
DOCUMENT RESUME

ED 084 833 EM, 011 654

AUTHOR Rubinoff, Morris
s TITLE Man-Machine communication Through a

Teletypewriter.
,

INSTITUTION Pennsylvania Univ., Philadelphia. Moore School of
Electrical Engineering. .

SPONS AGENCY Army Research Office, Durham, N.C.; National Science
i

i Foundation, Washington, D.C.
PUB DATE May 73
NOTE 276p.

EDRS PRICE MF-$0.65 HC-$9.87
DESCRIPTORS Communications; Computer Graphics; Computers;

*Indexing; Information Networks; Information
Processing; *Information Retrieval; Information
Storage; *Information Systems; Interaction; *Man
Machine Systems; *On Line Systems; Program
Descriptions; Programing Languages;. Search
Strategies; Telecommunication

IDENTIFIERS Real English; SOLER Information System;
*Teletypewriters

ABSTRACT
A ten-year research study designed a mechanized

information system in the information processing field. Special
attention was paid toimplementation criteria entering into on-line
'retrieval-through man-machine dialog from a remote typewriter or-
video terminal and four major areas were investigated: search
strategies, machine stored indexer aids, disc file organization, and
graphic displays. The final system developed, SOLER, is a powerful
library-oriented information system permitting browsing through the
data base, narrowing of the search to selected files, and further
restricting to chosen segments of each file. SOLER is useful to
experts, indexers, and searchers, using the Real English search
language--a complete English gtammar--to permit users to engage in a
full dialog with the computer. Other major findings include the
following: 1) there is a significant difference between information,
which Is broad and qualitative, and data,.which.is formal, specific,
and quantitative; 2) there are significant differences between-
informatiOn haiidiing in library versus proble,m-solving environments;
and 3) computerized library systems can extend the scope of catalog
information and provide helpful indexing tools to users:
(Author/LB)

FILMED FROM BEST AVAILABLE COPY

pri

University of Pennsylvania

THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

CO Philadelphia 19104

GO

CICM

MAN-MACHINE COMMUNICATION THROUGH

A TELETYPEWRITER

/
may 1973

The Moore School Information Systems Laboratory

Morris Rubinoff
Principal Investigator

The work described in this report has been supported by

the U. S. Army Research Office-Durham and in part through the

Air Force, the National Science Foundation, and in-house funds.

The Moore School Information
Systems Laboratory

University of Pennsylvania

r

co
CAD

CCD

CJ
LU

the

The

University of Pennsylvania

THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

Philadelphia 19104

YAN-MACIEINE COMMUNICATION THROIVill

A TELETYPEWRITER

May 1973

US DEPARTMENT OF HEALTH.
EDUCATION A WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM

THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEWOR OPINIONS -

STATED 00 NOT NECESSARILY REPRE

SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

Moore School Information Systems Laboratory

Morris Rubinoff
Princpal Investigator

The work described in this report has been supported by

U. S. A:My

Air Force, the

14,senrch Office-Durham and in part through the

National Science Foundation, and

The Moore School Information
Systems Laboratory

University of Ptmnsylveinin

TI:)is is the best copy available of
a document processed for EORS by
ERIC/EM. We are aware that some
pages may not be readable in micro-
fiche or hard copy. However9 we
feel that the document shouldn't be
,withheld on the basis of these

pages aione.

in-house funds.

TABU] OF CONTENTS

1. IWRODUCTION

1.1 Summnry of the Investigation

Page

1

2. THE SOLER SYSTEM 6

2.1 Genernl Description 6

2.2 Basic Concepts 10

2.2.1 Data Bases 11

2.2.2 Files

2.2.3 Records 14

7.2.4 Interface. Routines

2.3 SOIER Commands 16

2.4 Datn Base Example 21

3. THE INFORMATION SYSTEM COMPONENTS 26

-3.1 File Structure 27

3.2 The :Record Definition PhaSe 45

3.3 Input Phase 57

3.3.1 Operation of the Input Phase 57

i.4 The Updnte Phase 63

3.5 The Invert Phase 73

3.6 The Retrieval Mechanism 81.

3.7 The Output Phase 106

4. STATISTICAL CLUMPING AS AN INDEXING AID 114

4.1 Adaptive Interaction 114

4.2 Implementation of the System 118

General Definitions 118

\
Page

4.4 Theoretical Considerations 121

4.;,- Preliminary Definition of an Adaptive System 125

4.6 Habit Forjing vs. Learning 126

4.7 A Working Definition 'of an Adaptive Process 130

4.8 The Final Form of the Adaptive rrocess 130

)4.0 Interaction-by-Interaction Learning 132

4.10 The Interest Profile 134

4.11 Au Algorithm for Rendering Adaptive Assistance 134

4.12 An Extension to the Adaptive Algorithm 137

4.13 The Implementntion of the Interactive Process 138

4.14 Clumping - TTiA Techniques Considered 149

4.15 Implementatior, 157

4.16 Results 162

5. English ns a Search Language 183

r).1 Easy English 183

5.2 Real English 187

o. Bib7iogrnphy

6.1 Published Papers 205

6.2 Internal Reports 207

6.3 References on Information Retrieval 210

6.4 References an Statistical Clumping 214

References on Computerized English 215

6.6 References on Automatic Indexing 217

Appendix A

User's Manual

MAN-MACHINE COMMUNICATION THROUGH
A TELETYPEWRITER

This i the final report on a comprehensive research study of

wrin-mnehine communication through a typewriter terminal. The study

,lecade from 1962 through 1971 and has been supported in

part through the U.S. Army Research Office - Durham and in part through

the Air Force Office of Scientific Research, the National Science Found-

nnd in-house funds.

The most significant findings of the study are as follows:

1. There is an essential difference between information and

data. information is by nature deseriptivr, qualitative,

l;enerio, and broad in coverage, and consequently hard to

(ntegorize crisply in single words or brief word phrases;

data is formal, quantitative, specific and of narrow scope,

and consequently lends itself-to crisp tabulation or listing.

2(a). There is an essential difference between information handling

in a library versus a problem-solving environment. A library

is a repository of narrative descriptive information collected

from a multitude of diverse independent sources; problem-solvYng

uses of data collected by a single group of users for retrieval

as part of the problem-solving process, i.e. on-line real-time

retrieval.

2(b). As n consequence of 2'a), the computerized library information

retriewl system need not be imbedded in a host system nor

written re- entrant; the problem-solving data management system

should be provided with both features.

3. The library information system does contain a conventional catalog

card file but extended in scope in a computerized system to

-2-

pccomnodvto author, title: sponsoring agency, publisher, ,inte,

etc., and bibliographical capabilities. The computerized library

information system should also provide indexing tools, such ns

cy words, notations of contents, index terms, etc., to help

the searcher on the basis of the intellectual content of the files,

concepts, techniques, procedures, and subject relationships.

The rate of growth of all literature is rapid. But the rate of

growth in any one subject area is relatively slow. The value of

n data base to each user decreases rapidly after his first search.

The library information system is thus inherently a single-dip fac-

ility for individuals, with the consequences stated in 2(b) above.

However, the library information system is an effective information

analysis and dissemination tool, to support the preparation of state -

of- the -art summaries over broad subject areas or on specific topics

tailored to the ever-changing needs of research. An on-line system

of man-macine communication with a comprehensive data base, with ap-

propriate tools for browsing and for sharpening the search, is an in-

valuable tools for such analysis and dissemination. The information

system SOLER developed as part of this study is such a system.

1. SUMMARY OF THE INVESTIGATION

The investigation described here began in 1962 with the establishment c

the Moore School Information Systems Laboratory to develop a design for a

mechanized information system in the information processing field, with spec

attention to implementation criteria entering into on -dine retrieval throng)

man-machine dialog from a remote typewriter or video terminal. Four major

areas were identified for study: search strategies; machine-stored indexer t

such as lists of index terms: synonYms: classifiention tables or "clumps": t

other,semantic aids; disk file organization) and graphic displays.

Progress was made in all four areas. The search strategy studies

. -3-

led to deeper npprecistion of man-machine communication problems and

p'nrtieulnrly to the difficulties encountered by the occasional searcher.

who does .not hRve a computer background and hss no reason or need to

_learn a specialized computer jargon in order to retrieve information from

n agta base. The Laboratory first designed, developed and tested a-simple

mechnnizntion called "Essy English", wherebythe user could gain necess to

the dntn base through readily recognized imperative sentences in nsturnl

Englith lnngusge. The remarkable success of Ensy English led to the dev-

clopmvut of "Rcn1 Englinh", whereby R complete English grnmmnr was incnr-

pornted into the system and permitted the user to engage inn full di slog

with the computer using Ceclsrativel imperative, interrogative, and even

Fragmented English sentences, restricted only by the limited vocabulary

of the dictionary stored in the computer. Real English was completely

successful, as a search language; its only limitation was its demands on

ntorage (close to 500,000 bytes). As computer memories become cheaper and

fester, the use of Renl English in information-systems will become more

economical and practical, and should find its place as a powerful tool

in many information systems.

Machine-stored'indexer aids have been studied by many investigators.

Indexing is the most difficUlt aspect of the information retrieval process

and probably the lesst understood. To begin with, in a private data lib-

rary where the user collects his own files and indexes them himself for his

own use, indexer aids are usually very primitive or totally unnecessary.

Indexer aids are usel'ul tools primsrily in the realm of the public liter-

sture, where three different groups of people participate in the intellec-

tunl pr6cesses associated with the data base, name-1;y, the experts, the

indexers, and the searchers.

-4-

The experts are the. 'authors, editors, and reviewers, who crfate the

original inforMationi establish the format and style in which the data is

recorded, and determine which 'papers will appear in t4e body of knowledge

rind which will be rejected. The language of the literature is necessnrily

couched in the speciRiized terminology and concepts of the field es they

exist at the time when the papers are written.

The indexers are library science specialists who are expected to

understand and interpret the intellectual. content of all the publications

that get into the data base and to characterize each publication through

(1) catalog identifications such as author, title, and publisher, (2)

subject entegorizers such as Dewey Decimal Number and subject heading(s),

and (3) "index terms" such as Ney words" in the title or in the text,

and/or stnndRrdized words and word phrases that identify specific topics

in the subject nreal hopefully unaMbiguouslY. The indexers do their

indexing a year or more after the papers have been written and the results

nre obviously influenced by the changes in outlook and terminology during

the intervening period. In particular, the meanings that they intend to

,!onvey when they assign index terms often differ from the meaning& of

those terms nt the times that the papers were written.

The senrehers are of course those who hnvc need for information

which they hope can he found in the data base. These may a researchers

i

who nre-enterinc: s new field for the first time rind -seek information

brondly over the field, or expert researchers who have worked in the field

for- .lome-tim nad who are primarily interested in the most recent develop-

-ment::, or technical wrtcrs who nre seeking state -of- the -art expositions

nt n somi-lnymnn level, or reviewers who wish to check the state of the

nrt be':ore rating c new publication, or etc. Clearly, each searcher has

his own profile of interest, with different scope, depth, and level

or technical sophistication, as well as relevant technical-sUbject

vn:sr. The searcher's problem is compbunded by-the staleness of the

indexing since his search probably takes place years nfter the rel-

evnnt publi-cntions were indexed.

Methodology for providing indexer aids was estnblished in the

course of this- research investigation. The methodolOgy is based on

statisticsl generation of vocabulary relationships but it includes

slso the use of semantic tools, definitions, abstracts, And other

nnrretiVe condensations of 3nformntion.

rile orgnnizntion has been through s number of revisions,

each somewhat more shphisticnted the
71

the previous. At each stage,

the file structure and organization were tested in a live experimental

0 retrieval system.' The final system, SOLER, is a particularly powerful

library-oriented information;system with the capability forbrowsing

throughout the data base, narrowing the search to any selected fileS

within the data base, and further restricting the search to selected

on-line-identified segments of each file. The system permits the

searcher to treat nay word or word phrase anywhere in the data base

ns nn index term and further permits him to search on terms related to

his selected words or word phrases through classification tables pre-

viously derived by the computer from the information in the data base

itself.

THE SOLER SYSTEM

.1 General Description

The SOLER system is an information retrieval system. A user may

store, modity, and retrieve information in either an interactive or

l-ackground environment.

The basic unit of information haadled by the system is called a

data item. A social security number or a telephone number might be

smopie data items. A collection of logically related data items forms

a 1 ecord. For example, a record in a Personnel File will usually in-

clude data items for an employee's name, addreus, salary, position,

etc. A file is simply a collection of records where the type of data

items in each record are the same. The logical structure of the

records is the same for each record in a file, but the data will vary.

For example, if a set of records is collected to form a Personnel File,

every record will contain a data _item for the name of the employee; but

the value or content of this data item will be different for each record.

Thus the data item 'EMPLOYEE NAME' will occur in each record, and is part

or the logical structure of the record; but the value of this data item

will be different in each record. The following case might occur:

RECORD DATA ITEM VALUE

1 EMPLOYEE NAME JOE JONES

2 EMPLOYEE NAME MARY SMITH

. 3 EMPLOYEE NAME JOE SMITH

- 6 -

It is often desirable to structure a record so that some pseudo-

data items are defined. which are than subdivided into several actual

data items. For example, a record could be structured so that EMPLOYEE

NAME as a pseudo-data item which contains two actual data Items called

'FIRST NAME' and 'LAST NAME'. This structure is usually indicated by

indentations as follows:

EMPLOYEE NAME

FIRST NAME

LAST NAME

pseudo-data item

data item

data item

This type of record structure is called a hierarchy or tree

structure. In the SOLER system, pseudo-data items are called non-

terminal data categories or nodes, and actual data items are called

terminal categories. or nodes. The previous example can now be re-

written as:

RECORD RECORD STRUCTURE VALUE

1

3

EMPLOYEE NAME

FIRST NAME

LAST NAME

EMPLOYEE NAME

FIRST NAME MARY

LAST NAME SMITH

JOE

JONES

EMPLOYEE NAME

FIRST NAME JOE

LAST NAME SMITH

- 8 -

Referencing the non-terminal category EMPLOYEE NAME is interpreted as

a reference to the two subordinate categories FIRST NAME and LAST NAME.

In the example above, some records have the same value for certain

dtaa items. Speciftcally, the FIRST NAME data item in both record 1 and

record 3 has the value 'JOE'. In an information 'retrieval system, the

user retrieves records by a request such as:

"Which employees have the ftrst name 'JOE'?"

In this example, two records would satisfy the request. If the file

contained many records, and it was necessary to check every record to

determine if this condition was satisfied, the time needed for the

search would be excessive. In the SOLER system, rapid retrieval times

are possible because the system "inverts" the data file. That is, for

a given value of a data item, the system will maintain a list of all

the records in the file which contain that value in the specified

category. For the sample data eatelOries above, the lists would be:

CATEGORY VALUE LIST OF RECORDS

FIRST NAME JOE 1,3

FIRST NAME MARY 2

LAST NAME JONES 1

LAST NAME SMITH 2,3

When it is desired to retrieve a set of records containing certain data

values, the inverted lists can be manipulated and an answer produced

without refereqping the actual data records until it is desired to

display parts of the record. Since all needed information is in the

inverted lists, the system can rapidly inform the user exactly how many

records satisfy the conditions specified in the request. When the

records are actually retrieved, only those records which actually

!mtisfy the request will be accessed. Lt is not necessary to examine

any records which do not meet the given criterion.

EXANPLE 1

To answer the questir,n: "Which employees have the first name

JOE?", the following commands should be presented to the SOLER

system:

REPRLEVE VJRST NAME = JOE

rRiNT EMPLOYEE NAME

By examining the inverted list for 'JOE', the system can

immediately tell the user that 2 records satisfy the request.

The PRINT-command will then display the complete name for

those employees. If the result of the RETRIEVE command is a

large number of records, the user has the option of not

printing any of the data, and trying another retrieval.

EXAMPLE

To answer the question: "How many employees are named JOE

smTrir", the following command would be used:

RETRIEVE FIRST NAME = JOE AND LAST NAME = SMITH

Ln this case, the answer would be produced through manipulation

or tho appropriate inverted lists. It is not necessary to

reference the data records at all, unless the user decided to

display data from the records identified by the search.

- 10 -

The SOLER system allows a user to specify the logical structure of

his records directly from a terminal. He may then assign values to the

terminal data items to enter as many records as desired into the ale.

When the file has been created, the user may perform searches of

arbitrary complexity, and display portions of the resultant records

directly on the terminal.

If the user encounters the common situation that he has several

dirferent files which contain logically related information he may

crer,te a data base which contains as many as twenty-five files. These

files may have different record structures, but it will be possible to

retrieve simultaneously from any group of files in the data base.

The balance of this section describes the SOLER system in more

detail. First the concepts of a data base, files, records, and data

items are examined in more detail. Then the logical system modules are

discussed, with an indication of the internal data flow in the system.

The commands recognized by the system are outlined, and, finally, a

detailed description of each system module is presented. Appendix A

'is a user's manual which describe3 how SOLER is used, what each command

accomplishes, and illustrative examples which use every command in the

SOLER system.

nasic Concepts

The SOLER system is designed to allow the user to create, update,

and search a data base either from an interactive terminal or in a

batch processing environment. The user may define as many data bases

as desired. Each data base is self-contained and independent of all

other data bases in the system. Within a data base, the user may

define as many as twenty-five separate tiles of information. These

files may be logically connected to provide simultaneous searches

spanning, many different files of information. Records within a file

have a flexible format, and may contain data in any format desired by

the user.

Data Pases

A data base is the basic entity that may he manipulated by the

:;01.,E1: system. The user may define as many data bases as desired, but

only one may be accessed by the system at an one time. All data bases

are completely independent and self-describing. That is, each data

base contains within itself all the information necessary to allow the

SOLER system to process the data base. Hence, once the user specifies

which data base he would like to access, the system extracts any addi-

tional information needed for internal operations directly from the

data base without requiring the user to re-specify any detailed infor-

mation. Thus the user is able to initialize a data base only once, and

Crom then on the system will automatically process the detailed internal

inVoination while the user directs the activities of the system at a

logical level.

Each data base may contain anywhere from one to twenty -five files

of information. For search operations, the user may manipulate any

subset of the files as a logical group, and may define new logical

groups, or delete old groups, at any time. Thus, the logical structure

of the data base may be altered dynamically at the discretion of the

user. This allows the user to view the data base as a single specific

Cile, as a selected set of files, or as a single entity containing

related data items.

K

Files

A file within a data base is a collection of logically related

records. All records in a file have the same logical structure. As

many as twenty-five files may exist within a single data base. The

1--ical structure of each file is completely independent of all other

files in the data base. The user may define several files with similar

structures, or files with Completely unrelated structures, depending on

his own needs. All files within a single data base are logically inter-

related through the system directories maintained by SOLER. The user

may search across all files, or may specify that certain files be

logically excluded from searches, thus searching a subset of the data

base.

A file is defined by presenting to the system a description of the

logical structure of the records to be contained in the file. This

structure represents a b'ree Of data categories. Any category which has

one or more subordinate categories in the structure is referred to as a

non-terminal node or category. A non-terminal category does not ex-

plicitly reference data, but implies a reference to any data contained

in the nodes which are subordinate to the non-terminal node. A category

which has no subordinate categories is a terminal category, and will

explicitly contain data in a record.

In addition to the logical structure of the data, the user may assign

a name of his own choosing to each data category. The name may be

applied to more than one distinct category within the structnre. In this

case, use of the name will be automatically interpreted by the system as

a reference to all data categories with that name. In addition to the

- 13 -

primary name of each category, the user may also designate as many

synonyms for the name as desired. By specifying the name of one cate-

g,;-)ry as a synonym for another category, the user can define complex

interrelationships between the categories within a file.

Data categories are said to be "linked" within the system undertwo

conditions. All data categories subordinate to a given data category

are termed "implicitly linked" because referencing the superior category

implies a reference to each sJbordinate category. Data categories with

the same name are termed "explictly linked" since the user specified

tho .scone name for both categories. Also, all data categories subordinate

to two explicitly Linked categories are themselves implicitly linked.

Linking of categories is not restricted to a single file within the

data base. If categories in two or more different files are assigned

the same name (either as a primary name or a synonym), they also are

explicitly linked. Thus the user may logically link data categories

defined in separate files.

Note that categories which are explicitly linked through a given

name may have other names which are not linked. Thus a reference by

one name may imply two fields which are explicitly linked through that

name. However, reference by another name may imply only one of the

rields, or may link one of the on fields to another field. Thus

the user may develop file definitions which have complex interlinkages

both within each file itself and with other files in the data base.

Conversely of course, the user may assign a unique name to every rate-

wry so that no fields are explicitly linked,.

During retrieval operations, referencing a category name normally

references all explicitly and implicitly linked fields. Searches may

thur3 simultaneously process multiple fields within one or more files.

However, if the user desires to restrict the search to a more limited

area of the data base, the name of a eategory mar be qualified by

apponding one or more names of superior categories. This limits

rererences to those' categories in which all of the names appear as

superior fields in the given order. In this way, the user may effec-

tively unlinX fields temporarily whenever desired. These qualifications

may be introduced so that they remain in force until Changed by the user,

.or a qualification may be explicitly stated to apply to a single

command.

2.2.3 Records

A record in the SOLER system is a set of data items corresponding

to the logical structure defined for one of the files in the data base.

A record is a single occurrence of the logical pattern defined to the

system when a file is created. As many records as desired may appear

within a file, the only restriction being that the aggregate of all

records in the data base may not exceed 16 million records.

Within each record, the data items correspond to the terminal

categories of the file definition tree. The contents of each data item

may be as large as 55,000 characters containing any data which can be

processed by the machine (in general, this corresponds to the character

sets specified by the ASCII or EBCDIC codes). Data items may occur

more than once in a record (if the user has specified that a category

may repeat), or may be omitted from a particular record. When data

- 15 -

items are omitted in a record, no space is allocated for the missing item,

thus conserving space on the storage device on which the data base resides.

At the present time, one record may contain a maximum of 1000 data items,

but this limit may easily be expanded if the need arises.

The data stored within a data item may occur in any format. The

system supplies routines to handle the standard fields of numeric data,

character strings, and narrative text. If the user has a requirement for

specialized processing or a particular data field, he may supply his own

tanctiona1 routine to the system. SOLER will invoke this routine when-

ever special processing of the data item is required. With this technique

the user with one or more specialized requirements for the handling of

data .items may allow the standard system routines to handle the bulk of

the processing, and all of the details of internal storage allocation,

command interpretation, etc., while processing a few items in a manner

prescribed by the user. A simple example would involve specifying a pro-

cessor that would not display the salary data item in a personnel record .

until certain security checks have been validated.

interfacr Routines

An important concept in the SOLER system is the, idea of an.interface

routine.

it was desired to allow the system to handle any type of data that

might arise in almost any application. Most existing information

retrieval and data management systems allow flexibility in the structure

or a record, but only limited data item formats are allowed. In most

vases, the system will handle numbers and simple text strings, usually

or Limited length. The SOLER system, on the other hand, was designed

-16-

to allow any format of a data item desired by the user. The technique

developed to accomplish this is the concept of an Interface Routine.

Basically, the.SOLER system provides a superstructure for an

information retrieval system. .The system handles space allocation

in the files, accesses to the I/0 devices, detection and interpretation

of commands, retrieval of records, etc. But at the same time, whenever

;t is necessary to process the internal format of a data item, an inter-

face routine is called. For example, during execution of the Input

Phase, the interface routines are responsible for reading the data from

the external device and placing it in a buffer provided by the system.

The system must. know the length of the data; the format is immaterial.

With this method, the SOLER system itself is independent of the format

of the data stored in the system. The user may define a record struc-

ture which specifies the existence and logical relations of the data

items, and may also supply interface routines to handle data items

internally.

2.3 SOLER Commands

The full set of SOLER commands is presented here. A brief des-

cription of the action of each command indicates the purpose of the

command and its uses and effects. A more complete description of

system behavior is provided in Section 3 and in Appendix A.

Input Command

INPUT X (where X = file name)

initiates a quest Ion and answer dialogue I.J.t.11 the
computer in which the computer calls for all the
data in a new record, one data field at a time, by
field name; the user types the data item appropriate
to that field and delivers it to the computer. The

data fields are, of course, those which are --rma-
hently associated with file X. .

Invert. Command

OVERT X (where X = file name)

causes the computer to invert every record in file

X that has not yet been inverted. The process of
inverting a record is the addition of an entry into
a list for each term (word, number, or series of
alphanumeric characters) which appears anywhere in

the record. Thus, the list for each term indicates
every record in which that term appears.

11pcinto CommandE.

DIaink; X (where X = category name)

instructs the computer to delete all data in category
X from the records in the active list (see RETRIEVE

command).

MODIFY X (where X = category name)

instructs the computer to display to the user all data
in category X (from only the records in the active
list); the user modifies the data items displayed to
him and returns them to the computer which automati-
cally inputs and inverts them.

ADD X (where X = category name)

causes the computer to request new data appropriate
to category X to be added to the records in the active
list, record by record.

enc. File Locating Command

WHERE X (where X = term)

displays to the user the names of all fields (in the
entire data base) in which term X appears as data,
and the names of all files in which term X is the
name of a category. The entire data base may be
limited by the QUALIFY command.

Logical Retrieval Commands

RETRIEVE X (where X = logical expression of category names
and terms)

produces a list (called the active list) of all the
records which contain data that satisfies the condi-
tions of logical expression X. There is only one
active list; hence, every RETRIEVE command creates a
list which replaces the previously active list. The

logical expression X contains elements of the form:

category name = term.

The retrieved records may be limited by the RESTRICT
command. The logical expression may be limited by
the QUALIFY command.

APPLY U X (where X = logical expression of category names and
terms, and

U = logical operator)

causes the computer to process a RETRIEVE command based

on the conditions of logical expression X; then logical
operator U is applied to this list and to the previous
active list, thus producing a new active list. For

example, if U is the operator IleiND", then the new
active list consists of all records which appeared
on the previous active list and also appeared on the

list produced by the processed command.

ItEPEAT

- 1 -

instructs the computer to reprocess the most recent
APPLY or RETRIEVE command (after intervening commands
have been 'implemented).

5enrch Limiting Commands

RESTRICT

instructs the computer to "remember" the records in
the current active list; the searching done in all
subsequent logical retrievals will be limited to those
records which have been "remembered".

QUALIFY X (where X , set of file names and/or category names)

instructs the computer to "remember" the file names
and category names; the searching done in all subse-
quent lorical retrievals will be limited to those
files and categories which have been "remembered".
All subsequent output commands will be similarly
limited.

Output Commands

PRINT N,X (where N = an integer and X = category name)

instructs_ the computer to print all data in category X
from the next N records in the active list. The output

is directed to the user's terminal. A pointer to an
entry in the active list is maintained; this pointer
determines the place in the list to begin printing the
next N records. Whenever a new active list is created,
the pointer is set to the beginning of the list; the
pointer can be changed by using the FORWARD, BACKWARD,
and REaET eonmmnds.

LIST N.X (where N = an integer and X = category name)

initiates the same processing as a PRINT command,
except that the output is directed to the high-speed
printer instead of the user's terminal.

CONTINUE N (where N an integer)

instructs the computer to print all data in the category
that was specified in the most recent PRINT or LIST
command, from the next N records in the active list.

- 20 -

Active List Manipulating Commands

FORWARD N (where N = an integer)

moves the active list pointer forward N entries (or
to the last entry on the list if N overshoots).

BACKWARD N (where N = an integer)

moves the active list pointer backward N entries (or
to the beginning of the list if N overshoots) .

RESLT

sets the active list pointer to the beginning of
the list.

SAVE X (where X . any name)

stores the current active list internally, under the
identification name X. In order to reference it, a
RESTORE X command must be used.

RESTORE X (where X = name used in any previous SAVE command)

replaces the current active list with the list
identified by name X.

ERASE X (where X = name used in any previous SAVE command)

releases the list identified by name X; further
reference to this list is no longer possible without
re-retrieval.

GET X (where X = set of record numbers)

creates an active list composed of all records
specified in set X.

Kt s o el.:Lamour; Commands

SET X (where X = collection of condition-setting pairs)

changes the settings of the conditions specified by
collection X. The conditions pertain to the format
of the user's dialogue with the computer. For example,

the user can specify the output line length; the user
can request to have all dialogue captured and perma-
nently stored.

- 21 -

COMM .X (where X = any comments)

END

stores comment Xfor the SOLER administrator
to read at a later time.

ends any session on the SOLER system.

:,14 Data Rase Example

A data base is defined in this section as an example of the

storage and retrieval capabilities of the-SOLER system. Since this

-is intended as an introductory example, no.attempt is made to illustrate

all capabilities of the system. The intent of the example is to indicate

the range of logical file structures allowed, and the pOwer inherent in

the ability-to link files. TheSe examples will also be referenced in

the more detailed discussions which follow, when the logical data flow

within the SOLER system is investigated,

to this example, a data base is assumed called the Personnel

-Information Data Base. There are three separate files in this data

base:

A Personnel file,

A Job Description rile, and

A Definition file

The definitions for these files are shown below, where the tree

structure is indicated by the indentation of the category names.

La

PERSONNEL FILE
EMPLOYEE DATA

EMPLOYEE NAME
LAST NAME
FIRST NAME
MIDDLE INITIAL

ADDRESS
STREET
CITY
STATE

CODE
PHONE NUMBER , REPEAT

JOB INFORMATION, REPEAT
JOB TITLE
LENGTH OF SERVICE
SALARY
OFFICE ADDRESS
PHONE EXTENSION

EDUCATION, REPEAT
DEGREE
INSTITUTION ATTENDED
DATA RECEIVED

AREA OF SPECIALIZATION, REPEAT
AREA
QUALIFICATIONS

TECHNICAL PUBLICATIONS
TITLE
ABSTRACT

JOB DESCRIPTION FILE
JOB TITLE
QUALIFICATIONS

EDUCATION
EXPERIENCE

SALARY
LOWEST LEVEL
HIGHEST LEVEL
AVERAGE

DEFINITION FILE
WORD
DEFINITION

The tree structure of this data base is shown in Figure 2.4.1.

he w,,rd I:EPEAT after some of the data categories indicates to the

:;ystom that the category will occur more than one time in many records.

When 3 repeat is associated with a non-terminal category, the entire

substructure of_ the record below this category will be repeated. It is

also possible to "nest" repeats so that within a repeating structure,

subordinate categories will also repeat. In Figure 2.4.1, repeating

nOdos aro indicated by A dashed line leading to a second occurrence of

t,he node. In an actual record, the field could repeat as many times as

desired by the user.

in this data base, our hypothetical user is storing personnel

information, a series of job descriptions, and also definitions of

words. Within one data base, he has collected three interrelated files

ofinformation. When it is necessary to find a person for a certain

position, the user can look at the qualifications of the job description,

and then list the nEunes of all employees who satisfy the requirements.

It is .also possible to search the data base for a specific job title.

since the JOB TITLE Lategories under the Personnel File and the Job

DescriptionFile are explicitly linked, the user can display a descrip-

_
Lion of the job, and also a list of all employees currently holding the

position.

lf a word in a job-description or a technical paper is unfamiliar

to the user, he can immediately refer to the dictionary for a definition.

This Indicates some of the power provided to the user through the

Ability to link together files of diverse information within a single

data base. These examples also indicate the variety of data types which

I

rPERSONNEL /LE

PERSONNEL INFORMATION DATA EASE

k.)4?1.1)YEE DATA j
H

N 1A1

71 ADVISS

I ST ta:C71'

7-1 :TY

0-1 STATEI CODE 1

MONT NINDER

PRONE NINBEI-77

JOB INToRwer ToN

H JOB TITLE

LENGTH SEFVIcsti

SA1AY
1

H OFFICE A'JDRISS

HPHONE EXTENSION

JOB I NE ORNAT ION

EDUCATION

DEGREE

NST IT If! ION ATTMED

DATE RECEIVED

---1 EDUCAT TON

I AREAS OF SPEC IAL I TA1 ION
1

__4 AIWA
1

""--1 kWh 1.11;1 IONS

r1,.1A1.I tAT tun

TECIci; OA' . 41.ICAT loNS

TIT4

A DST Wt,":

JOB DESCRIPTION FILE I

JOB T ITU

QUALIFICATIONS I

H
EDICAT 1 ON

IENCE

H SALARY

1 LOWEsT LEVEL

RIaREST LEVEL I

HAVERAGE

Figure 2.4.1

DEFINITION FILE 1

NORD
I

__A DEFINITION

Structure of the Personnel Intonation Data Base

Can be processed by the SOLER system. The Personnel File contains

several well-defined fields, such as Salary and Phone Number, and

also cnntains relatively unstructured data as free-form narrative

text 1 ir, the abstract and title of publications).

3. THE INFORMATION SYSTEM COMPONENTS

The System for On-Line Entry and Retrieval (SOLER) has been

implemented as a sequence of six basic phases; record-definition,

input, update, invert, retrieve, and output. All of these phases can

he executed interactively from a Teletypewriter, Datel/Selectric type-

writer, a video console (CRT or VDT). The unusually large variety

of command options makes SOLER a highly versatile storage and search

tool for natural-language text, bibliographic information, and all

other types of library data. Written in COBOL, SOLER is readily trans-

ferrable to other computer systems; however, since the programs are not

embedded in the operating system, they are less effective in a problem-

solving environment.

The record definition phase (Section 3.2) permits the user to

define and enter the logical structure of a new file. The input phase

(Section 3.3) then permits him to enter data records into any file in

the data base, including any newly created files. The update phase

(Section 3.4) permits the user to add, delete, or correct data in the

daf:a base, either interactively or batch. The invert phase (Section

3.5) is a pro;:essor which forms inverted lists from the input records.

The inverted lists serve to speed up the retrieval of records in the

retrieve phase of the system (Section 3.6). The output phase (Section

3.7) provides for display of retrieved data on typewriter, high-speed

printer, and/or video display console.

Section 3.1 presents a detailed description of the various files
1

that are incorporated into SOLER. The particular choice of files was

dictated by the requirement to provide a reasonable balance between

user service and system efficiency.

-26-

-27-

.1 File Structure

All file access is through one subroutine -- READWRIT, thus

allowing machine independence. Files are classified into two general

categories -- directory files and data files. The former are charac-

terized by 3O00 byte tracks and the latter by 2000 byte tracks -- the

phy:;ical track size is the actual distinction between the two types.

The track sizes are not flexible -- the two track lengths are built

into the system at every turn and could not be changed within the

existing implementation.

The system uses a set of five files. This is the minimum number

needed to support the system, namely, the system file, a directory file,

and one inverted, one direct data, and one work file. The are des-

oribed below. Files may be added at any time -- this involves execution

of several programs (see Appendix A) for physical and logical creation

and storage of iaformation describing the files. READWRIT must also be

recompiled with FILE and DEFIN macros describing the new file. These

macros create the File Control Block which vill describe the file to

TSOS during I/O operatiolLJ, and internal tables for the subroutine.

RI :CORD

BY

1 1 LE

NW,111Elt

FYTE

TilACK

HALF-140;M

Figure 3.1.1

A Standard System Address

- 28 -

In addition to the physical I/O subroutine READWRIT (which is

written in Assembly language), the system contains two subroutines,

GETRCRD and PUIRCRD, for reading and writing physical records (not

is colts) While special formats are used for various special purpose

tracks throughout the system, the record structure handled by these

routines is used for all data in the data files and inverted files.

SYSTEM
,RECORD LENGTH STANDARD
LENGTH I SYSTEM.

- 1 or 3 ADDitESS D. A T A
I NCLUDES - (I F ANY)

I TSELF INCLUDES
ITSELF .

Figure 3.1.2

Physical Data Record

The first half-word is a binary count of the total number of

halfwords in the record (it includes itself). The second is the

length of the system information (the count includes itself). A

value of 3 indicates that the following 2 half -words are a system

address of the remaining data of the desired record -- thus a logical

record may be a chain of physical records on different physical tracks

and so may exceed the physical track length. Naturally the last record

in the chain has no chain address.

- 29 -

System File

In order to allow the system to operate with different sets of

files, it is necessary to store all the parameters of a given file set

within that set of files. This is always done on file,O, NLMO, which

is known as the System File. The first track of this file, the System

Header record (address 0, 0, 1) contains the names (numbers) of all the

riles in the system and information about their sizes. The current

internal type codes and internal record numbers to be assigned are also

stored here (each terminal field in a definition is assigned a unique

internal type code or ITC; each record input receives an internal record

number or IRN).

Allocation within the system file is handled via information found

in the System Header record. The remainder of the system file consists

of the IRN Conversion Table, the Definition area and the Name Conversion

table. The number of the first track of each table and the number of

tracks allocated to each table may be found in the System Header record.

These tables are the keys which allow the system to interpret the data

stored. in the remaining files.

The IRN conversion table is a table consisting of standard system

addresses. When a record is input to the system, it is assigned the

next available IRN (a three byte, positive binary number). Thus the

IRN points, through the conversion table, to the data record directory.

The Definition area contnins.each of the (up to 25) definitions

within the files, Each of the definitions consists of four parts; the

Tree Array, rre Array, Subroutine Arrays (for all 6 phases or system

unction) and the Name Array. The Tree Array defines the logical

structure of the definition. The ITC array asSociates an Internal

-30-

Type Code with terminal data fields, and also delineates repeating

fields. The Subroutine Arrays specify, for each terminal field, the

routines sapplied by the system administrator which should be applied

to the data. And, of course, the Name Array contains the naJes of all

fields within a definition.

The final table in the System File is the Name Conversion Table.

In it can be found every field name of all the data bases and pointers

specifying where and in which definitions they occur.

Consider now the elements that make up an inverted list. Assume

we have a record, say record number (IRN)N, containing the data item

NEW (Figure 3.1.3). The inverted list would allow us to look up NEW and

the completed search would report that NEW can be found in record N.

Suppose the searcher were interested in a record in which NEW MOON

occurred as, for example, an idiomatic phrase in a dictionary record

describing the word. NEW. It is not enough to know that MOON occurs in

record N; we also must know in which field it occurs. Thu, part of an

inversion in our directories must contain the ITC or internal type code

of the field (or fields) in record N under which MOON appears. We are

clearly also interested in the concatenation of the two words NEW and

MOON. Thus, information needed in an inversion includes: string (or

data item); field (or rrc under which the it occurs); record number (IRN

of the record containing the desired data); and position within the field

(NEW preceding MOON).

Reconstruction is then achieved through concatenation, as indicated

in our example.

- 31 -

ENID; COMI1AND
*rQtrieve 1,111-T.o new or moon and new moon

-1,1::V OR V Alf) -V V
* * *

000001 * " * *
000001 * t *

0001;0d * *

0000001 HAS HEEN RETRIEVED

f.pint wwd ci:try, idiom

NECORO NIE.IBLR 000006

DICTIO!!nY
..U0i;D ENTRY

NEN, A.
....ORIGIN

AS. NIUE, NEOWE;CF. D. NI EUW, DAN. AND SW. NY,
ICE. NYR,GOTH. NIUJIS, L. NOVUS, GR. NEOS,
SANS. NAVES

....PHRASE
NEW BIRTH

:...DEFINITION
REGENERATION; SPIRITUAL REBIRTH; THE BEGINNING
OF A RELIGIOUS LIFE

...PHRASE
NEW DEAL.

....DEFINITION
THE Lcounnic AU[) POLITICAL PRINCIPLES AND
POLICIES ADOI'ICl) BY PRESIDENT' FRANKLIN D.
ROOSEVELT AND HIS ASSOCIATES TO ADVANCE THE
THE LCOIJOMI C AND SOCIAL WELFARE OF THE AMERICAN
PEOPLE

....PHRASE
NEW MOON

THAT PHSE OF THE MOON WHEN IT IS BETWEEN THE
EARTH AND THE SUN, WITH THE DARK SIDE OF ITS
DISK TOWARD THE EARTH; IT APPEARS AS A THIN
CRESCENT CURVING TOWARD THE RIGHT

END OF LIST EN.COUNTERED.

Figure 3.1,3

The Above Example Shows a Retrieval Making Use

:,.t* the Concatenation Operator

-32-

First, PHRASE was looked up in the Name Conversion Table to

determine the correct ITC. Then two lists of records were obtained --

those containing NEW in the desired field and those containing MOON in

that field. The concatenation operator then produced a final list --

containing the'one record which contained MOON immediately following NEW

under the data field PHRASE.

Directory File

There is one Directory File in the system, with 3600 byte tracks.

These tracks are of two types; high level or low level directories. They

consist of strings (or keys) and system addresses. High level directories

point to either high or low level directories. Low level directories

point to inverted lists. The Core Directory is at the top of this tree-

like directory system and is always found on the first track of file one.

Entries in the high level directories are 6 byte keys followed by a 3 byte

syStem address (the record byte is not needed).

All keys are in ascending, logical sort order. Entries in low level

directories consist of an entire key (up to 200 characters) followed by

one or more Internal Type Code, System Address Pairs. A high level

directory.key is the last entry on another directory. When a directory

fills up, it is split into two directories and the last entry on each

directory is inserted in the superior node of the structure.

- 33 -

C011F,DIRFCTOQY.

i.ii IN 1 F 1; 1 I'MON ../.AX

MOON A C F MUNI I' 1 CENT . . .
_______ ______....__________.

V
NEW . . N OON B

-INVERTED LIST

..1.SILLY Al . r ZAX D'

/1
.1 NV MT ED

INVERTED L| ST

_I NVERTED L| ST

I RN
CONVERSION

TABLE

2--
RD DIRECT 0 RY

G A.

DATA I TEM

NEU NOON

Figure 3.l.4

A PHASE OF THE . .

Directory Structure

- 314 -

inverted Files

The system allows from one to five inverted list files, consisting

of '23':` byte tracks. Allocation within these files is handled by the

FREESPAC subroutine, whose mechanism is described later. Each list

consists of IRN, user byte entries which indicate the record and

position within a field for each inversion. The IRN is a three byte

quantity, followed by the three user bytes. The first is to indicate

sentence number, the second word number within the sentence; the third

Is unused.

The entire six bytes are used to determine the ascending, logical

Sort sequence and so the list is ended by an entry (6 bytes) of all one

bits. In order to speed access an inverted list (which is in normal

physical record format) will not be split over physical tracks unless

it exceeds one track in length. Though initially there may be several

inverted lists on a track, when one grows too large to fit on a shared

track it is moved to its own track.

3 . 3 .

BYTE . USER FFFFFF.FFFFFF
I R N . BYTES .

Figure 3.1.5

An Inverted List

- 35 -

Direct'Data Files

There may be several, currently up to five, direct data, files in

the system. It is in these files that a complete data record is stored

a:: an entity rather than as a series of keys in a directory. All data

in these riles is stored under the format of the physical record,pre-

viously described. Due to the large differences in numbers and sizes

or.dnta fields that the system may handle under different data bases,

n chained, rather than continuous, manner of storing data was adopted.

Two formats of records exist in these data files: the data record

directory and the data items themselves.

The logical entity equivalent to a data record is the data record:

directory. The IRN points to the data record directory, through the IRN

conversion table. It may be several physical records long as it can con-

tain up to 1000 entries. Each of these entries consists of an ITC

(Internal Type Code-to identify the field), and a system.. address pointing

to the physical.record containing that field's data. The ITT occurs in

the order delineated by the record's definition; repeating ITC's a; well

as repeating groups of ITC's may occur.

The data fields are stored in these files as they were passed to

the system. As all counts are in halfwords, if a data item contains an

odd number of-bytes it is padded with a blank (40 Hex). A data field,

which can be tit to 32,768 half-words long, may be spread over several

physical records.

This structure permits greater flexibility in placing the data in

the files and cuts down fragmentation within the files. While the chained

physical record system would have allowed logical contiguity without

-36-

1
.

I

:INITION .SYSTEM . SYSTEM
WBER LENGTH 1TC.AaDRESS . . . ITC. ADDRESS

1 l

Figure 3.1.6

Data Record Directory

physical contiguity, the data record directory makes possible faster

access to selected data items within a record. Allocation of space

in these files is done by the FRESPAC sUbroutine.

.*,
LENGTH
(NOT INCLUDE.

ITSELF)
2AIA

Figure 3.1.7

Data Field

-37-

Work Files

The Work Files (from one to three) consist of 2000 byte data tracks.

They_areused by all phases to store data used. within the run that is too

large to be stored. in virtual memory. All phases are in two parts -- the

first in which the user routines are called. and temporary files are

created. In the second section of a given phase, these files are read

and the permanent files modified as indicated by the temporary file.

No fixed frAMat is used for these files -- there are too many

different uses. The input function uses them to build a chain of the

USCVI3 data. Invert allows the user to specify creation of a temporary

rile of inversions; then this rile is read placing the inversions into the

permanent file system. The update function uses these files for both of

the above purposes. The retrieve phase operators usually result in a

third, temporary inverted list. They repeatedly act on two input lists

to produce a third output list. The final output list produced is the

result "answer" to the retrieval. The SOLER system will work most

efficiently when there are three work files. With two input lists and

one.output list, it will attempt to keep each of the three in a separate

rile and thus Minimize disk contention and speeding retrieval.

Allocation of work file space is done by the routine WORESPAC. It

grants requests for either cylinders or tracks by maintaining pointers to

the next cylinder, and track to be allocated. During the input and invert

phases requests for space within a file are sequential and so allocation

is by tracks. During retrieval requests for each temporary inverted list

to be created may be mixed, depending upon the size of each list. Here.

allocation 'is by cylinder (they arc unlikely to exceed one.cylinder),

which will reduce disk access time during retrieval.

I

- 38 -

We are storing a tree structure (our record's information as des-

cribed in the definition) as a linear string. We may have occurrences

of repeating fields to any desired depth -- and with an unspecified

nul:ber of occurrences. In the accompanying definition we have a

repeating field, DEFINITION containing MEANING, PHRASE which also

repeats and ORIGIN which does not. Under certain circumstances it may

not be possible to determine the proper occurrence number. If we have

MEANING, PHRASE, PHRASE; MEANING would be identified as MEANING. But

we can have missing data for any field; thus we cannot determine whether

or not the second PHRASE is PHRASE, i.e., a second PHRASE related to the

given meaning or whether it is really PHRASE, the first PHRASE relating

to a missing data item, a second DEFINiTION.

We solve this problem by adopting the convention that unless the

record structure indicates otherwise, it will be assumed that there is

no missing data. Here PHRASE would be correct. If our sequence were

MEANING, PHRASE, ORIGIN, PHRASE then the second PHRASE would be correctly

identified as PHRASE of a second DEFINITION which is missing. We know

this because ORIGIN precedes PHRASE in our record definition. The

assumption of no missing data is certainly necessary for the SOLER system

to be able to select specified items from an array, and seems quite

reasonable.

Allocation Requirements

Until now we have seen some simple methods for allocation of space

in three types of system files -- the System File, Directory File and

Work Files. The methods have been simple, effective and taken little

computer time. These methods were effective because we were dealing with

:

- 39

known data (we specified the contents and format of the data in these

files) and in one case, the work files, allocation is not overly critical

as the files are clean at the beginning of each run. Finally, in all the

above cases, allocation is in terms of whole tracks -- fragmentation is

not a problem. No we are going to have to deal with a quite different

method of allocation. This allocation mechanism handles two types of

files. In one (the inverted list files) we do know the format of the

data but we did not know its character, i.e., will there be many or few,

long (several tracks) or ahort (two or three entry) inverted lists. In

the direct data files, we can be dealing with many or few fields -- each

field may be long or short and there may be different data bases. Thus,

these characteristics may be different in different parts of the files.

Another requirement ".s the packing of data; fragementation can be a

problem is you lose 10% of file space, and your files use 10 disk drives.

A disk unit is too valuable to discard lightly. Tied in with this

requirement is that of machine independence. The Meg may be on

different direct access devices.

To recapitulate, our data allocation mechanism must pack data to

reduce fragmentation and wasted space; it must attempt to place related

information in one cylinder. It must be data and device independent (for

moving head, direct access devices). Finally this mechanism was built

before fir4al design of the rest of the SOLER system and it was not known

how other parts of the system would use it. It turned out that the

invert, input and update functions all use this mechanism in a different

manner.

- 4o -

Allocation Mechanism

The allocation mechanism is made up of two main programs and one

subroutine. One main program, INITIAL, creates the free space tables

-- setting them up to indicate that the while file consists of complete

tracks except for the tracks in the tables themselves. These are set

up to indicate that they are completely filled with data. The second

main program, FIDUMP, may be run at any time to examine the state of the

files, This program displays the contents of the tables in a more easily

readable format than a simple hexadecimal dump.

The final, and most complex, part is the allocation subroutine,

FREESPAC. It is part of the input, invert and interactive (update)

functions. That is, it must be used by any function which modifies the

inverted list and direct data files. The routine is broken up into four

entry points, each with a distinct function. The entry point, SPACINIT,

loads the tables of the files into the arrays within the subroutine.

TERMIN restores the tables to the files. UPDATE changes the free space

table for a track and the effected cylinder. GETSPAC performs the main

allocation function, that of determining where the new data entered into

the files should best be plated.

3.9 Statistical Formulae Employed

There are many possible statistics that can be constructed

to determine the distribution of the occurrences of terms in a

document collection. These different measures all attempt to

obtain a figure that gives some insight into the possible assign-

ment of the terms to the common, core, or particular category.

All statistics are related to the frequency of occurrence dis-

tributions of the terms. Let this frequency be f(j,d), the

frequency of term J in the d'th review. Then the total frequency

of term j in the collection is:

F(j) = E f(j,d) 3-1

The values of f(j,d) can be normalized by dividing by the

length of the documents, L(d). Then the normalized frequency is:

r(j,d) = f(j,d)/L(d) 3-2

The value of f(j,11) may be normalized differently by

dividing by the logarithm of the length of the document, log(L(d)).

Then the log normalized frequency is:

f(j,d) = f(j,d)/log(L(d)). 3-3

Foz1 each of the above distributions, statistics for the

occurrence of each term j in the document set were computed as

follows:

42.

1) The mean of the values of the distributions.

2) The variance about the mean of the values of the

distributions.

3) The third moment about the mean of the values of

the distributions.

4) The co-efficient of skewness about the mean of the

values of the distributions.

Four of the twelve statistics yielded the best results for

the sample set of terms. These were the three applications of the

cc-efficient of skewness of the distributions and the variance

about the mean of the value of the log normalized frequency

distribution. Two additional measures are included. They were

derived by Don Stone working under the supervision of the author.

The derivation of those statistics is presented in Stone's Master's

Thesis.
7C

The first statistic is similar to one proposed

15
by Sally Dennis. The second is Don Stone's:

S) The variance about the mean of the values of the

logarithm of the frequency distribution, normalized

by the total frequency of occurrence.

7/(j)
V(f(j d)/F(i) 135(L(d)))

In an attempt to utilize only the documents where each

70
term appears, the following statistic was derived:

6) The ratio of the total frequency of occurrence of

each term divIded by the estimator of the Poisson

distribution parameter. This gives S(j), the size

3-4

-43-

Table Structure

These requirements were met by storing all information describing

the files in the files themselves. A table structure (rather than one

of chains of tracks having similar amounts of available space) was

chosen because it describes the location of available free space .ether

that tricrely sizes of chunks of empty space. It was important to minimize

the size of the tables, both to save file space and save time in accessing

the tables (all of which is overhead). The final structure chosen uses

between 1 and 2 bytes per track of the file. While this is less than a

chain structure (a chain would cost 4 (or 8) bytes per track), it

effectively wastes more space because our tables are contiguous and cost

several whole tracks.

There are three types of tables needed to describe the space avail-

able on a file. The first -- the Parameter table -- describes the file.

It contains 3 half-word items; the number of tracks on each, data blocks

or cylinders in the file (NDB), the number of tracks on each data block

(NIDB) and the internal free space category (IESC). This latter is a

constant used in referring to the other tables. All of the information

in the Parameter table is also found along with the correct file number

in the System Header Record.

Before we go further, we will need some terminology. A complete

track is one which has no data stored on it. It is one thousand

half-words (2000 bytes) long. Of these, 999 half-words are available

fcr, data -- when a track has records in the standard system format on

it -- the last record must be followed by a record length count of 0

(for the PUTRCRD and GETRCRD subroutines). We shall refer to a track

- 44 -

containing less than 999 half-words of free space (i.e., already

containing one or more records) as a fragmented track.

The second table -- the Cylinder table -- contains one two byte

entry for each cylinder in the file. The Ith entry corresponds to the

Ith cylinder. The Parameter and Cylinder tables occupy the first track

in a file; thus a file can contain up to 997 cylinders. Each of these

entries is a binary number--from 0 to 255. The first byte, referred to

as Other Free Space (OFS), contains the sum of available space on

fragmented tracks of the cylinder. The second, Empty Tracks (EI), is a

count of the number of complete tracks in the cylinder. It cannot be

greater than 255, thus limiting devices to no more than 255 tracks/

cylinder. Other Free Space can easily be greater than 255; thus the

byte, OFS in the table, is actually the other free space divided by a

constant, K.

In order to determine the total free space (TFS) in a cylinder,

we calculate as follows. The final table, the Track table, contains one

byte for each track in the file (the Ith byte is for the Ith track).

Each of these bytes is the count of free space (CFS) on the track. This

is also greater than 255, so the actual free space is divided by a

constant (IFSC, stored in the parameter table). Due to the truncation,

it would not be possible to tell a complete track from one which contains

a small record -- thus complete tracks are marked by having the CFS byte

be FE (hex) rather than having a count.

-45 -

3.2 The Record Definition Phase

The function of this program J.+ to accept a description of the

logical structure of a data record written in an external specifieatior

language and translate it into a corresponding internal machine repre-

sentation in the form of arrays and tables. The specification language

of a logical record is described in Backus Normal Form (BNF) in Figure

3.2.1. A record may be inserted into the system from the console or it

may be read into the machine from a card disk.

When no syntactic errors are detected in the record definition at

input, it will be processed and inserted into the system, thus updating

information in the following system tables and arrays: the System

Header Record, the Field Name Conversion Table, and the Internal

Definition Table, all of which are stored in the System File. However,

when syntactic errors, wrong input format or unacceptable ambiguities

are detected in the processed record, a proper diagnostic message

identifying the nature of the error is printed, the program is aborted

and a return is made to the calling program. In this case, a diagnostic

flag is set which provides the calling program with the reason for the

error return.

Some error checking facilities are built into the program. If a

suspicious condition which may not necessarily result in error is

detected (e.g., ambiguity which may be resolved by qualification), a

warning message is printed and processing continues. However, if an

input syntax error is detected, e.g., an invalid (unrecognized) key word,

or a subroutine name exneeds eight characters, or a comma is missing,

etc., an error (abort) return is taken.

< record definition >::= < name of definition >
< record definition > < field description >

< name of definition >::= 001 < b > < field name > < b > ,
< b > < common data flag >

< field description >::= < level number > < b > < field name > < b > ,
< b > < repeat flag > < b > , < b > < user subroutines >

< common data flag >::= 0 / COMMON-DATA

< level number >::= three digit decimal number where leading
zeros may be replaced by a blank.

< field name >::= any sequence of alphanumerical characters
(including blanks) not exceeding 73 characters in length.

< repeat flag > ::= 0 / REPEAT

< b >::= 0 / zero or more blanks

< user subroutines >::= 0 / < user subroutines > < key word >
< b > < b > < subroutine name >

< key word >::= INPUT/INVERT/OUTPUT/UPDATE/VALIDATE/RETRIEVAL

< subroutine name >::= any alphanumerical symbol (without blanks)
not exceeding 8 characters in length including the
symbol NONE.

Fitlire 3.2.1

Rte' Detcription of the Input Syntax

The symbol "0" here means that the corresponding expression on the

left of the ::= may be omitted. The symbol < b > indicates whenever it

appears that one or more blanks may (but do not have to) appear at this

place.

-47-

The NLM Record Definition Program consists of a main portion

(RECRDF) and three auxiliary subroutines (HASH, NAMESRCH and INSERT)

which compute the hash code of a field name, search and insert elements

into the system field name tables, respectively. A functional descrip-

tion (a description of the functional flowchart) of these four sub-

routines is given in the following four sections.

The HASHNAME Subroutine

This subroutine (entry HASH) computes a hash-code corresponding to

a field name which is stored in a binary array called "NAME-FIELD". The

hash code is computed by adding the EDCDIC codes for all characters

(including blanks) of the field name, and taking the result modules, the

number of tracks in the field, the name conversion table which is stored

in the parameter N-C-SIZE.

Since the number of tracks in the field name conversion table is a

system parameter which may have a different size for different systems,

and may change during the life of the system, the parameter N-C-SIZE must

be initialized before any hash code. may be computed. A special entry

print "HASHINIT" has been provided for this purpose.

1

The NAMESRCH Subroutine

The function of this routine (entry SRCHNAME) is to search a

name array (stored in a binary array named SEARCHED-ARRAY) for a name

which is stored in NAME-SEARCHED. The structure of the SEARCHED-ARRAY

must have the standard format of data structures containing field names.

- 48 -

If the table is not empty, the search is performed as follows.

Every name of the table is examined in sequential order (starting with

the shortest name at the beginning of the table) until a name is found

whose length is the same as the length of NAME-SEARCHED (stored in

LENGTH-OF-NAME). Then, both names are matched, character-by-character.

If there is a match, 'T' is moved to the MATCH-FLAG and the RESULT-POINTER

is set to point to the beginning of the matching name before returning.

If names do not match, the next name of the same length is located and

examined as before,. If the end of the table is reached, or if the length
'as

of the next name ia the table is longer than LENGTH-OF-NAME, the search

is terminated. In this case, 'F' is moved into the MATCH-FLAG and the

RESULT-POINTER is set to point to that point of the SEARCHED-ARRAY where

the searched name would be inserted.

The INSERTEL Subroutine

This subroutine is used to insert some element (stored in an array

labeled INSERTED-ELEMENT) into a table called TAPLF-TO-INSERT. The

pointer, POINTER -TO- INSERT, specifies where the INSERTED -ET ENT should

be inserted.

The insertion is carried out as follows. First room is made in

TABLE-TO-INSERT for the INSERTED-ELENENT by moving all half-words of

TABLE -TO- INSERT forward, beginning at the point where the insertion is to

be made by an amount equal to LENGTH-OF-ELEMENT. In other words, a window

is made for the INSERTED- ELEMENT by shifting the content of TABLE-TO-INSERT

to the right beginning at a point specified by POINTER-TO-INSERT. After

room has been made, the INSERTED-ELEMENT is transplanted into the cleared

slot of TABLE-TO-INSERT, moving one half word at a time. If the

-49-

TABLE-TO-INSERT is empty, or if POINTER-TO-INSERT points to the end of

this table, there is no need to make room and only the moving operation

is performed.

It should. be noted that INSERTED-FLEMENT is a 3,600 byte array and

that it is not necessary that the inserted element start at the beginning

of this array, since its starting position is specified by the POINTER -

TO- ELEMENT and its length is given by LENGTH-OF-ELEMENT.

The Main Subroutine - RECRDF

The RECRDF routine is the main data processing unit of the NLM

record definition program. During processing it makes use of several

auxiliary subroutines, some of which have been described in the preceding

three sections. This subroutine is called with two parameters: the

DIAGNOSTIC-FLAG and the SYSTEM-HEADER-RECORD. The purpose of the

DIAGNOSTIC-FLAG is to convey to the calling program information concerning

success or failure of data processing after return from RECRDF. All other

information is needed by RECRDF for processing of the input record, since

all needed system parameters (addresses to data areas or pointers to

system tables, etc.) are contained in the SYSTEM-HEADER-RECORD (SHR).

The SHR is the header record of the system file which contains all of the

tables and data areas generated by the RECRDF program.

The programming starts at the first paragraph labeled INITIALIZE

where the subroutine HASHNAME is initialized by setting its "module

divisor" equal to the number of tracks in the field name table. Next,

the various pointers, counters and program parameters are set to their

initial values and the processing of the input record begins in the

paragraph labeled MAIN-LOOP.

- 50 -

The paragraph MAIN-LOOP is the beginning of the main program loop

through which the subroutine must cycle during processing of every line

of the input record. First the pointers to the INPUT-BUFFER (I-B) and

the NA NE-ARRAY are set to point to the first character. Then the next

line is read from the input media into the I-B by calling the subroutine

RDATA. The auxiliary parameter VALU is a diagnostic flag which conveys

information about the success or failure of the record operation. If

VALU contains a zero, the read operation was successful and a transfer is

made to point C-1 where processing continues. When VALU cants' value

of 16, an end of file was read at the input media which means that the

entire input record has been processed and transfer is made to CHECK-

REPEAT-STACK where concluding operations are performed. When VALU con-

tains a number other than 0 or 16, an input read error has occurred;

consequently, a proper error message is generated and control is trans-

ferred to ERROR RETURN where the error message is printed, the DIAGNOSTIC-

FLAG is set to one, and an error return is taken.

When a-suncessfql read operation has been carried out, processing of

the newly read data starts at C-1. First the level numbers (the first

three digits of the input line) are extracted from the input record by

performing the CHECK-DIGIT section three times -- once for every digit of

the level number. The CHECK-DIGIT section performs a binary to decimal

inversion for the byte pointed to by the INDEX-OF-I-B. If something else

other than 0, a blank or a decimal number is contained in the field

reserved for the level number, a proper error message is printed and an

error return is taken. If the level number is zero (or blank), it is

assumed that this line is a contiLuation of the previous field and pro-

cessing continues at the RESTORE-LEVEL-NUMBER paragraph.

- 51 -

When a position level number has been computed, transfer is made to

the point EXTRACT-NAME-FIELD where the name field of this sub-record is

extracted, after first removing the leading blanks (if any) and then

transplanted into the array labeled NAME-FIELD. If the name field con-

tains several words or symbols separated by blanks, and if the number of

blanks between words or symbols is greater than one, all but one of these

blanks are removed. After the entire name field has been extracted, a

check is made as to whether it is a "Header" and, if so, the HEADER-FLAG

in the SHR is set to If the number of characters of the name field

is odd, a trailing blank is added to make it even bemise the name field

will later be stored in a half-word array which contains two characters

per half-word. Next, the has code for this name field is computed by

calling the HASHUAMEsubroutine. Then the address of a field name table

track corresponding to this name field is computed by indexing the basic

address of the field name table by the hash code of the name field, and

the track is read into an array labeled TRACK-OF-FIELD-NAME-TARLE.

At the paragraph CHECK-NAME-TABLE the track of the name table is

searched for the field name (using the NAMESRCH subroutine). If the

field name already appears in the name table, this name is ambiguous and

a diagnostic error message is printed. If the level number is one, the

ambiguity is unresolvable; therefore, the program is aborted and error

return is taken. Otherwise, a warning message is printed and processing

continues as if the name were not already present in the name table at

the paragraph NOT-IN-NAME-TABLE. The next step of the program is to

check as to whether the field name has appeared in this record before.

This is done by searching the name array using the NAMESRCH subroutine.

IV the field name is again ambiguous, an elaborate check is made as to

- 52 -

whether this ambiguity is resolvable. The ambiguity is not resolvable if

both names appear on the same level in the tree of the record structure

and have the same predecessor mode(s); that is, the field name(s) of

the predecessor mode(s) is (are) the same. The check for unresolvable

ambiguity is performed in the TEST-UNRESOLVABLE-AMBIGUITY section by

first locating the ambiguous modes, comparing their level numbers and

then comparing the predecessor modes when the level numbers are the same.

As before when an unresolvable ambiguity is found, the program is aborted

after printing the proper error message. If the ambiguity is resolvable,

only an additional entry containing a pointer to the tree array is added

to the already present name array entry for this field name. If the field

name is not in the name array, a name array element for this field name

is generated and inserted into the name array. The INSERTEL subroutine

is used in both cases to do the inserting.

Finally at the paragraph labeled GENERATE-TREE-ARRAY-ENTRY an entry

of the tree array corresponding to this field name is inserted into the

proper slot of the TREE-ARRAY. Then the Repeat Stack is checked at the

paragraph labeled CHECK-PREV-REPEAT. The Repeat Stack is a linear array

whose every entry contains the level number and ITC array index for those

fields that have been flagged with the repeat flag (that is, fields that

may be repeated). Since repeated fields may be nested within repeated

fields, a pushdown stack is required to store the information needed to

generate the correct entries in the ITC and subroutine arrays. Whenever

a repeated field is encountered, an entry is pushed on top of the stack

containing the level number and ITC index of this field. Then for every

subsequent field its level ranter is compared to that stored on the top

of the repeat stack. If the level of the present field exceeds the

- 53 -

level number on top of the repeat stack, processing continues at the

paragraph INSERT-LEVEL-NUMBER; otherwise, some processing centered about

the repeat mechanism must be performed. First, the ITC index of the

(previously encountered) repeated field is retrieved from the top of the

repeat stack and placed into the next entry of the ITC array; then the

name 'SYSBRNCH' is moved into all six corresponding slots of the sub-

-outine array and the repeat stack is popped by decreasing its index by

one. Then again, the top element of the repeat stack is checked and

similarly processed if necessary. This activity ,f the repeat mechanism

continues until either the repeat stack is empty or until the level

number on top of the repeat stack is less than equal to the current level

number, at which 7%',int normal processing is resumed at the INSERT-LEVEL-

NUMBER paragraph when the level number of the currently processed field

is inserted into the proper slot of the tree array.

When the name of the field has been disposed of, processing continues

at the paragraph l ;beled GET-NEXT-KEY-WORD where every key word is pro-

cessed individually. If another key word is found in the input buffer,

it is extracted from the buffer and moved into the NAME-FIELD array.

If the number of characters in the key word is odd, it is appended a

trailing blank by performing the AL016T-NA1V E section. Then the table

of key words is searched for the key word using the NAMESRCH subroutine

IC the key word is not found in the table, an error message is printed

and an abort return is taken. The table of key words yields a code

identifying the key word to the program. If the key word code is between

one and six, the key word identifies a user subroutine; in this case

transfer is made to the paragraph CHECK-ITC-POINTER.

- 54 -

If the key word code is 7, the key word is a repeat flag. In this

case, transfer is made to paragraph SET-REPEAT-FLAG. If the level number

is equal to one, the program is aborted because the first level must not

be repeated; otherwise, the repeat flag in the tree array is set to 'T'

and the repeat mechanism is activated by pushing the current level number

and ITC array index on the top of the repeat stack. Then return is made

to GET -NEXT. Y -WORD.

If the key word code is 8, the key word is a common data flag.

Again, if level number is 1, the program is aborted; otherwise, the

common data flag in the record definition area is set to 'T' and

transfe- is made to GET-NEXT-KEY-WORD.

The case where the key word identifies a user subroutine is treated

at paragraph CHECK-ITC-POINTER. If the ITC pointer in the tree array

is found to be equal to zero, it is recognized by the program that a

terminal element of the record definition tree has been encountered,

and that the first user subroutine for this field is being processed.

Therefore, a 'NONE' is initially moved into all six slots c.'' the sub-

routine array corresponding to this field. If the name of this field is

'Header' (as recognized earlier during processing of the field name), a

zero is moved into the corresponding slot of the ITC array; otherwise,

the index of the ITC array corresponding to this field is moved into the

proper slot of the tree array. Next, at the paragraph GET-NAME-OF-

SUBROUTINE the leading blanks are removed and then the subroutine name is

transplanted from the input buffer into the proper slot of the subroutine

array identified by the code of the previously processed key word contained

in the common variable I. If the number of subroutine characters is less

- 55 -

than 8, trailing blanks are added; if the length of the subroutine is

Rreater than 8 characters, only the first 8 characters are used.

When the user subroutine has been moved to the subroutine array,

control is transferred to point GET NEXT KEY WORD where the next key

word is processed as described in the foregoing. If the entire input

line has been processed, control is returned to point MAIN -LOOP where the

next input statement is read into the Input-Buffer and the program keeps

cycling in this manner until an end o'f file is read on the input media

(VALU 16 after a read operation).

When an end of file is detected by the program, it is assumed that

the entire input record has been processed and a transfer is made to

CHECK-REPEAT-STACK. In this paragraph, the repeat stack is checked and

it' found to be non-empty, the repeat mechanism is activated and repeat

entries are inserted into the subroutine and ITC arrays as described in

the preceding paragraphs. When the repeat stack has been emptied,

transfer is made to UPDATE-SYSTEM-FILE where the data structures

generated by the RECRDF program are transplanted into the proper areas

of the System File.

First the number of this definition is computed. Then the field name

table is updated as follows. For every element of the name array, an

element of the field name conversion table is assembled in the .proper
t

format. Then the hash code for the field name of this element is com-

puted by the HASHCODE subroutine. This hash code is added to the base

address of the field name table, thus yielding the addresn of the field

name table track for this element,, The track is read in and searched. If

the field name for this element does nOt yet appear in the table, the

entire element is inserted using the INSERT subroutine;. however, if the

-56-

name is already in the table, only the indexes are inserted into the

table (simply by changing a pointer to point to the indexes rather than

to the beginning of the element before calling the INSERTEL subroutine).

Then the updated track is written out on disk and the next element of the

name array is processed in the same fashion by returning to TRANSPLANT -

NEXT -NAME. This cycling continues until the entire name array is pro-

cessed, when transfer is made to MOVE-RECORD-DEFINITION where the

individual data structures of the record definition are strung together

in the correct order and written out on disk.

However, before the tree array can be written out on disk it is

necessary to compute all the name array pointers in the tree array.

This is done by scanning all elements of the name array in sequential

order and inserting a pointer to the name array element into the name

array pointer of every tree array element pointed to by the indexes of

the name array element. When the tree array is updated (the entire name

array is scanned), a dummy entry is appended to the end of the tree array,

and its length is computed. If the length of the tree array is less than

one track (3600 bytes), the ITC array is appended to the tree array; then

the subroutine arrays are appended and then the name array. Aiter.trans-

planting a half-word, a check is always made as to whether the track has

been filled (1800 half-words) and, if full, it is written out on disk and

pointers are reset so as to start loading a new track at the beginning.

This process continues until all elements of the record definition have

been written Out on consecutive tracks into the system file in this order:.

tree array, ITC array, subroutine arrays and the name array. Then the

system header record is updated and written out, the diagnostic flag is

set to zero (normal return) and an exit from the subroutine is taken.

- 57 -

3.3 Input Phase

The purpose of the input phase Is to accept raw data and stcre it in

the data base. For each type of data to be processed, there is a defini-

tion which describes the logical structure of a record.

For each field in the record there is a corresponding terminal field

in the definition. Each terminal field in the definition has associated

with it an Internal Type Code. If a group of fields is to be repeated,

the field immediately following the group of fields has as its user sub-

routine name the name of the system branch routine. The Internal Type

Code associated with this field is a pointer to the first field of the

group of fields to be repeated. This will be more fully discussed later.

It is the job of the user subroutines to read the raw data, whether

it be on cards, tape, etc., perform any formatting required and pass the

data to the input phase in the order prescribed by the definition.

Since the system has been designed to handle data in many different

forms, the user subroutines are designed to handle the unique charac-

teristics of each type of data and thus provide the interface between

the raw data and the input phase.

The data is permanently stored in the data files of the data base.

The structure of the stored data will be discussed later.

3.3.1 Operation of the Input Phase?

The program NPUTEXEC performs all initialization procedures required

by the input phase. This routine accepts as input the phase name and

the name of the definition required for processing the type of data

currently under consideration.

-58-

For example:

4:Input Toxicology Information File >

as an input command calls for the definition of the record structure of

the Toxicology Information File to be processed by the input phase.

Control is then passed to the main input routine - INPUT. INPUT

calls BUFRMNG to convert the definition name in the input command to a

definition number and then calls DEFCHAR to retrieve the logical struc-

ture of the definition currently being used.

NICEDEF is then called to build the Fetched-Definition-List and

User-Subroutine-List. The information in these lists include the name

of the entry point of the user subroutine to be used to process the

data for each terminal field in the definition, the inhibit flag for

each terminal field, etc.

The next step in the processing of data is to obtain an internal

record number (IRN), fromIRNWORK, to be used in referring to the record

being processed.

At this point, processing on the data is begun. The name of the

'entry point of the user subroutine required to operate on the data for

each terminal field in the definition is obtained from the User-

Subroutine-List and passed to CALLSUB along with the Internal-Type-

Code (ITC) of the field the definition requires data for, and other

parameters. CALLSUB initialises the loading of the user subroutine and

passes control to it.

- 59 -

The user Subroutine then reads the raw data for a field and

determines if the ITC of the field of data read is the same as the

ITC 01 the field required by the definition. If not, the user

subroutine sets the value of Returned-Length to $ and returns control

to INPUT. INPUT then sets the value of the length of data for the

ITC required by the definition to 0, determines the next ITC required

by the definition and passes control back to the user subroutine via

CALLSUB.

This process continues until the ITC of the data read matches

the ITC required by the definition. At this point the user subroutine

moves the data read into the Immediate-Return-Buffer; sets the value

of Returned-Length to the number of halfwords in the Immediate-Return-

Buffer and passes control to INPUT which sets the value of the system

branch flag for the field to 'Y'.

The Immediate- Return- Buffer is 1000 halfwords in size. If the

length of data for a given field is greater than 1000 halfwords then

the user subroutine sets the value of the Overflow-Flag in the System-

Data-Area to 'Y' and returns to INPUT.

When the Overflow-Flag is on,INPUT empties the Immediate-ReiUrn-

Buffer and returns control to the user subroutine. This process

continues until there is no more data for a given field.

this continues until all the data for a record has been read

through the user subroutine.

If at any point the name of the user subroutine entry point in

the User-Subroutine-List is the name of the system branch routine,

the following algorithm is applied.

-

- 60 -

1) The ITC of the field with the system branch routine as the

name of its user subroutine entry point is a pointer to the first

field of a group of fields in the definition to be repeated,

2) A check is made to see if any of the fields between the field

pointed to by the ITC in I and the field with this ITC had any.data

associated with them (i.e., their system branch flag was set to 'Y').

3) If the result of (2) is positive, then Input resubies pro-

cessingcfrom the field pointed to by the ITC in (1).

4) If the result of (2) is negative then processing continues

from the point where.it stopped.

Input keeps a list of TTOs had, the number of halfwords of data

returned for each. After each return of the user subroutine, INPUT

calls LONGSTOR to temporarily store the data in the work files.

The data is temporarily stored in a Chained manner. As the data

for a record accumulates to more than_a track (1000 halfwords) a new

track* in the work file is used with the address of the previous track

stored on the'new track.

Thus when the data for a record has all been temporarily stored,

we have a list of ITOS, the length of data for each, and the address

of the last track used for temporary storage. The" data on the Iasi

track used contains the address of the net to the last track used,

etc.

When all the data for a reCorl has been tempotarilyetored,

control is passed to DATARECD which initiates the procedures for

permanentiy-storing .data in the data base.

An allocation of space is obtained from FREESPAO and the data

for each field in the record is stored on disc in the following manner;.

- 61 -

Length
of Record

r Length
of System

Overflow
Address
(if any)

Logical
Length
of Data

Data

1/2 word 7><1/2 word word><1/2 word

Where "Length of Record" is the. physical length of data for a field

stored in this entry, "Length of System" is 1 if there is no overflow

`address and 3 if there is an overflow address. There is an overflow'

address" if it is not possible to store all the data for a field in

one entry. The overflow address is the address of the remainder of the

data for the field.

There is also a directory for each record stored in the data base.

The directory contains a pointer to the data for each ITC in the

definition that had data associated with it. The directory is of the

following form;

Length
of Record

Length
of System

Overflow
Address
, .

any)

Definition
Number

Length of
Directory

I
m

(ifC

Poin-
ter

-
4

FYA,,
tea

When the data has been permanently stored, IRNWORK is called to

store the addressof_thedirectory_of the record processed and the

JRN associated with it.

An entry is then made on the .INPUT. list, of the definition

number used, for processing by the invert phase.

If there is another record to be processed under the same defin-,

ition, INPUT resets all pointers, counters, and flags and repeats the

processing procedures.

If there are no more recordsto be processed under the same

definition, control. is passed to NPUTEXEC. At this point, either a

-62 -

new input command may be given for processing data under a different

definition or processing may be terminated.

In the later case NPUTEXEC performs the required termination

procedures such as writing out the System-Header-Record..

- 63 -

3.4 The Update Phase

Updating is an integral part of information systems. Erroneous

data which enters the files must be corrected. Correct data must be

kept current, and may finally become obsolete. The update function of

our system provides for all of these functions. While the update phase

may be used from a batch mode, as may all phases of the system, the design

emphasis has been toward interaction with a terminal user. Its responsi-

bility is to change the data base, as directed by the user, and to maintain

correspondence between the directory structure and the data. There are

two major systems to be updated -- the direct data structure and the

directory, inverted list structure. For reasons of expediency, directory

update is accomplished by placing an inverted list entry of zeroes over the

element to be deleted. Though inverted list entries are in sort order,

our sorts could easily be modified to ignore a zero entry. Thus the

directory update is quick.

A more careful approach was chosen for updating the direct

data files. The operation of deleting data is relatively simple -- a

dummy record is written, where the original data field existed -- this

single half-word -- record length count is needed in order to maintain the

correct record addresses between data record directories and other data

items on the track. This decision, to update the direct data files as the

update progressed, was quite important for modifying data. -Modification

means deletion of the old data. Items are deleted, the free space tables

are updated, and so the new data items can replace the old, thus keeping

data items within one cylinder.

- 64 -

During the invert function, the system inverts each record under

the field names of the data field which contain data (using a special

ITC of zero). This allows the user to specify RETRIEVE CATEGORY ma FIELD

NAME and so obtain all the records containing data for a specific field.

When ADD or DELFTE commands are processed, these inversions may change

and it is part of Update's task to maintain consistency here. Thus,

update must modify and maintain consistency between three basic items --

data, data inversions, and finally field name inversions.

General Description of the Update Mechanism

The update system is part of what we term the "interactive" phase.

This phase includes retrieval, output and update functions. Hence, we

can select records to be updated using the full selection power of the

retrieval mechanism. One merely retrieves the desired records;- they are

placed on the "active" list. Then one, can perform one of several commands

-- PRINT, LIST, DELETE, MODIFY or ADD (though other commands are possible,

they are retrieval commands and affect rather than interrogate the "active"

list).

The operation of an update command is divided into two sections; the

user section and the system section. This division allows user routines

to veto deletion of key fields and maintain the integrity of the data

base should a user routine result in abnormal termination. During the

user section, data and other information is exchanged between the user

routines and the system; and various temporary files (within the data

set, the Work file) are built. During this section, user routines from

several phases come into use (we are placing data into a state for full

retrieval) and must execute the user validate and invert routintlis, as

- 65 -

well as the update and output phase routines. Naturally, which

routines are executed depends upon the exact command.

The syntax of the various commands requires that they specify

certain fields. If none are given, the entire record definition (all

fields) is assumed. The desired command is processed repetitively

against each record of the "active" list. That is, each field is pro-

cessed for each record of the list (provided the record contains the

specified field or fields). When all records have been treated, the

user may enter a new command.

A system sub-eXecutive (comprised of the routines.PRINTA, PRINTB, (

OUTPUTPH, and DRDSCAN) is responsible for interpreting commands. It

builds a list of the ITC's to be processed, and using this list as a

guide, matches the data record directory of the current record against

the record definition, and taking subscripts into account, feeds the

data record directory.and a pointer to the correct ITC, address pair

entry into the update-output mechanism.

The update phase contains its own executive, a lower level sub-

executive under the retrieval and output executives. This routine

(MiNIEXEC) actually retrieves the data for the desired field, and if

the print flag is on, sends it to the user's output routine. For a

print command, no other action is taken. If the comiiand was DELETE, ADD

or MODIFY the data item and the pointer into the data recorf directory

are sent to the appropriate routine. This routine will store information

concerning the field in a table, create temporary files and feed the data

item to the correct user routines. When this has been done for each

field, the user section is completed.

ENTER COMMAND
*retri .e name . chris

N.V

000000 =
000001 =
000031 =
000001 n
0000001 IU HAS BEEN RETRIEVED
ENTER COMMAND
delete name, address

RECORD NUMBER 000001

PHONE DIRDCTORY
..NAME 1

....LAST NAME
NEW
FIELD HAS BEEN DELETED

...FIRST NAME
CHRIS
FIELD HAS BEEN DELETED

..ADDRESS
STREET

252 E 88 ST.
FIELD HAS BEEN DELETED

....CITY
NEW YORK
FIELD HAS BEEN DELETED

....STATE
NEW YORK
FIELD HAS BEEN DELETED

....ZIP CODE
10017

FIELD HAS BEEN DELETED

END OF LIST ENCOUNTERED
ENTER COMMAND
*retrieve nome n chris or state new york

N.V OR NV V

000000
000000
000000
000000
000000
000000

*

.

m

.

u

* *

* *

-

NO RECORDS SATISFY THIS RETRIEVE

Figure 3.4.1

Example of a Delete Command

ro

-67-

For a print command, the output executive will have completed

processing the record, and will go on to the next record. For an

update command, it now calls the unload entry point. This entry

point (MINIEND) determines the correct command land calls the approp-

riate routine. In this routine, the tables (containing an entry for

each field) will be scanned and fields added or deleted. Temporary

files will be read and inversions added or deleted. Finally, the data

record directory will be updated (or deleted) and the update for the

record will be complete.

Update Subroutines

Ii

The Update phase is invoked by three commands: DELETE, MODIFY and

ADD. Below, we give a brief description of the subroutines used by each

command.

(a) DELETE

A logical flowchart of the DELETE operation is shown in Figure 3.4.2.

Subroutine MINIEXEC is entered once for each field and is also used to

process a print command. It fetches the data and if necessary feeds it

to the user's output routine. Before returning, it calls DELETE.

The DELETE subroutine is called for each field and stores in a

table information describing the field to be deleted. It then passes

the data to the user invert routine which calls CREATE. This creates a
1

temporary file of the original data inversions. Finally, the data is fed

to the user update routine.

-->

MINI EXEC

S Y S T EM

USER
PRINT
ROUTINE

DELETE

USER
UPDATE;.
ROUTINE

USER

USER
INVERT
ROUTINE

CREATE

SORTI NVR

FIELDEL
->

READINVT

UNLODEL --3
INVERDEL

--> FLDNAME NAMEDEL INVERDEL

Figure 3.4.2

Logical Flow of a Delete Command

- 69 -

UNLODEL supervises the unloading of the tables and files for a delete

command. It must update the data, the data inversions and finally the

field name inversion. First, the data fields are deleted. The table of

delete elements is sorted, and then each element is processed against the

data record directory.

FIEIDEL is called for each record in the delete table and writes a

dummy record to delete the data field.

UNLODEL then calls NEADINVI to obtain each entry of the inversion

file, and then passes this entry to INVERDEL.

We have previously created two arrays of pointers into the name tabfes,

one from both the original and updated data record directories. These are

sorted and processed together. Entries missing from the updated array

represent deleted field name inversions and are processed by NAMEDEL.

(b) MODIFY

The MODIFY command is implemented according to the logical flowchart

in Figure 3.4.3.. The calls to MINIEXEC are exactly Is they were for

DELETE. However, after fetching the data instead of calling DELETE, the

data is passed to CREATMOD.

CREATMOD is called for each field; it stores information in a table

and feeds the old data to the user invert routine to create a file of old

Inversions. The user update routine returns the modified data and the

invert routine is called again to create a file of new inversions. The

data is stored in a temporary file by LONGSTORE.

(c) ADD

Figure 3.4.4 illustrates the logical flow of ADD. In general, this

command is very much the same as a delete. We will add instead of

deleting field name inversions; we will add data inversion and will add

_MINIEXEC

S Y S T E M

470-

uSER
PRINT
ROUTINE

U S E R

USER
INVERT
ROUTINE

CREATE

SORTINVR

USER
UPDATE.
ROUTINE

_CREA;MOD

USER
VALIDATE
ROUTINE

USER
INVERT
ROUTINE CREATE

UPDATA

MERGINVR

UNLODMOD COMPARES

LONGS.TOR

DATAFLD

SORTINVR

-->

MERGTRCK

DATAOHNK

--->

---->

->.

INVERDEL

MODIFY

INVERTER:

Figure 3.4.3

READINVT

AUTHOR

Logical Flow of a modify Command

READINVT

AUTHOR

(OLD)

(NEW)

- 71 -

data using the routines from the MODIFY command. CREATMOD is called to

Obtain the data to be added. The data is fed to the user invert routine

and then to LONGSTORE to create the temporary inversion and data files.

In UNLODADD, UPDATA first is called to place the new data into the

permanent direct data files. The new ITC, ADDRESS pairs are then

placed in the data record directory.

The field name inversions are processed as before by FLDNAME. Now,

however, NAMEDEL calls INVERTER to add the new inversions. The inversion

entries are read by READINVI and the system routine INVERTER used to add

them to the inverted lists. This time the new array is the first para-

meter (it will have the extra entries; as data fields have been added,

not deleted). Now the update is UPDATA.

MI NI EXEC

S Y S T E M

V

-72-

US ER
PRI NT
ROUTI NE

UNLODADD

CREATMOD

L

USER

USER
UPDATE
ROUT! NE

USER
VALIDATE
ROUTI NE

-->
USER
I NVERT
ROUTI NE

UPDATA

1> , READ I NVT

I NVERTER

F LD NAME

LONGSTOR

LiCREATE

FORT I NVR

DATAF LD

NAMED EL

-DATACHNK

-÷ INVERTER

Figure 3.4.4

Logical Flow of an Add Command

-73-

3.5 The Invert Phase

In any information retrieval system implemented on a computer,

there must be a mechanism by which the system can efficiently access

information desired by the user. The invert phase is a processor

which forms inverted lists from the records input to the system.

These lists are used by the retrieve phase to retrieve records that

satisfy a request.

The invert processor has been designed and implemented to make

efficient use of disk space and to minimize retrieve time. The former

is, done by avoiding unnecessary fragmentation of inverted lists on

tracks by1locating a track with enough space to accommodate the inver-

ted list segment rather than using the first available track. Thus, a

'segment of an inverted list which is equal to or less than one track

in length will not be broken up so as to reside on several different

tracks. This technique also minimizes rietrieve time, since the number

of disk accesses is reduced. Another scheme used to optimize response

time is avoiding unnecessary fragmentation of an inverted list on

cylinders, which reduces movement of the read-write heads.

Another major design consideration is error recovery capability.

This facility is used when the length of a string in the data to be

inverted is greater than the maximum length of a string which can be

accepted by the system directory. Under such a condition the phase

stops the processing of the current record, but instead of completely

terminating, continues processing with the next record on a list of

records to be inverted.

Finally, the phase can be initiated from either a terminal or

card reader. This gives a. user the flexibility of using the more

appropriate means.

The invert phase takes as inputs a definition name, a definition,

a directory and inverted lists, and updates the later two. The invert

processor consists of several subprocessors as shown in Figure 3.5.1.

1. Accepting the definition name and

converting it to a definition number.

2. Input of the definition and user

subroutine table for the records

to be inverted.

3. Input of the appropriate II list.

4. Processing of the IRN list which

consists of input of data directory,

processing values of terminal fields,

processing field names, and formation

of inverted lists.

Figure 3.5.1

Subprocessore of Invert Phase

- 75

At the initiation of the invert phase INVREXEC accepts the defini-

tion name of those records input to the system but not yet inverted.

The definition name is converted into a definition number. If no such

definition name is found, the processor terminates. The conversion is

performed by MAININV.

The definition correspopding to thedefinition number found above

is read into core by MAININV. The definition includes the name array,

tree array and ITC /array. These structures play an important role in

the processing of field names.

The user subroutine table associated with the definition number is

read into core by MAININV. This table specifies a user subroutine'for

each terminal field in a record. Each entry in this structure is an

ordered quadruple which consists of an ITC (Internal Type Code), a

name of a subroutine which is to be applied to the data associated with

the ITC, a sysbranch flag, and an inhibit flag. The ITC is a positive

integer which specifies a terminal field in a record. There is a

unique mapping of each terminal data field in a record into the positive

integer. This assignment is made in the definition phase. The sys-

branch flag is used to process repeated fields, while the inhibit flag,

when set, prevents execution of the subroutine. A user subroutine

table is as shown in Figure 3.5.2.

In order to understand how the list of record numbers to be pro-

cessed are located, it is necessary to give some explanation of the

structure of the system directory which is used to access inverted

lists. The directory is a tree structure. Each terminal node is an

-76-

ITC
Subroutine

Name
Sysbranch

Flag
Inhibit
Flag

ITC
1

ITC

Subroutine
Name

1

SubroutineSubroutine
Name

n

N

N

N

N

Figure 3.5.2

User Subroutine Table

entry in the directory; each non-terminal node is used by searching

routines to locate an entry. The format of an entry is shown in

Figure 3.5.3.

L 1 Keyword N FC A ... FCin
/

An

Half -

word
Variable Half- Half- Fullword

word word.

entry 1

L is the length of a keyword in halfwords

'Keyword is a string

N is the number of entries

FC 1.(i a 1,2,...0) is a function code

Ai (1,== 1,2',...0) is an address

Figuie 3.5.3

Structure of a Directory Entry

entry n

-77-

Entries can be partitioned into two classes. Class I is the class

of strings which starts and ends with a ".". Each function code in

this entry is a definition number. There is a unique mapping of the

system definition names into the positive integers as each definition

is entered during the definition phase.

Class II entries are all other entries. Each function code in

this type of entry is an Internal Type Code.

The address associated with each function code points to an

inverted list of record numbers. All addresses in an entry of the type

Class I point to a list of record numbers to be inverted. All addresses

in an entry of the type Class II point to a list of record numbers which

have been inverted.

An address consists of a record number, file number, and track

number. The record number specifies which record on the tract: is to

be located; the file number specifies the file to be accessed, and the

track number specifies which track in the file is to be accessed. The

address format is shown in Figure 3.5.4.

Record File
Number Number

Track Number

Figure 3.5.4

Address Format

The list of record-numbers associated with the definition numbor

found above must be located and read into core. SETTABLE begins this

process by accessing the input entry in the directory. The aUresses

- 78 -

in this entry point to a list of internal record numbers to be inverted.

The reiatimship between the input directory entry and the IRN lists is

shown in Figure 3.5.5.

Definition 1 Address 1 Definition 1 Address n

Irn 1

Irn n

Irn list for
Definition 1

Figure 3.5.5

Relationship Between Input Entry and IRN lists

Irn q'

Irn p

Irn list for
Definition 1

The input entry is searched by SETTABLEin order to locate the

definition number found in step 1. The address associated with the

number is used to read the IRN list into core.

Processing of an IRN in the IRN list is divided into four parts.

The first part is the conversion of the IRN into an address by DIRECTOR.

The address is used to read a data directory into core. This structure,

whieh.is created during the input phase, specifies the sequence of

terminal fields that appear in the record. Each entry in the data

directory consists of an ITC and. an address. The ITC-identifies a field

,In the record; the addiessis a pointer to the data associated with the

.fTC.

79 -

Since each entry in the data directory specifies a terminal field

and where it is located, the value of all terminal fields in the record

are processed by having DIRECTOR step through each entry in the data

directory. By using the address in an entry, the data associated with

the ITC of the entry in question Ls read into core. For each string in

the data, the length of the string and the user bytes are calculated.

The user bytes indicate the word and the sentence in which the string

appears. The string, its length, the user bytes, the ITC currently

being processed, and the internal record number are entered as an

ordered quadrqple into a temporary inverted file by TEMPBUF. This

file prevents a record containing an error to be partially inverted.

At the very beginning of the processing of an IRN, a permanent name

index array is cleared. Each time V terminal data field iS processed

(i.e., an ITC), an index to the name of this terminal field and indices

to the names of any fields superior to the current field are entered. into

a temporary array by the routine SUPERIOR. The elements in this array

not in the permanent name index array, are added to the permanent name

index array. As a result, the permanent array will contain indices to

all those field names for which data appeared in the record after all

terminal fields have been processed.

At this point, the permanent array of name indices are ready to be

processed by DIRECTOR. Each index is used to locate the name of a field:

in the name array. For each string in the field name, the length of the

string and the user bytes are calculated. These three quantities as well

as the ITC and the internal record number of the present record are

8o

entered into the temporary inverted file. The ITC for a string in a

field name is zero in order to distinguish a field name string from a

data string.

The ladt step is unblocking the temporary inverted files in order

to form the permanent inverted lists. The unloading is accomplished by

inputting each ordered quintuple in the temporary file to the "Invert"

subroutine which forms the permanent lists. The quintuple 4_s a string,

its length, function code, (ITC), user bytes, and internal record number.

The invert subroutine searches the directory for the string and function

code. If a match is fas.nd, the internal record number and user bytes

are added to the inverted list associated with string and function code.

Otherwise, the string and function code are added as an entry in the

directory and an inverted list consisting of the infernal record number

and user bytes associated with the new entry is created.

- 81 -

3:b The Retrieval Mechanism

The SOLER retrieval mechanism is designed to operate interactively

in a time-shared environment. The searcher is provided with powerful

retrieval tools to aid him in satisfying his requests.

One of the advantages of the system is that the actual data in the

data base is never accessed during retrieval. The directory and inverted

list structures allow full text search without direct data access. The

previous sections of Chapter 3 have described the internal structures

needed to understand the logic of the retrieval phase; this section

explains the logic itself.

The interactive phase of SOLER is divided into the retrieval and

output mechanisms. The main purpose of the retrieval mechanism is to

create an active list of records which result from the user's request;

the purpose of the output mechanism is to print data from records in the

active list. Although the two mechanisms are bound together into one

program, the user executes them by separate commands (see SOLER User's

Manual, Appendix A).

The user of a general-purpose interactive retrieval system is

interested in both the ability to make varied types of requests and the

speed with which these requests are processed. In general these two

considerations conflict with each other. Dodd, in his discussion of

[11
inverted list Systems , states '2 he virtue of such a system is that

it allows access to all data with equal ease. Consequently, it is more

suitable for situations where the data retrieval requirements are less

tredictable,... Although the inverted list approach lends itself to easy

retrieval, storing and updating data is more difficult, because of the

-82-

maintenance of the large dictionaries." With this in mind, the SOLER

retrirval mechanist) was designed to empi y an inverted list structure

that provides the user with a very powerful tool which responds within

a matter of seconds.

There are five t7pes of commands which comprise the retrieval

mechanism: the browsing commands, the data base limitation commands,

the result-saving commands, the miscellaneous commands, and, finally.,

the retrieval commands.

The browsing commands allow the user to directly investigate the

data base. By executing a DESCRIBE command, the user receives a descrip-

tion of the files which comprise the data base. Because retrieval and

browsing depend on categories of data, this facility is useful Is a means

or learning the structure. of the data. The WHERE command locates all of

the occurrences of a specified value in the data base. This command

provides the user with the opportunity to find all contexts in which a

term occurs. The AROUND, BETWEEN, and TRUNCATE commands provide a direct

view into the SOLER directories. AROUND finds values in an alphabetic

neighborhood; BETWEEN finds values within upper and lower limits; and

TRUNCATE finds values which begin with the same set of characters. Since

these three commands search for values within a category, a user can, for

example, browse through names in a phone directory or synonyms in a

dictionary,

The data base limitation commands allow the user to focus his

attention on a subset of the data base. The QUALIFY command accepts a

list of category names; until the qualification is removed, all z;earching

is done only within the categories specified for qualification. By

-83-

issuing a RESTRICT command, the user can limit his retrieval to a single

set of records in the data base until the restriction removed.

The result-saving commands facilitate browsing without the necessity

of re-retrieval. The active list resulting from any retrieval command can

be temporarily stored by the SAVE command. At any later time (in the same

session), the RESTORE command reactivates the stored list or the ERASE

_command destroys it. The user can retrace his processing by effectuve use

or these commands.)

The miscellaneous commands are the links between the user and the

administration of SOLER. The COMMENT command saves the user's remarks

for the SOLER administrator to read at a later time. The SET command

controls various settings of SOLER conditions. In addition to the

settings applicable to the output mechanism, the SET. command controls the

addition of temporary logical operators, tracing of retrieval operations,

special symbols used in commands, and capture of the SOLER-user dialogue

in a cataloged file. The END command terminates the SOLER session.

The set of retrieval commands is the basic feature of the retrieval

mechanism. In order to create an active list containing the results of

his query, the user must issue a RETRIEVE command composed of logically

connected clauses of search conditions. The logical connectives used to

join these clauses are called "level-1 operators". The standard SOLER

level-1 operators are "AND", "OR", and '76IDNOT", which tire the usual

'Logical connectives. Each clause is composed of a category name and a

set of logically connected terms. The logical connectives used to join

these terms are called "level-2 operators ". The standard SOLER level-2

operators are "AND", niaR" "MOWN", "CONCAT", and "SEQUENCE". The
>

"CONCAT" operator is the space between terms in a phrase; it selects

adjacent terms from the data. The "SEQUENCE" operator (denoted by ":")

selects terms which occur in sequence (not necessarily adjacent) in the

same sentence of the data.

Initially, the command is interpreted and coded in an internal form.

Then, each clause is evaluated by finding the inverted list for every

term in the category specified in the clause, and performing the level-2

operations on these lints. The result is one generated list fo: each

clause in the command. Finally, the level-1 operations are performed

on these generated lists to produce a final list, which is the active

list.

The APPLY command has the same format as the RETRIEVE command with

the exception that the first clause is prefixed with a level-1 operator.

The processing is the same until the final step, when the final list and

the previous7,y active list are used as the operands for the additional

level-1 operator. The result of this additional operation is the active

list. In this way, new conditions can be specified to be applied to the

active list. The REPEAT command takes the internally coded form of the

previous RETRIEVE or APPLY command and, without having to search the

directories again, reprocesses the logical operations. This command is

particularly useful when the previous retrieval is to be reprocessed

after a restriction has been removed or after the retrieval tracing

facility has been turned on.

The retrieval commands are all processed in a similar manner by the

logic of the retrieval mechanism. Figure 3.6.1 shows the flow of the

retrieval logic; the following discussion should make it clear.

- 85

COMMAND CONVERTED
TO SHORTHAND FORM

SHORTHAND FORM
(Infix notation)

CONVERTED TO
SUFFIX FORM

(postflx notation)

INVERTED LIST
ADDRESSES FOUND
FOR ALL SEARCH

AMMENTS

T

FUNCTIONS
EVALUATED
(if any)

1
[-OPERATIONS OW
INVERTED LISTS
PERFORMED TO
PRODUCE RESULT

Figure 3.b.1

Retrieval Processing

86

It will prove most instructive to follow the processing of an

kxample through the logic. First, we will assume that or data base

has several files, one of which is the following:

FIRST
NAME

001

NAME

PERSONNEL FILE
002 NAME

003 FIRST NAME (ITC=1)
003 MIDDLE. NAME (1TC=2)
003 LAST NAME (1TC.3)

002 AGE (ITC.4)
002 OCCUPATION (ITC=5)

PERSONNEL FILE

MIDDLE
NAME

AGE

LAST
NAME

Figure 3.6.2

Sample File Structure

Let us take as our example the following command:

RETRIEVE NAME ms SMITH OR (TOM AND JONES)
AND AGE = BETWEEN(O,30)

AND OCCUPATION . CAB DRIVER

OCCUPATION

Simply stated,.the command asks for the records of every cab driver

between i.?0 and 30 years of age who has either the word SMITH as any part

of his name or both of the words TOM and JONES as any part of his name.

-87-

In its initial form, the command is awkward because of the extreme

flexibility of possible constructions. To make th,L processing of the

command more. efficient, a transistor from external to internal (template)

form, the SHORTEN. subroutine, was designed.

CODE

1 byte

UNUSED RELEVANT
INFORMATION

1 byti..* 1 hal (word

Figure 3.6.3

An Element of The
Shorthand-Retrieve-Array

In the Shorthand-Retrieve-Array, SRA, each element of the retrieval

command is assigned four bytes, one of which is one of the following

codes:

'N' for category name;

'V' for search value;

'1' for level-1 operator;

'2' for level-2 operator;

'F' for. function;

'(' for left parenthesis;

T for right parenthesis;

'=' for equal sign.

to,

Along with each code, a binary halfword Contains the relevent information

described below._ The other byte is currently unused.

Since there is always a table of operators in core, each operator in

the command can be identified by the pointer to its location in the table.

-88..

Because of this fact, whenever a level-1 level-2 operator is found in

the command, the appropriate code and pointer into the table is entered

into the SRA.

In order to minimize manipulation of variable- length elements, all

category names and search values, also called keys, appearing in the

command ere stored in the String-Array. Each element of the String-Array

contains the length in halfWords (including itself) and the appropriate

key. [n order to preserve halfword boundaries (as in the directories),

a blank is added to the end of the key if necessary.

LENGTH

1 halfword

KEY

variable

Figure 3.6.4 4

An Element of the.81ring-Array

Whenever a category name or search value is found, the appropriate code

and pointer to its location in the String-Array is entered into the SRA.

The binary halfword associated with parentheses and equal signs is

disregarded. Because there is a table of functions, the decoding of

retrieval functions is handled in the same manner as the decoding of

operators. In addition, a special code of 'E' is used to denote the end

of the arguments of a function; its binary halfword is ignored. The

need for this special code will be realized later.

t

The' decoding of the command. and. the foroatio,:. the Shorthand.-

Retrieve-Array are bases on the following observations:,

(1) The set of characters found to the left of the .first

equal sign is the first category name;

(.2) 'The set of characters naind to the right of the last

equal sign can only be functions, search.values, or

.441 level -2 operators;

(3) The set of charaCters found between two equal signs

must he composed of those elements described above

in (2) followed by one level-1 operator followed by

a category name;

(4). Parentlleses can occur anywhere, regardless of above

observations..

The process starts by entering the first category name into, the

String-Array and putting the apprOpriate elements into the SRA. The

sign is then entered into the SRA., The command is then, scanned

to find .the next equal sign. If there is an equal sign, then there must

be ..a category name immediately to its left, and a level-1 operator to the

left of the category name. The piucessor uses.thiS fact to decode the

characters between the equal signs. The command is scanned backward from

the scobilli equal sign until a level-1 operator is found (by comparing

o6mmnd elements to the operator. .table). The characters between the

operator and the second equal sign Corm the category name.. Finally, the

set Of characters between the first equal. sign and the .1.-trel:.1operator

must be composed of functions, search values, and.level-2 operators. By

-.90-

checking each element in this range against the function and operator

tables; the correct code for each element can be determined. If a

second equal sign was not fou4d, the same decoding applies without the

need for a level -1 operator and a category name. By using this process,

the entire command can be easily decoded.

Special characters (i.e., other than numbers and letters) are treated

separately. It is assumed that elements of a command are separated by

spaces. In addition, special characters are taken as elements themselves.

Hence, the search value MILES/HOUR would actually be decoded as three

search values: "MILES" followed by "/" followed by "HOUR". In order -to

avoid this decoding, the intended value should be enclosed in single

quotes, meaning "take the value literally'. Hence, the values 'MILES/HOUR'

would be decoded as desired. The use of quotes also allows the searcher to

specify that a space is contained in a search value or that he is searching

for a word which is the same as a function or operator name (e.g.,

searching for the word "AND"). The special character handling allows

easier decoding of single operator symbols, such as " +" or "igrill

The decoding process is designed to recognize. only the most- -severe

syntactical errors, such as a retrieval command without an equal sign.

The major part of the format error processing is done in the next Stage

of processing.

It is assumed, here, that "AND" is the first operator, "OR" is the

third operator in the operator table, and "BETWEEN" is the second

function in the function table. Also, the pointers for N's and V's

point to the length halfwords of the appropriate Utring-Array elements.

-91-

Now, if we follow our example through the decoding, we can understand

the formation of the following tables:

1

40
1'4 22

211

t 31

Figure 3.b.5

SRA Example

_05 NAME
04 SMI T HAL]
03 TOMWI

,0.4 -JON ES-ill
03 AGE E
02 20
02 3
W-QP.P.0-AT 041
03 C AEq11
9!L PP. YO]

Figure 3.6.6

String-Array Example

With the ,command. in the internal shorthand form, the next.step is

to translate the intlx form to a:postfix (suffix) form. In addition,

tlw 'category names can be converted to the appropriate ITC's. Finally,

sy4actical error Conditions are intercepted at this time. All of this

processing is performed by the TOSUVFIX subroutine.

The elementsof the.SRA are .processed sequentially, with detected

errors displayed to the searcher as they are encountered. In addition,

-92-

certain assumptions are made to resolve each syntactical error condition.

After :syntax checking is completed, if at least one error is found, the

template of the assumed command is displayed and the searcher is asked

whether the assumptions are satisfactory. If they are, processing

continues; if not, the command is aborted.

The output of the TOSUFFIX processing is the Suffix-Array, which is

a set of six -byte elements. These elements, similar to SRA elements,

contain a one -byte code and two relevant halfwords. The Suffic-Array

codes are:

'V' for search value;

'F' for function;

'E" for end of function;

11'-for level-1 operator;

'2' 'for level -2, operator;

'G' for generated operator;

,'J' for jump element;

'A' for inverted list address;

14f1 for end of array.

For search values, the first halfword,is still the String-Array

location; the second halfword is the ITC to be searched for. Notice

the actual search value is not accessed from the String-Array at this

point.

The jump element will be explained in a later section; the end of_

array element is Wonply the last element to*be processed.

A template of the command, to be displayed to the searcher, is

formed from the SRA as it is translated. This template uses exactly

the SRA codes. During the course of inverted list processing, if the

searcher desires it, a trace off' 'the logical operations is displayed;

that is, the number of records resulting from eacn operationqS printed

out directly under the appropriate code in the-template. It is-therefo-o

necessary to associate an element of the template to each operator. For

each of the three types - of operators, the Second nalfword in the Suffix-

Array is the pointer to the template. In addition, since a function

generates an "OR operator between' each resul',ing value, the function

element in the Suffix-Array ;s treated as a generated operator.

When a category name is found in the SRA, a set of subroutines is

o.1.1ed to convert -a -name to one or MOIC,corresponding ITC's within the

current qualification. This sets up the searching of the search value

with each ITC appropriate to the given name. If more than one ITC is

associated with a category name, then an "OR" operator is generated to

connect the sets of.search values for the multiple ITC's.

As the SRA is sequentially read, each element is acted upon immediately.

As stated above, a category name is converted to a set of ITC's. Until a

level-1 operator code or the end of the command is found, all search values

.entered into the Suffix-Array have the f'irst ITC of the indicated set

associated with them. When the level-1 operator or end of command is

found, all entries put in the Suffix-Array since the category name was

are duplicated with -the second. ITC in the set (if there is one)

roplacingthe first ITC.' Then, the generated OR operator is entered to

operate on these sets -of entries. This duplication contix..ues until all

ITC's for the category name have been exhausted. For instance, if °a commEnd

were RETRIEVE NAME = A, then the Suffix-Array would have an ntry for A with

the ITC for FIRST NAME, an entry for A with the ITC for MIDDLE NAME, a

generated OR operator,an entry for A with the ITC for LAST NAME, and

finally another generated OR operator. In effect, the command asks for

the data item A occurring in either .the FIRST NAME, MIDDLE NAME, or

LAST NAME category. This suffix .form of the command represents precisely

the .same query.
6

When a search value code is found, it is immediately entered into

the Suffix-Array with the first-TIC in the appropriate set as described

above. When a function is found, the group consisting of the function,

its search values, and end of function code is treated as a single search

value and entered into the Suffix-Array with the appropriate ITC.

The processing of level-I and level-2 operators is more intricate.

First, it should be mentioned that each operator in the operator table

has precedence associated with-it (i.e., some operators are to be

evaluated before others). As an algebraic analogy, consulrthe_ezation

X = 340++1. If the addition is rerformed first, then X is 15; IT the

multiplication is performed first, then X is 13. Normally, the multipli-

cation is the first. operation to take place because it has "higher

precedence". However, if the equation were "X =13*(1++1) , the addition

would take precedence because of the parentheses. One can see the

flexibility that this type of precedence structure allows; this is why

the logical operators of'the retrieval requests are gi4en precedence.

To demonstrate the translation to k;vtfix using precedences, assume

a Command requests information for A AND B OR C is Some-category. The

code for A is placed in the Suffix Array. The code for AND is put in

an operator stack. Then, the code for B is placed in the Suffix-Array.

Now, the precedence of OR is compared to the precedence of AND. In the

-

case where the precedences are equal, either of the cases below is

possible depending on the implementation of the algorithm, but oth

Interpretations are lefitimate.' There are two cases to consider:

Case 1. AND has higher precedence than OR., In this case, the

code for AND is removed from the operator stack and

placed in the Suffix-Array because it has highe'

precedence. Then the code for OR is put in the

operator stack and the code for C is placed in the

SuMx-Arrai: Now that command elements are exhausted,

the operator stack is emptied into the Suffix-Array.

Hence, In suffix form, the command appears to be A B

AND C OR; this means "find'-Acords with-either C or both

A and B".

Case 2. OR has higher precedence than AND. In this case, the

code for OR is put in the operator stack after the code.

fur AND. Then, the code for C is placed in the Suffix-

Array. With the command elements exhausted, the operator

stack is emptied in reverse order (last in, first out)

into the Suffix-Array. Hence, in suffix form, the

command appears to be A B C OR AND; this means "find

records with A and either B.or C".

Parentheses are handled in a simple manner. When/a left parenthesis

is found, it is entered into the operator stack as if it were an operator

with the lowest precedence. Then, the processing 'continues with the left

parenthesis remaining in the stack because of the algorithm. When the

96

matching right parenthesis is found, all stack elements after the left

parenthesis are emptied in reverse order into the Suffix-Array. The

parentheses are discarded, having served the purpose of defeating

precedences.
. .

When the problem of precedences is further complicated by two levels

or operators, the solution is simple. Whenever a new-level-1 operator is

encountered, its precedence is compared to the previous level-1 operator

in the stack. If. the new one has higher precedence, it is added to the

stack. If the new one has lower precedence, then the previous level-I

and all Intermediate level-2 operators are emptied in reverse order into

the Suffix-Array. Then, the new one is added to the stack.

of the command, whatever operators are left in the stack are

At the end

emptied in

reverse order into the Suffix-Array.

It is important to note that the searcher is allowed by the SET

command to change the precedence of any operator at any time. This is

a powerfUl tool if used Properly.

The Suffix-Array for the original example is shown in Figure 3.6.7.

It is assumed that OR has higher precedence than AND, but note the

placement of the parentheses. The template of the command is:
e.

NNW OR (V AND V) AND N*F(VIV) AND NNW V

The second pointer for operators in the auffix-Array is the position,

countingiall characters and spaces, of the element in the template.
I

Generated operators are associated with the equal signs in the template.

Later, the operators generated by the function are associated with the F

in the tcmiplate. Note that the space between the two V's at the end of

8it 1

1 123 5 1

1.4 2
2

11 2

1 123 5

3 2

V 3_ 3

_ . _1 123 5

3 2

_2
2.0

_.

V
I

V
F

.

.V
V

2
1

28
31

5
1

Figure

3.6.7

19
38

Suffix-A
rray

E
xam

ple

t
h
e

t
e
m
p
l
a
t
e

i
s n
o
w

a l
e
v
e
l
-
2

o
p
e
r
a
t
o
r
,

I
t i
s

t
h
e

i
m
p
l
i
e
d

c
o
n
c
a
t
e
n
a
t
i
o
n

o
p
e
r
a
t
o
r

(
a
s
s
u
m
e
d

t
o

b
e

t
h
e

f
i
f
t
h

o
p
e
r
a
t
o
r

i
n

t
h
e

t
a
b
l
e
)
.

L
i
p

t
o

t
h
i
s

p
o
i
n
t
,

t
h
e

d
i
r
e
c
t
o
r
i
e
s

h
a
v
e

n
o
t

b
e
e
n

accessed.

B
ut,

in

order

t
o

p
e
r
f
o
r
m

t
h
e

o
p
e
r
a
t
i
o
n
s

o
n

t
h
e

i
n
v
e
r
t
e
d

l
i
s
t
s
,

t
h
e

l
i
s
t

addresses

'
m
u
s
t

b
e

f
o
u
n
d
.

T
h
e

D
I
R
S
R
C
H

s
u
b
r
o
u
t
i
n
e

c
o
n
v
e
r
t
s

e
a
c
h

s
e
a
r
c
h

v
a
l
u
e

i
n

t
h
e

-98-

Suffix-Array, except arguments of functions, to the appropriate inverted

list address.

The procedure used,to search for a key is the following. A binary

search of the Core Directory isolates a single directory at the next

level. It is read from disc; if it is a high -level directory, the binary

search is applied again and the process repeats: When a low-level

directory is finally read, it is guaranteed that if the key exists, it

is here. A linear search of the low-level directory determines whether

the key exists or not. If it does exist, the associated ITC's are searched

also.

In the searching for keys from. the Suffix-Array, the values must be

extracted from the String Array. Even though the same '*aloe occurs with

different ITC's in the SuffixrArray, it is searched only once; all of the

ITC's are evaluated at the same time. After the search is performed, the

entry in the Suffix-Array (V, String-Array ,punter, ITC) is replaced by a

code of 'A' and the system address of the inverted list; the address

occupies the two halfword pointers. If the value or its ITC is not found_

by the search processiag, a special address (all binary zero) is placed

in the Suffix-Array.

In the case of our example, the only values left in the Suffix-Array

after directory searching are "20" and "30" which are the arguments of a

function. All other valued have been converted to addresses.

Before the operations on the inverted lists can be executed, the

functions must: be. evaluated And converted to inverted list addresses.

The TOADDRE subroutine handles the functions.

A problem is caused by evaluation of functions. The execution of

operations on the inverted lists is based on a sequential reading of

the SufftX-Array. However, the number of resulting list addresses may

he far more than the reserved space for the function (for BETWEEN, four

element's: F V V E). With this in mind, the jump element (mentioned

previously was designed. The jump Code is an indication to the list

processor to branch to another location in the Suffix-Array and resume

sequential execution there. The first halfword associated with a jump

code is the location of the next element to process in the Suffix-Array;

the second halfword is unused.

For each function, the F in the Suffix-Array is repladed by a J;

the jump pointer is set to the location of the next 'empty location in

the array. The results of (.,1e function are entered into the array

0 starting at this location. At the end of the evaluation, a jump code and

jump pointer are entered to transfer execution back to the element after

the E associated with the function.

The results of a function are logically connected by generated OR

operators (e.g., BETWEEN(20,30) means 20 or 21 or 22, etc.). Of course,

the operators Etna addresses are placed in the Suffix-Array in suffix form.

The functions are evaluated by first using the directory searching

routines to find the key specified by the function. Then, the appropriate-

low-level directory (and possibly adjoining low-level directories) are

scanned linearly to find other keys in the functional range.. The searcher

is allowed to specify a function limit;'that is, function evaluation for

any single function ceases when the number of addresses found is equal to

the limit. .

- 100 -

.
Assuming that three ages are found between 20 and 30, then the

Suffix-Array of the example

A

A

2

A
A

.

is shown

ad c.

address
address

1
address
address
address
1

3

address
a ciiir_ _______
address
1

3

.
3

28

address
address
5
1 _

address.

a ddr
3

address
3
22

in Figure
II

r es s

5

12
5

es s
.

12
5

19

j 3A
_

32

et.; s. _ ._

es s
I- 214

24 %.

3.6.8.

0

A
2

2

A

A

2
2

G

J
V
V

A
A

t 7

1

A
A

A

j

_

Figure 3.6.8

SA.thax-Array Example

The final stop in the retrieval process is the execution of logical

operations on the inverted lists (MOEN subroutine). As mentioned

101 -

be fore, the elements of the Buffix-ArraY are operated on sequentially

(with jump eleMents redirecting the sequence). The only codes allowed

this stage of processing are addresses (A), operators (1, 2, G),

jumps (J), and the_end,of the array (49: The processing of operators

is independent of their type (level-1, level-2,.or generated). They

are differentiated simply for the trace facility; the searcher can.'

request tracing of any one. or all of the threetypes of operators.

Because an operator'applies to the previous two operands in suffix

form, the addresses must be stacked up in an operand stack. As the

Suffix -Array is read, each address is put in the stack.' When an

operator is encountered, the two addresses most recently added to the

,stack are pulled out. The operation on these two lists produces an

output list; the address of this output list is then added to the stack.

When- the end of array code is finally found, the operand stack shou?.d

contain only one address. This is the address of the active list which

the command has produced.

There are three 2000-byte areas in core for use by the operator

routines. Any` two of these can be used for the input lists (inverted

lists to' be operated on); the third is used. for the output list.

Before the operation-is performed, the two inpUt lists are read into

these areas (if not already there from a previous .cTleration), and a

cylinder in the work file is allocated for the output list about to be'

created; only 2000 bytes Of'any list, input or output, can reside in

core at any time. The cylinder allocation, allows for shorter access

time when manipulating segments of 'the entire list; also,, the output of

one operation will probably be thr input of a later operation in the

array. When an operation is completed, the two input list addresses

- 102 -

ti

are checked; if either is in the work file (the output of a previous

- _

operation), its cylinder iv deallocated because it is no longer needed:

in this way, the work space is re-used efficiently.

For each operator in the operator table, there is the name of the

subroutine used to perform the operation. These subroutines are loaded

dynamically; that is, no operator routine is loaded into core until it

is called the first time. The routines are supplied the first segment

)

(physical record) of each input list, and the area for the output list.

in addition, a count of records in the output list is produced for

tracing purposes.

There are five operators in the current implementation of SOLER.

The first three are'both leVel-1 and level-2; the last two are only

level -2.

1. AND - produces an output inverted list containing one

entry for each IRN which occurs in both input

lists; the user bytes are not checked.

4. produces an output inverted list containing one

I entry for each IRN which occurs in either input

list; the user bytes are not cherd.

3. AXIOM' - produces an output inverted list-Containing one ent

for each IRN which occurs in the first input list

but not in the second input list; the :leer byt are

not checked.

4. CONCAT - produces an output inverted list containing every

entry from the second input list whose IRN and first
0

user byte (sequence number) are identical to and

- 103 -

second user b;,te (ward number in sentence) is one

greater than the corresponding elements of an

entry in the first input list;

. SEQUENCE - produces an output inverted list containing every

entry from the second input list whohe 'RN and

first user byte are identical to and second user

byte is any amount greater than the corresponding

elements ofan entry in the first input list.

In the example, the AND and OR operators need no explanation. The

CONCAT operator (implied by the space between CAB and DRIVER) is

interesting however. If an AND operator has beenispecified instead of

the co enation, the retrieval processing would have found reco..ds

for 'DRIVER OF CAB REPAIR TRUCK". This is obviously not the-same

occupation. In searching the directories, let us assume a list for CAB

and a list for DRIVER was found for the proper ITC. When the CONCAT

operation is performed, the sentence and word numbers (user bytes) are

checked. In "DRIVER OF CAB REPAIR TRUCK", the word DRIVER does not

directly follow CAB; hence, this record would not survive the operation.

This phase retrieval capability is clearly an advantage in text-Oriented

data bases.

At the conclusion of the list processing, one inverted list remains

in the work files as the result. If a restriction is in effect, an ADD

operation is applied between the resulting lit and the restriction list.

,The output of this operation is the new active list. The old active list

is deallocated, the new active list is read into core, and the retrieval

processing is completed, The searcher can then print from. the records in

- 104-

the active list; 'or, if he is not satisfied with his results, he can

issue another retrieval command.

The APPLY command is processed in the same manner as has been

pies gibed. HOWever, before the old active list is deallocated, a level-

l operator is applied between the old and newly-created active lists.

The result :f the application of this last operation is the new active

list. In other words, the APELY command allows new conditions to be

added to the records in the active list.

The REPEAT command simply re-executes the list processing of the

elements in the current Suffix-Array. This is useful for changing the

trace and re-retrieving.

The retrieval mechanism which has been described,is so powerful

that the casual searcher may never use sang of its fe:1 ures. Use of.

the trace and precedence operators, for example, allo, the searcher

to issue a complicated request and still see his int rmediate resultt.

One of the problem's of this implementation is the fact that each

searcher may have his own copy of the retrieval programs (about 250

thov::inald bytes) in core. To convert the system from one-user to multi-:

user, the programs should be recoded in a re-entrant manner. .Such an

implementation, however,would tend to tie the system to a particular

machine.

Because of the design of the input phase of SOLER, external data

may be.encoded when entering the system. For instance, if data entered

in the, age category were specified in °units of months, it could be

stored, 71nternallyin units of years; the input phase is designed to

support such translations. The retrieval mechanism could (but currently

does not) support decoding (the inverse of the'encoding process performed

- 105 -

in the input phase). This decoding process would be invoked prior to

directory searching to insure search of the proper keys.

- 106

3.7 The Output Phase

The Output Phase allows the user to display data from the records,

selected by the Retrieve phase. The user may select one or more data

items. specify the order and format in which the data should be dis-

-played and choose the destination of the data. The data may be dis-

played on the users terminal, printed on the high - .speed printer, or

transcribed to a file on disc for later pr6cessing.

The records to be processed by the output phase are those records

currently on the "active list" generated by the Retrieve phase. This

list is in ascending order by record number, and contains a pointer, to

the next list element (record) to be processed. This pointer is

initially set to the first\element, but will be modified by the pro-

cessing in the Output phase. Th user may also modify this pointer by

using the special list manipulation co ands.

Commands and Parameters

There are three commands in the Output phase: PRINT, LIST, and

CONTINUE. The PRIM and LIST commands direct the system to output

data. The CONTINUE command continue;3 displaying the data

specified by the most recent PRINT or LIST command.

In addition to these commands, there are several parameters which

affect the format and destination of the output. These parameters may

be changed by using the SET comMand.

This section discusses in detail the.eommands, parameters, and

internal structure of the Output phase. These, commands are also

discussed in theUser's Manual contained in Appendix A.

rt

- 107 -

The PRINT, Command

Format

PRINk (N,) <NULL >

NONE

<FIELD NAME> (, <FIELD NAME> (, ...))

The N, if present, specifies how many records are to be processed.

If N is omitted, all records in the active list will -1processed. If

the end of the active list is encountered before N records have been

processed, the command halts normally and resets the pointer to the

first record in the list.

If the operand field is null, all records will be prthted in full.

Data items will be printed in the order in which they appear in the

record.

If the operand field contains the special keyword NONE, no data

will be printed. Instead, the system will list`, the internal record

numbers of the records on the active list.

The most common form of the command specifies the names of the

fields which should be printed. These field names may be qualified,

and are subject to any qualifications in effect from a previous QUALIFY

command. The fields may be requested in any order. If a field is

requested which does not appear in the record, the field name is

skipped for that record and processing continues normally.

If a field .name is specified which does not fall within. the scope

of the current qualification, or if an illegal field name is entered,

an error message is printed and the command is terminated. The user

should correct the error(s) and re-enter the command.

- 108-

The destination of the output of the PRINT command is the user's

terminal, unless overridden by the SET command.

The LIST Command

,
Format

<same as for PRINT >

The format and operation of the LIST command is the same as the

PRINT command except that the destination of the output will be the

high-speed printer unless' overridden by a SET command.

The CONTINUE Command

Format

CONTINUE (N)

The CONTINUE command will continue the operation of the most

recent PRINT or LIST command. All operations will be the same as if

the PRINT or LIST command has been re-entered, except that the number

of records to process, N, can be specified in the CONTINUE command.

If N is not specified, all remaining records on the active list will

be processed.

Structure ofthe Output Phase

The Output phase.is interrelated with the Update phase. See the

section on the Update phase for a discussion of_the details which are

applicable to the Update phase. This section will discuss the routines

_which control the sequence of processing to determine which records to

process and which fields within the records should be examined.

- 109-

Major Routines.

The. major routines in the Output phase, and the action performed

by each routine, are listed below.

OUTPUTPH - This routine is the control routine for the Output

and Update phases. There is an. entry point in.

OUTPUTPH for each of the commands in the Output and

Update phases. When the executive determines. which

command should be executed, the correct entry point

in OUTPUTPH is called. Within OUTPUTPH, flags are

set in the SYSTEM-DATA-AREA to indicate which

command is being processed. The COMPILE entry point

in PCOMPILE is then called to process the operand

field of the command. This sets up the field. names

in the PRINT-TABLE in a coded form and returns the

number of records that should be processed (if

specified by the user). If the user did not specify

an explicit number, an extremely high number is

returned as an approximation of infinity.

Once everything is set up, the routine loops

through the "active list" or record numbers to

process the records. Each IRN is extracted from the

list, and the entry point PRINT= is called in the

routine PRINTA.

- 110-

PRINTA This routine is used for a programming trick more

than any logical need. The IRN of the record to

be processed-is passed in from OUIPUTPH. The IRN

As converted to a file address by calling IBNCONV.

The data record directory for the record is read

into a common buffer that will be referenced by the

routines which actually process the record. A

check is made to see what definition should be used

to interpret the record, and the definition is loaded

into the main buffer. Now the PRINT entry *Ant of

PRINTB is called. Since the pointers are available

which say where each piece of the definition is

located in the main buffer, when PRIM is called

this can be passed as an absolute address. Thus

within PRINTB, the tree array, ITC array, etc., can

be defined on a logical level, ignoring the structure

of the main buffer.

PRINTB This routine is responsible for interpreting the

definition, the data record directory, and the

PRINT -TABLE to determine which data items in the

record should be processed (either for printing or

updating). The PRINT-TABLE contains in coded form

the list of fields whicivthe user requested. Each

element in the table is a three palfword entity.

The first halfword is the number of the definition

which contains the fields spedified by the user.

Since the user may specify fields from many different

record types, not all elements in the table will

apply to this record. Any element which. does not

apply is simply ignored. The second halfword is an

index, referring to the tree array of the definition,

which points to the element in the tree array., which is

the logical start of the field requested by the user.

The final halfword is the index of the last element

contained in the field requested by the user. Since

the,user may specify a non-terminal field name in a

PRINT request, there may be many elements contained in

the section of the tree array bounded by these pointers.

For example, if the user specifies that the entire

.record should be processed, the first.pointer would be
. .

a 1, and-the second pointer would point to the last

element in the-tree array. The routine DRDSCAN is

called to actually scan the date:record directory to

pick out the elements to be processed.. When an

element is found, DRDSCAN returns with a pointer to

the element. 'PRINTBidetermines which field names (if

any) should be printed) and does the appropriate I/O.

To actually process the data, the MINIUM is

called. This routine is the start of the Update

phase processing, and also serves to p Int)the data

for the Output phase..

- 112 -

DRDSCAN This routine scans the Data Record directory of a

record to pick out the next data element to be

processed. When an element is found, a pointer is

set and returned to the calling program. This

routine is designed to handle subscripted field

names, but the PCOMPILE routine is not, yet able

to compile subscripts into the internal form needed

by DRDSUN.

Figure 3.7.1 shows the interconnection of the routines in the

Output phase.

EXECUTIVE

OUTPUT PH

PRIMA

PRINTB

- 113 -

C

call to col..aand entry points

single IRN

{:

reads Data Record Directory
reads Definition

,,..t..

prints field names
.

reads data into data buffer

SC.ANDRD

MINIEXEC

I

(UPDATE PHASE)

Figure 3.7.1

scans PRINT TARI.P. vs. Data
Record Directory to determine
which data item to process

output to terminal

Macroflowchart of Output Phase

4. STATISTICAL CLUMPING AS AN INDEXING AID

4.1 Adaptive Interaction

In many document retrieval systems, there is one aspect of

the operation that requires further development, namely the per-

fecting of communication between man and machine. Specificylly, th

user obtains little assistance from the machine or system when he is

nttempting to state his request. The user is confronted with a

word list of all available index terms from which he must make a

selection to enter his search request. A study was conducted on

this project togatn insight into the problem of organizing the inform -

ration that can be placed into the system in the form of indeX.terms

and to use this information to render assistance in the formulation

of a request.

The study demonstrated a process whereby the user and the

system adapt to each otherts'need and viewpoint. This adaptation

on the part of the user takes the form of his accepting the system

vocabulary terms and their interrelations. The adaptation on the

part of the system allows it to modify the manner in which it pro-

poses new index terms and to give the user advice that guides him

in the selection of his index terms.

The Study providedothree specific contributions to the field

of information retrieval:

-115

1) -A framework of man-machine adaptive interactive

conversation providing unsolicited librarian-like

assistance to the searcher through increasingly

better sets of index terms. The data set for the

interaction is based on the second contribution.

A technique to extract pairs of related terms from

a set of machine - readable English documents. The

technique eliminates common terms, distinguishes

general conceptual terms from particular terms

and extracts pairs of terms that exhibit conceptual

relationships with the particular termsjthrough

ftequent association in selected text. The

particular terms are essentially the equivalent

of descriptors in an index of documents.

An algorithm to assist in the development of a

thesaurus. The algorithm ascertains sets of

nearly mutlIally synonymous terms when given a table

of synonyms in machine readable form.

The adaptive man-machine interaction contribution provides

a technique for the information retrieval system to render

assistance in the formulation of index sets without the burdensome

task of the user reading abstracts of recovered documents. With-

out this assistance, the task of refining an indeX set usually.

rests upori the retrieval of abstracts and titles of a set of 4,

documents and their evaluation by a user. This ad hoc'index set

production results in an uneconomical searching of mass storage

before the topic is clearly defined by a suitable index set.

-u6-

The system presented that ryas developed provides the

necessary assistance to allow the refinement of an index set

before searching document files. The data, base employed by the

system is a set of relation tables produced semiautomatically

from a collection of documents in machine readable form. These

relation tables are two dimenv_Dnal, weighted, topic differentiated,

and are produced in a semiautomatic. manner. They employ the

contiguity relation; i.e., telws that appear within a given distance

'of each other frequently are highly related, Given a preselected

file 'of documents, terms that appear often wini-da given distance

from each Other render a high contiguity measure. In order to be

fully effective, the raw samples of English text fr'm which the

data base is derived must be representative of the types of

documents that the information system is called upon to recover.

Pragmaticslly, many of the actual documents in the document file

are used in the derivation of the relation tables. The technique

for generating the relation tables from the English strings will,

with little human intervention, produce sets of relation tables'

that are topic differentiated. In the following, these tables

shall be named "microthesaurin meaning a thesaurus, or relation

table, of a small limited topic area.

The algorithm that constitutes a central tool for the

adeption process ascertains the sets of nearly synonymous terms

from a table of synonyms. The concept of near synonyms is treated

at length in a formal manner later; but, for the present purpose,

two terms may be considered nearly synonYmousif there exists at

-117-

least two completely separate sequences of synonyms connecting

-them.* The use .of this technique eases the production of a table

of'synonyms by checking for sets of nearly mutually synonymous

terms as the table is generated. The technique has application

in any process that uses an algorithm' to produce word pairs rich

in synonyms. As these synonymous Pairs are included in the table

of synonyms' the algorithm assists the user to perform consistency

and completeness checks.

The process developed in this experiment exhibits two

forms of adaptive behavior.. The firSYtorm is the ability of the

system to respond to an indexset.propOSal in a manner that

depends upon the preVious history of the,man-machine dialogue.

The System does this by preparing a profile of interest during the

interaction and uses'this interest profile to frame its replies.

The Profile consists of numbers or scores that are related to the

level of interest that the user has developed in each of a set of.

microthesauri. The second form of adaptive behavior is the

ability of.the system to render suggestions and to direct the

interaction in accordance with its estimate of the user interest

The system can determine at least three types of

directions in any interaction between man and machine:

0

* For example: Facile-Easy-Smooth Facile- Simple - Smooth

would imply that Facile and Smooth are nearly synonymous.

-118-

1) A tendency for the profile of interest to centralize

on a small group of micruthesauri--in this case, the

user probLbly refining his search into a small set

of areas and should be apprised that he is reaching a

terminal stage in his interaction.

No apparent trend in the pattern of the search- -

perhaps the user is browsing or he does not understand

the function of the system.

3) A tendency toward an "oscillation" in the interest

profile--perhaps the user has been diverted in his

search, or he has changed emphasis intentionally.

The action taken by the system ranges from the advisory

guidance message to.pointed suggestions, and ultimately to the

suggestion that human intervention may be required.

4.2 Implementation of the System

The system was implemented on ,the IBM 7040-PDP 8

computer complex with remote Teletypewriter input. The 7040

portion of the implementation was programed in L6 linked list

programming language. All the functions needed to implement

the interaction were included. The adaptive algorithm was

only partially implemented; full implementation required only the

gradual accumulation of relation tables for a complete data base.

4.3 General Definitions

In this section, a number of terms will "ae introduced that

are employed in the body of the work. These terms will be under-

lined the first time they are introduced.

-119--

A word type is any string of characters except blanks and

terminal characters that expresses a particular meaning for the

user of the system. Also, the system can have instances of words

in its internal vocabulary. A term is a word (or perhaps a word

phrase) that the system has in its vocabulary and, in addition,

the system employs it in one of a number of different applica,

tions. In patieplArl the system differentiates among the

following types of terms. A common term is a word that is con-

sidered by the system to be used so frequently in all fields of

natural English as to render it useless when a particular subject

is to be recognized. Examples of common terms are "description",

"alt,,tough", and "specifically". A core term is not a 'common term

but appears in one particular subject area so frequently that it

is associated with the area and, in fact, is useful in identifying

it. However, the core term, is not useful when called upon to

discriminate among documents in its field. A core term is useftl

as a way to raise the recall level of an index set. Examples of

core terms from the field of computing software might be "computer",

compiler", and "system". A particular term is a term that appears,

in the document set of a field of interest in a manner that it is

useful in discriminating among the documents of the subject area.

A homograph is a word or term that has two or more independent

meanings. It is possible for a term that has a homographic

nature to have at once any combination of common, core, or par-

ticular meanings.

The notion of a ddacriptor is well established. It is a

term that is used to give a clue concerning the subject content

of a particuler set of documents. An index set is a srrt of words

the user employs to characterize a particular subject in which he

has an interest. The function of the interactive process is .to

transform thi index set of words into an index set of descriptors

that are rich in particular terms'to give a crisp definition of

the request. An adaptive process is a technique whereby the system

is able to respond in a manner that depends upon both the past

interactions and the present state of the user's index set.

A thesaurus is a set of relations whose left and right

components are terms in the system vocabUlary. Formally.

T = R I Raelation &r. (At) (t is a left or a

right component of R=4 t E T where

T is the system vocabulary)1

In the current stage of implementation there is only'one relation;

it is a contiguity relation derived semiautomatically from a

textual data base.

A microthesaurus is a portion of a thesaurus for which

the following applies:

Ma f T 61[(At) (t is a right component of R t c To:

where To. is a set of particular terms in

subject area "a") j 1-2

-121-

Thus, a microthesaurus is a portion of a thesaurus for

which all the right'members of the ordered pairs defined by the

microthesaurus are restricted to be particuler terms in the subject

area of the microthesaurus.

A specialty area is a portion of a field of interest that

may be identified as having sufficient internal cohesion in its

subject matter to be discovered both statistically and subjectively.

An interest profile is an a-tuple of ordered pairs as follows:

8 = (Ga(N), La(N))

Where the a'th pair of ordered terms is

1-3

associated with the a'th subject area,

And: Ga(N) is a measure of the degree of

interest expressed by the user in the

a'th area after N interactions, expressed

as a microthesaurus gain,

And: La (N) is a measure of the level of detail

or degree of specificity expressed by the

user after N interactions.

4.4 Theoretical Considerations

This experiment was based on the foundation principle

that the of document retrieval requires at least two

further developments before it may be accepted as a working tool.

These are the development of a mode of truly interactive "under-

standing" between the user and the system and the production of

-122-

better methods of extracting clues that chLracterize the document:,-

from the documents themselves; i.e., indek them. These two

aspects of the document retrieval field will be reviewed in the

following introductory remarks.

In the course of history, man has gradually developed a

variety of languages for communicating and recording an ever

increasing variety of complex ideas. These languages have grown

with almost no control or formal justification. In fact, some

believe that it is this lack of control that provides for the

richness of natural languages and their great capability to pro-

vide a varied means of communication among individuals that speak

the same dialect of their language.

However, this same absence of analysis or understanding of

the formal implications of the language has impeded the development

of facile communication between man and his machines. As long as

the machines that man built were of the purely slavish responsive

type, this communication problem was of little consequence. In

many cases, the only necessary means for communication was the

provision of a set of knobs and levers attached to the machine.

When the large scale digital computer was realized, man conjectured

that the large memory and the "g71.r*nt brain" of the computer would

give him the ideal machine with which he could converse on more

than a trivial

Workers in the computer field began the complicated

analysis of natural language. As time passes, these

attempts at analysis seem to uncover successively more complex

problems that have definitely impeded efforts to effect natural

-323-

communication between man and his machines. Until there exists a

mechanism that allows the machine to '"understand" man's written

or spoken words, some less ambitious technique will have to be

provided for such communication.

The present work considers a particUlar conversational

mode that is therefore less than fully interactive "understanding"

conversation. What is provided is a framework of a conversational

no with enough informational content to enable a machine to

respond "intelligently" in a man-machine interaction. The function

of this interaction is not to "explain" anything to the machine,

but to transform the information presented to the machine by the

man into a form that is both meaningful to the machine with respect

to its own stored intelligence, and also preserves or inferentially

improves the intent of the original statement of the man.

Ti hS transformation is made after the machine receives

words from the man and then changes or reformulates them within

the. framework of the stored information that the machine has at

its disposal. This process of. man-machine symbiosis is referred

to as an adaptive interaction in the following sections of this

work. The interaction is a two-way adaptive process because both

man and the machine adapt to each other. The adaptation of man

is to information and its structure in the machine; the adaptation

of the machine is to the background and current interest viewpoint

of the man.

-124-

Suppose that a user's index set is represented by the letter U and

th
that the i such set would be Ui. Let the machine. response be

M. In general, there will be a sequence of requests and responses

in an interaction. If the interaction is I, then:

I - U1M1UO2... UnMn 4-1

At any point of the interaction, the response is a function of all

that has preceded it:

Mi am f(U1M1U2142... Ui) 4-2

This can be re-written in terms of the present input and theelast

response:

Mi = g(Ui) h(tilii) 4-3

The system that is represented by Eq. 4-3 is similar to the

familiar,feedback equation. The scenario that will be developed
ie

is one in which the user supplies the first index set, and the

machine after consulting the data set and some internal memory,

responds with a set of its suggested terms. The user then is

allowed to evaluate these terms and by the evaluation, the system

amends its internal memory. The user's reaction initiates the

second and succeeding interactions. In order to set the stage for

the development of an adaptive system, it is necessary to consider

the iNplicitions of the term adaptiVe.

125-

4.5 Preliminary Definition of an Adaptive System

There is no general agreement on the formal definition of

what is meant by an adaptive control system; it is generally

accepted that an adaptive control system is one that is capable

of noting the environmental conditions that prevail and modifying

the system performance on the basis of the changes it perceives.

The standard notion of an adaptive control system has been defined

by Eveleigh and is quoted below:

"An adaptive (control) system is one which is

provided with a means of continuously monitoring

its own performance in relation to a given figure

of merit or optimum condition and a means of

modifying its own parameters by closed loop action

so as to approach this optimum."

After introducing this definition, the author cited

three factors that,are essential to an adaptive system:

(1) Identification

(2) Decision

(3) Modification

Identification determines the factors that are needed to

characterize optimum operation of the system. Decision determines

that a change is needed in the system operation in order to achieve

the optimum operation. Modification determines how to change the

system parameters to utilize the results of the decision. Even

with these definitions and comments there still is no general

agreement on the definition of an adaptive system.

it

.126-

The above discussion is based pr on analogue or

hybrid systems and is not immediately applicable to the case o

digital computer environment, the reason being that the computer

is, by its nature, able to modify its clan process (program) in

order to achieve better system performance. Even such a simple

digital computer as the telephone central office is able to modify

its mode of operation when it decides that the environment is such

that the system parameters should be changed to achieve the

optimum operation that has been identified as the goal of the

system. An example of this is the "automatic line load control facility

that allows the telephone system to accept only emergency calls

under certain conditions. In the case of complex digital computers,

the adaptive mode is present but obscured by the fluctuations in

the programs caused by outside effects.

4.6 Habit Forming vs. Learnini

The present selection will consider an example of a system

where the modification is explicit and treated formally. Various

forms of a mechanical processor that exhibit habit-forming and

learning are presented. by Gorn. He defines habit- forming and

learning as follows:

"Habit-forming: A process that involves a selection

of one of many alternatives where the selection

is more like7ly to be made because it was selected

at some previous time.

teaming: A process that envolves a selection of

one of many alternatives where the selection

///

(:27-

is more likely to be made on the basis ef<the

22
results of previous selections."

The difference between habit-forming and learning is that

in the former, the habit is reinforced merely because it has

been chosen. In the latter, learning occurs as a result of an

%
evaluation influenced by external results. People exhibit both

habit-forming and learning; an example from the experience of the

author is presented:

If a beginning programmer writes a program in a certain way;

e.g., without the use of any comments in the code, then he will

probably continue to write programs that way (regardless of the

comments of his co-workers). Re has acquired a habit. Now if

our tyro programmer is ever called upon to rework one of his

pieces of code after time has elapsed, it is a good bet that he

will learn the advantage of annotated code. If our programmer is

intelligent, he will learn to mend his ways. Then it can be said

that learning was acquired in an environment.

In order to appreciate the development of the habit-forming

processor, consider Fig. 4-2. After Fig. 4-2 is developed, it

will be shown how the present system is similar.

In Fig. 4-2, each input is derived from the last output.

The initial output is set by some external source. At each cycle,

a random number is generated and compared with a set of probabili-

ties, p, where p is given below:

1011 021 0n1

n
p
i
k 0 for i= 1,.,.,n and E p4 = 1 4,4

i=1

+
4
0

+
.

.

+
1
5
0

t

2

n
o

y
e
s

T
i
P

o T
,
p

p

Q
' n
-
1

P
-
p
-
.

n
- an T
n
p

F
i
g
.

4
-
2

-

G
e
n
e
r
a
l

H
a
b
i
t
-
f
o
r
m
i
n
g

0

-129-

Suppose that there is a set of operators Ti, and that wnen Ti

operates on p,,the resultant, value of p is changed so that the

values of p, are increased at the expense of the remaining com-

ponents of 5. In operation, each cycle yields a random number r,

the value of which is used to select the next value of the output

1
a . At this time, the associated T operator modifies the vector

P . As an example of this, suppose that:

el
11311.

TiO a T2P = ... TnP s (P2,P3,...,P1,Pn)

and initially p a (1:,"01 0,..., 0)

This form of the habit former will operate cyclically.

4-5

At each iteration, the value of the i'th component is set equal to

the value of the (i-1)1th component. Thus at each interaction the

next habit will be taken. Gorn calls this form of the habit

learner the "turn-taker" processor.
22

It is evident N./by the term habit-former is applied to this

processor. The modifications are made based upon the results of

the result of the previous selection and not on the basis of_and

external, experience. If the T operators were applied on the basis

of experience gained, the processor would exhibit learning in the

Gorn sense.

In order to see why the learning processor is more

desirable than the habit-former, one may point out that the old

saying "experience is the best teacher" is unreliable, because

-130

experience without evaluation and/or guidance results in habit-

forming that is non goal directed. The present syitem incorporates

the learning feature in its implementation.

However, there still is the function of adaptation that

must be considered.. With an adaptation capability, the system is

able to scan what it has learned and from it make a guidance

Judgment. Thus.the adaptive system can be pictured monitoring the

learning system'and directing it. This is represented in Fig. 4-3.

4.7 A:Working Definition of an Adaptive Process

In the usual adaptive control system, there is some

physical quantity that can be used in a mathematical optimization

process. For example, in a manufacturing process, the cost per

unit item produced can be computed and used to modify the generating

function. Along this line, the following working definition is

introduced.

Adaptive process: A. process that can monitor the

operation of a system and on the basis of its

performance, provide modifications that improve

operations.

For each input, an output is produced and evaluated by

the user. The system reacts to this evaluation and "scares"

itself, determining how to modify the internal selection procedure.

The adaptive monitor sits above it all and draws inferences

concerning System performance.

4.8 The Final Form of the Ada tive Process

The deVelopment of the system was undertaken with two

U
s
e
r

A
d
a
p
t
i
v
e

M
o
n
i
t
o
r

E
v
a
l
u
a
t
i
o
n

G
e
n
e
r
a
l

H
a
b
i
t
-
F
o
r
m
e
r

F
i
g
u
r
e

4
-
3

-

G
e
n
e
r
a
l

H
a
b
i
t

-

f
o
r
m
e
r

w
i
t
h

L
e
a
r
n
i
n
g

a
n
d

a
n

A
d
a
p
t
i
v
e

M
o
n
i
t
o
r

requirements imposed:

(1) The system must learn to react to the presentation

of an index set in a manner that is dependent upon

the history of the interaction and in the light of

the data set at the disposal of the °machine.

The system must be abletadaptive- to infer, from

fu'; the interaction, general patterns and propose

suitable measures to improve the pattern.

The manner in which the system fulfills these two require-

ments is co red in the two sections following.

4.9 Interaction-by-Interaction Learning

The system has at its disposal a set of microthesauri

upon which its decisions are made.. Initially, the system con-

siders all microthesauri to be equal and assigns the same

positive initial gain to all microthesauri. The system employs

the current value of the score at each stage of the interaction

as a "gain" for computing an inclusion number for each new

suggested term found by the system. To arrive at the inclusion

score, the system computes a set of contributions Ca(tj,tk).

Each contribution is formed by multiplying the gain of micro-

thesaurus a, bythe weight of the ordered pair (tptk) in it,

where tj is in, the user's index set and tk is a term with a

non-sero weighted'relation between it and tk in microthesaurus a.

ca(tiltk) s Ga(a) wa(tptk) . 4-6

Where: Ga(N) is the gain of microthesauri Ma

after N interactions.

-133-

wa(tj,tk) is the weight of the ordered

pair .(tjltk) in Mir.

tj is in the user's index set and tk is

not.

The inclusion score Ia(tk) is obtained by sunming over

all of the j in the user's index set. Thus

Ia(tk) = .i.Ca(tj,tk.) 4-7

In order to be acnepted as a proposed index term, least

one of the "a" values of Ia(tk) must be greater than a threshold

T. Thus, if tk is to be in Mg (the N'th machine response) then:

tk E Ni4=4,(ala)(Ia(tk) > t) 4-8

When the user reacts to the MN, new gains are computed.

The gains are increased by some reward R:

Ga(N +l) = Ga(N) +1144pqa(tk) > T b tk E U (N+1)

4-9

For those erms proposed and rejected by the user, the

system reduces the gsins by some penalty 1):

Ga(N +1) = Ga(N),-P,4#4Ia(tk))PT G tk U (11+1)

410

Normally the values of T, R, .1), and the initial gain, G,

will be parameters of the system and axe. eerily changed by the

Aystem operator. (See Section 4.12 for implementation.)

4.10 The Interest Profile-

The values of the Ga(N) represent a score of the various

microthesauri after N interactions, and they 'are used by the system

to remember which areas of specialization to stress. The set of

gains are considered to be a representation of how the user

progressing in his search; for it is through the distribution of

the gains that he is led to the speciality areas that interest him.

Thus, the set ofgnIns constitute an interest profile of the current

user with respect to the current state of this interaction. This

interest profile can be observed by the adaptive monitor which

can then given direction to the user.

In Section 1.3, the nature of the adaptive process was

introduced. In the next section, the adaptive algorithm is

developed.

4.11 An Algorithm for Rendering Adaptive Assistance

As the interaction between the user and the system pro-

ceeds, the system-constructs an interest profile of the user.

Concepcually, all of the profiles can be observed as entries in

a table. This is illustrated in Table 4-1. The a'th component

of the interest profile after the j'th interaction is defined as

GA(0). The value of a runs from 1 to A where there are "A"

microthesauri. The j'th-column Of the table represents the state

of the profile after j interactions, while the a'th row represents

the history of the interest felt in the a'th speciality area.

In order to consider the three criteria of Section 1.3,

-135-

INTERACTIONS

1 2 ... j 004 N

01(1) G1(2) ... G1(J) ... Gi(N)

p G2 G2(1) G2(2) *so G2(0 ..* G2(N)

0

G3 G3(1) 03(2) ... G,(i) G3(N)

1
e

C

G
a

Ga(1) Ga(2) Ga(j) Ga(N)

P

.n GA GA(1) GA(2) ... GA(J) GA(N)

TABLE 4.1 - Table of Interest Profile

-136-

assume that the interaction is N and the components of the profile

are arranged in decreasing order of magnitude.

Let this sequence of descending magnitude be G:

G Gi
1
(N), Gi

2
(N), Gi

3
(N),...,Gi

A
(N) 4-11

Where: there are "A" microthesauri.

Gik(N) Gik+1(N) 4'k"
k =1 to (a-1)

The tendency for the interest profile to centralize is

established when in the sequence G, first a small number 5 of

profile components exists such that the differences between them

is small, and second there is a 'large difference between the last

profile component in the set and the first component_that is next

in G. Symbolically:

1) Lk g D, for all k where: D1< < D
2

2) t k D2' g D
3

4.12

Naturally the tendency for no centralization in the

interest profile is recognized when after N iterations, the above

conditions have not been met; there then will be no large spread

in the differences. Sybolically:

1) D1 <
k

D2 14-13

An oscillation in the set of microthesauri included in

the high interest group will show the changing interest of the

-137-

user. Since the deletion of members from the high interest group

is taken as a positive sign concerning the course of the inter-

action, the inclusion of new members is to be taken as a negative

sign. Since it is possible for one microthesaurus to be dropped

from the high interest group and another added on the same inter-

action, the teat for this condition requires that the identity

of the members of the high interest group be known. The implementa-

tion of this would involve denoting the microthesauri in the high

interest group in the interest profile. Then after the conditions

of Eq. 4-12 are satisfied, and a high interest group has been

formed, any new addition of a microthesaurys to the group should

be pointed out to the user.

4.12 An EXtension to the Adaptive Algorithm

In many applications of information retrieval not only

must one ascertain the extent of interest a user has in any given

field of interest but it is also helpful to determine to what

depth thAs interest extends. To some. degree, the amount of

interest can be determined through an examination of the terms

employed by the user. In order to measure this depth, it is

absolutely necessary to have prepared a structured classification

of the terms that gives a generic-specific relationship between

the terms in the system vocabulary. If this information were made

available,. then the technique of evaluating the depth of interest

would be simple. Every time a term is rejected for a more detailed

tarm,or terms, the interest profile component in that area would

also have its depth value augmented. The profile components then

-138-

would be constructed of an ordered pair of numbers, the first

giving the value of the profile gain and the second giving the

level of specifity. It must be emphasized that the useful develop-

ment of such a technique would rest squarely on the dR,ta base, and

there is not agreement among workers in the field as to the validity

of generating a generic-specific table. In defense of the above

technqiue, it may be pointed out that the user need not be aware

of the system's viewpoint of the generic-specific relationship

of any term pairs. The main force of
!

the technique is that it is

to be used on an averaging basis and does not need to rest on the

validity of any one term pair. Continuing research at MSISL has

shown the validity of generating the generic-specific classifica-

tions automatically. These are discussed below.

4.13 The Implementation of the Interactive Process

The interactive process has been implemented-or the

Universt:w of Pennsylvania 7040-PDP8 computer complex and the main

programs are written in L6 programming language. The use of

L6 and the set of programs that are used to perform the house-

keeping functions of the system are discussed in Appendix A.

Figure 4-4 is a copy of an actual interaction. The VECTOR editor

program for the PDP8 computer was employed. The interaction

proceeds when the L6 program requests the user to ENTER DATA.

this case, the user replied by typing TAPEIN < The symbols

" <" and n>" are the VECTOR editor's END OF MESSAGE signal, "EOM",

and the message is sent to the L6 program in the 7040 computer.

TAPEIN causes the set of microthesauri to be read into the 7040

-139-

STANDBY.

ENTER DATA

TAPEIN4>

TAPEIN

ENTER DATA

PARAMETER
REWARD
44>

PARAMETER

ENTER DATA

SET
OPERATING
SYSTEM4s

SET

THE FOLLOWING WORDS ARE YOUR INDEX SET

OPERATING

SYSTEM

THE FOLLOWING TERMS CAN BE ADDED TO YOUR INDEX SET

ATLAS

MODULES

PRINTERS

,TRANSMISSION

TURNAROUND

ONLINE

COMMAND

MONITOR

TIMESHARING

DO YOU WISH TO ADD MORE TERMS

Fig. 4-4a - A Sample Dialogue

-140-

ENTER DATA

YES4>

ENTER DATA

TIME-SHARING
COMMAND
MONITOR4>

DO YOU WISH TO ADD MORE TERMS

ENTER DATA

NO<>

ENTER DATA

SET<>

SET

THE FOLLOWING WORDS ARE YOUR INDEX SET

OPERATING

SYSTEM

COMMAND

MONITOR

TIME-SHARING

THE FOLLOWING TERMS CAN BE ADDED TO YOUR INDEX SET

TURNAROUND

ONLINE

DEBUGGING'

INTERRUPT

SUPERVISOR

REAL-TIME

BATCH

EXECUTIVE

Fig. 4-41a - A Sample Dialogue

(Continued)

-141-

DO YOU WISH TO ADD MORE TERMS

ENTER DATA

YES<>

ENTER DATA

EXECUTIVE
SUPERVISOR4).

DO YOU WISH TO ADD MORE TERMS

ENTER DATA

N04,

ENTER DATA

PARAMETER
PROF ILE.cs

PARAMETER

PROF IL.

000001

000220

000002

Fig. 4-4c - A Sample Dialogue,

(Continued)

-1142-

ENTER DATA

TEST4:.

TEST

THE FOLLOWING WORDS ARE YOUR INDEX SET

OPERATING SYSTEM

COMMAND

MONITOR

TIME - SHARING

SUPERV I SOR

EXECUTIVE

ENTER DATA

PARAMETER
PROF ILE4>

PARAMETER

PROF

000005

000005

000005

Fig. 4-401 - A SaMple Dialogue

(Continued)

-143-

ENTER DATA

SET
OPERATING
SYSTEM?

SET

THE FOLLOWING WORDS ARE YOUR INDEX SET

OPERATING

SYSTEM

THE FOLLOWING TERMS CAN BE ADDED TO YOUR INDEX SET

ATLAS

MODULES

PRINTERS

TRANSMISSION

TURNAROUND

ONLINE

COMMAND

MONITOR

TIME-SHARING

DO YOU WISH TO ADD MORE TERMS

ENTER DATA

YES?

Fig, 4-4e - A Sample Dialogue

(Continued)

-144

ENTER DATA

TRANSMISSION
AODULES4>

DO YOU WISH TO ADD MORE TERMS

ENTER DATA

M04>

ENTER DATA

SET41.

SET

THE FOLLOWING WORDS ARE YOUR INDEX SET

OPERATING

SYSTEM

MODULES

TRANSMISSION

THE FOLLOWING TERMS CAN BE ADDED TO YOUR INDEX SET

ATLAS,

PRINTERS

TURNAROUND

ONLINE

PARAMETERS

I/O

DEVICES

REGISTER

SIMULATION

DO YOU WISH TO A0to MORE TERMS

Fig. 4-4f - A Sample Dialogue

(Continued)

L24.95--

-145-

ENTER DATA

YES4>

ENTER DATA

I/O
WVICES42.

DO YOU WISH TO ADD MORE TERMS

ENTER DATA

N04,

ENTER DATA

PARAMETER
PROFILE4>

PARAMETER

PROFIL

000016

000001

000001

ENTER DATA

TEST43.

TEST

THE FOLLOWING WORDS ARE YOUR INDEX SET

OPERATING

SYSTEM

MODULES

TRANSMISSION

I/O

DEVICES

Pig. 4-4 g - A Sample Dialogue
(Continued)

-146-

and the structure is constructed*. The.L6 echoes the function to

show what is being performed in the system.

After completing the construction of the microthesauri,

the system again types ENTER DATA. This time the user types:

PARAMEZER

REWARD

4 < >

ThiS.function sets the level of REWARD pa. deter to 4, and this

is how much the interest profile will be augmented for each

accepted term. The user then initiates the interactive dialogue

by typing SET followed by the proposed index terms "operating".

and "system". The system given OPERATE and SYSTEM as the index

terms will, after consulting the microthesauri,ipropoSe the set

of terms that can be added to the index set. Since this is the

first stage of interaction, the values of the interest profile are

all the same (they are all set to 000005). The first four terms

suggested as possible additions were derived from the hardware

microthesausus. TURNAROUND came from toth the software and

applications microthesaurus, and the last four terms came from

the software microthesaurus. There is no implied ordering in the

* For the data of the present stage of implementation consisting
of about 800 terns and 1770 entries in three microthesauri, the
time elapsed to read the 1770 entries from tape and construct the
three microthesauri was about 100 seconds. The might give insight
into the running speed of the L6 system. In general, for the shorter
functions there is no appreciable elapsed time between the entry of
the Tunctiwi and the printing of the results. It would seem that
the majoF processing limitation is the data link.between the 7040
and the PDP8 to-the teletypewriter. The employment of a CRT dis-
play and a high speed data link would speed up the process.

-147-

terms within a speciality. The system then asks if any of the

suggested terms should be added to the ie-x set. The user then

`types YES.

In the example, the user included three of the suggested

terms in the index set. They are TIME-SHARING, COMMAND, and

MONITOR. They may indicate that the user is interested command

4)11

.

Monitors or operating systems for a time-sharing environment.

The user wishes to continue the interaction and signifi this

by typing SET < > to indicate that he does not choose to add any

more of his own terms at that time. Again the system prints the

current index set which now includes the new terms as well as the

original ones. The suggested terms that are now proposed by the

system are of a different character and seem to be related more

nearly,to the subject of the present example. None of the hardware

terms is suggested at this time, showing that the system has

learned that they are not of interest to the user. The user then
,S)

chooses two synonyms of Operating Systems EXECUTIVE and SUPERVISOR.

These synonyms were not strongly enough related to the original

set to be included in the first stage of interaction; but after

the profile was modified and the additional terns included, they

were discovered by the system.

The user then requested a PROFILE of his request. The.

result show thatP the gain for the area of hardware is reduced to

one, soft -care's has grown. to 20, and application's is reduced to

two. The final function of TEST < > produces a listing of the

final index set and restores the system to the initial conditions.

The user then requested a profile to verify that it had

been reset. The next interaction repeated the same initial

index set only this time the hardware terms "TRANSMISSION" and

"MODULES" were selected. The dialogue proceeded to the conclu-

sion. The final profile is now given as 000016, 000001, and

000001 in hardware, software, and applications.

If at any time, the user proposes a word that is not a

term in the system vocabillAry, then the system will turn the word

back with an appropriate comment. All terms that are proposed by

the system and rejected by the user will reduce the effect of

the microthesaurus that generated the term. The user is free to

add terms of his choice to the index set at each stage of the

interaction. He may also eliminate any terms from the index set

by typing:

DELETE

if)p

term < >

If a term that is not in the index set is the argument of

a DELETE function, then DELETE will fail and the system will type

an appropriate comment. Deletions of terms from the index set do

not affect the state of the interest profile.

At any point that the user is in control of the system, he

may employ any of the system functions. The interaction proceeds

from one execution of TEST to the next.

-149-

The technique used to identify interesting words was selected

after numerous discussions at the Moore School Information Systems

.Laboratory of the properties that interesting and uninteresting

terms should possess. Because this method had never been fully

verified, sUbjective changes were made in the list of words chosen

or rejected. With the ultimate aim of clumping in mind, it was

decided to eliminate any word that occurred in more than 6-7% of

the documents. Additional changes were made solely on the basis

of the author's subjective jurigement.

In the above discussions, the word- 'word' was used rather

loosely. Because many different words referred to the same con-

cept (e.g., computer, computers), these concepts were identified

and the statistics were computed for each 'merged group' of words.

At the end pf the selection process, 809 words had been chosen

and they comprised 406 groups.

4.14 Clumping - The Techniques Considered

Numerous methods for clumping have been described in the

literature, some as early as 1958. With the approaches varying

greatly from one to the next, a careful comparison of techniques

was required.

Five major considerations determined the applicability of any

method. They were:

1) Type of data permitted,

2) Programming difficulty,

3) Amount of memory needed,

4) Operating speed, and

5) Relevance of results for intended usage.

-150-

In their article, Dale and Dale
Di

describe a method which

anticipates a' data base of key words--words representative of a

field and chosen independently of the particular documents in the

data base. Associated with each word is a vector with elements

of zero or one. A nonzero entry indicates the occurrence of that

word in the corresponding document. The number of ones in the

intersection of their vectors determines the association of two

words and is called the "connection" of the two words. The "bias

of a word to any subset" of key words is defined as the total

connection of the word to all members of the subset, minus the

total connection of the word to all nonmembers of the subset (it

may be positive or negative). A subset is a clump if all members

of that subset have a positive or zero bias to the subset and if

all nonmembers have a negative bias to the subset. In short, a

Clump is a set of words whose members are more highly related to

themselves as a group than, they are related to the nonmembers of

a group, and whose nonmembers are more highly related to themselves

than they are to the' members.

Three basic objections to this technique seem apparent. The

subject vocabulary which concerns us comes from the text of a

collection of abstracts and is thus quite different from the key

word vocabulary which the above technique anticipates. Perhaps

a major redefinition of the connection measure would solve this

problem, but this could not be decided without much additional

study. The,machine time needed to run the clumping program for

all interesting initial-partitions seems extremely high. Possibly

-151-

the most crucial criticism is that even when the clumps are refined,

they still overlap greatly and are therefore of little use to us.

Investigators at the Cambridge Language Research Unit have

1-41
adopted a different approach' . Object-property information is

processed to form a 'similarity matrix'. Subsequently, this

matrix is manipulated to identify groups of objects sharing

common properties.

Input to this technique consists of properties, each followed

by a list of objects possessing that property; no mention is made

of words, documents, etc. The similarity of two dbjects isrdefined

as the ratio of the number of properties they share to the total

number of distinct properties they possess. A cohesion function

determines when clumps have been formed, a clump being a local

minimum of the cohesion function. If SAB represents the sum of

the similarities between members of A and thoLe of B, and C is

the potential clump, and C its complement, then one of tle suggested

(SCE)2
cohesion functions is given by . This measure emphasizes

SCCxSCC
"coherence", the extent to which clump members are interrelated.

To emphasize "separate:less", the extent to which clump members are

SCC
x
(NC)2 NC

distinct from the remaining objects, SCC SCC is the

recommended cohesion function, where NC is the number of objects

in C. The clump finding algorithm consists of an interative scan

of the object list to see whether shifting an object in or out of//

/
the potential clump will reduce the current value of the cohesion

function. This process must terminate in a stable partition of

the object universe. If the total number of objects,is not too

-152-

large, each object may be taken as a prospective clump and we may

attempt to grow a clump around it. Another possibility is to

select pairs or triples of highly connected elements as starting

groups.

Rapid identification of clumps (one every 1.5 seconds) makes

this method highly desirable. The freedom to choose a cohesion

function which allows the coherence and separateness components to

be manipulated independently is also A significant factor. Certain

clumps, however, seem likely to be missed entirely as the search

strategy is order-dependent. CarefUl consideration was given to

.adapting our data to the input form required but the concept of

properties possessed by data elements was still inappropriate to

the problem attend. This difficulty alone was sufficient to

exclude the above approach to the clumping task. The distinction

between separateness and coherence remains valid for other

techniques and should be considered when analyzing them.

R. M. Needham, also a member of the Cambridge Language

Research Unit, describes another technique
[6]

. The particular

problem of how to identify a term as a suitable substitute for

another term in a retrieval request forms the basis of his

approach.

A measure of association between two words, the connection,

is defined as the ratio

Number of documents in which the terms co-occur

Number of documents in which at least one occurs

The N by N connection matrix A, where N is the number of words,

1

-153-

has as its entries the appropriate connection values. By conven-

tion, diagonal elements are set equal to zero. An N-vector V,

with elements of ± 1, specifies a group of terms, +1 denoting a

member of the group, -1 a nonmember. A clump is defined as any

subset of terms for which the sum of the connection of any member

to all other members exceeds the sum of its connection to all

nonmembers, and for which any nonmember's connection sum to all

other nonmembers exceeds its connection sum to all members. (See

Figure 2.)

The universe

Figure 2 - a clump

A is a clump if each a is more closely

connected to all other a's together than it is to all b's

together, and if each b is more closely connected to all

other b's than it is to all a's.

-154-

With 1 denoting a vector all of whose elements are +1,

cohesion is defined as the ratio

C/10)

+ TVA V-)

the transpose. A clump is a local minimum of cohesion, that is

moving any element into or out of the clump increases the cohesion.

Starting from some initial partition of the universe, specified

where the prime indicates

by U, each element is tested sequentially and is transferred

whenever such a movement would decrease the cohesion. The cohesion

does not have to be computed at each stage. Let AU = RU where R

is scAe diagonal matrix. If any element of R is negative, we make

it positive by reversing the sign of the corresponding row of U.

This forces the other elements of R to be changed, but each such

step reduces the cohesion until a clump is found.

Eventually, the sample size will cause available core storage

to be exceeded, even in the largest machines. Although this

problem is avoided by storing the connection matrix on magnetic

tape, the running time remains very reasonable.

As is the case with every technique discussed so far,

there is no guarantee that all clumps will be found.

The article gives no indication of the extent to which clumps

overlap; without such information it is somewhat difficult to

evaluate this method.

The only major objection to this technique, and it is relative

to the others considered, is that the actual algorithm of this

technique fails to make sense intuitively. In some of the other

-155-

methods it is easier to see the role each step plays in identifying

closely knit groups. If a better technique were not available,

this objection could be ignored.

The last technique, developed by Stiles and Salisbury
[71

,

consists of "growing a clump" by adding one element at a time.

Initially, the vocabulary is divided into a two member group and

its complement. A rather simple and direct method may be used to

identify the starting group. At each stage in the clumping pro-

cess, that member of the complement yielding the highest value

of the measure which the authors specify is added to the existing

group to form a new one. This process is repeated until no new

word seems to fit in well with the current clump. A new

starting partition is determined and the search for the next

clump begins.

A matrix of the correlation among all words in the subject

vocabulary is needed in selectilg the initial groups and in

deciding when a word should be added to the present clump. The

association between words i and j is given by:

Aij
(CipD - (Cii)(Cji) - D(2

V (Cii)(Cjj)(D-Cii)(D-Cjj)

where Cij is the number of documents in which i and j both occur

(i.e., co-occur) and D is the total number of documents. Cii is

just the nqmber 'of documents in which word i occurs.

The measure used to determine which word to add to the clump

is called the B-coefficient and is defined as "100 times the ratio

-156-

of the average of the intereorrIelations among the variables

within a group to their average correlation with-all remaining

variables" .

Three hypotheses must be satisfied for thisstechnique to be

applicable:

1) The vocabulary must have a common factor;

2) There must exist at least one group of words S which

possess some common property not shared by the

remaining words;

3) Given a method of measuring the association between

any two words of the vocabulary, the association between

any two members of S is higher than the association

between any member of S and any nonmember.

It was immediately apparent that our data base satisfied

the first two hypotheses. Satisfaction of the third requirement

could not be verified, but intuitively it,ould have to be at

least partially satisfied if the concept of clumps were to be at

all meaningful. (Results did indeed verify. this initial faith.)

The results obtained by the authors appeared to be appropriate

for our intended use. Programing this technique promised to be

very straightforward so long as the entire association matrix

could be stored in core. Using auxiliary memory would:drastically

increase operating speed.

* Ref. £7J, P. 5.

-157-

Intuitively, thiS technique made as much sense or perhaps

more than any other. Thus, devising a technique to fit the bulk

of the association matrix into core appeared tc be the main

problem. Storing only non-zero elements, using auxiliary tables

to keep track of the coordinates and taking the lowest values to

be zero, permitted most of the matrix to be stored in core.

lY

This technique satisfied the five requirements listed previous-

Together with its intuitive clearness this fact accounted

for its being selected.

4.15 Implementation

A clumping technique using the B-coefficient was implemented

on an IBM 7040 computer. Time considerations required that the

entire 406x406 association matrix, AM, be stored in core;

however, only 23,000 memory locations were available. Storing

just the 25,000. non-zero entries offered some help but each

entry appeared to need two coordinates (row, column) to identify

it. Noticing that for entries from a given row the first 'coordin-

ate was always the same, we found a way to reduce the core

required (bar almost 33,;) by eliminating this repetition. In

addition to a main array, A, two auxiliary arrays were used to

store 1) the number of non-zero entries in each row of AM and

2) the starting position within A of all information relating to

a given row of AM.

This approach proved sufficiently useful to warrant further

explanation. The 2-dimensional association matrix, AM, is

a

stored sequentially in the 1-dimensional array-A. Corresponding

-co each non-zero element in AM, a double entry is made in A

consisting of, the coordinate of the column in AM followed by the

actual AM entry. A second array, .START, contains as its ith

element the starting location within A of all information 1-elating

to row i of AIL The orray7NUM contains in a similar fashion the

number of non-zero entries in the corresponding row of AM.

Consider the following example:

AM

o 0 6 0

o o 9 0

6 9 0 7

0 0 7 0

A:

START:

NUM:

3

1

1

6

3

1

3

5

3

9

11

1

1 6 2 9 4 7 3 7

To find AM(3,4) from A, START, and NUM, we first get

START(3) and NUM(3). Searching through NUM(3) pairs in A

beginning with A(START(3)), we eithcsr find-the number 4 in which

case- the next location in A contains Am(304) or if we do not find

it, the value must be zero.

-159-

The following chart shows the difference between the three

methods. AM is assumed to be NxN; K% of the entries are non-zero.

Storing
All AM

Storing
Non-Zero Elements

Storing
Non-:Zero Elements;

Auxiliary Arrays

General Formula

Our Data Base
N=406, K=15

Typical Future Case
N=2000, K=10

2
N (.03K).kN2

165,000 74,006

4l000,000 1,200,000

Table 1

Number of Core Locations Needed

(.02K) x N2 + 2N

50,900

8o4,000

Since our original matrix is symmetric, only entries above

below the diagonal need be stored regardless of which method is

selected. However, implementing this promised to increase the

programming problems and the running time. We decided to store,

above the diagonal)

entries below a

seems desirable to

as

as

many non -zero elements (from both below

space permitted., This required setting

and

all

certain value equal to zero. In the future it

or

write .the clumping program to take advantage of the symmetry and

Store Only elements from below the diagonal. Results to date

indicate that the extra operating time could be afforded.

The ficoefficient was defined as\"100 times the ratio of the

average of the intercorrelations among the variables within a

.group to their average correlation with all remaining variables".

1

With AM(Vi,V) denoting the correlation between variables Vi and

V
j,

G representing the group, and G its complement (for a total

of N elements), we can express the B-coefficient as follows;

B(k) = 100

AM(V li)/(k(k-1)/2)

N

AM(V.,V)/k(N-k)
j=1 t=k+1

where V4 E G

V/ ,

j=1,...,k-1

I = k+1, ,1\1.

V
k

is the prospective addition from .G to G.

. Denoting the double sum in the numerator by P(k) where k

indicates the element about to be added, and the double sum in

the denominator by T(k) we can significantly reduce the number of

calculations necessary at each stage as follows:

k-

P(k) = Am(vi,vj)
j=1 i<j

k-1 k-1

LY, +
j=1 .i <j (j=k) i=1

= P(1: -1) AKG(k)

k-1

(leaving out AM(Vi,Vi)

from the inter,-

mediate steps)

where AKG(k) = Amp.,,vi, is the total association
'i=1

(A) of the prospective addition (K) to the group (G).

T(k)

-161-

AM(V. V)
j

i=1 j=k+1

R-1 N

=

i=1

N . k-1

\.) >
(i=k) ,j1=1 j=1 (j=k)

k-1 R-1 k-1 N k-1

- X 1 + -
2:

i=1 j=1 i=1 j=1 j=1

(j=k) (i=k) (i=k)

k -1 N k-1

> - 2 + (using AM(Vk,Vk) = 0)

i=1 j=k i=1 j=1

(j=k) (i=k)

T(k-1) - 2 AKG(k) AKT(k)

where AKT(k) = AM(VklVi) is the total association (A)

of the prospective addition (K) to the total (T) collection

of eiements.

B(k) can now be expressed as

230(N -k) P(10

(k-1) T(k)

where P(k) P(k-1) +:AKG(k)

and T(k) = T(k-1) - 2 AKG(k) + AKG(k).

-162-

Instead of computing 2 double sums ateach stage, we must perform

a few immediate calculations plus some simple updating when an

element is actually added to 'G (assuming we store P,T,AKG and

AXT). A quick calculation will show that for each clump of 40

members over 100 million additions will be saved, a significant

and necessary reduction even on the fastest computers.

The association measure as described earlier was rather

clumsy to use. Noticing that the number of documents in which

words occur is much smaller than the total number of documents,

we may write

Aij=

where
1

C..10 C. Cjj have the same meaning as before.

4.16 Results

It was our intention to experiment with different association

measures and we in fact tried:

A44
\Pc. gcJi

C
ij

2) A* =
ij maximum

t

C
ij

41.

'1j minimum (Cii,C00 44)

(approximation to Stiles' measure)

The latter two were chosen in an attempt to bracket all likely

association measures. (All likely measures were expected to give

-163-

values .between A4.-x. and Ax..) Most other measures could be -produced

by combining these two in various ways. According to an article

by Jones and Curtice
[51,

/V would emphasize particular terms while

A4,-* would emphasize general terms. We did not attempt to verify

this because of the nature of our data base, i,e., its being spread

out over many subareas. This is sufficiently interesting to

warrant further investigation. It would be wrong to draw any

conclusions on this subject from the clumps included here.

Using the B-coefficient to clump, we obtained the results

shown below (Figure 3). The first four words are highly related

to one another but there are some which have been suggested as

members of the clump yet do not appear to be related to any other

member of the clump. Table 2 may provide some insight into that

has happened. Apparently, words with a small total association

have been added to the clump even though they have a low or zero

association with it.

It would be helpful at this point to consider how a word

may be ,added to an existing clump:

1) The word has a high association with the clump (and

a small association with the complement).

2) The ward has a small total association thereby giving

a large value to its B-coefficient, independent of its

association with the clump.

A small total association indicates that we do not have .enough-

inforination about this word to properly place it in one clump or

-164-

Benzophenone 100 33 140 23

Ketyl 100 33 140 23

Transient 33 33 25 7

Triacetatk 40 40 20 15 20

Disk 25

Solvation 20 33

Species 23 23 7 15

Adiabatic 20 33

Log

Acetyl 20

Soil

Thermocouple

Landing

Ablator

Prefabricated

Figure 3

Association Matrix #1 using A*
ij

Without Total Association Criterion

Note: The words are listed in the order in which they were

added to the clump.

20

Benzophenone

Ketyl

Transient

Triacetate

Disk

Solvation

Species

Adiabatic

1

25000

25000

15 300

20600

7900

6800

2390o

18600

-165-

Table 2

Log 400

Acetyl 7400

Soil 600

Thermocouple 1000

Landing 2100

Ablator 2400

Prefabricated 2500

The Total Association of a word with the entire

vocabulary, i.e., the sum of the association of

a word with all other words.

-166- .

another. One might be tempted to use a word's frequency to

determine whether to exclude the word; however, a group of lOw

frequency words could still be meaningfully clumped if they always

occurred in the same abstracts. Therefore, we decided to exclude

all words whose total association was less than 1/3 the maximum

total association of any word thereby reducing our vocabulary

by 331,. The exact fraction used was chosen somewhat arbitrarily.

A small change would only effect borderline words; thus the choice

does not appear critical. Except for the association matrix which

led us to introduce the total association criterion, all of the

others have already taken this criterion into account. The effect

can be seen by comparin, Figure 3 with Figure 4 .

A word with a high association to: an existing clump may not

be added to the clump if the word has a high .association With the

complement. For some purposes this is a desirable restriction,

but not in our case. To correct this, we introduced a modified

B-coefficient. Using the same notation as before we now have

T(k) = T(k-1) + (AKT(k) - 2 AKG(k))/H. In the results which

follow when we talk about the modified B-coefficient, we will

mean a value of H=3. An area for further investigation would be

to determine whether there are a number of must desirable values

for H, each one corresponding to some distinct type of clumping.

Figures 4 and 5 show the effect of the modification in the

R-coefficien. In Figure 6 we see that changing the association

measure to Aij did not have any significant effect, While. using

measure A** produces the same initial clump but leads irto a
ij

B
e
n
z
o
p
h
e
n
o
n
e
.

K
e
t
y
l

1
0
0

3
3

t
0

2
3

1
1

1
0
0

3
3

4
0

2
3

1
1

T
r
a
n
s
i
e
n
t

3
3

3
3

7
1
1

T
r
i
a
c
e
t
a
t
e

4
0

4
0

1
5

2
0

S
p
e
c
i
e
s

2
3

2
3

7
1
5

6

A
d
i
a
b
a
t
i
c

2
0

1
4

I
s
o
t
h
e
r
m
a
l

1
4

1
4

1
2
,

1
2

D
e
c
a
y

1
1

1
1

1
1

7
11

6

C
a
p
r
o
l
a
c
t
a
m

1
4

1
1

1
2

1
4

6

A
m
i
d
e

1
2

6

S
o
r
p
t
i
o
n

1
2

1
2

1
2

P
o
t
a
s
s
i
u
m

1
1

1
1
+

1
2

4
2

2
6

2
0

S
i
l
a
n
e

4
2

2
0

2
6

K
c
a
l

6
2
.
6

2
0

2
0

S
i
l
o
i
c
a
n
e

6
2
0

2
6

2
0

F
i
g
u
r
e

4

-

A
s
s
o
c
i
a
t
i
o
n

M
a
t
r
i
x

#
1

u
s
i
n
g

A
t
-
j

W
i
t
h

T
o
t
a
l

A
s
s
o
c
i
a
t
i
o
n

C
r
i
t
e
r
i
o
n

N
o
t
e
:

N
o
t

e
v
e
r
y

w
o
r
d

b
e
l
o
n
g
s

t
o

t
h
e

c
l
u
m
p
;

i
n

f
a
c
t
,

t
h
e

c
l
u
m
p

w
o
u
l
d

p
r
o
b
a
b
l
y

s
t
o
p

a
f
t
e
r

'
S
P
E
C
I
E
S
'
.

A

c
u
t
o
f
f

p
r
o
c
e
d
u
r
e

w
i
l
l

b
e

d
i
s
c
u
s
s
e
d

l
a
t
e
r
.

B
e
n
z
a
p
h
e
n
o
n
e

1
0
0

4
0

3
3

2
3

1
1

6
6

4
4

5
.

5

K
e
t
y
l

1
0
0

-
4
4
o

3
3

2
3

1
1

6
6

4
4

5
5

T
r
i
a
c
e
t
a
t
e

4
0

4
0

.
-
1
5

2
0

6
1
3

T
r
a
n
s
i
e
n
t

3
3

3
3

.
.

7
1
1

S
p
e
c
i
e
s

2
3

2
3

1
5

7
7

6
5

l
o

5
4

8

D
e
c
a
y

1
1

1
1

7
6

7
8

5

A
d
i
a
b
a
t
i
c

2
0

I
r
r
a
d
i
a
t
e
d

6
6

6
6

2
0

1
2

1
6

9
5

7
5

E
l
e
c
t
r
o
n

5
7

2
0

2
0
.

2
0

R
a
d
i
c
a
l

6
6

-
1
0

8
"

1
2

2
0

1
9

6
6

S
p
e
c
t
r
a

4 ,
.
.

4
5

5
1
6

2
0

1
9

2
0

2
7
.

5
5

A
b
s
o
r
b
a
n
c
e

4
4

4
9

6
2
0

1
4

.9
9

I
n
f
r
a
r
e
d

5
6

2
7

1
4

C
e
l
l
u
l
o
s
e

5
5

1
3

5
7

7
5

9
13

C
o
l
d
r

5
5

5
8

5
5

9
13

F
i
g
u
r
e

5

-

A
s
s
o
c
i
a
t
i
o
n

M
a
t
r
i
x

#
1
u
s
i
n
g

A
A

M
o
d
i
f
i
e
d

s
-
c
o
e
f
f
i
c
i
e
n
t

i
j

B
e
n
z
o
p
h
e
n
o
n
e

T
r
i
a
c
e
t
a
t
e

S
p
e
c
i
e
s

T
r
a
n
s
i
e
n
t

C
o
l
o
r

(
- I
r
r
a
d
i
a
t
e
d

E
l
e
c
t
r
o
n

S
p
e
c
t
r
a

R
a
d
i
c
a
l

D
e
c
a
y

A
b
s
o
r
b
a
n
c
e
'

G
r
a
f
t

P
o
l
y
m
e
t
l
l
y
1

1
0
0

5
1

4
8

3
3

1
9

1
8

2
0

1
0
0

5
1

4
8

3
3

1
9

1
8

2
0

5
1

5
1

2
4

1
5

3
6

1
5

4
8

4
8

2
4

1
6

1
4

8
9

3
3

3
3

1
6

1
9

1
9

1
5

1
4

1
3

1
8

1
8

3
6

8
1
3
.
.

8

2
0

2
0

1
5

9
8

0 1
5

1
5

1
2

1
1

8
2
6

2
1

2
1

1
0

1
3

8
2
3

2
4

2
4

1
2

1
9

8
1
5

1
9

1
9

9
1
9

1
1

2
2

2
2

1
1

1
0

1
2

1
2

1
3

8
1
7

9

1
0

1
0

1
0

1
5

1
5 1
2

1
1 8

2
6

2
3

2
1

1
8

1
0

2
1

2
4

1
9

2
2

1
0

2
1

2
4

1
9

2
2

1
0

1
0
,

1
2

1
1

8

1
3

1
9

9
1
0

8
1
9

1
0

8
1
2

1
2

1
7

2
3

1
5

1
1

1
3

9

2
3

2
1

1
8

1
0

2
2

1
6

2
1

1
3

1
2

2
2

1
8

1
5

1
6

1
8

1
7

2
1

1
3

1
9

1
2

1
5

1
7

1
9

F
i
g
u
r
e

6
-

A
s
s
o
c
i
a
t
i
o
n

M
a
t
r
i
x

#
1

u
s
i
n
g

A
i
j

M
o
d
i
f
i
e
d

B
-
C
o
e
f
f
i
c
i
e
n
t

A
b
s
o
r
b
a
n
c
e

1
0
0

1
0
0

2
3

1
7

4
0

1
5

1
8

2
2

1
0
0

6
6

2
2

4
0

2
0

B
e
n
z
o
p
h
e
n
o
n
e

1
0
0

1
0
0

1
0
0

6
6

6
6

6
6

6
6

6
6

3
3

l
o
o

K
e
t
y
l

l
o
o

l
o
o

1
0
0
.

6
6

6
6

6
6

6
6

6
6

3
3

-
l
o
o

S
p
e
c
i
e
s

2
3

3
,
0
0

1
0
0

2
3

>

4
o

1
5
-

1
5

2
3

3
0

C
o
l
o
r

1
7

6
6

6
6

2
3

4
o

3
7

T
r
i
a
c
e
t
a
t
e

4
o

6
6

6
6

4
o

4
o

1
0
0

4
0

4
o

4
o

C
e
l
l
u
l
o
s
e

1
5

6
6

6
6

1
5

1
0
0

2
0

I
r
r
a
d
i
a
t
e
d

1
8

6
6

6
6

1
5

4
o

3
4

2
2

3
4

E
l
e
c
t
r
o
n

6
6

6
6

2
3

4
o

3
4

4
4

2
6

2
0

D
e
c
a
y

3
3

3
3

2
2
'

4
4

4
4

S
p
e
c
t
r
a

2
2

1
0
0

1
0
0

3
0

4
0

3
4

2
6

4
4

1
0
0

6
6

2
0

4
0

C
h
l
o
r
o
p
h
y
l
l

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

N
i
t
r
o
m
e
t
h
a
n
e
'

6
6

6
6

l
o
o

6
6

6
6

6
6

N
i
t
r
o
g
e
n

2
2

2
0

2
0

l
o
o

6
6

4
0

2
0

P
y
r
i
d
i
n
e

4
o

2
0

4
o

l
o
o

6
6

4
o

4
o

P
i
g
m
e
n
t

2
0

3
7

1
0
0

6
6

2
0

4
o

F
i
g
u
r
e

7

-

A
s
s
o
c
i
a
t
i
o
n

M
a
t
r
i
x

#
1

u
s
i
n
g

A
*
*

i
j

-171-

completely different one (Figure 7).

Before we can determinelhich measure gives the best results

we must answer two question":

1) How do we identify a clump?

2) How do we judge the quality of a clump?

As discussed earlier, a clump is a set of words which are highly

related to one another. Some ,of these words; but not all, may have

a high association with the 'Complement. Stiles and Salisbury used

the ratio of the current B-coefficient to the previous one to

determine where,a clump ends, but their results with this method

and our on results indicate the need for another technique.

If the vocabulary Were divisable into non-overlapping perfect

clumps and if the words were ordered such that all words in clump

one came first, etc. (as the clumping procedure would order them),

the association matrix would be block diagonalized (Figure 8)

with each block being a clump. In reality, some.words,belongin

more.than,one clump and some members of a clump maynot be related

to every other member (i.e.,.some asterisks 1:dculd represent zero

entries). In Figure..9,'ure see two clumps (One Consisting of

W3, W5, W6, ITT,' arid the other of W8. W9, W10) linked together by

Wl, W2,. and A. If-there had been more overlap between, the two

clumps we would have identified the 01 as a single clUmp.

The members of a clump should forma square block - with a

small,percentage of zero entries. Except for those. words which

also belong to other :Aamps, the words in thil clump should have

little association with other words. This'technique is a visual

-172-

I.;

** ** **

** **

** ** **

** 4 -X-X-

** 4-X ** **

** ** 4* **

** ** ** **

** ** ** **

Figure 8 - A Blog Diagonalized Association Matrix

W2

W3

W4

W5

WS

W7

W8

** 4-* 4-* 4-*

* 4-* +X- * ** X x **

i
** ** ** ** **

4-* ** ** ** 4-* 4-*

4* ** ** 4-* *
** 4-* **

** ** ** ** **

** ** **

W9 ** ** 44-*

KO 'N" ** ** ** **

Figure 9 - A TYpiced. Association MatriX Where 2

Clumps are Linked by a Few Words

NOTE: ** represents non-zero values.

-173-

one and'ean.be readily applied after having the clumping program

produce. a graph of the association matrix. In-Figure 7, we would

include all words through SPECTRA as.members of the clump.

ABSORBANCE and SPECTRA also belong to another clump which is"'

forming. In Figure 10, we. can see two subclumps with the words

ENTHALPY, ENTROPY, and EQUILIBRIUM. belonging to both. Changing

the teasure,t Ala (Figure 11) produces a different clump. More

of the association matrix must be seen to determine where this

clump ends. There are some ina.2ances where it is difficult to

identify a clump (Figure 12). In general, this technique seemed

to wo'k well; most association matrices'included within them some

pattern which we were able to- identify -as a clump.

One way to judgeany clumping technique would be to use the

clumps it produces in Edwards' adaptive interface and allow

number of users to test them. This would not judge an individual

clump-but rather a set of clumps as a whole. This process would

be insensitive to small improvements. Becaube of its elaLS.-rteness,

we might best use this technique to verify some other approach.

A second method, requires an expert in the field to analyze_

the various clumps to determine whether.axiy good words have been

left out or whether any words do not, belong to the which

they are in..' However, the expert reflects the field. in general

and not the partiCUlar documents'of our data base. His expertise

may just drstroy his usefulness in this situation.

V

E
n
t
h
a
l
p
7

F
a
n
t
r
o
p
y

7
0

O
e
m
o
m
e
t
e
r

1

2
0

,
D
i
v
i
n
y
l
i
a
e
n
z
e
n
e

2
0

C
a
l
o
r
i
m
4
e
r

2
0

P
o
1
y
o
x
y
m
e
t
h
-

y
l
e
n
e

1
0

T
r
i
o
x
a
n

1
0

A
d
i
a
b
a
t
i
c

,

1
0

A
T
M

1
0 9

E
;
c
0
n
g
e

1
1

S
`v

ii
um

1
1
.

C
a
t
i
o
n

7

I
o
n

5

A
q
u
e
o
u
s

6

7
0

2
0

2
0

2
0

1
0

1
0

1
0

1
0

9
_

1
1

1
.
1

7
5

6

2
0

2
0

2
0

1
0

1
0

1
0

1
0

9
1
1

1
1

7
5

6

2
Q

2
0

9
2
3

1
7

-
1
5
.

'
1
0

6

2
0

2
0

1
0

1
0

1
0

-

1
0

.
2
0

1
2

1
2

1
0

1
0

1
2

1
4

1
2

9

1
0

1
0
.

1
)
.
2

'
1
4

1
2

1
0

1
0

1
2

1
2

1
2

9
9

4'
4

9
4.

9
9

7
.

5
6

'

II
.,

2
3
'

9
2
3

1
9

2
3

1
0

1
1

.
.

1
7

9
2
3

1
9

1
8

1
0

)

-
2
8

-7
1
5

.7
1
9

1
9

,
6

5
1
0

5
'
2
3

1
8

2
8

1
8

.

)
.

6
6

6
10

to
 -

6
18

F
i
g
u
r
e

1
0
-

A
s
s
o
c
i
a
t
i
o
n

M
a
t
r
i
x

4
2
U
s
i
n
g
A
l
j

M
o
d
i
f
i
e
d

B
-
c
o
e
f
f
i
c
i
e
n
t

,

E
n
t
h
a
l
p
y

7
0

2
5

1
5

,
1
5

1
0

1
2

1
1
1
3

1
0

8

E
n
t
r
o
p
y

70
2
5

1
5

r
1
5

1
0

1
2

1
1

1
3

10
8

13

D
i
v
i
n
y
l
b
e
n
z
e
n
e

2
5

2
5

39
2
9

-2
6

-3
2

11
4

.1
7

1
9

1
5

8
16

.
9

E
x
c
h
a
n
g
e

is
1S

39
2
3

3
5

2
3

1
3

1
0

1
5

1
5

1
2

S
o
d
i
u
m

1
5

1
5

2
9

2
3

2
7

2
3

1
3

1
0

9
11

4

I
o
n

1
0

1
0

2
6

2
5

2
7

3
4

2
0

1
0

1
0

1
6

C
a
t
i
o
n

1
2

1
2

3
2

2
3

2
3

,

3
4

8
8

15

A
q
u
e
o
u
s

1
1

1
1

1
4

1
3

1
3

2
0

1
0

:

8

"
E
q
u
i
l
i
b
r
i
u
m

13
13

17
1
0

1
0

1
0

1
3

13
9

S
w
e
l
l

1
0

1
0

1
9

1
5

.
1
0

1
0
'

1
4

2
0

2
4

C
r
o
t
s
-
L
i
n
k
e
l
.

8
8

1
5

1
5

9
1
0

1
3

1
4

2
-
1

1
1

1
1
.

1
7

N
e
t
w
o
r
k

3
_
3

8
-
1
3

2
0

2
7

9

G
E

L
8

9
2
4

1
1

9
1
0
'

1
0

A
c
i
d

1
6

...
:

1
2

1
4

1
6

1
5

1
0
.

1
1

1
0

1
5

H
y
d
r
o
x
i
d
e

9
16

.
8

8
17

 .
1
0

1
5

F
i
g
u
r
e

1
1
-

A
s
s
o
c
i
a
t
i
o
n

M
a
t
r
i
x

4
2

u
s
i
n
g

A
i
d

M
o
d
i
f
i
e
d

B
-
c
o
e
f
f
i
c
i
e
n
t

C
o
n
t
a
i
n
e
r

B
o
t
t
l
e

P
a
c
k
a
g
e

C
o
s
t

.
D
e
n
s
i
t
i
e
s

E
x
t
r
u
d
e

I
n
j
e
c
t

.

F
i
l
m

M
e
l
t

P
o
l
y
-
A
y
r
e
n
e

F
o
a
m

L
a
m
i
n
a
r

P
o
l
y
p
r
o
p
y
l
e
n
e

P
o
l
y
u
r
e
t
h
a
n
e

U
r
e
t
h
a
n
e

A
b
s
o
r
b
a
n
c
e

7

4
0

1
6

7
8

1
0

1
0
'

1
1

7 8

8
4

,
.

8

6
4

9
6

5
)

5
1
0

4

2
0

5
4

7
6

1
0

4
8

8
1
3

1
5

1
7

9

5
4

1
2

6
4

9

lI

7
7

7
8

6 6
1
0
.

5

5

9
5

2
0

7
1
0
'

8
1
7

5
6

5

4
1
3

9
4

4
- ;

7

5
4

4
6

8
1
5

1
2

9
7

8

2
6

1
1

1
9

7
7

8
6

2
6

5
1
1

6
9

4

1
1

5
5

6
1
3

1
1

1
9

1
1

5
1
+

6
4

7
6

6
4

1
6

4
9

7

7
9

1
6

9
5

3
9

3
5

1
0

8
1

1
3

6
4

9
t
.

8
4

6
4

1
1

4
9
.

5
7

5

3
9

8
5

2
9

1
4

3
5

2
9

8

7
.

1
0

4
1
4

8

F
i
g
u
r
e

1
2
-

A
s
s
o
c
i
a
t
i
o
n

M
a
t
r
i
x

#
3

u
s
i
n
g

A
*

M
o
d
i
f
i
e
d

.
B
-
C
o
e
f
f
i
c
i
e
n
t

1
3

-177-

Assuming the correctness of our theoretical description of i.

what the association matrix of a clump should look like, ,we may

also use the same method to determine tiiequality of a clump.

Most rembers of a good clump should have a (high) non-zero associa-

tion with one another. Each individtal.working with this clumping

technique would decide for himself the amount of overlap between

clumps that is Ornlittea.. Combining this visual effort with some

,expert analysis should provide the best. solution.

In: the discussions which follow, little mention is made of

All. Excluding the one clump using that measure which we have
. .

included,' most of the others were rather poor,'tending to folm

I

clumps of 3 or 4 words. For our data base, the At4 measure
_

frequently took.on its- Maximum value. Perhaps its lack of spread.

exPlains the poor results.

In most cases where comparison was possible, Aid gave better

results:than M. and the modified B-coefficient-further improved

the results.' Comparisons of this sort were.difficult at times
(Su

because a difference: between clumps of only one word-affected'

...

all additional words. Each extra'word in which clumps differed

in',Ireased the likelihood of further differences. Figures 4:s

and 5 illustrate this point. In these same figures, we can also

see the improvement made by modifying the A-coefficient. Thee
.

first clump does not include many of the words Which the second

association.. matrix shoila belong to the clump.

In Figures 13).14y And 15 we have an example' of the improve-

ments. obtained by first using the modified B-coefficient and then

switching to Aio.

C
h
p
r
o
-
o
h
y
l
l

N
i
t
r
o
m
e
t
h
a
n
e
.

P
y
r
i
d
i
n
e
'
'
`
'

N
i
t
r
o
g
e
n

B
i
n
d
e
r
.

D
i
a
m
i
n
e

P
o
l
y
i
m
i
d
e

M
e
t
h
y
l
e
n
e

D
a
m
p
e
r
s

D
e
r
i
v
a
t
i
v
e

P
i
g
m
e
n
t

A
r
o
m
a
t
i
c

P
o
l
y
a
m
i
d
e

A
m
i
n
e

I
s
o
c
y
a
n
a
t
e

P
h
t
n
a
l
a
t
e

6
6

:
4
0

2
0
;
,
.

6
6

4
0

H
4
0

2
0

2
0

2
0

1
5

1
5

1
5

1
5

1
5
'

:
,

l
a

7 7 7 7

8 8 8 8

1
2

1
0

2
0

1
0

1
1
.

2
0

1
7

2
0

_
_

1
2

'

1
0

l
a
.

1
1

'

7
7

8
1
2

4
-

2
0

1
2

1
2

2
0

1
7

4
2
0

7
7

4
1
2
'

1
3

4
o
_

2
0

2
0

-

1
5

1
5

1
0
;

7
7

8
8
.

8

F
i
g
u
r
e

1
3
-

A
s
s
o
c
i
a
t
i
o
n

M
a
t
r
i
x

#
4

u
s
i
n
g

i
j

J

4
8

1
2

4

1
3

4
4

1
4

4
4

1
4

4
4

a
l
l
o
r
o
p
h
y
l
l

:
N
i
t
r
o
m
e
t
h
a
n
e
.
-

1
6
6
-

P
y
r
i
d
i
n
e

4
0

N
i
t
r
o
g
e
n

2
0

B
i
n
d
e
r

1
5

D
e
r
i
v
a
t
i
v
e

7

P
i
g
m
e
n
t

8

C
o
l
o
r

C
e
l
l
u
l
o
s
e

A
c
e
t
a
t
e

P
h
t
h
a
l
a
t
e

P
l
a
s
t
i
c
i
z
a
t
i
o
n

E
s
t
e
r

E
m
u
l
s
i
o
n
.

A
l
k
y
d

P
a
i
n
t

6
6
.

4
0
1
)

2
0

1
5

7
8

-
4
0

2
0

'

1
5

7
8

4
0

2
0
'

1
5
:

7
8

2
0

"

2
0

,
.

1
5

-
7

8
5

1
5

.
1
5

1
5

7

i

1
2

4
5

7

7
7
-

7
,

7
7

5
2
3

1
0

8
8
,

8
1
2

7
2
5

7
.

7
,

8
1
1

2
5
-
-
-

1
3

9
5

5

'
5

2
3

7
1
3

3
1

1
0

7
7

7
9

3
1

9
4

7

8
5

1
0

9
6

1
1

1
6

4

4
9

9
9

4

1
0

-
7
' 7

6
9

6

7
1
1

5
4

5
6

5
2
2

1
1

9
6

4
2
2

F
i
g
u
r
e

1
4

-

A
s
s
o
c
i
a
t
i
o
n

M
a
t
r
i
x

4
4

u
s
i
n
g

A
*

M
o
d
i
f
i
e
d

B
-
C
o
e
f
f
i
c
i
e
n
t

i
j

k
A
D

C
h
l
o
r
o
p
h
y
l
l
-

8
1

6
3

4
4
.

2
3

2
6

1
8

N
i
t
r
o
m
e
t
h
a
n
e

8
1

5
1

.
3
6

2
3

2
1

1
4

;

-
-
-
_
_
_
,

P
y
r
i
d
i
n
e

.
6
3

5
1

2
8

_
l
a

1
6

1
1

,

N
i
t
r
o
g
e
n

4
4

3
6

2
8

1
2

1
1

8

P
i
g
m
e
n
t

2
8

2
3

1
8

1
2

,
1
3

D
e
r
i
v
a
t
i
v
e

2
6

2
1

'

1
6

1
1

A
b
s
o
r
b
a
n
c
e

1
8

1
4

1
1

8
1
3

C
o
l
o
r

3
1

1
2

C
e
l
l
u
l
o
s
e

i
o
'

9
2
7

1
1
.
-
:

A
c
e
t
a
t
e

8
9

T
r
i
a
c
e
t
a
t
e

1
1

B
e
n
z
o
p
h
e
n
o
n
e
.

2
2

.
,

K
e
t
y
l

2
2

_
S
p
e
c
i
e
s

1
0

S
e
c
t
r
a

1
7

1
3

1
0

9
2
1

I
r
r
a
d
i
a
t
e
d

1
3
'

1

1
0 9

9

1
3 1
0

2
7

9

1
2

1
2

1
1

2
2

2
2

1
0

2
1

1
3

1
3

1
0

1
5

1
9

1
9

1
4
,

8

r
q
,

3
2

3
6

1
8

1
8

8
8

1
0

3
2

1
3

1
5

3
6

1
3

5
1

5
1

2
4

1
0

1
5

1
9

1
8

5
1

1
0
0

4
8

2
1

2
6

1
9

1
8

5
1

D
O

4
8

2
1

2
0

1
4

8
2
4

4
8

4
8

1
3

9

8
1
0

2
1

2
1

1
3

2
3

8
1
5

2
0

2
0

9
2
3

F
i
g
u
r
e

1
5

-
.
A
s
s
o
c
i
a
t
i
o
n

M
a
t
r
i
x
#
4

U
s
i
n
g
-
A
u

M
o
d
i
f
i
e
d

B
-
c
o
e
f
f
i
c
i
e
n
i
,

-181-

No mention has been made so far of the actual clumps this

technique has produced and despite any argument to the contrary,

the reader might feel himself deprived of important evidence. A

few of the association matrices incluaed in this report do not shot.;

a full clump or do not give enough information to determine where

a clump ends. Others provide excellent examples. From Figure 7

we conclude that the words. BENZOPHENONE, KETYL, SPECIES, COLOR,

TRIACETATE, CELLULOSE, IRRADIATED, ELECTRON, DECAY plus ABSORBANCE

and SPECTRA form a clump with the latter two terms e1so belonging

to another clump which_is forming (only partially shown).

In Figure lathe 2 clumps which have formed are quite

apparent, being tied together by ENTHALPY, ENTROPY, and EQUILIBRIUM,

and perhaps also by OSMOMETER.

CHLOROPHYLL, NITR%T7HANE, PYRIDINE, NITROGEN, PIGMENT,

DERIVATIVE, ABSORBANCE, CELLULOSE, and SPECTRA all belong to One

clump (Figure 15).

One final association matrix is shown in Figure 16. All

words except the last 2 definitely belong to a single clump.

I
s
o
p
r
o
p
o
x
i
d
e

7
7

5
4

t3
2

2
3

2
0

1
8

1
8

2
4

2
2

1
8

1
6

1
7

1
6

N
i
t
r
i
l
e

7
7

4
2

2
4

1
7

1
6

1
4

1
4

1
8

1
7

1
4

1
2

1
3

1
2

A
c
e
t
o
n
e

5
4

4
2

1
7

:
1
2

1
1

1
0

1
3

1
3

1
8

1
5

1
3

9
8

A
n
i
o
n
i
c

3
2

2
4

1
7

1
1

9
1
2

2
9

1
6

1
3

1
9

1
2

A
c
r
y
l
o
n
i
t
r
i
l
e

-
2
3

1
7

1
2

1
1

1
7

1
7

1
1

1
1

9

R
e
a
c
t
i
v
e

I
2
0

1
6

1
1

9
1
7
'

2
3

1
9

1
0

1
4

1
1
'

1
5

1
1

1
0

M
o
n
o
m
e
r

1
8

1
4

1
0

1
2

1
7

2
3

,

2
5

1
8

1
9

1
2

8
1
7

.
8

C
a
t
a
l
y
s
i
s
.

1
8

1
4
'

1
3

2
9

1
9

2
5

2
5

2
3

1
7

1
2

9
1
2

1
4

1
0

A
l
u
m
i
n
u
z

2
4

1
8

1
3

1
1

1
0

1
8

2
5

-
-
-
-
-

.

9
-
-

C
a
t
i
o
n

2
2

1
7
,
.

-
1
8

1
6

1
4

1
9

2
3

1
2

1
6

1
2
\
\)

E
t
h
y
l
e
n
e

1
8

1
4

1
5

1
3

1
1

1
7

-
.
1
2

1
3

1
7

"
`
A
1

-
3
7

R
a
d
i
c
a
l

1
6

1
2

1
3

.
1
9

1
1

1
5
,

1
2

1
2

:
1
6

1
3

1
4

O
x
i
d
e

.
1
7

1
3

9
1
2

1
1

8
9

1
2

1
7

8

M
i
x

1
6

1
2

8
.

9
l
o

1
7

1
2

9
1
1

9

.
.
.
"

P
r
o
p
y
l
e
n
e

8
1
4

.
3
7

1
8

9
9

S
t
e
r
e
o
r
e
g
u
l
a
r
i
t
y

.

2
7

1
0
.

.
1
4

9

F
i
g
u
r
e

1
6

-

A
s
s
o
c
i
a
t
i
o
n

M
a
t
f
t
x

#
5

U
s
i
n
g

A
i
d

M
o
d
i
f
i
e
d

B
-
c
o
e
f
f
i
c
i
e
n
t

'

iii

ENGLISH AS A StARCH LNGUAGE.

54. §112X-1.116?-isIll

As mentioned in section ly appreciation of man - machine communication

Rioblems.led to .3\he mechanization of a simplified natural language called

Easy English for Use. for searchers of the Information System. The success

of Easy English 1,:.d to the dcimloil4nent of the more complex "Real English"

using complete graMmar incorporated into the computer. These languages

are described in this section. .

Easy English is a -plaineossmand language designed to steplify dialogues
between man and.meehine'through a remote typewriter console. It is made up

of readily recognised sentences of the rnglish language, sentences which ery
layman Might be expected to use in everyday requests for services or
from a.familiar source. Easy English has been developed as a command language
for retrieval of documentefrom. a computeriied data base, specifically from
the Moore School Information Systems Laboratory (MSISL) files. It is intended,
for allieformation retrieval aystems using remote typewriter conaoles in a.
conversational mode:

Easy Engliah is imbedded in the MSISL' retrieval program which provides
computer - directed search, computer-aided editing, and other forms of computer
assistance. The attached typewriter printout presents a typical man - machine
conversation which illustrates Easy'English along with a number of features
of the Laboratory retrieval system. :Note that the latter currently provides'
the optj.on of treinelatIvof the Eaty. English request into Symbolic Command
Language while searching the files; this is a convenience for those -Who mtght

'''°like'to.learn Symbolic Language on their own and use its shorter bUt more
formai statements in place of Easy.Inglish.

-Because Easy English is in fact real English, the only thing that the
searcher needs to learn is that requests for information from the system
Should be formulated in the following syntactical form: .

Entroduc tory Clatug [ocument Clause EDete Claus T

The following sentences present five forms in which the same retrieval
request can be phrased in Easy English:

--(1) PLEASE LOCATE EVERYTHING WRITTEN Ay ROBERT PERKINS:-ABOUT EASIAC QR.
PSEUDO - COMPUTERS BETWEEN 1955 AND 1959 < >

(2) COULD YOU FIND FOR MX SOMETHING CONTAINED IN THE REPOSITORY CONCERNING-
RASIAC OR PSEUDO-COMPUTERS THAT WAS AUTHORED BY ROBERT PERKINS AFTER
1954 AND - BEFORE 1960 < >

(3) I NEED ALL THE AVAILABLE DOCUMENTS PUBLISHED DURING THg PERIOD 1955 TO .

1959 BY ROBERT PERKINS. ON THE SUBJECTS OF EASIAC.OR,PSEUDO-COMPUTERS < >

(4) AilliRE STED IN HAVING REFERENCES AND MATERIAL ON EITHER PSEUDO-
C OR EASIAC AUTHORED BY ROBERT PERKINS FROM 1955' Td 1959 < >

h

-183-

-184-

(5) I WDULD LIKE YOU TO HELP) OBTAIN INFORMATION FAOM YOUR LORARY RELATED
TO EASIAC OR PSEHDO-COMPUTERS AND WRITTEN BY ROBERT PERKINSIN THE YEARS
1955 =WWI 1959 < >

Notice that despite the differences in vocabulary, all. of these statements
follow the same basic pattern; fot example,

are:

COULD YOU FIND FOR EOMETHING CONTAINED IN

THE REPOSITOR] EONCERNINC

Typical exampleacf phrases acceptable in the three-clause categories

Introductory clause

(1) I would like ..."
(2) Pleas. find for me
(3) I have need. of
(4) I desire

Document clause

(1) documents in the system ...
(2) ... infortation

(3). any available book or article in the repository ...
(4) references from the files
(5) all the stuff

Datal,clauss'

(1) ... written by. Carr betWeen 1958 and 1965.
(2) published in 1960. on information retrieval

and work association but not programming..`
(3) dated September. 1966 by J.H., Smith, Joel)**

but not CL. Jones about analog computers.).

In the event that a word appearing. in either the introductory or the
documeneclause is.not recogniied, the computer initiates a man-machine
dialogue in order to deteriine-whether the word Is essentialand, if so,
to seek out a synonym in its vocabulary. ExaMples of such,dialogues

,appear on the attached typewriter printout.

-185-

YOU MAY PROCEED.:= PLEAW.-SE i,IND FOR ME BOOKS
CONCERNING STATISTICAL FUNCTIONS Or UK STANDARD
DEVIATION, BUT NOT BUSINESS ORIENTED ZILKS
INC' -' -ENTITLCD 'RUNCIBLE"Ir.4>.

PRINT? :_ YES<>

YOUR MESSAGE IS:

0)3 PLEASE FIND F08 ME BOOKS
.02) CONCERNING' STATISTICAL FUNCTIONS OR STANDARD
033 DEVIATION, BUT NOT BUSINESS ORIENTED ZILKS
043 ENTITLED 'RUNCIBLE"1°.

CORRECTIONS? YES4>

LINE NO.
LINE(S):

343.

DEVIATION, BUT NOT BUSINESS ORIENTED4>

MORE? 122 'YES4>

LINE NO. s= 04>
LINECS):

DEAR COMPUTER1(>

MORE? t NO4*
PRINT?'. TES<>

YOUR MESSAGE IS:,

012 DEAR COMPUTER:
023 PLEASE FIND FOR. ME BOOKS
032 CONCERNING STATISTICAL FUNCTIONS OR STANDARD
043 DEVIATION. BUT. NOT'BUSINESS ORIENTED
053 ENT ED 'RUNCIBLE"I'.J.

CORRECTIONS? vw NO4>

. _

wE 01-u NOT 8E000NIZE'THE WORD UEAR--
THE MEANINC OF YOUR SENTENCE? tn. N0,4>

.1S THIS WORD ESSENTIAL TO

-186-

WE DID NOT RECOGNIZE THE WORD COMPUTER IS THIS WORD ESSENTIAL TO
THE MEANING OF YOUR SENTENCE? := NO <>

RETRIEVE ,(SB (($TATISTICAL FUNCTIONS
) + (STANDARD DEVIATION)

) t IBUSINESS ' ORIENTED)

) g C SA3 RUNCIBLE
)

000001 'REFERENCES' HAVE BEEN RETRIEVED.

ybu MAY Pi=EED4:= PLEASE GET BOOKS BY,...-WRITTEN, EDIJED
OR PUBLISHED BY CARR. <>

PRINT? := 19....

RETRIEVE ((SA1 CARR + SA4 CARR .)

+ -, (SAS, CARR)

000009 'REF RENCES' HAVE BEEN RETRIEVED.

PRINT SOME := NO!c).'

YOU MAY PROCEED.:=
BUT NOT BY CARR

PRI&77? :22 NO<>

GET BOOKS BY/EITHER CARR OR RUBINOFF

RETRIEVE C SA1 C CARR
RUBINOFF) (SA1 ,CARR

)

1300001 'REFERENCES' HAVE BEEN, RETRIEVED.

YOU MAY PROCEED.:=

"

.OBTAIN FOR ME. BOOKS WRITTEN IN 1961

PRINT? := NO<>

RETRIEVE SA2 1961 .

000127 'REFERENCES' HAVE BEEN RETRIEVED..

PRINT SOME? NO430

YOU MAY PROCEED.:=
WRITTENi EDITED*

PRINT? sz N0 <>

I WOULD; LIKE YOUTO FIND BOOKS
AND PUBLISHED BY CARR.<>

RETRIEVE ... (. C.SA1 CARR
& .(SAS CARR') 1

. NO 'REFERENCES' HAVE BEEN.RETRIEVED.

& SA4 CARR

<

-187-

Real English

As'menAoned above, each EaSy English retrieval request consists

of three clauses.. Each claUse contains one or more words or phrases

to which a syntax_clss value has beef assigned. A word's value

determines the clause in. which it may appear.

The program sequentially extracts words or phrases from the user's

request, locates the word in the dictionary, finds its assigned value,

and stores this value on an introduction code list. The process con-

tinues until a. word or phrase is found whose vnluc indicates. that!thp_

word or phrose belongs to the document clause. At this pointOntro-

duction transforhation are appliel to the introduction code list to'

test for a- Valid introductory clause. ,Having found such a clause, the

program repeats the process for the document clause with the exception

that a word whose value 1n4kentes that it belongs.to the data clause ig

the signal that the document code list is camplete.

Figure 1 shows the basic processes which constitute the Real

English gystem and the place tint Reel English has as an intermediary
4

between user And machine as a translator of the user's request for
'Ft

informati6n. The executive processor directlihnndlei n11 converse-
.

tion between the user and the machine, translating the user's

request, eXpressea in English, into form understandable by.the

information retrieval system, And cammunieating to the user, in

R
e
a
l

E
n
g
l
i
s
h

r
e
s
p
o
n
s
e

us
er

 r
eq

ue
st

R
E
A
L

E
N
G
L
I
S
H

S
Y
N
T
A
X

A
N
A
L
Y
Z
E
R

(
P
A
R
S
E
R
)

E
X
E
C
U
T
I
V
E

P
R
O
C
E
S
S
O
R

S
E
M
A
N
T
I
C
S

A
N
A
L
Y
Z
E
R

C
O
2

A
N
D

F
O
R
M
A
T
T
E
R

IN
FO

R
M

A
T

IO
N

R
E
T
R
I
E
V
A
L

S
Y
S
T
E
M

-189-

easily understandable form, the results of the search performed by

the retrieval system if it is successful. In case of failure,

either because Real English is unable to understand the user's

request or because the system does not contain the information

requested by the user, Real English informs the user of the cause

of failure, and advises him as to how to proceed.

The normal flow of control within Real English is from syntax

analyzer to semantic analyzer to command analyzer, each move pro-

ceeding under the control of the executive processor; the user's

request is first analyzed syntactically (using a grammar of the

"string analysis" type) to produce a parse tree, a graph of the

syntactic relationships among the words which form the request.

The parse tree is then processed by the semantic analyzer to determine

what information the user wants; the result of the semantic analysis is a

retrieval command(s) in a form intermediate between English and

Symbolic Command Language (the language understood by the information

retrieval system). Finally the output of the semantic analyzer is fed

into the command formatter, which writes in Symbolic Command Language,

a retrieval command which will cause the retrieval system to pick out

of its information files that information which the user has requested.

In order to process retrieval requests presented to Jt in

English, Real English must be able to translate all of the various

types of expression which people are likely to use in formulating

requests. A typical dialogue between a user and Real English might

be the following:

-190-

user: GIVE ME THE TITLE OF ANYTHING BY JONES ON DDT.

system: AUTHOR=JONES

SUBJECT =DDT

TITLE=AGRICULTURAL USES OF DDT;

DDT AS AN INSECTICIDE

user: WHO PUBLISHED THESE BOOKS?

system: TITLE=AGRICULTURAL USES OF DDT

PUBLISHER=S.DAK.DEPT.OF AGRICULTURE

TITLE=DDT AS AN INSECTICIDE

PUBLISHM=SNECTH AND CO.

user: I WOULD LIKE TO HAVE THE DATES OF ISSUE OF THESE

ITEMS.

system: TITLE AGRICULTURAL USES OF DDT

DATE OF ISSUE=I95 9

TITLE=Dra AS AN INSECTICIDE

DATE OF ISSUE=1960

user: WHAT HAS SMITH WRITTEN ON DDT?

system: AUTHOR=SMTTH

SUBTECTinGIYI

THE SYSTI HAS NO INFORMATION ON THIS

user: HOW ABOUT ANDERSON?

system: AUIHOR=ANDERSON

SUBJECT =DDT

TITLE .A RE-EVALUATION OF DDT.

In this short dialogue there appear examples of the four distinct

forms in which requests can be made:

-191-

1. Declarative sentences: I would like to have the dates of issi.?.

of these items.

2. Interrogative sentences: Who published these books? What has

Smith written on DDT?

3. Impelative sentences: Give me the title of anything by Jones

on DDT.

4. Sentence fragments: How about Anderson?

It is important to note that the fourth type of request, the

sentence fragMent, while not a well-formed English sentence; is

very common in requests for information, and must therefore be

recognized by Real English in order to maintain the user's ability

to submit requests in the manner most usual to him.

Notice further that some of the requests (e.g., Give me the

title of anything by Jones on DDT.; What has Smith written on DDT?)

can be answered independently of their context in an extended

man-machine dialogue; others (e.g., Who published these books?;

I would like to have the dates of issue of these items.; How

about Anderson?) depend upon the content in which they are used;

thus: How about Anderson? is asking for one response if it

immediately follows: What has Smith written on DDT? and is asking

for a totally different response if it immediately follows: Is

Jones the subject of a report on the medical profession? In the

first case, the user wants to know first if Smith has written

anything on DDT and then if Anderson has written anything on DDT.

In the second case, the user wants to know if Jones is the subject

of a report on the medical profession and then if Anderson is the

subject of such a report. Requests whose meanings do not depend

-192-

upon the context of their use are called "contextually independent

requests" while requests which do depend upon context are called

contextually dependent requests". Real English is able to handle

both sorts of requests.

So far the operation of Real English under ideal conditions

has been described; that is, we have, up to this point, seen what

Real English does if it has succeeded in understanding the user's

request. There are, however, a number of different cases in which

Real English cannot produce symbolic retrieval commands from the

user's request; these cases are of three types:

(1) Real English does not recognize one or more words in

the user's request.

(2) Real English recognizes all of the words in the user's

request, but cannot find a proper syntactic analysis for

it,

(3) Real English can syntactically analyze the user's request,

but cannot properly perform the semantic analysis necessary

for translation into Symbolic Command Language.

There are two distinct meanings that "non-recognition of a

word" can have in the context of the Real Ertglish system. In

order to understand the distinctions between the two it is

necessary to understand The operation of the syntax analyzer in

some detail. The syntax anaiy -zer, which forms a major part of

Real English (Figure 2),consists of a parsing program, a dictionary,

and a grammar; contaired in the dictionary entry of a word are

both syntactic information (e.g., syntactic category: noun, verb,

adverb, etc.) and semantic information (e.g., the fact that the

-193-

Figure 2: Syntax Analyzer

word "written" is indicative of a request for the name of the

author of a document as in: What has Jones written on radar?).

It is important to note that the Real English dictionary

contains only words in the "basic stock of English" and, in

general, does not contain the technical terms such as DDT, radar,

cardiac arrest, etc., which constitute the information stored in

the files of a retrieval system; the reason for this will be

explained presently.

In order to simplify matters, it is possible to conceive of

the grammar as a list of sentential forms (strings of words of

specific syntactic categories) which requests in English might

take. The parsing program, in this extremely simplified model,

tries to find each word of a request in the dictionary and then

determines if the sequence of words forming the request con-

stitutes a permissible sentential pattern. An example of a

very simple sentential pattern with its associa.ed pu.rse tree

(graph of the syntactic relationships among its words) is shown

-194-

in Figure 3. The words in the request which Real English would have

in its dictionary would be "who", "has", "written" and "about". The

word "radar", a technical term and therefore not in the dictionary,

would be classified as an index term, a form of noun on which a

retrieval is to be performed, (In this case, the system would

look for all records in its information file whose subject as "radar ".)

and would be temporarily added to the dictionary under that classifica-

tion. Since the sentential pattern:

(INTERROGATIVE PRONOUN)(AUXILIARY VERB)(PAST PARTICIPLE)(PREPOSITION)
(INDEX. TERM)

is one recognized by the grammar, Real English would produce its

parse tree and would then be able to go on to a semantic analysis

whose end result would be the appropriate retrieval command in

Symbolic Command Language. In the sense just described, we might

say that Real English does not immediately recognize the word "radar"

but is able, under the assumption that it is a technical term,

(index term), to properly proceed with its analysis.

Another type of case in which Real English would be unable

to "recognize" a word in a request is illustrated in the following

examples:

WOO HAS WRITTL2 ABOUT RADAR?

WHO HAS BFXLQ ABOUT RADAR?

(Note that if the request were: Who has written about BFXLQ?

the system would have no way of knowing that BFXLQ is not a proper

technical term and would generate Symbolic Command Laaguage commands

SUBJECT

-195-

SENTENCE

VERB
PHRASE

INTERROGATIVE AUXILIARY PAST
PRONOUN VERB PARTICIPLE

PREPOSITIONAL
PHRASE

PREPOSITION INDEX TERM (NOUN)

WHO HAS WRITTEN ABOUT RADAR

Figure 3

to retrieve all records whose subject is BFXLQ; there presumably

being none, Real English would respond: SUBJECT=BFXLQ; THE SYSTEM

HAS NO INFORMATION ON THIS., exactly as it would answer:

SUBJECT=RADAR; THE SYSTEM HAS NO INFORMATION ON THIS., in case the

request were: Who has written about radar? and the system had no

information about. radar.)

In the first case, the user has misspelled the word "Who "; and

in the second, he has used what is presumably a nonsense word,

"BFXLQ", in a position in which a past participle (e.g., "written")

-196-

would normally appear. This type of situation fits under the second

sort of Real English failure, namely, failure to be able to prope-ly

syntactically analyze the request. As has been mentioned, if Real

English cannot find a word which is part; of a request in its

dictionary, it assumes that the word is an index term and proceeds

on that assumption. Thus, in the cases of the examples above,

"WHOO" and "BFXLQ" would be added to the dictionary as index terns.

Real English, in attempting to process either of the requests, would

not find itself in trouble until it attempted to syntactically

analyze the request and found that there are no English sentential

forms which it recognizes which have index terms in the positions in

which "WHOO", and "BFXLQ" appear. Since no syntactic analysis is

possible, Real English must inform the user that his request cannot

be properly translated and must, furthermore, indicate where it ran

into trouble so that the user will be able to intelligently proceed

to rephrase his request or go on to a different line of questioning.

A closer examination of the second of the two improperly formed

requests: Who has BFXLQ about radar?, shows that although it is not

an English sentence (nor even a meaningful fragment), its first two

words form a proper beginning of an English sentence. Thus, in

:Attempting to analyze it syntactically, Real English would get as

far as the parse tree of Figure 4. Any attempt to proceed further

with the analysis would break down; thus, Real English would recognize

the fact that the source of trouble is, in fact, the word "BFXLQ",

the first word in the request past which syntactic analysis is

impossible.

-197-

SENTENCE

SUBJECT VERB
PHRASE

INTERROGATIVE AUXILIARY
PRONOUN VERB

WHO HAS

Figure 14

-198-

Real English would then inform the user of the problem by

issuing the response:

THE SYSTRM DOES NOT RECOGNIZE THE WORD BFXLQ IN THE
WAY TEAT YOU HAVE USED IT. PLEASE REFORMULATE YOUR
REQUEST.

In the case of the improperly formed request: Whoo has written about

radar?, the syntactic analysis would never get past the beginning

of the sentence, and so Real English would issue the response:

THE SYSTEM DOES Nar RECOGNIZE THE WORD NHOO" IN THE
WAY THAT YOU HAVE USED TT. PLEASE REFORMULATE YOUR
REQUEST.

Note that's similar sort of response is appropriate even in the case

of a request all of whose words Real English recognizes, but which

is nevertheless improperly formed, e.g., a request of the sort:

WHO IS IT THE AUTHOR OF THIS BOOK?

In this case, Real English would get as far as the word "the" in its

syntactic analysis; here, however, it would be inappropriate for the

system to tell the user that it does not recognize the word "the" as he

has used it. Rather, the system issues the response:

1

THE SYSTEM CANNOT UNDERSTAND THE WAY YOU HAVE FORMULATED
YOUR REQUEST; THE TROUBLE IS IN THE VICINITY OF THE
PHRASE 1 94 INED:

WHO IS IT THE AUTHOR OF THIS BOOK?

PLEASE REFORMULATE YOUR REQUEST.

Notice that in both cases, that of words not recognized and that of

(syntactically) improperly formed requests, Real English is able to

-199-

locate the source of trouble (and communicate it to the user) by

keeping track of how far into the request, syntactic analysis is

possible. In the case of a request in which more than one word is

not recognized, more than one faulty use of recognized words is

encountered or a combination of both unrecognized words and faulty

constructions occur, Real English is able to locate one error at a

time. Thus, the user might ask;

WHO IS IT THE BFXLQ OF THIS BOOK?

in which case the system would return with:

THE SYSTEM CANNOT UTMERSTAND THE WAY YOU HAVE
FORMULATED YOUR REQUEST; THE TROUBLE IS IN THE
VICINITY OF THE PHRASE UNDERLINED:

WHO IS IT THE BFTIQ OF THIS BOOK?

PLEASE REFORMULATE YOUR REQUEST.

If the user then reentered the request as:

WH9 IS THE BFXLQ OF THIS BOOK?

the system would return with:

THE SYSTEM DOES NOT RECOGNIZE THE WORD "BFXLQ" IN
THE WAY YOU HAVE USED IT. PLEASE REFORMULATE YOUR
REQUEST.

On the other hand, if the user were to respond with:

WHO IS THE AUTHOR OF THIS BOOK?

immediately after the system's first error message, his request

would be properly processed and would result in the system's printing

-200-

out the name of the author of the book whose information record it

had previously found. (Assuming that a previous user request had

resulted in the retrieval of such a record.)

The third sort of case in which Real English must initiate

further dialogue with the user before it is able to properly fill

his request is described above as semantic failure. The term

"semantic failure" is meant to describe the situation in which Real

English has succeeded in syntactically analyzing the user's request,

but is incapable of producing symbolic retrieval commands from the

semantic information contained in the request. Semantic failure

itself falls into one of the three classes:

(1) The user's input is not a request for information

of the sort contained in the information file.

(2) The user's request does not specifically enough indicate

what information he wants.

(3) The user's input is a contextually dependent request not

preceded by a contextually independent request.

In order to understand the case of a user input which is not a

request fnr information of the sort contained in the information files,

we must reali7,1! that Real English is designed to operate on a data base

of information pertaining to a specific discipline, e.g. chemistry, physics,

bibliography, psychology, etc. In what follows, we shall assume the

data base of the Toxicology Information File project, a file whose

words contain toxicological information about chemical compounds.

A request like: What are the effects of prolonged exposure to the

sun?, although it does not request information of a toxicological

-201-

nature would, nevertheless, be processed by Real English into a

symbolic command to retrieve the effects of prolonged exposure to the

sun because the sentential form of the request is one recognized by

the system as the form of a possible toxicological request (e.g.,

What are the effects of prolonge posure to DDT?). Since the data

base contains no information on the effects of exposure to the sun,

Real English would answer the user: THE SYSTEM HAS NO INFORMATION

ON THIS. If, on the other hand, the user typed one of the following

into the system:

1. WHO WON THE 1950 WORD SERIES?

2. WHY IS THE SKY BLUE?

or even

3. ,I,Erts RETURN TO MY PREVIOUS LIVE OF QUESTIONING.

Real English would not recognize the input as having the sentential

form of a possible toxicological request. In this case, the system

would answer the user:

THE SYSTEM HAS NOT RECOGNIZED YOUR INPUT AS A REQUEST
FOR TOXICOLOGICAL INFORMATION. THE SYSTEM IS READY
TO ACCEPT A REQUEST.

Note that although sentence 3 above might possibly be part of a

dialogue in which a person is attempting to elicit information from

either another person or from a machine, Real English is not equipped

to process it. First, it does not have the form of a request for

specific information and second the ability to process it would

require Real English to keep track of all previous dialogue and to

be able to return to any segment of previous dialogue, facilities

-202-

which would enormously complicate the task which Real English has

to perform.

The second sort of semantic failure, lack of specificity in the

user's request, is failure only in the sense that further dialogue

is necessary before Real English can generate the proper retrieval

commands. An example of this sort of request is: What are the

effects of DDT? The following is a list of the qualified category

headings of information fields regarding the effects of a chemical

substance that a user might want:

ANIMAL EXPERIMENTS. ORAL ADMINISTRATION. EFFECT

ANIMAL EXPERIMENTS. DERMAL ADMINISTRATION. EFFECT

ANIMAL EXPERIMENTS. INJECTION. mFECT

ANIMAL ECPERIMENTS. SKIN APPLICATION. EFFECT

ANIMAL EXPERIMENTS. EYE APPLICATION. EFFECT

CLINICAL EFFECTS.

CLINICAL EFFECTS.

CLINICAL EFFECTS.

CLINICAL EFFECTS.

CLINICAL EFFECTS.

CLINICAL 4it:crs,

CLINICAL EFFECTS.

CLINICAL EFFECTS.

CLINICAL EFFECTS.

HUMAN. ABSORPTION. ORAL. ACUTE. an,CT

HUMAN. ABSORPTION. ORAL. SUBACUTE. EFFECT

HUMAN. ABSORPTION. ORAL. CHRONIC. EFFECT

HUMAN. DERMAL. ACUTE. EFFECT

HUMAN. DERMAL. SUBACUTE. EFFECT

HUMAN. DERMAL. CHRONIC. EFFECT

HUMAN. INHALATION. ACUTE. EFFECT

HUMAN. INHALATION. SUBACUTE. EFFECT

HUMAN. INHALATION. CHRONIC. EFFECT

LOCAL EFFECT. DERMAL. ACUTE. EFFECT

LOCAL EFFECT. DERMAL. SUBACUTE. EFFECT

LOCAL EFFECT. DERMAL CHRONIC. EFFECT

-203-

LOCAL EFFECT. EYE APPLICATION. ACUTE. EFFECT

LOCAL EFFECT. EYE APPLICATION. SUBACUTE. EFFECT

LOCAL EFFECT. EYE APPLICATION. CHRONIC. ErkEer

AFTERLWECT. ONSET

AFTEREFFECT. DURATION

AFTEREFFECT. RECURRENCE

AFTEREFFECTS OTHER THAN CASE HISTORY. ACCOUNT SUBCLINICAL EkkECTS. EFvECT

Unless the user acturaly wanted all available information on DDT (which

the system should certainly be able to provide if this is indeed the

case), he would probably be swamped by a massive printout of the

information contained under all of the above headings. (Especisily

considering the relatively slo14 output speed of the teletype terminal

and the relatively restricted amount of simultaneous output possible

on the video display terminal.) In such a case, Real English initiates

a dialogue with the user informing him of the sorts of information

available given his initial request and asking him to further qualify

the request (if he is not interested in all available information)

before a retrieval and/or printout is performed.

The third sort of semantic failure, the use of an input in

the form of a contextually dependent request not preceded by a

contextually independent request, also results in a sense from a

lack of specificity; thus, the request: How about Anderson? in

isolation from an immediately preceding request in which a name

appears (e.g., Has Jones written about DDT?) cannot be processed

since it has no interpretable meaning as a request for information.

In such a case, the system responds:

-204-

YOU HAVE NOT PROVIDED ENOUGH INFORMATION TO SPECIFY
EXACT-AN WHAT YOU WANE. PLEASE REPHRASE YOUR REQUEST
GIVING MORE DETAIL.

By recognizing properly phrased English sentences, regardless of

how colloquial the English may be, ReLl English provides the user of

a typewriter console with the ability to search a computerized file of

data without any knowledge of computers, typewriter consoles, or.even

how the system works. By calling ambiguities to his attention, Real

English helps the user to get maximum information retrieval with

minimum concern for possible errors in his own portion of the man-machine

dialogue. For the occasional user of the system, Real English means

immediate access to the files with little or no direction from an

operator and no prior training whatsoever.

BIBLI OGRA PHY

-205-

6.1 Published Papers

1. Rubinoff, M. and White, J. F., Jr.; Establishment of the ACM
Repository and the Principles of the IR System Applied to its
Operation. Comm. ACM, 6:59;,, 196.

2. Rubinoff, M.; A Look Ahead. Proceedings of the Second
National osiur on E ineerin Education. Engineers Joint
Council, October 1 5.

3. Rubinoff, M.; A Rapid Procedure for Launching a Microthesaurus.
IEEE Trans. Engl. Writing and Speech, August 1966.

4. Rubinoff, M.; Why Sigr? ACM SIGIR FORUM, Vol. IV, No 2,
1967.

5. Rubinoff, M., Bergman, S., Cautin, H., and Rapp, F.; Easy
English,N for Information Retrieval Through a Remote
miter Console. Comm. ACM, 10: 69377441.

6. Lowe, T. C.; Retrieval from Direct-Access Memory Using Truncated
Record Names, S75;713e77TFET1767ge,

7. Rubinoff, M. and Stone, D. C.; Semantic Tools in Information
Retrieval, Proceedings of the American Documentation Conference,
June 1967.

8. Rubinoff, M., Bergman, S., Franks, W., and Rubinoff, E.,; Experi-
mental Evaluation of Information Retrieval Through a Teletypewriter,
EOW7TERT5757771770717---

9. Rubinoff M.; *Education in Computer Engineering," Journal of
Engineering Educations April 1968.

10. Rubinoff, M; "Information hetrieval and Systems Engineering,"
Proceedings of the First World Co ress of E ineers and
Architects in Israel, December 1 7.

11. Lowe, T. C.; An article on "Triplet Searching" entitled "Encoding
from Alphanumeric Names to Record Addressis," Softwrre Age,
April 1968.

-206-

12. Stone, D. C. and Rubinoff, M.; "Statistical Generation of n
Vocahulary," American Documentation, October 1968.

-207-
1

6.2 Internal Reports

1. Rubinoff, M. and White, J. F., Jr.; Description of Cataloging

and Indexing System for the ACM Rejository. The Moore School

of Electrical Engineering, University of Pennsylvania,
Philadelphea. 1965.

2. Rubinoff, m., et al; The Moore School Information Systems

Laboratory. The Moore School of Electrical Engineering,
University of Pennsylvania, Philadelphia. June 1966.

3. Fischer, Stephen 13.,; An Executive Control. System for Infor-
mation Retrieval via a Remote Console. M.S. Thesis presented

to The Moore School of Electrical Engineering, University of
Peunsylvanial Philadelphia. 1966.

Rubinoff, M., et al; Summary Description of Easy English.

The Moore School of Electrical Engineering, University of
Pennsylvania, Philadelphia. February 1967.

Cautin, H. and Rapp, F.; Description of Easy English.
The Moore School of Electrical Engineering, University of
Fennsylvarda, Philadelphia. April 1967.

6. Fr el, M.; On-Line Typewriter Access to Classification Tables

on Drum stmaa. The Moore School of Electrical Engineering,
University of Pennsylvania, Philadelphia. April 1967.

7. Lowe, T. C.; Retrieval from Direct-Access Memo Usi Truncated

Record Names. The Moore School of Electrical Engineering,
University of Pennsylvanis, Philadelphea. May 1967.

S. Cautin, H., Lowe, T. C., .Rapp, F., Rubinoff, M.; An Experimental

On-Line Information Retrieval System. The Moore School of
Electrical Engineering, University of Pennsylvania, Philadelphia.

Mey 1967.

9. Rubinoff, M. and Stone, D. C.; Semantic Tools in Information

Retrieval. The Moore 1chool of Electrical Engineering, Univer-
sity of Pennsylvania, Philadelphia. May 1967.

-20B-

10. Rubinoff? M., Franks, W., and Stone, D. C.; Description of an

ENEPriment InvesMOIlai0=11110219.211±Ala11.1111111n11AL
Humans. The More School of Electrical Engineering, University
of Pennsylvania, Philadelphia. June 1967.

11. Smith, J. M.; An Oral Experiment on Retrieval Dialogue. The

Moore School of Electrical Engineering, University of Pennsyl-
vania, Philadelphia. June 1967.

12. Smith, J.- M.; A Written E eriment on Retrieval Dialogue. The
Moore Selool of Electrical Engineering, University of Pennsyl-
vania, rhiladelphia. August 1967.

13. Edwards, J. S.; Adaptive Man-Machine Interaction in Information

Retrieval. Ph.D. Dissertation presented to the Moore School of
Electrical Engineering, University of Pennsylvania, Philadelphia.
December, 1967.

14. Stone, P. C.; Word Statistics in the Generation of Semantic Tools
for Information Systems. Master's Thesis presented to the Moore
School of Electrical Engineering, University of Pennsylvania,
Philadelphia. December 1967.

15. Crowley, John Donegan, Jr.; Design and Implementation of s Large
Scale File Structure for nn On-Line IndexinG /Retrieval System.
RiTEE's Thesis presented to The Moore School of Electrical
Engineering, University of Pennsylvanis, Philadelphia. December

1968.

16. Libove, George Alan; Automatic Generation of Synonyms. Master's
Thesis presented to The Moore School of Electrical Engineering,
University of Pennsylvanin, Philadelphia. May 1969.

17. Cimprich, Jack Robert; Programming Considerations in the
Implementation of nn English Language Recogniter. Master's Thesis
presented to The Moore School of Electrical Engineering, University
of Pennsylvania, Fhiladelphin. May 1969.

18. Fogel, Marc; Determination of Statistical Clumps. Master's
Thesis presented to The Moore School of Electrical Engineering,
University of Pennsylvania, Philadelphia. May 1969.

-209-

19. Cautin, Harvey; Real English: A Translator to Enable Natural
Latex Man-Machine Conversation. Ph.D. Dissertation presented
to The Moore School of Electrical Engineering, University of
Pennsylvania. May 1969.

20. Klappholz, David A.; Real English - A Description of Its
a....1LtIonei. The Moore School of Electrical Engineering, University
of Pennsylvania, Philadelphia. March 1970.

21. The Moore School Information Systems Laboratory; RolialLall
for On-Line Entry and Retrieval. The Moore School of Electrical
Engineering, University of Pennsylvania, Philadelphia. March 1971.

22. Hirschfeld, Leonard Jay; Design and Implementation of the Retrieval
Mechanism of the SOLER Storage and Retrieval System. M.S. Thez.is

presented to The Moore School of Electrical Engineering, University
of Pennsylvania, Philadelphia. August 1971.

23. Carlson, Clifford Hugh; Update Phase of SOLER. M.S. Thesis
presented to The Moore School of Electrical Engineering,
University of Pennsylvania, Philadelphia. August 1971.

24. Kaplan, Gerald; Design and Implementation of the Invert Phase of
Multiple Data Base Information Retrieval System. M.S. Thesis
presented to The Moore School of Electrical Engineering, University
of Pennsylvania, Philadelphia. August 1971.

-210-

6.3 References on Information Retrieval

1. Baker, Frank B. (196), "Latent Class Analysis ns an Association
Model for Information Retrieval)" in Statistical Association
Methods for Mechanized Documentation, edited by M. E. Stevens,
Vincent E. Giuliano, and Laurence B. Heilpriny Nationnl Bureau
of Standards Miscellaneous Publication 269.

2. Bork()) Herold, and Myrna Bernick (1963), "Automatic Document
Clnesificntion," Journal nrciatheAssorti
Machinery) 10:151-1E2.

3. Berko, Harold, and Myrna Bernick (1964), "Automatic Document
Classification; Part II; Additional Experiments," Journal of
the A.C.M., 11:138 -151.

4. Cleverdon, Cyril W., Jack Mills, and Michael Keen (1966), Aslib-
Cranfield Research Project; Factors Determini the Performance
ofInderSstems; vol. 1. 2 parts) and vol. 2.

5. Curtice) Robert M., and Paul E. Jones (1967), 'Distributional
Constraints and the Automatic Selection of an Indexing Vocab-
ulary," Proceedings of the American Documentation Institute,
vol. 4.

6. Damerau) Fred J. (1965), An Experiment in Automatic Indexing)"
American Documentation) 16:283-289.

7. Dennis, Snlly F. (196N, "The Construction of n Thrsnurus Auto-
matically from a Sample of Text," in Statisticnl Association
Methods for Mechanized Documentation, ed. by M. D. Stevens)
et al., N.B.S. Misc. Publication 269.

8. Dennis) Snlly F. (1967), "The Design and Testing of a Fully Auto-
matic Indexing-Searching Syetem for Documents Consisting of
Expository Text," in Information Retrieval: A Critical View,
ed, by George Schecter.

9. Doyle, Lauren B. (1961), "Semantic Road Maps for Literature Searchers,"
Journal of the A.C.M., 8:553-578.

10. Doyle, Lauren B. (1965), "Expanding the Editing Function in Language.
Data Processing," Communications of the A.C.M., 8:238-243.

-211-

11. Edmundson, H.P., and R.E. Wyllys (1961), "Automatic Abstracting and

Indexing--Sruvey and Recommendations," Communications of the

A.C.M., 4:226-234.

L. Edwards, John 3. (1967), Adaptive Man-Machine Interaction in
Information Retrieval, unpublished Ph.D.. dissertation, The
Moore School of Electrical Engineering, University of Penn-

sylvania.

13. Giuliano, Vincent E. (1965), "The Interpretation of Word As'.7ociatiorc;,"

in Statistical Association Methods for Mechanizer Documentation,
ed. by M. E. Stevens, et al., N.B.S. Misc. PUbl.

14. Giuliano, Vinr,tnt E., and Paul E. Jones (1963), "Linear Associative
Information Retrieval," in Vistas in Information Handlinc. vol.
ed. by Paul W. Hawerton.

Giuliano, Vincent E. and Paul E. Jones (1966), Study and Test of
a Methodology for Lrborstory Evaluation of Message Retrieval
Systems, Interim Report ESD-TR-66-405, Decision Sciences Lab.,
L. G. Hanscom Field, U. S. Air Force, Bedford, Mass.

16. Haibt, Luther, Margaret Fischer, Robert Keteihut, and Jay Ogg (1967),

"Finding 4000 References without Indexing" (An Effectiveness
Study of Full Text Searching), presented at The Fourth Annual
National Colloquium on Information Retrieval, May, 1967, Phila-

delphia, Pa.

17. Henderson, Madeline, John Moats, Mary Stevens, and Simon Newman
(1966), Cooperation, Convertibility, and Compatibility Among
Information Systems: A Literature Review, National Bureau of

Standards Miscellaneous Publication 276. See especially

Section 3.7, Systematization and Terminology Control.

1S. Herner, Saul (1963), "The Role of Thesauri in the Convergence of
Word and Concept Indexing," in Automation and Scientific
Communication, Short Papers, 26th Annual Meeting, American
Documentation Institute, edited by H. P. Luhn.

10. IFIP -ICC Vocabulary of Information Processing (1966), First
English Language Edition, North-Holland Publishing Co,,
Amsterdam.

-212-

20. Jones, Paul E., and Robert M. Curtico (1967), "A Framework for
Comparing Term Association Measures," American Documentation,
18:153-161.

21. Kuhns, J. L. (1965), "The Continuum of Coefficients of Assocelation,"
in Statistical Association Metnods for Mechanized Documentation,
ed. by M. E. Stevens, et al., N.B.S. Misc. Publication 2 9.

Lewis, F. A. W., P. B. Snxendnle, anti J. L. Bennett (1967),
"Statistical Discrimination of the Synonymy/Antonymy Relation-
;hip between Words," Journal of the A.C.M., 14:20-44.

23. Luhn, 9. F. (19::8), "The Automatic Creation of Literature Abstracbc,"
Journal of Research nnd Develument, 2:19-165.

24. Moron, Melvin E. (1961), "Automatic Indexing: An Experimental
Inquiry," Journal of the A.C.M., 8:404-417.

25. Moron, Melvin E., and J. L. Kuhns (1960), "On Relevance, Probab-
ilistic Indexing and Information Retrieval," Journal of the
A.C.M., 7:216-244.

26. Miller, G. A., E. B. Newman, nnd E. A. Friedman (1958), "Length-
Frequency Statistics for Written English," Information and
Control, 1:370-389.

Neeahnm, R. M. (1962), "A Method for Using Computers in
Information Classificntion," Information Processing 1962,
Proceedings of IFIP Congress 620 ed. by Cicely M. Popplewell,
1963.

27. O'Connor John (1965), "Automatic Subject Recognition in
Scientific Papers: An Empirical Study," Journal of the
A.C.M., 12:490-515.

28. Reisner Phyllis (196), "Semantic Diversity and a 'Growing'
Man-Machine Thesaurus," in Some Problems in Informntion
Science, ed. by Manfred Kochen.

29. Rubinoff, Morris, and Don C. Stone (1967), "Semantic Tools in
Informntion Retrieval," Proceedin s of the American
Documentation Institute, Annual Meeting, vol.

-213-

30. Salisbury, Blinn a., Jr., and H. Edmund Stiles (1967), "The Use

of the B-Coefficient in Information Retrieval," Working Paper,

R45, 67-12.

31. Salton, Gerard (1965), "Progress in Automatic Information
Retrieval," I.E.E.E. Spectrum, 2:90-103.

32. Salton, Gerard (1966), "Information Dissemination and Automatic
Information Systems," Proceedings of the I.E.E.E., 54:1663-1678.

33. Stiles, H. Edmund (1961), "The Association Factor in Information
Retrieval," Journal of the A.C.M., 8:271-279.

34. Walston, Claude E. (1965), "Information Retrieval," in Advances
in Computers, vol. 6, ed. by Franz L. Alt and Morris Rubinoff,
Academic Press, New York.

Williams, J. H. (1965), "Results of Classifying Documents with
Multiple Discriminant Functions," in Statistical Association
Methods for Mechanized Documentation, ed. by M. E. Stevens,
et a1., N.B.S. Misc. .Publication 269.

36. Winters, William K. (1965), "A Modified Method of Latent Class
Analysis for File Organization in Information Retrieval,"
Journal of the A.C.M., 12:356-363.

6.4 References on Statistical Clumping

1. Dale, A. G. and Dale, N; "Clumping Techniques and
Associative Retrieval," NBS Miscellaneous Pub-ication,
No. 269, U.S. Government Printing Office, 1965.

2. Edwards, John S.; Adaptive Man-Machine Interaction in
Information Retrieval, Ph.D. Dissertation presented to
The Moore School of Electrical Engineering, University of

Pennsylvania, Philadelphia. December 1967.

3. Haigler, Sandra L.; A Program to Generate A Concordance From
Text, M.S. Thesis presented to The Moore School of Electrical
Engineering, University of Pennsylvania, Philadelphia.
December 1967.

4. Jones, Karen Spark and Jackson, David; "Current Approaches

To Classification and Clumpfinding at the Cambridge Language

Research Unit," Computer Journal, Vol. 10, No. 1, p. 29,

May 1967.

Jones, Paul E. and Curtice, Robert M.; "A Framework for

Comparing Term Association Measures," American Documentation,
July 1967, p. 153.

6. Needham, R. M. (1963); "A Method for Using Computers In
Information Classification," Information Processing 62:
Proceedings of IFIP Congress 1962, Amsterdam: North Holland

Publishing Co., p. 284.

7. Salisbury, Blinn A., Jr. and Stiles, H. Edmund; "The Use of

The B-Coefficient in Information Retrieval."

-215-

6.5 References on Computerized English

1. Dodd, George G.: "Elements of Data Management Systems," Computing

Surveysl Vol. 1, No. 2, June 1969, pp. 117-133.

2. Hirschfeld, Leonard Jay: Design and Implementation of the Retrieval

Mechanism of the SOIER Storage and Retrieval System.. Master's Thesis

presented to The Moore School of Electrical Engineering, University
of Pennsylvania, Philadelphia. August 1971.

3. Kaplan, Gern2.d: Design and Implementation of the Invert Phase of n

Multiple Date Base Information Retrieval System. Master's Thesis

presented to The Moore School of Electrical Engineering, University
of Pennsylvania, Philadelphia. August 1971.

. Cnrlcon, Clifrord Hugh: Update Phase of SOLER. Master's Thesis

presented to The Moore School of Electrical Engineering, University
of Pennsylvnnin, Philadelphia. August 1971.

Cautin, Harvey: Real English: A Trnnslntor to Enable Natural Langupgf!

Man-Machine Conversation. The Moore School of Electrical Engineering,

University of Pennsylvania, Philadelphia. 1969.

6. Harris, Z.: Stringy Analysis of Sentence Structure, Mouton and Co.,

The Hague, 1962.

7. Joshi, A., Kossrsju, S., and Yamada, H.: StringLAdjunct Gravarnrs.

The Moore School of Electrical Engineering, University of Penn-
sylvania, Philndelphin. 1968.

fl. Chomsky, N.: SZntactic Structures, Mouton and Co., The Hague, 1967.

Aspects of the Theory of Syntax, M.I.T. Press,

Cambridge, MOIssnchusetts. 1965.

10. Sager, N.: "Syntactic Analysis of Natural Language," Advances in
Computers, Vol. 8, pp. 153-188, 1967.

11,. :
A Computer String Grammar of English, New York University

Linguistic String Project, Report 3, New York, November 1968.

-216-

12. Felsen, J.: Documentation of the Implementation of Real English
(unpublished report). The Moore School of Electrical Engineering,
University of Pennsylvania, Philadelphia. 1969.

13. Cimprich, J.: Programminp Considerations in the Implementation of
....aa_English Language Recognizer. The Moore School of Electrical
Engineering, University of Pennsylvania, Philadelphia. 1969.

-217-

6.6 References on Automatic Indexing

1. Abraham, C. T.: "Techniques for Thesaurus Organization and
Evaluation," Proceedings - American Documentation Institute,
Vol. 1:485, Spartan Books, 1964.

2. Baker, F. T., ct al.: Research on Automatic Classification,
Indexing, and Extracting.., Contract NONR 4:56 (00) AD No. 485188,

April, 1966.

3. Bar Hillel, Y.: "A Logician's Reaction to Theorizing on
Information Retrieval," American Documentation, Vol. 3:103,
1957.

4. Bar Hillel, Y.: "Is Information Retrieval Approaching a
Crisis?" American Documentation, Vol. 14:95, 1963.

"-). Bar Hillel, Y.: Language and Information, Selected Essays on
Their Theory and Application, Addison - Wesley, Reading, Mass.,
7964.

6. Bobrow, D. G.: Problems in Natural ,aage Commication
with Ccamputers, COntract No. AF -)065, AD NoT-69323, 1966.

7. Beryl, L.: Information stomp and Retrieval a State-of-the-
Art Report, Auerbach Corp., AD No. 630089, 1964.

P. Bonner, R. E.: "On Some Clustering Techniques," IBM J., p. 22,

January, 1964.

9. Borko, and Bernick: "Automatic Document Classification Part I,"
J. ACM, Vol. 10, p. 151, 1963.

10. Borko and Bernick: "Automatic Document Classification Part II
Results," J. ACM, Vol. 11, p. 138, 1964. 1

11. Bryant, E. C., et al.: Some As cts of the "erovement of
Document ScreeninE, Contract No. AF 9 AD Igo.

;28191, 1965.

-218-

12. Cleverdon, C., et al.: ASLIB Cranfield Research Project -
Factors Determinin the Performance of Indexing Systems

Volume 1. Design. Cranfield, England, 19 .

13. Cleverdon, C., and Keen, M.: ASLIB Cranficld Research
11.21ect - Factors Determining the Performance of in.Lslaa

Systems. Volume 2. Test Results. Cranfield, England, 196:J.

14. Dale, A. nn Daley N.: "Some Clumping Experiments for

Associative Docunent Retrieval," American Documentation,
Vol. 16:5, 196.

Dennin, S. F.: The Construction of a Thesaurus, Automatically

From a Sample of Text. Statistical Association Methods for
Mechanized Documentation, NBS Misc. Publication 269,

Washington, D. C.

16. Edmundson, H. P.: Mathematical Models of Synonymy, SDC,

SP-197'5/00/01, 1966.

17. Eveleigh, V. W.: Adaptive Control Systems, Electro-
Technology., Vol. 71:78.

18. Feldman, J. A.: Aspects of Associative Processing, Contract
No. AF19(628)-500, AD No. 614634, 1965.

19. Giuliano, V. E.: Analogue Networks for Word Association,
D. Trans. on Mil. Electronics, Vol. MIL-7, No. 2 and 3,
p. 221, 1963.

20. Giuliano, V. E.: The Interpretation of Word Associations,
Statistical Association Methods for Mechanized Documentation,
NBS Misc. Publication 269, Washington, D. C., 1965.

Giuliano and Jones: Study and Test of a Methodology for

yxItioncs:;e1LeboratorEvaliMeIetrievalstems,
Interim Report ESD-irRag)5NNiii Science Lab.,
Hanscomb Field (USAF), Bedford, Mass., August, 1966.

22. Gorn, S.: On the Mechanical Simulation of Habit-Forming
and Learning, J. Informat. Contr., Vol. 2, p. 226,
September 1959.

-219-

23. Haibt, L., Fischer, M., et al.: An Effectiveness Study of
Full Text Searching, A paper presented at the Fourth
Annual National Colloquium on Information Retrieval,
Philadelphia, Pennsylvania. May 1967.

24. Ivies, E. L.: Search Procedures Based on Measures of
Relatedness Bet;reen Documents, Ph.D. Dissertation) MIT
TY;;FJ7Titic, mom-TR-29(Thesis), 1966).

25. Jones, P. E., Curtice, R. M.: A Framework for Comparing
Term Association Measures, American Documentation, Vol.
4:153, 1967.

26. Jones, P. E.: Historical Foundations of Research on
Statistical Association Techniques for Mechanized
Documentation, Statistical Association Methods for
Mechanized Documentation, NBS Misc. Publication 269,
Washington, D. C.175.65:

27. Kessler, M. M.: Comparison of the Results of Bibliographic
Coupling and Analytic Subject Indexing, American Documentatton,
Vol. 16, No. 3. 1965.

28. Knable, J. P.: An Experiment Comparing Key Words Found in
Indexes and Abstracts Prepared by amens with Those in Titles,
American Documentation, Vol. 3, No. 4, p. 223, 1965.

29. Knowlton, K. C.: A Programmer's Description of T.T.LLLL) Bell
Telephone Laboratories' Low-Level List Language, Unpublished
Bell Telephone Labcrstories Technical Memorandum,
MM 65-1271-2, February 1966.

30. Lamson, B. G., and Dimsdnle, B.: A Natural Language Information
Retrieval System) Prod IEEE, Vol. 54, No. i2 :1636, Dec., 1966.

31. Lewis, P. A. W., Bnxendale, P. B., and Bennett, J. L.:
Statistical Discrimination of the S o Anto Relation-
ship Between Words, J. ACM, Vol. 1 No. 1, p. 20, 19.7.

32. Luhn, H. P.: A Statistical Approach to Mechanized Encoding
and Searching of Literary Information, IDM J., p. 309, 1957.

-220-

33. Luhn, H. P.: The Automatic Creation of Literature Abstracts,

IBM J., p. 159, April 1958.

3)4. Lynch, M. F.: Computers in the Library, Nature, Vol. 212,

p. 1402, 1966.

MuCutchen, C. W.: Random Code Numbers for Universal
Identification of Documents, American Documentation, Vol. 16,

No. 2, p. 91, 1965.

36. McMahon, L. E.: RASE: A Fundamentally Analyzable Simplified

E lish. Bell Telephone Laboratories Technical Memorandum,

MHt -1221-7, 1965.

37. Maron, M. E. and Kuhns, J. L.: On Relevance, Probabilistic
Indexing and Information Retrieval, J. ACM, Vol. 7, p. 216,

1960.

38. Maron, M. E.: Automatic Indexing: An Experimental Enquiry)

J. ACM, 8:404, 1961.

39. AOntague, B. A,: Testing, Ccaparison, and Evaluation of
Recall, Relevance, and Cost of Coordinate Indexing with
Links and Roles, American Documentation, Vol. 16, No. 3,

p. 201, 1965.

40. Needham, R. M. and Sparck Jones, X.: Keywords and Clumps,

J. of Doc., Vol. 20, No. 1, p. 5, 1964.

41. Nolan, J. F., Armenti, A. W.: An Experimental On-Line Data
Storage and Retrieval system, Mass. Inst. of Tech., Tech.
Rpt. No. 377, Lexington, Mass., 1965.

42. O'Connor, J.: Mechanized Indexing Methods and Their Testing)
J. ACM, Vol. 11, No. 4, P. 437, 1964.

43. Prywes, N. S.: automated Library
Remote Access, University of Pennsylvania, The Moore School
off iectrfaY Engineering, Philadelphia, Pa. , Internal

publication.

-221-

44. Rees, A. M.: The Aslib-Cranfield Test of the Western

Reserve University Indexing System for Metallurgical

Literature: A Review of the Final Report, American
Documentation, Vol. 16, No. 2, p. 73, 1965.

Rocchio, J. J.: Information Storage and Retrieval. Rpt. No.

ISR 10, Harvard Computation Laboratory, 1965 (Ph.D.

Dissertation).

46. Ross, I. C.: Some Text Ana sis Routines. Unpublished Bell

Telephone Technical Memorandum MM- -1221, August 1966.

47. Rubinoff, M. and White, J. F., Jr.: Establishment of the ACM
Repository and Principles of the IR System Applied to Its

Operation, Communication of the ACM, Vol. 8, No. 10, p. 595,

1965.

48. Sage, C. R., et al: Adaptive Information Dissemination,
American Documentation, Vol. 16, No 3, p. 185, 1965.

49. Salton, G.: The Evaluation of Automatic Retrieval Procedures -
Selected Test Results Using the SMART System, American
Documentation, Vol. 16, No. 3, p. 209, 1965.

50. Salton, G.: Information Dissemination and Automatic Information
Systems, Proc. of the IME, Vol. 54, No. 12, p. 1663, 1966.

N0r17111
1. Shaw, R. R.: Fla

ll2 231 312 American Documentation,

Vol. 16, No. 2, p. 77, 1965.

rn Simmons, R. P.: Natural La ua e Processi and the Time -

Shared Computer. SDC Paper SP -197} 001 00 System Development

Corp., Samta Monica, Calif., 1965.

' 3. Stiles, H. F.: The Association Fnctor in Information
Retrieval, J. ACM, Vol. 8, p. 553, 1961.

. Stiles, H. E.: Automatic Indexing and the Association
Factor, Information Systems Compatibility. Newman, S. M.,
Ed., American University Technology of Management Series,
'11. 1, Ch. 13, p. 35, Spartan Books, 1965.

-222-

55. Taube, M.: A Note on the Pseudo-Mathemetics of Relevance:
American Documentation, Vol. 16, No. 2, p. 69, 1965.

56. Weinblatt, H. B.: Efficient Algorithms for Finding the Simple
Cycles and Maximal Strongly Connected Regions of n Finite
Directed Graph. Bell Labs. Tech. Memorandum MM 67-3343-7, 1967.

57. Winters, W. K.: A Modified Method of Latent Class Analysis
for File Orgainzntion in Information Retrieval, J. ACM,
Vol. 12, No. 3, p. 356, 1965.

55. Wolfberg, M. S.: UP. L6 - An L
6

System for the IBM 7040.
The Moore School of Electrical Engineering, University of
Pennsylvania, Philadlephia, Pa., Internal publicntion, 1967.

59. Wolfberg, M. S.: Determination of Maximally Complete Sub-
graphs, Interim Technical Report, University of Pennsylvania,
Contract NONR 555 (50) (Master's Thesis) 1965.

BOOKS

60. Hnrary, Norman, and Cnrtwright: Structure Models: An
Introduction to the Theorem of Directed Gra hs. Wiley and

Sons, New York, New York, 1 5.

61. Ore, 0.: 12'mm.cEllrathi, American Mathematical Society,
Providence, Rhode Island, 1962.

62. Salton, Gernrds Automatic Information Organization and
Retrieval. McGraw-Hill, New York, New York, 1968.

63. Vickery, B. C.: Classificntion and Indexing in Science,
Second Edition, Butterworth and Co. (Publishers) Ltd.,
London, England.

APPENDIX A

U'SER'S MANUAL

University of Pennsylvania

THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

SOLER USER'S MANUAL

Philadelphia,, Pennsylvania

August, 1971

INDEX OF CONTENTS

Introduction 1

Processing of SOLER Commands 1

Notes on this Manual 2

Alphabetical Listing of SOLER Commands 4

Illustrative Search Sequences

Appendix A 40

SOLER USER'S MANUAL

INTRODUCTION

This manual serves as a user 's guide to the SOLER

information retrieval systeirt. The commands described here

are the general user commands; no SOLER administrative

commands are included.

PROCESSING OF SOLER COMMANDS

Commands are input to the SOLER system in a command

stream. When the system is ready to accept a command

stream, it will display "ENTER COMMAND"; the user can

begin typing when a "e" is displayed. The command stream

should consist of a series of one or more commands to be

executed In sequence. The ENDCOMMAND symbol (see SET

command) must separate commands; however, this symbol Is

not necessary after the last command in the stream.

Transmission of command streams to the system may not

exceed 80 characters in length; hence, any command stream

which exceeds this limit must be broken into several

transmissions. Any time a transmission ending with the

CONTINUATION symbol (see SET command) is received by the

system, it is stored and the user is allowed to continue

his command stream with another transmission. Any error

SOLFR USER'S MANUAL
2.

condition encountered during processing of a command

stream will result in the display of the appropriate

message and termination of the command stream.

NOTES ON THIS MANUAL

1. Anything enclosed in parentheses in a command format is

optional in that command:

2. <value> means any set of at most 200 characters.

3. <category name> is the single name of a category in any

file of the data base. A category name may be

ambiguous (i.e. used in different contexts within the

data base). A category may be subcategorized; hence, a

file name is a category name. An example of a file and

Its categories is shown in the description of the

DESCRIBE command. ANYWHERE is a special category name

used to denote the entire data base (only applicable

where specified). The special category name CATEGORY

indicates the attribL:te of being a category name (only

applicable where specified). For example, RETRIEVE

CATEGORY NAME means "find the records in which NAME

is a category".

SOLER USER'S MANUAL

4. <qualified category name> is a series of category names

separated by periods. Each category must be a

subcategory of the one to its lift in the series. This

type of expression allows for the unambiguous

specification of a category name.

5. <qcn> Is an abbreviation used in this manual to mean a

category name which may or may not be qualified.

6. At all times, there Is one list of records r'irrently

under consideration; this is called "the active list".

After each retrieval command, the active list contains

the list of records which satisfy the command. Data

can be printed only from the records In the active

list. The user can create the active list, save it,

restore an old active list, or manipulate the pointer

Into the list by using the commands described In this

manual.

APPLY command 4.

FUNCTION OF COMMAND

Causes the system to process a RETRIEVE command
based on the conditions specified In the
retrieval expression; then the level-1 operator
is applied to this list and to the current
active list, thus producing a new active list.
For example, if the "AND" operator is specified,
the new active list consists of all records
which appear on the current active list and also
appear on the list produced by the current
command.

FORMAT

APPLY (<level-1 operator>)<retrieval expression>

EXPLANATION OF FORMAT

1. <level-1 operator> is a logical operator. A
list of these operators is available by issuing
a. SET LIST - OPER command.

2. If <level-1 operator> Is omitted, the logical
operator "AND" is assumed.

3. <retrieval expression> is the logical expression
described as the argument of the RETRIEVE
command.

APPLY command

EXAMPLE

ENTER COMMAND
*RETRIEVE CATFGORYPHONE DIRECTORY
0000005 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND
APPLY AREA CODE m 215
0000002 RECORDS HAVE BCEN RETRIEVED
0000002 RECORDS RESULT FROM THIS APPLY

ENTER COMMAND
APPLY OR AREA CODE w 301
0000001 RECORD HAS BEEN RETRIEVED
0000003 RECORDS RESULT FROM THIS APPLY

ENTER COMMAND

AROUND command 6.

FUNCTION OF COMMAND

Displays to the user all values in the specified
category in an alphabetical neighborhood of the
specified value.

FORMAT

AROUND <value>(IN <qcn>)

AROUND <value>(0<qcn>)

EXPLANATION OF FORMAT

EXAMPLE

1. CATEGORY or ANYWHERE may be substituted for
<qcn>. ANYWHERE Is assumed if <qcn> Is omitted.

ENTER COMMAND
*AROUND JONES IN PHONE DIRECTORY.NAME
JOAN
JOHN
JOHNSON
JONES
JONI
JONSON
JOSEPH

ENTER COMMAND

BACKWARD command

FUNCTION OF COMMAND

Moves the active list pointer backward n entries
In the list.

FORMAT

BACKWARD (n)

EXPLANATION OF FORMAT

1. n is any integer.

2. If n is omitted, 1 is assumed.

EXAMPLE

ENTER COMMAND
*BACKWARD 3

ENTER COMMAND

BETWEEN command 8.

FUNCTION OF COMMAND-

Displays to the user all values in the specified
category which are alphabet!tally between the
specified values.

FORMAT

ZETWEEN <value> and <value>(IN <qcn>)

BETWEEN <value>o<value>(,<qcn>)

EXPLANATION OF FORMAT

EXAMPLE

1. CATEGORY or ANYWHERE may be substituted for
<qcn>. ANYWHERE Is assumed if <qcn> is omitted.

ENTER COMMAND
'BETWEEN 200,400,AREA CODE
212
215
301

ENTER COMMAND

CONTINUE command 10.

FUNCTION OF COMMAND

Instructs the system to print all data In the
category that was specified In the most recent
PRINT or LIST command (to the high-speed printer
or the user's terminal, depending on which
command was most recent), from the the next n
records in the active list.

FORMAT

CONTINUE (n)

EXPLANATION OF FORMAT

1. n is any Integer.

2. If n is omitted the number of entries currently
remaining in the active list is assumed.

COMMENT command

FUNCTION OF COMMAND

Stores the specified comment for the SOLER
administrator to review at a later time.

FORMAT

COMMENT <any comment>

EXPLANATION OF FORMAT

EXAMPLE

1. <any comment> Is any set of remarks the user
wishes to type In.

ENTER COMMAND
*COMMENT THIS IS A MESSAGE TO THE ADMINISTRATOR

ENTER COMMAND

CONTINUE command

EXAMPLE

ENTER COMMAND
RETRIEVE CATEGORY DICTIONARY
0000004 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND
*PRINT 1, WORD

RECORD NUMBER 000006

DICTIONARY
..WORD ENTRY
....WORD

NEW, A.

ENTER COMMAND
CONTINUE 2

RECORD NUMBER 000015

DICTIONARY
..WORD ENTRY
....WORD

JERSEY, N.

RECORD NUMBER 000016

DICTIONARY
..WORD ENTRY
....WORD

PHASE, N.

ENTER COMMAND

DESCRIBE command 12.

FUNCTION OF COMMAND

Displays the structure of the specified
categories; repeating categories are Indicated
by "(R)". If no argument is specified, a list
of existing files is displayed.

FORMAT

DESCRIBE Oicn>(,<qcn>,..1.)

DESCRIBE

EXPLANATION OF FORMAT

EXAMPLE

1. Commas must separate <qcn>ls.

ENTER COMMAND
DESCRIBE
EXISTING FILES ARE :

DICTIONARY
PHONE DIRECTORY
POPULATION RECORDS

ENTER COMMAND
*DESCRIBE PHONE DIRECTORY
001 PHONE DIRECTORY

002 NAME
003 LAST NAME
003 TITLE
003 FIRST NAME
003 MIDDLE NAME

002 ADDRESS
003 COMPANY
003 STREET
003 CITY
003 STATE
003 ZIP CODE
003 COUNTRY

002 PHONE NUMBER (R)
003 AREA CODE
003 NUMBER
003 EXTENSION (R)

ENTER COMMAND

END command

FUNCTION OF COMMAND

Ends the session on the SOLER system. Control

is passed back to the computer's operating
system.

FORMAT

END

EXPLANATION OF FORMAT

EXAMPLE

1. Any arguments of this command will be ignored.

ENTER COMMAND
*END

ERASE command 14.

FUNCTION OF COMMAND

Releases the list with the specified Identifier.
Further reference to this list is no longer
possible. However, the identifier can be used
again In another SAVE command.

FORMAT

ERASE <identifier>

EXPLANATION OF FORMAT

EXAMPLE

1. <identifier> is any name used in a previous SAVE
command.

ENTER COMMAND
'ERASE MY POPULATION LIST
FILE DESTROYED

ENTER COMMAND

FORWARD command 15.

FUNCTION OF COMMAND

Moves the active list pointer forward n entries
In the list.

FCRMAT

FORWARD (n)

EXPLANATION OF FORMAT

1. n is any: Integer.

2. If n is omitted, 1 is assumed.

EXAMPLE

1

ENTERCOMMAND
*FORWARD-5

ENTER COMMAND

-GET command 16.

FUNCTION OF COMMAND

Creates a new active list composed of the
specified record numbers in numeric order.

FORMAT

GET <record number>(,<record number >,...)

'EXPLANATION OF FORMAT

EXAMPLE

1.'<record number> Is any integer which represents
an egisting record.

2. Commas must separate <record number >'s.

ENTER COMMAND
GET 2,3,5,7

ENTER COMMAND
*PRINT NONE

RECORDS IN ACTIVE LIST

000002
000003
000005
000007

END OF LIST ENCOUNTERED

ENTER COMMAND

INTR ^ommand 17.

FUNCTION OF COMMAND

Interrupts the SOLER processing and enters
"Interrupt mode". In this mode, the user is

allowed to terminate a command stream by the
RESTART command, or !ssue a SET command and
resume processing by the RESUME command. The
INTR command can only be Issued after the user
has depressed. the "BREAK" or "ATTN" key on the
keyboard and the operating system has responded
with a "/".

FORMAT

INTR

EXPLANATION OF FORMAT

EXAMPLE

1. No arguments are allowed for this command.

ENTER COMMAND
*GET 1,2,3

ENTER COMMAND
*PRINT

RECORD NUMBER 000001

PHONE DIRECTORY
..NAME
....LAST NAME

NEW
....FIRST NAME

CHRIS
..ADDRESS
....STREET

252 E 88 ST.
(break key depressed)

/INTR
INTERRUPT MODE: ENTER SET, RESUME, OR RESTART
COMMAND

*RESTART

ENTER COMMAND

LIST command 18.

FUNCTION OF COMMAND

Initiates the same processing as a PRINT
command, except that the output is directed to
the high-speed printer instead of the user's
terminal.

FORMAT

LIST (no)NONE

LIST (nd<qcn)(,<qcn),...)

LIST (n)

EXPLANATION OF FORMAT

EXAMPLE

1. n is any integer.

2. If n is omitted the number of entries currently
remaining in the active list is assumed.

3. Commas must separate <qcn >'s.

ENTER COMMAND
GET 2,5,17,18

ENTER COMMAND
FORWARD 2

ENTER COMMAND
*LIST 1, WORD, NAME

ENTER COMMAND

PRINT command 19.

FUNCTION OF COMMAND

Instructs the system to print all data In the
specified categories from the next n records in
the active /1st. The output is directed to the
user's terminal. A pointer to an entry in the
active list is maintained; this pointer
determines the place In the list at which to
begin printing the n records. (Whenever a new
active list is created, the pointer Is set to
the beginning of the list; printing from the
list advances the pointer; the pointer can also
he changed by using the FORWARD, BACKWARD, and
RESET commands.) The NONE option causes prIntimg
of the active list itself. If no argument is
specified, all categories of the remaining
records In the active list are printed.

FORMAT

PRINT (n,)NONE

PRINT (nd<qcn>(,<qcn>,...)

PRINT (n)

EXPLANATION OF FORMAT

1. n Is any integer.

2. if n Is omitted the number of entries currently
remaining in the active list Is assumed.

3. Commas must separate <qcn >'s.

PRINT command 20.

EXAMPLE

ENTER COMMAND
GET 2,5,17,111

ENTER COMMAND
*FORWARD 2

ENTER COMMAND
*PRINT 1, WORD, DEFINITION ENTRY.DEFINITION

RECORD NUMBER 000017

DICTIONARY
..WORD ENTRY
....WORD

FOREIGN
..DEFINITION ENTRY
....DEFINITION

SITUATED OUTSIDE ONE'S OWN COUNTRY,
PROVINCE, LOCALITY, ETC.

....DEFINITION
COMING FROM OR HAVING TO DO WITH ANOTHER
PERSON OR THINGS NOT CHARACTERISTIC;
AS, FORCE IS FOREIGN TO HIS NATURE

....DEFINITION
EXCLUDED; NOT ADMITTED; HELD AT A
DISTANCE

ENTER COMMAND

QUALIFY command 21.

FUNCTION OF COMMAND

Produces an internal list of the categories
specified In the command; all further retrieval
and printing. Is limited to the listed categories
and their subcategories. Since there is only
one qualification list, each QUALIFY command
destroys the old qualification list. If no
argument is specified, the current qualification
Is removed.

FORMAT

QUALIFY <qcn>(,<qcn>,...)

QUALIFY

EXPLANATION OF FORMAT

1. Commas must separate <qcn >'s.

QUALIFY command 22.

EXAMPLE

ENTER COMMAND
*QUALIFY LAST NAME, TITLE

ENTER COMMAND
*GET 8

ENTER COMMAND
*PRINT

RECORD NUMBER 000008

PHONE DIRECTORY

....LAST NAME
KAIN

....TITLE
REV.

END OF LIST. ENCOUNTERED

ENTER COMMAND
*QUALIFY

ENTER COMMAND
*PRINT NAME

RECORD NUMBER 000008

PHONE DIRECTORY
..NAME
....LAST NAME

KAIN
....TITLE

REV.
....FIRST NAME

JAMES
....MIDDLE NAME

L.

END OF LIST ENCOUNTERED

ENTER COMMAND

REPEAT command 23.

FUNCTION OF COMMAND

instructs the system to reprocess the most
recent APPLY or RETRIEVE command (even though
other types of commands have been issued).

FORMAT

REPEAT

EXPLANATION OF FORMAT

1. Any arguments of this command will be ignored.

EXAMPLE

ENTER COMMAND
*RESTRICT AREA CODE = 301 OR WORD = FOREIGN
THE RESTRICTION LIST CONTAINS 0000002 RECORDS

ENTER COMMAND
RETRIEVE CATEGORY AREA CODE
0000005 RECORDS HAVE BEEN RETRIEVED
0000001 RECORD RESULTS AFTER RESTRICTION

ENTER COMMAND
*RESTRICT

ENTER COMMAND
*REPEAT
()moos RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND

RESET command 24.

FUNCTION OF COMMAND

Sets the active list pointer to the beginning of

the list.

FORMAT

RESET

EXPLANATION OF FORMAT

EXAMPLE

1. Any arguments of this command will be ignored.

ENTER COMMAND
*RESET

ENTER COMMAND

RESTART command 25.

FUNCTION OF COMMAND

Instructs the system to terminate processing of
the -current command stream and accept a new
command stream (applicable only in "interrupt
mode").

FORMAT

RESTART

EXPLANATION OF FORMAT

EXAMPLE

1. No arguments are allowed for this command.

ENTER COMMAND
*GET 1,2,3

ENTER COMMAND
*PRINT

'RECORD NUMBER 000001

PHONE DIRECTORY
..NAME
....LAST NAME.

NEW
....FIRST NAME

CHRIS
..ADDRESS
....STREET

252 E 88 ST.
(break key depressed)

/INTR
INTERRUPT.MODE:.ENTER SET, RESUME, OR RESTART
COMMAND
*RESTART

ENTER COMMAND

RESTORE command 26.

FUNCTION OF COMMAND

Replaces the current active list with the list
Previously stored using the specified
identifier.

FORMAT

RESTORE <Identifier>

EXPLANATION OF FORMAT

1. <Identifier) is any name used in a previous SAVE
commend,

EXAMPLE

ENTER COMMAND
*RESTORE MY POPULATION LIST
FILE ACTIVE

ENTER COMMAND
*PRINT NONE

RECORDS IN ACTIVE LIST

000003
000004
000005
000011
000012
000013
000014

END OF LIST ENCOUNTERED

ENTER. COMMAND

RESTRICT command 27.

FUNCTION OF COMMAND

Causes the system to process a RETRIEVE command
based on the conditions specified in the
retrieval expression. The resulting active list
Is saved as the restriction list. Since there
is only one restriction list, each RESTRICT
command destroys the old restriction list. If

the "*" argument is used, the current active
list is saved as the restriction list. All

further RETRIEVE or APPLY commands are limited
to those records in the restriction list. If no
argument is specified, the current restriction
is removed.

FORMAT

RESTRICT <retrieval expression>

RESTRICT *

RESTRICT

EXPLANATION OF FORMAT

1. <retrieval expression> is the logical expression
described as the argument of the RETRIEVE
command.

RESTRICT command 28.

EXAMPLE

ENTER COMMAND
*RESTRICT AREA CODE - 215 OR WORD FORErGN
THE RESTRICTION LIST CONTAINS 0000003 RECORDS

ENTER COMMAND
RETRIEVE CATEGORY - AREA CODE
0000005 RECORDS HAVE BEEN RETRIEVED
0000002 RECORDS RESULT AFTER RESTRICTION

ENTER COMMAND
*RESTRICT

ENTER COMMAND
REPEAT
0000005 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND
RESTRICT

ENTER COMMAND
REPEAT
0000005 RECORDS HAVE BEEN RETRIEVED
0000005 RECORDS RESULT AFTER RESTRICTION

ENTER COMMAND

RESUME command 29.

FUNCTION OF COMMAND

Instructs the system to resume processing of the
current command stream (applicable only in
"interrupt mode"). This command is particularly
useful to resume processing after a SET command
has been issued in "Interrupt mode".

FORMAT

RESUME

EXPLANATION OF FORMAT

EXAMPLE

1. No arguments are allowed for this command.

ENTER COMMAND
*SET TRACES-ON

ENTER COMMAND
*RETRIEVE ANYWHERE-NEW OR FOREIGN

N -V OR V

000001 *
000000 *
000001 *

000000 *
000001 in *

000001 *
(break key depressed)

/INTR
INTERRUPT MODE: ENTER SET, RESUME, OR RESTART
COMMAND
*SET TRACES-OFF
INTERRUPT MODE: ENTER SET, RESUME, OR RESTART
COMMAND
*RESUME
0000012 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND

RETRIEVE command 30.

FUNCTION OF COMMAND

Produces a list (called the active list) of all
the records which contain data that satisfies
the specified conditions. There is only one
active list; hence, every RETRIEVE command
creates a list which replaces the current active
list. The set of retrievable records may be
limited by the RESTRICT command. The scope of
the logical expression may be limited by the
QUALIFY command.

FORMAT

RETRIEVE <qcn>m<expression of values>(<1evel-1
operator><qcn>(expression of .values >...)

EXPLANATION OF FORMAT

1. <expression of values> is defined as :

<value>(<)evel-2 operator><value>...).

2. A space between <value >'s In a phrase is

considered a <level-2 operator>.

3. <level-1 operator> and <level-2 operator> are
logical operators. A list of these operators Is
available by issuing a SET LIST OPER command.

4. Parentheses are allowed to specify the order of
operations.

5. <value> should be enclosed in single quotes If
It contains non-alphanumeric characters (e.g.
hyphen), or If it is a reserved word (e.g. the
name of an operator or function).

6. <value> may be replaced by :

<function>(<value>(,<value>,...)).

7. <function> Is an alphabetic browsing function
(e.g. AROUND, BETWEEN, TRUNCATE). The
arguments of a function must be enclosed In

parentheses and separated by commas.,

8. CATEGORY or ANYWHERE may be substituted for
<qcn >.

RETRIEVE command 31.

' EXAMPLE

ENTER COMMAND
*RETRIEVE IDIOM - POLICY OF A COUNTRY
0000001 RECORD HAS BEEN RETRIEVED

ENTER COMMAND
*pRtNT_IDIOM

RECORD NUMBER 000017

DICTIONARY
,.IDIOM
....PHRASE

FOREIGN AFFAIRS
....DEFINITION

MATTERS CONCERNING POLICY OF A COUNTRY IN
ITS RELATIONS Willi OTHER COUNTRIES

....PHRASf
FOREIGN OFFICE

....DEFINITION
THE DEPARTMENT OF GOVERNMENT IN CHARGE OF
FOREIGN AFFAIRS

END OF LIST ENCOUNTERED

ENTER COMMAND
*RETRIEVE NAME0NEWMSTATENEW YORK-CITY-ALBANY)
0000001 RECORD HAS BEEN RETRIEVED

ENTER COMMAND
*APPLY STREET 42ND ST .

NO RECORDS SATISFY THIS RETRIEVE
0000000 RECORDS RESULT FROM THIS APPLY

ENTER COMMAND
*RETRIEVE WORD TRUNCATE(ELECTRO) OR 'ON- LINE''
0000002 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND

SAVE command 32.

FUNCTION OF COMMAND

Stores. the current active list internally, using
the specified identifier. In order to reference
it later, a RESTORE command must be issued.

FORMAT

SAVE <identifier>

EXPLANATION OF FORMAT

1. <Identifier> is any name which the user assigns.

EXAMPLE

ENTER COMMAND
*RETRIEVE CATEGORY POPULATION RECORDS
0000007 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND
*PRINT NONE

RECORDS IN ACTIVE LIST

000003
000004
000005
000011
000012
000013
000014

END OF LIST ENCOUNTERED

ENTER COMMAND
SAVE MY POPULATION LIST
FILE HAS BEEN SAVED

ENTER COMMAND

SET command 33.

FUNCTION OF COMMAND

Changes the settings of the specified
user-controlled conditions. The LIST option
causes printing of the specified keywords, their
abbreviations, possible values, and current
values. If no keywords are specified for the
LIST option, all keywords, abbreviations, and
values are printed.

FORMAT

SET <keyword> <value>(,<keyword>m<value>,...)

SET LIST(m<keyword>,<keyword>,...)

EXPLANATION OF FORMAT

1. Commas must separate <keyword>'s or <keyword>
<value> pairs.

2. <keyword >'s are describe'd in the accompanying
list; <value>/s are described by issuing a SET
LIST command.

3. Each <keyword> has an equivalent abbreviation.

SET command

KEYWORD DESCRIPTION OF VALUE

CONTINUATION a single symbol used to denote continuation
of any command stream from one transmission
to the next; cannot have the same value as
ENDCOMMAND.

ENDCOMMAND

FIELDNAMES

FUNCLIMIT

INDENTFACTOR

LINELENGTH

OPERATOR

a single symbol used to separate commands in
a command stream; cannot have the same value
as CONTINUATION.

one of four settings which specify the
extent to which category names are printed
along with data; the settings allow. printing
of all or none of the category names
associated with a data item, all
subcategories of the category being printed,
or only the name of the category which
contains the data itself.

an integer which sets a limit on the amount
of searching done to evaluate any function.

an integer used for indenting category names
and data when printing; the value must be
less than LINELENGTH.

an integer which determines the maximum line
length for all printing.

a set of five values which defines a new
logical operator for the current session;
the values consist of the name and
precedence of the new operator, the name of
the subroutine to be used for performing the
operation,, and indications that the operator
is either level-1 or level-2 or both.

PRECEDENCE an indication of a new precedence'for an
existing operator for the current session.

SET command 35.

KEYWORD DESCRIPTION OF VALUE

PRINT-DATA one of three settings which allow the SOLER
admInistrato:- to display data being updated
on the terminal, high-speed printer, or not
at all; applicable during file update only.

RECORDNUMBER a yes-no setting which specifies whether or
not record numbers are to be displayed with
data being printed.

SKI P -TO -TOP a yes-no setting which specifies whether or
not each record (being printed on the
high-speed printer) starts at the top of a
new page.

SYSDTA ->FILE ione of two settings which specify whether or
not the user's commands (from SYSDTA) are
echoed to a cataloged file.

SYSDTA->LST I
one of two settings which specify whether or
not the user's commands (from SYSDTA) are
echoed to the high-speed printer (SYSLST).

SYSOTA->OUT one of two settings which specify whether or
not the user's commands (from SYSDTA) are
echoed to the user's terminal (SYSOUT).

SYSLST->FILE' one of three settings which specify whether
or not the data being printed on the

high-speed printer (SYSLST) is echoed or
switched to a cataloged file.

SYSOUT->FILE one of three settings which specify whether
or not the data being printed on the user's
terminal (SYSOUT) is echoed or switched to a
cataloged file.

SYSOUT->LST one of three settings which specify whether
or not the data being printed on the user's
terminal (SYSOUT) is echoed or switched to

the high-speed printer (SYSLST).

SET command 36.

KEYWORD DESCRIPTION OF VALUE

TRACELEVEL1 a yes-no setting which specifies whether or
not the result of each level-1 operation is

traced on the user's terminal.

TRACELFVEL2 a yes-no setting which specifies whether or
not the result of each level-2 operation is

traced on the user's terminal.

TRACELEVELG a yes-no setting which specifies whether or
not the result of each operation generated
by subcategories or funcions is traced on
the user's terminal.

TRACES o yes-no setting which specifies whether or
nct the results of all operations are traced
on the user's terminal; in essence,
TRACELEVEL1, TRACELEVU2, and TRACELEVELG
are all set to yes or no.

TRACEL1MIT an integer which sets a limit on the trace
of each operator; when the number of records
resulting from any operation is greater than
this integer, the trace is not displayed.

TRACESYMBOL a single symbol used in displaying the
trace; cannot be "w".

TRUNCATE command 37.

FUNCTION OF COMMAND

Displays to the user all values in the specified
category for which the specified value forms the
word trunk (i.e. the first string of
characters).

FORMAT

TRUNCATE <val6e>(IN <qcn>)

TRUNCATE <value>(,<qcn>)

EXPLANATION OF FORMAT

1. CATEGORY or ANYWHERE may be substituted for
<qcn>. ANYWHERE is assumed if <qcn> Is omitted.

EXAMPLE

ENTER COMMAND
*TRUNCATE ELECTRO
ELECTROCARDIOGRAM
ELECTROCUTE
ELECTROENCEPHALOGRAM
ELECTROLYSIS
ELECTROMAGNETIC
ELECTRON
ELECTRONIC

ENTER COMMAND
*TRUNCATE ELECTRO IN DIAGNOSIS
ELECTROCARDIOGRAM
ELECTROENCEPHALOGRAM

ENTER COMMAND.
*TRUNCATE DESCR,CATEGORY
DESCRIPTION
DESCRIPTIVE

ENTER COMMAND

WHERE command 38.

FUNCTION OF COMMAND

Displays to the user the names of all fields (in
the data base) in which the indicated value
appears as data, and the number of records In

which the Indicated value Is the name of a
category. The data base may be limited by the
QUALIFY command.

FORMAT

WHERE <value >(, <vaiue >,...)

EXPLANATION OF FORMAT

1. <value> cannot include commas.

2. Commas must separate <value >'s.

WHERE command 39.

EXAMPLE

ENTER COMMAND
*QUALIFY PHONE DIRECTORY, DICTIONARY

ENTER COMMAND
*WHERE.215;NAME,NEW

***fu**
215
iltailt*****

OCCURS IN THE DATA BASE :

PHONE DIRECTORY
WITHIN THESE FIELDS (0 RECORDS)

AREA CODE (000002)

eft
NAME
*milt***
IS A CATEGORY CONTAINING DATA IN 000012 RECORDS

NEW
emelt**

OCCURS IN THE DATA BASE :

DICTIONARY
WITHIN THESE FIELDS (0 RECORDS)

WORD (000001)
DEFINITION (000001)
PHRASE (000001)

OCCURS IN THE DATA BASE :

PHONE DIRECTORY
WITHIN THESE FIELDS (0 RECORDS)

LAST NAME (000001)
COMPANY (000001)
CITY (000002)
STATE (000001)

ALSO OCCURS OUTSIDE CURRENT QUALIFICATION

ENTER COMMAND

APPENDIX A 40.

Illustrative Search Sequences

...

1. /LOGON user- Id,acct#
tC E223 LOGON ACCEPTED FROM LINE Onnn AT time
ON date, TSN nnnn ASSIGNED.

2. /DO RETRIEVE
3. %P500 LOADING

4. ENTER COMMAND
5. *DESCRIBE

EXISTING FILES ARE :

DICTIONARY
PHONE DIRECTORY
POPULATION RECORDS('

ENTER COMMAND
6. *DESCRIBE PHONE DIRECTORY

001 PHONE DIRECTORY
002 NAME

003 LAST NAME
003 TITLE
003 FIRST NAME
,003 MIDDLE NAME

002 ADDRESS
003 COMPANY
003 STREET
003 CITY
003 STATE
003 ZIP ,CODE
003 COUNTRY

002 PHONE NUMBp.(R)
003 AREA COOt:-
003 NUMBER .

003 EXTENSION' CRY

ENTER COMMAND
7. *QUALIFY PHONE DIRECTORY

1. After dialling into the computer; the user must ii;entify
himself to the operating system. The system responds when
the logon Is accepted.".

2. The user initiates SOLER retrieval with the DO command to
the operating system.

3. The operating system informs the user that SOLER is being
loaded.

4. SOLER Is ready to accept a command from the user.
5. The user asks for a list of the flies In this data base.
6. The user asks for a description of.one of the files in the

data base. This description Is displayed in the lovei
structure of the file definition.

7. The user Instructs SOLER to limit his retrieval to than! PHONI

DIRECTORY file in the clat,,

41.

ENTER COMMAND
8. RETRIEVE NAME CHRIS

0000001 RECORD HAS BEEN RETRIEVED

ENTER COMMAND
9, PRINT

RECORD NUMBER 000001

PHONE DIRECTORY
..NAME
....LAST NAME

NEW
....FIRST NAME

CHRIS
..ADDRESS
....STREET

252 E 88 ST.
....CITY

NEW YORK
....STATE

NEW YORK
....ZIP CODE

10017
..PHONE HUMBER
....AREA CODE

212
....NUMBER

238-3145

END OF LIST ENCOUNTERED

8. The retrieve command initiates retrieval. The NAME CHRIS
clause specifies that all records should be retrieved which
have the value CHRIS in the NAME category. The system tells
the user how many records result.

9. The user tells the system do print this record. SOLER
prints the Internal record number of the record retrieved.
Then, the names of the data categories are printed; The
indentation india4tes which categories are subordinate to
other categories In the tree-structured record. The whole
data rscord Is printed.

ENTER COMMAND
1C. BETWEEN A AND H IN NAME

A
ALBERT
ALPHONSE
CHRIS
DERRICK
FOREIGN
GEORGE

ENTER COMMAND
II. RETR NAMENBETWEEN(A,H) AND AREA CODE is 301

0000001 RECORD HAW BEEN RETRIEVED

ENTER COMMAND
12. *SET FIELDNAMESSIMMED

ENTER COMMAND
13. PRINT NAME, ADDRESS

RECORD NUMBER 000010

....LAST NAME
SMITH

....FIRST NAME
GEORGE

....MIDDLE NAME
HAROLD

....STREET
200 N MAIN ST.

....CITY
CATONSVI LLE

....STATE
MARYLAND

....ZIP CODE
21229

END 07 LIST ENCOUNTERED

10. The user csks to see all values In the NAME category between
the letters A and H.

21. Now the user wants to retrieve all records with a NAME value
between A and H which also have an AREA CODE value of 301.
SOLER tills the user the number of records retrieved.

12. The user specifies that only immediate category names are to
be printed In subsequent PRIWT's.

13. Request Is Issued for pridting of the NAME and ADDRESS
categories from the record retrieved.

43.

ENTER.COMMAND
14. RETR CATEGORYPHONE DIRECTORY

0000005 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND
15. LIST

ENTER COMMAND
16.*QUAL1FY

ENTER COMMAND
17. RETR CATEGORYDICTIONARY

(0000004 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND
18. *PRINT NONE

RECORDS IN ACTIVE LIST

000006
000015
000016
000017

END OF LIST ENCOUNTERED

14. The user wishes to find all records which contain data for
the PHONE DIRECTORY category; that Is all records In the
PHONE DIRECTORY file are desired.

15. The user specifies that all five records retrieved should be
printed on the high-speed printer. No printing Is directed
to the terminal.

16. The user instructs SOLER to remove the current
qualification; that is, the user wishes to retrieve from the
entire data base again.

17. The user desires all records in the DICTIONARY file.
18. The Internal record numbers of the currently active records

are displayed.

ENTER COMMAND
19. SET RECORDMUMBEReN,FNNONE

ENTER COMMAND
20. PRINT WORD

NEW, A.
JFRSEY, N.
PHASE, N.
FOREIGN

END OF LIST ENCOUNTERED

ENTER COMMAPO
21. SET FNI

ENTER COMMAND
22. *RESET;FORWARD 2;PRINT I,WORO ENTRY,SYNONYMS

....WORD
PHASE, N.

....ORIGIN
MOD. L. PHASIS; GR. PHASIS, FROM PHAINESTHAI,
TO APPEAR

19. The user requests that record numbers and all category names
be suppressed In firther printing.

20. The WORD category from each active record Is printed without
categorr names or record numbers.

21. Ths display of terminal category names is restored for
further printing.

22, The user issues three commands; the first sets the pointer
to the first active record; the second advances the pointer
to the third active record; and the third requests printing
of WORD ENTRY and SYNONYMS from the next active record.

45.

ENTER COMMAND
23. *RETRIEVE CATEGORY - PHONE DIRECTORY - ZIP CODE OR w

*ADDRESS PHILADELPHIA OR NEW YORK
0000003 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND
24. *PRINT LAST NAME

....LAST NAME
NEW

....LAST NAME
ZIGERT.

.... LAST NAME
DERRICK

END OF LIST ENCOUNTERED

ENTER COMMAND
25. *APPLY ADDRESS-PHILADELPHIA

0000001 RECORD HAS BEEN RETRIEVED
0000001 RECORD RESULTS FROM THIS APPLY

ENTER COMMAND
26. *PRINT NAME,ADDRESS

....LAST NAME
ZIGERT

....TITLE
JR.

....FIRST NAME
ALBERT

....MIDDLE NAME
FOREIGN

....COMPANY
UNIV. OF PA.

....STREET
200 SOUTH 33 ST.

....CITY
PHILADELPHIA

....STATE
PENNSYLVANIA

....ZiP CODE
19104

END OF LIST ENCOUNTERED

23. A two-line retrieval request is issued; the continuation
character Is adfled at the flind of the first line.

24. The LAST NAME entries In the active records are printed.
25. The additional construint "ADDRESSePHILADELPHIA" Is Imposed

on the active list.
26. Data from the resulting record Is pilnted.

46.

ENTER COMMAND
27. RESTRICT CATEGORYNDICTIONARY

THE RESTRICTION LIST CONTAINS 0000004 RECORDS

ENTER COMMAND
28. RETRIEVE ANYWHERE*FOREIGN

0000002 RECORDS HAVE BEEN RETRIEVED
0000001 RECORD RESULTS AFTER RESTRICTION

ENIfIl COMMAND
29. *PRINT, IDIOM

....PHRASE
FOREIGN AFFAIRS

....DEFINITION.
MATTERS CONCERNING POLICY OF A COUNTRY IN ITS
RELATIONS WITH OTHER COUNTRIES

....PHRASE
FOREIGN OFFICE

....DEFINITION
THE DEPARTMENT OF GOVERNMENT IN CHARGE OF
FOREIGN AFFAIRS

END OF LIST ENCOUNTERED

ENTER COMMAND
30. *RETRIEVE WORD- TRUNCATE(ELECTRO)

NO RECORDS SATISFY THIS RETRIEVE

ENTER COMMAND
31. END
ILLJLOGOFF
27. All records In the DICTIONARY file are retrieved and the

resulting list is used to restrict further retrieval.
28. The user requests all records In the entire data base in

which the value FOREIG1.i occurs. SOLER notes that two such
records are found In the data bees*, but only one Is In the
restriction list of records.

29. The user asks to see the IDIOM category In the resulting
record.

30. The user` 'segues** all recor& that have values In the WORD
-category which begin with the letters ELECTRO. SOLER
Informs him that no such records exist.

31. Finished with his work, the user ends the SOUR session.
34. The LOGOFF ezommand to the operating system disconnects the

user.

