the experiences of educators at both Stanford University
and the Kansas City Public Schools as background, two drill-and-practice models appear to be viable for
AIS. These two models are described in terms of input variables, the model's processes, and the nature of
the output. The first model is concerned with pacing of students, thereby controlling and facilitating the
rate by which the learner completes the instructional lesson. The second model is more traditional in that
the decisions concern to number, sequence, and difficulty of the drill-and-practice items, the nature of
feedback, and drill-termination procedures.

The Pacing Model. The pacing model used by Brown and James (1972) (Figure 3) was developed on
an intuitive basis, and, although it seems to be functioning satisfactorily, there are two considerations which
point out the need for further refinement of the model.

First, no provision was made within the model to take into account an established characteristic
reading rate for each individual. If such a pacing procedure were to be embedded in on going instruction, a
base rate provision would be advisable. Second, the decision struction of the model needs to be revised such
that the optimal rate for each learner is identified as rapidly as possible. A rapid identification of the
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optimal rate will yield greater instructional effectiveness and efficiency. Furthermore, after the optimal rate
is located, the decision structure should stabilize the presentation rate. More sensitive adjustments must be
included in the model to ensure rate stability so that an individual's optimal rate will be approximated to
the greatest possible extent.

Input. The suggested pacing model begins with a determination of the learner's selfpaced, or
characteristic rate of reading in terms of the number of words read per minute. The accuracy with which
the student reads a given passage, in terms of both comprehension and we word accuracy, will also be
measured and retained by the computer system. These measures may be comi,kied as state variables. The
trait characteristics to be measured may include reading style, reading level, verbal aptitude, and
vocabulary. Measures which already exist in computer files will also be utilized. These measures include
AQE scores, background measures such as SES, or motivation levels.

Processes. The rate of reading which is measured at the outset of instruction will be utilized to begin
the search for tin optimal pacing level together with the input variables listed previously. On the basis of the
learner's performance in the task, as well as on trait measures, the presentation rate will manipulated; some
rates will be increased, while others will be decreased in an effort to find the optimal rate. The outcomes of
the pacing model, then, are reading rates which are more optimal than rates in a selfpaced mode. This more
optimal reading rate means that the performance has been maximized without creating detrimental effects
on efficiency.

The pacing model presented here may have applicability for a wide range of instructional tasks.
Essentially, when one or more paragraphs of written material are presented to a student, his reading ability
becomes a factor in determining his performance. The pacing model would not be limited to one adaptive
instructional model, but would be utilized whenever appropriate. An additional feature of the model is that
the students' reading rate will be continually monitored both for adaptive use within the model itself and
for use in other models as well.

Output. The pacing model has as its goal the facilitation of reading speed without the sacrifice of
reading accuracy. The model will facilitate the attainment of this goal by providing output in the form of
reading rate data which can be of use to instructors and as input to other adaptive models. From the
students' perspective, the model is expected to increase reading rate.

Traditional Drill-and-Practice Models

The variables related to drill-andpractice instruction are divided into two classes, namely, task
variables winch relate to the nature of the instruction; and student variables, which describe individual
student characteristics. Both task and student variables are used as input to the drill-and-practice adaptation
procedure, Performance variables are also utilized within the drill-andpractice lessons to facilitate the
adaptation process. The following paragraphs describe the input variables which will be used, the decision
processes which will be employed, and the output that can be expected from the traditional drill and
practice model.

Input. The input variables are categorized as student, task, and instructional variables. A student
variable, such as reading level would be crucial for determining the means of communicating directions and
the amount of text in 'the presentation of items. Aptitude and IQ will be used to predict the amount of
practice necessary and the optimum rate of increasing item difficulty. Diagnostic information regarding the
specific task not only answers the question of whether or not the student needs the drill, but also aids in
specifying the initial range of item difficulty, Personality traits such as perseverance, and indices such as
learning style will be used to determine the degree of learner control of instructional crarameters. As a
specific adaptive system is designed, other potentially profitable student variables may be identified.

The identification of task variables depends on an analysis of the task characteristics. However, some
general variables may be specified such as item difficulty. Other task variables include the size of the item
pool and the task requirements affecting the establishment of performance criteria. Task ch;cteristics will
also influence the choice of a terminal device since some tasks require audio or visual presentation,
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While student and task characteristics remain fairly static throughout a drill, instructional variables are
generated by the drill itself and, consequently, are constantly being updated. They may be thought of as
state indicators. *Included in this category are items such as cumulative and recent indices of performance,
response latency, Item difficulty, location In item pool, and number of problems presented, The state of
these indices for the nth item is used as input for decisions regarding the nrh problem.

Process. There are many opportunities for adaptive decisions within a drill-and-practice sequence.

These decisions include the following:

How many items should be presented?

How should the items be sequenced?

What is the difficulty of each item?

How much time should a student be allowed for each response?

What kind of feedback should be given?

When should a student exit from a drill-and-practice sequence?

What are some criteria for predicting mastery?

One may categorize drill-and-practice models as one of two distinct types on the basis of the domain
of items involved. The term "domain-sampling" model will be used to refer to drill sequences in which the
items are randomly generated or drawn from a very large pool of homogeneous items. Drills in arithmetic
would be included in this category. Chemical symbol drills, however, involve a finite list of elements for
which the student will receive practice on every item in the pool. Drills of this nature will be categOrized
under the "domain-exhausting" model, The selection of the appropriate model is dependent upon the task
involved. The distinction between domain-sampling and domain-exhausting drills is necessary,because the
decisions inherent In these two models are different with respect to the number of items presented, item
sequence, determining item difficulty, and criteria for termin,ating the drill

For the domain-sampling model (Figure 4), the number of problems presented could be fixed for all
students based on some heuristic decision, or predetermined for each student based on an algorithmic
procedure using input variables to predict the optimum number of items for that student. Another
alternative would be to dynamically adapt the number of items presented on the basis of the student's
performance within the drill. For this latter alternative, it would seem feasible to employ a procedure such
as Wald's Sequential Probability Ratio (1950) for predicting mastery at which point the drill may be
discontinued. Another possibility would be to allow the learner to control the number of times an item is
presented. it is possible that one could predict on the basis of input variables (learning style and prior
performance) whether it would be better to specify the system control or specify the learner control
(Barnes, 1970).

Since items in a domain-sampling model are frequently randomly generated or otherwise composed
according to a specified format, it Is not likely that a difficulty index determined on the basis of previous
administrations will be known for each item. Consequently, item difficulty indices must be based on an
analysis of structural variables such as the number of components, difficulty of each component, and
complexity of relationships among components.

Several options are available regarding the sequence of items. The simplest drill would present a set of
homogeneous items without regard to item difficulty. Another alternative is to order the items from easy to
hard with the rate of increasing difficulty either fixed or predetermined for each student on the basis of
input variables (ability and aptitude). Also, a difficulty range could be specified for each person on the basis
of diagnostic information and student characteristics. In any event, any deliberate increment in item
difficulty should be performance contingent.

For the domain-exhausting model (Figuie 5), the number of items to be presented depends on the
total number of items in the pool. The relevant question for this model is to ask how many times each item
should be presented. Should a subset of items be identified as an "active" pool and, if so, what is the
optimum size? If the optimum size varies from student to student, what variables are needed to predict It?
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According to Suppes (1964), the optimum block size depends upon the relationship between rates of
learning and forgetting. When learning occurs faster than forgetting, it is possible to show that block size
should be as large as possible. On the other hand, when learning is slower than forgetting, the block size
should be small. Indices of learning and forgetting rates would, therefore, be desirable input variables for
this decision process.

With regard to item sequence, there is evidence that practice in specific items should be distributed
throughout the drill rather than occur in close succession (Fishman et al., 1967). Thus, once an item has
been mastered and, consequently, deleted from the active item pool, it shoud reappear occasionally for
review purposes. The criteria for deleting an item from the active pool and the amount of review needed
must be empirically determined. As with the domain-sampling model, it may be more efficient to give the
student control over the amount of practice and allow him to request review items. Some early research in
drill-and-practice (Relic+, 1935) emphasized the benefits of isolated drill (a homogeneous set of items for
one specific task) following the introduction of a new topic or for remedial work. However, a mixed drill;
Le., one containing several types of items, is best for maintaining skills.

The difficulty of, items may be based on structural variables as in the domain-sampling model. In a
domain-exhausting model, the items are predetermined and not composed within the drill. Thus, indices of
item difficulty could also be predetermined on the basis of previous administrations and used as input
parameters to the drill. The ultimate adaptive model would dynamically update this index each time a
student responds to the item. Item difficulty is also the basis for selecting the appropriate drill-and-practice
model, Le., domain-sampling or domain-exhausting. If the items for the domain-sampling model are to be
randomly composed, then item forms must be specified. If the items are to be sampled from a larger pool,
in the case of the domain-exhausting model, the total list of items must be provided. The
learning-and-forgetting curves for this type of task shOuld be indicated to determine the optimal block size
of the active pool.

If item difficulty is to be manipulated within the model, then the selection of appropriate structural
variables for determining difficulty indices is, of course, dependent upon characteristics of the task. For
vertical addition, these might include digit size and the number of rows (Woods & Hardy, 1971). For
spelling words, length and troublesome letter combinations (e.g., le-ei) are among the structural variables
influencing the difficulty of an item (Cohen, et aL 1971). A total of 24 structural variables for logical
problems has been identified (Maloney, 1972). These range from number of characters to depth of
embedding. From these few examples, it is evidenced that, while there are some common factors; e.g., size
of problem and difficulty of specific elements, the identification of specific structural variables will be
unique to each task with some expectation' of carryover to similar tasks within a class.

Decisions regarding individual frame characteristics are the same for both the domain-sampling and
the domain-exhausting model. First, a choice must be made among alternative media such as teletype. CRT,
image j'rojectors, and audio devices. The nature of the task may restrict this selection some. If there is still a
choice, it could be based on the input variables describing student characteristics.

There are also many options for deterring the time to allow for responding to each frame. These
range from no limit at all to a time limit dynamically adjusted to challenge each student, Le, pacing. The
time limit for a particular task may be fixed for all students or predetermined for each student on the basis
of input variables. If speed is a critical element of the task criterion, then perhaps it could be specified as a
goal, and feedback on response latency could be provided to inform the student of his progress toward this
goal.

Another frame characteristic is the means by which the student will respond. For multiple choke
items, he may respond via light pen or typing a character from the keyboard. In edition to typing a word or
phrase for a constructed response question, one can imagine items in which the student indicates parts in a
schematic with a light pen.

With regard to feedback, it has already been mentioned that response latency would be useful
information to give the students in special situations. The more common varieties of feedback inform the
student of the quality of his response. In addition to telling the student if his response is correct, it is
sometimes possible to provide diagnostic feedback indicating the nature of any errors. A common strategy
is ,to provide prompts or hints when a student makes a mistake and require him to answer again (overt
correction).
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The criterion of acceptable performance is directly related to the nature of the task. For some tasks,
speed is a crucial element and assumes a more dominant role in determining the student's success or failure
for a particular item. In such a situation, the student may be given a speed goal and updated information on
his response latency. When he consistently responds correctly within the item limit specified by the goal,
then he has met the criterion. The items in such a situation are usually of very low difficulty. Most tasks
place more emphasis on accuracy and would, therefore, specify a criterion in terms of proportion correct.
For some tasks, however, the consistency of correctly responding would be a better indicator of mastery.
This would include concept identification and discrimination tasks in which the student will always answer
comedy once he has learned the concept. The criterion of acceptable performance must, therefore, be
specified for each task on the basis of the goal for the task and the evidence needed to judge if the student
has reached the goal.

Output. The essential to be determined is the number of items to present to the student during
drill-and-practice. Since different students require a varying amount of practice, it would seem most
efficient to attempt to adapt the amount of practice to the individual. Thus, students are not wasting time
with unnecessary practice and, at the same time, they are receiving enough practice to achieve the criterion.
Several strategies will be employed to determine the number of items the student should be presented in
the drill-and-practice sequence.

The simplest model prescribes a fixed number of items for every student. At the end of the
sequence, the percent correct is determined to predict mastery or nonmastery.

A second method predicts mastery when a student has given a specified number of consecutive
correct answers. Such a model would be appropriate for concept-learning in which the student
will always answer correctly once he has mastered the given concept. According to Gagne
(personal communication), one correct answer is sufficient to indicate that the student has
mastered a rule. However, he also specified that students should be given additional practice in
later review sessions.

A more elegant decision mechanism employs statistical techniques su Wald's Sequential
Probability Ratio (1950) test, which uses students' performances on irern 6*preditt mastery, or
nonmastery. The number of items presented depends upon the student's performance on each
item.

An analysis of student response latencies will also be useful for predicting mastery.
Theoretically, the initial latencies sruld be relatively high with the curve decreasing wait
reaches some asymptotic level at which mastery can be predicted. This model, however, must
either make the assumption that all items are of equivalent difficulty or include in the decision
process some means of accounting for variations in item difficulty.

Another means of deciding when to terminate a drill may be to allow the student to judge if he
has reached mastery. In other words, this model would give the learner control of the amount
of practice for a drill sequence.

There is no evidence to show that one of these methods would be more efficient than another. One
must always be aware of the tendency to be swayed by the more elegant adaptive mechanisms when, in
fact, a less intricate strategy might be jusi as efficient.

Recommendations

From the preceding discussion, it should be evident that there are many decision points within
a drill-and-practice model. Currently, most of these decisions will need both conceptual and
empirical exploration. It is recommended that these variations be incorporated in the AIS
research plan.

On the basis of the literature review, it is recommended that two simulations of adaptive
drill-and-practice models be developed. Tice first would involve the performance
contingent-pacing paradigm and the second would involve an adaptive decisionmaking
mechanism to terminate the drill when it is possible to predict mastery or nonmastery.
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For each review session, a drill-and-practice model should be utilized to formulate the problem
list, organize the sequence, and provide optimal allocation of practice per problem Ip_s_&11,....,
instructional decisions should be based on individually determined parameters.

More specifically for the AIS project, the drill-and-practice model should be utilized in the courses as
follows:

For Inventory Management, the focus should
structures as in security rules;

For Precision Measurement Equipment, the
conceptual aspects of the course; and

For Weapons Mechanics, the focus should
image/photo requirements of specific weapons.

be on coding/index schemes and classification

major emphasis should be on technical and

be on conceptual factors of electricity and

IV. SIMPLE CONCEPT ACQUISITION MODELS

Characteristics of Adaptive Concept Acquisition Models

Adaptive concept acquisition (ACA) models are represented by instructional paradigms designed
according to decision processes that adjust instructional variables to individual differences and differential
learning performance. For the adaptive concept, acquisition models, the basic variations proposed are of two
functional classespretask and within-task variables. Pretask variables are composed of individual difference
and task variables, such as ability and problem difficulty. These variables serve to set limits on the
instructional alternatives available, and the media to be used for instruction. In the second class, within-task
variables provide for the manipulating of such alternatives as the number of examples, the degree of
prompting, and the nature of the feedback/correctional process based on individual criteria. Thus, the
flexibility of the ACA models are distinguished by the varying levels of adaptability. In the AIS context,
this means that the model can be modified to reflect the diversity of concepts being taught. This is an
important consideration in that the complexities of the targeted concepts should determine the degree of
adaptability to individual differences.

Role in AIS

The adaptive concept acquisition models will probably play a fundamental pervasive role within AIS.
While the current ATC instructional paradigm consists of lecture, small group demonstrations, individual
practice, and criterion performance evaluation, the individualized concept acquisition instruction may
replace lecture and small group demonstrations. As each lesson presents new concepts or reviews and
combines previously introduced concepts, the individualized media assignment, examples, prompts, and
feedback should facilitate the adaptive process. For the purpose of this report, the primary emphasis will be
given to the optimal selection of the type and number of examples during concept acquisition.

Payoff of the ACA Models

As proposed, the ACA models may become an integral part of the computei-based and conventional
media approaches to concept presentation and review. Given this high frequency of utilization, the models
should provide for significant savings in training time and improved concept retention. As operational
features, the following benefits of the application of the ACA models are envisioned:

The prelask variables of ACA models are adaptable to individual student trait characteristics.
Prerneasured conditions would assist in the assignment of students to appropriate entry points
within the instructional tasks. Such decisions would provide for residual savings in training costs
by allowing high-aptitude students to finish courses more rapidly, or to receive enrichment
training. Individualized assignment of low-aptitude persons to appropriate instruction has been
shown to increase efficiency.
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The within-task variables are designed to select instructional materials based on a student's state
characieristics. In a concentrated learning environment, individual performances fluctuate so
that premeasures do not always indicate accurate assessments of current capabilities. These
withintask variables make the presentation self-modifying in that it is continuously being
adapted to the student's current response pattern and state levels.

Since the ACA model will be computer-based, each student will have immediate access to
adaptive instructional materials.

Instructional theory concerning media, feedback, knowledge of results, sequencing, role of
examples, and type of display can be designed into the adaptive individualized packages.

The utilization of ACA models should improve cost-effectiveness by providing a more precise
prediction-of the necessary media and materials overlap than is currently available.

Literature Review for Conceptual Acquisition Model(s)

Instruction is a process of manipulating the environment to produce a desired change in a student's
behavior. The goal of AIS is to implement an instructional system that will take into account individual
differences so as to increase the effectiveness and efficiency of student learning. Early attempts to solve the
problem of individual differences have been suggested and developed with varying degrees of success. One
widely used practice was grouping or tracking of students by grades, or by scores on ability tests as an
attempt to take into account individual differences. This homogeneous grouping had little effect because
the groups seldom received different kinds of instruction. Mr Force training incorporated Skinner's (1958)
linear programmed instruction, which allowed students to progress at their own rates. This procedure
emphasized that individuals do function at different learning rates; however, the material itself was not
individualized since all students received the same instructional sequence. The influx of technology
influenced Crowder's (1959) procedures of intrinsic programming with provisions for branching able
students through the same material more rapidly than slower students, who received remedial frames
whenever a question was missed. This type of programmed instruction was not widely used in Air Force
instructional situations, or in any other institution, because of the difficult developmental task which
required review sections for each alternative answer.

There are two basic procedures for designing concept acquisition instruction, which would have
adaptive capabilities extending from the above assumptions. The first involves the use of premeasure(s)
(such multiple variables as aptitudes, personality variables, and anxiety) for diagnosing the student's
behavior and then prescribing a specific learning task designed to adapt to these individual differences. The
second applies intermediate evaluations of the student's progress within the instructional sequence and
assigns adaptive segments to correct errors in acquisition.

Pre task Adaptation

Cronbach (1967) discussed the applicability of adaptive instruction to student differences by'
suggesting that, if development in a wide range of persons was to be facilitated, a wide range of
environments suited to the optimal development of each individual must be offered. In terms of AIS, thiswould mean having instructional units covering content available in different formats or sequences which
can be adapted to differences among students. For example, Cronbach's model might prescribe !one type of sequence and media for a student of certain characteristics, while another student of differing
characteristics would receive an entirely different mode of instruction. The advantage of the ACA modelover other computer-based decision programs would be the flexibility of selecting decision conditionswhich would change according to concept content.

in order to identify methods of prescribing optimal instructional strategies, Cronbach (1967)
advocates that an extensive research program be conducted to identify those aptitudes which intereactmaximally with instructional treatments. This body of research has become known as aptitude treatment
interactions (ATI). Implicit in Cronbach's model is the assumption that specific instructional treatmentassignments can be made from empirically determined measures existing prior to the onset of instruction.A further assumption is that a regression model could be developed for the assignment of individuals todifferent instructional strategies.
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Recent research studies (Tallmadge, Schearer, & Greenberg, 1968; Cronbach & Snow's review, 1969;
Dunham and Bunderson, 1969; P.F. Merrill, 1970) have investigated the assumption to determine if
premeasu red individual aptitudes interact with instructional treatment. These studies indicate that
disordinal interactions of ATi's have an elusive nature. Bunderson and Dunham (1970), in the final report
of a 3year research project on cognitive abilities and learning, challenged the ATI concept as a viable
predictive procedure in "real world" instructional contexts. The reasons for their skepticism can be
summarized as: (1) the rarity of useful disordinal interactions; (2) disordinal interactions are not
sufficiently robust after minor changes in the task or population; (3) the benefit from disordinal
interactions may be less th.u, war attainable through revision of a single optimal treatment. In this report,
Bunderson and Dunham (1970) suggest that, instead of seeking disordinai interactions in order to assign
individuals to different macro-treatments, All's be used to revise the optimal treatment to reduce the
learning burden of slow-aptitude individuals. After the effectiveness of the single best treatment has been
maximized using a systematic approach to instructional design (Bunderson, 1970; Tennyson and Boutweil,
1971), macro-treatment variables can be applied adaptively in the instructional program rather that)
produce entirely different alternative treatments. For developmental concerns of the AIS, this would mean
designing an optimal concept acquisition instructional program, using the most efficient sequence, the most
appropriate media for display, and the most effective instructional examples. Adaption within the program
would then occur when students deviated from the optimal program.

Within -Task Adaptation

The second procedure proposes adapting instructional strategy according to a student's behavior in
the learning program, and to other current state characteristic& The within-task adaptation procedure can
be contrasted to Cronbach's approach in that individuais are not assigned to different macro treatments,
nor are measures obtaini-.d prior to the entry of the individual into the instructional task employed. On the
other hand, the within-task procedure differs from Crowder's approach in that Crowder utilizes only the last
response made by the student in reaching an instruction decision. The within task adaptive strategy would
make instructional decisions based on an updated history of the student's behavior during a segment of the
conceptlearning tasks. Furthermore, the reliability of a pattern of responses compared to a single response
should increase the validity of such adaptive decisions. In AIS, decisions on media and mode of instruction
for particular units would depend on what is the most appropriate method of presentation. When student's
deviate from the optimal sequence, they can be assigned corrective instruction. The within-task method of
adaptation is such that remedial "hole patching" (Cronbach, 1967) is avoided on the basis of instructional
theory and can be validated empirically.

There is research evidence (O'Neil, Hansen, 8c Spielberger, 1969; L,eherissey, O'Neil, & Hansen, 1971;
Tennyson & Woolley, 1971; P. F. Merrill & Towle, 1971) that trait or state variables measured prior to a
learning task are not as effective in predicting student performance as state variables measured during the
actual learning of the task. These findings suggest that it would be possible to include such measures during
the task to adapt instructional sequencing for those students at the extremes on these measures.

The within-task adaptation model is based on three basic assumptions: (1) there u,ti a limited number
of different kinds of behavior or types of learning (Gagne, 1970; M. D. Merrill, 1971); (2) there is an
optimal group instructional strategy or paradigm based on the conditions of learning for each behavior
level; and (3) individual performance can be optimized by making adaptations to the group instructional
paradigm according to individual response patterns.

Concept Acquisition

Mechner (1965) defined concept acquisition as the process of generalizing within a class and
discriminating between classes. For example, in the Weapons Mechanic AIScourse, students would have to
identify certain types of wiring systems, and at the same time, discriminate between the systems. To teach
this skill, Markle and Tiemann (1969) and M. D. Merrill (1971) postulated that concept acquisitions would
result if examples during instruction differed in the irrelevant attributes associated with each; that is, each
kind of wire should be system presented in. many different colors, thicknesses, structures, etc. Such
presentation promotes generalization within the class. Discrimination between classes is facilitated by
presenting nonexamples which have irrelevant attributes resembing those with given examples; for the
wiring illustration, the various wiring systems would be nonexarnples for the one system under instruction.
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In testing for concept acquisition, it is vital that the items on the test must be new, not used in prior
Instruction. A good set of items must have a number of other characteristics. In order to test for
generalization across the total range of examples included in the concept, test items must cover the range
specified by a thorough analysis of the concept. The number of examples the student can correctly classify
is len important than the range of examples to which he can generalize. Discrimination of nonexamples can
also be tested when the analysis of the concept has Identified the key relevant attributes.

Tennyson, Woolley, and Merrill (1972) designed an optimal group instructional strategy for teaching
concepts based on the theoretical work of Markle and Tiemann (1969,1970), Merrill (1971), and Woolley
and Tennyson (1972). The concept that Tennyson et al., chose to teach was the metrical concept, "trochaic
meter," as exemplified in poetry selections. As a preliminary estimate of range, they asked students
unfamiliar with poetry to classify a large number of examples and nonexamples of the concept on the basis
of a given definition. Some obvious examples were recognized by almost all subjects and were, therefore,
termed highprobability examples. Some nonexamples were equally obvious and were termed
high-probability nonexamples. Examples which were difficult to recognize were termed low-probability
examples; subtle discriminations which could not easily be made on the basis of the given definition
produced low-probability nonexamples. Thus, both range of examples and fine discrimination of
nonexamples were defined in their study on the basis of rating.; by representative subjects rather than on a
prior analysis of the concept.

Tennyson, Woolley, and Merrill (1972) hypothesized that different combinations of these high- and
low-probability examples and nonexamples would produce predictable errors in concept acquisition. Markle
and Tiemann (1970) had proposed that restricting the range of examples would cause a student to
undergeneralize, that is, to accept on a test only the same limited range provided in instruction. Tennyson et
al., produced precisely this effect by giving students instruction which included the definition, only
highprobability examples, and the subtle discriminations taught by the low-probability nonexamples. They
also proposed that poor selection of nonexamples, in conjunction with a broad range of examples, would
cause students to overgeneralize and to accept nonexamples as members of the class on a test. This effect
was produced by providing instruction including the definition and full range of high- and lowprobability
examples but only very higl probability nonexamples. In other words, no difficult discriminations were
taught, and, on the test, these students did not succeed in making such fine discriminations.

In their study, they also demonstrated the effect of a particular kind of limitation on the range of
examples, in which one salient but irrelevant attribute is always present. The attribute used was Victorian
origin of the selections. All examples of trochaic meter given students in this treatment were dated in the
Victorian period, while nonexamples were selected from earlier or later periods. Despite the definition
directing attention to the meter of the examples a' the critical attribute, students showed a misconception
on the test, that is, they generalized correctly only examples of trochaic meter written in the Victorian
period. They rejected true examples from other stylistic eras and accepted some Victorian nonexamples.

Tennyson, Woolley, and Merrill's data support the position that the selection of both examples and
nonexamples is an important item in effective concept teaching. A wide range of examples prevents
undergeneralization, while a good selection nf nonexamples prevents overgeneralization. In MS
developmental projects, the Tennyson et, al., model has application to the actual design of the ACA
instructional materials. The system provides a method for selecting instances and sequencing them to an
optimal task.The component variables are uniquely adaptable to individual characteristics. Thus, they have
the capabilities for within-task adaptation, for example, if a student is committing a certain kind of
classification error on an intermediate evaluation, the type and degree of examples and nonexamples can be
adjusted to correct the error. The model also allows for designing a multiple-entry program based on
pretask measures. Students with poor reading ability, for example, would enter the task with easier
high-probability instances than someone with good reading ability.

Applications of CAI Concept Acquisition

A numbei.of CAI applications using various types of adaptation have been implemented with a good
degree of success. A number of them are reviewed in this section. The rust application uses the Tennyson et
al., concept acquisition paradigm in individualized CAI programs. The other projects offer a summarized
review of the feasibility of computer-controlled adaptive instructional models. The review also introduces
other adaptive characteristics that can be included in the ACA model.
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Brigham Young University-TICCIT. TICCIT is an 'instructional development project which is
undergoing continued development at Brigham Young University. The project consists of developing CM
courses in the areas of mathematics, English composition, and both remedial English and mathematics. The
instructional materials are being developed according to the research paradigms developed in the Tennyson,
Woolley, and Merrill investigation.

The objectives of the project encompass both cognitive and affective outcomes. These are, first, that
students will achieve mastery at any of three levels of sophistication(the students contract individually for
a desired level). The second objective is that students will develop a more positive attitude toward the
subject matter. Third, students will develop improved strategies for learning. Finally, students will develop a
sense of responsibility for their own learning. It is planned to achieve these objectives by three main
approaches: (1) control structures, which provide for learner control, (2) the construction of a high-level
"advisor program," and (3) the use of a variety of motivational techniques.

The. control structures provide for full learner control of instruction, which is expected to encourage
approach responses to the subject matter, enhance learning strategies, and develop the student's
responsbility for his own Waning. Within each unit of a course, the student will be able to select from a
"menu," giving aspects of the unit he wants to see and the sequence in which he wants to see them. A
typical menu includes the following:

The objectives of the unit which give an indication of the structure of the lesson

Review tips, which discuss the prerequisites for the lesson and provide brief review material

A "so what?" section, which tells the student why he should bother to learn the lesson

A mini-lesson, which is a quick survey of the entire lesson

A definition section in which the major concepts involved in the lesson are defined

The instructional section, which provides structured instruction (the content of the lesson) and
teaches the algorithms for performing the skills involved in the objectives. It is within this
section that the main features of the teaching paradigm described in this paper are employed.
The mastery test, which diagnoses the student's degree of success or failure.

The advisor program used within the project may be called by the student at any time for advice
regarding the best strategy to adopt for a particular lesson. The student can also request a statut report to
see what lessons he has completed. He may further ask if, judging by his achievement profile, he could.take
additional options which will enhance his grade. The advisor program is also used to "advertise" certain
"fun options" which are included in the course for motivational purposes.

Motivational techniques being developed in the project include the "so what?" section in each lesson,
the fun options, and a point system used to earn these fun options. The fun options are made available to
the student contingent upon his success on the mastery test of a given lesson. They include such items as
"more on the topic," a computational plotting program (for the math course), games, short films, and
tidbits such as historical vignettes, anecdotes, etc. related to the lesson.

In summary then, the control structures permit the student to adapt instruction to his own particular
needs, while the advisor program provides the student with the pertinent information needed for him to
adapt the instruction successfully. The motivational techniques, finally, provide the incentives which will
help him optimize his learning. Specific adaptation within each lesson is also provided in the instruction
part of the unit, where the concept-teaching paradigm elaborated in this report is employed.

Stanford Project. At Stanford University, Friend and Atkinson (1971) developed a course entitled
"Introduction to Programming" for use by NASA personnel. The course consists of a set of 50 lessons, each
about I hour in duration. The course teaches programming concepts through a simple computer language
called AID, and makes a provision for student practice through a number of exercises designed to help the
student solve simple programming problems. These lessons are tutorial in nature, that is, no previous
knowledge of computers or programming is necessary. The branching logic used in problems permits five
discriminations between student responses, thus greatly refining the remediation process. That is, not only
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may a response be diagnosed as "correct" or "incorrect," but degrees of corte4.;tness can be established for a
given problem. This response analysis is made by means of twelve basic analysis routines which can return
different values of correctness, thereby refining the remedial feedback to the student.

In addition to this implict branching, the student can also initiate branching by requesting additional
information through the use of HINT and TELL commands. When the student encounterssome difficulty
in solving a problem, he may thus request a hint which will set him on the right track, Currently, two hints
are available for most problems and as many as six are provided for particularly difficult problems. The
TELL command, on the other hand, will cause the system to print the correct answer to a problem on
which the student is really stuck.

A further optimization scheme is available. In this plan, the response of a student determine the
number of problems that constitute a lesson. In a given lesson for example, one student may do 30
problems, while another may do as many as 70. Specifically, the number of problems presented is governed
by a simple heuristic which will cause the student to bypass all subproblems related to a top-level problem
which is correctly Liswered. Through these decision processes and the strong provision for student control,
the system allows the better prepared and more able students to keep up a fast pace while at the same time
enabling the less able students to progress at their own rate, thus, making use of additional and remedial
information.

Fort Monmouth Army Protect . A major tutorial CAI application was developed by the Army (Grunts
& Longo, 1971) at the Fort Monmouth Army Signal School. The instructional model utilized in the course
specifies a single-track teaching sequence. However, individualization is accomplished by dividing the
trainees into high-, middle, and low-aptitude categories. Each category is then treated differently. Each
lesson includes a pretest, but only the high- and middle-aptitude students are permitted to take it and skip
ahead if they reach criterion. Experience with the course has shown that the probability of passing the
pretest is much greater for these trainees than for the low-aptitude trainees. The high-aptitude trainees with
superior learning ability are also permitted to take instruction in large mcrements than middle- or
low-aptitude trainees. In all cases, rernediation follows incorrect responses to the program, whereas correct
responses are always confirmed, or reinforced before the trainee continues through the course. The
decisional model, therefore, has many fewer individualizing options than the Stanford model, but it does
capitalize on rate of progress through the course.

Other CA! Applications. A number of other CM installations, mostly university-based, have also
implemented a variety of adaptive applications. At Florida Mate University, for example (Hansen, Dick, &
Lippert, 1969), a CAI physics course was developed which incorporated individual reading, computer
quizzes, audio lectures, single-concept film loops, and films. The flow from one medium to the next, as well
as general progress within the course, was governed by the student's achievement on the computer quizzes.
Results of a comparison with the traditional lecture method indicated, in the first field study, that the CAI
students were significantly better on the final grade assignment than the students in the conventional
method. A time savings of 17 percent was also effected and, while the conventional course achievement was
marked by a gradual decrease in performance as the physics topics increased in complexity, achievement in
the CM conceptual problem exercises was markedly constant.

At the University of Texas at Austin, a number of short courses have been developed. These courses
range from the hard sciences (chemistry, mathematics) to the humanities (music, Arabic). A similar
situation exists in public education utilizing CM. The CAI Laboratory of the Kansas City Public School
District, for example, provides adaptive instruction in areas such as scientific notation, mathematics,
biology, and pollution.

Model Structure

The ACA instructional system incorporates standard individualization components of learning rate,
self-pacing, providing on-line and off -line assistance, flexible utilization by the trainee, remedial capabilities,
review frames, enrichment material, and behavioral modification variables such as incentives, praise, and
motivation. The two basic functional classes of the ACA models, pretask variables (set limits on the
instructional alternatives) and within-task variables (modifiable alternatives), can be designed into two
adaptive concept sequencesa general adaptive model and a specific adaptive model.
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Concept Adaptive Sequences. As discussed in the literature review section of this report, the
within-task adaptation provides an accurate assessment of the student's performance in a given program of
instruction. An optimal instructional task is presented to the student, and upon completion of the initial
segment, the student is tested. The test performance is evaluated in relation to the three types of
classification error (overgeneralization, undergeneralization, and misconception). If he has no errors, that is,
he reaches criterion, then he continues the unit's instructional sequence, However, if he does not make
criterion, his responses, both right and wrong, are analyzed to determine the type of error being committed.

General Adaptive Model. The first adaptive concept sequence, termed general adaptive, prescribes a
predesigned instructional program which follows the results of the initial test to determine if the student is
committing a classification error, This model regulates the student's instructional sequence as he progresses
toward the terminal objective of a given unit of instruction, After the initial evaluation, each student's
sequence of instruction is modified according to individual response patterns. For example, students who
overgeneralize on the beginning segment of the task would be presented higher probability instances with
increased prompting. The number of intermediate evaluations is determined by the concept difficulty.
Some concepts may use only one sequence of examples followed by an exam, which would provide
remedial help for those with errors. Another unit might involve teaching several complex concepts,
requiring several intermediate tests and remedial frames.

Specific Adaptive Model. The second functional class of the ACA models is utilized in the specific
adaptive model. The student would receive at the beginning of the instructional unit a presentation
presumed to be optimal, followed by a intermediate evaluation. The withintask variables would be adjusted
according to degree and type of classification error the student is making at this point. Degree refers to the
measured severity of the error, that is, learners differ in the magnitude of incorrect responses. Whereas in
the general model, the student would be given a predesigned task to correct the error, the specific model
would select a unique series of examples, in terms of difficulty and number of examples to correct the
error. Thus, if a student was only making a slight overgeneralization, his remedial instruction would use
only a few examples, while a student making a gross overgeneralization would receive a large number of
examples. In each case, the decision parameters would ajust to the type and degree of error.

Program Sequence Selection. In the various courses taught in the AIS, concepts vary in terms of
complexity. In cases where concepts are difficult, it is desirable to design units with multiple entry points.
In such situations, pretask measures could be used to start the instructional presentation at a level of
difficulty which is appropriate to an individual airman. For complex concepts omitting a pretask measure
to flag appropriate entry points into the program, optimization would be limited to the use of remedial
frames to correct errors. The pret ask measure allows lowaptitude or highly anxious students to enter a
given program at a point which provides more instructional examples than a high-aptitude student. Thus,
both pre- and withintask adaptations are necessary in complex concepts. On the other hand, the sole use of
the pretask measure, would offer only a gross adaptation to the student's characteristics. While the pretask
procedure adapts the presentation to the student's entering trait capabilities, the withintask procedure
makes the presentation self-modifying since it is continuously being adapted to the student's current
response pattern and state levels.

Interaction of Task and Student Characteristics. The pretask adaptive decision process which operates
to enter a student into the unit of instruction for a complex concept at his optimal level is based mainly on
an accurate evaluation of whether or not the student has in his repertoire the prerequisites to the unit.
Although preskill evaluation remains the most important component of the decision process, other variables
also play a part in optimizing entry to the unit. Among these variables are aptitude indices (e.g.,-AQE),
personological characteristics (e.g., anxiety and curiosity), and cognitive styles.

Once the student has entered the unit at his optimal level, these characteristics will interact on a
frame-byframe level with task variables to produce a given net amount of learning; or, at intermediate
levels, to produce a set state of progress. In order to optimize this progress, therefore, the instruction must
adapt to this interaction between task and student characteristics. This interaction can be continuously
monitored by the computer through an appropriate analysis of the student's cumulative response record.
The basis then for the specific adaptive decision process lies in a correct classification of the student's
successes and difficulties as they are evidenced over time within the unit. Only if the decision rules
effectively deal with this aspect of the process will prescriptive measures (including both remediation and
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enrichment be appropriate to an optimal progression through the unit. These decision rules may involve
multiple factors, such as degree of correctness of the response, response latency, and cumulative indices of
these two and other possible factors. The appropriate mix of factors which enter the decision rules will be,

most probably, very heavily task-bound. That is, the optimal combinations will be different from task to
task and, will depend directly on the given task's specific characteristics. This optimization, or course, will
evolve only through sustained formative evaluation of the decisional rules included in the model. In: the
meantime, however, a general, although less effective, approach can be taken. That is, broad decisional
parameters can be established on the basis of the limited research evidence in instruction and theory.

Model Variables

A paradigm of instruction for concept acquisition was discussed by Gagne (1970) and empirically
investigated by Tennyson, Woolley, and Merrill (1972). Concept acquisition was defined as the ability of
the learner to correctly identify previously unencountered objects or events (or representations of such
objects or events) as members or nonmembers of a particular concept, class. It was assumed by Gagne
(1970) and Tennyson (1972a) that for a given kerning behavior, an optimal information processing strategy
can be identified, By manipulating task variables such as stimulus similarity, prompting procedures,
sequence, and difficulty, an optimal instructional strategy for conceptlearning can be designed.

Instructional Model

The payoff of educational research is the application of the findings in an applied instructional
environment, The purpose of this report is to demonstrate the feasibility of applying research variables on
concept acquisition into a generalized adaptive instructional model for teaching concepts in the MS system.
This report does not present the methodology for the decision/selection stages in designing the actual
instruction task; other sources give in-depth descriptions of those procedures (Tennyson, 1972a; 19720.
The purpose here is the presentation of the management model rather than the developmental procedures.
The instructional model (Figure 6) is designed to accord with conclusions from research studies
investigating those variables hypothesized to have a direct application to concept teaching. The
instructional model's components are discussed in the following paragraphs:

(I) Pretest. The first component of the instructional model is a pretest on the concept class to be
taught which assesses the student's entering behavior. The criterion referenced testing evaluates
minimum capabilities. If the student meets criterion, he advances to Step (5), classification tests
if not, he proceeds with Step (2), definition.

Definition. in a study by Merrill and Tennyson (1972) on prompting effects, it was found that
subjects performed significantly better on the learning task when given the definition which
identified the relevant attributes of the concept class (Markle & Tiemann, 1972) without the
definition. The definition is a statement identifying the relevant attributes shared by a set of
instances in a given class. Relevant attributes are enabling or prerequisite concepts assumed to
be known by the student, Writing the definition requires a thorough analysis of the concept,
usually resulting in simplification and reconceptualization of the class.

Review. Merrill and Tennyson (1972) included a treatment condition which presented the
prerequisite subskilis of the concept being taught. The results did not indicate that this variable
was a significant factor in task performance. However, certain blocking schemes of the data
showed that subjects with low pretest scores receiving a review did better on the posttest than
similar subjects not receiving the review. The review component is, therefore, included as a
student opti2n. In computer-controlled courses, students with low-aptitude profiles could be
advised to take the review. Whatever the mode control, the students should make the basic
decision (see Bunderson, 1971, for a review on learner control) of whether or not to take the
review.

(4) Instructional task. Tennyson, Woolley, and Merrill (1972) developed an optimal group
instructional strategy for teaching-concepts based on the theoretical work of Mechner (1965)
and Markle and Tiemann (1969, 1970). For concept acquisition, an optimal information-
processing strategy consisted of presenting examples and nonexamples to the student in such a
way that the relevant attributes were clearly contrasted with irrelevant attributes. Task variables
affecting learner processing of this information can be determined by four categories of

(2)

(3)
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procedures. These categories are (1) stimulus similarity variables, (2) prompting/feedback
variables, (3) sequence variables, and (4) instance difficulty. More detailed explanations of these
items are as follows:

Stimulus similarity variables include the following:

Matching of examples with nonexamples. An example is matched to a nonexample
when both share identical or very similar irrelevant attributes.

Divergent examples. An example is divergent from another example when the
corresponding irrelevant attributes are different. Examples which share the same
irrelevant attributes are said to be convergent.

Prompting variables include the following:

Presenting a definition which identifies the relevant attributes (Step 2 of the
model).

Using various devices to identify the relevant attributes embedded, in examples
presented in the task.

Explaining why a nonexample is not an example.

Sequence variables include the following:

Simultaneous presentation of instances.

Instructonseleeted sequence.

Difficulty of instances.

These four task variables are manipulated into an example set (Figure 7). According to the concept
paradigm, two examples should be paired (divergent) so that they differ as much as possible in their
irrelevant attributes. Within the same simultaneous presentation, two nonexamples are presented
which are matched to their respective examples by having irrelevant attributes as similar as possible.
This relationship of examples and nonexamples is designed to focus the student's attention on the
relevant attributes. In the investigation by Tennyson (1972b) on the effect of nonexamples in
acquisition, it was shown that subjects not receiving nonexamples responded randomly on the
posttest, while subjects receiving nonexamples responded as hypothesized.

Prompting is used in the example sets to explain why an instance is an example or why it is not
an example. The subject matter determines the type and amount of prompting necessary. Example
sets range in difficulty from easy to hard. Depending on the adaptability of the program and the
hardware, the instructional sequence could have multiple entty points and student control over exit.

.Entry could be determined by student profile data to individualize on trait and state variables.

(5) Classification test. Tennyson et al.,(1972) designed a posttest which was capable of detemining
the degree and type of classification error the student was making at the conclusion of the
instructional task. The test examined the subject's scoring patterns in four different ways to see
if he made an overgeneralization, undergeneralization, or a misconception of the concept class
(Markle & Tiemann, 1970). Construction of the classification test follows the same procedures
as outline for the instructional task. The task presentation is expository, that is, the student is
told if an instance is positive or negative. The classification test, however, is inquisitive, that is,
the %t' dent is not told the nature of the instances. Although feedback is given on the
correctness of the answer, no prompting is given a wrong answer. Students meeting criterion on
this test are finished with the lesson, while students failing to pass the classification test proceed
to the next component, where they receive remedial instruction based upon the type of
classification error they made on the test.

(6) Adaptive sequence. Simple concepts would require only specific review if a suli;ce,t fails the
classification test. For complex concepts, it is possible to identify the type or vdent error if
criterion is not met (Tennyson et al., 1972; Tennyson, 1972a). The tie. levels of
adaptation that are.possible are (1) general and (2) specific. In the general ad ;; sequence,
students are classified into one of the three error categories. For each cat . an optimal
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group instructional task is given to correct the error. For example, if a student overgeneralizes,
a specific program designed to correct that classification error would be given. The corrective
programs would be as follows:

Overgeneralization. For students who overgeneralize, the general adaptive procedure
would be to select instances of easier difficulty than normally would be used in a
standard example set sequence used in the instructional task. Also, an Increased level of
prompting is given for each instance.

Undergeneratization. This error indicates that the student failed to identify difficult
examples. To correct this, the example sets would begin with harder instances than used
in the instructional task. The sequence would basically concentrate on difficult example
sets.

Misconception. Since the subject seems to be focusing on some irrelevant attribute, the
divergency of the examples would be expanded so that common irrelevant attributes are
practically eliminated.

In all three corrective programs, the students with each error category would receive the same
modified sequence.

Specific adaptation is similar to the general adaptive condition in that adaptation is made
according to type of error, but the corrective procedures also are individualized according to
the degree of error. The degree of error is determined by the number of err, a given type.
A student who makes numerous overgeneralization errors would be given easOnstances than a
student who only makes a few. The specific adaptive sequence also would increase prompting in
a controlled situation so that no student is either overloaded or insufficiently instructed.

(7) Adaptive test. This test is designed to evaluate the effect of the corrective sequence. Test items
would reflect the type of error to be corrected. It would not be a comprehensive test unless
that degree of error was committed, Passing this test would exit the student from the program.
Failing again, the student would receive one further level of remedial instruction.

Specific review. This form of correction has a long history in the field of programmed
instruction. Remediation is specific to the item missed. Again the problem's degree of difficulty
determines the amount of corrective review. Concluding this component of instruction, a final
test is given.

Review test. A standardized test similar to the classification test is given. A student failing at
this point indicates that he has learned almost nothing from the instructional task. In such a
case, this review test again assesses his behavior to perform at criterion, If the student meets
criterion, he exits; if not, a continuation in the course is decided.

(10) Advisement. In complex courses, it is possible that some students would have difficulty with
certain concept lessons. In such situations, two decision can be madethe student drops the
course or he continues with the next lesson and reschedules this lesson for a later date. The
student's individual cumulative profile is a major factor in the decision process (Bunderson,
1971),

(8)

(9)

Selecting New Instances

In any adaptive situation, a large number of instructional instances need to be available for immediate
usage. Also, revisions of the content once the system is in operation need consideration. The instructional
program described allows for the storage of a large supply of examples and nonexamples from which to
select corrective sequences. A subroutine program developed at the Univerity of Texas (Bunderson, 1971)
generates new instances for a polyornial task, including a probability rating. King (1971) of Florida State
University developed a program that rates difficulty of prose materials based on scales of readability. These
two programs illustrate that introducing new material into the instructional system can be a component of
the main program.
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The instructional model for adaptive concept acquisition was designed according to theoretiCal
assumptions supported by empirical research data. The model allows for flexibility and modificationby the
contractor developing courseware for application in the AIS educational system. Although the model
specifies concept teaching, other types of behavior could use the same sequence, and probably a typical
instructional lesson would include various types of behavior. In such situations, research-based variables are
available to adjust the model. In instructional projects where various behaviors are used, this model might
be a subunit or a larger management model. The premises here are that instructional design should be
decided by theory as much as possible, and that design components should represent a parsimoniout
approach to development,

Recommendations

The following recommendations are made:

First, it is recommended that the proposed ACA Model be simulated and ultimately field tested
since it focuses on a primary requirement of training, namely, concept acquisition. In addition,
the ACA Model includes the training processes of diagnostic testing, definitional learning,
adaptive sequences of examples, and reviews.

Further, the topics of adaptive prompting, feedback, and task performance-related concepts
should be incorporated within the ACA Model or become correlated models. Each of these
variables should be systematically pursued within the AIS research phase.

The use of pretask measures (trait measures) should be extended and utilized so as to increase
the training efficiencies.

The most cost-effective use of media and instructional resources should become an operational
component within the ACA Model approach.

The ACA Model should be extensively employed within each of the three AIS courses, and
appropriate evaluative comparisons should be made.

V. COMPLEX TUTORIAL MODEL: RULE - LEAKING AND PROBLEMSOLVING

Characteristics of a Complex Learning Model

Much of the instruction presented in ATC courses concerns the acquisition of what Gape (1970) has
called intellectual skills. Probably the most common type of learning undertaken by an airinA is the
acquisition of principles or rules. After he learns the application of principles for a rule, his Ikrbsequent
behavior may be governed by that rule. The use of such rules allows an individual to re5;,ond to an
enormous variety of situations in a consistent and effective manner.

M.D. Merrill (1971) defines a rule as a "statement of relationship between two or ino,.; concept
classes." A student must show the relationship between these classes in order to demonstrates that he has
learned the rule. It is not sufficient for the student to merely memorize the verbal statetwri .)i the rule.
According to Gagne (1970), a rule is learned if a student is able to respond to a class of stirrau., situations
with a class of performances, the latter being predictably related to the former by a class of tetat:ons. M. D.
Merrill (1971) further states that the student should be able to show the relatiopslii,, kluten the
component concepts or classes in an unencountcred situation in which the given .:s relevant.
Rule-governed behavior or rule-application behavior can be thought of, in computer scr oce teems, as the
ability to perform a specified operation on incoming data from a specified class of inputs to produce a
specific output from a class of outputs. The inputs may be thought of as the domain of the rule which
consists of elements from the concept classes which compose the rule. The outputs may be considered as
the range of the rule which is bounded by the operation and permissible Inputs.
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M.D. Merrill (1971) describes problem-solving as that behavior which occurs when the student is able
to select relevant rules for an effective solution strategy when presented with an unencountered problem
situation for which the rules are not specified. The problem situation is one in which the analysis of several
rules ar. synthesis'of a strategy for solution is required. Gagne (1970) states that problem-solving can
be v;e s a process by which the student discovers a combination of previously learned rules that can be
applied r" obtain a solution for a novel problem situation.

' '71scr the type of learning required to achieve a stated objective, the more complex the
insttuctit n becomes. To further complicate matters, an increasing number of interaction variables such as
features the subject matter, characteristics of the instructional process, and the student's characteristics
combine to require quite sophisticated instructional models. In this chapter, the major emphasis will be on
an adapt' t, model for teaching rules. It is anticipated that this model may be extended and adapted for
application in the teaching of problem-solving skills. However, such an extension is not described here. The
latter toot of this chapter does contain several implementations of highly interactive instructional programs
for tea,.., problem- solving behaviors in a training environment. These instructional programs for teaching
problem coiving are not elaborated in great detail, but they are highly suggestive In terms of AIS
apphca ire

Tire adaptive instructional model for rule-learning under consideration in this chapter will utilize a
combitt tt:on of multiple-regression techniques and heuristic decision rules to select and sequence
instructional components into an idiosyncratic instructional strategy for a given student. The instructional
compoionts will be maintained and stored in interrelated and cross-referenced component pools. The
instruc.irwal components will be selected from the appropriate pool and sequenced into an initial
instructional strategy by the regression model and decision rules. Task characteristics such as rule difficulty
and exarriple difficulty, and the student's profile of personological measures such as cognitive abilities and
learning style will be utilized to predict and specify the initial instructional strategy. Additionally
within-tasi, performance measurements such as number of items correct and test item response latency will
be collecod. These measures will then be utilized by the regression model decision rules to update the
instructtrysl strategy as necessary.

4tecification of instructional strategies for subsequent rules will be based on the student's
perfnrt oce under previous instructional strategies. It is anticipated that, through the use of this iterative
cy herriesic-adative procedure, an optimal instructional strategy of rule-learning for a given student will be
approxt- ot:d over a short series of rules. The model also incorporates a provision for supplementary
relocdi41 instruction for students who do not have the necessary prerequisite skills related to component
concee., sad lower order rules.

Ire following subsection describes the role of rules and problem-solving in MS. The theoretical and
experimental literature which support the model under consideration is presented in the succeeding
subsection, while subsequenct subsections describe the model in greater detail, The instructional
compoionts and consequent instructional strategies are also described.

The Role of Complex Tutorial Models in AIS

A 'Air i,;ely major portion of each MS course involves instruction in both rules and problem-solving.
While itoi,,h of the fundamental information of a course is conceptual or psychomotor in nature, the use of
this inf orrnation requires the application of rules and the solving of problems.

The selection and completion of appropriate forms, item accounting, computer usage, stock control,
and equipment management in the Inventory Management Specialist course all require the learning of rules
in order to complete defined tasks successfully. Further, as difficulties are encountered while completing
tasks, students are required to apply sets of rules to solve the problem and to complete the job correctly.

The vast majority of the learning taking place in the Weapons Mechanic course is at the rule level.
Once parts of weapons have been identified, defined sequences of activities are presented as rules for
disassembling and assembling each piece of equipment. Rules are also used in the teaching of systems
functioning and safety practices. Problem-solving is an essential feature of the troubleshooting activities
which o..c.tr both in the electricity blocks, linkless feed system blocks, and weapons systems blocks on the
major aircraft.
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The Precision Measuring Equipment course is designed to develop the student's knowledge and
understanding of the principles (rules) of measurement with an emphasis on precision and accuracy in their
use. The students are taught to calibrate, troubleshoot, and repair approximately 200 items of precision
measuring equipment. The troubleshooting phase of instruction is basically training In problem-solving.

It is, therefore, essential that the instructional paradigms developed for the AIM specifically consider
the kinds of instruction that are best suited to the training of students In the learning and application of
rules, and the solving of problems.

Literature Review

The review which follows describes the literature related to rule-learning and problem-solving and is
divided into segments describing instructional strategies, task variables, and student characteristics.

Instructional Strategies or Paradigms. Gagne (1970) has described the conditions which he feels are
required for learning rules. The first condition 'or prerequisite for learning a rule is a knowledge of the
concepts which make up the rule. Knowledge of these concepts implies that the student must be able to
identify or classify appropriately examples of the component concepts. The conditions required for
rule-learning within the learning situation include!

I A statement of the general nature of the performance to be expected when the learning is
completed

A presentation of verbal instructions which would invoke recall of the component concepts

A presentation of a verbal statement of the rule

A presentation of a situation which requires the student to demonstrate or apply the rule.

Reinforce correct application of the rule.

These conditions imply an instructional strategy or paradigm for teaching rule-governed behavior.

Evans, Hornme, and Glaser (1962) have developed a Ruleg system for the construction of
programmed learning sequences based on rules (ru's) and examples (eg's). Rules are defined as statements of
some generality from which substitution instances or examples can be obtained. This may include such
things as a definition, a mathematical formula, an empirical law, a hypothesis, or an axiom. An example is
defined as a statement of some specificity which is derived from the more generalized rules. The Ruleg
system also is made up of additional components which are defined below with their corresponding
shorthand notation:

III An incomplete or partial rule which requires the student to respond by completing the rule

eg An incomplete or partial example which requires the student to respond by completing the
examples

u;; A terminal situation where criterion behavior is required with minimum stimulus support, and
the response is usually a statement of the rule

eg A terminal situation where criterion behavior is required with minimum stimulus support, and
the response is usually the solution of an example problem with no prompts from either rules
or examples

eg A false or nonexample of the rule.

Evans at al., (1962) describes several different frame types which are made up of these components.
The following instructional strategy or sequence of rules frame is recommended under this system:

Begin with a ru + eg + eg frame which presents a verbal statement of the rule, a complete
example of the rule, and a partial example which requires a response from the student.

eJ
Gradually withdraw stimulus support with the use of such frame types as ru + eg, eg + eg, and
eg

The instrugprial sequence should terminate when the student can deal effectively with c'e
frames and'? frames.
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When two or more rules are being presented,Tili + r`r2 and el; +Pet frames should be used to
help the student discriminate between the two rules. /

It is further suggested that, to insure adequate generalization, the examples corresponding to a given
rule should be as diverse as possible, with the first example being the simplest possible nontrivial example.

Task Variables. There are many task variables which affect the efficiency and effectiveness of an
instructional strategy or sequence for teaching rule-learning or problem-solving. Those variables considered
to be of major importance are described below. .

Availability of Verbal Statements of the Rule. Both Gagne (1970) and Evans et al., (1962)
recommend that the student be presented verbal statements of the rule at the beginning of the
instructional sequence. The presentation of the rule at the beginning reduces the risk of having
the student induce an incorrect rule. The verbal statement also serves as a cue to the learning of
the new rule. A study by P. F. Merrill (1970) revealed that the presentation of verbal
statements of the rules reduce the number of examples and the amount of time required to
learn rules,. The presentation also increases performance on a transfer test.

Number of Examples. The specification of the number of examples to be used is dependent
upon the difficulty of the rule, the abilities of each individual airman, and the amount of
generalization required. It is anticipated that this task variable will be one of the major
individualization parameter& The optimal number of examples required in a given sequence can
only be estimated prior to the first administration of the program.

Type of Examples. The examples used with each rule should vary in difficulty, and be as diverse
as possible from one another. These variables have been shown to be of considerable
importance in research with concept-learning (Tennyson, Woolley, & M. D. Merrill, 1972), but
little empirical research has been done with rule- learning. M. D. Merrill and Tennyson (1971)
also have found that the availabili f negative or false examples is an important variable in
concept learning. The irnportanc negative instances in the learning of rules has not been
established at the point.

Amount of Practice. This variable is concerned with the number of times a student should be
required to apply a given rule. It is anticipated that this variable is related to individual
differences, the complexity of the rule, and the uniqueness of various cases of the rule.

Memorization of the Verbal Rule. Gagne (1970) emphasizes that memorization of the verbal
statement should not be considered as rule-learning. However, it is possible that the ability to
state the rule verbally' would allow the student to be able to talk about the rule on a later
occasion and may serve as a valuable cue and/or memory aid for subsequent application of the
rule.

Prompting. Some students have difficulty realizing the relationship between a verbal statement
of a rule and its application in an example or problem situation. M. D. Merrill and Tennyson
(1972) found that the presentation of written prompts which point out the relationship
between concept instances and the corresponding definition of the concept facilitate
subsequent classification behavior. Although this variable has not been studied in rule-learning
situations, it is anticipated that the availability of prompts will be an important variable in
rule-learning.

Amount and Placement of Review. The results of two experimental studies conducted by Gay
(1971) showed that one review is more effective than no review, regardless of the temporal
position in the retention of mathematical rules. However, optimal retention over a 3-week
interval is obtained with two reviews, one early and one delayed.

Student Characteristics. P. F. Merrill (1970) investigated the interaction of cognitive ability
with the availability of rules in learning an imaginary science by computer-assisted instruction.
He found significant ability by treatment interactions using test item response latency as
criterion and individual reasoning tests as co-variables. Reasoning had a high negative
relationship to test item response latencies for Ss in an example-only group, but this
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relationship was significantly smaller for Ss who received verbal statements of Riles in
addition to examples. Therefore, Merrill concluded that the presentation of rules effected a
reduction in the requirement for reasoning ability. Dunham and Bunderso.i (1969)
investigated the effect of decision -rule instruction upon the relationship of cognitivi, :abilities to
performance in concept problems. The results indicated that different abilities were important
in the two conditions. Associative memory and induction were important in ti no-rule
instruction condition, while general reasoning and induction were important in the
decision-rule instruction condition.

Gagne (1970) argues that one of the main individual characteristics affecting rule-leatiiing is the
. individual's ability to perform the prerequisite intellectual skills which are subordinate to the new rule in
question. Therefore, art efficient instructional strategy must be able to adapt in such a way as to provide
instruction for students who do not know the component concepts of a rule or are not able to apply rules
which may be subordinate to the new rule to be learned.

Gay (1969) investigated the effectiveness of using a preinstruction retention index to predict the
number of examples each student should receive in learning mathematical rules. The retention index was
based on an empirical determination of the optimal number of examples each individual needed in order to
maximize his retention of preinstructional rules. After determination of the retention index, all subjects
were randomly assigned to one of three treatments (1) the subjects in the variable example group were
presented mathematical rules in which the number of examples presented for each rule was based on the
subject's optimal number of examples on the preinstruction task, (2) each subject in the choice group was
allowed to determine the number of examples he would receive for each rule, and (3) the subjects in the
fixed group were given exactly three examples per rule. The results revealed a significant sex-bytreatment
interaction, Females in the variable example group performed significantly better on both immediate and
delayed retention measures than females in either the choice of fixed group; However, males in the choice
group performed better on both retention measures than males in the other two groups.

Recent research into the teachinglearning process has focused on the learner as an'active analyzer
and synthesizer. DiVesta and his associates at Penn State (1970,1971) in formulating an "Evolving Theory
of Instruction," have stated that: "No matter what message is presented or what teaching method is used,
instruction provides only potentially effective stimuli for the student. If the message is to become effective,
the learner must be motivated to attend, and he must have a cognitive structure requisite for appropriately
analyzing the message." (DiVesta, 1971, pg. 1)

The learner, therefore, brings to the learning process styles and strategies which enable him to learn.
Studies (DiVesta, 1970) investigating two states of the theory which relate to learner style (analysis of the
instructional messages and synthesis of the learning outcome) have provided the following information
about learner strategies:

Evidence was presented that the learner's preference for visual or auditory modality determines
which features of the instructional message actually are recorded in the learner's sensory
register.

Motivations exist to seek out particular parts of a message for further attention.

The motivational effects of stimulus characteristics vary in a predictable manner contingent
upon the learner's immediate prior experiences.

Provided the learner is motivated and the instructional message registers, then particular
instructional methods seem to facilitate the learner's analysis activities. Instances of facilitative
instructional methods include:

Providing adequate contextual cues within the rnezage

Instructing common elements of the message together.

Authoritative guidance has differential effects on analysis in problemsolving situations,
contingent on the dogmatism of the learner.

Several additional studies are in progress dealing with the second, or synthesis, stage. These relate to
the effects of different testing procedures on the !earner's interpretation of the desired instructional
outcome; differential effects of anxiety and tasks demands on desired outcome of creative responses;
transformational processes; and instrumental activities (e.g.,note-taking behaviors, recitation exercises).
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Description of the Adaptive Model for Rule-Learning

The adaptive instructional model for rule-learning proposed in this section utilizes linear regression
models and heuristic decision rules in an iterative cybernetic process to select and sequence instructional
components in instructional strategies which are idiosyncratic to individual students. The instructional
components will be selected from interrelated and cross-referenced component pools. The components to
be utilized in this model are an adaptation and extension of the Ruleg system. (Evans et al., 1962):

obDisplay of a verbal statement of the behavioral objective related to the rule

ruDisplay of a verbal statement of the rule

r' uAn incomplete or partial statement of the rule which requires the student to respond by
completing the rule

'rilA terminal situation which requires the student to state the rule with minimum stimulus support

egAn example ofithe rule

e' An incomplete example or problem which requires the student to respond by completing the
example or solving the problem

%A terminal situation in which the student is required to solve example problems with minimal
stimulus support

n_A false or negative example of the rule

prPrompt, a verbal description of how the example relates to the rule

fbDisplay of feedback concerning the correctness of a student's response to a problem or partial
example

n(eg)A series of n examples of the same rule

n(eg + pr)A series of n examples with a corresponding prompt for each example

rulA verbal statement of Rule 1 as contrasted with Rule 2, etc.

egg An example of Rule 2 as contrasted with an example of Rule 1 or Rule 3

n(eg + fb + pr)A series of n example problems with corrective feedback for each problem and
prompting for those problems answered incorrectly.

According to the proposed model, these instructional components would be selected from
component pools and integrated into a sequence of instructional frames. A sequence of such frames for
teaching a given rule may be thought of as an instructional strategy for that rule. it is obvious that the
instructional components could be combined in an extremely large number of different frames which
could, in turn, be sequenced in many different orders. However, on the basis of the theoretical and
empirical studies reviewed in this section, an instructional sequence for rule-learning is proposed in Figure
8. Each line in the figure represents a frame composed of instructional components described previously.
The instructional sequence consists of the successive display of frames beginning at the top and proceeeding
to the bottom of the figure. This strategy presents an objective, rule, example, example problems,
corresponding feedback, and prompts. The supporting stimuli such as objectives, rules, examples, and
prompts are faded gradually until !fir, student is able to solve problems and state the rule with minimal
support. The model assumes that only very low-ability students would need to proceed through every frame
in this exhaustive instructional sequence. Most students would be able to skip some of .the fading frames,
while very high-ability students might be able to skip the highly prompted frames and some of the fading
frames. The instructional sequence or strategy for a given, student will be determined through the use of
linear regression models and heuristic decision rules.

A proposed review and integrative sequence or strategy is presented in Figure 9. This sequence would
be presented after several rules have been learned. Again, the extent and frequency of this review strategy
would be determined on an idiosyncratic basis by the adaptive model.

Figure 10 is a flow diagram of the overall adaptive instructional model for rule-learning. When a
student enters the rule-learning :nodel, it is necessary to determine if he possesses the intellectual skills
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Fig. 8. Sample Instructional Strategy for Rule-Learning,
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ruI+n(eg;+ru2 + n(eg2) 4 n(egi + fb + eg2 + fb)

I

n(egi + eg2) + n(egi + fb + e'152 + fb)

1

egl + RI, + fb + eg2 + r7u2 + fb

RI' + fb + iiI2 + fb

i

n(egl 4. fb + ''g2 + fb)

Fig. 9. Sample Instruction Strategy for Review and Integration.
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which are prerequisite to learning the new rules. if the student is unable to apply prerequisite rules or
classify instances of component concepts which make up the new rules,4 then he should receive
supplementary remedial instruction. It is also necessary to obtain data concerning personological variables
such as cognitive abilities and learning style which may be useful in predicting an appropriate initial
instructional strategy for each student. These data, along with data concerning task chFacteristics such as
the difficulty level of a given rule and corresponding examples, will be utilized by the linear regression
models and decision rules to select instructional components to make up an initial instructional strategy for
a given student. The generated instructional strategy is then presented to the student. Within-task
performance data, such as display latency, number of items correct, and test item response latency, will be
collected as the student proceeds through the generated instructional strategy. These data are then utilized
by linear regression models and decision rules to modify or update the instructional strategy as necessary.
For example, if a student is performing poorly under the instructional strategy, it will be necessary to
present additional frames with a high level of prompting and a greater number of examples with a slow
removal of stimulus support. On the other hand, if a student proceeds very rapidly through the displays and
solves all problems correctly, it may be possible to remove stimulus support more rapidly and to present
fewer examples and/or prompts. The student's performance on the terminal items for a given rule will then
be utilized to specify the instructional strategy for subsequent rules. The student's performance on previous
rules is also utilized to specify the frequency and type of review and integration strategy which will be
utilized for a given student (Figure 9). This iterative and cybernetic procedure is followed until all rules for
a given series are learned.

The following have been identified as possible input variables to the model:

Difficulty level of a given rule

Difficulty level of examples

Number of rules in a series

Entering cognitive abilities such as general and inductive reasonings

Preinstruction retention index

Learning style, such as dogmatism and modality preference

Withintask performance measures such as display latency, number of items correct, and test
item response latency

Within-task state variables such as state anxiety and subjective confidence.

The adaptive instructional model for rule-learning will manipulate the following instructional
variables as output:

Number of examples

Type of practice problems

Number of practice problems

Level of prompting

Rate of stimulus support fading

Amount and placement of review and integrative materials.

The adaptive instructional model for rule-learning presented in this section is based on the theoretical
and research literature available at this time. However, the model contains many innovative features which
have yet to be implemented and validated. Considerable research will need to be done in order to refine the
model. However, it is felt that the model presented in this section is a rational starting point and will
provide the framework in which to make future refinements and to investigate those variables which are
crucial in the instruction of rules. A simulation of this model would require further delineation of the linear
regression models and heuristic decision rules required to predict and specify appropriate instructional
strategies. The input variables and instructional decisions listed previously may be expanded or revised
based on the properties and constraints of the heuristic decision rules to be developed. Further basic
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research into the rote and. effects- of number of examples, prompts, type of examples, amount and
placement of review, and rule frame structure and sequence will facilitate the generation of appropriate
regression models and decision rules.

Description Models for ProblemSolving

The current state-of-the-art only allows a very tentative statement of an optimal instructional strategy
for teaching problem-solving behavior. According to Gagne (1970) the following conditions are required for
problem-solving. The student must be able to recall the previously learned rules which are relevant to the
problem solution. In the learning situation, he suggests that verbal instructions should be used to help the
learner recall relevant rules in close time succession. He further suggests that verbal instruction should be
used to guide or channel the thinking of the learner in certain directions. This guidance should always come
short of describing the solution itself. However, as a minimum, it should include a description of the goal
and the general form of th solution in order to limit the range of hypotheses.

Although Gagne states that repetition does not appear to be an important condition for
problem-solving, since what is learned is highly resistant to forgetting, it seems apparent that the
educational process should provide increased opportunities for students to be involved in problem-solving
situations. By increasing students' exposures to a wide variety of problem- solving situations, their skill in
solving unique problems will be increased.

Gagne (1966) also suggests that several individual differences may be related to problem-solving
behavior, Applied to the AIS setting, these individual differences could be stated as follows:

The number and variety of rules relevant to problem solution that a student may call upon

The student's ability to recall relevant rules

Differences in a student's concept distinctiveness

Ability to generate, hypotheses

Ability to match specific instances to a general class in order to verify solutions.

Perhaps the most fully developed model that could be applied to the teaching of rules and
problem-solving is Task Teach (Rigney, 1969), a compute: time-sharing system used to assist the learning of
a variety of tasks, including operating equipment and troubleshooting problems in the equipment. A
definite distinction is made between two different types of serial action tasks. The first type include
prescriptively guided tasks which can be completely specified before they are performed. Included in this
type is the operation of specific test equipment. In contrast, a problem-solving or troubleshooting type of
task would have choice points and decisions required for completion. Both linear tasks and intricately
branching tasks (where the next subtask is contingent upon the outcomes of previous subtasks) may be
handled in the Task Teach Program.

The main adaptive feature of the Task Teach Program is the high degree of learner control. The
learner is allowed to operate in any of four different modes which provid6 varying levels of support and
guidance. Mode 1 provides maximum guidance, Mode 2 provides moderate guidance, Mode 3 is a self-test,
while Mode 4 is a final examination of the student's performance. In addition, several commands are built
into the program which allows the student to have extensive control over the sequence and amount of
support he receives. The "map" command gives the student a diagram of the task structure which identifies
the action goal hierarchy he must accomplish. For problem-solving or troubleshooting tasks, a decision tree
may be represented. Under "monitor" support, the Task Teach Program automatically monitors student
errors and gives the student appropriate feedback, The "progress" command gives the student a list of
remaining possible malfunctions or all goals accomplished up to that point. The "explanation" command
gives the student reasons why certain tasks should be performed within certain, subgoals. The "next"
command lists the next actions which should be performed or reviews how to perform them. The "history"
command gives a response-by-response record of everything the student has done to that point. The
"restart" command allows the student to start over or switch to a new task, while the "quit" command
allows him to sign off the system. Within each of these commands the amount of prescription versus
interactive material varies.
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The present student interface is a teletype terminal with a student-operated carousel slide projector.
However, plans for interfacing the slide projector with the terminal, of using CRT devices, and also for
interfacting the actual test equipment or simulated training aids with the computer are being considered.

The Task Teach Program has general applications an could be used with any serial-type task, Efforts
have been made to simplify the use and entering of the parameter data by the Instructional designer
without having to learn a CAI language. While all that is required is the input of lists representing the
structure of the task, a sophisticated task analysis of the task must be conducted by the instructional
designer prior to entering the lists. A knowledge of the list format is also required. It is not necessary,
however, for the author to program all possible task lists since the student control commands are used to
call up separate subroutines.

This approach has very definite application for Air Force courses, particularly PME which entails
considerable equipment operation and troubleshooting activity. Such a program would provide considerable
opportunity for the student to practice operation or troubleshooting skills with only necessary assistance
and feedback,

Simulated problem-solving experiences can provide students with the opportunity to learn complex
concepts as well as skills through participating in lifelike experiences without the high cost and rjsk involved
in the actual task, In a computer-based instructional simulation, programming techniques are incorporated
to monitor and analyze the student's work in the performance of assigned training tasks automatically.
These techniques provide information for diagnosis of learning difficulties and lead to the development and
testing of hypotheses related to overcoming the problems.

Feurzeig and Lukas (1971) describe two computer-based simulations for complex operational tasks
which incorporate this feature. The first task implemented and tested involved perceptual and motor skills
to maintain an aircraft in a holding pattern solely from information provided by instrument indicators. A
monitor system for this task was implemented and used with both new and experienced pilots. The general
approach was to design a highly task-specific system of programs, called an instructional monitor, for
following a student's work and diagnosing his difficulties along the way. Such a monitor requires detailed
Information on the various kinds of errors possible, Procedures for diagnosing specific errors in terms of
observable effects, and associated information about possible reasons for errors in faulty procedures or
conceptualization. This information provides the basis for instructional decisions. In the simulation, the
trainee was given the task of flying a vehicle over a prescribed course on the basis of instrument
information, The vehicle is represented as a moving point on a scope which also displays the appropriate
changing instrument information: altimeter, automatic direction finder, magnetic compass, and rate of
return indicator. The location of the vehicle, the ground track for the course, the Instrument indicators, and
the trainee's actual flight path can all be displayed. The trainee controls the vehicle through the use of a joy
stick linked to the computer. The problem may be complicated by the introduction of winds, drift of the
controls, and variations in altitude. As a student proceeds in his flight, the state of the forced dials and the
position of the plane at each clock interrupt are stored in the computer. When he has completed the task,
the trainee may review his flight in its entirety by calling on the replay monitor. This program plays back
the flight displaying both the instruments and the holding pattern along with ground track. The replay
monitor also attempts to detect the trainee's local errors and to make appropriate comments. The
monitoring and simulation system was tested and evaluated in an instructional experiment. The subjects
had flying experience spanning over a wide range of hours before the experiment began. The monitor
systems was used to train trainees to fly holding patterns at the computer with some degree of accuracy. An
actual flight testing of the trainees was then carried out to see if this skill carried over to the real task. The
trainees showed considerable success in transferring from the computer-training situation to the actual
flight situation. They demonstrated facility with the use cif the quipment and good comprehension of the
principles involved in performing the holding task' under moderate wind conditions. The authors suggested
that appropriate instructional programs of the same kind can also be designed for use with many other
complex perceptual motor tasks.

A second task area reported involved the acquisition of perceptual skills essential to ship maneuvering
and collision avoidance. This task area involved a graduated sequence of course-estimation problems
presented on a simulated PPI screen and permitted both the gradual acquisition of skills and isolation of
conspicuous learning difficulties. Related studies provided a framework for detecting deeper underlying
difficulties which show up in more complex realistic situations. While these studies used a very small sample
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complex tasks involving mechanical and perceptual, as well as intellectual, components. This kind of
extension is particularly important in making many areas of technical training both feasible and more
cost-effective. There is great potential in courses such as Weapons Mechanic for simulation of
troubleshooting problems; problems both greater in number and with more dangerous consequences than
could ordinarily be presented to trainees.

Computer simulations have also been used to provide the student with lifelike whole job experiences.
Direct Support Unit Simulation Exercise (Powe, 1969) is one such example. In a dynamic representation of
under-fire conditions, the student is recluired to perform tasks as supervisor of a Direct Support Unit
responsbile for missile system repair. Decisions are required based on given situations involving personnel
operations, security, supply, repair of malfunctions, backlog, length of workday, maintenance of organic
equipment, liaison, and military unit training. The student bas available administrative and technical
publications as well as supply and maintenance documents with his goal being to make logical decisions
under realistic conditions.

This type of simulation would be especially appropriate in the Inventory Management course where
students need experience in seeing the entire scope of their occupation, which has typically not been
possible for them in traditional training conditions.

Each of the instructional programs for teaching problem-solving provides opportunity to learn
appropriate techniques to approach finding the solution to a problem. It is obvious that application of rules
in problem-solving requires knowledge of a variety of rules, the choice of the appropriate rule, and the
correct application of the appropriate rule. To develop these skills, varying amounts of practice are required
in simulated and in actual situations. It is on the dimension of amount of practice, as well as the dimensions
of varying the amount and degree of prompting or guidance during the instructional sequence, -that
adaptation to individual difference might be made.

Recommendations

The following recommendations are made:

Although the adaptive model for rule-learning proposed in this section is based on current
theoretical and research literature, many features of the model are innovative in nature and will
require additional research and validation. It is, therefore, recommended that research be
conducted in this area. In addition, the linear regression models and heuristic decision rules
utilized by the adaptive model will require further delineation and empirical validation.

A simulation of the adaptive model will facilitate the specification of initial decision rules and
regression algorithms. The input variables and instructional decisions should be expanded or
revised according to the constraints and characteristics of the simulated adaptive model. It is
recommended that two versions of the model be simulateda full and a reduced model, The
fuversion model would require a highly interactive mode of instruction such as CAI. However,
a reduced-version model could be utilized in a semi-interactive mode such as CMI. Therefore, it
is recommended that both models be simulated. The reduced version would not require an
updating of the instructional strategy according to within-task performance data.

The applicability and extension of the adaptive model for rule-learning into the area of
problem-solving should be investigated. However, it is anticipated that instructional models
such as Task Teach might prove to be very useful in problem-solving applications in the AIS.

Provision for research into the role an effects of the number of examples, prompts, types of
examples, rule trame structure, and amount and placement of review should be made in the
implementation of the adaptive model. This research would provide data for the revision and
refinement of the model.
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VI. ALGORITHMIC REGRESSION MODELS

Adaptive instructional models have been in use since the first self-instruction program. Learners have
characteristically adapted to the learning environment by choosing the form of studying optimized for
them on some variables. These adaptations to accepted instructional technique more often than not were
based on incomplete information, often false assumptions about the learner, and contingencies not related
to optimum learning requirements. Recent research on learner characteristics, instructional variables, and
aptitude-treatment-interactions (e.g., Tobias, 1969; Melaragno, 1967; Cronbach & Snow, 1969; Bracht,
1970) has indicated the potential for adapting instructional techniques along many dimensions in order to
match unique learner profiles more closely. Whereas only a few years ago, fine-grained, cybernetically
controlled adaptations would have been difficult from administrative and operational points of view, the
use of high-speed digital computers in the educational world has made the assignment of learner-sensitive
instructional techniques and materials increasingly viable.

Characteristics of Algorithmic Regression Models

A number of instructional systems based on response- and learner-sensitive models have been
attempted; some of these were dependent on the availability of a computer. Programmed instruction
(Skinner, 1961; or Crowder, n.d.) provided learner-response characteristics to learning tasks which utilized
printed media. Individualized instructional programs such as Project PLAN and IPI have been available fora
number of years. (Flanagan, 1970; Lindvall & Bolvin, 1966). In these programs, students are assigned
instructional modules according to a predetermined scheme based upon reaching criterion on previous
materials or on pretest scores. The student is required to progress through a modified "track" system in
which the opportunity exists to "jump" from one track to another.

Suppes et al., (1963) utilized a computer to present instructional materials and to make branching
decisions on the basis of student-response patterns to the materials being presented. Computer-Managed
Instruction (CMI) can also provide for the assignment of either new materials as the student reaches
criterion, or remedial materials when he doesn't (e.&, Gallagher, 1970; Lawler, 1971). Although the
adaptation described so far is responsive to the learner and appears to approximate the behavior of a
teacher, the methods provide, at best, for multiple-track systems utilizing essentially similar instructional
materials within each task. It is the purpose of the algorithmic regression adaptive model, described in the
next paragraph, to provide for a more comprehensive individualized utilization of media, materials, and
diverse instructional techniques.

The adaptive instructional model under consideration in this section utilizes multiple-regression
analysis to provide a prediction of the media, content, and instructional method necessary to optimize
learning. Of the adaptive models described here, regression modeling is unique in that it utilizes a number of
learner characteristics to assign an optimal instructional experience to achieve quantifiable criterion goals.
Thus, to the extent that the variables input to the prescription output variables, this model can be expected
to predict successfully the media, content, and instructional method best suited to the characteristics of a
particular student.

Markov models which have been suggested by Atkinson (1967) were considered to,be inapplicable to
technical training adaptation problems. The models typically require that the test items or responses which
are given in order to make state-changing (branching) decisions be highly and independently homogeneous.
This state of affairs is typically not the case as behaviors tend to be heterogeneous and highly related.
Furthermore, the transitions which characterize Markov models are of a minute nature which could only
transfer to the minute-by-minute course of instruction. Thus, this framework is clearly too detailed and
complex as an intertreatment decision process.

The selection of a regression approach for this model is prompted by'the quantifiable nature of the
prediction algorithm. For the sample of students on whom the prediction model is developed, the error of
prediction (represented by the "distance" between the student's actual score and the score predicted, past
hoc, for him by the model) is at its minimum due to the nature of regression analysis. Regression is
typically utilized to investigate the interrelationships between predictor variables such as age, ability scores,
or SES, and criterion variables such as success in college or course grades. In the present case, predictor
variables such as ability, aptitude, personological variables, and treatment characteristics are used to predict
criterion score on a multitude of course performance levels in order to specify the pptimal instructional
treatment.
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The regression model being considered will use two classes of variables to select the optimal
instructional alternatives. These input variables may be classified as either trait or state in nature. Trait
variables may be characterized as static, long-lasting, and descriptive of the individual's behavior over
longtime periods, i.e. as indices of expected general behavior. State variables, in contrast, may be
characterized as dynamic, short-terrh, and descriptive of the individual's behavioral nature within specific
situations, at particular times, and over shorter time periods.

The trait, historical, or a priori variables which may provide input to the regression models include
both background indices such as age, SES, and prior knowledge of similar material, as well as more
traditional measures such as IQ, trait anxiety, curiosity, and motivation, personality measures, aptitude
indices, and achievement test scores. These trait variables may be considered "historical" since they are
available prior to instruction and are not likely to be updated during the weeks or months of ongoing
instruction.

The input of state variables to the models include primarily responses and latencies on
criterion-referenced test items and traditional achievement test scores, which may be required to assess the
student's current learning/aptitude state. Additionally, measures such as state anxiety, curiosity, and
motivation may be used to "correct" for current changes from the learner's trait levels.

An additional characteristic of regression models is that multivariate techniques are applicable. These
techniques permit the loint analysis of the relationships between the vector of input and the vector of
output (prescriptive) variables as well as allowing for the prediction of the prescriptive vadables under
statistical assumptions less stringent than with univariate techniques, making the techniques generally
applicable to data in the AIS setting.

Issues to be considered in the use of regression models for adaptive instruction include (1) the
determination of the statistical properties of the variables, (2) the selection of the instructional components
to be predicted by the regression equation, and (3) methodological requirements for establishing sufficient
(Simon, 1969) criterion levels where required.

The determination of the statistical properties of the variables is an important consideration in that
the distributions of scores can have a marked effect on the accuracy of the prediction. Markedly skewed
score distributions, particularly when accompanied by small variances, lead to a smaller correlation between
the linear combination of scores and the criterion to produce lessened effectiveness of the model. The range
of scores can have a similar effect on the predictive accuracy of the regression (or algorithmic) model.

The instructional parameters or components to be predicted by the regression equations are selected
on the basis of three criteria. The first criterion is the availability of research evidence to support the
relationships between the available trait and state indices and the prescriptive variables.-Given the current
state-of-the-art, if one or more research studies judged to be reliable exists, this criterion will be assumed
met. The second criterion relates to the usefulness of the criterion classification to instruction, e.g., media
choice is useful, but typeface choice is not. A third criterion relates to the inclusion based on iterative
empirical validation. The variables which are being considered are listed in the model structure subsection
of this section.

Prior to predjcring the optimal level of an instructional prescription factor, it is necessary to establish
acceptable criterion levels for each instructional factor to reflect an efficient placement of students. The
methodology for determining the criterion levels will be selected during the simulation phase of the project.

Applications in the Advanced Instructional System (AIS)

The primary goal of AIS is to provide a prototype, state-of-the-art, sidividualized, multimedia,
computer-based instructional system which demonstrates cost-effective training procedures. The
characteristic of multiple regression analysis for predicting optimal instructional parameters which most
clearly relate to the cost-effectiveness constraint is the "least-squared error" solution. This solution of the
regression equation provides for minimal differences between the actual scores on criterion measures and
predictions of the scores. On the same criterion measures, the empirically derived regression equations
provide for the closest match of predicted and actual scores and can be expected to prescribe the most
efficient instructional treatment for the operational group of students.
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The solution of the regression equation will be determined through an iterative procedure in which
initial groups of students are randomly assigned to instructional treatments on a stratified basis. The
characteriStics of these students and the treatment. given will then be analyzed and related to the
performance levels obtained, Succeeding groups wilt then be assigned to instructional treatments leading to
the best prediCted score by means of the regression equations developed. Periodical updatings and revisions
of the model will result in refinement of the roles of various predictors (e.g,, elimination, addition, or
change of contribution of individual indices) and a maintenance of the model's efficiency.

Role in MS

The role of algorithmic regression models ivithin AIS is to generate the adaptive instructional
prescriptions. Whereas other models described in this report may be charaCterized as operating at an
Intratask level, the regression models operate at an intertask level. As such, the model is the mechanism for
predicting (and thereby selecting) the optimal media, difficulty, andfor instructional method for each
learner. It is expected that the complete range of predictive choices will rarely be available, but that an
array of instructional alternatives will be available at each choice point. Upon the choice of a nonoperable
prescription, the closest avalable option would be selected and offered to the student.

This framework for computer based prescription may be placed midway on a scale with end points
characterized as "response sensitive" and "responte insensitive." A response sensitive paradigm would
provide for prescription of detailed "frames" of instruction following each student's response, whereas a
response-insensitive paradigm would provide for, at best,a track system in which only gross adaptation
veOuld occur. The envisioned CMI framework is response sensitive; however, the prescriptive mechanism
does not operate following each individual response, but only following a completed lesson, This means that
(1) the lesson materials themselves do not need to be presented on-line, (2) the student has more
opportunity to use media devices other than a computer terminal, and (3) testing may occur off-line with
form-reader computer input following testing.

A secondary role of the algorithmic model lies in the prescription of counseling experiences. Three
major contingencies can arise which may trigger this counseling role: (1) resource exhaustion, (2)
time-letigare factors, and (3) situational performance factors. Certain kinds of counseling experiences are
necessary as an integral part of optimal course flow. These experiences include counseling related to career
goals and requirements, course incentive descriptions, and academic difficulties caused by personal
problems. These counseling experiences can be assigned to fill a gap when the resources needed to continue
instnrctiort are unavailable to the student. At certain times, such as after a number of hours ontask when a
break is needed, some counseling may be assigned as a means of altering a task briefly. Whenever
performance falls due to situational factors peculiar to the student, counseling may be assigned. The
experiences suggested may involve either an instructor, a professional counselor, or, in eases such as career
counseling, a technological approach such as a slide-tape presentation, or a CAI-counseling task may be
assigned,

Payoffs foil:MS

A number of potential payoffs accrue to the use of a regression model within MS. First, the
operation of the model can be made transparent to the learner. The interface between the student and the
prescription of instructional materials begins with a test on previously learned materials and ends with the
prescription of new materials. The student need be aware of only these two:components. Between them,
the adaptive models (regression among them) operate without further input or interaction with either the
student or instructor. In the rare case where specialized additional input is required, this is assigned or asked
for, but the model's operation remains transparent.

A second potential payoff of regression models used in the prescription of learning experiences is the
characteristic that assures near-optimal selection of available instructional software media and specialized
carrels given proper predictive input. This characteristic can be validated within the system to provide a
check on the usefulness of the model.
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The regression model will operate in real-time, providing near instant response to input so that when a
student completes a diagnostic or criterion test, the prescription for the next activity is available as soon as
the results are fed into the computer (either through the facilities of a computerbased test or through
optical mark reader input.) This will usually happen within a matter of minutes following completion of the
test.

Finally, the model may be updated in a cybernetic fashion in order to reflect changes in the relative
predictive value of individual predictors as a function of emerging changes in the characteristics of students,
the relative quality of instructional materials, or other factors.

Review of the Literature

The literature bearing on regression models falls into two general categories, (I) applications of
regression models to adaptive instruction, and (2) studies dealing with the selection of predictor variables
for the regression equations.

Applications. Three applications of regression models are described. Two related applications at
Florida State University were described by Dick, Rivers, King, and Hansen (1970) and by Rivers (1972).
Dick et al., (1970) investigated developmental procedures for producing a regression model to make
decisions for ongoing instruction in a computerassisted instructional task in Boolean algebra. Preview frame,
criterion, acquisition, quiz performance, latency, and subjective confidence measures were investigated in
order to determine the measures which would contribute most to a predictive and useful adaptive decision
model. The prediction of quiz score utilized performance, latency, and confidence measures on the
criterion questions. Prediction of final examination score used performance, latency, and confidence
measures on the quiz questions. Prior to the time the student completed either the quiz or the final
examiration, a prediction was made of his test performance. Remedial instruction was provided whenever
the predicted test score fell below the mean established by a prior group of students, The results of this
investigation were equivocal. In one unit, the adaptive model identified students who needed remedial
instruction. Even though the students started instruction with scores below those of students in a reference
group, scores on the final examination were comparable. A second unit did not produce usable results due
to a mismatch between the diagnostic questions and the difficult training materials.

Rivers (1972) investigated the relationship between within-course variables and achievement in the
course. Correlational and regression analyses were, used to identify the relevant predictor variables and
remediation points. During the first phase of the two-phase study, 33 female subjects were administered
trait and state-anxiety inventories (STAI, Spielberger, 1969) and then proceed through a program in health
education describing the incidence and risk of contracting heart disease and the diagnosis of myocardial
infarction. During learning, percent correct answers and response latencies were obtained for each student,
and regression equations were computed from these data.

During the second phase, cumulative performance and latency, as well as the most recent
performance and latency, were used as predictors of the posttest score for each of the nine concepts
involved in the program. Whenever the predicted score indicated performance would fall below the
acceptable level of 80 percent, instruction was prescribed. A total of 80 female students were used to
validate the regression models. The results indicated that use of the regression model led to improved
performance on the posttest. A control group which received remediation on all concept also improved, but
the group took more time and did not score as high on the criterion test as the regression model group. It is
clear from this research that the regression model provided a means for assuring that students who required
remedial instruction were given it. The time savings shown, although small compared to the all-remediation
group, would amount to a large savings over the duration of a course. It may be noted that the regression
model group did not take significantly more time than either a "student choice" or a "no remediation"
group taking the same instruction.

Input variables. The input variables may be considered along the framework proposed by Cronbach
(1961). Adaptation to individual differences may be characterized by the natures of the educational goals,
the instruction provided to the student, and the modifications to the treatment In order to meet the
students' needs. Table 2 briefly describes the framework which Cronbach proposed. The regression
approach which FSU is pursuing is an elaboration of the framework for goals fixed within a course with
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TABLE 2.

PATTERNS OF EDUCATIONAL ADAPTATION TO
INDIVIDUAL DIFFERENCES

Educational Instructional Possible modifications

goals treatment to meet individual needs

Fixed Fixed la. Alter duration of schooling
by sequential selection.

lb. Train to criterion on any
skill or topic, hence alter
duration of instruction.

Options Fixed within 2a. Determine for each student

an option his prospective adult role
and provide a curriculum
preparing for that role.

Fixed within Alternatives 3a. Provide remedial adjuncts

a course or provided to fixed "main track" in-

program sti-uction.

3b. Tee ;h different pupils by
different methods.

(From Cronbach (1967)).

alternative instructional treatments. Cronbach gives two dimensions of modifications The first dimension,
and that along which Dick et al., (1970) and Rivers (1972) have operated, provides for remedial alternatives
to an otherwise fixed instructional program. Cronbach devotes considerable attention to the description of
the adaptation of instruction to individual differences by altering the instructional method utilized (3b. in
Table I). The investigation of aptitude X treatment interactions (ATI) is directly related to this application.
Where All's are shown, differential instructional treatments may be administered to students who differ in
the related ability, aptitude, achievement, personality, and affective characteristics.

Aptitude X treatment interactions have been discussed by Bracht (1970) who analyzed 90 studies,
only 5 were shown to produce significant disordinal interactions. Bracht defines a disordinal interaction as
one tn which the treatment differences at two or more levels of the independent variable are both
significantly nonzero and different in algebraic sign. In other words, the lines on the graph of the means
must cross, indicating that learning treatments are differentially effective at different points of the
individual difference continuum. The four research studies which resulted in significant disordinal
interactions and which are related to the present report may be summarized as follows:

(1) Atkinson and Reitman (1956), found that students low on affiliation motive performed better
with an achievementorientation treatment and students high on affiliation motive performed
better with a multi-incentive treatment.

(2) In an experiment by Marshall (1969) students from poor educational environments performed
better on a high-interest task whereas students from good educational environments performed
better on the lowinterest task

(3) Thompson and Hunnicut (1944) reported that introverts obtained higher cancellation scores
when they received praise, while extroverts obtained higher cancellation scores when they
received blame.

(4) Van De Riet (1964) found that underachievers performed better when they received criticism
and normal achievers performed better when they either received praise or were asked unrelated
questions.
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The variables indicated above would appear to be fruitful input for an instructional model within the
piesent context. To summarize, they are (a) affiliation motive , (b) prior educational environment, (c)
introversion-extroversion, and (d) prior achievement versus potential levels.

Additional research by Snow, Tiffin, and Seibert (1965), O'Neil (1970), and Tobias (1969) suggest
that other variables such as anxiety level, attitude, and creativity might relate to instructional methods. Less
stringent constraints on the selection process would allow ordinal interactions to be utilized. Some of these
relations will, be described briefly in the following paragraphs.

Snow, Tiffin, and Seibert (1965) investigated the effects of differential learner characteristics and
prior knowledge ,on immediate and delayed recall Rerformance from both filmed and live physic lecture
demonstration& in an analysis of immediate recall, 225 "film" students and 212 "live" students were used
Due to factors such as dropouts, a smaller number was used in the analysis of long-term retention. No
overall differences in performance levels were found, but a significant difference in the amount learned was
shown for the live-presentation group among students holding negative opinions about films. The authors
concluded that passive observers lacking self-confidence performed higher, but not significantly so, on films.
Those high in numerical aptitude having no previous knowledge performed better in a live mode. A
tendency was observed for low-aptitude students with prior knowledge of the subject matter to perform
better in the film condition.

The effects o stress on state anxiety and performance were investigated within a computer:assisted
instruction task by O'Neil (1970). Stress was induced by caustic feedback concerning performance. Trait
anxiety and the number of errors within the task showed no relationship to stress. However, state anxiety
levels were shown to be related to the number of errors within the task. Students with high-state-anxiety
scores made more errors during the CM task than students with low stateanxiety scores. However, the
difference in number of errors was significant only in the easier portions of the task.

in an investigation within a programmed instructional text, Tobias (1969) found creative students
had higher performance scores regardless of whether a constructed response or a reading mode was used,
but that achievement was higher on technical material (in contrast to familiar material) for the constructed
response group. Large differences were indicated between reading and constructed response conditions for
low-creativity students, particularly on technical pictorial subject matter.

Model Structure

A regression approach to adapting instruction will be developed which is, in part, based on the
research cited in the preceding paragraphs. A generalized flow diagram is presented in Figure 11. Linear
regression techniques with the least-squares criterion will be used to predict optimal uses of instructional
resources by individual students. The instructional resources include the following:

Media options

Difficulty level

Redundancy level

Remediation

Content and sequence

instrnctional method

Hands-on/laboratory tasks

The algorithm is the critical element in the construction of the student's learning prescription
consisting of the previously listed output variables. As distinct from the adaptive models to be considered
which provide for within-task decision structures, the algorithmic regression model under consideration
here may be thought of as a between-task model, making possible a more complex decision structure.

The algorithmic model will operate in real-time, providing learning prescriptions based on
up-to-the-moment assessment of the student's history and current learning progress. For this reason, both
trait or entrance variables, as well as state or concurrent variables, will be used in various combinations as
independent variables in the prediction equations.

64



11

ENTRY

\1/1..

State
Variables

Instruction

:q,....

i---Algorithm

Output

Prescription
V siell

Trait
Variables

[ Next Choicel

No

Fig. 11. Generalized Flow Diagram of Adaptive Regression Model Operation.
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As a preliminary staging point, the following items have been identified .rs potential twit variables:

AQE score

Mechanical aptitude scores

Electrical aptitude scores

Verbal aptitude scores

Trait anxiety (STA° scores

Trait motivation scores

Trait curiosity (OTIM) scores

General confidence measures

Opinions related to school, media, the military, and the career field.

Prior knowledge of course material.
State indices, Lc., those which represent current and changing indicos of the student's learning

parameters, have been identified as follows:

Recent performance scores

Errots on last unit

Confidence level

Mean response latency

State anxiety (STAI) scores

State curiosity scores

State motivation scores

Student's choice of future course flow.

The input variables described will be utilized during a validation phase and the lsit will be amended as
indicated by the results of the validation. The literature reviewed in Section 1V indicates that these variables
are related to learning in such a way as they can pie het a learning level, or the variables are readily available
(such as AQE) and can reduce the error variance irterent in die prediction eq..1,:ons.

Recommendations

Five recommendations concerning the use of regression equations for adapting instruction emerge
from an analysis of the method and its feasibility. These recommendations are as fellows:

Bruner (1966) has made the distinction between descriptive Iheories of learning and a
prescriptive theory of instruction. The regression model appro?,.h bridges the gap between
description and prescription by utilizing descriptive measures vd.Ich have been shown to be
predictive. A prescriptive model is thus desired from a descri, t one. For this reason, tile
regression approach is recommended for selecting instructional prescriptions in ALS.

Second, the regression approach appears to be especially uscf...0 in an interlesson context.
Rather than changing or modifying the inflr;.:ctional method with instmeCional session ori
the basis of responses,a potentially rrt)v: !ffecti e instructitr change can be imtle by
directing the student to another set of materials within the lesson to a re:rteli,1 er enhanced
lesson.

A third recommendatioa concerning of regression 'not is focus: :, cn the interface
between this and other .;lodels with '.f allocation ,) instru,ti.fri,11 software ant:
hardware. The interface itself has twc. dit-:,ensions. The first Ll.::.insion relates to selecting
resources that match an prescription. I table-look-up procedv:e of some kind may suffice
for this activity. The suond dimension tv:th the assignment (4 (!sour,:s :h 4 may oz may



not be available due to use by other students or within a repair/replacement cycle. This
dynamic allocation procedure must exist in conjunction with, yet in addition to, thepresent
instructional model.

It can be expected within an operable training system used to capacity that the prescription
selected by the regression equation as optimal may be unavailable. A necessary Interface to the
regression model formulation is a resource allocation model which would provide a list of
available resources and estimates of resource use so as to permit optimal resource-spares to be
ordered. Thus, not only will more efficient use be made of available resources, but resources
can be maintained at an efficient level of supply as well. It is, therefore, recommended that a
resource allocation model be developed as a part of AIS.

As a fifth recommendation, validation of the regression models should be carried out over a
sufficient period of time by the MS contractor in order to provide sufficient data to update the
beta weights, if required. The contractor should also devise a procedure for periodic
revalidation and restructuring of the models.

VII. DYNAMIC PROGRAMMING

Characteristics of Dynamic Programming Models

Dynamic programming, developed by Bellman (1957) and his colleagues at the Rand Corporation,
grew out of a need for optimization in the war effort in the 1940's. Dynamic programming continued in the
1950's in areas of industrial and other institutional problems. Operations research, as this scientific
approach to the solution of industrial problems has become known, incorporates the formulation and
application of mathematical models of optimization to the solution of instructional problems. Extensive
applications of the techniques of dynamic programming have been made in inventory theory, allocation
problems, control theory, search theory, and chemical engineering design. Because many of the principles
involved in industrial problems also apply in the field of technical training, the techniques of dynamic
programming can be utilized in the solution of allocation problems in an adaptive model in the AIS setting,
or extended to become the AIS master model by monitoring and controlling other instructional
subsy stems.

Basically, dynamic programming takes a sequential or multistage decision process containing many
interdependent variables and converts it into a series of single-stage problems, each containing only a few
variables. Bellman's dynamic programmming principle of optimality states. "an optimal set of decisions has
the property that whatever the first decision is, the remaining decision must be optimal with respect to the
outcome which results from the first decision" (Bellman, 1957). Since dynamic programming essentially
looks at a problem having N decision variables as N subproblems, the development of the high-speed
computer has facilitated the high volume of computation that is required for an optimal solution.

Dynamk Programming in the AIS

Dynamic programming is a technique that holds great promise in the area of decision-oriented
systems in education. Such techniques allow for realistic modeling of the educational decision-making
process. Dynamic programming techt,iques based on mathematical models are attractive as planning devices
because they permit the specification of certain original states of a system, certain desired terminal
conditions or targets, and then a search for the levels of system controls which will produce the desired end
result within the constraints of cost and time, as predetermined by the overall system in which the
instruction takes place.

Since the Air' Force technical training Is complex system composed of many variables, a modeling
process should produce results that are more accurate than mere intuitive or even empirically based
heuristic decision processes. In considering the mass of students, the vast requirements of the Air Force
technology, and the considerable expense that is necessary to perform the kind of technical training
required, it is obvious that a sophisticated mathematical model could produce decisions that would ensure
greater efficiency of the training. The allocation of instructional resources, if handled in a dynamic and
responsive manner would utilize the available resources maximally and provide feedback data regarding the
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necessity of additional resources. If dynamic programming techniques were used simply in the area of
allocation of instructional resources. a maximum usage of each resource, with minimizing cost, would
result.

Another concern of any technical training institution is that of optimization of time requirements for
the studenr to attain the desired criterion performances. By employing dynamic programming techniques to
monitor time requirements of students' progress through any instructional sequence, more effective
remedial and branching techniques could be used. Utilizing dynamic programming techniques would ensure
that all students would complete the instructional sequence in optimal time so as to minimize costs while
maximizing instructional return. Dynamic programming techniques could also maximize time by specifying
the level of criterion performance a student must meet in each instructional sequence before he is passed to
the next one. A criterion level based on the results of a dynamic formulation could be optimized relative to
both the individual student and the whole system, thus saving time and cost. This minimum criterion level
would ensure satisfactory performance on both the ppsttest and in the job setting.

A wider, more encompassing use of dynamic programming would be to monitor the complete
technical training system. A dynamic programming formulation for the decision problems could be
developed that accounts for the cost of instruction, the gain in competencies as a result of the Instruction
(setting appropriate criteria), and the assignment of trainees to appropriate training sequences based on
differential student characteristics and other variables which are discovered to influence the training
attempt. A model could be developed which would control and coordinate all other adaptive models and
instructional subsystems. By utilizing proven existing systems, or usable proposed systems and/or
procedures within these systems, the dynamic programming model can optimize instruction based on stated
goals and existing constraints without a major reworking of Instructional strategies.

The ultimate use of dynamic programming technicques in all phases of adaptive instruction requires
thorough examination of all existing and proposed instructional alternatives (strategies and resources), all
possible student characteristics and learning styles, and the goals of instruction, both desired and
mandatory. This major effort should produce specific quantifiable variables which then could be submitted
to actu:i testing in the instructional situation. These experimental results would produce data on which
optimization decision processes could be based.

An additional application of dynamic programming in the AIS setting could dynamically control the
scheduling of students and courses so as to use the training resources and Air Force personnel most
effectively. An individualized instructional system implies that trainees will be completing training at
different Limes. To prevent nonuse of training resources, a scheduling procedure responsive to both the
internal Instructional system and the external Air Force needs could optimize the scheduling of individual
trainee personnel and courses.

Literature Review

A description of recent uses of dynamic programming techniques provides a clearer perspective on
their applicability to AIS. As previously indicated, operations research, to which dynamic programming has
contributed heavily, can aid in solving industrial problems. Problems such as those of choosing the proper
routes for roads, while optimizing traffic flow and minimizing cost, are discussed by Kaufman (1967).
Other applications of dynamic programming in decisionmaking situations include distributibn of
investments to provide maximum profit, management of warehouse stock, and calculation of optimal
storage capacity.

Instructional dynamic programmming techniques having greater relevance to AIS include those of
Atkinson and Paulson (1970). Lorton, as reported by Atkinson and Paulson, used these techniques to
examine an approach to the optimization of instruction in teaching spelling words to elementary school
children so as to maximize performance on a posttest. As described by the Atkinson and Paulson article,
the decision problem was to find a choice strategy for achieving the criterion level of performance in the
shortest time, Depending upon the model of learning process applied, a method of selecting words to be
presented in sublists so as to optimize posttest performance and minimize study time was determined. The
method of determining the selection procedure was dynamic in that the history of both the individual and
prior students aided in defining the solution. The optimal selection method was shown in each case to be
superior to a fixed (aides of presentation of words.
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Calfee (1969) describes an application of dynamic programmming in determining an optimal
procedure for presenting paired-associates to obtain criterion performance, while minimizing the number of
presentations. in a similar application, Smallwood (1971) considers the cost for instruction as well as the
cost of terminating the instruction prior to the learned state. Smallwood's paper develops a dynamic
programming formulation for determining the optimum policy for presenting a multiitem list of
paired-associate items. This optimum policy for the presentation of the multi-item list can be calculated by
considering each item individually and then aggregating the individual results into a total policy. Smallwood
suggests that the applications of this method of determining optimal instructional presentation are
particularly useful in computer-directed teacher systems that incorporate a sophisticated decision-making
capability. He suggests that the complicated computation needed for the initial determination of the
optimal teaching policy can be done for many students simultaneously. Then as a new student enters the
instructional program, the simple calculations required to adapt the instructional alternative to the student
for optimal performance can be quickly performed, producing an instantaneous prescription for the
student. Periodically, as more data become available from students having completed the instructional
sequence, a complete recalculation of the optimum policy for each item and for the multi-item list could be
carried out during off-teaching hours, when the teaching demands of the computer system are relieved.
Smallwood suggests that this method of handling adaptation of instruction by computer may result in a
more economical system, since the system would now be used more efficiently by trading off relatively
inexpensive off-duty computation time for an increased student-handling capability.

Calfee su tests that a simple mathematical model which approximates the learning process is more
efficient than a complicated one. This is so because the mathematical analysis rapidly becomes more
difficult as the mathematical model becomes more complex. On the basis of the derivation of an optimal
presentation technique based on backward Induction, Calfee concludes that presenting the item which
yielded the maximum immediate gain was an optimal strategy.

Kendrick (1966) suggests that a dynamic programming model could be used effectively for
educational planning. He indicates that control theory models are attractive as planning devices because
they enable one to specify certain original states of a system, certain desired terminal conditions or targets,
and then to search for the levels of the system controls which will produce the desired end result at the
minimum cost. He applied the model to determine the number of new students to be admitted to the first
level of an educational system every year in order to meet the target levels of the desired number of
students completing each level in the system in some future year: Cost factors were also integrated into the
model.

Bellman et a/., (1966) employed dynamic programming techniques to determine the pathways a
psychiatric interviewing situation would take, with the computer simulating a patient. By simulating a
psychiatric interview, a multistaged decision process built into the. computer can, through optimization
procedures, become an adaptive decision process. By building a tree of questions and answers, each with
certain assigned probabilities of occurring within the first psychiatric interview, Bellman and his group were
able to present a realistic simulation of psychiatric interviewing for training purposes.

Woods and Hartley (1971) report an iterative technique to determine optimum task difficulty Jr),
simple computational skills instruction. The goal for the computer-based instructional sequence was for the
computer to generate a task sequence by varying the number of rows and the average number size in
addition problems. In this way, any particular pupil at any competence level works with any specified
probability of success. To accomplish this task, the computer continually re-estimates probability of actual
success, generates examples, provides appropriate feedback to the model, makes a continuous error analysis,
and stores records of student's progress. The process is dynamic in that decisions of task difficulty are based
on the student's past history and present status, the history of other students, and changing goals (that of
probability of success).

To provide a basis for the initial stage of the implementation of a dynamic programming model, a
suggested list of variables to be considered is presented in Table 3. The student characteristic variablesare
each presented with the interacting instructional variable as shown in at least one aptitude-treatment-
interaction research study.
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TABLE 3.

Student Characteristics and Task Characteristics

SITdek CharacteristAs
Learning and Types

Short-term memory

Scientific interest,
anxiety level, intro-
version/extroversion

IQ, reading
omprehension

Assor.iative rymory,
jnduction, General
reasoning

General reasoning

General reasoning,
Anxiety

Anxiety, Active/passive
learners

Anxiety

Anxiety

Anxiety

Instructional TiS-k
,Characteristics Researcher

PI step size

Inductive/deductive,
rwaningful/arbitrary

Massed/distribUted
practice (spelling)

Overt/correct correc-
tion response

Pacing, prompting

Placement of review

Expository/discovery
(rule application)

Example/negative
example (concept
learning)

Expository/discovery

Expository/discovery

'Sequencing

Feedback, stress

Test item difficulty
Sequencing

Test item difficulty
sequencing
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Furukawa, 1968

Tallmadge &
Shearer, 1969

Fishman, Keller,
Atkinson 1967

Syppes, Ginsberg,
1962

Gropper, Kress,
1965

Gay, 1971

Dunham &
Bunderson, 1969

Tennyson, 1971

Merri11, 1970

Merrill & Towle,
1971

Gallagher, 1971

O'Neil, 1970

Towle & Merrill
19/2

Munz & Smouse,
1966



TABLE 3. (Continued)

CiAikriithoractristics Instructional Task
Learning and lyptas -Characteristics

General reasoning
anxiety, dependence/
ndependence

General reasoning
nxiety, dependence/
independence-

Ceneral reasoning
anxiety, dependence/
independence

n Achievement,
n Affiliation

Opinion, educWonal
level

SES, parent education

introversion/extroversion

Level of achievement

Inductive t deductive
reasoning

Anxiety (AAT), Sex

Expository/discovery
rules, objectives

Expository/discovery
rules, objectives

Researcher

Merrill, Kalisch,
Towle, Steve, 1972

Kalisch, Merrill
Towle, Steve, 1972

Expository/discovery Towle, Steve,
rules, objectives Merrill, Kalisch,
student/program control 1972

Incentive

Type of argumentative
program

high/low interest

Blame/praise feedback

Praise/reproof/neutral
feedback

Verbal inductive/
verbal deductive

Constructed response/
no reinforcement/
reading

Atkinson & Reitman,
1956

Hovland, Lumsdaine
Sheffield, 1949

Marshall, 1969

Thompson &
Hunnicutt, 1944

Van De Riet, 1964

King, Roberts &
Kropp, 1969

Tobias &
Abramson, 1969



Though the literature produces limited applications of dynamic programming to adaptive instruction,
the applications cited indicate that dynamic programming does have wide applicability to the area. Coupled
with a high-speed computer, dynamic programming formulation of adaptive instructional procedures and
policies could be employed to serve thousands of students engaged in amny different instructional tasks. By
utilizing optimizing techniques, such as those that dynamic programming provides, the value of any one
instructional septent or procedure is never in doubt. In addition, the optimizing procedures will prevent a
situation of greater demand on the resources than can be handled at any one time.

Variables

As indicated in the preceeding paragraphs, a dynamic programming model can be employed to
combine and coordinate other models and system. Dynamic programming 1pproaches used within an
adaptive instructional model must include all variables which are germane to the proposed submodels and
subsystems, the !neteraction and flow of these variables in art instructional-course unit, and the allocation
and monitoring of resources (including money and time).

All variables which are to be included in adaptive-optimization procedures must (a) be quantifiable,
and (b) have an underlying continuous distribution. Furthermore, this underlying distribution must be
given a, sufficient chance to be reflected in the data. The effectiveness of any adaptive model is dependent
on the quantification of the whole system and the sensitivity of the measuring instruments employed.

This quantification is most difficult in the area of goals and goal statements. Not only must minimal
and maximal values be specified for any output, but the relationship of any variable to all other variables, at
all possible values of all variables, must be interpretable at each decision point. The problem of visualizing
and following all these variables and their interactions so as to formulate an optimal solution (in terms of
goal statements) is beyond human capacity. Therefore, the conceptualization of the problem (both the
delineation of the variables and the interpretation of these into statements) is mathematical in nature and
necessarily computer-based.

The decision about whether to use a dynamic programming approach at all is a relatively simple
question compared to the one which deals with the degree to which it should be used, and the energy and
funds avaiable. After extensive research and planning, a dynamic programming approach can be divided into
a number of categories, with each category implying differing amounts of commitment and implementation
at different times. The nature of each category, and what payoffs can be expected from each, is looked at
in the following breakdown. The categories differ in;(1) the sequence that are first dealt with, (2) the
amount of initial commitment of each, (3) the amount of payoff that can be expected from each, and (4)
the implications of exclusion and inclusions of differing combinations of each.

An explanation and an elaboration of the categories and functions outlined in Table 4 and Figure 12
follow:

Function 1. Generating the initial adaptive modelincluding the decision model. Because this initial
procedure is germane to the development of any system and its formulation affects the choice of
latter functions of dynamic programming, this implementation function is discussed in detail in a
following section.

Function 2. Updating algorithms as new performance schedules become available. Updating an
algorithm is the first part of a two-step process. The regression equation will first yield a more
accurate prediction of the dependent measure (e.g., scores on Criterion Test No. 4). it will then be
decided how this improved prediction affects the goals of the system (of which a specific
algorithm-regression equation is but a small part). The improved prediction from an updated
algorithm may ultimately lead to better mastery for all students (accuracy goal optimized), less time
to a mastery level for most student (speed goal optimized), or elimination ofsome remediation loops,
instructional alternative pathways, decision points, etc. (money or resource allocation goals
optimized). The actual decision will be reached from the set of recursive equations derived earlier
from the goal statements.
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TABLE 4.

Categories and Functions of Dynamic Programming Approaches

Category Function

1. Implementation Generating the initial adaptive model

2. Updating & Refining Updating algorithms (regression equations)

as new performance schedules become

available.

3. Incorporation Incorporating new.variables into the

preexisting algorithms (regression equations)

4. Adapting & Adjusting

5. Scheduling

Changing the model as a function of changing

goalt (priorities) and major resource

allocation changes.

Generating a formulation which optimally

estimates the frequency one should use the

updating and refining (Function 2).

And how often one should attempt to

incorporate new variables into preexisting

algorithms (Function 3).
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Fig. 12. Categories and Functions of Dynhmic ProgrammAng Approaches.

74



Function 3. Incorporating new variables into pre-existing algorithms. This feature may be a result of
new money to look at old ideas, or new research findings, or new ideas from empirical data generated
by the system itself. Most typically, a new variable (e.g., a premeasure or a criterion test score) will be
included in the existing regression equation. Data compilation and analysis will then follow todetermine if the variable's inclusion can contribute to optimizing the achievement of present goals.
Unlike the updating algorithm stage, this stage is heuristic in nature and parallels the process ofsetting up an original algorithm:

Function 4. Changing the model as a function of changing goals (priorities) and major resourcea//ocations. If all possible ways that a student can go through an instructional block are considered aseries of pathways, then each vertex is a point at which a decision is to be made in assigning a student
to the next pathway. Each student will then follow a particular path (Le., series of pathways) througheach instructional block. What is suggested here is a change in the number of decision points as afunction of major changes in criterion performance levels, course content, resources (amount offunds, number of instructors, phasing out of equipment), and general level of competence ofstudents.

The repercussions of such major changes can be dichotomized in the following
as

(I)
disregard the model totally and begin again at Function I or (2) build the system so as to allow
shifting goal statements and permanent shifts in student and allocation variables. This second
approach is the only sensible, viable one for two reasons. First, any model which costs so much to
conceptualize and set in motion cannot be scrapped because of minor external fluctuations. In a
sense, the system must be externally dynamic as well as intrinsically responsive to the variables fed
regularly into the system. Second, optimization procedures can only be effective within a fairly stable
framework of goals. Dynamic programming approximates, over time, an optimal solution. Therefore,
if the stabilization of content and/or goals cannot be guaranteed or defined for an extended period,
attempting a dynamic programming solution to the adaptation of instruction (and the systems
approach itself) is probably a waste of time and money.

At this stage of conceptualization, it is difficult to forsee how the model can he expanded (as in
Function 3) or condensed by any other method except adding or subtracting one decison point (i.e.,
set of pathways) at a time and evaluating the consequent effects. One simple way to condense a
system would be to delete the least predictive variables and the least efficient pathways. Such a
process would be relatively straightforward if the formation of the pathway system was a step-wise,
iterative process. Because the cost in administering a scale and including a test or premeasure score in
a regression equation is small compared to developing and maintaining different types of media and
different difficulty and redundancy levels within a medium, many less efficient pathways would be
deleted before any predictive variables would be dropped from the regression equations.

Function 5. Generating a formulation which optimally estimates,c4 frequency that one should
update the beta weights (Function 2) and the frequency that one shoal attempt to incorporate new
variables into a pre-existing regression equation (Function 3). The need for the updating and the
incorporating functions will decrease as the model stabilizes (Le., stabilization of pathways, decision
points, and regression equations). This stability will conceivably be reached as the number of persons
going through the model increases and the number of combinations of new variables and ideas is
exhausted. The importance given to the role of this updating and incorporating schedule will for the
most part be decided in the formulation of the general system (Function I). However, its role is also
determined by Functions 2, 3, and 4, and the changing quantity of resources allocated specifically tothis function.

Structure of a Dynamic Programming Model

It will be remembered that Bellman's dynamic programming principle of optimal solutions to
problems emphasizes the interdependence of all decision points. The number , characteristics, and
interrelationships of the decision points is a direct function of the goals. As it appears now, a goal statement
will be composed of statements of desired mastery levels, of cost-effectiveness of each of the pathways, and
of system characteristics (resource and time constraints). The goal statement and the whole system must bein quantifiable terms.
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Until a training situation is identified and a goal statement specified, developing an optimal
prescription for the student is impossible. In practice, a goal statement can be developed, and a network of
contingencies built within those constraints and priorities. Building an optimal solution where there has
been no clear definition of goals must take into account every possible goals. At the present, that capability
is neither realistic nor desirable.

Implementation of Dynamic Programming Within an Established Functioning Program. Table 5 shows
the development of considerations to be employed In a dynamic programming approach to an existing
program in which goals have been clearly defined.

Implementation of Dynamic Programming Without an Established FUnctioning Program. Whereas
optimizing established variables and a stable program is conceptually possible, the task of optimizing and
developing a program (instructional course/unit) simultaneously given only the goal statements 4 not
presently possible. How many, decision points, what kind of variables, what are possible pathways, how do
each of these pathways relate to the decision points, what research should be examinedthese are too many
elements to analyze and optimize simultaneously. This can be contrasted with the Air Force training
programs and other established programs where the question is more one of finding the best algorithms at
each of the established decision points, with each of the available premeasures and criterion measures, and
with each of instructional alternatives known to be efficient v.

The only realistic approach at present is a simplistic, step-wise, iterative process; one in which
programs are first defined and implemented, and then optimization techniques are used as the system take
concrete form. There is a large difference between an optimal system and a system that has been optimized.
Until a thorough understanding of dynamic programming techniques is gained, the specification of an
optimal system in this setting is impossible.

The dynamic programming model is uniquely designed to (a) handle the monitoring of the system;
(b) follow each student as he traverses from each instructional unit to the next; and (c) interpret and
predict a student's progress at each decision point in terms of the previously chosen goal values. Figure 13 is
detailed flowchart of what student pathways and decision points may be included in an instructional course
unit.

As the student enters the task condition, his cumulative student profile is available (1. Student Profile
Bank). The task requirements, as initially determined by the task analysis, and requisite student skills,
determined from data of previous students, are matched with the data in this student's profile bank (2.
Basic Profile Requirements). If the student's profile is found lacking some prerequisites, the appropriate
remediation is administered (2A. Remedial). The student's success in this remedial program is evaluated
(2B. Evaluation), and this evaluative information is then used to update the student's profile bank. The task
requirements and the updated profile are then again compared. When the r p prop ria te match occurs, the
optimal instructional prescription (3. Instructional Prescription Algorithms) determines the appropriate
cost-effectiveandavailable instructional alternative (4. Available Cost Effective Instructional Alternatives).
The student is then given the training according to the prescribed instructional algorithm (5. Training). The
effects of this training are then evaluated (6. Evaluation). This evaluative information updates the student's
profile bank and provides feedback of the degree of success of the decisions that determined the initial
prerequisite behaviors (2. Basic Profile Requirements) and the subsequent instructional prescriptions (3.
Instructional Prescription Algorithm). Information from the evaluative stage also determines the
appropriate remediation algorithm (7. PostTraining Remediation), if needed. If criterion is met, the next
task in the sequence is assigned.

Payoffs

The purpose of dynamic programming is to optimize. Thus, any payoff expected from using dynamic
programming will be in terms of the goals that a program designer wishes to optimize and is able to specify
in quantifiable terms.

The dynamic programming payoff issue involves ( I) consideration of implementing a dynamic
programming model for a program (feasibility); and (2) the degree of commitment Available for investment,
and the amount and kinds of payoffs to be expected (maximization).
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TABLE 5.

Stages in the Development of an Optimization Solution
in a Preexisting Instructional-Course ait

1. Conceptual Stage

-including:

a. identification and enumeration of variables and levels

of these variables

b. selection of goals

2. Inferential Stage

-including

a. collection of subject data from (1) any previous research which

has included variables that appear in Stage 1; (2) courses

on other programs which have collected or are now collecting

data; and (3) pilot studies.

b. compilation and analysis of data

3. Representation and Equation State

-inclusion of those variables and those pathways

which have been moderately successful up to this point.

Optimization Stage

-optimization of those variables and pathways which

were included in Stage 3
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Being in a position to decide if dynamic programming is to be used requires a knowledge of what
payoffs are to be expected and what kinds and amount of inputs are necessary. It is suggested that a
profitable way to view this tradeoff is in terms of payoffs and inpiits at each categorical-functional level
(Table 4).

Issues and Conclusions

The obvious expenditure of effort and funds to implement dynamic programming techniques at any
level in the technical training system requires resolution of several issues before implementation can be
attempted. The issues cited in this section are not intended to include all those which influence the
applicability of dynamic programming to the adaptive instructional models, but rather are illustrative in
nature.

As dynamic programming is best utilized in a complex, multidecision process system, the length and
complexity of the instructional sequence will be an important factor in determining the feasibility of using
a dynamic programming model to adapt instruction. If it is discovered experimentally that prediction of
performance task on an instructional sequence is based on the scores of one pretest interacting with two
possible alternatives, dynamic programming would not be appropriate to control the assignment of
alternative instruction to students. However, if many student variables are found to interact with several
alternatives at several points in the instructional sequence, dynamic programming techniques may be
appropriate to optimize the decision process.

In addition, the-dew' of fine-grained adaptation necessary to produce significantly different results
in op timizing on certain prespecified goals will determine the extent of involvement in the
controllingidecision.making of instruction by dynamic programming processes. If the decision involves
choice of simple dichotomies, dynamic programming probably is not efficient in terms of effort and cost,
However, decisions based on variables, each having an underlying continuum, and producing varying degrees
of goal attainment, require techniques such as dynamic programming to optimize the decision-making
process.

A third issue that must be resolved prior to implementing a dynamic programming model is that of
the stability of subject matter within the instructional sequence. Dynamic programming processes require
iterative calculations of solutions to recursive equations based on data gathered over many students and,
therefore, over time. The data collected must be of the same kind; that is, from the same test items, same
instructional requirements, etc. Therefore, if the subject matter is still undergoing revision, data on which
optimization procedures is based would not be from a replicated instructional sequence.

A most important issue to be resolved prior to implementing dynamic programming is that of
quantifying all variables, including goals. As these optimization procedures require the solutions to sets of
recursive equations, all variables in the equations must be in the form of mathematical quantities. It is this
determination of a quantification scheme that initiates the ordering and assigning values to goals, which is
the basis for the solution of the optimization equations. Most other input variables will be in terms of a test
score, or some other easily quantifiable characteristic which will readily fit into the recursive equations for
solution.

Though other issues will be met, the last to be mentioned is that involving the updating of the
decision process. As this updating and revision requires the solution of recursive equations based on data
collected continually to provide decisions responsive to the system and personnel, the issue of how
frequer +ly and on what basis will the updating be processed should be faced. The inclusion of new variables
emerging from research versus the stability of the instructional decisions will have to be weighed and
appropriate guidelines developed. Issues regarding the cost of the solution of new equations, possible
changes in necessary resources, changing goals, changing constraints, etc. must be resolved, and provisions
for the accommodation of such changes built nto the decision-making system.
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Recommendations

The following recommendations are made:

Though the requirements of a dynamic programming model of adaptive instruction are
demanding, the benefits accuring from such a decision process appear to be great. The inclusion
or exclusion of variables are based on empirical data which then can be examined in the tight of
optimization of prespecified goals. Decisons in the form of prescriptions for instruction are also
based on optimization of goals. The administrators of the training system are assured of
decisions which will produce optimal results in student performance, system time, and overall
cost. Therefore, it is recommended that the AIS project develop a dynamic programming
model. This development will require extensive research and development efforts.
The development of the dynamic programming model should be phased as follows:

Initial system description

Single variable optimization studies

Multivariate optimization studies

The emergining of cost-effective criteria and decision processes with the evolved dynamic
programming model.

Each of the AIS course operations could profit from the application of a dynamic programming
model. This is especially the case for PME and Weapons Mechanics in that the model would
provide for optimal utilization of expensive high-fidelity simulators and trainers.

It is recommended that the dynamic programming model be both inclusive of other models and
focus on the optimal utilization of AF training resources.

VIII. NATURAL LANGUAGE MODELS

Natural Language Processing (NIP) research began in the early 1960's in an attempt to develop
computer systems which could carry on conversations with people and answer inquiries. As reviewed by
Pirotte (1971) and Simmons (1971), these efforts have been fairly successful within a constrained dialogue
environment. More recently, as reviewed in the following paragraphs, investigations have been made to
utilize NIP for training and counseling purposes. Table 6 provides characteristic examples of some possible
interactions between the student and system within an MS context.

Characteristics of the NIP Models

Several characteristics of NLP have become clear in the context of adaptive instruction. The first is
that NLP usage is inherently adaptive because the students' knowledge, mental processing, and language
capabilities must be 'modeled and taken into account in order to achieve an appropriate system response.
Second, the NLP task determines both what the student is expected to do and what he will do, since the
task characteristics are embedded in the conversational dialogue (e.g., a new definition or a new
interpretation are presented for both naturalness of dialogue and achievement of the task). Finally, the
interactive dialogue occurs within successive contingent language statements that clarify and focus the
mutual student-system understanding of and progress toward the training goal. Any adaptive model for
computerbased natural language interaction must, therefore, account for these three characteristics.

Semantic Memory Models. In order to allow for the characteristics of the students' knowledge and
their mental and language competencies, the NLP model to be presented is based upon the concept of
semantic memory that is, the model of meaning functions consisting of verbal representation of concepts,
properties, and relationships within an organized scheme. For example, given a taxonomic scheme such as
vehicles, the semantic organization within the system and human memory can be represted as stated in
Figure 14.
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TABLE 6.

NLP Dialogue Examples

c. Please state your name, course, and problem.
S. Wallace Mechner, weapons mechanic ccArse. I wanted to find out about

Wilat I can do after the course.
C. a you mean advancement in your Air Force career Wallace?
S. Yes, like more schools and changing to another field.
C. As you mdy know, the Air Force has one of the largest educational programs

in the world with vocational/technical training, and completion or
advancement in both high school and college. In addition many speciality
schools exist. If you have a particular area of study in mind we can
talk about it. Of course, much of what can be available to you depends
upon how well you do in your present assignment. I see by your course
records that you are progressing very well. Keep it up.

S. I enjoyed the basic electronics lessons and would like to get in that
area.

(C . computer and S = student)

C. Please state your name, course, and problem.
S. Irving Mannix, Inventory Management. I completed all of my work early

so far 4o have extra leave time but now I need money and want to know*
if I can change my request to get proficiency pay.

C. Well, as you may know from the orientation session not all sections
have leave time or proficiency pay as advantages for early completion
and the two are not directly interchangeable. However, it is not too
late to change your request. I can tell you how to do that if you ,

wish and we can discuss the proficiency pay scale too.
S. I want to discuss the pay scale.
C. O.K. The following blocks have pay incentives in addition to the

overall course time....

C. Please state your name, course, and problem.
S. Peter M. Elroy. Precison measuring equipment. I am having trouble

with the block on vacuum tubes.
C. I see that you have been successful up through the third unit in

that block but failed the tests on solid state circuits in unit 4.
Do you think you have had sufficient time to study for this?

S. Yes, but I still don't understand it.
C. How did you do on the workbook?
S. Most of the problems threw me and I had to ask others what they did.
C. By "threw me" do you mean you didn't understand the question or how

to arrive at the answer?
S. Yes.

C. Well, I would like you to take a little diagnostic examination. It

is defining terms and will help to pinpoint your problem more. Sign
on to OITES3 and them come back,to me.

81



vehicle

cars

jeep

. .

color

Blue Brown

Fig. 14. Semantic Memory Model.

The semantic relationship for the concepts (names of classes), the concept properties, and the
relationship between concepts is specified by this hierarchical organization, that is, it can be derived that all
cars are vehiclei, that Jeeps are blue or brown, and that Jeeps are cars. Given a setting where the purpose is
to instruct a student in this taxonomy, the interactive dialogue could be shaped in precisely this organized
way. After accomplishment of the terminal objectives, the student would likely have this material organized
within his memory in nearly identical structure. Therefore, the NLP system would be modeling the
student's memory structure and processes.

Operational Processes. The NLP model as implemented in the computer represents processes
essentially similar to a reader who is attempting to comprehend a passage or a listener who is interacting
with another human in a dyadic context. As the student inputs a verbal response (usually typed), the NIP
performs a pattern-operation transformation on the input (Simmons, 1970). The first step in the pattern
operation consists of searching for a given language pattern in the input. This leads to identification of key
words, phrases, or sentences (sentence decomposition processes). Parsing techniques may be employed.
Parsing is a syntactical analysis process by which the parts of speech are identified. When a key pattern is
found, a response generation process associated with the key pattern is invoked so that part of the input is
grammatically combined with a partially composed sentence so as to output the system's response sentence.

.4
To enhance the sophistication of NLP procedures, additional sentence decomposition elaborates

would be implemented. First, the pattern-matching routines can be guided by semantically controlled
parsing procedures. Secondly, the order of key words, phrases; and sentences matching can be structured by
the previously noted location in the model's semantic memory. This leads to hierarchical decomposition
analysis by semantically contingent processes that facilitate response recognition and speed.

Role of the NLP Models in AIS

NLP is an optimal technique for encouraging and eliciting verbal knowledge and judgment responses
from student'. For this reason, NLP is an excellent potential tool for evoking and evaluating complex
concepts, judgments, and critiques. These are especially useful in counseling applications, the primary NIP
application proposed for AIS.
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The five content areas of AIS counseling are (1) the incentive management process, (2) career
aspirations, (3) high frequency learning problems with solutions, (4) student critiques of instruction; and
(5) special motivational training. Counseling within the incentive management process may consist of
dialogues about interpretations and implications of incentive schedules as previously presented by narrative
materials describing the incentive programs in each course. Career counseling may be provided on an
interactive basis whereby the student queries a data base (semantic memory) which will respond with career
ladders; for example, a student's future in the Air Force can be handled in this manner. As high-frequency
learning problems are identified within each of the courses, the student can be given an opportunity for
natttral language dialogue concerning the nature of the problem and potential solutions found successful
with other students. In addition to the usual student critique rating forms, a natural language dialogue
concerning the student's perceptions of the strengths and weaknesses of various aspects of the course could
be collected systematically within these NLP counseling sessions. Studentgenerated comments on both the
courses and his training experience at Lowry Air Force Base could be collected in this manner. Finally, for
those students in need of special motivational training (e.g., need achievement training), the couseling time
can be utilized for the presentation and interaction of special motivational training materials.

AIS Payoff

By handling, the counseling process by computer and on an as-desired basis for each student, one may
expect that not only the usual initial orientation for such areas as career and incentive counseling may be
shortened or deleted, but also that resource people (instructors) may be less burdened with standard,
repetitive discussions with each student.

As .a second area of payoff for the AIS, each student will have immediate access to a resource for
solving problems. They will not have to rely on peers, or wait until instructors or Air Force documents
become available. This will result in a third payoff in that it can be anticipated that students will be less
likely to experience mounting interference in learning caused by unresolved counseling needs. Students
often spend unwarranted time thinking about such problems until their resolution.

A fourth area of payoff to the students would be the enhanced problem-solving and information
acquisition due to informal characteristics supported by the use of natural language. These characteristics
'reduce the formal and semiartificial setting for the counseling sessions which would be necessitated by a
standard techniques. The "natural" approach not only allows for faster, more efficient problemsolving and
information acquisition, but it also provides for reduction in the restraints found in traditional counseling
situations. Smith (1963), Evans and MWer (11969), and Cogswell and Estavan (1965) have found thatmore
candor and honesty were evident in computer-based comment acquisition systems than in personal
interviews. Therefore, NIP approaches to counseling and associated dialogue requirements have high payoff
potential.

Review of the Literature

Attempts to develop NLP systems for educational use began in the late 1960's (Simmons, 1968;
Feurzig, 1969; Taylor, 1968; Tiedeman, 1968; & Carbonel, 1970). Most of the efforts in this area focused
upon the problem of general analysis of language to determine intent and meaning; Le., to develop a
computational model of verbal understanding. However, as work progressed in instruction, testing, and
counseling, the student and the system were dependent on the objectives and strategies of the task. All
factors important to the success of the NA LP systems in an educational setting had to be integrated into
the system itself.

More specifically, the emerging research problems became the following:

How can an educator input to an NIP system the specification of decisionmaking for strategies
and content of conversation when the student is convey ing with freely constructed language?

How can the student's characteristic be taken into a' "unt so that his verbal replies may be
properly analyzed and responeded to fully?

How can the educa'or control the conversational flow on some systematic basis and evaluate
the interaction for its effect'according to educational objectives?
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The literature review is intended to show how the use of a semantic memory as on NLP data can be
utilized to address these three problem areas, After a discussion of current projects, the review turns to the
empirical and conceptional basis for a semantically based NLP model. This includes the research on
semantic information processing, hierarchical organization of Memory in both people and computers, the
concept of subject matter maps as related to semantic models of memory, the use of student maps of
memory, and the student expectancies in a natural language dialogue. All of these allow derivation of a
model which allows specification and rationale for the NLP adaptive model.

NIA Three current projects are discussed in this section which are considered to represent the best
approaches at the present time. The first of these is a system called Protosynthex III. This project was
begun at System Development Corporation, and it is being develloped further at the University of Texas by
R. F. Simmons (Simmons, 1970; Simmons & Burger, 1970). This effort is representative of the other two
efforts to be discussed in that it depends upon a semantic network for its capability to converse, in
Protosynthex Ill, this network is used to generate semantic equivalents to student inputs. The tutorial
decison model for Protosynthex Ill has a correct answer to a question in its data base, which has been
formulated by an educator to contain only the necessary and sufficient information to answer the question.
This answer is called the Canonical Answer (CA). The Student Response (SR) is taken by the language
processor and checked for semantic equivalence to the CA. This process allows for determination of exact
sufficiency, excess detail, insufficient information in the answer, and correctness of the answer. The exact
model consist of a 5 X 4 matrix in which one axis describes the degree to which a student's answer
semantically matches exactly, partially, overly, not at all, or incorrectly, the answer in the data base. The
other axis describes correctness, relevance, feedback type; and the decision pertaining to the answer. Given
a case on the first axis, one may derive the proper information for the second axis. For example, a student
who ansers with totally incorrect information may be considered incorrect and irrelevant and given negative
feedback with a remedial response. Thus, the tutorial decision allows for system responses to conform to
the correctness and relevance of the student response.

A second project, SCHOLAR, has been implemented at Bolt, Beranek and Newman, Inc, based upon
work of Jaime R. Carbonell (1970). SCHOLAR also uses a semantic information netework as its data base.
In a directed graph tree structure, the information units point to other subsuming facts, properties, and
relationships. The resulting hierarchy can be searched both in terms of meaning matching and relevancy by
consideration of the depth of search; that is, if a student is asked a question, it is reasonable to anticipate
his answer as Simmons has suggested for Protosynthex III. If, however, students are allowed to ask
questions, as in SCHOLAR' the relevant responses to their questions must be anticipated by rules which
state the relevant level of search in the semantic tree, This is one of the most important problem areas for
SCHOLAR. Another way of stating the problem is, "what is relevant as well as correct information for
responding to a studen's query?" For example, if a student in the MS context asked about incentives for
early completion of the Inventory Management course, it would be helpful.to respond with "added leave,"
but not with "promotion," White promotion may be part of the incentive system, it would not necessarily
be su :ested for early completion of the cows. Therefore, it would be inappropriate as well as irrelevant to
the query. The decison-making for SCHOLAR proceeds on the basis of weighted and arbitrary rules
constrained by context rules, These context rules provide the order and string size utilized in the
decomportsition process.

The final project to be discussed is being developed at Florida State University. Recognizing the
problems of decision rules for relevancy and content, FSU staff members have been working to implement
a systematic method by which educational objectives could be formulated for NLP, and conversation flows
could be controlled and prespecified by strategies of the course instructor. This effort has been based upon
the work of Quillian (1967) and the current research concepts of human hierarchical memory organization.
Basically, the technique requires one to specify an expected hierarchical organization of some subject
matter through which a student may proceed level by-level, in level increments, and in ascending or
descending order. By task analyzing the subject matter in terms of art expected memory organization, one
hopefully will be able 1,0 structure the data base so as to restrict irrelevancies and incorrectness of the
dialogue. Thus, this is basically a systems analytic approach with a task analysis of expected memory
organization.



Finally, while not, based on semantic networks concepts, one of the most appropriate NLP projects is
the Information System for Vocational Decisions (ISVD) which is a computerbased system for providing
career guidance. The project is a product of several members of the Harvard Graduate School of Education
(Tiedeman, 1968; Ellis & Tiedeman, 1968). One of the goals of the project was to allow an inquirer to
make career decisions by obtaining vocational information from the data base. The inquiry was to be in the
inquirer's natural language since this reflected his internal world (Ellis, Pincus, & Yee, 1968). In 1969, the
1SVD project added an additional dimension in that the system was to be studied for explicit instructional
usage (Roman, 1969).

Semantic Networks and the Organization of Student and System Memory. Semantic networks were
introduced as a basis for NLP by Quinlan (1966, 1967, 1969). A semantic network is essentially a data base
of facts, concepts, and relationships which, by its hierarchical structure, defines and gives meaning to words
in terms of other words. Quiliian uses the analogy ofa dictionary in which definitions contain words which,
in turn, may be looked up to further delineate meaning. This process may continue until all words are
accounted for in terms of other words, resulting in a hierarchy of concepts, properties, and relationships.
Quillian considers such a model of meaning as useful not'only in an NLP setting, but also as a model of
human memory. Collins and Quillian (1969) have, in fact, tested some of the assumptions of the
hierarchical nature of the model and found them to apply to humans in a retrieval task,

Mandler (1967, 1968) has also addressed the organization of human memory in terms of a
hierarchical scheme. On the basis of Miller's (1956) concept of chunking, /dandier has concluded that
people organize information classes in sizes of 5 ± 2 information units. Because of thelimits on intake of
information, people must chunk or reclassify; when too much information is available for input, subclasses
or new chunks must be generated. This allows the following three principles to be stated:

(1) Organization is a necessary condition for memory;

(2) The organization of verbal material is hierarchical; and

(3) The storage capacity within any given category is limited, thus necessitating subcategories
which are also limited.

Mandler's studies have generated a great deal of research on how people organize verbal memory.
Wortman and Greeberg (1971) further investigated verbal memory by looking at the recoiling process
performed by a student wren given a specified organizational scheme, They found that a student must (1)
perceive the specified organization of categories, (2) chunk within superordinate categories, and (3)
establish the hierarchical relationships between superordinate and subordinate categories. This actually
specifies the components of the organizatiOn process suggested by Mandler.

One of the issues discussed by Mandler is of particular importance for the context of the adaptive
NLP model, namely, a specific organization which is helpful or hindering to a student. Mandler suggested
two strategies for organizations: a priori experimenter structures as opposed to subjective organization. A
student's subjective organized memory seems vastly superior. Bower (1969, 1970) has suggested a similar
process in order to retrieve information from memory. Information may not be retrieved unless so
organized. Given the storage limits on categories, Wood (1971) has investigated the effect of forcing
reorganization of memory information units and found significant negative effects when forcing two or
more category reorganizations. Therefore, the NLP model should allow for individual organizational entries
of categories and relationships while maintaining the necessary and sufficient relations among concepts 29
viewed from training objectives.

Subject Matter Maps as Semantic Networks. Seidel (1969, p.3) has suggested that the subject matter
for any instructional use must be organized in a manner which will provide "the decision model with a basis
for deciding which factor, principles, or procedures are built on which other facts, principles, or procedures,
what interrelationships exist among them, and which topics may be presented before or after which other
ones." Seidel suggests that, without such a map, an instructional decison model cannot tell where it should
start, what the next step may be, and how to arrive at a terminal point. This concept of a subject matter
map is conceptually equivalent to an expected student memory network. The decision model would consist
of the rules for interaction between the subject map and student. Thus, the NIP model should consist of
both a subject matter map based on memory organization adn the rules of interaction for the map.

4t
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Student Maps for Semantic Networks it is o .1ous from the previous discussion that any form of
NIP interaction is dependent upon the student org,r,ization of memory. This necessitates the recognition
of a student classification and organization scheme. student map and a description of the instructional
flow during student interaction with the system rnoy .)e used to highlight the similarities and differences
between the student's organizational structure ano :hatdesigned into the instructional program. This
includes noting the lack of organization and absenct of information within the student's memory. Schank
(1971) has suggested that people Interact in an NU' or human conversational setting on the basis of several
modes of expected context, ranging from societal norms to individual preferences. While Schrank's
expectation classifications are not particularly operational, they do point out that a student map of
interactive flow must take into atc0' different possible contexts or orientations of the student which
mediate and determine the memory organization. The student map is that operational part of the model
which provides for context and meanitt?.

Counseling Expectancies. Eli., and Tiedeman (1968) in the ISVD project have suggested that
expectancies for students in a vociticoal counse;int, setting are based upon the early states of the
decision-making process. This concerns the need to acqtrire information with which to clarify choices and
to plan for alternatives. During this period, a student must relate the information to personal attitudes and
feelings. This may be considered Schank's expectancy, and relates to a student map in that a given flow
through an NLP interaction should provide a picture of the student's exploratory state and direction. In
this early state, the decision rules model must use the student map to determine the information needed by
the student.

The Counseling Process

As viewed here the counseling process consists of,the task characteristics, the decisions, and the
information-processing a student may utilize.

Task Characteristics. Tasks in a counseling situation are seen to have.two basicl characteristics. The
first is that of information dissemination. That is, given that a st dent is looking for incentives or career
possibilities, he must be given information regarding career choice and their contingencies. Incentive and
,career counseling are seen as being more directly dependent on in ormation dissemination than the other
forms of counseling discussed previously. The second mode consists of motivational presentation of an
intrinsic nature that will affect the basic drive processes of the student (e.g., need achievement training).
The information for these two types of counseling modes should be relatively more organized and
complete. Further, the subject matter has an inherent organization, both hierarchical and categorical, which
lends itself rather well to subject matter mapping.

Counseling for motivation and learning problems, on the other hand, may be more a matter of
memory reorganization and coherence than pure dissemination. While information is being presented, the
dialogue engenders motivational and learning problem conflicts with the idealized learner as represented in
the program. Thus, memory reorganization is undoubtedly critical. The student mapping and decision rules
must reflect this expectancy on the part of the student. That is, the interaction will occur in the presence of
a conflicting predisposition within the student.

DecisionWhat and How to Pre:ent. llman (1971) in investigating interviewing techniques, has
identified two basic types of decisions which re useful in the NLP context. The first of these is a onestage
process in which decisions are made on the b is of only the previous information unit. The more typical
decision process is a multistage process in whit a sequence of decisions over time or contextual sequences
are involved. Time is seen as the prime parameter.

The initial interaction and much of the information dissemination in the counseling process are
viewed here as requiring onestage decisions. For motivational and learningproblem tasks, multilevel
decisions would involve the model's decision rules which associate a student map with an information unit
in the content map. Further, the multistage process is essentially iterative and requires continuous
adaptability over time in terms of student map. It is in the consideration of a multistage decision process
using rules which associate student maps with content maps that the NLP model becomes cybernetic.
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NLP Model Structure and Variables

Figure 15 provides a schematic representation of the proposed model. Processes I and 2 represent the
activittes which are part of the instructional systems analysis for NLP as used by the Florida State
University project, described earlier. The result is a subject content map organized as a semantic network
(Process 3) which is related to educational objectives. This network is the basic content for presentation to
the student such that the student may interact meaningfully (Process 4). After eliciting a student response,
it must be analyzed to determine word and phrase classes (Process 5). This is done in order to allow
determination of semantic equivalance and may necessitate use of the semantic network. No actual
correctness, relevance, or meaning is attached to the response at this point. It is through Process 6 that
these determinations are made by the set of decision rules. The rules model also check prior history from
the student map (Process 7) and chooses the next presentation according to the semantic network. At the
same time, the student map is updated.

This is the structure of the model. The three main determiners of the model are Processes 3, 6, and 7;
subject content map, decision rules and student map, respectively. It is within these three general classes
that variables may be derived.

Given the nature of the content maps, student maps, and the counseling process as discussed in the
previous paragraph, the design variables for the model can be identified as content, student, and
decisionoriented group clusters.

Cokent. The organization of subject content maps must be based on the task. Three prime sources
dictating Organization exist. First available materials which may be utilized by students prior to NLP
interaction Aitbave an existing organization and must be considered. Second, the emphasis on information
units by the educational institution should be reflected in the defined objectives that effect the NIP
organization (for the AIS, this is the ATC and Air Force, in general). Finally, the expectancies and
predispositions of students must be utilized in order to optimally organize content.

These, along with the actual subject content, may be combined in an analysis according to
hierarchical organization by concepts, properties, and interrelationships. These are the input variables with
the output variables being the content map.

Student. The student map generation differs from the content map in that it is developed during the
interaction whereas the content map is developed prior to interaction. The student map acquires data on
each student's flow through the content map. Information must be acquired during this flow which
includes the following: the network modes passed through, the next mode chosen, the noting of missing or
incorrect information units for the student, and the noting of inappropriate student organization according
to an objective. The student map thus provides the data for multistage decisions.

Map Flowa, The counseling process includes all of the decision rules which must be included in the
model to relate student maps to content maps. The one-level decisions need only note the student map for
the immediately preceding event. The multilevel decisions must be based on rules noting more ofthe
student's map. The actual decisions made and the strategies used are a function of the objectives, the
content, and the students. For example, if a student incorrectly responds to a question concerning the
relationship of two concepts but has correctly used the concept names previously, it would be desirable to
establish that relationship for the student as the next step. lf, however, the student has not gone through a
flow which required the correct naming of one or more of the concepts or their properties, these must be
the next steps according to the hierarchical organization principles.

Recommendations

Three areas of recommendations may be noted. These are relationship of the model to NLP systems,
training for use, and validation. In order to implement such a system, the following three items must be
considered:

Model Relationship to NLP Systems. The model has been developed "1,,,t e consideration that
it would be desirable to embed it within current or future NLP sy s. This goal has been
achieved to the extent that the model may be implemented within any NLP system regardless
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of the techniques used in response analysis. Any given NIP system is represented in Figure 14
by Process 5, response analysis. Two major orientations are used currently in response analysis
for NLPsyntactic and semantic analysis. The present trend favors a semantic analysis
approach, although a few years ago, pure syntactic analysis was considered of prime
importance. In fact, some current researchers are of the opinion that semantic analysis is both
necessary and sufficient (Hays, 1967; Qui Man, 1967). If syntactic analysis is utlized, the result
of the analysis is fed directly to the decision rules processor. If semantic analysis is utilized, the
semantic network should be embedded in the larger semantic data base, and the decision rules
may then receive the results of the semantic analysis. Thus, the semantic analyzer would use the
content map directly.

The authoring of NIP dialogues has not been sufficiently recognized as a problem tri,the
literature. It is nevertheless a problem directly relating to the specification and evaluation of
NIP dialogues. The systematic approach of content mapping discussed earlier is an attempt
toward solution of this problem, Any educational implementation of NLP on more than a
research scale should provide training in this systematic approach.

A related problem is the validation of the dialogue system. Several possibilities have been
suggested as a result of the work done at FRI. The first is to follow a standard systems
approach relating instructional objectives to test questions, and, through the hierarchical
content map, to categories or levels of the hierarchy. A pretest/posttest procedure would
probably suffice for data collection. The second possibility is to use a sorting or categorization
task as the testing situation within the same system approach. This would provide needed
information concerning memory organization.

In respect to the AIS courses, it is recommended that the NIP model be implemented and
evaluated, especially in the student evaluation and counseling requirements.

IX. AUTOMATA MODELS FOR ADAPTIVE INSTRUCTION

Characteristics of the Model

The type of model described in this section introduces a theoretical orientation for describing and
predicting the states of learners. This theory is not new, but, to date, it has been used primarily in
disciplines other than the behavioral sciences. Specifically, it has been used in computer science and
engineering to study the behavior of complex machine systems. The approach to be described is called
Automata Theory. The conceptual basis of the theory allows its application to the study of human
"systems."

The word "systems" is crucial to the theory. Automata theory is an approach to the modeling of
systems. It is part of a larger theory of systems and is distinguished by its logical and mathematical
approach to the definition of systems. A detailed discussion of this basis for defining system parameters
shall be provided tater. Some of the models thus generated which may have relevance for training will also
be discussed. In this section, only a brief characterization of this body of knowledge, is developed.

The basic assumption of general systems theory; as applied in the engineering professions, is that any
physical device can be represented functionally in terms of relations between three types of variables which
describe input, output, and the state of the device. This is the general paradigm for a system as illustrated in
Figure 16.

Input
Device
State Output

Fig. 16. General. Paradigm for a System.
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The hope seen for adaptive modeling utilizing automata models is for the development of a technique
that is sufficient to handle the many complex tasks which elude current instructional models. Automata
theory, with its core requirement of state representations, lends itself reasonably well to such tasks.
Consider, for example, the task of electronic troubleshooting. This capability is paramount for good
electronic technicians and required in many technical courses and jobs In the Air Force environment. The
criteria for what makes a good troubleshooter are elusive. That is, it is difficult to task analyze the situation
to specify instructional objectives because the problemsolving sequences' are not readily analyzed in terms
of performance. One could, however, analyze the task in terms of possible problemsolving states by which
a troubleshooter may be viewed. The representation of such states is, of course, the most difficult probleth
for automata theory and is discussed further in later sections. The Important point to be made here is that
the state analysis may make a representation of complex behavior more feasible than is currently possible.
If the representation is realized, automata models provide a powerful tool for prediction within an adaptive
system.

The possible role of Automata Models in the MS is suggested in the preceding paragraph. It is a
futuristic role since much work remains to be done i:-. the area of state representation before an
operationalism can be realized. However, given the importance of complex behaviors in many critical jobs
in the Air Force environment, the possibility of a more systematic tool to provide more people with the
required capability (less failures, less mediocrity, less training time, and, therefore, more on-the-job time) is
worth striving toward. In this regard, the payoff is possibly high, although a quantative payoff level cannot
be presently ascertained.

Literature Review

Simon (1969) has recently stated the proposition that not only can man be conceptualized as a
system, but that: "A man, viewed as a behaving system, is quite simple. The apparent complexity of his
behavior over time is largely a reflection of the complexity of the environment in which he finds himself,"
Simon suggest the example of an ant who, while traveling from one point to another, appears to follow a
complex path. However, this seemingly complex behavior is not so much a function of the complexity of
the ant as it is of the complexity of the environment through which the ant must travel. It is suggested that
the ant actually is operating with very few rules as it detours around hills and follows gullies. Just as a
complex machine maybe described in terms of functional components and performance characteristics, so
may man. It is possible to identify such functional components as memory, perception (Simon, 1967a), or
emotional control of information processes (Simon, 1967b). This is a way in which to characterize human
systems for use in an Automata Model. It is the characterization of systems and their device states that is
important to automata theory. This literature, review is thus oriented toward schemes of system
characterization which may be fruitful for training systems.

Background. A naive definition of an automaton might be that it is any, object which appears to be
self-acting. However, this definition should only be used impressionistically. An automaton, according to,
formal automata theory, is defined by a rigid logic to be discussed shortly.

Formal automata theory was begun in the late 1940's by a mathematician who noticed similarities
between the behaviors and structures of men and machines. John Von Neumann (1959, 1966) over a period
of several years developed a theory which he felt could model both types of systems. The basic paradigm
for automata theory is the system as described earlier and represented in Figure 16. The processing
mechanism between input and output is assumed to be composed of storage and combinatorial logic
elements. However, the actual physical structure is unknown, and the prime interest is in the.properties of
the system and the manner in which it processes information.

Because the system is assumed to have storage elements, the current output depends upon the history
of the system. Both input and output may be represented as a sequence of symbols. The system remembers
both part of the history of the inputs and responses; this history describes the current state of the system at
any given observation. Thus, given the current input and state, of, the system, the output should be able to
be predicted when the system is adequately described because ttie output depends on only these two
factors.
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Booth (1967) has characterized the critical problems of automata theory as falling In two categories.
The first is that of system characterization. That is, given a system, the characteristics that determine the
system's overall behavior must be defined. Depending upon this characterization, any of the two dozen or
so currently defined Automaton Models may be chosen. The second problem is that of signal
characterization. That is, the information contained in the signal must be prescribed by some relevant
combination of the signal properties. Most of the review to folio* is concerned with two primary
orientations which are currently used to characterize automata within the behavioral sciencesSR theory
and information processing theory. In order to fully understand these theories in terms of automata
modeling, a brief discussion of formal auomath theory is necessary. Throughout the following text, the
basic theme is to suggest appropriate ways of system and signal characterization.

Automata Mathematical Basis. Although Von Neumann did not define the mathematical basis of
automata, others have continued toward this end (Arbib, 1964, 1968). The mathematics of automata has
taken the form of one of the newer areas in mathematics, That of abstract algebra. This algebra is based on
set theoretical notions. One first defines the sets of elements (for instance input and output symbols) to be
described. Given the set, the next step is to identify the logically acceptable operations and types of
elements for that set. Depending upon the number and types of acceptable operations and the types of
elements within the set, one may then identify an appropriate algebraic system which has been defined for
that universe of sets. In this manner, the modeling proceeds according to the logic of set theory to the
mathematics of abstract algebra. Figure 17 shows the hierarchical progression of algebraic systems which
may be used corresponding to different types of sets. Most work in automata theory at present seems to be
done at the level of the semigroup; A semigroup has only one operation defined on a set.

As an example, let us discuss an automata which may besparticular application in modeling human
behavior, the pushdown store. A good analogy to the pushdown store (l-loperoft & Ullman, 1969) is the
stack of plates on a spring often seen in cafeterias. The spring below the plates has just enough strength so
that only one plate appears above the level ofthe counter. When the top plate is removed, the next dish
pops up. If a plate is placed on the top or the stack, the rest of the plates are pushed down. In the same
manner, the pushdown-store is conceptualized to work with symbols within a system. Symbols may be
considered to be on a list. Only symbols at the top of the list may be removed, and symbols to be placed on
the list must be entered at the top. When a symbol is entered, the other symbols on the list are pushed
down. If the desired symbol to be accessed is, for example, the thifd down on the list, the first t*o symbols
of the list must be removed. They are popped off the list to retrieve the desired symbol.

More formally, the pushdown automaton is conceptualized as in Figure 18. It consists of an Input
tape of symbols which pass a read-only head in a sequential manner. There is also an output tape with a
writeonly head also operating sequentially. Connected to the processor ofthe system is a memory unit
which is a pushdown store. Algebraically this system is a semigroup.

Several variations of the pushdown since may be noted. This type of automaton may be a transducer
or acceptor. When used as an acceptor, (the input changes the state but generates no output), the
automaton may be used in the study of languages. A pushdown transducer (the input is changed by the
state to generate an output) used to study memory is described later in this report. The pusdown
automaton may be deterministic ors nondeterministic. A nondeterministic model is one which allows more
than one output symbol for a giv9fi input symbol.

Let us further use the stack of plates to characterize the operation of the pushdown store. Suppose
the plates are of different colors, say, red and blue. The system may be defined to have rules which
stipulate that if a rep( plate is input and the system is in state q', then add a blue plate to the output to
change the state to q`; if the system is already in state q2, it may remain in that state. Similar types of rules
may be defined for other possible situations for variations of input and state combin ations. In this way, the
system operation has been characterized insuch a way that the output for a given string of input symbols
maybe predicted.

The next such section describes the actual use of a pushdown automaton model for psychological
processes.
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Information Processing Characterization of Automata

The General Problem Solver (GPS) (Shaw, Simon, Newell & Ellis, 1958) represents a prototype of an
information-processing representation of automata. While the model can be considred an automata in the
Von Neumann sense of the word, it does not utilize the formal automata theory mathematics. It is
discussed here in the context of automata characteristics and the representation problem.

The overall goal for GPS is development of a computer program of human problem-solving that is
capable of working with a variety of problems. Generality is the major goal of GPS with the index of
generality being the number of solvable problem types. Some of the types of problems successfully handled
thus far include sentence parsing, calculus problems, and verbal problems. The kinds of problems attempted
are simple by human standards, but they do require intellectual effort of more than a simplistic domain.

The problem-solving techniques of the GSP are based on the concept of purposive behavior, a concept
much discussed by Von Neumann as an automata characteristic. The GPS problem-solving techniques are
organized by goals. By this, one means that the main function of the proving-solving techniques is to
achieve the problem solution or goals. to do this, subgoals are generated in order to reach main goals. A goal
is defined in the GPS program as a data structure that provides sufficient information to carry out
problem-solving activities, i.e., a goal defines a desired state of affairs, the current situation, and a history of
previous attempts to achieve the goal. GPS has four types of goal routines currently, and the necessity for
other types of goal routines has not arisen. These four types of goal routines are as follows: (1) Transform
Object A into Object B, (2) Reduce difference between Object B and Object A, (3) Apply solution operator
to Object A, and (4) Select the elements of set 5 which best fulfill a criterion C.

For each of these' goals, methods are generated to obtain the goal. The methods for a given goal are
represented via a tree-structured list as shown in Figure 19. This tree is called a "discrimination net"
because of contingent-sorting capability. The terminal nodes of the tree are the methods for a goal. The
solution selection is performed by discriminating, first at the top node, and then at each node in turn until
arriving at a matching node. The learning process in GPS is the growth of these tree structures.

Just as methods for goal routines are represented by trees, the representation ofa real object or a
concept is also in terms of trees. An object or concept may be any unit in the problem domain which we
wish to utilize (i.e., an information unit). The major process of GPS in its attempt to solve problems is tree
searching, which is a process of sequentially checking for distinctive feature matches that route an object to
its image equivalent. GPS searches for goals, it searches for methods to reach those goals, and it accesses
information units by tree searching.
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GPS uses a general technique called "means-ends analysis" to guide the search through the trees.
Means-ends analysis involves subdividing the problem into eLsier subproblems. It Is accomplished by taking
differences between what is given and what is desired, Le., between two objects or between an object and a
class of objects, or more concretely, the separating of a mathematical problem into simpler addition or
multiplication problems. Thus, it is possible to see that the four subgoal routines mentioned are an integral
part of the means-ends analysis and the treesearching process.

One of the critical questions surrounding GPS and other computer models of problem solvers is the
question of memory. Since objects, methods, and goals are all represented by a tree. uctured list in GPS,
essential memory structure and process are represented by tree structures and processes. The link froth one
node of a tree to another node is never broken in GPS, La, the memory is perfect. For example, all node
images can be listed, sorted, or restructured without loss. But human thinking is surprisingly interruptable.
These interruptions affect memory in various ways. Input to memory may be disrupted or intermittent in
nature (similar to interruptions while reading a novel). Using list structure techniques or stochastic
principles (Suppes, 1969), representations oflobjects in human memory as a treestructured list can look
like a tree with many broken limbs. Thus, GPS offers the potential to represent complex memory processes
associated with reading comprehension.

The role of personality processes can also be incorporated with the GPS model (Simon, 1967a or
1967b). Simply, personality processes are conceptualized as interrupt commands that switch the GPS
processor to personality subroutines.

Robert Shaw (1968) has suggested an Automaton Model of the human memory system based on the
pushdown store. While model is fairly specific to a particular task, it is suggestive of the possible use of
automata theory in technical training. Taking into account consistent evidence for performance
characteristics which seem to suggest a short- and long-term memory, Shaw proposed a memory system
based on two pushdown store transducers illustrated in Figure 20. Each pushdown store represents a
functional component of memory. The short-term store (STS) is a pushdown store which accepts inputs
from a perceptual system (PS) and places them in its working memory. However, the STS has no control
over the working pushdown memory other than the placing of items on the list. It is the long-term store
(LTS) 'Which hit the tiatsfei-catra or mat' bilWaiithf 15 atlidoN141 list of STS and LTS: It 19atso the LTS 7
which transfers information back to STS. Only through STS can output be generated to the motor system
(MS).

The task this model was to account for is the learning of an aperiodk sequence of symbols. For
example, a group of subjects might receive a string 6f five R symbols followed by five G symbols. The
subjects were to anticipate the next symbol and, when a criterion of two blocks (in this example S R's and
G's make a block) was' successively anticipated by the S, and a new block consisting of, for example, seven
R's followed by seven G's, was presented to criterion. Several variations on this task were used (including
string-ending markers), but they are not discussed here.

Shaw defined 48 rules which characterized the system by predicting output based on the input
symbol and the current state of the system (the top of the pushdown store and items below, or the
history). In this way he was able to determine which rules Ss used during the task and which ones were not
used. Further, the current state of S could always be predicted after the first symbol presentation and
knowling the next input could be predicted. Through the various task variations, Shaw found good
agreement between the model predictions and the observed data.

Automata Characterization with StimulusResponses Paradigms

Suppes (1969) has recently attempted to demonstrate that stimulus-response models of behaviorcan
be expressed as automata. The implications of the theorem have been discussed by Suppes for language
learning and the learning of arithmetic algorithms.

The basis for Suppes' theorem is to show, by utilizing principles of conditioning, how a person may
be tautNt with an appropriate reinforcement schedule to respond as an automaton. Suppes points out that
one of the major problems initially was to characterize the internal states of the automaton. First attempts
centered around identifying states of the automaton with the conditioning state of the organism. This
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approach was abandoned because each conditioning state required a corresponding, different automaton.
The correspondence that was finally chosen was to identify the responses of the person with the internal
states. Responses be finitely classed and handled as an automata parameter. In effect, internal states
and output are welded into the single component of internal state.

' Norman Wexler (1970) has continued the automata work at Stanford in language modeling. Wexler
studied learning of the Japanese language based upon an Automaton Model. The specific model used
differed from a stock automata requiring no capability to erase memory. Instead, a transducer automata
was used which simply generated an output sequence from input and state without relating input to
memory. Only one element in memory was required at any given time as opposed to the total memory of a
pushdown store. Experiments were run with this model for determining learning sequence of rules.

Offir (1971) has also investigated Automata Models at Stanford as part of a set of models of
individual differences in learning and performance. He particularly was interested in the scheduling of blocks
and items adaptively, -Although not directly applicable, his discussion does present relevant questions about
adapting mathematical models in general to individual differences.-

Recommendations

The following recommendations are made for automata models in AIS:

It would be premature at this stage in the development of automata modeling to focus on a
particular model with its parameters for an application to AIS. Delay is suggested due to the
theoretical and ,mathematical structure of Automata theory as well as the problem of
representation of states and sequence symbols as discussed earlier.' Therefore, it is
recommended that this class of model be identified as a basic research element in AIS and not
become an operational procedure.

This section has attempted to describe two approaches to representation-infomiation proassing
and stimulus-response. Although both of these appear promising, they lack sufficient validation
to allow a firm prediction concerning their value to MS. It should, perhaps, be reiterated that
what might be gained from these Automata Models is the inclusion of complex human behavior
into the adaptive system operations of the MS. Many models are capable of being used to
handle complex behavior at a grosslevel, but few can even attempt an "in-prOcess" modeling. It
is, therefore, recommended that basic research finding in automata be monitored so as to
identify any models that may prove useful in MS during its development.

Given the conceptual and performance complexities found in the training tasks of the three MS
courses, Automata Models would be potentially appropriate for each of them. Automata
Models might be especially useful for the marginal or semiliterate student, since his learning
problems and processes could be represented in fine-grained detail and precise remediation
applied. It is therefore recommended that Automata Models be investigated for their
application for marginal and semiliterate students.
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X. SUMMARY AND CONCLUSIONS

Thoughtful assessment of the "state-of-the-art" and current needs of Adaptive Instructional Models
reveals the requirement for planning, conceptualizing, and operatIonalizing efforts, rather than for merely
applied engineering efforts. These needs appear to be best met by a multifaceted research and development
program. The process of this Research and Development program must parallel the process reflected in-the
AIM literature search. Accordingly, the first step after this report is prepared is to simulate several of the
models described In this document. These simulations will serve to (1) solidify and make operational the
concepts and the models, (2) suggest the proper use and ranges of model parameters, and (3) provide the
first look at the MS Adaptive Model data bars and its operation. Once AIM's are implemented within the
AIS, the models will continue to evolve and change, given evaluative feedback. This evolutionary process
must allow for reassessment of current model parameters, the updating of these parameter values, and the
introduction of new processes and parameters.

The general conclusions of this report consist of two parts. The first concerns the operational
conceptualization of AIM's in Sections 11 through V, which could be sufficiently defined to be
implemented in a real system, namely, AIS. Much of the learning model literature ha' been concerned with
speculative models which have never been implemented and probably never will be, One should recognize
that, for the AIS, AIM must not only be implemented, but is the crucial coOrdinator of the training system.

The second area of findings concerns a mapping of a domain by which varying models described in
this report, and those that may develop In the, future from new ideas and techniques, could be further
integrated, made operational, evaluated, and modified. The operational conceptualiz,ation of the adaptive
Models for AIS is represented in Figure 21. The models are interrelated in hierarchical fashion according to
the nature of the instructional events which follow an adaptive decision. The instructional events(1) may
be distinguished along either of two dimensions. The first dimension relates to the type of instruction
which will be performed, 13 refers to in t uction on a topic, such as power supplies or remedial instruction,
Le., the first level concerns broad, taskdetermined categories of instruction. 13 refers to specific
instructional lessons such as media presentations or tutorial sequences. 13 is even more specific, referring to
an individual learnin4 "frame" as in Programmed Instruction or CAI.

The second relational dimension focuses-on time. In general, as one increases specificity in going from
II 'to 13, one decreases the time duration of the instructional unit. For discussion purposes, I, instruction is
generally 30 minutes or more, while 13 instruction is typically 1 or 2 minutes at most.

For each decision level, an adaptive model has been identified in the figure as it relates to the level of
decision to be made within the instructional process. In some cases, an adaptive model will be proposed for
more than one decision level, This occurs wherever the nature of the model permits this kind of multiple
complexity-time application.

This AIM schema provides the following insights into the actual and the potential model
relationships. First, Adaptive Models are inclusive in the sense that drillandpractice models can be
incorporated within a dynamic programming model. Therefore, all the AIM's hierarchically share variables.
Secondly, the level of task specification and the training event time will determine the specificity of the
decision and monitoring process. Thus, all ATM's will have similar intentions as to their adaptive
approaches, but will differ by task time and decision process variables. Finally, the higher a model is in the
hierarchy (e.g., Automata Models), the less likely it is that one can operationally utilize It at this time. The
best future prediCtion would be a hierarchical integration of all the models.

The common MM variables that should be monitored during the evolution of A1S are those described
in Section 1, since these best summarize the relationships among the Adaptive Models presented here. The
five categories of variables that reflect the operational characteristics ar as follows:

Task characteristics

Instructional mode

Decision processes

Student characteristics and

Instructional resources
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in order to reflect these model characteristics through the AIS life cycle, it will be necessary to develop an
Adaptive Model's frame of reference for those responsible rot the A1S environment. One of the functions of
this document has been to map and portray this frame of reference.

Recommendations

In order for MS and the Adaptive Model component to provide the most cost-effective individualized
instruction, the Adaptive Models will require additional conceptualization and validation. The following
general tasks are recommended:

Each of the models described should be simulated to facilitate the specification of initial
parameters, roles, and decision rules,

Each model and its simulation should provide for graduations in number and relational
complexity of variables so that minimal, cbmprehensive, and open-ended models may be
devised.

Each model and the related simulation should allow for variation in parameter values,
functional relationships, and observable measures so that the models may be revised according
to AIS cost-effectiveness data.

The Air Force should consider sponsdring a basic research effort, parallel to the AIS effort, into
the relationships between student characteristics, Instructional parameters, and cost-
effectiveness parameters.

Model-specific recommendations are as follows:

Drill -and-Prac t ice

The two Drill-and-Practice Models, namely, the performance-contingent pacing model and
the task/frame mastery model, should be simulated and implemented within MS.

There are many decision points within a Drilland-Practice Model. Curentiy, most of these
decisions will need both conceptual and empirical exploration. It is recommended that
these variations be incorporated in the AIS research plan.

For each review session, a Drilland-Practice Model should be utilized to formulate the
problem list, organize the sequence, and provide optimal allocation of practice per
problem type. All instructional decisions should be based on individually determined
parameters.

More specifically for the AIS project, the Drill-and-Practice Model should be utilized in the
courses as follows:

For Inventory Management, the focus should be on coding/index schemes and
classification structures as in security rules;

For Precision Measurement Equipment,. the major emphasis should be technical and
conceptual aspects of the course; and

For Weapons Mechanics, the fccus should be on conceptual factors of electricity and
image /photo requirements of specific weapons.

Adaptive Concept Acquisition Model

The proposed Adaptive ("once' I Acquisition (ACA) Model should be simulated and
utimately field tested since it foeus..s on a pr:Lnary requirement of trainivr, namely,
concept acquisition. The topics r;'. ; tlaptive prompt:. g, feedback and task/p rformance-
related concepts should be inc,:-;,,ruted within 1:te ACA Model or become correlated
models.

The use cf pretask measures t:1 i,.easures) ,t. .`) be extended and wilt?, i so as to
increase the training efficiencies



The most cost-effective use of media and instructional resources should become an
operational component within the ACA model approach.

The ACA model should be extensively employed within each of the three MS courses
and appropriate evaluative comparisons made.

Adaptive Rule-Learning Model

The Adaptive Rule-Learning Model should be simulated and ultimately field tested. The
related, complex process of problem-solving should also be studied should also be studied
and hopefully integrated into Rule-Learning Model.

Although the adaptive model for rule-learning proposed in this report is based on the
current theoretical and research literature, many features of the model are innovative in
nature and will require additional research and validation. It is therefore recommended
that research be conducted int his area. In addition, the linear regression models and
heuristic decision rules utilized by the adaptive model will require further delineation and
empirical validation.

A simulation of the Adaptive Model will facilitate the specification of initial decision
rules and regression algorithms. The input variables and instructional decisions should be
expanded or revised according to the, constraints and characteristics of the simulated
adaptive model. It is recommended that two versions of the model be simulateda full
model and a reduced model. The full version of the model would require a highly
interactive mode of Instruction such as CAI. However, a reduced version of the model
could be utilized in a semi-interactive mode such as CMI. Therefore, it is recommended
that both versions of the models be simulated. The reduced version would not require an
updating of the instructional strategy according to within-task performance data.

The applicability and extension of the adaptive model for rule-learning-into the area of
problem-solving should be investigated. However, it is anticipated that instructional
models such as Task Teach might prove to be very useful in problem-solving applications
in the AIS.

Provision for research into the role and effects of the number of examples, prompts,
types of examples, rule frame structure, and amount and placement of review should be
made in the implementation of the adaptive model. This research would provide data for
the revision and refinement of the model.

Algorithmic Regression Model

An Algorithmic Regression Model should be developed and simulated since it bridges the
gap between the description of complex training phenomena and the prescription of
effective, individualized instructional events. It is anticipated that, during the early phases
of AIS, the Algorithmic Regression Modal will be the primary comprehensive prescriptive
mechanism.

Second, the regression approach appeart to be especially useful in an interlesson context.
Rather than changing or modifying the instructional method within and instructiOal
session on the basis of responses, a potentially more effective instructional change can be
made by directing the student to another set of materials within the lesson or to a,
remedial or enhanced lesson.

. Within an operable training system used to capacity, it can be expected that the
prescription selected by the regression equation as optimal may be unavailable. A
necessary interface to the regression model formulation is a resource model
which would provide a list of available resources and estimates of resource use so as to
pernilt optimal resource-spares to be ordered. Thus, not only will more efficient use be
made of available resource, but resources can be maintained at an efficient level of supply
as Well. It is therefore recommended that a resource allocation model be developed as a
part of MS.
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As a final recommendation, validation of the regression models should be carried out over
e a sufficient period of time by the AIS contractor in order to provide sufficient data to

update the beta weights if required. The contractor should also devise a procedure for
periodic revalidation and restructuring of the models.

Dynamic Programming Model

A study should be made into operational feasibility of the development of a Dynamic
Programming Model for AIS. This study should be based upon performance data
collected during the initial phases of the AIS program. As the dynamic nature of the -

individualized training in MS becomes observable and descriptive in nature, a Dynamic
Programming Model should be developed. r

The development of the dynamic programming model should be phased asfollows:

initial system description

Singlevariable optimization studies

Multivariate optimization studies

The emerging o+' cost-effective criteria and decision processes with the evolved
dynamic programming model.

Each of the MS course operations could profit from the application of a dynamic
programming model. This is especially the case for PME and Weapons Mechanics in that
the model would provide for optimal utilization of expensive, high-fidelity simulators and
trainers.

Natural Language Model

The Natural Language Model described in this report is one of the few in the NLP
literature which is educationally oriented and the only NLP model based on a systems
approach. The model should be researched further to provide an empirical basis. The
funding of such research would not be a long -tc, investment since the state-of-the-art is
sufficient to provide a short-term basis for NLP counseling within MS.

The authoring of NLP dialogues has not been sufficiently recognized as a problem in
literature. It is, nevertheless a problem directly relating to the specification and
evaluation of Ni) dialogues. The systematic approach of content mapping discussed
earlier is an attempt toward solution of this problem Any educational hvlementation of
NLP on more than a research scale should provide training in this systematic approach.

A related problem is the validation of the dialogue system. Several possiblities have been
suggested as a result of the work done at Florida State University. The first is to follow a
standard systems approach relating instructional objectives to test questions, and, through
the hierarchical content map, to categories or levels of the hierarchy. A pretest/posttest
procedure would probably suffice for data collection. The second possibility is to use a
sorting or categorization task as the testing situation within the same system approach,
This would provide needed information concerning memory organization.

In respect to, the MS courses, it is recommended that the NLP model be implemented
and evaluated, especially in the student evaluation and counseling requirement.

Automaton Model

It would be premature at this stage in the development ofautonvta modeling to focus on
a particular model with its parameters for an application to AIS. Delay is requested due
to theoretical and mathematical structure of Automata theory as well as the problem of
representation of states and sequence symbols as discussed earlier. Therefofe, it is
recommended that this class of model be identified asa basic research elementary AIS
and not become an operational procedure.
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This section has attempted to des.i,;y. two bpproaches to representationInformation
processing and stimulus. response. I3J,)t of these appear promising, but they lack sufficient
validation to allow a firm predictioi. concerning their value to AIS. It should perhaps be
reiterated that what might be gabou from these Automata Models is the inclusion of
complex human behavior into the ad mtive system operations of the AIS. Many, models
are capable of being used to handic complex behavior at a gross level, but few can even
attempt an "in.process" modeling. It is, therefore, recommended that basic research
findings In automata be monitored for the purpose of identifying any models that would
prove useful in AIS during its developrn'inr.--

Given the conceptual :Ind performarice complexities found in the tralping tasks of the
three AIS courses, Autotnata Models would be potentially appropriate for each of them,
Automata Models might be especially useful for the marginal or semiliterate student,
since his learning problems and processes could be represented in fine-grained detail and
precise remediation applied. It is therefore recommended tha Automata Models be
investigated for their application to 'r> aging and semiliterate students.
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GLOSSARY OF TERMS

Academic CbunselingThe process of providing factual information and guidance to students concerning
progress through courses, potential additional courses, and career fields.

Adaptive Instructional ModelOne of many multifaceted decisio.t structures which use student characteris-

tics, instructional mode parameters, and resource load characteristics in order to assign students to

appropriate instructional conditions and media.

Adjustment Counseling --The process of providing the student with help and guidance concerning his own

personal problems as may be related to his academic and other endeavors.

Air Force SpecialtyA grouping of positions which require common qualifications.

Air Force Specialty CodeA combination of meaningful digits used to Identify an Air Force Specialty,

Audiovisual MediaMedia utilizing the senses of hearing and sight to encourage or catty on the learning

process.

Behavioral ObjectivesThe specification of the goals of instruction such that each statement contains an
identification of terminal behavior, the minimal Standards for acceptable performance, and the
conditions under which they are to be performed,

Career GuidanceThe process of providing the student with information concerning his career, both within

and out of the Air Force.

Cognitive ActivitiesThose activities associated with the icarning of specific facts. procedures, decision

skills. (see Learning Activities).

Computer-Assisted Instructkm-2A training methods Involving man machine interactions utilizing a
computer to present information to students. The computer interaction can involve multimedia
presentations, question-answering, testing, and/or inquiry.

Computerized Measurement SystemA system of evaluating student performance through adaptive-testing

strategies based primarily on sequence.

Computer-Managed InstructionA method of teaching that utilizes a computer for diagnostic assessment,
CAI, simulation, counseling, resource allocation, and record keeping.

CostEffectivenessA Measure of the relative effectiveness of a system as related to the cost of the system.

Effectiveness may be operationally defined within AIS as the continuous operation of the hardware

components, smooth operation of software development, and 90 percent or more students corn-
pleting MS courses within 80 percent of current instructional time Cost is operationally defined in

terms of both fiscal and time parameters.

Criterion ObjectiveAn objective requiring a terminal action or an end product of the student at the

completion of a unit or lesson.

Merlon TestA test designed to measure student attainment of criterion objectives.

arriculuntA specific course(s) of study relating to a particular job specialty. Curriculum is the all-

encompassing term for the instructional system software, which includes management and training

materials, as well as media and instructional strategies.

Discussion Method A method of instruction in which the instructor uses questions to cause students to
participate actively in a learning situation by exchanging ideas, opinions, and etperiences to reach

conclusions that will support learning objectives.

Drill-and-PracticeAn instructional technique in which words,problems, and pictures, are placed before the

student for his definition, identification, and solution, and which are repeated a number of times, the

number of times determined by the performance of the student,

- Ss
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Dynamically GeneratedAny instructional material or test item sequence which is supplied online to the
student or instructor and which is selected or constructed as a response to input of the student or
instructor.

Educational TechnologyThe application of principles of '4nodern behavioral science and technology to
education.

Enabling ObjectiveThe identification of a knowledge or skill that must be learned to permit satisfactory
achievement of a criterion objective.

Entering BehaviorThe student's level of knowledge or skill befbre instruction begins. it refers to his prior
learning, motivational states, intellectual ability and development, and cultural and social determi-
nants of his learning ability.

Evaluation PlanA schedule of the activities and/or projects planned to determine the effectiveness of a
course or group of courses in producing graduates qualified to perform job requirements.

Feedback to Studentinformation provided to the student regarding the correctness of his response and
the quality of his performance,

Feedback to Systemlnformation obtained from student responses which may be used to make adaptive
Instructional decisions or to revise, the instructional program.

FormatiVe EvaluationThat evaluation based on student response data which takes place during materials
development in order to aid in the revision of the materials to increase their effectiveness (see
Summative Evaluation).

FrameA segment of material which the student handles at one time it may vary from a few words to a
full page (or CRT screen) or more In almost all programming methods, it will require at least one
response (overt or covert) and provide for knowledge of results before the student proceeds to the
next frame.

GamesThis instructional technique involves role playing and decision-making activities in order to develop
cognitive and affective skills in an often informal manner. Games differ from a similar technique,
simulation, in that rules are utilized to guide the progress of the student through the ga,ne situation
and the correspondence with "real" phenomena is often greater in the game (see Simulation).

Hands- on Experience -- Student practice on actual equipment, simulators, or training aids.

Hierarchical AnalysisA method of task analysis in which the terminal behavior is separated into a number
of prerequisite capabilities, forining a hierarchy.

Instructional Sequence DecisionsThose decisions having to do with the determination of ti4 order or
succession of instructional units.

Instructional StrategiesThe series of decision structures which determine the dynamic nature of instruc-
tion. The strategies may include such as combinations of media selection, pacing, difficulty level, and
readabilitplevel.

Instructional System An integrated combination of resources (students, instructors, materials, equipment,
and facilities), techniques, and procedures required to assist the student in achieving specified learning
objectives.

Instructors-1 hose personnel who, by training in the specialty field and in the instructor training course, are
qualified to teach ATC Technical Training courses (see Monitors),

Interactive Testing ModeThat mode of testing which will typically take place at an interactive computer
terminal, Testing in this mode will often involve a sequential testing ptivity In which succeeding test
items given to the student are functions of the student's responses to previous test items.

Learner Strategies- -Those algorithms and decision -structures which are employed by students for the-
purpote of managing their own instruction, e.&, pacing, media selections, content decisions, diffiCulty
and redundancy levels.
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MasteryAn optimal degree to which content or skills are learned. This may be absolute-100 percent
accuracy, or relativeA specified minimum accuracy in a specified number of trials.

ModuleAn entire instructional unit developed via a systems approach which includes a specification of
enabling and criterion objectives, content presentation, and evaluation processes.

Monitors The class of instructional personnel which are not qualified as instructors but who keep track of
necessary inclass training materials, and media, and who supervise students in the absence of a trained
instructor. Monitors may be considered "teachers' aides" (see Instructors).

Motor SkillsThose skills requiring manual dexterity, e.g., movement involving fingers, arms, and legs.

MultimediaUse of more than one medium to convey the content of instruction. Media available for use
may include, but need not be limited to texts, programmed instruction, audio and video tapes, slides,
films, film loops, television, and computers.

Natural Language ProcessingThe capability of CA! to interpret student input of natural English and
respond accordingly, also in natural English.

Off-lineThat part of a computer system which 6 not under the control of the central processor.

On-lineThat part of a computer system which is under the direct control of the central processor.

Performance ActivitiesThose activities specifically related to performance on actual equipment such as
laboratory work and supervised motor activities.

Predicted Paring ParadigmThe set of decision rules which are a part of the Adaptive Instructional Model
and which serve to determine optimal pacing requirements on an individualized basis.

Response AnalysisThe analysis of a student's response in terms of its correctness or incorrectness, latency,
or other factors as may be appropriate for the response or for the instructional researcher.

Response CollectionThe recording and storing of student esp`Onses to instructional materials.

SequencingThe process by which learning experienceC are ordered to provide effective and efficient
learning. it3

Sequential TestingAn adaptive testing strategy in which the type and number of test items presented to
each student are variable and are based on the student's response to immediately precedingitems.

SimulationA technique in which "real-world" phenomena are mimicked, in an often low-fidelity situa-
tion, in which costs may be reduced, potential dangers eliminated, and time compressed. The
simulation may focus on a small subset of the features of the actual real -world situation. Simulation
differs from another technique, gaming, in that rules and role playing typically do not take place (see
Games).

SimulatorAny machine or apparatus that simulates a desired condition or set of conditions.

Student Coping BehaviorsThose strategies or activities which students use in meeting or solving a
particular problem situation.

Student CritiqueStudent feedback to course developers and administrators concerning a given unit or
block of instruction. it should provide for a critical systematic evaluation of all phases of the
instruction including content, presentation, and instruments.

Sumrnative EvaluationThat evaluation of instructional training materials which takes place in the actual
classroom environment and which is designed to provide data for effectiveness analyses. This type of
evaluation takes place following the major development of the material (see Formative Evaluation
and Ongoing Evaluation).

Systems Approach to instructionThe series of procedures which is employed by educational psycho..
logists, instructional technolgists, and curriculum developers to design and evaluate instructional
programs.
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TaskA unit of work activity which forms a significant part of a work assignment done by an individual

Task AnalysisThe process of breadking down a particular skill into its subordinate tasks and subskills. The
task analysis serves as a method for the definition and interrelationship of skills necessary in the Air
Force job categories.

.....
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