
DOCUMENT RESUME

ED 084 880 EM 011 704

AUThcri Fre(!d, Michele M.
TIThn Gi2nerdtion of Punctuati-n and Usage i!;xercise:i in

freL;hman Fnglish Using a Sentence Pool (PUNCT2-CW) .
Techrical Report Number Six.

INSTITUTION Texas Univ., Austin. C.;:,puter-Assisted instructioa
Lab.

SPONS AGENCY National Science Foundation, Washington, D.C.
REPOLU II.) TR-b
PUB JA2E Dec 70
NOTE 15p.

EDRS PRICE MF-10.05 HC-$3.29
DESCRIPTORS *Compute,: Assisted instruction; *Computer Programs;

*Data Bases; English Instruction; Pattern Drills
(Language); Programing; *Punctuation

IDENTIFIERS *PUNCT2CW; Sentence Pools

ABSTRACT
The purpose of PUNCT2-CW is to test the feasibility

and practicality of a data base system of computer-assisted
instruction in English. To save time and to provide comparison, this
course was based on the objectives, format and logic of an earlier
course, PUNCT. The present data base is a sentence pool composed of
certain sentence patterns called prototypes, each with a unique call
number. A program author can call a type of sentence by using the
prototype name. By employing certain macros, he can use the sentences
from the ool as if they had been hard coded. Original sentences can
be quickly and simply added to the pool. Flow charts document the
process from the time a sentence is called from the pool until it has
been displayed and finally answer processed. The description of how
the macros are used, and what must be included in a macro call, is a
more detailed account expanding drills and providing new sentences
within tie already coded data base, but a hodified system of macros
is needed t) simplify recall from the sentence pool. The speed of the
system will be imeroved by translation into the APL programing
language. (uthor/SL)

I! I

THE UNIVERSITY OF TEXAS AT AUSTIN

Computer Assisted Instruction Laboratory

AUSTIN

U S DEPARTMENT OF HEALTH
EDUCATION L WELFARE
NATIONAL INSTITUTE OF

EDUCATION
CD . Doc .'If Ar.5 HF PPOD f x-C,Y a5 4FCf',ED f PO%".+F Pf4 nN OP ,74C,A,/A.c.+ OP

., r, PO S OF ,,E r. O4 ')P nN`)D DC ' FsFf PF 'PfSF. F L. .s.s* 'FLI-41

f POS. P.). OP Po, Cv

GENERATION OF PUNCTUATION ArD USAGE

EXERCISES IN FRESHMAN ENGLISH USING

A SENTENCE POOL (PUNCT2-CW)

TECHNICAL REPORT NO. 6'

Nichele M. Freed

December 1970

Supported By:

THE NATIONAL SCIENCE FOUNDATION
Grant GJ 509 X

Computer-Assisted Instruction Laboratory
The University of Texas at Austin

Austin, Texas 78712

GENERATION OF PUNCTUATION AND USAGE EXERCISE.; IN FRESHMAN

ENGLISH USING A SENTENCE POOL (PUNCT2-CW).

The purpose of PUNCT2-CW, a course based on an earlier course

PUNCT, is tc test the feasibility and practicality of a data bacc system

of computer-assisted instruction in English. This document discusses

the exi.T.'.ing data base and its implementation, as well as future adapta-

tions ant, uses of such a system.

The present data base is a sentence pool composed of certain

sentence J:etterns called prototypes. A program author can call a type of

sentence by calling the prototype name. By using certain macros, he can

use the sentences from the pool as if they haL 'peen hard coded. Associated

with each sentence pattern is a profile of characteristics, which is unique

for each type of sentence and is given a unique two-character alphabetic

name, called a prototype code. The sentences of each type are classified

under the appropriate code. Each sentence has a sentence identification

number, and each must contain the complete series of units which make up

that particular prototype. In the present sentence pool a unit consists

of a group of words, a single word, or a punctuation mark.

The sentence pool is composed of a number.of prototypes, now

limited to those called by PUNCT2 -CU. Each prototype has distinct charac-

teristics and is given a unique name. A mutation of the main prototype

is called a derived prototype and differs from its main prototype in having

one or more of the main prototype units deleted. For example, the main

prototype AA contains the following units: a head string, day of week,

comma, date of month, comma, year, comma, and tail string. A derived proto-

type of this might be called AAA and contain: a head string, date of

month, comma, year, comma, and tail string. The author might find the

derived prototype useful for illustrati.; certain points. If he plants

to use a main prototype making the same' deletions each time, the author

should establish a derived prototype for his convenience.

An author who wishes to use the present data base system is given

a list of prototypes, a description of how to use the macros, and an expla-

nation of how to add sentences to the sentence pool. He .can write his

instruction independently and then use the prototypes to call in the appro-

priate sentences for examples, drills, and quizzes. The author learns how

to call, manipulate, and display the sentences. Since he can answer process

sentences without hard coding each one, his drill capabilities are greatly

expanded, and coding becomes more efficient. He can quickly and simply add

sentences (which suit his needs) to the sentence pool. A'secretary or

clerk can use subroutine zipzip to prepare sentences for the pool.

Figures 1, 2, and 3 document the process which takes place from

the time the sentence is called from the sentence pool until the sentence

has been displayed and finally answer processed. The following description

of how the macros are used and what an author must include in the macro

call is a more detailed account than the overview provided by the flow

charts. Macro qa is used for the initial sentence call, and the following

statement is an example:

cm qa ", AA ", 0 ", Bing #

The action code for macro qa can be either 1 or 3; however; 3 is used to

recall a sentence. The author normally calls a sentence by its prototype

code, in this instance AA. If the author were calling a specific sentence,

he would replace the prototype code with the sentence identification number.

This substitution can be especially useful if the author wishes (a) to call

a sentenced (loaded into the pool) that does not fit a prototype, (b) to use

one particular sentence, or (c) to call the same sentence at a number of

different points within the program. The zero following the prototype

code indicates that a derived form of the pr6totype is not being called.

If it were being called, the code numbers would indicate which units of

the main prototype were deleted to form the derived prototype. The next

parameter of the macro contains the action indices, which specify the

number of the sentence units that are to be acted upon; in this case, because

of action code 1, the units are to be deleted. In the currently coded

exercises, the action indices usually refer to sentence units which are

commas. If the code had indicated the use of a derived sentence, the

sentence pulled from the pool would have some predesignated missing units.

However, the derived sentences are complete and correctly punctuated, and

deletions would still be made through the use of action indices if the

sentences were to be used for exercises concerning the addition of punctua-

tion. The final macro parameter contains a return label to which the logic

returns after the sentence selector logic and the sentence processing logic

have been executed. From macro qa, the program branches to the label of

the prototype name in the sentence selector. logic specified by the macro.

The sentence selector prefix is written into buffer 5, and the position

of the suffix stored in buffer 2 is made available. The program then checks

c30 for a derived sentence code. If the call is for a derived sentence,

new values are written into buffer 5 (the prototype prefix) and c20 (the

position of the suffix in buffer 2). The suffix in buffer 2 is placed in

c28. If the action. .code is 1, the suffix is reset for a new sentence,

and, if the action code is 2 or 3, the suffix is set for the last sentence

of this prototype called. In other words, action codes2 and 3 are used

to recall sentences. The sentence suffixes come from the pool in descending

order. If all sentences of a prototype are used, the suffix counter is

reinitialized, and the program will start through the sentences of that

prototype again. Macro pi reinitializes the prototype suffix. The new

suffix- -new because it was reset for the new sentence or reinitialized by

macro pi--is returned to buffer 2. The sentence selector suffix is attached

to the prefix in buffer 5, and the entire label is stored in return register

5. The program branches to this label in the prototype-sentence correspon-

dence table. In the table each possible generated label is associated with

a sentence identification number, and each sentence identification number

is associated with a particular sentence. Subroutine nipzip prepares the

Sentences for entry into the pool through macro sp. Zipzip is executed

in author mode at a typewriter terminal. The operator enters the sentence

identification number and then the sentence units one at a time at the

computer's command. A blank unit (containing only an eob) indicates that

all sentence units have been entered. The first output of zipzip is the

sentence identification number, after which a numeric profile of the

sentence is typed. The first digit of this profile indicates the number

of units in the sentence, and each of the following numbers describes one

sentence unit. For example, the numeric profile 3 4106 1010 903 indicates

that the sentence has three units (profile count): (a) The first unit

contains 41 characters, and its last word contains 6. (b) The second unit

has 10 characters, and the last word contains 10. (c) The last unit has 9

characters, and the last word has3. Zipzip also types the sentence with

units indicated by unit markers (in this case, an X). After the sentences

are loaded in this form, the program branches to the sentence processing

logic, where the sentences are prepared for answer processing and display.

If the action code is 1 or 3, a binary string is placed in buffer 2 in front

of the action indices which were loaded by macro qa, and buffer 4 is cleared.

The action indices are used to compute positions in the binary string. For

every action index in a qa macro call, a unit is deleted from the sentence.

If an action index is 3, then the third 1 in the binary string is replaced

by a zero and so on for each action index. The profile count is then used

to compute the end of the binary string. The binary string is chopped off

and collapsed to the size of the sentence. From this binary string, the

units for deletion (the units marked by zeros) are identified. The profile

counts in buffer 0 for all zeros in the binary string are converted to zero.

If the action code is 1, the sentences enter a subroutine which uses the

binary string and the profile count to establish response identifiers

(response 3-tuples) in buffer 4. A 3-tuple is created for the word previous

to a deleted unit. This is done because the student, using a light pen,

must touch a word that he wants the punctuation mark to follow. The first

number of the 3-tuple is the relative row of the word (relative to the

beginning row of the sentence); the second is the number of the columns in

the response area; and the last is the beginning column of the response

area. These response identifiers permit the definition of a light pen

response area through counters. Each sentence, whether called by macro

qa or qb, goes through subroutine ClEaN. The selected sentence is edited,

and a character count is taken. Carriage returns and indexes are inserted

so that the display of the neu'v edi,cd sentences will fit on the screen.

At this time, the return label is in return register 2, buffer 2 contains

ths2 sentence selector label suffixes, buffer 3 contains a binary string

which reflects the sentence unit nmissions, buffer 4 holds the response

3-tuples, and buffer 5 contains the processed sentence which is ready

for display. Control is returned to the calling macro by the return

register 5 label. The author then uses counters 3 (row) and 24 (number of

rows) to determine where the sentence is to be displayed and uses function

dt to display it. The student is now able to respond by touching a word

which should be followed by a comma. Function pen places the coordinates

of the light pen response into counters 1 and 2; macro qp examines the

contents of these counters and determines if the student's response matches

any of the response area identifiers for the sentence. If no match occurs,

the student is given a standard un message and the opportunity to respond

again or to proceed to the next sentence. If a match does occur, a counter

is set by macro qp to indicatcl which 3-tuple was matched. By using this

counter, the author branches to the macro (qb) that w:.1.1. restore the appro-

priate comma.

The macro call to qb resembles the call to qa:

cm qb " / 2 ", AA ", 0" , 3 ", 8 ing4

The action code 2 shows that a unit will be restored to the last called

sentence of prototype AA. The zero after the prototype name indicates

that the sentence is not a derived form of AA. The action ind,x indicates

that the nird unit of the sentence is to be restored and that control will

be returned to the macro qb by a branch to label 8ing4. This macro works

similar to macro qa except that it manipulates the previously called sentence

7

of the prototype instead cf a new one. The sentence selector prefix is

placed in buffer 5, and the position of the sentence selector suffix is

made available. If qb calls for a derived sentence, new values are written

into buffer 5 and counter 20. The sentence selector label suffix is ex-

tracted from buffer 2, and with action code 2 (the same is true for action

code 3 of macro qa) the suffix value is that of the last sentence called

of this prototype. The suffix is attached to the sentenc(selector prefix

in buffer 5, and the entire label is stored in return register 5. The

program branches just to the label in return register 5 and then from this

label in the sentence pool correspondence table to the sentence identifi-

cation number. The sentence is loaded by macro sp as described above.

With the sentence in buffers, the branching proceeds to the sentence

processing logic. Since this sentence is being recalled, there is no need

to create a new binary string. The existing binary string is used to

identify the unit named by the action code for restoration. After the unit

has been restored, the sentence once again goes through subroutine ClEaN

to be prepared for display. Control is then passed to the return label

specified by the calling macro. The newly processed sentence is displayed,

and the student is then able to respond again. The author may wish to

recall a sentence using macro qa with the action code 3. The process

described above is followed, but the author is able to restore more than

one unit at a time, delete additional units, or merely recall the sentence

in its current form. If he wishes to display the complete sentence, he

substitutes an for the action indices in the macro call. When control

is returned to the calling macro; a statement is needed to display the

sentence.

Two units of PUNCT were adapted to the data base system. The

instructional sequence and prose remained the same; however, the hard

coded sentences were replaced by calls to the sentence pool. This altera-

tion presents new examples and new exercises to the PUNCT2-CW student and

offers a new posttest each time he reviews the instruction.

PUNCT was chosen for a number of reasons: (1) The emphasis of

the project was on developing a data base system to be used for other

courses in English, rather than on writing a single new English court..

Since the course objectives, logic, and formats were already e',aolished,

considerable time was saved, although some changes had -.., be made (2) By

using a prepared course the authors were able to .Qsign a limited data

base to determine if the general concepts were feasible before they con-

tinued to investigate the system's adaptability. PUNCT provided such a

base. A generalized system that could process the addition of punctuation

to sentences drawn from a sentence pool provided a base that would give

experience in coping with unanticipated problems and in foreseeing. problems

that might arise in extensions aid new applications of this generalized

system. (3) Since the text and logic were previously coded and debugged,

using PUNCT proved to be time saving. Had the data base been written with-

out using a course as its base, it would have been more difficult to limit.

This first attempt revealad the changes and extensions necessary to make

the system more comprehensive. (4) The adaptation of segments of an already

prepared course provided a basis for comparison. A study could be conducted

to determine whether or not new examples helped the student when he reviewed

the course. With some modifications, the PUNCT2-CW student could request

mor, drill. A study could also determine if students wanted more drill

than was provided in PUNCT and whether or not this additional drill would

affect the student's performance. Once the data base system became opera-

tional, adding and calling new sentences required less time (of the author,

coder, and keypunch operator) than the hard coding and debugging of PUNCT

sentences. The modular-designed course can easily be debugged, while PUNCT

is almost impossible to debug completely.

A generalized system has many advantages. For example, the

instructional logic and the data base are written, expanded, and modified

independently. In addition, an instructor ran compose new prose but use

an already coded data base. He also has the alternative to use the instruc-

tional sequence (as was done in PUNCT2-CW) and prepare a new data base. If

a teacher wishes to use sentences and examples that are more relevant to

his class, he can easily change the pool. He can expand drills without

putting in new coding other than that which branches the student into a

unit which calls sentences from the pool.

Some disadvantages when using PUNCT were also discovered. Lance

PUNCT was not written with a generalized system as its base, the course was

very specific in some instances. Detailed messages for wrong answers and

sometimes even f.): correct answers had to be replaced by messages appro-

priate to the prototype rather than to the specific sentence. The drill

expansion capabilities of the system were not used since each sentence was

hard coded. Some instruction examined particular sentences in such detail

that they could not be pulled from the pool to serve as examples. PUNCT

could not utilize all of the advantages of a data base system because the

course was Lot written with the generalized system in mind. This system

10

now operates with a string in which units can be deleted and restored.

This system cou.I.d be improver.. by certain modifications. The most obvious

problem with PUNCT2-CW is that using sentences from the pool is still com-

plicated. Macros are used to call and correct the sentence, but the author

must decide where the sentence will be displayed. Branching logic to cor-

rect the sentence if it is one of many can become complex and confusing.

A modified system of macros should be written to simplify the use of the

sentence pool. Also, the current method of identifying wa responses is

difficult and inefficient. A new variable added to the macros would permit

referencing a sentence element without deleting it. The option of replacing

one element with another would be useful in other exercises of this t!....pe.

Since this program is very slow on the IBM 1500 Coursewriter System, it

is now being translated into the APL programming language. A faster and

more efficient version of PUNCT2-CW will be available in APL.

Student
signs
on

11

SentenceSentence .\

(---!°71___----/---

1 -3

Se.ltence

(:
Processing 1

/

Sentence
called by
macro qa

Answer
Proce!;sing

(macro qp) YES

Negative
Feedback Check

response
record

Sentence
Pool

Sentence
Processing

Sentence
called by
macro qb

Instructio)

FIGURE 1

(:(Next -)
Pretest

Prototype names
from the set
AA, AB, ... AL.

Sentence
Pool

Prototype name

and position of
suffix loaded
macro pm

New name
& suffix
macro pd

sl,

Prefix and
uffix combined
and stored in

rr2

Corresp.
Table

Corresp-.\.

Tablej

Label matched
with sent= :Ice

identification
number

Sentence loader:
into buffers
macro sp

4
ientence

\......

Processing

12

Sentence ID
numbers from
the set S00001,
S00002, ...
S00090,

The macro call branches to the sentence selector logic which gives the
program access to a sentence which satisfied the prototype requirements
presented to it. Each sentence selector label is associated with a specific
sentence identification number. This six-character sentence identification
prototype-sentence correspondence table sets up a one to one correspondence
between the generated prototype label and the sentence identification number.

Control is transferred to the label of the sentence identification number.
The logic of macro sp is executed and buffer 3 is loaded with the sentence
profile and buffer 5 is loaded with the desired sentence in its unprocessed
form.

FIGURE 2

6entence
Zocessing

Action code?

[Working
binary string
established

Identify units
to be deleted
and restored

Preparation of
response area
identifiers

Preparation
of sentence
for display

Return
to calling
macro

13

After the sentence has been loaded, control is transferred to the sentence
processing logic. At this point, a binary string is generated in buffer 3 from
the action indices in buffer 3 (loaded by macro qa). The sentence profile is
marked against the binary string and resnonse pointers are computed and placed
in buffer 4. The raw sentence in buffer 5 is marked against the binary string
and is replaced by an intermediate version of the desired sentence. The sentence
in its intermediate form is processed for future display from buffers. Control
is returned to the original calling macro with buffer 5 containing the desired
sentence and buffer 4 containing the response pointers.

FIGURE 3

