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PREFACE

This book is based on a course presented at the Lewis Research Center.
The course was given to enginecrs and scientists who were interested in in-
creasing their knowledge of differential equations. Those results which can
actually be used to solve equations are therefore emphasized; and detailed
proofs of theorems are, for the most part, omitted. However, the conclusions
of the theorems are stated in a precise manner, and enough references are
given so that the intcrested reader can find the steps of the proufs.

In spite of the fact that differential equations is a branch of mathematics
which is to some extent a collection of loosely related ideas, we have attempted
to impart as much unity to the subject as possible and to point out the connec-
tion between the various topics. Although the material is not new, some parts
of the presentation are unconventional. Certain modern ideas, such as the
theory of matched asymptotic expansions, which have not worked their way
into most conventional texts, are also included. In the chapter on numerical
methods, we have attempted to include a discussion of the considerations
which should be taken into account when applying the methods to various
problems which arise frequently in practice. Techniques for solving first-order
partial differential equations are discussed in the chapter on systems of ordi-
nary differential equations since it is felt that these topics zre easier to under-
stand when they are presented simultaneously.




CHAPTER 1

Introduction

In this chapter we shall introduce some preliminary concepts and try to
gain a ceriain amount of insight into the behavior of differential equations and
their solutions. Such questions as what is meant by the solution of a differential
equation and what is the appropriate number of solutions will be considered
with some care.

" Leibniz, in 1676, was probably the first to introduce the term *‘differential
equation.” However, the study of differential equations had its beginnings
somewhat before this time in investigations of physical phenomena. Ever since,
developments in the field of differential equations have been closely related to
the physical sciences.

1.1 SOLUTION OF EQUATIONS IN GENERAL

In this section we introduce some concepts which are needed for the
subsequent presentation. First, in order to obtain a geometric interpretation
of certain results, we shall have occasion to interpret a set of n variables, say
X1, . . ., Xn, as coordinate axes in an n-dimensional space. A particular set
of values, say xi, . . ., x5, of the n variables are then the coordinates of a
point in this space. When n=2 and n=3, these spaces are the very familiar
two- and three-dimensional Euclidean spaces. Hence, as will be seen, this
procedure allows us to use our geometric intuition about two- and three-
dimensional spaces to *“picture’’ results about functions and equations involving
any number of variables.

We shall not need to use many of the mathematical properties of the
n-dimensional spaces; however, it will be important to have a careful defini-
tion of certain special regions in these spaces. Thus, let x9, . . ., x9 be the
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coordinates ! of a fixed point in an n-dimensional space, and consider ths
collection of all points whose coordinates satisfy the inequalities

|x.-x?|<8, L "lx”_x")l‘<8

for some positive number 8. When n=:2, these points form the interior of a
square with center at (x9, x3) and sides of length 25. When n=3, the points
form the interior of a cube with center at (x9, 22, x3) and sides of length 2.
The resson for using the word “interior’” is that the houndary points which
satisfy the equalities

i —xf|=8, . . ., |xa—28|=5

have been omitted fros the collection.

Next we define a domain D to be any region of the n-dimensional space
which satisfies the following two conditions: (1) there exists a positive number
5 for each point x§, . . ., x% belonging to D such that every point xy, . . ., x»
lying in the range

ler =29 <8, . . ., |xn—23 <8

is also a point of D; and (2) any two points in this region can be connected by a
continuous line. Thus, in a two-dimensional space the first condition requires
that we be able to draw around each point of D a square whose interior lies
entirely within D. This is illustrated in figure 1-1. The only points where this
is not possible are the points which lie on the boundary I'" of D. This is because
every square about a point of I' must include at least some points which do not
belong to D. Thus, the first condition serves to exclude the boundary points
from D.

The second condition simply requires that the region not be composed of
two or more disconnected subregions, as shown for two dimensions in figure
1-2,

A neighborhood of the point af, . . ., x3is simply a domain which contains
this point. Evidently, the collection of all points which satisfy the inequalities
in condition 1 form a neighborhood of the point xJ, . . ., x0.

VInstead of saying that x3, . . .. x% are the coordinates of the point, we shall frequently say that the collection
x, . . .,x%is the point.

2
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FIGURE 1-1. —Interior and boundary points for a domain D,

F1cURE 1-2.—Disconnected regions which fail 1o satisfy condition 2 for a domain.

A single-valued function in the x, y-plane can be roughly thought of as
one or more curves which associate a single value y with each value x. For
example, the function y=x2?/2 shown in figure 1-3 associates the single number
a3/2 with each point xo. On the other hand, a multivalued function associates
more than one value of y with each value of x. For example, the function
tan-! x, which is shown in figure 1-4, associates infinitely many values of y
with each value of x.

In order to avoid ambiguity we shall always suppose that every function
which is encountered is single valued unless explicitly stated otherwise.

Consider the equation

F(x9y)=0 (1-1)

3




DIF-ERENTIAL EQUATIONS

F1CURE 1-3. ~Single-valued function y=x%2.
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FiGURE 1-4.—Function y—=tan-*x.
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where F has continuous first partial derivatives with respect to its arguments.
We say that the function y= £ (x) is a solution of this equation if

Flx,f(x)]=0

for all values of x for which f(x) is defined. The solutions y=f(x) of equation
(1-1) are said to be determined implicitly by this equation and arec called
implicit functions.

In fact, the implicit function theorem states that for every point (xo, ¥o)
such that

F(xo. )’o) =0

and
oF
3 (%0, yo) #0 n-2)

there is a unique, continuous solution y=f(x) of equation (1- 1) which is de-
fined on some neighborhood of the point xo, which satisfies the condition
yo=S(x0) and which has a continuous first derivative in this neighborhood.
Now if F(x, y) is areasonable function, equation (1-1) will be the equation
of a curve in the x, y-plane. For example, the implicit relation between x and y

F(x,y) =x—»3=0 (1-3)

is the equation of the cubical parabola shown in figure 1-5. It has an explicit
solution given by?

y=f(x) = (sgn x)[x|'? (1-4)
for all values of x.
# The function sgnx is defined by
- +1l forx>»0
1 forx<o
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1

FiGURE 1-5. - Cubical parabola x=y3,

Differentiating this equation with respect to x shows that
dy ., ._ 1
&l ) =3

Hence, condition (1-2) is satisfied at any point A on the curve in figure 1-2
which does not coincide with the origin. And, as required by the theorem,
equation (1-4) provides a unique solution with a continuous first derivative
in some neighborhood of this point. However, condition (1-2) does not hold

at the origin. But then the solution (1-4) has an infinite derivative (which is
certainly discontinuous) at this point.

More generally, consider the equation
F(x;,xz, L -sxmy)=0 (1-5)

A solution to this equation is a function

y=f(xlsx29 .. -9xN)
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with the property that
F[xhxz, o o a'Xn,f(xhxzi ¢ o "x")]50

for all values of x;, X2, . . ., xn for which f is defined. In order to obtain a
geometric picture of equation (1-5) and its solution, it is convenient to think
of the variables xy, X2, . . ., xa, y as the coordinates of a point in an (n-+ 1)-
dimensional space.

Now suppose that the function F has first partial derivatives with respect
to its arguments in some domain D of this space. The implicit function theorem
now shows that for every point (29, 22, . . ., 2%, ¥°) of D such that

F(x9,x3, . . .,x3,5°)=0
oF
'a';(x?'xgv . . -vxgv)p)¢o

there is a unique continuous solution
y=fx1, X2y « + <y Xn)

of equation (1-5) which is defined in some neighborhood of the point xf,
2, . . ., x5 satisfies the condition y°=f(f, 22, . . ., x3), and has continuous
first partial derivatives in this neighborhood.

12 DEFINITION OF DIFFERENTIAL EQUATION

A differential equation is an equation connecting the values of a function,
called the dependent variable, the derivatives of this function, and certain
known quantities. If the dependent variable is a function of a single variable
(independent) variables, the differential equation is called a partial differential
differential equation. If the dependent variable is a function of two or more
(independent) variables, the differential equation is called a partial differential
equation.

Thus, an ordinary differential equation is an equation of the form

d a" |
F(x.y.;,—i, . ..Ex—f,')=0 (1-6)
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where the positive integer a1, the order of the highest derivative which appears
in equation (1-6), is called the order of the equation and F is a function of
the indicated n 4 2 quantities.

If the function F in equation (1-6) is a polynomial of degree m in the
highest order derivative d"y/dx", we say that it is a differential equation of
degree m. Thus, the first-order differential equation of degree m has the form?

F(x,7,5') =Mo(x,) (y')""*"i, Mi(z, y)(y')m-*=0

The differential equation (1-6) is said to be /inear if the dependent vari-
able and all its derivatives appear only to the first degree. Thus, the general
linear equation can be written in the form

a0(x) T2t a1 (x) Tt -+ ans (1) Ft an(D)y+b() =0 (1-1)

When the function b(x) in equation (1-7) is identically zero, the equation is
said to be homogeneous.

1.3 SOLUTIONS AND INTEGRALS OF DIFFERENTIAL EQUATIONS

A (particular) solution® of the differential equation® (1-6) is any n-
times differentiable function f(x) defined on some interval @ < x < b (which
may be infinite) such that equation (1-6) becomes an identity when y and its
derivatives are replaced by f(x) and its derivatives. Hence, '

Pl 42, . 400

for all x in the interval a < x < b. Thus, the function y=sin x is a solution
of the differential equation y'' +y=0.

3We shall frequently write f* or f*(x) for df(x)/dx, f*" or f'(x) for d*fidx%, . . ., and /™ or f"(x) in place
ofdflds*forn=12, . . .

4 The term "solution®* was first used by Lagrange (1774).

3There are also solutions known as weak solutions which satisfy the differential eq. (1-6) only in a certain average
sense. We shall not pursue this topic further here. The interested reader is referred to ref. 1 for an elementary treat-
ment and to ref. 2 for a more advanced discussion.
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Now consider the equation

F(x9y9cl9c29 . . -9cn)==0 (1-8)

in which x and y are variables, and ¢,, ¢z, . . ., cn are independent 6 arbitrary
constants.” We shall suppose that equation (1-8) possesses solutions for at
least certain values of the constants ¢;, ¢z, . . .,Cn.

Upon differentiating equation (1-8) with respect to x, n times in succes-
sion, we obtain

oF oF ,

‘5';-1-5;)' =0
92F d*F 0%F 2 OF
ax2+2axayy+a = (¥') + y =0
oF oF

6x"+' .. +. .. +a—'y ym=0

If the n constants can be eliminated between these n equations and equation
(1-8), we can, upon carrying out this elimination, obtain a differential equation ®

G[x,.y,y',y", e Y]=0 (1-9)

It is clear, from the manner in which equation (1-9) was obtained, that
every solution of equation (1-8) satisfies? equation (1-9). The function F
is therefore sometimes referred to as a primitive of equation (1-9). In many
instances the solutions of equation (1-8) for y as a function of x can be ex-
pressed as formulas of the form

8 This means that eq. (1-8) is not expressible in terms of fewer than n constants. For example, y2 ~ 22+ —c:
depends effectively only on the single constant c=c} —c,.

7We assume that all functions are differentiable as many times as is necessary for the argument and that 8F/3y
is not identically zero.

$In practice it usually will not be possible to carry out all the algebraic operations which are necessary to obtain
an explicit formula foreq. (1-9).

9 However, as we shali see in the following example, the converse of this statement is not necessanly true.

O
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DIFFERENTIAL EQUATIONS
y=f(x,¢1,€2 . . . Cn) | (1-10)

which are parameterized by the n constants ¢;, ¢, . . ., cn. We therefore
anticipate that, for many nth-order differential equations, there exist formulas
of the form (1-10) each of which contains nindependent constants ¢y, . . .,¢n
and provides a solution to its corresponding equation for every set of values
of these n constants for which the formula makes sense.!® Such a formula,
if it exists, is said to be a general solution of the equation.

"This terminology should not be interpreted to mean, however, that every
differential equation possesses a single general solution from which every
solution to the equation can be obtained by suitably choosing the values of
the constants. This is only true when certain restrictions are imposed on the
differential equation (1-6). )

For example, consider the equation !

F(x,y,c) =c"[x—c#D]24y"—1=0  forn=1o0rn=2 (1-11)

whe e c is an arbitrary parameter which can take on any real value. By differ-
entiating this equation with respect to x we find that

Fe+y'Fy=2c"1x—c" U]+ ny*1ly' =0 (1-12)

First, consider the case where n=1. Then upon eliminating ¢ between
equations (1-11) and (1-12) we obtain the first-order linear equation

2(1-y) _,

y+=— =0 (1-13)

Now, for each value of ¢, equation (1-11) possesses a single solution
y=1—c(x—1)2 for—o<x <o (1-14)

This must, therefore. be a general solution to thé differential equation (1-13).

191t is usually necessary to restrict the range of the ¢'s and of x in order to avoid imaginary expressions and other
degeneracies.

U When n=1, the equation represents a family of parabolas with vertices at the point x=1, y=1; and when
n=2, it represents a family of unit circles with centers on the x-axis.

]0 \':.|‘\-,:I,:-‘, v
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And it happens that every solution to equation (1-13) can be obtained from
equation (1-14) by a suitable choice of the constant c.

Next, consider the case where n=2. Then upon eliminating ¢ between
equations (1-11) and (1-12), we obtain the differential equation

For each value of ¢, equation (1-11) now possesses the two solutions 12

y=V1—(x—c)?

VT 2} for Ibc—cl <1 '(1—16)

- Hence, both of these formulas are general solutions to equation (1~15). Thus,

there is no single formula involving only a single parameter from which every
solution can be obtained.!® This is not surprising since equation (1-15) can
be written as

2 .
and since only ¥ appears in this equation, it is clear that if y=/(x) is a solution,
sois y=—f(x).

Even though equations (1-16) are the only general solutions to equation
(1-15), it is still not possible to obtain every solution to the differential equa-
tion from these two formulas. Thus, equation (1-15) also possesses the two
solutions

y=+1
y=-1

which not only cannot be obtained from either of equations (1-16) but do not
even satisfy the primitive equation (1-11). They are called singular solutions
of equation (1-15) (see section 1.5) and are tangent to every solution obtained
from the general solutions.

12 For any positive real variable x, Vx will always denote the positive square root of x.
13 Notice that we can combine the two eqs. (1-16) into o single formula y= (—1)* VI—(x—¢)Z for n=0, 1,
but this solution involves the two parameters n and c.

11
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We have shown how. an nth-order differc:.tial equation can be obtained
by successively differentiating an equation of the type (1-8). In fact if, for a
given differential equation, we can find an implicit relation of the type (1-8)
such that every solution of the differential equation is also a solution of this
equation, we can for practical purposes consider the differential -equation
" solved. Thus, the process of finding a solution to a differential equation might
be thought of as reversing the process of obtaining a differential equation
from its primitive. The first step of this inverse process when applied to the
nth-order differential equation (1-6) (if it can be carried out) leads to a differ-
ential equation of order n—1 which involves a single arbitrary constant c.
And if this equation can be solved for c, it can be written in the form

H(x,y,y', .. .,y V)=c (1-18)

More generally, if for any given function H every solution of equation (1-6)
satisfies an equation of the form (1-18) for some value of c, this function

(and sometimes eq. (1-18) itself) is called a (ﬁrst) integral of equation * (1-6).
Geometrically, this means that an integral H is constant along every solution
curve y=f(x) of the differential equation.

1.4 SCLUTIONS TO NORMAL EQUATIONS

If we try to find a solution to equation (1-15), say

y=f(x)

which satisfies the initial condition f(1) =0, we find from the first equation
(1-16) that

y=f(x)=VI=7
and from the second equation (1-16) that

y=f(x)=—VI—x2

"Since integration is the inverse of differentiation, the preceding remarks show why the process of solving a
differential equation is sometimes referred to as integrating the equation.

12
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Therefore, equation (1-15) has two solutions which satisfy the condition
y=0 at x=1. However, we usually expect the solution of any first-order
differential equation arising from a physical problem to be uniquely determined
by a single initial condition. It is, therefore, necessary to find what conditions
must be imposed on a given differential equation if our expectations are to be
justified. To this end suppose that equation (1-6) can be solved for its highest -
order derivative. It can then be written as an equation of the form

YW=6G(x,y,5, . . ., 5"") (1-19)

Any ordinary differential equation which has the form of equation (1-19) is
called a normal differential equation or is said to be in normal form.

We are interested in finding conditions which ensure that equations of
this type possess unique solutions satisfying the initial conditions

x=xo,_y=Yo,y'=Y1, ey D=Y (1-20)

where Yo, . . ., Y,_, are constants. The fundamental theorem for nth-order
differential equations states that this is always the case, at least locally,
provided that certain restrictions are.imposed on the function G. In order to
state this theorem in a precise way, let us for the moment treat the variables
% ¥ ¥s . . .,y 1 as independent. Then if there exists a positive number &
such that the functions

9ay9ay29 L "ayn—l

66 G (1-21)

are defined and continuou- !5 for all values of the variables x, y, ¥/, . . .,
y("=1 which lie in the range

lx—x0| < 8, ly—0| <&, |y =Yy <8, . . ., [y D=Yuy| <&

the fundamental theorem states that equation (1-19) possesses a solution.
y=f(x) which satisfies the initial -conditions (1-20) and is defined on some

15 Notice that only the partial derivatives of G with respect to the variables y, ', . . ., " need be continuous,
but the partial derivative with respect to x need not even exist.

13
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interval containing the point x= x,, say
a<x<b _ (1-22)

In addition, this solution is unique. This means that if g(x) is any other solution
to equation (1-19) which satisfies the initial conditions (1-20), then

f(x) = g(x)

for all x in the interval!® (1-22). _

Notice that we have only asserted that the interval (1-22) exists; we have
not given any idea of its size.}” That is, there is no relation given between a, b,
and 8. The interval might be exceedingly small. However, we shall give a
measure of the size of this interval for an important special case. Thus, if the
partial derivatives (1-21) are defined and continuous for all values of y, y',
. « ., ¥®=1 and for all values of x in some interval which contains the point
X =9, SAY

a<x<p (1-23)
and if there exists a single constant K such that

G
D

for all y, . . ., -V and all x in the interval (1-23), the solution y=f(x)
which satisfies the initial conditions (1-20) exists and satisfies the differential
equation for all x on the interval (1-23).

For example, it is easy to verify that the equation

=K fori=0,1,2,.. .,n—1

Y=G(y)=1+y*

has the solution y=tan (x-+c). Since tan x becomes. infinite at x==u/2, it

16 Actually, the same conclusions can be reached even when somewhat weaker conditions are imposed on the func-
tion G in eq. (1-19). Proofs of the fundamental theorem can be fpund inrefs. 3to 5,

'71n fact, a measure of the size of this interval can be given in terms of certain bounds on the function G, See, for
example, ref, 4, theorem 8, p. 118.

14
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is clear that the solutions to this differential equation are defined orly on inter-
vals whose lengths are at most 7, even though C and 96/9y are defined and
continuous everywhere. This occurs because there is no constant K which is
larger than 9G/dy= 2y for all values of y.

Although we normally expect the solution of an nth-order differential
equation to be uniquely determined by specifying »n initial conditions (or the
equivalent), we have seen by example that specifying these conditions is not
necessarily sufficient to uniquely determine the solution to every nth-order
equation. The preceding discussion indicates that the extraneous solutions
must arise either because the differential equation (1-6) is not in normal
form (i.e., solved in a unique way for the highest order derivative) or because,
even if it is in the normal form (1-19), the function G is not sufficiently smooth
at some points.

A general solution to equation (1-19), if it exists, contains n “arbitrary”
constants. And since, in principle, it is usually possible to solve n equations
in n unknowns, this is consistent with the fundamental theorem which states
that n initial conditions determine the solution to equation (1-19).

For example, integrating the differential equation

y'=a (1-24)
twice yields the general solution
4 1
y=%+clx+c2 (1-25)

containing two arbitrary constants c¢; and c.. The constants are uniquely
determined by the initial conditions

x=x0,y=Yo, ¥ =Y,
since the two equations

x}

Yo=1o

+Clxo+ C2

,..M-\...,_‘Yl =-x3-g'+cl

15
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can be solved for ¢; and c2 to obtain

3
Cl—Yl'—'%‘

x4
Ca= Yo—x()Yl -+ Zo

More generally, suppose that by some formal process of integration we
have found m general solutions

y=filx,c1,¢2, . . .,cn) I1=1,2,...,m (1-26)
“of the differential equation (1-19) and that every solution of this differential
equation can be obtained from these formulas by properly choosing the con-
stants. Then for every set of values of the n constants xo, Yo, Y1, . . ., Yauy
for which G satisfies the conditions imposed in the fundamental theorem,
there must be one and only one value of i for which it is possible to solve the
n equations

Y0=ﬂ(x0,cl,C2, . . .,Cn)

d g
=71f;;(xO,C|,C2, . . -9Cn)

dn l :
Y=g l(J\Co,cl,ch .« +yCn)
for the n constantscy,c2, . . .,Cnp.
For example, the function
—f(x c) =V1+cer (1-27)

satisfies the differential equation

16
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=

N | i

y=F(y) =

for all values of ¢ for which the radical exists. And for this equation the partial
derivatives (1-21) are always continuous except when y=0. Hence, the funda-
mental theorem shows that there must be a solution which satisfies the mmal
condition : -

However, there is no possible choice of ¢ in equation (1-27) for which f(0,
¢) = — 1, which shows that it is not possible to obtain every solution to equa-
tion (1-28) from the formula (1-27). However, the function

y=—V1tcer (1-29)

also satisfies equation (1-28) for all values of ¢ for which the radical exists.
Equations (1-27) and (1-29) taken together will now provide a unique solution
for each initial condition which does not involve y = 0. But these formulas will
provide two solutions satisfying each initial condition involving y=0, where
the partial derivatives (1-21) are not continuous. However, the fundamental
theorem provides no information about solutions which pass through points
where the partlal derivatives (1-21) are not continuous."

Specifying initial conditions is only one of many ways of determining the
values of the arbitrary constants which appear in the general solutions of a
differential equation. The most common alternative is to require that the
solution and its derivatives satisfy certain conditions at both ends of some
interval, say x; =< x < x,, within which this solution is being sought. These
conditions are called boundary conditions.t8

For example, we might require that the solution te equation (1-24) satisfy
the boundary conditions

18 The term “initial conditions™ arose in conjunction with problems in mechanics which have time as the independ-
ent variable and have conditions imposed at some initial time. The term “boundary conditions” arose in conjunction
with problems involving physical distance as the independent variable with conditions impesed at the boundaries of a
physical region.
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Y= atx=ux;

Y=1v32 atx=xs
Then substituting equation (1-25) into these conditions shows that

Yi1= 12+ C1x1+C2

4

yz—ﬁ+ ci1x2+ ¢

And since these equations have the unique solution

4.4

c1=yl Y2 Xz T i
X1—x2 12(x1—x2)

c, =221 X1y2 xX1x2(x§ — x3)

=

X2 ™ X1 12(x2—x1)

we conclude that the two boundary conditions uniquely determine the solution
of equatlon (1-24). There are a number of theorems which give conditions
which, if 'satisfied, will ensure that the solution of an nth-order equation will
be uniquely determined-by n boundary conditions. However, since these con-
ditions are fairly complicated, we will not state any of these theorems herein.

1.5 SOLUTIONS TO EQUATIONS NOT IN NORMAL FORM — SENGULAR SOLUTIONS

We have shown that the nth-order normal differeniial equation possesses -
a solution which is uniquely determined by n initial conditions, provided that the
conditions imposed in the fundamental theorem are satisfied. In order to use
this result to obtain information about the solutions of a differential equation
which is not in normal form, it is necessary to solve this equation, at least in
principle, for its highest order derivative.

First, consider the general nth-order equation of the first degree

Ux,y, - - oy 0)ym+V(x,y, . . .,y 0)=0  (1-30)
This equation can be written in the normal form

18



INTRODUCTION

Y= Gla,y,. . oyet) mo gL ol g

for all values of x, y, . . ., ¥~V for which U is not equal to zero. We shall
suppose that U and V are defined and possess continuous first partial deriva-
tives for all values of x, ¥, . . ., ¥{"~1), Then the function G will possess con-
tinuous first partial derivatives for all values of x, ¥, . . ., ¥(*~1) at which
U # 0. Hence, the fundamental theorem shows that equation (1-30) will possess
a unique solution satisfying any set of n initial conditions x = x¢, y=yo, . . .,
y("-V=Y,_, for which U(xo, Yo, . . ., ¥Yn_1) #0. Each solution of equation
(1-31) will satisfy equation (1-30); and if U is never equal to zero, every sclu-
tion of equation (1-30) will satisfy equation (1-31). Hence, in this case, equa-
tions (1-30) and (1-31) are equivalent. However, suppose that the function U
vanishes for certain values of its arguments. If equation (1-30) possesses a
solution y = f(x) such that for certain values'? of x

Ux, f(x),..., fOD(x))=0 (1-32)

then y=f(x) will not necessarily satisfy equation (1-31) for these values2°
of x. It is called a singular solution of equation (1-30).
For example, the first-order equation

yy' = (y*—y)=0 (1-33)

can be written in the normal form

=y—1 (1-34)

The normal equation (1-34) has the general solution

y=1+ce*
¥ Thus y=f(x) satisfies both eq. (1-30) and the (n— 1)st.order differential equation U(x, y, . . ., y{n-1) =0,
20 Even if the numerator of G vanishes in such a way that it is possible to define G(x,f(x),. . ., f""V(x)) at these

values of x.
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and this is also a general solution of equation (1-33). However, equation
(1-33) also has the solution

y=0 (1-35)

but equation (1-34) does not. Since the coefficient of y' vanishes at y=0,
equation (1-35) is a singular solution of equation (1-33).

Now consider the general equation (1-6) and let us temporarily treat
the quantities x, y, . . ., ¥ as independent variables. Suppose that F has
continuous first partial derivatives with respect to its arguments. Then the
implicit function theorem (given in section 1.1) shows that equation (1-6)
has several (possibly infinitely many) solutions of the form

}'(")=G(x’y9 . . '9.’)’("_1)) (1_36) ‘

where the function G is continuous and has continuous first partial derivatives
for all values of its arguments for which it is defined. One of these solutions
will satisfy equaticn (1-6) for each set of values of x, ¥, . . ., ¥® for which
equation (1-6) holds and

a—‘i%;(x,y, L) 20 (1-37)

However, equation (1-36) is a normal differential equation; and therefore the
fundamental theorem shows that it possesses a unique. solution satisfying
any set of initial conditions x = xo, ¥y = Yo, . . ., y'#=D = Yy for which G(xo,
Yo, . . ., Y,u_,) is defined. All the solutions of the normal equations of the form
(1-36) obtained from equation (1-6) will satisfy equation (1-6). If 3F/ay®
is never equal to zero for any values of x, ¥, . . ., y for which equation
(1-6) holds, every solution of equation (1-6) will satisfy one of the equations
(1-36). Hence, in this case, equation (1-6) is equivalent to the set of normal
equations of the form (1-36). However, suppose that

oF ) :
6y‘n) (x,}’,y [ } }’("))=0 (]--38)
for certain values of x, y, . . ., »". If equation (1-6) posscsses a solution
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y=f(x) such that for certain values 2! of x

oF
a)An)

(x,f(x), . . ., f"(x))=0 (1-39)

then for these values of x the implicit function theorem no longer guarantees

‘that there will be normal equations (satisfying the conditions imposed in the

fundamc -al theorem) which are satisfied by the solution y=f(x) of equation

(1-6). This solution is, therefore, called a singular solution of equation (1-6).
For example, the equation

F(y,y')=y?+1-y=0 (1-40)

has the twn solutions
¥'=Gi(y) =Vy-1 (1-41)
Y =G(y) =—Vy—1 (1-42)

where G, and G have continuous derivatives for all values y, ¥’ for which equa-
tion (1-40) holds and for whick

oF

ay 2 0 (1-43)
Now equation (1-41) has the solution
y=l+7i-(x—-c)2 forx=c (1-44)
and equation (1-42) has the solution
y=1+%—(x-—c)2 forx<c (1-45)
2 Thus y=f(x) satisfics both the differential eq. (1-6) and the differential eq. (1-38).
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FIGURE 1-6.—Solutions of equations (1-41) and (1-42).

For each value of c, these two solutions are the two branches of the same parab-
ola. They are shown in figure 1-6. The solutions of equation (1-41) are shown
as solid curves. The solutions of equation (1-42) are shown dashed. Notice
that one solution to equation (1-41) and one solution to equation (1-42)
pass through each point (such as point A4) lying above the line y=1, which is
consistent with the fundamental theorem.

Equation (1-43) shows that the points where y’=0 are exceptional.
But, for those values of y and y’ which satisfy equation (1-40), this can occur
only when y=1. However, when y=1, dG,/dy and dG:/dy become infinite;
and therefore the fundamental theorem does not apply along this line. Equa-
tions (1-41) and (1-42) (and, therefore, also eq. (1-40)) possess the solution

y=1

which lies along this line and which cannot be obtained for any choice of ¢
from either equation (1-44) or (1-45). Thus, y=1 is a singular solution.
Notice that there are three solutions of equation (1-40) passing through each
point on the line y=1.

Now consider the first-order differential equation ™~

F(x,y,y')=0 (1-46)

The singular solutions of this equation, if they exist, must also satisfy the
equation
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oF " \
ayr (x9y9y )'—0 (1'—4‘71

When y' can be eliminated between equations (1-40) and (1-41), we obtain
the equation

8(x,y)=0 ('1-48)

Since the singular solutions simultaneously satisfy equations (1-46) and
(1-47), they must also satisfy equation (1-48). Thus, every singular solution of
equation (1-46) can be found by solving equation (1-48). However, the con-
verse is by no means always true. Since the symbol p is often used to denote
y', equation (1-48) is sometimes called the p-discriminant equation and the
curve described by this equation is sometimes cailed the singular locus.
When attempting to find all solutions of a first-order equation, the solutions to
the p-discriminant equation should be checked to see if they also satisfy the
differential equation. .
For example, consider the first-order quadratic equation

F(x,y,y')=Av?2+By' +C=0

where 4, B, and C are functions of x and y. Upon eliminating y' between this
equation and the equation

oF .,
ay,—-2Ay+B—0

we find that the p-discriminant equation is

B2—4A4C=0
Thus, for the first-order equation
F(x, ¥, y') =xy'?—3yy’ +922=0 (1-49)
the p-discriminant equation is
¥ =4x?
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which has the two solutions y=:=2x%2 Direct substitution shows that both
these solutions satisfy equat ion (1-49); and, therefore, they are both singular
solutions,

1.6 LINEAR EQUATIONS

In this section we present a number of imporiant special properties which
are possessed by the solutions of linear equations. The general form of the
nth-order linear equation is given in equation (1-7). If fi(x) and fz(x) are
any two solutions to a linear homogeneous differential equation and ¢; and
c2 are any constants, the function

y= ctfi(%) +cafe (x) (1-50)

is also a solution. This linear superposition principle is extremely important
" in analysis. It can easily be extended to include linear combinations of any
number of solutions. Notice that the homogeneous equation always possesses
the trivial solution y=0.

The equation obtained from a particular linear equation of the form 1-7)
by setting b(x) equal to zero is called the associated homogeneous equation.
of this equation. Any solution to the associated homogeneous equation is
called a homogeneous solution of the equation. If f(x) is any solution of equation
(I-7) and if fu(x) is any homogeneous solution of this equation, the function

f(x) +cfu(x)

is also a solution. Of course, ithe superposiiion prmcxple holds only for the
homogeneous solutions of a linear equation.

Notice that the linear equation (1-7) can always be written in the normal
form (1-19) with

an—l ’ an

” P b (1-51)

a,
GC=—— y{n—-1) — R
ao :Y(

for all values of x where the coefficient a¢(x) is not equal to zero. It follows
that for these values of x

3G _  an-j (x) - - .
30 as(x) forj=0,1,2, . . .,n~—1 (1-52)
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Now suppose that the coefficients ao, a;, . . ., an, b of equation (1-7) are
all continuous in some finite ** interval ’

a<x<p (1-53)

Then if ao(x) does not vanish at any point of this interval, it will always be
possible to find a constant K such that,

_ an—j(x) . .
—_ao(x) =K forj=1,2,3, .. .,n—1

and for all x in the interval (1-53). It can also be seen from equations (1-51)
and (1-52) that the partial derivatives (1-21) are continuous for all values of
¥, ¥, ... ¥ and all values of x in this intervai. Hence, in this case, G
not only satisfies the conditions imposed in the fundamental theorem, but it
satisfies the more restrictive conditions given immediately following it.

We therefore conclude that for linear equations the fundamental theorem
can be stated in the following way: '

Let the coefficients ao(x), ai(x), . . ., ax(x), b(x) of equation (1-7) be con-
tinuous on some interval o < x < 8 which contains the point xo, and suppose
that the function a¢(x) does not vanish in this interval. Then for any real numbers .
Yo, . . ., Y, there is a unique solution y =1(x) of equation (1-7) satisfying the
initial conditions

y(x0)=Yo,y (o)=Y, . . .,y "V (x0)=Yn_

And this solution satisfies the differential equation on the entire interval
a<<x<pf.

If the linear equation (1-7) has coefficients which are continuous in some
interval, the points in that interval where the coefficient ao(x) vanishes are
called singular points of the equation. We shall have more to say about such
points subsequently. : .

A set of functions g;(x), &(x), . . ., g(x) is said to be linearly inde-
pendent in an interval if it is impossible to find constants ¢, . . ., cn which
are not all zeros such that the expression :

22 This means that neither a nor 8 is equal to infinity.
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agi{x) +ege(x)+ . . . +cngn(x)

is equal to zero at all points (i.e., identically) of the interval. A set of functions
which is not linearly independent is said to be linearly dependent.

If the set of functions gi1(x), . . ., &(x) is linearly independent, no one
of these functions can be expressed as a linear combination of the others.
Hence, if a; # 0, it will not be possible to express the function

fx)=agi(x) +ag(x)+ . . . +anga(x) (1-54)
in the form
f(x)=egi(x) +ege(x)+ . . . +eii8i—i(x) teiigia(x)+ . . . +engalx)

in which the function gi(x) no longer appears. Thus the constants appearing
in equation (1-54) are independent.?

For example, the functions g;(x) =2x—5 and g (x) =6x—15 are not
linearly independent since

c181(x) + coga(x) =0
when ¢;=3 and c;=— 1. However, the functions
g,(x)=2xv—5 and & (x)=2x+5
are linearly independeni.

Let g1, &2, - - ., & be a set of (n—1)-times continuously differentiable
functions. The determinant

& 82 . e &n

81 & ... &
W(g"g'b . . ‘ign)'::—

gSn-l) gsn-l) gsln—l)

23 This means that eq. (1-54) is not expressible in terms of fewer than n constants,
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is called the Wronskian of these functions. Now suppose that the functions

g1, &, - - -, & are linearly dependent on some interval. Then there exist
constants c1, ¢z, . . ., Cqnot all zero such that
cig1(x) tega(x)+ . . . +cnga(x)=0

at every point of the interval. Hence, we can differentiate this expression
n— 1 times to obtain

cig(x) + cegy(x) +. ..+ cug(x) =0

18V (x) + e8P (x) +. . .+ caglt-V(x) =0

This gives us a set of n linear equations for the n nonzero constants
i, C2, - . -, Cn. If these equations are to be solvable for the constants at all
points of the interval, the Wronskian must vanish at all points of this interval.
Hence, we can conclude that if the set g, g, . . ., & of (n — 1)-times continu-
ously differentiable functions is linearly dependent on the interval a < x < 8,
.the Wronskian of these functions must vanisk at all points of this interval.
- Another way of saying this is that if the Wronskian of a set g1, g, . . ., g
of (n — 1)-times continuously differentiable functions does not vanish at every
point of the interval a < x < f3, these functions are linearly independent on this
interval.

Thus, the Wronskian of the functions (discussed in the previous example)
g1(x)=2x—5 and g(x)=6x—15is

2x—5 6x—15

W(glo gZ) =
| 2 6

=(2x—5)6—2(6x—15) =0
And this shows that these functions are linearly dependent. However, the

Wronskian of the linearly independent functions g;(x) = 2x — 5 and g(x) =
2x+ 35 is

27
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2x—5 2x+5
W(gl, g2)= =_20
2 2 0

which is certainly not equal to zero.
Now consider the associated homogeneous equation of equation (1-7)

aoyM+a -0+ | |+ a1y +ay=0 {1-55)
and suppose that the coefficients ao, @;, . . ., anare continuous in the interval
asx<f (1-56)

and that ao(xx) does not vanish on this interval. We shall now show that anyn
solutions fi(x), . . ., f,(x) of equation (1-55) are linearly dependent on the
interval (1-56) if, and only if, their Wronskian W(fy, f., . . ., f,) vanishes at
every point of this interval.

Another way of saying this is that the n solutions fi(x), . . ., fo(%) of
equation (1-55) are linearly independent on the interval (1-56) if, and only
if, the Wronskian W(f,, . . ., f,) is not equal to zero at some point of this
interval.

We have already shown that any set of (n—1)-times continuously differ-
entiable functions is linearly dependent on an interval only if their Wronskian
vanishes at every point of this interval. Hence, it is certainly true for a set of
n solutions.?* In order to show that, conversely, the vanishing of the Wronskian
implies that the solutions are linearly dependent, suppose that W (1, /2, . . .,
f») vanishes at every point of the interval (1-56) and let xo be any point of this
interval. Then the Wronskian certainly vanishes at this point, and therefore
the system of n equations

24 Recall that the definition of a solution requires that it be n — 1 times continuously differentiable.
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cfilxe) + cfilxe) + ...+ ofix)=0
cfi(xo) + cfy(x) + ...+ cf (%) =0
' ' ‘ L (1-57)
clf(l"'l)(xo) -+ Cgfgl—l) (xo)+ . e +c,,f(,{“1)(xo)=OJ
has a solution ¢,=¢,, ¢2=¢», . . ., Cx=Cn such that the constants ¢, ¢z, . . .,
Cn are not all zeros. Hence, we can.define a function f(x) by
fx)=eh(x) +&fe(x)+ . . . +Tfalx) (1-58)

Then it foliows_from the linear superposition principle that f(x) is a solution to
equation (1-55) in the interval (1-56). And differentiating equation {1-58)
n—1 times shows that

f=tfi + af +...+ Efa

fl=efi + &ff +...+ &f}

f(n-l):_-‘élf(ln—-l) __52f§2n—1) + ... +5"f(,:1-1)

Hence, upon setting x= %o in this system and using equation (1-57), we find
that the solution fsatisfies the n initial conditions

flxo) =f"(x0)= . . . =f0-1(x0) =0

Since the trivial solution of the homogeneous equation (1-55) also satisfies
these conditions and the fundamental theorem shows that there is only one
such solution, we therefore conclude that f(x) is equal to zero at every point
of the interval (1-56). Therefore,

efi(x) Feaho(x) + . . . +Eufu(x)=0
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at every point of the interval (1-56). But since the constants éi, é, . . .,
¢n are not all zero, this implies that the set fi, f3, . . ., fr is linearly dependent
and therefore proves the assertion.

We shall now show that the linear homogeneous equation (1-55) always
has n linearly independent solutions on the interval (1-56). To this end notice
that for any point x, of this interval the fundamental theorem shows that equa-
tion (1-55) has n solutions fi(x), f2(x), . . ., fa(x) which satisfy the initial
conditions

fi(xw) =1
flxo)=f"(x)=". . .=F"V(x)=0
and forr=2,3, . . .,n |
frlxo) =fl ()= . . . =fir-2(x%) =0
S (x0) =1
S (xe) =fir+ 0 (xo) = . . . =fn-1) (x0)=0

It is easy to see from these conditions that the Wronskian of these n solutions
has the value unity at the point xo. Thus, it is not zero at every point of the
interval @« <x <@, and we can therefore conclude that these n solutions are
linearly independent.

For example, the second-order differential equation

d?
ai T =0

has the two solutions y=sin x and y = cos «x.
The Wronskian of these solutions is

sin x cosS X
W (sin x, cos x) =
coS X sin x

=—sgin2x—cos2 x=—1#0
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Hence, the solutions are linearly independent.

If £y, fs, . . ., f, are any n linearly independent solutions of equation
(I-53) on the interval (1-56), and if h(x) is any other solution of equation
(I-59) on this interval, there exist constants ¢y, Gy, . . ., ¢, such that

h(x)=cfi(x)+Cafe(x) + . . .+ cnfa(x) (1-59)

on the entire interval.

This means that every solution to the equation on this interval can be
obtained from the general solution

f(;_r,cl,cm « sy =cifi(x) teafe(x) + . . L Fenfa(x)

In order te prove this assertion, notice that since fi, . . ., fx are linearly
independent, W (f1, fe, . . ., fn) cannoi be zero at every point of the interval

(1-56). Hence, there exists a point, say xo, for which the Wronskian is not zero.
The n equations -

h(xo) =&tfi(x)  +  Gofalxa)+ . . . +onfalze) )

B (%) =Eifi(%0)  +  Gofi(do)+ . . . +Enfl(x0)
> (1-60)

ﬁ(n-l)(xo)=adsn—1)(xo)+ézfg"‘”(xo)+ ... Fefin-n (xo)/

can therefore be solved for the n constants ¢,, 3, . . ., ¢a». Hence, the linear
superposition principle shows that the function g(x) defined by

gx) =cifi(x) +efe(x) + . . . +Eufu(x) (1-61)

is a solution to equation (1-55) on the interval (1-56). And it follows from
equation (1-60) that

h(xo) =g(x0), A’ (x0) =& (x0), . . ., AV (x0) =g"~1) (o)

But since the fundamental theorem shows that there is only one solution
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satisfying a set of n initial conditions, we can conclude that g(x) =h(x) for
all x on the interval (1-56). Equation (1-61) now shows that equation (1-59)
holds, and this proves the assertion.
It is easy to see from these results that equatlon (1—56) cannot possess
n+1 linearly independent solutions on the interval (1-56).
' Now consider the general linear equation (1-7) and suppose that the
coefficients ao(x), ai(x), . . ., an(x), b(x) are continuous on thc interval

asx<f (1-62)

and that ao(x) does not vanish at any point of this interval. Let fo{x) be any
particular solution of equation (1-7); and let fi, f2, . . ., fa be any n linearly
independent solutions of the associated homogeneous equation. Then if h(x)
satisfies equatwn (I-7) on this Lnterval we can find n constants ¢y, . . ., Cp
such that

h(x)=cilx)+ . .. +5;fn(x)+ﬁ)(x) (1-63)

on the entire interval.

This means that every solution on the interval can be obtained from the
general solution

flx,c15¢, . . ., cn)=clfl(x5+c2f2(x)+ e o Feu(x) H(x)  (1-64)

In order to prove this assertion, notice that A (x) —fo(x) is a solution to the as-
sociated homogeneous equation of equation (1-7). Hence, we can find constants
Cl, cl, e G ey Cn SUCh that

h(x) —fo(x)=cfi(x) +ecafe(x)+ . . . +Cifulx)

This shows that equation (1-64) holds and prexes the assertion.
The general solution of the associated homugeucuus equation

cfi(x) +efalx)+ . . L Henfalx)

which appears in the general solution (1-64) of the nonhomogeneous equation
(1-7) is called the complementary Junction. And any set of n linearly inde-
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pendent homogeneous solutions is known as a set of fundamental solutions
to the homogeneous equation.
For example, the complementary function of the second-order equation

dy
—+y=x (1-65)
dt Y ‘

is ¢; cos x+c2 sin x where ¢, and ¢, are arbitrary constants. A particular

solution to this equation is y=x. Then

y=c;cosx+casinx+x
is a general solution of equation (1-65), and any other particular solution of

this equation can be obtained by assigning particular numerical values to the
constants.c; and C».
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CHAPTER 2

Kirst-Order Equations

In this chapter a number of elementary techniques for obtaining explicit
solutions for certain types of first-order equations are developed. These
equations are chosen for consideration because they are simple enough to
be solved explicitly and, at the same time, occur frequently enough in practice
so that they are worth solving. As it happens, these equations are all of the
first degree.

2.1 SYMMETRIC NOTATION FOR EQUATIONS OF FIRST DEGREE

The first-order differential equation of the first degree is an equation of the
form

¥'N(x,¥)+M(x,y)=0 (2-1) |

We shall suppose that M and N possess continuous first partial derivatives in
some domain D of the x, y plane. If N(x, y) were nonzero at every pomt of
D, we could write equation (2-1) in the normal form

y' =flx,y) = ~%(%;1,)1 (2-2)

and the fundamental theorem would guarantee that this equation have a
unique solution passing through cach point of D. Points of D where N(x,y)=0
are called singular points of the equation.

In equation (2-1), y is considered as the dependent variable. The solutions
of this equation are functions of the form
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y=f(x) (2-3)
On the other hand, the equation
& M(x,9) +N(x3) =0 (2-4)

which is closely related to equation (2—1) possesses solutions which are func-
tions of the form

x=g(y) (2-5)

The singular points of this equation occur when M(x, y) =0.

However, in any domain in which neither equation (2-1) nor (2—4) has a
singular point, any solution (2—3) of equation (2-1) can be solved for x to obtain
a solution of the form (2-5) of equation (2—4), and conversely. Thus, for many
purposes, it is not necessary to distinguish between equations (2-1) and (2-2).
When this is the case, we can intr. Juce the symmetrical notation

M(x,y)dx+N(x, y)dy=0 (2-6)

If M(x, ) and N(x, y) are both not zero, we understand this notation to
denote either equation (2-1) or equation (2—4). When M (x,y) =0 but N(x, y)
# 0, the existence of the solution (2—-3) of equation (2-1) is guaranteed by the
fundamental theorem, but that of equation (2—4) is not.25 Hence, in the neigh-
borhood of a noint where M(x,y) =0 we understand the notation (2-6) to
denote equation (2-1). Similarly, when N(x, y) =0 but M(x,y) # 0, we under-
stand the notation (2-6) to denote equation (2—4). The fundamental theorem

does not guarantee that either equation will possess solutions at points
where M(x,y) and N(x,y) are both zero, and we therefore say that such
points are singular points of equation (2-6).

*3At such points, dx/dy= and dy/dx=0; hence, dx/dy is not continuous.

36



FIRST-ORDER EQUATIONS

2.2 EXACT EQUATIONS

The first-order differential equation of the first degree

M(x,y)dx+N(x,y)dy=0 \ (2-7)

with M and VN detined and continuous in some domain D, is said to be exact
in D if the line integral

§ Mz, s+ Nz, )]

has the same value for all paths of integration which lie in D and which have the
same end points. This is equivalent to requiring that the integral vanish-around

every closed path within D,
It is shown in books on calculus that the differential equation (2-7) is

exact if, and only if, there exisis a continuously differentiable function ¢ (x, y)
such that26
dd

_0¢ _9¢ _
M——ax and N 3y (2-8)

Then the function ¢, which is defined only to within an additive constant,
is given by
(x,y) ]
d(x,y)= f (A 14+ Ndy) + constant (2-9)

(ros¥o)

where (xy, y0) is any fixed point and the integral is carried out over any curve
I' within D which joins the fixed point (xo, yo) with the variable point (x, y).

Suppose that equation (2-7) is exact. Then it follows from equation (2-8)
that the total derivative of ¢ with respect to x along any direction is

d¢_d¢ 8¢ ,_ : _
T ax Tay Y =MAYN (2-10)

Similarly, the total derivative with respect toy is

8 Alternatively, we can say that M dx+ N dy is an exact differential of the function ¢ or that db=M dx+ N dy.
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do_0¢  opdx_ . dx . _
& =3y Tama Nt oM (2-11)

Since the differential equation (2-7) denotes either the equation

M+y'N=0
or the equation
N+% M=0
dy

equations (2-10) and (2-11) show that ¢ is constant along every solution
curve of equation (2-7). Hence, ¢ is an integral of equation (2-7). However,
for a first-order equation, finding its integral is equivalent to finding its solu-
tion in implicit form. Thus, an exact equation can effectively be solved SImply
by carrying out the integral (2-9) along any convenient path.

It is easy to see by.differentiating equations (2-8) and interchanging the
order of differentiation that, if M and N are continuously dlfferentlable,
necessary condition for equation (2-7) to be exact is that

aM _oN _19)
= o (2-12).

Now suppose that the domain D has no holes. That is, it is similar to the
domain shown in figure 2-1(a) but not the one shown in figure 2-1(b). Such a
domain is said to be simply connected.

Let T be any closed curve within D and let R be the region enclosed by
T, as shown schematically in figure 2-2. Then Green’s theorem

f[de—t—Ndy] ” (ﬁv—é— dx dy

shows that condition (2-12) is also a sufficient condition for exactness. If D
were not simply connected, condition (2-12) wou_ld not be sufficient to ensure
that the line integral will always vanish along a closed path such a$ T in figure
2-2.
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(a) Domain has no holes. (b) Domain has a single hole.

FIGURE 2—-1. —Singly and multiply connected domains.

FIGURE 2-2.—Path of integration within D,

We shall always suppose that the conditions of differentiability and con-
nectedness given in the preceding paragraphs are satisfied and therefore that
equation (2—12) is the necessary and sufficient condition for equation (2—7)
to be exact.

For example, consider the equation

2x—y 2y+x
xz + y2 xZ + y2 ’

dy=0
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(xo, y) {x, y)

{xg. ¥g!

FiGURE 2-3.—Path of integration for finding integral.

Then

oM _ 3 (2x— y) _yz—x2—4xy
( T
and

oN _ 2y+x) y2 —x2—d4xy
9x  ox\x2+y2 (x2+ y2)2

Hence, equation (2-12) holds and the diﬁ'erential equation is exact. Therefore,
carrying out the integral (2-9) along the path depicted in figure 2-3 shows that

v2y+xo T 2x—v
¢(x,y)= f 2+2}+ R
/

To
x
= In(x2+y2) —tan-! -};+ constant

is an integral of the equation.

Unfortunately, the majority of first-degree equations encountered in
practice are not exact. It is therefore natural to ask whether there exists a
function A (x, y) such that the equation

MM dx+ N dy) =0 (2-13)
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(obtained by multiplying both sides of eq. (2-7) by A) is exact. It can be shown
(ref. 3, p. 27) that such a function always exists, provided only that equation
(2-7) possesses exacily one general solution. It is called an integrating factor.
Integrating factors are certainly not unique for, if A is an integrating factor of
a given first-order equation, so is cA for any constant c.

Now if A is an integrating factor for equation (2—7), the condition (2—12)
for exactness must hold for equation (2—13). Hence,

3 (AM) _ 3 (AN)
dy 0x

or -

oA

M=

oM aN) 0 2-14)

Nax“‘( 3y ~ox

Thus, A is the solution of a linear partial differential equation (see section 3.3)
which is usually more difficult to solve than the original ordinary differential
equation. However, since it can be shown that every solution of equation
(2-14) is an integrating factor of equation (2-7), it is only necessary to find a
single particular solution to equation (2—14).

Although, in general, finding an integrating factor is quite difficult, 1t is
sometimes possible to accomplish this simply by inspection. For example,
upon multiplying the equation

[f(x)+y]ldx—xdy=0
by 1/x2 we obtain the equation
L) +y1da—Ldy=0
x2 Y o Y

And since 3/dy[(f+y)/x*]=1/x2 and 8/dx(—1/x)=1/+%, this equation is
exact. Then carrying out the line integral (2—9) shows that the differential
equation possesses the integral

Y, [fx)
==L+ [ L2 ax
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2.3 EQUATIONS OF THE» TYPE 8(y)y' =f(x)+ h(x)G ( f flx)dx— f g(Y)dy)

.Many of the differential equations which can be solved by classical
methods are special cases of the differential equation

— e+ f0) + 26 ( [ = [ s)dy) | dx=0  @-15)

where g(y),f(x), h(x), and G can be any functions of their arguments. In order
to obtain a solution to this equation put

U= [ fdx- [ e(ndy
Then dU = f(x)dx—g(y)dy and equation (2—15) can be written as
dU+h(x)G(U)dx=0

It is easy to see that 1/G(U) is an integrating factor for this differential equation
and therefore that the equation

dU
G(U)+h(x)dx 0

is exact. Hence, it follows from equation (2—-9) that

[ fix)dx— | g{y)dy 1

¢ Ef ) dU+fh(x)dx constant (2—16)

is an integral of equation (2—15).

We now show that many of the first-order normal equations, which are
solvable by the classical methods, can be obtained by specializing the functions
f, &, h, and G in equation (2—15) and, therefore, that the solutions of these
equations (actuaily the integrals) are all given by equation (2—16).
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First put G(U)=1, and k(x)=0. Then equation (2—15) becomes the
general separable equation

—g(y)dy+ f(x)dx=0

and equation (2—16) shows that its integral is simply

b= [ r@adx= [ e()ay

Now put G(U)=(a/B)ev*H(e~Y)—1, g(y)=aly, f(x)=h(x)=p/x.
Then equation (2—15) becomes

dy =6l 1H (—y-;) dx < 2-17)

X

which is the isobaric (or one-dimensional) equation. In this case, the integral
(2—16) becomes

In (2B/y2)
f > av —In xA=constant
[—3 elUleH (e-U) —1

or

(~|zB) |
f dv —In x#=constant
gV HY) =V

If we put a=B=1 in equation (2—17), we obtain the homogeneous equation
dy=H (f) dx (2-18)

And equation (2—16) shows that its solution is

eV
H(V) - V n x=constant
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DIFFERENTIAL EQUATIONS

In order to recognize whether a given differential equation has. the form
(2-17), it is necessary to be able to determine whether any given function
n(x, y) can be expressed in the form

E=

X

xela)-1Ff (ZE) (2-19)

A necessary and sufficient condition that n(x, ¥) can be expressed in this form
is that there exist a number p such that

7 (tx, tPy) =P~ (x, y) (2-20)

for all values of ¢.
In order to show that a function which satisfies.the condition (2-20) can
always be expressed in the form (2-19), put t=1/x in equation (2—20) to get

n (1, x_:};,) =x1—p7’(x, y)

Now choose a number « and define the number 8 and the function H(U) by
B=pa and H(U) =1(1, UV*), respectively. Then

1a
H (;y%) =" [1@_:) ]"n (1, x%,/) =" (1, ’xy'n) =i~ (2, 7)

which shows that n(x, y) can be expressed in the form (2-19).
For example, replace y by ytV/® and x by xt in the function

y(x—vy%aln y+ y*1n x)

x22(aln y—In x)

n(x, y)=

to show that
7 (xt, ytila) = f1-Dlay (x,y)

Hence, this function satisfies condition (2—20), and it can be put in the form
(2—19) by intreducing the variable y“/x to obtain
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@]

In —
x

N (x, y) = 21/

In the important special case where = B (corresponding to the homogeneous
eq. (2-18)), condition (2—20) reduces to

n(tx, ty) =71(x,y) @-21)

A function of two variables which satisfies condition (2—21) is said to be homo-
geneous of degree zero, which, of course, accounts for the name given to
equation (2—18). More generally, a function of the n variables x,, x,, . . ., xn,
say n(x, x2, . . ., xn), is said to be homogeneous of degree k in the variables
X1, X2, . - ., X If it satisfies the condition

n(tx1, tx2, . . ., txn) = tFn (21, %2, .. < s Xn) (2-22)

for all values of :.
Another well-known special case of (2—15) is obtained by putting

G(U) = e -1V, h(x) = (x) exp [(k —1) f f(x)dx], and g(y) = 1]y
to obtain Bernoulli’s equation

dy=[f@)y+e@)rlde (2-23)
It follows from equation (2—16) that its solution is
exp [(k— 1) f f(x)dx-’

(k—1)y* ot f lp(x): exp [(k —1) ff.(x)dx] dx = con.s:;it%)

When k£ = 0, equation (2—23) reduces to the first-order linear equation

dy=[f(x)y + ¢(x)]dx (2-25)
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And equation (2—-24) shows that its solution is

y=el/% fe_”“’“‘ Y (x)dx + constant e/

2.4 RICCATI EQUATION

The Riccati equation

Y 1) +a@)y + hx)y? (2-26)

can be thought of as a generalization of the linear first-order equation (2—25).
This equation is sometimes called the generalized Riccati equation since
Riccati actually studied the special case

dy
— 2 = m
A + by* =cx
where b and c are constants.

If a particular-solution y; of equation (2-26) is known, the general solu-
tion y of this equation is :

1
¥y =9 —+ —[j
where U is the general solution of the linear equation

‘i,U+ g+ 27h)U +h=0

which was solved in section 2.3. This follows from the relation

o e =" =~y — by — Uz(d gU+h+23’th)

_ l[dU

5[t g+ 29h)U + h]

!
o
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Even if a particular solution is not known, it is still possible to reduce
the problem of solving equation (2—26) to the problem of solving a linear equa-

tion; but in this case the equation is of second order. In order to accomplish
. this put '

U = e~
Then U'/U = — yh and
U'=—yhU — y'hU — yh'U = (y*h2 — y'h)U — yh'U
=— (f+gy)hU—yh'U
=—fhU — y(gh + R'\U

__ LAY
- th+(g+ D
Hence, U satisfies the second-order linear homogeneous differential equation

U — (g+ %) U + U =0

The converse of this statement is also true. That is, every second-order linear
homogeneous equation can be transformed into a Riccati equation.

Since sfnear second-order equations will be discussed extensively in
chapter 6, we shall not consider the Riccati equation further here.
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CHAPTER 3

Systems of Equations

In this chapter, a number of important properties of systems of differential
equations-are discussed. We shall also show how the solutions of these systems
can be used to obtain solutions to certain types of first-order partial differential

equations.

3.1. FIRST-ORDER NORMAL SYSTEMS

~ In certain applications it is necessary to deal with systems of simultaneous
differential equations. The set of n first-order normal differential equations in

the n dependent variables v, ¥2, . . ., y»

dys _

Ga(x, y1, ¥z, - -
dx 2(x, 71 }’2”

:z§==(%(x,ya,y@,..

L) yn)

(X yn)

(3-1)

%=Gn(x, Y1, V2 - -

o> Yn)

is called a normal system. It provides a standard form to which all normal
differential equations and all systems of normal differential equations can be
reduced. For example, by introducing the new dependent variables y; defined
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by

ymz%. fori=1,2,...n—1

the nth-order normal equation (1-19) can be transformed into a first-order
normal system

dy,
dst:_y2

dZY2__

dx 3
dJ’n—l=

dx ™

dya
F=G(x, ¥1, 25 « + - Yn)

However, it is by no means always possible to transform a first-order normal
system into a single nth-order equation,

In order to obtain a geometric interpretation of the system (3—1) and its
solutions, it is again convenient to think of the variables x, i, y2, . . ., ¥a as
being the coordinates of an (n+1)-dimensional space. The definitions of a
domain and of a neighborhood in this space were given in section 1.1. Based on
these ideas, the fundamentai theorem for the first-order normal system can be
stated as follows: ‘
" _Suppose that the functions G fori=1,2, . . .,n are defined and continuous
in some domain D and that the partial derivatives

a6

forlsi<n;l<j<n
0y; J

are continuous in D. Then for each point (xo, ¥?, ¥, . - ., YY) of D equation
(3—1) has precisely one solution :
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y1=f1(x)

y2= fa(x)

- - 3—2)
¥n= fu(x)

which is defined on some interval a < x < 8 containing the point xo and satisfies
the initial conditions

filxo) =92, folxo) =92 . . ., fulxo) =72 (3-3)

The solutions of the system (3—1) can be visualized as curves in the
(n+ 1)-dimensional space. Then the fundamental theorem states that there is
precisely one such curve passing through each point of the domain D in this
space.

If H(x, y1, ¥2, . . ., yn) is a nonconstant function such that every solution
to the system (3—1) satisfies an equation of the form3’

H(x, ¥1, ¥2, . . ., ¥n) =constant . (3-4)

(the constant may be different for different solutions), then H(x, y1, ¥2 . - -5 ¥n)
is called an integral (or first integral) of the system (3—1). Thus, an integral of
the system (3—1) is a function H which is not identically constant but is constant
along each solution curve of the system. Therefore, upon differentiating H
along any solution curve of the system (3—1) we obtain

dH _ oH _9H dy, 4 OH dyn
dx 9x Odyidx 77 Oyn dx
_oH_ oH oH [, _
- ax +8_’y1 Gl+- . -+ayn Gn O

27 Notice that this definition of an integral is consistent with the one given in chapter 1 for the nth-order normal
equation when the latter equation s transformed, by the procedure just described, into a first-order normal system.
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provided that H possesses continuous first partial derivatives. But each point
of D lies on a solution curve of the system (3—1). Hence, H satisfies the equation

OH | oH oH OH . _
% +T%GI+5;;Q+. . '+3}’n G.=0 (3-5)

at every point of D. Conversely, if H is any solution to equation (3—5) in D, it
is certainly constant along every solution carve of the system (3—1). Hence, H
must be an integral of this system. We have now shown that a nonconstant
function H with continuous partial derivatives is an integral of the system
(3-1) in D if, and only if, it satisfies the first-order linear partial differential
equation (3-5).

Each integral H of the system (3—1) determines a family of n-dimensional
hypersurfaces in the region D, and every solution curve lies on one of these
hypersurfaces. Now suppose that we have found n integrals, say H,, Ha,
. . ., Hq, of the system (3—1) which are defined in the region D. If the Jacobian
determinant

ayl . e s a-yn

a(Hl, e o o9 Hn) —

a(yh [ ) }’n) (3 6)
oH,  oHa
dy1 = " Oyn

of these integrals is different from zero in D, it will be possible?® to solve the n
equations

Hi(%, %15+« y¥n) =C1ye v s Ha(x,%1,. . ., ¥n) =cCn (3-7)
for y1, . . ., ¥» as functions of x. And these functions will depend o= the n
arbitrary constants ¢;, . . ., ca. The n equations (3—7) therefore implicitly =

determine an n-parameter family of curves in the (n + 1)-dimensional space.
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Hilx, ¥y, ¥9) = Cq

2
Hl(xl Y1. YZ) = CZ

Hl(x, Y o) = Cy

n

Holx, ¥y, ¥o) = C4

Halx, y1, ¥2) = C5 AN

\
“Yp = f]_(X)
Yo = fz(X)

FIGURE 3—1. — Relation between integral curves and surfaces of ordinary differential equations.

But these curves must lie along the various mutual intersections of n hyper-
surfaces ‘ -

H, = constant, H: == constant, C e H,= constant

This is shown schematically in figure 3—1 for the case where n=2. However,
since every solution curve of the system (3—1) must simultaneously lie on n
hypersurfaces, each of which corresponds to one of the n integrals H,, . . .,
H,, the solution curves must also lie along these intersections. Therefore,
every solution to the system (3—1) can be obtained as an implicit solution of the
n equations (3—7). That is, the n integrals H,, ..., H, which have a non-
vanishing Jacobian in D are just sufficient to completely determine all the solu-
tions of the systems (3-1) in D. However, the requirement that the Jacobian
(3-6) be different from zero in D implies that the integrals are functionally
independent 2° in D. We therefore anticipate that the system (3—1) will possess
n functionally independent integrals. This turns out to be the case, at least
- when the region D is chosen to-be sufficiently small (see'ref.- 7).~~~ -

29 The functions H,, . . ., H, are functionally dependent in D if there exists a nonconstant function w of Hy, . . ., )
Hy, such that w(Hy, . . ., Hx) =0 for all x, y1, . . ., yn in D. See ref. 6.
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For example, consider the normal system

dy,

=G\ (%, y1, y2) = 2
dx h) =
d)’ XYz
_G (x9y9 )_
d 2 1y Y2 y_z %

which is defined in some region D which does not include the planes y; == y,.
Since the two functions H,(x, y1, ¥:) =¥y, and H.=y2+ y2—x? satisfy the

equations
oH, aHl aHl Xy XYy
= Gi+— Gz=0+-( ')+ ( 2)50
' 7 \y Y \yi—y2

dx a Y1 Y2 2 — oyl

1 2

and

Hi
o

oHy  oHy ,  0Hy . _ =)
9% — ayl G|+ a ¥ G; 2x+2y. (y —y2 +2

1 2

XY
» (7225)
yi—yi

we know that H, and H. are two integrals ot this system. Since

a(H19H2) _— ye

= =2
a(quy2) |29, 2)’_, (y2 )

the Jacobian of these functions does not vanish in D. And this shows that H;
and H; are functionally independent. The solution curves lie on the inter-
sections of the surfaces H,=constant with the surfaces H,=constant. Thus,
every solution curve lies on an intersection of a hyperbollc cylmder and a
- hyperboloid (or cone). -

Now let H,, H,, . . Hn+| be any n-+1 mtegrals of the system (3— 1) in
some domain D. Since each of these integrals must satisfy equation (3—5), it
follows that
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oH, . oH; oH, . _
ax + ay_l CI + * s ® + ayn Gn — 0
oH» aH, oH,
—_— —_:_ G . . . + o— b{ -
ax + ay] 1 + ay" G 1 0
OH per , 0H s 0Husr ~
ax + ay1 Gl + . s e + ay" G" - 0

And it must be possible to solve these equations for 1, G, G2, .

. ., Gp at

every point of D. However, this can happen only if the determinant of the

coeflicients
oH,  oH; oH,
0x y1 Yn
' 6H2 61‘12 aHz
ox Y1 dyn
a(Hlsts > . -,Hn+l)=
(X, y1, -« o, ¥n)
aI1n+1 aI'In+l aI'1n+1
Jx a)’I ayn

is zero at every point of D. But this means that H;, . .

., Hpsy are functionally

dependent. Hence, every set of n+1 integrals of the system (3-1) is function-
ally dependent. We have, therefore, shown that the system (3—1) possesses
precisely n functionally independent integrals (at least in a sufficiently small
region D).

If n functions I;(x, y1, . -
cally zero can be found such that

Il ("‘lll,‘l'_cl>+ . s s +In<(2_y"—c">
ax X

e ¥n)s o« oa In(xyy1, . . ., ya) not all identi-
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is equal to dF/dx for some nonconstant function F(x, y,, . . ., ¥a), then F
will be constant along every solution curve of the system (3-1). Hence, F
will be an integral of the system (3-1). The functions I,, . . ., In can be
thought of as integrating factors.?® Although it is usually difficult to find inte-
grating factors, they can sometimes be guessed at from the symmetry of the
problem. .

For example, consider the system

d

d‘

Ti%:ys—% » (3-8)
dve

g,)—?=yl—yz /

Then choosing I, =L, =I;=1 gives

1X [%— (yz—ys)]+ 1X [%2-— (ys—yl)] +1X [%1— (n —yz)]

_dn_ dy, dys _d
dx + dx + dx dx 12+ 5s)

Hence, H,=y,+y:+7v; is an integral of the system (3-8). Now choose I,=
2y1, I2=2y,, and I3=2y;. Then

dy, d d
2}’1[:1‘%-" (y2— 9’3)] +2y2[2%- (ya—yl)]+2y3[£-— (n —f)’2)]
dx d dx

d d d
=2yl—y—‘+2y2—%+2y3ﬁ=% (2 +52+52)

Hence, H,==y?+3%+3 is also an integral of the system (3-8). It is easy to
verify that H, and H; are functionally independent.

3 See section 2.2,
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Instead of interpreting the solution (3-2) of the normal system (3-1)
as the explicit equation of a curve in an (n-+1)-dimensional space with
coordinates x, ¥, . . ., ¥a, We can interpret it as the parametric equation
(with parametric variable x) of a curve in an n-dimensional space with coordi-
nates ¥1, . . ., ¥n. The parametric variable x may be the arc length or a similar
parameter for the solution curves (such as the time in a physical problem).
The fundamental theorem can still be used to show that there is a solution curve
passing through every point of any region of this n-dimensional space, provided
the functions G; satisfy the appropriate smoothness requirements, However,
except in a certain important special case (which is the topic of the next sec-
tion), it will usually not be true that only a single curve passes through each
point of this region. '

The simplicity of the first-order normal systems becomes apparent when
iequation (3—1) is written in vector notation. To this end we notice that the
coordinates of a point ¥1, . . .,¥nin the n-dimensional space can be interpreted
as the components of an n-dimensional vector y and we write 3!

y= (yhy% .. -9yn)

A vector is said to be a function of a single real variable x if its components
are functions of x. Thus, if (as in the case of the solution curve (3-2) of the
system (3-1)),

yl:.fl(x)9 o v ey yn:f"(x)
we write

y=£(x) = (i(x), . . ., fu(x))

3t Addition of two vectors and multiplication of a vector by a scalar are defined component-wise. Thus, if y=
{31y . - »yn)and x=(x,, . . ., xn) are vectors and ais anumber,y + x=({ys +x), . . ., (¥a+2a)),ay=(ay,...,
ayn). The length or magnitude of the vector y is denoted by |y| and is defined as the distance from the origin to the
point yi, . . ., ¥» Thus, |y|=(%+ . . . +2)"2 Notice that the riagnitude of a vector is zero if, and only if, its
components are all zeros. The dot product or inner product of two vectors y and x is denoted by y « x and is defined
by y-x=yaxi+ . . . +ysxsn. The dot product satisfies the Schwarz inequality |y - x| < |y| |x|, where the vertical
lines on the left are the absolute value of a pure number and those on the right denote the magnitude of vectors, Thus,
if {y| # 0 and |x] # 0 then |y - x|/ly] |x| <1 and this quantity can be interpreted as the cosine of the angle between
the vectors y and x. If y - x=0, we say that y and x are orthogonal; and if |y - x|/|y| |x] =1, we say that the vectors
are in the same direction. The vector (1,0, 0, . . ., 0) has unit magnitude and is in the direction of the y:-coordinate
axis. The vector 0,1,0,0, ., 0)'has unit magnitude and is in the direction of the ys-coordinate axis, etc. We denote
these vecters by ki, kz, etc. For more information, see ref. 8.
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Differentiation of vectors is defined component-wise, and we write

dzE(f_iy_l m>=df(x) _ (dﬁ(x) _ M)

dx dx’ " " 7 dx dx de " " dx
If f(y1, . . ., yn) is a function of the n variables y;, . . ., y» and y=
(%1, - . ., ¥n) denotes the vector corresponding to these variables, we write

S, -« o y) =£(y)

and say that fis a function of the vector variable y. More generally, we say that
a vector is a function of a vector variable if its components are. Thus, if y, =

H(x), - . ., ye=fa(x), then

y=£(x)=(h(x), . . ., fa(x))

is a vector function of the vector variable x.

Notice that there is no such thing as the derivative of a function of a vector
variable with respect to that variable, but only partial derivatives with respect
to the components of the vector variable. Thus, if ki, . . ., k, denote the unit
vectors in the directions of the coordinate axes, we deﬁne the vector gradient
operator V by

) g, I

Vf(x) = kl + kn a Xn

Just as in the three-dimensional case, the effect of operating with the gradient
operator on a scalar produces a vector.

A vector function is said to be continuous if its components are continu-
ous. Thus, in the system (3-1), each G; is a function of a real variable x and a
vector variable y and we write

Gi(x, y1, -« ., ) =0Gi(x, y)

If we let G be the vector whose components are G;, then G is a vector function
of the real variable x and the vector variable y and
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G(x’ y)= (Gl(x9 Y)5 LI Gn(x9 Y))

Hence, upon using the component-wise definition of differentiation of vec-
tors, the first-order normal system (3-1) can be written in the concise form

=G(x,y)"

When the first-order system (3-1) is written in this form, the analogy between
this system and a single first-order equation becomes particularly apparent.
32 AUTONOMOUS SYSTEMS g

When the functions G; in the system (3-1) do not involve the variable x
explicitly, the system is said to be autonomous and it can be written in the
form

dy,
d_—G (ylsy-s LI -,yn)
dy
d——Go(yx,yz, Y

(3-9)

d
'ﬁ'—" Gn(_'}’l,y'..’, « o 3 Yn
If the independent variable x is thought of as representing time, autonomous
systems can be interpreted as time-independent, or stationary, systems.
The first-order normal system of n— 1 equation

d
d_y;=cl()’1,)’2, s e ey yn—l,x) \
dy-
dy =Ga(y1, 92, + + s ¥n-1,%)
> - (3-10)
d n—
"g’;—l=cn—l()’1,3’2s . . -9yn—-l9x)/
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can always be transformed into an autonomous system in r variables which kas
the property that at least one of the functions on the right side never vanishes.
In order to do this, it is only necessary to introduce a new dependent variable

¥n by :'
Yn—=Xx

and then rewrite the system (3-10) in the form

d
'df}il"zcl()’uﬁ, .. -a)’n)

d
:1%-':62(}’1, j}’z, RN EE ] )’n)

%’—:Gn_l(yh Y2y o o o yn)

dyn

AL

dx

Conversely, if one of the G;’s of the autonemous system (3-9) in n variables
does not vanish in some domain D,, it can be transformed into a nonautonomous
system in n-1 variables plus an additional equation which can be solved to
determine the variable x oiice the remaining variables have been found. We
may assume without loss of generality that the notation has been so chosen
that G, does not vanish in Do. Now in order to accomplish this transformation
put

(3-11)

®1
]
R

and

forl<si=< (n—1) (3-12)

21
i
CplEcy
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Then the system (3-9) becomes

—-'=én(}’1,. o ey Yn-15 -’f)

E‘=G2(yl, o ey Y1, i‘)
(3-13)

d _ -~
y_’.l._l=cn-l (yl, o o9 Yn-1y j)
dx

and the equation which determines x once the system (3-13) is solved is

dx 1
dx_ _ 3-14
dx Gn(yl, . ooy Yn-1, x) ( )

It can now be shown that every solution to the system (3-13)in Dy is a
solution of the system (3~9), and conversely. Thus, we may say that the systems
(3-9) and (3-13) are equivalent in Dy.

The solutions of the system (3-9) in n variables can be found by solving
the n—1 simultaneous equations (3—13) to determine 1, . . ., ¥n-1 as functions
of ¥». And then a single equation obtained by substituting these solutions into
equation (3-14) can be solved to determine the parametric variable x as a
function of y,. In order to emphasize the connection between the autonomous
system of n equations (3-9) and the system of n—1 equations (3-13), the
former system is sometimes denoted symbolically by

dn_dy _dyn_
01—02— P —'Gn—dx

or, when finding the variable x is not important, by

dy, _dy: =dy,,
GG G " G
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Thus, for example, consider the autonomous system of three equations

dy .
d—xl=Gx (1, ¥2, ¥3) = my¥yzp¥

d
: df =Gz (31, 2, ¥3) = — nyiy: (3-15)

d .
'£=Gs(yl, Y2, ¥3) = ¥12Ys

Upon putting = y3 we get

dy
dx el =G, (y1,¥2, %) = myx
(3~16)
iy, .
_d—~"_ Cz()’x, J’z,x) = __7_':%'_2
and x is determined by the equation
de_ 1 _ 1
dx_Gs - ylyZi (3""17)
¢ The system (3-16) has the solution
LA ma2[2 my2/2
- y==ce =cie
Co
Y2=%n

Finally, equation (3—17) shows that x is related to % by

P _1._. -1 (_miz ~ |
x C3+c1c2 -1 exp 5 dx
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The interpretation of the solution of a normal system of n equations as a
curvein an n-dimensional space is particularly useful when the system is autono-
mous. This is the case because for autonomous systems, unlike nonautonomous
systems in general, there is usually only a single curve passing through each’
point in this space. We can show that this is the case by applying the funda-
mental theorem given in section 3.1 to the transformed system (3-13). This
theorem applies to the y;, . . ., yn-1, ¥ space in which the system (3-13) is
. defined. But in view of equation (3-11), we see that this is the same as the,
n-dimensional y;, . . ., ¥, space in which the untransformed autonomous
system (3-9) is defined. Thus, suppose that the functions G; have continuous
first partial derivatives with respect to all their arguments3? at every point
in some domain D of the n-dimensional ¥, . . ., ¥» space and that there is
no point of D where all the Gi’s simultaneously vanish. Then, because of the
continuity of the Gi’s, we can assert that for any point y?, . .- ., ¥? of D there
is a neighborhood Dy in which at least one of the G;’s is never equal to zero.
Within this neighborhood we can transform the normal sysiem (3-9) into the
system (3—-13) and apply the fundamental theorem in the region Dy. Since the
G:’s have continuous partial derivatives, we can conclude that the system (3—9)
has precisely one solution curve in the n-dimensional y,, . . ., y» space pass-
ing through the point y?, . . ., ¥%. Now suppose the notation is chosen so that
G, does not vanish in Dy. Then G, does not change sign in Dy, and equation
(3-14) shows that x is a monotonic function of % along any solution curve
in Do. Hence, we can take x as the parametric variable for the solution curve
instead of x. Since this is true for every point of D), we arrive at the follow-
ing conclusion:3 If the function G which appears in the first-order autonomous
system

+

26y (3-18)

possesses. continuous partial derivatives at every point of some domain D, and
if |G(y)| does not vanish at any point of D, the system (3-18) has exactly
one solution curve

32Ngtice that in this case the existence of the partial derivatives guarantees the continuity of the functions G;.
33We are using the vector notation introduced in section 3.1.
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y=£(x, yo) ‘ (3-19)

passing through each point y, of D.

Thus, we can think of the “solution vector” (3-19) as tracing out a con-
tinuous curve in the n-dimensional 51, . . ., y» space, which passes through
the point yo when the parametric variable takes on some value, say xo. Such
“solution curves’ are called integral curves of the system (3-18). These ideas
are illustrated in figure 3-2 for the case where n=3. - )

Notice that in crder to ensure that the system (3-18) has only one integral
curve passing through each point of D, it is necessary to require that |G(y)|,
the magnitude of G(y), does not vanish at any point of D. Points where |G (y)|=
0 are called critical points of the autonomous system (3-18).

If yo is a critical point of the system (3-18), this system must possess the
constant solution

Y=Yo

which is called an equilibrium solution.

For example, it may be verified by inspection that the solutions to the
autonomous system '

3

-f'()(, YO,

N

FIGURE 3—2.—Relation between solution vector and iniegral curve of differential equation.
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dy: __
dx = myi
dys _
dx =Y
with n > m, are
Y2 = c2e™

The point (0, 0) is a critical point. The integral curves of this system are the
loci of points
(D’2)m=k(}’1)"

where k=c}'/c}. These curves are shown for the case where m and n are
positive integers in figure 3-3. It can be seen from this figure that there is

2

FIGURE 3-3.—Integral curves for sample problem.
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exactly one integral curve passing through each point except the critical point
(0, 0).

A vector function which is defined at each point of an n-dimensional
space is said to constitute a “vector field.” Since a unique vector-valued
function G(y) corresponds to each autonomous system (3—18) and conversely,
we can say that each first-order autonomous system is characterized by
its vector field. : '

Consider a portion of an integral curve of the system (3-18) which passes
through a point y which is not a critical point and which lies in a domain D
where G(y) is continuously differentiable. Let S denote the arc length meas-
ured in some definite direction along this curve. Then

(dS)*=(dy1)*+ (dy=)*+ . . . + (dyn)?

or

_ /dy , dy
dS=+dx dx dx '

But equation (3-18) shows that

However, the vector dy/dS is the unit tangent vector to the integral curve
passing through y; and since there is an integral curve passing through each
point of D, we conclude that the vector field G(y) is tangent to the integral
curves of the system (3-18), except possibly at the critical points.

When n=3, we can imagine that the variable x represents time and the
autonomous system (3—18) represents the steady flow of a fluid in space. At
each point y in a certain region of this space the vector G(y) describes the
velocity of the fluid at that point in both magnitude and direction. The flow
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is steady because its ve'ocity depends only on position and does not vary with
time. The integral curve passing through the point yo may then be interpreted
as the streamline followed by all the fluid particles which have passed through
the point yo. The velocity field is tangent to the streamlines at every point ex-
cept at the critical points which correspond to “‘stagnation points’ where the
fluid velocity vanishes. At these points, it is possible for two or more stream-
lines to meet or for a given streamline to abruptly change direction.

By again applying the results obtained in section 3.1 to the autonomous
system (3—9) by means of the transformed system (3-13), we arrive at the
following conclusions: Suppose that D is a region of y;, . . ., y» space which
contains no critical points of the system (3-9) and'that G has continuous partial
derivatives at every point of D. Then a function H(y) of the vector variable
Y. in D which does not depend explicitly on x is a solution of the first-order
linear partial differential equation

oH oH v
Gi(y) 5;-4-. . .+ Galy) _y;=0 (3-20)
if, and only if, it is an integral of the autonomous system (3-9). If, in addition,
the region D is sufficiently small, the system (3-9) possesses precisely n—1
functionally independent integrals which are independent of x. This shows that
equation (3-20) possesses n — 1 functionally independent solutions.

The level surfaces of these integrals are hypersurfaces in the n-dimensional
Y1, - . -, ¥n space. The intersection of any n—1 of these hypersurfaces (no
two of which correspond to the same functionally independent integral) is
an integral curve of the system (3-9) in this space.

The partial differential equation can be written more compactly by using
the vector notation introduced in section 3.1 to obtain

G-VH=0

In this form the equation has an immediate geometrical interpretation. As in
three-dimensional space, the vector V H is perpendicular to the level surfaces
of the function H. Hence, the differential equation (3~20) merely states that the
vector field G is everywhere tangent to the level surfaces of its solutions. This
is consistent with the facts that the integral curves of the system (3-9) lie on
these level surfaces and that the vecior field G is tangent to these integral
curves.
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3.3 SOLUTIONS OF THE FIRST-ORDER LINEAR PARTIAL DIFFERENTIAL EQUATION

Since equation (3-20) cannot have n functionally independent solutions,
there must exist for any n solutions Hy, . . ., Hy of equation (3-20) a non-
constant function w such that

w(Hl9H29 .. -9Hn)=0

for all y1, . . ., ¥» in some region D. Now it can be shown (ref. 6) that this
equation can always be solved for H, to obtain

Hn__'."F(Hh H29 . -.-,Hn—l)

provided that H;, . . ., H,, are functionally independent. But since Hy, . . .,
H, were any solutions of equation (3—20), this shows that every solution of
equation (3-20) can be expressed as a function of any n—1 functionally inde-
pendent solutions. Conversely, it is easy to verify by direct substitution that if
H,, Hy, . . ., Hy-y are any solutions of equation (3—20) and F is any continu-
ously differentiable function of Hy, . . ., Hyp1, then F(H,, H,, . . ., Hy) is
also a solution of equation (3—20). Thus, we have shown that H is a sclution of
the linear partial differential equation (3-20) if, and only if, there is a function
F such that

H(y)=F(H:(y), . . ., Ho(y))

where Hi(y), . . ., Ha_1(y) are any n—1 functionally independent integrals
of the autonomous system (3-9) which do not depznd on x. '

Thus, the most general solution of the partial differential equation (3-20)
can be found if the system (3-9) of ordinary differential equations can be solved.
The differential equations (3—9) are therefore called the characteristic equations
of the partial differential equation (3—20) and their integral curves are called.
characteristic curves of the partial differential equation.

For example, the characteristic equations of the partial differential
equation

(2—) %‘;’;Hyg ) St (=) =0 (3-21)
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are the equations of the system (3~8). But we have shown that this system has
the two functionally independent integrals

H1=,')’1+,')’2+y3

Hy=y}+yi+y3

Thus, for every differentiable function F, the function
H=F(H,, H,)

must be a solution of equation (3-21). This can easily be verified by substitut--
ing the relations

E)I" _OF

oF .
JaH fOl'_]=l, 2’3

into equation (3-21).

The level surfaces of the integral H, are planes, and the level surfaces
of the integral H» are the surfaces of spheres. The intersections of the surfaces
H,= constant with the surfaces H,=constant are therefore circles. Hence,
the characteristic curves of equation (3-21) are circles.

3.4 QUASI-LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

There is also a close connection between the quasi-linear partial differential
equation

of
a:)’n 1

d
Gi(y1, - - -J’n-l’f)a—;:'*' e oGy, - - Y0, f)

=C,.(y1, . . .,:)’n-l,f) (3—22)

and the linear partial differential equation (3-20) and, therefore, also between
this equation and the autonomous system (3-9). In order to show this, let

H=h(y1, .. .,yn)
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be any solution of equation (3-20) such that dH/dy, is not identically zero.3
Then the implicit function theorem shows that there is a neighborhood D of
any point yo for which

H o (3-23)
Oyn
such that the equation
h(n, . . L ya)=a (3--24)
has a solution
yn’_“f(}ﬁ, . . -,yn-—l,cl) (3—25)

in D. This means that when equation (3-25) is substituted into equation (3-24),
the resulting expression is identically constant for all values of y;, . . ., yu_1.
Hence, upon differentiating this expression successively with respect to
¥1» . . ., ¥n—1, We obtain

d

0
1 ¥n I

oH  oH _of _
0Yn—1 aYn 0Yn—1

But when these relations are substituted into equation (3-20), we find that

OH(r _~ Of _ _ of \_
ayn (Gn GL ayl . s . Gn—l aynsl) "—'O

And, in view of equation (3-23), this shows that equation (3-25) is a solution
of equation (3-22).

34 This means that H is not independent of y,.
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Now there are n—1 functionally independent integrals H,, . . ., Hy_,
of the system (3-9), which are therefore functionally independent solutions

of equation (3—20). If there is some point y at which these integrals all satisfy
condition (3-23), we can find at least n — 1 functions

y"=.fl(yl7 LA }’n—-l, cl) )

( (3-26)

yn=f;t—1(}’l, o v o Y1, cn—l) J
which, respectively, satisfy the equations

Hi=h(y1, . . o Yn) =0 )

L (3-27)

Hn—l=hn—1(}ﬁ, e ey yn)=cn—1.\‘

L

in some neighborhood D of the point y. Therefore, each of the functions (3—26)

is a solution to equation (3—22) in D. Since equations (3—26) determine explic-

itly the same surfaces as equations (3—27) determine implicitly and since

these surfaces determine the integral curves of the system (3-9), the equations

of this system are also called the characteristic equations of equation (3-22).
For example, the partial differential equation

(v2—1) j%+ =) ;’—ffy, —y (3-28)

has the same characteristic equations as the linear equation in the preceding
example, namely equations (3-8). These equations, as we have seen, have the
two functionally independent integrals
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Hi=yit+y:+y
Hy=y+y+%
And equation (3-28) therefore has the solutions

fi=a— (n+y2)

o=t V&= (i)
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CHAPTER 4

Elementary Methods for Second-Order Equations

In this chapter several methods for obtairing sclutions to second-order
differential equations are presented. Even though each of these methods applies
to a relatively narrow class of equations, they are still of sufficient generality
to be useful in practice. However, unlike the methods presented in chapter 2
for solving first-order equations, most of the techniques presented in this chap-
ter will not by themselves yield solutions to equations. They are, in fact,
methods for transforming certain types of equations into simpler equations
whose solutions can hopefully be found by known methods. We have already
found a number of methods for solving first-order equations. The only other
general class of equations for which it is possible to find numerous solutions
is the class of linear equations introduced in chapter 1. Therefore, in section
4.1 we present some techniques for reducing second-order equations to equa-
tions of the first order. And in section 4.2 we present techniques which trans-
form certain types of nonlinear equations into linear equations. Finally, in
section 4.3 we present a number of unrelated methods. Although many of the
methods presented in this chapter are applicable, with some obvic= modifi-
cation, to equations of higher order, we shall, for simplicity, limit the dis-
cussion to second-order equations.

As indicated in chapter 1, the most general second-order differential
equation is an equation of the form

F (dx"’ do V% ) ' (4-1)

whereas, the most general normal second-order equation is of the form
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EY_ (D 4-2
de_G(dx’ ¥ x) (4-2)

A general solution of equation (4-1) or of equation (4-2), if it exists, will
involve two arbitrary constants. As in the case of first-order equations, there
may be any number of general solutions to these equations. In addition, equa-
tion (4—1) may possess singular solutions. These solutions are discussed in
sectiori 1.5. The methods presented in that section should be used to find any
singular solutions which may be present since such solutions can be important
in physical problems.
Finally, the second-order linear equation is an equation of the form

po(x) Z2+py(x) Dt pa(x)y=ps (2) (4-3)

"We shall assume the coefficients are continuous. Upon dividing through by
the leading coefficient po(x), we obtain the (essentially) normal form

B o) Lt q)y=r(x) (4-4)

This differential equation is equivalent to equation (4-3) in any interval in
which pe(x) does not vanish.

4.1 EQUATIONS WHICH ARE REDUCIBLE TO FIRST-ORDER EQUATIONS

In this seciion a number of techniques, which can be used to reduce
certain types of equations to equations of the first order, are described.

4.1.1 Dependent Variable Missing

When a second-order differential equation does not explicitly contain the
dependent variable y, it must be of the form

d’y dy \_
F(d—xz—, o x) —0 (4-5)

But this equation can be written as a first-order differential equation
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dp _
F(dx,p, x)——O

for the quanfity p defined by

=9
dx (4"'6)

It may or may not be possible to solve this first-order equation in any given
case. However, suppose that it can be solved and that its integral is

f(x, p) = constant=C, (4-7)
At this stage, there are two possible ways of proceeding, depending on whether
it is easier to find an explicit formula for p as a function of x which solves3>
equation (4-7) or whether it is easier to find an explicit formula for x as a
function of p.

First, suppose that the former case occurs. Thus, we can find an explicit
formula

p=g(x, Cy)

for a solution to equation (4-7). Then, in view of equation (4—6), this equation
can be immediately integrated to obtain a general solution

y=fg(x, C)dx+C,

of equation (4-5).
Next suppose that it is easier to find an explicit formula

x=h(p,Ci) @-8)

for a solution to equation (4-7). Substituting equation (4-8) into the relation

~9ydp
dp dx

3See section 1.1.
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shows that
dy_ dx_ d_h
dp Pdp Pdp
Hence,

f ——.dp+C:
And, upon integrating this by‘ parts, we obtain the equation

y=ph(p, C) = [ h(p, C)dp+C @-9)

which together with equation (4-8) determines the solution y of equation (4-5)
parametrically as a function of x (with p being the parametric variable). This
parametric function involves two arbitrary constants.

For example, the equation of the curve followed in the pursuit of a prey
which moves along the y-axis (ref. 9) is

K VIFy?=(a—x)y" ‘

where K is the ratio of the velocity of the prey to the velocity of the pursuer
Put ¥' = p to obtain the first-order separable equation

KVv1 =(a— x)
which can easily be solved (section 2.3) to obtain
dy 1 ‘ 1
ZE=p=—7|Clla=0r—F; (a=0)1]

If K # 1, this equation ber'uu.es, upon integration,

1 1 )
y= ‘2‘[1+K(“ Dt ER=yy @0+
(If K=1, the integration yields a logarithmic term.)
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4.1.2 Independent Variable Missing

The general form of the second-order equation in which the independent
variable does not appear explicitly is :

d*y d
| PG )= (410
We again define p by
_dy
p=- (4-11)

Then substituting this together with the relation

into equation (4—10) shows that p is determined by the first-order differential
equation

F(%:p, p, y)=0
Suppose that this equation can be solved and its integral is
f(p, y) =C,=constant A (4-13)
It is again possible to proceed in two different ways. First, suppose that it is
easier to find a formula for the solution p=g(y, C,) of equation (4—13) for p

as a function of ¥. Then combining this with equation (4-11) and integrating
provides a general solution

__dy _
j2l, Cy T Ee=x

of equation (4-10).
On the other hand, if it is easier to find a formula

y=h(p, C\) (4-14)
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for the solution of equation (4-13) which expresses y as a function of p, equation
(4-12) shows that :

X

S -
§S:

&
o
S

But this equation can be integrated by parts to obtain the equation

x=CotLh(p, C)+ [ Sh(p, Cdp 4-15)
which, together'with equation (4-14), determines the solution to equation (4-10)
parametrically. _
For example, the differential equation
&y 9’1)2 _
Va2 tv <dx =0 (4—16)

occurs in the field of fluid d).'namics.36 Substituting equations (4-11) and (4-12)
intc this equation yields the first-order equation

dp . .
yD dy.+vp =0

Since :his equation is separable, it can be integrated to obtain p=C,/y".
Hence, combining this with equation (4-11) and integrating shows that

+1
3"—+—1-=c1x+c2

is a solution of equation (4-16).
Notice that, when 4, B, C, and D are constants, the differential equation

y''=A+By+Cy:+Dy3

38 More specifically, it governs the, velocity field in a boundary layer in the neighborhood of the separation point.
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does not explicitly containi the dependent variable x. When the procedure
just described is applied to this equation, we encounter integrals which usualiy
cannot be evaluated in terms of elementary functions. These integrals, however,
can always be expressed in terms of elliptic functions. The differential equation
is therefore called the elliptic equation. For more details concerning the proce-
dures involved in evaluating these integrals and the properties of elliptic
functions, the reader is referred to reference 10 (chapter 6 and section 11 of
chapter 7).

Finally, notice that a linear homogeneous equation dces not contain the
independent variable explicitly if, and only if, it has constant coefficients.3’

413 Homogeneous Equations

The g:.:eral definition of a homogeneous function of degree k has been
given in section 2.3. We shall now show that if the second-order differential
lequation (4-1) has certain homogeneity properties, it can be solved by ele-
mentary means.

4.1.3.1 Equations homogeneous in the deperident variable and its deriva-
tives. —First, suppose that equation (4—1) is homogeneous of degree k in the
variables y, ¥', and y"; that is, it satisfies the homogeneity condition

F(ty'", ty', ty, x) =t"F(y"", ¥, ¥, %) (4-17)
for any number ¢. Hence, if we put t=1/y, equation (4-17) becomes

o 1 W
F('y—,l‘,l,x)=FF(y Y 9y9x)

which shows that the differential equation (4-1) can be written in the form

F (y—, X 1,x)=0 (4-18)
y ¥

N\

by factoring out y*. In order to reduce the order of this equation, define the
function u(x) by

¥ We assume that the reader knows how to solve linear equations with constant coefficients.
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y' ' :
=L | 4-19
u== ( )

Then

)

Lomy w2
Y

Upon substituiing ‘this, together with equation (4-19), into equation (4-18)
we obtain the first-order equation
F(u'+u?,u,1,x)=0 | (4-20)
Suppose this equation cn be solved and its lintegral is
f(u, x)=C, | . (4-21)
Then solve equation (4-21) foruas a function‘ of x to obtain
u=g(x,C;) (4-22)

. But substituting this into equation (4-19) and integrating shows that the
original equation (4-1) has the solution

In y= |g(x, Ci)dx+C; (4-23)

If the differential equation (4-]) is linear, the first-order equation (4-20)
obtained by this mpethod will be a Riccati equation which will usually be
more difficult to solfe than the original equation.

As an example $f the method, consider the equation

FO&y'\v,7.2x)=yy""—y2*+y¥x=0  (4-24)
and replace y, ¥', and y'’ by ty, ty’, and ty’’, respectively, to get

(ty) (ty"") — (') + (ty)2x= 2 (vy' — ¥y 2+ y2x) =2 F (v, ¥', ¥, %)
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This shows that F is homiogeneous of degree 2 in y and its derivative. Hence,
upon introducing the transformation (4-19), the differential equation (4-24)
becoiaes

vtw—wtx=u+x=0

But this equation can be immediately integrated to obtain

Hence,_
In y= f (Cl—%z)dx'-!-Cz
The solution to equation (4-24) is, therefore, given by

y=Cj; exp (Clx—%)

where we have put C;=eC:. ;
4.13.2 Isobaric equation.—The isobaric equation of the first order in
normal form was encountered in section 2.3. In the general case, the function

dmy dm—lyb i}_’
(dxm9 dxm_19 L/ dx9 y’ x)

is said to be isobaric if there exist numbers £ and [ such that

m m-1 :
Ff( tl—m -%x—%; tl—m"l"l gxm—};, . e, tl—l .Z_.i,’ tly, tx)
dmy dm-1y dy

dxm’ dxm=1" E9 o x) (4"—25)

for all values of ¢. And the differential equation

F[ym, om-0 ¥y, y,x]=0
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is said to be isobaric if the function F is isobaric. It is easy to see that the dif-
ferential equation (2-17) is of this type (for m=1). For the second-order dif-
ferential equation

F(&y'sy,y,2)=0 (4-26)
the condition (4-25) becomes
F(e'=2y", o1y’ tly, tx) = F (v, ¥y v, x) (4-27)

Thus, in particular, upon replacing ¢ by 1/x, equation (4-27) becomes
oY Yy 1
F(F—_m;l——l’;i 1)=_K (', y’9y9 x)=0

And this shows that equation (4-26) can be written in the form
2 y
F (%m, P %, 1) =0 - (4-28)
However, when we introduce the new variables
u=x"ly (4~29)
and

&£=In x | (4-30)

into this equation, we obtain an equation

[d§2+(2l 1) d§+l(l u, d§+lu,u 1] O (4-31)

in which the independent variable ¢ does not appear explicitly. Since this
equation can always be reduced to a first-order equation by the methods of
section 4.1.2, it follows that the isobaric equation of the second order can also
be reduced to such an equation.
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The homogeneous hnear isobaric equation of the second order is an equa-
tion of the form

x2y"" 4 poxy’ + qoy =10 ' (4-32)

where po and go are constants. It is known s the homogeneous Euler equation.
Since this equation satisfies condition (4-27) with /=/k=0, the change of
variables u=y, {=In x will transform it into the equation

d§2+(p0 1) df+q0u 0

The independent variable does not appear explicitly in thic eguation and the
coeffic:sats are constants. 38

This equation, therefore, has two solutions of the form u= €%, one for each
of the roots of the equation. ‘

It is easy to see that the general Euler equation
2y +pory’ + qoii'= r(x)

can also be transformed into an equatlon w1th constant coefficients by the
change of variables

L=y £=Inx

A less elementaxy examplé dan iso:baric'equation is provided by the

equann

(X ’ ‘ rr 3 I?I
F(y",y,y,x)=yy =37 +( )=0 (4-33)

It is easy to verify that, when the function F is given by equation (4—33), the
condition (4—27) will be satisfied for any value of !/ provided that k=2[—2.
Hence, upon introducing the change of variables

38Which is as it shonld be since the equation is linear.
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Y
u=4
(4-34)
£=Inx
the differential equation (4—33) is transformed into the equation
du (1 _1\,9u_3(du)’ (_l_ )2 2 _
Ly (L) 3V (1Y ime e

Since in this case any value of [ can be used, we choose its value to
simplify equation (4-35). This is accomplished by settmg [==2, whereupon

equation (4—35) becomes
S 3 (dey_
d§2 . §

But this is a special case of equation (4—16) with »=—3/4 and, therefore, has
the solution

dult=C £+,

Hence, by _ usmg equations (4—34) and (4—35), the solution to equation (4—33)
is found to be

_ 2(Cllnx+02 )4
y=x 4

414 Method of Variation of Purametefs

This method applies only to linear equations. We have seen in chapter 1
that the homogeneous equation (associated with eq. (4—4))

R
%

y''+p(x)y’ +q(x)y=0 (4-36)

possesses exactly two linearly independent solutions in any interval in which its
coefficients are continuous, and that the general solution of the nonhomoge-
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neous equation (4—4) in this interval is the sum of any particular solutior: < that
equation plus an arbitrary linear combination of two linearly independent
solutions of (4-36).

We now suppose that by some means a nontrivial solution yy of the asso-
ciated homogeneous equation (4—36) has been found. Substituting

Y=UYH

(where v is a function to be determined subsequently) into equation (4—4} and |
using the fact that yu satisfies the homogeneous equation (4-36) o simplify
the result shows that

yuv'' + 2y, +pyu)v' =r

But this is a first-order linear equation for »'. It can therefore be solved by the
methods of section 2.3, to obtain

y;,v’ejpdx =fr(x)yy(x)ejp(’)dx dx+C,

When this equation is solved for v’ and integrated, we obtain an expression for
v (in terms of known functions) which contains two arbitrary constants. Hence,
substituting this expression into y=yuv gives the general solution to equation
(4-4). : .
For example, it is easy to find by inspection that yy=x is a homogeneous
solution of the equation ‘

n__ 2x n 2 =x3+3x
1+x2y 1+x2y 14«2

y (4-37)

Hence, substituting ¥=xv into this equation shows that v’ satisfies the first-
order linear equation

2 ,_x2+3

v +x(x2+l)—v" x2+1

which can easiiy be integrated to obtain
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x2v’ x3

PeRw I LA

‘

F;ut solving this equation for v’ and integrating shows that v is given by
2 1
v=5+C, (x——> +Cy
Therefore, the general solution to equation (4-—-37) is
Y 2
y—xv—-2-+ Ci(x®2—1)+Cox

4.1.5 Egquaticns Invariant Under a Transformation Group

The group-theory method for reducing the order of equations is a generali-
zation of all the techniques previously discussed in this section. However, this
technique cannot be apnlied routinely since, as. will be seen, it is necessary to
find a group under which a given equation is invariant and there is no con-
~structive procedure for accomplishing this. The method is more useful for
working backwards to find general methods for solving particular classes of
equations by starting with a given group and testing equations for i invariance
under this group in much the same way that equations are tested to see if they
are homogeneous.

A single parameter Lie group® in two dimensions is a family of coordinate
transformations

x1= f(x, y; d)
(4-38)
yi=g(x,y; o)

i~ which the members of the family are individuated by the values of the param-
eter a. In addition, the family must contain an identity transformation which,
without loss of generality, we can associate with the value & =0. Thus

3%Various continuity hypotheses, which will not be presented here, are required for a rigorous treatment of the
theory.
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x= f(x,y;0)
y=g(x,y;0)

Consider an irfinitely differentiable but otherwise arbitrary functien of the
coordinates F(x, y). If the point (x, y) is transformed by the group (4-38) into
the point (x;, 7:) for a particular value of a, the value of F at (x,, y1) is given
by the Taylor series whose leading terms are

_ oo 00
Flny)=Fn+a(ZI+EL)  Fayn+. ..

=Fluy)+a| £wy) g ) £ |[FE) +. .

(4-39)
‘where we have put
f (ag) _
twn=(3) , wmd @ =(5 (4-40)
In particular, if F is.taken suqcessively as x and v, then
x1=x+a§.(x, y)+. .. |
(4-41)
=y+an(x, y)+. ..

When « is infinitesimally small, the transformation (4—41) differs only infin-
itesimally from the identity transformations; therefore, ¢ and m are referred to
as the infinitesimal transformations of the group. The operator

) )
UEf(x,y)a—x+'n(x,y)£,

is called the mﬁmteszmal operator of the group. By using this operator notatlon,
the Taylor series (4—-39) can be expressed as

F(x1, y)=F(x,5) + aUF +3a2UF . . .
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But this series can be formally summed to obtain
F(x1, y1) =¢*VF(x, y)

In the particular cases where F is taken to be the coordinates themselves, this
becomes

x1=eVx

y1=ey

These equations are equivalent to the equations (4—38) which define the original
finite transformation. This shows that the finite transformation is completely
determined by the infinitesimal transformations.

In order to illustrate these ideas, consider the magnification group

1= f(x, y; a) = e*x .
' (4-42)
y1=g(%, y; a) = ey

It is apparent that we obtain the identity transformation when ¢=0, Inserting
the equations of this group into equations (4—40) shows that the infinitesimal
transformations of this group are

£(x, y)"}é(gaf) =x

a=0

n(x,yl)=(§§) o=

and therefore that the infinitesimal operator is™

a . 9
U=xax*yay

Applying this operator repeatedly to the coordinates yields
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o Ux=x Uy=y
® Ux=x Uly=y
Ulx=x - D3y=y

Hence,

1 1
x1=x+ax+§a2x+§-!-a3x+. . .

1 1
o :‘_y1=.y+ay+§,a2y+§‘!a3y+- . .

And upon summing these series, we obtain the original group
s T =€y
The differential .;equation
G(x,y¥,y')=0 | (4-43)

is said to be invariant under the group (4-38) if introducing the new variables
x; and y,, given by equations (4—38), into this equation leads to the equation

G(xhyl,y;,y;,):()

This means that the change of variable given in equations (4—38) does not alter
the form of the differential equation (4—43).
For example, the differential equation

Cx,y, 5, y") =" —F(%, y')=0 (4-44)

is invariant under the magnification group (4—42) since it follows from equations
(4—42) that :
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R

21 d_y dy, xd2 — d2y,
x:’ dx dxy’ T dx? ldx2

We state without proof that a necessary conditionl for the dlfferentlal
equation (4—43) to be invariant under the group (4—38) is that
UG=0 (4-45)

where the operator Uy is defined by

_,9, 90 .9 8
U°=.§ax+nay+cay'+xay"
with
d
C=—x—ydi
and
d*xn _ ,,d¢  d%¥

X=der 7 dx ydxz

In performing the partial derivatives we treat x, y, ¥', and y'’ as independent
variables; whereas, in performing the total differentiations we treat these

quantities as functions of x.
For example, since we have shown that

E=x n=y
for the magnification group (4-42), it follows that

,  ,dx
{(=y'—y' 7-=0

[X) Ildx !
x=y"'—y" 3.~y -0=0

90
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for this group. The operator U, is, therefore, given by

. d
_ Z . 4-46
Us=x ax-i-y 3y _ ( )

But since

applying the operator (4—46) to equation (4—44) shows that

—— 0F oF
UsG= yay+yay 0

which is consistent with the result obtained in the previous example.
We have shown in chapter 3 that the system

dx __dy __ dp
E(x,y) mxy) ¢(x,y,p)

(4-47)

has two functionally independent integrals, u(x,y) and v(x,y,p), one of which
can be chosen independent of p. The following result allows us to apply the
ideas of group theory to reduce the order of a differential equation: If the
differential equation (4—43) is invariant under the group (4-38), then the
equation obtained by introducing the integrals u and v as new variables in this
equation is ~f the first order.

Thus, w=» have seen in the preceding exarhples that equation (4—44) is
invariant under the magnification group (4—42) and that, for this group,

£=x n=y (=0  x=0
Hence, the system (4—47) becomes

¥We have written p=1y'.

1

Q .
E N{C‘B-MZ 0-173-

IToxt Provided by ERI
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which has the two functionally independent integrais

R I

Butsince
podp_do_dods_dop_ )
dx dx dudx du’(

we see that

=2 (y—u)

Hence, upon introducing the new variables u and v into equation (4—44), we
get the first-order equation

dv_ F(u,v)

du u—v

It is easy to see that equation (4—44) is the general isobaric equation
with /=1. For this case the group-theory method is the same as the method
‘given in section 4.1.3.2. In fact, all the methods of solution given up to now
in this chapter are equivalent to the group-theory method when used in con-
junction with certain well-known groups.

For example, the equation with the dependent variable missing, trealed
in section 4.1.1, is invariant under the translation group

0=x

n=yt+ta

And the equation with independent variable missing, treated in section 4. 1.2,
ie invariant under the transiation group

x1=x+a

Nn=y
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The isobaric equation with [=0, treated in section 4.1.3.2, is invariant under
the affine group

X, = e*x

Nn=y

And the homogeneous equation treated in sectirn 4.1.3.1 is invariant under
the affine group

X=X

Nn=ey

The general linear equation discussed in section 4.1.4 is invariant under the
nonuniform-distortion group

X1=X
y1=y+ap(x)
where ¢ is any homogeneous solution of the equation.

In each of these cases the group-theory method is entirely equivalent to
the method already introduced.

4.1.6 Exact Equations of the Second Order

We introduced the exact equation of the first order in section 2.2. We
shall now extend the ideas presented therein to the second-order differential

equation
F(y",y',y,2) =0 (4-48)

We say that the differential equation (4—48) is exact if there exists a function
#(y', y, x) such that

F=% (4-49)
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Suppose that such a functicn ¢ exists. Then every solution of equation
(4-48) must also be a solution of the first-order differential equation

¢(y’s Y -‘) == Cl (4'_50)

for some constant C,. Hence, the problem of solving equation (4—-48) can be
replaced by the problem of solving the first-order equativii (4-50). We can
therefore say that equation (4—48) has been reduced to the first-order equation
(4—50). Upon recaliing the definition givea in section 1.2 we see that ¢ is a
(first) integral of equation (4—48).

It follows from the chain rule that

d¢ _d¢ , d¢ , _2 "
dx —ax Tay? 1o (4-51)

where the variables x, y, and y' are treated as independent in forming the
partial derivatives. Hence, it follows from equation (4—4¢) and the fact that ¢
does not depend on 3’ that tue differential equation (4—48) must be an
equation of the form

F()/’s y’a Y, x) =f(x9 Y, y’))/'_i_g(x» Y y’) =0 (4""52)

where
Sy, p)=dp (4-53)
g(x9 ¥, P)=¢>-r+r"¢u (4'_54)

It is now easy to verify by substituting in equations (4—53) and (4—54) that f
and g satisfy the conditions

Sfrr+2pfry+ P y=8rp+Pa21p—8y
(4-55)

JfeptDfvo+2fu=gpp

‘' As usual, we have put p~=y'. The subscript notation for partial derivatives is being used.
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We have therefore shown that, if the general second-order equation
(4-48) is exact, it must be of the first degree and, hence, of the form (4-52).
And the functions f and g in this equation must satisfy conditions (4—55).
Then the equation will have a first integral ¢ (and therefore can be reduced
to a first-order equation) which can be found by integrating equation (4-53)
with respect to p (at constant x and ¥) to obtain

o= ff(x,y,p)dp+h(x,y) 4-56)

where h is an arbitrary function which arises from the integration. Now if
the differential equation is exact, it will always be possible to determine the
function h so that, when equation (4—56) is substituted into equation (4-54),
the latter equation will be identically satisfied.

In order to illustrate the method, consider the equation

F(Y',y',x)=xyy'+xy?+yy' =0 @-57)

For this equation the functions f and g (in eq. (4-52)) are given by

f=xy
{(4-58)
g=y?+yy =xp*+yp
It is easy to verify that these relations satisfy conditions (4-55). Hence, equa-

tion (4-57) is an exaci evuativi.
Substituting the first of equations (4—58) into equation (4—56) shows that

¢=pxy+h(x,y)

and substituting this and the second equation (4-58) into equation 4-54)
shows that

wip*+yp=yp+h:+pix+ph,

But this equation is satisfied by taking k= constant. Hence, equation (4-57)
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has the first integral
¢=pxy=y'xy=C, 4-59)

where C; is a constant. But this first-order equation is separable and can be
integrated immediately to obtain the general solution

':;—2 = C] ln x+ Cz
of equation (4—57).
Sometimes a first integral of an exact equation can be found by inspection

simply by collecting terms and writing the equation in the form (4—49). Thus,
since

d ,_, ,
5 Y =Yty
the differential equation (4—57) can alsc be written as

]
Fiy',y,x)=x ;10; (yy')+(»')=0
or

: 4
F(y',y, x) 1 XY 0
Hence,

¢ = xy}/'

which is ihe same as equation (4—59).
The general linear equation (4—3) is of the form (4-52) with

S(x, 5.5") = polx)
and

£x, ¥,y ) =mx)y + pa(x)y = p3(x)
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The second condition (4-55) for exactness is automatically satisfied; and the
first condition is satisfied if, and only if,

Epo_dp _
Gt gy Te=0 (4-60)

And when this is the case, equation (4—56) becomes
= po(x)p + h(x, y)
But substituting this into equation (4—-54) shows that

dx — D1 3y P = P2y ax P3

Hence, it foliows from equation (4—60) that

Ip 0 dp
[(t(;o 1),) y+ h] p+6x [(T[If-p') y + h]+1)3=0

It is easy to see that this equation will be satisfied when A is given by

()
h=— (%;o - 1)1) y— f pa(x)dx

Hence, we have shown that the first integral of the general, linear, exact
equation is

b = po(x)y' — (% - [)l) y - f ps(x)dx = C,

This is a linear first-order equation and can, therefore, be solved by the methods
of section 2.3.

Jusi as in the case of first-order equations, we can sometimes find an
integrating factor n(x, y, ¥’') for an equation of the form (4-52) which is not
exact. Thus, a function n(y’, ¥, x) is an integrating factor of equation (4-52) if
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nF=0

is an exact equation.
For example, Liouville’s equation

y'+g(y)y?+f(x)y' =0

is not exact; but, upon multip.ying througn by n==1/y’, we ebtain the equation

1
7y"+g(y)y‘ +fix)=0 (4-61)

which can be written as
4 lny' +Y(y)+X(x)]=0
dx

where Y(y) = [ g(y)dy and X(x) = [ f(x)dx.
Equation (4—61) is therefore exact and its first integral is

¢=Ilhy' +Y+X=0C,

But, upon putting C, = €Co, we obtain the separable equation
y' e¥Y=Ce X

which can be immediately integrated to obtain the general solution
]e"(”)dy= C, fe~~X(.r)dx + C,

to Liouville’s equation.
Let po(x), pi(x). and p;(x) be the coefficients of the linear homogeneous

equation
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poy'+p1y' +p2y=0 (4-62)
and let n(x) be a nontrivial solution of the equation
po"+ (2pg—p1)n' + (py— p;+p2)n=0 (4—63)
which can aiso be written as
(mpo)” — (np1)’ +np:=0 4—64)

Since equation (4—60) is a necessary and sufficient condition that equation
(4-3) be exact, equation (4—64) shows that the equation

(mpa}y' + (mp1)y' + (mn2) ¥=0

is exact. But this implies that m is an integrating factor for equation (4—62).
The linear homogeneous equation (4—63) for the integrating factor 7 is known
as the adjoint egquation of equation (4—62).

4.2 TQUATICNS WHICH ARE ‘EQUIVAI.ENT TO A LINEAR EQUATION
4.2.1 Equations Which Can Be Transformed Into a Third-Order Linear Equation

In section 2.4, we have seen that the first-order Riccati equation could
be transformed into a second-order linear equation by the change of variable

u=e-fy(x)b(x)dx (4_65)

where h(x) is not identically zero in the interval of interest.

Since linear equations are generally much easier to solve than nonlinear
equations, the additional complexity incurred by raising the order of the equa-
tion is often justified. We shall now show that the change of variable (4-65)
transforms the second-order nonlinear equation

¥y +p(x)y" —3h(x)yy =f(x) +g(x)y+ [k’ (x) + p(x)h(x)]y* — h2(x)
{4-66)
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where p(x), h(x), and g(x) can be any functions of x, into a linear equation
of the third order. To this end we differentiate equation (4-65) three times in
succession to obtain

u'=—yh(x)u (4-67)

u'= (yh*—y'h+yh')u (4-68)

W == by r by + By B skl 4e9)

Substituting for '’ from equation (4-66) into equation (4-69) gives
e ( h' ' h” ’
u''=—h \2T—p y+H\5 e y+f+ (ph—2h")y? ju
And using equation (4-68) to eliminate ¥’ in this equation gives
o (o 2R\ e o (R 20 R
u +(p 7 )u + hfu= hyu(h +5 52 +p h)

Hence, it follows from equation (4-67) that u satisfies the third-order linear
equation

w' +pi{x)u’ +q(x)u’ +r(x)u=0 @-170)
where

Dl(x)=P_2%'

’

hn 2
a(x)="p+e-27+p}

rnix)=hf
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For example. consider the equation
y'+3yy' +y3=0 (4-71)
This equation is of the form (4-66), with p=f=g=0 and h=—1. Hence,
p1=q,=r,=9, and equation (4-70) becomes
u' e = 0
But this equation has the solution

u=Co+ Cix+Cox?

which can be substituted into equation (4-67) to show that equation (4-71)
has the general solution

e 22+ by
T ¥ bx+ by

where we have put b, =C,/C. and by=C,/C.,.

4.2.2 Equations Which Are Equivalent to a Second-Order Linear Equation

We shall now consider a ciass of second-order nonlinear equations whose
solutions can be expressed in terms of the solutions of second-order linear
equations. The work on this problem began with Painlevé (ref. 11) and was
carried on by Herbst (ref. 12), Gergen and Dressel (ref. 13), and Pinney (ref. 14).
We shall present only the results here without proving any of the assertions.
The references given should be consulted for details. Thus, for any functions
w(x) and g(x) of x, any function Y{y) of y, and any constant a, the differential
equation

L2 i s w4 5

(4-72)

has a solution of the form
y=06(w'?) (4-73)
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where O is the inverse of the function 9 defined by

d
8(y) =exp fy(iy) (4-74)

(that is, ©[6(y)]=y) and the function w is given by
w=C|uf+Czu§+C3u|u2 (4—75)

where C,, C,, and C; are constants and u, and u; are two linearly independent
solutions of the linear differeniial equation

u"—-ul:—;(ixz)lu'—q(x)u=0 (4-76)

For example, consider the equation introduced by Painlevé (ref. 11)
(X} b 19 ’
Yty 2+ f(x)y' =g(x)y (4-177)

where b is a constant and f and g are any functions of x. This is a special case
of equation (4-72) with (1—=Y')/Y=1b/y, w'/lw=—f, a=0,and q=(1+b)g(x).
Hence, we can take Y=y/(b+1) and equation (4-74) becomes

0=exp[(b+ I)I‘i—y] =exp[(b+ 1) In y] = 4(b+1)
Therefore,

9(0) = glb+1)

In this case the differential equation (4-76) is

u'+fu'—(1+b)gu=0 (4-78)

And the solution to equation (4-77) is given by
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y = e(wﬂ?): (0)1"2) 1/(1+d) = (Clu%+czu§+(:3u,u2) 1/[2(1 +8))

(4-79)
where u, and u, are two linearly independent solutions of equation (4-78).

It can be verified by direct substitution and by applying equation (4-78) that
equation (4-77) will be satisfied if, and only if,

Hence, equation (4-79) becomes
y=(VC|u|+ Cz U2)l'l(1*b)
But since VC; u,+ VC; u: is also a solution of equation (4-78), this is equiva-

lent to taking y = u!/(1+% where u is a general solution of equation (4--78).
Next consider the equation (ref. 14)

y'+p(x)y+My3=0 (4-80)
where p(x) 13 any function of x and M is a ccnstant. This is a special case of
equation (4—72) with w=constant=Cs, Y=y, q(x)=—p(x), a=M/C3:.
Hence, 6(y) =y and, therefore, its inverse is ©(8) =40. But this shows that

y=06 (02)=w!2= (Cu2+ Coui+ Cyuu,)'? {4-81)
where u, and u; are linearly inidependent solutions of
u'+p(x)u=0 (4-82)
Let J denote the Wronskian of the solutions u; and u,; that is,

J=uwuy—uju, (4-83)

Upon differentiating equation (4-83) with respect to x and using the fact that
u1 and u; satisfy equation (4—-82), we find that 4

12 Or see section 5.9,
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aJ _
dx_O

which shows that J=constant. Subsiituting the solution (4-81) into equation
(4—80), using equation (4—-82), and using the fact that its Wronskian is constant,
we find that equation (4-81) is a solution of equation (4-89) if, and only if,

C§=2 (%’f'flcz)

43 MISCELLANEOUS METHODS

43.1 Change of Variables

Frequently, a good choice of new dependent and independent variables
will convert ar. equation to a simpler and more easily analyzed form. Some pro-
cedures which have proved helpful for this purpese are given in this section.

4.3.1.1 General transformation of linear equations.—The second-order
linear equation (4-3) is transformed by introducing a new dependent variable
v which is of the form

v=f(x)y (4-84)
and a new independent variable ¢t which is of the form

t=g(x) (4-85)
into an equation which is also linear and of the second order.

The change of variable (4—84) transforms the linear homogeneous equation

y'+p(x)y +q(x)y=0 (4-36)

into an equation
v +pi(x)v +qi(x)v=0 (4-86)

of the same type. It is clear that equation (4-86) can be transformed back into
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the original equation (4-36) by a change of variable which ig also of the form
(4-84). Any two equations which can be transformed into one another by a
change of variable of the type (4-84) are said to be equivalent. The new coefh-
cients p,(x) and g:(x) of equation (4—86) are related to the original coefficients

p(x) and g(x) by /
21, 1,1, 1,
2 4p ql 2 pl 4pl
Hence, we may say that the quantity

—g—tpy -1
P =q—op' —3P (4-87)

remains invariant under the transformation (4—84). It is therefore called the
invariant of equation (4-36). We have seen that any two equivalent equations
have the same invariant. It can also be shown that, conversely, any two equa-
tions with the same invariant are equivalent.

If the solution of one equation of the form (4-36) is known, it is possible
to find the solution of all equations which have the same invariant. Thus, when
a new equation is encountered, we can compare its invariant with those of
equations whose solutions are known. If we can find one which is the same,
we will have succeeded in solving the original equation. In particular, the ad-
joint equation (see section 4.1.6) of equation (4-36) has the same invariant .$
as equation (4-36) and is therefore equivalent to it. L

If the coefficient p(x) in equation (4-36) is identically equal to zero, we say
that the equation is in normal* form. In this case the invariant (4-87) is given by

FI=q

In the general case the equation (4~36) with invariant (4-87) can alwavs be
transformed into the normal equation

v+ Fy=0 (4-88)

by a change of variable of the form (4-84). Then equation (4—88) is said to be the

“Notice that in this case the meaning of term normal is different from that of section 1.4. The proper interpre-

tation of this term should always be clear from the context.
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normal form of equation (4-36). It is clear that any given equation has only one
normal form and that all equivalent equations have the same normal form.
The normal differential equation
&’y

2;5+.f(x)y=0

can always be transformed into the normal equation

d¥

'dTZ-‘FJ (t)v=0
by changing both the dependent and independent variables by transformations
of the types (4—84) and (4~85), respectively, provided the nonlinear differential
equation

de oo _(deVey 1ddi 3 [ ey
(%)J(‘)‘(dx)ﬂx) 2dx3dx'+4(dx2)

can be solved for the new independent variable t. When this is the case, the
function f in equation (4-84) which determines the new dependent variable is

=%

A fuller discussion of this topic as well as proofs of the various assertions
made in this section can be found in Rainville (ref. 15, chapter 1).

4.3.1.2 Transformation to an equation with constant coefficients.—We
have seen that the homogeneous Euler equation (section 4.1.3.2) can be trans-
formed by a change of independent variable into an equation with constant
coefficients (which we know how to solve). More generally, the linear homo-
geneous equation '

' +p(x)y +q(x)y=0 - (4-36)

can be transformed into a linear equation with constant coefficients by a change
of independent variable if, and only if,
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dq
dx + 2pq

TE T constant (4-89)

When condition (4-89) holds, the change in variable (4-85) is given by
t=cf Vg(x)dx (4-90)

where c is any constant.
In order to prove this, it is only necessary to substitute the change in vari-
able (4-85) into equation (4—36) and obtain the transformed equation

d*t LA 3 dt \
d*y | dx? dedy , g
dt2+ (dt dt+(dt)2 y=0
dx_ dx

It is now easy to see that the coefficient of ¥ in this equation will be constant
if, and only if, ¢ is given by equation (4-90). Further, substituting (4-90) into
the coefficient of dy/dt, we find that this coefficient will also be constant if,
and only if, condition (4-89) is satisfied.

Thus, for example, for the homogeneous Euler equation, p(x)=po/x
and g(x) = qo/x2. Hence, equation (4—89) is satisfied, and equatlon (4—90) for
the new independent variable becomes in this case

o q5/2d = cgl/? |
t=C T xX=cq,”" In x

The change of variable (4-30) given in section 4.1.3.2 is a special case of this.
4.3.1.3 Interchanging of dependent and independent variables.—Differ-
entiating the identity
dy (dx)"‘
dx

with respect to x shows that
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Ay __d% (dx\~
dx® dyz(dy>

And when these relations are substituted into the general differential equation
(4—1), we obtain the equation

28 () o]
dy? \ dy ’(dy> ’y”‘]
in which x is the dependent variable and y is the independent variable. Some-
times this change of variable will result in an equation whose solution is
known or can be found.

4.3.1.4 Legendre transform.—The Legendre transform which consists

of introducing the new independent and dependent variables p and g, re-
spectively, defined by

= -
p= (4-91)
d

can be used to radically alter the form of a differential equation. It follows
from these relations, after differentiating equation (4—92), that

dg=xdp~+ pdx—dy dy= pdx

And when these equations are solved for x and y, we find that the inverse
transformation is given by

=D (4-93)
=, 99 _ /
Y=prg,— 9 (4--94)

But it follows from equations {4-91) and (4-93) that
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Ly (&)
dx* dp

Hence, substituting equation (4-91) and equations (4-92) to (4-95) into
equation (4-1) yields the transformed differential equation

dqy: | pda_, da

which is also a second-order equation. If a solution g = f(p) of this equation can
be found, it can be substituted into equations (4-93) and (4-94) to obtain the
parametric equations

-(22)

y=pf'(p) —f(p)
x=f"(p)

of a solution y of equation (4-1).

4.3.2 Equation Splitting

When equations which are split in some natural way into sums, quotients,
or products of terms, such as

&'y, vy x)+gly'", ¥, y,x)=0

or

SOy y.%)
g,y ,y.x)

are encountered, it is sometimes possible to obtain a solution by putting
&Yy x) = h(x) =—&(", ¥, y, %)
for equations of the first type and
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&y y, %) = ch(x)
g,y y,x) = h(x)

for equations of the second type. If A{x) can be chosen so that a common
solution to the pair of equations can be found, this solution will also be a
solution of the original equation.

43.3 Tables of Differential Equations and Solutions

Two valuable catalogs of solutions to differential equations can be found in
the volumes by Murphy (ref. 16) and Kamke (ref. 17). Murphy lists over 2000
solved equations which are classified according to order and degree; Kamke

gives about 1500 equations along with their solutions and references to the
literature.
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CHAPTER 5

Review of Complex Variables

A general procedure for solving second-order linear equations will be
given in chapter 6. But this procedure involves the use of power series, and
the discussion of power series becomes much simpler when it is carried out
in its natural setting—the complex plane. In order to take advantage of this
fact we shall extend the definition of a differential equation given in chapter 1
to include the case where the variables which occur in the equation are complex.
Thus, by considering a more general situation we are actually able to simplify
the treatment. Another reason for making this extension is that it allows us to
see how solutions are connected across the singular points of the equation.

In this chapter, those concepts from the theory of functions of a complex
variable which are needed for this purpose will be reviewed. The treatment
is essentially descriptive; and rigorous proofs of the various assertions are,
for the most part, omitted. For a more detailed treatment of the topics covered
herein (including the omitted proofs), as well as a more complete coverage of
the vast field of complex variables, the reader is referred to the many excellent
texts 44 'which are devoted entirely to this subject.

5.1 COMPLEX VARIABLES

Let x and y be two independent real variables and, as is the usual practice,
put i = V—1. Then z=x+ iy is & complex variable. It is frequently convenient
to think of the values of z as points in a plane, called the complex plane, whose
Cartesian coordinates are x and y.

MA good elementary treatment is given by Churchill (ref. 18). A more advanced and theoretical treatment is
given by Ahlfors (ref. 19), while the text by {Carrier, Krook, and Pearson (ref. 20) emphasizes advanced applications.
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FIGURE 5-1. —Polar representation of complex number z.

Instead of using the Cartesian coordinates x and y, we can also use the
polar coordinates r= Vx2+y? and #=tan-! y/x to locate points in this plane.
(The relation between the polar and Cartesian coordinates is illustrated in
fig. 5-1.) Then

z2=x+1iy=r cos O+ir sin 6
Aad upon using Euler’s formula, we obtain the polar representation
2=r (cos 8-+ sin 8) =retf

of the complex number z. Notice that for n=0,*1,+£2, . ..

eiznm=cos 2nmw+1i sin 2nwr=1

Hence,

7= reio: reiﬁei2n1r_—= rei(0+2n1r)

The definitions of a domain and a neighborhood have been given in
section 1.1 for a general n-dimensional space. We shall continue to use these
definitions in the two-dimensional complex plane.
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The complex conjugate of the variable z is denoted by z* and defined by
z¥=x—1y.

The absolute value or modulus of the complex variable z is defined to be
the length of the vector joining the origin with the point z in the complex
plane and is denoted by |z|. Therefore 5

|z| = Va2 + y2 = Vzz*

5.2 ANALYTIC FUNCTIONS OF COMPLEX VARIABLE

Let u(x, y) and v(x, y) be any two real-valued functions*¢ (of the variables
x and y) which are defined in some region of the complex plane. Then w = u+ iv
is a complex-valued function of x and y. Since w associates a complex number
with each point z=x-+iy of some region of the complex plane, we say that
w is a function of the complex variable z.

We shall consider only a particular class of functions of a complex variable
called analytic or holemorphic functions. In order to define this class of func-
tions we first introduce the concept of a complex derivative. To this end, let
w = u + iv be a function of the complex variable z and suppose that x and y are
changed by the amounts Ax and Ay, respectively. Then w changes by an amount
Aw = Au—+ i Av. Now, by analogy with the definitions of the derivative of a
real-valued function of a real variable, we define dw/dz, the derivative®? of w
with respect to z at the point z, to be the limit

dw .. Au+iAv_,. Aw
—=lim =]im —

dz a0 Ax+iAy a0 Az
Ay—0 3y~0

provided that this limit not only exists but that it is independent of the manner
in which Ax and Ay approach zero. When Ax and Ay approach zero in some
prescribed manner, &z approaches zero along some path in the complex plane,

*s Natice that |z] is equal to the polar coordinate r.

# Recall that according to the convention adopted in section 1.1 we assume that all functiuns are single valued
unless explicitly stated otherwise.

« We shall frequently write 1’ (z} or ' in place of di/dz and 1é™(z) or '™ in place of d"uw/dz" forn =1,2,. . .

Vi3




'DIFFERENTIAL EQUATIONS

Path~._ by

z

P

FIGURE 5-2, —Typical path along which Az can approach zero.

as indicated schematically in figure 5-2. But the definition implies that, if
w is to have a derivative at the point z, then Aw/Az must approach the same
limit for every such path along which Az approaches zero. Although this
requirement imposed on the complex derivative may seem unimpertant, its
implications are enormo#s. In fact, by allowing Az to approach zero along
various paths, it can be readily shewn (ref. 18, p. 34) that, if u and v are con-
tinuously differentiable® a necessary and sufficient condition for the ex-
istence of the derivative dw/dz at the point z is that u and v satisfy the two
Cauchy-Riemann equations

Ju dv du du

M_20 g =%

dx dy dy dx

at this point. This shows that much greater restrictions are imposed on those
complex functicns which possess complex derivatives in the sense of the
definition given above than are imposed on the real functions which possess
ordinary real derivatives. However, since the complex derivative is formally
the same as the real derivative, the usual rules for differentiating sums, prod-
ucts, quotients, etc., still apply (ref. 18, p. 31).

A function w(z) of the complex variable z is said to be analytic4® or holomor-
phic in a domain D if it possesses a derivative at every point of D. Frequently,

“This means that the pantial derivatives du/dx, du/dy,dvjax, and 3v/dy exist and are continuous.
* { he terms regular and monogenic are also used.
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when it is of no consequence in the discussion, the reference to the domain D is
omitted and we simply say that the function w(z) is analytic. A function is
said to be analytic at a point zo if it is analytic in some neighborhood of this
point.

Notice that the identity function

w=z=x+1iy

is analytic at every point since the Cauchy-Riemann equations (with « = x and
v = y) are always satisfied. However, the complex conjugate of this function

w=z*=x—1y
is not analytic at any point since in this case du/dx =1 and dv/dy =—1 and

therefore the Cauchy-Riemann equations are never satisfied.
The real and imaginary parts of the function

1 1 ¥ x—liy

x+iy zz x2+y*?

are

—-O—-x_ (s —;L
L=y and e e

respectively. And upon taking the partial derivatives of these functions we see
that the Cauchy-Riemann equations are satisfied at every point except z=0,
where the partial derivatives fail to exist. Hence, w = 1/z is analytic at every
point except z = 0.

It is a remarkable fact (see ref. 18, p. 122) that any function w(z) which is
analytic at a point zo possesses derivatives of all orders at this point. And these
derivatives are themselves analytic functions at this point. It is easy to see that
the sum and product of any two analytic functions are analytic within any
domain ia which both functions are analytic. Usually, any function which is
obtained from a real algebraic, elementary-transcendental function (trigono-
metric, exponential, logarithmic, etc.) or a common higher-transcendental func-
tion (Bessel function, hypergeometric function, etc.) by replacing the real
variable x by the complex variable z=x-iy is an analytic function within some
domain.
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5.3 CONFORMAL MAPPING 30

According to the definition given in section 5.2, a complex function
w=u+iv of the complex variable z=x-+iy associates a pair of numbers
(u,v) with each point (x,y) of some region of the complex z-plane. We can
interpret these numbers as coordinates of a point in a complex w-plane. Thus,
we may think of the function w(z) as a transformation ox a mapping of some
region in the z-plane into some region in the w-plane. More specifically, we
can think of an analytic function w(z) which is defined on a domain D in the
z-plane as a mapping of D onto aregion R in the w-plane, as shown schematically
in figure 5-3. In order to determine the properties of an analytic function w(z)
it is frequently helpful to study the manner in which this function transforms
various points, curves, or domains in the z-plane into corresponding points,
curves, or regions in the w-plane.

FIGURE 5-3.- Mapping of D onto R by w(z)..

Thus, the transformation w=1/z associates a single point in the w-plane
with each point in the z-plane except the origin z=0. It maps all those points
lying outside the circle with radius R and center at the origin in the z-plane
into the interior of the circle with radius 1/R and center at the origin in the
w-plane. Although there is no point of the z-plane which maps into the point
w=0, we can, by choosing R sufficiently large, make the points outside this

30 A comprehensive treatment of this subject can be found in Nehari (ref. 21).
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‘circle map into a circle of arbitrary small radius about w=0. However, it is
frequently convenient to “complete” the z-plane by adding a fictitious point
z=0o which maps into the point =0 under the mapping w=1/z. Thus, when
we speak of the behavior of an equation or a function at the point z=o, we
actually mean the behavior at the point w=0 of the transformed equation or
function obtained by putting z=1/w. When it is necessary to distinguish
between the point z=% and the other points of the complex plane, the latter
are said to be finite points. When the complex plane includes the point z=o0
it is called the extended plane; and when z=® is excluded, it is called the
finite plane. :

Let w(z) be analytic in a domain D and let z¢ be any pcint of D at which
dw|/dz # 0. Then w(z) transforms any two smooth curves passing through zo
in such a way that their image curves intersect at the point wo=w(zoe) with
the same angle (in both magnitude and sense of rotation) as the original curves
in the z-plane (ref. 18, p. 174). Thus, the mapping “preserves angles,” and we
say that w(z) is a conformal mapping at all points where dw/dz 0.

A mapping which is particularly useful for the treatment of certain types
of linear differential equations is the linear fractioral transform

=az-i-b
cz+d

(5-1)

. Notice that, if ad— bc=0, this transformation reduces to w=constant. In
"any-other case, it transforms each point in the extended z-plane into a point
in the extended w-plane in such a way that no two points in the z-plane map into
the same point in the w-plane. In addition, there is a point in the z-plane which
maps into each point in the w-plane. For this reason, we say that a linear frac-
tional transformation with ad — bc # 0is nonsingular.

If we consider straight lines and points as being degenerate circles (i.e.,
circles having infinite or zero radii), we can say that the linear fractional
transformation always maps circles into circles. '

Performing two nonsingular linear fractional transformations in suc-
cession is equivalent to performing a single nonsingular linear fractional
transformation. In fact, any nonsingular linear fractional transformation can
be performed by carrying out not more than four successive transformations
each of which has one of the three elementary forms

w=az (rotation and stretching) (5-2)
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w=B+z (translation) (5-3)
_1 L ‘
w=> (inversion) (5-4)

In order to prove this, first suppose that ¢ # 0. Then equation (5-1) can
be written as
2
4 ¢/ et/ (5-5)

Now transform the z-plane into the ¢,-plane by the transformation

t1=z+<g}

" Then transform the ¢;-plane into the ¢,-plane by

_1

Finally, transform the ¢;-plane into the w-plane by
w= 2"*‘ ts
c

Upon combining these successive transformations we obtain equation (5—5)
and therefore equation (5-1). This proves the assertion for the case where
¢ # 0. When ¢=0, equation (5-1) reduces to
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z+

Ul
o

which is easily seen to be equivalent to the succession of transforms

a

» t1=32 and’ w=t,+

b
d

If the transformation (5—1) is to be nonsingular, at least two of the con-
stants a, b, ¢, and d must be nonzero. By dividing through by one of these,
it is easy to see that equation (5—1) in fact contains only three arbitrary con-
stants. It is therefore not surprising that these constants can always be chosen
so that the linear fractional transformation maps any three given points in the
z-plane, say z1, z3, and zs, into any three given points, say w;,.ws, and ws,in
the w-plane. Thus, for example, the linear fractional transformation which
takes z=2z,intow=0,z=2z, intow=1,and z=zzintow==<is

_ 223221
2u—212—23

w

5.4 ISOLATED SINGULAR POINTS OF ANALYTIC FUNCTIONS

If a function w(z) is analytic at every point in some neighborhood of a
point zo except at the point z itself,5! then zo is called an isolated singular point
or an isolated singuiarity of the function w(z) . Thus, the function

w(z) = ﬁ?—)z (5-6)

has isolated singularities at the points z= 0 and z=—1.

An isolated singular point zo of the function w(z) .is called a removable
singularity if the limit of w(z) as z— z is equal to some finite number. Let & be
a positive integer. An isolated singular point zo of the function w(z) is said to be
a pole of order k if the limit as z—> zo of the quantity (z—2z0) *w(z) is equal to
some finite nonzero number. A pole of order one is called a simple pole.

51 The function need not even be defined at the point zo.
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Thus, for example, the function given by equation (5—6) has a simple pole
at z=0and has a pole of ordertwoat z=— 1. :

Because of the way analytic functions arise in practice, it turns out that we
sometimes arrive at a function w(z) which is not defined at a point z, but is
defined and analytic at every point of a neighborhood of zo. The point z, is
thus an isolated singular point of w(z). But if this point is also a removable
singularity, the function can be made analytic at zo simply by assigning a suit-
able value to w(z) at this point (ref. 18, p. 158). For example, since division by
zero is undefined, the function w(z) given in equation (5-6) is undefined at
z=0. Thus, 0 X w(0) is also undefined. Hence, the function g(z) deﬁned by

{(z) = zw(z)

is not defined at the point z= 0. However, upoh defining £(0) by
£(0) = lim {(z) =2

we obtain a function which is analytic at z = 0.
Itis easy to see that, if w(z) has a pole of order k at zo, the function

£(2) = (z—20)"0(2)

has a removable singularity at zo and is therefore “‘essentially’’ analytic at this
point.’2 We shall sometimes say that an analytic function has a pole of order
zero at the point 2o if 2o is a removable singularity of this function.

Any isolated singular poini of an analytic function which is not a pole or
a removable singularity is called an essential singularity. For example, the
function sin(1/z) has an essential singularity at z=0.

There are some imporiant differences between poles and essential singu-
larities. For example, if w(z) has a pole at Zo, the function 1/w(z) is analytic3

32For the purposes of this book we can assume that any analytic function which is encountered has already
been defined at its removable singularities in such a way that it js analytic at these points.
53 In fact, it is equal to zero at zo (see preceding footnote).
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at zo; but if w(z) has an essential singularity at zo, so does 1/w(z) (ref. 22, p.
110). A pole, then, is a point where a function w(z) is not analytic only because
its modulus Iw(z)l becomes infinitely large at this point and for no other reason.

A function which is analytic at every finite point of the complex plane is
called an entire function. And Liouville’s theorem (ref. 18, p. 125) states that
any entire function which is also analytic at infinity (see section 5.3) must, in
fact, be equal to a constant.

A polynomial is a function of the form ao+a;z + . . . + anz" where
ao, . . ., an are complex constants. It is an entire function, and it has a pole
of order n'at infinity. A rational function is the ratio of two polynomials (which
may be chosen to have no linear factors in common). It is therefore a function
of the form

ao+ a;zt+ a2+ . . . +anz®
bo+b1z+-b222+ ... +bmzm

and is analytic everywhere in the finite plane except at those points where its
denominator is equal to zero. These points are poles of w(z). If m = n, then
w(z) is analytic at the point z=; otherwise it has a pole of order n—m at
this point. '

A function which is analytic at every point of a domain D except at those
points of D where it has poles is said to be meromorphic in D. For example,
the rational function (5-7) is meromorphic in the entire finite plane. In fact,
any function which is meromorphic in the entire finite plane and has a pole at
infinity is necessarily a rational function (ref. 20, p. 60). A function which is
meromorphic in the entire finite plane can have at most a finite number of
poles in any domain D of finite size. However, it may have infinitely many
poles if D is infinitely large.5*

In view of Euler’s formula (see section 5.1) it is natural to define the func-
tion e# by the formula

e?=eTtiU=¢T cos y+iefsiny
Then e? is an entire function and has an essential singularity at z=. We can

now define the functions sin z and cos z by the formulas

54 For example, D could be the entire plane or the upper half plane.
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. eiz_e—iz _eiz+ e-iz
sin z=——— and cos z=—7—
2i 2

which extend in a natural way the definitions given to these functions when
the variables are real. They are also entire functions with essential singularities
at z=o, On the other hand, the function 1/sin z is meromorphic in the entire
finite plane; and its poles are located at the points z=n for n=0,*1, +2,
etc. It also has an essential singularity at z=o0.

5.5 POWER SERIES
A power series about a point zo is an infinite series of the form

oo

E an(z—2z0)" (5-8)

n=0

in which the coefficients a, can be any complex numbers. This series certainly
converges at the point zo, which may be the only point at which it actually
does converge. Or the opposite extreme could occur and the series might
converge at every point of the finite plane. In all other cases the series will
converge at every point within a circle of radius R and center at zo, called the
circle of convergence of the series, and will diverge at every point which lies
outside this circle. Thus (ref. 19), there exists a number R lying in the range
0 < R < w called the radius of convergence of the series such that the series
(5-8) converges at all points z which satisfy the inequality 3 |z—2z0] < R and
diverges at all points z which satisfy the inequality 5 |z—zo| > R. The question
of whether the series is convergent for the points which satisfy the equality
|z—2z0|=R (i.e., points on the e¢ircle of convergence)j is more subtle but un-
important for our purposes.

A power series with a nonzero radius of convergence R converges to an
analytic function and can be differentiated term by term (i.e., the order of
summation and differentiation can be interchanged) at every point within its
circle of convergence. Thus, there exists a function w(z) which is analytic at
every point within the circle |z—z;| < R such that

83 The series is, in fact, absolutely convergent at these points. This means that the series still converges when
each of its terms is replaced by its ahsolute value. See ref. 19 for more details.
8 This resulc was first established by Abel.
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w(z) = i an(z—2zo)"

for |z—z0/| <R

_wgil E nan(z Zo)" -1

It can also be shown (ref. 19) that, when the series (5—8) has a nonzero
radius of convergence R, there exists a positive constant M # © such that for
any number 0 < # < R the coefficients of the series satisfy the Cauchy estimates

|an| <‘¢—:~ forn=0,1,2, ...

This result will be used in the discussion of the solutions of differential equa-
tions in the next chapter.

Now suppose tha: w(z) is analytic in the domain D and that z is any
point of D. Then the power series

E - w(")(z.)) (z—zo)" (5-92)

(where w9{20) = w(z)) converges to w(z) at every point z within the largest
circle centered at zo lying entirely within D (ref. 18, p. 129). This series is called
& Taylor series expansion of w(z) about zo. Its radius of convergence is at least
equal to the shortest distance between zo and the boundary of D. It may be
larger than this but we have no guarantee that the series will converge to w(z)
at points which lie outside of D. The series representation (5-9) is unique in

the sense that if 2 bn(z—2z0)" is any power series which converges to w(z)

n=0
within any circle about zs, then necessarily (ref. 20, p. 49)

b,.=;17 WM (zo) for n=0,1, 2,

Next, suppose that w(z) is analytic at every point of a domain D except
for a certain number of isolated singular points and let zo be a point of D at
which w(z) is analytic. Then the cirgle of convergence of the Taylor series
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X Isolated singular points of w(z)

Circle of convergence

Boundary
of p—-"

(a)

,~Maximum size
7 of circle of
convergence

(b

(a) Circle of convergence does not intersect boundary of D.
{b) Maximum circle of convergence intersects boundary of D.

FIGURE 5—4. —Circle of convergence of a Taylor series.

of w(z) about zo passes through the nearest isolated singular point of w(z)
if it does not intersect the boundary of D. In this latter case we can only assert
that the radius of convergence does not exceed the distance between zo and the
nearest of the isolated singularities of w(z) within D. These results are illus-
trated in figure 5-4. Thus, in particular, if the function w(z) is analytic at every
finite point of the complex plane except at a certain number of isolated singu-
lar points, then the circle of convergence of its Taylor series expansion about
any point zo where w(z) is analytic always passes through the nearest isolated
singular point to zo.

For example, we have seen in section 5.2 that w(z) =e? is an entire
function. It is easy to see that the nth derivative of this function is
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w(z) =e? forn=90,1,2,. ..

Hence, the Taylor series expansion of ¢ about z=0 is
eZ: ~ n -_—
,jz:'(,n! z , (5-10)

And this series converges in the entire finite plane.

We have also shown in section 5.2 that the function w(z) = 1/z is analytic
at every point of the complex plane except the origin z = 0. The nth derivative
of this function is

(—1)"n!

w""(z) = zn+t

Hence, its Taylor series expansion about the point z=1 is
1 o0
;: 2 (_ l)n(z_ l)n
n=0

It is easy to verify that the radius of convergence of this series is equal to 1
and that the circle of convergence passes through the isolated singular point
z=20. Upon replacing 1 — z by z in this series we obtain the geometric series

1

l1—z

=3 o (5-11)

which converges within the unit circle |z| =1. This circle passes through the
isolated singular point z=1 of the function (1 —z)-1,

We shall frequently find it necessary to add and multiply two power
series. The sum of two power series about the same point can be obtained
by adding the two series term by term. The resulting series will converge
within the smaller of the two circles of convergence of the original series
(ref. 23, p. 123). Now let 2 cn and dn be any two absolutely convergent

=

series. Any expression for the product (2} c,.) (2 d,.) must certainly include
A= A=
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all terms of the type cid;. But all terms of this type must belong to the array

Codo+ Co(l'l +Cod2 +.. .+Codn ...
terdo +eady Ydide+. . Fcrde +. ..

+Czdo +Czd| +Czd2 +.. .+Czd,. +...

+Cmdo+Cmd[+Cmd2+. . -+Cmdn+. . .
+...

And the series which is formed by grouping together the terms along the di-
agonals of this array and summing the result over all diagonals is called the
Cauchy product of the two series. Thus, the general term in the Cauchy
product is

n n
an=cndo+ Cn_1dy+ Cn-2da+. . .+ codn= Z Cn-xdy= ; Crdn—k
=0

=0

and the Cauchy product is the series i an. Cauchy’s theorem (ref. 18, p. 147)

n=0

states that the Cauchy product Y ax is absolutely convergent and that
n=0

(20 c") (nz:o d") - (nz;a") = 20 2, Crdn-k

The Cauchy product is particularly convenient to use when multiplying
power series. For, in this case, we get

[i an(z —Zo)"] [2 bn(z—zo)n] — i n ax(z = 20)*bn-k(z — o)

n=0 J n=0 k=0

= i (z—zo)n (2 akb,.-k)

n
’ s
n-v W=
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which converges within the smaller circle of convergence of the two original.
series.

For example, let us use these ideas to find the power series expansion of
the function 1/[(a=z)(b—2z)), where a and b are arbitrary complex constants.
To this end notice that the geometric expansion (5-11) implies that

1 = i a-nz» and 1 = i b-nzn
z o z -
1—-= =n 1—-= n
a b

Hence, upon forming the Cauchy product we obtain

(o — =)l(b —2) ;13 go zn é:o (%)* (_il;)'"-k

But since

we find that

1 1 &
(a —z)(b -—z) = P 2 {a-(n+l)_b-{n+l)]zn
n=0

Next, in order to find the Taylor series expansion of the function cos z/(1+2?)
about the point z=0, notice that by changing variables in the geometric expan-
sion (5—11), we obtain the expansion

1 2
—1—_'_—§= 2;‘0 (_ 1)"22"

E 3

and that by using the expansion {5-9) and the definition of cos z given in section
5.4, we obtain the expansion
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x zzn
cosz= - D"
2 Doy
Then, upon taking the Cauchy product of these two series, we obtain

Cosz

x n 1
2_ 2 _l)nzzn,;)_*(zl‘)!

We have seen that a power series (with positive exponents) represents
(converges to) an analytic function within a circle. Similarly, the series (ref.
18, p. 134)

S an(z—z0)" (5-12)

n ]

containing both positive and negative exponents, converges to an analytic
function in an annular region®? lying between two concentric circles centered:
at .zp and of radii R, and R; with R, < R, (i.e., at all points z for which
R|<|z—znl<Rz) Conversely, any function w(z). which is anaiytic in an
annular region R, < |z — zg] < R, can always be represented by a series of
the form (5-12) at every point of this region. This expansion is called a Laurent
series. An important special case occurs when the function w(z) has an isolated
singularity at the point zo and is analytic at every other point within the circle
lz— zo] = R. In this case the seties

w(z) = 5" an(z—2o0)"

n=-—ox

converges to w(z) at every point z of the punctured circular region
0 < |z—z0| <R bounded by the circle [z—z¢|=R and the point zo. Then the
isolated smgulamy zo s a pole of order k of the function w(z) if, and only if,
.y # O uand 4y, = O for all n < — k. Hence, if zo is an essential singularity,

infinitely many negative powers of z — zo will occur in the series.
For example, we can use the geometric series (5-11) to obtain the expansion

57 Provided it converges at zll.
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x x -1
S EREEES
n=1 LEEE

of the function {z — 1)-! about the point z = . This series converges at all
points which lie outside the circle |z] = 1. And since the series

.——..,3 = ~Ron
3.3 ——203 z

converges wihin the circle |z| = 3, we conclude that the series

2z _ 1 3 & n
(z—1)(3—2) mz—l+3-—z_n__;§_:w @n
with
={1 forn=-—1,-2,...
n 3-» forn=0,1,2,...

converges in the annular region 1 < |z| < 3.

5.6 COMPLEX INTEGRATION

Let 1(z) be analytic in a domain D. Then the integral fr w(z)ds of w(z)

along a curve or path I which lies entirely within D is defined in terms of two
real line integrals along I" by

fr w(z)dz= fr (udx—vdy) +1i ﬁ (udy + vdx) (5-13)

It is easy to verify from this definition that the usual rules of integration
sti!l apply. Thus, in particular, if @ and B8 are complex constants and w;(z)
and w2(z) are analytic functions
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f [awn(z)+Bw2(z)]dz=af,w1(z)dz+ﬁjj,m(z)dz'
r r r

and if the direction of integration along I is reversed, the integral is multiplied
by —1.

For example, the integral of the function w(z) =z along the line yo,= con-
stant, from the point (0, yo) to the point (%o, yo), is

To N I x5, . 1 1
f Zdz=f xdx+lf Yodx=32+iyexo=1 (xo+iy0)* —3 (iyo)?
r 0 0 2 2 2

In order to integrate w(z) =z along a circular path centered at z=0, it is best
to use polar notation. Thus, let the radius of the circle be R. Then on this circle
z=Re¥ and dz==iRe? d0. Hence,

[' zdz=if2?r‘R2e2"0d0=0
0

r=R

Mor: generally, it can be shown (ref. 18, p. 111) that, if C is any closed curve
within £} and if w(2) is analytic at every point in the interior of C, then

fcw(z)dz-'-—-O

Therefore, if I'y and I'; are any two curves in D which begin at the point z; and
end at the point z; (fig. 5—5), then

J-r w(z)dz*—-fr‘ w(z)dz

1 2

provided w(z) is analytic within the domain enclosed by these curves.
Because of this fact the exact path along which the integration is carried
out is frequently unimportant; and when this is the case, we write

fﬁ w(z)dz in place of fr w(z)dz.

2
The function w(z) = 1/z has a singular point at the origin; and its integral
along-the circle of radius R centered at the origin is
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N

(2) Line integrals along T, (b) Line integrals equal along
and T, not necessarily I’ and I',.
equal.

FIGURE 5-5.—Paths for line integral. (Arrows indicate direction of integration.)

1 27 .
f -dz=if d0=27i
r=R 2 0

If the function w(z) is an analytic function of z in D, the function F (z) -de-
fined by

F(z)= J: w(z)dz

is also an analytic function of z in D and (ref. 18, p. 114)

___dl';ig) =w(z)

Hence,

F(z) —F(z) = f *F(2)ds

This shows that just as in the case of real variables, integration and differen-
tiation are inverse processes. For example, in order to evaluate the integral

2
f z"dz notice that, for n #—1,
2

0

131

©

ERIC

Aruitoxt provided by Eic:



DIFFERENTIAL EQUATIONS

e 1 dzn‘+ll
n+l dz
Hence,
z ) 1 z dz"“ ) Zn+1 zg+l
n == — —
L,Zdz ntl). dz @ n+1  n+l

It can also be shown (ref. 18, p. 141) that any convergent power series can
be integrated term by term and the resulting series will have the same circle
of convergence as the original series. In fact, it can be shown that the product
of any convergent power series about a point zo with a function of the form
(z2—z0)*, where A is a complex constant, can also be integrated term by
term,

5.7 ANALYTIC CONTINUATION
5.7.1 - Definition

First, suppose that w:(z) and ws(z) are both analytic in some common
domain D. It can be shown (ref. 18, p. 259) that if wi(z)= w(z) at all points of
some subdomain of D or even at all points of some curve which lies entirely within
D, then wi(z) and wa(z) are equal at every point of D. This assertion is known
as the fundamental theorem of analytic continuation. It means that there is
only one analytic function in a domain D which takes on any given set of values
which are prescribed at every point of a subdomain of D or even at every point
of some curve in D. For example, if the function w(z) is analytic in a domain D
and is equal to zero at every point of a subdomain of D or at every point of a
curve lying within D, then w(z) is zero at every point of D.

We have seen in section 5.5 that the analytic furction

1
1—2z

‘ (5-14)

~ which is defined and analytic at every point of the complex plane except
z=1 can be expanded in the Taylor series

S 2 (5-15)
n=0
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( S —

FIGURE 5-6.— Domains for direct analytic contination; D, is the common part of both domains
- D] and Dg.

which converges only within the unit circle. Thus, the function (5-15) is de-
fined only within the unit circle, where it is equal to the function (5-14),
which, however, is defined in a much larger region. The function (5-14) can
therefore be considered as an extension of the function (5—15) from the unit
circle to the entire complex plane with the point z = 1 excluded. Indeed,
whenever an analytic function is defined by some expression (such as a power
series) in some domain D which is not the whole complex plane, it is natural
to ask if this function can be extended to a larger uomain.

First, consider the function w,;(z) defined on the domain D; and let D,
be another domain, part of which coincides with D; as shown in figure 5-6.
It can be shown that the common region D., which is part of both domains,
is itself a domain %8 and h-:ice is a subdomain of both the domain D; and the
domain D.,. Now suppose that there exists a function w. which is analytic
in the domain D; and which is equal to w;(z) at every point z of the common
domain D.. Of course, the function uz(z) may not exist. However, if it does
exist, it is called the direct analytic continuation of the function wy to the
domain D.. '

There can be at most one direct analytic continuation of a function to any
given domain. For if {; is another direct analytic continuation of w; to D;, then
w, and & are both analytic in D, and are equal to one another in the subdomain
D.. Hence, the fundamental theorem shows that w. and {; are equal at every
point of D;. And this of course means that {; and w. are the same function.

%8See, e.8., ref. 8, ch. 1. The domains D, and D, are said to intersect; and thc common domain D, called the
intersection of Dy and Dy, is denoted by Dy N D,. )
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FIGURE 5—7.— Chain of domains for analytic continuation.

Let D be the domain which consists of all points which belong either to

the domain D, or the domain D5, or both.5® Then since the analytic functions

w1 (2) and we(z) are equal at all points where they are both defined, we can.
define a new analytic function #(z) on the domain D by the relation

[ w (z)l for z in D,
w(z) =
wz(z) for z in D:

It is clear that the analytic function w(z) is an extension of the analytic func-
tion w; (z) from the domain D; to the larger domain D.

The process described above does not have to terminate with the function
w2(z). It may, for example, be possible to find a direct analytic continuation
ws(z) of the function wy(z) to a domain D3, and so on. Proceeding in this
manner we obtain a chain of domains D,, D3, . . . such as that shown in figure
5—7 and a collection of analytic functions ws(z), ws(z), . . . defined on these
domains. Each of these functions is said to be an analytic continuation of
the function w,(z), and the procedure itself is called analytic continuation.
We say that w,(z) is analytically continued along a simple 8 curve I' which ex-
tends from D; to some point P if I is completely covered by a chain of domains
Ds, Ds, . . . (as shown in fig. 5-8) along which w; (z) can be analytically con-
tinued in the manner described above.

5 It is shown in various books on analysis that this extended region is indeed a domain. It is called the union of
the domains U, and D; and is denoted by D, U D, e.g., see ref. 8, ch. 1. "

8 Roughly, this means that I is smooth and does not cross itself nor have any other pathological behavior.

134



REVIEW OF COMPLEX VARIABLES

FIGURE 5-8.— Analytic continuation along a curve.

The collection of functions generated by the process of analytic continua-
tion can be used, as in the case of direct analytic continuations, to define a
new analytic function on the larger domain which includes all the domains
on which the analytic continuations are defined. If, in addition, the function
w,(z) is analytically continued along a curve I, the values of this extended
function on I itself will be the same no matter which specific collection of
domains D:, Ds, . . . is used to construct it.

5.7.2 Specific Method

In order to make these ideas more concrete we shall consider a specific
process which can be used, at least in theory, to obtain an analytic continua-
tion of any given function. Thus, suppose that the analytic function w,(z) is
defined by some expression in the domain D,. For example, it may be defined
by a Taylor series

wi(2) =3 anlz—2)" (5-16)

n=0

in which case the domain D; will be the interior of a circie of radius R; centered
at the point z;. We suppose that R, is finite. Choose a point z; in the domain D;.
Since an analytic function is infinitely differentiable, we can calculate the
sequence of derivatives w{"(zz) forn=0,1,2, . . . from the given expression
for w,(z) in the domain D,. For example, when the function w,(z) is given by
the Taylor series (5—16), w{¥(z2) can be obtained by differentiating equation
(5-15), term by term, n times and evaluating the result at z,. Then as indicated
in section 5.5 the Taylor series
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w2(2) =Y balz—z2)"
n=0
with

wi(z2)
n!

bn

I

for n=0,1,2, ...

will converge to an analytic function in a circle of nonzero radius centered at
z2. And this function will be equal to w,(z) at every point which is inside both
this circle and the domain D,. Of course, the circle of convergence of w,(z)
may not extend beyond the domain D, (as shown in fig. 5-9(a)). If this occurs,

Circle of convergence
] of wyt2)

(a)

rCircle of convergence
of wylz)

(a) Circle of convergence of w:(z) does not extend beyond D,.
(b) Circle of converzence of w.(z) extends beyond D,.

FIGURE 5-9.— Analytic continuation by power series.
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we can choose a new point z2 and repeat the process. However, if the circle
of convergence of ws{z) does extend beyend D, (as shown in fig. 5-9(b)),
then w;(z) will be an analytic contin:ation of w,(z). The process can now be
repeated by choosing a point z3 which lies within the circle of convergence of
w2 (z), proceeding to obtain a new Taylor series about this point, and so on.

It can be shown that any analytic continuation of a given function, no
matter how it has been obtained, can also be found by using the method of
power series just described. It is easy to verify from this that the analytic
centinuation of the derivative of an analytic function has the same value at
any given point as the derivative of the analytic continuation at that point,
provided they are both catried out along the same curve. This means tha: the
order of differentiation and analytic continuation can be interchanged.

5.7.3 Singular Foints

Let w(s) be analytic at all points of a domain D except for a certain
number of isolated singular points. Suppose, in addition, that w(z) is analytic
on a subdomain D, of D and that w,(z) is the restriction® of w(z) to D,. Then
w1(z) is analytic on D; and can be analytically continued to any other sub-
domain of D which does not contain singular points of w(z). As long as the
analytic continuation of w1(z) is carried out along a path which lies entirely
within I), the value of this analytic continuation at any point of D will be equal
to the value of w(z) at that point. However, since the circle of convergence of
a power-series expansion of an analytic function will pass through its nearest
isolated singular point (provided that point is nearer than the boundary of the
domain), it can be seen by using the method of power series that the function
w;(z) cannot be analytically continued alonig any curve which passes through
an isolated singular point of w(z). (These ideas are illustrated in fig. 5-10.)

More generally, let wy(z) be analytic on some domain D;. If this function
cannot be analytically continued along any simple curve which crosses the
boundary of D; at the point zo, we say that the point zo is a singular point of
the function w;(z). And the preceding remarks show that this definition is
consistent with the definition of an isolated singular point given in section 5.4.

€
Let > an(z—z0)" be a power series whose radius of convergence is not
n=0

# That is, w1(z) is a function which is defined only on 1), and takes on the same values at each point of D, as the
function w{z).
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X Isolated sinqular points

Analytic continuation Vs Analytic continuation
of wy(z} atong this [/ canrot be carried out
path is equal to wizl~, / past this point

\

FIGURE 5-10.—Illustration of analytic continuation of a restriction of an analytic function.

Enlarged circle C
obtained by analytic
tsntinuation of wiz)

’,
<Circle of convergence
oforiginal series

FIGURE 5-11. — Analytic coniinuation past a circle of convergence.
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equal to zero or infinity. We have seen that this series converges to an analytic
function w(z) everywhere within its circle of convergence and diverges outside
this circle. We shall now show that this circle always passes through a singular
point 2 of w(z). In order to obtain a contradiction, suppose that there were no
singularities of w(z) on the circle of convergence. Then it would be possible to
. analytically continue w(z) a finite distance outside this circle everywhere
around its circumference (as shown in fig. 5-11). These analytic continuations
could then be used to construct an analytic function w;(z) which is an ex-
tension of w(z) to a larger circle C which is also centered at xo. Now it is shown
in section 5.5 that the circle of convergence of the Taylor series expansion
of w,(z) about zo cannot be smaller than C. But it is also shown in that section
that this extended function w;(z) must have the same Taylor series expansion
about zo as w(z). However, this is impossible since (by hypothesis) this latter
series diverges outside of the smaller circle. Hence, we must conclude that
there is a singular point of w(z) on its circle of convergence.

Starting with a given analytic function w,(z) defined on a domain D, we
can carry out the process of analytic continuation until all possible analytic
continuations of the function w,(z) have been found. The collection of analytic
functions generated in this manner can again be used to define a new function
on the domain which consists of all the domains on which these various func-
tions are defined. The function obtained in this manner is called a complete

~analytic function. This function cannot be further extended. A point z is said

to be a singular point of the complete analytic function if it is a singular point
of any analytic continuation of w;(z). And sometimes, when no confusion is
likely to arise, we shall say that zo is a singular point of the original function
wy (z) itself. '

5.7.4 Multiple-Valued Functions

There is a certain difficulty associated with the definition of a complete
analytic function given in the preceding section. Thus, suppose that the
analytic function w, (z) defined on the domain D, can be analytically continued
along the two simple curves I'y and I'z which terminate at the same point p,

%In section 5.5 we only asserted that the radius of convergence does not exceed the distance between zo and the
nearest isolated singular point. .
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FIGURE 5-12. — Paths for analytic continuation of multiple-valued function.
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FIGURE 5-13.—=Domain for analytic continuation.
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as shown in figure 5~12. There is no guarantee that the analytic continuation
of wi(z) along I'y will have the same value at p as its analytic continuation
along I'>. But if this occurs, the complete analytic function obtained from
w1 (z) must have more than one value at the point p. Thus, although up to this
point we have assumed that all functions are single valued, we must in general
allow a complete analytic function to be multiple valued. It can be shown
‘ref. 19, p. 218) that the analytic continuation along the path I'; will always
have the same value at the point p as the analytic continuation along I'; unless
there is a singular point (such as that shown in fig. 5-12) between these two
curves.® However, the mere existence of a singular point between the two
curves does not guarantee that the analytic continuations along the two dif-
ferent curves will have different values at p. This only occurs when the singular
point is a branch peint. A branch point is a singular point of a function which
has the property that the function will not return to its starting value upon
analytic continuation along any arbitrarily small circle which surrounds
this point.

Suppose that the single-valued analytic function w;(z) is defined on a
subdomain D, of a domain D (see fig. 5~13). And suppose that D neither con-
tains any singular points of w;(z) nor is it possible to construct a closed curve
within D which surrounds a branch point w;(z). Then it is impossible for any
two analytic continuations of w:(z) along paths which lie entirely within D to
have different values at any given point p of D. Now, in terms of these analytic
continuations, we can construct on D (in the manner described above) an
analytic function w(z). Then this function will be single valued. It is an exten-
sion of w;(z) from the domain D to the larger domain D. And the fundamental
theorem shows that w(z) is the only single-valued analytic function with this
property. Therefore, when no confusion is likely to arise, we do not distin-
guish between the two functions w(z) and w,;(z) and we simply say that w,(z)
is defined on the larger domain D.

For example, consider the function w;(z) defined by

wy(z) =z2 (5-17)

83 This result is known as the monodromy theorem.
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-

FIGURE 5-14. — Analytic continuation of function z!/2,

on a domain D; which includes a portion of the real axis but which includes
neither the origin nor any portion of the negative real axis, as shown in figure
5-14. It is easy to verify that equation (5-17) represents a single-valued analytic
function in the domain D;. In order to proceed it is convenient to introduce
the polar representation z=re? discussed in section 5.1. Then the function
(5-17) can be written as®

wy (ret?) = rifzetdi2 (5-18)
When the point z is in D;, the argument 8 will always lie in the range
—mr<6<w (5-19)

(Notice that strict inequality signs are used.) Since the formula (5—18) with
an extended range of @ determines an analytic function at each finite point of
the complex plane except r=0 and since- this function coincides with w;(z)
in Dy, we can use this formula to analytically continue w,(z) outside of D,.

6 Recall that we have adopted the convention that the square root of a Positive real number is always the positive
square root.

142



REVIEW OF COMPLEX VARIABLES

Now the origin is a singluar point of w;(z). Hence, suppose we analytically
continue this function to the point p along Iy, the semicircle with radius R
in the upper half plane shown in figure 5-14. Then the value of this analytic
continuation at p is RY2e{"2) = R12[cos (m/2) + i sin (m/2)] = iRV2, But the
value at p of the analytic continuation along the semicircle I'; is R1/2e-#7/2)=
RY2[cos (—m/2)+i sin (—m/2)]=—iR"? These analytic continuations of
the function w;(z) therefore have different values at the point p.

If, instead of stopping at the point p, we carry out the analytic continuation
of w(z) first along I'; to the point p and then along I'; from the point p to the
point g (in the direction opposite to the arrows), we arrive at the value
R'2ei2mi2=—RU2 But since the original value of w,(z) at the point qis R'2ei?=
R'2_ we see that the function does not return to its original value upon ana-
lytic continuation around this circle. And since the radius R is arbitrary, this
shows that the origin is a branch point of w; (z). By making the transformation
z=1/w and taking R arbitrarily large, we can also show that the point at
infinity is a branch point of this function. And since z=0 and z= are the
only singular points (and therefore the only branch points) of w,;(z), this
function will always return to its original value when it is analytically continued
around any path which does not enclose the origin.%

Now every analytic continuation of w, (z) can be obtained from the formula
(5-18) by letting r range between zero and infinity and letting 6 take on all
values both positive and negative. But, since e?"=1 forn=0,*1,*2, . . .,
we need only consider values of 6 in the range 6¢=< 6 < 6o+ 41 (where 6o
can be chosen as any fixed number) in order to obtain all possible values of the
function (5-18). Thus, the complete analytic function #(z) obtained from
wi(z) is the multiple-valued function defined by

w(rei®) = rizgi2 Osr=sow <6< o+4mr (5-20)

It takes on two distinct values at each finite point of the complex plane except
at the origin, which is a branch point. And one of these two values is equal to
the negative of the other.

8 It will never return to its original value when analytically continued once around any path which does enclose
the origin.
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(a}

(b

(a) Branch cut in arbitrary location.
(b) Branch cut along negative real axis.

FIGURE 5-15. —Branch cuts for z%/2,

It is usually undesirable to dea! with multiple-valued functions.t¢ We can
avoid doing this by drawing a line connecting the branch point of the function
zV2 at tie origin with its branch point at infinity, as shown in figure 5-15(a),
and then restricting the analytic continuations so that they are not carried out
along any path which crosses this line. Such a line is called a branch cut and
it is used to prevent analytic continuations from being carried out along curves
which encircle the origirz, The actual location of the branch cut is arbitrary but
we may, for definiteness, assume that it lies along the negative real axis, as
shown in figure 5-15(b). Then starting with the original function (5-17) (which,
as can be seen from egs. (5-18) and (5-19), is positive along the positive real
axis) and analytically continuing this function along all allowable paths in the
complex plane, we ubtain the extended function

% After all, we would not expect a well-defined physical problem to have a solution which is multiple valued.
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W (rei?) = rii2pid/2 O0sr=sow;,—gsf@snw

which is single valued and analytic at every point of the complex plane not lying
on the negative real axis. We can also analytically continue the function which
is equal to the negative of the original function (5-17) in D, along all allowable
paths in the cut plane to obtain the extended function

W2 (rei) = ri/2qio2 O<r<ow;r<0<3nm

And this function is alsv single valued and analytic at every point of the complex
plane not lying on the negative real axis. The functions ¥, and W, are said to
be branches of the double-valued function (5-20). Taken together these two
branches assume all the values of the multiple-valved function and are there-
fore equivalent to it. Hence, we can deal with a multiple-valued function by
replacing it with its single-valued branches.

The complete function in this example is double valued and therefore
has two branches. However, we also encounter multiple-valued functions
which take on infinitely many values at each point and therefore have infinitely
many branches. For example, the function w(z)=1In z is defined in polar
notation to be

w(re?®) =In re®®=1In r+i6

In order to obtain the complete analytic function we must (as in the preceding
example) let r take on all values ir the range 0 < r < » and 4 all real values.
But since z=rei®= rei6+2n™ if and only if, n=0,+1,+2, . . ., this complete
function must have infinitely many values at each point. And these values
differ from one another by multiples of 27i. This function also has a branch
point at the origin and a branch point at infinity. And if the branch cut is
again taken along the negative real axis, the infinitely many branches w,(z)
forn=0,%1,+2, . .. of Inz become

wa(re’®)=Inr+ig 0<r<ow; 2n—1)w<8< (2n+1)w
forn=0,+1,%+2, . ..

The branch corrzsponding to the range — @< @ < 7 is called the principal
branch of the logarithm.
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The function z® (where a is some complex constant) can be defined in terms
of the logarithm by the formula z2=e2™m%, Hence, the branch points of this
function can be located only at the origin and at infinity. By using polar notation
we can express this function in the form zo=eatreaif=ragiad And this shows
‘that the complete function is multiple valued unless « is an integer. In fact,
it takes on infinitely many values at each point unless « is a rational number.
The various branches of this function can be formed in the same way as for the
logarithm. ‘

In a similar manner, it can be seen that for any finite point zo the complete
analytic function associated with (z—zo)* is multiple valued whenever a is
not an integer. Its branch points are z=2z, and z=® and its branch cut can be
taken along any line joining these two points. However, once a branch cut has
been chosen, the various branches of this function will then be analytic every-
where in the cut plane.

5.8 PERMANENCE OF FUNCTIONAL RELATIONS

Let F(z1, . . ., zn) be a complex function of the n complex variables
z2=x1+iy1, . = ., zZs=2n+iys. If this function can be expanded in a power
series

o0 s . :
F(zi, . . .yzm) = 2 Qiy, - . -, QiZil232 . . L 2Zip

i], .. s,in=l

with complex coefficients a;,, . . ., a;, and if this series converges in some
neighborhood of each point in some domain of the 2n-dimensional space whose
coordinates are X1, . . ., Xn, %1, - - -, ¥n, then we say that F is an analytic
function of the n complex variables zy, . . ., z, in D. This is clearly an exten-
sion of the definition of an analytic function of a single complex variable given
in section 5.2.

Now let F(wy, . . ., wa, z) be an analytic function of the n+1 complex
variables w;, . . ., wy, z for all values of the variables w,, . . ., w, and for
all values of z in some domain Do. If wi(z), . . ., wa(z) are analytic functions
of the complex variable z (in the usual sense) in some common subdomain
D of Do, then it can be shown (ref. 4) that the function g(z) defined by
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continuation of
the functions
wiz),... Wiz

FIGURE 5-16. —Illustration of permanence of functional identities.

8(z) =F(wi(2), . . ., wn(2),2)

is also analyticin D.

Now suppose that i;(z), . . ., @wn(z) are anaiytic continuations of
wi(z), . . ., wa(z), respectively, from D to some other common subdomain
D of Dy and these analytic continuations can all be obtained by analytically
continuing the functions wi(z), . . ., wn(z) along a single curve ' which
lies entirely within Do. (This is iliustrated in fig. 5-16.) In addition, suppose
thatw;(z); . . ., w2{z) satisfy the equation

F(uw, . . .,wnz)=0 (6-21)

at all points z in D. Then by analytically continuing these functions along I' to
D and using the fundamental theorem of analytic continuation given in the
beginning of section 5.7, it can be shown (ref. 19, p. 210) that @,(z), . . .,
wn(z) also satisfy equation (5—-21) at every point of D. This is known as the
principle of permanence of functional relations. Roughly speaking, it means
that the analytic continuations of the solutions of equation (5-21) are also
solutions of this equation. '
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5.9 DIFFERENTIAL EQUATIONS IN COMPLEX PLANE

5.9.1 Definition

We have already indicated the utility of extending the definition of a
differential equation to include the case where the variables are complex. To
this end let F (w1, . . ., wn,z) be an analytic function of the n+1 complex vari-
ables w;, . . ., wn, z in some domain D. Then the nth-order normal differential
equation in the complex domain is an equation of the form

n n-1
T=F (0.5 Gt 2) (5-22)

Notice that in writing this equation we imply that its solutions, if they exist,
must possess complex derivatives at all points where they are defined. It is
also reasonable to require that the solutions satisfy the equation at least on some
domain in the z-plane. Hence, the solutions to equation (5—22) must be analytic
functions. This is a much stronger restriction than is imposed in the case of real
variables, where we require only that the solutions be sufficiently differentiable.

59.2 Fundamental Theorem

The following fundamental theorem (which is analogous to that given in
chapter 1 for the real-variable case) can be shown tc hold (ref. 4, p. 119). For
each point €7 {1, . . ., {n, 20 of the domain D where the function F is analytic,
there exisis a unique (i.e., single-vaiued) function u(z) which satisfies the initial
conditions

w(zo) =0, w(z0) =0, . . ., w("_l)(zil)':Cn

is analytic, and satisfies equation (5-22) in some neighborhood of the point Z0.
We shall be principally interested in the (effectively normal) linear equation

dr ar! dw
TrtaE) 7 S . ana(2) o an(@Dwt b(z) =0 (5-23)
where the coefficients a1(z), . . .,aa(2), b(z) are all analytic on some commaon:

domain Do. This equation is effectively of the form (5-22) with the function ¥

87 L4y .+ .y Lny 20 are n+1 compies numbers.
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analytic on the domain D which consists of all the values of the variables
Wy, . . ., w2 and all the values of the variable z which lie in the domain D,.
Hence, the fundamental theorem now becomes: For each set of complex
numbers {1, . . ., {n and each point zo of Do there exists a unique function
w(z) which satisfies the initial conditions

w(zo) =01, w'(20) =Lz, . « ., w"=V(20) =(n

is analytic, and satisfies equation (5-23) in some neighborhood of the point zs.

There is also, in this case, an additional result, due to Fuchs (ref. 24, p. 4)
~ which asserts that this solution, w(z), has a Taylor series expansion about zo
" whose radius of convergence is at least equal to the shortest distance between
20 and the boundary of D.

Now suppose that w(z) is a solution to equation (5-23) on some subdomain
D, of D,. Then the (single valued) function w(z) and all its derivatives are
analytic on D,. Let #(z) be an analytic continuation of w(z) along some curve
in Do to some other subdomain D of Dy, as shown in figure 5-17. Then since,
as indicated in section 5.7.2, the analytic countinuation of a derivative of an
analytic function is equal to the derivative of the analytic continuation, we can
apply the principle of permanence of functional relations to equation (5-23)

_~Domain of analyticity
of coefficients of dif-
ferential equations

continuation of
wiz), wiz),...,wMa)

149




DIFFERENTIAL EQUATIONS

to show that the analytic continuation w(z) is itself a solution to equation
(5-23). Thus, the analytic continuation along any curve lying entirely within
D, of a solution to equation (5-23) is also a volution of this equation.

For example, the differential equation

N ST S
w +6zw+622w-—0

has the solution
w(z) =z!24 213

But upon analytic continuation of this solution around any closed path en-
circling the origin, we obtain the function

Wy (z) -_—(ezwiz) 124 (ezﬁz) 3= pl/2 4 ezﬁiszlls

And it is easy to verify by direct substitution that w,(z) is also a solution of the
equation. (In fact, w(z) and w; (z) are linearly independent.)

We shall now show that any solution to equation (5-23) which is defined
on a subdomain of Do can indeed be analytically continued along any curve in
Dy. This means that no solution te equation (5-23) carn. have a singular point
in Do. The assertion can be proved by assuming that there exists a solution
w(z) in a subdomain D, of Do which cannot e analytically continued along
seme curve ' in Do and then showing that this leads to a contradiction. Thus,
if w(z) cannot be continued along I', there must be a point z; on I" as shown in
figure 5-18 such that w(z) can be continued up to, but not past, this point. We
can therefore choose a point z, on the portion of I" joining I, to z: which is closer
to z; than any part of the boundary of D,. Upon analytically continuing the
solution w(z) along I to z,, we obtain a solution w;(z) of equation (5-23)
in a neighborhoc1 of z;. And Fuchs’ result shows that w,(z) can be expanded
in a Taylor series about z, that converges in a circle which includes the point
z;. But this constitutes an analytic continuation of w(z) along I' past the point
21, which was assumed to be impossible. And this proves the assertion.

It follows from these results that any solution %8 to equation (5-23) in

8 The existence of such a solation is asserted by the fundamental theorem but only in some neighborhood of this
point. And this neighborhood could be very small.
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" d
¢ i N
Domain of wiz) £Circle of convergence of

Taylor series expansion
of WZ(U

FIGURE 5-18. — Continuation of w{z) along I'.

a neighborhood of a point where the coefficients are analytic can actually be
extended! to obtain a solution to this equation on the entire domain Do on which
the coefficients are analytic. However, in order to do this we must, in general,
allow these solutions to be multiple valued.

593 Llinearly Independent Sclutions

By using the fundamenial theorem given in this section, the various results
given in section 1.6 for linear equations with real variables can be extended to
the complex-variable case. Thus, the homogeneous equation associated with
equation (5-23)

drw dn-tw —
P04 S by (w0 (5-24)

possesses n linearly independent {single valued) solutions wi(z), . . ., wa(z),
called a fundamental set of solutions, in a neighborhood of each point of
Do. Now let wy(z) be a particular (single valued) solution of equation (5-23)
in the neighborhood of some point of Do. Then every solution of this equation
about this point can be obtained by making a suitable choice of the arbitrary
constantscy, . . .,cpin the general solution w(z) =cyun () + . . . +cown(z)+
wp(z) of this equation.
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The definition and discussion of linear independence given in section 1.6
applies with only trivial modification to the case where the functions are com-
plex and analytic. Thus, in particular, a necessary and sufficient condition
(ref. 24, p. 13) that n (single valued) solutions wx(z), . . ., wa(z) of equation
(5-24) be linearly independent on a domain Do on which the coefficients are
analytic is that the Wronskian

wy Wws Wn
wi ws ... wn

W(w,, .. .,wp) = (5-25)
ws"-" w(z’l—l) ... ws:l*l)

not be equal to zero at any point z; of Do. Since wy, . . ., wa are analytic func-
tions of z, the Wronskian itself is an analytic function of z which we shall denote

by#°(z). Thus,
W(z) =W(u(z), . . .,wa(z))

It is also easy to see that the Wronskian of the analytic continuations of
wy(z), . . ., wa(z) along a curve I in Do is equal to the enalytic continuation of
the function #°(z) alongl.

It can be shown by using the rules for differentiating determinants and by
substituting in the differential equation (5-24) (ref. 24, p. 12) that #” satisfies
the first-order differential equation

LA (5-26)

dz

And upon separating the variables and integrating along any path T in Do,
we obtain

W (z) =ce | P (5-27)

where ¢ is a complex constant of integration.
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Since p1(z) is analytic in Do, its integral f pi(z)dz must also be analytic

in Do, Hence, in particular, this integral cannot become infinite at any point of
Do; and therefore the exponential factor in equation (5-27) can never vanish
in Do. Thus, #°(z) can only be equal to zero at a point 2; of Dy if c=0. And
this shows that,if #(z) vanishes at any point of Do, it must vanish at every point
OfDo.

In the special case where n=2, equation (5-27) can be used to obtain an
explicit formula which determines a second linearly independent solution
we(z) to equation (5-24) when one solution wy(z) to this equation is known.
Thus, when n=2, we find upon expanding the determinant and rearranging
that

i ( ﬂ )_-:_-7//'(2) =_-Ce-fn(xm
u

" %

And integrating this along any curve in Dy yields the formula

e ]h(:)dx

we(2z) = cuy (z) J'[ BIE dz (5-28)

which agrees with the formula obtained by the method of variation of parame-
ters in section 4.1. It follows from the way in which it was constructed that any
solution w2(z) calcrlated from this formnula will be linearly independent of

wy (2).
More generally, it can be shown (ref. 24, p. 16, example 10) that, if n—1
linearly independent solutions, say un(z), . . -, wa-1(z), to equation (5-24)

are known, another linearly independent solution to this equation is given by

- P!(x)dt
w;(z) f 7o Mie)ds

where #71(2) is the Wronskian
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w w2 . s e Up-1y
“ l 2 . . . "-l

i) =Ww, . . .,wn) =

9 -2 -2 -2
w2 wir-? . w2

and, fori=1,2,. . .,a—1, M:(z) is the cefacter of 22"-2 in this Wronskian.

That is,

M.-(z) =

510 NONELEMENTARY TRANSCENDENTAL FUNCTIONS

We shall have occasion to use two particular nonelementary functiens
of a complex variable called the gamma function and the beta function. First,
we define the analytic functioni I'(z) for# z > 0 to be the Eulerian integral
of the second kind.

I'iz) = f e~t:-1dt (5-29)
0

This integral converges in the right half plane 4 z>0 and diverges for
# z<0, It can be shown (ref. 25) that it represents an analytic function in its
domain of convergence. Although this analytic function is only defined by
equation (5-29) in the right half plane, it can be analytically continued into the
left half plane.# z<0 by using the formula

T
sin 7z

') —z) = (5-30)

to compute the values of I'z) for . z=<0 from its values at points in the
right half plane. It follows from this equation that I'(z) has simple poles at
z2=0,—-1,-2, ...

Integrating equation (5-29) by parts (with z replaced by z+ 1) shows
that for .# z2>0
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£

FEz+1)= zJ’ e-ttz=1dt

0

Hence,

I'(z+ 1) =2(2) (5-31)

By successively applying equation (5-31) we find that for any positive
integer n

F'z+an)=+n—-1DI(z+n-1)

=@+n—-1)(z+n=2)'(z+n—2)

=@z+n=1)(z+n~-=2) ... (z+1)'(2) (5-32)
It is convenient to introduce a special notation for the factor multiplying

I'(z) in the last member of this equation. Hence, we define the generalized
factorial function (z)a by

(z)o-"—' 1
and

@e= T G+m) | (5-33)
=0

m=

=z2(z+1)(z+2) ... (z+n-1) forn=1,2,3, ...

Thus, the symbol (z)» denotes the product of n factors, each factor being
one larger than the preceding one. For example,

(7)s=7%X8X9

N _1,.3,5.7
(ﬁ;“zxzxzxz
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Notice that when z =1 in equation (5-33), we obtain the ordinary factorial
function since

(1)a=1-2:-3...n=n! (5-34)
By using this notation, equation (5-32) can be rewritten as ['(z+n) = (z2) ' (2).

And, therefore, the generalized factorial function can be expressed in terms
of the gamma function by

_T(z+n)

(2)n= ) forn=1,2,3,... (5-35)

Since integrating equation (5-29) with z =1 shows that I'(1) =1, we find
from equations (5-34) and (5-35) that

F(n+1)=n! forn=1,2,3, ... (5-36)

This equation is also valid for n = 0 provided we use the usual definition 0!=1.
The beta function B(z, {) is a function of two complex variables and is

defined by

B(z,{) = f (-1 (1 = 1)ty (5-37)

for A z> 0 and 4. I > 0. However, ii is possible to express this function
in terms of the gamma function since

F'z)re = ( J: e-'tx-idt ) (L‘ e"r“‘d‘r)
= Lx e""t""( j: e"r"‘d‘r) dt

And upon setting x = 7/t, we can eliminate 7 from this equation to obtain

0 0

[(z)[(¢) = ‘r e~ftz-1gt ( ‘r e"’xf"-dx) dt
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Hence, after changing the order of integration we find that
r= =
F(Z)r(g) = j x(-l (f e*l(.t+l)tz+{—l(1t) dx
0 0
Then by defining 71 by 71 = t(x + 1) and eliminating ¢, we get

Far@= | g L e-nritt-1dn,

And after setting x =t/ (1 —¢t) this becomes
FrrE)=ri:+g) J: -1 (1 —r)*-'d:

But comparing this with equation (5-32) shows that

_I'rw ,
B(L,z)= F+0) (b-38)
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CHAPTER 6

Solution of Linear Second-Order Differential
Equations in the Complex Plane

In section 5.9 we extended the definition of a differential equation to
include the case where the variables are complex. In this chapter the ideas
presented in that section are used to find the behavior of and, in certain
cases, to construct solutions to the second-order differential equation

d? d
TE+P@) L +a@w=0 (6D

where z is a complex variable and the coefficients p(z) and g(z) are analytic
functions in some domain D of the z-plane. We have seen that every solution
of this equation is an analytic function of z.

A point at which the coefficients of equation (6-1) are boih analytic is
called an ordinary point of this equation. Thus, every point of D is an ordinary
point. A point zo which is a singular point. of either p(z) or g(z) (or both) is
said to be a singular point® of equation (6-1). And if the only singularities of
p(z) and ¢(z) which occur at z, are isolated singular points, zo is also said
to be an isolated singular point of equation (6-1).

6.1 GENERAL BEHAVIOR OF SOLUTIONS AT ORDINARY POINTS

Let z; be any point of D. It was indicated in section 5.9 that equation
(6-1) will possess two linearly independent (single valued) solutions, w,(z)
and w:(z), in some neighborhood of z;. These solutions are said to be a funda-
mental set of solutions. They possess Taylor series expansions about z;, say

o Notice that this definition is consistent with the one given in section 1.5,
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w,(z) = i al(z—z;)"

n=0

(6-2)

wa(z) =3 aP)(z—z))"
n=9

whose radii of convergence are at least equal io the shortest distance between -
z, and the boundary of D. Since the coefficients cf equation (6-1) can always
be analytically continued across those points on the boundary of D which
are not singular points of the equation, it is always possible to extend the
domain D (in which the coefficients are analytic) in such a way that every
finite point on its boundary™ is a singular point of equation (6-1). Hence, we
can assert that the radii of convergence of the Taylor series expansions (6~2)
of the solutions w,(z) and w:(z) are at least equal to the distance Ro between
z1 and the nearest singular point of equation (6-1). It was also shown in
section 5.9 that the solutions w,{z) and w:(z) can be analytically continued
along any simple curve in D and that these analytic continuations are them-
selves solutions of equation (6-1). Thus, in particular, we can assert that
the series (6-2) not only converge within a circle of radius R, but that they
also satisfy the differential equation everywhere within this circle.

6.2 GENERAL BEHAVIOR OF SOLUTIONS NEAR ISOLATED SINGULAR POINT

Suppose that z, is either an isolated singular point or an ordinary point
of equation (6—1). Then the coefficients p(z) and g(z) of this equation will be
analytic within the punctured circular domain 0 < |z—z | < R (shown in
fig. 6-1) whose radius R is equal to the distance between zo and the singular
point 71 of equation (6—1) closest to zo. We shall call this domain 72 A. Now
let w,(z) and w:(z) be a fundamental set of solutions to equation (6—1) in
a neighborhood Dy of a point z of A. We have seen in section 5.9 that these
solutions can be extended (by using their analytic continuations) so that
they satisfy equation (6—1) at every point of A. However, since zo may be
a singular point and since it can be encircled by a curve such as the curve
I' shown in figure 6—1, these extended solutions can be multiple valued.

70 Provided D has a boundary.
7 Other than z, itself,
72 Notice that zo is not a point of A.
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FIGURE 6—1.—Contour for analytic continuation of w; and ws.

In order to deduce the behavior of these extended solutions, we shall
now construct a fundamental set of solutions on A whose structure is particu-
larly transparent. To this end let the fundamental set w;(z) and w2(z) be
analytically continued from D, counterclockwise around I'. This process will,
in general, yield two new functions of z, say ¥, (z) and W2(z) which are defined
on Dy by

Wi(z) =w, (2™ (z2—z0) + z0)
(6-3)
W2 (z) =w,(e2™(z2—2z0) + z0)

But we know that W,(z) and W,(z) must satisfy the differential equation (6-1) -
and that every solution to this equation in Dy can be expressed as a linear
combination of the fundamental set of solutions w;(z) and w2(z). Thus, there
exist complex constants.a;;, a2, @z1, @22 such that

Wl(z)=allwl(z)+al2w2(z) ] S
: [ (6-4)
W2(z) = anw(z) +azws (2} j
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For example, consider the differential equation ™

.
6w+62w 0

w'+
and let zo=0. A fundamental set of solutions to this equation is w;=2z"? and
ws=2z13, Upon applying equations (6—3) to these solutions, we find that

W 1(2) =w(e2miz) = (e27iz) V2= (— 1)w, (2)

and

W2(2) = e27i3115 = 275w, ()

And, therefore, the constants which appear in equations (6—4) become, in this
case, a au——'l a2= 0 ag1= 0 (122—821"/3
We shall now show (in the general case) how the constants in equations
(6-4) can be used to construct the desired fundamental set of solutions to
equation (6—1) on the domain A. In order to do this, we first recall from the
-theory of linear equations that the algebraic equations

(au - )\)Cl + anc2 =0
(6-5)
ai12C1 + (a22 - )\)Cz = 0

have a nontrivial solution™ in c;, ¢z, provided A is a root of the characteristic
equation

ain—AN az
a2 az — A

=M\ — (au + az)\ + (anazz — appaz)) =0  (6-6)

This equation will either have two distinct roots or two equal roots. We shall
treat these two cases separately.

3 This equation was discussed in the example given in section 5.9.2.
7 That is, a solution other than ¢, =c2 = 0.
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6.2.1 Case I: Roots of Characteristic Equation Distinct

First, suppose that the iwo roots of equation (6-6), A, and A, are distinct.
Let c¢{!, c{! be a set of nontrivial solutions to equations (6-5) corresponding
to the root A1 and ¢, ¢ be a set of nontrivial solutions corresponding to
the root A2. Thus,

(an — )\'I)C(ll) + azlcg” =0
(6~Ta)
alzc‘ll) + (a22 - Al)Cgl) =0

and

(a1 = A2)c) + agicl) = 0} (6-7b)"'

(112C§2) + (azz — )\2)6(22) =0

Now let u((z) and uz2(z) be the solutions to equation (6-1) which are
defined in Do (and only in Do) in terms of the fundamental set w;(z) and

‘W2(Z) by

i

~ur(z) = cPwy(z) + cPws(z) (6-8)
uz(z) = c@wy(z) + cPws(z) (6;9)

Then it follows from equations (6-3), (6—4), and (6—8) that u(e2™(z —z0)+ zo),
the analytic continuation of u1(z) counterclockwise around I', is given by

u1(e2™(z — zo) + z0) = cPw1(e?™i(z — z0) + 20) + Pw2(e2™(z — z0) + z0)
= (VW 1(z) + cPW2(2)
= [cVan + cPazJwi(z) + [cPaiz + ctPasz]w:(z)
Hence, equations (6—7a) and (6-8j imply

11 (e27(z — z0) + 20) = Mcw (z) + Acws(z) =Ayu1(z) (6-10)
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And the same argument shows that the analytic continuation of the solution
uz(z) around I", uz(e?™(z — zo) + zo), is

iz (e2™(z — z0) + 20) = Aau2(z) (6-11)

The constant A; is nonzero. If this were not true, equation (6-10) would
show that u,(€2™(z — z) + zo) is identically zero in Do. But then u, (€™ (z — zo)
+ z0) could be analytically continued backwards along I" to show that 'u,(z) -
is identically zero. And since the constants c{!’ and c{!) are not both zero,
equation (6—8) would show that w:(z) and wz(z) are linearly dependent. But
this is impossible since w;(z) and w:(z) are, by hypothesis, a fundamental
set. Hence, we conclude that A; # 0. The same reasoning shows that A, # 0.
We can, therefore, define two (finite) numbers 8, and &, by 7

1 1 _
81—‘2;; In Ay d2= o In Ag (6-12)

and use these numbers to define the two analytic functions f;(z) and f2(z) in
Do by

f1(2) = (2—20) ~P14(2)
f2(2) = (2—20) ~*2u2(2)

(6-13)

Since the right-hand members of these equations are products of functions
which can be analytically continued along any simple curve in A, it follows that
f1(z) and j2(z) must also have this property. And since w, (z) , we (z) (z—2z0)-%
and (z—z)~®* have no singular points in A, it follows from equations (6-8),
(6-9), and (6-13) that £,(z) and f2(z) have no singular points in this region.”
Hence, these functions have no branch points in A. On the other hand, the
analytic continuations f;(e2™ (z—zo0) +2z0) of fi(z) for i=1, 2 in a counterclock-
wise direction around any curve I' which encloses zo are

fi(e2™(z—z0) +20) = (€27i(z—z0) ) ~%iui(e2™ (2 —z0) + z0) fori=1, 2

5 The condition Ay # Az implies that 8; — 8 is not an integer.
6 However, the point zo may be a singular point of these functions.
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Hence, it follows from equations (6-10) and (6-11) to (6-13) that
) 1
fi(ex™(z=20) +20) = (2= 20) ~Piui(€*™ (2= 20) + 20)

= (z2—2z0) ~8iu;(z) = fi(z) fori=1,2

But this shows that the point zo is also not a branch point of the functions
fi(z), i=1, 2. Hence, these functions will return to their original values when
they are analytically continued around any closed curve in A. And this implies,
as indicated in section 5.7, that they can be extended to single-valued analytic
functions on the entire domain A. We can therefore suppose that these ex-
tensions have already been carried out and that fi(z) and f2(z) are defined on
the entire domain A. Hence, it follows from equations (6—13) that the extensions
of the solutions u;(z) and u2(z) from Do to the domain A (which we shall

also denote by u;(z) and uz2(z)) are functions of the form

u1(z) = (z—z0)%1f1(z) }
(6-14)

uz(z) = (z—z¢)%2f2(z)

where f1(z) and f2{z) are single-valued analytic functions on the entire domain
A. (The point zo, however, may be an isolated singular point of these func-
tions.) And as indicated in section 5.8 the extended functions u:(z) and u2(z)
must satisfy the differential equation (6—1) everywhere within A. These are
the solutions which we have set out to construct. We shall now show that
they are linearly independent. To this end suppose that y; and y; are any
two constants such that

Y1y (z) + youz(z) =0
Substituting equations (6—8) and (6~9) into this equation shows that

[ Y1+ y2c® ] wi(z) + [ yicl? + y2c T wa(z) =0

And since w;(z) and w, (z) are linearly independent, it follows that
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Y1) + acf? = 0

(6-15)
Y1c) + yac® =0

Hence, upon multiplying equation (6-7a) by y: and equation (6-7b) by v:
and adding the results, we find that

(At = A2)yief) = (A1 — A2)y2cP =0
But since we are considering the case where Ay # Az, this implies that
yic) = yucf) = ycP) = y1c{) = 0

And by using the facts that c{*’ and c{!) are not both zero and c¢{*) and c{») are
not both zero, we can conclude that y, = y, = 0. But this shows that u.(z)
and u,(z) are linearly independent.

Before discussing the implications of these solutions, we shall first treat
the case where the roots of the characteristic equation are equal.

6.2.2 Case lI: Rocts of Characteristic Equation Equal

Thus, suppose that the roots of equation (6-6) are equal. Then the argument
used in the preceding section can easily be adapted to show that there still
exists at least one solution to equation (6-1) of the form

wi(2) = (z — 20) 31 (2) (6-16)

where f;(z) is a single-valued analytic function in A and 8,= (1/27i) In A,

with A\, # 0. We can therefore assume that the fundamental set 4f solutions

w; (z) and w;(z) of equation (6-1) in the domain Do (fig. 6-1) has been chosen -
in such a way that w,(z) is given by equation (6-16). By analytically con-

tinuing this solution around I' we find that in this case the function W (z)

(defined in eqs. (6—3)) is given by W, (z) = \w,(z). And since w,(z) and w,(2)

are linearly independent, the first equation (6-4) shows that
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a12=0

and

an=»x

However, these equations imply that the roots of the characteristic equation
(6—6) are A\i=a;; # 0 and A\2=a;:. But since we are considering the case

where A;= A2, it follows that a;;=a22=A\;. Hence, in this case equations
(6—4) become

Wi(z)=hwi(2)

(6-17)
W2(2)=azaw: (z)+ w2 (z)
We now define the function f2(z) on the domain D, by -
f2(z) = (z—2z0) ~81w2(z) _axfi(z) In (z—z0) (6-18)

27Tik1

This function can be analytically continued along any simple curve in A, and
it will return to its original value when it is analytically continued along any
closed curve which does not encircle zo. Its analytic continuation (counter-
clockwise) along any curve I' which encircles z is

f2(e2™i(z—z0) + z0) = (z2—z0) ~Bre-2mibrffy, (z) — 222'7'2—)(:) In e27i(z — zy)
—_ -&1
=(ii—°l)— W,(z) —%;)(:) In (z—2z) —% f1(z)

But inserting equation (6—16) and the second equation (6—17) into this relation
shows that
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f2(e27i(z — 20) +20) =/f2(2)

Hence, the function f2(z) will return to 1ts original value when it is analytically
continued around any closed curve in A. It can therefore be extended to a
single-velued analytic function on the entire domain (which may have an
isolated singular point at zo). And we can now conclude from equations (6-16)
and (6—18) that the extension of the solution w2(z) from D, to the entire domain
A (which we shall also denote by w2(z) ) is a function of the form

wa(z) = (2—20)%Y2(2) + aw,(2) In (z—2z0) (6-19)

where f2(z) is a single-valued analytic function on the entire domain A and we
have put @ = az/2mi\,. It can again be shown that the solutions w;(z) and

w2(z) are linearly independent.

6.2.3 General Conclusions

Notice that the fundamental set of solutions (6—16) and (6—19) with a=0
are of the same form as the fundamental set (6-14) with 8, = 82. The funda-
mental set (6-2) which occurs at an ordinary point of equation (6-1) is a special
case of the fundamental set (6-16) and (6-19). We have therefore established
the following conclusion: Let zo be an ordinary point or an isolated singular
point of equation (6-1) and let R be the distance between zo and the singu-
lar point of equation (6-1) which is closest to zo. Then equation (6-1) possesses
a fundamental set of solutions on the punctured circular region 0 < |z—zo] <R
which is of the form

w1(z) = (z—20)%f1(2) ]
(6~20)

w2(z) = (z — 20)%f2(z) + aw,(z) In(z — z0)

where f,(z) and f:(z) are analytic single-valued functions in 0 < |z—z¢| <R
and a, 8,, and 8, are complex constants.

The fundamental set (6-20) is called a canonical basis. The constant a
is equal to zero whenever 8, — 82 # 0, £1,+2, . . .. The case where 6;— 6.
=0, +1, +£2, . .. is referred to as the exceptional case. Notice that the
constant ¢ may also vanish in the exceptional case. This occurs, for example,
when z¢ is an ordinary point of equation (6-1).
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-»
We should not conclude from these results, however, that the solutions
of equation (6-1) will always have singularities at the singular points of this
equation. For example, the equation

2w — 2z’ +2w=0

has an isolated singular point at z= 0. But the general solution to this equation
is

w=Aoz+ A,22

where Ao and A4, are arbitrary. And this shows that every solution of this
equation is analytic at z=0.
By changing notation we can rewrite this solution in the form

w=ao+ a(z—1)+ (a1 —aog)(z—1)2

where a¢ and a, can now be taken as arbitrary. This is evidently a canonical
basis at the ordinary point z=1. Since it is an entire function, it certainly
exists and satisfies the equation within a circle whose radius is larger than
the distance between z=1 and the nearest singularity (namely, z=0) of the
differential equation.

If either of the functions f;(z) «nd f2(z) in equations (6—20) is not analytic
at zo, then zo must be an isolated singular point of this function. Hence, fi(z)
and f2(z) can always be expanded in the Laurent series 7

fil2) =3 bW (z— zo)m

(6-21)
L@)=3 b0 (z—z)"

R=—x

which converge for 0 < |z—z| < R. An important special case occurs when
the functions fi(z) and f2(z) either have poles or are analytic at zo. Then the
series (6-21) contain at most a finite number of negative powers of z—z0 and
can therefore be written in the form

77 Which may or may not contain negative powers of {z—zd).
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fi= i b (z—z0)» fori=1,2

n=-ri

where r; and r; are finite integers (they may be negative or zero). However,
we can shift the index in the sums by patting k=n+r; and then summing on
k. Thus, :

2 00

fiz)=> b}jl,‘(z_—zo)k"i= (z2—20)="t Y a{P(z—z0)* fori=1,2

k=0 k=0

where we have put afff = b for i=1, 2.

Inserting these equations into equations (6-20) shows that in this case the
canonical basis is of the form

20

w1 (z2) = (z—2z0)" z a;c”(z-—zo)k
k=0

(6-22)

we(z) = (z—2z0)"P2 i aP(z—z0)*+aw(z) In (z—z0)
k=0

where we have put p,= 8, —r; and p, = 8; — ;. The series converge everywhere
within the circle |z—z¢| < R (including the point zo) and they, therefore, repre-
sent analytic functions within this circle. The solutions w; and w. are said to
be regular. 1t follows from the fact that r; and r; are integers that a vanishes
whenever p1—p2 #0, =1, =2, . . . since it vanishes when 8; —8&: has this
property.

We have already seen that equation (6-1) will always possess two regular
solutions (with p;=p;=a=0) at the point zo whenever z, is an ordinary point
of this equation (i.e., if p(z) and ¢(z) are analytic at z5). We shall now deter-
mine certain conditions which the coefficients of equation (6-1) must satisfy
at an isolated singular point z if this equation i5 to possess two regular solutions
about z,

Since wi(z) and w,(z) are linearly independent in 0 < |z—2zo| <R, their
Wronskian (see section 5.9.3)

wi(z) wa2(z)

W (z)= (6-23)

wy(z) w,(2)
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cannot vanish at any point z of this domain. On the other hand, putting

&= E az— z0)* for i=1, 2 in equations (6-22) and substituting the
k=0

result into equation (6—23) shows that

W (z) = (z— 20)P1+pa71G4(2) + a(z — 20)*°171G2(2) (6-24)

where we have set G = (p: — p1)g18: + (z—z0) (818, — &182) and G = g3.
Since g and g; are single-valued analytic functions in the entire circle
|z — 20| < R (including zo), it is clear that G, and G; are also functions of this
type. And since a = 0 whenever the exponents p, + p: — 1 and 2p; — 1 in equa-
tion (6—24) do not differ from one another by an integer, this equation can
also be written as

W (z) = (z2— 20)*Go(2)

where A is the smalier of the two numbers p; + p2 — 1 and 2p, — 1 and Go(z2)
is a single-valued analytic function in the entire circle |z — z| < R. Hence,
Go(z) can be represented by a power series

Go(z) = 3" Anlz — z)"

n=0

whose radius of convergence is R. But it follows fiom the fact that #°(z) is
not equal to zero in 0 < |z z| < R that there must be a smallest integer,
say m, such that 4,, # 0. Hence,

W (z) = (z—z20)M"G(2) (6—-25)
where

C(z) = 3 Aksm(z — 20)% = (z — 20)-"Gol(2)
k=0

is also a single-valued analytic function in |z — zo|] < R but not equal to zero
at zo. And since #7(z) does not vanish at any point of the punctured region
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0 < |z — 20] < R, we conclude from equation (6—25) that G(z) is not equal to
zero arywhere within the circle |z — 2] < R (including the point z,). Hence,
differentiating (6—25) shows that

1d¥ _dn#_A+m

¥di- dz z—z [@
where
P(z) =— C&' ((zz))

is a single-valued analytic function in |z — 20| < R since its denominator does
not vanish in this domain. But equation (5-26) shows that the coefficient
p(z) of w' in equation (6—1) is related to the Wronskian by

Thus, if equation (6—1) possesses two regular solutions, its ccefhicient p(z)
must be of the form

p(z) =217 1 p(y) (6-26)

2=z

Similarly, it can be shown by substituting the first equation (6-22) and
equation (6-26) into equation (6—1) that this equation will possess two regular
solutions at zo only if the coefliciént ¢(z) is of the form

—_« B
q(z) - (Z"&))2+z— Zo+Q(Z)

where a and B are constants and Q(z) is analytic &t zo. We have therefore
shown that equation (6—1) can possess two regular solutions at the point zo
only if its coefficient p(z) has, at most, a simple pole and its coefficient q(z) has
at most a pole of order 2. We therefore say that a singular point z of equation
6—1) is a regular singufar point if
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{1) p(z) is either analytic at z9 or has a simple pole at z,

(2) g(z) is either analytic at zo, has a simple pole at z, or els~ has a pole

of order 2 at zo.

Notice, however, that we have not yet shown that equation (6—1) always
possesties two regular solutions at any regular sinigular point.

An isolated singular point of equation (6—1) which is not a regular singular
point is called an irvegular singular point.

In order to trzat the point z=w®, we must, as in section 5.3, introduce the
new independent variable {=1/z into equation (6—1). Then the point z=
will be an ordinary point, a regular singular point, or an irregular singular point
if the point =0 is, respectively, an ordinary point, a regular singular point, or
an irregular singular point of the transformed equation. But the change of
variable {=1/z transforms equation (6—1) into the equation

‘f—c—';’wo(o %‘—Z+ Qo(D)w=0 (6-27)

where
Po(0) s%—%,—p(% )=2:=2p(2) (6-28)
Qo) = Zl' q % )=z 6-29)

Thus z=® ig an ordinary point of equation (6-1) if both Po({) and Qo(Z)
are analytic at {=0, which is equivalent to saying that 2z—2%p(z) and z%q(z)
are analytic at zv=o, Similarly, the point z=c0 is a regular singular point of
equatiors (6—1) if Po(Z) has, at most, a simple pole at {=06 and Qo({) has, at
most, & pole of order 2 at {=0, which is equivalent to saying that 2z—22p(z)
has, at most, a simple pole at z=o and z*q(z) has, at most, a pole of order 2 at
z=00, If the point z=®is an isolated singular point of equation (6—1) but is not
a regular singular point, it is an irregular singular point, It is clear that the
coefficients p(z) and g(7} themselves must certainly be analytic at z= o when-
ever this point is a regular singular point.

These definitions are best clarified by considering an example. Thus, the
differential equation

2z~ D' —{z+Dw' +zw=0
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can be written as

W' — (z+1) , 1

zz(z—l)w +z(z—l) w=0
Hence,
n__ (z+1) __ 1
P2 ==% ) 9(2) z2(z—1)

And the function p has a simple pole at z=1 and a pole of order 2 at the point
z=0, The pnint z=0 must, therefore, be an irregular singular psint. The func-
tion ¢ has simple poles at z=0 and z=1. Hence, the point z=1 is a regvlar
singular point. All other finite points are ordinary points. In order to consider
the point at infinity we must consider the functions 2z—z%p(z) and z%g(2)
(instead of the coeflicients p and g) which, in this case, become

z+1 20 = z3
z—1 7 z—1

2—2p=2z+4

Hence, 2z —z°p has a simple pole and z%q has a pole of order 2. And this shows
that the point at « js a regular singular point.

We shall now show by actually giving a procedure for finding the solutions
that the differential equation (6—-1) always possesses two regular solutions at a
regular singular point.

6.3 SOLUTICN OF EQUATION ABOUT ORDINARY POINTS AND REGULAR
SINGULAR POINTS

Let zo be either an ordinary point or a regular singular point of the differ-
ential equation

w'+p(2)w' +q(z)w=0 6-30)

Since p has, at most, a simple pole and q has, at most, a pole of order 2 at z,
the Laurent series expansion for p about zo contains, at most, one negative
power of z — zo and that for ¢ contains, at most, two. Let R; and R be the
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distances between zo and the nearest singular points of p(z) and q(z), re-
spectively, to z,. Then R; and R will be strictly positive and

p(2) =" pr(z—z0)*! for 0 < |z—2z| <R, (6-31)
£=0

(I(Z) = 2 ((k-(Z'—Zo)l""2 for0 < IZ—Zo| < Rz . (6_32)
k=0

The point z) will be an ordinary point of the ¢:Terential equation if, and only if,
Po=qo=q;=§ (6-33)

6.3.1. First Regular Solution

We shall now show that equation (6—30) always has at least one solution
of the form

w(z) = (z—z0)? 2 an(z—20)" (6—-34)

in some punctured circular region about the point zo. This will be accomplished
by first showing that the constants p and a, can aiways be determined
in such a way that equation (6—34) formally satisfies the differential equation.
It will then be shown, a posteriori, that the formal operations were indeed
justified and therefore that the formal solution is, in fact, a true solution of
the differential equation. The procedure which we develop by this process can
then always be used to construct a solution to any given differential equation
of the form (6—30) in the neighborhood of any of its ordinary points or regular
singular points.

Since the assumed expansion (6—34) must certainly have a leading term
and since the exponent p is not, as yet, specified, we can always assume
that matters are arranged so that ao # 0. We now substitute this expansion into
the differential equation (6—30) and suppose that the series can be differen-
tiated term by term. Then
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oot

Z_ (n+p)(n+p—1)az(z — z)mr-2

n=0

L n=0

+ [é:o p;-(z - zo)"”] i (n+ p)an(z— zo)'”"’“’]

+ kg”o ax(z —zo)k-z] [20 a,.'(z—zo)w] =0

And after forming the Cauchy preducts of the series and adding the resulting

series term by term, we get
R,

oc n
2 (z— z°)n+p—2{(n + p)(n +p—1)a,+ 2 ax [ (k+ P)Pn-k + Qn—k]} =0
n=0 k=0
(6—35)
Now it follows from the uniqueness property of power series that this
series will vanish for all values of z in some domain only if the coefficients

of each power of z — z vanish individually. Upon equating these coefficients to
zero, we obtain for n=0

F(p)lap=10 ' (6—36)
and

n-1
F(n+p)a,.=-—z ar[ (k+ p)pn-k + Gn-k] forn=1,2,...
’ ’ k=0
6-37)

where we have put
F(p) =p*+ (po—1)p+qo (6—38)

Since, by hypothesis, ao # 0, equation (6—36) implies
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F(p)=p>+(po—p+q=0 (6-39)

This quadratic equation is called the indicial equation. Its two roots are
called the characteristic exponents of the differential equation at the point
2o. Equation (6—37) is called the recurrence relation.

If the constant p in the assumed solution (6—34) is chosen to be a root of
the indicial equation (6—38), the coefficient of (z — z,)?~? in equation {(6—35)
will vanish for arbitrary values of the constant ao. And if there s no positive
integer n for which F(n + p) = 0, equation (6—37) can be used to calculate
successively (starting with ao) the coeflicients 7® a, in siich a way that the
coefficients of all the remaining powers of z — 2o in 2quation (6—35) will vanish.
Thus, when the constants p and a, for n =1, 2, . . . are determined in this
manner, the series (6—34) will at least formally satisfy the diffcrential equation
(6—30) with the constant a, arbitrary.

Of course, if F(n + p) varishes for some positive integer n, we have no
assurance that equation (6—37) can be used to calculate a,. But let the roots of
the indicial equation (i.e., the characteristic exponents) be denoted by pi
and p: with the notation chosen so that % p: = % p2, and let

vV =p—p2 _ (6-40)

Then
K vz=0 ' 6-41)

And since a quadratic function can always be expressed as the product of its
factors, we can write

F(p)=(p—p1)(p—p2)
Henée,

F(n+p;,)=n(n+v) - (6-42)

—

" Notice that for each integer n the recurrence relation (6-37) cxpresses a, only in terms of the coefficients
ax with 0 <k < n. Hence, it can be used to first determine a; in terms of gy and then to determine a; in teims of a:
and ao. But since a; is known in terms of ao, this determines a: in terms of g,. By proceeding in this manner, each an
can be determined in succession in terms of do. ‘ .
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Then, since equation {6—41) shows that
A (n+v)y=n+%v=n (6—43)
it follows from equation (6—42) that

F(n+p,) #0 forn=1,2, . .. (6—-44)

Hence, when p=p1, the coefficients a, forn=1,2, . . . can all be calculated
recursively in terms of ao from the recurrence relation (6—37). Thus, equatioi:
(6—30) will always possess at least one formal solution of the form (6—34) ahout
the point z,. ,

It is still necessary to verify that this formal solution is justified. In order to

do this, we must show that the series E an(z—2z0)" obtained by the procedure
n=0

described actually converges. We can then conclude from the theory of power
series given in section 5.5 that the formal operations of (1) differentiating the
series (6—34) term by term, (2) forming the Cauchy product of the resulting
convergent series with the convergent series (6—31) and (6-32), and (3) adding
the resulting convergent series term by term are justified ? and, hence, that
equation (6—34) is indeed a solution to the differential equation (6—30).

In order to establish the convergence of the series in equation (6—34) for
the case where p=p;, notice that in view of equations (6—42) and (6—44) the
recurrence relation (6—37), with p=p,, can be put in the form

n-1

z ak[(k+Pl)Pn—k+qn—k]
_—k=0 = —_
an= PYEEE forn=1,2,... (6—45)

7 We shall subsequently encounter (in ch. 9) a case

fi¢re the constructed series actually diverges and hence
the formal procedurce, aic it noszzzaniis]
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Therefore,

S ak[(k+p1)pa-k+ qn-k]

k=0

|an|=

| n(n+v) |

n—1
2 Lax [ pnx||pr]+]|an-r|+k|pn-r]|]
k=0

njntv|

(6—46)

=

Let R=min {R{, Rz}, where R, and R: are the radii of convergence of
the series (6—31) and (6—32) for p and g, respectively. Then R is strictly positive
(since R; and R are positive) and the Cauchy estimates, given in section 5.5,
for the derivatives of the analytic functions p and g imply that there ex1stﬁmte
positive constants M and NV such that

pel<mb  and  |g<qr  fork=0,1,2,... (6-47)

which implies that

M +N
'PAHP!H‘,(M’ —I&I—* fork=1

Rk

And since |n+v| = % (n+v), itfollows from equation (6—43) that [n+v| =n

for n=1, 2, . . .. Inserting these results into equation (6—46) shows that
1% (Mlps[+N | kM
|a,,1 - (—lﬂ‘-l— )_IIE%L- forn=1,2,... (6-48)
n =

Now put.P = M|p,|+N-+ M+ 1. Thepo P is a finite number which is larger
than 1; and for n=1 and k<n,
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Mlpi|+N+kM _ Mlp,|+N+M

<P
n n
Hence, it follows from equation {6—48) that
n— 1
lan) =< = E R"" forn=1,2,... (6—49)
which for n=1 becbmes
P\!
|la:] < (E) |aol (6-50)
Suppose that for n > 1
P\k
E (E) la]  forl<k<n (6-51)

We shall now show that this implies that the inequality also holds when
k = n. Since n can be any integer larger than 1 and since equation (6—50)
shows that the inequality also holds when n=1, we can then conclude by
induction that the inequality will hold for every positive integer n. Thus,
inserting the inequality (6-51) into f:,q‘ua'tion (6—49) shows that

P -1
el <30S ol (6-52)

But since P =1, it follows that P*< P»-', And when this is inserted into
‘equation (6-52), we find that

P\ :
janl < (%)’ lal (6-5)

Hence, we can conclude by induction that this inequality holds for every
positive integer n. .
We can now use this inequality to show that the series 26 an(z—20)",
n=
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which appears in the solution (6-34), converges at least within the circular
region (of nonzero radius)

R
|z—20| < °P (6—54)

To this end, notice that within this circle the inequality (6-53) shows that the
nth term of this series has the property that

P\ R\" 1
lanz—20)"1 = lanl ls=aal" < (%) a0l (55) =laal 35 (6-55)
And since the series
2, 1
ol 24,20

is simply a geometric series, it certainly converges. Hence, in view of the in-
equality (6—55), a simple application of the comparison test 8 shows that the

series 2 an(z—2z0)" is absolutely and uniformly convergent at least within
n=0

the circle (6—54). It, therefore, represents an (single valued) analytic function
within this circle.
Thus. we have shown that

0i(z) = (=200 ) ald(z— z0)" (6-56)

n=0

is a solution to equation (6—30) within some circle about zo for arbitrary afV
provided the coefficients a¥) forn=1,2,. .. are computed from the recurrence
relation (6—45). But the series in (6—56) converges within a circle about z,
which passes through the singular point of w: (@apearest to zo. In fact, the radius
of convergence of this series must be at least a ge as the distance R between
2o and the nearest singular point of equation (®-30). In order to prove this,
notice that R; and R:, the radii of convergence of the series for p and g, re-
spectively, must be equal to the distance between zo and the nearest singular

80See ref. 23.
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points of these functions. But it follows from the definition of a sinzztiar point
of a differential equation that R = min {R,, R:}. Hence, p ard q are single
valued and analytic within the punctured circular rogion A defined by
0 < |z — 2] < R. Now since w is a solution to the differentis! equation, it
must be possible (as shown in section 5.9.2) to analytically continue this
function along any simple curve in A. And, therefore, iy cannot have any
singular points within A, But it certainly has a siigular point on its circle of
convergence. Hence, its radius of convergence cannot be smaller than R.
And this proves the assertion.

Since the analytic continuation of a solution of the differential equation
(6—30) is also a solution of this equation, we can now conclude that the function
w1(z) given by equation (6—56) converges and satisfies the differential equation
(6—30) at every point of the domain 0 < |z — zo| < R, where R is the distance
between zo and the nearest singular point of equation (6-30).

- We have now shown that equation (6—30) possesses a regular solution
(6—56) about any ordinary point or regular singular point of this equation.

Bzfore obtaining a second regular soluticn we shall introduce an example
to illustrate the procedure described in the preceding paragraphs. Thus,
consider the equation

320" +zw' — (1+ 2)w=0 | 6-57)
Since the coefficients p and q are

_1 __1+4:
P(x) =3, 177 32

and since the coefficients (6—28) and (6-29) of the transformed equation are

5z 2{1+2z)
— 2y = —— ———
2z —2%p 3 ziq 3

we see that every point is an ordinary point except the point z= 0, which is a
regular singular p-int, and the point z= o, which is an irregular singular point.

We know that if we seek a solution about the regular singular point
z=0 of the ferm
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w=

Ms

anpz™tP (6—58)

=
]
(=)

we will obtain at least one and perhaps two solutions to the differential equation
in which the constant ao is arbitrary. And since the nearest singular point of
the equation to z = 0 is at ®, we know that the series will converge in the
entire plane.

Instead of using the general formulas obtained above it is usually easier
in any given case to derive the solution from first principles by substituting
the assumed power series into the differential equation. Thus, after substituting
equation (6-58) into equation (6-57) and differentiating term by term, we get

i [3(n+p)2—2(r+ p) —1]apzte — i Az P+l = ()
n=0 n=0

In order to collect the coefficients of like powers of z, it is convenient to
reindex the sums so that the same powers of z appear in each term. Thus, in
the second sum, we replace the dummy index r by the index k= n+1 and in
the nirst sum we put n = £. And since £ =1 when n=0, in the second sum we
obtain

S [B(k+ ) — 20k +p) — Naszk — ' ariztvo =0
k=0 =

Now equating to zero the coefficients of like powers of z gives

30 —2p—1]ar=0 - fork=0

and

[3(k+p):—2(k+p)—1]ax=ars fork=1,2, ... (6-59)

Since ao # 0, the indicial equation is

F(p)=3p*—2p—1
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And its roots are

=1 and p2=1/3 6-60)

When p=1, the recurrence relation (6—59) can be solved for all values of &
and can be written as

Gk —

or writing out the first few terms

ao
al:f;ﬁ?
.
az—2 <10
an-1

G (Bn+4)

In order to determine a, in terms of ap we multiply together both members of
these equations to obtain

1

a-*az . . . an=(1..2 . n) [7_10. . (3n+4)]a0'al e o o« An—1

ans! then divide through by @, - a2 . . . an.—; to get

= Qo _ ~
W=7 0., Gar ] rrT LA 6-61)

Notice that the term in square brackets is a product whose factors are

elements of an arithmetic progression. The factors in this progression in-
crease by 3 in each term. Hence, if we factor out a 3 from each term we obtain
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7-10-13... (3n+4) =3 (%)(%«i—l) (§+2),,_(§+,,_1)=3,. (%)n

where we have the generalized factorial function defined in equation (5-33).
Upoa substituting this into equation (6-61) and then substituting the result
together with p = 1 into equation (6-58), we obtain the regular solution

% 1 n+1
w=do 3 —— (%) (6-62)

where we have put A, = 3a,.

6.3.2 Second Regular Solution

We shall now use the regular solution w,(z) obtained in section 6.3.1 to show
that equation (6-30) always possesses a second regular solution about any
ordinary point or regular singular point zo. In order to do this we use the results
cbtained in section 5.9.3, which show that

IP(Z)dx

w(e) =) [ = (6-63)

[r (2)32

is a solution of equation (6-30) which is linearly independent of w,(z). We have
omitted the arbitrary constant ¢ in equation (5—28) since we may assuine that
it has been absorbed into the arbitrary constant ao which multiplies w, (z).

Now upon integrating equation (6-31) along any ‘path in the punctured
circular regxon 0 < |z — z0] < R,, we obtain

fp(z)dz=po In(z—20) + co+go(2) (6-64).
where

go(Z)-—; E £ (z— 20)* (6-65)

and co is an arbitrary constant.
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Since the series 2 Px(z2—20)* converges, the series (6—65) must also con-
K=
verge (section 5.6). Hence, go(z) is an analytic function in a circle centered at

zo. It, therefore, follows from equation (6-56) that

-

[:21 (2)]? = (z2—2z¢) “2P1e700 0 (2= 20 g(2)

= (z — 20) ~¥P1*paig(z) (6-66)
where we have put

e—9d.2)

g(z) = e""o——[gl (z)]2

and g&i(z) = i aM(z—zo)"
n=0

Since af" # 0, there is some neighborhood of the point zo in which g1(z)
is never equal to zero And since g, (z) is analytic at zo, it follows that the func-
tion [g1(z)]-2 is also analytic and not equal to zero ®' at z. Similarly, it follows
from the fact that go(z) is analytic at zo that exp [—go(z)] is analytic and non-
zero® at zo. Hence, the function g(z) is analytic and not equal to zero at
zo. It can, therefore, be expanded in the power series

g(z)= Zoan(z—Zo)" with ao # 0 (6-67)

which converges in a circle of finite radius about z,.
Now since the two roots p; and p; of the quadratic indicial equation (6-39)
are given by

— (po—1)= V{pe=T)"—4gq
3

it follows that p;+p:=1—po. And therefore, in view of definition (6-40),

2p1+ po=v+1 (6-68)

8t Notice that [g,(z)]-? and exp [—&0(z)] can only equal zero at points where &i(z) and go(z), respectively,
become infinite; i.e., at singular points of these functicns.
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When equations (6~67) and (6-68) are substituted in equation (6-66)
and the resulting expression is substituted into the integrand of equation
(6-63), we find that

w2 (2) = w1 (2) f_(ler"“ ioa,.(z-zn)"dz

And it follows from the fact that the pewer series converges that we can
interchange the order of summation and integration (section 5.6) to obtain

w1 (z) i n(ﬁlv (z—2zp)"" forr#0,1,2, . .v .
n=0
wz(z)= = (6—69)
wi(z) Y — =) +tw(aln (z—z) forv=0,1,2, . ..

Since these series converge, they represent analytic functions within
their circle of convergence. Therefore, the produci of either of these series
with the series in equation (6-56) is again an analytic function which can be

expanded in a power series Y a{ (z— z0)" with a nonzero radius of converg-
. n=¢0

ence. Hence, in view of definition (6-40), it follows from equation (6-56) that

equation (6-69) can be put in the form

w2(2) = (z—2z)*: i a@ (z—20)"+ aw; (z) In (z—2¢) (6-70)

wherea=0forv+#0,1,2, . . .

By repeating the argument used in section 6.3.1 to determine the size of
the circle of convergence of the solution (6-56), we can again shew that
the function w,(z) given by equation (6-70) converges and satisfies the differ-
ential equation (6-30) at every point of the domain 0 < |z—2z| < R, where R
is the distancc betwcen 2o and the nearest singular point of equation (6-30).

We have now proved that the linear second-order differential equation
(6-30) possesses two linearly independent regular solutions at every ordinary
point and at every regular singular point.

In order te show how to construct the solution (6-70), it is necessary
to consider certain cases separately.
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632.1 Case (i): v#0, 1, 2, . . .—First, consider the case where the
difference in the characteristic exponents v is not equal to an integer. Then
a=0 in equation (6-70), and this solution is of the same form as the trial
solution (6-34) with p=p,. Hence, if equation (6~70) is substituted into the
differential equation (6-30), we will find, as before (since p. already satisfies
the indicial equation), that the coefficient a(,f’ must satisfy the recurrence rela-
tion (6-37) with p=p,. But since equation (6—-40) and the equation following
equation (6-41) show that F(n+ pyj=n(n—v), the recurrence relation (6-37)
with p= p, can be written in the form

n-1
"("—v)an='—12 ax[ (k+ p2)Pn-k+ qn-r) forn=1,2, ... (6-71)
=0

And since v is not equal to an integer, the coefhicient of a» never vanishes.
Hence, this equation can be solved recursively to determine the coeflicients
a?) in exactly the same way that the coefficients a{?) in the first solution (6-56)
were determined. Nothing new is involved. In fact, in solving the recurrence
relation in this case it is usually easier to leave p unspecified as long as possible
and to determine the coefficients of the first and second solutions
simultaneously.

For example, the left member of the recurrence relation (6-59) of the
differential equation (6-57) considered in section 6.3.1 can be factored to
obtain :

= Ay -y
(p+k—1) Bp+3k+1)

fork=1,2, . . .

Cgk

or, writing out the first few terms,
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@y =0
" p(3p+4)
(3]

az

(D) Be+7)

— Ap-1
(p+n—1) (3p+3n+1)

Qan

And upon multiplying together hoth members of these equations we obtain

a*az*°az . .. Gy
’

— ap°ay1°aA2 . .. An-1
le(p+1) ... (p+n—1)]1[(Bp+4) (3p+7) . .. (3p+3n+1)]

Hence,

_ Qg
@ Tole+1) . .. (p+n—1][Bp+4) Bp+7) ... @Gp+3n+1)]

The characteristic exponents p, and p2 are given by equation (6-60). If e
set p=p;=1 in this equation, we obtain the coefficients of the first solution.
But if we set p=p,, we obtain' the coefficients '
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=R—"3i)(%)(%) — _azén_s:é)][g.e.g ... 3n]

ao

"1 -2:5... Bn—a)]n!

of the second solution. After using the generalized factorial function (eq.
(5-27)) to get

(-1)-2:5. . Bt =3(-7) (~5+1) (- 5+2) (-5 +»-1)

-of-4),

and then substituting the results with p=1/3 into equation (6-58), we find
that the second solution to equation (6-57) is

x

n—(1/3)
U= Bo Z + (’32—)
n!{—-z
(%),

n=0

where we have put Bo= bs3-1/3.

6322 Case (ii): v=1,2, ... and a=0.—In this case the second
solution (6-70) will also be of the same form as the trial solution (6-34)
with p=p,. Hence, its coefficients a’ for n=1, 2, . . . must again be deter-
mined by the recurrence relation (6-71) with p= p,. But since v is a positive
integer, the left-hand side of this equation will vanish when n=wv. The recur-
rence relation for a, can therefore not be satisfied unless the right-hand side
of this equation

v=1
>, axl(k+p2) py-rt+ qu-k]
k=0

also vanishes, in which case it will be satisfied automatically for all values
of a,. We then obtain a solution involving two arbitrary constants. And since
this solution must be a general solution to the differential equation, it will
contain the solution obtained for p = p.
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This situation will always occur in the important special case when zp
is an ordinary point of the differential equation. For in this case, equations
(6-33) and (6-39).show that the indicial equation is

Flp)=p(p—1)=0

Hence, the characteristic exponents are py=1 and p.=0; and their difference
v=p,—p:=1 is a positive integer.*? But it follows from equation (6-33)
that the recurrence relation (6-71) for a, becomes

1X0Xay=ao [(0Xp)+0]

and this is automatically satisfied for any choice of a;. The recurrence relation
(6-71) with n=2, 3, . . . will then uniquely determine the remaining an.
We therefore obtain in this case a solution which involves two arbitrary
constants.

For example, considerthe equation

(22—1) w"+ 6z’ + dw=0 (6-72)

Since its coefficients p and q are

p(z) = q(z) =

we see that the only singular points of this equation are regular singular points
atz=1,z=—1,and z=

We know that if we seek a solution about the ordinary point z=0 of the
form '

= i anz? (6-73)
n=0

we will obtain a general solution to the differential cquation in which the
coefficients ao and a; are arbitrary constants. And the series will converge at
least within the circle |z| < 1.

&2 That v must be an integer in this case could easily be anticipated from the fasit that the characteristic exponents
themselves must be integers if the solutions are to be analytic at z=z,.
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Thus, after substituting the expansion (6~73) into equation (6-72), differ-

entiating term by term, collecting terms, and factoring the coefficient of z",
we obtain '

C— i n(n—1)az"2+ i (n+4)(n+1)az"=0
n=0

n=0

which becomes, upon shifting the index in the second sum,
_ki Ic(lc—l)a,,zk—2+§: (k+2) (k— 1) ag_azk-2=0
=0 =

We now equate to zero the coefficients of like powers of z to get
0X(—1)ao=0 1X0Xa;=0

and

—k(k—1)ax+ (k+2) (k—1)ar.=0 fork=2,3, . . .

The first two equations merely serve to show that ao and a, are arbitrary, as
we already know. And since the coefficient of ax is not zero for k = 2, we can
write the remaining equations as

k+2
k

A = —

ai—2 fork=2,3, . .. (6-74)

This equation shows that each succeeding a; is determined from the q;
whose subscript is 2 lower than its own. Thus, this recurrence relation will
ultimately determine the ax with even values of & in terms of a¢ and the a; with
cdd values of k in terms of a,. It is, therefore, convenient to consider separately
the equations for even and odd values of k. First, upon writing out these
equations for even values of k beginning with a;, we find that
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=4
az 9 Qo
=6
ay 4 az
2(j+1)
Zj——T azj—2

__9
as 3 a1
el
5 5 as
2j+3

aAgj+1=— —2j+ 1 azj—1

Multiplying together both sides of the equations for even values of & and

dividing through by a; - as-as . . . azj_2 gives
C[4-6-8...2(j+1)]
Q=" a6 . . .25

which becomes, upon removing the common factors of the numerator and
denominator,
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azy= (j+1)ao for j=1,2, ... 6-75)
And upon proceeding the same way for the odd values of &, we obtain

2j+3
Qogiy = 13 ai  forj=1,2,. .. (6-76)

Since equations (6—75) and (6—76) show that the coefficients of even and
odd powers of z are given by different expressions, it is convenient to first re-
arrange the series (6—73) into two series, one containing the even powers of z
and the others containing the odd powers. This is legitimate since every
rearrangement of a convergent powers series converges to the same sum. Thus,
equation (6—73) becomes.

o0
w= 3 awt+ 2 @z 129!

And upon substituting equations (6-75) and (6-76) into this expression, we
obtain the general solution
3) .

to equation (6-72). It is easy to see that both series converge in the circle
| z| <1 and diverge outside this circle.

In both the examples given thus far in this section, explicit expressions
for the general terms in the series were obtained. Also the recurrence relations
in both examples (see eqgs. (6—59) and (6—74)) involved only two different
coefficients; whereas, in general, the recurrence relation will involve n different
coeflicients (see eq. (6—37)). It is, in fact, true in general that there is little hope
of obtaining an explicit expression for the solution unless a two-term recurrence
relation is obtained. This is not necessarily a limitation on the method because
any recurrence relation can be used to successively calculate numerically as
many terms of the series as desired. In fact, it is in the cases where many-
term recurrence relations occur that the general convergencec theorems are
particularly useful since, without having an explicit expression for the general
term, it is not possible to tell from an infinite series itself whether or not it is
convergent. '

w=ap i (j+1)z%+a, i ( 2

j=0 j=1
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6.3.23 Case (iii): v=0, 1,2, ... and a#0.—In this case the loga:
rithmic term will be present. Notice that in case (ii) we did not include v=20.
The reason for this is that when v=0 the characteristic exponents are equal
and therefore there is only a single recurrence relation. Hence, there can only
be one regular solution of the type (6—34) and the logarithmic term must be
present in the regular solution (6—70). When v=1, 2, . . ., a will not be equal
to zero if, and only if, the recurrence relation (6—71) cannot be solved for a,. In
this case, no generality will be lost if we set 83 a-- . The solution canalways be
determined by substituting equation (6—70) into the differential equation, using
the fact that w, is a solution to simplify the result, and then setting to zero the
coefficients of the various powers 8¢ of z—zo to calculate the coefficients
al® recursively.

The procedure is best illustrated by considering an example. Thus, thz
differential equation

2w — 2w —w=0 . 6-77)

has a regular singular point at z = 0 and an irregular singular point at z= o,
We know that this equation will possess at least one solution of the form

w=3 az"r (6-78)
n=9

about the point z=0 and that this solution will converge in the entire complex
plane. Upon substituting the zxpansion (6-78) into equation (6-77), inter-
changing the order of summation and differeniiation, shifting the indices, and
collecting terms, we obtain

2 (n+p)(n+p—1)azmte-t — i (n+ p)an-1z"t*"1=0
n= n=1 )

Equating the coefficients of like powers of z to zero gives for n = 0, since ao
is arbitrary,

plp—1)=0 6-79)

8 Sisce w1 is detemined only to within a constant factor.
84 The logarithmic terms will always cancel out.

195




DIFFERENTIAL EQUATIONS

and
(n+p—1)ay= an forn=1,2,... (6-80)

The roots of the indicial equation are p; =1 and p; = 0; hence, the difference
of the roots v=p; —p;=1 is an integer. First, consider the case where
p = pr = 1. The recurrence relation is (see eq. (6—76))

a,.=’lza,._1 forn=1,2,... . (6-81)

After writing out the various terms of equation (6-81), multiplying the cor-
responding members of these terms together, and dividing out common factors,
we get

) }% A
Hence, we find that the solution forp=11is
wy = a0 20 = g (6-82)
which can easily be summed to obtain
wy = agze? (6—83)

&
Next, consider the case where p = p; = 0. The recurrence relation is
(n — 1)a, = ay-1. Since ao # 0,’it is clear that this equation cannot be solved
for a;. Hence, the differential equation must possess a logarithmic solution.
We, therefore, seek a second solution of the form

we = i anz" +wi(z) In z (6-84)
n=0

Upon substituting this expansion into equation (6—77) and recalling that w,
satisfies the differential equation, we find that the resulting coefficient of In z .
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vanishes. Then shifting the index and collecting terms in the summation gives

(2w,—1w, w, >+E [n(r~1)an—naw]z"1=0  (6-85)

n=1

Hence, after substituting in equation (6—83), we get

ao(l+z)e‘+2 [n(n—=1)an—nan-1]z"'=0 (6—86)

n=1

. . . | opes
But replacing e* by its series representation Z —n—z" and then shifting the
indices shows that n=0

2 (n— 2)'2'1 1+2( zn l+2 [n(n )ar—nan-1]z2"'=0

Then upon equating to zero the coefficients of like powers of z, we find that

ao™=ao forn=1

aﬁd

=a"_l_ ao — ‘ _
G T e D=1 rn=23 4. (6-87)

where a, and a; are arbitrary. Actually, we could simplify matters by setting
a;=0, but we shall carry a, through as an arbitrary constant in order to
demonstrate this.

Upon writing out the first few terms of equation (6-87), we get
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_4__a _ & aof;, 1,1
“=3 3.3 1.2-3 3z<1+2+3>

Hence, we conclude by induction that

_ a _ Qo ‘ — —
an_(n__l)! (n—l)!Hn_l fOl'n 2, 3, « e . (6 88)

where we have defined H, to be the partial sum of the harmonic series. That is,

0 forn=20
H, = (6—-89)
1 1 1 &1 _
1+§+§+...+;‘L——=k forn=1,2,...

k=1

Substituting équations (6-83) and (6-88) into equation (6-84) yields

o0 h] 00 1
ws = ag [(zez Inz)+1-— 2 (—n—_i_len—lz"] + a; 2 .(_n‘_ 1)1 2Zn
: n=1 *

n=2

which becomes, after shifting the indices in the sums,

o0 0 1
w2 = ao [(zez Inz)+1-— 2 —1—' an"“] + a; 2 — znt!
a=1 e n=o t:

Notice that the second sum is essentially the solution w;. Hence, the term in
square brackets must be a solution which is linearly independent of wi. This
(i.e., the bracketed term) is the solution we would have obtained if we put a; =0.

6.3.3 Summary

We have now shown how two linearly independent solutions to the differ-
ential equation (6—30) with analytic coefficients can be found in the neighbor-
hood of any regular singular point zo. First the indicial equation (6-39) is
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determined. If the difference v of the two roots of this equation is not an
integer (including zero), two solutions of the form (6—34) are cbtained, one
for each root of the indicial equation. However, if v is an integer, the recurrence
relation (6—37) for the term a, must be investigated with p=p,. It will either
automatically be satisfied for any a,, or it will be impossible to satisfy for any
a,. If it is automatically satisfied, ao and a, will be arbitrary; and we will
obtain two linearly independent solutions with p=p,. If v=0 (i.e., p1=p2)
or if » is an integer and it is impossible to satisfy the recurrence relation, the
solution will have the form (6—70) and can be found by substituting this form
into the differential equation. The point at infinity is treated by making the
change in variable z=1/¢.

6.3.4 Computation of Indicial Equation

Since the nature of the solutions of equation (6—30) in the neighborhood
of a regular singular point z, is so dependent on the roots of the indicial equa-
tion (characteristic exponents), it is useful to be able to determine this equa-

tion without first finding the expansions (6—31) and (6—32) of the coefficients
about zo.

Equation (6—39) shows that this is accomplished once po and go are known.
But it follows from equations (6—31) and (6—32) that

(z—20)p(2) = po+ i pi(z—20)"
=1
(z2—20)%q(z) =gqo+ i gr(z—20)*
k=1
Hence,

Po=zlifleo[(z—zo)p(z)] and qo=zli_r}zlo[(z—Zo)2q(Z)]

Thus, for example, the equation z?w"+z(2+3z)w’ + (1 —z)w=0 has a regular
singular point at z=0 and

243z
z

p(z)= and  ¢(z)= 1z_2z
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Hence,

po=limz (2_232) =2 and go=lim 22 (1;-2) =]

z—0
and the indicial equation (6--39) is
pi+ (po—1)p+q=p*+p+1=0

If the regular singular point z, is the point at infinity, we make the change in
variable z=1/{ and investigate the point {=0. This leads to the relations

po=lim {c [E ‘é P (;)]}

=l e ()]

And upon changing back to the original variable z, they become

po=lim [2—2zp(z)]  and  g=limz%¢(2)
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CHAPTER 7

Riemann-Papperitz Equation and the
Hypergeometric Equation

7.1 THE FUCHSIAN EQUATION

Having shown how to construct solutions to a differential equation with
analytic coefficients abcut its regular singular points, it is natural to study
those equations whose only singularities (in the extended plane) are regular
singular points. Such equations are called Fuchsian equations. We shall restrict
our attention to Fuchsian equations of the second order; that is, equations of
the form

w'+p@)w' +q(z)w=0 (7-1)

This equation can have, at most, a finite number of singular points. In order to
prove this, notice that since the only singularities of the coefficients p and ¢ in
the extended plane are poles, these functions must be rational (see section
5.4). But since the number of singularities of a rational function which occur
at finite points of the plane is equal to the number of distinct zeros of its poly-
nomial denominator, it follows that p and ¢ have, at most, a finite number of
singular points. However, every second-order equation must have at least one
singular point. For if equation (7-1) had no singularities in the extended plane,
the coeflicients p and q would be everywhere analytic; and, hence, by Liou-
vilie’s theorem, they would be constants. However, even if the constant value of
p were zero, the coefficient 2z—22p(z) of the transformed equation (see
eq. (6-28)) would still have a simple pole at infinity. But this would contradict
the assumption that equation (7-1) had no singularities. Hence, we conclude
that this equation must have at least one singularity.
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Since the rational function p has, at most, simple poles and the rational
funciion g has, at most, poles of order 2, it is clear that any Fuchsian equation
with not more than m singular points in the finite plane must have coefhicients

of the form

P(z)

(z—z1)(z—22) ... (z—2zm)

(2)= -
B =202 G@—2)? . .. (2—zm)®

p(z)=

where P and Q are polynomials.

7.1.1 Fuchsian Equations With, at Most, Two Singular Points

There are two possible forms which a Fuchsian equation with, at most,
two singular points can have. First, consider the equation which has, at most,
one singular point in the finite plane (with a possible singular point at infinity).
Its coefficients must take the form

P(Z) Q(2)

plz)=_——_ Q(Z)=GT)2

But if the coefficients of the transformed equation 2z —z2p and z4q are to have
at most a simple pole and, at most, a pole of the order of 2, at infinity the
polynomials P and Q must both be constants, say 4 andB respectlvely Hence,
the differential equation must be of the form

’ A l B — !
w +z—aw +(z—-a)2w 0 (7-2)

Next, consider the case where the singular points are both in the finite
plane. Then the coeflicients must be of the form :

PG) _ 0
P=z=a)z—b) Rl el

But the coefficients 2z — 22 p and 2% q of the transformed equation will be analytic
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at z= o only if there are constants C and D such that P=2z4 C and Q= D.
Hence, in this case the differential equation must be of the form

2z+C , D

R Py oy S (e oY g 3

w=0 (7-3)

Thus, a Fuchsian equation which has, at most, two singular points must be
either of the form (7-2) or of the form (7-3). It is easy to verify that the
general solution of equation (7-2) is

Ci(z—a)1+Cz(z—a)2 if (A—1)2—4B#0
w=

(z—a)n1[C;+C; 1In(z—a)] f(A—1)2—4B=0

where C, and C; are arbitrary constants and p; and p» are the roots of the
indicial equation p*+(4—1)p+B=0. Since the change in independent
variable t =1/(z — b) transforms equation (7-3) into an equation of the form
(7-2), it follows that the general solution to equation (7—3) can also be ex-
pressed in terms of elementary functions.

Thus, the solutions of any Fuchsian equation which has no more than
two singular points in the extended plane are elementary functions.

7.1.2 Fuchsian Equations With, at Most, Three Singular Points

In order to obtain a Fuchsian equation whose solution is not elementary,
we must consider an equation which can have three regular singular points.
If we require first that these three points, say a, b, and c, all lie in the finite
plane, the coefficients of the differential equation must have the form

_ P(z) _ Q@
PO =0 e- 0G0 1) = aF = bGP

where P and Q are polynomials. And since the point z= ® is to be an ordinary
point, the coefficients of the transformed equation

.z'lP
(z—a)(z—b)(z—c)

2'Q
(z—a)*(z— b)%*(z —c)?

2z — and
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must be analytic at z= o, But this can occur only if P and Q are quadratic in
z and the coefficient of z2 in P is 2. Since the degree of the numerator is less
than the degree of the denominator, it follows from the elementary theory -
of partial fractions that there exist constants A4, Ay, A¢c, Ba, By, and B, such that

P(Z) Aa Ab Ac

(z—a)(z—b)(z—c)=z—a+z—b+z—c

and

0(2) B, B, . B

(z—a)(z—b)(z—c)=z-—a+zFb+z—c

The differential equation, therefore, takes the form

dw, (A, Ay | Ao\ dw
dz? + (z-—a+z—b+z—c) dz
Ba Bb ‘ BC w — —
+(z—a+z—b z—c) (z-—a)_(z—b)(z-—c)_0 (7-4)
And since the coefficient of z2 in P(z) must equal 2, it follows that
Aa+Ab+Ac=2 (7-5)

3

Otherwise the constants Aq, Ay, A¢, Ba, By, and B, are arbitrary.
Now at each of the points a, b, and ¢ there is a pair of characteristic

exponents, say (&', "), (B', B"), and (y', ¥"),% respectively. In order to find .
a relationship between these exponents and the 4’s and B’s, notice that since

z—b z

po=1im (z—a)p(z) =lim [Aa+A,, (Z_“)+Ac (z:(j)]=/1a

% The pairs (a’, a"), (8', B”), and (y’, y") are solutions of the indicial equations at the points a, b, and
¢, respectively.
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and-
a=lin (= a)() =lim | B+ By (225) + Be (29| - —=5
=__(a—b)Btua—c)

at z= a, the indicial equation at this point is

B

@=b)(a=0) 0

P2+ (da—1p+—

But it follows from the properties of the roots of quadratic equations that the
roots o' and " of this equation satisfy the relations

' "__ _ 1o — Ba
a' +a"=1—4a oo @=b)(a—c)
And we can show in exactly the same way that
’ no_ 1 —. ' r; Bb
Frp=1=d A =G—a0-0
! n__ — ! "— Bc
YAy =1-4 VY T le=a) (c—=b)

Upon using these relations to eliminate the 4’s and B’s in equation (7-4),
we arrive at the Riemann-Papperitz equation

dz? z—a z—b z—¢C dz z—a

2 P BN " A "on -3 _
dw+<1 [o7 a+1 B B+1 v y)ég_*_[aa(a b) (a—c)

BB (b—=a) (b—c) , y'¥'(c—a) (c— b)] w

-’ p—, ) =B G0
(7-6)
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Eliminating the 4’s in equation (7-5) shows that the characteristic ex-
ponents at the singular points of equation (7-6) satisfy the relation

a'+a"+p +p'+y' +y'=1 (7-7)

More generally, the sum of all the characteristic exponents at the singular
points of any second-order Fuchsian equation is two less than the number of
such points. This relation is called the Fuchsian invariant for the equation of
order?2.

~ In a similar way, it can be shown that if a Fuchsian equation with, at most,
three regular singular points, has one of these points, say c, located at z=,
this equation must be of the form

ggy_;+<1—a'—a L =B )iu_f

dz? z—a z—t dz

+ [(x’a" (a_b) +BIB”Z(_bb—a)+'y’ u] 0 (7—8)

z2—a

w _
(z—a) (z—b)

where y’ and v" still denote the characteristic exponents at ¢ and equation
(7-7) still holds. Since equation (7-8) can be obtained by formally taking
the limit ¢ — » in equation (7-6), we can say that equation (7-6) holds even
when ¢=o, Then with this understanding, equation (7-6) is the most general
Fuchsian equation which has, at most, three singular points.

7.2 RIEMANN P-SYMBOL

When w is a solution of the Riemann-Papperitz equation whose singulari-
ties occur only at the distinct points a, b, and ¢, we shall sometimes write

a b c
w=Poa B ¥ oz (7-9)
a” BH ,y”

The right side of equation (7-9) is called the Riemann P-symbol. The char-
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acteristic exponents of the differential equation are listed below the correspond-
ing singular point. (Any of the singular points can be at infinity.) These ex-
ponents must, of course, satisfy the Fuchsian invariant

a'+a”+B'+B"+‘y’+')’"=l

Finally, the independent variable is located in the fourth column.

If we interchange any of the first three columns in the P-symbol (7-9),
the notation still refers to the same equation, There are 3!=6 ways in which
this can be done. Similarly, interchanging the order of the exponents in any
given column leaves the meaning of the symbol unchanged. Thus, for each
arrangement of the points a, b, and c, there are eight arrangements of the
exponents. Hence, there are 6 X 8=48 different P-symbols which refer to the
same equation and, therefore, have the same meaning.

We shall now show that

a b c a c
—a\k ]
Pl o' B’ v z =(z—Z> Pla' —k B’ v +k z (7-10)
a" B" ‘)/” a”_k B” y”+ k

b o0 a b o0

-

o B ¥y zl=GE—a)}Pla' -k p vy+k z (7-11)

" B” yll "n__ k B” ')/” + k

when ¢= oo,
Equation (7-10) means that if w is a solution of a Riemann-Papperitz
equation and if we make the change of dependent variable

w= (z:‘f_,)ku (7-12)
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in this equation, then the transformed equation (which has u as the dependent
variable) is also a Riemann-Papperitz equation and the location of the singular
points is left unchanged by this transformation. However, the caaracteristic
exponents at the points ¢ and c¢ are altered in the manner indicated by the
symbols. Equation (7-11) is the corresponding transformation for the case
where one of the singular points is at infinity.

In order to prove that equation (7-10) holds, we first substitute equation
(7-12) into equation (7-6). Then upon noting that

v=(=0) [ e

w'= (;ZZ) k [u"+2k (zia_z-l-c) w't (zfgl(;?zch) (/zc::l—/:ii‘) u]

and

1 B 1 A—b
(z—a) (z—c) (z—\) ™ (z—a) (z—b) (z—¢) (1+z—)\)
for \=a, b, or ¢

we find after combining terms that

du (1—a'—a"+2k 1—-p' B" —y"—2k\ du
dz? -}"( z—a + z—b z—c dz
+[(a —k) (a"'—zk) éa b) (a—c) BB (b G)L—J
Lotk (Y +E) (c—a) (c—b)] u -
z—c (z—a) (z—0b) (z—¢)

But comparing this with equaticns {7-6) and (7-9) shows that equation
(7-10) holds. Equation (7-11) follows from equation (7-8) in the same way.
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Having considered the transformations of the Riemann-Papperitz equa-
tions under a change of dependent variable, we shall now show how this equa-
tion transforms under a change of independent variable. In this case, the
change of variable which transforms a Riemann-Papperitz equation into another
Riemann-Papperitz equation is the nonsingular linear fractional transformation

Az+B :
=T,5D where AD—BC #0 (7-13)

studied in chapter 5.
It is again convenient to describe this transformation in terms of the Rie-
mann P-symbol. Th'u_s, if t is the change of variable (7-13), then

a b c a b, G

P al BI ,yl z =P al BI ‘)" ¢t (7_14)

X X r

o BII ,y o BI ’ yl ’
where a;, b, and ¢, are the images of the points a, b, and c, respectively, under
equation (7-13). For example,

_Aa+EB
“=Ta+D

In order to prove equation (7-14) we first recall that (see section 5.3) per-
forming the transformation (7-13) is equivalent to performing in succession
not more than four elementary transformations, each of which has one of the
forms

t=1z (7-15)

t=k+z (7-16)

t=lz (7-17)

It can now be verified, by substituting in turn each of equations (7-15) to (7-17)
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into equation (7-6), that in each case the transformed equation is a Riemann-
Papperitz equation with the same characteristic exponents as equation (7-6)
and that the singular points of the transformed equation are the images under
the transformation of the original singular points. Hence, equation (7-14) holds
for each of the elementary transformations (7-15) to (7-17). But since the
general nonsingular linear fractional transformation is equivalent to performing
a succession of these transformations, it is clear that equation (7-12) must hold
for this transformation also.

7.3 TRANSFORMATION OF RIEMANN-PAPPERITZ EQUATION INTO HYPER-
GEOMETRIC EQUATION

We shall now show that the general Riemann-Papperitz equation (7-6)
can always be transformed by the application of a number of transformations
(each of which has one of the forms (7-10), (7-11), and (7-14)) intc a certain
standard equation (canonical form). The usefulness of this result is principally
due to the fact that the transformed equation, which has a regular singular
point at the origin, has a two-term recurrence relation at this point. As we have
seen, this allows us to find an explicit expression for the series solution.

In order to accomplish this reduction let w be any solution to equation
(7-6). Then

where we suppose that the notation has been so arranged that a and b are
always finite. We first introduce the new dependent variable v by

(ﬁ:‘:) v ifc#w

(z—a)*'v if c=00

w=

(7-18)

and then use equation (7-10) or (7—11) to show that
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a b c
v=P 0 B" v +a z (7-19)
all_al B” 'Y+a' '

We again change the dependent variable by using the transformation

— B
(z b) u ifc #

z—
v= (7-20)
(z—b)fu ifc=w

and then a[;ply equation (7-10) or (7-11) to equation (7-19) to show that

a b c
u=P 0 0 v +a' + B z (7-21)
.all_al B”_B, ,yll_*_al +B,
Now let us use the linear fractional transformation (discussed in section

5.3) which maps the points a, b, and c into the points 0, 1, and =, respectively,
to change the independent variable. Thus, a new independent variable ¢ is

introduced by
_(z—a\ (b— .
t——(b—a) (z—c) | (7-22)

(When c=x, we understand ¢ to be the limit of this expression as c— =,
which is simply the first term in the right-hand member.) And in view of equa-
tion (7-14) it follows from equations (7-21) and (7-22) that

£ 0 1 00
u=P} 0 0 v+a'+p ot (7-23)
"— o B/l__B/ ‘Y"+a'+B'
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The transformations (7-18). (7-20), and (7-22) can now be collected into
the single formula

Y w0 () mene

(z—a)* (z—b)B u(t) t=

w(z)=

forc=w

(7-24)

The function u given in equation (7-23) is the solution to a Riemann-Papperitz
equation which has only four nonzero exponents. Since the sum of these ex-
ponents is unity, they can be characterized by three constants, say a, 8, and
v. It is customary to define these constants by

a=ao' +p'+7y B=ao'+p +v" y=14+a —a"
(7-25)
Then equation (7-23) can be written as
0 1 ©
u=P{ O 0 a t (7-26)

l1-y y—a—B B

But comparing equations (7-8), (7-9), and (7-26) shows that the Fuchsian
equation satisfied by (7-26) is

du 1—(Q—y) 1-(—a—B)du [0 0 w o
dt2+[ t + t—1 ] dt+[7+t_:i+aﬁ] t(t—li_O

And upon rearranging this equation slightly, we obtain the hypergeometric
equation of Gauss,

t (=0 G+ [y (@t B+1) 1L —agu=0 (7-27)

Its solutions, which will be obtained subsequently, have been extensively
studied.
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We have, therefore, shown that any Riemann-Papperitz equation can be
transformed into the hypergeometric equation (7-27) by introducing a change
of variable of the type (7-24).

Hence, once the solutions to the hypergeometric equation (7-27) have
been found, we can find the sclutions w to any Riemann-Papperitz equation
simply by using the transformation (7-24) to express them in terms of the solu-
~ tions to the hypergeometric equation. .

However, in any specific case, it is usually more convenient to_rederive
this transformation by using the Riemann P- symbol Thus, consider the
Riemann-Papperitz equation

222(z—2)w'' —2(3z2—2)w' +2(z—1)w=0 (7-28)
For this equation,

_ 322 ~_ 2—1
p(z)__2z(z-—2) q(z)_zz(z—2)

Hence, its singularities are located at the points z=0, z=2, and z=®
Atz=0

The roots of this equation are 1 and 1/2.
At z=2

po==lim(—3z_2)=—-1 do=1lim (2—2)(2—1)

—2 2z —2 22

and, therefore, the indicial equation is

p2—2p=0
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The roots of this equation are 2 and 0.
At z=o

. . | 3z—2 7
= 2 — = =L
po=lim [ zp(z)]=1lim [ 24 =2) ]

go=lim 22q(z) =1i 2=l
7w z—0 g2 —92

and, therefore, the indicial equation is

p2+'25—p+1=0

The roots of this equation are —1/2 and —2. Hence, the solutions to equatlon
(7-38) can be denoted by

0 2 oo
w=P{ 1 2 —12
2 0 —2

It now follows from equation (7-11) that

0 2
w=z‘/2P. 0 0 0 z\

1/2 2 —3/2 /

And it can be concluded from equation (7—-14) that

0 1 0
w=z1V2P } 0 0 0 ¢
1/2 2 —3/2
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where t=2z/2. But upon comparing this with equation (7-26), we see that
1
a=0 B=—= Y=3 (7-29)

Thus, the solutions to equation (7—28) can be expressed in terms of the solu-
tions to the hypergeometric equation (7—27) with the constants «, 8, and y
given by equation (7—29).

7.4 HYPERGEOMETRIC FUNCTIONS

it remains to determine the solutions to the hypergeometric equation
(7-27). We shall first seek a solution about the regular singular point z=0.
Since the P-symbol for equation (7—27) is given by equation (7-26), it follows
that the characteristic exponents at z=0 are 0 and 1 —y. Suppose first that -y
is neither zero nor a negative integer. Then the methods developed in chapter 6
can be used to obtain a power series solution 8 of the form

u=3 an" (7-30)

n=0

which corresponds to the characteristic exponent zero. Upon substituting this
into equation (7—27), collecting terms with like powers of ¢, and shifting the
index n, the lowest one present, we obtain

i n(y+n—1)ant" ' — i (a+n—1)(B+n—1)az_1t"'=0
n=>0 n=1

Hence, the n=0 term shows that a, is arbitrary and we obtain the two-
term recurrence relation

an=(a+n—1)(§+n—l) An-1 forn=1,2, ... (7—-31)
n(y+n—1)

where the division by n(y+ rn—1) is permitted since we have required that y

be neither zero nor a negative integer and, therefore, the denominator can never

vanish. Upon writing out equation (7—31) for successive values of n, multiply-

ing the corresponding members of these equations together, and dividing

86 Recall that it was shown in sectinn 6.3 that the power series solution corresponding to the largest characteristic
exponent always exists,
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out common factors, we find that

a =[oz(oz+1) ... (a+n—-1)]{B(B+1) . .. (ﬂ+n—1)]a
" n!fy(y+1) ... (y+n—1)] 0

And by using ihe generalized factorial function defined in equation (5—33),

this can be written in the more concise form

. (a)n(B)
Tl ¥
Hence, the solution (7-30) is

u=aof (a, B; v; t) (7-32)

where we have put

Fla, Bry; )= > alBlngn gory20,-1,-2, ... (7-33)

The function F(a, B; v; t) is called the hypergeometric function, and the
notation used herein is universally accepted. The reason for calling this
function the hypergeometric function is that when a=1 and 8=, this series
(7-33) reduces io ihe geometric series. Thus,

1

FQ,vy; t)='lj-t'

In fact, it follows from the binomial theorem that

F(a,v;v;t)=F(y, a5 v; t) =(T—1W (7-34)

for any number a.
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Notice that if either « or B8 is zero or a negative integer, the series (7—33)

terminates afier a finite number of terms and, therefore, represents an entire
~ function. In all other cases, a simple application of the ratio test (ref. 23) will
suffice to show that it converges in the circle |t] < 1 and diverges outside this
circle. . :

We have, therefore, shown that, provided 7 is neither zero nor a negative
integer,

u=F (e, B3 v;t) | (7-35)

is a solution to the hypergeometric equation
t(l—t)u"" + [y— (a+B+1)t]u' —aBu=0 (7-36)

at least in the circle || < 1.
Since equatior {7-36) is a Riemann-Papperitz equation, its solutions u
can be denoted by the P-symbol

u=P} 0 0 a - t - (7-37)
=y y—a=B B

Also, inasmuch as the order in which the exponents are listed in a given column
is immaterial, we can interchange those in the first column to obtain
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0 1 0
u=t"-7P 0 0 a+l—y t (7-38)
y—1 vy—a—=B8 . B+l—vy

~ Notice that the P-symbol in equation (7-38) is in canonical form. It, there-
fore, denotes a solution to the hypergeometric equation whose exporents at
the points 0,1, and @ are 0,y—1: 0, y—a—B;anda+1—,B3+1—1, respec-
tively. And we can choose this solution to be the hypergeometric function F.
Hence, upon comparing equations (7—35) and (7—37) with the P-symbol in equa-
tion (7-38), we find that

u=t"""F(a+1l—y,B+1—y;2—vy;t) (7-39)

is also a solution to equation (7-36) provided, of course, 2—1 is neither zero
nor a negative integer. Since the hypergeometric series converges for || <1,
the function (7-39) must satisfy the differential equation in this region. Notice
that if y=1, the solutions (7-35) and (7-39) are identical. In fact, equation
(7-37) shows that, in this case, equation (7-36) has equal exponents at t=0
and, therefore, one of the solutions composing the canonical basis at t=0 must
contain logarithmic terms. Next, if v is any integer other than unity, either
v or 2— is either zero or a negative integer. Thus, either the hypergeometric
function (7-35) or the hypergeometric function (7-39) is undefined. The remain-
ing equation provides a solution to the differential equatios. Finally, if y is not
an integer, both equations (7-35) and (7-39) are solutions to the differential
equation in the circle || <1. Since the series expansion for equation (7-35)
begins with £° and that for equation (7-39) with £!-7, they must also be linearly
independent solutions. '

Interchanging the exponents in the second column of equation (7-37) leads
in the manner described above to the solution

u=(t—1)""*BF(y—B,y—oa; y; t) (7-40)

in the domain |¢| <1. And interchanging both the exponents in the first column
and those in the second column leads to a fourth solution

u=g-v(t—1)7-*BF(1—B, 1—a; 2—7; t) (7-41)
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in the domain |¢| < 1. But, at most, two of these four solutions can be linearly
independent. If y is not an integer, there exists a linear relation connecting
any three of them. And, if v is an integer, the two solutions which exist can differ
only by a multiplicative constant.

Another set of four solutions can be obtained by interchanging the points

0 and 1 by means of the transformation z=1—¢. Thus, for example, equation
(V-37) is equivalent to the equation

1 0 ©
u=Ply—a—p 1—vy a t

0 0 B

Upon applying equation (7—11) to this equation twice in succession, we obtain
1 0 o
u= (t—1)v-a-Bp-*pP 0 0 1-8 t
a+fB—y y—1 l—a

It now follows from equations (7-13) and (7-14) that the transformation z=1—¢

maps the points 1, 0, and « into the points 0, 1, and o, respectively, and leads
to the expression

0 1 0
u= (t—1)v-a-Bg\-vP 0 0 1-8 1—t¢
a+pB—y v—1 l—a
Since this P-symbol is in canonical form, it represents a solution to a

hypergeometric equation which we can again choose to be F. Thus, we find
~ after comparing exponents with equations (7-35) and (7-37) that

u=(t—1)" B 7F(1—-B,1—a; 1+y—a—£; 1—1t) (7-42)
219
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Notice that the hypergeometric series in the solution (7-35) converges in
the circle |¢] <1, while that in the solution (7—42) converges in the circle
|t—1] < 1. By systematically exploiting the technique used above, Kummer
(1810 to 1893) obtained 24 solutions to the hypergeometric equation (7-36),
each of which is expressed in terms of the hypergeomeiric function F. In
each of these soluticns the variable is one of the quantities ¢, 1 —¢, (¢—1)/t,
t/(1—1t), 1/t, and (1 —t¢)-1. Since the function F with variable ¢t converges
in the unit circle |t| <1, these solutions will converge in one of the regions
shown in figure 7-1. Each series will converge in the appropriate shaded region
and diverge outside it unless the series teriinates; in which case, it will
converge in the entire plane. Of the 24 solutions, four converge in each of
the regions shown. Of course, only two solutions can be linearly independent
in any given region. Some of the regions shown in the figure overlap. Hence,
there are numerous relations among the various 24 solutions obtained by
Kummer. These relations not only provide useful identities among hyper-
geometric functions but also provide formulas which can be used to ana-
lytically continue the solutions of the Riemann-Papperitz equation from one
region of the plane to another. Thus, it can be shown, for example, that when
v is neither zero nor a negative integer, the identity

F(a,B;y;t)=(1—t)r2*F(y—a,y—B;v;t) (7-43)

holds in the domain |¢] < 1. An example of an identity which holds in the inter-
section of the regions shown in figures 7-1(a) and (b) is

FlaB;yit)=(1=0=F (ay=Fivighy)  forle] < Land]d <|1—4

It is frequently convenient to express the hypergeometric function as an
integral. This can be done when % y > 4. 8> 0 and |t| < 1. In order to arrive
at this result, we substitute equation (5-35) into equation (7-33) to obtain

r = a T
F By =105 3 S T (1-44)
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/ %
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(a) The region 0 < 1| <1. (b) The region 0 < ‘tl’l <L
(c) The region 0 < |1—¢| <1. (d) The region 0 < llt <1.
(e) The region 0 < |;£i’ <l. (f) The region 0 < ‘:1 < 1.

FIGURE 7-1. —Regions of convergence for hypergeometric series.
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Since it follows from equations (5-37) and (5-38) that

I (B+n)T (y—B)
' (y+n)

1
=B (B+n’7—ﬁ) =I TB+n-1 (1 —T)V‘B—ldT
0
for Ay >% >0
equation (7-44) can be written as

1
(an)"‘ ‘nJ’ 7-3+R—l(1—7-)7‘ﬁ'ld7

—_TI(y
(B %) =TT =Rl

n=0

Upon interchanging the order of integration and summation (see section
5.6), we find that

(a),,

F (s vit) =Ty Fepy ), 71— nve 3 2

TB)T (y=A) Jo 2. “pr (en)ndr

But the series can be summed by using equations (7—33) and (7—34) to obtain
the integral representation

r 1
F (a,B;y;t)= (@) Iﬂ('g‘_ﬁ)ﬁ ™-1(1—7)y-8-1(1 —1t) -2dr

for Zy>A B>0and |t] <1

which was discovered by Euler. Since this integral exists and represents an
analytic function for all values of t except where ¢ is real and larger than 1,
it provides an analytic continuation of F(a, 8; y; t) from the unit circle
[t] <1 to the entire t-plane cut along the positive real axis. Barnes ohtained
the more general integral representation

1 TI(y) * [(a+2) T (B+2z) T (~2) .
F (a,B;7; ‘)_2771' T (a) F(B) i Tiy+z ) (—t)*dz

where |arg (—¢)| < 7 and the integration is to be carried out along any path
which lies to the right of the poles of I'(a+2z) '(8+2z) and to the left of the
poles of I'(—z).
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The six functions F(a=1, 8; y; t), F(a,8%1, y;t), and F(a, 8; y=1;1)
are said to be contiguous to F(a, 8; y; t). Gauss proved that there is a linear

relation betwzen F(a, B; ; t) and any two of its contiguous functions, the
coefhicients being linear polynomials in . Some examples of these relations are

Y(1—t)F(a,B;v;t) = (B—¥)tF (a, B; y+15t) +yF(a—1, B; y;t)
(B—a)F(a,B; y;t) =PF(a,B+1; ¥ t) —F(a+1, B8; ¥ t)

The derivative of a hypergeometric function is also a hypergeometric
function. In order to show this, notice that the series (7-33) can be differentiat-
ed term by term within its circle of convergence to obtain

dF_ & ()a(B)at™
&= 2 Watn =11

Upon shifting the index by putting k=n—1, this becomes

(@)ks1(B)rsr |, ‘m
dt go (')'):rﬂk' a )

But since it follows from definition (5-33) that (aji.1=ala+ 1), Bl =
B(B+ 1)k, and (¥)xs1=7y(y+ 1)k, equation (7~45) shows that

(e B i t) fu ¥ ')=—§ Fla-+1,B+1;y+1;0) (7-46)

More generally, the Jacobi identity

d,,.["”" 'F(a, B v; 1)]= (a)nt*'F (a+n, B; 7: t) (7-47)

can be established by multiplying both sides of the identity by ¢'-= and then
verifying that the left side satisfies the hypergeometric equation with param-
eters a+n, B8, Y
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There are many other relations connecting the hypergeometric functions.
The reader can find these tabulated in reference 26 and discussed in some
detail in reference 27. Many of the known functions, such as the elliptic inte-
grals of the first and second kind, the inverse sine, etc., can be expressed as
hypergeometric functions.

7.5 GENERAUZED HYPERGEOMETRIC FUNCTIONS

The concept of hypergeometric function can, itself, be generalized. To
this end, notice that in the definition of the hypergeometric function

F(a,B;y;2)= 2}———9—(?;;;;":"

the numerator and denominator of the coefhicient of z*/n! contain only products
of generalized factorial functions. Hence, it is natural to define the generalized
hypergeometric function pfqby

pFolar, oz, . . . apiY1, Y2, - - Yg32) ="§;fl‘;l();x()i2();2;n'-.~(-ap();:;n

(7-48)

provided the series converges.8” The numbers p and q are nonnegative integers
which denote the number of parameters in the numerator and in the denomi-
nator, respectively. Thus, the ordinary hypergeometric function F is a JF).
Since the parameter 8 cancels out in the numerator and denominator in
equation (7-34), we see that

1
—_—— F a:* _.-!
(1 _ t)”‘ 140 ( ’ ’ )
where we indicate that there is no parameter in the denominator by
inserting a dash. The function ,F), is treated in the next chapter. The generalized
hypergeometric functions are studied in considerable detail in reference 27.

% This series will always converge in the unit circle if g= p+ 1, and it will converge in the entire plane if g > p+ 1.
The other cases are more complex.
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7.6 LOGARITHMIC SOLUTION TO HYPERGEOMETRIC EQUATION

We have found two linearly independent solutions to the hypergeometric
equation (7-36) in a neighborhood of t=0 for the case where ¥y is not an
integer. However, when vy is an integer, only one solution has been found.
The remaining sohition can be found by the methods of chapter 9. Thus, for
example, when vy is a positive integer, uy=F (a, 8; v; t) provides one solution
to the hypergeometric equation (7-36); and the methods of chapter 6 show
that if neither a nor 8 is a positive integer smaller than vy, a second linearly
independent solution is given by

. =2 n!(l—'}')n 1 (n
us=F (a,B:7; 1) lnt——-z)(l_a)nﬂ(l_.b)"“t {n+1)

+’Z (:32;@)3" [H(a,n)+H (B,n)—H (y,n)—H(1,n)] e

where the finite sum is to be omitted when y=1 and we have put®®

n-1
= ——-—]
H(a.n) = 'zo oy

We can obtain the second solution for the case where v is zero or a negative
integer in the same way by starting with the solution

wm=-7F(a+1—y, B+1—y;2—7v;t)

7.7 SPECIAL RIEMANN-PAPPERITZ EQUATIONS

The classical Jacobi differential equation

(1-2)w"'" +[b~a—(e+b+2)zJw' +n(n+a+b+1)w=0 (7-49)

*The function defined in eq. (6-89) is identical to H(). n).
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is a particular Riemann-Papperitz equation with singular points at z==*1, o,
It is readily established that in this case

SR

z (7-50)

g
Il
w
o
o
|
3

—-a —b nt+a+b+1

This equation can be put into canonical form by the change of independent
variable t= (1 —z)/2. Thus,

0 1 oo
w=P| 0 0 —n t
—a —-b nt+a+b+1

Therefore, when a is not a negative integer, a particular solution w; to the
Jacobi differentjal equation is

w=F (—n,n+a+b+1;a+1;1—-;—7‘) (7-51)

Equation (7-51) satisfies the differential equation within the circle |1 —2z| <2
for all values of the parameter n. But if n is a nonnegative integer, the hyper-
geometric series terminates after a finite number of terms. For such values of
n, the Jacobi polynomial is defined as

(a+1)a
n!

Pia:v(z) = (—n,n+a+b+1;a+1;Lé:-z> for n=0,1,2, . ..
(7-52)

A convenient expression for these polynomials is provided by the Rodrigues
formula

Plab)(z) = (n‘,;) (1—z2)-(1 +z)> (gf, [(1—z)=n(1+2)b+]  (7-53)
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This formula was obtained for the special case of Legendre polynomials (in-
troduced below) by Olinde Rodrigues in 1816. In order to derive this result,
we use equation (7—34) together with the Jacobi identity (7—47) to show that

Y

t—"(l_—t) dtn

[(1 _t)b+ntu+n]
=‘t‘"(l-«t)"’% [ee+7F (a+1,—n~—bs;a+1;1t)]

=(a+ 1)a(1—2t)"%F (a+14+n,—n—b;a+1;t) (7-54)

But it follows from equation (7-43) that
(1—¢)%F (a+1+n,—n—bs;a+1;t)=F (—n,a+14+n+b;a+1;1)

Hence, after substituting this into equation (7—54) and making the change of
variable t= (1—2z)/2 in the resulting expression, we find, upon comparing the
result with definition (7—52), that the Rodrigues formula (7-53) holds.

A number of important equations which have been extensively studied
are special cases of Jacobi’s equation. Thus, when a= b, equation (7-49)
reduces to the ultraspherical differential equation

1—-22)u"—2(a+1)z'+n (n+2a+1) w=0u (7-55)

A solution to this equation is given by equation (7-51) with a=b. But,
when n is a nonnegative integer and the series terminates,®® it is customary to
use a different normalization factor from the one used in equation (7-52) and
to express the solution in terms of the Gegenbauer polynomial

2a)n L ‘
C3(e) =222 pieGima-ainngy) (7-56)
( o+ 5 ) :

¥ The polynomial obtained directly from eq. (7-52) with a=1b5 is sometimes called the ultraspherical
polynomial.
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where we have put a=a+ (1/2).
The Tschebychev equation

A—=z)w" —zw' + n*w=20 (7-57)

is, in turn, a special case of the ultraspherical equation (7-55) with a=
—1/2. One solution to this sguation is therefore given by equation (7-51)
with a=b=—1/2. However, when n is a nonnegative integer, it is again
customary to change the normalization and definc the Tschebychev polynomial
(of the first kind) T, in terms of the Jacobi polynomial (or ultraspherical poly-
nomial) by %

Ta(z) =

n! s
1 Bl(—l/z. -—1/2)(2)
(2),
ww Another important special case of the ultraspherical equation occurs
when we put a=0 to obtain Legendre’s equation

A—2)w"—2zw'+n (n+1) w=0 (7-58)

One solution to this equation is given by equation (7-51) with a=5b=0.
Thus, we define the Legendre function of the first kind P, by

Pu(z)=F (—n,n+1;1;l:21) (7-59)

And since this function is a polynomial when n is a nonnegative integer, it is
then called the Legendre polynomial. Thus, the Legendre polynomial is a Jacobi
polynomial with a=b=0.

A second (suitably normalized) linearly independent solution to equation
(7-58) about z=1 is called the Legendre function of the second kind and is
denoted by Q. If nis an integer Q. will involve logarithmic terms.

Notice that Legendre’s differential equation (7-58) (and, in fact, more gen-
erally, the ultraspherical differential equation (7—55)) is invariant when z is -
replaced by —z. This suggests that we transform equation (7-58) by introducing

% [t is not hard to show that T'» satisfies the relation T (cos 8)=cos n 8, and this relation is often used to define
this polynomial.
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the new independent variable t=22. The equation then becomes

2£(1——t) +(1 3)@+ln(n+l)w C

But this is again a hypergeometric equation whose parameters a, 8, and y are
now —(1/2')n, (1/2) (n+1), and 1/2, respectively. And since v is not an inte-
ger, we can conclude from the results of the preceding section that this equation
has two linearly independent solutions wy and w, about t=0 which are given by
equations (7-35) and (7-39), respectively. Thus,

wi=F (—2 n';-l’ ;, zz) (7-60)
+1 n+2 3
we=zF (___n2 ’nz ot ‘2) (7-61)

They converge at least within the circle |zl < 1. When n is a nonnegative
integer, the series for w; will terminate for even values of n and that for w.
'will terminate for odd values of n. However, the polynomials obtained in this

manner must be identical, to within a constant factor, with the Legendre
polynomials P,(z).

The associated Legendre equation

2
(1—22) w"—22w'+[n (n+l)—%] w=0 (7-62)

reduces to Legendre’s equation when m=0. It is a Riemann-Papperitz equa-
tion for all values of m. its P-symbol is

1 -1 co
w=P| (1/2)m a/2)m —n z
1/2ym —-Q/2)m n+1

But upon transforming this to normal form, we find that
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0 0 )
w= (22—1)"2P] 0 0 m—n (1—2)/2
m —m m+n+1

If we let u be the transformed dependent variable, then

w=(22—1)"2y (7-63)
and
0 0 ) \
u=P| 0O 0 m—n (1—z)/2)
m —-m m+n+1
1 -1 o0
=Pl 0 0 m—n z
m —m m+n+1

Hence, u satisfies the equztion

Q=2)u"—2(m+1D zu'+(n—m) (n+m+1) u=0 (7-64)
But when Legendre’s equation (7-58) is differentiated m times, we obtain

m l

(l—z)dm+2 (m+1)z ,,,+l+(n m) (n+m+1)a§m =0
’ (7-65)

Since P, and Q, are two linearly independent solutions of equation

(7-58) about z=1, we see upon comparing equations (7-63), (7-64), and
(7-65) that

PE(2)= (= 1)™ - [Pa(2)]
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and

08(z) = (2 —1)" 3 [0n(2)]

are two linearly independent solutions to equation (7—62) about z=1. They
are called the associated Legendre functions of the first and second kind,
respectively.

231 /,23.7_




CHAPTER 8

Confluent Hypergeometric Equation and
Gonfluence of Singularities in
Riemann—l’apperitz Equation

Having studied equations whose only singular points are regular singular
points, it is natural to approach the study of equations with irregular singular
points by applying a limiting process wherein two or more regular singular
points of an equation are allowed to approach one another. The process,
whereby two or more singular points in any linear differential equation are
allowed to come together in such a way that at least one of the corresponding
exponents becomes infinite, is called confluence, provided the limiting form of
the differential equation ekists.

81 CONFLUENCE OF SINGULARITIES IN RiEMANN-PAPPERITZ EQUATION

We shall apply this process to the Riemann-Papperitz equation whose
singular points are located at 0, b, and « by letting the regular singular point
b approach the regular singular point at @. Now if we are going to allow the
exponents at the points & and «© to become infinite, we must prescribe the
manner in which they approach infinity. This can be done by letting these
exponents be functions of b whose values approach infinity as b— . If we
suppose that the exponents are polynomials in b, it is not hard to show that the
requirement that the limiting form of the differential equation exist implies
that the exponents be, at most, linear in b. Now equation (7-8) is the general
Riemann-Papperitz equation with one of its singular points at «. If we require
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that the two singular points in the finite part of the plane are at 0 and b and if
we suppuse the exponents at b are B+ bB; and B;'+bB;' and those at = are

Y1+ by, and ;' +by;’, this equation becomes

d2w+ l—a'—a"+1—[3{—[3{'—b([3;+[3._§') ]i!i]
dz? [ z z—b dz

w =0

(b—z)z—

o ety B OB B

— (i byl (v + bv;')]
z b—z

(8-1)
But if the coefficient of w is to remain finite as b — ©, we must require that
B:f' — v2v2' =0 (8-2)

Then upon taking the limit in equation (8—1), we obtain the equation

d>w l—a'—a'" \ dw
hndihad ' N+ —_—
dz2+(32+32 z ) dz

' 1t "—1DB)+a''B +
o~ DB ¥ o By "“]w-:o (8-3)

a o
+| sy -
A P4

where we have put
ar=yy' +7'e+ (1—a' = BB — (" +;")B;

This equation has a regular singular point at z=0 and an irregular singular
point at z= o,
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8.2 '{:!é\NSFORMATION TO KUMMER'S CONFLUENT HYPERGEOMETRIC EQUA-
N

Making the change of dependent variable
w=2z""e-Bizy (8-4)

transforms equation (8—3) into the equation
(Fu ' ' Q_ —_
2 + [vy—(B;'—B,)z] i au=0

where we have put

vy=14+a'' —a’ (8-5)
And, if9! B,’ %B;. the change of independent variable

t= (B, —By)z (8-6)
leads to Kummer’s confluent hypergeometric equation

d?u du _
t dt2+('y—t) dt-—au——O (8-7)

where a=a:/ (8, — B,).
Thus, once the solution to equation (8-7) is known, we can find the solu-
tions to any equation of the form (8-3).

83 SOLUTIONS TO KUMMER'S EQUATION: CONFLUENT HYPERGEOMETRIC
FUNCTIONS

We shall, therefere, seek a solution to Kummer’s equation about the regu-
lar singular point t=0. Just as in the case of the hypergeometric equation of

" If Bz” ="', the change of independent variable z= (72/16a:) and the change of dependent variable u = e-027y
lead to the equation 7(d?/d7?) + (2y — 1 — 1) (dv/dr) =[(2y —1)/2]v =0, which is a special case of eq. (8-7).
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Gauss, the characteristic exponents at this point are 0 and 1—7y. We again
suppose first that y is neither zero nor a negative integer. Then equation (8-7)

has a solution of the form u,=za,.t", which corresponds to the exponent

=0
p=0. And we find, in the usual :vay, that
S an(n=1+y)ne-1= 3 apoi(n—1+a)en-1=0
n=0 n=]

Therefore, ao is arbitrary and the recurrence relation is

_(n=14+a) _
_*-n(n—l+'y) Qn-1 forn=1 2. ...

which can be solved to obtain

_ _(a)n

_n!('y),. ao forn=1,2,. ..

QAn

Hence, by using the generalized hypergeometric notation, the solution u,
can be expressed in the form

uy=ao 1F1(a; y; t) (8-8)
where the function
2 (a)s
' l(a y ) n=0n!(7)n ( )

is called the Pochhammer-Barnes confluent hypergeometric function. Since the
only singularities of equation (8-7) are at t=0 and £=, the soiution (8-9)
must be an entire function.

Other commonly used notations for 1F;(a; v; t) are M(a; y; t) and P(a;
v; t). A complete discussion of confluent hypergeometric functions is given in
reference 28.
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Notice that by putting t=2z/8 in the hypergeometric equation of Gauss
(eq. (7-36)), we obtain the equation

(1—5)(5}; [ ~(a+B+l)ﬁ]T—au 0

And upon taking the limit 8 — = in this equation, we arrive at the confluent
hypergeometric equation (8-7). On the other hand, by putting t=2/8 in the
hypergeometric function of Gauss (defined in eq. (7—33)), we obtain

z (a)n (B)n
F( ) Z n‘(Y)an
And since
B)n_
bm “gr

we see that at least formally
lim F (a, B; s 5) =,Fi(a; y; 2)
e B

In a similar way, if v is not a positive integer, consideration of the series corre-
sponding to the exponent 1 — 7y shows that

U =" \Fi(a+1—vy; 2—vy; t) (8-10)

is also a solution to equation (8-12)

Thus, if v is not an integer, equations (8-9) and (8-10) provide a funda-
mental set of solutions to equation (8~7). But if y is equal to 1, these two solu-
tions are identical. And if yis an integer other than 1, one of the hypergeometric
functions in equations (8-9) and (8-10) is undefined and the other one provides
a solution to the differential equation. However, wheny is a positive integer and
a is not a positive integer smaller than 7y, the other linearly independent
solution is given by
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= F\(a v: _S A=) )
u lFl(a9 s t) lnt "Zo (l_a)mq»l t 1

+3 oy (e m) —H Oy, m) = H(, m)]e

where the finite sum is to be omitted when y=1 and H(a, n) is defined in
section 7.6. A corresponding result holds when ¥y is a nonpositive integer, and
the remaining cases should be treated individually by the methods of chapter 6.

8.4 WHITTAKER'S FORM OF HYPERGEDMETRIC EQUATION

There is another standard form into which equatien (8-7) (and, therefore,
as a consequence, eq. (8-3)) can be transformed. To obtain this cquation, we
make the change of variable

W = f1/2ve~12)y, (8-11)

in equation (8-7) to obtain the equation

1
. Ni—svy
ﬂ+[1 {ly..a) __l+l_2_>J W=0 (8-12)

der |t \2 47 2
In order to introduce standard notation, we put

k=5 7—a (8-13)

and

m=3 (y=1) (8-14)

to get Whittaker’s confluent kypergeometric equation
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1_..
il 4 1 &k 4
de? +\—4~+t+ 2

=0 (8-15)

It follows from equations (8-8), (8-10), (8-11), (8-13), and (8-14) that if
2m is not an integer

My, m(t) = gmiu2e=t1i22 | F, (% +m—k;2m+ 1; t) (8-16)

and My, _n(t) are a fundamental set of solutions to equation (8-15) in the
domain 0 < |t]| < o,

The notation My, is used in reference 25. The Whittaker’s function
Wi, m is defined by

I'(—2m)
F(—m—k+%)

Wk. m(t) =

My m(t) + —2m) <M, -n(2)

r(m—k+§)

Since Whittaker’s equation (8—1‘5)” is unaltered if we replace & by —k
and ¢t and — ¢, it follows that

W=M—k,m(_t) and IW':M_k,-m(—t) (8‘_17)
are also sclutions to equation (8—15) in the region 0 < |¢t| < «. And since this

equation can have, at most, two linearly independent solutions, there must be
constants C; and C:, such that

M_p,m(—t)=CiMpy,m(t) +CaMy, _n(t) (8-18)
provided 2m is not an integer. But equations (8—9) and (8-16) show that

My, m(t) and M_g, m(—t) behave like ¢m+/2), that My, -, behaves like ¢t-7+0/2)
in the neighborhood of t =0, and that
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. 1 o B
lim (__—tmiu—k,m(t) = lim —=Me, m(t) =1

Hence, equation (8-18) can hold only if C2=0 and C,= (—1)m+1/2), Therefore,

M_i, m(—t) = (= 1)m+2AL, L (2)
But substituting equation (8-16) in this equation shows that

e';F.(—;—+k+m; 1+2m;-"t>=;F;(-;-——k+m; 14 2m; t)

And upon using equations (8-13) and (8-14) to express & and m in terms of
a and vy, we obtain Kummer’s first formula

1WFi(a; yit)y=eaFi(y—a; v —1t) (8-19)

This equation holds even when v is a positive integer, for in this case, we
could have replaced My, .. by the appropriate logarithmic solution and
carried through the proof in the same way.

8.5 LAGUERRE POLYNOMIALS

If the paramater a in equation (8-7) is zero or a negative integer, the
solution 73 (a; +y; t) (defined in eq. (8-9)) terminates after a finite number
of terms and becomes a polynomial. This polynomial differs from the gen-
eralized Laguerre polynomial

(1+b)a
n!

Lo (1) = Fi(=n;1+b51) forn=0,1,2,... (8-20)

only by a normalizing factor. When 5= 0 in equation (8-20), we obtain the
simple Laguerre polynomial L, defined by

L,(t)=Fi(—n;1;¢)

Equations (8-9) and (8—20) show that
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Lpm=2 j!’(lij-i(-b)jn!) |

j=0

And since (—n);/n!= (—1)i/(n—Jj)!

(A+b)n(—2))

L®(r)= - ; 8-21
O 2 (W e),i(n—J)! (6=21)
and
5 nli(=t)
La(t)= 8-22
(07 2 e &2
8.6 BESSEL'S EQUATION
An important special case of equation (8—3) occurs when
all —_— al f— p
"—_ = i
B2 B2 6-23)
. 1! 1 1 .
a =2 <a +§ )=(p+§>2t
The equation
2w’ +zw'+ (22— p?)w=0 (8~24)

obtained in this manner is called Bessel’s equation. When p is not a negative
integer, the methods of chapter 6 can be applied in the usual way to show that
(see section 7.5)

& _(=1)kg2etr < zz)
g (—; 1 py - 8-
2 4 p)e Y Py (6-25)
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is a solution to equation (8—24) about the regular singular point z= 0. However,
it is conventional to multiply this solution by the normalization factor
[2PT'(1+p)]~! and to use equation (5—35) to eliminate the generalized factorial
function in the denominator. When this is done, we obtain the suitable nor-
malized solution

w1=Jp (8—26)

where

_ 0 _._]_)k .E 2k+p _
-J”(z)—,gokzr(1+k+p)<2) (8-27)

is the Bessel’s function of the first kind of order p. Notice that this function is
defined even when p is a negative integer. And since z=0 is the only finite
singular point of the differential equation, the series must converge in the
entire plane. Although Bessell functions were used by both Leonard Euler and
Daniel Bernoulli before Bessel was born, the German astronomer Fredrick
Wilhelm Bessel was the first to make a detailed study of them.

Since the function in equation (8—25) differs from J, only by the normaliza-
tion factor [2PI'(1+ p)]-! when p is not a negative integer, it follows that

(5)
\3)

2
<—,1+p-—f) forp?f—l,—z, LI (8—28)

On the other hand, we know that equation (8—24) can be transformed into
Kummer’s confluent hypergeometric equation (8—7) by using the change o1
variables given by equations (8—4) to (8—6).

The solution J, can, therefore, be expressed in terms of a linear combina-
tion of solutions of equation (8-7). Thus, if p is not an integer, it follows from
equations (8—-4) to (8-6), (8-8), (8-10), and (8-23) that

Jp(z) = AzPe-iz  F, <p+%, 1+2p; 2iz )+Bz-l’e""z 1y <%—p; 1—2p; 2iz )
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But upon comparing the behavior of these functions at z=0, we find, when

p is not an integer, that this equation can only hold if B= 0 and that
=[2r(1+p)]-'. Hence,

Jo(z)= 1, 1+ 2p; 2iz)

2pr(1+ Sk (p+2’
Comparing this with equation (8-28) shows that

2
o1 <_; 1+p;"%>=e'iz1F1 <P+l; 1+2p; 2iz>

Then by putting {=iz and a= p+ (1/2), we obtain Kummer’s second formula

OF,( ati: —§2>—-eC1F1 (@ 265 20)

When p is a negative integer, there is a close relationship between J,
and J-p. Thus, suppose p=—n for n=1. 2, . . . Then since the I'function
has poles at each of the nonpositive integers, all the terms in the sum (8-27)
will vanish for £ <n; and we obtain

e (l)k ' _Z_ 2k—-n
J—n(z)“,;n KT (1+k—n) (2)

But this becomes, upon shift of index from k to k—n,

& (_1)k+n z 2k+n
J‘"(z)“k; (k+n)IT(1+k) <2 )

Hence, it follows from equation (5-36) that

J_n(z)= (—"1)".]1:(2) for n=1, 2, e (8—29)
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Since wy=J) is a solution to equation (8-29) for all values of p and since the
parameter p enters equation (8-24) only as p?, the function

w=J_y(2) (8-30)

must also be a solution to this equation for all values of p. When p is an integer,
equation (8~29) shows that the solutions w; and w; are not linearly independent.
However, for any nonintegral value of p, consideration of the behavior of the
functions Jp and J_, in the neighborhood of z=0 shows that w; and w, consti-
tute a fundamental set of solutions. In order to obtain a second linearly independ-
ent solution to equation (8-24) when p is an integer, notice that for any value
of p '

213+ 2yt (2= p)Jp=0
(8-31)
2]+ 2]+ (22— p?) ] _p=0

Since the series (8-27) is uniformly convergent, it can be shown that J,, J_,,
and their derivatives with respect to z are all differentiable with respect to the
parameter p. Hence, upon differentiating equations (8-31) with respect to p
and subtracting the result, we obtain

29 +2,0,+ (Z—p?) fp=2p[Jp— (—1)"_p] (8-32)
where we have put

=ﬂ2___ Ila_‘]__p.
Y D" 5

By taking the limit as p—>n in equation (8-32) and using equation (8-29),
we find that the Bessel function of the second kind

Ya(2) E% lim [—L—aja}(f) — (=1)n¥=2(2) ;p(z)] (8-33)

is a solution to equation (8-24) with p=n. But upon substituting equation (8-27)
into this expression and noting that
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.___._1 dI‘— —_ k+17.1 | =
,llr?k FZ()dz_( 1)k+1f! for k ,0’1’2’

it follows after some algebraic manipulation, which we shall omit here, that
- h -1 2k—-n
=S o LR B

=3t Bt (3) @-30)

where the finite sum is to be omitted if n=0, H; is defined by equation (6-89),
and vy is Euler’s constant defined by

y= }‘l_r.ll (Hr—In k) =0.5772156649 . . . (8-35)

It is easy to see from equations (8-27) and (8-34) that Y,. and J, are a funda-
mental set of solutions.

Itis convenient to extend the definition (8-33) of Y to nonintegral values of
p. This is now done by putting

Y (Z) Jp(z) Cos pm— —p(Z)

sin pm

(8-36)

when p is not an integer. Then Y, and J, are a fundamental set of solutions.
And both the numerator and denominator of this expression vanish when
p is an integer. But by using L’Hospital’s rule, we find that forn=0,1,2, . . .

7, cos prr—J %‘lpcos wp—QaLE—'rer sin pm
lim ¥, (z) = lim = P 2=lim p p
sin pw T COS P

im (5o 35 ) = lm [ G- 0 9

And comparing this with equation (8-33) shows that definition (8-36) is indeed
an extension of definition (8-33).
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For large values of z with |arg z| <, the Bessel functions J, and Y,
behave like

Jo(z) ~ <—j—2) . cos (z__pz___'rr_%)

4 1/2
Yp(z) ~ K}%) sin < 3—222—%)

However, it is sometimes convenient to have solutions to Bessel’s equation
which tend to zero exponentially as |z| = « in the entire half piane-%.z > 0
or in the half plane -%. z < 0. But since equations (8-37) show that for large z

(8-37)

12
Jo(2) £iY,(2) ~ (—2— ) exilz—~(pm]2)~(7/4)]
YirA

we see this property is possessed by functions J,=iY,. For this reason, the
Hankel functions of the first and second kind HY and H}f’, respectively, are
defined by ' '

Hg)(z) =Jp(z) +iYp(2)

Hg’-).(z) =Jp(2) —iYp(2)

‘It is not hard to show that these solutions are a fundamental set.
In a number of applications, we encounter the equation

2w +zw' — (24 p?)w=0 ' (8-38)
which is obtained from Bessel’s equation by replacing z by iz. Although J,(iz)
and Y,(iz) are a fundamental set of solutions of equation (8-38), it is convenient
to introduce new functions which are real for real values of z (at least for real

values of p). To this end the modified Bessel functions of the first and third
kind I, and K,, respectively, are defined by

Ip(z) = e~%P7i2jp (iz)
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K,(z2) ——— e‘(l’"/2)H“)(Lz) = e“’"’/” [Jp(iz) +iY p(i2) ]

There are a number of useful relations between the Bessel functions and
their derivatives. Thus, it follows from equation (8-27) and equation (5-31)

. that

—1)kg2k+2p

#Jp(2) = Z + 281 (k+ p)T (k+ p)

But upon differentiating both sides with respect to z, we find that

20 —1 )k22k+2p—

d
7, (@r(2) = 2 Skrp F T (E £ p) = 28] p-1(2) (8-39)

In a similar way it can be shown that

diz 2Py (2) =—27P) p11(2) (8-40)

After carrying out the differentiations in equations (8-39) and (8-40), we obtain

z 'd_j'e:.ff.]p—l_pjp (8-41)
d
2 e 2yt 1l (8-42)

And by adding and subtracting these equations, we find
/

. i,
2 dz

=Jp—l _Jp+1 (8_4‘3)

and

2P.]p ZJp 1+7Jp+1 (8'4‘4‘)
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The formulas (8-39) to (8—44) are very useful when dealing with Bessel func-
tions. They also apply to the Bessel functions Yy, H{V, and H{?. However,

they must be modified slightly for the functions Ip and K, (due to the presence
of iz}.

A much more complete treatment of Bessel functions can be found in
reference 29.

8.7 WEBER'S EQUATION

Another equation, which has been extensively studied, can be obtained
from equation (8-3) by putting

' 1 re e s X4 1 n
a'=g a’'=0 B =—B:=7% a=—7 (8-45)
to get
w1, 1N 1
w +5w +g (§+n—z z) w=0 (8-46)
and then making the change of independent variable
z=g (8-47)
to obtain Weber’s equation
CACPN (R S0 S S
dg \’ 2 45 } w=0 (8-48)

This equation was first studied by Hermite (1864) and then by Weber. Its
solutions are called parabolic cylinder functions or Weber functions.

Since equation (8-46) can be transformed into the confluent hypergeo-
metric equation (8-7) by the change of variables (8-4) and (8-6), equation
(8—48) can be transformed into equation {8—7) by the change of variables (8-4)
to (8-6) and (8-47). Hence, the solutions to equation (8-48) can be expressed in
terms of the solutions to equation 8-7). Therefore, use of equations (8-4) to

tions toc Weber’s equation (w,, w.) is given by
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\ 11
3, == "(U‘XZF (—2; = 2) 8-49
u,=e 1 \ 2°9 2C ( )
-131
= e, (<255 ) (8-50)
Notice that if n is a positive even integer, the hypergeometric function in

equation (8-49) terminates and becomes a generalized Laguerre polynomial;
while if n is a positive odd integer, the hypergeometric function in equation
(8-50) becomes a generalized Laguerre polynomial. Thus, it follows from equa-
tions (8-20), (8-49), and (8-50) that, if n is a positive integer, equation (8—48)
has one soiuiion ws of the form

wy=e"VH, (L) forn=1,2, . .. (8-51)

where H» is the nth Hermite polynomial, which is defined in terms of the gen-
eralized Laguerre polynomials by

Hax(§) = (<L) 2HRLLID(E)
k=0,1,2,. .. (8-52)
Haen(£) = (—1) 25k ILE ()

88 OTHER EQUATIONS STUDIED

Although we have been ably to give a complete presentation of the gen-
eral theory of the solutions to second-order linear equations about regular sin-
gular points, apart from relatively trivial cases, only the solutions to those
equations which can be transformed into the hypergeometric equations of
Gauss and of Kummer have been exhaustively studied. The equations of
Lamé and Mathieu have also been studied, but only 2 small amount of knowl-
edge of the functions defined by these equations has been obtained. The
Mathieu equation is

2
%—z-.’:i-f- (a+# cos®’z)w=0

where a and & are narameters, and the Lame equation is
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%}:-{- (n+n(n+1)msn3(z|m)]w=0

where sn(z|m) is the sine amplitude elliptic function of modulus m, and 7, n,
and m are parameters. When n=2, its solutions can be expressed in terms of
elliptic functions. For more information about these equations, the reader is
referred to reference 3. An extremely complete discussion of Mathieu’s equa-
tion with many applications is given in reference 30.

All the equations which have been discussed in the last two chapters can
be derived from a single equation with six distinct regular singular points (with
the characteristic exponents at each singular point differing by 1/2) by allowing
these singular points to coalesce. The coalescence of any two such points is a
regular singular point whose exponents differ by an arbitrary amount. The
coalescence of three or more such points will result in an irregular singular
point. The reader is referred to reference 3, chapter 20, for a more detailed
study of these matters.
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CHAPTER 9

Solutions Near firegular Singular Points:
Asymptotic Expansions

9.1 GENERAL CHARACTER OF SOLUTIONS

Let zo be an isolated singular point of the differential equaticn

w dw _
77t +p(2) -(7;+q(z)w—-0 (9-1)

We have shown in chapter 6 that it is always possible to construct a funda-
mental set of solutions to this equaticn on a punctured circular region about
zp whenever 2z, is a regular singular point. And these solutions can be expressed
/in terms of certain convergent power series whose coefficients can be calculated
successively. This occurs because the functions f;(z) and f2(z) in the canonical
basig (6-20) can have, at most, poles at zo. However, this will not be the case
when the point z¢ is an irregular singular point of equation (9-1) since at least
one of the two functions fi(z) and f2(z) will then have an essential singularity
at zo. This fuanction will therefore have a series expansion about zo of the form
(6-21) in which infinitely many negative powers of z—zy are present. And the
coefficients of this series are determined by an infinite set of equations which
cannot be solved recursively. For this reason we do not have a convenient
method of finding the corresponding solution. In addition, the characteristic
exponents are determined by a transcendental equation (which usually cannot
be solved explicitly) instead of by an algebraic equation. Finally, the series
once found are usually slowly convergent.
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9.2 FORMAL POWER SERIES

Even if zo is an irregular singular point, it may still happen that the function
f1(z) in the canonical basis (6-20) has, at most, a pole at zo, in which case it
would still be possibie to recursively construct 2 one solution about this point.
And this solution would bz of the form%

w=(z—2)fz2) (9-2)

where f(z) is analytic in a neighborhood of z¢, and therefore has a convergent
power series expansion

flz)= go an(z—20)" (9-3)

about zo. We assume, without loss of generality, that the exponent p is adjusted
to make ao # 0 and therefore to make

flzo) #C (94)

A second solution could then be found, at least in principle, from equation
(6-63).

When p(z) has an essential singularity at zo, equation (9-1) can possess
a solution of the form (9-2) only when ¢(z2) is equal to zero or nas an essential
singularity at zo. But suppose that p(z) has a pole at zo, say of order m. Thus,

p(z)=(z—20) ~™P(2) (9-5)

where P(z) is analytic at z=2zo. Now if equation (9—-1) possesses a regular solu-
tion of the form (9-2), this solution together with (9—5) can be substituted into
equation (9-1) to obtain

% If it were the function f2(z) which had the pole at zo and the function f1(z) which had the essential singularity,
then either we could (when ¢= 0} change the notation so that the function f;(z) had the pole at zo or (when @ # 0) the
solution w: would depend upon f;(z) (through w:(z)) and could therefore not be constructed recursively.

% Recall (ch. 6) that a solution of this type is called a regular solution.
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() 20 fz2) plp—1)
f(z) z—z20f(z) (2—z0)?

|1 [ p .
[(3‘20)’" f(z2) +(Z—Zo)’"“] P() (9-6)

q(z) =—

And since f(zo) # 0, it follows that the functions f"[f, f'[f, and P are analytic
atz=zo.

First, suppose that m is either zero or 1. Then equation (9-6) shows that
q(z) has, at most, a pole of order two. We therefore conclude that when p(z)
has, at most, a simple pole at zo, equation (9-1) will possess a regular solution
of the form (9-2) if, and only if, z0 is a regular singular point.

Now, suppose that m > 1. Then equation (9-6) shows that ¢(z) has, at most,
a pole of order m+1. Hence, we conclude that when p(z) has a pole of order
m>1 at a point zo, equation (9-1) can possess a regular solution about this
point only if ¢(z) has, at most, a pole of order m+1 at z,.

The corresponding result for the case where the point z0 is at © can be
obtained in the usual way by applying these results at the origin of the {-plane
to the coefficients of the transformed equation given by equations (6-28) and
(6=29). This leads to the conclusion that if p(z) has a pole of order® m=0
about z=1x, equation (9-1) possesses a solution about this point of the form

zﬂi &
n
n=0 <

only if the highes! power of z which occurs in the Laurent series expansion of
¢(z) about z=xism—1.

Now suppose that z, is a finite point, p(z) has a pole of order m at zo, and
equation (9-1) possesses a solution of the form (9—2) about zo. Then, ¢g(z) must
be of the form

q(z) = (z—2z0)~"1Q(2) (9-7)

™ Recall that we say that a function has a pole of order zero at a point if it is analytic at that point.
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where Q(z) is analytic at z=2zo. This function Q(z) and the function P(z)
which appears in the representation (9-5) of p(z) can be expanded about z¢
in the convergent power series

o0

P(z) = palz—z0)"

n=0

(9-8)
Q(z)= i qn(z—2z0)™

n=0

where po # 0.

We can now proceed much as we did in chapter 6 for thc case of a regular
singular point by substituting equations (9-2), (9-3), (9-5), (9-7), and (9-8)
with m >1 into equation (9—1) and then collecting the coefficients of like
powers of z—zo. When this procedure is carried out, we find first that the
indicial equation is not quadrctic (as in the case of a regular singular point)
but that it is an equation of the first degree which is

ppo+ g =0 (9-9)

This is consistent with the fact that, at an irregular singular point, at most
one solution of the form (9-2) can occur.

Next, the coefficients of the series (9—3) can still be calculated recursively,
but the resulting series will now either terminate after a finite number of terms
or else it will diverge for all {z—zo| > 0 (ref. 2. p. 421). Thus, a regular sclution
will only exist in the exceptional case when the series (9—3) contains a finite
number of terms.

For example, tlie equation

" (Z_a) 1__1_( é) —_
w-}-2&z2 w 3 a+4z w=0

has an irregular singular point at z= 0. And it has a series solution about this
point given by

1
= ,—1/2 ———e
w=z (1 % z)
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which terminates after two terms.

Even though it is possible to calculate as many terms as desired when the
series does not terminate, the solution obtained in this manner will not have
any meaning in the usual sense since the series does not converge. This should
not be taken to mean, however, that this ‘“formal’ solution is not useful.

9.3 ASYMPTOTIC CHARACTER OF SOLUTIONS

In order to introduce the concepts which allow the formal solutions
obtained in the preceding section to be utilized, it is convenient to consider
an example given by Euler in 1754. Thus, the differential equation

w,32z+1 , 1

‘has an irregular singular point at the origin and a regular singular point at
infinity. Since the order of the pole of the coefficient of w at z = 0 does not
exceed the order of the pole of the coefficient of w’ at z= 0 by more than1, we
know that equation (9—10) possesses one (and only one) formal solution about
z=0 of the form

w=2z S ann (9-11)
n=0

We can therefore proceed just as in the case of a regular singular point and
substitute this expansion into equation (9—10), shift the indices to the lowest
one present, and collect terms to obtain

i (n+ p)2an-,zttrP-1 + i (n+ p)apzttP-1=10
n=1 n=0

Then by equating the coefficients of the various powers of z to zero, we find
that since ao # 0

p=0 (9-12)
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and
(n+p)lap-1=—(n+plan forn=1,2,3,... (9-13)

The indicial equation (9-12) is consistent with the general indicial equation -~
(9-9) since, in this case, go = 0. When equation (9-12) is substituted into the
recurrence relation (9-13), we obtain

an = — Na@n-1 forn=12,3,... (9-14)
And by proceeding in the usual way, we conclude from this, that
an= {— 1)mnla,

Finally, substituting this, together with equation (9—12), into equation (9-11)
shows that equation (9-10) possesses the formal solution

w=3 (1)l (9-15)

n=0

A simple application of the ratio test, however, shows that this series
diverges for all z # 0. Hence, as we have already indicated in the general case,
equation (9-15) is not a regular solution. However, we might anticipate that,
since equation (9-15) was determined in a formal manner by the differential
equation, it might still, in some sense, represent a solution to that differential
equation.

In order to see what this is, note that equations (5—29) and (5—36) show that

nl= f e~ttndt (9-16)

0
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However, when this is substituted into equation (9-15), we find that
w= if e~t(—=1)nzn¢ndt
n=0 0

And again, proceeding formally we interchange the order of summation and
integration to obtain

= "tw— n
w Le ’;0( zt)ndt

Finally, summing the geometric series shows that

SR PR R dt ' . (9-17)

Now this integral converges uniformly® for all z in any region R bounded
away from the negative real axis. In fact, differentiating with respect to z and
interchanging the order of integration and differentiation shows that

dw _ ® et

dz Jo (1+a2)2 dt | (9-18)

% This means that for any positive number €, no matter how small, there exists a positive number T(e) which

depends on € but not on z such that Jw [e-/(1+zt)]dt] < e for all ¢t = T{e) and all zin R.
t
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M -
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\\\\\\\\\&\“\\

FIGURE 9-1. — Region of convergence of f

dt and J - dt.

(1+ t)2 0 (1-}-zt)2

But since this integral converges uniformly for all values of z in any region
bounded away from the negative real axis (fig. 9-1), we can conclude that the
derivative exists and that interchanging the order of integration and differentia-
tion was in fact justified, provided z is not on the negative real axis (ref. 31).

Hence, ]0 _[e"/ (1+2zt)]dt is an analytic fuaction of z everywhere in the z-

plane cut along the negative real axis and is therefore infinitely differentiable
in this region,

Upon multiplying equation (9-17) by z and equation (9-18) by 22 and
then adding the result, we get

Al = e 2 m— .
w' + zw z o () dt+zf dt

1+t

— 2zl +zt)—2% 5, [® etz
Le (14 zt)2 de= f (1+ t)2dt

And after integration by parts, this becomes
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z2w’+zw= f _e_dt':l_

1+zz 1+2zt

which shows that w satisfies the equation
2w+ (z+1)w=1

provided z is not on the negative real axis. Since w is infinitely differentiable,
we can certainly differentiate this equation with respect to z. But when this is
done we obtain equation (9-10). Thus, the function w given by equation
(9-17) provides a perfectly valid solution to equation (9-10). This solution
was obtained by formally summing the divergent series (9—15), which was, in
turn, obtained by formally solving equation (9-10). It is, therefore, naturai to
ask in which sense the divergent series (9-15) represents the integral (9-17)
and, therefore, as a consequence, in what sense it represents a solution to
equation (9-10). To answer this question, let

Su(z) =3 (=1)mlzn 0-19)
n=0

be the mth partial sum of the series (9—15). Now from elementary algebra, we
know that the sum of the finite geometric series is

m 1~ rutl

1—r
which becomes, upon setting r=—z¢,

1 ___(—Zt)m'H m . , "
1+z22 14z +,Zo( 1)n(at)

But, upon multiplying both sides by e~! and integrating between 0 and «, we
find that

Lx1+zt d‘—j Z( 1)7(zt)"e~'dt+Rm(z)
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where we have put

«© tm+le—t

142zt

Run(z)=(—2) ’"“J; dt (9—20)

And since it is always legitimate to interchange the order of integration and
summation for a finite sum, this becomes

= e-t m =
- —_ — nyn ne—tdt —=
L e dt n§=:0( 1)z J; tre~tdt= R pn(2)

Hence, substituting in equations (9—16) and (9—19) shows that

| T de=8ue) = Ruta) ©-21)

Now since

|1+ zt] = |14+ at + iyt = V(1 + xt)2 + 282
it follows that
N+zt] =2 VA +a)2=|14+x|=1 foo z=x>0

And for % z=2x =< 0 we find that

11+ ze] V(xt)>+ ()2 = {(1+ xt)2(xt)* + y22[ (1 + x£)? + (x2)2] + (y2)4}2

= Vy2e2[(1 + x2)? + (x1)2] = '{/1—5 |yl
Hence

1 d _1 |y
V2 V(xt)2+ (yt)2 V2 Vazty2

14 zt| = -—‘\}Elsind)I for Z z=x<0
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where ¢ is the argument of z. We have therefore shown that

lT-il-—ztl = 1 for % z=0 (9-22)
and
“Tlﬂl < V2 |cosec ¢| for A z<0;|p| <m (9-23)

It now follows from equations (9-20) and (9-22) that when # z =0

|Rn(z)| = |z|™+! Tz

* gmtle—t (

i+t |

1+ 2zt

x
< lZ""+l f
0

And equations (9—16) and (9-21) therefore show that

x
dt < |z|m+1f tm+le=tdy
0

|lwi(2) —Sw(z)| < |z|"*1 (m+1)! for % z2>0 (9-24)

where

=
w@) = [ g | (9-25)

is the solution to equation (9-10). In a similar way, it follows from equation
{9-23) that

lwi(z) —Sm(z)| = V2| cosec | |z|m+ (m+1)! for z<0;|d| <m

(9-26)
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Thus, in view of equations (9-15) and (9-19), the inequalitics (9-24)
and (9-26) show that, provided ¢, the argument of z, is smaller in absolute
value than 7, the error incurred by computing the solution w;{z) by means of
the divergent series (9—15) goes to zero rapidly as z— 0. Thus, for any fixed m,
any desired accuracy can be obtained by taking |z| sufficiently near zero. In
particular, the inequality (9-24) shows that, provided % z > 0, the error is
never greater in magnitude than the first term omitted in the series.

Now recall that a series 'Z an is said to converge to a sum 4 if its partial
= 0

sums tp, == ﬁ an satisfy the relation
=0
JE_IPQIA - tml =O
The series (9—15) certainly does not converge to the solution w;(z) since
r}li_f_l'golwl(z) —Su(z) ‘ #0 (9-27)

But this series is said to be an asymptotic expansion (which will be defined
subsequently) of w;(z} since, as can be seen from equations (9-24) and
(9-26), it has the property that

wl(Z) :gm(Z)=O for Id)l s7+e (9‘28)

lim
=0

for any € > 0.

9.4 ASYMPTOTIC EXPANSIONS

Roughly speaking, equation (9-28) shows that the difference between
the solution w;(z) and the mth partial sum Sy, (z) of the series (3~15) approaches
zero more rapidly than z™ as z— 0. Comparing the definition of convergence
with the corresponding condition (9-28) for a series to be asymptotic, shows
that the essential difference between these two concepts can be stated in the
following way: If the series is convergent to w;(z), then z is held fixed and the
difference wi(z) —Sn(z) approaches zero as m approaches infinity. If the
series is asymptotic to w;(z), then the number m of terms is held fixed and the
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difference w1(z) —Sm(z) approaches zero (at a specified rate) as z approaches
some fixed value, say zo.
There is no reason why a given series cannot be both asymptotic and con-

vergent at the same time. For example, the geometric series E z"is convergent
n=0

to 1/(1 —z) for [z] <1 and it is also an asymptotic expansion of this function
asz— 0.

When a series is convergent as well as asymptotic, the approximation
can usually be improved at fixed z by taking more and more terms in the par-
tial sum. However, it happens more frequently that an asymptotic series is
divergent.® When this is the case, there is some limiting value to the accuracy
of the approximation which can be obtained at each fixed value of z. This limit-
ing value is attained when the optimal number of terms is retained in the expan-
sion. Thus, for the expansion (9-15) with z > 0, the right side of the inequality
(9-24) is 3 minimum when m = |z]-1. For this value of m, Sm(z) will provide
the best approximation to w;(z).

The theory of asymptetic expansion was initiated by Stieltjes and by Poin-
care at the end of the nineteenth century. Before giving the general definition
of an asymptotic expansion, it is convenient to introduce the concept of order.
Thus, if ¢ and ¢ are complex functions of z, we write

d=0(y) asz—>z

if there exists a finite constant 4 such that

limﬂQ<A

=z P(z)
And we write
d=o(yY) as z—> 2
if

. (z) _
zll*r’rzollf(Z) 0

% Usually in this case the terms of the seties first decrease rapidly (the more rapidly the closer the independent
variable is to its limiting value) but eventually start to increase again.
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The symbols O and o are called order symbols, and in both cases we say that
¢ is of order Y. Thus,

z“=0(z5) as z—> ®
2=o0(2%) asz— ®

#=0(444+38) asz—®

but

2 # 0(424 4 323) asz—> o
Also

B=o0(2%) as z— 0
but

A+ 0(28) as z— 0
and, for Ze z > 0,

e~*=o0(z9) as —> ®

for any constant a.
If £(z) is an analytic function which has a pole of order m at zo, then

f(z)=0((z—z)"™) and  f(z) #o((z—2z0)"™) asz—>2o

It is cominon practice to denote any sequence, say a;, az, as, . . ., by
{a;}. A sequence of functions {¢;(z)} is said to be an asymptotic sequence as
z—> z if for each integer j, ¢s11=0(¢;) as z—> z. Thus, {(z —z0)/} is an asymp-
totic sequence as z— zo; {zJ} is as asymptotic sequence as z—> «; and {e~} is
an asymptotic sequence as z— ®, provided %4 z> Q.
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Note that equation (9-28) can be written in terms of the order symbol o as
wy— sm=o0(z") asz— 0

We are, therefore, led to the following definition: Let {¢;(z)} be an asymptotic
sequence as z— zo. Then the formal series

; abi(z) (9-29)

m
with partial si'ms Su(z)= Y a;d;(z) is called an asymptotic series. The

. . L 1=0, . .
asymptotic ceries (9-29) is said to be an asymptotic expansion to m terms
of a function f(z) if

f(2)—Sm(z) =o(dm) -asz—> 2z (9-30)
and we write
1) ~ 3 asbita)

If equation (9-30) holds for every positive integer m, we simply say that
equation (9-29) is an asymptotic expansion ot f(z) and we write

flz) ~ _ioajdrj(z)

Thus, in the preceding example, we have shown that

et noton
1+zt 2 (=D"nlz

This series is typical in that most asymptotic series encc 1mtered in practice
invplve powers or inverse powers of z. Such series are called asymptotic power
series.

Once a particular asymptotic sequence has been specified, any given
function will have only one asymptotic expansion in terms of this seguence.
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In this sense the asymptotic expansion is unique. However, two different
functions may have the same asymptotic expansion. Thus, if

L
f(z) ~ E anz™" asz —> ®
n=0'

it is not hard to verify that
f@)+e 2~ anz asz—> ©
n=0

for A x> 0.
It can be shown that if f(z) ~ Y axdn(z) and g(z) ~ >, buda(z), then

of(z) + Bg(z) ~ S (aan+Bbn)pa(2)

for any complex constants a and B. It is generally possible to integrate asymp-
totic expansions term by term, but differentiation is not always permissible
(ref. 32).

Asymptotic power series can be manipulated in much the same way as
convergent power series. Let the function f(z) be a single-valued analytic
function at every finite point z with |z| > R. If f(z) has the asymptotic expansion

x
f(2)~ anz™ asz—>®
n=0

and this expansion is valid for all values of the argument of z, then f(z) must
be bounded as z— ». Hence, it cannot possess a pole or an essential singu-
larity at z=o, Therefore, an analytic function cannot possess a single asymptotic
expansion in inverse powers of z as z— © which is valid for all values of the
argument of z unless it is analytic at infinity, Thus, asymptotic power series
are frequently valid only over a given sector of the complex plane, and a
different asymptotic representation must be used outside this sector. This
is closely related to the so-valled Stokes phenomenon which we shall encounter
subsequently. ‘

If a function f(z) is analytic at a point zo and, therefore, possesses a con-
vergent power series about zo, it is not hard to see that the series must also
be an asymptotic expansion of f(z) as z— z, (ref. 32, p. 22).
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9.5 NORMAL SOLUTIONS

Let zo be an irregular singular point of the equation

TNt

w"+p(2)w' +q(z)w=0 (9-31)
and suppose that, if z, is a finite point,
p=0((z—2z0)~™) and g=0((z—2z0) kD) as 2>z,
and that, if zo=,
p=0(zm) and ¢g=0(z") as 7= ®

where m and k are integers.
We have seen that, when & < m (and only in this case), it is always possible
to construct a formal series solution w;(z) of the form

wi(z) = (z—2z)° i} an(z—zo)" if zois finite (9—-32a)

n=

or of the form
w; (z) = z”i anz~" if zo=00 (9-32b)
n=0

which satisfies the differential equation term by term. The coeflicients of these
expansions can be calculated recursively from the differential equation in
much the same manner as those in the series solutions at regular singular
points, These expansions will, in general, be divergent. However, as we have
seen by example they actually turn out to be asymptotic expansions of a true
solution to equation (9-31) at the point z=zo. They will, therefore, be very
useful for numerical computation ¥7 of this solution for z near zo.

The series in equations (9-32a) and (9-32b) will not diverge only if they
terminate after a finite number of terms, in which case these equations will
represent regular solutions to the differential equation (8-31). A second solu-

97 In fact. asymptotic expansivns are dquite frequently more suitable for numerical cemputation than convcr(.ent
power series since fewer terms are required to obtain a given accurac y.
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tion at the point zo can then always be found from equation (6-63). Thus, except
in the relatively rare case where k < m and the formal power series solution
terminates, it is still necessary to find one or two solutions to equation (9-31)
or at least the asymptotic expansions of these solutions about the irregular
singular point z=z,. To this end, we introduce into equation (9-31) the change
of dependent variable

w=eu (9-33)
where
8
S wa(z—z0)™"  ifzois finite
n=1
Q= , (9-34)
8 .
E Wzt ifzg=0o0
n=1
and the coefficients w, for n=1, 2, . . ., s are complex constants. Then

equation (9-31) is transformed into the equation

u'+pr(z2)u’ +q* (z)u=0 (9-35)
where
p*(z)=p(zy+2Q’ (9-36)
and
q*(z) =q(2) +p(z)Q' + Q"+ Q'2 (9-37)

Now if, when 2z is finite, the terms in Q(z) can be chosen to cancel vut
enough of the negative powers of z—zo which arise from p(z) and g(z) so that
p*(z) has, at most, a simple pole and g*(z) has, at most, a pole of order two at
2o, then 2o will be a regular singular point of equation (9-35). Similar remarks,
of course, apply when zo=, In either case, then, when this can be done, a
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fundamental set of solutions can always be found by the methods of chapter 6;
and equation (9-33) will then provide a fundamental set of solutions of equa-
tion (9-31). But this usually cannot be done. More frequently, it is only pos-
sible to adjust the coefficients in () so that the resulting equation+(9-35) will
possess a formal solution either of the form (9-32a) (when z is finite) or of the
form (9-32b) (when z is infinite). Then equation (9—31} will have a formal solu-
tion either of the form

ko)

w(z) =eMND(z—20)? Y an(z—2z0)" if zo is finite (9-38a)

n=0

or of the form

w(z) = efM2)zr i anpz—" ifzo=rc0 (9-38b)

n=0

These formal solutions, called normal solutions, either will terminate or they
will diverge in which case they will be asymptotic expansions.

Before discussing this in more detail, it is convenient to introduce the
following definition: If the coefficients p(z) and g(z) of the differential equation

w'+p(z)w' +q(z)w=0 (9—39)

have, at most, poles at za, the equation is said te be of finite rank at zo. If zo is
a finite point and equation {(9-39) is of finite rank at zo, the smallest number r -
such that both

p=0((z—z0) ~(r+1) and q=0((z—z0) ~2(r+1) asz—> zo

is called the rank of equation (9-39) at zo. The rank of equation (9-39) at
z=® is defined to be the smallest number r such that

p=0(zr—l) and q=0(z2(r—l)) asz—»

provided the equation is of finite rank at . If the equation has a regular
singular point at z, it is said to be of rank zero.
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For example, since the coefficients of the equation
o

L]

w'+w +w=0 (9-40)
satisfy the conditions
p=0(z"") g=0(z")
as z-—>®
p # o(z™1) q#o(z71)

we see that this equation is of rank 1/2 at z=ro,

Now suppose that equation (9—31) is of rank r > 0 at the point z,. In order
that equation (9—35) possess a formal solution of the form (9—32a) when zo is a
finite point, it is necessary that the highest negative power of z— z¢in ¢* exceed
the highest negative power in p* by no more than 1. And if equation (9—35) is
to possess’'a formal solution of the form (9—32b) when zp=, it is necessary
that the highest power of z in ¢+ be less than the highest power of z in p*.
Suppose that zo=, An examination of the expression obtained by substituting
equation (9—34) into equations (9—36) and (9—37) shows that g* will always
contain higher powers of z than p* unl¢ss the numbers wn and s in equation
(9—34) can be chosen to cancel out the coefficients of those powers of z in g+
which are larger than, or equal to, those in p*. This can be done only if the rank
r of equation (9-31) is an integer. And the maximum value of s necessary to
accomplish this will then always be less than, or equal to, r. The same con-
clusion applies when zo is finite. It is usually possible to choose the numbers
wn and s so that the cancellation is accomplished in more than one way. In
this case, we obtain two solutions to equation (9—31).

Thus, equation (9—31) will possess formal solutions either of the form
(9-38a) or the form (9-38b) at the point zo only if the rank r of this equation at
zo is an integer. The function )(z) is then given by equation (9-34) withs<r.

Since equation (9—40) is of rank 1/2 at z=, it does .not possess a normal
solution at this point.

As an example of an equation which does possess such a solution at 2=10,
consider the equation

w"+q{z)w=0 (9-41)
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with
q(z) = i gnz™™ 9-42)
n=0
and
qo#0 (9-43)

We see in view of condition (9—43) that equation (9—41) is of rank 1 at z=
Hence, we make the change of dependent variable

w=ely 9-44)

where, since s < r=1,

ON=w:z (9-45)

And upon substituting equations (9-44) and (9-45) into equation (9-41) we
find that

u+pt(z2)u'+q* (z2)u=0 (9-46)

where p*(z) =2w, and q*(z) = w?} +qo+z gnz~" The highest power of z

which occurs in both p+* and ¢~* is zero. Hence the highest power of z which
occurs in g+ can be made less than the highest power which occurs in p* by
choosing w, to be a root of the equation :

wi+qo=0
But the two roots of this equation are wy,1=1iq}? and w,2=—iq}% And each of

these roots leads to a different form of equation (9-46). Thus, we obtain the
two equations
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uy+2iqlfu|+q(z)u, =0 (9-46a)
iy —2iqlfus+ q(2)us=0 (9-46b)

x
where q(z) = 2 gnz~". But we know that these equations possess formal

. n=1
solutions of the form

uy =z 2 anz™" (9-47a)
n=0
and “
Uy =2z°2 2 bnz—"_ (9_4'7b)
n=0

where p; and p. are each solutions of linear indicial equations and the coeffi-
cients a, and b, can be calculated successively from a recurrence relation of
the usual type.

Thus, for example, upon substituting equation (9—47a) into equation
(9-46a), shifting the indices, and collecting coefficients of like powers of
z in the usual way, we obtain

2 (pl-"n+2) (pl—n+1)an—2z—"
n=2

" n
+ [2iq5’2(p1 —n+aw+ Y ‘ik“"-"] =0
k=1

n=1 g

And after equating to zero the coefficients of like powers of z, we find that for
n=1 (since ay# 0)

2igy*p1+q:1=0 (9-48)
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and

[2ig}2(p1i—n+ 1)+ g1 ]an-1=—(p1—n+2) {pr—n+1)an_»
= qi@n- forn=2,3, . .. (9-49)
=2 .

Equaticn (9—48) is the usual linear indicial equation. And substituting this
into the recurrence relation (9—49) shows that

—8ig)? (n—1)an-1=[q:1+2ig)”* (n—2)] [q: +2ig)"* (n—1)[an-..

—4q0 > qian-x  forn=2,3, ... (9-49a)
K2

This recurrence relation will either terminate or else it will determine the
an so that the series (9—47a) diveérges.

In any event, the two formal soluticns (9—47a) and (9-47b) will now
provide, through equations (9-44) and (9-45), two normal solutions to
equation (9-41), say w, and w,, which are given by

wl ___‘eiq:uz 2P 2 anz-n
n=0
(9-50)

o
wy=e %'z 2P, 2 bnz—m
n=0

Note that if condition (9—43) did not hold (i.e., if go = 0) but the condition
g1 # 0 did hold, then equation (9-41) would be of rank 1/2 at z= oo, In this
case, it would not be possible to carry out the procedure just described.
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9.6 SUBNORMAL SOLUTIONS

We have seen that if equation (9-31) is of rank r with r > 0 at the point
20, it will have a formal solution of the form (9-38a) or (9-38b) only if r is an

- integer. However, a change of independent variable of the type

[ (Z “Zt)) 1k if zo is finite
C—_—

zl/k if Zo=®

where % is a positive: integer, will usually transform an equation of fractional
rank into one whose rank is an integer. The formal solutions obtained by this
procedure are called subnormal solutions.

Thus, we have shown that equation (9-41) in the preceding example has
rank 1/2 at © when condition (9-43) does not hold but the condition q; # 0 does
hold. That is, the equation '

w'+q(z)w=20 (9-51)
where
q(z) = 2 qnz ™" (9-52)
and
170 (9-53)

has rank 1/2 at z=% and, therefore, does not possess a normal solution at this
point. However, upon making the change of variable { = 212, equation {9-51)
becomes

dw_1d
T dp tew=0 (9-54)
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where
Q) =43 t=-n g, (9-55)
n=1 .

And since this equation is of rank . at {=®, we introduce the change of
variable

w=e“1ty (9-56)
to obtain the equation
d?u du —_ -
E'C_z'*'Pl(C) dC+Ql(C)u 0 (9-57)

where

Pl(C)=’_‘]z+2wl

QD) ==%+0i+dq+4 Y, gL
n=2

Then by putting
w}+4¢:=0 ' (9-58)

we find that the highest power of { which occurs in Q; is less than the highest
power which occurs in P;. And, as in the preceding example, corresponding
to the two roots = 2ql? of equation (3-58) we obtain the following two equa-
tions from equation (9—56):

d2U1 (1

. N\du iqll‘.?. g e
T (g tiar) Gre [ B e w0
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d?us 1 Lo\ due —lq}/2 il ]
—{ = 2 ) == 2(n-1) =
(34 )d@“[ Top T2 a0,

But we know that these equations possess the formal solutions u; = {1 2 an{"
n=0

and u,={" 2 bn{~ ", whose coeflicients can be calculated recursively in the

usual way. And therefore equation (9-51) possesses the two subnormal solutlons

x

* w, = e2a}/%z"25(0,/2) S anz 2 (9-59)
n=0

wy = e~ 201/ 7loy/2) Y bz 12 (9-60)

.

9.7 NATURE OF RIGOROUS PROOF¢

The formal solutions obtained in the preceding section are asymptotic
expansions of certain solutions to the differential equations. One method
for actually proving this was developed by G. Birkhoff. In this method the
leading terms of the partial sums of each formal solution are used to con-
struct a homogeneous differential equation whose solution is known and which
in a certain sense is close to the given equation when z is near % zo. This equation
is then used to construct a singular integral equation whose solution also satis-
fies the given differential equation. It is then proved that the solution to this
integral equation possesses an asymptotic expansion which coincides with
the formal solution obtained by the methods discussed previously. For a de-
tailed discussion of this method, in which equation (9—41) is treated to illustrate
the general principles, the reader is referred to reference 32.

9.8 CONNECTION OF SOLUTIONS: STOKES PHENO@ON

In the preceding examples, we have shown how to obtain the asymptotic
expansions as z —> ® of two sclutions to a differential equation of the type

% Without loss of generality, the point zo (about which the solutions are obtained) is taken as .
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(9-41). The problem frequently arises of connecting these asymptotic exparn.
sions with an expression * for some given solution to the differential equation
which is valid for small values of z. We know, in general, that the asyniptotic
expansion of any given solution w to equation (9—-41) can be expressed as a
linear combination of the two asymptotic solutions (9—50). However, it usually
turns out that the particular linear combination of these two asymptotic solu-
tions used to represent the asymptotic expansion of the given solution w must
be changed as the variable z crosses certain ‘‘critical rays” in going from one
sector of the complex plane to another. This is the Stokes phenomenon which we
have mentioner! previously. '
For example, the change of variable

W=z-1zy (9-61)
transforms Bessel’s equation
2W'+ W'+ (22— pi)W =0 ‘ (9-62)
into the equation
1
r
w'+\ 1+ = w=0 (9-63)

which has the form of equation (9-41) with the coefficients in equation (9-42)
given by

g =1 aQ:

I
=]

)

I

PN

|

)
[

and (9-64)

=20 forn=3,4,5,...

¥ Such as a power series expansion.
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And if we choose the arbitrary constants ao and be, respectively, to be

2\ 1 .
== = p—ilpm/2)+(m/4)}
Ao (W) 2 e

(9-65)
bo = (Z) Y21 e
T/ 2
it is easy to show that the formal solutions (9-50) become in this case
2\vz1 AP )
wy= (;> % eilz—(pm/2)~(m/4)] n2=0an‘\ - L) nzn . (9—-66)
we = 2\ 1 ~ilz~(pri2) - (w9)] N g (i) nzn 9-67)
:=|5) 3e ';) (i) "z (
where
1 1
_(3=r)G*),
an=

2np!

Hence, the asymptotic expansion of any given solution ' of equation
(9-62) can be expressed as a linear combination

W (z) ~ Ciz7VPuy(z) + CozV2un(z)

of the functions (9-66) and (9—67) multiplied by z-"/2. Let us choose the solution
W(z) to be the Bessel function of the first kind J,(z). Then equation (8-37)
shows thatfor— 7 <argz<#,C;=C2=1and

Jp(2) ~z= 2wy (2)+ 272w, (2) —w<argz<m (9-68)

This representation does not apply along the critical ray arg z = m, that is,
along the negative real axis. To find an asymptotic expansion which is valid
in a region which includes the negative real axis, put
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z= e"iz (9-69)
Then since arg z=-+arg zi, arg z varies between 0 and 27 as arg z, varies

between — 7 and 7. And it follows from the deﬁnmon (8-27) of the Bessel
function that

Jo(z) =Jp(e™izy) =e™if (2, ) for largzi| < 7

But arg z, is in the range where J, has the asymptotic representation (9-68).
Hence,

Jp(2) ~ emiPzr 1 2y, (7,) + emiPzi 2wy (2y) for |arg z:| <=
And since equations (9-66) and (9-67) show that
wl(zl) = e‘i[pﬂ+("/2)]w2(z) wz(z‘) = ei[lm+(7r/2)]wl(z)

it follows that

Jp(z) ~ 2712wy (z) — e2mipz-1124y,(z) for0 <argz<2m (9-70)

Comparing equations (9—68) and (9-70) shows that different linear com-
binations of w;(z) and w2(z) must be used to represent the asymptotic expan-

sion of Jp(z) in the sectors — 7 < arg: ' 7 and 0 < arg z < 2m. And, equa-
tions (3—66), (9-67), and (9—-70) show that

, . 2\ 12 pmwm
~ pmip+(3mif2) | Z_ : ge -
Jp(z) ~ e™P <7rz) sin <z + > T4 )

toone term, for 0 < arg z < 27 (9-71)

Since in each region of the complex plane one of tunctions, w(z) and
w(z), will be exponentially small compared with th® @her, the expansions
(9-69) ai:d (9-70) will be equal to one another, with exponentially small error,
in every region where they are both defined.
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CHAPTER 10

Expansions in Small and Large Parameters:
Sindular Perturbations

Many of the differential equations encountered in practice contain param-
eters. Although it frequently happens that we cannotifind the exact solutiens
to these equations, the behavior of these solutions for large or small values of
the parameters is often physically important. In such cases we are content to
find asymptotic representations of the solutions which are valid for these
limiting values of the parameters. A number of techniques for obtaining such
expansions are given in this chapter. Since no formal theory has been developed
for many of these techniques, the approach of this chapter is necessarily
heuristic and the material is frequently presented by means of exampies.
On the other hand, the ideas developed herein are quite general; and they
apply not only to ordinary differential equations, but also to partial differential
equations, integral equations, and even difference equations.

10.1 NONSINGULAR EXPANSIONS OF SOLUTIONS

The general second-order homogeneous linear equation containing a
large parameter A is of the form

EY LY - |
ez TP N) Zo 4 q(x, M)y=0 (10-1)

We suppose that p(x, A\) and g(x, \) have (at least formal) power series ex-
pansions in \. If these expansions contain only nonpositive powers of A, say

281




DIFFERENTIAL EQUATIONS

p(x,N)= i Pu(x)A" (10-2)
n=0

g@&A) =3 gulx)A" © 10-3)
n=0

then the solutions te equation (10—1) will have a fermal power series expansion
of the form

y(x)= 20 ya(x)A-" (10-4)

where the functions y.(x) are determined by substituting the expansion
(10-4) into equation (10-1) and equating to zero the coefficients of like powers
of A to obtain

dy,.

+po(x)——+qo(x)yn ':;:[pn k(x) +Qn A(x)m]

for n=0,1,2, ... (10-5)

and the sum on the right is omitted for n=0. These equations can, at least in
principle, be solved successively for the coefficients yn. If the series (10-2)
and (10-3) converge, it can be shown (ref. 4, p. 126, ex. 6) that the series (10—4)
will also converge. In any case, the formal series (10—4) will usually be an
asymptotic expansion.

However, if the formal power series expansion for either p(x, A) or g(x, A)
involves any positive powers of A, the expansion of the solution in powers of
A will, in general, involve infinitely many positive and negative powers of A;
and it will not be possible to solve for the coefficients successively. Neverthe-
less, it is still possible in certain instances to obtain formal solutions whose
terms can be calculated successively by using a technique analogous to the
procedure used in the preceding chapter to obtain solutions at irregular singular
points. These solutions will not, in general, be convergent series; but they
will be asymptotic exparsions. Thus, consider the equation

d3y

dx Tt plx, }\)d +q(x, \)y=0 (10-6)
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where
p(x:\) =3 pu(x)Ak-" (10-7)
n=90
gz )= gu(x)hz-n (10-8)

k is a positive integer, and po(x) and go(x) are not both identically zero. Then
it can be shown by direct substitution that equation (10-6) will possess two
formal solutions of the form

y = e i yu(x)A-" (10-9)
n=0
where
k-
Q(x) =S onlx)Ak" (10-10)
n=0

The coefficents yx and w. can be calculated by solving successively the set
of ordinary differential equations which is obtained by substituting the assumed
solution (10-9) into equation (10-6) and equating to zerc the coefficients of
like powers of A.

In order to illustrate these ideas, consider the differential equation

d>y
dx?

+ {}\2(]0(.%) + qz(x)] y=0 (10-11)

which was first discussed by Liouville in his classical investigations of the
Siurm-Liouville problems.

Since in this case k=1, the differential equation will possess formal
solutions of the form

L y=ewiloh i ya(x)A"" (10-12)
n=0
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After substituting this into equation (10—-11) and collecting terms, we find that

2 (n+ qayn)A "+ 2 (Cwky! + wiyn) A1 -1 + 2 (qo + wl2)yaA2-*=0
n=0 n=0

n=0

But upon shifting indices, this becomes

S n-2tgeyn-2) A"+ ¥ Qugyn_, + @g¥n-1) A"
n=2 n=1

+ Y (go+ w)yar?~5=0
n=0

And by equating the coeflicients of the like powers of A to zero, we get
(go+ wi2)yo=0 forn=0 (10-13)

2weyo + woyo+ (go + wg?)y1=0  forn=1 (10-14)

and
Yn-2t q2¥yn-2 + 20)(’)3'::—i + wWg¥n-1+ (g0 + w(')z)yn =0 forn=2,3, ...
(10-15)

In order to avoid the trivial solution y=0, we must require that y,#Q.
Hence, equation (10-13) becomes

Qo+ wo*=0 (10-16)

When this is used in equations (10-14) and (10~15), we obtain

20ly,+ wlys=0
(i9-17)

2w(’)y;—,1, + WgYn-1 =~ Yn-2 — q2¥n-2 forn=2,3,...
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In the case of the differential equation (10-1) we had to solve the set of
second-order differential equations (10-5) to determine the coefficients yn;
whereas, in this case it is only necessary to solve a set of first-order equations.!®
Since go # 0 equation (10-16) will have two distinct solutions, say wo,; and
wo, 2, given by

wo.x=+f V— go dx (10—18)
wo,2=“f V—gqo dx (10-19)

Corresponding to each of these roots, we will obtain a different set of
equations from equations (10-17) and, therefore, equation (10-12) will yield
two different formal solutions to equation (10-11). It is proved in reference
32 (p. 83), that these two formal solutions are actually asymptotic expansions
of two linearly independent solutions o equation (10-11) in any finite interval
a < x < b in which go does not take on the value zero. The first equation
(10-17) will yield the same equation for both of the roots (10-18) and (10-19).
Thus, when equation (10-16) is substituted into the first equation (10-17),
we obtain the separable equation

4 (_ﬂ,}. ) =0
yo 4(10 Yo
which is easily solved to obtain

yo= constant X gy ‘/“% (10-20)

Equations (10-18) to (10~20) can now pe substituted into equation (10-12)
to show that the general solution of equation (10-11) in any interval a <x <b
where go(x) # 0 has the asymptotic expansiocn

y ~ Cigyier| Ve 4 Czqg"'4e"f‘/'7“‘ to one term (10-21)

1% This situation is ana'ogous to the reduction of the indicial equatisn from a quadratic te a linear equation in
going from a regular singular point to an irregular singular point.
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where C; and C; are arbitrary constants. Thus, go(x) must be either strictiy
positive or else strictly negative for all a <x <b. If go is strictly negative, the
constants of equation (10-21) can be redefined slightly to obtain

Yy~ Cs(“‘lo)"/‘ekfv—_“dx +Cy(— (Io)”/"e—xj Ve . .
to one term, for qo(x) <0 (10-22)

And if go{x) is sirictly positive for all a < x < b, the constants can be redefined
to obtain

y— qu51/4 sin ()\ f \/El—odx)—i- Czqo”/“ cos (}\ f \/(de)
to one term, for go(x) >0  (10-23)

Notice that the asymptotic solution (10-22) has a monotonic behavior,
while the asymptotic solution (10-23) has an oscillatory behavior.

10.2 TRANSITION POINTS

Now let us consider the case where go(x) is equal to zero at a single point,
say xo, in the interval a < x <. And suppose, in addition, that go(x) and
g2(x) are analytic at xo. Then go(x) and g2(x) must have the expunsions

go(x) = qo,1 (x —x0) + qo,2(x —x0)2+. . . (10-24)
q2(x) =qa,0% g2, 1(x—2x0) +. . . (10-25)

about the point x==x¢, and we shall require for defiriteness that qo,, 0.

Thas, the point xo is an ordinary point of the differential equation (10-11).
Every solution to this equation must, therefore, be analytic at xo. But in view
of equation (10-24), equation (1G-21) implies that

y=0((x—x0) 1) as x > Xo (10-26)

Hence, the asymptotic expansion (10-21) cannot represent an analytic func-
tion in a neighborhood of xo and, therefore, it certainly cannot be the asymp
totic expansion of any solution to equation (10-11) in the neighborhos’ .
this point.
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However, for any positive number 8§ (no matter how small), equation
(10-21) provides a valid asymptotic expansion, to one term, of the general
solution *o equation (10-11) both in the interval a < x < x9— & and iu the
interval xo+ 8 < x < b because qo(x} does not vanish in either of these
intervals, Since equation {10-24) shows that go(x) is not tangent io the
x-axis at xo, it must cross the axis at this point and must, therefore, bz positive
in one of the intervals. The solution to equation (10-11) will then have the
asymptotic expansion (10-23) in this interval. In the other interval, go(x) will
be negative and equation (10-11) will have the asymptotic solution (10-22).
Thus, the asymptotic solution to equation (10-11) will have an oscillatory
behavior on one side of xo and will have a monotonic behavior on the other side.
The transition from one type of behavior to the other takes place in a small
region centered at xo. The point ¢ is, therefore, called a trensitior point.1o!

When the second equation (10-17) with n=2 is soived for y:(x) and
equations (10-16) and (10-20) are substituted into the result, it is found
from equations (10-24) and (10-25) that

y1=0((x—x0) ~*) as x — xo

Rut equation (10-26) shows that ¥, is of order (x—xo) ~'/4 as x — xo. Hence,
the second term in the expansion (10-12) will be approximately equal to the
first term when

I(x ~x0)-1/4| ) )\"I(x—xo)"7l4|

that is, when the distance between x and x, is approximately |x — xo| = A~2/3.

Thus, when the distance between x and x, is less than or =:;ual io A=2/3, the
order of the terms of the expansion (10—12) will actually increase with increas-
ing n. This shows that the asymptotic expansion breaks down in a region of
radius A—2/3 about the point x,. It is, therefore, said to be a nonuniformly valid
asymptotic expansion.

In order to obtain an asymptotic expansion which is valid in this region, we
rescale the independent variable so that it will be of order 1 therein. That is,
we introduce the new independent variabie

£= (x—x0) 20 (10-27)

19 The term turning point is also used. This term ariszs from the application of eq. (15-11) *o classical and quan-
tum mechanical wave reflection pioblems,
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into equations (10-11), (10-24), and (10-25) to get

d2 1
.d_§%+ [ AmQO( )‘42:/3 )+ IXE lh( )‘42:/3 ) ]y=0 (10-28)
2
QD(X%;)=QD.1X§/—3+QD,2X§2,—3+ e (10-29)
and
qz(xf,—s)=qz.o+qz.,x‘%g+. . (10-30)

Then upon substituting equations (10-29) and (10—30) into equation (10-28)
and neglecting terms which are small for large values of A, we get

d2
E’H’ qo. 1 £y=0 | _ (10-31)

The solution to this equation should be ‘“close” to the true solution to equation
(10~11) at least in the region

| —2xo| < A-213 (10-32)

or |¢] < 1. Hence, it should represent the first term of the asymptotic expan-
sion of the solution to equation (10—11) in the region (10-32).

The differential equation (10-31) is a form of Airy’s equation (ref. 29,
section 6.4) which can be transformed by the change of variable

=VEY  =3Vaen

into the Bessel’s equation
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YAV [ (1],
e+ g |e=(5) |r=0
(see eq. (8—24)). Thus, the general solution to equation (10-31) is

12
y= ( %7\”3) D1§”2j1/3 (% Vqo,1 §3l2 )

+(Fnm ) Dugra s (3 Vaoag ) a0-33)

where D, and D, are arbitrary constants and the normalization factor (wA!/3/3)/2
has been inserted for convenience.
Let us now suppose, for definiteness, that

go,1 >0 (10-34)

Then solution (10—22) will hold in the region @ < x < xo — 8 and the solution
(10-23) will hold in the region xo+ 8 < x < b, where & is some arbitrarily
small positive constant. The solution (10-33) holds in some region which is
centered at xo and has a size at least of order A-%/3, Having found the pieces
of the solution which apply in the three regions into which the intervala <x < b
has been divided, it is now necessary to match up these pieces across the ad-
jacent regions to form one continuous solution. These pieces of the solution
contain altogether six arbitrary constants. Four of these will be determined by
the matching requirement. The other two must remain arbitrary if we are
to obtain an asymptotic expansion of the general solution to equation (10—11).
In order to accomplish this matching, we suppose that the regions of validity
of the various pieces of the solution can be extended in such a way that any
two adjacert regions overlap one another. Thus, we assume there is an “over-
lap domain”™ (or intermediate region) in which both the expansions (10-22)
and (10-33) are asymptotic expansions of the solution to equation (10-11)
and that there is an overlap domain in which both the expansions (10-23) and
(10-33) are asymptotic expansions of the solutions to equation (10-11) (see
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Region of applicability of sofution (10-33), "'inner region"

r A
“Quter region"!, region of ap- ""Outer region'', region of appli-
plicability of}glution (10-22) cability of sﬁution (10-23)
N
& 1111 N
\ b

2 Rt —_——

Qverlap Overlap

domain domain

F1GURE 10-1.—Regions for transition-point expansion.

fig. 10-1). We therefore require that within the overlap domains the two
adjacent expansions agree with each other to within an error which is of
smaller order than the last term retained in these expansions.

Since the size of the region in which the solution (10-33) applies (which
we will call the inner region) approaches zero as A— =, the location of the
two overlap regions must also approach xo as A — ». Now in the outer regions,
the asymptotic expansions correspond to holding the variable x fixed and
taking the limit A — . In the inner region, the asymptotic expansions corre-
spond to holding the variable £= (x — x9)A2?/3 fixed and taking the limit A — o,
This limiting process allows the coordinate x in the inner region to move toward
xo as the size of this region shrinks to zero. Thus, the matching can be per-
formed in a precise manner by introducing into both the inner and outer ex-
pansions an “intermediate variable”

N = (x — Xo) A= EAla-(2/3)] (10-35)

with & chosen so that a fixed value of 7 will remain in the overlap region as
this region shrinks toward xo with increasing A. The matching of the adjacent
expansions is then accomplished by changing their independent variables
from x and ¢ to 7 and then requiring that these expansions become identical
(to the appropriate order in A~!) when the limit A — ® is taken while holding
m fixed. However, if 1 is to lie in the overlap regions, we must require that

0< a<§ (10-36)
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Now in order to apply the matching procedure to this problem, we intro-
duce the new variable (10-35) into equation (10-33) to obtain

/
= (%r Al-«@ )l ZDm 2] 1 {%qu,l nalz)\[(2/3)—a13/2}

/l
+ (% Al-a ) l 202771/2.]—1/3 {% V qo,1 773/27\[(2/3)’“]3/2} (10-37)

First, suppose that n > 0. Then equation (8-37) shows that in the limit A —
with 9 fixed

J0,17)

y~ (_)‘a_)l“Dl COoS {%qu na/z)\[(zla),—alalz _51_727' }

A\ 1/4
+( qo,1m ) D: cos {% V qo,m?/2A2/3) -al3/2 — -1%} to one term
(10-38)

But for 7 <0 we find that n%2?=ei37/2)|y|32; and therefore the argument of
the Bessel’s function in equation (10-37) is no longer in the range where equa-
tion (8-37) holds. We must, therefore, use equation (9—-71).

In this case, we see that in the limit as A — o« with 7 fixed

1 e \1/4 D 2 Ve | |32 \l23 Jsj2
y~§(mﬂ_|) (2—D1)exp{§ Go, 1 ||\ }

1

a 1/4
+ 3 (__Z‘__) (Dye-m6 + Djei™l6) exp {_§ "/CIO, 1 lnl:;/z )\[2/3-043/2}

QO,1|77|

to one term (10-39)
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Next substituting equation (10-35) into equation (10-23) and neglecting
the higher order terms in A-1, we find that

@ 1/4
y ~ ( A ) C, sin {% Vo1 ns/z)\l(zls)-als/z}

qo,1M

NG 1/4
+ ( go,17 ) C: cos {% Vqo,1 1'3/2)\[(2/3)-a]3/2} (10-40)

Hence, the expansion (10—38) and the expansion (10—40) will become identical
in the right overlap domain if

_ . O . T
Ci=D; sin 15 + D; sin 12
Cz = Dl COoS —SW‘F Dz COoSs 1

12 12

and the expansion (10-23) becomes

I I \
y ~ Digz'* cos(:\f qudx—§£>+qu;;‘/4 cos()\f Vqo dx — =
zo 12 2o 12

to one term, for xo<x<b (10-41)

In order to match the solutions in the left overlap domain, we must consider
two cases. First, suppose that D; # D:. Then the second term in equation
(10-39) is negligibly small compared with the first and may be neglected.
Hence, equation (10-39) becomes

1 A% )1/4 {2
~ = — Ds—D{) exp { = V 3/2 )\ [(2/3)-al3/2 }
y 2((10’1,1" (D:—D1) exp 1 3 Vo1 7|

. (1042)

This must now match with equation (10-22) in the left overlap domain. It
can be seen that this matching can occur only if C3 # 0. In this case, the
second term will be exponentially small, compared with the first; and equation
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(10-22) becomes, upon substituting in equation (10~35) and neglecting
higher order terms in 1/A while holding % fixed,

y~ Cy ( AC )1/4 exp {% Vqo,1 |7’ |3/2}\[(2/3)-a]3/2 }

5;,1|"I|

But this will match with equation (10-42) in the left overlap domain only if
C3= (D, — Dy) /2. And the solution (10-22) therefore becomes

— x
y~ D 5 Dy (— go) ~14 exp ()\ f V—qo dx) to one term,
To
for a <x<xo and Dy # D, (10-43)

Next consider the case where D; = D,. Then the first term in equation
(10-39) is zero and, therefore, the second term cannot be neglected. Equation
(10-22) will only match onto equation (10-39) in the left overlap domain
if C3=0 and Cs= (V3/2)D,. Therefore, equation (10~22) becomes

X
y~ §D1 (— qo) Y4 exp (— A f V—qo dx) to one term,
)
for a < x < xo and D;= D, (10-44)

Thus, the complete asymptotic expansion of the general solution to
equation (10-11) in the interval a<x <b is given by equations (10—-33),
(10-41), and (10—-43) or (10—44). The expansions (10—41) and (10—43) or
(10-44) become poorer and poorer representations of the true solution as
x—xo (they are nonuniformly valid expansions), but the expansion (10-33)
provides a good representation in this region. It is possible to obtain a uniformly
valid asymptotic expansion in the region xo <x < b by adding the expansion
(10-41) to the expansion (10-33) and (so that it will not be ~~unted twice)
subtracting their common value in the transition region given oy equation
(10—38). Thus,'2

Yuniformiy vaiia ~ €d. (10—41)+ eq. (10-33)—eq. (10-38)

192 By construction, egs. (10~33) and (10—38) are asymptotically equal in the outer region.
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Similar remarks, of course, apply for the interval a < x < x,. Although this
method is very general and can be used even when a larger number of terms are
retained in the asymptotic expansion, there is a better method of obtaining a
uniformly valid one-term asymptotic expansion for the present problem which,
in fact, applies to the entire interval a <x <b. To this end, notice that the

X
term A f Vqodx becomes asymptotically equal to the term
To

9. — 9
3)\ (Io,l(x—xo)3/2=§ QO,1§3/2

in the transition region. It is, therefore, reasonable to hope that the range of
validity of equation (10—33) (which applies for small values of 1% x—x,) can be
extended by replacing 2/3 Vqo,: £%2 in the arguments of the Bessel functions by

A Lo \/ZI—odx and replacing the factor A /¢ \/_f_byfqo‘ll“ (iz}: L Vo dx)l 2, Upon

making these substitutions, equation (10—33) becomes

st () oo V) o V)
(10—-45)

Having obtained this result by a heuristic argument, it is now easy to verify
that, for A28(x —x,)=0(1), this equation agrees with equation (10-33) to the
lowest order A~! and, for x—xo=0(1) with x > x,, it agrees to lowest order in
A-1 with equation (10—41). Similarly, when x—x¢=0(1) and x <x,, it agrees
to lowest order in A~! with either equation (10—43) or equation (10-45), de-
pending on whether D, is equal to D.. Thus, equation (10-45) must represent
a uniformly valid asymptotic expansion to orne term of the general solution to
equation (10—11). This result was first obtained by Langer (refs. 33 to 35) by a
more forma! procedure. The technique of using inner and outer expansions to
obtain a uniformly valid expansion began with Friedrichs (ref. 36) in the 1950’s
and was developed by Kaplan, Lagerstrom, Cole, and many others. This
technique not only applies to linear and nonlinear ordinary differential equa-
tions but also to partial differential equations. Many of the applications of this
method have been to fluid mechanics problems. In fact, the basic ideas grew
out of boundary layer theory.

193 This is because £ is of order 1 and, therefore, for large A, x must be close to xo.
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10.3 MATCHED ASYMPTOTIC EXPANSIONS

The method of using inner and outer expansions to obtain a uniformly
valid expansion can, in fact, be applied to obtain solutions in a systematic
way to certain equations which are of the form (10-6). The solution (10-9)
to equation (10-6) was obtained by essentially guessing its general form.
Therefore, this procedure is limited to equations of the type (10—6); the method
of matched asymptotic expansions has no such limitation.

‘The method is usually applied in such a way that it is necessary to consider
- the boundary conditions along with the differential equation. The ideas in-
volved are best illustrated by means of an example. However, instead of con-
sidering an equation containing a large parameter we will now consider an
equation containing a small parameter 1% ¢, Thus, we shall seek an asymptotic
expansion as e —> 0 of the solution to the equation

eTLip@) Ligwy=0 (10-46)

subject to the boundary conditions
y(0)=1 (10-47)
y(1)=a (10-438)

and where the functions p(x) and g(x) are any functions which can be repre-
sented by power series, say

p(x)="7y pux" gx) =7 gux" (10-49)
n=0 n=0
near x=0, and by similar power series, say

P@=S hl-0"  g)= 3 @l-x)"

194 0Of course, since we can always put A=1/€ to obtain an equation containing a large parameter, there is no
real difference involved.
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near x=1. We shall also require that

px) >0 forO0=x=1 (10-50)

and that the integral [ l [g(x)/p(x)]dx exists.
JO

Since € is small, it is natural to seek a solution to equation (10-46) in the

form of a power series in €. Thus, let us try to obtain a formal solution to equa-
tion (10-46) of the form

y(x; €)= i yn(x)€" (10-51)

n=0

Upon substituting this into equations (10-46) to (10~-48) and equating to zero
the coefficients of like powers of €, we find that

p(x) 22+ g(x)yo=0 (10-52)

p(x) %+q(x)yn=—%:—_!- forn=1,2, ... (10-53)
y0(0)=1  (10-54)

yo(l)=a (10-55)

7@ =7a(1)=0 forn=1,2, ... . (10-56)

Since equations (10-52) and (10-53) are first-order linear equ:;tions, they
can be solved immediately to obtain

¥o(x) = Coe~ ) (10-57)

ya(x) = e~ [ C,,+far o) L ‘_lsz-_ldx ] forn=1,2, ...
1 p(x) dx
(10-58)
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where the C, for n=0, 1, 2, . . . are arbitrary constants and we have put
Qx) = fx ax) g (10-59)
' 1 p(x)

Notice that since the integral (0) exists by hypothesis, the integral (10-59)
must certainly be finite for all x in the interval 0 = x <1.

Now, except in the very exceptional circuinstance where a=e™9, ii is
impossible to choose Co so that the zeroth-order solution (10-57) satisfies both
boundary conditions. Thus, suppose that a # ¢X® and, therefore, that one of
the boundary conditions (10-54) or (10-55) cannot be satisfied. We reason that,
just as the expansion (10-12) broke down at the transition point, the expan-
sion (10-51) will break down at one of the boundary points x=0 or x=1
and it will be necessary to obtain a different (inner) expansion in this region.1%
This expansion must then be matched smoothly onto the outer expansion
(10-51) in some intermediate region. It is necessary to investigate the be-
havior of the asymptotic solutions at both boundaries in order to find which
one will correspond to the boundary layer region. If this is done, it will be
found that, due to the condition (10-50), it will be impossible to match any
inner solution which occurs near the boundary x=1 to the solutions (10-57)
and (10-58). This is due to the fact that condition (10-50) will cause all possible
solutions for the region near x =1 to grow exponentially with the distance 1 —x
and this type of behavior is ir.compatible with the solutions (10-57) and (10-58).

The constants C, for n=0, 1, 2, . . . must, therefore, be determined
so that the boundary condition (10-55) and the second boundary condition
(10-56) at x=1 are satisfied. Hence, Co=a and C,=0forn=1,2, . . .; and
the solutions (10-57) and (10-58) become, respectively,

yo(x) = ae~U=) (10-60)
yn(x )=-—e-9(r)f A=) p(l ) d‘(i’:zl dx forn=1, 2, . (10-61)
The functions y,(x) forn=1,2, . . . can now be determined successively by

substituting the expression for 3z-1 obtained in the previous step into the right
side of equation (10-61). Thus, substituting equation (10-60) into equatlon
(10-61) with n=1 gives

15 Which is {requently referred to as the boundary layer region.
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r ]

yl(x)=—ae‘n‘“1"fl ) [P2(x) —r'(x)]dx (10-62)
where we have put
r(x) Eg_(x_) (10-63)
p(x)
and we shall suppose that the integral
A= f - ' 5
= 2t [2(x)—r'(x)]dx (10-54)

exists.

Unlike the situation which occurred at the transition point, the zeroth-
order solution remains bounded at x=0. In fact, its linnting value is ae—%(%,
But in order that the boundary condition (1047) Le satisfied, it is necessary
that the asymptotic solution change from the v:iue 1 to the value ae-%(® across
the boundary layer region. Now we anticpate that the expansion (10-51) will
hold over most of the region 0 < x < 1 put that it will break down in a narrow
region near x=0 whose thickness approaches zero as e — 0. Since the asymp-
totic solution ¥ must change from ae=™® to 1 across this very narrow region,
the derivatives y' and y’ must become very steep (large) in this region. How-
ever, in assuming that the solution had an asymptotic expansion of the form
(10-51), we were essentially treating the terms y”, py', and ¢y in equation
(10-46) as if they were of order 1. In order to overcome this difficulty, we pro-
ceed just as in the case of the turning point and rescale equation (10-46) in a
manner which is appropriate to this boundary region by introducing a new
“stretched” independent variable % by

X

-3 (10-65)

i

where ﬁ_{rt)l ¢(€) =0 and the function ¢ is to be chosen so that it is of the scale

of the boundary layer region. In this case, however, it is necessary to determine
the scaling function ¢ in a different manner than in the case of the turning point.
Thus, upon substituting equation (10-65) into equations (10-46) and (10-49),
we obtain
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Q.

. .
where we have put 7(%; e) =y and, in view of equations (10-49) and (10-50),

p(d(€)x)= po+ p1d (€)X + p2d2(e)E2+ . . .
for po #0
q(P(€)x)= qo+ qip (€)% + qop2 ()2 + . . .
(10-67)

Now in order that the inner solution satisfy the boundary condition at
x =10 and still contain another constant which can be adjusted to ‘match the
outer solution, we must require that the equation which is satisfied by the
lowest order term in the expansion of the solution in the inner region (the inner
expansion) be of second order. This equation is obtained by holding £ and ¥
fixed and taking the limit!°¢ e — 0 in equation (10-66). However, the limiting
form of this equation depends on the choice of the function ¢ (¢). And in order
that the highest order derivative be retained in this equation we must require
that

¢=0(e) (10-68)

If the condition ¢=o0(e) also held, the second and third terms of the
limiting equation (10-66) would drop out and we would be left with the equation

2 -
e €3¢ (10-69)
However, if we require that
¢ #o(e) (10-70)

then both the first and second terms will be retained in the limiting form of
equation (10-66). In addition, the size of the inner region (which is determined
by ¢) will be larger if condition (10-70) holds than if it did not hold. Thus, the

1% This limiting process is called the inner limit. The limit taken while holding x and Y fixed and letting e — 0 is
called the outer limit.
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solution which would be obtained by assuming that condition (10-70) did not
hold is a limiting case (for small ) of the inner solution which is obtained when
equation (10-70) does hold. We shall, therefore, assume that conditions (10-68)
and (10-70) hold. And since only the order of magnitude of ¢ is important, we
will lose no generality by putting ¢(e) =€. Hence, equation (10-66) becomes,
upon inserting equation (10-67),

gx; + (po+ ep1% + €2po%* + . ) + (ego+ e2qix+ . . .)¥y=0 (10-71)

We now suppose that the solution to equation (10—71) has an asymptotic
expansion of the form 1%

~ Fn(®)e" {10-72)
n=0

Then upon substituting this into equation (10-71) and equating to zero the
coefhicients of like powers of €, we obtain

d%y d¥o__

T2 tPo = (10-73)
d?7n dVn_ 7 (-
a2 Tpo 2 =H.(x) forn=1,2,... (10-74)

where we have put

n—-1 v
Hu(z)=— ('d—_kf Pn—k+ FiqQn-k- 1)96" —k-1 forn=1, 2,
(10-75)

And upon substituting equatlon (10-72) into the boundary condition (10—47),
we find that

F0(0) =1 (10-76)

197 It should not be concluded from the results obtained so far that the asymptotic expsaasions of the solutions to

equations containing a small parameter will always be power series in the parameter. For example logarithmic terms
could occur.
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7.(00=0 forn=1,2, ... (10-77)

Since equations (10—73) and (10-74) do not contain the dependent variable
explicitly, they can easily be integrated by the methods of chapter 4 to obtain

Fo=Co+ boe™™*

y,.=6,.+5ne-p&+;1-;ﬁ: [l—em(ywi)]ﬁ,,()")d? forn=1,2, ...

which become, after applying the boundary conditions (10—76) and (10-77),

Fo=Co+ (1 —Co)e™™* (10-78)

y,;=a,.(1—e-”>+;}—o j [1—-¢"""1H.(5)dy  forn=1,2, ...
(10-79)

We can again determine the functions y. for n=1, 2, . . . successively by
substituting the expressions for .-, obtained in the previous step into the right
side of equation (10—79). Thus, upon substituting equation (10—78) into the
right side of equation (10—79) with n=1 and carrying out the integration, we
obtain

(1 —¢o)

Do

- —pis __Pwpo _\ Qo
Ze go — D1 5 %)~ Copy %

=1 (1 — ep2) +

(10-80)

where we have put

- 1
a=a¢+ Eo [(1 = &) (p1 — go) + Cogo]
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As in the case of the transition point, we now suppose that there is an
overlap domain in which the outer expansion (10—51) and the inner expansion
(10~72) both apply and that within this overlap domain, these two expansions
agree to within an error which is of smaller order than the last term retained.
In order to perform this matching, we introduce an intermediate variable

X €X

x+=v(e) =V €)

(10-81)

into both the inner and outer expansions. The scale factor v(€) is determined
so that the variable x* is of order 1 in the overlap domain. Since the size of
the overlap domain must approach zero as € = 0 and since it must be farther
away from x= 0 than the inner regions whose size is O (€),, we must require that

e=o(v) (10-82)

and

v=o0(1) (10-83)

To proceed with the matching, we then reexpand the first m terms for m=1, 2,

. of both the inner and outer expansions while holding x* fixed and then
require that the difference between these two expansions be of o(e™~1). That
is, the inner and outer expansions are asymptotically equal in the overlap
domain to the appropriate order. Hence, we require that

yo[H(€)xt] + enlv(e)at] +. .+ emlr(e)et] — 50 [Hx]

— € [V(:) x+] e i [V(:) x+} =o0(e") as €e— 0,

forn=20,1,2,... with xt fixed (10-84)

Thus, for example, when n=20, this becomes

v(e)
€

yolv(e)xt] — J"o-[ x+] =0(1) ‘as € —> 0 with x* fixed  (10-85)
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And when n=1, it becomes

yo[v(€)x*]+ ey: [v(e)x+] — 70 [ v(e) x*] — €71 [V—(:lx*] =o0(e)

€

as € = 0 with x+ fixed (10-86)

Now since

+f ol qgg dg=0(0) + ()2 L+ 0(»?)

it follows, upon expanding the exponential, that

i

e-Hezt] = e~ U0)g-vz*(go/po)+ 00?2 = ¢-0(0) [1 —_ ,,(e) S x+4+0 (,,2)]
Po

And, the solutions (1.0—60) and (10-62) therefore become, respectively,

"

yo[v(€)x*] = ae 4O [1 —v(e) x+ +0 (vz‘] (10-87)

y1 [(€)a+ ] = ae= 2[4 +0 (v) ] (10-88)

where definition (10-64) has been used. On the other hand, the solution (10-78)
becomes

o [V(G) x+] = ¢o+ (1 _— Co)e_po[”(t)/¢]x+

But, since equation (10-82) shows that
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Jim 2(€)

=0 €

=0

this becomes

7o [V(e)

p x*] = ¢o + expenentially small terms (10-89)

Similarly, the solution (10-80) becomes

i [K(:_)x+] & — o 10 E%e—x‘* + exponentially small terms

(10-90)

Equations (10-87) and (10-89) now show that
yol¥(€)x*1— 7o [ﬂﬁaw] — ae-00 — 2,+0 (v)

since the exponentially small terms are of lower order than any power of v. But
since hm v(€) =0, this shows that the zeroth-order matching condition (10--85)
will be satisfied prov1ded that

Co = ae~1M® (10-91)

Similarly, equations (10-86) to (10-90) show upon substituting in equation
(10-91) that

yo[v(€)x+]+eyi[v(e)xt] —70[ v(e) x+] — e [ ”(:) x+]

€

= ge~ O (1 — v%x+ +€A)~—ae‘“(°) (1-— v%x*) —€6+0 (v?)

=e[e~M0g4 —7,] + O (v?)
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Hence, the first-order matching condition (10-—86) will now be satisfied if we put
c1=ae~ 94 and choose the scaling function » so that

v?=0/(¢€) (10-92)

Notice that v must simultaneously satisfy conditions (10-82), (10-83), and
(10—92). There are many choices of v whick wiil accomplish this. For example,
we can take v(e) =¢€2/3,

We have now obtained the following results: In the outer region, the expan-
sion to two terms is

[r2(x) —r'(x)]dx+ . . A (10-93)

v(x; €) ~ e~ {1 +ef i
1

p(x)

In the inner region, the expansion t¢ two terms is

7(%; €) ~ e—p“{[l —ae~X0] [1 +:f)—'72 ((Io—pl '—pig@ )] —ae‘mmeA}
0

4

+ ae~ O (1+£A—g%ef)+ . (10-94)

And in the overlap domain, both of these expansions take on the common
value y; given by

¥t ~ ae~ %O (1 +ed—pr ef) (10-95)

As in the case of the transition point, we can obtain an expansion which
is valid everywhere in the interval 0 < x < 1 (that is, a uniformly valid expan-
sion) by adding the inner expansion to the outer expansion and, so that it will

not be counted twice, subtracting their common value in the overlap domain.
Thus,

r ] ,
Yuntformly valid ™ ae- D {1 +e j; I)—ij [r2(x) —r'(x) ]dx}
+e—puf{ [1— ge-0] [1 +;£)§ <QO_P1 _9'50 f) ] —ae-20 ¢4 } + . . . (10-96)
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Of course, we have not actually proved that equation (10-96) is indeed an
asymptotic expansion of the solution to equation (10-46) suhject to the boundary
conditions (10—-47) and (10-48). However, it is common practice in applied
mathematics to accept an expansion obtained by a formal procedure (such as
those given in this section) as being a true asymptotic expansion of the solu-
tion to the problem. Indeed, most problems which are tr~ated in practice are
too complicated for rigorous proofs to be carried through.

We emphasize again that this method applies to nonlinear equations just
as well as to linear equations.

104 METHOD OF STRAINED COORDINATES

We shall now consider some additional techniques which can be used to
handle the nonuniformities that arise when asymptotic solutions are sought
to certain types of differential equations. Thus, consider the differential
equation

d?y
—= + w?y = €)3

02 y = €y (10-97)
which describes the oscillation of a mass on a spring with a weakly nonlinear
restoring force. And for definiteness, let us impose the initial conditions

dy

y(0)=1 o (0)=0 (10-98)

If -ve attempt to find an asymptotic solution in the form of a straight-
foirwar( power series in €

y(t; €) ~ yolt) + evi(e) +. ..

then we get, upon substituting this into equations (10-97) and (10-98) and
equating to zero the coefficients of like powers of €,

d?y,
ry + wly =0 (10-99)
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d?yy
Tzt en=x (10-100)
_ dYo oy _
¥0(0) =1 I (0)=0 (10-101)
_dn _
»n(0)=—"(0)=0 (10-102)

However, the solution to equation (10—99) subject to the initial conditions
(10-101) is yo=cos wt. And after substituting this into equation (10—100), we
obtain

d?y, 3 1
— 2 = 3 =< P =
di? + w?y; = cos® wt 4 cos wt + 1 cos 3wt

But since the general solution to this equation is

1 3¢t . .
Y= g5 Cos 3wt+§asm wt + ¢1 cos wt + ¢ sin wt

the asymptotic solution to equation (10-97) is

¢

~ COS t+€[é-t~' t—
y ) 8wsmw

cos 3wt + ¢; cos wt + ¢z sin wt] + ...
32w?
However, the first-order term in this expansion will not be small compared
with the zeroth-order term when ¢ = 1/e due to the presence of the term
tsin wt in the solution. Such terms are called secular terms. The expansion
will, therefore, not be valid for large times even though it may be suitable for
calculating the solution at small times. The solution of equation (10-97) is
periodic. However, due to the appearance of secular terms, the solution cannot
be carried to sufficiently long times to calculate the distortion of the period
due to the nonlinear restoring force.

A method (based on the work of Poincaré!®) for alleviating this difficulty

1% The ideas were developed in the course of his work on periodic orbits of the planets.
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was developed by Whitham and by Lighthill (ref. 37). The method depends
upon introducing a new varizble 7 and then considering both the dependent
variable y and the independent variable ¢ to be functions of 7. Thus,

t=t(7; €)

y = y(7; €)

And we suppose that these functions can be expanded in powers of € to obtain

t=7+et:(7)+... (10-103)

y=yo(r) +t en(r)+ . . . (10-104)

The arbitrariness introduced into the solution by the functions ¢,, etc., is used
to adjust the nonhomogeneous terms in the equations for y1, y2, . . . so that
the secular terms will not occur in the expansion. The resulting distortion of
the time scale will cause the frequency of the motion to depend on €. And this
will allow us to calculate the variation of the period.

Now it follows from equation (10-103) that

d_drd 1 d d
4_drd_ - )< (10-105
& dd (it ydr ATt g (10-105)

where the prime denotes differentiation with respect to 7. Hence, .

‘_[2_)_'_ — et — _‘i —et' —. (d)’o dy, )]
d‘r’*’_(l €t, "')df[(l et .) d1’+'d1+ .

d"yo T _ o Do

€z € d7+"'

= (1—2et,+. )
After substituting this into equation (10-97) together with the expansion

(10-104) and equating to zero the coefficients of like powers of €, we obtain

d2yo

St wlye=0 (10-106)
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& Py, ., d .
Tt an=y3+ 2 SR+ o (10-107)

In order %o find the proper boundary conditions, we need expressions for
the values of y and dy/dt at t = 0 in terms of their values at 7 = 0. Thus, we use
a Taylor series expansion of these guantities about 7 = 0 to obtain

Y(t=0) = yro+ (j—{)fzof(m .

&) —(&) (&)
dt l4=0 (dt f==0+ det f=07(0)+- .« .

where 7(0) denotes the value of the function 7(¢) (obtained by solving equation

(10-103) for 7 as a {unction of ¢) at the point ¢ = 0. Upon substituting in equations
(10-103) to (10-105), we find

y(t=0) = y0(0) + ¢ [y, (0) +£:(0) (‘g“)f_o] +.

o) e[ (3) om0 (@) r o0 (@) L+ -

Then substituting these expressions into the boundary conditions (10-98) and
equating to zero the coefficients of like powers of € shows that

¥o(0) =1 i‘(’iﬂ’ ©)=0 (10-108)
T

71(0) +1:(0) 2 (0) =0
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dyo dzyo

1 (0) ~13(0) 22

I (0) +0(0)

> (0)=0

or, using the boundary condition (10-108) to simplify the second group ef
boundary conditions,

»n(0)=0
(10-109)

L (0)+1(0) T2 (0) =0

The solution to equation (10-106) subject to the boundary conditions
(10-108) is

Yo= COS WT (10-110)
This has the same form as the zeroth-order solution obtained by the regular

perturbation procedure. However, upon substituting equation (10-110) into
equation (10-107), the latter equation becomes

»(12_‘)’1 .
e + w2y; = cos® wT—2w?t; Cos wT— wty sin wT
T

= icos 3wt+ (% —2w2t{) Cos wT— wty sin wT

We now determine the function ¢;(7) so that secular terms will not appear in
the first-order solution . These terms arise because the solutions cos wr
and sin w7 of the homogeneous equation appear in the nonhomogeneous terms.
Thus, the secular terms wii! not occur if we choose t; so that the coefficients of
these two terms vanish. Hence, we take t; =0, t; =3/8w?, or

3 .
t1=§u?’r (10-111)

where we have set the constant of integration equal to zero in order to simplify
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the second boundary condition (10-109). And the differential equation for y;
becomes

1
—+w*y1=7 cos dwT

4

Now since substituting equation (10-111) into the expansion (10-103)
shows that

3
t=7'+§a; er+. ..

we find upon neglecting higher order terms in € that

1 3e

T=(1+—3_€)t+. . .=(l—-@) t+. ..
8w? _

And when this is substituted into the zeroth-order solution (10—110), we obtain

—cos (- 25)
Yo=cos (o —g~

Thus, we find that the frequency is modified by the nonlinear restoring
force even in the lowest order term of this expansion. In contrast to this, the
direct expansion leads to no information about the frequency change. The
expansion can be carried to higher orders by continuing to use the functions
tnforn=2,3, . . . to eliminate the secular terms. And this expansion will be
uniformly valid for all times since no secular terms will appear.

10.5 MULTIPLE-TIME METHODS

Equations which contain two disparate time or length scales are frequently
encountered in practice. This happens, for example, in problems which involve
a small force acting over a long period of time. An example of this is a spring-
mass system subjected to a weak viscous damping. Tlhe two times which occur
in this problem are the basic period of oscillation and the damping time which
occurs over many periods. The basic idea of the method is due to Kuzmark.

311




DIFFERENTIAL EQUATIONS

And a detailed discussion of this method is given by Kevorkian in reference 38.
The presentation and examples used herein are taken from this report. The
method takes into account the long-time effects in such a way as to render
the expansion uniformly valid. As in the preceding example, it involves reason-
ing about the first-order terms to determine the zeroth-order solution.

We set up the expansion in such a way that a fast time variable ¢ and a
slow time variable 7 are explicitly exhibited. The slow variable is assumed 1o
be related to the fast variable by

i=d(e)t (10-112)

where 11_1.% ¢(e€)=0. And we suppose that the solution to the differential
equation has an expansion of the form

y(t; €) ~wvo(€)fo(t*, ) +vi(e)fa(t*, b +va(e)fa(t*, ) +. . . (10-113)

where {vj(€)} is an asymptotic sequence as € = 0 and t* is another fast time
variable related to the fast variable ¢ in such a way that it accounts for the
change in frequency that occurs in the problem. This relation is taken in the
form

= e [1+ pa (€)1 + pa (€ wnt . . .] 10-114)

where {uj(€)} is another asymptotic sequence and {w;} is a sequence of
constants which are determined by the problem in such a way as to render
the expansion (10—113) uniformly valid.

The variables t* and 7'in equation (10-113) will be treated as independent.
Hence, the ordinary differential equation satisfied by y will be transformed
intc a sequence of partial differential equations. However, it turns out that
they can still be treated as ordinary differential equations. _

Upon differentiating equation (10-113) with respect to t, we find that

d_ (1) de () o
dt  \or*)rdt  \ot/.es dt

But since equations (10-112) and (10—114) show that
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dar*

ar =1+ w(e)or+ ps(e)we+. .

di_ 4 (e) -

this becomes

%= [1+m(e)or+ . . ][vo(e) +v1( )g{-};+ ]

+(e) [V (€)% f°+v (e)g'ﬁ+ }

or

%— vo(€) {Oﬁ) [1+,u.1(e)w1] +d(e) afo} vi(e) 2% afl

at*

This equation shows that changes which occur on the slow time scale £ are
small compared with the changes which occur on the fast time scale.

The method is best illustrated by considering a particular example. Thus,
consider the equation

dy\’ _
&Y y+e(Z) =0 (10-115)

which governs the behavior of an oscillaivr with weak cubic damping. We
shall seek an asymptotic solution which is uniformly valid for 0 < ¢ < o, subject
to the boundary conditions

y (0)=0 (10-116)

Y 0y =

7 (0 =1 (10-117)
In this case, it is reasonable to begin by choosing the functions ¢ and the two

asymptotic sequences {r;} and {u;} to be ¢(e) =€ and v;=pu;=¢€’. Then
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t= et and the expansion (10-113) becomes
y(t;€)=fo (B*, t)yrefr (5 ,8)+. . .
with
t*=t (1+ w2+ . . .)

where we have omitted the term ew;t since we wish to ensure that et only
occurs in the solution 19 as ¢, Hence,

d
b %, (af" +a—f‘)+0(e2)
dt ar* ot ot

a2 02 02 02
By _5P 4 0¢8P 4 T (e
dz  9t*? ot*ar  9t*2

Upon substituting these results into equation (10-115) and equating to zero
the coeflicients of like powers of €, we find that -

d
at{‘; +fo= (10-118)
Oh | o 8 (3f
Eiio T (at*) +h= - 0-119)
And since y(0) =£0(0,0) +€f1(0,0)+ . . . and

109 There is a certain amount of arbitrariness in the choice of the variables ¢* and ¢.
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.
0,0

the boundary conditions (10~116) and (10-117) show that

L2k

*
00 Ot

dy . _9f
de (0)_6t*

+e<a—‘@
0,0 ot

£(0,0)=0 g—f% —1 (10-120)
"lo,0 :
- ofs dfo
(0. 0)= - == = —
£(0,0)=0 5,0 o g 0 (10-121)
Now the solution to equation (10-118) is
fo (¢*,£) =Co(t) sin t*+ Do(t) cos t* - (10-122)

where the functions Co(t) and Dy(t) are arbitrary functions arising from the
integration. But substituting equation (10-122) into the boundary conditions
(10-120) shows that

Do(0)=0 Co(0)=1 | -~ (10-123)

As in the preceding method, we now determine the functions Co and D,
so that the first-order solution f; will not contain any secular terms. To this end,
notice that equation (10—122) implies that

dfo \® . o
(5‘%) = (Cy cos t*— Dy sin t*)3=C3 cos® t* —3D,C2 sin t* cos? t*
+ 3D3C, sin? t* cos t*— D3 sin? t*

Hence, we find, upon using the identities
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1 3
cosd t* = 2 08 3t*+4 = cos t*

4

sind t*= —7}-_ sin 3t*+ % sin ¢t*

sin t* cos? t*= sin t* — sin3 ¢t*
sin? t* cos t*= cos t* — cos? ¢*
that
) 3
20 )’ 3 ¢ (€3+D2) cost*—3 Do(C2+ D2) sin t*
at 4 4 0
+ Do(D§—3C3) sin 3%+ Co(C3—~3DF) cos 3*  (10-124)

We thercfore find, after subsiiiuiing equaiivns {16~122) and (10-124)
into equation (10—119), that

2
g—t%+f1 [ Do(D2+CZ)+2d—f—]smt* [%CO(D3+C(§)+2%’]COM*

—%D,,(Dg-—scg) sin 3¢~ Co(C3 —3D3) cos 3% (10-125)

In order to ensure that secular terms do not occur in f;, we must eliminate
sin t* and cos t* from the nonhomogeneous term of this equation. This can be
accomplished by putting

‘ZD °+ DO(D0+C 2)=0

(10-126)

dC°+ > Co(D3+C) =
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Upon multiplying the first of these by D, and the second by C¢ and adding the
results, we get

& (D3+Cp) +2 (Dy+Cp2=0

which has the solution

1

ZZ+K1

D3+ C3=

where K, is a constant. And substituting this into the boundary condition
(10-123) shows that we must take K;=1 to obtain

D3+ Cj=—

- (10-127)
r+1

PR EWT

But substituting this into the first equation (10—126) shows that

Since the solution to this equation subject to the first boundary condition
(10~123) is Do(t) =0, equation (10~127) becomes

where the positive square root is taken to ensure that C, satisfy the second
boundary condition (10—123). Substituting these results into the zeroth-order
solution (10—122) now shows that
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sin t*
3 ~
\lzt-l'-l

Hence, we obtain the one-term uniformly valid asymptotic expansion of
the solution to equation (10—-115)

fot*, 1) =

sint* _ sin t

\/ t+1 \/l+ €t

The procedure can be continued to obtain higher order terms, the solution to
any given order being determined by reasoning about the next higher order
terms.
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CHAPTER 11

Numerical Methods

It frequently happens that the differential equations encountered in prac-
tice cannot be solved by the exact and approximate methods discussed in the
preceding chapters. In such cases it is often necessary to resort to numerical
methods in conjunction with a digital computer. Tliese methods usually involve
replacing the differential equations by a number of algebraic equations, called
difference equations, in such a way that the selution of the difference equa-
iions is in some sense close to that of the differential equation. There are a
large number of numerical procedures available. The choice of method is
influenced by the type of auxiliary conditions as well as by the form of the equa-
tion. Thus, when all the auxiliary conditions are imposed at a single point
(initial conditions), the solution can be developed by means of ‘“marching
techniques,” which solve the difference equations in succession. These
marching solutions can be carried out either by using implicit methods such as
Euler’s method and the Runge-Kutta method or by using explicit methods
such as the Adams method and the improved Euler method. Each of these
methods has advantages and disadvantages which will be discussed sub-
sequently. When auxiliary conditions are imposed at two points (boundary
conditions), it is usually possible to solve linear equations directly by using
either the superposition principle or finite ditterence schemes which involve
matrix methods. However, when the equations are nonlincar, it is often neces-
sary either to linearize the problem or to reduce it to a set of initial-value
problems and then use iterative or matrix techniques to obtain the solution.

The subject of numerical solutions to differential equations is quite vast
and we cannot hope to cover it completely in a single chapter. For more
detailed information, the reader is referred to references 39 to 42.
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11.1 APPROXIMATION BY DIFFERENCE EQUATIONS: ERRORS AND INSTABILITY

Consider the general system of nth-order differential equations

F(y, y»-0, . L Ly, 2)=0 (11-1)

defined on the interval @ < x < b and subject to appropriate initial or boundary
conditions.

In order to obtain a numerical solution to this system we first partition
the interval @ < x < b. A partition of the interval @ < x < } is defined to be
any finite set of points x1, x2, . . ., xmss which has the property that a=x, <
x2< ... <am=0b. The length #; of the jth subinterval,!® x; < x < xj,,, is
called the step size. Thus,

h;=x;“—xj fO'}.’j=l, 2,. . g m

The system of differential equations (11-1) is then “replaced” by a set
of algebraic equations, say

Ck(y,, oo oy Ymaels X1y v o oy xm+l) =0 for k= 19 29 AR 4 (11-2)

called difference equations. Their solution is the set of m + 1 vectors y, . . .,
Ym+1, which are approximately equal to the values taken on by the solution
y=f(x) of the system (11~1) at the m+ 1 points x. . . ., Xm+1. Before discussing
the various methods whereby such difference equations can be constructed,
we shall first consider certain types of errors which can occur when difference
equations are used to obtain numerical solutions.

The discretization or truncation error E; at the ith step is defined to be
the magnitude of the difference between the solution to the differential equa-
tions at the point x; and the solution y; of the difference equations. Thus

Ei=|f(x)) —yil

This error depends vnly on the type of difference equation used and is inde-
pendent of the method by which it is solved.

419 J4 is not necessary to have all h; equal, but it is usually desirable.
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However, there is also an error which is caused by the numerical procedure
itself. Because a computer can accommodate only a limited number of sig-
nificant figures, it cannot store accurately an irrational number or even a
rational number requiring precision beyond the computer’s capability. There-
fore, the computers themselves introduce an error which results from the
necessity of rounding off numbers: it is known as the round-off error. The
round-off error at any step in the computations propagates to the next step and
is combined there with the round-off error of that step. The generation of the
round-off error at each step is extremely unpredictable. Precisely for this
reason, analyses of round-off error often treat the error per step as a random
variable (see ref. 43).

Closely related to the question of error is the question of stability, which
must be considered in certain instances before a numerical solution can b«
obtained. Various types of instability can arise. If the instability is inherent
in the differential equation itself, it is called an inhkerent instability. For ex-
ample, consider the initial-value problem

dyy _
dx 2
(11-3)
d
421

subject to the initial conditions y;(0) =1 and y: (0) =—10. The general solution
for equations (11-3)

y1{x) = C1e7197 + Cpe?**

Y (x) = - lOC,e“°" + 10C2€'°‘r

And the initial conditions are satisfied by taking C, = 1 and C; = 0. However,
when a numerical procedure is used, it" will usually be impossible to satisfy
these initial conditions exactly. But a small error in determining the constant
C; will then allow the second terms in the solutions to eventually grow so large
that they will dominate rhe first terms, which correspond to the solution being
sought. Situations of this type arise most frequently when the initial-value
problem is being solved as part of an iteration procedure to solve a boundary-
value problem.
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Instabilities can also arise from the difference equations (even when the
differential equations are stable). They are then called induced instabilities.
These instabilities can result in spurious solutions to the difference equations
which do not correspond to solutions of the differential equations. For more
details the reader is referred to reference 43.

11.2  INITIAL-VALUE PROBLEMS

In this section we shall consider certain types of ‘“‘difference schemes”
which are suitable for obtaining numerical solutions to initial-value problems.

11.2.1 Explicit Methods

11.21.1 One-step processes: Taylor series method.—1It has been indicated
in chapter 3 that any normal system of ordinary differential equations can
always be written as a first-order normal system, which in vector notation has
the form

d
2=G(x.y) (11-4)

We shall now consider some methods, referred to as one-step processes,
for obtaining numerical solutions to this equation on an interval asx <
subject to the initial conditions y=y, at x=a. For any given partition of
a<zx<b,sayx,, .. ., Xm+1, we can seek to approximate the solution y=f(x)
of the system (11-4), subject to these initial conditions, by replacing this
equation by the set of algebraic equations (or difference equations)

yis1=Y;+G(x;, y))hy  forj=1,2, .. ..m (11-5)

It can be seen that, starting with the value ¥;, equation (11-5) can be used to
calculate y; successively at the points j=2,3,.. ., m+1. We hope that
the vectors y; will provide good approximations to the values f(x;) of the solu-
tion to equation (11—-4) at the points x;.

The discretization error which occurs when using a difference equation
to integrate a differential equatior: across a single step, T'(x;, kj), is called the
local truncation error or the truncation error per step. Thus, the truncation
error per step is the error induced by using equation (11-5) to calculate

f(x;+ h;) approximately from the value f(x;) = y; or, symbolically,
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T(xj, hj) = yjer1—f(x;+ hj) |
Hence, upon substituting in equation (11-5) with y;=f(x;), we get
T(xj, hj)=| £(x5) —£(x;+ hy) + G(xj, £(x5)) h; |

But Taylor’s theorem shows that !

£(x;+ hy) = £(x;) + ( g—f ) hy+O(h?)

Hence,

rm,h,>={c<x,-,f<x,>>—(ﬂ) l"’+0("2)

But since, by hypothesis, f(x) satisfies the differential equation (11-1), the
first term vanishes and we obtain

T(xj, hj) = O(h}) as hj— 0 (11-6)

More generally, we can attempt to approximate the solution to equation
(11-4) by means of a difference equation of the form

yj+l=yj+¢(xj,yj; hj)hj f()rj=1,2,. N (11—7)
where the function @ is to be chosen so that in some sense the solutions to
equation (11-7) provide good approximations to the solutions of equation
(11-4) for sufficiently small step size hj. In order that this be the case, we
certainly must require that

D(x,y; h) — G(x, y) ash— 0 (11-8)

If we again let y=f(x) be a solution to equation (11-4), the truncation
error per step T(x;, hj) is

M The concept of order and the symbol O are intreduced in chapter 9.
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T(x;, hy) = |f(x;5) —f(x;+ hy) + D (x5, £(x;); hj)hy]

The same argument as was used in obtaining equation (li—6) used to-
gether with condition (11-8) now implies that

T(xj; hj) = o(hy) as hj— 0 (11-9)

This shews that the truncation error per step goes to zero faster than the
mesh size h;. Other things being equal, it is of course desirable to have the
truncation error per step approach zero at the fastest possible rate as h; — 0.
In order to have some measure of this rate we define the order of a given
difference scheme to be the largest number p such that

T(xy; hj)=0(hf+l) as h;— 0

Equation (11-6) shows that the order of the difference scheme (11-5) is 1.
And, more generally, equation (11-9) shows that the order of any difference
scheme of the type (11-7) which satisfies condition (11-8) is greater than
zero. The numerical method corresponding to the diffecrence scheme (11-5)
is called Euler’s method. Although this method is very simple, it is prone to
round-off errors and is therefore infrequently used.

The truncation error per step can be used to obtain a bound on the (cumu-
lative) truncation error for difference equations such as equation (11-7), that
is, difference equations which determine the solution at the point xj,; only
in terms of quantities from the preceding step. Instead of considering the
general system (11-4), we consider, for simplicity, only the single differential
equation

dy _
=0z (11-10)

Suppose G(x, y) satisfies the Lipschitz condition with respect to y

|G(x, ¥) — G(x, )| < M|y —{|
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and let

T(xj ) hJ )

A = max b,

forj=1,2,. .., m

Then it is shown in reference 4 (p. 181) that the truncation error Ej is, at most,

A
2 (olTi—x,|M .
M (el 1
that is,
Ej = —MA (ell‘j—.rilM — 1)

Now for any difference scheme of order p, there exist constants D; inde-
pendent of the mesh size A; such that

Tenh) < ppyp
)

And if we put
€ = max h;

forj=1,2...,m
D = max D;

then A < De” and the truncation error satisfies the inequality
DeP

Ejsﬁ(d’j‘-’nl“—l) forj=1,2,...,m

which shows that the (cumulative) truncation error is of order €” when the
difference scheme is of order p.
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In principle, it is easy to derive formulas for numerical integration of
the system of equations (11-4) which are of an arbitrarily high order. This
can be accomplished, for example, by the method of Tayler’s series. Instead of
applying this method to the general system of first-order equations (11-4),
we shall again, for simplicity, consider only the single first-order equation
(11-10). There is no difficulty in extending the ideas tc the general system
(11-4).

Let y=f(x) be a solution to equation (11-10) and let g(x, ¥) be any r-times
continuously differentiable function of x and y. Taking the total derivative of
& with respect to x along the curve which is obtained by plotting y= f(x) gives

dg_dg , dgdy _ og
8= Gy +aydx 0x Gy

Applying this formula to the function g1(x, ¥) gives

82 = U dx—ax+ dy \dx +Gay ox +G B Gx+Ga_y g
and, in general, we obtain
d”g dgn_ agn_l agn—l (3 a )n
= + G ={—+ G — = C e
En = dxn  dx dx dy 0x G dy g forn=12, r

Thus, in the special case when g(x, y) =G (x, y), this equation becomes, in
view of the differential equation (11-10),

&y_ =G:+GG, (11-11)
dx2
% = Gz +2GCry+ G2Gyy+ GG, + GG (11-12)
X
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aly_(3 i)"
= (Z+c )6 (11-13)
dr+1y

dx,+l=(ax+c ) G

Now suppose that G is p—1 times continuously differentiable and put

®(x, ; h) = 3‘:( Tmi(2+e ~ e (11-14)

Then, at least in principle, ® can be calculated for any integer p simply by
differentiating the given function G. Hence, when y=f(x) is a solution to equa-
tion (11-10), it follows from equation (11-13) that

O(x, fx); h) =S (nf_"l),‘;::i{ (11-15)

n=0

Thus, the truncation error per step, which is incurred when the difference
equation

Vi =%+ DP(x5, 355 hi)hy forj=1,2,.. ., m (11-16)

is solved to obtain an approximation to the exact solution, y=f(x), of the
differential equation (11-10), is

T(xj, ) = | flo5) — fx+ by) + B (x5, f(5)5 hy) s |

But inserting equation (11-15) shows that

ol et dn+
T(x5, by) = | flx) —flx;+ Ry) + Z (n +1)| (dx"*}l’ )xj

[
N
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Hence, upon applying Taylor’s theorem we find that
T (xj, hj) =0 (hp+!)

which shows that the formula (11-16) with ® determmed by equation (11-14)
is of order p. The method of Taylor’s series is efficient for linear systems or
even for equations where G is a polynomial of low degree in x and y. However,
as can be seen from equations (11-11) and (11-12), the method usually becomes
extremely complex. In order to avoid this complication due to the successive -
differentiation and at the same time to preserve the increased accuracy which
is afforded by using the Taylor’s series method, a technique introduced by
Runge, Kutta, and Heun known as the Runge-Kutta method can be employed.

In this case, the function @ in equation (11-7) is taken to be of the form

®(x;, i3 by) = ;l ok, (11-17)
where
ki = G(xj, y;) (11-18)
and

s~1
k;=G (xj+;1,3hj, y;+hy 2 }\s—l,nkn> fors=2,3,...,r (11-19)
=1

For any given integer r, the parameters as, Mg, and Ag, n are to be determined in
such a way that the order p of equation (11-7) is as large as possible.

For simplicity, we shall again restrict our attention to the single first-order
equation

d
'J%,:G(x’ y) as<xz<b (11-20)

In this case, equations (11-7) and (11-17) to (11-19) reduce to
yir1 =+ P®(xj, v35 by) h; forj=1,2,. .., m (11-21)
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8=1
k=G(xj, ¥;) (11-23)

8—1 .
b= (st abs, 3ty 3 Necin k) fors=2,3, .. r (11-24)
n=1

And if y=f(x) is a solution to equation (11-20), the expression for T(x;, h;),
the truncation error per step, reduces to

T(xj, hy) = |f (%) —f(xj+ h;) + @ (x5, f(;); hs)h] (11-25)

Applying Taylor’s theorem to the function T'(x;, k;) gives

2 1 [o"T(x;, b
T(x;, h;) =n§0m [—a(}f‘;'—)]h=0 k7' + O (h2+)

But differentiating equation (11-25) m times gives

T (x;, h) gm-10p dmy
[ ] m(ah?—l)hfo— (Ex_m)l‘=-’fj

ahm
Hence, the method will be of order p, provided that

h=0

/am—xcp) _(dmy) {E 0 form=1,2,...,p (11-26)
hj=0 J.‘=J,‘j

m \éh}"‘l dxm #£0 form=p-+1

If we substitute equation (11-13) and equations (11-22) to (11-24) into equation
(11-26) and equate to zero the coefficients of all the independent partial
derivatives of G, we will get a set of nonlirear equations for as, us, and A .
For any given value of r, there will be a largest value of p for which these equa-
tions can be solved. For 1 < r <4, this value of p turns out to be equal to r.
There is a certain arbitrariness in the solutions of these equations for the
constants a;, s, and Agn. Thus, for r=2, one of these constants can be chosen
arbitrarily; and for r=3 and r=4, two of the constants can be chosen arbitrar-
ily. The computations are carried out for the general case in reference 41.
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Here we shall merely illustrate the method by considering the case where

r=23. Then equations (11-22) to (11-24) reduce to

O = ayky + aokr + azks

k= G(x;j, v;)
ke=G(x;+ pehj, y;+ hjk1, 1 k1)

ks=G(x;4 pshj, yj+ hjkz, 1 ki + hjhe, 2 k2)

(11-27)

(11-28)

Expanding k;, k., and k3 in a Taylor series about Aj=0 and retaining terms

only up to A? give

k=G (x;, )

k2 =G (%, ) + h; (p2Gz+ Ay, 16Gy) 2=z

v=1j

+ 1 (4Gt okt GG+ 5, o)

3
2 5 +O0(h})

P

k3= G (x5, y;) + hj (3G + Ao, (GGy+ As, 2GGu)r=;5
y=uj

+ h} [%F&G.rr"‘ ta (Az, 1+ Az, 2)GGry+ _;" (A2, 1+ A2, 2)%G%Goy

+ A2 (42Cst A, 1GGy) Gy]m +0(k)

y=y,
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Now it is clear that

_l- (am(b)
m! 8’1}" hj=0

is the coefficient of (h;)™ in the Taylor series expansion of ® about h;=0.
Hence, when equations (11-29) are substituted into equation (11-27), the
functions

1 (amrb
m! (’)h_,’-"),,j=0

for m=0, 1, 2 are simply the coefficients of £}, h;, and A%, respectively, in the
resulting expression. Thus,

D (x5, 53 0) = (ay + a2+ a3) G (x5, 55) (11-30)
(92) = 0y (2Gx+ M, 1GGy) z=2+ a3 [paGrt (A2, 1+ Az, 2) GGule=z; (11-31)
ahJ I|J'=0 y"yj y-y_,

1 /o2 1 1

!l=yj

1 1
+ a3 [ § M,-Z;G.r.r‘*‘#s (Az, 1 +A;\,2) chy+ E (Az, 1+ )\2,2)2620,,,,

M.z (Gt s, 1GGy) c,,] (11-32)
. I=xj
U-UJ

On the other hand, equations (11-26) show that
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d
@ (5,350 =(g),

(22, (&
ahj hyno _(dxz)gz;j

)
ahjz 'hj=0 dx"’ r=zj

Upon substituting equations (11-11), (11-12), (11-20), and (11-30) to (11-32)
into these relations, we find that the resulting equations are satisfied identically
in x; and y; only if the constants a,, s, and A, are chosen so that the coefhi-
cients of all the independent derivatives of G vanish. This will occur if, and only
if, the constants satisfy the following algebraic equations:

\ A i
aFartaz=1 u2a2+u3a3=§
1 , 1
7\1.1012+ ()\2.1+)\2,2)C¥3=‘2‘ M—%az‘*‘#aaa:g
_1 | 1
e a4 pa(Ae g+ A2 g)as= 3 A jap+ (A2 + A22)%as = 3
1 1
M2 2ty = 3 AiAz 203 = 6
These equations imply that
AL = Mo Aot A= s

and there are four independent equations which must be satisfied by the re-
maining six unknown constants. Hence, two of these constants can be chosen
arbitrarily.

The most frequently used Runge-Kutta method is of the fourth order.
The values of the constants a,, u,, and A, , for the general vector equations
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Table 11-1.—Choice of Parameters for
Fourth-Order Runge-Kutta Method

Standard
Parameters Runge-Kutta Kutta's method
method

ay 1/6 1/8
a 1/3 3/8
as 1/3 3/8
ay 1/6 1/8
H 1/2 1/3
Ha 1/2 2/3
Ha 1 1
Asa 1/2 1/3
Asga 0 -1/3
Aga 1/2 1
L 0 1
A’_’ 0 —l
Asa2 1 1

NUMERICAL METHODS

(11-17) to (11-19) for the fourth-order Runge-Kutta method are listed in table
11-1 for two choices of the arbitrary constants, and because of its importance
the complete formulas for the standard Runge-Kutta method are also listed:

h
Yis1=y;+ —61 (ky + 2ks + 2ks + ky)
k1=_C(xj, yj)

k2=G (\Xj+2lhj, j'*"%hjkl )

k=G <Xj+%hj, yy*-%h;kz )
k=G (x5+hy, y;+ hjks)

There appears to be only a slight advantage which can b: gained by changing
the choice of the arbitrary parameters.
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Although the Runge-Kuita meihod involves fairly simple formulas, it
has certain disadvantages. Thus, (1) the method is limited to the fourth or
fifth order; (2) if the function G is complicated, the evaluatior of the k, for
s=1, 2,3, 4 at each mesh point can be gnite time consuming; (3) it will calcu-
late a solution even at points of discontinuity without giving any indication that
this has been done; and (4) there is ro readily obtainable error analysis.

The lack of any error analysis for the fourth-order Runge-Kutta method
can be partially compensated for by using certain rules of thumb. Thus, for
example (see ref. 41), if the quantity

ko — kg
ki— ke

becomes much larger than a few hundredths at any point x;, the step size
hj should be decreased.

11.20.2  Multistep processes: Finite differences.— Up to this point we have
been discussing one-step difference equations, that is equations which deter-
mine the value of the dependent variable at the step xj+1 completely in terms of
its value at the preceding step x;. There are other types of difference equations
which can be used, called n-step equations,”*? which utilize the values of the
dependent variable at the first n preceding steps, say xj, xj_1, . . .y Xj-n+1,
to determine its value at the step xj+1.

Before discussing these difference equations it is first convenient to in-
troduce the concept of difference operator. Thus, the difference operators
A, VY, and § corresponding, respectively, to the forward difference, the backward
difference, and the central difference are defined by

Ay(x) =y (x+h)—y(x)
Vy(x) =y(x) =y (x—h)

dy (x) Ey(x+ —g-)—y( —%)

If the function y(x) is defined only on a finite set of points, say x; <22 < . . .
< ima withy—xj=hforj=1,2, . . ., m, wcshall scmetimes write

112 The associated numerical procedure is referred to as an n-step process.
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p=Ev)=y(a+({-=1)h)
Then the notation for the first two difference operators becomes
Ay5= ¥j41=Yj V=5 %1

These operators arise in approximating the derivative of functions. The
nature of this approximation can be seen from the relations

. Y e O(x) _ dy(x)
A0 h h—0 h e 2h dx

Applying these operators twice in succession gives the second differences

82y(x) =A[Ay()]=A [y (x+h) =y(x)]=y (x+2h) =2y (x+h) + y(x)
V2y(x) =y(x) =2y (x—h) +h (x—2h)

y(x) =y (x+h)—2y (x)+y (x—h)

These formulas can be used to provide approximations to the second deriva-
tive since

V2y(x)

Ay (%) _ i L0 e Blx)
dx? h h? r=o  h2 h=o. 2

d?y(x) . Aty (x)

There are various manipulations that can be performed with these and other
difference operators which are sometimes useful for obtaining finite difference
equations from differential equations. A fairly detailed discussion of this is
given in Hildebrand (ref. 44).

Now consider the general nth-order differential equation in normal form

Iny . 8% n—1
CY_ ¢ (xy% .. "zzx»—{) a<x<b (11-33)

¢
dx"
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Suppose that the interval a < x < b has a partition x,, X2, . . ., xm+; for which
all the subintervals x; < x < xj,;, have the same length A. Upon replacing
each derivative (d*y)/(dx*) for k=1, 2, . . ., n in equation (11-33) by its
forward difference approximation A-k A*v;, where y; is the approximation to
y [a+ (G—1) h}j=y (x;), we obtain the difference equation

.\ 1 1
Any;=hnG (Xj,y,-,‘h"A}’j, .. -.F_—,A"")j;) (11-34)

However, since AXy; is a linear combination of yj, ¥j+1, - . -, ¥j+x, this equation
is essentially of the form

Yiem=b U, ¥ Vi1 + - s Ysem-1 h)

which is clearly an n-step difference equation.
In fact, even first-order normal differential equations can lead to n-step
difference equations. Thus, consider the differential equation

dy _
-J;—G(x. y)

and approximate the derivative by the central difference (yj:1—¥j-1)/2h to
obtain the difference equation

Yi+1=yj-1+ 2hG (x5, )

which is clearl'y a two-step equation.

Notice that, in order to start the solution of an n-step method, we must
have a prior knowledge of the values of ¥y, y2, y3, . . ., ¥n, that is, the values
(or approximate values) of the solution at the first n mesh points. A one-step
method requires only a knowledge of the initial value y;. Hence, when n > 1
it is in many instances necessary to introduce some auxiliary mnethnd for deter-
mining these values. The one-step methods are, therefore, said to be self-
starting. In a one-step method, the mesh size k= xj.1—x; can be varied at
each step. With a multistep method, it must usually remain fixed.
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11.2.2  Implicit Methods: Predictor-Corrector

In the methods discussed so far, the value of the dependent variable
yj+1 at the step xj+1 is determined expliciily in terms of its values at one or
more preceding steps. We can, therefore, calculate the values of the dependent
variable recursively. Hence, such methods are called explicit methods. There
are other methods, however, in which the formulas for calculating yj+1 from
the values of the dependent variable at the preceding steps are not solved
explicitly for yj.1 but determine this variable only implicitly. Such methods
are, therefore, called implicit methods.

In order to see how difference equations of this type arise, let

a=x,<xz<. .. <Xm+l=b

be a partition of the interval a < x < b; suppose that each subinterval x; < x <
b

xj+1 has the same length, say h; and consider the integralj f(x)dx. Recall
a

that this integral can be evaluated numerically in an approximate fashion by
using either the trapezoidal rule

[ 0z =3 5 Ut 41

or by using Simpson’s rule
b m=1 ]
f fx)dx= 3 3 Lf (xje2) + 4f (xjer) + f(25) J A
a j=l

Now, consider the first-order differential equation

% =C(x, y) (11-35)
ax

Integrating both sides of this equation first between xj and xj4; and then between
xjand xj4. gives, respectively,
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Ti+1 |
Y1 =3+ f Cx. y(x))dx (11-36)
Ij
and
Tj+2
Yier= 3+ f Clx, y(x))dx (11-37)
Tj

Upon using the trapezoidal rule for evaluating the integral in equation (11-36)
and Simpson’s rule for evaluating the integral in equation (11-37), we get the

following finite difference equations for approximating the solution to cquation
(11-35):

. h
¥ier =¥+ [C(xj41, ¥ie1) + G (x5, 33) ] 2 (11-38)

and

. . h
Yirer=Yyj+ [G(Xjs2, yjs2) +4C (X541, Yin1) + G (x5, ¥5) ] 3 (11-39)

Notice that in the first of these equations, yj;; appears not only explicitly
but is involved implicitly through G on the right side. In general, it will not be
possible to solve this equation to obtain an explicit formula for y;,i. Similar
remarks, of course, apply to the second equation. If, instead of treating the
single first-order normal equation (11-35), we consider the general normal
system

Y _ G, y) (11-40)
dx

the same arguments would lead to the difference equations
h
Yis1=Yy;i+ [G(xj+l9 )’j+1) + G(st Yj)] 5 (11-41)
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and

h
Yir2=¥;F [G(xjs2, yjr2) T 46 (xjs1, yjr1) + G(x;, y;)] 3 (11-42)

Notice that, in equation (11-41), yj+1 is determined completely in terms of
its value at the preceding step; whereas, in equation (11-42), y;:» is deter-
mined in terms of the values of the dependent variable at the preceding two
steps. Since these formulas cannot usually be solved explicitly for the de-
pendent variable, it is usually necessary to resort to an iteration process at
each step to find this variable. Thus, let

h
U (y5+1) =yt [G (%41, ¥js1) + G (5, Yj)]7
Then equation (11-41) can be written as

Yj+l=U (¥j+1) (11-43)

Suppose that by some means a fairly good guess at the solution y;; of equation
(11-41) can be made, say ¥4%. Substituting this into equation (11-43) gives
a better approximation y{!), to the solution, given by Y, = U (¥9)).

Proceeding in this manner, we obtain the sequence of approximations

y=U ), y2i=UGR), y=U0%), . ..

which we hope will converge fairly rapidly to the solution of equation (11-41).
A good choice of the initial approximation ¥i%, can be obtained by using Euler’s
formula, equation (11-5), to obtain

Y§+| YJ+G (xja YJ) h (11—4-4)

In practice, instead of solving equation (11-41) accurately for y;i, by
performing many iterations, we can obtain the same accuracy with much less
work by taking a finer mesh size 2 and performing only one or two iterations.
If only one iteration is performed, the method is called the improved Euler
method. In this case, we first compute the vector Yji, called the predictor,
from the formula
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Yin=y;+G (x,y;) h (11-45)

called the predictor formula, and then substitute it into the formula

h
Yis1=yi+ [G (xj+1, Yj+l) +G (xj» Yj)] ? (11"4‘6)

called the corrector formula, to determine yj.;. Thus, in effect, y;,; is cal-
culated frora y; in two steps instead of one. Of course, we can apply the same
procedure o equation (11-42). This leads to Milne’s method.

These two methods are examples of the predictor-corrector methods.
Other predictor-corrector methods differ from these only with respect to the
polynomial interpolation formulas from which the predictor and corrector
formulas are derived. A commonly used predictor formula is the Adams-
Bashforth formula (see ref. 45)

Yj+1 =Y + 2—;2" (55(;_, - 59Gj—1 + 37Gj_2 —_ 961_3)

where we have put G;= G(x;, y;). This formula is most frequently used in
conjunction with the Adams-Moulton corrector formula (see ref. 45)

h
Yite1 = Yj -+ EZ [9G(x_,~+1, Yj+1) + ].QGJ - 5Gj—1 + Gj-z]

These formulas have a higher order of accuracy than the Euler’s formulas. How-
ever, they are not self-starting. Also, unlike the Runge-Kutta method they
cannot be easily used alone with a variable mesh size. These difficulties are
frequently alleviated in practice by using the Runge-Kutta method to obtain
the starting values and also to compute the solution for the first few mesh
points after the step size has been changed. However, the predictor-corrector
methods can, in the case of complicated equations, result in a considerable
savings in computer time over the Runge-Kutta method. In addition, it is
usually possible with predictor-corrector methods to monitor the error as the
calculation proceeds.

Another difficulty with the predictor-corrector methods is that in some
cases, they are subject to certain types of instabilities which do not occur
when the Runge-Kutta method is used. This instability manifests itself first by
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resulting in an error which is larger than expected; and when one attempts to
reduce this error by de‘creasing_ the step size, the error actually increases. A
more detailed but elementary discussion of this instability is given in reference

45.

11.3 BOUNDARY-VALUE PROBLEMS
11.3.1 Llinear Equations

11.3.1.1  Use of superposition.—The methods discussed previously have
all been methods for solving initial-value problems. However, in the case of
linear equations, these methods can be used in conjunction with the super-
position principle to obtain solutions to boundary-value problems. Thus, in
order to solve a boundary-value problem for a linear differential equation, we
need only solve numerically the same number of initial-value problems as
the order of the differential equation, provided these problems are cliosen in
such a way that their solutions are linearly independent of one another. It is
easily seen from section 1.6 that this can always be done by choosing the
initial conditions of these problems so that they have a nonzero Wronskian
determinant. Then any boundary-value problem can be solved by forming a
linear combination of these solutions with the constants adjusted numerically
to satisfy the imposed boundary conditions. This is a particular example of how
some a priori knowledge of the properties of the solutions of the equations to
be solved can be utilized to simplify the numerical procedure for obtaining
these solutions.

11.3.1.2 Finite differences.— Another method for solving linear boundary-
value problems is the method of finite differences. In order to illustrate this
method, let us consider the second-order linear equation

d’y dy _
dx2+p(x) dx'*“l(x))’ r(x) as<zx

i

b (11-47)

subject to the boundary conditions

y(a) =4

()= B (11-48)
y(b) =
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Let a=x0<x1<...<2xm+1=0b be a partition of a < x < b with equal
mesh size h.

Upon approximating the derivatives by appropriate central differences,
we obtain the following difference-equation approximation to equation (11-47)

Yir1 —2¥i+ ¥ | ¥i+1— ¥i-1 = '
2h + = 2h =pityg=r  forj=1,2,...,m

where we have put p; = p{x;), ¢; = q(x;), and r; = r(x;). This can be written
as

h h . .
(1 -—épj>)’j—1+ (h2qj—-2>yj+ (l-i— —?:pj>yj+l=h2rj forj=1,2,. .., m
Upon using the boundary conditions (11-48) to replace yo by A and ym+1 by

B, we obtain the following set of m equations in the m unknowns y1, y2.. . .,
Ym:

h h
(h%q1 —2) y1 + (1+§'P1>yz=h2r1+ (gpl—l)A

h
(I—Epz)y1+ (h2q1 —2) y2+4- (1+§p2)y3=h2r2

h
(1 - g pm—l) Ym-2 (h2an—l - 2) Ym-1+ (1 + § Pm—i) Ym= h2rm-1

h h
(]. - "2— pm) Ym-1 + (hzq'l - 2) Ym= h2rm - (]. + 5 pm> B
This equation can be written in matrix form as
My=c (11-49)
where y is the vector y= (y1, 2, . - ., ¥m), M is a matrix of the form
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e
—

B1 Y1 0 0....0 .0 0 0

a2 B2 Y2 0o....0 0 0 0

0 Q3 ﬁa '}’3....0 0 0 0
M=

0 0 O 0 - . --O am_]_ Bm-l ’Ym_l

(0 0 0 0....0 0 m Bn_|

and c is a vector. The entries in M and ¢ are all known since p, ¢, and r are
known functions. For obvious reasons, the matrix M is said to be tridiagonal.
Tridiagonal matrices can be numerically inverted easily and quickly; and,
therefore, equation (11-49) can readily be solved by inverting M to find the
solution vector y. A particularly convenient technique is known as the line
inversion method. In setting up finite difference problems it is not always
possible to obtain tridiagonal or even n-diagonal matrices. However, whenever
possible, the difference equations should be set up to obtain n#-diagonal matrices
since they can usually be inverted more easily than other types of matrices.
In addition, when the system is programed for a digital computer, it is not
necessary to define all m? locations of the coefficient matrix M; in the case of
a tridiagonal matrix, for example, only 3m locations need be allocated to M
while performing the inversion. In any case the matrices which arise in the
finite difference methods may usually be inverted by either implicit or explicit
means. For a discussion of the various methods for accomplishing this, the
reader is referred to references 46 and 47. It sometimes happens, however,
that it is not possible to invert these matrices; it is then necessary to use an
iterative process to solve the matrix equation (see ref. 47).

11.3.2 Nonlinear Equations

11.3.2.1 Shooting methods.—Bcundary-value problems for nonlinear
. equations can be solved by using ‘“‘shooting methods.”” To use these methods
the problem is first transformed to an initial-value problem by guessing enough
additional initial conditions at one boundary to allow the integration te proceed
across the interval to the other boundary. In the initial trial the specified
boundary conditions at the second boundary are unlikely to be met. But, by
adjusting the additional initial conditions imposed at the first boundary, it is
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possible to come closer to -satisfying the prescribed boundary conditions by
carrying through a number of iterations. '

The required adjustments to the additional initial conditions can be
made in a number of different ways. Perhaps the most common of these is
linear interpolation. In order to illustrate the ideas involved, consider a two-
point boundary-value problem for a second-order system on the interval
a<x=<) in which the boundary corditions y(a)=A4 and y(b) =B are
specified. And suppose that the initial slope y'(a) is to be adjusted until the
second boundary condition is satisfied. When two valucs of the initial slope
¥:1(a) and y;(a) have been found which lead to the two boundary values y,; (5)
and y2(b), respectively, such that

y1(b) < B < y,(b)

the next trial value of y'(a) is determined by linear interpolation by using the
prescription

y'(a)—yi(a) __ B—yi(d)
ys(a) —yi(a)  y2(b) — y1(b)

If this new value of y'(a) leads to a value y(b) which is either smaller or larger
than B, it can be used together with either y2(b) or y:(b), respectively, to
repeat the process. The process can be continued until the second boundary
condition is satisfied to within the desired accuracy.

One difficulty with shooting methods which sometimes occurs is that the
differential equation is so unstable that it “blows up” before the initial-value
problem can be completely integrated. In such cases the process of quasi-
linearization can be used.

11.3.2.2 Quasi-linearization.— Nonlinear boundary-value problems can
also be solved by reducing them to linear problems by a process of quasi-
linearization. This process consists of replacing the original equation by a
sequence of linear equations in such a way that the sequence of solutions to
these equations converges to the solution of the original equation. Thus,
consider the first-order normal equation

d
2=0(x7) (11-50)
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If y is close to y, we might anticipate from Taylor’s theorem that
. -, aG - -
G(x.y) =Glx, y) +3 (x, ¥)(y=y)

We. therefore. replace equation (11-50) by the sequence

d n+1) .
de= G(x, y'™) + %g- (x, Y ) [4An+1) — y(m)] forn=0,1,2,. ..

(11-51)

of linear equations for yA"+!). To use these equations we, first, choose a reason-

able guess for ¥, calculate YV, insert it in the right side, and calculate y®),

Proceeding in this manner, we obtain a sequence of solutions ¥ which we
hope will converge to the solution y of the original problem. Since each equa-,
tion (11-51) is linear, it can be handled by the methods described previously.

These ideas are easily generalized to the first-order normal system

dy _
dx— G(x, Y)

and, therefore, to any normal system -{ diiferential equations. The basic
reference on the quasi-linearization proccis :s Bellman and Kalaba (ref. 48),
in which are discussed various conditions which can be imposed on the func-
tions G to ensure that the iterations converge.

Although all the most commonly used methods are described in this
chapter, it is impossible in a single chapter to touch upen all the available
techniques, For a more compicte treatment of the subject, the reader is referred
to the references cited.

345/,34&




10.

I1.

12.

13.

14.

15.

REFERENCES

. STARGOLD, IVAR: Boundary Value Problems of Mathematical Physics.

Vol. I. Macmillan Co., 1967.

FRIEDMAN, AVNER: Generalized Functions and Partial Differential Equa-
tions. Prentice-Hall, Inc., 1963.

INCE, EDWARD L.: Ordinary Differential Equations. Dover Publications,
1953.

BIRKHOFF, GARRETT; and RoTA, GIAN-CARLO: Ordinary Differential Equa-
tions. Ginn ard Co., 1962.

GREENSPAN, DONALD: Theory and Solution of Ordinary Differential
Equations. Macmillan Co., 1960.

KaprLAN, WILFRED: Advanced Calculus. Addison-Wesley Publ. Co., Inc.,
1952.

KapPL.AN, WILFRED: Ordinary Differential Equations. Addison-Wesley
Publ. Co.,Inc.,1958.

GoLDSTEIN, MARVIN E.; and RosSeNBAUM, BURT M.: Introduction to
Abstract Analysis. NASA SP-203, 1969.

MorLEY, F. V.: A Curve of Pursuit. Am. Math. Monthly, vol. 28, 1921,
pp. 95-93.

Davis, HAROLD T.: Introduction to Nonlinear Differential and Integral
Equations. Dover Publications, 1960.

PAINLEVE, P.: On Differential Equations of the Second and of Higher
Order, the General Integral of Which is Uniform. Actz Math., vol. 25,
1902, pp. 1-85.

HERBST, ROBERT T.: The Equivalence of Linear and Nonlinear Differ-
ential Equations. Proc. Am. Math. Soc., vol. 7, 1956, pp. 95-97.

GERGEN, J. J.; and DReSSEL, F. G.: Second Order Linear and Nonlinear
Differential Equations. Proc. Am. Math. Soc., vol. 16, 1965, pp. 767-773.

PINNEY, EDMUND: The Nonlinear Differential Equation y'+ p(x)y+cy3
= 0. Proc. Am. Math. Soc., vol. 1, 1950, p. 681.

RAINVILLE, EARL D.: Intermediate Differential Equations. Second ed.,
Macmillan Co., 1964.

347




DIFFERENTIAL EQUATIONS

16.

17.

18.

19.
20.

21.
22.

23.
24.

25.

26.

27.
28.

29.

30.

31.

32.
33.

34.

348

MurpHY, GEORGE M.: Ordinary Differential Equations and Their Solu-
tions. D. Van Nostrand Co., Inc., 196C.

KAMKE, E.: Differentialgleichungen, Liosungsmethoden und Lésungen I
Gewohnliche Differentialgleichungen. Akademische Verlagsgesell-
schaft Becker & Erler kom.-ges., Leipzig, 1943.

CHURCHILL, RUEL V.: Complex Variables and Applications. Second ed.,
McGraw-Hill Book Co., Inc., 1960.

AHLFORS, LARs V.: Complex Analysis. McGraw-Hill Book Co., Inc., 1953.

CARRIER, GEORGE F.; KROOK, MAX; and PEARSON, CARL E.: Funciions of
a Complex Variable. McGraw-Hill Book Co., Inc., 1966.

NEHARI, ZEEV: Conformal Mapping. McGraw-Hill Book Co., Inc., 1962.

MORETTI, GINO: Functions of a Complex Variable. Prentice-Hall, Inc.,
1964.

RAINVILLE, EARL D.: Infinite Series. Macmillan Co., 1967.

PooLE, E. G. C.: Introdiction to the Theory of Linear Differential Equa-
tions. Dover Publications, 1936.

WHITTAKER, EDMUND T.; and WATSON, GEORGE N.: A Course in Modern
Analysis. Fourth ed., Cambridge Univ. Press, 1927.

ERDELYI, A.; MAGNUS, W.; OBERHETTINGER, F.; and Tricomi, F.: Higher
Transcendental Functions. Vol. 2, McGraw-Hill Book Co., Inc., 1953.

RAINVILLE, EARL D.: Special Functions. Macmillan Co., 1960.

BucHuoLz, HERBERT: The Confluent Hypergeometric Function with Spe-
cial Emphasis on Its Applications. Springer-Verlag, 1969.

WATSON, GEORGE N.: A Treatise on the Theory of Bessel Functions.
Cambridge Univ. Press, 1922. S

McLAcCHLAN, NCRMAN W.: Theory and Applicaiion of Mathieu Functions.
Dover Publications, 1954.

TiTCHMARSH, EDWARD C.: The Theory of Functions. Second ed., Oxford
Univ. Press, 1939.

ERDELYI, A.: Asymptotic Expansions. Dover Publications, 1956.

LanGeR, Ruporpit E.: On the Asymptotic Solutions of Ordinary Differ-
ential Equations, with an Application to the Bessel Functions of Large
Order. Trans. Am. Math. Soc., vol. 33, Jan. 1931, pp. 23-64.

LANGER, RupoLpH E.; On the Asymptotic Solutions of Differential Equa-
tions, with an Application to the Bessei Functions of Large Complex
Order. Trans. Am. Math. Soc., vol. 34, July 1932, pp. 447-480.



REFERENCES

35. LANGER, R. E.: The Asymptotic Solution of Ordinary Linesr Differential
Equations of the Second Order, with Special Reference to the Stokes
Phenomenon. Bull. Am. Math. Soc., vol. 40, 1934, pp. 545-582.

36. FriEDpRICHS, K. O.: Special Topics in Fluid Mechanics. New York Univ.
Press, 1953, p. 126. Special Topics in Analysis. New York Univ. Press,
1954, p. 184.

37. LicHTHILL, M. J.: A Technique for Rendering Approximate Solutions to
Physical Problems Uniformly Valid. Phil. Mag., Ser. 7, vol. 40, no. 311,
Dec. 1949, pp. 1179-1201.

38. KEVORKIAN, J.: The Two Variable Expansion Procedure for the Approxi-
mate Solution of Certain Non-Linear Differential Equations. Rep.
SM—42620, Douglas Aircraft Co., Inc. (AD~437675), Dec. 3, 1962.

39. KoraL, ZDENEK: Numerical Analysis. John Wiley & Sons, Inc., 1955.

40. MiLNE, WILLIAM E.: Numerical Solution of Differential Equations. John
Wiley & Sons, Inc., 1953.

41. CoLLATzZ, L.: The Numerical Treatment of Differential Equations. Springer-
Verlag, 1960.

42. Fox, L.: The Numerical Solution of Two-Point Boundary Problems in
Ordinary Differential Equations. Clarendon Press, Oxford, 1957.

43. Fox, LESLIE; and MAYERS, D. F.: Computing Methods for Scientists and
Engineers. Clarendon Press, Oxford, 1968.

44. HiLDEBRAND, F. B.: Introduction to Numerical Analysis. McGraw-Hill
Book Co., Inc., 1956.

45. 'CONTE, S. D.: Elementary Numerical Analysis — An Algorithmic Approach.
McGraw Hill Bogk Co., Inc,, 1065,

46. RALSTON, ANTHONY; and WILF, HERBERT S., eds.: Mathematical Methods
for Digital Computers. Vol. 1. John Wiley & Sons, Inc., 1960.

47. VARGA, RICHARD S.: Matrix Iterative Analysis. Prentice-Hall, Inc., 1962.

48. BELLMAN, R.; and KALABA, R.: Quasilinearization and Nonlinear Boundary
Valve Problems. American Elsevier, 1965.

349 /35 4]




Absolute value of complex number, 113

Adams’ method, 319
Adams-Bashforth formula, 340
Adams-Moulton formula, 340
Adjoint equation, 99, 105
Affine group, 93
Airy's equation, 288
Analytic continuation
along a simple curve, 134
defisition, 133

in neighborhood of singular points, 137

of multiple-valued functions, 139

of solution of differential equation, 160

specific method, 135

Analytic functions of a complex variablc, 114, 116
Analytic functions of » complex variables, 146
Associated homogeneous equation, 24

Associated Legendre equation, 229
Associated Legendre functions, 231
Asymptotic expansion, 262, 265
nonuniformly valid, 287
of a solution, 267, 285
Asymptotic power series, 265

Asymptotic sequence of functions, 264

Asymptotic series, defined, 263, 265

Autonomous systems of differential equations, 59

Bernoulli's equation, 43
Bessel's equation, 241,277, 288
Bessel function, 278

of first kind, 242

of second kind, 244

modified, of first and third kind, 246

Beta function, 156

Boundary conditions, 17, 319, 341
Branch cut, 144

Branch of analytic function, 145
Branch point, 141

Canonical basis of solutions, 168
Cauchy estimates, 123
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Cauchy product of two series, 126
Cauchy-Riemann equations, 114

Characteristic curves of partial differential equation, 68

Characteristic equation
of partial differential equation, 68
of two algebraic equations, 162
Characteristic exponents, 177
difference an integer, 195
difference not an integer, 188
Circle of convergence, 122
Complementary function, 32
Complete analytic function, 139
Complex integration, 129
Complex plane, 111, 116
Complex variables, 111

Confluence of singularities in Riemann-Papperitz

equation, 233

Confluent hypergeometric functions, 235

Conformal mapping, 116

Critical points of first-order autonomous systems, 64

Degree of differential equation, 8
Derivatives

ot tunctions of complex variables, 113

of vectors, defined, 58
Difference

forward, backward, central, 334
Difference equations, 320

une-step, 322

n-step, 334, 336
Differential ¢quation

containing a parameter, 281

definition, 7

exact, second order, 93

equivalent to linear equation, 101

fundamental theorem, 13, 143, 151

homogeneous, 8

linear, 8

normal, 13

of first degree, 35

of first order, 35

partial, 00, 69
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DIFFERENTIAL EQUATIONS

Differential equation in complex plane, 148

analytic continuation of solution, 150

Taylor series expansion of solution. 149
Discretization error (see truncation error)
Divergent series, as solution of differential equations, 256
Domain, 2, 114, 121, 123

Elliptic equation, 79
Elliptic funciions, 79
Entire function, 121
Equation of Painlevé, 102
Equation splitting, 109
Equation with dependent varisble missing, 74
Equilibrium solution of first-order autonomous systen, 64
Equivalent equations under change of variable (second
order), 105
Essential singularity, 120
of p(2) and ¢(2), 252
Euler’s constant, 245
equation, 83
equation, homogeneous, 107
formula, 112
integral of second kind, 154
method, 319, 324
method improved, 339

Factorisl function, generalized. 155
Finite-diflerence method, 341
Finite points of the complex plane, 117, 12]
Firstintegral, 12
Fuchs theorem, 149
Fuchsian equation, 201

with two singular points, 202

with three singular points, 203
Fuchsian invariant for equation of order two, 206
Function

implicit, 5

single valued, 3
Functionally independent integrals of a system, 55
Fundamental set of equations, 151, 159, 168
Fundamental solutions, 33
Fundamental theorem

of analytic continuation, 132, 141

of first-order normal system, 50

Gamma function, 154

Gegenbauer polynomial, 227

Ceametric series, 125

Group theory method for reducing order of equation, 91

Hankel functions of first and second kind, 246

Hermite polynomial, 249
Holomorphic functions of a complex variable, 114
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Homogeneous equation

first order, 43

of order n, 8

second order, 79
Homogeneous Euler equation, 107
Homogeneous function of degree k, 45
Homogeneous solution, 24
Hypergeometric equation 210

derivative of, 223

integral form, 222

Kummer's 24 solutions, 220

logarithmic solution, 225

of Gauss, 212

Whittaker's form, 238
Hypergeometric functions, 215

generalized, 224

Implicit function theorem, 5
Indicial equation, 177, 199
of Fuchsian equation with two singular points, 203
of Fuchsian equation with three singular points, 205
Infinitesimal operator, 87
Infinitesimal transformations, 87
Initial sonditions, 13, 319
Inner aad outer expansions of solution near a transition
point, 297
Instability
in predictor-corrector methods, 340
induced, 322
inherent, 321
Integral
first, 95
of differential equatione, 12
of eystem of equations, 51
Integral curves of first-order autonomous systems, 64
Integrating factor
of first-order equation, 41
of second-order equation, 97
Interchange of dependent and independent variables, 107
Invariant of second-order equation, 105
Irregular singular points, 173, 251
Isobaric equation, 43, 81, 93
Isobaric function, 82
Isolated singular points
of analytic functions, 119
of second-order linear equation. 159

Jacobi differential equation, 225
Jacobi polynomial, 226
Jacobian determinant, 52

Kummer's confluent hypergeometric equation, 235
first formula, 240



secund formula, 243
24 solutions to hypergeometric equation, 220

Laguerre polynomials, 240
Lamé equation, 249
Laurent series, 128
Legendre
equation, 228
function of first kind. 228
function of second kind, 228
polynamial, 228
transform, 108
Linear equations
differential, 24
first order, 35
Linear fractional transformation, 117, 209
Linear hamogeneous equation, 106
Linear independence, 25
Linear second-order equations, 74

Linearly independent solutions in complex plane, 151

Liouville’s theorem, 121
Logarithmic function of complex variable, 145

Magnification group, 88

Matched asymptotic expansions, 295
Mathieu equation, 249

Meromorphic function, 121

Method of variation of parameters, 84
Milne's method, 340

Modulus of complex number, 113
Monodromy theorem, 141 (footnote)
Multiple-time methods, 311
Multiple-valued function, 139

n-dimensional vectors, 57

Neighborhood, 2

Nonuniform-distortion group, 93’

Normal differential »quation, 12

Normal form of second-order equation, 105
Normal solutions of irregular singular points, 269
Normal systems of equations, 49

One-dimensional eguation, 43
One-step processes, 322
Order
defined, 263
of a diflerential equation, 8
symbols, 263
Ordinary point, 159

Parabolic cylinder functions, 248
Parameter, expansions of solutions in, 282
Partition of an interval, 320
p-discriminant, 23

Pockhammer-Barnes function, 236
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Point at infinity, 117,173

Polar representation of complex number, 112

Pole of an analytic function, 119
Polynomial, 121

Power series in complex variable, 122
Predictor-corrector methods, 337
Primitive, 9

Principal branch of the logarithm, 145

INDEX

Principle of permanence of functional relations, 146

Quasi-linear partial differential equation, 69

Quasi-linearization of nonlinear equations, 344

Radius of convergence, 122, 160

Rank of an equation, 269

Rational function, 121

Recurrence relation, 177, 188, 190, 196
Regular singular point, 172

Regular solutions, 170

Removable singularity, 119

Riccati equation, 46, 80
Riemann-Pappentz equation, 205
Riemann P-symbol, 206

Rodrigues formula for Jacobi polynomials, 226

Round-off error, 321
Runge-Kutts method, 328, 332

Second-order equations, 73

with dependent variable missing, 74

with independent variable missing, 77
Secular terms of a solution, 307
Separable equation (first order), 43
Shooting methods, 343
Simple pole, 119
Simply connected domain, 38
Single-parameter Lie group, 86
Singular locus, 23
Singular point, 25

of a differential equation, 35, 159
Singular solutions, 19, 21
Singularity of solutions, 169
Solution

curves, 64

of differential equation, 8

of equation, 5

general, 10

particular, 8

singular, 11, 19
Solution of second-order linear equation

at ordinary point, 174

at regular singular point, 174

by change of variables, 104

near irregular singular point, 251

near isolsted singular point, 160
Stokes phenomenon, 266. 277
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Strained coordinates, method of, 306

Subnormal solutions of irregular singular points, 274
Superposition principle, 24

Systems of equations, normal, 49

Tables of differential equations and solutions, 110
Taylor series, 123
Taylor series method, 322
Transformation to equation with constant coeflicients, 106
Transition point, 287
Translation group, 92
Truncation error, 320
local, 322
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Tschebychev equation, 228
Tschebychev polynomial, 228

Ultraspherical equation, 227
Ultraspherical polynomial, 227 (footnote)

Vector functions, 58

Weber equation, 248

Weber function, 248

Whittaker's confluent hypergeometric equation, 238
Wronskian, 103, 152, 170
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