/

DOCUMENT RESUME

ED 084 833 |- - | EM 011 654
AUTHOR Rubinoff, Morris

TITLE Man-ﬂachlne Communication Through a
- Teletypewriter. _

INSTITUTION Pennsylvania Univ., Phlladelphla. Moore School of
f , _ Electrical Engineering. '

SPONS AGENCY Army Research Office, Durhanm, N.C.; National Science
/ Foundation, Washington, D.C.

PUB DATE May 73

NOTE 276p.

\

EDRS PRICE MF-3$0.65 HC-$9.87 :

DESCRIPTORS Communications; Computer GLapthS' Computers;

*Indexing; Information Networks; Information
Processing; *Iauaformation Retrieval; Informationp
Storage; *Information Systems; Interaction; *Man
Machine Systems; *0On Line Systems; Program
Descriptions; Programing Languages; Search
Strategies; Telecommunication

IDENTIFIERS Real English; SOLER Information System;

8 . *Teletypewriters

ABSTRACT g o

- A ten-year research study designed a mechanized

information system in the information processing field. Special

attention was paid to implementation criteria entering into on-line

‘retrieval through man-machine dialog from a remote typewriter or-

video terminal and four major areas were investigated: search
stratggies, machine stored indexer aids, disc file organization, and
graphic displays. The final system developed, SOLER, is a powerful
library-oriented information system permitting browsing through the
data base, narrowing of the search to selected files, and further
res*rlctlng to chosen segments of each file. SOLER is useful to
experts, 1ndexers, and searchers, using the Real English search \

,,,,,,,

folloulng. 1) there is a* significant difference bet ween information,
which is broad and qualitative, and data, which is formal, spec1f1c,
and quantltatlve, 2) there are significant differences between
information haiidling in library versus problem-solving environments;
and 3) computerized library systems can extend the scope of catalog
information and provide helpful indexing tools to users.

{Author/LB) n

FILMED FROM BEST AVAILABLE COPY
[}

University of Pennsylvania
THF MOORE SCHOOL OF EIECTRICAL ENGINEERING
Fhiladelphia 19104

MAN-MACHINE COMMUNICATION THROUGH

A TELETYPEWRITER

May 1973

{

The Moore School Information Systems Lsboratory

Morris Rubinoff
Principal Investigator

The work described in this report has been supported by |
the U. S. Army Research Office-Durhem and in part through the
Air Force, the Nstional Science Foundation, and in-house funds.

The Moore School Information

Systems Laboratory
< University of Pennsylvania

83

o/,
U

EC G

University of Pennsylvanias
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING
FPhiladelphis 19104

MAN-MACHINE COMMUNICATION THROUGH

A TEIETYPEWRITER

May 1973

Us DE PARTMENTOF HEALTH,
EDUCK\TION&WELFARE
NATIONAL INSTITUTE DF

EDUCATION REPRO

OCUMENT a5 BEEN

TOTJ‘CSEDDE)(ACTLY aS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS -
STATED GO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

The Moore School Information Systems Laboratory

Morris Rubinoff
Principal Investigstor

The work de scribed in this report has been supported by
the Us 5. Ary Resenrch Office-Durhem and in part through the
Alr Foree, the National Science Foundatibn,.and in-house funds.

The Moore School Information
Systems Laboratory
University of Pennsylvania

Tiiis is the best copy. available of
-a document processed for EDRS by
ERIC/EM. We are awars that some
pages may not be readable in micro-

fiche or hard copy. However, we)
. feel that the document shouldn't be

‘withheld on the basis of these
pages a.tlonae :

TABIE OF CONTENTS

IMTRODUCTION

l.l

Summary of the Investigation

THE SOLER SYSTEM

.1

-

(A
2-5

3.3

3.h

3.0

3.6
2T

STATISTICAL CLUMPING AS AN INDEXING AID

hol
4.2

4.3

General De scription

' Bagic Concepts

2.2.1 Data BRases ‘
2.1‘..1’.. Flles

nN.2.53 Records

P.2.4h Interface Routines
SOIER Commands

Datsa Bagse Example

INFORMATION SYSTEM COMPONENTS

File Sr_tructure
The Record Definition Phase

Input Phage

3.3.1 Operation of the Input Phase

The Updnte Phase
The Invert Phase
The Retrieval Mechanlsm

The Output Phnase

Adaptive Interactlon

Implementation of the System

General Definitions

114
114
118

118

O

L1212
4,13
b1k
k.15
4,16

\

Theoreticsl Considerations

Preliminary Definition of an Adaptive Jystem
ggpit Forjing vs. Iearning

A Working Definition ‘of an Adaptive Progess
The Final Form of the Adaptive Irocess
Interaction-by-Interaction Learning

The Interest lrofile

An Algorithm for Rendering Adaptive Assistance
An Extension to the Adaptive Algorithm

The Implementation of the Interactive Process
Clumping - Tﬁe Teékniques Considered

Implementatiorn

Results

English as a Search Language

5.1 Easy English
5.2 Real Bnglish
, o
Bib ' iography
6.1 Published Papers
6.2 Internal Reports
6.3 References on Information Retrieval
6.} References on Statistical Clumping

-
"
('\.’\

-
0.0

References on Camputerized English

Re‘ferences on Automatic Indexing

Appendix A

N

User's Manual

130
130
132

134

137
138
149
157

183
183
187

205
207
210
oL
215

217

MAN-MACHINE COMMUNICATION THROUGH'
A TELETYFEWRITER

T™ias i~ the final report on a comprehensive research study of
: e gy
man=machine communication through a typewriter terminal., The study
soans o Nall Jdecade fram 1962 through 1971 and has been supported in
part through the U.S. Army Research Office - Durham and in part through
the Air Force Office of Scientific Research, the National Science Found-
7tion, snd in-house funds. '
The most significant findings of the study are as follows:
1. There is an essential difference hetween information and
data, Information is by nature deseriptive, qualitative,
.
peneric, ﬁnd brond in coverage, snd consequently hard to
categorize crisply in single words or brief word phrases;
dnta is formal, quantitative, specific and of narrow scope,
and consequently lends itself-te crisp tabulation or listing.
2(a). There is an essential différence between information handling
in & library versus a problem-solving environment. A library
is a repository of narrative descriptive informetion collected
from a muiltitude of diverse independent sourcess problem-solving
uses of data collected by a single group of‘users for retrieval
as part of the problem-solving process, i.,e. on-line real-time
retricval.
2(b). As n consequence of 7/}, the computeriied library information
retrievnl system need not be Imbedded in a host system nor

written re-entrant; the protlem-solving data mansgement system

should be provided with both features.

Se The library information system does contain a conventional catalog
card £ile but extended in scope in a camputerized system to
o . -1-

D=

sccommodate author, title, sponsoring agency, publisher, .dnte,
etc., and bibliographical caéabilities. The computerized library
information system should also provide indexing tools, such ns
oy words, notations of contents, index terms, etc., to help
the senrcher on the basis of the intellectual content of the files,
.c0ncepts, techniques, procedurcs, and subjcct relationships.
4, The rate of growth of all literature is rapid. But the rate of
growth in any one subject area is relatively slow. The value of
a data base to each user decreases rapidly after his first search.
The library information system is thus inherently a single-dip fac-
ility for individuals, with the consequences stated in 2(b) sbove.
However, the library information system is an effective inrormation
analysis and dissemin&tioﬁ tool, to support the preparation of stete-
of-thefnrt summaries -over broad subject areas or on specific topics
tailored to the evér-changing needs of research. An on-line system
of men-macine communication with a comprehensive data base, with ap-
propriate tools for browsiﬂg and for sharpening the seafch, is an in-
valuable tools for such analysis and dissemination. The information
.systém SOLER developed as part of this study is such a System.
1. SUMMARY OF THZ INVESTIGATTON '
The investigation described here began in 1962 with the establishment ¢
et the Moore School Information S&stems Laboratory to develop a design for a
mechanlized informetion system in the information processing field, with spec
attention to implementation criteria entering into on-line retrieval througl
man-machine dialog fram e remote typewriter or video terminal, Four major
areas were identified for study: search strategiesj machine-stored indexer ¢
such as lists of index terms, symonyms, classification tables or "clumps", ¢

other semantic aidsj disk file organizationy and graphic displays.

Q. Progress was made in all four areas. The search strategy studies

. =3=

led fo deaper npéreciatién pf ﬁan-machine éommunication problems and
'pﬁrtivulnrly to tﬂe difficulties encountered by the occasional éearcher.
who docs not have a computer background and has no reason or need to
,1enrﬁ a s@ecializqd computér jargon)in ofde£ to retrieve information from
a déta base. The”Laboratory first de;igned, develﬁped-éhd tested a;simple
mechanization called "Easy English", whéreﬁy\the user could gain access to
| the data base through readily recogn;zed imperative‘sehtences in naturnln
Fnglish language. The remnrkable success of Easy English led to the dév-
clopment of "Rend. English”, whereby a complete Engiish grammar was incor-
porated into the s&stem and pgrmitted the user to cngnge in a fﬁll dinlog
with the camputer using ceclarstive, imperative, interrogative, and even
fragmented English séntences, réstricted only'by the 1imited_vocabulary
of the dictionary stored in the computer. Real English was compietely
V successfﬁl as-a search languagej its only limitation was its demands on
storage (close to 500,000 bytes). As computer memories become-chéaper and
faster, fhe usé of Real Eﬁglish in informéfion.syqtems'wiii become more
nconumical and practicni, and should find its place as a powerful tool
in many informntion systems, o
Mechinc-stored indexer aids ﬁaye been studied by many inveétigntdrs.
.Indexing is tﬁe most dif%;cu1t aspect of the information retriefal process
and probably the least ﬁnderstood; To begin with, in a privﬁte data 1ib-
rary vhere the user collects his ownn files and indexgs them himself for his
own usc,mindexcr_nids are usually very primitivc‘or tdtally unnecessary.
Indexer aids are ﬁseful toolé prihnrily in the realm of the public liter-
nturg,'where three differcent groups of people parficipate in the intellec~-

tual proccsses associated with the data base, namely, the experts, the

indexers, and the searchers.,

Ve

. - -

It
— - et e

The éxperis are the authors, editors, and reviewers, who cr¢ate the

'original informetion, estabiish the format and style in which the data is

recorded, and determine which ‘papers will eppcar in tﬁ% body of knowledge .
. = ! P .

and which will be rejected. The language of the literature is necessarily

gbuehed in the speciahizea términqlogy and concepts of the field os they
- ' V.

-exist at the time when the papers are written.

The indexcrs are library science specialists who are expected to
understand and interpret the intellectuél.content of all the ﬁubiications
thnt‘get into the data base and to characterize eaéh‘publicntion through
(v) catalog identifications such as aﬁthor, title, énd pﬁblisher, ()
subject cntegorizers such as Dewey'Decimal Nuriber and subject heading(s);
and (ﬁ) "index tefﬁs" such as "key words" in the title or in the text,
and/or standarﬁized‘wordéJnnd word phrases that identify specific topics
in the‘subject area, hopéfulfy uﬁhmbiguoﬁsiy. The indexers do their |
indexing a year or more after ﬁhe papers have been writtén and the results
are obviously influenced by the changes in outlook and terminology during
the intervening period. 1In particular, the meanings that they intend to
onvey whgn.they a;sig& index‘ierms often,differ fram the meénings.of

3

those terms nt the times that the papers were written.
Thv-ééngohers_arc of course those who have nced for information '
which they hope can be found in the data base. These may ?e researchers

|
who arc-entering n new fiecld for the first time n&d’seek information
brondly over the icld, or expert researchers *ho have worked in the field

for ~ome time sad who are primarily interested in the most'recent_develop-

ments, or techniceal writers who are seeking state-of-the-srt expositions

at a semi-laymen lewvel, or reviewers who wish to check the state of the

art belore rating o new publication, or etc. Clearly, cach searcher has

5

his own profilec of.interest, with different scope, depth, and 1evc1;
cf technicgl séphiétication, as well as relevant technicélusubject
oven, Thé sonrchér's problem is compounded ﬁy the staleness of the
indexing since his scarch probably takes place years after the rel-
ovnnt‘pnblfcﬁtiqps were indexed.

'“Ethodoiogj for providing indexer aids was established in the
- course of this Tesenrcﬁ-investigntjon.y The methodology is based on

statistical geﬁé:aﬁion of vocabulary relationsh ps but it includes

{
#lso the use of semantic tools, definiticns, abstracts, énd other
narrntive condensations of information.

Disk (ile orgrnization has been through a mumber of revisions,

'. - _
the previous. At each stage,

f

cuach somewhat more s%phistigfﬁgéngéé&‘
the file structure and orgenization were testédcin a live expgrimental
retrieval syﬁtem;' The final system, SOLER, is a particulérly powerful
library-oriented inforﬁation?system with the capsbility for .browsing |
throughout the data base, na#rowing thé.search to ény selected filesu
withih the data base, and furtﬁer restricting thé search to selected
oﬁ-line-identified segments of each file. .The'syétem permits the
searcher to t;eat nny word or word phrase snywhere in the data bése

ns an index ﬁerm and further permitsvhim to search bn terms related to
his selectgd words or word phfases fhfough ciassification_tableé pre=
, viously derived by the computer from the information in the data.base

1taelf.

d THE SOLER SYSTEM

2.1 General Description

The SOLER system is an information retrieval system. A user may
stove, xﬁodi&y, and retrieve information im either an interactive or
rackground environment.

The basic unit of information handled by the system is called a
data item. A social security number or a telephone number might be
swaple data 1tem.s. A collection of logically related data items forma
a_record. For example, a record in a Personnel File will usually in-
clude data items for an employee's name, address, salary, position,
ete. A _file is simply a collection of records where the type of data
items in each record are the same. The logical structure of the
records is the same for each record in a file, but the data will vary.
For example, if a set of records is collected to form a Personnel File,
every record will contain a data .item for the name of the employee; but
the value or content of this data item will be different for each record.
Thus the data item 'EMPLOYEE NAME' will occur in each record, and is part
ot the logical structure of the record; but the value of this data item

will be different in each record. The following case might occur:

RECORD DATA ITEM VALUE
1 EMPLOYEE NAME JOE JCNES \
2 EMPLOYEE NAME MARY SMITH
3 EMPLOYEE NAME JOE SMITH

-7 -

[t is often desirable to structure a record so that some pseudo-
dnta {tems are defined which are then subdivided into several actual
data items. For example, a record could be‘structured so that EMPLOYEE
NAME is a pseudo-deta item which contains two actual data items called
'f"1RST NAME' and 'LAST NAME'. 7This structure is usually indicated by

Indentations as follows:

EMPLOYEE NAME pseudo~-data item
FIRST NAME data item
LAST NAME data item

Thls type of record structure is called a hierarchy or tree
structure. In the SOLER system, pseudo-data items are called non-
terminal data categories or nodes, and actual data items are called
terminal categories.or nodes. The previous example can now be re-

written as:

RECORD " RECORD STRUCTURE VALUE
1 EMPLOYEE NAME _—
FIRST NAME JOE
LAST NAME JONES
2 EMPLOYEE NAME —
WRST NAME MARY
LAST NAME SMITH
3 EMPLOYEE NAME ——
FIRST NAME JOE

LAST NAME SMITH

Referencing the non-terminal category EMPLOYEE NAME is interpreted as

a reforence to the two subordinate categories FIRST NAME and LAST NAME.
in the example above, some records have the same value for certain

data itews. Specificall&, the FIRST NAME date item in both record 1 and

record 3 has the value 'JOE'. In an information retrieval system, the

uscr retrieves records by a request such as:
“Wwhich employees have the tirst name 'JOE'?"

in this example, two records would satisfy the request. If the file
contained many records, and it was necessary to check every record to
determine if this condition waé satisfied, the time needed for the
search would be excessive. 1In the SOLER 8ystem, rapid retrieval times
are possible hecause the system "inverts" the data file. That is, for
a given value of a data item, the system will maintain a 1list of all
the records in the file which contain that vealue in the specified

category. For the sample data catejories above, the lists would be:

i

CATEGORY VALUE LIST OF RECORDS
FIRST NAME JOE 1,3
FIRST NAME MARY 2
TAST NAME JONES 1

LAST NAME SMITH . 2,3

When it is desired to retrieve a set of records containing certain data

values, the inverted lists can be manipulated and an answer produced

without referencing the actual data records until it is desired to
display parts of the record. Since all needed information is in the

inverted lists, the system can rapidly inform the user exactly how many

&

records satisrfy the conditions specified in the request. Whern the
records are actually retrieved, uonly those records which actually
natisfy the request will be accessed, Lt is not necessary to examine

any records which do not meet the given criterionn.

EXAMPLE 1

To answer the questicn: "Which employees have the r'irst name
JOE?", the following commands should be presented to the SOLER
system: | |

RETRLEVE 1MIRST NAME = JOE

PRINT EMPLOVEE NAME
By examining the inverted list for 'JOE', the system can
immediately tell thé user that 2 records satisfy the request.
_The PRINT - command will then display the complete name for
those employees. If the result of the RETRIEVE command is a
large number of records, the user has the option of not -

printing any of the date, and trying another retrieval.

EXAMPLE .

To answer the question: "How many employees are named JOE

SMITH?", the following command would be used:
RETRIEVE FIRST NAMP = JOE AND IAST NAME = SMITH

In this case, the answer would be produced through manipulaticn
o!' the appropriate inverted lists., It is not necessary to
reference the data records at all, unless the user decided to

display data from the records identified by fhe search.

- 10 -

The SOLER system allows a user to specify the logical structure of
his records directly from a terminal. He may then assign values to the
terminal data items to enter as many records as desired into the Tile.
When the file has been created, the user may perform searches of
arbitrary complexity, and display portions of the resultant records
directly on the terminal.

If the user encounters the common situation that he has several
di(ferent files which contain logically related information; he may
oreage a data base which contains as many as twenty-five files. These
files may have different record structures, but it will be possible to
retrieye simultaneously from any group of filles in the data base.

The balance of this section describes the SOLER system in more
detail. First the concepts of & data base, files, records, and date
items are examined in more detail. Then the logical system modules ure
discussed, with an indication of the internal date flow in the systen.
The commands recog-ized by the system are outlined, and, finally, =
detailed description of each system module is presented. Appendix A
i3 n user's manual which describea how SOLERAis used, what each command
accomplishes, and illustrative examples which use every command in the

SOLER system.

2..) Rasic Concepts

The SOLER system is designed to allow the user to create, update,
~and search a data base either frpm an interactive terminal or in a
batch processing environment. The user may define as many data bases
as desired. Each data base is self-contained and independent of all

other data bases in the system. Within a data base, the user may

- 1L ~

‘define as many as twenty-[live separate files of informatiun. These
files may be logically connected to provide simultaneous searches
spanning many different files ot information. Records within a file
have a {lexible format, and may contain data in any formut desired by

the usaer,

Lol Data Bases

e

A data base is the basic entity that may be manipulated by the
SOLER system, The user may define as many data bases as desired, but
only one may be accessed by the system at any one time. All data bases
are completely indepéndent and selfwdescribing. That is, each data
bhase contains within itself all the i1nformation necessary to allow the
SOLER system to process the data base. Hence, once the user specifies
which data base he would like to access, the system extracts any addi-
t.ional information needed for internal operations directly from the
data base withogt requiring the user to re-specify any detailed infor-
mattion. Thus the user is able to initialize a data base only once, and
tvom then on the system will autom;tically process the detailed internal
intormation while the user directs the activities of the system at a
logical level.

Each data base may contain anywhere from one to twenty-five files
of information. For search operations, the user may manipulate any
subset of the files as a logical group, and may define new logical
proups, or delete éld groups, at any time. Thus, the logical structure
uf the data base hay be altered dynamically at the discretion of the
user, This allows the user to view the data base as a single specific
rile, as a selected set of files, or as a single entity.containing

related data items.

Z2.2.2 Files

A file within a data base is a cocllection of logically related
records. All records in a file have the same logical structure. As
many as twenty-rive files may exist éithin a single data base. The
logical strucéhre of each file is completely indépendent of all other
filé;w{ﬁﬁfhe data base. The ﬁsér may define several files with similar
structures, ér files with completely unrelsted structures, depending on
hisrown needs. All files within a single data base are logically inter-
related through tne system direciories maintained by SOLER. The ﬁser
may search across all files, or may specify that certain files be
lopically excluied from searches, thus searching a subset of the data
‘base, '

A file is defined by presenting to the system a description of the
logical structure of the records to be contained in the file. This
structure represents a tree of data categoriés. Any category which has
one or mo}e subordinate categories in the structure is referred to as &
non-term{pal node or category. A non-terminal category d&gﬁ not ex~
plicitlyvréferencé data, but implies & reference to anf data contained .
in the nodes which are subordinaﬁe to the non-terminal node. A category
which has no suﬁordinate categories is a terminal category, and will
explicitly contain data in a record. _

Ir.addition to thovlogical structure of the date, the user may assign
& name of his own choosing to each data category. The name may be
applicd to moré than one distinct ééﬁégﬁrj within the structure. In this
case, use of the name will be automatically interpreted by the system as

a veference to all data categories with that name. In addition to the

primary name ot each category, the user may also designate as many
synonyns for the name as desired. By specifying the name of one cate-
gory as o synonvm for another category, the user can define complex
interrelationships between the categories within a file.

Data categories are said to be "linked" within the system under two
conditions. All data categories subordinate to a given data category
are termed “implicitly linked" because referencing the superior category
implies a reference to each subordinate category. Data categories with
the swume nane are termed "explicitly linked" since the user specified
Lhe swune name (or both categovies. Also, all data categories subordinate
Lo two explicitly linked categories are themselves implicitly linked.

Liinking of categories is not restricted to a single file within the
data base. 15 categories in two or more different files are assigned
the same name (either as a primary name or a synonym), they also are
explicitly linked. Thus the user may logically link data categories
defined in separate files.

Note that categories which are explicitly linked through a given
numé may have other names which are not linked. Thus a reference by
one name may imply two fields which are explicitly linked through that
name. However, reterence by.another name may imply only one of the
fields, or may link one of the original fields to another field. Thus
the user may develop file deifinitions which have complex interlinkages
both within each file itselt and with other files in the data base.
Conversely ol course, the user may assign a unique name to every cate-

pory so that no tields are explicitly linked.

? | -1 - v . <”?*"ﬂ7

i
i

Durings retrieval operations, referencing a category rname normally
reterences all explicitly and implicitly linked fields. Searches may
tnnglsimultaneously process multiple fields within one or more files.
However, if the user desires to restrict the search to a more limited
area of the data base, the name oi' & Eategory may be qualified by
appending one or more names of superiof categories. This limits
references to those categorles in which all of the names appear as
superior fields in the given order. In this way, the user may effec-
tively unlink fields temporarily whenever desired. These qualifications
may be introduced so that they remain in force until changed by the user,
or a qualification may be explicitly steted to apply to & single

command.

2,2.3 Records
i

A record in the SOLER system is a set of data items corresponding
to the logical structure defined for one of the files in the data base.
A record is a single occurrence of the logical pattemm defined to the
system when a file is created. As many records as desired may appear
within a file, the only restriction being that the aggregate of all
records in the data base may not exceed 16 million records, |

Within each record, the data items correspond to the terminal
cnﬂegories of the file definition'tree. The conﬁents ef each data item
may be as large as 65,000 characters coﬂtsieing any data wvhich can be
processed by the machine (in general, this corresponds to the character
sets specified by the ASCII or EBCDIC codes). Data items may occur
more than once in a record (if the user has specified that a category

may repeat), or may be omitted from a particular record. When data

-15_ Y]

items are omitted in a record, no space is allocated for the missing item,
thus conserving space on the storage device on which the data base resides.
At the present time, one record may contain a maximum of 1000 data items,
but this linit may easily.be expanded if the need arises.

The data storéd within a QTR item may occur in any format. The
system supplies routines to handle the standard fields of numeric data,
character strings, and narrative text. If the user has a requirement ftor
specializned processiné ef a particular.datu field, he may supply his own
tunctiocnal routine to the system. SOLER will invoke this routine when-
cver special processing of the data item"is required. With this technique
the user with one or more specialized requirements for the handling of
data -items may allow the standard system routines to handle the bulk of
the processing, and all of the details of internal storage allocation,
command interpfetation, etc., while processing a few items in a manner
prescribed by the user. A simple example would involve specifying a pro-
cessor that would not display the salary data item in a personnel record

until certain secu}ity checks have been validated.

<. Interface Routines

An important concept in ﬁhe SOLER system is the idea of an.interface
routine.

It was desired to allow the system to handle any type of data that
wight arise in almost any application. Most existing information
retrieval and data management systems allow flexibility in the structure
ol & record, but only limited data item formats aré allowed. In most
cases, the system will handle nunbers and simple text strings, usually

of limited length. The SOLER system, on the other hand, was designed

- 16 - ., ¢

to allow any format of a data item desired by i'fhe user. The technique
developed to accomplish this is the concept of an Interface Routine.
Basically, the SOLER system provi(ies a supefstructure for a.n
information 'retrieval s;ysfem. .The system handles space allocation
in the files, accesses to the I/O devices, detection and interpretation
of coumands, retrieva]::.of records, etc. But at the same time, whenever
it is necessary to process the internal format o'fva datg item, an inter-
tace routine is called. For example, during e:\gecution of the Input
Phase, thé interfa.ce routines are responsible for reading the dat_a from
- the external device and placing it in a buffer provided by the system.
The sys_tem must know the length of the data; the format is immaterial.
With this method, the SOLER system itself is independent of the format
* of the data stored in the system. The user may define. a record struc-
ture which specifies the existence and logical relations of the data
items, and may also supply interface routines to handle data items

internally.

2.3 SOLER Commands

The full set of SOLER commands is presented here. A brief des-
cription of the action of each command indicates the purpose of the
command and its uses and effects. A more complete description of

system behavior is provided in Section 3 and in Appendix A.

Input Command
INPUT X (where X = file name)

inltlates a question and answer diulogue with the
computer in wiiich the computer cells for all the
data in a new reccord, one data field at a time, by
field name; the user types tine date item apvropriate
to that field and delivers it to the computer. The
data fields are, of ccurse, those vhich are ~~rma-
nently associated with file X. .

Invert Conmand
INVERT X (where X = file nawme)

f causes the computer to invert every record in file
X that has not yet been inverted. The process of
inverting a record is the addition of an entry into
a list for each term (word, numoer, or series of
alphanumeric characters) which appears anywhere in
the record. Thus, the list for each term indicates
every record in which that term appears. '

Update Commands
DELETE X (where X = category name)

instructs the computer to delete all data in category
X from the records in the active list (see RETRIEVE
command) .

MODIFY X (where X = category name)

instructs the computer to display to the user all data
in category X (from only the records in the active
1ist); the user modifies the data items displayed to
him and returns them to the computer which automati-
cally inputs and inverts them.

ADD X

sield aad Tile

WHERE X

(where X = category name)

causes the computer to request new data appropriate
to category X to be added to the records in the active
list, record by record.

Locating Command
(where X = term)

displays to the user the names of all fields (in the
entire data base) in which term X appears as data,
and the nanes of all Tiles in which term X is the
name of a cateagory. The entire data base may be
limited by the QUALIFY command.

Loglcal Retrieval Commands

RETRIEVE X

APPLY U X

(where X = logical expression of category names
and terms)

produces & list (called the active list) of all the
records which contain data that satisfies the condi-
tions of logical expression X. There is only one
active list; hence, every RETRIEVE command creates a
1ist which replaces the previously active list. The
logical expression X contains elements of the form:

category name = term.

The retrieved records may be limited by the RESTRICT
command. The logical expression may be limited by
the QUALIFY command.

(where X = logical expression of category names and
terms, and
U = logical operator)

causes the computer to process a RETRIEVE command based
on the conditions of logical expression X; then logical
operator U is applied to this list and to the previous
active list, thus producing a new active list. For
example, 1f U is the operator ."AND", then the new
active list consists of all records which appeared

on the previous active list and also appeared on the
list produced by the processed command.

4

-~ 19 -

RISPEAT

instructs the computer to reprocess the most recent
APPLY or RETRIEVE command (after intervening commands
have been implemented).

Search Tinmiting Commands

. RBSTRICT
instructs the commuter to "remember” the records 1in
the current actlve list; the searching done in all
subsequent logical retrievals will be limited to those
records whiclh have been 'remembered".
QUALIFY X (where X -~ set ot r'ile names and/or category names)

instructs the computer to "remember” the file names
and category names; the searching done in all subse-
qQuent logical retrievals will be lLimilted to those
Tiles und categories which have been "remembered.
All subsequent output commands will be similarly
limited.

Qutput Commands
PRINT N,X (where N = an integer and X = category name)

instructs the computer to print all data in category X
from the next N records in the active list. The output
is directed to the user's terminel. A pointer to an
entry in the active list is maintained; this pointer
determines the place in the list to begin printing the
next N records. Whenever a new active list is created,
the pointer Is set to the beginning of the list; the
rointer can be changed by using the FORWARD, BACKWARD,
and RESET commands.

LIST N.X (where N = an integer and X = category name)

initiates the same processing as a PRINT command,
except thatl thie output is directed to the high-speed
printer instead of the user's terminal.

CONTINUE N (where N r an integer)

instructs the computer to print all data in the category
that was specified in the most recent PRINT or LIST
command, {rom the next N records in the active list.

- 20 -

Active List Manipulating Commands
FORWARD N (where N = an integer)

moves the active list pointer forward N entries (or
to the last entry on the 1ist if N overshoots).

BACKWARD N (where N = an integer)

moves the active list pointer backward N entries (or
to the beginning of the list if N overshoots).

RESET

sets the active list pointer to the beginning of
the list.

SAVE X (where X = any name)

stores the current active 1list internally, under the
identification name X. In order to ruference it, a
RESTORE X command must be used.

RESTORE X (where X = name used in any previous SAVE command)

replaces the current active list with the list
identified by name X. |

FRASE X (where X = name used in any previous SAVE command)

releases the list identified by name X; further
reference to this 1list is no longer possible without
re-retrieval. ' ‘

GET X (where X = set of record numbers)

creates an active list-composed of all records
specified in set X. '

Miscellaneous Commands
SIT X (where X = collection of condition-setting pairs)

changes the settings of the conditions specified by
collection X. The conditions pertain to the format

of the user's dialogue with the computer. For example,
the user can specify the output line length; the user
can request to have all dialogue captured and perma-
nently stored. T

.21 -

COMMENT X (where X = any comments)

stores comment X for the SQLER administrator
to read at a lafter time.

END
ends any session on the SOLER system.

2.b Data Rase Example

A data base is defined in this section as an example of the
storage and retriev&l capabilities of the-S;LER system. Since this
is intepded as Aﬁ introductory example, no- attempt is made to illustrate
all capabilities ofkfhe{system. The intent of the example is to indicate
the rvange of logigal rile gtructures‘allowe&; and the power inherent in
the adbility to link files. fheSe examples will also be referenced in
the more detailed discussions whiéh follow, when the logical data flow
within the SOLER system 1s investigated. |

n this example, a data base is assumed called the Personnel

Information Data Base. There are three separéte files in-this data

hasé:
A Personnel file,
A Job Description tile, énd
A Dofinition file
‘The definitions tor thgse files are shown belo#, where the tree‘

structure is indicated by the indentation of the category names.

o

PERSONNEL FILE
EMPLOYEE DATA
EMPLOYEE NAME
TAST NAME
FIRST NAME
MIDDLE INTTTIAL
ADDRESS
STREET
CITY
STATE
n1P CODE
PHONE NUMBER, REPEAT
JOB INFORMATION, REPEAT
JOB TTTLE
LENGTY OF SFRVICE
SALARY
QOFFICE ADDRESS
PHONE EXTENSION
EDUCATION, REPEAT
DEGREE
INSTITUTION ATTENDED
DATA RECEIVED
AREA OF SPECIALIZATION, REPEAT
AREA
QUALIFICATIONS
TECHNICAL PUBLICATIONS
TITLE
ABSTRACT

JOB DESCRIPTION FILE
JOB TITLE :
QUALIFICATIONS

EDUCATION

EXPERIENCE
SATARY

LOWEST LEVEL

HIGHEST LEVEL

AVERAGE

DEFINITION FILE
WORD
DEFINITION

X S
The free structure of this data base is shown in Figure 2.4.1.
“'he word REPEAT after some of the data categories irdicates to the
aystewm that the category will occur'more than one time in many records.
When o repeat is associated with n non-terminal category, the entire
suﬁstructure of the record bélow this category will be ;epeated. It is
.8lso possible to "nest" repeats so that within a repeating structure,
subordinate categories will also repeat. 1In Figure 2.&.1,4repeating
zuﬁhwzcxrb indlicated by a dashed line lend}ng to a second occurrence of
Lhe nade. ‘Jn an actual record, the field could repeat as many times as
dnsjréd by the user.
in this datn base, oﬁr hypothetical user is storing personnel
1hformntion, a seyies of job descriptions, and also definitions of
words. Within one aata base, he has coilected three interrelated files
of information. When it is necessary to find a person for a certain |
position, the user can look at the guslifications of the job description,
and then list the names of all employees who satisfy the requirements.
it is also possiblé to search the data baée for o specific Jjob title.
Since the JOB TITLE categeories un@er'the Personnel File and the Job
Description File are explicitly linked, the user can display a descrip-
T Lion of the»job, and also a list of all employees currently holding the
pasition.
11 a word in a Jjob deﬁcription or a technical paper is unfamiliar
Lo the user, he can immediately refer to the dictionary for a definition.
This Indicates some of the power providéa to the user through the
ability to link together files of diverse information within a single

dnta base. These examples also indicate the variety of data types which

O

ERIC

Aruitoxt provided by Eic:

PEHBONNEL INFUHMAT ION DATA DASE

1

PEASONNEL #ILE

"“’{i AREAS OF SPECIALIZATLON

——E EMPLOYEE CATA l
PAMTLOYEE BAVE l

PHONE. NUMBER

""‘L PHONE NUNBER J
——41 JOB INFORMATION —]

= HECEETER
—{ tevoTy or sEsvicy |
—{ SALARY]
—{ orrice avokiss |
L"limmm: ECENSION |

.....-r JOB INFORMAT [QH

EDUCAT 10N

INST ITUT TON ATTENDED l

DATE RECEIVED |

-—-r EDUCAT FON -]

GIALIFLATINS |

""(ARRAZ O FIVTALITATION

h—{i TR A L LICAT IO I

_———{ TIICICAL e VAT LS J

L

JOB DESCHIFTION FILE
—-|' J0B TITLE
QUALI FICATIONS

EDUCAT1ON
EXPERIERCE

LOWEST LEVEL

HIGHEST LEVEL

Figure 2.4.1

1

DEFINITION F1LE

WORD

DEFINITION

Structure of the Personnel Inforwation Data Base

- O -

Jak

can be processed by the SOLER system. The Personnel File contains

sovernl weli-defined fields, such as Salary and Phone Number, and

also contains relatively unst ructured data as free-form narrative

text (in the abstract and title of publications).

3. THE INFORMATION SYSTEM COMPONENIS

The System for On-Line Entry and Retrieval (SOLER) has been
implemented as a sequence of six basic phases; record-definition,
input, update, invert, retrieve, and output. All of these phases can
be executad interactively from a Teletypewriter, Datel/Selectric type-
writer, ov a video console (CRT or VDT). The unusually large variety‘
of commend options makes SOLER a highly versatile storage and search
tool for natural-language text, bibliographic information, and all
other types of library data. Written in COBOL, SOLER is readily trans-
ferrable to other computer systems; however, since the programs are not
embedded in the operating system, they are less effective in a problem-
solving environment.

The record definition phase (Section 3.2) permits the user to
define and enter the logical structure of a new file. The input phase
(Section 3.3) then permits him to enter data records into any file in
the data base, including any newly created files. The update phase
(Section 3.4) permits the user to add, delete, or correct data in the
da’a base, either interactively or batch. The invert phase (Section
3.5) is a processor which forms inverted lists from the input records.
The inverted lists serve to speed up the retrieval of records in the
retrieve phase of the system (Section 3.6). The output phase (Section

3.7) provides for display of retrieved data on typewriter, high-speed

‘printer, and/or video display console.

‘ |
Section 3.1 prasents a detailed description of the various files
f
that are incorporated into SOLER. The particular choice of files was
dictated by the requirement to provide a reasonable balence between

user service and system efficiency.

-~ 26 ~

- 27 -

{.1 File Structure

All file access is through one subroutine -- READWRIT, thus
allowing machine independence. {'iles are classified into two general
catepories -- directory files and data files., The former are charac-
terized by 3000 byte tracks and the latter by 2000 byte tracks -- the
phyvsical track size is the actual distinction between the two types.

The Lrack sizes are not flexible -~ the two track lengths are built
into the system at every turn and could not be changed within the
existing implementation,

The system uses a set of five files. This is the minimum number
needed to support the system, namely, the system file, a directory file,
and one inverted, one direct data, and one work file. These are des-
cribed below. Files may be added at any time -- this involves execution
of several programs (see Appendix A) for physical and logical creation
and storvage of iuformation describing the files. READWRIT must also be
recompi led with FILE and DEFIN macros describiné the new file, These
macros create the File Contrsl Block which will describe the file to

TS0S during I/0 operations, and internal tables for the subroutine.

—
RECORD F1LE
HUMB LR NUMBER TRACK
BYTE RYTE HALF-WORD
X
IFigure 3.1.1

A Standard System Address

- - 28 -

In addition to the bhysical I/0 subroutine READWRIT (which is
wrltten in Assembly language), the system contains two subroutines,
GFTRCRD and PUTRCRD, for reading and writing physical records (not
tracks). While special formats are used for various special purpose
t racks throqghout the system, the record structure handled by these

routines is used for all data in the data files a.x_ld inverted files.

SYSTEM |
.RECORD LENGTH STANDARD
LENGTH - SYSTE!:
- 1 or 3 ADDRESS DATA
I NCLUDES - (IF ANY)
{TSELF | 11CLUDES
I TSELF

Figure 3.1.2
Physical Data Record

The first half-word is a binary count of the total number of
halfwords in the record (1t includes itself), The second is the
length of the system information (the count includes itself). A
value of 3 indicates that the following 2 half-words are a system
address of the remaining data of the desired record -~ thus & logical
record may be a chain ;.)f physical records on different physical tracks
and so may excecd the physical track length. Né.tu.ral]y the last record

in the chain has no chain address.

- 29 -

System File

In order to allow the system to operate with different sety of
t'iles, it i{s necessary to store all the paraﬁetefs of a given file set
within that set of files. This is alwayé'done on file,o. NLMO, which
is known as the System File. The first track of this file, the System
Header record (address O, O, 1) contains the names (numbers)‘of all the
tiles in the system and information about their.sizes. The cdrrent
internal type codes and internal record numbers to be assigned are also
stored here (each terminal field in a definition is assigned a unique
internal type code or ITC3; each record input receives an internal record
number or IRN). | |

Allocation within the system file is handled via information found
in the Systém Header record.. The remainder cof the system file consists-
ot the IRN Conversion Table, the Definition area and the Name Conversion
table. The number of the first track of each table and the number of
tracks allocateé to each table may be faund in the System Header record.
These tables are the keys which allow the system to interpret the data
stored in the remaining files.

The IRN conversion taﬁle is a table consisting of standard system
nddre;ses; when a fecord is input to the system, it is gssigned the
next avalilable IRN (a three byte, positive binary number). Thus the
1KN points, through the conversion table, to the data record directory.

The Definition area contains each of the (up to 25) definitions
within the files. 4Each of the definitions consists of four parts; gﬁe
Tree Avray, ITC Array. Subroutine Arrays (for all 6 phases or system
function) and the Name Array. The Tree Array defines the logical

structure of the definition. The ITC array associates an: Internal

- 30 -

Type Code with terminal data fields, and also delineates repeating
f{elds. The Subroutine Arrays specify, for each terminal field, the
routines sappiied by the system administrator which should be applied
to the data. And, of course, the Name Array containe the naies of all
fields within a definition.

The final table in the System Vile is the Name Conversion Table.
In {t can be found every field name of all the data bases and pointers
speciflying where and in which definitions they occur.

Consider now the elements that make up an inverted list. Assume
we have a record, say record number (IRN)=N, containing the data item
NEV {Figure 3.1.3). The inverted 1ist would allow us to look up NEW and
the completed search would report that NEW can be found in record N.
Suppose the searcher were interested in a record in which NEW MOCN
occurred as, for example, an idiomatic phrase in a dictionary record
describing the word NEW. It is not enough to know that MOON occurs in
record N; we also must know in which fleld it occurs, Thus, part of an
inversion in our directories must contain the ITC or internal type code
of the field (or fields) in record N under which MOON sppears. We are
clearly also interested in the concatenation of the two words NEW and
MOON. Thus, information needed in an inversion includes: string {(or
data item); field (or ITC under which the item occurs); record number (IRN
of the record containing the desired data); and position within the field
(NEW preceding MOON). |

Reconstruction is then achieved through concatenation, as indicated

b

in our example.

- 31 -

LHTER COMMALD \

sretricve phracse = pew or moon and new moon
‘N=V OR VWV ARDV V
* L4 X *
0ooAnL « = » *
o0l - s * =
000G0L % o+ = %

QocLRaL RECERD HAS BEEN RETRILVED
I ER NN ISR VNN Y

print woerd cntry, fdiom

RECORD HUSBER 00N00G6

DICTEOUARY
L BORDENTRY
s ee . HORD

NEW, A,

e ORIGIN _ '
AS. NIWE, NEOWE;CF. D. NIEUW, DAM. AND SW. MY,
ICE. NYR,GOTH. WIUJIS, L. NOVUS, GR. NEOS,
SANS. HAVES -

. IDIOM,

v+« PHRASE
NEW BERTH

.. DOFIHITION
REGENERATION; SPIRITUAL REBIRTH; THE BEGINUNIMNG
OF A RELIGIOUS LIFE -

Ve JPHRASE |
NEW DEAL

co L WDEFIITION
THE LCONDMIC AND POLITICAL PRINCIPLES AND
POLICIES ADOPTED BY PRESIDENT ™ FRANKLIT D.
ROOSEVELT AND HIS ASSOCIATES TO ADVAHCE THE
THE LCONOMIC AND SOCIAL WELFARE OF THE AMER]CAN
PEOPLE '

e oo PHRASE
NEW 1100

<. ..DEFINITIO!
THAT PHASE OF THE MOON WHEN IT 1S BETWEEN THE
EARTH AND THE SUN, WITHL THE DARK SIDL OF ITS
DISK TOWARD THE EARTH; IT APPEARS AS A THIN
CRESCENT CURVING TOWARD THE RIGHT

END OF L1ST_LNCOUNTERED -

Figure 3.1.3
The Above Example Shows a hetrieval Making Use

~t the Concatenation Operator

- 32 -

First, PHRASE was looked up'in the Name Conversion Table to
determine the correct ITC. Then two lists of records were obtainé& -
those containing NEW in the desired field and those containing MOON in
that field. The concatenation operator then produced a8 final list --
centaining the one record which containéd MOON immediately following NEW

under the data field FHRASE. -

Directory File

There is one Directory File in the system, with 3600 byte tracks.
These tracks are of two types; high level or low level directories. They -
consist of strings {or keys) and system sddresses. High level directories
point to eiﬁher high or low level directories. Low levél directories
point to inverted lists. The Core Directory is at the top of this tree-

- 1like dirgctory system and is always found on the first track of file one.
Entries in the high level directories are 6 byte keys followed by a 3 byte
system address (the record byte is not needed).

All keys are iﬁ ascending, logical sort:onder. Entries in low level
directories consist of an entire key (up to 200 characters) followed by
one or more Internal Type Code, System Address Pairs. A high level
directory key is the last eatry on another directory. When a directory
fills up, it is split into two directories and the last entry on each

directory is inserted in the superior node of the structure.

LLCORE DIRECTORY :
' ’]
AR 100N CTAX

e ,\;:M.__.;?“:"“\
H\)\)N I &C g I‘UI‘HI([NT « ..

NEW A ._:_;._..‘7_..-,_..___, HOON B)
v__.

) - -

S lLY A

[A

—\L

INVERTED
LIST

{NVERTED LIST

CPNVERTED LIST

N
ANVERTED LIST

- IRN
CONVERSION
TABLE

)
QAIA\uFCORD DIRECTORY
(6 .[N LI

DATA I TEM _E}

i NEW MOON

A PHASE OF THE . . .

Figure 3.1.4

Directory Structure

- 3 -

Inverted Files

The system allows from one to five inverted list files, consisting
of 2 byte tracks. Allocation within these files is handled by the
VREESPAC subroutine, whose mechanism is described later. Each list
consists of IRN, user byte entries which indicate the record and
position within a field for each inversion. The IRN is a three byte
quantity, followed by the three user bytes. The first is to indicate
sentence nuwber, the second word number within the sentence; the third
Is uwnused.

The entire six bytes are used to determine the ascending, logical
sort sequence and so the list is ended by an entry (6 bytes) of all one
bits. In order to speed access an inverted 1ist (which is in normal
physical record format) will not be split over physical tracks unless
it exceeds one track in length. Though initially there may be several
inverted lists on é track, when one grows too large to fit on a shared

track it-is moved to its own track.

5 .3 .
BYTE . USER C e e e e FFFFFF .FFFFFF
I R N . BYTES .

Figure 3.1.5

An Inverted List

Direct ‘Data Files

There may be several, currently up to five, direct data.files in
the system. It is in these (iles that a complete data record is stored
as ﬁn entity rather than as a series of keys.in a directory. All déta

in these liles is stoved under the trormat of the physical record pre-)
viously described. Due to the large differences in numbers and sizes

o data fjelds»that the system ﬁAy handle under different data bases,

'n chained, rafhe} than continugus. mannef of storing data was adopted.
Two formats of records exist in these data files: the data record
ﬁirectory and the data items thémsglves.

The logical entity equivalent to a data record is thé data record!
directory. The iRN points to £he data record directory, through the IRN
conversion table. It may be several physical records long as it can éon--
tain up to 1000 entries.. Each of these éntrieé conslsts of an ITC-
(Internal Type Code 'to identify the field), and a system address pointing
to the physical- record containing that field's data. The ITC occurs in
the ovder deiinéated by the record's definition; %epeating ITC's a3 well
Mgéi;;peating groups of ITC's may occur.

The data fields aré spéred in these files as they were passed to
the system. As all counts are in halfwords, if a data item contains an
"odd number of bytes it is pedded with a blank (40 Hex). A data field,
which can be #p t6132,768 half-words long, may ﬁe spread over severai
physioal'récords. |

This structgre permits greater flexibilit& in placing the data in

the files and cuts down fragmentation within the files. While the chained

" physical recond system would have allowed logicdl contiguity without

P ’ oy

- 36 -

l , i
l!)[’.FINI'I'ION SSYSTEN ‘) LSYSTEH
‘ NUMBER - |LENGTH | 1TC.ADDRESS | . . . [1TC.ADDRESS

| [1

Pigure 3.1.6

physical contiguity, the data record directory makes possible faster
access to selected data items within a record. Allocation of space

in these files is done by the FRESPAC subroitine.

LENGTH | :
(NOT INCLUDE. CDAIA .
I TSELF) . | o

Flgure 3.1.7

Data Fileld L

Work Files

.- The Work Files (from one to three) consist of 2000 byte data tracks.
They are used by all phases to store data used within the run that is too
lnrge to bélstored in virfual memory. All phases are in two parts -- the
first in which the user routineé are éalled‘and temporary files are
created, 1In the second secticn of a given phase, chese {iles are read
and the permanent files modified as indicated by the temporary file,

No fixed frrmat is used for these‘files -- there are too many
djtferent uses. The input function uses them to build & chain of the
user's data. Invert allows the user to specify'cregtion of a temporary
rile ot 1n§ersinns; then thfs (ile is read placing the inversions into the
permanent file system. The update function uses these files for both of

the above ﬁurposes. The retrieve phase operators usually result in a

third, temporary inverted list. They repeatedly act on two input lists

to produce a third output list. The final output list produced is the
result «¢ "answer" tuv the retrieval. The SOLER system will wérk most
el'f'iciently when fhere are three work files. With two input lists and
one .output list, {t will attempt’to keep each of ﬁhe three in a separate

'i{le nnd thus minimize disk contention and speeding retrieval.

Allocation of work file space is done by the voutine WORKSPAC. Tt
arants requests for either cylinders or tracks by maintaining pointers to
the next cylinder and trﬁck to be ailocatede During the input and invert
phases requests for space within a file are sequential and so allocation
is by tracks. During retrieﬁal reqQuests for each'temporary inverted list
to be created may be nmixed, depehding upon the size of each list. Here:
allocation 'is by cylinder (they are unlikely to exceed one cylinder),

witich will reduce disk access time during retrieval.

1)

- 38 -

We are storing a tree structure (our record's information as des-
cribed in the definition) as a linear string. We may have occurrences
of repeating fielis tc¢ any desired depth -~ and with an unspecified
nuzber oi occurrences, In the accompanying definition we have a
repeating rield, DEFINIT1ON containing MEANING, PHRASE which also
repeats and ORIGIN which does not. Under certain circumstances it may
not be possible to determine the proper occurrence number. If we have
MEANING, PHRASE, PHRASE; MEANING would be identifled as MEANING. But
we can have misging data for any field; thus we cannot determine whether
or not the gsecond PHRASE is PHRASE, i.e., a second PHRASE related to the
given meaning or whether it is realliy PHRASE, the first PHRASE relating
to a missing data item, a second DEFINITION.

We solve this problem by adopting the convention that unleass the
record structure indicates otherwise, it will be assumed that thsre is
no missing data. Here PHRASE would be correct. I our sequence were
MEANING, PHRASE, ORIGIN, PHRASE then the second PHRASE would be correctly
identified as PHRASE of a second DEFINITION which is missing. We know
this tecause ORIGIN precedes PHRASE in our record definition. The
assumption of no missing data is certainly necessary for the SOLER system
to be able to select specifled items from an array, and seems Juite

reasonable,

Allocation Requirements

Until Aow we have seen some simple methods for allocation of space
in three types of system files -- the System File, Directory File and
Work Filea, The methods have been simple, effective and taken little

computer time. These methods were effective because we were dealing with

ESS

-39 .

known data (we specified the contents and format of the data in these
files) and in one case, the work files, allocation is not overly critical
as the files are clean at the beginning of each run. Finally, in all the
above cases, allocation i8 in terms of whole tracks -- fragmentation is
not a problem. Now we are going to have to deal with a quite different
method of allocation. This allocation mechanism handles two types of
files. In one (the inverted list files) we do kmow the format of the
data but we did not know its character, i.e., will there be many or few,
long (seweral trackas) or short (two or three entry) inverted lists. In
the direct data files, we can be dealing with many or few fields -- each
field may be long or short and there may be different data bases. Thus,
these characteristics may be different in different parts of the files.
Ancther requirement is the packing of data; fragementation can be a
problem 18 you lose 10% of file space, and your files use 10 disk drives.
A disk unit is too valuable to discard lightly. Tied in with this
requirement is that of machine independence. The files may be on
different direct access deviées.

To recapitulate, our data sllocetion mechanism mﬁst pack data to
reduce fragmentation and wasted space; 1% must attempt to place related
information in one cylinder. It must be dats and device independent (for
moving head, direct access devices). Finally this mechanism was bullt
before firal deaign cf the rest of the SOLER aystem and it was not known
how other parts of the system would use it. It twrned out that the
invert, input and update functions all use this mechanism in a different

manner.

- 40 -

Allocation Mechenism

The alloca£ion mechanism is made u§ of two main programs and one
subroutine. One main program, INITIAL, creates the free space tables
-~ setting them up to indicate that the while file consists of complete
tracks except for the tracks in the tables themselves. These are set
up to indicate that they are completely filled with data. The second
main program, FIDUMP, may be run at any time to examine the state of the
files. This program displays the contents of the tables in a more easily
readable format than a simple hexadecimal dump.

The final, and most complex, part is the allocation subroutine,
FREESPAC. Tt is part of the input, invert and interactive (update)
functions. That 1is, it must be used by any function which modifies the
inverted list and direct datea files. The routine is broken up inuto four
entry points, each with a distinct function. The entry point, SPACINTT,
loads the tables of the files into the arrays within the subroutine.
TERMIN restores the tables to the files, UPDATE changes the free space
table for a track and the effected cylinder. GETSPAC performs the main
allocation function, that of determining where the new data entered into

the files should best be placed.

L1,

3.9 Statistical Formulae Employed

There are many possible statistics that can be constructed
to determine the distribution of the occurrences of terms in a
document collection. These different measures all attempi to
obtain a figure that gives some insight into the possible assign-
ment of the terms to the common, core, or particular category.
All statistics are related to the frequency of occurrence dis-
tributions of the terms. Let this frequency be f(j,d), the
frequency of term J in the d'th review. Then the total frequency

of term J in the collection is:
F(3) = é‘: £(3,d) 3-1

The values of £{j,d) can be normalized by dividing by the

length of the documents, L(d). Then the normalized frequency is:
r(3,d) = £(3,d4)/L(a) 3-2

The value of f(jﬂd) may be normalized differently by
dividing by the logarithm of the length of the document, log(L{d)).

Then the log normalized frequency is:
' £(3,) = £(3,d4)/108(L(d)), 3-3

For each of the above distributions, statistics for the
occurrence of each term J in the document set were computed as

follows:

L2,

1) The mean of the values of the distributions.
2) The variance about the mean of the values of the
distributions.
3) The third moment about the mean of the values of
the distributions.
4) The co-efficient of skewness about the mean of the
values of the distributions.
Four of the twelve statistics yielded the best results for
the sample set of tefms. These were the three applications of the
- ¢c-efficient of skewness of the distributions and the variance
about the mean of the value of the log normalized frequency
distribution. Two additional measures are included. They were
derived by Don Stone working under the supervision of the author.
The derivetion of those statiétics is presented in Stone's Master's
Thesis.70 The first statistic is similar to one proposed
by Sally Dennis.15 The second is Don Stone's:
5) The variance about the mean of the values of the
logarithm of the frequency distribution, normalized
- by the total frequency of occurrence,

7(4) = Vif(,j,,ﬁzﬁ.os(’ia(d))l 3-4

In an attempt to utilize only the documents where each

term appears, the following statistic was derived:
6) The ratio of the total frequency of occurrence of
each term div.ded by the estimator of the Poisson

. distribution parameter. This gives S(j), the size

- 43 -

Table Structure

These regquirements were met by storing all information describing
the files in the files themselves. A “able structure (rather than one
of chains of tracks having similar amounts of available space) was
chosen because it describes the location of available free space . xther
thaw werely sizes of chunks of empty space. It was important to minimize
the size of the tables, both to save file space and save time in accessing
the tables (all of which is overhead). The final structure chosen uses
between 1 and 2 bytes per track of the file. While this is less than a
chain structure (a chain would cost U (or 8) bytes per track), it
effectively wastes more space because our tables are contiguous and cost
several whole tracks,

There are three cypes of tables needed to describe the space avail-
able on a file. The firgt -- the Parameter table -. describes the file,
It contains 3 half-word items; the number of tracks on each, data blocks
or cylinders in the file (NDB), the number of tracks on each data dlock
(NIDB) and the internal free space category (IESC). This latter is a
constant used in referring to the other tables, All of the information
in the Parameter table is also found along with the correct file number
in the System Header Record.

Before we go further, we will need some terminology. A complete
track is one which has no data stored on it. It is one thousand
half-words (2000 bytes) long. Of these, 999 half-words are available
fo. data -~ when a track has records in the standa:d system'format on
it -~ the last record must be followed by a record length count of O

(for the PUTRCRD and GETRCRD subroutines). We shall refer to a track

- LY -

containing less than 999 half-words of free space (i.e., already
containing one or more records) as a fragmented track.

The second table -- the Cylinder table -- contains one two byte
entry for each cylinder in the file. The Ith entry corresponds to the
Tth cylinder. The Parameter and Cylinder tables occupy the first track
in a file; thus a file can contain up to 997 cylinders. Each of these
entries is a binary number--from O to 255. The first byte, Feferred to
as Other Free Space (OFS), contains the sum of available space on
fragmented tracks of the cylinder. The second, Empty Tracks (EI), is a
count of the number of complete tracks in the cylinder. It cannot be
greater than 255, thus limiting devices to no more than 255 tracks/
cylinder. Other Free Space cén easily be greater than 255; thus the
byte, OFS in the table, is actually the other free space divided by a
constant, K.

Tn order to determine the total free space (TFS) in a cylinder,
we calculate as follows. The final table, the Track table, contains one
bjte for each track in the file (the Ith byte is for the Ith track).
Each of these bytes is the count of free space (CFS) on the track. This
is also greater than 255, so the actual free space 1s divided by a
constant (IFSC, stored in the parameter table). Due to the truncation,
it would not be poasible to fell 8 complete track from one which contains
a small record -- thus complete tracks are marked by having the CFS byte

be FE (hex) rather than having a count.

L

- bs -

3.2 The Record Definition Phase

The function of this program i.! to accept a description of the
logical structure of a data record written in an external specificatior
language and translate it into a corresponding internal machine repre-
sentation in the form of arrays and tables. The specification language
of a logical record is described in Backus Normal Form (BNF) in Figure
3.2.1. A record may be inserted into the system from the console or it
may be read into the machine from a card disk.

When no syntactic errors are detected in the record definition at
input, it will be processed and inserted into the system, thus updating
information in the following system tables and arrays: the System
Adeader Record, the Field Name Conversion Table, and the Internal
Definition Table, all of which are stored in the.System File. However,
when syntactic errors, wrong input format or unacceptable ambiguities
are detected in the processed record, a proper diagnostic message
identifying the nature of the error is printed, the program is aborted
and a return is mede to the calling program. In this case, a diagnostic
flag is set which provides the calling program with the reason for the
error return.

Some error chsecking facilities are built into the program. 1If a
suspicious condition which may not necessarily result in error is
detected (e.g., ambiguity which may be resolved by qualification), a
warning message is printed and processing continues. However; if an
input syntax error is def,ected, e.g., an invalid (unrecognized) key word,
or a subroutine nsme euxceeds eight characters, or a comms is missing,

etc., an error (abort) return is taken.

< record definition >::= < name of definition » |
| < record definition > < field description >

< name of definition >::= 001 < b > < field name >< b > ,
< b » < common data flag >

< field description >::= < level number > < b > < field name > < b > ,
< b >< repeat flag > < b > , < b > < user subroutines >

< common data flag >::= ¢ / COMMON-DATA

< jevel number >::= three digit decimal number where learling
zeros may be replaced by a blank. -

< field name >::= any sequence of alphanumerical characters
(including blanks) not exceeding 73 characters in length.

< repeat flag > ::= @ / REPEAT
::a § / zero or more blanks

< uger subroutines >::= @ / < user subroutines > < key word >
= < subroutine name >

< key word >::= INPUT/INVERT /OUTPUT /UPDATE/VALIDATE/RETRIEVAL
< gubroutine name >::= any alphanumerical symbol (without blanks)

not exceeding 8 characters in length incluvding the
symbol NONE.

Figure 3.2.1
BiF Description of the Input Syntax

The symbol "@" here means that the corresponding expression on the
left of the ::= may be omitted. The symbol < b > indicates whenever it
appears that one or more blanks may (but do not have to) appear at this

rlace.

2y

- 4T -

The NLM Record Definition Program consists of a main portion
(RECRDF) and three auxiliary subroutines (HASH, NAMESRCH and INSERT)
which corpute the hash céde of a field name, search and insert elements
into the system field name tables, respectively. Q functional descrip-
tion (a description of the functional flowchart) of these four sub-

routines is given in the following four sections.

The HASHNAME Subroutine

This subroutine (entry HASH) computes a hash-code corresponding to
a field name which is stored in a binary array called "NAME-FIELD". The
hash code is computed by adding the EDCDIC codes for all characters
(including blanks) of the field name, and taking the result modules, the
number of tracks in the field, the name conversion table which is stored
in the parameter N-C-SIZE.

‘ Since the number of tracks in the field name conversion table is a
system parameter which may have a different size for different systems,
and may change during the life of the system, the parameter N-C-SIZE must
be initialized before any hash code. may be computed. A special entry
print "HASHINIT" has been provided for this purpose.

{
The NAMESRCH Subroutine

The function of this routine (entry SRCHNAME) is to search a
name array (stored in a binary array named SEARCHED-ARRAY) for a name
which i8 stored in NAME-SEARCHED. The structure of the SEARCHED-ARRAY

must have the standard format of data structures containing field names.

&7

- 48 -

If the table is not empty, the search is performed as follows.
Every name of the table is examined in sequential order (starting with
the shortest name at the beginning of the table) until a name is found
whose length is the same as the length of NAME-SEARCHED (stored in
LENGTH-OF-NAME). Then, both names are matched character-by-character,
If there is a match, 'I'' is moved to the MATCH-FLAG and the RESULT-POINTER
is set to point to the beginning of the matching name before returning.
If names do not match, the next name of the same length is located and
examined as beﬁgr@. If the end of the table is reached, or if the lengthA
of the next name ia the table is longer than LENGTH-OF-NAME, the search
is terminated. In this case, 'F' is moved into the MATCH-FLAG and the
RESULT~POINTER is set %0 point to that point of the SEARCHED-ARRAY where

the searched name would be inserted.

The INSERTEL Subroutine

This subroutine 18 used to insert some glement (stored in an arrsy
labeled INSERTﬁbeLEMENT) into a table called TABLE-TO-INSERT. The
pointer, POINTER-TO-INSERT, specifies where the INSERTED-ELEMENT should
be inserted.

The insertion is carried out as follows. First room is made in
TABLE-TO-INSERT for the INSERTED-ELEMENT by moving all half-words of
TABLE~.TO-INSERT forward, beginning at the point where the insertion is to
be made by an aﬁount equal to LENGI'H~-OF-ELEMENT. In other wofds, a window
is made for the INSERTED-ELEMENT by shifting the content of TABLE-TO-INSERT
to the right beginning at a point speciflied by POINTER-TO-INSERT. After
room has been made, the INSERTED~-ELEMENT is transplanted into the cleared

slot of TABLE-TO-INSERT, moving one half word at a time, If the

- 49 -

TABLE-TO-INBEET is empty, or if POINTER-TO~INSERT points to the end of
this table, there is no need to make room and only the moving operation
is performed.

It should be noted that INSERTED-ELEMENT is a 3,600 byte array and
that it is not necessary that the inserted element start at the beginning
of this array, since its starting position is specified by the POINTER-

TOELEMENT and its length is given by LENGTH-OF-ELEMENT.

Thngain Subroutine - RECRDF

The KECRDF routine is the main data processing unit of the NLM
record definition program. During processing it makes use of several
auxiliary subroutines, some of which have been described in the preceding
three sections. Thig svbroutine is called with two parameters: the
DIAGNOSTIC-FLAG and the SYSTEM-HEADER-RECORD. The purpose of the
DIAGNOSTIC-FLAG 18 to convey to the calling program information concerning
success or failure of data processing after return from RECRDF. All oﬁher
information 18 needed by RECRDF for processing of the input record, since
all needed system ﬁarameters (addresses to data areas or pointers to
system tables, etc.) are contained in the SYSTEM-HEADER-RECORD (SHR).

The SHR is the header record of the system file whi;hAcontains all of the
tables and data areas generated by the RECRDF program.

The programming starts at the first paragraph lebeled INITIALIZE
where the subroutine HASHNAME is initislized by setting its "module
divisor" equal to the number of tracks in the field name table. Next,
the various pointers, counters and program parameters are set to their
initial values and the processing of the input record begins in the

paragraph labeled MAIN-LOOP.

- 50 -

The paragraph MAIN-L.OOP is the beginning of the main program loop
through which the subrout;ne nmust cycle during processing of e#ery line
of the input -récdrd. First the pointers to the INPUT-BUFFER (I-B) and
the NAME-ARRAY are set to point to the first character. Then the next
line 18 read from the input media into the I-B by calling the subroutine
RDATA. The auxiliary parameter VALU 1s a diagnostic flag which conveys
information about the success or failure of the record operation. If
VALU contains a zero, the read operation was successful and a transfer is
nmade to point C-l where processing continues. When VALU conts: value
of 16, an end of file was read at the input media which means that the
entire input record has been processed and transfer is made to CHECK-
REPFAT-STACK where concluding operations are performed. When VALU con-
tains a number other than O or 16, an input read error has occurred;
consequently, a proper error message is generated and control is trans-
ferred to ERROR RETURN where the error message is printed, the DIAGNOSTIC-
FLAG is set to one, and an error return is taken.

When a-successful read operation has been carried out, processing of
the newly read data starts at C-l. First the level numbers (the first
three digits of the input line) are extracted from the input record by
performing the CHECK~DIGIT section three times <~ once for every digit of
the level number. The CHECK-DIGIT section performs a binary to decimal
inversion for the byte pointed to by the INDEX-OF-I-B. If something else

other than O, a blank or a decimal number 18 contained in the field

- reaserved for the level number, a proper error message 18 printed and an

error return is taken. If the level number is zero (or blank), it is
assumed that this line i8 a conticuation of the previcus field and pro-
cessing continues at the RESTORE.LEVEL-NUMBER paragraph.

!
1

- 81 -

When a position level number has been computed, transfer is made to
the point EXTRACT-NAME-FIELD where the name field of this sub-record is
extracted, after first removing the leading blanks (if.any) and then
transplanted into the array labeled NAME-FIELD. If the name field con-
tains several words or symbols separated by blanks, and if the number of
blanks between words or symbols is greater than one, all but one of these
blanks are removed. After the éntire name field has been extracted, a
chi:ck is mede as to whether it is a "Header" and, if so, the HEADER-FLAG
in the SHR is set to 'T''. If the number of characters of the name field
is odd, a trailing blank is added to make it even becausse the name field
will later be stored in a half-word array which contains two characters
per half-word, Next, the has code for this name field is computed by
callihg the HASHNAME subroutine. Then the address of a field name table
track corresponding to this name field is computed by indexing the basic
address of the field name table by the hash code of the name field, and
the track is read ihto an array labeled TRACK-OF-FIELD-NAME-TABLE,

At the paragraph CHECK-NAME-TABLE the track of the name table is
searched for the field name (using the NAMESRCH subroutine). If the
tield name already appears in the name table, this name is ambiguous and
a diagnostic error message is printed. If the level number is one, the
ambiguity is unresolvable; therefore, the program is aborted and error
return is taken. Otherwise; a warning message is printed and processing
continues as if the name were not already present in the name table at
the paragraph NOT-IN-NAME-TABLE. The next step of the program is to
check a8 to whether the field name has appeared in this record before.
This is done by searching the name array using the NAMESRCH subroutine.

1t the field name is again ambiguous, an elaborate check is made as to

- 52 -

whether this ambiguity is resolvable., The ambiguity is not resolvable if

__both names appear on the seme level in the tree of the record structure

and have the same predecessor mode(s); that 1s, the field name(s) of

the predecessor mode(s) is (are) the same. The check for unresolvable
ambiguity is per}ormed in the TEST-UNRESOLVABLE-AMBIGUITY section by
first locating the ambiguous modes, comparing their level numbers and
then comparing the predecessor modes when the level numbers are the same.
As before when an unresolvable ambiguity is found, the program is aborted
after printing the proper error message. 1If the embiguity is resolvable,
only an edditional entry containing a pointer to the tree array is added
to the already present name array entry for this field name. If the field
name is not in the name array, a name array element for this field name
is generated and inserted into the name array. The INSERTEL subroutine
is used in both cases to do the inserting.

Finally at the paragraph labeled GENERATE-TREE-ARRAY-ENTRY an entry
of' the tree array corresponding to this field name is inserted into the
proper slot of the TREE-ARRAY. Then the Repeat Stack is checked at the
parapraph labeled CHECK-PREV-REPEAT. The Repeat Stack is a linear array
whose every entry conteins the level number and ITC array index for those
fields that have been flagged with the repeat flag (that is, fields that
may be repeated). Since repeated fields may be nested within repeated
fields, a pushdown stack is required to store the information needed to
generate the correct entries in the ITC and subroutine arrays. Whenever
a repeated field is encountered, an entry is pushed on top of the stack
containing the level number and ITC index of this field. Then for every
subsequent field its level numter is compared to that stored on the top

(NS

of the repeat stack. If the level of the present field exceeds the

- 53 -

level number on top of the repeat stack, processing continues at the

' paragraph INSERT-LEVEL-NUMBER; otherwise, some processing centered about
the repeat mechanism must be performed. First, the ITC index of the
(previously encountered) repeated field is retrieved from the top of the
repeat stack and placed into the next entry of the ITC array; then the
neme 'SYSBRNCH' is moved into all six corresponding slots of the sub-
~routine array and the vepeat stack is popped by decreasing its index by
one. Then again, the top element of the repeat stack is checked and
similarly processed if necessary. This activity -.[the repeat mechanism
continues until either the repeat stack is empty or until the level
number on top of the repeat stack is less than equal to the current level
number, at which piint normal processing is resumed at the INSERT -LEVEL-~
NUMBER paragraph when the 1evéi nunber of the currently processed field

~ - is inserted into the proper slot of the tree array.

When the name of the field has been disposed of, processing continues
at the paragraph libeled GET-NEXT-KEY-WORD where every key word is pro-
cessed individually. If another key word is fourd in the.iﬁput buffer,
it is extracted from the buffer and moved into the NAME-FIELD array.

If the number of characters in the key word is odd, it is appended a
trailing blank by performing the ADJUST-NAME section. Then the table

of key words is searched for the key word using the NAMESRCH subroutine
It the key word is not found in the table, an error message is printed
ugd an abort return is taken. The table of key words ylelds a code
identifying the key word to the program. If the key word code is between
one and six, the key word identifies a user subroutine; in this case

transfer is made to the paragraph CHECK-ITC-POINTER.

- S5k -

If the key word code is 7, the key word is e repeat flag. In this
case, transfer is made to paregraph SET-REPEAT-FLAG. If the level number
is equal tc one, the program is aborted because the first level must not
be repeated; otherwise, the repeat flag in the tree array is set to 'T'
and the repeat mechanism is activated by pushing the current J.evvel number
and ITC array index on the top of the repeat stack. Then return is made
to GET-NEXT-KEY-WORD.

If the key word code is 8, the key word is a common data flag.
Again, if level number is 1, the program is aborted; otherwise, the
common date flag in the record definition area is set to 'T'' and
transfer is made to GEP-NEXT-KEY-WORD.

The case where the key word identifies a user subroutine is treated
at paragraph CHECK-ITC-POINTER. If the ITC pointer in the tree array
is found to be equal to zero, it is recognized by the program that a
terminal element of the record definition tree has been encountered,
and that the first user subroutine for this field is being processed.
Therefore, a 'NONE' is initially moved into &ll six slots o the sub-
routine array corresponding to this field. If the name of this field is
'Header' (asurgc_:_q_gnized earlier during processing of the field. name), a
zero is moved into the corresponding slot of the ITC array; otherwise,
the index of the ITC array corresponding to this field is moved into the
proper slot of the tree array. Next, at the paragraph GET-NAME-OF-
SUBROUTINE the leading blanks are removed and then the subroutine name is
transplanted from the input buffer into the proper slot of the subroutine
array identified by the code of the previously processed key word contained

in the coummon variable I. If the number of subroutine characters is less

than 8, trailing blanks are added; if the length of the subroutine is
greater than 8 characters, cnly the first 8 characters are used.

When the user subroutine has been moved to the subroutine array,
control is transferred to point GET NEXT KEY WORD where the next key
word is processed as described in the foregoing. If the entire input
line has been processed, control is returned to point MAIN-LOOP where the
next input statement is read into the Input-Buffer and the program keeps
cycling in this manner until an end of file is read on the input media
(VALU = 16 after a read operation). |

When an end of file is detected by the program, it is assumed that
the entire input record has been processed and a transfer is made to
CHECK-REPEAT ~-STACK. In this paragraph, the repeat stack is checked and
it found to be non-empty. the repeat mechanism is activated and repeat
entries are inserted into the subroutine and ITC arrays as described in
the preceding paragraphs, When the repeat stack has been emptied,
transfer is made to UPDATE~SYSTEM-FILE where the data structures
generated by the RECRDF program are transplanted into the proper areas
of the System File.

First the number of this definition is computed. Then the tfield name
table is updated as follows. For every element of the name array, an
element of the field name conversion table is assembled in the‘gidper
tormat. Then the hash code for the field name of this element is com-
puted by the HASHCODE subroutine. This hash code is added to the base
address of the field name table, thus yielding the address of the field
name table track for this element; The track is read in and searched. If
the field name for this element does th yet appear in the table, the

entire element is inserted using the INSERT subroutine; however, if the

_name'is‘already in the table, only the indexes are inserted into the

table (simply by changing a pointer to point to the indexes rather than
to the'beginning of the element before celling fhe INSERTEL subrouﬁine).
Then the updated track is written out on disk and .the next.element of the
name array is processgd in the same fashion by returning to TRANSPLANT-
NEXT ~-NAME, Thiéicycling continues until the entire name array is pro-
cessed, when transfer is made ty MOVE-RECORD-DEFINITION where the
individual daté structures of the record definition are stfung together
in the correct order and written out on disk. “

However, before the tree array can be written out on disk, it is
pecessaxy~to compute all the name array pointers in the tree array.
This 1is done by scanning all elements of the name array in sequential
order and inserting a pointer to the nameta}ray element into the name

array pointer of every'tree array element p;inted to by the indexes of

the name array element. When the tree array is updated (the entire name -

érray is scanned), a dummy entry is appended to the end of the tree array,
and its length is computed. If the length of the tree arrey is less than
one track (3600 bytes), the ITC array is appended to the tree array; then

the subroutine arra&s are appended and then the name array. After.trans-

-planting a half-word, a check is always made as to whether the track has

been filled (1800 half-words) and, if full, it is written out on disk and

pointers are reset so as to start loading a new track at the beginning.

-

~ This process continues until all elements of the record definition have

been written dtt on consecutive tracks into the system filé in this order:

tree array, ITC array, subroutine arrays and the name array. Thén the
system header record is updated and written out, the diagnostic flag is

set to zero (normal return) and an exit from the subroutine is taken.

- 57 -

3.3 1Xnput Phase

The purpose of the input phase is to accept raw data and sitcre it in
the data base. For each type of data to be processed, there is a defini-
tion which describes the logical structure of & record.

For each field in the record there is a corresponding terminal field
in the definition. Each terminal field in the definition has associated
with it an Internal Type Code. If a group of fields is to be repeated,
the field immediately following the group of fields has as its user sub-
routine name the name of the system branch routine. The Internal Type
Code associated with this field is a pointer to the first field of the
group of fields to be repeated. This will be more fully discussed later.

It is the job of the user subroutines to read the raw data, whether
it be on cards, tape, etc., Perform any formatting required and pass the
dﬁta to the input phase in the order prescribed by the definition.

Since the system has been deéigned to handle data in many different
forms, the user subroutines are designed to handle the unique charac-
teristics of each type of data and thus providé the interface between
the raw data and the input phase.

The data is permanently stored in the data files of the data base.

The structure of the stored data will be discussed later. ¥

3.3.1 Operation of the Input Phas?

The program NPUIEXEC performs all initialization procedures required
by the input phase. This routine accepts as input the phase name and
the name of the definition required for processing the type of data

currently under consideration.

- 58 -

For example:
< Input Toxicology Information File >

as an input command calls for the definition of the record structure of
the Toxicology Information File to be processed by the input phase.

Control is then passed to the main input routine -~ INPUT. INPUT
calls BUFRMNG to convert the definition name in the input command to a
definition number and then calls DEFCHAR to retrieve the logical strﬁc-
ture of the definition currently being used.

NICEDEF is then called to build the Fetched-Definition-List and
User-Subroutine-List. The information in these lists inclwude the name
of the entry point of the user suSroutine to be used to process the
data for eac? teminal field in the definition, the inhibit flag for
each teminigi field, etc. |

The next step in the processing of data is to obtain an internal
record number (IRN), fromIRNWORK, to be used in referring to the record
being processed.

At this point, processing on the data is begun. The name of the
“éntry point qf' the user subroutine required to operate on the data for
each terminal field in the definition is obtained from the User-
Subroutine-List and passed to CALLSUB along with the Internal-Type-
Code (ITC) of the field the definition requires data for, and other
parameters, CALLSUB initializes the loading of the user subroutine and

passes control to it.

- 59 = °

The user'subfoutine then reads the raw dasta for a field and
determines 1if the ITC of the field of data read is the same as the
TTC o1 the field required by the definition. If not, the user
subroutine setsuthe value of Returned-Length to ¢ and returns control
to INPUT. INPUT then sets the value of the length of data for the
_ ITC required by the definition to #, determines the next ITC required
by thé definition an¢ paascs‘control back to the user subroutine via
CALLSUB. |

‘Mhis process continues until the ITC of the data réad matches
the ITC required by the definition. At this point the user sﬁbfoutine
noves the data read into the Immediate-Return-Buffer, sets the wvalue
of Returned-Length to the number of halfwords in the Immediate-Return-
Buffer and passes control to INPUT which sets the value of the system
branch flag for the field to 'Y'.

The Inmediate-Return-:éuffer is 1¢¢¢ halfwords in size. If the
length of data for a given field is greater than 1P@¢ halfwords, then
the uaér subroutine séts the value of the Overflow-Flag in'the_Sjstem-
Data-Area to 'Y' and returns to INPUT. _“V»

When the Overflow-Flag is on, INPUT empties the Trmediate-Return-
Buffer and returns control to the user subroutine. This process
continﬁes until there is no‘hore‘data for a'given‘field.

| éhis continues until all tHe data for a record has been read
through the'us§¥ subroutine. . ,. |

If at any point the name of the user subroutine entry ﬁoint in
the User-Subéoutine-List iﬁ the name of the system branch routine,

the folloﬁing algorithm is applied.

R
- 60 -
1) The ITC of the field with the system branch routine as the
name of 1ts user subroutine entry point is a poihter to the firét
~ Tield of & group of fields in the definition to be repeated,
2P) A check is made to see if any of the fields between the field
pointed to by thelITC in 1 end the field with this ITC had any data
associated with them {i.e., their system branch flag was set to 'Y').
3) If the result of (2) is positive, then Input resumes pro-
cessj',ag Cfrocm the field pointed to by the ITC iﬁ (l).
L) If the result of (2) is negative then processing continues
from the po;nt vhere it qtopped. |
Input keeps .a list of ITCs pa_d Lthe number Of halfwords of data
returned fo:; each. After each return of the user subroutine, INPUT
calls LONGSTOR to temporarily store the data Iin the work files.
The data. is tempora.rily stored in a chained manner. As the data
for a record accumulates to more than & track (1000 halfwords) a new
trac.k-' in the work file is uéed with the a.ddiess of the previous track
7stored on the ‘new track. i
9 Thus when the data for a record has all been temporarily stored,
we have a list of ITCs, the 1ength of data for each, and the address
of the last track vsed for temporary storage. The data on the 1ast
track used contains the address of the next to the last track used,
ete. | | | _ |
 VWhen all the data for a recard has been temporarily gstoréd,
control i passed to DATARECD which initiates the frocedures for
permanently - storing. da.ta. "in.the data base.
An =allocation of space ‘is obtained—fran FREEPAGand the dé.ta

for each field in the record is stored on disc in the following manner;

- bl -

Length Length Overflow Logical
of Record | of Systen Address Length Data
(1if any) of Data

< 1/2 word ><l/2. word = <.full word>< 1/2 word >

L]

Where "Length of Record" is the physical length of data for a field

~ atored 1in this enpry, "Length of System" 1is 1 if there is no.overflow

_‘ad@rggs and 3 if there.is an overflow address. There is an overflow "

) U?tgééigégﬁif it is not possible to store all the data for a field in
one entry. The overflow address is the address of the reﬁainder of the
data for the field.
There 15 also a directory:fbr each record stored in the‘data base.

The directory contains a pointer to the date for eacthTC in thé
definition that had data associated with it. The directory is of the

following form;

—— i n_—’,,u,-.,-,»,-}-
. : : 1.
" Length Length Rgg:g]s'g"’ Definition | Length of ,%, Poin- é P
of Record | of System (1f any) Number Directory c ter ¢ te: §1

When the data has been permanently stored, IRNWORK is called to

store the mddress of the .directory. of the record processed and the

;IRN associaﬁed with it.

<

An entry is then made on the .INPUT. list, of the definition

number used, for processing by the invert rhase.

If there is another record to be processed under the same defin-

ition, INPUT resets ali pointers, counteré,wdhéJflags and repeats the

- processing procedures.

- If there are no more records to be processed under the same

)

definition,control is passed to NPUTEXEC. At this point, either a |

- 62 -

new input command may be given for proceésing data under a different

definition or processing may be terminated.

In the later case NPUTEXEC performs the required termination

nrocedures such as writing out the System-Header-Record.,

kd

s,

- 63 -

3.4 The Update Phase

Updating is an integral part of information systems. Erroneous
data which enters the files must be corrected. Correct data must be
kept current, and may finally become obsoleteﬂ The update fupction of
our system provides for all of these functions. While the update phase
may be used from a batch mode, as may all phases of the system, the design
emphasis has been toward interaction with a terminal user, Its responsi-
bility is to change the data base, as directed by the user, and to maintain
cdrreapondence between the directory structure and the data. There are
two majqr systems to be updated -- the direct d&ta structﬁre and the
directory,“;nverted list structure. For reasons of expediency, directory
update is accomplished by placing an inverted list entry of zeroes over the
element to be deleted. Though inverted list entries are in sort order,
our sorts could easily be modified to ignore ; zero entry. Thus the
directory update is quick. |

A more careful approach was chosen for updating the direct
data files, The operation of deleting data is relatively simple -- a
dunny record is written where the original data field existed -- this
gingle half-word -- record length count is needed in order to maintain the
correct record addresses between data record diregtories and other data
items on the track. This decision, to update the diréct data files as the
updaté‘brogressed, was quite important for modifying data. -Modification
means deletion of the old data. Items are deleted, the free spacé tables
are updated, and so the new data items can replace the old, thus keeping

data items within one cylinder.

- 64 -

During the invert function, the system inverts each record under
the field names of the data field which contain data (using a8 special
ITC of zero). This allows the user to specify RETRIEVE CATEGORY = FIELD
NAME and sc obtain all the records containing data for a specific field.,
‘When ADD or DELETE commands are processed, these inversions may change
and it is part of Update's task to maintain consistency here. Thus,
update must modify and maintain consistency between three basic items ~-

data, data inversions, and finally field name inversions.

General Description of the Update Mechanism
The update system is part of what we term the "interactiﬁe" phase.
This phase includes retrieval, output and update functions. H;nce, we
can select records to be updated using the full selection power of the
retrieval mechanism. One merely retrieves the desired records; they &re
placed on the "active" list. Then one can perform one of several commands
-- PRINT, LIST, DELETE, MODIFY or ADD (though other commands are possible,
they are retrieval commands and affect rather than interrogata the "active"
list).
The opersation of an update c§mmand 18 divided into two sections; the
user section and the system section. This division allows user routines
" to Qeto deletion of key fields and maintain the integrity of the data
base should a user routine result in asbnormal termination. During the
userAsection, data and other information is exchanged bétween the uger
routines and the system; and various temporary files (within the data
'set, the Work file) are built. During this section, user routines from

several phases come into use (we are placing data into a state for full

o retrieval) and must execute the user validate and invert routinss, as

- 65 -

well as the update and output phase routines., Naturally, which
routines are executed depends upon the exact command.

The syﬁtax of the various commands regquires that they specify
certain fields. If none are given, the entire record'definition (all
rields) is assumed. The desired command is processed repetitively

- against each record of the "active" list. That is, each field is pro-
cessed for each record of the list (provided the record contains the
specified field or fields). When all records have been treated, the .
user may enter a new command.

A system sub-executive (comprised of the routines PRINTA, PRINTB,
OUTPUTPH, and DRDSCAN) is vresponsible for interpreting commands. It
builds & list of the ITC's %o be processed, and using this list as a
guide, matches the data record directory of the current record against
the record definition, and taking subscfipts into account, feeds the
data record directory and a pointer to the correct IT(, address pair
entry into the update-outpdt mechanism.

The update phase contains its own executive, a lower level sub-
executive under the retrieval and output execiitives. This routine
(MINIEXEC) actually retrieves the data for the desired field, and if

“the print flag is on, sends it to the user's output routine. For a
print command, no other action is taken. If the command was DELETE, ADD
or MODIFY the data item and the pointer into the date recort directory
arve sent to the appropriate routine. Thls routine will store information
concerning the field in a table, create temporary filés and feed the data
item to the correct user routines. When this has been done fo; each

field, the user section is completed.

- 66 -

ENTER COMUAND
sretrl..e nane = chris
Y
»

000000
000001
000031
000001
0000001 RECORD HAS BEEN RETRIEVED
ENTER COMMAND
sdeolete nam?, addrcess

annn

“
au

RECORD NWUMRER 000001

PHONE DIRDCTORY
.« NAME '
vves LAST NANE

NEW

FIELD HAS BEEN DELETED
es o FIRST NAME

CHRIS

FIELD HAS BEEM DELETED
. .ADDRESS
s s & .STREET

252 £ 88 ST.
FIELD HAS BEEN DELETED
LN J ‘lC'TY
~ NEW YORK :
FIELD HAS BEEN DELETED
.o ‘.STATE
. _ NEW YORK

FIELD HAS BEEN DELETED
ses 21 P CODE
10017
FIELD HAS BEEN DCLETED

END OF LIST ENCOUMTERLD

ENTER COMHMAND

sratricve name = chris or state = new york
NaV OR timV V

* * n W
000000 = = % %
000000 = » w ®
| 000000 = + » ®
. 000000 5= % w w
000000 * » « =
000000 * = & »
NO RECORDS SATISFY THIS RETRIEVE

Figure 3.4.1
Example of a Delete Comwand

B

- 67 -

For a print command, the output executive will have completed
processing the record, and will go on to the next record. For an
update command, 1t now calls the unload entry point. This entry
point (MINIEND) determines the correct command end calls the approp-
riate routine, 1In tgigw;outine, the tables (containing an entry for
each field) will be scenned and fields added or deleted. Temporary
files will be read and inversions added or éeleted. Finally, the data
.record directory will be updated (or deleted) and the update for the

record will be complete,

Update Subroutines

f
The Update phase is invoknd by three commands: DELETE, MODIFY and

ADD, Below, we give a brief description of the subroutines used by each
!

command .

(a) DELETE

A logical flowchart of the DELETE operation is shown in Figure 3.4.2.

Subroutine MINIEXEC is entered once for each field and 1is also used to
process a prinl command. It fetches the data and.if necessary feeds it
to the user's output routine, Before returning, it calls DELETE,

The DELETE sgbroutine is called for each field and stores in a
table information describing the field to be deleted., It then passes
the data to the user invert routine which calls CREATE. This creates a
temporary file of the original data invérsions. Finally, the data is fed

to the user update routine,

-

éi

- 68 -

. USER
PRINT
> ROUTINE
USER
MINTEXEC
' USER
> DELETE] TNVERT '51 CREATE
ROUTI NE
USER R .
y | UPDATE . . Gt r SORTINVR
: ROUTINE O YINE ’
SYS|TEM
W
> FIELDEL
! READINVT
UNLODEL
] InvERDEL
] FLDNAME [] NAMEDEL [] INVERDEL

. Figure 3.4.2

Logical Flow of a Delete Command

- 69 -

UNLODEL. supervises the unloading of the tables and files for a delete
command. It must update the data, the data inversions and finally the
field name inversion. First, the data fields are deleted. The table of
delete elements is sorted, and then each element is processed against the
data record directory.

FIELDEL is called fer each record in the delete table and writes a
dummy recoyd to delete the data field.

UNLGCDEL then calls READINVI to obtain each entry of the lnversion
file, and then pesses this entry to INVERDEL. |

We have previously created two arrays of ﬁointers intc the name tablbs,
one from both the original and updated data record directories. These are
sorted and processed together. Entries missing from the updated array
represent deleted field name inversions and are processed by NAMEDEL.

(b) MODIFY

The MODIFY command is implemented according to the logical flowchart
in Figure 3.4.3. The calls to MINIEXEC are exactly as they were for
DELETE. However, after fetching the data instead of calling DELETE, the
data is passed to CREATMOD.

CREATMOD is called. for each field; it stores information in a table
and feeds the old data to the user invert routine to create a file of old
inversions. The user update routine returns the modified data and the
invert routine is called again to create a file of new inversions. The
data is stored in a temporary file by LONGSTORE.

(e) ADD

Figure 3.4.4 illustrates the logical flow of ADD. In general, this
command is very much the same as a delete. We will add instead of

deleting field name inversions; we will add dats inversion and will add

Loglcal Flow of-a Modify Command

+ 70 -
USFR Us ER
PRINT
ROUTT NE
| NVERT
> ROUTINE N
-MIHIEXEC : SORTINVR
USER
> UPDATE
ROUTI NE
USER
' S| vaLinate
_CREATMOD ROUTINE
5 USER
> I NVERT
ROUTINE [] CREATE
syYs|te L] LONGSTOR SORTINVR
b -
<
UPDATA —>1 DATAFLD DATACHNK
- READINVT
>] MERGTRCK —>
MERGINVR > AUTHOR
READ!NVT
UNLODMGD COMPARES [
> '
AUTHOR
| NVERDEL :
HODIFY
[NVERTER . :
Figure 3.4.3

(oLv)

(HEV)

- 71 -

data using the routines trom the MODIFY command.- CREATMOD is called to
obtain the data tc be added. The data is fed to the user invert routine
and then to LONGSTORE to create the temporary inversion and data files.

In UNLODADD, UPDATA first is called to place the new data into the
permanent direct data files. The new ITC, ADDRESS pairs are then
placed in thé data r?pord directory.

The field name inversions are processed as before by FLDNAME. Now,
however, NAMEDEL calls INVERTER to add the new inversions. The inversion
entries are read by READINVI and the system routine INVERTER used to add
them to the inverted lists. This time the new array is the first para-

meter (it wili have the extre entries; as data fields have been added,

not deleted). Now the update is UPDATA.

-

Logical Flow of an Add Command

USER
2| PRINT -
ROUTINE US ER
MINIEXEC
> USER
UPDATE
- ROUTI NE
USER
VALI DATE
ROUTIN
CREATMOD TINE
~USER CREATE
I NVERT
ROUTINE
~ SORTINVR
S Y S|TEM
LONGSTOR
> UPDATA
- DATAFLD DATACHNK
> READINVT
UNLODADD [NVERTER
D1 FLDNAME NAMEDEL > | NVERTER
Figure 3.4.4

- 73 -

3.5 The Invert Phase

In any information retrieval system implemented on a computer,
there must be a mechanism by which the system can efficientlyigacess
information desired by the user. The invert phase is a processor
which torms inverted lists from the records input to the system.

These lists are used by the retrieve phase to retrieve records that
satisfy a request.

The invert processor has been designed and implemented to mske
ef'ficient use of disk space and to minimize retrieve time. The formFr
is done by avoiding unnecessary fragmentation of inverted lists on
tracks bleocating a track with enough space to accommodate the inver-
ted 1list segment rather than using the fifst available track. Thus, &
"segment of an inverted 1list which is equal to or less than one track
in length will not be broken up so as to reside on several different
tracks. This technique also minimizes retrieve time, since the number
ot disk accesses is reduced. Another scheme used to optimize response
time is avoiding unnecessary fragmentation of an inverted list on
cylinders, which reduces movement of the read-write heads.

Another maJor design consideration is error recovery capability.
This facility is used when the length of a string in the data to be
inverted is greater than the maximum length of a string which can be
accepted by the system directory. Under such a condition the phase
stops the processing of the current record, but instead of completely
terminating, continues processing with the next record on & list of

records to be inverted.

o Th -

Finally, the phase can be initiated from either a terminal or
card reader. This gives s user the flexibility of using the more

appropriate means.

The irvert phase takes as inputs a definition name, a definition,
J
a directory and inverted lists, and updates the lutter two. The invert

|
processor consists of several subprocessors as shown in Figure 3.5.1.

1. Accepting the definition name and

converting it to a definition number.

2, Input of the definition and user
subroutine table for the records

to be inverted.
3. Input of the appropriate IRN list.

4, Processing of the IRN list which
consista of input of data directory,
processing values of terminal fields,
processing field names, and formation

of inverted lists.

Figure 3.5.1
Subprocessors of Invert Phase

/_.

At the initiation of the invert phase INVREXEC accepts the defini-
tion name of those records input to the system but not yet inverted.
The definition name is converted into a definition number. If no such

|
definition name is found, the processor terminates. The conversion is

performed by MAININV.

The definition correspoFding to thedefin;tion number found above
is read into core by MAINIﬁV, The definition includes the name array,
tree array and ITC 6rray. These structures play an important role in
the processing of field names.

The user subroutine table associated with the definition number is
read into core by MAININV. This table specifies s user subroutine for
each terminal field in a record. BEach entry in this structure is an
‘ordered quadruple which consists of an ITC (Internal Type Code), a
name of a subroutine which is to be applied to the data associated with
the ITC, & sysbranch flag, and an inhibit flag. The ITC is a positive
integer which specifies = terminal field in a record, There is a
uqique gapping of each terminal data field in a record into the positive
‘integer. This assignment is mede in the definition phase. The sys-
bfanch_flag is used to process repeated fields, while the inhibit flag,
when set, prevents execution of the subroutine. A user subroutine
table ia as shown in Figure 3.5.2. |

In order to understand how the list of reccrd numbers to be pro-
cessed are located; it is necessary to give some explanation of the
structure of the system directory which is used to access inverted

lists. The directory is a tree structure. Each terminal node is an

-6 -

e Subroutine Sysbranch [Inhibit
Name " Flag Flag
I‘I‘Cl Subroutine N N
Name
1
ITCn Subroutine N N
Namen

Figure 3,5.2

User Subroutine Table

entry in the directory; each non-terminal node is used by searching
routines to locate an entry. The format of an entry is shown in

Figure 3.5.3.

L Keyword N FC A see FCn{
Half~ Variable Half- Half- Fullword

word word word, /

: {

entry 1 entry n

L is the length of a keyword in halfwords
Keyword is a siring
N 1s the number of antries
Fci'(i e« 1,2,...,n) 15 a function code
' -Ai (i =1,2,...,n) i8 an address

Piguie 3.5.3

Structure of a Directory Entry

- 77 -

Entrieslcan be partitioned into two classes. Class I is the class
of strings which starts and ends with a ".". Each function code in
this entry is a definition number. There is a uniqug mepping of the
system definition names into the positive integers ég each definition
is entered during the definition phase.

Class II entries are 2ll other entries. Each function code in
this type of entry is an Internal Type Code.

The address associated with esch function code points to an
inverted list of record numbors. All addresses in an entry of the type
Class I point to a 1list of record numbérs to be inverted. All addresses
in an entry of the type Class II point to a list of record numbers which
have been inverted.

An address consists of & record nusber, file number, and track
number. The record number specifies which record on the treci is to

‘be located; the file number specifies the file to be accessed, and the
track number specifies which tvack in the file is to be accessed. The

address format is shown in Figure 3.5.k. i
¢

Record File
Nugber Number Track Number
Pigure 3.5.4

Address Fomat

The list of record ‘numbers associated with the definition nuwber

[‘ .
found above mus} be located and read into core. SETTABLE begins this

process by accessing the input entry in the directory. The aidresses

!
4

—

- 78 -

in this entry point to a list of internal record numbers to be inverted.
The relationship between the'input directory entry and the IRN lists is

shown in Figure 3.5.5.

Derinition 1 Address 1 - Definition 1 Address n l
Im 1) Irn q°
Irmn ' Irn p
Irn list for Irn list for
Definition 1 Definition 1

Figure 3.5.5
Relationship Between Input Entry and IRN lists

The input entry is searched by SETTAﬁpEmin order to locate the
delinition number found in step 1. The address q?sociated with the
number is used to read the IRN list into core.

Processing of an IRN in the IRN list is divided into four parts.
The t'irst part is the conversion of the IRN into an address by DIRECTOR.
The address is used to read a data directory into core. This structure,
which.is created during the input phase, specifies the sequence of .
teminal tields that appear in the record. Each entry in the data
dirvectory consists of an ITC“and.an'addreés. The ITC-identifieé a field

in the vecord; the address is a pointer to the data associated with the

e,

- 79 - ‘

{

Since each entry in the data directory specifies a terminal field
and where it is located, the value.;? all terminal fields in the record
arc processed by having DIRECTOR step through each entry in the data
directory. By using the address in an entry, the date associated with
the ITC of the entry in question is read into core. For each string in
the data, the length of the string and the user bytes are calculeted.
The user bytes indicate the word and the sentence in which the string
appears. The string, its length, the user bytes, the ITC currently
being processed, and the internal record number are entered as an
ordered quadruple into a tewporary inverted file by TEMPBUF. This
file prevents a record containing an error to be partially inverted.

At the very beginning of the processing of an IRN, a permanent name
index array is cleared. Each time ¢ terminal data field is processed
(i.e., an ITC), an index to the‘name of this terminal field and indices
to the names of any fields ;uperior to the current field are entered inﬁo
o temporary array by the routine SUPERIOR. The elements in this array
_n&t in the permanent name index array, are added to the permanent name
index afray. As a result, the permanent array will contein indices to
all those field names for which data appeared in the record after all
terminal flelds have been processed. -

At this point, the permanent array of name indices are ready to be
processed by DIRECTOR. Each index is used to locate the name of a field
in the name array. For each string in the field name, the length of the

string and the user bytes are calculated. ‘These th}ee'quantities as well

as the ITC and the internal record number of the present record are

- 80 -

entered into the temporary inverted tile. The ITC tor a string in a
ticld name is zero in order to distinguish a field name string from a
data strirg. ‘
The las%'step is unblocking the temporary i%gerted files in order
to form the permaneﬁﬁ inverted lists. The unloading is accomplisheda by
inputting each ordered quintuple in the temporary file to the "Invért”
subreitine which forms the permanent lists. The quintuple s a string,
ite length, function code (ITC), user bytes, and internal record number.’
The invert subrouﬁine searches the directory for’ﬁhe string and function
code. If‘a match is found, the internal record.number>and user bytes
nare added to the inverted list aésociated with string and function code.
Otherwisé, the string and function code are added as an entry in the

directory and an inverted list consisting of the internal record number

and user bytes associated with the new entry is created.

- 81 -

3.6 The Retrieval Mechanism

The SOLER retrieval mechanism ‘s designed to operate interasctively
in a time-shared environment. The searcher is provided with pcwertul

|
retrieval tools to aid him in satisfying his requests.

One of the advantages ot the system is that the actual data in the
data 5ase is never accessed during retrieval. The directory and inverted
list structures allow fuli text search without direct data access. The
previous sections of Chapter 3 have described the internal structures
needed to understand the logic of the retrieval phase; this section
explains the logic itself.

The interactive phase of SOLER is divided into the retrieval and
output mechaniSms. The main purpose of the retrieval mechanism is to
create an active list of records which result from tke user's request;
the purpose of the output mechanism is to print data from records.in the
active list. Although the two mechanisms are bound together into one
program, the user executes them by separate commands (seevSOLER User's
Manual, Appendix A).

The user of a general-purpose interactive retrieval system is
interested in both the ability to make varied types of requests and the
speed with which these requests are processed. In general, these two
considerations conflict with each other., Dodd, in his discussion of
inverted st s&stemJ:l], states '"The virtue of such a system is that
it allowe access to all data with equal ease. Consequently, it is more
suiteble for situations where the data retrieval requirements are less
predictable...; Although the inverted 1ist approach lends itself to easy

retrieval, storing and updating data is more difficult, because of the

- 8 -

maintenance of the large dictionaries.h With this in mind, the SOLER
retricval mechanis:n wa; designed to empl y an inverted list structure
ltpa& provides the user with a very powertul tool which responds within
a matter ot seconds. |
Taere are five t;pes of éémmands ﬁhich comprise the retrieval
mechanism: the browsing commands, the data base limitation commands,
the result-saving‘commands, the miscellaneous commands, and, finally,
the retrieval commands. |
The browsing commands allow the user to directly investigate the
data base, By executing a DESCRIBE command, the user receives a descrip-
tilon of the files which comprise the data base. Because retrieval and
brnwsiﬁg depend on categorles of data, this facility is useful 15 a means
6r learning the structure of the data. The WHERE command locates all of
“the occurrences of a specified value in the data base. This command
provides the user with the opportunity to find all contexts in which a
term occurs. The AROUND, BETWEEN, and TRUNCATE.commands provide a direct
view into the SOLER directories. AROUND finds values in an alphabetic
neig_k__xborhood; BETWEEN finds values within upper and lower limits; and
TRUNCATE {inds valu®s which begin with the same set of characters. Since
these three commands search for values within a category, a user can, for
example, browse through names in a phone'directory or syncnyms in a
dictionary. ' ’
The dgka base limitaxion commands allow the user to focus his
attention on a subset of the data base. The-QUALIFY command accepts a
list.or category names; wntil the gqualification is removed, all @earchihg

’

is done only within the categories specified for qualification. By

- 83 -

issuing a RESTRICT command, the user can limit his retrieval to a single
set of records in the dats base until the restriction i- femoved.

The result-saving commands facilitate browsing without the necessity
ot re-retrieval. The active list resulting from any retrieval command can
be temporarily stored by the SAVE command. At any laéer time (in the same
session), the RESTORE command reactivates the stored list or the ERASE
.command destroys it. The user can retrace his processing by effectuve use
of these commands.f

The miscelilaneous commaids are the links between the user and the
administration of SOLER. Thé COMMENT command sﬁves the user's remarks
tor the SOLER administrater ﬁo read at a later time. <he SET coﬁmand
controls various settings of SOLER conditions. In addition to the
settings applicable to the output mechanism, the SET-coﬁmand controls the
addition of temporary logical operators, tracing of retrieval operations,
special.Symbols usgd in commands, and capture of the SOLER-user dialogue
in a cataloged file. The END command terminates the SOLER session.

The set of retrieval commands is the basic Féature of the retrieval
mechanism. In order to create an active list containing the results of
his query, the user must issue a RETRIEVE command composed of logically
connected clauses of se&rch‘condifions. The logical connectives used to
join these clauses are called "level-1 operators”. The standard SOLER
level-1 operators are "AND", "OR", and "ANDNOT", which &re the usual
’logjéni connectivés. Each clause is compoéed of a category name and a
set‘of.logically &onqected terms. .The<logical connectives uéed to-join
‘these teymé are called flevgl-& operagorsﬁ. The standard SOLER level-2

operators are "AND", "OR", "ANDNOT", "CONCAT", and’ "SEQUENCE". The

f

- 84 -

"CONCAT " operator is the space between terms in a phrase; it selects
adjacent terms from the data. The "SEQUENCE" operator (denoted by "M
selects terms which occur in sequence (not necessarily adjacent) in the
same sentence of the data.

Iritially, the command is inte;preteé and coded in an internal form.
Then., eacii clause is evaluated by finding the inverted list for every
'temn in the category specified in the clause, and performing the level-2
opetrations oﬁ these 1lizts. The result is one generated list fu: each
clause in the command. Finally, the level-l operations are performed
on these genergped lists to produce a final list, which is the active
list. 4

' The APPLY command has the same format as the RETRIEVE command with
the exception that the first clause is prefixed with a level-l operator.
The processing 1is the same ﬁntil the final step, when the final list and
the previously active list are used as the operands for the additional

level-1 operator. The result of this additicnal operation is the active

.~ 1list. 1In this way, new conditions can be specified to be applied to the

active lis%, The REPEAT command takes the internally coded form of the
previous RETRIEVE or APPLY command and, without having o search the
direétories again;wéeprocesses the iogical operations. This command is
particularly useful when the previous retrieval is fo be reprocessed
atter a restriction has been removed ¢r aftef'the.retrieval tracing
tacility hgs been turned on.

The retrieval c;;mands are a1l processed in a'similar manner by the

logle of the retrieval mechanism. ~Figure 3.6.1 shows the flow of the

‘retrieval logic; the following discussion should make it clear.

”

-8 -

COMMAND CONVIRTYED
TO SHORTHA&D FORM

— 2R

¥

SHORTHAND FORM
{iInflx notation)
CONVERTED T0O
SUFFIX FORM
(postflx notatlon)

L

IMVERTED LIST

ADDRESSES FOUND

FOR ALL SEARCH
ARGUMENTS

4

FUNCTIONS
EVALUATED
(If any)

I

OPERATIONS ON-™
INVERTED LISTS
PERFORMED TO
PRODUCE RESULT

.

Flgure 3.6.1

Retrieval Processing

It will prove most instructive to foliow the processing of an
vxample through the logic. First, we will assume that c.ur data base

has scveral files, one of which is the following:

001 PFRSONNEL FILE
002 NAME
003 FIRST NAME (IT
003 MIDDLE NAME (1T
003 LAST NAME (17C=3)
002 AGE (1T
002 OCCUPATION aT

PERSONNEL FILE

AGE OCCUPATION
FIRST' MIDDLE LAST
NAME NAME NAME
Figure 3.6.2

Sample File Structure
Let us take as our'ekémple the following command:

RETRIEVE NAME = SMITH OR (TOM AND JONES)
AND AGE = BETWEEN(20,30)
AND OCCUPATION = CAB DRIVER

Simply stated, the command asks for the records of évery cab driver
between 20 and 30 years of age who has either the word SMITH as any part

- . of his name or both of the words TOM and JONES as any part of his name.

- 87 -

~In its initial form, the command is awkward because of the extrame
flexibility of possible constructions. To make thé processing of the
command moie. efficient, a translstor from external to internal (template)

torm, the SHORTEN subroutine, was designed.

o — e e - - - —-

CODE UNUSED { RELEVANT
INFORMATION

(1 byte |1 byte_ !_w 1 halfword |

Figure 3.6.3

" An Element of The
Shorthand-Retrieve-Arrey

In the Sherthand-Retrieve-Array, SRA, eagh element of the retrieval
command is5 sssigned four bytes, one of which is one of the followipg
codes:

'N' for.category name;

'V' for search vaiue;

'1' for level-l operator;
2 jor level-2 operatér;
! for'funétion;

‘(' for left parenthesis;
'}' for right parenthesis;
'

=' for equal sign.

~

Along with each code, & binary halfword contsains the relevent information
described below. Thé cther byte is currently unused.
Since there is always a table ot operators in core, each operator in

the command can be identified by the pointer to its location in the table.

' - 88 .

Because of this fact, whenever & level-l +r level-2 operator is found in
the command, the appropriate code and pointer into the table is entered
into the SRA.

In order to minimize manipulation of variable-length elements, all
category names and search values, also called keys, appearing in the
command are stored in the String-Array. Each element oflthe String-Array
contains the length in halfwords (including itself) and the appropriate
ker. (n order to preserve halfword boundaries (as in the directories),

»

a blank is added to the end of the key if necessary.

) LENGTH KEY
1 halfword varliable
v
Figure 3.6.4)

An FElement of the.S¥ring-Array

Whenevér a category name or search value is found; the appropriate code

and pointer to its location in the String-Array is entered into the SRA.
The binary halfWOrdlassociated with parentheses and equal signs is

disreparded. Because there is a tabie of functions, the‘decoding of

retrieval functions is handled in the same manner as the decoding ;f

~ operators. In addition, a special code of 'E' is used to denote the end

of the hrguhents of & function; its binafy halfword is ignored. ThQ:

need for this special code will be realized later.

gy

ot

Pld

Z g9 - —] o

The® decoding of the command and the formatio.. ¢ the Shorthand-

Retrieve-Array are basex on the foLlowing‘observations:

(1) The set of characters (ound to thé left of the first
‘ equai sign is the {irst category nene; |

{(:2) The set of characters !ound to the right of the last

equal sign can only ue ;bnrtions, searchvvaiues, or
4 level-2 operatois; ,

{3) The set of characters found between two equal signs
must be composed of those elements described above
in (2) followed by one level-l operator followed by
a c;tegory name; ..

(4). Pareniheses can occur a§ywhere,_regardiesé of above

observations.

The p?oceés starts by enteviﬁg the first c%tegory name into the
St 1nb-Axray and putting the &ppronliate elements 1nto the SRA. The
aqual sign is then entexed 1nto the SRA.. The command is then scanned
te find the next equal 51gn. If thgre is an equal sign, then there must
bé;a category name immedi;tely to its left, and a level-l dperator to the
lett of the category name,' The processor uses this fact to decode the
«hnzacters between the equa- sigus. The command is scahned backwar& from
thv ‘econd equnl sign until a 1nvnl 1 operator is found (by comparint : |
‘nwamuui elements to the operatgt‘table)._ The characters between the
nperqtdr and ﬁhé second equal sﬁgn form the category'name.;'FinalLy, the
set ot characters between the Iirst equal. sign and the ;«vel-l operat01

o

[T

'muqt be composed of iunctions, seazch vaJues, and . 1evel-k operatoxs. By

checking each element in this rahge against the function and operator
tables; the correct code for each element can be determined. If a
szcond equal sign was not foutl, the same decoding applies without the
nee¢ for a level-l operator and a category name. By usingAthis process,
- the Eptire command can be eaeimy_decoded. -

Specisl characters (i.e., other than numbers and letters) are treated
separately. It is assumed that elements of a command are separated by
spaces., In addition, special characteis are taken as elements themselves.
Hence, the saarch valﬁ; MILES/HOUR would actuunlly be decoded as three
search values: "MILEé" followed by “/" followed by "HOUK". In order to
avoid this decoding, the intended velue should be enclosed in single
quotes, meaning "take the value literally”. Hence, the values 'MILES/HOUR'
would be decoded as desired. The use of quotes also allows the searcher to
specify that a space is contained in a search value or that he is searching
for a word which is the same as a function or operator name (e.g.,
searching for ﬁhe word "AND"). The special character handling allows
easier decoding of single operator symbols, such as "+" or "&".

The decoding process is designed to récognize,only the most -severe
syntactical errors, such.as a reﬁrieval command without an equal sign.

The major part of the forﬁat error processing is done in the next &tage
of processing. _ '

It is assumed, here, that "AND" is the first operator, "OR“ is the
" third operator in the operator table, and "BETWEEN" is the second
function in the function table. Also, the pointers for N's and V's

point to the length halfwords of the appropriate String-Array elements.

- 91 -

Now, if we follow our exemple through the decoding, we can understand

the tormmation of the following tables:

N "]f 1]
A R l
I B
(‘ .
L1 ,
Vs e e
2 031 NAME] _
ISR B DA I 04 | SMI THE]
) - | v Q3] TOMH]|
- 1 1 b | 04 | JONESH]
N 15 03| AGER]
. o 02|20
F N 02]30
oy 18 : 06 [0CCUPATION]
N]oo20] - 03 CABK]:
£ S 04| DRIVER]
1 1 ‘ o _
E 4 ' Y
e} t: 22 -Figuz:e 3.6.6
v 28 .
- Vi TEET! _ String-Array Example

Figure 3.6.5

' SRA Example

»X
iyt
L x

PO

With the command in the internal shorthand form, the nexf;.step is
Lo tmnglate the in tx torm to a. postfix (suf E‘ix) form. In ad;o;it'ion,
the mt%ow nanes can be uonverted t.o the appropri-at;e ITC's. Finally, |
i .\—ntacttcal error conditions are intercepted at this time. All of this-
processing 18 performed by the TOSUFFIX subroutine.) 4
'l‘hg elements of i:he"SRA ave .processed sequentiaily, with detected

_evrors displayed to the searcher as they are encountered; In. addition,

- 92 -

certaiﬁ assumptions are made to resolve each syntactical error condition.
. Aiéer'ﬁynéax checkiﬁg i8 completed, if at least one error is found, the.
template of the assumed command is displayed and the searcher is asked
whethevr the assumptions are satisféétory. If they are, processing
] contiﬁues; if not, the command is aborted.
The output of the TOSUFFIX‘processing is the Suffix-Array, which is
a set of six-byte elements. These eleménts, similar to SRA élements,
contain s cne-byte code and two relevant halfwords. The Suffichrr;y

codes are: .

'Vv' for search vaiue;

'F' for function;

'E' for end of ‘function;

"1'-for level-1 operator;

'2' for level-2 operator;

'G' for generated operator;
"I for jump element;

'A' for inverte@)list address;

'#! for end of array. B

N

For search values, theyfirét halfword. is still the Strinqurray
1ocation;cthe second ha}fWOrd is the ITC to be searched fof. Notice
the actual search value is noé accessed from the Sﬁrinqurray at. this
pgint.ﬁ | , } |

The jump element wiil be exflained in s later section; the end of.
array Qlement is slmply the last elémen£ to‘be'proéessed.

A'template of the command, to be diSplaye§ to fhe seafcher, is
formed from the SRA as it is translated. Th,is. template uses exactly

the SRA codes. During the course of inverted list processing, if the

“~

e
i

aeaxrher des:xes it, a trace of the 1oéical opergtlons 1svdlsp1ayed
'hat is, the number of recordu 1e°ulting from eacn operatlon‘ls printed
out directly under tne &pprogriate code in the temmlate. It is“therefo"e
necncsarv to aquoclate an e]ement »f the template to each operator. For
each of the tnzee types- of opcrators the second helfword in the Suffix.
Array is the.poiqter to the template.' I eddition, since a function
ger.erates An/"Qwaoperator between® each resulting value, the function
element inﬁﬁhe Suffix-Aﬁray *Q treated as a generated operator.
When a yntegory name is found in the SRA, a set of subroutxnes is
called to convert a- name to one or more ourrespondlng ITC's within the
current qualitication ' Th‘& seto ap the seaxchlnb of the se&rch va\ue'
with each ITC apprqﬁriate to the given name. It more than one ITC is
associated with a category name, then an "OR" operator is géneratgdlto .
connect the sets ofnsearch vaiues for the multiple ITC's. | B
As the SRA is sequentiélly read, each element is acted upon immediately.
As staﬁed above, a category name is converted to a éét of ITC's. Until a

1level-1 operator code or the end of the command is found, all search values

entered into the Suffix-Array have the first ITC of the indicated set

désociated with them, Wheq the level-l operator or end otf command is

found, all entries.put in the Suffix-Affay since the category name was’ - .,
rfound are duplicated with-the secqnd;ESC in the?set (if ﬁpere is dhé)

replacing ‘the first ITC, Then, the generatéd OR operator is entered to

operate on these sets of cntries; This duplication continueS'uﬁtil all

1T¢'s for the category name have been exhausted. For instance, if-a commend

were RETRIEVE NAME = A, then the Surfix-Array would have an entry for A with

the ITC for FIRST NAME, an entry for A with the ITC for MIDDIE NAME, a

~O o

- Gha | \

a
generated OR operator,- an entry for A with thg ITC for LAST NAME, and
finally-another generated OR operator. In effect, the command aéks for
the data item A occurring in either-the FIRST WAME, MIDDLE NAME, or
LAST NAME category. This suffix .form of the command represents precisely
the same query.

. &

When a search value code is found, it is immediately entered into
the Suffix-Array with the first ITC in the appropriate set 88 dgécribed
above; When a function is found, the group consisting of the{function,

its search values, and end of t‘unction;code is treated .a.s a8 single search
value and entered into the Suffix-Array with the a.pp\rdpz"ia.te ITC.

The processing ofrlevel-l and level-2 operators is more intric‘a.t‘e.
First, it should be mentioned that each operator in the operator table
has precedence associated with-it (i.e., some operators are 150 be
evq.luated before others). As an algebraic /analogr, fg)xsidg};/the_eg\ugtion‘
X =3%+1. If the addition is nerformed first, then X is 15; If the T
multiplic;ation is performed first, then X is 13. Normally, the multiplih-
cation is the first operation £o take place because it has "higher
precedence", However, if the equation were X = 3*(4+1), the addition
would take precedence bect;use of the parentheses. One can see the
flexibility that this type of precedence structure allows; this is why
the logical operators of the retrieval reﬁuests are given precedence,

To _deménatrate the translation to suffix using precedences, assume
s; c’;;mms.nd requests information ‘_ for A AND BOR C is Eome»category. The H

.“code for A is placed in the Suftix-Array. The code for AND is put in
an oi)era.tor stack. Then, _the code for B ié placeci in the Suffix-Array.
.I;Io'w, the precedenég ‘of OR is compared to the precedence of AND. In the

[S . ’ : -

«»*

- 05 -
case where the precedences are equal, either of the cases below |is
possitle dépending on the implementation of the erlgorithm, but poth

interpretations are le§itimate.‘ There are two cases to consider:

Case 1. AND has higher precedence than OR. . In this cace, the
.céde—for AND is removed frpm the operator stack and
placed ir. the Suffix-Array because it has high%;
precedence. Tﬁen the code for OR is put in thé ’
operator stack and the code-for C is placed in the
Suffix;Arr&f% Now that command clements are exhausted,
the opefator stack is emptied into the Suffix-Array.
Hence, In suffix form, the command-appears tobe A B

AND C OR; this means "find~records with either C or both

A and B".

Case 2, OR has higher precedence than AND; In this case; the
code for OR is put in the cperator_stack after the éode

. for AND. Then; the code for C is placed in the Suffix-
_Array. With the command elemeﬁts exhausted, the_opérapor
stack is éﬁptied in reverse order (last in, first out)
into the Suffik—Arr&y. Hence, in suffix form, the
command»appears to be A B C OR AND; this means "find

records with A and either B or C".

ey

Parentheses are handled in a simpie manner. Wheqfaﬂleft parenthesis
is tound, it is entered into the operator sﬁack &s ii it were an operstor
with the lowest prucedence. "Then, the proéessing‘continués with the left

o parenthesis remaining in the stack becausé of the algorithm. When the

ERIC

IToxt Provided by ERI

e

I

- % -

+

matching right purenthesis is found, all stack elements after the left
parenthesis are emptied in reverse order into fheiSuffix-Array. The |

parentheses are-diséarded, having served the purpose of defesting
A ' :

precedences.

When the problem of precedences is further complicated by two levels

of operators, che solution is simple. Whenever a new level-l operator is

encountered, its prpceaénce is compared to tﬁe pravious level-1l operator
in the stack. If.the new one has higher precedeﬁce, it is added to the
stack. If the new one has lower precedence, then the previous level-i
and all intermediate level? oﬁérators are emptied in reverse 6rder into
the Suftix-Array. Then, the new one is added to the stack. At the end
of the cormand, whatever operators are ieft in the stack are emptied in
reverse order into the Suffix-Array. |
It is important to note that the searcher is allowed by the SET
_comménd to change the precedenée §f any operator at‘any time. This is
: ~

a powerful tool if used broperly.

' The Suffix-Array for the original examplé is shown in Figure 3.6.7.

1t is assuned that OR has higher precedence than AND, but note the

placement of the parentheses. The template of the command is:
NV OR (V AND V) AND NeF(V,V) AND NeV V

The second pointer for operators in the_Suffix-Array is the position,
counting 11 characters and spaces, of ﬁhe element in the template,
Generated cperaters are associated with the equal signs ih the template.

Later, the operators generated by the function are assoéiated with the F

in the template. Note that the space between the two V's at the end of

4 “
' %

psl

/.
- 97 -
!
vt 1] !
v ..._ 8 .1
V4 . 111. 4 -._4..1
28 DU A O O ¥
20 0 3 .51
Noooboos L2
) VoL 82
2 R T © S N
240 b1 o112 |
20 b3 5 ‘
G113 2 l
2 R T
wV_. . &1 3
N2 T R S -
(27T Tz
."2-J_. n_ﬁ,. __Ji_q,
G 2]
0 2 U '
VD asT T wC
V200 | D a
| F \ SN TR
LY 1019
Vv 28 S
v 31 5
2, 5.].38_]
: 1 1 39
R R AR

Figure 3.6.7 !

Suffix-Array Example

/ _
/ the template is now a level-2 operator, It is the implied concatenation
/ operator (assumed tc be the fitth operator in the table).

j Up to this point, the directories have not been accessed. But, in

! ' . -
/ order to perform the operations on the inverted licts, the list addresses

i
i
.

/ "must be found. The DIRSRCH subroutine converts each search value in the

- 98 -

Suffix-Arrqy, except arghments of functions, to the appropriaﬁe inverted
lis£ addreés.

The procedure used%to search éor & key 18 the following. A binary
search of the Core Directory isolates a single direcﬁory at the next -
lgvel. It is read from disc; if it 18 a high-level directory, the binary
search is applied again and the process repegts;'HWhen a low~level
directory is finally read, it is guaranteed that if the key exists, it
is here. A linear ée;rch of the low-level directory determines whether
the key exists or not. If it does exist, the associated ITC's are searghed
alsé.

In the searching fdr keys from the Suffix-Array, the valués must be

extracted from the String=Array. Even though the same alue occurs with

different ITC's in the Suffix-Array, it is searched only once; all of the

er's are evaluated at the same time. After the search is peiformed, the
entry in the Suffix-Array (V, String-Array-pQ%Eter, ITC) is replaced by a
code of 'A' and the system address of thé inverted list; the address
occupies the two haifﬁord“pointers: If the val&é or its ITC is not found
by the search procesging, a special address (all binary zefo) is placed
in the Suffix-Array.

In the case of our example, the only values left in the Suffix-Array
after directory searching are "20" and "30" ‘which are lthe arguments of a
fanction. All other values have been converted to addresses,

Before the operations‘on the lhvertqd lists can be executed, the
twnctions mhst;be.evaluated'and converted to inverted list addressés.

The TOADDRE subroutine handles the functions.

- Y -

A problem is causgd by evaluation of functions. The execution of
operationé on tﬁe inverted lists is based on-a sequential reading of
the Suffik-Array. qu?ver, the number Qﬁiresulting<list addr=sses may
he rar md?e than the reserved space for the functioﬁv(for‘BETWEEN, four
olemeni%; ¥ V V3 E). With this in mind, the jump element (mentioned
previously was designed., The Jump code is an indication to the list
processor to branch to another location in the Suffix-Array and resume
sequential execution there. "The first halfword associated with a Jump

- - : code is the location of the next element to process in the Suffix-Array;

=

~the second halfword is unused. ‘
For each function, the F in the Suffix-Array is replaced by a J;
the jump pointer is sét to the location oTIthe next ‘empty location in
. the array. Thgaresﬁl£s.of tae function are entered into the array
° vstavting at this location. At the end of the evaluation, a jump code and
junp pointer are entered to transferiexecutibn back té thé element after
the E associated with the function.

The results of a function a$e iogically connected by generated OR
operators (e.él, BETWEEN (20,30) means 20 or 21 or 22, etc.). Of course,
the operators ani addresses are placed in the Suffix-Array in suffix form.

The functions are evaluaﬁod by first using the direéb'ory .;.eafching
routines tb find the key specifiéd by the function. Then, the-appropriate:
low-level directory (and possibly adjoining low-level directories) are ‘

b scanned linearly to.find other keys in the functional range.. The éearchef
is allowed to specify a function limit; ‘that is,yfunction evaluation for

any single function ceeses when the number of addresses found is equal to

the limit. .

- 100

-

. Assuming that three ages are found between 20 and 30, then the

Surfix-Array of the example is shown in Figure 3.6.8.
. P -

__AQ _l. eddress

, A address . o
AT| 771 address’]
200 S S S S ¥

3 >

..address

:ﬁ:~~, address
A address

i
{
i
i

Y
|
i
i
i
!
|
]
1

OB DD #ie DD M <L €D NI > D, N

G _ _ . /7
) AN)]
> 11 T1o7To19
L address _

B W - ¥ 3

address
.address S K
3] 24
e Y SO_.1
. address_ |
3 1.2h

S S TIPSR S UeSIp

] T
‘G
—
)
~

L g

Figure 3.6.8

Surfix-Array Exapple

The final step.in the retrieval process is the execution of logical

operations on the inverted lists (PPHASEIV suvroutine). As mentioned

o~

. array. When an operation is completed, the two input list addresses

belore, the elements of the Suffix-Array are operated on Sequentially

. {with jump elements redirecting the sequence) The only codes allowed -

 at this stage of processing are addresses (n), operators (1, 2, G),

Jumps (J), and the.end of the array (*)i The processing of operators

is independent of their type (level-1, levél-2,'or generated). They
'arefdifferentiated'simply for the trace facility; the searcher can’

. request-tracing of any one or all of the three’types of operators.

Because an dperator ‘applies to the previcus two operands in suffix

- form, the addresses musi_be stacked up in an operand stack. As the

Sutfix-Array is read, each address is put in the stack. When an

operator is encountered, the two addresses most recently added to the

stack are pulled out The operation on these two lists produces an

output list the address of this output list is then added to the stack.

IWhenvthe end of array code is finally found, the operand stack should
- LY H .

contain.only_one address. This is the &ddress of the active list which
! - . l\ '

the command has produced.

There are thrée'°OOO-byte areas in core for use by the operator

o

routi"n'es Wtwo of these can be used for the input lists (inverted

lists to be cperated on) the third is. used: for the output list.

Betore the operation-is performed, the two input lists are read into

these areas (if not already there from a previous operation), and a

cylinder in the work file is allocated for the oitput list about to be

o~

" created; only 2000 bytes‘of’any list, 1ant’sr output, can reside in

core at any time. The cylinder allocation allows for shorter access
time when manipulating segments of the entire list alSo, the output of

one operation will probably be thg ‘input of a later operation in the

e

‘ _ . | - 102 -
N
‘,»r”‘ are checked; if either is 1ﬁ~;he‘work file (the output of & brevious

operation), its rylinder is' deallocated because it is no 1onéér neédedf
in this way._the work spacejis re-used efficiently. " d

t'or each operator invt£é operator table,,thére is fhe name of the
subroutine used to perform the operation. Thése subroutines are ioaded
dynamically; that is, no operator routine is loaded into che‘until it
is called the'first time, Th° routines are supplled the first Segment -
(physical record) of each input list, and the area for the output list.
1n uddltion a count of records in the output 1ist is produced for
txaclng purposes.

There are five operators in the current implementation of SOLER.

The first three are both level-l and level-2; the last two are only

level=2,

1. AND - produces an output inverted list containing one
) entry for each IRN which occurs in both input
lists; the user bytes are not checked.

2. OR - produces an output inverted list containing one’

it
—
5

t entry for each . IRN which occurs in either input
'1ist; the user bytes are not checked.

3. ANDNOT - produces an.output inverted lisﬁ‘%ontaining one ent)

~ for each IRN which occurs in thénfirséjinput list
but not in the second input list; the ngser byt” -are

not checked |

L, CONCAT - produces an output,jnverted 1ist containing every
entry from the Second inpﬁt 1ist whose IRN and first

. 9
user byte (sequence number) are identical to and

... end a list for DRIVER was found for the proper ITC. When the CONCAT

- 103 -

second user byte (werd number in sentence) is one
greanter then the qorrgsponding eleménts of én
entry in the tirst input list.

gl SEQUENCE - produces an output invertéd list containing every
entry from the second input 1list wﬁoée iRN and
firs?ﬂuser byte are identical to and séﬁond user
‘byte is any amount grgater than the corresponding
elements of-an entry in the first input list.

» | | . o |
in the example, the AND and OR operators need no explanation. The '

'CONCAT operstor (implied by the space between CAB ghd DRIVER) is

_ ‘ o / : _
interesting however. If an AND operator has been /specified instead of

the co enation, the retrieval processing would have found reco. Is

sccupation. In searching the directories, let us assume a list for CAB

" operation is performed, the sentence and word numbers (user bytes)Aare

checked. In "DRIVER OF CAB REPATR TRUCK", the word DRIVER does not

directly follow CAB;‘hence, this'record>would not survive the 6peration.

- This phase retrieval capability is clearly an advantsge in text-driehted

o

dhta bases.
A%t the conclusion of the list proceésing, one inverted 1ist remsins
in the work filqs as the result. If a restriction is in effect, an ADD

operation is applied between the resulting 118t and the restriction list.

»The output of this operation is the new active list. The old active list

_1s deallocsted, the new active list is read into core, and the retrieval

\

processing is completed, The searcher can then printufrom.the %ecords in

~

- 104 -

the active list; or, if he is not satisfied with his results, he can

issue another retrieval command. b

The APPLY command is processed in the same manner as has been

desrribed. However, betore the old active 1list is deallocated, a level-

“U gperator is applied between the old and newly-created active lists.

The result . £ the application of this last operation it the new active
1ist. In other words, the APPLY command allows new conditions to be
added to the records in the active list.

. The REPEAT commend Simply re-executes the list processing of the
elements in the current Suffix-Array. - This is useful for changing the
trace and re-retrieving. RS L

. : S
The retrieval mechanism which has been describe@jis So. powerful

that the casual searcher may never use son2 of its fegtures. Use of.

the trace and precedencé'operators, for examplé, allows the searcher

to issue a complicated request and still see his intekmediate resultS¢hbb

One of the. problems of this implementation is the fact that each
'sea.rcher may have his own icopy o~f the 4re.tlrieva.l programs (about 250
thox:sm?:‘« bytes) in core. To convert the system from one-user to multi--
user, the programs should be recoded in a re-entrant ma.nher. .Such an
implementation, however,-would tend to tie the system to a particular
machine., | ' : o o 0

Because of ﬁhe design'qf the input ph&se of SOLER;'extqrnal.data ;%
may bé‘enCOded when entering the Systém. For instance,; if data enteréd
in ﬁhe‘nge catpgory were spécified in units of months, it could be

o

stored, internallyyéin units of years; the input phase is~designed to

. support such Itra.nslla.tions. The retrievé.l’mechéniSm could (bnt currently

does not) support decoding (the inverse of the’éncoding prdcesg_performed
. 4 | .

i

- 1056 «

in the input phase). This decoding process would be invoked prior to

- directory searching to insure search of the proper keys.

- -106 .

3.7 The OQutput Phase

\ ' The Output Phase allows the user to display data from the records.
selected by the Retrieve phase. The user may select one or more data

Bl

items., specify the order and format in which the data should be dis-
--played and choose the destination of the data. The data may be dis- ¢
played inthe users terminal, printed on the high»speed printer, or
transcribéd to a file on disc for later processing. .
The records to\%g processed by the output phase are those records
| currently on the "actixe list" genereted by the Retrieve phase., This
list is in ascending or&gr by record number, and contains a pointef.to
the next list element (ré%ord) to be processed. This pointer is
{fiitinlly set to the first element, but will be modified by the pro-

cessing in the Output phase. The user may also modify this pointer by

A

using the special list manipulation commands.
N

Y3 .. “~
.
~

Commands and Parameters ' \

. . , |
There are three comnands in the Output phase: PRINT, LIST, and

CONTINUE. The PRINT and LIST commands direct the system to output
data. The CONI'INUE command simply continues displaying the data

specified by the most recent PRINT or LIST command. ;gﬁiég//'
In addition to these commands, there are several parameters which '
affect the format end destination of the ouﬁput. These parameters may
be changed by using the SET command. '
This section discusses in detail the.commsnds, parameters, and
internal structure of the Output phase, These commands are 8lso

discussed in thé-USer’s Manual contained in Appendix A.

~ : <
| .- 107 -
The PRINI, Command
| Format
PRINE (N,) <NULL>

NONE

<FIELD NAME> (, <FIELD NAME> (,...))

I

The N, if present, specifies how many records are to be processcd.

It N is éﬁ;tted, ;ll records in the agtive'list will hg\Processed. If
the end of the active iist is encount;red before N records have been
process?d, the command halts normally and resets the pointer to the
first vecord in the list.
1f the operand field is‘nuil, all records will be printed in full.
Data items will be printed in the order in which they aﬁpear in the
record. |
If the operand field contains the special keyﬁprd NONE,’no data
" will be printed. Instead, the system will lis¢ the internal recbrd
numﬁers of the records on the active list, | .
| The most common fgrﬁ of the command specifies the names of the
fields which should be printed. These field names may.be qualified,
and-are subject to any qualifications in effect from a previogs QUALIFY
command. A The fields may be requested in any order. If a field iiﬁﬁfﬁf“\h~J '
requested which does not appear in the record, the field name is
skipped for that record and proceésing continues normally.
N IT a field name is specified which does not fall wi?hin the scope
of' the cur;ent qualification, or if an illegal‘field name is enteré@,

&n error message is printed and the command is terminated. The user

.Should. correct the error(s) and re-enter the command.

- 108 -

The destination of the output of the PRINT command is the user's

terminal, unless overridden by the SET command.

The 1LIST Command

- -

Format

< same a8 for PRINT >

The formet and operaticn of the LIST command is the same as the
PRINT command except that the destination of the output will be the

high-speed printer unless overridden by a SET command.

The CONTINUE Command

Format

CONTINUE (N)

The CONTINUE command wiil continue the operation of the most
-z_-ecent PRINi‘ or_LIS'I‘ comma.nd_. All operati})ns will be the same as if
the PRINT or LIST command has been re;entered, except that the number
of records to process, N, can be specified in the CONIINUE command.
If N is not specified, all remaining records on the active list will

be processed,

Structure of -the Output Phase

The Oﬁtput phase.is interrelated with the Update phase. See the
section on the Update phase for a discussion of.the details which are
applicable to the Update phase, This section will discuss the routines

.which control tpe sequence of processing to deteﬂmine which records to

process and which fields within the reccrds should be examined.

- 109 -

MaJjor Routines,

The major routines in the Output phase, and the action performed

by each routine, are listed below.

"OUTPUTPH - This routine is the control routine for the Output
and Update phases. There is %p.entry point in -
OUrPUTPH for each of the comménds in the Output and
Upd;te phases. When the executive determines which
command shoﬁld be executed, the correct entry point
in OUTPUTPH is called. Within OUTPUIPH, fiags are
set in the SYSTEM-DATA-AREA to indicate which
command is being processed, The COMPILE entry point

“ in PbOMPILE is then called to process the operand
field‘of the command. This sets up the field names
in the PRINT-TABLE in a coded form, and returnégthe
number of records that should be processed (if
specified by the user). If the user did not.specify
an explicit number, an extremely high number is
returned as an ai)proximation of infinity.

Once everything is set up, the .routine loops
through the "active list" or record numbers to
process the records. Each IRN is extracted from the
list, and the entry point PRINFREC is called in the

routine PRINTA.

PRINTA -

PRINTB -

- 110 -

This routine is used for a progrémming trick more
than any logical need. The IRN of tﬁe record to
be processed is passed in from OUTPUIPH. The IRN
is conyerted to a file address by caliing IBNCCHV.
The data record directory for the record is read
into a comﬁon buffer that will be referenced by the
|
routines which actually process the record. A
check is @ade to see what definition should be used
to interprgt the record, and the defiﬁition is loaded
into the wain buffer.m”Now the PRINT entry point of
PRINTB is called. Since thé pointers are available
which say where each piece of thé.definition is
located in the main buffer,.when PRINTB is called
this can be passed as an absolute address. Thus
within PRINTB,‘tﬁe tree array, ITC array, etc.; can

be defined on a logical level, ignoring the structure.

of the main buffer,

This routine is responsible for interpreting the
definition, the data record directory, and the
PRINT-TABLE to detenn;ne which date items in the
record should be processed (either for printing or
‘updating); The PRINT-TABLE contains in coded form
the list of fields which:the ﬁser requested. Each
elem;nt in the table is a three halfword entity.
The first halfword is the number of the definition

which ccntains the fields speéified by the user.

el

- 111 -

-

Since'the user may specifyrfields from many different
record types, not all elements in the table will
apply to this record. An& element which does not
apply is simply ignored. The second halfword is an

index, referring to the tree array of the definition,

‘which points to the element in the tree array which is ~ =~

the logical start of the field requested by the user.
The final halfword is the index of the last element
contained in the field requested by the user. Since

thehuser may specify a non-terminal field name in a

PRINT request, there may be many elements contained in
the section of the tree array bounded by these pointers.
For example, if the user specifles that the entlre

" .record should be processed the flTSt pointer would be

al, and‘the_second pointer would point to the las;
elemeht‘in the tree array. The routine-bBﬁSCAN is
called to actually scahuthe‘d&tafrecofd directory to
pick out the elements to be processed.. When an
eiementlis found, DRDSCAN returns with a pointer to
the element. 'FRINTH determines which field names (if
any) should bq‘printad; and does the apprepriate 1/0.
- To actually ﬁrocess the data, the MINIEXEC is

called. This routine is the start of the Update

phase processing, and also serves to(Byifi/the data

%, o

for the Output phase.. _ _ 2

DRDSCAN -

- 112 -

B aw - v

-This routine scans the Data Record directory of a

record towpick out the next data element to be
processed. When an element is found, a pointer is
set and returned to the calling program. This
routine is designed to handle subscripted field
names, but the PCOMPTLE routine is not yet able .
to compile subscripts into the internal form needed

by DRDSCAN.

Figure 3.7.1 shows the interconnection of the routines in the

Output. phase,

[

- 113 -

EXECUTIVE ! o—\ call to couwmand entr_y points

QUTPUI'PH ' - single IRN

reads Data Record Directory .
PRINTA reads Definition .‘

&

. £
prints field :a.mes)
reads date into data buffer b

scans PRINT TABLE vs. Data
Record Directory to determine
which data item to process

MINIEXEC - output to terminal

Macroflowchart of\OQutput Phase

4, STATISTICAL CLUMPING AS AN INDEXING AID

,1 Adaptive Interaction

In many document retrieval systems, there is one aspect of
the operation that requires furthér development, namely the per-
fecting of communication ﬁetween man énd machine, ASpecificvlly, the
user obtains little assistance fram the machine or system when he is
nttempting to state his requesf. The user is confronted with a
word list of all available index terms from which he must mske a
selection to enter his search request. A study was conducted on
this project to-gign insight intg tﬁe pfoblem of orgénizing the ihformj
ation that'can be placed ihtovthé system in fhe form of index terms
and to use this‘information to render assistance in fhe formulation
of a request. |

The study demonstrated a proces§ whereby the user and the
system adapt tc each other's need and viewpoint. This adaptation‘
on the'pgrt of the user fakes the form of his aécepting the syste;
vocabulary terms and their interrelations. The adaptatioﬁ on the
part of the system allows it to modify the manner in which it pro-
poses new index terms and to give the user adviée that quides him

in the selection of his index terms.

The study provided three specific contributions to the field

of information retrieval:

.

4114 -

-'2)

3)

-115

‘A framework of man-machine adaptive interactive-

convefsaxion'providing uwusolicited librarian-like
qssistance‘t; the searcher through increasingly
better sets of index terms. The data set for the
intéraétion ié based oh the second contr;butioﬁ.

A technique to extract palrs of related terms from
a set of machine-readable English documents. The
techniéue eliminates common terms, distinguishes
ggneral conceptual terms from particular terms

L .
and extracts pairs of terms that exhibit conceptual

e

relationships with the particuler termsj through
frequent assoclation in selected text. The
particular terms ére essentially the equivalent:

of descriptors in an index of documents.

‘An elgorithm to assist in the development of a

thesaurus. The ‘algorithm ascertains sets of

nearly mutually synonymous terms when given a table

of synonymé in machine réadghble form.

The adaptive men-machine interaction contribution provides

a technique for the information retrieval system to render

assistance in the fbrmuiation of index sets without the burdensome

task of the user reading sbstracts of recovered documents. With-

out this assistance, the task of refining an index set usually

rests ypon the retrieval of dbstrécts and titles of a'set'ofp

documents and their evaluation by & user. This ad hoc¢ ‘index set

production results in an uneconomical searching of mass storage

before the topic is cleearly defined by a_éuitdble index set.

-116~

The system presented thet was developed provides the
necessary sssistonce to allow the refinement of an index set
before searching docament files. ‘.Che data base employed by the
system is a set of relation tebles 'produced sendautomatically
from a collection of d.ocumenﬁs in maéhine readable form, These
relation tables are two diment.onal, weighted, topic' differentiated,
and are produced in a semiautomatic manner. They employ the |

contigu:.ty relation; i.e., terms that appear w:l.th:.n & glven distance

‘of ea,ch other frequently are hignly related., 6 Given a preselected

N

file “of documents, terms that appear often within' a given distence

—~

from each other render a high contigui't-y measure. in order to be
f.*ul.ly egfé:E—:{.;re, the raw samples of Engl:.sh text f‘rc}m which the
data base is derived must be repre.aente.tlve of the types of
documents 'tha.t the information .,ystem is called upon to recover.
Pragmatical.‘ly, meny of the actual docwuments in the document f:Lle :
are used in the derivation of the relation tables. The technique
for generating the relation tables from 'the English étriﬁgs will,
with little human interventionm, produée sets of fela.tion tables
that sre topic differentiated, In the following, these tables
shall be named. "microthesa.un mea.ning a thesau.rus, or relation
table, of & small limited topic area.

The algorithm that constitutes a cenfral tool for the
adaption proc.;ess agcertains the sets of nearly .synom;mous’ tems_
from a table of synonyms. The conéépt of near synonyms is treated
‘at length in a formal manner 1&t¢f; but, for the presex{t purpose,

~two 'berms may be considered nearly synonymous _if there exlsts at

- - t

. directions in ary interaction between men and machine:

-117-

.
. ¢
least two completely separate sequences of symonyms connecting

"""them.* The use-of th:.s technique eases the productlon of a table
- of synonyms by checklng for sets of nea,rly mutually Synonymous
. terms as the table is generated. The technique has application

"in any i)rocess that uses an algorithm to produce word pa.ifs rich

in synonyms. As thesa synonynious pairs are included in the table
of synonyms, the algorithm assistse' the user to perform consistency

and completeness checks.

.//;‘ h R

14

The process developed in this experiment exhibits two

forms of adaptive behavior. The first “form is the ability of the

system to respond to an index ..set".propéé.a-.l in a manner that

depends upon the prew}ious ‘history of th‘e'__‘ man-machine /dia.logue.
.. The system does this by préparing a profile of irterest during the

interactidxi e.'dd uses “this interest profile to frame its replies.

The profile consists of numbers or scores tha.t are rela.ted. to the

7 level of interest that the user has d.eveloped in each of a set of
" microthesauri. The second form of adeptive behavior is the

ability of the system to render suggestions and to direct the

intera.ction in a.ccordance with its estima.te of the user interest

proﬁle‘. - ' I

. The system can determine é.t least three types of

o

* For example: Facile-Easy-Smooth und Fgelle-Simple-Smooth
would imply that Facile s.no".d Smooth are nearly synonymous.

.
2N

Py
o

_118.

1) A tendency for the profile of interest to centrél:;ze
on a small group of microthesauri--in this case, tﬁe
user .S probubly refining his search into a small set
of areas an‘d“‘s‘houldl be apprised that he is reaching a

“termingdl sj:-agg in his interaction. |

:2) No a.pimrent t;\"end in the pettern of thelsea.rch—-
perhaps the user is browsing or he does not understand
the f‘uncti.on of the systen,

3) A tendency towia;i'd an "oscillation" in the interest
profile-#perha.ps the user has been diverted in his
search, or he has cha.nged emphasis intentionally. ’

The action ta.ken by the system ra.ngés from the advisory
guidance message to 'pointed suggestions, and ultimatel& to.the

suggestion that human intervention may be required.

4.2 Implementation of the System

The’ system was implemented on the IEM 70&0-35?_ 8
computerl complex with remote Teletypewriter input. ‘I‘hia T0h0
portion of the implemén‘tation»was programmed in 16 ii’nked list
prograrming lan@age. - Ald the functions needed to implement
the interaction were included. The adaptive algorithm was
-on.ly partially implemented; full implementati§n reciuired only the

- gradual accumulation of relation tables for a complete data base.

4,3 General Definitions

In this section, a number of terms will 2e introduced that
- are employed in the body of the work. These terms will be under-

lined the first time' they are intrqd.uced.

-119- -

A word type is any string of characters except blanks and
terminal characters that expresses a particwlar meaning for the -
user of the system. Also, the system can have instances of words '
in its internal vocebwlary. A _t_e_r_:_nlis a word (or perhaps a word
phrasle) ‘that the system has in its vocsbulery and, in addition,
the system .employ.sl it in one of a number of diffe;_rent applica~ /
tions., ' In partuula.r the System differentiates among the |
following types of terms. A common term is a .word that is con-
sidered by the system to be used so frequently in all fields of
natural English as to render i‘_t useless when a pe.\rticul_ar subject
is. to be recognized. Examples of common terms are "description”,
"alt:.ough" , and "spéciﬁca.ﬁ,y". A cor‘e term is not & ‘common term

but appears in one particular subject area so frequently that it

-1s associated with the area and, in fact. is useful in identifying

it. waever, the core term is not useful when called upon to
discriminate among documents in its field. A core term is useful
as a way to raise the recall level of an'index set. -fb{amples of
core terms from the i‘iéld of computing software might be "computer",

"compiler", and "system". A ns.rt:.cv.lar term is a term tha‘b appea.rs\

in the document set of a ﬁeld of interest in a manner ..ha.t it is
useml in di.acriminating smong the documents of the subject area.
A homograph is a word or ‘term that ha.s two or more independent
meanings. It is possi‘ble for o term that has a homogra.phxc
ns.tm-e to have at ance any combination of common, core, Or pPar-
ticular meanings. .

| i‘he notion of a descriptor is well esteblished. It is a.

|

{

<120

term that is used to give a clué concerning the subjeétkontent

of a particular set of documents. An index set is a &7t of words
e AL i

the user employs to cheracterize a particular subject in which he
has an interest. The function of the interactive prbcess is ‘to

transform thé index set of words into an index set of descriptors

that are rich in particular terms ‘to give a crisp definition of

the request. . An adaptive process .i‘s‘ a.technique whereby the system -
is able to respond in a mannei tﬁaﬁ depends ‘upon both the past |
interactions and the'present state of the user's index set.

A thesé.m‘us is a set of relations whose léf‘t" and nght o

components are terms in the system vocebulary. Formally:

N >
24

T = { R | ReRelation &[(at) (t is a left or a
right component of R=2 ¢ € T where

T is the system vocabulary)] } : ‘ 1-1.
In the current stage of impleméntation there is only-one relation;
it is a contiguity relation derived ‘semiautomatically from a

textual data base.

A microthessurus ~ is a portion of a thésg,uru§ for which

the following applies:

t

Mg €T &[- (At)(t is a right component of R=> t € T
~where Ty is a set’ of percicular terms in

subject area "a")] . 1-2

=]12]1=~

Thus, & microthesaurus is a porti&n of a thesaurus for
which &1l the right members of the ordered pairs defined by the
microthesaﬁius aré restricted to be particular terms in the subject
area of the microthesauru#.

A specislty area is a vortion of a field of interest that

may be identified as having sufficlent internal cohesion in its
subject matter to be discovered both statistically and subjectively.

An interest profile is an a-tuple of ordered pairs as follows:

Py = (Ga(M), L)) | 1-3

Wheré; the a'th peair of ordere& terms is
assoclated with the a'th subject area,

And: Go(N) is a measure of the degree of
interest expressed by the user in the
a'th area after N interactions, expressed
as a microthesaurus gain, =

And: Ly(N) is a measure of the level of detail
or degree of specificity expressed by the

user after N interactions.

4.4 Theore.ical Consider&t;ona

This expérinant Qas based on the found;tion principle
that the ::cld of document rctrievgl requires ot least two
further deVelopments before it hay Bé accepted as a working tool.

~ These are the development of a mode of trulyvinteractive "upder-

standing” between the user and the system and the productioh of

Q Cen

-122-

o m

A }

better methods of extracting clues that cheracterize the docmneri‘s
from the documents themselves; i.e., index them. These two
aspects of the document retrieval field wi:ll be rev{é‘w\éd“in ‘1';he.
following introductory remarks. . y

In t_he course of history, man has graduslly developed a

variety of languages for communicating and recording an ever

‘increasing variety of complex ideas. These languages have grown

"with almost no control or formel justification. In fact, some

be].ieva that 1t is this lack of control that provides for the
richness of natural languages and their great capability to pro-
vide a varied means of communication among individua.is that spesk
the same dialect of ‘t;heir language.

However, this same a.‘oselnce of analysis or understanding of
the féme.l implications of the language has impeded the developueni
of facile communication between man and his mé,chinés. As long s
the machines that man built were of the purely slavish responsive
type, this communication problem was of .’x_ittlé conseq{lence. In
many ca&ses, the only necessary means for comnunicaticn was the

provision of a set of knobs and levers attached to the machine.

When the large scale digital computer was re\a.l{zed, man conjectured

that:Q the large memory and the "‘gl.rr.t brain" of the computer would
give him the ideal machine with which he could.\\\converse on more
than a trivisl level. | ‘ |
Workers :i.n the computer field bega_.nﬁ the compiica,ted
analysis of natural language. Asr‘ time passes, these
attempts at analysis seem to uncover successively mo‘re complex

problems that have definitely impeded efforts to effect natural

-123-

communication between man and his ma.chines. Um‘;il there é:dsts a
mechanism that allows the machine to "understand” man's written
or spoken words! ‘some less ambitious technigue will have to be
provided for such communication. '

The present work considers a particular conversational
mode that is therefore less than i\:.'l.ly i'fﬁ;era.ctive "understanding"
conversation. What is provided is a;' fremework of a conversational
mode with.ehough informational content to engble a maching to
respond "intelligently" in a man-machine interaction. The function
of this interaction is not to "explain" anythiné to the machine,
but to tré.nsi‘orm the information presented to the ma.éh.iné by the
man ir.xto a form that 1s both meaningful to the ma.chizie withl respect
to its own stored intelligence, and a.l.f.o preserves or. infei‘entia].l};
improves the intent of the origiral statement of the man.

This tra.nsfomatic;n is made after the machine receives
| words from the man and then changes or reformulates them within
the framework of the stored information that the machine has at
its disposal. This process of man-machine symbiosis is referred
to a5 an adaptive interaction in the following sections of this’
work. The interaction is a two-way adeptive process because both
man and the machine adapt to each other. The edeptation of man
is to information and its structure in the mechine; the adaptation
of the machine is to the bo.cltgro‘md and current interest viewpoint

'of the man,

-124-

Suppose tﬁatva user 's index set is represented by the letter U and
th '

that the 1 such set would be Uj. Let the machine response bve

Mi. In general, there will be a sequence of requests and responses

in en interaction. If the interaction is I, then:

) I= UlMlUZM?"‘ UnMn . . 41 ‘

At any point of the interacti?n, the response is a function of all

that has ﬁreceded it:

My = £{UM) UaMp.. . Uy) | | L-2

This can be re-written in terms of the present input and the last

response:

My = (U;) + bl _y) Mg = null 4-3

The éyateh that is represented by Eq. 4-3 is similar to the
familiai,feedback equation. The scenario that will be developed
1s one in which the user supplies the first index set, and the

machine after consulting the data set and some internal memory,

» réaponds with a set of its suggested terms. The user then is

allo*ﬁd fo evaluate these terms and by the evaluation, the system
ammends its internal memory, The user‘s reaction initiates the

second and succeeding interactions. In order to ;;;'the stage for
the development of an adaptive systém; it is necessary to consider

the implications of the term adaptive.

P

L P

125-

k.5 Preliminary Definition of an Adaptive System

There is no general agreement on the formal definition of

~what is meant by an adaptive control system; it is generally

' accepted that an adaptive control system is one that is capable.

of noting the environmental conditions that prevail and modifying
the system performance on the basis of the changes it perceives,
The standard notion of an.adaptive control system has been defined
by Eveleigh and is quoted below: |
"An adaptive (control) system is one which is
provided with a means of continuously moniﬁoring
its own performance in relation to a given figure
" of merit or optimum condition and a means of.
mpdiﬂying its own parameters hy closed loop action

\
' 8o &8 to approach this optimum."

After introducing this definition, the suthor cited
three factors that .are essential to an adaptive system:

(1) Identification

(2) ﬁecision

(3) Modification

Identification determines the factors that are needed to
characterire optimum operation of the systen. Decision determines
that & change is needed in the system operation in order to achieve
the optimum operation. Modificution-deterhines how to change the
system parameters to utilize the resulss of the decision. Even
vith these definitions and comments there still is no general

agreemint on the definition of an sdaptive system.

The above discussion is based pr on analogue or

hybrid systems and is not immediately applicable to the case ©
digital computer environment, the reason.being that the computer
is, by its nature, able to modify its cwn process (program) in

order to achieve better system performance. Even such a simple

. digital computer as the telephone central office is able to modify

its mode of opération when it decides that the environment is such

that the system parameters should be changed to achieve the

optimum operation that has been identified as the goal of the

system. An example of this is the "automatic line load control facility
that aliows the telephone system to>accept only emergency calls '

under certain conditions. 1In the casa of complei digital computers,

the adaptive mode is present but obscured by the }luctuations in

the programs caused by outside effects. |

4.6 Habit Forming vs. Learning

The present selection will considbr an example of a system
where the modification is explicit and treated formally. Various
forms of a mechanical'processor that exhibit habit-forming and
learning &ré presented by Gorn. He defines lLwabit-forming and
learning as follows:

| fHEbit;fbrming: A proceas that involves a selection
of one of many alternntives where the selection

i8 more like y to be mede because it was selected

at some previous time.

"Learning: A process that envolves a selection of

one of many alternatives where the selection

yd

is more likély to be made on the basis &R the
results of previous selections." 22
The difference between habit-foming' and learning is that
- in the fbrmer, the habit Is rginforced merely because it has
been chosen. In the latter, learning occurs as & result of an
eveluation influenced by external results. People exhibit both
habit-forming and learning; an exagple from the experience of the
author is presented: . o
If a beginning programmer writes a program in a certain ways;
é;g.,'Wiﬁhout the use of any comments in the code, then he will
probably continue to write programs that way (regardless of the
comments of Lis co-workers), He has acquired a habit. Now if
our tyro programmer is ever called upon to reﬁork one of his
b pleces of code after time has elapséd, i1t is a good bet that he
will learn the advantage of annotated code. If our programmer is
inteliigent, he will learn to mend his ways. Then it can be said
that learning ﬁas acquired in an envirOnmeﬁt.
| ' In order to appreciate the deveiopmenﬁ of the habit-forming
processor,~considerGFig. L-2. 1:After Fig. 4.2 is developed, it
vill be shown how the present\,a'y:sf;em is similar.
In Fig. 4-2, each input is derived from the last output.
The initial output is set by some exterrnal source. At each cyc}e,
& random number is generated and compared with a set of probabili-

ties, ;, where ; is given below:

5' {Ols Pps cee» Dn} _

n
\‘1 - 2 = =

«]28=-

BUTWIOZ-31qeH Teisusd - Z-f ‘I

-~

ou
T-u
ded Rl
.
.nor.héc .A%Md. P TRRFL T
sak
) A
9 -
o ou h
c
d~ d7y eq 1 v
| I d3.0dd
.—..kv - N.O g2k -
ou
" OLY :
L sak

T5a590
*0u WopuUBI
23e19uaD

-129-

Suppose that there is a set of operators Ty, and that waen Ty
Lpperates on';,.the resultant value of 5 is changed so that the

values of p are increased at the expense of the remaining com-
. i

ponents of p. In operation, each cycle yieldé & rendom number r,

the value of which is used to select the next alue of the output

1 .
@, At this time, the associatzd T operator modifies the vector
p . As an example of this, suppose that:

Tlp = sz = OO: = Tna = (pa,p3,coo,pl,pn) ’4-5

and initially » = (1,0, Oy..., O)

This form of the habif former will opératé cyclically.
At each-iéeration,the'value of the i'th.component is set equal to
the value of the (i-1)'th component., Thus ét each interaction the
next habit will be taken., ' Gorn calls this form.of the habit
leﬁrner-th; "turn-taker" processor‘.a2

It is evident why the term habit-forﬁef is applied to this

procassor, The modifications are made based upon the results of

the result of the prevﬁous selection and not on the baq}s of and

external expﬁrienoe. If the T operators were applied on the basis
of experisnce gained, the procagsorlwould exhibit laafning in the

Gorn sense, |

’ In order to see why the learning ﬁrocessor i8 more
desirable than.the'hdbit-forﬁer, one may point out that the éld_

saying "expérignce is the best teacher" is unreliable, because

=130=-

experience without evaluation and/or guidance results in habit-
forming that is non~goal directed. The present system incorpoi'atés
the learning feature in its implementation.
However, there still 15 the function of adaptation that
must be considered.. With.a.n-a.daptation capability, the system is
able to scan what it has learned and from it make a guidance
. Judgment, Thus ,th& adaptive system can be pictu.z_'ed monitoring the

learning system and directing i‘t.. This is represented in Fig. 4-3.

1

! . R
b7 A Working Definition of an Adaptive Process

In the ususl adaptive controi system, there is some
physical quantity that can be used in a mathematiéa.l optimization
process. For m@l&, in a maﬁufacturing process, the cost per
nit item produced can be computed and used to modify the generating

" function. Along this line, the following working definition is
introduced. L |
p Adaptive process: A_proge'ss that can monitor the
| | operation of & system and on the basis of its
_pérformence, provide modifications ‘fha.t improve
operations. |

For each input, an output is produced and evaluated by
the user, The system reacts t§ this eva;lua.tion end "scores' -
itself, determining how to modify the internal selection,pr;cedurd.
The adaptive monitor sits above it all and draws inferences . |

concerning Bystem performence.

4,8 The Final Form of the Adaptive Process

o . The development of the system was undertaken with two -

JI03TUOW aAT3dBPY ue pus BUTUIBST Y4TM ISWIOF

31QBH TBISUSDH - €~ am3g

@

o s . . I3WI0 -3 TqBH
S . 18I9U3"

.. A
p—————3> vorjentesz
L

-131-

requirements imposed:

(1) The system must learn to react to the presentation
" of an index set in a manner that is dependent upon
“the h;story of tlie interaction and in the light of
" the data set at the disposal of the machine.

* (2) The system musﬁ be a.blewada.pti_ve« to infef, from
| /ﬂwa the interaction, general pattéfns and‘propose
,sultable measures to improve the pattern.
~ The \manner in which the system fulfills these two require-

ments is covered in the two sections following.

4.9 Interaction-by-Interaction Learnigg

The system has at its disposal a set of microthesauri
wpon which its decisions are made.. Initially, the system con-
siders all microthesaurl to be eqnal and assigns the same

‘iﬁ positive initial gain to all microthesaurl. .The system employé

“the current value of the score at each stage of the interaction
as a "gain" for computing an inclusion number for each new
suggested term found by the system. To arrive atlthe inclusion
score, the system computes a set of conﬁribuxiongﬁca(td,tk).' .
Each contribution is formed by mulﬁiflying the gain of micro-
thesaurus a, by the waighf of the ordered pair (td,tk) in it,
whera tj is in.%he user's index set and ty is a term yith a

N non-gero waightgﬁ'relation vetween it and tk in microthesaurus a.

s
.
& , : - _
€altyrty) = G (M) « w (ty,%)) o b6
Where: Ga(N) is the gain of microthesauri M_
Q B . ' . .
[ERJﬂ: I - o af'ter N interactions.

=133~

wa(td,tk) is the weight of the ordered

pair -(td’tk) in MB.’ '
ty 48 in the user's index set and ty is

not.

The inclusion score I a(tk) is obtained by summing over

all of the J in the user's index set, Thus

Tg(ty) = gtca-(tj;tk? ‘ b7

In order to be accepted as a prnposéd index term, o' least

one of the "a" values of I, (t)) must be greater than a threshold

'T. Thus, if ty is to be in MN (the N'th machine response) then:

by € Mp=>(E,a)(I(ty) > t) . 4-8

“When the user rea.éfs to the My, new gains are computed.

The gains are increased by some reward R:

Gg(N+1) = G, (N) +R&ES>T, (t)) > T & t, € U (N+1)
, - h.g
For tl'{oaa-:ipm proposed and rejected by che user, the

system reduces the gains by some penalty P:

Ga(l+1) = Go(N) = PE&D I (b)) >T & ty £ U (N+1)
R k=10
Normally tha values of T, R, P, and the initial gain, G,

will be Wtera of the system and are eeslly changed by the

N, =134~

system operator. (See Section 4.12 for implementation.)

4,10 The Interest Profile -

The values of the G, (N) represent & score of the various
microthesauri after N interacﬁions, and they are used by the system
to remembér which ﬁreas of specialization to stress, The set of
gains are considered to be a representation of how theluéer ﬂs
progressing in his search; for it is through the distributioﬂ of
the gains that he is ied to the speciality areas thai interest him.
Thus, the.set of geins constitute an interest profile of the current

user with respect to the current state of this interaction. This

“Interest profile can be observed by the adaptive monitor which

can then given direction to the user.
,Ih Section 1.3, the nature of the adaptive process was
introduced. In the next section, the adaptive algorithm is

developedf

4.1) An Algorithm for Rendering Adaptive Assistance

As the interaction between the user and the system pro-
ceeds; the system -constructs an interést profile of the user,
Concepcually, all of the profileé can be observed as entries in
a table. This is illustrated in Table 4-1. The a'th component

of the interest profile after the J'th interaction is defined as

Ga(3)s The value of & runs from 1 to A where there are "A"
?iprothesauri. The J'th column 6f the table represents the state
of the profile after j interactions, while the a'th row represents
theihistory of the interest felt in the a'th speciality area.

In order to consider the three criteria of Section 1.3,

\

o o O

BSOSO E OO

-l35m

'! GA(L) Gpl2) ...

INTERACTIONS

l 2 J N

B 6@ ...) & (N)

Gp(1) Gp@) .uv Gp(3' Go(N)

G3(2) 63(2) ... Ga(3) 63(N)

lGa(l) Ga(2) oo Gg(d) Gy (N)
;GA(_J‘) Gp (W)

- TABLE &,1 - Table of Interest Profile

\'.

C ~136-

assume that the interaction is If and the components of the profile
are arranged in decreasing order of magnitude.

Iet this sequence of descending magnitude be G:

Where: tnere are "A" microthesauri.

(M) =G, (M) =ged 20 ‘ k=1 to (a-1)
k+1

e
The tendency for the intérest profile to centrali;e is
established whén in the sequence G, first a small number § of
profile components exists such that the differences between then
‘is small, and second there is a large difference between the lgst
profile component in the set and the first componanf_that is next
in G. Symbolically:

1) & S Dy for ell k b where: D)< <D,

2) by =Dy o 5 < Dy
L.12

Naturally the tendency for no centralization in the
ipterest profile is recognized ﬁhen after N iterations, the above
conditions have not been met; there then will be no lhrge spread

in the differences. Symbolically:

1) D

1 < B8, <D, 413

An oscillation in the set of microthessuri included in-

the high interest group will show the changing interest of the

-137-

user. Since the deletion of members from the high interest group

is taken as a positive sign concerning the course of the inter-
action, the inclusion of new members 16 to be taken as a negative
sign. Since it is possible for one microthesaurus to be dropped
from the high interest group and another added on the same inter-
;ction, the test for this condition requires that the identity

of the members of the high interest group be known. The implementa-
tion of this wouid involve denoting the microthesauri in thé.high |
interest group in the interest profile. Then after the conditions
of Eq. 4-12 are satisfied, and a high interest group has been
formed, any new additionlof a microthesaurus to the group should

be pointed out to the user.

4.12 An Extension to the Adaptive Algorithm

In many applications of information retrievel not only
must one ascertain the extent of interest a user has in anykgiven
field of interest but it is also helpful to determine to what
depth this interest extends. To some degree, the amount of
interest can be determined thrbugh an examination of the terms
employed by the user, In ordef +o measure this qepth, it is
ebsolutely necessary to have prepared a structured classification
of the terms that gives a generic-specific relationship between
the terms in the syspem vocabuiary. If this information were made
available, then the technique of evaluating the depth of interest
would be simple. Every time a term is rejected for a more detailed

term or terms, the interest profile component in that area would

also have its depth value augmented; ‘The profile components then

_138-

would be constructed of an ordered pair of numbers, the first
giving the value of the profile gain and the secoﬁd giving the
level of specifity. It must be emphasized that the useful develop-
ment of such a technique would rest squarely on the data base,>and
there is not agréément among workers in the field as to the validity
of generating a generic-specific table. 1In defense of the above
technqiue, it may be pointed out that the user need not be aware
of the system's viewpoint of the generic-specific relationship

of any term pairs. The main force ofgthe technique is that it is
to be used on an averaging basis and does not need to rest on the
validity of any one term pair. Continuing research4at MSISL has

shown the validity of generating the generic-specific classifica-

tions automatically. These are discussed below.“

4,13 The Implementation of the Interactive Process

Tﬁe interactive process has been implemented -on the
Universisy of Pénnsylvania 7040~ PDP8 computer.complex and the main
progréﬁs are written in 16 programming language. The use of
16 and the set of programs that are used to perform the house-
keeping functions of the system are discussed in Appendix A.
Figure 4-4 is a copy of an actual interaction. The VECTOR editor
program for the PDP8 computer was employed. The interaction
proceeds when the 15 program requests the user to ENTER»DATA. "In
this case, the user replied by typing TAPEIN < >. The sSymbols
"<" and ">" are the VECTOR editor's END OF MESSAGE signal, "EOM",
and the messgge is sent to the 1£ program in the TCUO computer.

TAPEIN causes the set of microthesauri to be read into the TO4O

~139~

STANDBY .
ENTER DATA
‘ TAPE IN<>
TAPEIN
ENTER DATA
PARAMETER
REWARD
4<>
PARAMETER
ENTER DATA
| SET
OPERATING
SYSTEM<>
SET
THE FOLLOWING WORDS ARE YOUR INDEX SET
OPERATING |
SYSTEM
THE FOLLOWING TERMS CAN BE ADDED TO YOUR INDEX SET
ATLAS
< MODULES
PRINTERS
TRANSMISSION
TURNAROUND
ONL INE
COMMAND
MONITOR
T INE=-SHARING
DO YOU WISH TO ADD MORE TERMS

o _ " Fig. b-ba - A Semple Dialoéue

-3140-
ENTER DATA
YES <>
ENTER DATA
TIME-SHARING
COMMAND
MONITOR<>
DO YOU WISH TO ADD MORE TERMS
ENTER DATA)
NO <>
ENTER DATA
SET<>
SET
THE FOLLOWING WORDS ARE YOUR INDEX SET
OPERATING
SYSTEM
COMMAND
'MONITOR
T IME-SHARING.
THE FOLLOWING TERMS CAN BE ADDED TO YOUR INDEX SET
TURNARGUND)
ONLINE
DEBUGGING '
INTERRUPT
SUPERVISOR
'REAL-TIME
* BATCH

EXECUTIVE

) Fig. U=lb - A Sample Dialogue
(Continued)

~141-

DO YOU WISH TO ADD MORE TERMS

ENTER DATA | |
YES<>
ENTER DATA

EXECUTIVE
SUPERVISOR <>

DO YOU WISH TO ADD MORE TERMS
ENTER DATA

NQ <>
ENTER DATA

PARAMETER
PROF ILE <>

PARAMETER
PROFIL
2023001
200¢c20

| 2006002

Fig. 4-bc - A Sample Dialogue

(Continued)

]l -

ENTER DATA
TEST<»

TEST

THE FOLLOWING WORDS ARE YOUR INDEX SET

OPERATING SYSTEM

COMMAND

- MONITOR

T IME~SHARING

SUPERVISOR

EXECUTIVE

ENTER DATA

PARAMETER
PROFILE<>

PARAMETER
. PROFIL
000005
200005

2{'2005

Fig. 4%4d - A Sample Dialogue
(Continued)

~143-

ENTER DATA | .
SET |
OPERAT ING
SYSTEM<>

SET

THE FOLLOWING WORDS ARE YOUR INDEX SET

OPERAT ING \ |

SYSTEM

THE FOLLOWING TERMS CAN BE ADDED TO YOUR INDEX SET

ATLAS ' !

MODULES

PRINTERS

TRANSMISSION

TURNAROUND

"ONL INE

COMMAND

MONITOR

T IME=SHARING

DO YOU WISH TO ADD MORE TERMS

ENTER DATA

YES<>»

-

Fig. b-4e - A Sample Dialogue
(Continued)

ENTER DATA

TRANSMISSION
.MODULES<>

DO YOU WISH TO ADD MORE TERMS
ENTER DATA
NO <>
ENTER DATA
SET<»
SET
THE FOLLOWING WORDS ARE YOUR INDEX SET
OPERATING '
 SYSTEM
'MODULES
TRANSMISSION |
THE FOLLOWING TERMS CAN BE ADDED TO YOUR INDEX SET
ATLAS,
PRINTERS
TURNAROUND
ONL INE
PARAMETERS
1/0
'DEVIGES
REG ISTER
S IMULAT ION
DO YOU WISH TO ADL MORE TERMS

Fig. W-Uf - A Sample Dialogue : LJ%g’
(Continued)

-1l

ENTER DAT
YES«<>
ENTER DATA

o
DEVICES<>

DO YOU WISH TO ADD MORE TERMS
ENTER DATA
NO<>
ENTER DATA

PARAMETER
PROF ILE<>

PARAMETER
PROF IL
000616
600001
002001
 ENTER DATA
TESTe>
TEST
THE FOLLOWING WORDS ARE YOUR INDEX SET
'OPERATING ‘
" sysTeM o~ : S '
o L U - o 4
MODULES
A TRANSMISSION - o
o |
DEVICES | B
oo)

Fig. 4ol g- A Sample bia.logﬁe
' (Continued)

-+

~146~

<

and the structurehio constructed*, The.I6 echoes the function to /
show what is being performed in the system,
‘ After completing the construct;on of the ;icfothesauri,
the system. again types ENTER DATA, This time the user types:
" PARAMEIER |

REWARD

b <>
This function seta the level of REWARD pe ueter to &, and ‘this
18 how much the interest profile will be augmented for each
accepted term. The user then initiuxes the interactive dialogue'
by typing SET followed by the proposed index terms "operating'
and "system". The.system given OPERATE and SYSTRM as the index
terms will, after consulting the micfothesoﬁri,‘propoée the set
of terms that can be added to the indéx‘set; - Since this is the
"firaﬁ stage of interaction, the values of the interest profile are
all the same (they are all set to 00000S).. The first four terms
guggested as poasiblo additions were derived from the hardware |
microthesausus. ,TURﬁAROUND came from Both the software aid
applications microthesaurus, and the last four terms came from

1
the software microthesaurus, There is no‘implied ordering in the

" For the data of the present stage of 1mplementation consisting “
of sbout 800 terms and 1770 entries in three microthesauri, the
time elapsed to read the 1770 entries from tape end construct the
three microthesauri was about 100 seconds. The might give insight
into the running speed of the L6 system. In general, for the shorter
functions there i5 no appreciable elapsed time between ‘he entry of
the function and the printing of the results. It would seem that
the madqﬁnprocessing limitation is the data link between the TOLO
and the PDP8 to the teletypewriter. The employment of & CRT dis-
rlay and a high speed data link would speed up the process.

.

types YES.

-1h7-

tewms within a speciality. The system then asks if any of the
suggested terms should be added to the ir®.x set. The user then
In the example, the usér included three of'the suggested
terms in the index set. They are TIME-SHARING, COMMAND, and
MONITOR. They may indicate that the user is interested comand
monitors or caperating gystems for 8 time-shariné envirflv;);:‘nt,
The wser wlshes to continue}' the interaction and signif&s-this
by typing SET < > to indicate that he does not choose to add any

more of his own terms at that time. Again the system prints the

" current ind."ex' set which now includes the new terms as well as the

original ones. The suggested terms that are now proposed by the
system are of‘.a. different character and seem to be rela{:eq more
nearly to the subject of the present example, None of the hardware
terms is suggested at this time, sﬁowing that the system has
learned that they are not of interest to thé.user. The user then

chooses two synonyms of Opera.tiné Systems EXECUTIVE and SUPERVISOR.

Thesa synonyms were not strongly enough related to the o;:'igina.l

‘set to be included in the first stage of interaction; but after

the profile was modified and the additionallterms incluc_led,' they
were discovered hy the system. '

The user then requested a PROFILE of his request. The.
result shows that¥the gain .fqr the area of hardware is reduced to
one, softare's has growm to "20, and application's is reduced to
two. The final function of TEST < > produces a listing of the
final index set and restores the system to the initial conditions.

o

~148~"

The ﬁser then requested a profile to verify that it had
teen reset., The next interaction repeated the same initial
index set only this time the hardware terms "TRANSMISSION" and
"MODULES" were selected. The dialogue proceeded to the conclu-~
sion. The final profile is now given as 000016, 000001, and
000001 in hardware, software, and applications,

-If at any time, the user proposes a word that is not a
term in the system vocabulary, then the system will turn the word
back with an ‘appropriate comment. All terms that are proposed by
the s!’yStem and rejected by the user will reduce the effect of
the microthesa.urusAtha.t generuted the term. The user is free to
add terms of his choice to the index set at ea:_ch stage of the_
interaction. He may also eliminate any terms from the ix}dex set
by typing:

term < > S

If a term that is no;; in the index set is the argument of
& DELETE function, then DELETE will fail and the system will .type
an appropriate comment. Deletions of terms ﬁ‘om the index set dou
not affect the state of the interest profile.

At any point tha.ﬁ the user is in control of the system, he
may employ any of the system ﬁmqtions. The interaction proceeds

from one execution of TEST to the next.

-149-

The technique used to identify interesting words was selected

after numerous discussions at the Moore School Information Systems

.Laboratory of the properties that interesting and uninteresting

terms should possess. Because this method had never been fully
verified, subjective changes were maae in the list of words chosen
or rejected. VWith the pltimate aim of clumping in mind, it was
decided to eliminate any word that occurred in more than 6-7% of
the document;. Additional changes were made solely on the basis
of the author's subjective judgement.

In the above discussions, the-wofd"word' was used rather
loosely. Because many different words referred to the same con-
cept (e.g., computer, comiuters), these éoncepts wére identified
and the statistics were computed for éach 'merged group' of words.

At the end of the“selection prccess, 809 words had been chosen

and they comprised 406 groups.

4,1% Clumping - The Techniques Considered’

Numerous methods for clumping have been deséribéd in the
literaturé; some as early as 1958. With the approaches varying
greatly from one to the next, a careful comparison of techniques
was required. - _ .

Five madér conside;ations determined the abplicability of any
method. They were: ‘

1} Type of data permitted,
2) Programming difficulty,
3) Amount of memory needed,
i) Operating speed, and

5) Relevance of results for intended usage.

[¢]

-150-

In theif article, Dale and Daletl] describe a method which
enticipates a data base of key words--words representative of a
field and chosen independently of the particular documehts in the
data base. Associated with each word is a vector with elements
of zero or one. A nonzero entry indicates the occurrence of that
word in the corresponding documen£. The number of ones in thé
intersection of their vectors determines the association of two
words and is called the "connection" of the two words. The "bias

of a word to any subset" of key words is defined as the total

" connection of the word to all members of the subset, minus the

total connection of the word to all nonmembers of the subset (it
may be positive-or negative). A subset is a clump if all members

of that subset have a positive or zero bias to the subset and if

all nonmembers have a negative bias to the subset. In short, a

clump is a set of words whose members are more highly related to

- themselves as a group than they are related to the nonmembers of

a group, and whose nonmembers are more highly related to themselves

than they are to the members.

Three basic objections to this technique seem apparentw The
subject vocabglary which concerns us cqmes from the text of a
collection of abstfacts and is thus quite different from the key
word vocabulary which the above technique anticipates. Perhaps
a major redefin&tipn of the connection measure would solve this
probleﬁ, but this could not be decided without much additional
study. ~he:-machine time needed to run the clumping program for

all interesting initiel partitions seems extremely high. Possibly

-151-

the most crucial criticism is that even when the clumps are refined,
they still overlap greatly and are therefore of little use to us.

Investigaﬁors at the Cambridge Language Reseﬁrch Unit have
adopted a different apefoach[u]. Object-property information is
processed to form a 'similarity matrix'. Subsequently, this
matrix is’manipulafed to identify groups of objects sharing
comﬁon properties.

Input to this technique consists of properties, each followed
by a list of objects possessing tﬁat property; no mention is made
of words, documents, etc. The similarity of two Sbjects is<defined
as the ratio of the number of properties they share to the total
number of distinct properties they possess. A cohesion function
determines when clumps have been formed, & clump being a local
minimum of the cohesion functioﬁ. If SAB repfesents the sum of
the sim?larities between members of A and thoce of B, and C is

the potential clump, and C its complemént, then one of tl e suggested
(scc)@

] SCC x SCC

"coherence", the extent to which clump members are interrelated.

cohesion functions is given by . . This measure emphaéizes

To emphasize "separate.iess', the extent to which clump members are

o scC (Nc)2 - NC
distinct from the remaining objects, &g X SCC is the

recommended cohesion function, where NC is the humber of objects
in C. The clump finding algorithm consists of an interative scan

of the object list to see whether shifting an object in or out og//
’ /!

/

the potential clump will reduce the current value of the cohesion
function. This process must terminate in a stable partitién of

the object universe. If the total number of objectg/ié not too
o . /

-152-

large,Aeach object may be taken as a p?ospectiVe clump and we may
attempt to grow a clump around it. Another possibility is to
select pairs or triples of highly connected elements as starting
groups. . | '

Rapid identification of clumps (one every 1.5 seconds) makes
this method highly desirable, ‘The freedom to choose a cohesion
function which allows the coherence and separateness coqponents to -
bhe manipulated independently is also & significant factor. Certain
clump;, however, seem likely to be missed entirely as the search
sgréﬁegy is order-dependent. Careful consideration was given to
‘.QAapting our data to the input form required but the concept of
properties possessed by data elements was still inappropriate to
the problem at hand. This difficulty alone was sufficient to
exclude the above approach to the clumping task. The distinction
between separateness and coherence re&aius valid for other
techniques and should_be'considered when analyzing them. -

R. M. Needham, also a member of the Cambridge Language
Research Unit, describes another technique[6]. The particular
problem of how to identify a term as a suitable subétitute for

another term in a retrieval request forms the basis of his
approach.

A measure of association between two words, the connection, !

is defined as the ratio

Number of documents in which the terms co-occur
Number of documents in which at least one occurs

The N by N connection matrix A, where N is the number of words,

153

has as its entrie§ the appropriate connection velues. By conven-
tion, diagonal elements are set equal to zero. An N;vector G,)
with elements of ¥ 1, specifies a group of terms, +1 denoting a
member of the group, -1 a nonmember. A clump is defined as any
subset of terms for which the sum of the connection of any member
to all other members exceeds the sum of its connection to all

nonmembers, and for which any nonmember's connection sum to all

other nonmembers exceeds its connection sum to all members. (See

Figure 2.)

The uwniverse

-

B of terms

Figure 2 - a clump \

A is a clump if each a is more closely
connected to all other a's together than it is to all b's
together, and if each b is more closely connected to all

other b's than it is to all a's. 1

~154=-

With i;denoting a vector 'all of whose elements are +1,

cohesion is defined as the ratio

()
()

the transpose. A clump is a local minimum of cohesion, that is

where the prime indicates

1 [

'A
'A

|
<3t | <t

'A
'A

<t | <38

+

moving any element into or out of the clump increases the coheéion.
Starting from some initial partition of the universe, specified

- by 6, each element is tested sequentially and is transferréd
'whenever such a movement would decrease the cohesion. The cohesion .
does not have to be computed at each stage. Let Aa = RU where R

is scne diagonal mutrix. If any element of R is negative, we make
it positive by reversing the sign of the corresponding row of U.
This forces the other'elemeﬁts of R to be changéd, but each such
step reduces the cohesion until a clump is found.

Eventually, the sanmple size will cause.aQailable core storage
to be exceeded, even in the largest machines. Although this
problem is avoided by storing the connection matrix on'magnetic
tape, the running time remains very reasonablé.

As is the case with every technique discussed so far,
ﬁhcre is no guarantee that all clumpé will be found.

' Thg article gives no indication of the extent to which élumps
overlap; without such information it is somewvhat difficult to
evaluate this method. P

The only major objection to tﬁis technique, and it,is*relative
to the oéhefs considered,-is,that the actual algorithm of this

technique fails to make sense intuitively. 1In some of the other

-155-

methods it is easier to see th; role each step plays in 1deﬁtifying
closely knit groups. If a better technique were not available,
this objection could be ignored.

The last teéhnique, developed by Stiles and Salisbury[7],
consists of "growing a clum'” by adding one element at a time.
Initially, the vocabulary is divided into a two member group and
its complement. A rather simple and direét method may be used to
identify the starting group. At each stage in the clumping pro-
cess, that member of the complement yielding the highest value
of the measure which the authors‘specify is added to the existing
group to form a new one. This process is repeated until no new
word seems to fit in well with the current clump. A new
starting partition is determined and the search for the néxt
clump begins. -

A matrix of the correlation among all words in the subject
vocabuiary 1s needed in selecting the initial groups and in
deciding when a word éhould be added to the present clump; The

association between words i and J is given by:

D
(cg4)D - (Cy)(eyy) - 7/2 =

Aid

\/Alcii)(cjj)(D-Cii)(D-CJJ)

where CiJ is the number of documents in which 1 and J both occur
(1.e.; co-occur) and‘D is the total number of documents. Cyy is
Just the n:imber of documents in which word i occurs.

| The.measure used to determine which word to add to the clumﬁ

is called the B-coefficient and is defined as "100 times the ratio

~156-

of the average of the interéorrblat?ons among the variables
within a group to their average corrglation vith-all remaining
variasbles” ¥,

Three hypotheses must be satisfied Cor this'techniqué to be

epplicable:

1) The vocabulary must have a common factor;

2). Thereﬁmust exist at least one group of words S which
possess some common property not éhared by the |
remaining words;

3) ‘Given a method of measuring the association between
any two words of the vocabulary, the association between
any two menbers of S is higher than the association

" between any member of S and any nonmember.
T~ 3 It was immediateiy apparent that our data base satisfied
r the firét two hypotheses. Satisfaction of the third requiremenf
could n;t be verified, but intuitively it would have‘to be at
least partially'satisfied if the concept of’clumps werce to be at
\ all meaningful. (Results did inceed verify this initial faith.)
\ | The results obtained by the authors appeared to be appropriate.
| for our intended use.' Programﬁing this technique promised to be
very straight forward so long as the entire association matrix
/// ' coﬁld be stored in core. Using nuxiiiary menory would drastically

* increase opevating speed.

A * Ref. [7], p. 5.

_157-

Intuiﬁively, this teéhnique made as much sense or perhaps
more than any dther.. Thus, devising a technique to fit Ehe bulk
of the association matrix into core appeared tc¢ be the main
problen. Storing only non-zero elemnents, using auxiliary tables
to keep track of the coordinates and taking thé lowest values to
be zero, permitted most of the matrix to be stored in core.

This techniq&e satisffed the five requirements listed previous-
ly. Together with its intuitive clearness this fact accounted
for its being seiect?d. , v. :

G
4,15 Implementation

A clumping technique using the B-coefficient was implemented

on an IBM TOUO computer. Time considerations required that the
entire 406x L06 association matrix, AM, be stored in core;
however, only é3,000 memory locations were available. Storing
juét the 25,000- non-zero entries éffered some help but each

entry appeared to need two_coordinates (rowv, colurm) to identify
»it._ Noticing that for entries from a given row the first ‘coordin-
ate was always the same, we;found a way to reduce the core
‘required (by almost 33%) by eliminating this repetition. In-
addition to a main array, A, two auxiliary arrays were used ﬁo

] .
store 1) the number of non-zero entries in each row of AM and,

(&

?2) the starting position within A of all information relating to

a given row of AM, : v

This approach proved sufficiently useful to warrant further

explanation. The 2-dimensional association matrix, AM, is

-158- '.

stored sequentially in the l—dimensioné,l array -A. Corresponding
vo each non-zero element in AM, a double entry is made in A
consisting of, the coordinate of the colunn in AM followed by the
‘actual AM entry. o second array, STAKT, contains as its ith
elenient the sta.r%ing location within A .lof all information Yrelating
to row i of AM. The ai‘ray NUM contains in a sim'ilar fashion the
number of non-zero entries in the corresponding row of AM.

Consider the following example:

AM

To find AM(3,4) from A, START, and NUM, we first get
START(3) and NUM(3). Secarching through NUM(3) pairs in A
beginning with A(START(3)), we either find the number b in vhdeh

case the next location in A contains AM(3,4) or if we do not find

|
it, the walue nmust be zero.

* x’ "

~159-~ -

- ’ N , * 1

1

The following chart shows the difference between the three

methods. AM is assumed to be NxN; K% of the entries are non-zero.

Storing, Storing Storing
. All AM Non-Zero Elements HNon-Zero Elements;
Auxiliary Arrays
- T2 ' .2 2

General Formula N (.03K). % N (.02K) xN +2N
Our Data Base 165,000 74,000 . 50,000

N=406, K=15 ‘

Typical Future Case - L4 ;000,000 1,200,000 . '80k,000

N=2000, K=10 -

Table 1

Nﬁmber of Core Locations Needed

Since our original matrix is symmetric, only entries above or

below the diagonal need be stored regardless of which method is

selected. However, implementing this promised to increase the

' programming problems and the running time. We decided to store-

as many non-zero elements (from both below and above the diagonal)

. as space permitted. This required setting all entries below a
' certain value equal to zero. In the future‘it seems desirable to
; o ‘
write the clumping program to take advantage of the symmetry and

- store %nly elements from below the diagonal. Results to date

indicate that the extra operating time could be afforded.

The B-coefficient was defined as: "100 tlmcs the rutio of the

average of the intercorrelations among the variables withir a

“gpgup to their average correlation with &ll remaining variables".

160~ .

)

With AM(Vi,Vj) denoting the correlation between variables A and

\' G'representing the group, and G its complement (for a total

j?
of N elements), we can express the B-coefficient aé follows:

Z m(vi,vj)/(k(kll)/é)

M B

B(k) = 100 1<j
N
AM(V,,V,) /k(N-k)
J=1 f=k+1 J
where Vch ' J=1,...,k=-1
Vy G L=k+l,...,N

and Vk is the prospective addition from G to G.

Denoting the double sum in the numerator by P(k) where k
indicates the element about to be added, and the double sum in
the denominator by T(k) we can significantly reduce the number of

calculations necessary at each stage as follows:

k,
P(k) = & f'"'<j AM(Vi,VJ) (1eavihg out AM(Vi,VJ-)
o from the inter-
k-1 k-1 !
5;’ :E: :g: mediate steps)
o = 2, + < : . : t o

. ﬁ J=1 .ifj (3=k) i=1

(]

P(1-1) + AKG(k)

g k=1
..‘ . -\.)' i
where ARG(k) = ¢ : AM(V),V;) is the total association
i= L
. (A) of the prospective addition (K) to the group (G).
. 5

@

-161-

]}

T(k).

K N |
:E: ji: AM(V4,V4)
J=k+1

"i=1

[
]
H
—~~
H
1
-~
e
c . 1.
il
‘_—l
[
i
H
Py
[
il
2
e

1 k 1 k-1 N - k-1

k-1 N - -1 -
B DR)
i=1 j=1 =1 J=2 i=1 §=1 - =1 (i=k)
| (3=x) (=x) (i=x) (§=x)
. ,
| —
k-1 N k-1 N
= Z 22 Z (using AM(VK,V) = 0)
i=) J= i=1 . =
(J=k) (1=ﬁ)
= T(k-1) - 2 AKa(x) + AKT(k) A
where AKT(k) = EEZ .AM(Vk,Vj) is the total association (@)
J=1

of the prospective addition (h) to the total (T) collection
of elcments, '

B(k) can now be expressed as

'QOQ(N-ﬁ) P(k)
(k-1) T(x) ' : i

where P(k) = P(k-1) + AKG(k)

and T(k) = T(k-1) = 2 AKG(k) + AKT{k).

-162-

Instead of computing 2 double sumglat-each stage, we must perform
a few imhediate calculations plus some simple updating when an
element is aetually added to' G (assuming we store P,T,AXG and
AXT). A quick calculation will show that for each clump of 4O
members over 100 million additions ﬁill be saved, a significant

and necessary reduction even on the fastest computers.

The association measure as described earlier was rather
clumsy to use. Noticing that the number of documents in which
words occur is much smaller than the total number of documents,

we may write

C..

Ay ,
vV C.. C :

’ 1

1733

where Cij’ Ciis ij have the same meaning as before.

4,16 Results - ' o

It was our intention to experiment with different association

measures and we in fact tried:

. c
1) Aid = 1J 4 (approximation to Stiles' measure)
ACRICN) |
c
i
2) A* J

13 f maximun (Cii’cjj)

- C
. 3) A** = : ij\ ~
' 13 - mininun (Lii’bddj

The latter tﬁo were chosen in an attempt to bracket all likely

association mcashres. (A1l likely measures were expected to give

-163~ °

values .between A** apd Ax,) Most other measures could\bé-produced
by combining these two in varicus ways. According tov;n article
by Jones and Curticetsj, A*¥ would emphasize particular térms while
A¥% would emphasizeigeneral‘terms. We did not attempt to verify
this because éf the nature of éui data_base, i,e., its being spread
out over many subareas. This.is sufficiently interesting to
warrant further investig§tion. It would be wrong to draw any
concdusions on this~subject from the clumps included hére.
Using the.B—coefficient to clump, we obtained the results
' shown below (Figure 3). The first four words are highly related
to one another but there are‘some vhich have been suggested as
membefs of the clump yet dq not appear to be related to any other
member of the clump.. Table 2 may provide some insigh;'into vhat
has happened. -Apparéﬁtky, words with a ﬁmall“total association
have been added to theqélump even though they have a low or zero
_associaéion Qith it.
It would be helpful at this point to consider how a word
may be added to an existiné clump: | |
1) The'word.has a high associstion with the clump (and
a small association with the complement).
2) The word has a small total association thereby giving
avlargg value to its EQcoéfficient,'independeﬁt of its
association with the clump.

A small total assuciation indicates that we do not have-enough’

information about this word to properly pi&cetit in &ne clump or

I}
n

-164-

Benzophenone 100 A33 Lo 23
Ketyl , 100 33 Lo 23
Transient 33 33 25 T
Triacet;t.é ko ko 20 15 20
Disk ‘ ’ .25
So\liration / 20 033
Species 23 23 T 1?
Adiabatic 20 . 33
Log | | o
Acetyl | 20
Soil
Thermocouple
Landing .
Ablator
Prefabrica#ed

Figure 3

| i
Association Matrix #1 using A;J

Without Total Association Criterion

20

“ Note: The words are listed in the order in which they were .

added to the clump.

~165-

Benzophenone | 25000 | Log 400
Ketyl 25000 Acetyl " 7400
Transient 15300 Soil - 600
Triacetate 20600 - - Thermbcouplg 1000
Disk 7900 . Landing 2100
Solvation - 6800 Aﬁlator 2400
Species I 23900 prefabricated = 2500
Adiabatic 18600 "
Table 2

The Total Association of a word with the entire

vocabulary, i.e., the sum of the association of

a wprd with all other words,

-166- .

another, One might be tempted to use a word's frequency to
determine whether to exclude the word; however, a group of léw
frequency words could still be meaningfully clumpgd if they always
occurred in the same abstracts. Therefore, we decided to exclude
.all words whose total association was less than 1/3 the maximlm
total association of any word.thereby reducing our vocabulary
By 33%. The exact fraction u;ed wa.s chosen somewhaﬁ-arbitrarily.
A small change would only effect borderline-words;”thus the choice
does not appear critical. Except for the association matrix which
led us to introduce the total association criterion, all of the
others have already tﬁken this criterion into account. The effect
can be seen by comparing Figure 3 with Figure b . |
" A word with é high association to. an exisﬁing'clump may noﬁ
be added to the clump if the word has a high,assaéiafion with the
complement. For sofle purposes this is a degirable restriction,
but not in our case. To correct this; we introduced a modified..
B-coefficient. Using the same notation as before yé novw have
T(k) = T(k-1) + (AKT(X) - 2 AKG(k))/H. In the results vhich
follow when we_ talk about the modified B-coéfricient, ve will
vmean a valﬁe of H=3.," An area fof further investigation would be
to determine whether there are a number of most desirable values
for H, each cne corresponding to some distinct‘type of clump}ng.
Figures 4 and 5 show the effedt ol the modification in the
B-coefficient. Iﬁ Figure 6 we see that changing the assqciation
wengqre fo Aij did not have‘any significant effect, while using

measure A¥* produces the same initial clump but leads info a

id

(ol

" X998 POSSNOSTP aq TTIM 2ampsdoxd Jjono y *, sAIDH4S.

199ge dojs £1qeqosd prnoa dumTo ay3 ‘3oey ul (dumTd ay3 03 sTUOTaq pIom AIoAd 0§ 940K

UOTI99T4) UOTYETO0SSY TBAOL UATH L4V BUTSH T# XTIIEH UOT4E[o0SSY - # amITd

oz 92 o2 - a " 9 o . . mnaWoaﬁm
oz 0z 92 9 9 9 o e _. Teoy
92 o2 e A. . owerts
0z 92 e A #T 1T _ | o o _ unsse3od
Al - gt at Al B | , B uotydiog

9 . gt el A .n . “ . opTuy

!
-167~
No]

Wt et 2t T 4T | | uweqoerozde)
9 i : 13 SR) nToTmom . £edaq
A | 4T - T

4T o | 5T9eqETEY

9 L .v Lo st L €€ g | so100dg
| | | oz <t o of " aqeqeveriy
T L €€ €€ JuasURy
T gz oq s . oot| - Thew

v HH. : €gg of €€ o0T auotusydozuag

=168«

. ﬁ.ﬁ . . . , . . T
FUSTOTIFB00-E PITITPON LV BUTSN Tff XTIFWW UOTBIO0SSY ~ g oIy -

6 g S 9 | 5 s s | e
6 S L L g €T ¢ g ., . mwodsn,mmu.,
wt Lz 9 e WQQMhMcH
0c 9 6 { | 1 : moc.mppOmp<.
oz 6T o0z 9T s s A 21303dg
9 6t oz 2t L8 ot 5 9 TeOTpRY
0z o2 o2 L S . _ | | uoJ30eTH
6 9T =2t og 9 9 ’ 9 9. H 9 pogeTpesl
.o 3735qeTDY
s g L 9 Ty ST Tt | 4eosq
R s ot s 9 . L L ost 2 e soroedg
it L - £e £e JusTsuURIy,
9 o2 1 S o: o | 9383208 T]
Mm99 m &2 g o oor| e
q i 9 9 R & G ot | % \. of ., 00T suousuydozusg -

-169_'

6T

LT

A

0T

ot

01

61

€T

0T

LT

Te

€T

0T

Tt

22

cc

JUSTOTIFe0D -4 PITITPON FFy Suysn T# XTI3EW UOTFBIO0SSY - g omIBid

LT

8T

9T
g1

6T

61
61

"

8T

cc

Tec

61

72
72

£t

Te

€e
€2

€T

0T

e

Te

0T

gt
T
€z

3 A4 d 4

€T

A

1%
9¢

Oc

Oc

€T

o1
L1
e et
mw
8
-8
8
8
TET
8 #I 9T
9t ST
gT 6T &t
gT 61 €€

61

€T

Tt

1

. 9T

2
8h

R

3 % A8 H

1S

1S

0T 0T

]
61 61
e 42
Hm: 12
ST st

o
0z o2
8T = gt
6T ,ma
2% WM_
o 8n
15 HW

00T
00T

TAy3emAtod
33eIH

. @OUBQICSQY
Keoa(

- TedTpRy
=I1303dg
uoxq9aTq
paseTpeda]

meAsAHNU//

J10T0D ////////

.unwﬁmcdpa
89T09dg
27B83808TI],
T Y

auouaydozusg

-170-

£t _, . C
%%V BUIST T# XTIJEW UOTFBTOO0SSY - L 2Tty

on 0z 99 00T . LE o 02 _ .pcmswE
. of of 99 00T Of 0z . ﬂ | o - oq SUTPTIAL
og Of 99 00T 02 | - o2 . 22 _ uaB0I3 TN
9 9 99 oot 99 o | 99 | .oweussmoxymy
0GT 00T 00T 00T 00T | | | 00T Ttéudesotap -
o 0z 99 00T th 92 K#E ,3 of 00T ..oo,h e : ®I1309dg |
w . e Coge €€ | feoaq
02 9 M ._,\,Jm of 2 9 9] - uoaoeTd
| € ee 4 o St 99 99 U .| pereTpeII -
o2 | 00T st 99 99 st | °SOTATT2D
o . o on oot | on or 99 99 on 27e399w7
Lg | o € 99 99 Lt | . z010n
ot gz ot .ot on €2 . 00T 00T m_.m._ sereadg | ¢
00T. €€ 120 99 99 99 99 00T 00T 00T T433)
Ot €€ 99 99 99 P9 N 00T 00T . 00T suousydozuag E
02 o 2 99 00T &2 g1 st oy Lt g2 oot oot | Sﬁaﬁmmﬁ‘

-171-

completely different one (Figure 7).

Before we can determine{%hich ﬁeasure givee the best results
we must'eoswer.two questionr:

1) Hoﬁ do we identify a clwap?

2) How do we judgé the quality ol a clump?

As discussed earlier, a clump is a set of worde wvhich are highly
related to_one another. Some ,of theee wordsgabuf ;ot ali, may oave
a high association with the complement. Stiles and Salisbwry used
the ratio o# the‘current B-coefficient to the previous one to
determine where.a cldﬁp‘ends, but éheir results with this method
‘aod our own results indicate the need for another technique.

If the vocébulary were dlvisable into non- overlapping perfect
clumps and if the rords were ordered sueh that all vords in cluip
one cane first ete. (as the clumping procedure vould order them),
the associatlon matrix would be bloch dlagonallﬂed (Flgure 8) &§7{
with each‘block being a clwip. In reality, sowe mords belonrr 1n -
_more-thannone cluwp and some members of & clomp may not be relatedt
to every other member (i.e.,-some asterisks;wodldbrepresent ZETO
entries)._ In Figure.9, we see two clumps'(ooe donsisting of
'-. wé, WS, W6, W7, and the other of WS, W9, W10) linked together by
Wl; W2, nod Wi, If there had oeen”hore overlep betwveen the two-
olumpé we wouid ﬁave identifred then as a single cluup.

The mewbers of a clump should form'a square block - with a
. smdli4perccntage of zero entries. - Except for ﬁhose,words whioh
also belong to other lamps, the words in this clump ehould hare“

little association with other words. This technique is a visual

[N

~172-

R ¥
LR o

L2 o R &

*x T KR MK

R AR
AR S *
Lo 2K S

Wl *E X W R >
cd

W3 *E K EE T)

Wh R R 3 >

ws KR KR E 2)

WS W - ®k e e

w7 L. I ‘
. r"

w8 *h S S ;

W9) - *%

" w1o N ™ e e R

Figurel9 -~ A Typicel Associstion Matrix Where 2

Clumps are Linked by a Few Words

", NOTE: ** represents non-zero values,

[

. =173~

one andléan-be readily applied after having the clumping program
produee.a greph of the association matrix. In-Figure T, we would
include all words through SPECTRA as.members of the clump.

ABSORBANCE and SPECTRA also belong to another clump which is™-

 forming. In Figure 10, we can see two subclumps with the words

ENTHALPY, ENTROPY, and EQUILIBRIUM belonging to both. Changing

'the measure to A J (Figure 11) produces & dlfferent cluwmp. More

of the ass001atlon matrix must be seen to determlne where Fhis
clump endo. There are some lnsgences where it is.difficult to
identify a clump (Figure 12). In'general, this technique seemed
to work well; most association matrices included within them some
pattern which we were able tolidentifyhas e clump.

One way to Jjudge.any 61umping techniqhe weuld be to use the
clumps it ﬁroduces in‘Edwards’ adaptive interface and allow ¢,
number of~u$ers.to teet them, fhis would not judge an indltidual
eiump=bht rather a set of clumps as a whole. Thls proce»s would
be insensitive to small imprevements. Because of its eluuo,nteness,
we might best use this teanlque to verify some other app*oach

A second method requires an expert in the field to ana.lyW
the various‘clumps}to determine whethervahy good words have been
ieft out or whether ahy words do not,helqng to the ~lw)> whiehc
theyjare in.’ However,_the expert reflects the field. in 3enerai
and not the partiéhla: decumente'of our data base. His expertise

may Just destroy his usefulness ih this situation.

[

-174-

3

UaTOTIF200-g PITITRON F 8V Butsn Z# XTI38Y UOTFRTOOSSY -QT amBtTy

m» 9 0T ot 9 9 9 9 snosuby
6t gz oT 2 s 0T s m.w . uoy
9 ,. g2 . 61 m.m L St L :\.. co...nw.mu .
OH_H gT 61 Ee 6 LY S 1T __HH_. s ewﬁumm ,
o €2 61 £z . 6 g2 Radi =3 eBumpoxg
5 s L -6 6 g 6 w .m 6 6 6 | unparimbg

R o oa@ e oT. ot ot . nw4_
| T HT. 2T ' ot 0T or ._w_;uwpmnmﬁﬂ¢n
6 2 #I s ot ot ot _m;naxOﬁwa
noe et 0z . ot m ot | SusTA
| ..awmﬁwxo%.nom
4 0T Ol OT o2 0z oz 19330T10TE)
9 or, st L1 ¢z 6) o o2 mnuwnmndmnﬂbﬁah.
| ﬁ 2 oz| 123380mI0
9 s 1 WH“_ TL 6 O ot ot o1 02 o2 o2 ol Aoanug
9 S L T T "6 .0t OT ol 0T oz 0z oz ,y oL- £dieyaug
co

-175-

S TOT3200-4 POTITOON ' Ty Bupsn i XT238 UOT3BTo0SSY =TT 2andtd

_ (.

oT Lt s g 9T 6 oPTX01pAY B
ot T oT st 9T 4T aT o9t Mh o . prov 3 -
6 T w 6 8.) | o | - L TED |

m. ‘ lz o2 €1 ; . , g8 138 | Xron3ay
T e fT _mH. o ot 6 ST T g m .vmxcﬂ...mmoho.
2 02 T oT ot ST 6T I S , TToms
6 €T €T oI g . ol ol LT ¢t T UNTIQTTDE. ,‘
| , Loz T T o4 Tw T suoorby
8 8 fit mm: _mm ct ct 2T uoT43D
ot ot oz 4§ le s 9z ot o -~ uer
6 ot €1 2 Lz sz 62 _. a et unypog . -)
ST st ot §€1 €2 o €z 6 ot ot sBueyg
¢ ot 61 AT Wi = o 62 68 | ® x| ewzuqrAumarg |
€1 g ol € T = oOT ST, S ol £doiqug.
T g ot fTTT Nﬁ ot <t st s oL | | Aerewsum

-176_ .

AUSTOTIF200-8 DOTITDOW _..M,q Bupsn € XTX9%H UOTAETI0SEY -1 9mITL
| ,

8 ﬁ # 0T L L .8 L s 20UBQIOSQY
g8 62 - | gt | L | Lo atrey3aan
7T 62 S g 6€ 6 ..:1 . 9 mﬁsﬁaﬂo.m,_

| S L s 6 4 It q m. | ma. f m. . mﬁd&&&»& ._.
K g 1 6 % 9 I g § it | reupiey
oT sE. 68 S 6 | 9t 6 L St €1 g ; weog
L 6 ot n9 9 L g m ot n . s | wﬁﬁpmﬁoma

7.9 f g u.ﬂ 6T 9. L | BN
L o 9. . § Tt 4 s o2 wiyd -
f 6 9 « o S 9 % oI § - 309fuz
... 9 g8 L L 6t Tt 9 s 9 ‘6 % 9 PTLIgNE
g L 6 ST 8 9 4 % s t 8 L :. 8 . 8sT3TsuUaQ’
L % 4 4 6 €T 4 s ‘ol 9 g jas L 3809 -
g 9 s Lt g ot L oz 's 6 .L T B S P
q o 0T o aT3308
s 9. 8 L ot oy T5uTEUOY
[
o
A

s
-
IS
o

i
i
\

~177-

-

;T

Assum;ng the correctness of our theoretical description of A
o . - . . i i s
“ what the association matrix of a climp shouwld look likeplwe.may/////{

also use the same'method to determine tie quality of a clump.
Most :eﬂbers of a good clump should have a (high) noN-zero associa-
tion 1th one another. Each individwal .working with this cluzping

technique would decide for himself the amount of overlap betieen

[y

clumps that is aérmitted. Coobining this visual eflort with some

3 ‘ ;expert analysis should provide the best solution.
In;the discussions yhich folloﬁ, 1ittie mention is made of

‘-Aig. Excluding the ohe’clump using that measure which ve heve-
included most of the others were rather poor, "tending to fOxm
clumps of 3 orhk uords.‘ For‘our deta bgse, theﬁﬁfg measure
freguently took on its maximum value. Perhaps its lark of spread -
ekpl&ins‘the poor results. | ” -

1 In most’ cases where comparlson was p0551ble A gave better

ij
- results. than A* ‘and’ the modified B-coeff1c1ent Further improved
the results. Comparlsons of thls sort were dlfflcult at tlmes
because ; differencejpetween clumps of only one wordaarfeoted (
f&ll’additionai wordq. hﬁich‘estrqiword in which clﬁmos"differed

o e ‘ 1n~rcased the 11kL11hood of further differences. Figures hﬁ

o

and 5 illustrate this p01nt. In these same figures, we can also

T

P

see the imp(ovoment made by nodlfving the B~coeff101ent. The i_?:;,
first clunp does not includc mwny of tho voxds whlch the second -
; assooiation natzix shows: belong to thn clump
In Figures 13, 1h, and 15 we have an exa#ple of the lmp‘OVL-‘

- ments obtained by f{irst using the ‘modified B-coefficient and then -

switohing to Aig g R : N

..178- ‘

L

€T

oc

Lt

oc

WA

0z

-

Lt

"XV BUTSn n# XT

ot

1.

o .

19BN UOTYBTOOSSY - (1 9INBTJ

o2

LT

Oc -

1T -

ot

o2

0T

0T

29BTRUY] -

mp.m.ndhoomH.
supwy
apTureATog
..ﬁpﬁﬂom«.

UauBTg

0>‘w JeATIS(T

gxadmreq
ausTAy3aH

wﬁe.ﬁﬁom

sutueIq

~IopUTg

L . 5
E g L ot o a Sie weform
) - D) oT fet oz . A.qo:.. om a,_,,,,._‘_mﬁﬂu&
g L ST o2 ot . ww ..m#mnmmao.upﬁz
, 8 L L ostioe on 99 | TrAuderoin

i
11
i

_1"(9-

w.m

1T

JUSTOTIIB00-4 TOTITPON

01

Pt . _ .
xV Butsn tf XTIFEN UOTFRIDOSSY - fi 2NBTI

o

0g

0c

02

juted
PATY

. uotsTnEE
19957 |

GoryezToTySTId

©

_2qBTeuIUd

. _mpmpmu& _

o Momoasaamo_,
| 20700
__pnmswﬂm
mﬁﬁmiuvn
T .Nmﬁc..ﬂm
uadoaq Iy
n«mWhhm
AwERauoLy Ty

TtAudozotus

o

=180~ -

€e

€e
€T
e
Tc

ot

T2

o1

Lt

AUSTOT33900-g POTITPOW F Fy.Butsp it XT13%N uOF3BTOOSSY - ST aamBrd

T

ot

001

T35

"0c
©

g

oct

TS

o
61

- ¢c

0T
ne .
1S

158

€T

R

€T

- OT

gT

o1
9€

€T

Lz

Ot

A

ot

£T

1€

W ET

e

ot

2e -

cc

R

€T

ft
8T

Lz

9T

e

9%

6
1€

€T i

ot

ot

T
gt |
g1
g2

LTS

€9

€T

:ﬁ;

1c

€e

s

18

Ph:

.Hw

 pagetpRil

®13095
gatoadg”

T£39Y

" sauousydozuag

mwwpmomana

998990V -

2SOTNTTS) *

. 20T0D

o wmmmnNOmg<
obﬂpﬁwﬂhoa.
pﬁsw&.
N ﬁmmouvﬁz
suToiia

aUey3owoIITH

. TTAydoIoTu)

-181-

.nNo:mention has bcen madc so far of the actu@l ciuMps this

techhique has prcduced and despitc any argument to the contrafy,

the rcaﬁer mightjfcei hihself_deprived of irportant evidénce. A
. few of the association matriccs included in this report do not sho::
a full clump or do not give enough information to deteréine whé;e
a cluﬁp ends Othéfs provide excellent cxamples. From Figure 7
we conclude that the words BENZOPHENONE KETYL, SPECIES, COLOR,
TRIACETATE FELLULOSF IRRADIATED ELECTRON DECAY plﬁs ABSORBANCE
and SPECTRA form a clump with the Lauter two terms elso oelonglnb
to another clump vhich is forming (only partially shown).

In Figure 10 the 2 clumps which have formed are quite '
apparent, being tied together by ENTHALPY, ENTROPY, and EQUILIBRIUI\I, '
and perhaps also by OSMOMETER. F
~ CHLOROPHYLL, ‘TITROBIE;'W‘I{.M\IE PYRIDINE, NITRCGEN, 7 ‘.IIJIGI-IENT "

_DERIVAT;VE A.BSORBAIICE CELLULOSE, a.nd SPECTRA all belong to one
< clump (Flgure 15). T ' ' e
| One'final-asscciaﬁion matrix is shown in Figure 16..w All

words except the last 2 definitely belong to a singlé clump,

N

=182~

| queTo1z3a00-g POTITPOW -~ 'y Butsp .m% Jxﬁpdz UGT1BTIOOSSY: = .o,H 2mBTI
) _ﬁ,__ - o o oL . .Eﬁ.a?w%oﬂ&n Co .\,M.
6 gt K. - 8 1.. |) ..«&@5.@%&
6 Tt 6 2T LT ot 6 g e 9T | X
8T It et 6. 8 11 gL 6 €1 it - m.ﬁxo
T €T 9T gL 2 ST TT 6t er et 9T " eotpex
g T T sU 2T oo g s ot 81 suaTAUlT
=z ot a €2 6T #T 9T gL ...,.S ,. ee ~ uotEp
e e g oOr TI €1 gt 42 ,, TnUTUNTY
OT 4TI 2t 6 2T Lt €2 | se ‘62 6T . 62 €1 HT ,,Wﬁ ' STSATRIR)
g. lt g o 6T QT Se° .,mm IT T ot .ﬁ. wH &e%ﬁ.
B TU ST TL 4T OT 6T €2 ot 6 TT 9T o2 SaTyIER
6 T T P - 2t Lt €2- aTTI3TUOTAIOY
Le gt 6T €T ot 62 1 6 TI It 42 2 oTuoTUY
§ 6 €1 o gT €1 €T ar 1T NH i1 2h %S suoge0Y
gl €T 2T 4T LT QT H#T 4T 9T LT :.m. 2h LL aTTX3 N
9t LT 91 QT 22 _:_m : 8T gl .‘ oz €z & 1S E. | m@?&o«nowu

e

©. ENGLISH AS A SEARCH TANGUAGE.

rd

5.1 Engy F%libh/
As mPntionrd in section l appreciation of men-machine communication

>.p16blcms lzd to)he mechanization of a simplified natural lenguage called

Easy English for use. for searchers of the Information Syotem. The success

of Easy English led to the development of the more complex "Real Englis
using complete grammar incorporated into the computer. These languages

- are deqcribed in this sectiqn.

lasy Engliuh is a -plain command lnnguase denigned to eimplify dialogues

between man and machine through a remota typewriter console. It is made up

of readily recognised semtences of the Mnglish language, sentences which e~v

. layman might be expected to use in everyday requests Zor services or articin3s

from a familiar source. Kasy English has been developed as a2 command language
for retrieval of documents. from a computerired data bLase, specifically from
the Moore School Information Systems Laboratory (MSISL) files. It is idtended
for all iaformation retrieval systems using remote typewriter conaoles in a
conversacional mwode,

Basy Bnglish is imbedded in the MSISL rec:ieval program which provides -
computor-di:octcd search, computer-aided edicing, and other - forms of computer
asgistance. The attached typewriter printouc presents a typical man-machine - '
conversation which f{llustrates Easy English along with a number of features
of the Laboratory retriaval system. ' Note that the latter currently provides’
the option of translatizn of the Easy Rnglish request into Symbolic Command
Language while searching the files; this is a convenience for those who might

“1ike to learn Symbolic Language on their own and use its ahorter but more

formai statements in place of Rasy !ngli.h. B

‘Bacause xaay Engliah is in fact real English, the only thing that the
searchar needs to learn is that requests for information from the ayscem
should be formulated in the following ayntactical form:

Entr.oduccory CIaun:c] E)ocmm: CllUsE' Eﬂ & Clau ,g . :

The following 8antencea proaent five forna in which the same retrieval

. request can ba phraaed 1n Easy English: _
‘(1) PLEASE LOCATE BVBRYTRING WRITTER BY ROBERT PERKINS -ABOUT EASIAC QR e

PSBUDO-GONPUTKRS BETWEEN 1955 AND 1939 < >

(2) '"com.b You. rnm POR ME ‘SOMETHING oom'Amn IN THE nxmsrronv ooucmuncﬂ e

KASIAC OR PSRUDO-COMPUTERS THAT WAS AUTHORED BY ROBIAT PERKINS AFTER
1954 AND BEFORE 1960 <> | 1

(3) I NERD ALL THE AVAILAELI DOCUNBNTS PUBLISHED DURING Tﬂﬂ PERIOD 1955 TO
.1959 B! RQBBRT PKRKINS ON THE SUBJRCTS OF EASIAC- OR‘PSRUDO-GOHPUTIRS <>

' /
(4) .WE'RE Iz:BRRSTED IN HAVING REFERENCES AND HATERIAL ON EITHKR PSEUDO-

o ¢ . r

,00827;7 OoR lAgIAC AUTRORED BY ROBERT PERKINS FROM 1955°TO 1959 < > ; B

-183-

h" .

o

- 184~

. ‘ (5) I WOULD LIK: YOU TO HEL? MR OBTAIW Imfonm'rmn FROM YOUR LIDRARY RELATED
- : : TO RASIAC OR PSEUDO-COMPUTERS AND wnrr'rxu BY ROBERT mens m THE YERARS
' ' 1955 THROUGH 1959 <> . o

Noticq that despite tha differences in voc«bulnry, all. of theae statements
fo;lovftnn same basic pattern; fobr exanple,

-

'x v [om.n YOU FIND POR D@ Eom:mmc GONTAINED IN - -

THE REPOSITORY| Eoucm:«mc v _]

Typic&l examples cf phrasges nccuptable 1n_t§e three—clause categories

are:
_Irtg:r'oduétorx clause
] (1) I would like ...
.. (2) Please find for me ...
(3) I have need of ...) o . N
(6) I desire ... ' - . .) -
Document clause .
. s (1) see documents in the Byatenl e e
(2) ... information ... ;.
T (3). -ees 8ny available book or article in the repository coe
L (4) ... references from the files'... L .
o (5) ... all the stuff ... ' -
Data clause
\9 : 7 . " (1) ... vwritten by Carr between 1958 and 1965.
' ‘ (2) ... publighed in 1960 on information restrieval o
and work association but not programming.’ S L

¢ - (3) ... dated September 1966 by J.H, Smith, Joo Doe’
- _but not K,L. Jonen about analog computere. - o

.

% - In thc event that a word appcaring 1n nithor the 1nttoductory or the’
- document’clause is not recognized, the computer initiates a mnn-nachino
"o S dialogus in order to detarmine whether the word is essential and, if so,
. . to seek out a synonym in its vocabulary. Examples of luch dinloguos .
' _nppcar on thc attached typawritcr printout. . :

— .) ') oy

-185- ¥

~

YOU MAY PROCEED.:= PLEAW-SE FIND FOR ME BOOKS
CONGERNING STATISTICAL FUNCTIONS ORrR STANDARD
DEVIAVION, BUT NOT BUSINESS ORIENTED ZILKS
INC++-+~ENTITLED 'RUNCIBLE"I'

PRINT? 3= ~YES<>

YOUR MESSAGE IS .

¥1) PLEASE FIND FOR ME aOOKs h

021 CONCEnNING STATISTICAL FUNCTIONS OR SlANDARD

93) DEVIATION, BUT NOT BUSINESS ORILNTLD ZILKS

4] ENTITLED 'RUNCIBLE"I' . - . . -

CORRECTIONS? s YES«<»>

LINE NOs $=. 3<>

LINECS) e

DEVIATION, BUT NOT BUSINESS ORIENTED<>

]

MORE? 1= ~ 'YES<>

LINE NO« = Q<> -
L INECS) ¢ S _ Ny ~ S L
. DEAR COMPUTERt<>

2

MORE? 3= ° .N0<;' N . S ' L
PRINT?", 1= = YES<> S B = =

YOUR MEssAGE'Is:“7

213 DEAR COMPUTER:
221 PLEASE FIND FOR ME BOOKS
631 CONCERNING STATISTICAL FUNGTIONS OR °TANDARD

" 04) DEVIATION, BUT NOT BUSINESS ORIEVWED

GSJ'ENT/ILED 'RUNCIBLE"I'

7/

CORRECTIONS? s 'NO<>

-

“E ulU NOT RnuuuNILL 1Hb WORD_ UEA: DLAR : ' -Ib Tth hORD ESSFNTIAL AO S

arn e e G e et et cm e e am —

THE MEANINC OF YOUR SLNTENC&? Ty NO<> - ' o

-186-

WE DID NOT RECOGNIZE THE WORD COMPUTER -15 IHIS WORD ESSENTEAL TG

THE MEANING OF YOQUR SENTENCE? := ~0<>
RETRIEVE < $B ¢ (STATISTICAL FUNC1IONS
) + { STANDARD DEVIATION)
N) ' fBUSINESS * ORIENTED)
) e (3A3 RUNCIBLE I
) .) \,' s .
5

600001 'REFERENCES' HAVE BEEN RETRIEVED.

YOU MAY PROGEEDw1= - PLEASE GET BOOKS BY--hRITTEN, EDLTED
~ 'OR PUBLISHED BY CARR.<>
o A e /
~ PRINT? 1= Nﬁés
. = // . o
RETRIEVE A ¢ ¢"$Al CARR + SA4 CARR 3

| . ¢ $AS5 CARR)) .
' 200069 :REFFéENCESf HAVE BEEN RETRIEVED. o

PRINT somsf":z NO<> ’

YOU MAY PROCEED.:= - GET BOOKS BY-EITHER CARR OR RUBINGFF
BUT NOT BY CARR<> | o

PRINT? t= NO<> ’

RETRIEVE ¢ sa1 ¢ CARR 3 ¢

RUBINOFF :)) e ¢ SAl ' CARR T

.) . 3 . : .

000001 'REFERENCES® HAVE BEEN RETRIEVED.

| YOU MAY PROCEED.t= .OBTAIN FOR ME BOOKS WRITTEN IN 1961 <>
Y. PRINT? = NO<» ﬂ !
' RETRIEVE - . $A2 1961

006127 *REFERENCES® WAVE BEEN RETRIEVED.

PRINT SOME? 1= NO<>
'YOU MAY PROCEED«t= I WOULD,LIKE You To FIND: BOOKS
WRITTEN, EDITED, AND - PUBLISHED BY CARR.<>
“ll» . '/-«J
RETRIEV& .. €. ¢.SAl CARR & $A4 CARR A

-& € SAS CARR >ooo9

NO- 'REFERENCES' “HAvE aasa-asyaxtvao. .

/
5o

-187-

£.2 Real English

As'men ioned above, each Eesy English retrievel request consists
of three clauses. Each clause contains one or méie'words or phrases

to which m syntax cless value has beeh assigned. A word's value

determines the clause in which it may appesr.

The brogram sequentially extracts words or phrases fram the user's

~ request, locates the word in the dictionary, finds its assigned value,

>

" and storés this value on an introduction code list. The process con- .

tinues until aﬁqord'or phrase is foﬁﬁd whose value indicates.thatfth;s.
word of phrose belongs to the document clause. At this point,:in£ro-
dqctioﬁ transformgfionS}are fppliéi to the.introducﬁion code 1isy to
test fqr.afﬁiiidéintrsductdry.claﬁse; Lﬁhvihg!found;such a clause, the :
,program repeats the process fdr ﬁhe document cleuse with the”exception

that a word whose value lndhcates thet it belongs.to-the data cleuse ig

i

i

the signal that the document code list is camplete.: -

| Figure 1 shows the besic processes which constitute the Real

English system and the place tkat Real English has as an intermedisry

-~

betwaen user and machine as a translator of the user's request for
information. The executive processor directly handles all conversa-

tion between the user and the mschine, translating the user's
request, e?presse& in English,_iﬁto a form understandable'by:the

information retrieval system, and communicating to the user, in

A

T aan31d

_
!
!
|
_
!
]
!
_
_
1

aguodgaa ysyr3ug H.mome

1
|
1
!
_ VELIVVOA EZKTVNY {msnvd)
_ VIACO | SOLINVHES il
|
_ 7] ,
L /
I % !
m —_
1
FEISAS TVAITHLR H0SSEOO 39onba3 Tomm
NOTIVANOINT ! ZATINOAKE _
|
1
{

" HSITONE TVEM

!
|
1
|
!
'
[

~189~

easily understandabie form, the results of the search performed by
the retrieval system if it is successful. In case of failure,
either because Real English is unable to understand the user's
request or because the system does not contain the information
requested by the user, Real English informs the user of the cause
of failure, and advises him as to how to proceed.

The normal flow of control within Real English is from syntax
analyzer to semantic analyzer to commend analyzer, each move pro-
ceeding under the control of the executive processor; the user's
request is first analyzed syntactically (using a grammar of the
"string analysis" type) to produce & parse tree, a graph of the
syntactic relationships among the words which form the request.

The parse tree is then processed by the semantic analyzer to determine
what information the user wantsj the result of the semantic analysis is a
retrieval command(s) in a form intermediaste between English and

Symbolic Command Language (the language understood by the information
retrieval system). Finally the output of the semantic uanalyzer is fed
into the command formatter, which writes in Symbolic Command Language,

a retrievai comand which will cause the retrieval system to pick out

of its information filas that information which the user has requested.

In order to process retrieval requests presented to It in
English, Real English must be able to translate all of the various
types of expression which people are likely to use in formulating
requests, A typical dialogue between & user and Real English might

be the following:

-190~

user: GIVE ME THE TITLE OF ANYTHING BY JONES ON DIT.
system: AUTHOR=JONES
SUBJECT=DDT

TITLE=AGRICULTURAL USES OF DIT;
DDT AS AN INSECTICIDE
user: WHO PUBLISHED TIESE BOOKS?
system: TITLE=AGRICULTURAL USES Or' DDT
PUBLISIER=S,DAK,DEPT,OF AGRICULTURE
TITLE=DDT AS AN INSECTICIDE

‘ PUBLISHER=SMITH AND CO.

user: I WOULD LIKE TO HAVE THE DATES OF ISSUE OF THESE
ITEMS.
system: TITLE=AGRICULTURAL USES OF DDT

DATE OF ISSUE=1959
TITLE=DDT AS AN INSECTICIDE

DATE OF ISSUE=1960

user: WHAT HAS SMITH WRITTEN ON DDT?
system: AUTHOR=SMITH
SUBJECT=DDT

THE SYSTEM HAS NO INFORMATION ON THIS

user: HOW ABOUL' ANDERSON?
system: AUTHOR=ANDERSON
SUBJECT=DDT

TITLE=A RE-EVALUATION OF DDT.

In this short dialogue there appear examples of the four distinct

: forms in which recquests can be made:
. \

~191~

1. Declarative sentences: I would like to have the dates of issi>2
of these items.
2. Interrogative sentences: Who published these books? What has
Smith written on DDT?
3. Impevative sentences: Give me the title of anything by Jones
on DDT.

4, Sentence fragments: How about Anderson?

It is important to note that the fourth type of request, the
sentence fraghent, while not a well~formed English sentence, is
very common in requests for information, and must therefore be
recognized by Real English in order to maintain the user's ghility
to submit requests in the manner most usual to him.

Notice further that some of the requests (e.g., Give me the
title of anything by Jones on DDT.; What has Smith written on DDT?)
can be answered independently of their context in an exténded
man;machine dialogue; others (e.g., Who published these books?;

I would like to have the cdates of issue of these items.j; How

gvout Anderson?) depend upon the contert in which they are used;
thus: How about Anderson? 1is asking for one response if it
immediately follows: What has Smith written on DDI'? and js asking
for a totally different response if it immediastely follows: Is
Jones the subject of a report on the medical profession? In the
first case, the user wants to know first if Smith has written
anything on DDT and then if Anderson has written anything on DDT.
In the second case, the user wants to know if Jones is the subject
of a report on the medical profession and then if Anderson is the

subject of such a report. Requests whose meanings do not depend

-192~

upon the context of their use are called "contextually independent
requests'" while requests which do depend upon context are called
"contextually dependent requests'. Real English is able to handle
both sorts of requests.

So far the operation of Real English under ideal conditions
has been described; that is, we have, up to this point, seen what
Real English does if it has succeeded in understanding the user's
request. There are, however, a number of difterent cases in which
Real English cannot produce symbolic retrieval commands from the
user’s request; these cases are of three types:

(1) Real English does not recognize one or more words in

the user's request.

(2) Real English recognizes all of the words in the user's
reguest, but cannot find a proper syntactic analysis for
it,

(3) Real English can syntactically analyze the user's request,
but cannot properly perform the semantic analysis necessary
for translation into Symbolic Command Language.

There are two distinct meanings that "non-recognition of a

word" can have in the context of the Real English system. In

order to understand the distinctions between the two it is
necessary to understand the operation of the syntax analyzer in
some detail. The syntax anaiyzer, which forms a major part of

Real English (Figure 2),consists of a parsing program, a dictionary,
and a grammar; contaired in the dictionary entry of a word are

both syntactic information (e.g., syntactic category: noun, verbd,

adverb, etc.) and semantic information (e.g., the fact that the

..193.-

parsing
program

dictionary grammar

Figure 2: Syntax Analyzer

word "written" is indicative of a request for the name of the
author of a document as in: What has Jones written on radar?).

Tt is important to note that the Real English dictionary
contains only words in the "basic stock of English” and, in
general, does not contain the technical terms such as DDT, radar,
cardigc arrest, etc., which constitute the information stored in
the files of a retrieval system; the reason for this will be
explained presently.

In order to simplify matters, it is possible to conceive of
the grammar as a list of sentential forms (strings of words of
specific syntactic categories) which requests in English might
take, The parsing program, in this extremely simplified model,
tries to ind éach word of a request in the dictionary and then
detsrmines if the sequence of words forming the request con-
stitutes & permissible sentential nattern. An example of a
very simple sentential pattern with its associaced purse tree

(graph of the syntactic relationships among its words) is shown

=164~

in Figure 3. The words in the request which Real English would have
in its dictionary would be "who", '"has", "written” and "about™. The
word "radar", a technical term and therefore not in the dictionary,
would be classified as an index term, & form of noun on which a
retrieval is to be performed, (In this case, the system would

look for all records in its information file whose subject is "radar”.)
and would be temporarily added to the dictionary under that classifica-
tion. Since the sentential pattern:

(INTERROGATIVE PRONOUN)(AUXILIARY VERB)(PAST PARTICIPLE)(PREPOSITICN)
{INDEX TERN)

is one recognized ty the grammar, Real English would produce its
‘parse tree and would then be able to go on to a semantic analysis
whose end result would be the appropriate retrieval command in
Symbolic Command Language. In the sense just described, we might

say that Real Engliéh does not immediately recognize the word '"radar"
but is able, under the assumption that it is a technical term,

(index term), to properly proceed with its analysis.

Another type of case in which Real English would be unable
to "recognize" a word in a request is illustrated in the following

examples:

WHOO HAS WRITTEN ABOUT RADAR?
WHO HAS BFXLQ ABOUT RADAR?

(Note that if the request were: Who has written about BFXTQ?
the system would have no way of knowing that BFXLQ is not a proper

technical term and would generate Symbolic Command Laaguage commands

-195.'-

SENTENCE

PREDICATE
VERB PREPOSITIONAL
SUBJECT PHRASE PHRASE
INTERROGATIVE AUXILIARY PAST '
PRONOUN VERB PARTTGLPLE PREPOSITION INDEX TERM (NOUN)
WHO HAS WRITTEN ABOUT RADAR
Figure 3

Ato retrieve all records whose subject is BFXLQ; there presumably
being none, Real Ehglish would respond: SUBJECT=BFXLQ; THE SYSTEM
HAS NO II\IFORI\IATION ON THIS., exactly as it would answer:
SUBJECT=RADAR; THE SYSTEM HAS NO INFORMATION ON THIS., in case the
request were: Who has written about radar? and the system had no
information ebout.radar.)

In the first case, the user has misspelled the word "Who"; and

in the second. he has used what is presumably a nonsense word,

"BFXIQ", in a position in which a past participle (e.g., "written")

~196~

would normally appear. This type of situation fits under the second
sort of Real English failure, namely, tailure to be able to properly
syntactically analyze the request. As has been mentioned, if Real
English cannot find a word which is parc of a request in its
dictionary, it assumes that the word is an index term and proceeds
on that assusption. Thus, in the cases of the examples above,
™HOO" end "BFXLQ" would be added to the dictionary as index terms.
Real English, in attempting to process either of the requests, would
not find itself in trouble until it uvitempted to syntactically
analyze the request and found that there are no English sentential
forms which it recognizes which have index terms in the positions in
which "WHOO", and "BFXLQ" appear. Since no syntactic analysis is
possible, Real English must inform the user that his rgquest cannot
be properly translated and must, furthermore, indicate where it ran
into trouble so that the user ﬁill be able to intelligently proceed
to rephrase his regquest or go on to a different line of questioning.
A closer examination of the second of.the two improperly formed
requests: Who has BFXLQ about radar?, shows that although it is not
an English sentence (rior even a meaningful fragment), its first two
words form a proper beginning of an English sentence. Thus, in
attempting to analyze it syntactically, Real English would get as
far as the parse tre2 of Figure b, Any attempt to proceed further
with the analysis would break down; thus, Real English would recognize
the fact that the source of trouble is, in fact, the word "BFXIRQ",
+he first word in the request past whiéh syntactic analysis is

impossible,

-197=-

SENTENCE

7 N
™

SUBJECT VERB
PHRASE

INTERROGATIVE AUXILIARY
PRONOUN VERB

Figure 4

-198-

Real English would then inform the user of the problem by
issuing the response:

THE SYSTEM DOES NOT RECOCNIZE THE WORD BFXLQ IN THE
WAY THAT YOU HAVE USED IT. PLEASE REFORMULATE YOUR

REQUEST .
!

In the case of the improperly formed request: Whoo has written about
radar?, the syntactic analysis would never get past ‘the beginning
of the sentence, and so Real English would issue the response:
THE SYSTEM DOES NOT RECOGNIZE THE WORD "WHOO" IN THE
WAY THAT YOU HAVE USED IT., FPLEASE REFORMULATE YOUR
REQUEST,
‘Note that a similar sort of response is appropriate even in the case
of a request all of vwhose words Real English recognizes, but which

is nevertheless improperly formed, e.g., a request of the sort:
WHO IS IT THE AUTHOR OF THIS BOOX?

In this case, Real English would get as far as the word "the" in its
syn{'.a.ctic analysis; here, however, it would be ina.ppropria.te for the
system to tell the user that it does not recognize the word "the" as he

has used it. Rather, the system issues the response:
. i ' '
.
THE SYSTEM CANNCT UNDERSTAND THE WAY YOU HAVE FORMULATED
YOUR REQUEST; THE TROUBLE IS IN THE VICINITY OF THE
PHRASE WNDERLINED:

WHO IS IT THE AUTHOR OF THIS BOOK?

PLEASE REFORMULATE YOUR REQUEST.

Notice that in bcth cases, that of words not recognized and that of

(syntactically) improperly formed requests,‘ Real English is able to

_199-

locate the source of trouble (and communicate it to the user) by
keeping track of how far into the request syntactic analysis is
possible. In the case of a request in which more than one word is
not recognized, more than one fauwlty use of recognized words is
encountered cr a combination of both unrecognized words and faulty
constructions occur, Real English is able to locate one error at a

time, Thus, the user might ask:
WHO IS IT THE BFXLQ OF THIS BOOK?
in which case the system would return with:

THE SYSTEM CANNOT UNDERSTAND THE WAY YOU HAVE
FORMULATED YOUR REQUEST; THE TROUBLE IS IN THE
VICINITY OF THE PHRASE UNDERLINED:

WHO IS IT THE BFXLQ OF THIS BOOK?

PLEASE REFORMULATE YOUR REQUEST.
It the user then reentered the request as:
WHO IS THE BFXLQ OF THIS BOOK?

the system would return with:

THE SYSTEM DOES NOT RECOGNIZE THE WORD "BFXLQ" IN
THE WAY YOU HAVE USED IT. PLFASE REFORMULATE YOUR
REQUEST .

On the other hand, if the user were to respond with:
WHO IS THE AUTHOR OF THIS BOOK?

immediately after the system's first error message, his requect

’ would be properly processed and would result in the system's printing

200~

out the name of the author of the book whose information record it
had previously found. (Assuming that a previous user request had
resulted in the retrieval of such a record.)

The third sort of case in which Real English must initiate
further dialogue with the user before it is able to properly fill
his request is described above as semantic failure. The term
"semantic failure" is meant to describe the situation in which Real
English has succeeded in syntactiéally analyzing the user's request,
but is incapable of producing symbolic retrieval commands from the
semantic information contained in the request. Semantic failure
itself falls intc one of the three clusses:

(1) The user's input is not a request for information

of the sort contained in the information file.

(2) fThe user's request does nbt specifically enough indicate

what information he wants.

(3) The user's input is a contextually dependent request not

preceded by a contextually independent request.

In order to understand the case of a user input which is not a
request for information of.the sort contained in the information files,
we must realiz- that Real English is designed to operate on a data base
of information pertaining to a specific discipline, e.g. chemistry, physics,
bibliography, psychology, etc. In what follows, we shall assume the
data base of the Toxicology Information File project, a file whose
words contain toxicological information about chemical compounds.

A request like: What are the effects of prolonged exposure to the

sun?, although it does not request information of a toxicological

-201-

nature would, nevertheless, be processed by Real English into a
symbolic command to retrieve the effecfs of prolonged exposure to the
sun because the sentential form of the request is one recognized by
the system as the form of e possible toxicological request (e.g.,
What are the effects of prolonge posure to DDT?). Since the data
vase contains no information on the effects of exposure to the sun,
Real Engliéh would answer the user: THE SYSTEM HAS.NO INFORMAT ION

ON THIS. If, on the other hand, the user typed one of the following

into the system:

1. WHO WON THE 1950 WORD SERIES?
2. WHY IS THE SKY BLUE?

or evern

3. .LET'S RETURN TO MY PREVIOUS LINE OF QUESTIONIﬁG.

Real English would not recognize the input as having the sentential
form of a possible toxicologicsl request. In this case, the system

would answer the user:

THE SYSTEM HAS NOT RECOGNIZED YOUR INPUT AS A REQUEST .

FOR TOXICOLOGICAL INFORMATION. THE SYSTEM IS READY

TO ACCEPT A REQUEST.
Note that although sentence 3 above might possibly be part of a
dialogue in which a person is attempting to elicit ihfprmation from
| either another person or from & machine, Real English is not equipped
to Process it. First, it does not have the form of a request for
specific information and second the ability to process it would
require Real English to keep track of all previous dialogue and to

be able to return to any segment of previous dialogue, facilities

~200-

vwhich would enormously complicate the task which Real English has
to perform.

The second sort of semantic fallure, lack of specificity in the
user's request, is failure only in the sense that further dialogue
is necessary before Real English can generate the proper retrieval
commands. An example of this sort of request is: What are the
effactyg of DDT? The following is s list of the qualified category
headings of information fields regarding the effects of a chemical

substance that a user might want:

ANTMAL EXPERIMENTS. ORAL ADMINISTRATION. EFFECT
ANIMAT, EXPERTMENTS. DERMAL ADMINISTRATION. EFFECT

ANTMAT, EXPERTMENTS. INJECTION. EFFECT

ANIMAL EXPERTMENTS. SKIN APPLICATION. EFFECT

ANIMAL, EXPERTMENIS. EYE APPLICATION. EFFECT

CLINICAL EFFECTS. HUMAN. ABSORPTION. ORAL. ACUTE. EFFECT
CLINICAL EFFECTS. HUMAN. ABSORFTION. ORAL. SUBACUTE. EFFECT
CLINICAL EFFECTS, HUMAN. ABSORPTION. ORAL. CHRONIC. EFFECT
CLINTCAL EFFECTS. HUMAN. DERMAL. ACUIE. EFFECT

CLINICAL EFFECTS. HUMAN. DERMAL. SUBACUIE. EFFECT

CLINICAL EFFECTS, HUMAN. DERMAL. CHRONIC. EFFECT

CLINICAL EFFECTS. ITMAN. INHALATION. ACUIE. EFFECT
CLINICAL EFFECTS. HUMAN. INHALATION. SUBACUIE, EFFECT
CLINICAL EFFECTS. HUVAN, INHALATION. CHRONIC. EFFECT

LOCAL EFFECT. DERMAL. ACUTE. EFFECT

LOCAL EFFECT. DERMAL. SUBACUTE. EFFECT

LOCAL EFFECT. DERMAL CHRONIC. EFFECT

«203=

LOCAL EFFECT. EYE APPLICATION. ACUTE. EFFECT
LOCAL EFFECT. EYE APPLICATION. SUBACUTE, EFFECT

LOCAL EFFECT. EYE APPLICATION. CHRONIC. EFFECT

AFTERFFECT. ONSET

AFTEREFFECT, DURATION

AFTEREFFECT. RECURRENCE

AFTEREFFECTS OTHER THAN CASE HISTORY. ACCOUNT SUBCLINICAL EFFECTS. EFFECT

Unless the user actually wanted all available information on DDT (which
the system should certainly be able to provide if this is indeed the
case), he would probably be swemped by a massive printout of the
informaticn contained under all of the above headings. (Especially
considering the relatively slow output speed of the teletype terminal
and the relatively restricted amount of simultaneous output possible
on the video display terminal.) In such a case, Real English initiates
a dialogue with the user informing him of the sorts of information
availdgle given his initial request and asking him to further qualify
the request (if he is not interested in all available information)
before a retrieval and/cr printout is performed.

The third sort of semantic failure, the use of an input in
the form of a contextually dependent request not preceded by a
contextually independent request, also results in a sense from a
lack of specificity; thus, the request: How about Anderson? in
isolation from an immediately preceding request in which a name
eppears (e.g., Has Jones written about DDT?) cannot be processed
since it has no interpretable meaning as & request for information.

In such a case, the system responds:

D04 =

YOU HAVE NOT PROVIDED ENOUGH INFORMATION TO SPECIFY
EXACTLY WHAT YOU WANY'., PLEASE REPHRASE YOUR REQUEST

GIVING MORE DETAIL.

By recognizing properly phrased English sentences, regardless of
how colloquial the English may be, Reul English provides the user of
a typewriter console with the ability to search & computerized file of
data without any knowledge of computers, typewriter consoles, or.even
how the system works. By calling ambiguities to his attention, Real
English helps the user to get maximum information retrieval with
minimum concern for possible errors in»his oﬁn portion of the man-machine
dialogue. For the occasional user of the system, Real English means
immediate access to the files with little or no direction from an

operator and no prior training whatsoever.

RIBLIOGRAFHY

205

6.1 Published Papers

1.

10.

Rubinoff, M, and White, J. F., Jr.; Establishrent of the ACM
Repository end the Principles of the IR System Applied to its
Operation, Corm. ACM, 8:59%, 196¢.

Rubinoff, M.; A Look Ahead, Procccdings of the Second
National Symposium on Engineering Education. Engineers Joint
Council, October 1965.

Rubinoff, M.; A Rapid Procedure for Launching & Microthesaurus.
IEEE Trans, Engl. Writing and Speech, August 1966,

I

Ruléinoff, M.; Why Sigar? ACM SIGIR FORUM, Vol. IV, No 2,
1967.

Rubinoff, M., Bergman, 5., Cautin, H., and Rapp, F.; Easy
Enzlish, A Language for Information Retrieval Througl a Remote
Typewriter Console. Comm. ACM, 10: 693, 1963.

Lowe, T. C.; Fetrieval from Direct-Access Memory Using Truncated
Record Names, Sof'tware Age, August 1967.

Rubinoff, M, and Stone, D. C.; Semantic Tools in Informstion
Retrieval, Proceecings of the American Documentation Conference,

June 1%7 .

Rubinoff, M,, Bergmen, S., Franks, W., and Rubinoff, E.,; Experi-
mental Evaluation of Information Retrieval Through a Teletypewriter,

Comm. ACM, 9:598, 1968,

Rubinoff, M,; "Education in Computer Engineering," Journal of
Engineering Education, April 1968.

Rubinoff, M; "Information hetrieval and Systems Engineering,"
Proceedings of the First World Congress of Engineers and
Architects in Israel, December 1967.

Lowe, T. C.; An article on "Triplet Searching" entitled "Encoding
fram Alphanumeric Names to Record Addressis,” Softwere Age,
April 1968,

=206-

12. Stone, D, C. and Rubinoff, M.; “Statistical Generation of n Techn!~n),
Vocahulery," Americen Documentation, October 1968,

-207 -

6.2 Internal Reports

\

1. Rubinoff, M. and White, J. F., Jr.; Description of Cataloging
and Indexing System for the ACM Repository. The Moore School
of Electricel Enginecring, University of Pennsylvania,
Philadelphea. 1965.

\

2, Rubinoff, m., et al; The Moore School Information Systems
Laboratory. The Moore School of Electricesl Engineering,
University of Pennsylvania, Philedelphia. June 1966.

3. TFischer, Stephen B.,; An Exccutive Control System for Infor-
mstion Retricvel via » Remote Console. M.S. Thesis presented
to The Moore ochool of Electrical Engineering, University of

Pennsylvanis, Fhiladelphia. 1006,

Rubinof?, M., et al; OSummary Description of Easy English.
The Moore School of Electrical Engineering, University of
Pennsylvenia, Philadelphin. February 1967.

o, Cautin, II. and Rapp, F.; Description of Easy English,
The Moore School of Electrical Engineering, University of
Fennsylvanin, Philadelphia. April 1967.

5, Fnxel, M.; On-Line Typewriter Access to Classificetion Tebles
on Drum Storage. The Moore School of Electrical Engineering,
University of Pennsylvenia, Philadelphia. April 1967.

7. Lowe, T. C.; Retrieval fram Direct-Access Memory Using Truncated
Record Nemes. The Moore School of Electrical Engineering,
University of Pennsylvanis, Philedelphea. May 1967.

0

. Cautin, H., Lowe, T. C., Rapp, F., Rubinoff, M.; An Experimental
On-Line Information Retrieval System. The Moore School of
Electricnl Engineering, University of Pennsylvania, Philedelphia.

May 196T7.

O, FRubinoff, M. and Stane, D. C.; Sementic Tools in Information
Retrieval. The Moore 3chool of Electrical Engineering, Univer-
sity of Fennsylvania, Philadelphia. May 1967.

10.

11.

13.

11‘.

17.

18'

! | ~208~

Rubinoff, M., Franks, W., and Stone, D. C.; Description of an
Experiment Investigating Term Relationships as Interpreted by
Hunans. The Moore School of Electricsl Engineering, University
of Pennsylvenis, Philadelphia. June 1967.

Smith, J. M.; An Oral Experiment on Retrieval Dialogue. The
Moore School of Electricel Engineering, University of Pennsyl=-
vania, Philadelphia. June 1967.

Smith, J- M.; A Written Experiment on Retrieval Dielogue. The
Moore Scniool of Electrical Engineering, University ci Pennsyl-
vania, I'ailadelphia. August 1967.

Edwards, J. 5.; Adaptive Man-Machine Interaction in Information
Retrieval. Ph.D. Dissertation presented to the Moore School of
Electrical Engineering, University of Pennsylvenia, Philadelphia.
December, 1967.

Stone, I, C.; Word Statistics in the Generation of Semantic Tools
for Information Systems. Master's Thesis presented to the Moore
School of Electrical Engineering, University of Pennsylvania,
Philadelphia. December 1967.

Crowley, John Donegan, Jr.; Design and Implementation of a Targe
Scale File Structure for an On-Line Indexing/Retrieval System.
Master's Thesis presented to The Moore School of Electriecal
Engineering, University of Pennsylvanis, Philadelphia. December

1968.

Libove, George Alan; Autamstic Generation of Synonyms. Master's
Thesis presented to The Moore School of Electricel Engineering,
University of Peansylvanin, Philadelphia. May 1969.

Cimprich, Jack Robert; Programming Considerations in the
Implementation of nn English Langusge Recognizer., Master's Thesis
presented to The Moore School of Electrical Engineering, University
of Pennsylvenia, Fhiladelphin. May 1959.

Fogel, Marc; Determination of Statistical Clumps. Master's
Thesis presented to The Moore 5chool of Flectricel Engineering,
University of Pennsylvanis, Philesdelphia. May 1969.

19.

24,

~209-

Cautin, Hevvey; Real English: A Translator to Enable Natural
Language Man-Machine Conversation. Ph.D. Dissertation presented
to The Moore School of Electrical Engineering, University of
Permsylvania. Mey 1969.

Klappholz, David A.; Real English - A Description of Its
Operation. The Moore School of Electrical Engineering, University
of Pennsylvenia, Fhiladelphia. March 1970C.

The Moore School Informetion Systems Leboratery; SOLER - Systrm
for On-Line Entry snd Retrieval. The Moore School of Electrical

Engineering, University of Pennsylvania, Philadelphies. March 1971.

Hirschfeld, Ieonard Jay; Design and Implementation of the Retrieveal
Mechanism of the SOIER Storage and Retrieval System. M.S. Thezis
presented to The Moore School of Electrical Engineering, University
of Pennsylvania, Philadelphia. August 1971.

Carlson, Clifford Hugh; Update Phase of SOIER. M.S. Thesis
presented to The Moore School of Electrical Engineering,
University of Pennsylvania, Phliladelphia. August 1971.

Kaplan, Gerald; Design and Implementation of the Invert Thase of a
Multiple Data Base Information Retrieval System. M.S. Thesis
presented to The Moore School of Electricel Engineering, University
of Pennsylvania, Philadelphia. August 1971.

-210~

6.3 References on Informastion Retrieval

1.

D

10.

Baker, Frank B. (1965), "Latent Class Analysis as an Association
Model for Informetion Retrievel,” in Statistical Association
Methods for Mechanized Documentation, edited by M. E. Stevens,
Vincent E. Giuliano, and Laurence B. lieilprin, National Bureau
of Standards Miscellaneous Publication 269.

Borko, Harold, and Myrna Bernick (1963), "Autamatic Document
Classification,"” Journal of the Association for Computing
Machinery, 10:151-162.

Borko, Harold, and Myrna Bernick (1964), "Automatic Document
Classification; Part IX; Additional Experiments," Journal of
thc A.C.M., 11:13R"’1571.

Cleverdon, Cyril W., Jack Mills, and Michael Keen (1966), Aslib-
Cranfield Research Project; Factors Determining the Performance
of Indexing Systems; vol. 1.(2 parts) and vol. 2.

Curtice, Robert M., and Paul E. Jones (1967), "Distributional
Constraints and the Automatic Selection of an Indexing Voceb~
ulary," Proceedings of the American Documentation Institute,

vol. b.

Damerau, Fred J. (1965), "An Experiment in Automatic Indexing,"
American Documentation, 16:283-289,

Dennis, Selly F. (196%), "The Construction of a Thrsaurus Auto-
matically from a Sample of Text," in Statistical Association
Methods for Mechanized Documentation, ed. by M. D. Stevens,

et al., N.B.S. Misc. Publication 269.

Dennis, Sally F. (1967), "The Design and Testing of a Fully Auto-
matic Indexing-Searching System for Documents Consisting of
Expository Text," in Informstion Retrieval: A Critical View,

ed. by George Schecter.

Doyle, Lauren B. (1961), "Semantic Road Maps for Literature Searchers,"
Journal of the A.C.M., é:553-578.

Doyle, Lauren B. (1965), "Expanding the Editing Function in Lenguage.
Data Processing," Commmications of the A.C.M., 8:238-243,

211~

1). Edmundson, H.P., and R.E. Wyllys (1961), "Autometic Abstracting snd
Tndexing--Sruvey and Recommendations,” Communications of the

A.C.M., 4:206-234,

1>. Edwards, John 3. (1967), Adaptive ian-Machine Iateraction in
Informatiaon Retrieval, unpublished h.D. dissertation, The
Moore School of Electrical Engineecring, University of Penn-
sylvania,

13. Giulimno, Vineont E. (1967), "The Interpretntion of Word fsrociations,”
in Statistical Association Methods for Mechanizeu Documentation,
ed. by M. E, Stevens, et al., N.B.S. Misc. Publ. 269.

/
/

14, Giuliano, Vindtnt E., and Paul E. Jones (1963), "Linear Associative
Information Retrieval,” in Vistas in Information Handling, vol. I,
ed. by Peul W. Howertomn.

17. Giuliano, Vincent E., and Paul K. Jones (1966), Study and Test of
a8 Methodology for Irboratory Evalustion of Message Retrieval
Systems, Interim Report ESD-TR-66-405, Decision Sciences Leb.,

L. G. Hanscom Field, U, 5. Air Force, Bedford, Mass.

16. Haibt, Luther, Margaret Fischer, Robert Ketelhut, and Jay Ogg (1967),
"Pinding 4000 References without Indexing" (An Effectiveness ‘
Study of Full Text Searching), presented at The Fourth Annual
National Colloquium on Information Retiieval, May, 1967, Phila-
delphia, Pa.

17. Henderson, Madeline, John Moats, Mary Stevens, and Simon Newman
(1966), Cooperation, Convertibility, end Compatibility Among
Information Systems: A Literature Review, Netional Bureau of
Standards Miscellaneocus Publication 276. See especially
Section 3.7, Systematization and Terminclogy Control.

18, Herner, Saul (1963), "The Role of Thesauri in the Convergence of
Word and Concept Indexing,”" in Automstion and Scientific
Carmunication, Short Iapers, 26th Annual Meeting, American
Documentation Institute, edited by Hi P. Luhn.

10, IFIP-ICC Vocsbulary of Informetion Processing (1966), First
English Language Edition, North-Holland Publishing Co.,
Amsterdam.

-212-

0. Jones, Paul E., and Robert M. Curtice (1967), "A Framework for
Comparing Texrm Associntion Measurec,” American Documentation,

178:153-161.

21. Kuhns, J. L. (1965), "The Continuum of Coefficirnts of Associntion,”
in Statistical Association Methods Tor Mechanized Documentation,
ed. by M. E. Stevens, et al., N.B.S. Misc. Publication 269.

2. Lewis, F. A. W., P. B. Baxendale, and J. L. Bennett (1967),
"Statistical Discrimination of the Synenymy/Antonymy Relation=
ship between Words," Journal of the A.C.M., 14:20-hli,

t

a9]

3. Iuhn, 4o F. (1958), "The Automatic Crestion of Literaturc Abstraclc,'
1.B.M. Journal of Research and Development, 2:159-165.

24, Maron, Melvin E. (1961), "Autamatic Indexing: An Experimental
Inquiry,"” Journal of the A.C.M., 8:404-417.

2%. Maron, Melvin E., aad J. L. Kuhns (1960), "On Relevence, Probeb-
ilistic Indexing and Information Retrieval," Journal of the
A.CoM., T:216-24k, '

26, Miller, G. A., E. B. Newman, and E. A, Friedmsn (1958), "Longth-
Frequency Statistics for Written English," Informestion and
Control, 1:370-389.

PT. MNeedhem, R. M. (1962}, "A Method for Using Computers in
Information Classification,” Information Processing 1962,
Proceedings of IFIP Congress 62, ed. by Cicely M. Popplewell,

1963.

2T. O'Connor John (1965), "Autamatic Subject Recognition in
Scientific Papers: An Empirical Study," Journal of the
A'CoMo b} 12:1\‘90-5150

28, Reisner, Pnyllis (1965), "“Semantic Diversity and a 'Growing'
Man-Machine Thecaurus,” in Some Problems in Informetion
Sclence, ed. by Manfred Kochen.

"0, Rubinoff, Morris, and Don C. Stone (1967), "Semantic Tools in
Information Retrieval," Proceedings of the American
Documentstion Institute, Annual Meeting, vol. 4.

_213 -

30. salisbury, 3linn a., Jr., and H. Edmund Stiles (1967), "The Use
of the B-Coefficient in Information Retrieval," Working Paper,

R45, 67-12.

?1. Salton, Gerard (1965), "Progress in Automatic Information
Retrieval," I.E.E.E. Spectrum, 2:90-103.

32, Salton, Gerard (1966), "Information Dissemination and Automatic
Tnformation Systems," Proceedings of the I.E.E.E., 5i:1663-1678.

stiles, H. Edmund (1961), "The Association Fector in Information
Retrieval," Journal of the A.C.M., 8:271-279.

34, Walston, Claude E. (1965), "Information Retrieval," in Advances
in Computers, vol. 6, ed. by Franz L. Alt and Morris Rubinoff,
Academic Press, New York.

3%, Williams, J. H. (196%), "Results of Classifying Documents with
Multiplc Discriminant Functions," in Statistical Association
Methods for Mechanized Documentation, ed. by M. E. Stevens,

et al., N.B.S. Misc. Publication 269.

36. Winters, William K. {1965), "A Modified Method of Latent Class
Analysis for File Orgenization in Information Retrieval,"
Journal of the A.C.M., 12:356-363.

214~

6.4 References on Statistical Clumping

1.

b

Dale, A. G. and Dale, N; '"Clumping Techniques and
Associative Retrieval," NBS Miscellaneous Pub.ication,
No. 269, U.S. Government Printing Office, 1965.

Edwards, John S.; Adaptive Man-Machine Interaction in
Information Retrieval, Ph.D. Dissertation presented to
The Moore School of Electrical Engineering, University of
Pennsylveniu, Philadelphia. December 1967.

Haigler, Sendra L.; A Program to Generate A Concordance From
Text, M.S. Thesis presented to The Moore School of Electrical
Engineering, University of Pennsylvania, FPhiladelphia.
December 1967.

Jones, Karen Spark and Jackson, David; “Current Approaches
To Classification and Clumpfinding at the Cambridge Language
Research Umit," Computer Journal, Vol. 10, No. 1, p. 29,

May 1967.

Jones, Paul E. and Curtice, Robert M.; "A Framework for
Comparing Term Association Measures," American Documentation,

July 1967, p. 153.

Needham, R. M. {1963); "A Method for Using Ccmputers In
Information Classification," Information Processing 62:
Proceedings of IFIP Congress 1952, Amsterdam: North Holland
Publishing Co., p. 284.

salisbury, Blinn A., Jr. and Stiles, H. Edmund; "The Use of
The B-Coefficient in Information Retrieval."

-215-

6.5 References on Computerized English

1. Dodd, George G.: 'Elcments of Data Management Systems," ngpﬁtigg
Surveys, Vol. 1, No. 2, June 1969, pp. 117-133.

o, Hirschfeld, leonard Jay: Desigm and Implementation of the Retrieval
Mecheniasm of the SOIER Storage and Retrieval System.. Master's Thesis
presented to The Moore School of Electrical Engineering, University
of Pennsylvania, Philadelphia. August 1971.

3. Kaplan, Gera’d: Design and Implementation of the Invert Phase of »
Multiple Data Base information Retrieval System. Master's Thesis
presented to The Moore School of Electrical Engineering, University
of Pennsylvenia, Philadelphia. August 1971.

., Carlson, Clifford Hugh: Update Phase of SOLER. Master's Thesis
presented to The Moore School of Electrical Englneering, University
of Pennsylvanin, Philadelphia. August 1971.

~, Cautin, Harvey: Real English: A Translator to Enable Natural Langunge
Man-Machine Conversation. The Moore Schcol of Elecctrical Engineering,
University of Pennsylvenia, Philadelphia. 1969.

€. Herris, Z.: String Analysis of Sentence Structure, Mouton and Co.,
The Hague, 1962.

7. Joshi, A., Kosaraju, S., and Yamada, H.: String Adjunct Grammars.
The Moore School of Electrical Engineering, University of Penn-
sylvania, Philadelphia., 1968.

8, Chomsky, l.: Syntactic Structures, Mouton and Co., The Hague, 1967.

O : Aspects of the Theory of Syntax, M.I.T. Press,
Cambridge, Massachusetts, 196%.

10. Sager, N.: "Syntactic Analysis of Natural Language," Advences in
Computers, Vol. 8, pp. 153-183, 1967.

11. . A Computer String Grammar of English, New York University
Tinguistic String Project, Report 3, New York, November 1968.

1.

13'

-216-

Felsen, J.: Documentation of the Implementation of Real English
(unpublished report). The Moore School of Electricel Engineering,
University of Pennsylvaria, FPhiladelphia. 1969,

Cimprich, J.: Programming Considerations in the Irplementation of
an English Lansuage Recognizer, The Moore School of Electrical
Engineering, University of Pemnsylvania, Philadelphia. 19§9.

-217-

6.6 Rcferences on Automatic Indexing

1.

L,

%)

10,

Abraham, C. T.: '"Techniques for Thesaurus Organization and
Bvaluation,” Proceedings - American Documentation Institute,
Vol. 1:485, Spartan Books, 196k.

Beker, F. T., ¢t al.: Research on Automatic Classification,
Indexing, and Extracting, Contract NONR 4456 (00) AD No. 435186,

April; 1966.

Bar Hillel, Y.: "A Logicien's Reaction to Theorizing on
Information Retrieval," Amcricen Documentation, Vol. 3:103,

1957.

Bar Hillel, Y.: "Is Information Rctrieval Approaching a
Crisis?" American Documentation, Vol. 14:95, 1663.

Bar Nillel, Y.: Lansurge and Information, Selected Essays on
Their Theory and Application, Addison-Wesley, Reading, Msss.,
1664,

Bobrow, D. G.: Problems in Netural ILanguage Cammunication
with Computers, Contract No. Arl9(628)-5065, AD No. 639323, 1966.

Berul, L.: Information Storage and Retrieval a State-of-the-
Art Report, Auerbach Corp., AD No. 630069, 196h.

Bonner, R, E.: "On Some Clustering Techniques," IEBM J., p. 22,
January, 1964.

Borko, and Bernick: "Automatic Document Classification Part I,"
J. ACM, Vol. 10, p. 151, 1963,

Borko and Rernick: "Automatic Document Classification Part II
Results," J. ACM, Vol. 11, p. 138, 1964,

Bryant, E. C., et al,: Same Aspects of the Improvement of

Document Screening, Contract No. AF49({638)-1484, AD FNo.
%8191, 1955.

13.

14,

16.

18.

19.

20.

1.

22.

~218«

Cleverdon, C., et al.: ASLIB Cranfield Research Project =
Factors Determining the Performancc of Indexing Systems
Volume 1. Design. Cranfield, Englend, 1966.

Cleverdon, C., and Keen, M.: ASLIB Cranficld Research
Project - Factors Determining the Performance of Indexing
Systems. Volume 2. Test Results. Cranfield, England, 106%.

Dale, A. G., and Dole, N.: "“Same Clumping Experiments for
Associntive Document Retrieval,” American Documentetion,
vol. 16:5, 196%,

Dennin, S, F.: The Construction of a Thesaurus Automatically
From a Smmple of Text. Statistical Association Methods for
Mechanized Documentation, NBS Misc. Publication 269,
Washington, D. C.

Edrmundson, H. P.: Mathemstical Models of Synonymy, spe,
Sp-197%/00/01, 1966.

Eveleigh, V. W.: Adaptive Control Systems, Electro-
Technology, Vol. 71:78.

Feldman, J. A.: Aspccts of Associative Processing, Contract
No. AF19(628)-50C, AD No. 61L63L, 1965.

Giuliano, V. E.: Analogue Jetworks for Word Association,
TEEE Trans. on Mil, Electronics, Vol. MIL-7, No. 2 and 3,
p. 221’ 1963.

Giulisno, V. E.: The Interpretation of Word Associations,
Statistical Association Methods for Mechenized Documentation,
NBS Misc. Publication 269, Washington, D. C., 196%.

Giuliano and Jones: Study and Test of & Methodology for
Laboratory Evoluation of Message Retrieval Systems,
Interim Report ESD-TR-66-405, Decision Science Lab.,
Hanscamb Field (USAF), Bedford, Mass., August, 1966.

Gorn, S.: On the Mechanical Simulation of Habit-~Forming
and Learning, J. Informat. Contr., Voi. 2, p. 226,
September 1959.

23.

25-

26.

27,

28.

29.

-219-

Haibt, L., Fischer, M., et al.: An Effectiveness Study of
Full Text Searching, A paper presented at the Fourth
Annusl National Colloquium on Information Retrievel,
Philedelphia, Pennsylvania. May 1967.

Ivie, E. L.: Search Procedures Based on Measures of
Relatedness Bet.reen Documents, Ph.D. Dissertation, MIT
{Project MAC, MAC-TR-29(Thesis), 1966).

Jones, P. E., Curtice, R. M¢: A Framework for Comparing
Term Association Measures, American Documentation, Vol.

4:153, 196T7.

Jones, P. E.: Historical Foundetions of Research on
Statistical Association Techniques for Mechanized
Documentation, Statistical Association Methods for
Mechanized Documentation, NBS Misc. Publication 269,
Washington, D. C., 1965.

Kessler, M. M.: Comparison of the Results of Bibliographic
Coupling and Analytic Subject Indexing, Americen Documentation,
Vol. 16, No. 3. 1965,

Knable, J. P.: An Experiment Comparing Key Words Found in
Indexes and Abstracts Prepared by Humans with Those in Titles,
American Documentation, Vol. 3, No. 4, p. 123, 1965.

Knowlton, X, C.: A Programmer's Description of LLLLLL, Bell
Telephone Leboratories' Low-level List Language, Unpublished
Bell Tclephone Labcrstories Technical Memorandum,

MM 65-1271-2, February 1966.

Lamson, B. G., and Dimsdale, B.: A Natural Language Information
Retrieval System, Proc, IEEE, Vol. 54, No. 1?:1636, Dec., 1966.

lewls, P. A. W., Baxendale, P. B., and Rennett, J. L.:
Statistical Discrimination of the Synonymy/Antonymy Relation-
ship Between Words, J. ACM, Vol. 1%, No. 1, p. 20, 1967.

! {

Luhn, H. Pe: A Statistical Approach to Mechanized Encoding
and Searching of Literary Information, INM J., p. 309, 1957.

33.

38.

39.

L0.

41,

h2.

43,

-220-

Lutn, H. P.: The Automatic Creation of Litersture Abstrects,
IBM J., p. 159, April 1958.

lLynch, M. F.: Computers in the Librery, Nature, Vol. 212,
p. 1402, 1966,

MuCutchen, C. W.: Rendam Code Numbers for Universal
Tdentification of Documents, Americen Documentation, Vol. 16,
No. 2, p. 91, 1965.

McMahon, L. E.: FASE: A Fundamentally Analyzeble Simplified
English., Bell Telephone Leboratories Technical Memorandum,
MM Bh=1221-T, 1965.

Maron, M. E. and Kuhns, J. L.: On Relevance, Probabilistic
Indexing and Information Retrieval, J. ACM, Vol. 7, p. 216,
1960.

Maron, M. E.: Automatic Indexing: An Experimental Enquiry,
J. ACM, 8:L0O4, 1961.

Montague, B. A.: Testing, Camparison, and Evaluation of
Recall, Relevancc, and Cost of Coordinate Indexing with
Links and Roles, Americen Documentation, Vol. 16, No. 3,

p. 201, 1965.

Necdham, R. M. and Sparck Jones, X.: Keywords and Clumps,
J. of Doc., Vol. 20, No. 1, p. 5, 196k,

Noltn, J. F., Armenti, A. W.: An Experimentel On-Line Data
Storage and Retrievsl System, Mass, Inst. of Tech., Tech.
Rpt. No. 377, lexington, Mass., 1965.

O'Connor, J.: Mechanized Indexing Methods and Their Testing,
J. ACM, Vol. 11, No. 4, P. 437, 1964.

Prywes, N. S.: Brows!ng in an Automated Library Throveh
Remote Access, University of Pennsylvenia, The Moore School
of Electrical Engineering, Philadelphia, Pa. K Internal
publication.

Ly,

L=

46,

47,

49,

50.

=1.

“he

~221-~

Rees, A. M.: The Aslib-Crenfield Test of the Western
Reserve University Indexing System for Metellurgical
Literature: A Review of the Final Report, American
Documentation, Vol. 16, No. 2, p. 73, 1965.

Rocchio, J. J.: Information Storege and Retrievel., Rpt. No.
ISR 10, Harvard Camputation Laboratory, 1965 (Ph.D.
Dissertation).

Ross, I. C.: Same Text Anelysis Routines, Unpublished Bell
Telephone Technicel Memovendum MM-66-1221, August 1966.

Rubinoff, M. end White, J. F., Jr.: Establishment of the ACM
Repository and Principles of the IR System Applied to Its
Operation, Communication of the ACM, Vol. 8, No. 10, p. 597,

1965.

Sege, C. R., et nl: Adaptive Information Dissemination,
American Documentation, Vol. 16, Ne, 3. p. 185, 1965.

Salton, G.: The Evaluation of Automatic Retrieval Procedures -
Selected Test Results Using the SMART System, American
Documentation, Vol. 16, No. 3, p. 209, 1965.

Sulten, G.: Information Dissemination and Automatic Information
Swstems, Proc. of the IEEE, Vol. 54, No. 12, p. 1663, 1966.

Shaw, R. R.: Flalcle2 12t3sl Nsclram;, American Documentation,

Vol. 16, No. 2, p. T7, 1965.

Sirmons, R. F.: Natural Languape Processing and the Time-~
Shared Camputer. SDC Paper SP-1971:/001/00 System Dcvelopment
Corp., Samta Monica, Calif., 1965.

Stiles, H. F.: The Association Fnctor in Information
Retricval, J. ACM, Vol. 8, p. 553, 1961.

Stiles, H. E.: Automatic Indexing and the Assoclaticn
Factor, Informatlon Systems Compatibility. Newmen, S. M.,
¥d., American University Technology of Manrgement Series,
“al. 1, Che 13, p. 35, Spartan Books, 1965.

-222-

55. Taube, M.: A Note un the Pseudo-Mathematlics of Relevence,
American Documentation, Vol. 16, No. 2, p. 69, 1965.

6. Weinblatt, K. B.: Efficient Algorithms for Finding the Simple

Cycles and Maximal Strongly Connected Regions of a Finite
Directed Graph, Bell Labs. Tech., Memorandum MM 67-3343-7, 1967.

57. Winters, W. K.: A Modified Method of Letent Class Anslysis
for File Orgainzation in Information Retrieval, J. ACM,
Vol. 12, No. 3, p. 356, 1965. ,

8. Wolfberg, M. S.: UP. 16 - An L6 System for the IBM 7040,
The Moore School of Electrical Engineering, University of
Pennsylvenia, Philadlephia, Fe., Internal publication, 1967.

59. Wolfberg, M. S.,: Determination of Maximally Complete Sub-
raphs, Interim Technical Report, University of Pennsylvania,
Contract NONR 555 (50) (Master's Thesis) 1965.

BOOKS

60. Harary, Normen, and Cortwright: Structure Models: An
Introduction to the Theory of Directed Graphs. Wiley and
Sons, New York, New York, 1965.

61. Ore, O.: Theory of Graphs, American Mathematical Society,
Providence, Rhode Island, 1962.

Q. Salton, Gersrds Automatic Informstion Organization and
Retrieval. McGraw-Hill, New York, New York, 1968.

63. Vickery, B. C.: Classification and Indexing in Science,
Second Edition, Butterworth and Co. (Publishers) Ltd.,
Iondon, England.

APPENDIX A

USER'S MANUAL

Unlversity of Pennsylvania

THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

SOLFR USER'S MANUAL

Philadelphia, Pennsylvanla

August, 1971

INDEX OF CONTENTS

INtroductioN.ceeecescscccssssossosssscsosssccssacel
Processing of SOLER Commands...ccoceceecsccsssl
Notes on this Manual....eeeeesccesssvcccverccel
Alphabetical Listing of SOLER Commands........b

11lustrative Search Sequences

App.nd'x A................................“o

SOLER USER'S MANUAL
INTRODUCTION
This manual serves as a user 's guide to the SOLER
Information retrieval systen, The commands described here
are zhe general user commands; no SOLER administrative

commands are included.

PROCESSING OF SOLER COMMANDS

Commands are Input to thé SOLER system In a command
stream, When the system is ready to accept a command
stream, It will display "ENTER COMMAND'; the user can
begin typing when a '"«" [s displayed. The command stream
should consist of a series of one or more commands to be
executed In sequence. The ENDCOMMAND symbol (see SET
command) must separate commands; however, thils symbol Is
not necessary after the last command In the stream.
Transmission of command streams to the system may not
exceed 80 characters In length; hence, any command stream
which exceeds this 1imit must be bhroken into several
transmissions, Any time a transmission ending with the
CONTINUATION symbol (see SET command) Is received by the
system, it |s stored and the user Is allowed to contlinue

his command stream with another transmisslon, Any error

SOLFR USER'S MAMUAL 2,

condition encountered during processing of a command
stream will result In the display of the approprlate

message and termination of the command stream,
NOTES ON_THIS MANUAL

1, Anything enclosed In parentheses In a command format I[s

{ optionatl In that command.
2, <value)> means any set of at most 200 characters.

3. <(category name)> Is the single name of a category In any
file of the data base,. A category name may be
ambiguous (l.e. used In different contexts within the
data base), A category may be subcategorized; hence, a
file name Is a category name. An example of a file and
its categorles Is shown (In the descripticn of the
DESCRIBE command. ANYWHERE Is a special category name
used to denote the entire data base (only applicable
where specifled). The speclial category name CATEGORY
indicates the attribute of being a category name (only
applicable where specified). For example, RETRIEVE
CATEGORY = NAME means “find the records in which NAME

is a category".

SOLER USER'S MANUAL

<qualifled category name> |s a series of category names
separated by periods, tach category must be a
subcategory of the one to its 12ft In the series. This
type of expression allows for the unamb! guous

specl flcation of a category name.

{qecn> s an abbraviation used In this manual to mean &

category name which may or may not be quailfled.

At al) times, there Is one list of records rcurrently
under conslderation; this !s called “the active list",
After each retrieval command, the active list contains
the list of records which satisfy the command. Data
can be printed only from the records In the actlve
list. The user can create the active list, save |t,
restore an old active list, or manipulate the polinter
into the 1lst by using the commands describec [{n this

manual,

APPLY command ‘ L,

FUNCTION OF COMMAND

Causes the system to process a RETRIEVE command
based on the condlitlons specifled In the
retrieval expression; then the level-1 operator
is appllied to this 1ist and to the current
active list, thus producing a new active llist,
For example, |f the "AND" operator Is specifled,
the new active 1list consists of all vrecords
which appear on the current active list and also
appear on the list produced by the current
command.

FORMAT

APPLY ({level=-1 operator>)<retrieval expression>

EXPLANATION OF FORMAT

1. <level~1 operator> Is a loglical operator. A
1ist of these operators Is avallable by Issuing
a SET LIST = OPER command.

2. If <level-1 operator) |Is omitted, the loglcal
operator "AND" iIs assumed. :

3. <retrieval expression)> Is the logical expression
described as the argument of the RETRIEVE
command,

APPLY command

EXAMPLE

ENTER COMMAND
*RETRIEVE CATEGORY=PHONE DIRECTORY
0000005 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND

*APPLY AREA CODE = 215

0000002 RECORDS HAVE BTEN RETR!EVED
0000002 RECORKDS RESULT FROM THIS APPLY

EMTER COMMAND

*APPLY OR ARFEA CODE = 301

0000001 RECORD HAS BEEN RETRIEVED
0000003 RECORDS RESULT FROM THIS APPLY

ENTER COMMAND

AROUND command 6.

FUNCTION OF COMMAND

Displays to the user all values In the specifled
category In an alphabetical nelghborhood of the
speci fied value.,

FORMAT
AROUND <valtued(IN <qcmd)
AROUND <value>(,<qcn>)

EXPLANATION OF FORMAT

1. CATEGORY or ANYWHERE may be substituted for
<gen>. ANYWHERE Js assumed If <qcn> |s omitted.

EXAMPLE

ENTER COMMAND

*AROUND JONES [N PHONE D!RECTORY.NAME
JOAN :
JOHN ‘

JOHNSON

JONES

JON|

JONSON

JOSEPH

ENTER COMMAND

BACKWARD command

FUNCTION OF COMMAND

Moves the active list polnter backward n entries
In the list,

FORMAT

BACKWARD (n)

EXPLANATION OF FORMAT

l. n ils any Integer.

2. If nls omitted, 1 Is assumed.
EXAMPLE

ENTER COMMAND
*BACKWARD 3

ENTER COMMAND

BETWEEN command ' 8.

FUNCTION OF COMMAND:-
Displays to the user al)l values in the speclfled
category which are alphabet!cally between the
speclifled values,
FORMAT
ZETWEEN <value)> and <valued{ IN <qcn>)

BETWEEN <valued,<{valued(,{(qen>)

EXPLANATION OF FORMAT

. 1. CATEGORY or ANYWHERE may be substituted for
<qen>. ANYWHERE is assumed If <qcn> |s omltted.

EXAMPLE

ENTER COMMAND
*BETWEEN 200,400, AREA CODE

12

215

301

ENTER COMMAND

10.

CONTINUE command

FUNCTION OF COMMAND

FORMAT

Instructs the system to print all data In the
category that was specliflied In the most recent
PRINT or LIST command (to the high~speed printer
or the user's terminal, depending on which
command was most recent), from the the next n

records In the active list,

CONTINUE (n)

EXPLANATION OF FORMAT

1.
2.

n is any integer.

if n !s omitted the number of entries currentiy
remaining In the active ilst |Is assumed.

COMMENT command

FUNCTION OF COMMAND

Stores the specified comment for the SOLER
adminisetrator to review at a later time.

FORMAT
COMMENT <any comment)

EXPLANATION OF FORMAT

1., <any comment> Is any set of remarks the user
wishes to type In.

EXAMPLE

ENTER COMMAND
*COMMENT THIS IS A MESSAGE TO THE ADMINISTRATOR

ENTER COMMAND

CONTINUE command

EXAMPLE

ENTER COMMAND _
*RETRIEVE CATEGORY = DI CTIONARY
0000004 RECORDS HAVE BEEN RETRIEVED

. ENTER COMMAND
«PRINT 1, WORD

RECORD NUMBER 000006

DI CTIONARY

« s WORD ENTRY

.OOOWORD
NEW, A,

ENTER COMMAND
*CONTINUE 2

RECORN NUMBER 000015

Di CTIONARY

« « WORD ENTRY

oooowORD
JERSEY, N,

RECORD NUMBER 000016
DI CTIONARY
« WORD ENTRY
.OOOWORD

PHASE, N.

ENTER COMMAND

DFESCRIBE command 12,

FUNCTION OF COMMAND

Disptays the structure of the specified
categorles; repeating categories are Indicated
by "(R)". if no argument Is specifled, a list
of existing flles Is displayed. A

FORMAT
DESCRIBE <qend(,<qen>,.dJ.)
DESCRIBE

EXFLAKATION OF FORMAT

1. Commas must separate <qcmd's,

EXAMPLE

ENTER COMMAND
«DESCRIBE
EXISTING FILES ARE :
DICTiONARY
PHONE DIRECTORY _
POPULATION RECORDS |

ENTER COMMAND :
«DESCRIBE PHONE DIRECTORY
061 PHONE DIRECTORY
002 NAME
; 003 LAST NAME
003 TITLE
003 FIRST NAME
003 MIDDLE NAME
002 ADDRESS
003 COMPANY
003 STREET
003 CITY
003 STATE
003 ZiP CODE
003 COUNTRY
002 PHONE NUMBER (R)
003 AREA CODE
003 NUMBER
003 EXTENSION (R)

ENTER COMMAND

END command

FUNCTION OF COMMAND
Fnds the session on the SOLER system, Control
Ils passasd back to the computer's operating
system,

FORMATY

END

EXPLANATION OF FORMAT
1. Any arguments of this command will be lgnored,
EXAMPLE |

ENTER COMMAND
«END -
i

ERASE command 14,

FUNCTION OF COMMAND

Reileases the list with the specified ldentifier.
Further reference to this 1list 1Is no longer
possible, However, the identiflier can be wused
again In another SAVE command,

FORMAT

ERASE Cidentiflier>

EXPLANATION OF FORMAT

1., <ldentifler> Is any name used in a previous SAVE
command, '

EXAMPLE

ENTER COMMAND
*ERASE MY POPULATION LIST
FILE DESTROYED

ENTER COMMAND

FORWARD command 15.

FUNCTION OF COMMAND

Moves the acitive llst pointer forward n entries
In the llst.\

FORMAT

FORWARD (n)

EXPLANATION OF FORMAT.

1. n ls anyﬁlnteger;a

2, If nls omitted, 1 Is assumed.
EXAMPLE ’

ENTER _COMMAND
«FORWARD- 5

ENTER COMMAND

-GET command ' 16.

FUNCTION OF COMMAND

Creates a new active 1list composed of the
speclfled record numbers In numeric order.

FORMAT

GET <éecord number>(,<record number>,...)

'EXPLANAT{ON OF FORMAT

1. <record number> 1s any Integer which represents
’ an exlisting record, '

2. Commas must separate <record number>'s,
EXAMPLE

ENTER COMMAND
*GET 2,3,5,7

ENTER COMMAND
«PRINT NONE

' RECORDS IN ACTIVE LIST.
000002
000003
000005
000007
END OF LIST ENCOUNTERED

ENTER COMMAND

INTR <ommand ’ 17.

FUNCTiON OF COMMAND

Interrupts the SOLER processing and enters

~"Interrupt mode". In this mode, the wuser |Is
allowed to terminate a command stream by the
RESTART command, or Issue a3 SET command and
resume processing by the RESUME command. The
INTR command can only be Issued after the user
has depressed the "BREAK" or "ATTN" key on the
keyboard and the operating system has responded
with a "/",

FORMAT -
INTR

EXPLANATION OF FORMAT

1. No arguments are allowed for this command.

EXAMPLE -

ENTER COMMAND
*GET 1,2,3

ENTER COMMAND
«PRINT

RECORD NUMBER 000001

PHONE DIRECTORY

« « NAME

eooo LAST NAME
NEW

... .FIRST NAME:
CHRIS

« - ADDRESS

eee o STREET
252 E 88 ST, :

- (break key depressed)

/INTR ' .

INTERRUPT MODE: ENTER SET, RESUME, OR RESTART
COMMAND '
*RESTART

ENTER COMMAND

LIST command

18,

FUNCTiON OF COMMAND

FORMAT
LIST
LIsT
LIST

initiates the same processing as a PRINT
command, except that the output {s directed to
the high-speed printer Instead of the user's
terminal,

(n, INONE
(n,)<qen>(,<qgen>, ...)
(n)

EXPLANATION OF FORMAT

1.
2.

3.
EXAMPLE

n ils any integer,

If n Is omitted the number of entries currently
remaining In the active list |Is assumed,

Commas must separate <qcn>'s.

ENTER COMMAND
*GET 2,5,17,18

ENTER COMMAND
*FORWARD 2

ENTER COMMAND
«LIST 1, WORD, NAME

ENTER COMMAND

PRINT command

19,

FUNCTION OF COMMAND

FORMAT
PRINT
PRINT
PRINT

EXPLANATIO

Instructs the system to print all data In the
specl fled categorles from the next n records In
the active list, The output Is directed to the
user's terminal, A pointer to an entry In the
active list Is malintained; this pointer
determines the place In the 1llist at which to
begin printing the n records. (Whenever a new
active list Is created, the pointér Is set to
the beglinning of the 1ist; printing from the
iist advances the pointer; the polinter can also
be changed by using the FORWARD, BACKWARD, and
RESET commands.) The NONE option causes printliuag
of the active 1list itself. If no argument is
specl fled, all categorias of the remalining
records In the active 1lst are printed.

(n,)NONE .
(n,)<acn>(,<qen>,...)
(n?

N OF FORMAT
n is any Integer.

if n Is omitted the number of entries currentiy
remalning In the active 1ist Is assumed.

Commas must separate <qcn)'s.

PRINT command A : 20,

EXAMPLE

ENTER COMMAND
*GET 2,5,17,18 .

ENTER COMMAND
*FORWARD -2

ENTER COMMAND
*PRINT 1, WORD, DEFINITION ENTRY.DEFINITION

RECORD NUMBER 000017

- DI CTIONARY
« «WORD ENTRY
« o0 +HWORD
FOREIGN
+ .DEFINITION ENTRY
+es+DEFINITION
SITUATED OUTSIDE ONE'S OWN COUNTRY,
PROVINCE, LOCAL!TY, ETC.
+es o DEFINITION
COMING FROM OR HAVING TO DO WITH ANOTHER
PERSON OR THING; NOT CHARACTERISTIC;
AS, FORCE 1S FOREIGN TO HIS NATURE
+ea e DEFINITION
EXCLUDED; NOTY ADMITTED; HELD AT A
DISTANCE

ENTER COMMAND

S
/’, %\/

QUALIFY command 21,

FUNCTION OF COMMAND

Produces an Internal 1list of the categorles
speclfled In the command; all further retrieval
and printing Is limited to the listed categories
and thelr subcategorlies. Since there Is only
one qualification 1ist, each QUALIFY command
destroys the old quallification 1llst, If no
argument I3 specliflied, the current qualification
Is removed.

FORMAT

QUALIFY <qer>(,<qend>,...)
~ QUALIFY

EXPLANATION OF FORMAT

1. Commas must separate <qcn)>'s,

QUALIFY command

EXAMPLE

ENTER COMMAND

«QUALIFY LAST NAME, TITLE

ENTER COMMAND
*GET 8

ENTER COMMAND
«PRINT

RECORD NUMBER 000008

PHONE D{RECTORY
L .NAMC
« oo« LAST NAME
. KAIN
eess TITLE
REV.

END OF L1ST ENCOUNTERED

ENTER COMMAND
*QUALIFY

ENTER COMMAND
*PRINT NAME

RECORD NUMBER 000008

PHONE DIRECTORY
..NM-E .
oeses LAST NAME
KAIN
L N .T'TLE
REV.
«os o« FIRST NAME
JAMES
«ee.MIDDLE NAME
: L.

END OF LIST ENCOUNTERED
ENTER COMMAND

22,

REPEAT command v 23,

FUNCTION OF COMMAND

instructs the system to reprocess the most
. recent APPLY or RETRIEVE command (even though
other types of commands have been Issued).

FORMAT
REPEAT
{
EXPLANATION OF FORMAT
1. Any arguments of this command will be lgnored.
EXAMPLE
ENTER COMMAND

*RESTRICT AREA CODE = 301 OR WORD = FOREIGH
THE RESTRICTION LIST CONTAINS 0000002 RECORDS

ENTER COMMAND
*RETRIEVE CATEGORY = AREA CODE

0000005 RECORDS HAVE BEEN RETRIEVED
/0000001 RECORD RESULTS AFTER RESTRICTION

ENTER COMMAND
*RESTRICT

ENTER COMMAND
~REPEAT
0000005 RECORDS HAVE BEEN RETRIEVE

ENTER COMMAND

RESET command o 24,

FUNCTION OF COMMAND

Sets the active list pointer to the beginning of
the list, .

FORMAT
- RESET

" EXPLANATION OF FORMAT
1. Any arguments of this command will be ignored.
EXAMPLE

ENTER COMMAND
*RESET

ENTER COMMAND .

RESTART command 25.

FUNCTION OF COMMAND

Instructs the system to térmlnate processing of
the current command stream and accept a new
command stream (applicable only in "interrupt
mOde")- v

FORMAT

RESTART

EXPLANATION OF FORMAT

1. No arguments are allowed for this command.

EXAMPLE

ENTER COMMAND
*GET 1,2,3

ENTER COMMAND
*PRINT

"RECORD NUMBER 000001

" PHONE DIRECTORY
« « NAME
eeos LAST NAME
NEW
eees FIRST NAME
CHRIS
| . . ADDRESS
eees STREET
252 £ 88 ST.
{break key depressed)
; JINTR \
INTERRUPT MODE: ENTER SET, RESUME, OR RESTART
COMMAND .
*RESTART

ENTER COMMAND | | |

RESTORE command : ' 26,

FUNCTION OF COMMAND

Replaces the <current active list with the list
previously stored using the specified
identifler.

FORMAT

RESTORE <Ident}flier>

EXPLANATION OF FORMAT

1., <ldentifler> Is any name used in a preyicus SAVE
command,

EXAMPLE

ENTER COMMAND
*RESTORE MY POPULATION LIST
FILE ACTIVE

ENTER COMMAND
*PRINT NONE

RECORDS IN ACTIVE LIST

000003
00000k
000005
000011
000012
000013
000014

END OF LIST ENCOUNTERED
ENTER COMMAND

RESTRICT command 27.

FUNCTION OF COMMAND

FORMAT

Causes the system to process a RETRIEVE command
based on the conditions specified I[n the
retrieval expression. The resulting active list
Ils saved as the restriction llst. Since there
is only one restriction 1list, each RESTRICT
command destroys the old restriction llst, |If
the "«'" argument is used, the current active
1ist s saved as the vrestriction list, All
further RETRIEVE or APPLY commands are 1limlted
to those records in the restriction list. |f no
argument Is specifled, the current restriction
is removed. '

RESTRICT <retrieval expression>

RESTRICT »

RESTRICT

EXPLANATION OF FORMAT

1.

(retrieval expression) [s the logical expression
described as the argument of the RETRIEVE
command.

RESTRICT command 28,

EXAMPLE

ENTER COMMAND
*RESTRICT AREA CODE = 215 OR WORD = FOREIGN
THE RESTRICTION LIST CONTAINS 0000003 RECORDS

ENTER COMMAND
«RETRIEVE CATEGORY = AREA CODE

0000005 RECORDS HAVE BEEN RETRIEVED
6000002 RECORDS RESULT AFTER RESTR!CTION

ENTER COMMAND
*RESTRICT

ENTER COMMAND
eREPEAT
0000005 RECOGRDS HAVE BEEN RETRIEVED

ENTER COMMAND
*RESTRICT =

ENTER COMMAND
*REPEAT

0000005 RECORDS HAVE BEEN RETRIEVED
0000005 RECORDS RESULT AFTER RESFTRICTION

ENTER COMMAND

RESUME command 29,

FUNCTION OF COMMAND

FORMAT

Instructs the system to resume processing of the
current command stream (applicable only In
"Interrupt mode"). This command Is particularly
useful to resume processing after a SET command
has been issued In "interrupt mode",

RESUME

EXPLANATION CF FORMAT

EXAMPLE

1.

No arguments are allowed for thls command,

ENTER COMMAND
*SET TRACES=ON

ENTER COMMAND
eRETRIEVE ANYWHERE«NEW OR FOREIGN

N=V OR V
- |
000001 « =
000000 =« =
000G0]1 =
000000 e« =
000001 = ¢
000001 » =
(break key depressed)
/ INTR

INTERRUPT MODE: ENTER SET, RESUME, OR RESTART
COMMAND
*SET TRACES=0FF

INTERRUPT MODE: FNTER SET, RESUME, OR RESTART
COMMAND
*KESUME

0000012 RECCRDS HAVE BEEN RETR!IEVED

ENTER COMMAND

RETRIEVE command 30.

FUNCTION OF COMMAND

FORMAT

Produces a list (called the actlive llst) of all
the records which contaln data that satisfles
the speclfied conditions. There 1Is only one
active 1list; hence, every RETRIEVE command
creates 3 list which replaces the current actlve
1ist, The set of retrlevable records may be
limited by the RESTRICT command. The scope of
the loglcal expression may be 1limited by the
QUALIFY command.

RETRIEVE <qcn>=<(expression of values>({level-1

operator><{qcn>={expression of values>...)

EXPLANATION OF FORMAT

1.

Cexpression of values) Is defined as :
(value>(<level~2 operator><{value>...).

A space between <valued's In a phrase Is
conslidered a <level-2 operator>.

{lavel~]l operator> and <level=2 operator> are
loglcal operators., A list of these operators Is
avallable by Issuing a SET LIST = OPER command,

Parentheses are allowed to speclfy the order of
operatlions.

<value> should be enclosed In single quotes If
It contalns non-alphanumeric characters (e.g.
hyphen), or 1f it is a reserved word (e.g. the
name of an operator or function).

{value) may be replaced by :
(functlond>(<valued>{, <value>,...)).

<{functlon> Is an alphadbetic bfowslng functlon
(e.g. AROUND, BETWEEN, TRUNCATE) . The
arguments of a functlion must be enclosed In

- parentheses and separated by commas,

CATZGORY or ANYWHERE may be substituted for
{qecn>.

RETRIEVE command 31.

' EXAMPLE

ENTER COMMAND
*RETRIEVE IDIOM = POLICY OF A COUNTRY
0000001 RECORD HAS BEEN RETRIEVED

ENTER COMMAND
mincaies - #PRENT. 1D 1OM
i
: >

RECORD NUMBER 000017

D1 CTIONARY
.. 1DIOM
IQIOPHRASE .
FOREIGN AFFAIRS
et .DEFINITION
MATTERS CONCERNING POLICY OF A COUMTRY IN
ITS RELATIONS WITi OTHER COUNTRIES
...+ PHRASE
FOREIGN OFFICE
«ee JBEFINITION
THE DEPARTMENT OF GOVERNMENT N CHARGE OF
FOREIGN AFFAIRS

?

END OF LIST ENCOUNTERED

ENTER COMMAND :
*RETRIEVE NAME=NEWA(STATE=NEW YORK-CITY'ALBANY)

0000001 RECORD HAS BEEN RETRIEVED

ENTER COMMAND :

*APPLY STREET = 42ND ST :

NO RECORDS SATISFY THIS RETRIEVE
0000000 RECORDS RESULT FROM THIS APPLY

ENTER COMMAND ‘
*RETRIEVE WORD = TRUNCATE(ELECTRO) OR 'ON- LINE'

0000002 RECCROS HAVE BEEN RETRIEVED
ENTER COMMAND '

SAVE command 32.

" FUNCTION OF COMMAND

Stores. the current active list Internally, using
the specifled identifler. 1In order to reference
it later, a2 RESTORE command must be Issued.

FORMAT '
SAVE ' {identifler>

EXPLANATION OF FORMAT
1. <ident!fler)> Is any name which the user assigns.

EXAMPLE

f

ENTER COMMAND ‘
*RETR{EVE CATEGORY = POPULATION RECORDS
0000007 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND
*PRINT NONE

RECORDS IN ACTIVE LIST

060003
00000k e
000005
000011
000012
000013
000014

END OF LIST ENCOUNTERED
ENTER COMMAND |
*SAVE MY POPULATION LiST

FILE HAS BEEN SAVED

. ENTER COMMAND

SET command

33,

FUNCTION OF COMMAND

Changes the settings of the speclfied
user~-controlled condlitlcns. The LIST optlon
causes printing of the speciflied keywords, thelr

" abbreviatlions, possible values, and current

FORMAT
SET
SET

values, If no keywords are speclflied for the
LIST option, all keywords, abbreviations, and
values are printed.

I
<keyword>=(value)>(,<keyword>=<(value>,...)
LIST(=<keyword>, <keyword>,...)

!

EXPLANATION OF FORMAT

1.

2,

Commas must separate <(keyword>'s or <keyword> =
{value) palrs.

<keywo;d> 3 are described In the accompanying
1ist; <valued's are described hy Issutng a SET
L¥ST command.

Each <keyword> has an equivalent abbrevlation.

SET command
KEYWORD

CONT INUAT ION

ENDCOMMAND
!

FIELDNAMES

FUNCLIMIT

INDENTFACTONR

LINELENGTH

OPERATOR

PRECFDENCE

3y,

DESCRIPTION OF VALUE .

a single symbol used to denote contlnuation
of any command stream from one transmlssion
to the next; cannot have the same value as
ENDCOMMAND,

a single symbol used to separate commands In
a command stream; cannot have the same value
as CONTINUATION,

one of four settings which speclfy the
extent to which category names are printed
along with data; the settings allow printing
of all or none of the category names
assocliated with a data - item, all
subcategories of the category beling printed,
or only the .name of the category which
contalns the data Itself,

an integer which sets a limit on the amount
of searching done to evaluate any functlon,

an integer used for Indenting category names

" and data when printing; the value must be

less than LINELENGTH.

an Integer which determines the maximum [1ine
length for all printing.

a set of five values which defines a new
loglcal operator for the current session:;
the values consist of the name and
precedence of the new operator, the name of
the subroutine to be used for performing the
operation, and indications that the operator
Is elther level-1] or level=2 or both,

an Indication of a new precedence for an
existing operator for the current session,

SFET command 35.

KEYWORD DESCRIPTION OF VALUE

PRINT=-DATA one of three settings which allow the SOLER
administrator to display data being updated
on the terminal, high-speed printer, or not
at all; applicable during file update only,

!

RECORDNUMBER a vyes-no setting which specifies whether or
not record numbers are to be displayed with
data be’ing printed.

SKIP=TO-TOP a ves=no setting which specifies whether or
not each record (belng oprinted on the
high-speed printer) starts at the top of a
new page.

SYSDTA->FILE ,one of two settings which speclfy whether or
not the wuser's commands (from SYSDTA) are
echoed to a cataloged file.

SYSDTA->LST | one of two settings which specify whether or
not the user's commands (from SYSDTA) are
echoed to the high-speed printer (SYSLST).

SYSDTA->0UT one of two settings which specify whether or
not the user's commands (from SYSDTA) are

echoed to the user's terminal (SYSOUT).

SYSLST-)FILE’ one of three settings which specify whether
or not the data being printed on the
high-speed printer (SYSLST) 1|s echoed or
swltched to a cataloged flle.

SYSOUT=>FILE one of three settings which speclify whether
or not the data being printed on the wuser's
terminal (SYSOUT) is echoed or switched to a
cataloged file.

SYSOUT=>LST : one of three settings which speclfy whether
or not the data belng printed on the user’s
terminal (SYSOUT) Is echoed or switched to

the high~speed printer (SYSLST).

SET command

KEYWORD

TRACELEVEL1

TRACELEVELZ

TRACELEVELG

TRACES

TRACELIMIT

TRACESYMBOL

36.

DESCRIPTION OF VALUE

a vyes-no setting which specifles whether or
not the result of each level-l operation |Is
traced on the user's terminal,

a ves=no setting which specifies whether or
not the result of each level-2 operation |Is
traced on the user's terminal,

a yes-no setting which specifies whether or
not the result of each operation generated
by subcategorles or funcilons Js traced on
the user's terminal.

a yes-no setting which speciflies whether or
nct the results of all operations are traced
ori the user's terminal; in essence,
TRACELEVELLl, TRACELEVEL2, and TRACELEVELG
are all set tc yes or no.

an Integer which sets a limit on the trace
of each operator; when the number of records
resulting from any operation s greater than
this Integer, the trace Is not displayed,

a single symbol used In displaying the
trace; cannot be 's'',

TRUNCATE command 37.

FUNCTION OF COMMAND

ODlsplays to the user all values in the speclified
category for which the specifled value forms the
word trunk (l.e, the flrst string of
characters), :

! . FORMAT

§

¢ TRUNCATE <value>{ IN <qcn>)
TRUNCATE <vatue>(,<qcn>)

EXPLANATION OF FORMAT

. 1., CATEGORY or ANYWHERE may be substituted for
{qen>. ANYWHERE Ils assumed {f <qcn> Is omltted.

EXAMPLE

ENTER COMMAND

*TRUNCATE ELECTRO
ELECTROCARDIOGRAM
ELECTROCUTE
ELECTROENCEPHALOGRAM
ELECTROLYSIS
ELECTROMAGNETIC
ELECTRON

! ELECTRONIC

, ENTER COMMAND

*TRIUNCATE ELECTRO IN DIAGNOSIS
ELECTROCARDI OGRAM
ELECTROENCEPHALOGRAM i

{

ENTER COMMAND

*TRUNCATE DESCR,CATEGORY
DESCRIPTION

DESCRIPTIVE

ENTER COMMAND

{
" WHERE command 38,

FUNCTION OF COMMAND
Displays to the user the names of all flelds (in
the data base) In which the Indlcated value
appears as data, and the number of records In
which the tindlcated value [s the name of a
category. The data base may be Yimited by the
QUALIFY command, .

FORMAT

WHERE <valued(,<value’,,..)

EXPLANATION OF FORMAT |
1. <value> cannot Iinclude commas.

2. Commas must separate <value)'s.

!

WHERE co:fmand 39,

~ EXAMPLE

ENTER COMMAND
*QUALIFY PHONE DIRECTORY, DICTIONARY

ENTER COMMAND
*WHERE- 215, NAME , NEW

LA 222222

215

(2222222

OCCURS IN THE DATA BASE :
PHONE DIRECTORY |
WITHIN THESE FIELDS (# RECORDS)

AREA CODE (000002)

(2 X2 XX 32X]
! NAME

\ A2 24222

IS A CATEGORY CONTAINING DATA IN 000012 RECORDS

T2 XXX !

NEW

(A2 22 X2 2

OCCURS IN THE DATA BASE :
DI CTIONARY | |
WITHIN THESE FIELDS (# RECORDS)

WORD (000001)
DEFINITION (000001)
PHRASE (000001)

OCCURS IN THE DATA BASE :
PHONE DIRECTORY
WITHIN THESE FIELDS (# RECORDS)

LAST NAME (000001)

COMPANY (000001)

CITY (000002)

STATE (000001)

ALSO GCCURS OUTSIDE CURRENT QUALIFICATION

ENTER COMMAND

w & N
. *

APPENDIX A . | - 40.

il1lustrative Search Sequences

/LOGON user-~-ld, acctt

2C E223 LOGON ACCEPTED FROM LINE fnnn AT time
ON date, TSN nnnn ASSIGNED,

/00 RETRIEVE

tP500 LOADING

_ ENTER COMMAND
«DESCRIBE
EXISTING FILES ARE :
D1CTIONARY
PHONE DIRECTORY
POPULATION RECORDY

ENTER COMMAND
*DESCRIBE PHONE DIRECTORY
001 PHONE DIRECTORY
002 NAME
003 LAST NAME
003 TITLE
003 FIRST NAME
003 MIDDLE NAME
002 ADDRESS
003 COMPANY
003 STREET
003 CITY . o
003 STATE .
003 Z1P .CODE
003 COUNTRY
002 PHONE NUMBER .(R)
003 AREA CODE: .
003 NUMBER = -
003 EXTENSION (R)

De

ENTER COMMAND

*«QUALIFY PHONE DiRECTORY

anE W N

After dialing Into the computer; the user must I[dentlfy
himself to the operating system.* The systam responds when
the Yogon is accepted. :

The user Initlates SOLER retrleval with tha D0 command to
the operating system, -
Thed operating system infarms the user that SOLER Is being
loaded,

SOLER |s ready to accept a command from the user.

The user asks for a list of the files In this data base,

The user asks for a description of one of the flles in the
data base. This description 1is displayed in the lovei

structure of the file definition.

The user Instructs SOLER to limit his retrarva) Lo the PHOGNC
DIRECTORY flle In the dats hase.

9.

s,

ENTER COMMAND
*RETRIEVE NAME = CHR!S /
0000001 RECORD HAS BEEN RETR{EVED

ENTER COMMAND
«PRINT i /

RECORD NUMBER 000001

PHONE DIRECTORY
+ « NAME
«o0s. LAST NAME
NEW
+ee. FIRST NAME
CHRIS
« +ADDRESS
eoes STREET
252 E 88 ST. J /7
ees s CITY
NEW YORK
.o+ .STATE
NEW YDRK
«eo.2IP CODE
10017
. « PHONE MUMBER
«++.AREA CODE
212
« oo+« NUMBER
238-3145 |

END OF LIST ENCOUNTERED

8.

The retrieve command initlates retrlieval. The NAME = CHRIS
clause specifles that all records should be retrieved which
have the value CHRIS In the NAME category. The system teils
the user how many records result,

The user tells the gystem (o0 print this record. SOLER
prints the 1Internal record number of the record retrieved.
Then, the namaes of the data categortes are printed; The
Indentation Indlcates which categories are subordinete to
other categorles In the tree-structured record, The whole
data record lg arinted.

1C.

11.

12,

13,

LY &

ENTER COMMAND
*BETWEEN A AND H IN NAME
A

ALBERT

ALPHONSE

CHRIS

DERRICK

FORE{IGN

GEORGE

ENTER COMMAND
*RETR NAME=BETWEEN(A,H) AND AREA CODE = 301
0000001 RECORD KAW BEEN RETRIEVED

ENTER COMMAND
*SET FIELDNAMES ={MMED

ENTER COMMAND
wPRINT NAME, ADDRESS

RECORD NUMBER 000010

e oo« LAST NAME
SMITH
eos FIRST WNAME
GEORGE
« oo MIDDLE NAME
HAROLD
eos s STREET
200 N MAIN ST,
ees s CITY
CATONSVILLE
....sTATE
MARY LAND
«eo.ZIP CODE
21229

END OF LiST ENCOUNTERED

10.
11.

12.
13.

The user csks to see all values In the NAME category between
the letters A and H, '
Now the user wants to retrieve all records with 8 NAME value
between A and H which also have an AREA CODE value of 301,
SOLER talls ke user the number of records retrieved.

The user specifies that only immediate category names are to
be printed In subsequent PRIWT's,

Request 1I!s Issued for prianting of the NAME and AOORESS
categories from the racord retrieved. :

14,

15,

16,

17.

18,

b3.

ENTER COMMAND
*RETR CATEGORY=PHONE DIRECTORY
0000005 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND
*LISY

ENTER COMMAND
‘QUALlﬁYi

ENTER COMMAND
*RETR CATEGORYsDfCT(ONARY

7 0000004 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND
*PRINT NONE

RECORDS IN ACTIVE LIST
000005
000015
000016
660017

END OF LIST ENCQUNTERED

14,
15,

16.

17,
18,

The user wishes to find all records which contaln data for
the PHCNE DIRECTORY category; that is, all records iIn the
PHONE DIRECTORY file are desired,

The user specifles that all five records retrlaved should be
printed on the hlthspeed prlnter. No printing (s directed
to the terminal,

The user Instructs SOLER to rgmove the current
qualification; that is, the user wishes to retrieve from the

- antire data base again.

The user desires a)) records in the DICVIONARY fila,
The Internal record numbers of the currgntly active records

are dlsp!ayed.

19,

20.

21.

22.

b,

ENTER COMMAND
*SET RECORDMUMBER=N,FN=NONE

ENTER COMMAND
*PRINT WORD
NEW, A,
JERSEY, N.
PHASE, N.
FOREIGN

END OF LIST ENCOUNTERED

EMTER COMMAMO
*SET FN=|

ENTER COMMAND
*RESET; FORWARD 2;PRINT 1,WORD ENTRY,SYNONYMS
« o+ «WORD
PHASE, N,
«+-.0ORIGIN
MOD. L. FHASIS; GR. PHASIS, FROM PHAINESTHAY,
T0 APPEAR ~

19.
20.
21.
22,

The user requests that record numbers and all category names
be suppressed In firther printing.

The WORD category from each active record 1s printed wlthout
categor; names or record numbers,

Tha display of terminal category names 1|s restored for
further printing.

The user lssues three commands; the first sets the polinter
to the Virst active record; the second advances the pointer
to the third active record; and the third requests oprinting
of WORD ENTRY and SYNONYMS from the next active record,

85,

ENTER COMMAND |
23, *RETRIEVE CATEGORY = PHONE DIRECTORY - Z|P CODE OR =
~ADDRESS = PHILADELPHIA OR NEW YORK °
0000003 RECORDS HAVE BEEN RETRIEVED

ENTER COMMAND
24, *PRINT LAST NAME
«+00 LAST NAME

e NEW
.LAST NAME

ZI GERT
«...LAST NAME
DEWR I CK

-

END OF LIST ENCOUNTERED

ENTER COMMAND

25. *APPLY ADDRESS=PHILADELPHIA _
0000001 RECORD HAS BEEN RETRIEVED
000000 RECORD RESULTS FROM THIS APPLY

ENTER COMMAND
26, *PRINT NAME,ADDRESS
eoe. LAST NAME
ZIGERT
eos s TITLE
JR.
«s s FIRST NAME
ALBERT
¢es.MIDDLE NAME
| FOREIGN |
«+..COMPANY
UNIV, OF PA.
¢0eo STREET
200 SQUTH 33 ST
oou-C'TY_ ’ T “
PHILADELPHIA
eo.sSTATE
PENNSYLVANIA
esssZiP CODE
19104 -

END OF LIST sucounreaea

23. A two-line retrieval renuest I[s Issusd; the contlinuatlon
character It added at the wnd of the flirst line,
24, The LAST NAME entries In the active records are printed.
25, The additional construlnt "ADDRESS=PHILADELPHIAY Is Imposed
" on the actlive llist. ‘
26, Data from the resuizing record Is printed.

— et

&6,

.ENTER COMMAND
27. *RESTRICT CATEGORY«D|CTiONARY
THE RESTRICTION LIST CONTAINS 0000004 RECORDS

ENTER COMMAND

28. *RETRIEVE ANYWHERE=FOREIGN
0000002 RECORDS HAVE BEEN RETRIEVED
0000001 RECORD RESULTS AFTER RESTRICTION

' ENIER COMMAND
29. *PRINT 1DIOM
«o o+ PHRASE
FOREIGN AFFAIRS
+ee o DEFINITION
MATTERS CONCERNING POLICY OF A COUNTRY IN ITS
. RELATIONS WITH OTHER COUNTRIES
«o s « PHRASE - '
FOREIGN OFFICE
+ee DEFINITION
THE DEPARTMENT OF GOVERNMENT IN CHARGE OF
FOREIGN AFFAIRS

"END OF LIST ENCOUNTERED

ENTER COMMAND
.30, *RETRIEVE WORD=TRUNCATE(ELECTRO)
NO RECORDS SATISFY THIS RETRIEVE

ENTER COMMAND

31. *END

32, LLOGOFF -

27. AY) records In the DICTIONARY file are retrieved and the
resulting list Is used to restrict further retrieval.

28. The user requests all records {n -the entire Jata base In
which the value FOREIGH occurs. SOLER notes that two such
records are found In the data base, but anly one is In the
restrictior list of records. '

29, The gsar asks to see the 1DYOM catc;ory In the resulting
record.

30, The user raques*®s all record: that have vaiues in tho WORD
"category which begin with the letters ELECTRO. SOLER
informs him that no such records exist. Co

31. Finlished witk tls work, the user ends the SOGLER sesslion.

32. Tha LOGOFF command to the operating systew i{sconnacts the
user. : :

