
DOCUMENT RESUME

ED 088 476 IR 000 309

AUTHOR Fitzhugh, Robert J.
TITLE Laboratory Control With A Medium-Scale Time-Sharing

System.
INSTITUTION Pittsburgh Univ., Pa. Learning Research and

Development Center.
SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO PU-LRDC-1973-25
PUB DATE Oct 73
NOTE 23p.; Paper presented at the Annual Meeting of the

National Conference on the Use of On-Line Computers
in Psychology (3rd, St. Louis, Missouri, October,
1973)

EDRS PRICE MF-$0.75 HC-$1.50
DESCRIPTORS Behavioral Science Research; *Computer Based

Laboratories; Computer Programs; *Computers;
*Computer Science; Costs; Input Output; *On Line
Systems; Program Descriptions; *Time Sharing

IDENTIFIERS ETSS; *Experimental Time Sharing System; Interfacing;
Memory Management; Multi Language Computer Systems;
Task Scheduling

ABSTRACT
A description is provided of the Experimental

Time-Sharing System (ETSS), a multi-language, general-purpose
time-sharing system designed to support a wide range of computing
applications. Included among these are the control of an on-line
behavioral research laboratory. Major topics discussed in the report
are: 1) the system's hardward configuration; 2) the operating system
software; 3) interfacing and the control of laboratory devices; 4)
the ETSS input/output command structure; 5) the initiation and timing
of multiple input/output processes; 6) task scheduling and memory
management; and 7) overall system performance and cost. (PB)

LABORATORY CONTROL WITH A MEDIUM-SCALE

TIME-SHARING SYSTEM

Robert J. Fitzhugh

U.S. DEPARTMENT Of HEALTH,
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY.

Learning Research and Development Center

University of Pittsburgh

October 1973

The research reported herein was supported by a grant from the National
Science Foundation (NSF-GJ-540X) and by the Learning Research and
Development Center, supported in part by funds from the National Insti-
tute of Education, United States Department of Health, Education, and
Welfare. The opinions expressed do not necessarily reflect the position
or policy of the sponsoring agencies and no official endorsement should
be inferred. Paper presented at the Third Annual Meeting of the National
Conference on the Use of On-Line Computers in Psychology, St. Louis,
Missouri.

Abstract

A multi-language, general-purpose time-sharing system designed
to support a wide range of computing applications including the control
of an on-line behavioral research laboratory is described with particular
emphasis on the system's laboratory control capabilities.

LABORATORY CONTROL WITH A MEDIUM-SCALE

TIME-SHARING SYSTEM

Robert J. Fitzhugh

Learning Research and Development Center

University of Pittsburgh

During the past decade, there has been a continuing and growing
debate in the computing field between the proponents of extremely large,
utility-like computer systems each serving many users with diverse com-
puting requirements, and the proponents of small, single-application
systems each serving a relatively homogeneous population. The issues

involved are complex, and the debate has yet to be resolved. Those who

favor the large utility argue that there are economies of scale in com-
puting, just as there are in electric power generation, and that a single,
very large system is far more cost effective than multiple, small systems
each with its own support facility and staff. In addition, it is argued that
a large system can offer a powerful and varied range of computing ser-
vices some of which cannot be provided by a smaller system. Large-
scale number crunching is an example. The small-computer enthusiasts
counter by pointing to the dramatic decline in the cost of small computers
that is making them increasingly cost effective Microcomputers the
size of a pack of cigarettes are already available for under $200. They

argue that the very large systems that seek to be all things to all users
have grown cumbersome, overly complex, and difficult to manage. A
substantial amount of the memory and the processing power of these
machines is often comsumed by massive, general-purpose operating
systems.

IL is clear that the small and large computer issue will not be
settled for some time. In fact, a probable outcome is that neither side
will prevail and that there will be a mix of large and small depending upon
application. For the control of an on-line psychological research labora-
tory, most workers in the field would agree that the small, single-appli-
cation minicomputer is more appropriate than a large, shared processor.
Historically, this has certainly been the case. University computing

centers have been unwilling and, more often, unable to provide the services
required. The dedicated minicomputer is usually the only solution for the
psychological researcher interested in on-line experimentation. However,
as many will attest, this is a path fraught with difficulties. Although a

number of special-purpose operating systems and languages have been
developed in recent years, most of the small systems in use are difficult
to program and operate, particularly when compared to large systems and
the high-level services they provide. A disproportionate amount of time
and effort often is spent preparing for rather than running an experiment.

As a possible solution to these problems, a multi-language, general-
purpose time-sharing system designed to support a wide range of computing
applications including the control of an on-line, psychological research
laboratory has been developed and is operational. Based on a medium-

scale DEC PDP-15, the system, called ETSS for Experimental Time-
Sharing System, has been successfully operating twelve hours each day,
five days a week for nearly two years. The development of this system
grew out of the belief that there is a viable third alternative to either a
very small, special-purpose laboratory computer system or to a large,
general-utility system that is shared by a great many users with diverse
and often conflicting requirements.

2

Ha rdwa re Configuration

ETSS is currently operating on two independent computer systems.

The original and primary implementation described here is based on a
DEC PDP-15 computer housed in a specially modified van and located at
a suburban elementary school. ETSS was subsequently installed on an
older PDP-7 computer used largely for batch processing and located at
the University of Pittsburgh. The PDP-15-based system is shown in
Figure 1 and includes 32K words of memory, memory protection/relo-
cation hardware, a one million word Vermont Research Drum, two IBM
2314-equivalent disk drives, two Dectape drives, papertape equipment,
several internal clocks, a telecommunications controller, a hardware
system bootstrap, and a terminal controller capable of controlling 64
terminals of which 32 are currently installed.

The high speed drum is used as a program swapping device and
is modified to transfer four tracks in parallel to increase the data trans-
fer rate. This modification is relatively minor and of nominal cost. The

terminal controller can control terminals of varying data rates each
transmitting and receiving 8-bits bytes bit-serially. The four clocks are
used by the operating system for a variety of internal purposes including
the accurate timing of input/output events. The remaining components
of the hardware configuration including the central processor are standard
and are unmodified with the exception of the hardware system bootstrap.
This inexpensive unit operates through the papertape hardware read-in
mode logic and permits the operator to load and start the operating system
with the push of a button. Using an inexpensive read-only memory, the
hardware bootstrap loads into memory and starts a 32-word program
which, in turn, loads and starts a program from the drum. This speeds
and simplifies the loading of the operating system and is particularLy
useful with unskilled operators.

3

C
E

R
M

O
N

T
 R

E
S

E
A

R
C

D
R

U
M

10
00

 K
it

N
IT

 W
O

R
D

S

(D
E

C
 R

P
O

2
D

IS
C

 D
R

IV
E

O
M

 It
 S

IT
 W

O
R

D
S

D
IG

IT
A

L
E

Q
U

IP
M

E
N

T
 C

O
R

P
O

R
A

T
IO

N
P

D
P

15

C
E

N
T

R
A

L
P

R
O

C
E

S
S

O
R

 U
N

IT

E
X

T
E

N
D

E
D

 A
R

IT
H

M
E

T
IC

 E
LE

M
E

N
T

M
E

M
O

R
Y

 P
R

O
T

E
C

T

IN
P

U
T

 /O
U

T
P

U
T

 P
R

O
C

E
S

S
O

R
 U

N
IT

D
A

T
A

 C
H

A
N

N
E

L
C

O
N

T
R

O
LL

E
R

A
U

T
O

M
A

T
IC

P
R

IO
IT

Y
IN

T
E

R
R

U
P

T
A

D
O

R
E

S
S

A
S

LE
IN

P
U

T
/O

U
T

P
U

T
 B

U
S

S
IN

G
LE

C
Y

C
LE

M
U

LT
I

C
Y

C
LE

R
E

A
L

T
IM

E
C

LO
C

K
60

 H
z

11
21

31
4

16
17

11

M
E

M
O

R
Y

M
U

LT
IP

LE
X

E
R

M
E

M
O

R
Y

 S
K

M
E

M
O

R
Y

 B
E

M
E

M
O

R
Y

 U

M
E

M
O

R
Y

 U

D
E

C
T

A
P

E
C

O
N

T
R

O
LL

E
R

I
C

LO
C

K
 I

20
0

M
k

D
E

C
T

A
P

E

T
R

A
N

S
P

O
R

T
O

P
E

R
A

T
O

R
T

E
R

M
IN

A
L

C
LO

C
K

 2
se

c
C

LO
C

K
 3

/
m

se
c

(
A

M
P

E
X

D
IS

C
 D

R
IV

E
10

M
 IA

 B
IT

 W
O

R
D

S

R
P

I5
D

IS
C

C
O

N
T

R
O

LL
E

R

LT
 II

LT
IS

T
A

T
IO

N
T

E
LE

T
Y

P
E

C
O

N
T

R
O

LL
E

R

P
A

P
E

R
 T

A
P

E

R
E

A
D

E
R

P
A

P
E

R
 T

A
P

S
P

U
N

C
H

H
A

R
D

W
A

R
E

S
Y

S
T

E
M

IN
T

S
T

R
A

P

U
N

IT
S

 1
.II

B
E

LL
 1

13
0

11
0

M
U

D
D

IA
LU

P

E
R

IC
T

E
R

M
IN

A
L

C
O

N
T

R
O

LL
E

R

LI
N

E
 U

N
IT

S

LI
N

E
sU

N
IT

24
00

 B
A

U
D

LI
N

E
A

D
A

P
T

E
R

U
N

IT
S

 9
16

B
E

LL
 IB

A
30

0
U

D
R

D
IA

L
-U

P

1

U
N

IT
S

 I7
.2

4

30
0

B
U

R
O

N
 -

S
IT

E

F
ig

ur
e

1.
LR

D
C

 E
xp

er
im

en
ta

l T
im

e-
S

ha
rin

g
S

ys
te

m
H

ar
dw

ar
e

C
on

fig
ur

at
io

n

P
er

 7
/9

R
O

U
T

S
 2

5.
32

O
N

 -
S

U
E

30
0

su
s

In general, the total hardware configuration is relatively standard.
The nonstandard, specially constructed or specially modified components
were required simply because the appropriate hardware was not available
when the system was constructed several years ago.

Operating System Software

The ETSS operating system consists of five major procedures, a
collection of peripheral device control subprocedures, a body of common
subroutines and a variety of tables and context blocks, some permanent
and some dynamically created and destroyed through time. These oper-
ating system components reside in a portion of main memory called
'syspace' for system space. User programs execute in the remaining
portion of memory called 'uspace' for user space. When required, por-
tions of uspace may be transferred to and from an auxiliary swapping device
although, as will be shown, the system managers have the ability to
selectively limit swapping or to eliminate it entirely if this is required
by a fast-response laboratory application.

Although the five procedures share a body of common subroutines,
each procedure is independent of the others and is responsible for a major
system function. Figure 2 shows the five procedures and the lines of
communication between them. The EXECUTIVE procedure is the single
most important procedure and is responsible for the allocation and con-
trol of all memory and computational resources. Any procedure can
request the EXECUTIVE to create a 'task' or job with a specified set of
characteristics and schedule it for execution. During the task's lifetime,
it is under the exclusive control of the EXECUTIVE although the procedure
that requested its creation can also request that it be suspended or
destroyed at any time.

5

Directory
File

Management
Procedure

_ .._.. ._. _
1 1

I Conver- I
I sational 1.-->
1Terminals1

I I

T

Device
Control

Subprocedures

Monitor
Procedure

1

V
Input-Output

Master
Control

Procedure

f

Executive

Procedure

Batch
Procedure

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

User and System - Created Tasks
111111111111111111

I

-- --
I

I Batch I

<-1 I/O I

I Stations I
I 1

L _ _I

Figure 2. Major System Procedures and Their Lines of Communication

6

Requests to create and destroy tasks most commonly come from
the BATCH and MONITOR procedures although the INPUT/OUTPUT

MASTER CONTROL (IOMC) procedure does request the creation of I/O
spooling tasks. The BATCH and MONITOR procedures each function as

a software interface between the EXECUTIVE procedure and the human
users of the system. The MONITOR procedure supports conversational

time-sharing and provides the user at a terminal with a MONITOR Com-
mand Language (MCL) through which the user is able to enter and exit
the system, initiate tasks, acquire and return system resources, display
and modify dataset directories, request information on system status and
performance and invoke a wide variety of language processors and utili-
ties. The BATCH procedure maintains one or more batch processing
streams and interacts with batch input/output stations. A BATCH Com-

mand Language (BCL) is used to specify tasks to be run. Although the
MONITOR and BATCH procedures may create tasks with different charac-
teristics, the tasks are indistinguishable to the EXECUTIVE and are able
to share all system resources including a common file structure.

The INPUT/OUTPUT MASTER CONTROL (IOMC) procedure is

responsible for the allocation and control of all input/output resources
including I/O channels, space on auxiliary storage devices and access to
system peripherals. By masking hardware idiosyncrasies, the IOMC
procedure enables user programs and other system procedures to inter-
face with a virtual input/output structure in which programs reference
'files' assigned to any appropriate device or dataset. The IOMC pro-

cedure serves as a translator converting file-oriented I/O requests into
requests to actual physical devices or data sets.

During the processing of a file equest, the IOMC procedure
determines if the request refers to a 'directory' or to a 'nondirectory'

7

device. Directory devices contain data as well as directories with the
names and the locations of the permanent entries of 'datasets' stored on
the device. A disk unit might be used as a directory device, and a line
printer would be a typical nondirectory device. If the file request refers
to a nondirectory device, the IOMC procedure interacts directly with the
appropriate device control subprocedure. All requests referencing
directory devices are sent by the IOMC procedure to the DIRECTORY
FILE MANAGEMENT (DFM) procedure.

The DFM procedure permits the programmer to treat a directory
device as a file-oriented medium without ally concern for the device's
physical properties or addressing structure. Data written to a directory
device can be left in a temporary state or it can be cataloged as a data-
set. Datasets may be cataloged in a user's private directory, in a
directory available to all called the 'LIBRARY, ' or in the directory of
another user if permitted. Protection keys are provided to restrict
dataset access when required. During the processing of a request, DFM
interacts with the one or more device control subprocedures responsible
for the control of the actual physical devices involved.

Interfacing and Control of Laboratory Devices

The ETSS strategy for the hardware and software interfacing of
'non-standard' laboratory devices is to develop character-oriented inter-
faces that mask, as much as possible, any idiosyncratic control charac-
teristics. Whenever possible, the interface is simply an encoder/decoder
unit, called an Intervening Black Box (IBB), that stands between the
device and an ordinary time-sharing terminal port on the computer. No
special operating system software is required, and the device appears
to accept and generate ASCII records. If an IBB is not possible and the

8

device must be interfaced directly to the processor, the hardware inter-
face or the operating system software interface performs these encoding/
decoding functions.

The result is an orderly and systematic, virtual input/output
structure that is not cluttered with one-of-a-kind commands. Since all
laboratory device input/output is in the form of conventional ASCII records,
programs controlling unusual devices can be written in a commonly
available higher-level language such as FORTRAN IV or in a special-
purpose experimental control language if one is available. In neither
case do the languages need to be modified as ne devices are added or
existing ones altered since the operating system input/output structure
remains uniform. If the interface is an IBB on a terminal port, the
operating system software need not be modified as well. This is, per-
haps, one of the most attractive outcomes of the Intervening Black Box
approach as frequent system modifications often lead to lower operating
reliability. In addition, the operating system remains smaller in size
than it might be if special I/O software was required for each laboratory
device.

It is the dramatic decline in the price of electronic components
and in computer memories that has made this character-oriented inter-
face approach possible. With relatively inexpensive computer memories,
larger, more sophisticated operating systems with the big machine
features of ETSS are possible on smaller computers. Cheap electronic
components with low power requirements permit low cost, compact IBB's
to be constructed for the control of unusual devices. For example, Texas
Instruments, Inc. now markets a single 'transceiver' chip for under $7
that performs all the functions of the two $150 Teletype transmitter/
receiver modules DEC uses on the PDP-15. As an illustration of the

9

sophisticated functions that are available in single, solid -state compo-
nents, a bidirectional Hollerith-to-ASCII and ASCII-to-Hollerith code
converter on a single chip is available for under $50.

Two interfacing examples will illustrate this character-oriented
interface approach. The first describes a random access audio devica
in which the. '4Ignificant portions of the interface are in operating system
software; the second is a touch-sensitive surface that is interfaced to a
conventional terminal port using an IBB. The random access audio device
consists of a closed-loop, mylar belt six inches wide that moves past
fixed read/write heads. The heads can be moved across the belt to
selected recording 'tracks. ' There are 128 tracks, each eight 'segments'
in length, where a segment is approximately one second of recorded
sound. The hardware interface for this device was constructed a number
of years ago and is rudimentary and low level making the device cumber-
some to control. The operating system software interface, however,
masks the complex control characteristics and permits the device to be
controlled with ASCII records.

When programming on the assembly language level, the first step
is to ASSIGN a file name to the device. The file is then OPENed causing
the audio device to reset in preparation for a subsequent command.
Thereafter, the program WRITEs records to the file, and it is the con-
tents of those records that specify some action to be performed by the
audio device. The first character of each record specifies the function
(move, play, record), the next three specify a track number, the next
character identifies a starting segment number and the next four specify
the number of segments to be played or recorded. These last eight
characters may be repeated up to 30 times in a record so that a single
audio message can be created from a number of discrete pieces recorded

in noncontiguous locations on the tape.

10

The touch-sensitive surface is an 18 by 18 inch translucent sur-
face upon which slide images can be displayed from the rear using a
conventional Kodak slide projector under computer control. The sur-
face is designed so that the computer can determine the X-Y coordinates
of any point touched. An IBB allows the unit to be controlled over a
terminal port and accepts control information in the form of ASCII
records. A teletype also can be connected to the IBB, and the ASCII
records will be directed to it if the IBB is switched to the 'teletype mode'
by a special control character. The teletype is used most often at the
beginning of an experiment to enter subject-identifying information
although it can be used alternately with the touch-sensitive surface
throughout the course of an experiment. All control information to the
unit, including slide numbers to be displayed, is in the form of ASCII
records as is data generated by the unit. Because the IBB operates off
an ordinary time-sharing terminal port, the touch-sensitive terminal
can be located outside the laboratory and operated over a dial-up data-
phone link.

ETSS Input/Output Command Structure

User programs request I/O services through the use of program-
mable EXECUTIVE CALLS or EXCALLS. Through the EXCALL, the

programmer is able to draw upon a powerful set of device independent
input/output and file manipulation services and is relieved of the
responsibility of direct device control. Since all input/output requests
specify logical files rather than unique physical devices, the actual
device assignments can be altered prior to the execution of a program
either through direct MONITOR commands at the user terminal or
through programmable EXECUTIVE calls. This full device independence
is extremely useful in a laboratory environment, particularly during

11

program debugging. Since all device control information is in the form
of ASCII records, these records temporarily can be directed to the pro-
grammer's terminal permitting the programmer to debug and test a pro-
gram from any time-sharing terminal. Laboratory equipment is not
tied up through lengthy debugging sessions, and the actual equipment
need only be used during final program check-out.

In order that the average programmer faced with a conventional
programming problem need not learn and understand a large number of
complex, technical commands, the overall ETSS design philosophy was
to include in the EXCALL command set only a limited number of general
and logically consistent functions. The experienced programmer faced
with a complex or unusual laboratory control problem is provided with a
set of 'modifiers' which can be appended to the general commands if
additional options and control features are required. Although space
limitations prohibit a full description of each command, the input/output

EXCALLS recognized by ETSS are listed to provide a feel for the com-
mand structure and its level of generality:

1. ASSIGN . . .(Establishes an association
between a file name and a
device or dataset.)

2. DEASSIGN . .(Destroys that association.)
3. OPEN(Readies a file for subsequent

activity.)
4. CLOSE . .(Places a file in an inactive

state.)
5. READ(Receives a record from a file.
6. WRITE . . .(Transmits a record to a file.)
7. CONTROL . .(Performs record skipping and

other operations.)
8. WAIT . . .(Wait, conditionally or not,

for the completion of some
file activity.)

12

9. TEST(Test on the active/inactive
state of a file.)

10. DELETE . .(Delete a DATASET.)
11. RENAME . .(Rename a DATASET.)
12. CATALOG. .(Catalog a DATASET.)

In addition to modifying these basic EXCALLS, the programmer
also is able to test for the occurrence of a wide variety of input/output
errors and conditions through a feature called the 'selective notification
of exceptional conditions. ' Through bit settings in the EXCALL, the pro-
gram can specify whether or not control should return to the program or
to the terminal MONITOR in the event of specified errors or exceptional
conditions. If the program fails to request notification and an excep-
tional condition occurs, the operating system will terminate the program,
display a diagnostic message on the user's terminal, and place the user
in communication with the terminal MONITOR. If notification is requested,
control will be passed to a notification address specified in the EXCALL
and a bit pattern will be stored specifying which exceptional conditions
have occurred.

This exceptional condition feature was designed to enable a pro-
gram to retain full control over its environment even in the face of
unusual conditions or device malfunctions. In addition to the usual tests
for parity errors and the like, a program running under ETSS can test
for conditions such as an illegally formatted dataset name within an
EXCALL or an attempt to perform a file operation without previously
opening the file. This ability to selectively request notification for over
40 exceptional conditions provides a high degree of programming flexi-
bility and control that needs be exercised only when required. A pro-
grammer faced with a conventional and straightforward problem can
simply refuse all notification and need not be burdened with the task of
writing unnecessary error handling routines.

13

Initiation and Timing_ of Multiple I/O Processes

In order to permit a program to initiate multiple and simultaneous
input/output processes and to compute while an input/output process is
underway, the input/output EXCALLS allow the program to specify if
control should be returned immediately or only after the requested ser-
vice is complete. If the program does not elect to wait, control is
returned immediately, and the program is free to continue computing or
to make another EXCALL request. The program then must have some
means of determining when the file process is complete and if it was
successful. Two separate EXCALLS are provided for this purpose.

The WAIT EXCALL suspends the program until some previously
requested file process is complete. The TEST EXCALL is a variant of
the WAIT EXCALL and permits the program to test whether or not a file
process is complete without the risk that the program will be placed in a
wait state. TEST is useful in certain laboratory or process control
applications where a high degree of device control is required. In order
to avoid unnecessary delays, or waits, on slower devices, a program
wishing to maintain or monitor several simultaneous input/output pro-
cesses would use the TEST instead of the WAIT EXCALL. However,
WAIT must be called prior to making another input/output request of a
file even though the TEST EXCALL indicates that the file process is
complete.

An additional degree of control over an input/output process is
provided by the 'conditional time-delay' option of the WAIT EXCALL.

If a time-delay is specified, control is returned when the file process
is complete or upon the expiration of the time-delay, whichever occurs
first. The expiration of a time-delay is an exceptional condition, and
if notification is requested, control will be passed to the notification

14

address if the time-delay expires prior to the completion of the input/
output process. As with the occurrence of any exceptional condition,
the file process is interrupted and is not allowed to proceed. Thir con-
ditional time-delay feature is a requirement of many laboratory applica-
tions in which a subject at an experimental device is given a limited and
measured time to respond to a program-generated stimulus.

As a second option of the basic WAIT EXCALL, the program

also can request that the time of day when a file process begins and ends
laf> stored as an ASCII record in a program-specified buffer. This timing
information is accurate to the millisecond level regardless of the time-
sharing load on the operating system and is most often requested to
measure subject response latency.

ETSS Task Scheduling and Memory Management

A major feature of ETSS is its ability to support a mix of jobs or
'tasks' including fast response laboratory control tasks, terminal-oriented
conversational time-sharing tasks and batch processing tasks in one or
more batch streams. System resources are dynamically allocated to
the tasks based on criteria established by the system manager. The

EXECUTIVE procedure within the operating system is primarily respon-
sible for this task management and resource allocation function.

Any procedure within the system can request that the EXECUTIVE
create a new task with a unique set of characteristics called a 'task
profile. ' The task profile fully defines the task and its relationship to
other tasks in the system and specifies the extent to which it can gain
access to system resources. Included in the task profile are parameters
defining the task's priority range, initial quantum class, preemption
class, memory size class and memory residency class. By controlling

15

the type and mix of the tasks that are created, procedures other than
the EXECUTIVE can perform high-level or 'course' scheduling. How-
ever, once created, the low-level or 'fine' scheduling of a task is under
the exclusive control of the EXECUTIVE procedure.

The EXECUTIVE maintains multiple queues of task:: that are

ready to run, one queue for each priority level, and a task's priority
range defines the highest and the lowest priority levels it can assume
during its lifetime. The initial quantum class specifies the size of the
time-slice the task is given when it begins execution for the first time,

and the memory size class specifies the maximum amount of memory
the task can acquire. During the lifetime of a task, it will tend to drift
upward and downward in priority, within the constraints of the priority
range, depending upon CPU and memory usage. As a task drifts down-
ward in priority because of heavy CPU usage, it will be assigned suc-
cessively longer time-slices although it will be allowed to run less fre-
quently. Memory and CPU usage are additive in their effect upon
priority so that, if permitted, a large, compute-bound task will drift
to a lower level than will a small, compute-bound task or a large, I /O-
bound task. To ensure that extremely active higher priority queues do
not lock out tasks on lower priority queues, each queue is assigned a
'queue ratio' that specifies the frequency with which a queue must be
serviced even though higher priority tasks are ready to execute.

The task also is assigned to one of three preemption classes.
A ready to run task in the 'immediate preemption' class will immediately
preempt a currently executing task of lower priority. A task in the
'delayed preemption' class will immediately preempt lower priority
memory resident tasks and swapping tasks that have been in memory
for more than one time quantum. However, if the task to be preempted

16

was swapped in immediately prior to its execution, preemption will be
delayed until the executing task has been allowed to run for a specified
period of time. The intent is to avoid unnecessary swapping while still
ensuring that the higher priority task receives service within a short
period of time. A task in the no preemption' class is not permitted to
preempt a lower priority task until that task has completed its time-
slice, made an input/output request or is removed from the processor
for some other reason.

Memory space for tasks is allocated and deallocated dynamically.
Fixed-size partitions are not used, and through EXCALLS, tasks can
acquire and release memory as required. The task profile assigns each
task to one of four 'memory residency' classes. Tasks in classes one
through three are eligible for swapping with each successive class having
a higher 'sticking priority. ' The sticking priority determines the order
in which tasks are to be swapped with tasks with a lower sticking priority
eligible for swapping before tasks wit!1 a high sticking priority. Class

four tasks are memory resident and are never swapped.

This scheduler and memory management design permits the
system to be tailored to a wide range of applications. By altering the
queue ratios and the task profiles of the tasks created by the MONITOR
and BATCH procedures, the operating system can be dynamically recon-
figured while the system is running. For example, if the application is
foreground, laboratory control and background program development in
a time-sharing mode, the laboratory control tasks would be created with
a high sticking priority and a high priority range and would be placed in
the immediate or delayed preemption classes. The background pro-
gram development tasks would be assigned to a lower priority range and
would be given a lower sticking priority. If necessary, the foreground

17

laboratory control tasks could be made memory resident if extremely
fast response time is required.

Within each type of task (i. e. , laboratory control or program
development), the scheduler will dynamically allocate computational and
memory resources based on task performance and will favor small, I /O-
bound tasks over large, compute-bound tasks. However, the priority
range concept ensures that the laboratory control and program develop-
ment tasks do not overlap in priority unless this is felt to be desirable
and is specified. Depending upon the queue ratios that are assigned,
response time for the background program development tasks can be
maintained at some minimum level, or response time can be permitted
to degrade to the lock-out level during periods in which the laboratory
control tasks are extremely active.

Performance and Cost

ETSS has been successfully operating more than 300 hours each
month for nearly two years. Actual system up-time measured as a
percentage of scheduled up-time exceeds 99 percent for the entire period
and mean time before failure is in excess of one operating month. Usage
has steadily increased throughout the period, and total connect time for

time-sharing users now averages approximately 200 hours per day. Of

the 50 million characters of available on-line disk storage, approximately
25 million have been allocated in more than 5000 datasets. For ordinary
time-sharing users who are not favored by the scheduler, response time
to a conversational command is in the .1 to 1.0 second range 99 percent
of the time with worst case response times in the 1.5 to 2.0 second
range. The average program size for a time-sharing user during the
busiest six hours of the day is 14. 5K words.

18

ETSS currently offers as on-line subsystems a text editor, a
macro assembler, a FORTRAN IV compiler, a linking loader, an expanded
version of DEC's FOCAL, a string-processing language called T64
similar to Mooer's TRAC, an on-line debugging aid called DEBUG, a
statistical package, a file and data manipulation package and a variety
of utility programs.

The total cost of the original PDP-15-based prototype constructed
four years ago is more than $200, 000. This figure includes equipment
that was acquired for strictly research and development purposes that
would not be required by an operational system in the field. A more
powerful PDP-11-based version of the system could be constructed today
for $50, 000 to $90, 000 depending upon disk storage requirements. The
basic system, excluding disks, would include a PDP-11/40, a one-half
million word swapping drum, 65K of DEC and independently acquired

memory, some miscellaneous hardware, and a 32 port terminal con-
troller capable of controlling terminals running from 110 to 2400 baud.

Conclusion

ETSS is an operating demonstration that a powerful, general-
purpose operating system with the capability to support on-line laboratory
applications, conversational time-sharing and one or more batch streams
is possible on a medium-scale computer. As equipment costs continue to
decline, a system such as ETSS providing large computer features and
programming flexibility should become an increasingly attractive alter-
native to the small, specialized minicomputer in on-line psychological
research.

19

References

Fitzhugh, R. J. LRDC experimental time-sharing system reference
manual. Pittsburgh: Learning Research and Development Center,
1970. 3 Vols.

Fitzhugh, R. J. LRDC experimental time-sharing system internal
reference manual. Pittsburgh: Learning Research and Develop-
ment Center, 1971. 2 Vols.

Fitzhugh, R. J. Oak leaf Computer Project. Pittsburgh: Learning
Research and Development Center, February, 1972.

Fitzhugh R. J. & Katsuki, D. The touch-sensitive screen as a Eexible
response device in CAI and behavioral research. Behavioral
Research Methods and Instrumentation, 1971, 3(3), 159-164.

20

