
,DOCUMENT RESUME

ED 082 488 BM 011 457
,

_

AUTHOR Schultz, Gary D. 1

TITLE The CHAT System:1)ln OS/360 MVT Time-Sharing Subsystem
for Displays and Teletype. Technical Progress
Report.

INSTITUTION North Carolina Univ., Chapel Hill. Dept. of Computer
Science.

SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO UNC-TPR-CAI-6
PUB DATE May 73
NOTE 225p.; Thesis submitted to the Department of Computer

Science, University of North Carolina

EDRS PRICE MF-$0.65 HC-:-$9.87
DESCRIPTORS Computer Programs; Input Output Devices;

*Interaction; *Man Machine Systems;, Masters Theses;
Program Descriptions; *Systems DeVelopment; Technical
Reports; *Time Sharidg

IDENTIFIERS *Chapel Hill Alphanumeric Terminal; CHAT; CRT Display
Stations;. OS 360; PI. I; Teletype

ABSTRACT
The design and operation of a time-sharing monitor

are described. It runs under OS/360 MVT that supports multiple
application program interaction with operators of CRT (cathode ray
tube) display stations and of .a teletype. Key. design features
discussed include: 1) an interface. allowing application programs to
be coded in either PL/I or assembler language; 2) use of the teletype
for:subsystem control and diagnostic purposes; and 3) a novel
interregional conduit allowing an application program running under
the Chapel Hill Alphanumeric Terminal (CHAT)_: monitor to
interact--like a terminal operator--with a conversational language
processor in another region of the OS/360 installation. (Author)

FILMED FROM BEST A7AILABLE COPY

University of North Carolina
at Chapel Hill

Department of Computer Science

CO
-4.
CNJ
CO

LiJ

THE CHAT SYSTEM: AN OS/360 MVT TIME-SHARING
SUBSYSTEM FOR DISPLAYS AND TELETYPE

Gary D. Schultz

May 1973

Technical Progress Report CAI-6
to the

National Science Foundation

under Grant GJ-755

U.S. OE PAR THE NT OF NEAL1N.
EDUCATION &WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REAM).
DUCED EXACTLY AS RECEIVED FROMme PERSON OR ORGANIZATION ORIGIN-
ATING IT. POINTS OP VIEW DR OPINIONS
STATED DO NOT NECESSARILY REPRE-
SENT OFPIciAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY.

DEPARTMENT OF COMPUTER SCIENCE
University of North Carolina at Chapel Hill

THE CHAT SYSTEM: AN OS/360 MVT TIME-SHARING
SUBSYSTEM FOR DISPLAYS AND TELETYPE

by .

Gary D. Schultz

A thesis submitted to the faculty
of the University of North Carolina
at Chapel Hill in partial fulfillment
of the requirements for the degree of
Master of Science in the Department
of Computer Science.

Chapel Nil1,

1973

Approved by:
A

Crte
Adviser

GARY DENNIS SCHULTZ. The CHAT System:
An OS/360 MVT Time-Sharing Subsystem
for Displays and Teletype. (Under
the direction of DR. FREDERICK P.
BROOKS, JR.)

This thsis describes the design and operation of a time-sharing

monitor running under OS/360 MVT that supports multiple application pro-

gram interaction with operators of CRT display stations and of a Teletype.

Some key features of the design are (1) an interface allowing applica-

tion programs to be coded in either PL/I or assembler, (2) use of the

Teletype for subsystem control and diagnostic purposes, (3) a novel

interregional conduit allowing an application program running under the

CHAT monitor to interact--like a terminal operator--with a conversa-

tional language processor in another region of the 05/360 installation.

II

AC_...NOWLEDGMENTS

I extend ic profound appreciation to William H. Blair for his

collaboration in making the CHAT System a working reality. Throughout

the two-and-a-half years of system development, I benefited daily from

his insights and assistance and his unrivaled dedication to quality

work. His companion thesis 11331, and the many references to it herein,

only reveal his technical contributions to the project. For his other

contributions, I thank him heartily.

I also thank J. Craig Mudge for his willingness to assist in

testing sessions at all hours of day and night--sacrificing his own

scarce time to do so.

Dr. Frederick P. Brooks, Jr,, gave valuable criticism and advice

on early drafts of this thesis, improving its organization, style, and

clarity. For this, the readers will perhaps thank him as much as I do.

Partial support of the project was funded by the National Science

Foundation under NSF Grant Number CJ-755.

TABLE OF CONTENTS

Acknowledgments ii

1. INTRODUCTION 1

Concerns and Organization of the Thesis 4

Related Literature 10

2. SYSTEM OVERVIEW 16

Hardware Specifics 17

Configuration 17

Operation 19

Terminal Usage 26

Organization and Functions of the Monitor 34

Task Structure and Control 36

Core Layout and Intraregional Protection 38

Communication and Linkage 45

Initialization of the Region 56

3. THE APPLICATION PROGRAM INTERFACE 62

Display Usage 64

Controlling the Slide Projector 64

Writing on the Display Screen 65

Reading from the Display 69

Getting the Lightpenned Coordinates 70

Time and Keyboard Synchronization 72

Teletype Usage 75

CPS Access 76

Establishing Connection to CPS 76

Reading from CPS 76

Writing to CPS 78
Interrupting CPS Activity 78

General Use Procedures 80

Exception-Condition Signalling 82

Writing an Application Program 84

4. REGION AND SUBTASK CONTROL 87

Time-Slicing 89

Subtask Priority Scheduling 96

Remarks,on Scheduling 102
Other Executive.Functions 104

5'. *DISPLAY I/O MANAGEMENT

An Initialization Step
Waiting, Linking, and Queueing
Insensitivity to Number of Displays
Scheduling Rule
Servicing Attentions

iv

105

107

110
115
117

120

IN Initiation and Completion 123

Channel Programming 123

Completion and Posting 124

Hard Error Handling 1 126

Shutdown 127

6. TELETYPE CONSOLE SUPPORT 128

Details on Teletype Usage 130
Modes 130
Paper Tape 131
Ending a Message 131

Monitor Commands 133

Measages Sent to the Teletype Operator 136
Structure.of the Teletype Support 140

7. THE INTERREGIONAL CONDUIT 143

Design of the Conduit: Linkage and Functions 146
Inside the Conduit 153

Initialization and Checking, 153
How CPS Works 161
Simulating the Teletype 165

Experience with the Conduit 176

,8. ON-LINE TERMINAL TEST FACILITY 177

Objectives and Usage . . 181
The I/O Interface for OLTEST 183
Commands 193
OUtput for the LOG Command . 202

9. FACTS AND FIGURES- 208

CHAT Parameters.and How to Change Them 209
Storage Requirements 212

References 215

:Appendix A. List of Acronyms '218

AppendiX.B. . Code Listings (Separate Cover)

The way to avoid the machine taking command is not to take
more and longer vacations from a life dominated by machines, or
from a machine regulatdd existence. The solution lies in finding
ways to make this an age where humanity dominates despite the use-
fulness of machines, and to do this by making fullest use of their
convenience....

...The advantages of the wachines are so obvious and so
desirable, that we tend to become, small step by small step,
seduced into ignoring the price we pay for their unthinking use.
The emphasis here is on unthinking use, because they all have their
good uses. But the'most careful thinking and planning is needed to
enjoy the good use of any technical contrivance. without paying a
price for it in human freedom.

Bruno Bettelheim
The Informed Heart

CHAPTER 1: WIRODUCTION

The Chapel Hill Alphanumeric Terminal (CHAT) System is a complex

of computer-linked terminals for which access to a library of inter-

active programs is supported by a time-sharing monitor operating under

OS/360 BVT. The terminal complex consists of (1) a cluster of display

stations sharing, by program-controlled multiplexing, a single link to

the computer and (2) a Teletype connected by common-carrier dial-up

facilities. The program library includes a number of application

programs, created by students and faculty of the University of Borth

Carolina Computer Science Department as part of the Department's

research project in computer-assisted instruction (CAT). These programs

cover a variety of applications, including a gamut of student-, teacher-,

and author-controlled CAI as well as some on-line services similar to

those present in other time-sharing systems.

With respect to the CAI Project emphasis and intended terminal

usage, the CHAT System centers around the display stations, each of which

is a multicomponent unit--including keyboard and lightpen for data entry

and four-color CRT and random-access slide projector for display of out-

put. The program library reflects this focus, with most applications

of importance and complexity being designed for interaction with the

display stations. The Teletype plays an important role in terms of

remote operator control of the CHAT programming subsystemsomewhat akin

to the computer console control of the overall ine.i 1 -rion multipro-

2

gramming system. By means of a primitive command language, the Tele-

type operator can communicate directly with the CHAT ?Wnitor for

purposes of subsystem control and fault diagnosis. It is also possible

to invoke an application program from the Teletype and, indeed, sub-

system control can be interleaved with application program interactions

if desired.

Some of the application programs in the CHAT program library

_antedate the existence of the CHAT System, having undergone interface

and/or device-adaptive changes prior to inclusion in the system.

Brownlee's PAMELA [B4], an interactive assembler for the System/360

assembler language, was originally written for a standalone CC-30 display

terminal--the same display, used in the CHAT cluster--but using a display -

I/O interface entirely different from that presented by the CHAT Monitor.

Pikaplot [B2] was adapted for a standalone CC-30 from Oliver's numerical

analysis laboratory simulator [01] for the IBM 2250 graphics-display.

Pikaplot exploits the slide projector to capture some of the power of

the 2250's graphics facility and originally used a display I/O interface

different from both PAMELA's and CHAT's. Hypertext [C1] , Brown Uni-

versity's text editing system, also for the 2250; was adapted by Wait

[Wl] for the CHAT System displays directly.

Of the major members of the program library, only Mudge's DIAL

[Ml] was developed exclusively with the CHAT System in mind. DIAL

is a total computer-administered program instruction (CAP') system,

including author mode, student mode, its own comprehensive file manage-

ment, record-keeping, and facilities for checkpoint/restart. DIAL's

author mode allows for considerable enlargement of the CHAT library:

authors can create an ever - expanding number of authors' programs that

can be executed on the "DIAL machine" in student mode for CAI purposes.

Another member of the library that was developed exclusively for

the CHAT System is a clever program by Blair [1113] that exploits an

"interregional conduit facility of the CHAT Monitor. This facility,

intended' primarily to enhance the power of DIAL, is exploited by Blaii's

program to allow interaction between the display terminals and the IBM

teletypewriter-oriented Conversational Programming System (CPS) II1], an

interactive PL/I-dialect language processor residing in a separate region

from the CHAT programming system.

_The CHAT System has brought these several applications together'

into a single subsystem library. The development of a time-sharing sub-

system monitor and a common terminal I/O interface supports both multi-

application operation and multiterminal access within a single region

of an OS/360 MiT multiprogramming installation.

4

CONCERNS AND ORGANIZATION OF THE THESIS

The primary concerns of this thesis are the design and facilities

of the CHAT Monitor and the dynamics of the CHAT System operation. With

the exception of one application program, OLTEST (On-Line Test)--a diag-

nostic extension of the Monitor--little will be said here concerning the

details of the members of the CHAT subsystem application library; these

are documented in the previously cited references. Frequently, the

application programs are referred to only generically as application

subtasks--reflecting their subordinate role in the task-control hierarchy

within the CHAT programming region of the OS/360 installation. The CHAT

Monitor has no scheduling- or control-bias or any other sensitivity based

upon the particular application program(s) in execution.

The basic concerns of the thesis are: (1) the facilities offered

by the Monitor, including the interfaces visible to terminal operators

and application programs, the management of the terminal and execution-

time resources, and the mechanisms provided for CHAT subsystem control;

. (2) the internal programming structure of the Monitor; and (3) the phi-

losophy and constraints influencing the Monitor design. In the follow-
.t

ing paragraphs we elaborate somewhat 'on these concepts and describe their

relationships to the organization of the remaining chapters of the the-

sis.

The Monitor acts as the intermediary for all communication ex-

changes bet' een terminal operators and application programs. In this

role, the Monitor provides an interface to each side that hides the com-

plicated control mechanisms involved. Chapter 3 describes the PL/I appli-

cation program interface to the CHAT System'resources--display. equipment,

5

Teletype, CPS processing. services. A semantically identical and

syntactically similar (identical except for minor variations due to un-

avoidable language differences) assembler macro interface for assembler-

coded application programs is described by Blair (B3); common Monitor

procedures are invoked from both languages. The interface provides a

high-level appearance of the resources to the application program, hiding

the complex multistep mechanisms involved in control of the equipment

and in System/360 I/O programming.

The interface to the terminal operator, because of its unobtrusive-

ness, is less explicit. Chapter 2 (see "Hardware Specifics") describes

the simple terminal operator keyboard usage required to send data from

either a display station or the Teletype to an application program.

While the idea was to simplify display station keyboard operation as

much as possible (it is function-key ridden, allowing the possibility of

overly low-level operator control of equipment operation), the idea for

the Teletype was to enhance its capability. Thus, certain keys on the

Teletype are given special meaning for line- and character-editing

purposes.

Taken together, Chapters 2 and 3 show a certain intended symmetry.

in the design of the terminal and application interfaces. The applica-

tion interface resembles operator keyboard conventions in its provisions

for (display) cursor control, message formatting, and lack of concern

for primitive non-data functions. Both interfaces feature Monitor-re-

porting of pathological circumstances, such as application program fail-

ures '(via "proctor messages" to the terminals) and equipment failures

(via "on-unit" condition-signalling to the application programs). Each

side is given aid related to time-lapse abnormalities at the other side

6

of which the Monitor is not aware. For the application interface, pro-

vision is made for allowing interval time-outs of program read-operations,

whereupon the application program is reactivated and free to try a new

operation. At the terminal-side, abnormal time lapses are humanly evi-

dent; here the Monitor allows certain operator conventions such as

"extra- interrupts" and operator-controlled aborting of the application

program to test for or to eliminate unresponsive, looping programs.

Finally, each interface provides a view of one member at the other end:

just as an operator deals only with one application program (at a time),

so each application program is coded to "see" just a single operator---

even though a single application (via Monitor usage of OS/360 multi-

tasking) may be serving many operators.

In the multiterminalimultiapplication environment of the CHAT Sys-

tem, resource multiplexing is of key importance in determining the re-

sponsiveness of the CHAT System from the viewpoint of the terminal oper-

ators. The two resources that require multiplexing, or use-sharing, are

the single link connecting the display cluster to the computer and exe-

cution-time on the central processing unit (CPU). Chapter 2 and Chapter

5 describe the display multiplexing, while Chapter 4 describes the Moni-

tor's sharing of CPU-time among the application subtasks. The latter

multiplexing involves two types of scheduling by the Monitor: en bloc

application scheduling in accordance with a formula edicted by the multi-

-programming installation manager (for CHAT- vs. other-region use of the

CPU) and sharing among CHAT application subtasks of the time-slice allot-
.

ted to CHAT by the first scheduling formula.

Subsystem control.refers to console-like control of the CHAT sub-

system for such capabilities as region-shutdown, subtask aborting, and

7

fault diagnosis. The Teletype serves as the subsystem console for these

purposes. Chapter 6 describes the use of the Teletype for this role,

while Chapter 8 describes an application program invokable from the

Teletype which greatly enhances the on-line testing capability for

equipment diagnosis.

The internal programming_structure of the Monitor is outlined in

Chapter 2 and detailed in Chapters 4-8, where the separate components

are discussed individually. Chapter 2 gives an overview of the dynamics

of subsystem operation--how the components of the Monitor communicate

and work together and how application subtasks are linked to Monitor-

controlled resources. The later chapters deal more fully with the

functions of the separate components acting in isolation from each other.

Insofar as design constraints and design philosophy are concerned,

it is difficult to know, much less to expose, all facets of these influ-

ences on the design of a system. Frequently, a designer's initial theo-

retical sense of what constrains a design (restrictively) or enhances it,

changes after further experience and practice. Some constraints can be

imagined, while certain biases are not even recognized -- simply due to

muddle-headedness or lack of perspective on the part of the designer.

Such faults are certainly present in the design and exposition of

the CHAT Monitor. (But then Computer Science, itself, is more engineer-

ing science!) The attempt througtout the thesis is to expose what

the author recognized c-s motivating the design and as impinging on design

alternatives. Here, we cite only two major factors affecting the design.

The major constraint on the CHAT Monitor design, apart from the

equipment itself, was the necessity to run within a single region of a

multiprogramming installation controlled by OS/360 MVT. This meant that

8

CHAT requirements had to be compatible with the broader installation

perspective on system but at the same time gave CHAT the power-

ful multitasking capabilities provided by the MT-version of OS/360

to achieve its design objectives. Chapter 2 weighs some of the advan-

tages and shortcomings of this dual-faceted constraint, while later

chapters frequently reiterate its consequence ".

A second major factor, more a bias than a constraint, was that the

CHAT System operation and design must exhibit the quality and robustness

of a production system. No formal or rigorous measure of the degree to

which CHAT meets a production standard is possible, since the standard

itself is wholly subjective. Some of the effects of this standard on

the CHAT design include (1) insulation of the CHAT Monitor from misuse

or abuse of the terminal and application interfaces and protection of

one application program from another, (2) exhaustive analysis and retry

of all transient and "hard" failures in equipment operation, (3) logging

and reporting (where useful) of abnormal conditions, (4) diagnostic

services geared to abnormal states of the equipment, (5) long-life con-

siderations: design features avoiding control program release-depend-

encies and promoting ease of extension for obviously anticipated growth

of installation equipment, and (6) efficient use of installation re-

sources, most especially main storage. Various other implications could

be cited but these should suffice to show the fundamental application of

the idea. The author's choice of antonym for production is experimental

(or short-term) .

With this introduction to the concerns and organization of the the-

sis, four reading strategies are suggested for the remainder of the the-

sis. The application programmer interested in writing a program to run

9

on CHAT should read Chapters 2 and 3. The CHAT System proctor should

read Chapters 2, 6, and 8 to learn all aspects of terminal and command

usage (and also to find out what proctor means). The interested reader

should read the entire thesis. The syttemtprogrammer inheriting respon-

sibility for major extensions, revisions, or maintenance of the CHAT

Monitor should be an interested reader but, in addition, should thoroughly

pore over the code listings issued under separate cover as an appendix

to the thesis. For all reading strategies, where Blair's thesis [831 is

referenced and is necessary to full understanding, it should be consulted.

As a final recommendation, when the use of acronyms becomes too

dense, consult Appendix A for the meaning of those less commonly used and

most easily forgotten.

10

RELATED LITERATURE

A number of references are recommended to readers of this thesis- -

either because they directly supplement or illuminate the description or

because they discuss similar or alternative versions of CHAT design

features.

For background purposes, references on OS/360 are useful: the

terminology of this thesis derives from IBM usage and frequent mention

is made of OS/360 interfaces and services. Witt's article [144] and the

IBM concepts manual [13] are excellent introductions. IBM publishes a

large number of manuals on OS/360--too many to cite here; 114] and 115]

are sufficient to learn more about the specific OS/360 supervisory serv-

ices and macro instructions mentioned in the thesis, while [I6] and [17]

provide more than enough exposure to other aspects of OS/360 to satisfy

the readers.

An application programmer reading Chapter 3 will probably already

be acquainted with the IBM reference manual on the PL/I language [110].

Similarly, to use the programming interface for access to CPS or to

better understand the interregional conduit, the reader should know the

contents of the IBM [Ill or TUCC [T1] references.

Only the systems programmer inheriting responsibility for the CHAT

Monitor will be interested in the manufacturer manuals on the display

equipment (C2]-[C6]. The material ("Hardware Specifics") in Chapter 2

and hands-on experience at a display station should satisfy the needs

of any other reader.

Certain articles are of great "cultural" value, although not

directly related to the CHAT programming environment. Dennis and Van Horn

11

[D2] pm.,vide alternative terminology (widely used outside of IBM) for

concepts similar to those in OS/360--especially with regard to multi-

tasking. Indeed some of their generalizations of the task ("process")

concept surpass those implemented in OS/360 MVT--a matter further dis-

cussed in Chapter 2.

Denning's fine article [Dl] on modern control program design is a

rich source of tutorial and survey material on the history, trends, and

basic concerns of existing systems. It is useful reading in order to

place OS/360 and, indeed, CHAT itself, in roper perspective vith regard

to other systems. One particular idea of Denning's (and others) is to

characterize the combined hardware/software interface visible to a pro-

gram as a machine.

An idea due to Dijkstra [D3] involving layering, or onion-skin

design, provides an interesting modification of this concept. Dijkstra

describ 1 a design of a control program whereupon the basic hardware of

a computing system is completely enclosed by the innermost or most primi-

tive layer of the control program. This layer would in turn present for

all capabilities below it a completely new, possibly extended or even

different, interface to the next layer in t'te onion above it. Hence

each successive layer presence, in similar fashion, a total, new machine.

The concept is shown by Dijkstra to give added modularity of design,

testing, and control and to promote debugging and proof of program

correctness.

Neither CHAT nor OS/360, itself, exhib4ts such layering. OS/?60 and

System/360 together represent a machine in Denning's sense, but OS/360

is not a total layer for the System/360. The CHAT Monitor also is not

a layer in Dijkstra's sense although the combination System/360, OS/360,

12

and the CHAT Monitor comprises a machine. The CHAT Monitor does form a

layer over the CHAT System equipment and does provide some layered con-

trol (subtask management)--invisible to applications--but application

programs have completely free and unmonitored access directly to OS/360

and System/360 facilities. Two disadvantages of layering are obvious:

each layer requires increasing programming effort and the time to class

layers may inhibit performance. (One measure of layering performance is

that functions in a lower, more primitive, layer should be accomplishable

in a time negligible with respect to the time scale in the next layer

above Da].) The first disadvantage determined CHAT's layer-lessness.

In later chapters of this thesis, comparisons telating to program

design and control program usage are made among CHAT and various IBM-

released interactive programming systems built on OS/360. CPS (Ill is

an interpretive system offering interactive support for teletypewriters

and a language interface which is a dialect of PL/I. While CPS, like

other interpretive systems, does represent a closed machine interface,

it does not fully layer all capabilities below it--some facilities are

simply not available to its interface users. The '.;sal -Time Operating

System (RTOS) [W2] and the Time-Sharing Option (TSO) (S1] are nonlayered

OS/360 extensions built an, respectively, pre-release and late versions

of MVT. These are discussed further in Chapter 2.

Another aspect of the CHAT Monitor worth comparing with other

system designs is the means provided for terminal- and CPS-access. In

the case of terminal-access, CHAT was faced with two design problems:

(1) how to program its own terminal control logic (at the assembler

language level) using OS/360 and (2) what form of high-level interface

to present application programs, which were.intend,d to be coded pri-

13

marily in PL/I.

The Monitor support for the CCI display equipment had to be built

on the OS/360 Execute- Channel- Irogram (EXCP) interface [Iti] [17] since

CCI offered no support package and the IBM support for its own manu-

factured displays was not usable because of fundamental differences

in eevice operation. In the case of the Teletype, the IBM access method

BTAM [123 does provide support but this was considered inadequate and

is not used by the CHAT Monitor--EXCP is.

The form of the high -level interface for application programs was

designed without knowledge of other systems. No display-access support

exists in the IBM PL/I language definition and although CCI displays

have been widely sold, no literature by CCI customers has been located.

Gwynn [G2] has suggested that CRT terminal access be given more

attention in high-level language design and has briefly reported on the

interfaces developed at his own institution, Stanford University, and

at California Institute of Technology for COBOL and FORTRAN, respec-

tively. The COBOL support is for alphanumeric CRT displays which are

polled, while the FORTRAN support is for interrupt-driven graphics

terminals. The interfaces described by Gwynn appear to be similar

syntactically and semantically to that offered by CHAT for PL/I. In

each case, the interfaces use the call- mechanisms of the languages to

invoke the terminal-access support.

Anderson and Farber [A13 report an interesting system developed at

The Rand Corporation in which their POGO graphics-control support is

combined with a Rand variant of the IBM CPS system [Il]. They extend

the CPS (a PL/I dialect) language interface definition rather than use

the call-mechanism to give graphics-terminal access to the CPS pro-

14

grammer. They extend the CPS language by adding: (1) a statement for

entering a "construction-mode" whereby POGO facilities are made avail-

able, (2) more options in the GET and PUT statements, and (3), an addi-

tional ON-condition sensitive to lightpen or stylus actions.

This idea of extending a language definition involves changes lo

the interpreter and implies continued maintenance of the language from

release to release. For CHAT, this approach would entail extension and

continued maintenance of the PL/I compiler in use--an undesirable re-

quirement. The idea, however, of building application support on a

facility such as CPS, an already existing time-sharing system, has

merit--if the language facilities are adequate for the applications'

broader requirements.

The CHAT Monitor feature allowing application program access to the

CPS program in another region of the multiprogramming installation can

also be compared with other schemes described in the literature. Grant

IG11, although he did not build his proposed mechanisms, describes in

his Ph.D. dissertation the general uses for and design of a "psuedo-tele-

type" interface to join communicating programs. The interface he pro-

poses is similar to the CHAT interface described in Chapter 3 ("CPS

Access "), but he does not provide explicitly for such CHAT-implemented

mechanisms as time-lapse signals on read operations, signalling and

clean-up operations for one-program-down conditions, or the full capa-

bility of the CHAT attention ("ATNCPS ") facility. The internal mechanism

for controlling the comunicationakin to the CHAT interregional conduit

described in Chapter 7--Grant terms a stream modulator. One of the

applications he considers "grandiose" is precisely what the CHAT conduit

allows--namely for a CHAT application program to enter, have compiled,

15

and execute programs on CPS and then get back output from such programs.

Balzer [131] describes a generalization he calls ports, an out-

growth of his work on actual mechanisms constructed at the Rand Corpora-

tio, to run on OS/360 and on the Rand ISPL interactive system (akin to

CPS). He defines an interface again resembling CHAT's but omits (at

least in his discussion) the capabilities that we mentioned Grant omitted.

In his OS/360 version, Balzer used the OS/360 1/0 facilities, simply

changing a routine address in a system control block referred to in the

I/O instruction. This caused a procedure he called a joiner to be in-

voked at the time of I/O macro execution, rather than the system I/O

control. In ISPL, Balzer generalizes the interface to give a program a

common port-representation for I/O devices, files, communicating programs,

and the supervisor itself. His internal mechanism employs a slight vari-

ation of Dijkstra's so-called P- and V-semaphores (D3] for control pur-

poses.

CHAPTER 2: SYSTEM OVERVIEW

This chapter deals with the CHAT System--both hardware and soft-

ware aspects--as a whole. Besides describing the hardware configuration

and programming organization and defining the general dispersion of

function among components and modules, the discussion includes a de-

tailed elaboration of the dynamics, interfaces, and communication proto-

cols involved in the operation of the system. These latter concerns are

an inevitable source of complexity for any interactive system involving

stochastic events, multilevel control, and asynchronous parallel opera-

tion. They are stressed in the overview to give the reader a clearer

background sense of overall system activity when confronted in subse-

quent chapters with more detailed accounts of specific functions and

modules.

The intent is not simply to describe the design features, but also

to reflect on the reasons for and constraints on various design decisions.

Where appropriate, alternative methods and other existing systems are

discussed.

17

HARDWARE SPECIFICS

This section describes the CHAT System hardware configuration, the

operational characteristics of the terminal equipment, and the manner in

which the terminals are used by an operator.

Configuration: Figure 2.1 shows the CHAT System hardware configuration.

The central processing unit is an IBM System/360 Model 75 with 256K

bytes of fast core and 1024K bytes of large capacity storage (LCS). The

terminal equipment includes a Teletype Model 33 with paper-tape perfora-

tor and reader, connected by common-carrier dial-up facilities to an IBM

2701 Data Adapter Unit, and a display complex consisting of the follow-

ing components: (1) a CC-7012 channel adapter, (2) a CC-72 multiplexer,

and (3) a cluster of CC-30 display stations.

Each CC-30 display station is a multicomponent unit having a CC-301

controller with 1024 bytes of core storage that performs local device

control (character generation, display refresh, buffer storage, cursor

control, etc.). A four-color (red, green, yellow, blue) CRT, a light

pen, and an alphanumeric keyboard are connected to each CC-301. In ad-

dition, each CC -301 has, an output channel to which a Kodak Carousel

RA-950 random- access slide projector is attached. Except for the slide

equipment, all display' components are produced by Computer CommuniCations

Incorporated (CCI).

The CC-7012 and CC-72 are connected by a'50 kilobit/second "long

line" cable. An earlier version of the CHAT System had the CC-7012 and

CC-72 connected by means of common-carrier leased-line facilities (in-

cluding AT&T 201B1 data,sets) operating at 2400 bits per second. The

System/360
Model 75
with LCS

Multiplexor Channel

I/O Devices-
Printer
'Card Reader/

Punch
Disks
'Tapes

Common Carrier

Dial-up Equipment

50Kb

Long Line

CC-30

[CC-301

figure 2.1 CHAT System Configuration

Teletype

19

CPU was then located at the Triangle Universities Computation Center

(TUCC), a location some twelve miles from the multiplexer. Reloca-

tion of the CPU to the UNC Computation Center on the UNC campus per-

mitted reconfiguration to the simpler and higher performance cabling.

Significantly, apart from a minor programming accommodation for the in-

crease in data transmission speed, the programming support was insensi-

tive to this change in linkage.

During development of the CHAT Monitor there were five display sta-

tions connected to the CC-72 multiplexer; currently, this number is being

increased to ten. The multiplexer has a maximum capacity for thirty-two

such stations. The CHAT Monitor is codeesuch that minimal repara-

meterization and simple reassembly suffice to accommodate an increase in

the number of attached displays.

Operation: The display complex is novel and complicated in operation

and less familiar to the general reader than the widely used Teletype.

Our concern is not with the myriad details that fill several manu-

facturer's manuals [C2)-IC6] but with the general aspects that have in-

fluenced the Monitor design. In particular, we emphasize here the link

multiplexing, with details of display station device control deferred

to later sections.

The feature of foremost significance is the sharing of a single

path to the computer by the various display stations. The operation of

the link is similar to that of a telecommunications facility, 'alifiotigh

here no common-carrier equipment is (now) involved. The link is used

for both data transmission and device control, where orders to and

status returned from the equipment outboard from the CC-7012 channel

20

adapter are encoded as characters either isolated from, framing, or em-

bedded in the regular data stream. The link operates serial -by- bit -and

clock-synchronous with a half-duplex protocol--the latter meaning that

two-way traffic proceeds by alternation rather than simultaneously.

Link-sharing and various specialized multipoint attachments are by

no means novel in computer-communications systems. However, it is a

good deal more common in time-sharing or interactive systems for each

remote station to be attached, frequently by dial-up facilities, to a

separate multiplexor channel port dedicated to that terminal alone.

Where link-sharing is used, it typically involves a terminal polling'

discipline less elegant than that employed in the CCI complex described

here and also less suitable for the particular CHAT environment of low-

density, high-speed traffic..

Where individual stations, are all attached through dedicated ports,

the programming problem is essentially entirely in multiplexing, or

time-sharing, the CPU to effect the appearance of response immediacy so

crucial to.an interactive system. Each station is easily identified

through its individual port address in which all higher-level control

blocks axe rooted. Concurrency and independence of I/O for the separate

stations are essentially total.

In the CHAT System 'configuration there is only one port address for

the display complex and, particularly at the line speed of the original

configuration on which the MonitOr was developed, the I/O for the sep-

arate display stations may be interfering. Thus, two new responsibilities,

not found in the dedicated-port systems, are imposed'on the CHAT Monitor.

The first is to provide added support to correctly associate an applica-

tion with its interacting station. On output this involves additional

21

addressing so that appropriate routing can occur at the remote multi-

plexer; on input, additional control exchanges are required to identify

interrupting ready stations--an identification no longer implied by the

local port address.

The second responsibility concerns the multiplexing of link usage

for fair and efficient sharing among the various active display stations.

This is quite as complex as the algorithm for multiplexing the CPU

resource--involving queueing of delayed requests, scheduling according

to priorities related to both transmission direction and operation type,

and providing various facilities for continual two-way monitoring of the

data link. In addition, the various "boxes" (channel adapter, multi-

plexer, controller, and device) in the path between source and sink are

all quite visible to the Monitor and must be primed and controlled

through a mixture of commands and orders differentiated by box--where

commands refer to channel program control of the S/360 channel and

CC-7012 and orders, to control characters sent to the remote boxes.

The CCI equipment is remarkably flexible in the latitude allowed

to the programmer in defining a data link control protocol for reliable

and orderly exchange of data, orders, and status over the transmission

line. This is a consequence of the fact that the exchange protocol is

almost entirely order-driven by the computer program. Hard-wired auto-

matic "responses" such as are typically found in "standard" data link

control protocols are absent from this design. For this reaLcn it is

almost assuredly true that no two programmers would devise identical

procedures for controlling the data link. Nevertheless, the CCI equip-

ment is clearly optimized for the programmer to make use of the

attention mechanism for terminal soliciting of input servicing; although,

at some expense of the CPU resource, the equipment is capable of being

22

programmed as a pure polling system. The CHAT Monitor takes full ad-

vantage of the attention mechanism but, for priority reasons, does some

polling as well.

"State" control and register accessing are both important in pro-

gramming the attention mechanism. The CC -1012 channel adapter has two

states:* attention-enabled and attention-disabled. In the enabled state,

the CC-7012 will react to the arrival of a special character (ENQ--the

"inquiry" character) from the remote multiplexer by signalling the

System/360 channel status word (CSW) attention status; [19]; this is done

despite the absence of a channel program command pending on the multi-

plexor channel. To activate this state, or the disabled state, a pre-

viously issued channel command must have been executed by the adapter.

(Actually, there is another "enabled" adapter-state that is always

activated by the Monitor in conjunction with the ENQ-enabled state:

this is the enabled-for-any-character state. The need for this stems

from real-world vagaries: an ENQ can be scrambled by stochastic noise

on the physical link and thus could arrive in unrecognizable condition.

Additional "sense" information distinguishes the two events. This de-

tail illustrates that some operational characteristics of any real

system are outside the scope of an overview.)

Because the link is half-duplex in operation, there must be no

danger of the remote multiplexer sending an inquiry character when the

computer is u-ing the link for an output operation, for this would

scramble both signals and neither would be recognized. Hence, the pro-

gram can dinlble or enable the multiplexer, with respect to its sew-l-

ing ENQ, by transmitting an appropriate order to set its state.

The CC-72 has three registers that can be read or reset under

23

computer program control: a 6-bit short status (SS) register, a 32-bit

station acknowledgment status (SAS) register, and a station interrupt

status register having tro ranks (SIS-1, SIS-2), each of which is 32

bits. The SS register has only two bits of interest to the program:

one bit indicating a bit is "on" in the SAS register, another bit indi-

cating a bit is on in SIS-2. Other bits in the SS register are of

interest to a technician using an electronic strobe for equipment diag-

nosis. The SAS register has a bit to represent each of the maximum (32)

number of stations that can be attached to the multiplexer. Every

message sent over the link is character- and block-parity checked. If no

parity error is detected, a station receiving the message causes its

bit in the SAS to be turned on. (This means the SAS must be cleared

prior to sending the message since the SAS is unchanged from its pre-

vious status on receipt of a.bad-parity message.) Reading the SAS

register is costly (it is encoded as six characters for transmission)

and unnecessary if multiple-station messages are not transmitted with-

out intervening line turnarounds (which they are not under the CHAT

Monitor support). Instead, the SS register (encoded as a single charac-

ter) may alone be read to determine if the previously cleared SAS regis-

ter is non -zero after message transmissior.

The SIS-1 and SIS-2 register-ranks participate in the attention

mechanism. Here again each bit in the rank represents a station. When

a station operator strikls the interrupt (INT) hey on the keyboard, a

bit is set in SIS-2. Whenever the multiplexer is enabled, a non-zero

SIS-2 causes it to send the ENQ over the transmission line, after which

it disables itself. The computer program, provided the adapter is en-

abled, receives the attention status signal, and transmits an order for

24

the multiplexer to send the result (a 6-character encoded sequence) a

(inclusive) OR-ing SIS-1 and SIS-2. This order has the side effects of

also storing the result in SIS-1 (for possible retransmission) and

clearing SIS-2. If the computer receives the result error-free, all

stations now ready to be serviced can be identified and the SIS-1 rank

can be cleared by another order.

Besides the foregoing basic attention rechanism, there are a few

nuances of equipment operation. Earlier it was stated that the SS

register serves to provide acknowledgment status for message receipt at

a display station; a similar need exists for orders sent to the multi-

plexer. In particular, it is obvious that the computer program requires

assurance that an order to enable the multiplexer has been executed.

This is particularly compelling because there is no way for the multi-

plexer to be enabled by an action at the remote site--an obvious beta-

ware design flaw. To meet this requirement, use is made of a convenient

capability of the multiplexer: the ability to receive orders together

into a single parity-checked character. The Monitor simply simulta-

neously orders enabling with reading of the SS register. Receipt of the

SS is prima facie evidence that the multiplexer is enabled--examination

of the SS contents is unnecessary (and irrelevant).

In general, various race conditions and frequent transient errors

are indigenous to the CHAT environment; it is, after all, an inter-

active system with numerous components. And the technology, particu-

larly in the earlier configuration employing common-carrier linkage, is

error prone. A good example of a race condition concerns, again, the

attention mechanism: an order to disable the multiplexer can be .ent at

the same time the multiplexer, yet enabled, is sending an inquiry signal.

This contention state is a logical, though rare, consequence or ilo, pro10-

col design and presents no great difficulty. The multiplexer, aa 'toted

earlier, disables itself after sending KNQ, holding 11.11 reglniein

This provides the necessary hardware cooperation to event continued

contention. At the computer end, the tranamit operation will likely

end with unsatisfactory response status indicated,'therohy Invoking

Monitor ator recovery procedures to retry the operation. Notico ',hoc

the requirement for the SIS-2 rank is,a consequence of another potential

race condition exacerbated by the necessary delay between iupdfne, /tad_

clearing of the SIS-1 rank. Othersrace.conditions coneeroing Interao-

tion conflicts, not strictly involving hardware, Arc 166ft: V011att to

the Monitor which invokes programmed precedence decialoAa.

Transient errors generally result from the vulnerabiLity of Ong

data path to environmental electrical. noise. Again, *these rif loovitahiq

and, as is the case for the race conditions; their, ACcammaOhtion is;

basic to the design of the Monitor. Because of the sitable hura,er

different operations, the complex-combination of primitive steps 00m-

prising each operation, and the different errors that cat. ocean, tow

error recovery procedures, which are intended co he exhauttive, foym

. considerable bulk of the. Monitor code, They are, .W4ever, follyft:sti

fled by the desire for,robust operation at the systemone desSO4.4 fo,e

prod-actio% use.

there is an. intrinsic disadvantage of the l'i4VdtfTrt 6611.'

fizr=atidm.: i5 cte atraiexposure atteradiaz use the

imgie .Amy "Tvar-tr error that occurs becueea maltiplexer 4rie

adepterx Lal4asive, reStrIts in total- displeystem..ouge, a-fr.14p.

the oate.ctive- that WW1 System two's:U. he of pr,:oducti--e.n. sy4terrs..0sif-ty5

26

some diagnostic capability was clearly needed for the CHAT equipment. A

two-fold complication constrained the designer's options for providing

this capability: (1) manufacturer-provided diagnostic programs were

incompatible with the installation operating system and required a dedi-

cated SyStem/360 to run; and (2) the multiprogramming installation could

not generally be dedicated to CHAT System requirements because of other

user needs.

These circumstances levied a basic requirement that the CHAT Monitor

provide on-line diagnostic tools. The substance of this support, which

uses the Teletype as a control console to drive the programmed diag-

nostics, is discussed'in detail in later sections.

Terminal Usage: In this section we are concerned primarily with the

mechanics-of terminal usage. The information content of transactions

depends on the particular application program invoked. The Monitor

serves only as the controlling intermediary between terminal and process.

In the case of the display station, the idea was to keep the me-

chanics as simple as possible for the station operator. The display

keyboard is equipped with a number of function keys, along with the

necessary character generating and cursor control keys. A number of

these function keys are required only for off-line operation, being re-

dundant in on-line operation where Monitor program control can supplant

their use. Their presence is another indication' of the flexibility of

the CCI equipment for accommodating different control strategies. Vari-

ous tradeoffs are possible, allowing the mechanics of data transmission

to be shared in different fashion by' terminal operator and control pro-

gram,- depending-on the varying emphases placed on human factors and pro-

27

gram complexity. For example, message transmission from the display to

the computer involves various steps for cursor placement, end-of-text

marking, and vransmit-initiation which can be controlled at the display

keyboard but which the CHAT Monitor performs through its own control

sequences. The intent of the CHAT Monitor support is to do as much in

programming as is possible.

In first encountering an idle CHAT display, the operator need only

depress the interrupt (INT) key. This leads to the responding display

on the CRT of a list of CHAT application programs and initiates an inter-

action session. This "table of contents" of available programs is shown,

sans color highlighting, in Figure 2.2. The operator can lightpen one

of the listed program names or else type in one of those or an unlisted

one. In either case, the program must reside in the CHAT library,

which is defined through the JOBLIB facility of the OS/360 J:-A) Control

Language (JCL) used in initiating the CHAT job. Us ally an operator

would type only to specify the name of a program recently added to the

CHAT library but not yet listed in the displayed contents. The pro-

gram listed as TASKLIB is a special program, written by Blair [B3],

that allows on-line specification of a program contained in a private

library--a useful aid during new program development. Further details

on TASKLIB and the library facilities are given in [83].

Transmission of keyed-in data is very simple: after keying in the

data, the operator merely depresses the INT key. This automatically

locks the keyboard and, by the previously discussed attention mechanism,

alerts the CHAT Monitor. The actual reading operAZion is a multistep

process initiated by the Monitor. It involves initialization of the

multiplexer and the displ): controller, reading the cursor coordinates

28

Chapel Hill Alphanumeric Terminal System

*CAI oCPS 0RJE TASKLIB

HYPERTXT 0P/KAPLOT *PAMELA TSTPROGM

Instructions For Program Selection

o For CAI, simply hit the INT key ,OR
o LIGHTPEN the name of the desired
program above, then hit INTerrupt OR

O TYPE the program name here:

Figure 2.2. CHAT Application Program "Table of Contents"

29

(contained in a controller register), saving the character over the cur-

sor, placing a special control character (ETX--end of text) in its place

to stop the read, setting the cursor to a program-determined starting

location preceding the final cursor location, ordering the controller to

transmit data between the cursor start location ind the ETX, and then

restoring the previously stored cursor character and the cursor itself

as 'hey were at the time of interrupt. Of course, some status exchange

also occurs to check the success of particular steps. At the end of the

operation, the keyboard is still locked. It is unlocked in response to

an application program command or issuance of a new read request.

A light pen operation is similar. The operator illumines the back-

ground of some character position on the CRT and again initiates an

interrupt. This interrupt is signalled using the interrupt button on

the light pen barrel. Completion of the subsequent read operation, also

a multistep process, causes the search character illumining the light

penned position to be removed from view.

Both operations--lightpen reading and message reading--are visible

to the display operator, although on the current 50-kilobit/second link-

age a message-read takes a long message and a quick eye to see the cur-

sor motion. The Monitor gives high priority to a read operation, higher

than that given, for example, to a program-initiated write operation.

This allows the operator quick assurance of completion of the "mechanical"

aspect of his input operation where delay is less tolerable than it is

in awaiting the responding output from the application program. The

interference between display stations is obviously less for the current

linkage than ;I- was for the 2400 bit/second linkage on which the Monitor

was developed.

30

While the Monitor is generally invisible to the display operator,

it can participate in visible fashion when the application program in use

runs into difficulty. For example, the application program can end ab-

normally. In this case, the Monitor sends a proctor passage to the af-

fected display station. This message includes a code denoting the type

of termination involved. A code prefixed by "S" indicates that the

operating system initiated program termination; the three hexadecimal

digits in the code are system-defined and their meaning is given in the

IBM manual on system completion codes. A code prefixed by "U" followed

by four decimal digits defines a termination initiated by application

program issuance of an operating system ABEND macro instruction. The

code is application-program defined. A four-digit decimal code without

a letter prefix denotes an application program termination involving a

non-zero "return code." The code displayed at the CRT represents the

return code and is also, application program dependent. A contrived termi-

nation involving a proctor message is illustrated in Figure 2.3.

AA application program can run into difficulty without actually

terminating. Here, another Monitor facility may be useful. If the ap-

plication program suddenly appears "dead" (perhaps because of a program

loop), the operator may enable the keyboard, if necessary, by hitting

the "master clear" key; type in "ABORT" (or "abort") anywhere except

split across the bottom and top lines of the screen; and hit the INT key,

master clear key, and INT key in succession. If a previous interrupt was

not acted upon, only the first interrupt in the above sequence is neces-

sary. The Monitor recognizes the extra "unsolicited" interrupt, reads

the abort request, and terminates the application program. (Extra inter-

rupts sent without an abort request cause the Monitor to place a "?"

31

d'''' STUDY THE SLIDE ABOVE

Which gates will be opened for a LOAD
ins truc tion?

2 and 5

r-EASE CALL PROCTOR
SUBTASK ENDED: 1029

\ft.... ./

Figure 2.3. Example of Application Termination
with a Proctor Message

32

character at the cursor location.) This is useful if the difficulty in-

volves a program delay, but will not otherwise always work. For this

reason, the application program ca3 also be terminated by entering a

$ABORTnn command at the Teletype, where "nn" dcnotes the display station

from which the program was invoked. All of these facilities are particu-

larly valuable in the course of on-linc testing and development of new

application programs.

Operator use of the Teletype is also simple. Connection to the CPU

is established by a dialing operation. In place of a table of contents

display the operator is given a welcome message from the Monitor. A

set of commands, described in detail in a late: chapter, is available

for direct interaction with the Monitor. An application program can be

invoked by typing in the $XEQ command followed by the program name. The

commands to the Monitor can be used even while an application program

is active. This is the reason for the $-prefix on the Monitor commands:

it distinguishes them from all application program transmissions.

Operator messages to the computer are always ended by the X-Off

control character. Line-and-character-editing are provided by the

Monitor. Cancellation of a line is indicated by using the X-On char-

acter rather than X-Off to signal message completion. Character de-

letion can be done by use of the underscore or back-arrow character,

whichever is present on the Teletype in use. The Monitor signals its

acceptance of a Teletype message by sending carrier-return and Line -feed

to the Teletype. When it is ready to resume reading it prints a "?"

character at the beginning of the fresh line.

Special use is made of the "Break" button. This allows the opera-

tor additional capability to interleave Monitor commands with applica-

33

tion program interactions. The Break function is useful when the opera-

tor wants to get the attention of the Monitor while the application pro-

gram is not ready to read (no "?" character has yet been printed) or dur-

ing the pe iod when the application program is printing many lines of

output. e Break'signal causes the Monitor to respond immediately with

an invit tion to the operator to enter a command. Once the command has

been read end its execution reported in the form of a Teletype output

message by the Monitor, the application program activity is resumed. In

the case of an interrupted output sequence, the Monitor retransmits the

interrupted- line IT, no data is lost. One obvious use for this Break

facility is in the case, again, of a faulty application program. Here,

the operator may wish to enter the $ABORT command to terminate the ap-

plication program.

Just as for the display stations, the Monitorprovides failure re-
,

ports on Teletype-invoked application program. In these cases, the

"Please call proctor" part is omitted, because the proctor is generally

the sole user of the Teletype. Additional details on the command

language, of interest* more to a proctor than to the general reader, are

given in Chapter 6.

34

ORGANIZATION AND FUNCTIONS OF THE MONITOR

The decision to build the programming_ support for the CHAT System

within the available System/360 multiprogramming system was never a mat-

ter for debate. The cost-effectiveness of including the CHAT support,

which clearly does not require a dedicated machine, as a single LCS-based

service sharing the multiple-service installation with other users was

justification enough for this decision. Also, the extensive, and famil-

iar, program library facilities and the high-level "machine" presented

by OS/360 were equally important considerations. Thus, application

programs could be written in PL/I and could exploit the high-level OS/360

data management services for disk-based files--even sharing access to

them with other programs entered through the independent batch facilities_

of the installation.

The facilities of the operating system of central concern to the

design of the Monitor are those for multitasking. These facilities, and

the task concept itself, are one of the leitmotifs of this thesis, war-

ranting some preliminary background discussion.

The ,key abstraction developed for OS/360 MVT was the notion of the

task, a concept apparently_ originated concurrently in other design pro-

jects of the early 1960's (cf. Denning (Dl]) - -in particular MULTICS (cf.

Dennis and Van Horn (D2] }- -and denoted by the name process (perhaps less

appropriate a term because of the ambiguity of "multiprocessing"). Es-

sentially, the task concept resulted in the downward extension of the

facilities for scheduling, setting priorities, accounting, and partition-,

ing which had been necessary for multiprogramming among independent jObs,

to the cooperating modules of. a single job. Additional problem program

35

interfaces to these control program faciies were added to permit such

cooperation. It was, perhaps, a result of insufficient foresight that

the OS/360 implementation is characterized by multiprogramming without

adequate provision for interregional or job cooperation (running programs

should also have been recognized as system resources)--a matter discussed

further in Chapter 7--and by cooperative subtasking without sufficient

protection, which is discussed more fully in a later section of this

chapter. Both issues reflect an operating system (and System/36(,)

design dominated by a batch operation orientation rather than one for

interactive time-sharing; neither issue is crippling in practice.

Two other concepts of OS/360 are appendages and exit routines, both

of which are used in the CHAT Monitor. Appendages are user-written pro-

gram extensions to control program supervisory facilities which are in-

voked as part of the supervisory control of such events as I/O interrupts.

Exit routines are used by the Monitor in its handling of timer-events

ill its time-slicing implementation (Chapter 4). They involve a type of

autonomy of execution for the exit routine of a task that resembles Con-

way's coroutine notion [C7]. An exit routine to handle timer events can

be specified by a task (by use of STIMER) to be scheduled and the subse-

quent activation of the exit routine preempts but does not otherwise

change the execution-flow of the task.

For efficiency reasons, appendages and exit routines may also be

used to complement the tasking facility. For example, the IBM special-

purpose "hypervisory" real-time monitor (RTM) (18] uses appendages to

avoid costly tzsk- switching on real-time responses. The real-time oper-

ating system (RTOS) [W2], designed by IBM and NASA for the Apollo program,

devised an alternative idea of a "system task" requiring only four per

36

cent of the overhead of the conventional OS/360 attaching mechanism.

In the following subsections, we indicata how these OS/360 facilities

are employed by the CHAT Monitor for its control purposes.'

Task Structure and Control: Basically, the CHAT Monitor consists of

three control tasks. In order of dispatching priority, these are: the

Monitor Subtask Scheduler (MSS), the Monitor I/O Scheduler for displays

(MIOS), and the Monitor I/O Scheduler for the Teletype (MTWK). The term

monitor is also more generally applied in this thesis to include compo-

nents not part of the three named tasks. This includes code such as the

subroutines used in the interface between the application programs and

MIOS or MTWX. These are packaged with the other Monitor code but operate

under control of the application task. Another component facility, the

interregional conduit, includes code that runs, in part; under the same

task control as MIOS and, in part, as an extension of the control program.

Indeed, it is further complicated because the code is located outside the

CHAT region (in "UNPACK"); in addition, some CPS appendage.code (in the

CPS region) executes under MIOS task control!

The division of the Monitor into three control tasks is primarily

modular by function. This was important initially in the design and

testing stages of-the Monitor development; It allowed a cleaner separa-

tion of functiOn and produced greater ease of debugging. The modules

could be incrementally tested and tasking made localization of failures

both quicker and easier to resolve. Device dependencies are confined to

the modules serving the device. Thus, wholesale changes to, say, the

display equipment in use would require no changes to MSS and MTWX. Sim-

ilarly, removal-or suppression of. the Teletype operation would entail_

37

simple removal or "non-attaching" of the MTWX code. ...,_

The task modularity also allows more graceful failure of the CHAT

subsystem during execution. Like most medium-to-large sized programming

systems, the CHAT Monitor is liable to contain undiscovered latent er-

rors; moreover, as the CHAT support grows, new errors may be introduced.

Thus, it is useful in a system planned for production operation to take

advantage of the OS/360 MVT facilities for partitioning and signalling

task failures to allow orderly termination and possible restart.

MSS is the topmost task in the CHAT region task control hierarchy,

being attached by the control program initiator and, in turn, attaching

the other control tasks. This activity is performed during the initiali-

zation phase of the CHAT region and involves execution of code having

only transient residence in the region. This initialization phase activ-

ity is sufficiently complex that the details are left to a separate

section at the end of this Chapter.

The relative priority of the two remaining control tasks is a func-

tion of the order in which they are attached by MSS--obviously a simple

matter to change. Currently, this order involves attaching MIOS first,

then MTWX, which gives display I/O scheduling an intrinsically higher

priority than Teletype I/O scheduling.

MSS continually attaches, task-manages, and detaches application

programs. Thus, MSS is the "owner" of all tasks in the CHAT region.

This design involves coordination between the other control tasks and

MSS, both for task initiation and, at times, fof task termination.

MIOS,for example,.first detects the-Change from inactive to active

status of a display by detectini an interrupt from'it. Similarly, MIOS

may also detect improper behavior in an application task's usage of the

38

display interface that calls for task dismissal from the system. Each

need is communicated to MSS by MIOS through the post/wait protocol.

Conversely, MSS occasionally needs to signal MIOS or MTWX of an abnormal

termination of an application task so that I/O termination procedures

(e.g., the display of the "Proctor message") can be taken. Chapter 4

discusses the advantage MSS takes of the OS/360 task management services

to do scheduling of CHAT applications.

Core Layout and Intraregional Protection: The core layout of the CHAT

region is interrelated with intraregional protection. Hence, some back-

ground is needed on the protection mechanisms of the CHAT environment.

The System/360 protection scheme is quite simple. Each storage

block may have one of sixteen storage keys (0-15). Read/write access is

governed by a matching of a key in the program status word (PSW) with

the storage key on execution of instructions involving core storage. A

similar mechanism governs channel accesses to core. This is enough

storage keys in an environment involVing solely batch-type multiprogram-

ming in which task and job are, in practice, naturally synonymous. Where

jobs support interactive computing from a multitude of terminals this

number is no longer satisfactory, and the limit of one nonzero key per

job imposed by os/360 is utterly inconsistent with the tasking concept.

This shortcoming does not appear in the Dennis and Van_Horn definition

[D2].

Interactive computing from a multitude of terminals usually involves

a number of autonomous program-execution activations, or threads, equal

to the number of connected terminals. .Multithreading requires control
.

program support for both thread-switching and-protection of threads from

39

violation by other threads. Multithreading can be realized by a number

of mechanisms. Strictly interpretive systems (e.g., CPS, APL), where-

upon all user programs execute on a closed high-level machine, can be

built upon any one of the variants (MFT, MVT) of OS/360. here thread-

switching and protection are features of the higher-level machine-. Other

interactive support systems such as IBM's Time-Sharing Option (TSO) [S11,

RTOS 1W2], and CHAT are extensions to OS/360 MVT that do multithreading

by exploiting the control program multitasking services, and must somehow

compensate for OS/360's omission of complete individual task protection.

Let us quickly review these techniques.

TS0 uses an approach with performance complications and couples

storage protection with the mechanism of swapping provided for program

storage management. Each terminal thread is treated as a separate job

and multiple jobs share the use of a storage region (and a common key).

When job switching occurs the old job is rolled out and the newly active

job is rolled into the region from secondary storage. To enhance per-

formance, a number of regions dedicated to TS0 can be specified. A de-

generate form of the TS0 method, avoiding swapping, is to allocate one

region per terminal; but this approach suffers from the OS/360 limit on

the maximum allowable number of regions. Note that because a fresh copy

of a program sharing a key with another must be fetched from secondary

storage prior to its activation, the TS0 approach is not able to take

full advantale of unlimited storage availability.

RTOS takes a different tack. There, the notion of "independent

task" is defined. (Recall RTOS also defined an unrelated "system task").

Creation of, an independent task results from an RTOS-defined RTATTACH

rather than through use of the standard OS/360 ATTACH (which RTOS also

40'

allows). Thus, RTOS extends the OS/360 MVT task'creation facility to

give independent protection to "independent tasks" within a single region.

What is not clear from the available documentation (W2] is how the task-

switching facilities of OS/360 MVT are also modified to achieve the

promised intraregional protection.

A possible implementation would be to modify the task-switching

mechanism to allow the sharing of an "active" (nonzero) key. The deacti-

vated task (and possible subtasks) could have all: its storage changed to

an "inactive" key, while the storage keys and task key of the activated

task (and subtasks) could be assigned the value of the shared active

key. This approach also has performance difficulties since storage key

changing, particularly where storage is fragmented, is not notably ef-

ficient in, the System/360 (a fact that could lead an implementation to

share a "pool" of active keys to improve performance).

Furthermore, I/O realities represent a complication for such a

design. A deactivated task can have pending, or on-going, I/O operations

which are also governed by the storage key mechanism of System/360. In

aos, all I/O is governed by an access method (RTAM) occupying its own

separate region (and storage key); and storage buffering for I/O is

centralized in this region. I/O is a problem in T50 as well. There,

the telecommunications I/O is also centralized and performed .in "fixed"

storage rather than in the "swappable" storage, because of its intrinsic

slowness relative to swapping rate.

The RTOS approach, whatever its implementation difficulties for

general-purpose support, embraces a generalization that probably should

have been included in OS/360 MVT--with the protection attribute perhaps

included as an additional operand in the standard ATTACH rather than

'41

implicitly through a separate operator._

The CHAT implementation approach is to lessen the protection ex-

posure without fully - eliminating it. Swapping was clearly beyond the

manpower and time constraints of the CHAT design effort, particularly

since no primitives exist in OS/360 to facilitate designing such a

facility. Modifications to control program facilities to achieve "inde-

pendent tasking," a la RTOS, violates the basic constraint that CHAT

would avoid release-dependent updating to crucial control program

facilities. Finally, incorporation of the CHAT support in a non-

dedicated multiprogramming installation limited CHAT's residence to a

single region because of the OS/360 limit on the number of regions.

The CHAT support, of course, requires that the Monitor be protected

from applicati-..n program interference and that deviations or "bugs" in

one application program not be allowed to destroy the operation of another

application program. The approach CHAT takes to give protection is to

make use of dual keys -and storage "checkerboarding."

The Monitor program modules and some,application programs intended

:for multiterminal use are marked as "reentrant" (to the linkage editor)

and are thereby loaded into key-zero storage. Their task keys, which

determine their PSW-keys, are all set to the nonzero key allocated by

the control program to the CHAT region. Thus, no reentrant program stor-

age in:the CHAT region can be written -into by an active'task. Dynamically

allocated data areas are resident in storage having the same (nonzero)

storage key as the common PSW-key.

Another category of nonreentrant application programs exists., These

programs generally include those application programs (e.g., PAMELA)

mentioned in Chapter 1 that were converted to CHAT and which were Ori-

42

ginally designed for single-terminal operation. They may be used for

multiterminal operation, but because they are not marked reentrant,

an individual copy of the program is'loaded for each terminal invocation.

Multiterminal usage of the reentrant application programs involves

sharing of a single copy of the program since such programs must, in

fact, be truly reentrant. The nonreentrant programs are loaded, teuerally

with contiguous static data storage, into storage having the nonzero task

key. Thus, program and data storage are modifiable.

The Monitor itself does violate certain reentrancy criteria. It

cannot be shared to serve more than one CHAT multiplexer-display cluster

and one of the Monitor tasks does indeed perform modification of program-

storage. The sharing constraint is apparently not a drawback, since we

do not anticipate multiple clusters. The program-storage modification

actually involves a mechanism for lessening the protection exposure and

thereby increasing the debuggability of Monitor failures. The pertinent

Monitor task is MIOS, which does channel program generation and I/O within

the MIOS program-storage area to isolate these activities more fully from

attack by tasks. This effectively reduces the confounding of intrinsi-

cally compleX hardware failures with CHAT region program anomalies. 'The

task key of MIOS must be changed to zero during the course of such mod-

ification.

Figure 2.4 illustrates the core layout of the CHAT region with

storage keys indicated. The OS/360 control program allocates storage

starting from the high-address portion of the region for dynamically

allocated storage and reentrant-marked programs and starting from the

low-address portion for nonreentrant programs. As stated previously, the

CHAT tasks operate with the single CHAT region nonzero key, with the

05/360
usage

0

0

t

0

t

t

t

t

Storage
key

High end

WN/// 1/ 1/1/1/ 1///
Monitor program storage

(MSS/MIOS/MTWX/MTOC/IFCSECT)

Reentrant program storage

Dynamically allocated data storage

Reentrant program storage

Dynamically allocated data storage

Dynamically allocated data storage

(High end allocation)

(Low end allocation)

Non-reentrant program storage

Monitor control storage

Low end

t: nonzero key assigned to the CHAT
region (agrees with the task key)

Figure 2.4. CHAT Region Core Layout (in LCS)

43

44

exception of periodic excursions by MIOS into key-zero. Part of the

initialization procedure to be discussed in the last section of this

chapter, is to load the Monitor storage into the low-end of the region

by marking it as nonreentrant "program" storage.

Notice that the storage areas that can be written into, i.e. those

with the nonzero storage key, alternate with the key -zero storage areas,

which are write-protected. This effect, for lack of a better metaphor,

is reierred to as "eheckerboarding." The layout of CHAT storage varies

with time and usage. The invocation of application programs is subject

to terminal operator selection and, hence, Figure 2.4 is only one pos-

sible layout. Only the program and data storage'for the Monitor are

fixed. It is, in fact, possible that a nonreentrant program will be

located above reentrant program areas, depending on core availability

at the time of loading.

CHAT, then, does not offer full protection but its techniques do

lessen the exposure. Programs that attempt to write improperly into

non-owned storage within the region must hit on nonzero storage in order

to do harm. Since such storage "misses" are more likely to be too high
?

(particularly for those application programs coded in.PL/I, where sub-

script errors, at least, are seldom negative-valued), the placement of

the Monitor data storage at the low end of the region yields an additional

. protection advantage. A heartening measure of the degree of the threat

is that aach a protection violation has never been observed in experience

with the CHAT System during its more than two years of operation. This

is all the more remarkable considering that this period has seen a large

_ .

number of newly developed program's
1

introduced into the CHAT subsystem.

45

Despite this good report on CHAT operation using only the facilities

available, one still wonders why the design of OS/360 ignores the require-

ments of the interactive computing environment for fuller proteetinu.

Communication and Linkage: Modularity brings increased communication

complexity. within the CHAT region, communication is essential to intra-

Monitor control as well as between Monitor and application tasks. The

Monitor data storage area contains two primary divisions: the Monitor

working storage and the storage occupied by the station control blocks

(SCBs).

The Monitor working storage is addressable from all three control

tasks and, with the previously cited exception of MIOS-controlled chan-

nel program areas, contains all constants and variables used during

execution of the Monitor tasks. For the purpose of coordinating

"regional events," e.g., region shutdown, control task failure, and

Teletype-initiated display-complex reinitialization, certain event con-

trol blocks (ECBs) are defined within the working storage. Communi-

cation among the Monitor control tasks for such regional control uses

these ECBs in conjunction with the OS /360 - supported walt/postprotocol.

The SCBs are used to hold all constants and variables needed for

operation of the individual stations (displays and Teletype) in the CHAT

configuration and for associating the appropriate application program sub-

task to the station from which it was initially invoked. The individual

fields in an SCB include those used as event control blocks associated

with various requests and outcomes connected with individual station and

subtask operation, a field for holding the address of the associated ap-

plication program task control block (TCB) for linking subtask to station,

46

and vari.us other fields for input and output data, PL/I "dope vector"

type information, and current I/O and subtask status conditions.

Association of station to application subtask is an involv'd pro-

cess established initially at the time the first interrupt arrives from

a previously idle display or when the "$XEQ" command is received from

the Teletype. In either case, MIOS or MTWX posts an MSS-owned ECB in

the corresponding SCB, which causes MSS to attach a module named MTOC

(for Monitor table of contents routine) written by Blair [B3). MTOC is

reentrant and always resident, being packaged with the modules compris-

ing the Monitor program storage shown in Figure 2.4. MTOC represents a

"front end" to every application program that runs in the CHAT region.

It is MTOC that causes the program table of contents to be displayed

on the display CRT and decodes the operator's application-invoking re-

quest (in the case of the Teletype, the decoding proceeds at $XEQ-time,

without an intervening "display"). MTOC sets up the name of the re-

quested application program and issues an OS/360 XCTL (Transfer Control)

macro operation. Thus, the invoked application program inherits the

MTOC TCB.

The purpose of the front-end MTOC is primarily to protect the Moni-

tor. Under OS/360, if an attached program cannot be located or if stor-

age is not available for it to be loaded, the attaching task is aborted.

Thus, such circumstances have dire effect on MTOC but, under OS/360, are

simply "reported" (via posting) to MSS. MSS can then initiate a proctor-

message to inform the station operator.

Two other operations are performed during this MSS-attaching of

MTOC: MSS, on completion of the OS/360 ATTACH macro, stores the OS/360-

returned TCB address in a field of the SCB, while MTOC, via a Blair-

47

written SVC [B3], stores the SCB address in the so-called "TCBUSER"

field of its om (and thus the application's) TCB. (The TCB is in key-

zero storage--hence, the need for a,_ .7,privileged" SVC to write into it.)

The SCB address is passed' to MTOC by MSS through a parameter-passing

mechanism of the OS/360 attaching protocol. Storing of the TCB ad-

dress in the SCB and of the SCB address in the application TCB ef-

fectively weds station to application subtask.

To hide this connection from application programs, rather than, say,

including the SCB address as a parameter within the interface language

(see Chapter 3), the linkage is reestablished upon every call of a

Monitor-controlled function. This is done within an assembler-language

coded interface routine linked within every application program load

module. This "linkage routine" has three primary functions. The first

is to select an entry point within a group of subroutines collectively

packaged within another module (or OS/360 assembler language "CSECT")

named IFCSECT which is not a part of the application program load

modules but is packaged with the Monitor. (See Figure 2.5.)

A second function of the linkage routine is to select the appro-

priate SCB. This is done by a search throtigh an MVT-defined control

block chain shown in-Figure 2.6. Finding the address of the SCB means

that the address of the appropriate IFCSECT subroutine can also be loca-

ted. A pointer exists in the SCB to a list of the subroutine entry

points; entry to the linkage routine determines the index into this

list. Before branching to the appropriate subroutine entry, the linkage

routine sets up a register with the SCE address to give the subroutine

addressability to SCE storage. When the IFCSECT subroutine posts an

ECB for a Monitor control task, the address of the SCB forms the low-

Application Program

1BI
linkage routine

#

48

Application load module

IFCSECT
subroutines

P/W,#)/

MIOS

B: Synchronous Branching
P/W: Post/Wait

Monitor load module

MTWX

Figure 2.5 Linkage Between Application and Monitor

49

Location 16

@ rurrently active TCB

Figure 2.6 OS/360 MVT Chain to TCBUSER Field

50

order three bytes of the ECB fullword completion code. This passing of

the SCB address via-the ECB is followed throughout the Monitor during

posting of station or application.subtask related events.

The third function of the linkage routine is to set up addressa-

--
bility to a parameter list containing the. PL/I-like "STOP" and

"ABNORM-condition signalling" routines. In the case of application pro-

grams written in FL/I, these are the addresses of the actual PL /'I- provided

library routines. (See Chapter 3 for definition of the "ABNORM" con-

dition.) Completion codes set by the Monitor control tasks in posting

IFCSECT subroutine ECBs (also in the SCB).as well as IFCSECT sub-I
routine detected errors in application program passed parameter lists

cause these routines to be invoked.

In current practice any one of four different linkage routines can

be linked in with the application program load module, depending on the

intent of the application and the language in which it is coded. These

are named IFNTRYS, IFNTWXS, OLNTRYS, and IFNTRYAS, the latter one of

which was coded by Blair [B3] and the others by the author. The first

three linkage routines are for use by application programs coded in PL/I.

Each linkage routine has the same general structure. The PL/I pro-

gram's execution of a call-statement or function reference specifying

a Monitor-controlled facility (see Chapter 3 for a description of this

interface) results in a linkage to one of the entry points in a multiple-

entry branch-table. in the linkage routine. Each'branch statement

branches to a join-iocatidn while simultaneously initialising register

15 (the entry point regiiter, itself--and the only free registet at

this point'in the linkage) to a value indicating the entry point. At

the join point, code common to all entriesis executed, saving- registers,

51

establishing code addressability, searching through the MVT control

block chain (Figure 2.6) to load a register with the correct SCE ad-

dress, and developing an index value from the value put in register 15

by entry into the linkage routine.

This new index is used in conjunction with an_address obtained from

a field in the newly located SCB. This address is a pointer to a list

of IFCSECT subroutine addresses. The index is used to choose the ap-

propriate subroutine for the linkage routine to branch to as its final

step. Of course, certain other functions are performed by the linkage

routine prior to branching to the subroutine, like setting up ad-

dressability for the subroutine to a parameter list containing such ad-

dresses as those of the PL/I library routines for STOP and SIGNAL. 'A

simple validity check is also performed to insure that a Teletype ap-

plication program has not_been invoked from one PI the displays or vice

versa. (The Teletype eCB is "marked.")

The linkage routines vary in the access they allow to IFCSECT sub-

routines. This is achieved by tailoring the multiple-entry branch table

to the subroutine access required--a need, in turn, determined by the

CHAT interface calls and function references included in the application

program. IFNTRYS, for example, is the linkage routine provided when the

application program includes the display and conduit interface. IFNTWXS

is 'provided for Teletype application programs.' OLNTRYS is'a special-

purpose linkage routine that perlits access to both display and Teletype.

subroutines. It is used solely by a Teletype- invoked on-line test ap-

plication program (OLTEST). OLTEST.is the only application program that

is permitted access to.both the-Teletype and the displays. Further dis-

cussion of this programalong witb the'additional functions-provided to

52

allow its unique interface privileges is deferred to a later chapter.

IFNTRYAS is the linkage routine provided for application programs

coded in assembler language. It is invoked by assembler macro-instructions

having a syntax nearly identical to that provided by the CHAT interface

for the PL/I programs. These macro-instructions are described by Blair

[133] who defined them. One important user of the assembler interface

is MTOC which uses it, for example, for the display of the program table

of contents on a display station CRT. (MTOC does not do Teletype I /O.)

IFNTRYAS i3 similar to IFNTRYS in being display-access oriented.

It, in conjunct.on with Blair's macros, has certain additional responsi-

bilities for creating PL/I-like environment characteristics, such as

imitating the "dope vector" conventions and duplicating the STOP and

SIGNAL capabilities. These matters are discussed further in MO].

IFNTRYAS is like the other linkage routines in its branching to IFCSECT

subroutines; thus, the semantics of the assembler language macro inter-

face is identical to that of the equivalent PL/I interface. This link-

age technique could very well be extended to allow the interfacing of

application programs written in still other languages besides PL/I and

alLembler.

The IFCSECT subroutines are reentrant and are packaged in the

Monitor program load module. This means that their program storage

overhead appears once in the CHAT region, with all currently resident

application programs sharing their use. This is in contrast to the

linkage routines, which are duplicated for each copy of an application

program in residence.

The IFCSECT subroutines operate under control of the sere TCB used

by the application program whose linkage routine branches to them.

53

Depending upon the function requested by the application program, these

subroutines may represent the final or a still-intermediate stage of

linkage in carrying out the semantics of the application program re-

quest. Some requests can be honored by a simple translation or by an

accessing of a field in the SCE; others involve more complicated com-

munication with one or more of the Monitor control tasks to initiate an

I/O operation and to await its signalled completiOn.

Communication between IFCSECT subroutines and the Monitor involves

both SCE storage and the post/wait protocol., Parameters passed from the

application program, via dope vectors are placed in the SCB by the sub-

routines to control the Monitor's fulfillment of requested operations.

Information stored in the SCB by the Monitor is used by the subroutines

to update the dope vectors and application data storage prior to re-

turning to.the application program. Each SCE also contains a number of

fields used as event control blocks (ECEs). Certain ECEs are owned

("waited upon") by the subroutines, while others are separately owned

by the various Monitor control tasks. (Joint ownership is impossible.)

These ECEs, like Dijkstra's semaphores, are used in synchronizing sub-

routine and Monitor by post and wait coordination. The subroutine re-

quests an operation by initializing a request-type field and then post-

ing a Monitor-owned ECB; the Monitor signalsa completion by posting the

subroutine-owned ECB.

Variations to this. simple protocol are also possible. For example,

the Monitor task, MIOS, is designed to act on display interrupts inde-

pendently of a pending application request for input. In the case of a

lightpenning action, the Monitor may have completed the entire sequence

of obtaining lightpen coordinates and lightpenned character, including

54

storing the information in the SCB, prior to the application program's

official request. In such a case the subroutine will detect by a "status"

field in the SCB that communication via post/wait is not needed. Instead,

the information can be immediately retrieved, the "status" modified to

reflect this pickup, and control returned to the application program.

Still another variation involves synchronization constrained by

time, where an application program has issued a read operation with a

time limit (see "PAUSE" in Chapter 3). In this case, use is made of an

asynchronous IFCSECT "timer completion exit routine" (a coroutine of the

IFCSECT subroutine). Here, if the SCB status does not show the input to

have already occurred, the subroutine will initialize the request-type

field in the SCB, post an MIOS ECB, issue a timer request (via OS/360

"ST/NER") specifying the exit routine, and wait on two ECBs. One can be

posted by MIOS, the other by the exit routine. When one of the ECBs is

posted, the IFCSECT subroutine regains control and, after determining

which event occurred, cancels the other request. Cancellation of the

timer request involves (for PAUSE) obtaining the amount of time expended,

for the purpose of relaying this information to the application program.

For operations involving I/0, the IFCSECT subroutines are concerned

primarily with signalling he request, depending on the target station,

to either MIOS or MTWX atd then synchronizing the reactivation of the ap-

plication with the posted completion. Input requests involve a slight

elaboration to allow additional communication with MSS. Here, the sub-

routines set an "idle-flag" in the SCB prior to awaiting completion of

the input request. This allows MSS to remove the application subtask

from its queue of dispatchable subtasks to reduce execution overhead

during its time-slicing and subtask scheduling epochs or to suppress

55

such epochs entirely if all application subtasks are idle. This allows

the CHAT region to quiesce entirely during protracted periods of

idleness.

On completion of such input, the reactivated IFCSECT subroutine

posts an MSS-owned ECB in the SCB to alert MSS of its newly-regained

dispatchability. MSS can then include the application subtask once

again in its scheduling process before the subroutine returns to the

application program.

Subroutine requests to the Monitor control tasks result in con-
4

siderably more complicated activity within these tasks, depending upon

the current state of the transmission line and the existence of other

outstanding requests. The queueing and scheduling techniques employed

are described in subsequent chapters dealing with these components of

the Monitor. Monitor I/O completion posting can involve three types

of indicators for the subroutine: proceed normally, invoke an applica-

tion program "on-unit," or stop the application program. Hence, the

reactivated IFCSECT subroutine can take any one of three return exits.

The subroutine can, itself, initiate the "on-unit" return when an ap-

plication program's request-parameters are faulty. Specific conditions

causing these various exits are also described in subsequent chapters.

56

INITIALIZATION OF THE REGION

Initialization Of the CHAT region is a complicated multistep proCess.

Its primary objectives are to produce the initial regional layout of the

Monitor indicated in Figure 2.4--the Monitor control storage at the low

end, and the Monitor program load module at the high end--and to prepare

the resident control tasks to perform their monitoring activities during

Subsequent CHAT System usage. To prepare the control tasks, it is

necessary to give them addressability to the control storage, to

initialize the control storage.so that all requited run-time parameters

and linkages are set up for use, and to perform any. once-needed start-

up initialization of the equipment. A design goal, that none of this

initialization code would be permanently resident in the CHAT region,

complicated the sequencing and linkages of the initisAization steps.

1va
I

design of this step sequencing and linkage.V1VEhe joint effort of

the author and Blair, although Blair's inspiration dominated.

Figure 2.7 gives a gross view of the initialization steps. The type

of linkage involved from step to step is shown in parentheses along the

arrows; the other names are those of the actual code steps invoked.

(ROOTCAI AND INITCAI were named before the acronym CHAT was contrived,

when the CAI Project was foremost in mind; better names would be

-ROOTCHAt and INITCHAT.) The functions of the various steps are briefly

as follois:

ROOTCAI - This small root of code is assembled in the low end of

the Monitor control storage load'module. It is attached as

the CHAT job steptask (cf.' Chapter 4)--an identity in-

ROOTCAI112

(LINK)

INITCAI1

(XCTL) 1 Transient code

MSS
5 2 Assembled in control storage

(Branch) 3 Overlays previously executed
code in control storage

CALLMIDF1,3
4

I
(LOAD
Inch

Zeroes-out last executed code
residing in control storage

5 Resident code
MIDF1

(Move code)
Branch

DLTLNK1'3

(LINK)

MSSINIT1'4 (ATTACH)

(XCTL) MIOSINIT1

MTWXINIT1
MSS 5 (XCTL)

MIOSs
(XCTL)

MTWXs'

Figure 2.7. Initialization Steps

- J

58

herited by MSS via the initialization linkage. ROOTCAI serves

two important purposes:. (1) Because ROOTCAI is part of the

control storage load module and is marked as a non-reentrant

program, OS/360 loads the Monitor control storage at the low

end of the.region; (2) ROOTCAI passes. the address of the

control storage through the subsequent linkage protocols to

the Monitor control tasks. It uses the OS/360 LINK macro

to pass control to INITCAI.

IWITCAI This step passes addressability.to Blair's "SVC 239" [B3]

and loads the OS/360 abnormal dump resident module (also

described by Blair (B3)) and moves the CALLMIDF code into

the Monitor control storage, overlaying ROOTCAI. It then

uses the 0S/360 XCTL macro to transfer control to MSS, which

in the process causes'OS/360 to load the Monitor program

load module into the high end of the region.

MSS - After some standard establishment of addressability (needed

for'run -time operation), MSS branches to the CALLMIDF code

in the control:storage, passing the address of an entry

point table identifying.the'locations of other components

of the Monitor program load module - -a list of the IFCSECT

subroutines,k0S, MTWX, NTOC,'and the MIOS Start I/O.

appendage.

.CALLMIDF - This step begins some."middle functions' necessary to in-

itialization. It uses.the OS/360 LOAD macro, to load MIDF

and then branches 'to MIDF.

MIDF -

59

This step continues the middle functions: it uses the OS/360

IDENTIFY macro to make MIOS, HTWX, and MTOC known as entry

points to OS/360, stores the address of the entry point table

in control storage, and also moves the DLTLNK code there,

overlaying CALLMIDF. It then branches to DLTLNK.

DLTLNK - This step invokes an OS/360-supplied SVC to delete MIDF (de-

leting the linkage as the acropym implies) and uses the

OS/360 LINK macro to branch to MSSINIT.

MSSINIT -: This step initializes' the station control blocks (SCBs) in

. control storage with the address of the list of the IFCSECT

subroutines so that the application program entry linkage

invoked by the application interface (described in Chapter 3)

can find the subroutines. It also initializes the portion

of control storage used by MSS: it clears the entry point

list address and DLTLNK code moved there by MIDF atd stores

task priority incretent /decrement values used by MSS for

time-slicing and application subtask scheduling. This in-

itialization involves searching through the CVT-chain (shown

in Figure 2.6) to find' the active TCB which contains the

current run-time priority caling for CHAT. The final func-
r

tion of MSSINIT is to attach MIOSINIT and MTWXINIT (in that

order) which operate as separate Monitor.control tasks.

MSSINIT then XCTLs to MSS at an entry Point (MSSWAIT) which

waits for a run-time event to occur.

60

MIOSINIT - This is the most complex and involves the most code of all

initialization steps. Chapters 5, 7 and 8 give additional

details; here we mention only that it initializes the inter-

regional conduit and prepares the display equipment for run-

time use. When done,' it XCTLs to MIOS, which inherits its

task identity as one of the three Monitor control tasks.

MTWXINIT - This step prepares NTWX for its run-time operation of the

Teletype. Besides initializing some control storage fields,

it' translates from EBCDIC to Teletype code the text of

messages MTWX.sends to the Teletype in support of its com-

mend functions.. It uses the OS/360 OPEN macro to initialize

the Teletype control block needed for input/output opera-

tions and proVides MTWX.addresiability to .the 08/360 Unit

Control Block (UCBY.needed for 'a Halt I /O- function it per-.

forms. When done, MTWXINIT XCTLs to MTWX, which inherits

its task; identity.

. Because of -the linkage conventions employed, when MSS,- MIOS, and

MTWiare finally initialized' and ready for CHAT System operation all

traceg.of.the described initialization steps are removed from the region.

This inoludei even the linkage-to hem,.with.the unavoidable exception

of two.instructions.in MSS'for-branOhing to CALLMIDF:'- As an illustra7

tion, however, that-CHAT, like Most systems, violates'its purity.of

intention,' -MTWX contains a small amount of code to'put.the addresses

of its two "channel end appendages"n an OS/360 control blockprior

to- beginning its operation. This deviation was a conscious tradeoff

61

favoring time and resources (and sloth) over purity and further com-

plexity. (MTWX was coded last.)

CHAPTEP 3: THE APPLICATION PROGRAM INTERFACE

This chapter describes the subroutines and functions that may be in-

voked by the application program in order to access Monitor-controlled

facilities such as display and Teletype input and output and the conduit

to CPS. For an application program coded in PL/I, these procedures are

invoked by means of call statements and function references. The syntax

and semantics of these procedure references are discussed in sufficient

detail to allow this chapter to serve as external specifications for

the PL/I application programmer interested in writing a program for the

CHAT system.

A simple metalanguage is employed in presenting the procedure ref-

erences: underscored referents represent arguments; alternative coding

formats for generic procedures are shown by stacking the optional ver-

sions within braces. Names preceded by the "$" symbol are not part of

the metalanguage but are actual CHAT variable names defined in declara-

tions which the programmer will normally have generated at compile-time

by use of the %INCLUDE preprocessor statement. The values of the $-

named variables are purposely not shown here. If the programmer de-

sires this information, it ...rm be obtained by examination of a source

Listing containing these compile-time included declaration:. Use of

this compile-time facility is discussed in more detail in a later sec-

tion of this chapter.

To illustrate the metalanguage, suppose a fictitious CHAT procedure,

PROCNAME, were provided with the metalinguistic representation:

63

fariableloariablel
CALL PROCNAME($SYMBOL

In this case, the description (following the metalinguistic represen.:a-

tion) of PROCNAME would g'.ve attribute and range (or value) requirements

for the variablel and variable2 arguments. If the two-argument format

were used, the programmer would declare and set two variables of his

own choosing, say ARG1 and ARG2, and would code:

CALL PROCNAME(ARG1,ARG2).

The second format would be coded as shown:

CALL PROCNAME($SYMBOL)

where $SYMBOL would he declared in the compile-time Included text pro-

vided by CHAT.

The procedures discussed here can also be invoked by application

programs coded in assembler language, using a set of assembler macros

designed by Blair [B3]. These macros are similar syntactically to the

PL/I procedure references described here and imitate the PL/I internal

linkage and parameter-passing conventions sufficiently that the invoked

procedures are insensitive to the source language of the invoking pro-

gram. The invoked procedures are themselves coded in assembler language.

64

DISPLAY USAGE

Procedure references are provided to display text on the display

screen, to read data that the display operator has keyed or light-

penned and to control the slide projector connected to the display

station output channel.

Controlling the Slide Projector: There are two different types of slide

control offered to the programmer: turning the slide projector power on

or off and selecting a specific slide for display. These are accomplished

by means of the generic procedure reference SLIDE (a difference in

number or attribute of allowed arguments requires generic definition in

PL/I):

CALL SLIDE($OFF

1).
slidenumber

SON and $OFF (both BIT(1) variables) perform the functions to which they

mnemonically refer: slidenumber is any FIXED BINARY(15,0) variable in

the range 0-80 corresponding to the carousel slide position to be selec-

ted. The programmer need not explicitly code the power-on function: the

invoked subroutine will turn power on automatically if a carousel motion

is requested when the projector has power off.

The experienced display station user is familiar ,.4th the fact that

while the slide slots are numbered in base-10 representation on the

carousel, keyboard control of the slide equipment requires base-9 repre-

sentation. This is true alio for computer control of the slide equipment

(where tie base-9 odes !trust also be sent in the ASCII format). However,

the aiplication programmer need not worry about this vexing base-9 control;

CHAT transforms the application program base-10 representation to base -9

(in ASCII) automatically.

On completion of a slide operation, the cursor location and key-

board state (locked/unlocked) are the same as prior to the SLIDE

issuance.

Writing on the Display Screen: To display alphanumeric text on the dis-

play screen, the programmer uses the generic procedure reference DISPLAY:

ir

message
CALL DISPLAY(message,row).

message,row,col

The row and col arguments are FIXED BIN(15,0) variables specifying whc-e

the cursor is to be positioned prior to the display of the message

character string. The absence of the row and col arguments in the top

format means the message character string is to be displayed starting at

the current easition of the curse.c, that is, wherever it was left at the

completion of the last operation. As explained below, the message argu-

ment can conta embedded format controls to control e.,rsor placement,

thereby obviating the need for the row and col arguments. The midelc_

fo,mat above, with col absent, is taken to imply the first position

(column) of the specified row. The value represented by the row argu-

ment t..ust be a legal row number; i.e., in the range 1-20; similarly, the

col argument must represent .t value in the range 1-40. the message

argument must represent a character string of length 0-810 characters, a

limitatiln to be discussed shortly.

Tahl2 3.1 contains a list of format controls: $-named variables

and a function reference, LCAR, that represent format cha,..seters, which,

when sent to the display, control cursor placement, keyboard enabling,

66

Cursor Control:

$C Clear display screen; place cursor at first position
of first row (CLEAR).

$R Return cursor to first position of current
row (RETURN).

$U Move cursor up one row (t).

$D Move cursor down ore row).

$8 Backspace cursor one position (411-.

$F Foresppee cursor one. position (-).

$S Move cursor to first position of first row (RESET).

$T Move cursor to 21st position of current row (TAB).

$L Display New Line sy..abol (4) at current cursor
position and move cursor to first position of
next row (LINE).

$DP

!MDR

LCAR(row,col)

Same as $D11$R (4,RETURN).

Same as $1,11$D11$R (#,4,RETU2N).

A function reference for "random" cursor placement;
cursor to be moved to position with coordinates
specified by the FIXED BIN(15,0) row and col
arguments.

Keyboar(' Control:

$E Enable (unlock) keyboard (MASTER CLEAR).

Color Selection:

$GRE Select green (SPECIAL CODE + Q).

$RED Select red (SPECIAL. CODE + R).

$81.11 Select blue (SPECIAL CODE + S).

$YEL Select yellow (SPECIAL CODE + T).

Table :=.1: Format Controls

67

and color selection.

In the table, the keycap.names corresponding to the functions are

shown in parentheses. Experimentation with an actual keyboard will best

familiarize the reader with the functions described. An equivalent key-

board function for LCAR does not exist; while a four-character contra

character sequence sent from the computer provides the function, it' can

only be accomplished at the keyboard by compound Imo of the other keys.

,The format characters themselves are eight-bit unprintable characters

(...--in-TBCDIC. The $-names in the table, with the exception of $DR and

$DDR, represent one-character controls; $DR and $DDR represent two?, and

three-character controls, respectively. The function reference LCAR

causes a four-character string representing control of "random" cursor

placement to-be returned to the point of invocation within a-message

string 'to be sent to a display. Since the actual control characters re-

quired by the display equipment are foreign to the PL/I programmer (they

are not only unprintable in EBCDIC, but require a Monitor translation to

ASCII code when transmitted), the format controls were invented to ease

the programming task.

Two constraints are imposed on the use of the format controls: if

used, $C must appear as-he initial character of the message argument;

while $E,' if used, must be the final character. If either rule is viola-

ted, the function is not performed; instead a blank character is sent in

--
pla-de of the misplaced character. Some illustrative examples and further

discussion should clarify-the Use of DISPLAY and the format controls.

.EX1: CALL DISPLAYOCIPEXAMPLB MiGY1fLCAR(20,1)11
'ENTER CODE'11-$Pri4kY;

The above statement causes the display Sateen to be cleared, dis-

plays.EXAMPLE MSG on the top line, positions the cursor.at location

68

(20,1), displays ENTER CODE there (the bottom line of the screen), moves

the cursor one more space (leaving it at location (20,12)), and enables

the keyboard. Enabling the keyboard need not be done expliciA in this

way: the Monitor will automatically enable the keyboard on issuance of

a subsequent read-type call statement that follows a DISPLAY where $E

is not used. When $E is omitted, the keyboard is left in the locked

state at the completion of the display operation. The point of pro-

viding the explicit function is to permit the keyboard to be unlocked

immediately upon completion of a display operation that is to be

followed by a read-type operation. In this manner, delays in issuing

the subsequent read are not noticed by the station operator.

EX2: CALL DISPLAY($BLUIIMSG111$DRIISRED,R10);

The above example dtmonstrates the use of color formatting. The

character string represented by MSG1, appropriately declared elsewhere

in the program, is displayed in bLie starting at the first position of

r(.4 ten, assuming that R10 is given this value of ten elsewhere in the

program. The cursor is left at the first position of the row follow-

ing the row displaying th2 last character of the MSG1 string. Because

$RED is used, upon completion of the operation the cursor is displayed

in red and, if a read-type operation Is next to occur, any keyed-in

characters will appear on the screen in red, thereby distinguishing

computer responses from operator input. Notice that the above example,

by omitting the $E control, leaves the keyboard locked.

Earlier, the length bounds for the message argument: were given as

0 and 810. The reader may wonder what a DISPLAY with a null message

argument does. The answer is that it simply lock the keyboard. At the

other extreme, 810 characters is sufficient to permit the display of a

69-

full screen, 'SOO characters, and to allow up to ten control characters

as well. An upper limit is necessary because of the fact that the Mani-

for uses an intermediate. buffer into which the message argument string

is transferred prior to being transmitted over the communication link.

In the unlikely case that the programmer needs to define a message argu-

ment of length greater than 810, -the recourse is ta use more than e

single DISPLAY statement._/

If' at the completion of a DISPLAY, the programmer' wishes to de-

termine where the cursor was left, he may use the CURSOR call statement:

CALL CURSOR(row,col)
.

... -

The invoked subroutine returns the cursor location in the FIXED BIN(15,0)

row and col arguments... This call statement, if issued after a READ call.

(discussed below), will return the position of the cursor as it was left

at the end of that operation.

Reading from the Display: To read data that the display operator has

keyed in at the'display station, the programmer uses the generic pro-

cedure READ:

mess
CALL READ(message,row,col)

The FIXEDAIN(15,0) row and col argumenti specify the starting

position on the screen-for the-read operation. In the to format, where

these arguments are omitted, the starting point is assumed to be at the

position where the cursor was left at the end of the last operation,

whether this was a DISPLAY or another READ. The message argument repre-

sents the location where the received message string is to be returned

by the invoked suinoutine. It may have maximum length of the programmer's

choice-(including zero). Providing-a maximum length shorter than-the

70

keyed-in string causes a truncated message to be returned. The Monitor

will read from the specified (or implied) starting point through the

position preceding the location which the cursor holds at the time the

display operator presses the interrupt (INT) key. This assumes the

final cursor Iodation (at interrupttime) is greater than-the starting

location. If this order is reversed, the Monitor will-read from the

starting location to the last position on the screen.

In either case, the issuance of the CURSOR call following the READ

will result in the coordinates the cursor held at interrupt time being

returned. The Monitor not only restores the cursor to the position it

held at interrupt time, but restores the character:(typically a blank-Y-

.,

over the cursor, since reading from the display involves temporarily

.placing an "end" character (ETX) after the final data position.

Getting the Lightpenned Coordinates: To read the location of the search--

indicator that illumines the background of a lightpenned character, -the

programmer issues one of two procedure references:

'CALL READLP(row,col)
CALL LPLOCN(row,col)

In either case, the coordinates of the lightpenned position are returned

in the FIXED BIN(15,0) row_and col arguments, If*the display operator

has pressed the INT key without lightpenning something, *row and col are

set to (0,0). Otherwise, the value returned in row. will be in the range,

1-20; the value retorned in col, in the range 1-40.

Before explaining why there are two variants for lightpen-reading,

it is necessary to discuss the general notion of reading from the display,

a discussion Oat applies to.the READ operation as well. Reading from

the display is not like reading a tape record:. creation of a display

-71

record" is a dynamic thing and at the time of program readiness to read,

the record may not yet be composed by the display operator. We need

the interrupt signal, in general, to inform us that such a record now

exists. Thus, the Monitor initiates the actual read operation only in

response to an interrupt signal received from the display operator.

Such anr-inierrupt can, in fact, precede the program issuance of a read-
,-

type call, in which case, the read is initiated immediately upon issuance.

This synchronizatiOn of read operations (and also PAUSE, described

below) with the interrupt signal means that on issuance of such an opera-

tion- the keyboard must be enabled (unlocked), allowing the operator to

key in data and to use the interrupt key. For operations, then, that are

interrupt-responsive (read operations and PAUSE), the Monitor always

enables the keyboard, if this is necessary. .Where such an operation has

been preceded by a. DISPLAY using -the $E function, the keyboard is already

enabled and the Monitor need not'again perform this function. If an

.interrupt has been received prior to an interrupt-responsive call, the

enabling operation isnoi necessary: the'read operation is ready to be

performed.

This means that the Monitor is aware of occurring interrupts even

if the application program has no call outstanding. The Monitor re-

members an interrupt.by setting an internal flag, which, for discussion

purposes, we here refer to an the I-flag. In the case of a light-

penning interrupt, the Monitor readi the lightpenned coordinates and the

lightpenned character, as well. ?rereading of a message cannot, of

course, be done: the starting point is- unknown untildefined by the ,

application program..

Issuance of'a SLIDE, DISPLAY, READ, or READLP call-statement resets

72

the I-flag; LPLOCN does not.. SLIDE, and DISPLAY reset it because it is

assumed that a subsequent read must receive a message which is con-

versationally responsive to whatever information these operations im-

parted to the display operator. READ and READLP reset the flag because

they service the associated interrupt.

Herein lies the need for LPLOCN: the program may want the start-

ing location of a READ to be defined by the operator in a dynamic

fashion, for example, in the case of a text-editing operation. Light-

penning is a convenient way for the operator to perform this function.
,---

Heice, by first issuing LPLOCN, the program may then issue a READ with

the row and col arguments set to the values returned by the preceding

LPLOCN and service the same interrupt the LPLOCN responded to. This

saves multiple interrupts14 the display station.

After a successful lightpen reading the program may want to know

the character that was lightpenned. This is achieved by use of the

LPCHAR function reference:

EX: X = LPCHAR;

where in the above example the lightpenned character is returned at the

indicated invocation of LPCHAR, and in tu':n sets 'X to the desired char-

acter value.

Time and Keyboard Synchronization: Obvious programming difficulties can

arise in reading from the display: the program cannot always anticipate

the display operator's response. Will he lightpen something or key in

some data before hitting interrupt? Or will he, in fact, do anything at

all when the program has a read pending? If a READ operation is com-

pleted Iqalightpenning response, -the Monitor retirms a null message;.,

71

if a kEADLP or LPLOCN completes because of a message-associated inter-

rupt, the Monitor returns zero values for lightpen coordinates. These

are indirect eats the programhas of detecting the mismatch between

program and operator activity. However, to deal with these diffi-

culties more directly and also to impose a.limit on operator tardiness,

the program may first issue the PAUSE procedurerefArehtel

CALL PAUSE(time,return).

The FIXED BIN(31,0) time argument specifies the maximum nonnega-

til-e time interval, in seconds, that the program desires to wait for

the display operator to hit interrupt. At completion of the operation,

the HIES) return argument is set by the invoked subroutine to one of

the following values, where as before the $-names are part of the compile-

time included declarations:

$TIM -no interrupt has been received' within the specified

interval.

$LP, an interrupt has been received with lightpenning indicated.

$INT an interrupt has been, received without lightpenning indi-

cated; a message is ready to be read.

Also.on completionof the operation, the time argument is set to

the time elapsed irlAhe time the PAUSE was issued to thetime the

interrupt was received. in. the Case where $TIM is returned, the time

argument obviously. is unchanged, since-the entire interval has elapsed.

In the case where an interrupt has been. received prior to the PAUSE

issuance, time will be set to'zero, since no time has elapsed.

A peculiar interpretation is given to a PAUSE'that is issued with

74

the time - argument representing'a zero:value: the maximum interval to

wait for an interrupt is taken to be infinity. Here, ,only $INT or $LP

can be, returned; the time argument is left at zero on completion of the

PAUSE.

The PAUSE procedure, like LPLOCN, does not cause the Monitor'to.re-

set,the 1-flag (if on). A read operation, following a PAUSE "for which

.$1,P or-$1NT was returned, will be executed in full immediately upon issu-

ance and doe not require a new interrupt to. be received.

a

75
-

TELETYPE USAGE

Programming input and output for the Teletype is done by use of

the two procedure references:

CALL WRTWX(outarea)
CALL RDTWX(inarea)

The outarea argument must be a character string of lengEh 0-80. Each

WRTWX automatically causes the carrier to be positioned to the left mar-

gin of a new line beforethe outarea character string is printed.

The inarea argument can -have up to 80 characters returned, depend-

ing on the length attribute defined by the program for inarea and the

amount of data keyed by the Teletype operator.: Each time a RDTWX call

is issued, the Teletype operator is alerted by the printing of the

"?" symbol at the first position of a fresh line. Appropriate control

(X-On) is also provided to allow automatic reading of paper tape The

Monitor strips out anycontrol characters, such as carrier return or

linefeed, before presenting the keyed..message to the program. Similarly,

editing is performed to handle character corrections the-operator hat

indicated during his keying operation through use of the underscore (v.J,,

on some Teletypes, the back-arrow) key.

_76

CPS ACCESS

The procedure references provided for application program access tot

the CPS conduit are described here. Both the description, and, more

importantly, the use of the access facilities presume a knowledge on

the part of the programmer of the manner in which he would interact with

CPS If he were accessing that program from a CPS teletypewriter termi-

nal. Other readers are referred to reference (I1] for de:_ils on the

CPS terminal operation.

Internally, the conduitemploys the Teletype interface to CPS

with the added capability for exchanging lower-case characters. De-

tails of the internal design of the conduit are given in 'Chapter 7;

here we desC"ribe the programming interface for using it.

Establishing Connection to CPS: To establish connection with the CPS

facility, the program must issue one of the following versions of the

generic procedure reference LOGCPS -1277w

CALL LOGCPS (libname)

The no-argument format causes a "standard" log-in to be performed;_

sign-on identifiers are supplied by the Monitor. The second format

above uses the one- to six-character libname argument to specify a

load/save library identifier for this sign-on. When connection has not

yet been established, the application program must issue one of the

LOGCPS calls prior to using one othe calls described below.

Reading from CPS: -To read output from CPS, the program uses the procedUre

reference RDCPS:

:77

CALL RDCPS(inarea,time,return)

The inarea argument must be declared as a VARYING character string

with length of the programmer's choosing. CPS output is truncated on

the right if it is lohger than the defined maximum for inarea. CPS

messages are presented to the application program with all line and fermi-
...)

nal control characters stripped out and in normal EBCDIC representation.

The FIXED BIN(15,0) time argument specifies the maximum time inter-

val, in seconds, that is to be allowed for completion of this operation.

The invoked procedure enforces a minimum specifiable delay of one second;

an instantaneott6-completion is not poss

it

ble because computer operations

are not infinitely fast. (In fact, CHAT itself contends with CPS for

use of the CPU--perhaps 1ocking out CPS for brief.periods0 Hence, a

request of zero seconds is treated as one.

Upori completion of the operation, the BIT(8) return argument is set

to a value represented by onerof the following $-names:

$TIM CPS has not responded within the interval spedified by

the time argument.

$MSG the inarea argument contains the message character string

returned by CPS.

$NULL CPS has no output, but instead is ready to read from the

application program.

The action of the application. program following the completion of

RDCPS is a function of the value returned in the:return argument. Typi-

cally,- if $TZM is returned,77theprogram may tryanother RDCPS or an

ATNCPS,isCussed below. After 1NULL, it is'likelythat a WRCPS will be

78

issued.- n the case of aMSG, the application-program's next actic,Li

likely be determined by the content of the,returned character string,

the analysis.of which is the responsibility of the application program.

Writing to CPS: To send text to CPS, the application program uses the

procedure reference WRCPS:

CALL WRCFS(text)

The text argument is a character string of varying length not longer

than 256 characters, a limit imposed by CPS.

Because the CHAT interface provides no explicit logout procedure,

the application program can achieve this by sending aillogout_ request

using-' WRCPS. ,The logout format is described in[Il]wPere different

versions axe-!shown. Notice that CPS responds-with run -time statistics;
-

--

-id

these can be read by the application program in the usual way using. RDCFS.

If the application program uses the logout/resume variant, the. next log-

in may be achieved by use of LOGCPS or, because CPS never really "dis-

connected," by use of WRCFS with the text argument specifying the lbgin

information.

The application program, of course, may end'without explicitly dis-

connecting from CPS. In this case the Monitor takes care of discon-

'necting CPS as part of the normal termination of the 'application program.

Interrupting CPS Activity: The'-experienced user of.CFS is familiar with

the occasional need to signal the system to change state. For instance,

CPS may be -doing automatic line numbering in "collect" mode and the

application prOgraM-has reached the point of wanting to switch-to "direct"

-mode--for eXample,to request.ixecution of the program just generatid.,

79

Another example occurs when a program in executi' by CPS is in a loop,

producing nothing. Alternatively, the executing program may be giving

too much output because of a different type of looping. All of these

needs to stop CPS are serviced by the simple procedure reference ATNCPS.

(Attention CPS):

CALL ATNCPS

No arguments are passed_to this procedure. The action performed is

dependent upon the context. if CPS is currently ready to write, the

effect is the same as a terminal operator's hitting the "Break" key at

a Teletype. In the case of a CPS read operation, it has the effect of

the same operation being ended.at the"TeletYpe by hitting the "control-Q"

(X-On) key. Finally, if the application program issues ATNCPS following.

a RDCPS that has timed out, it has the effect of forcing CPS to respond

,

with a write operation, typically informing where a looping or too-slow

program has been stopped by the signal.

80

GENERAL USE PROCEDURES

Five'procedures are available'for general use. Three of these, ENQ,

DEQ, and DDNAME, are the work of Blair DM. DDNAME is a function refe5=

ence whose invocation causes a two - character. identifier to be returned

that denotes the station address of the terminal (display or Teletype)

from which the application program was invoked. Two uses of this are

foreseen: programs can determine the station with which they are inter-

acting and programs that require task-unique.qualifiers for shared data

sets can'achieve it thus.

ENQ and DEQ provide basically the same facility as the IBM Operating

System/360 ENgand DEQ macros. That is, they allow concurrently active

tasks to share access to common data sets in orderly, nonirterfering

fashion. Curiouily, the PL/I designers did not include any-equivalent

facility in the language definition.

Two other procedures, ERRCODE, a function reference discussed in

the next section, and DELAY are available. The DELAY call-statement is

identical in purpose to the standard PL/I DELAY statement:

CALL' DELAY(time)

The FIXED BIN(15;0) time argument specifies -the number of seconds (the

PL/I standard. DELAY.accepts milliseconds) that the application "program

execution is to be suspended. One possible use of this procedure is to

allow a measured'delay between consecutive display operations, where

the message displayed by the firit in the sequence.of display operations

is to be erasedr overwritten by the next operation in the sequence.

This allows the station operator 'sufficient time to read d'message before

-it is destroyed by the next action of the epplicatlion prograM. For over-

-81

all system efficiency, the -use of the CHAT DELAY procedure is preferable

to use of the standard PL/1 version. The procedure invoked by the CHAT

DELAY informs the Monitor of the suspension 'request. This causes the

Monitor to suppresi scheduling overhead for the invoking application sub-

task for the duration of inactivity, and all time-slicing activity if

no other subtasks are active. Since the Monitor is not informed of ap-

plication program usage .of the standard PL/I DELAY, that usage does not

suppress the unneeded overhead.

82

EXCEPTION-CONDITION SIGNALLING

All exceptional conditions related to .the CHAT Monitor-controlled

facilities are signalled to the applicAtion program by raging a

programmer - named condition identified as ABNORM. Each application pro-

gram must Aefine an on-unit for this condition, typically through inclus-

ion of a begin block preceded by the condition prefix:

ON CONDITION(ABNORM)
3EGIN;

(action logic)

END;

Once the ABNORM condition has been raised, the application program

can obtain further information on the specific condition that caused the

ABNORM condition to he signalled through use of the function reference

EgeO DE, Invocation of ERRCODE causes the return of one of the FIXED

BIN(31,0) values shown below in parentheses:

(1) PROGRAM ERROR: indicates the application program has passed an

argument with an invalid value or length attribute to one of the

subroutines discussed in this chapter.

(2) SLIDE ERROR: indicates the Monitor has detected an error'during

execution of a slide operation that characterizes an uncorrectable

.slide projector malfunction.

(3) LINE ERROR: indicates the Monitor has detected an error that means

8i

the transmission path to the display station Is nonoperational.

(4) WRITE I-fERLOCK: indicates a sequencing problem in the a)plication

program's use of the CPS co-auuit facility: both CPS and the appli-

cation program are simultaneously attempting a write aper.ion. In

the case of the application program, a WRCPS or LOGCPS has been

issued to cause this irterlock irobiem. A RDCPS or ATNCI'S wi:1

brea% the ccntention.

(5) LOG-IN EXCEPTION: indicates the application program has issued one

of the other CPS conduit .:a! is when -.aly LOGCPS is permitted.

(6) CPS DEAD: indicates a CPS conduit call issued by the application

program cannot be successfully eAecuted because CPS is not currently

present in the system.

The error conditions associated with LINE ERROR and CPS DEAD are

fatal ones, requiring the application program to cease further use of

the corresponding facilities. In the case of the LIP' ERROR condition,

tris means the calls associated with display usage can no longer be

issued; in the (-Ise of CPS DEAD, the conduit calls are not to be used.

If the application program violates this protocol, the Monitor simply

stops the application program when it issues the offending call.

84

WRITING AN APPLICATION PROGRAM

An application program designed for the CHAT system is written

withthe idea that only one station'exists. This means that a program

intended for concurrent use from multiple displays is'not burdened by

the logic for:handling multiple terminal operation. The Monitor, ex-

ploiting the multitasking facility of the OS/360 MVT control program,

.attachesthe program as a separate -task for each'invocation,of the pro-

gram from a distinct display station. Thus, there are as many con-.

currently executing application tasks in the CHAT region as there are

active terminals. Some of these tasks may be the same application pro-

gram attached in multiple, while others may be entirely different appli-

cation programs singly attached.

While this featuresimplifies the design of an application program'

intended for multiple display usage, it has a restrictive effect in

that an application program cannot include support for both the Teletype

and. a display station.

The declarations needed to define the various $-named variables and

the entry points to the procedures discussed in this chapter can be in-

cluded in the application program at the point in the program where the

programmer has inserted the following preprocessor statement:

ICCIDCL}
%INCLUDE (TWXDCL)

CCIDCL and TWXDCL are member names in SYgLIB. The confining of applica-

tion program support to either a display or the Teletype is reflected in

the text identifier options provided for the compile-time facility.

The CCIDCL identifier results in the generation of source text con-

.

sisting of the declarations needed for display station support; this in-

85

'chides all procedure references and $-named variables discussed in this

chapter with the_ex6ePtion of WRTWX and RDTWX. The TWXDCL identifier

causes the generation of the declarations for WRTWX, RDTWX, ENQ, DEQ,

ERACODE, DELAY, and DDNAME. Notice -Chat the CPS conduit facility is not

accessible from a Teletype application program. (We saw no requirement

for' Teletype application program access of CPS, and Teletype operator

access to CPS is supportedby CPS itself -- -the operator can dial CPS

.directly.)

In designing ari application program for multiple-display usage,

.. the programmer has two-concerns that he cannot ignore. One is the.co-

ordination of access to shared, but serial-reusable, data sets,. an issue

mentioned earlier in the description of ENQ and DEQ. This is a logical

issue. The other concern is program reenterability. By designing an ap-

plication program to be reentrant, the programmer permits the multiple

attachingof a single copy of the program load module. This is a storage

efficiency issue. Application programs that are not reentrant require

a separate copy of the program to be loaded each time the program is

attached. (Because of the presence of only the single Teletype in the

CHAT System, a Teletype application need 115. reentrant.)

Basically, to achieve reentrancy, the application program should be

coded so that only read-only variables occupy static storage. Detailed

guidelines for achieving reentrancy in PL/1 are beyond the scope of this

document and in fact appear to be a matter of taste (cf. Mudge [M2] and

Sneeringer [S2]). The,_experience of using the overlay facility in conjunc-

tion with a reentrant assembler language application program is discussed

by Wait [W1].

-
andFor the sake of completeness we mention a restriction nd a potential-

86

ity which are ofAittle significance to anticipated CHAT System apPlica-

tions. The restriction forbids the application program to use the multi-

tasking option within .itself. The CHAT Monitor is not implemented to

allow it because of the way the Monitor Subtask Scheduler (M3S)-does .

'time-slicing and subtask scheduling- -see Chapter 4. (In particular,

the PL/I multitasking option is too idiosyncratic to support.) The

potentiality is that concurrently active application subtasks can inter-

act with each other, even though the CHAT Monitor does not supr.,rt this.

This can be achieved via common OS1360 data sets and application-

program supported queue-sampling; Blair's BAQ and DEQ are useful in con-

trolling access to the shared files. This technique is-now a familiar

one to the OS/360 user community; it was one of the earliest methods

used to pass data between jibs in separate regions.

CHAPTER 4: REGION AND SUBTASK CONTROL

Two logically distinct CPU-scheduling services are provided by

the CHAT Monitor. The first of these, time-slicing, ensures that the

computational activity.of the CHAT application tasks does not preempt

.nstallatibn CPU'usage beyond a specified maximum fraction of the total

time available. This is a service to the installation management who

,require assurance that the overall multiprogramming throughput performance

not be severely degraded by CHAT region activity. During the development

of the CHAT Monitor an the TUCC installation, the TUCC manager imposed
- ,

the limit that not more than five percent of the total CPU time could

be preempted.by CHAT application computing. At TUCC, multiprogramming

included, besides CHAT, six batch jobs as well as RASP, RJE, APL, and

CPS (serving real teletypewriters as well as CHAT "ports"). This same

,

limit has been carried over to the UNC installation which Currently

supports no interactive computing other than CHAT and only three batch

fobs, along with HASP and satellite-RJE (to TUCC).

The second scheduling service provided by the CHAT Monitor is a

suballocation of the region slice among the competing active application

tasks. This sub task priority scheduling involves a modified round-robin

scheduling technique, allowing each_terminal to be given timely service.

Both scheduling services are performed by MSS (the Monitor Subtask

Scheduler)--the highest priority and chief executive control task within

the CHAT region. Additional responsibilities of MSS, which owns all

88

tasks in the CHAT region, are creation and termination of application

tasks, as well as coordination of region shutdown in response either

to an operator request or to certain pathological circumstances. These

matters, along with the scheduling services, are described in greater

detail in the following sections.

89

TIME-SLICING

Under OS/360 MVT, everytask in the system has a limit priority

and a dispatching priority, each having a numerical value in the range

0-255. The control program maintains a task dispatching queue with tasks

ordered for execution according to dispatching priority. The job step

task for a region is given its limit and dispatching priorities as

specified by parameters in the Job Control,tanguage (JCL) statements used

to create it (and the region); this limit priority is the ceiling for

all task dispatching priorities within the region. Subtasks of the job

step task are given their initial priorities by parameters in the

OS/360 ATTACH macros used to create them. Another 05/360 macro, CHAP,

can be used to change the dispatching priority of a subtask.

In the CHAT 'region only one limit priority is used, and the dis-

patching priorities of the Monitor control ,tasks are all equal to it.

MSS, as the job step task, is created first and thereby has the highest

prioritylength of time that a dispatching priority is ?Leld being the

secondary determinant of dispatching order. This common dispatching

priority is higher than that for the installation batch regions, but lower

than that of various system tasks, e.g., RASP. Thus, the CHAT Monitor

can be blocked by system supervisory activity but not by lengthy compu-

tation in the batch jobs.

The basic idea of CHAT time-slicing is. to dynamically change the

dispatching priority of the CHAT application subtasks, relative to the

batch tasks, in accordance with the five percent formula. This alter-

nating promotion and demotion of the application subtasks is done by MSS

through use of the CHAP macro. The Monitor control tasks, because of

90

their supervisory role, are not themselves affected, but always remain

at the same high level.

A CHAT time-slicing cycle consists of two intervals: one in which

CHAT application subtasks hold high priority, relative to batch, followed

by one in which the relative priorities are reversed. The high-priority

interval is referred to as.a CHAT slice; the low-priority interval, as

a CHAT low.

Computer timing, because of the presence of a digital clock, is

granular--with clock resolution characterized by a smallest measurable

time quantum, q. The UNC System/360 Model 75 is equipped with, the

standard System/360 clock, a line-friquency timer whose clocking epochs

(instances when the clock value'is changed) occur every one-sixtieth of

a second. Thus, here q = 16 2/3 milliseconds.

The five percent formula requires that the ratio of slice to low

be nq:l9nq. With a sufficiently small q, the optimum value of n would

be difficult to determinerequiring sufficient experience with and

analysis of the running CHAT System. The grossness of the actual clock

resolution, however, made the choice of n.1 an obvious one.

When no application subtasks exist in the CHAT region, or when all

present are idle, awaiting an external event such as a timer interrupt

or an input signal from a terminal, there is no need for time-slicing.

Accordingly, the CHAT Monitor will suspend time-slicing. This period

of suspended time-slicing is referred to as a CHAT slump. A run of con-

secutive time-slicing cycles uninterrupted by a slump is referred to as

a time-slicing burst.

91

Initially, followinguinitialization of the CHAT region, Lite CHAT

state is a slump. Then upon receipt of a display station interrupt

signal or of the $XEQ command from the Teletype, MSS attaches Blair's

MTOC 1B3] at a dispatching priority equal to the CHAT region limit

priority. MSS also issues an OS/360 STIMER'macro 'instruction specifying

an interval of q (16 2/3) milliseconds. This changes the CHAT state to

a slice and begins the first cycle of a time-slicing burst.

At the end of the slice interval, a timer completion exit routine

specified in the STIMER macro sa=ns control and posts an event control

block (ECB), which is one of several that MSS waits on when it has no

scheduled work. Under OS/360 this exit routine is an event-activated

coroutirie of MSS; it executes under the same task control (TCB) as MSS

and has the addressing capability equivalent to an in-line subroutine

of MSS without being permitted to disturb the "activation record" (Pro-

gram Status Word and registers) of MSS. It does, however, have preemptive

priority over the execution of any in-line code of MSS.

MSS reacts to the posted ECB by using CHAP to demote the application

subtask to a dispatching priority below that of batch. Then a new STIMER

is issued specifying an interval of 19q (316 2/3) milliseconds and the

CHAT state is changed to a low. At the completion of the low, the exit

routine again posts the ECB of MSS which in turn promotes the active sub-

task to the CHAT limit priority and issues an STIMER to start the slice

of a new cycle.

Because the application subtasks are demoted, not suspended, during

CHAT lows, they remain dispatchable at all times. This allows the OS/360

task-switching facility to, dispatch any ready CHAT subtasks during periods

when the other regions of the system are all in the wait state. This has

92

the two-fold advantage of not only allowing CHAT apOlications to gnin

faster access to the CPU resource but also shifting some CHAT activity

from preemptive use of system time to system time that would otherwise

be dead, thereby. increasing overall installation efficiency.

In general, there can be several application subtasks in the CHAT

region. For this reason, MSS keeps a chain of pointers to the TCBs

Sr

for the various application subtask6 that are present. This chain is

used during the CHAP-scans that MSS performs to alternately promote and

demote the subtasks. Indeed, there are two such chains: a high priority

chain and a regular priority chain. The need for two priority groupings

follows from the subtask priority scheduling scheme discussed in the next

section. Here we are concerned with the chaining mechanism itself.

Within the station control block (SCB) associated with an applica-

tion subtask is afield for chaining information called the subtask TCB

element (STCBE). Figure 41shows the format of this field. If no

application subtask exists for the associated station, the STCBE is all

zeros.

The first word of the STCBE holds the address of the TCB for the

application subtask. This3word is initialized by MSS upon attaching the

subtask, and the pointer is subsequently passed as an argument on execu-

tion of the CHAP macro.

The second word of the STCBE is used for chaining. When the STCBE

is on one of the chains, this word-contains a pointer to the next STCBE

-on that chain. It contains zeros if the STCBE is last on the chain. A

subtask represented on one of the chains participates in dispatching

priority promotion'or demotion during the CHAP-scans performed by MSS

for time-slicing.

dew. SCB

6.4

93

STCBE

[TCB Address I Next STCBE Address I Status

3

Figure 4.1 STCBE and Status Flags

94

The status Lyte of the STCBE contains information concerning the

current status of the application subtask. (The X-bit is not used while

the I-bit is not pertinent to time-slicing.) The H- and R-flags are set

according to which of the two chains the STCBE has been placed on by

MSS. These flags are reset by MSS as it purges an STCBE from a chain.

Purging is done when an application subtask is to be terminated and

detached from the system or when MSS finds either the W- or P-flag set

during a CHAP-scan (at the end of a slice or a low).

The W (Wait) and P (Pause) flags are set by the application subtask

itself via one of the IFCSECT subroutines discussed in Chapter 2. An

IFCSECT subroutine that waits for input from a CHAT-controlled source

(READ, RDCPS, RDTWX, PAUSE, etc.) or for completion of a timer interval

(e.g., DELAY) set one (or both) of these flags. This allows MSS to purge

the idle subtasks from the chains during the next CHAP-scan. After being

purged, the subtask is allowed to remain at the high dispatching priority.

The advantage of this purging is that MSS upon finding the chains

empty at the end of a low can suspend time-slicing, avoiding unproductive

timer interrupts and unneeded CHAP-scans. Whenever an application sub-

task again becomes ready, the same subroutine that originally set the W-

or P-flag will report its readiness to resume execution to MSS by posting

an gCB. MSS then restores the subtask to a chain and resumes time-slicing.

Notice that responsiveness is enhanced by this event-activated resumption

of time-slicing: in a sparsely active system like CHAT the activated

subtask can gain immediate access to a slice rather than having to wait

an average of 150 milliseconds if time-slicing were never suspended.

The remaining A (Abort) and B (Break) flags in the STCBE status byte

are set in conjunction with two types of "CHAT-instigated" aborts to be

95

described in the final section of this chapter. In the case of such an

abort, MSS purges the affected subtask from the chain and gives it the

high dispatching priority even during a CHAT low before issuing an ABEND

to abort it. The OS/360 execution of the ABEND logic involves certain

critidal sections that suspend all other activity within a region--even

that of higher priority tasks. (The ABEND logic is executed with the

dispatching priority of the task being aborted.) Thus, this feature is

the single violation in CHAT of the five percent formula. Without it,

the degradation of the CHAT region responsiveness was shown by experience

to be. intolerable during saturated loading of the installation. Sub-

tasks were aborted during CHAT lows and MSS was unable over an extended

period--hours!--to get control to execute a CHAP. This was due lo the

fact that MSS invoked ABEND for a subtask during a low- -when the sub-'

task had low priority. Because (1) the ABEND internal control logic

then was dispatchable at the low priority of the subtask and locked out

other CHAT region tasks (e.g., MSS) despite their high priority (why this

is necessary remains a mystery); and (2) during heavy loading, batch

regions continuously execute at higher priority, this meant the whale

CHAT region was locked out until the ABEND logic could be dispatched and

completed. The CHAT design was quickly altered to promote a subtask

first before issuing ABEND--this corrected the problem.

96

SUBTASK PRIORITY SCHEDULING

The scheduling of application subtasks is intended to offer the

quickest response time to those subtasks which, at the time of conten-

tion, take the least computation time to respond to input. This policy

has a human factors advantage: a terminal operator making a request of

an application program which involves trivial processing time can expect

a quick response--and consistently so. Requests involving more prolonged

processing may be somewhat delayed because of preemption by other requests

arriving during their processing, but the added delay in these cases is

less significant to the human operator. Freeman and Pearson [111) show

that statistically this scheduling bias results in a reduction in the

variance of overall system response time--a responsiveness measure that

they emphasize for batch systems as well. This basic idea of servicing

small processing demands.first appears generally in time-sharing systems--

fyr which, see Wilkes [W3].

The CHAT design recognizes two priority groupings among contending

(dispatchable) subtasks: a hiol priority group consisting of those

subtasks that have become ready (e.g., by the arrival of input from a

terminal) during the current time-slicing cycle, and a regular priority

group consisting of those that have been continuously dispatchable for

two or more consecutive cycles. These groupings result in the newly

leady:subtasks getting top priority with respect to other CHAT subtasks

for the first cycle of their contention, and then getting a regular share

of the CPU resource over the subsequent cycles that they remain continu-

ously active.

This effectively establishes the following criterion:. 0 mck

97

sponse capability is one in which the maximum guaranteed CPU allotment

to CHAT within a cycle suffices to meet the subtask's execution-time

requirements for responding. The guaranteed time is, of course, simply

the slice interval--16 2/3 milliseconds' This is a considerable dura-

tion on the System/360 Model 75, even considering that CHAT execution

is froi LCS. Adding to this whatever (non-guaranteed) system dead-time

may be available (see previous section) during the low of the cycle, the

ceiling for quick responses appears even more substantial.

For the first cycle that a subtask is in the regular group, it has

top priority within this group--being preempted only by newly activated

subtasks added to the high priority group. Hence we can define a fairly

quick response capability that requires some-compute requirement--namely,

two slice intervals.

At the end of the second cycle of continuous activation, the subtask

loses its favored status and is demoted to lowest priority in the regu-

lar group. It must then work its way up to top priority within the reg-

ular group over a period of cycles in accordance with the Monitor's

round-robin sharing of the CPU resource among it and other 14h-compute

subtask activations. The round-robin process is repeated for the dura-

tion of the high-compute activation, i.e., until it once again returns

to the idle, or suspended state.

To implement this scheduling idea, MSS maintains two service

chains--a regular service chain (corresponding to the R-bit previously

described) and a high service chain (corresponding to the H -bit). Fig-

ure 4.2 shows the structure and epossiblle occupancy for these chains.

Forward chaining, only, .is employed because purging usually occurs only

during a full scan of the chains (exceptions being primarily subtask-ends),

'Except for the first slice of a time-slicing burst which, because
it begins asynchronous with the clock, averages 8 1/3 millisecond.

98

Number in Chain

first

1-71

@STCBE1

@STCBE2

TCBE2

in Chain

Las in Chain

...i)

///1 g t///j

El

STCRE2

(a) Regular-service Chain (b) High-service Chain

Figure 4.2 Service Chains for Active Application Tasks

99

while additions are made to the end of "the chains.

The STCBEs on the.regular chain represent subtasks that have been

continuously active for more than one cycle ill the current time-slicing

burst. An exception is the first subtask to become active when the

CHAT state has been a slump--here only the one subtask is.now ready, so

it is simply placed on the regular chain right away. The high chain

holds those subtasks that become ready during a time-slicing cycle

of an on-going burst. These can be subtasks newly attached by MSS or

can be suspended subtasks signalling their readiness to resume by posting

an event control block (ECB) of MSS.

The two chains are treated by MSS as follows: during the CRAP-scan

at the end of a CHAT slice, those subtasks on the high chain are. given

a dispatching priority equal to one, while those represented on the reg-

ular chain are given a dispatching priority equal to zero. These pri-

orities--both lower than batch region priorities--are held by the active

subtasks for the duration of the CHAT low. At the end of the low, MSS

begins its CHAP-scan with the high chain, then continues with the regu-

lar chain, promoting all subtasks back to the slice_ priority, above that

of the batch regions. The high chain is emptied by placing those STCBEs

found on it in their current order at the front of the regular chain.

Sub tasks which are purged from a chain because they have gone in-

active (waiting) are allowed to stay at the high dispatching priority.

Thus, subtasks purged during the CHAP-scan at-the end of a low are pro-

moted along with the still-active subtasks, but at the end of a slice

purged (suspended) subtasks are not demoted--they are only removed from

the chain. Notice that long-idle subtasks will appear ahead of more re-,

cently active subtasks on the OS/360 dispatchability chain even during

100

a CHAT slice. This allows newly ready subtasks to gain fast access to

the CPU, since the whole MSS scheduling idea is based on the management

by OS/360 of its dispatching chain.

If a purged subtask becomes ready during a time-slicing cycle it is

added to the end of the high chain. If this occurs during a slice, this

is all that is necessary. However, during a low, MSS also issues a 'CHAP

to demote the subtask to priority one so as not to interfere with the

batch regions. So that MSS becomes immediately aware of the status change,

the subtask (in the reactivated IPCSECT subroutine) posts an MSS PCB to

signal readiness.' On rare occasions it may happen that a subtask is

suspended and then signals readiness to resume before MSS has performed

the next CHAP-scan to purge it from its current chain. If the subtask

appears on the regular chain, MSS will immediately, at the time of ready-

signalling, purge it and then add it to the end of the high chain. If

this occurs during a low, MSS also will change the subtask's priority

from zero to one. Similarly, during a time-slicing cycle, newly created

subtasks are added to the end of the high chain and are attached at the

slice priority or at the one priority depending upon whether they arrive

during a slice or a low.

To share priority among application subtasks equally, MSS performs

a round-robin reordering of the regular chain at the end of a slice prior

to the CHAP-scan. The current first STCBE becomes the last in the chain,

while all others are moved up by one position. This new order is held

through both the low and the following slice, when reordering is again

performed.

Two exceptions will cause this reordering to be suspended and the

current order held for an additional cycle: (1) if a subtask is detached

101

from the region during the current slirs or (2) if the high chain is

found nonempty at the end of slice. la either case, it is impossible to

know how much execution time the still-ready subtasks had during the

ending slice. (Recall that the slice interval is also the smallest

resolvable clock quantum.)

Overall, this technique, designed to allow each subtask to gain its

fair share of the CPU and to give high priority to newly activated sub-

tasks so that quick responses are favored, seems to work very well in

practice. Terminal usage experience shows the design intention to be

realized satisfactorily by the implementation.

102

REMARKS ON SCHEDULING

Having described the details of the scheduling services provided

by MSS, we consider again the necessity for such services and compare

the implementation with that of other time-sharing systems.

Considering the types of applications already implemented for

CHAT, it seems unlikely that the CHAT region demand on CPU usage would

normally ever reach a five percent level - -at least not over an appreci-

able period. But the Monitor cannot limit itself to just normal opera-

tion considerations, since in the real world--4no matter what amount of

testing has been performed--programs are apt to contain latent errors.

This possibility, along with the important requirement to introduce new

application programs into the CHAT produdtion system during their devel-

opment and testing, means that time-slicing has the important function

of protecting the multiprogramming installation from endless loops in

CHAT application programs. Only in a perfect world is there little need

for time-slicing. (Notice that it is presumed that Monitor control

tasks--which are unaffected by time-slicing--are free of latent endless

loops. Perhaps remarkably, no such bug has ever been detected in the

Monitor--even during development testing.) The same principle of pro-

tection from loops means that subtask scheduling should not be implemented

as first-come-first-served with execution continu4g to suspension.'

It is interesting to contrast the CHAT implementation with time-

,

sharing implementations achievable in interpretive systems such a3 APL

or CPS. By presenting a high-level "machine" to an application program,

these systems have full control of the sequencing and context of the

application process through interpretive execution. This allows these

103

systems to parcel out CPU time by allotting each competing process in

turn a fixed number of interpretively executed operations. This is not

possible in CHAT since it does not *resent a closed machine interface

to executing subtasks.

As a concluding aside, we mention the existence of IBM's Time

Slicing Facility [In, an OS/360 system generation option for time-

slicing. This facility was not useful to CHAT because of its static

assignment of dispatching priorities to the tasks comprising the "time-

slice group." IBM's implementation assumes a static priority is estab-

lished for these tasks relative to other tasks in the installation.

Whenever tasks in the time-slice group have work to do (are dispatchable),

they have preemptive priority over lower priority tasks in the system.

Depending on what values are set for the priority of the time-slice group,

there may also be tasks in the system that have preemptive priority over
...."

the time-slice group itself -- potentially locking out members of the group

for extended periods. Hence, CHAT would still be required to perform

CHAP-scans to use this facility.

Additional characteristics of the facility, such as (1) its pure

round-robin dispatching of the group members (no quick response capabil-

ity) and (2) its dependence in practice on a clock of much finer granu-

larity than the standard System/360 option, made the IBM support'unat-

tractive for use by CHAT.

104

OTHER EXECUTIV? FUNCTIONS

Because of its role as the job step task for the CHAT region and

its ownership of all other tasks - --both control and application, MSS has

special requirements for executive control. Briefly, these involve

matters related to application subtask creation and termination and to

region shutdown.

Creation of subtasks, via the OS/360 ATTACH macro, gives MSS the

right to manage the dispatchability of these subtasks (via CRAP) during

time-slicing. It is also alerted by OS/360 to subtask terminations,

upon which it provides reporting and clean-up services. The proctor-

message discussed in Chapter 2 is originally composed by MSS through its

analysis of subtask ending status. MSS also initiates subtask-termina-

tions in response to requests to do so from the display and Teletype

'control tasks--matters discussed further in Chapters 5 and 6.

Region shutdown is performed when MSS detects erroneous termination

of the other Monitor control tasks or upon commands to shut down from

the Teletype (via MTWX). Erroneous termination of Monitor control tasks

is also reported to MSS by OS/360, since MSS owns these tasks as well- -

see Chapter 2 ("Initialization of the Region"). The Teletype commands

for shutdown are described further in Chapter 6. Region shutdown is

signalled by MSS to the installation console by means of a message saying

SO.

CHAPTER 5: DISPLAY I/O MANAGEMENT

This chapter describes how the CHAT Monitor manages the CHAT dis-

play cluster and coordinates I/O activity between display stations and

their attached application subtasks. The Monitor control task in charge

of this,display activity is called the Monitor I/O Scheduler (MIOS) ---a

slight misnomer, sincaMTWX and, indeed, the conduit also do I/O.

MIOS is the largest component of the Monitor (more than double the

size of the next largest) and is quite complex. The complexity is caused

by (1) the inherent complications of its multiplexing services; (2) the

function-richness of the display equipment, and (3) the large number of

possible error conditions which need to be accommodated by its error

recovery logic.

This chapter is not concerned with describing the primitive control

of the equipment, in the sense of detailing individual channel program

structures or precise sequences of orders sent to the remotely-linked

display cluster--even though some invention exists there. These matters

are more fundamental to the equipment design than to programming options.,

Similarly, little will be said about the myriad possible I/O errors that

can (and do) occur or the error recovery prototols invoked to handle them.

Error-handling logic is challengingly tedious--with such sensibility-

shattering delights as compound emirs (requiring status scanning preced-

ences), ambiguous errors, and "should-not-occur" errors--which occur.

These matters are documented in the code listings.

106

The main focus here is on the control of the multiterminal/multi-

application I/O activity-environment of the CHAT System. Chapter 2

elaborated on the hardware attention mechanism and link-chrtling--both

of which are fundamental concerns in the Monitor program design. The

attention mechanism is an interesting alternative to polling--a more

commonly used link-convention whereby all input signals from terminals

are explicitly (and, frequently, unproductively) solicited by the com-

puter program. Both the attention mechanism--for its control implica-

tions--and the link-sharing--because of its requirements for scheduling- -

are important throughout the discussion.

The basic I/O control concerns of the chapter are (1) the programming

environment produced by initialization of the CHAT region; (2) the con-

trol and data structures for identifying, synchronizing and coordinating

I/O in a'multiple (application) request context; (3) program design fea-

tures for cluster-size independence; (4) ordering of operations (by type

and direction) for link-multiplexing; (5) some activity-threads involving

the link-use; and (6) a general treatment of the underlying I/O control

using the OS/360 EXCP interface.

Besides controlling I/O, MIOS participates in some other activities- -

for example, subtask control. The role of MIOS in attaching and termi-

nating subtasks and in reporting failures--to the subtask about I/O, or

to the display operator about the subtask--will also be described. Two

other activities of MIOS are only briefly mentioned in this chapter--con-

duit access control and hard, or fatal, I/O error logging. These are

described in detail in Chapters 7 and 8 which discuss theconduit and the

on-line test facility more fully.

107

AN INITIALIZATION STEP

During CHAT-region initializatLon at job-initiation, a transient .

rout.: -te named MIOSINIT is invoked. MIOSINIT is attached instead of

MIOS and after successfully performing its functions, transfers control

(XCTLs) to MIOS and disappears. MIOS inherits the same OS/360-assigned

Task Control Block (TCB) and becomes the Monitor control task formerly

represented by MIOSINIT.

MIOSINIT obtains addressability for MIOS to the Monitor control

storage and initializes the environment for I/O to proceed. This involves

issuance of the OS/360 OPEN macro for the display cluster Data Control

Block (DCB), initializing another OS/360 control block so that the MIOS

Start I/O appendage (to be described) is known to the system, and ini-

talizing the display complex channel adapter and multiplexer. These are

all one-time requirements and need not appear in resident code.

MIOSINIT can experience problems in attempting initialization of the

display complex. This initialization involves a channel program that can

"hang" or repeatedly fail. Both conditions are described in Chapter 8

where remedies are also given. MIOSINIT also includes some logic for

'communicating with the installation console operator in the case of hard

failure. 'Because this requirement has been obviated by the on-line test

facility now available at the Teletype, it will not be described. It was

useful during testing before the Teletype support was included in CHAT.

The code listing describes it in detail.

When MIOSINIT successfully initializes the display equipment, it

does two more things. First, it prints on the installation console:

CC-7012 INITIALIZATION COMPLETE. This is useful for prompting. Second,

108

it initializes a linkage required for MIOS to be signalled when the

System/360 Attention status occurs in the System/360 channel status word

(CSW) associated with the physical channel port for the CC-7012 channel

adapter.

The Attention status plays an important role in the System/360.

It allows the channel adapter to signal across the System/360 channel

even when no channel program is currently active. It does, however, intro-

duce added complexity in the system control program in order for the I/O

Supervisor (I0S) to identify to whom the status should he signalled.

When a channel program is active this is no problem, since a zhain of

OS/360 control blocks links the Unit Control Block (UCB) to the using

program, and the UCB is itself linked by sysgenned location to the physi-

cal port. Without the chain the task is more difficult.

OS/360 offers a sysgen option, whereby an Attention-handling routine

can be specified and its address tied to a field in the UCB. At Attention-

this routine is then invoked (regardless of whether a channel program

is or is not active).

CHAT has such an Attention-handling routine, whose invocation simply

results in its posting an Event Control Block (ECB) belonging to MIOS.

This CHAT Attention-handling routine was coded by Blair who also describes

the sysgen protocol for including it [B31.

To inform this routine where the MIOS ECB is, MIOSINIT issues Blair's

SVC 239 [133) passing the address of the ECB. This links MIOS to the

Attention-handler. For added generality, the protocol also includes pass-

ing the. address of the CC-7012 UCB (via the ECB). The Attention-handler

associhtes the UCB with the ECB in its control storage so that the Atten-

ticn-handler can be shared across

After completing this last step, MIOSINIT transfers control to

MIOS.

109

110

WAITING, LINKING, AND QUEUEING

Most of the time MIOS does nothing at all but wait for one of the

events it handles to occur. If this were not the case, MIOS would repre-

sent too much overhead and CHAT would be inefficient. When MIOS is acti-

vated by one of its events, it has three immediate problems: (1) What

happened? (2) Who did it? (3) What can be done about it?

The first problem and, in part, the second are solved by the wait-

protocol that MIOS follows. Pigure 5.1 shows the list of ECB addresses

(and their meanings) that MIOS waits upon (using the OS/360 WAIT macro)

when it has nothing else to do. The list is shown in the order that MIOS

scans it when one of the listed ECBs is posted. Apart from the urgency

associated with a shutdown request, the ordering is not overly signifi-

cant.

Shutdown,$E72 (a request from MTWX to Enable the CC-72 multiplexer,

discussed further in Chapter 6), and the Attention signal are not single-

station-associated activities. Who posted them and what is to be done are

clear; the details will be deferred to later sections.

An I/O completion presents the problem of determining the station

(if any) with which the current I/O is associated. Once this is determined,

MIOS must decide which I/O operation to initiate next.

The other events associated with the ECBs shown in Figure 5.1 are

also station-associated. However, part of their posting-protocol involves

passing the address of the SCB (Station Control. Block) to which the event

Applies. This is logically redundant since the ECBs themselves are lo-
.

cated in their associated SCBs; the protocol is followed for efficiency

reasons.

List of ECB
Addresses (full-words)

@Shutdown ECB

@$E72 Request ECB

@I/0 Completion ECB

@Attention ECB

Addresses of
Lisplay-Request ECBs

Addresses of
Termination-Event ECBs

Addresses of
CPS-access Request ECBs

Addresses of
Port-active ECBs

Posted By:

MSS

MTWX

OS/360 IOS

Attention-Handler

Individual Subtasks

MSS
*

Individual Subtasks
*

Conduit CPS-side

N: Number of Displays in
the CHAT cluster. (NUMCC30S)

111

ic! Posting includes passing
the address of the SCB
involved.

Figure 5.1 MIOS ECBs and Their Posting

112

While station-association in these cases is no problem, honoring

the request associated with the ECR posting might be. Display requt,sts

can arrive while I/O is in progress for another station, or the request

(e.g., to read) might require an Attention-signal (display activity) first

before anything can be done. A termination event, on the other hand, may

require MIOS to send a proctor message (see Chapter 2) to the display;

this, too, is affected by current I/O activity. The other two event

classes involve the coaduit and are described in Chapter 7.

Figure 5.2 shows how both problems are solved by MIOS; for brevity,

we assume only three display stations. As shown in the figure, MIOS holds

I/O requests in queues; one queue exists for each type of operation.

(Exceptions involve multiplexer-only activity.) Indexes are used to

allow small queue elements (one byte per index) and to locate the addresses

of their associated SCRs via indexing of the list of :,CB addresses

(SCOLIST) residing in MIOS control storage. (STATINDX is described In

a later section.)

When an I/O request occurs, MIOS obtains the index from the SCB and

places it at the end of the queue associated with the request type. The

counts shown are also updated. Whenever MIOS initiates an I/O operation,

it stores a code defining the type. (There are more types than queues.)

Upon completion of the I/O, MIOS branches to the routine that handles

the type; and this routine, by knowing which queue is involved, can locate

the SCB involved--the first index in the queue is used. The index is then

taken off the queue and the counts updated. Queue-handling suhroutines

are invoked for putting on and taking off--the latter returning the SCR

address. When I/O scheduling can be performed after If0 completions, the

counts are used to determine quickly what activity to start, if any. The

/
STATINDX 4

40/

1. '3

List of SCB
addresses

SCB
Index

List of dynamically
ordered indexes used
for device rotation

To

3

11[1

Queue counts

Type I/0 Code

AC=
I/O Queues Indexes an I/O comple-

1
Lion branch table.
The routine branched-
to knows which T/n
queue is involved, if
any.

Slots for holding
queued indexes (One
byte per index)

Figure 5.2 SCB Indexing and Queues

114

scheduling involves a priority scan of the queues to he described.

Figure 5.2 shows a possible occupancy of the queues in which all three

displays are active.

Two exceptions to immediate queueing of requests are possible. If

the request is READ, READLP, or PAUSE (none of which can be forced but

require operator activity) and no interrupt is yet pending, the request

is queued when the interrupt later arrives. On the .,ther hand, if one of

these requests occurs after the event that would satisfy it has occurred,

the completion is posted immediately to the subtask. (Recall from

Chapter 3 that a lightpen interrupt satisfies a READ as well as READLP

and PAUSE.)

115

INSENSITIVITY TO NUMBER OF DiSPLAYS

MIOS is insensitive to the actual number of displays in the CHAT

System configuration, allowing any number from 1-32 (the multiplexer

maximum). To increase the current number defined, the CHAT system pro-

grammer need only code a CHAT-defined macro (SCB) for each new display,

specifying a few display parameters, and change a single equate card

(NUMCC30S) that specifies the new number. By then reassembling all of

the CHAT Monitor components, the process is complete. (More details on

the SCB macro are given in Chapter 9.)

To achieve this insensitivity, MIOS depends exclusively on the

NUMCC3OS parameter in all of its code. This means that list-lengths and

queue-sizes are everywhere determined by this parameter. (This is com-

plicated--particularly because of cross-references between Monitor

control storage and the SCEs - -by the need also to initialize lists of

addresses at assembly-time.) Similarly, all loop control for scanning

and searching through the SCBs is parameterized. Where display-dependent

values are required, such as for display addressing, these values are

fetched by MIOS from their standard locations in the SCB currently in use- -

the SCB macros assembled them there.

This idea is illustrated in Figure 5.1, where N denotes the current

value. The N+1 shown is not a violation of this idea, but accommodates

the Teletype-attached application subtask (described in Chapter B! that

"seizes" a display and makes display I/O requests. The Teletype is not

accommodated in the other lists because termination events are diverted

to MTWX, while CPS - access is not defined for this usage. (It isn't needed.)

This insensitivity through parameterization is total in MIOS and,

3 1 f

indeed, is total throughout the CHAT Monitor, with the exception of

the conduit. Chapter 7 describes some minor limitations in its

design and some sysgen needs for increasing Teletype UCBe that it- uses.

Even the conduit, however, is parameterized except where uaavoidahle.

The effect of this implementation is that as the CHAT System grows its

configuration can be redefined by anyone with even the most cursory

knowledge of its software support. It does not require the presence of

its designer.

117

SCHEDULING RULE

In Chapter 2, we described the general rule that MIOS favors

input into the CHAT region over output from the applications to the

displays. Now we el3borate upon this rule and discuss the detailed

implementation.

Table 5.1 shows the scanning order for the I/O queues when a new

operation is to be scheduled. Lightpen operations (retrieval of light-

pen coordinates or lightpenned character) are performed automatically by

MIOS at the time of Attention-signalling which is asynchronous with the

application subtasks' explicit requests for lightpen information.

Attention-handling is always exhausted through this step for all active

stations before other operations are performed. Keyboard enabling is

scheduled when a subtask issues a request for interrupt notification

(READ, READLP, PAUSE) and MIOS notices that the display station's key-

board is locked. It is given high priority so the station operator can

begin to use his keyboard. Input operations requested via READ are also

given good priority to provide quick mechanical response to the operator's

hitting of the INT key after typing. The last high priority is given to

extra-interrupt signals (those received when a previously received inter-,

rupt has not been serviced by the application subtask) which MIOS detects

from the display. This servicing involves reading the five characters

preceding the current location of the cursor and either terminating the

subtask if ABORT (or abort) is read or placing a "?" symbol at the cursor

location if ABORT is not read. This assures the operator that CHAT is

alive and active even though the application may not be.

The next check MIOS makes is to examine an interrupt-pending flag

118

Priority Oueue

1 Lightpen Operation::

2 Enable Keyboard Operations

3 Input to Subtask Operations

4 Extra-Interrupt Servicing

5 Interrupt-Pending Flag*

6 Slide Actions

7 Output to Display Operations

*Not a queue

Table 5-1 I/O Queue-Scanning Order

119

before scanning the low priority queues. This flag is turned ON only

after a low-priority operation has previously completed. The!;:e operations

always entail a channel programming 3tep that reads in the Short Status

(SS) described in Chapter 2. Within the SS is a flag telling whether the

CC-72 multiplexer has sone interrupt sttus buffered in its Station

Interrupt Status (SIS) register. When MIOS detects this flag at Tin com-

pletion time it sets the interrupt-pending flag for use in its nexr

scheduling scan. At that time, it will defer serving the two low priority

queues and poll tie SIS register just as it does when an Attention is

signalled. Noticz that this rule gives good service to all stations even

if one subtask .s doing an enormous amount of repeated output (perhaps

because of a loop). After each output message, MIOS checks for any input

requests to be serviced and satisfies all those found before continuing

with more output. In the case where all subtasks are doing output only,

no subtask can lock out the others. Each output request (maximum: 810

characters transmitted) involves CPU time to invoke the DISPLAY procedure

(see Chapter 3); the round-robin priority scheduling of subtasks described

in Chapter 4 ensures that each subtask is given CPU time to issue its out-

put request.

After MIOS has exhausted all queued requests, it enables both the

CC-72 and the CC-7012 for a new Attention status to occur and waits for

some new event to happen.

120

SERVICING ATTENTIONS

When an attention-signal is received, or if the interrupt-pending

flag is ON, MIOS schedules an operation to read the SIS register of the

CC-72. rhis wrs previously described In Chapter 2 as involving a 6-char-

acter encoding representing both the Short Status (SS) aiw I q 32 station-

interrupt status (SIS) flags.

Upon receipt of the SIS characters, MIOS uses the station index list

(STATINDX) shown in Figure 5.2 to determine the order of checking the

interrupt status. MIOS picks up the first index in thiF list ro choose

the starting point in the SCB @L.IST. When MIOS is done using the SCB thusly

chosen to see if an interrcpt has occurred at that station, it picks up

the SCB address indexed by the next index in STATINDX. This continues

until the STATINDX list is exhausted (controlled by NUMCC3OS loop control).

At this time, MIOS reorders STATINDX (also controlled by NUMCC30S1 such

that the indexes are all moved up by one in this list, except for that

index that had been first. This one is now put at the end of STATINDX so

that a round-robin device rotation is effected. At the next Attention,

this new order will be used and STATINDX again reordered.

The reason for device rotation is to avoid any possible display

station favoritism that might become visible at the remote site. When

concurrent interrupts are received and handled, the first one found is

the first one placed in an operation queue. A fixed scan might eventually

become known and operators then might vie for the favored displays. This

has been countered by dynamic reordering of STATINDX. (Its significance

has been greatly diminished by the increase in bandwidth resulting from

the move of CHAT from TUCC to UNC.)

121

When an SCB address is picked up, MIOS performs a test using a

byte-offset and a bit-mask obtained from standard locations in the SCB.

Each SCB has unique values assembled in the standard byte-offset and

bit-mask field locations. The byte-offset indexes the SIS character

string, while the bit-mask corresponds to the interrupt-status bit in

the indexed SIS byte associated with the current SCB. This allows MIOS

to check if the associated station has an interrupt pending without

requiring code sensitivity in MIOS to the status checking.

If a match is found, MIOS does one of three things. If no subtask

is attached for the interrupting station it signals MSS to attach one.

If an interrupt is already pending for this station, it places the

station index in the extra-interrupt servicing queue. Otherwise, it

places it in the lightpen operation queue.

Completion of the subsequent lightpen operation (getting the co-

ordinates from the CC-301 lightpen register)- defines the type of interrupt.

ti

A bit in the received coordinates is set before being transmitted by the

remote display according to whether the coordinates were valid (search

character present). If the search character was not present at the time

of the interrupt, the remote display will set, the bit to the invalid

state. This permits MIOS to queue an application subtask's READ request

(if one). If the coordinates are valid, MIOS completes the lightpen

operation by scheduling an operation to get the lightpenned character.

These lightpen operations proceed even when no application request is

present and the results are saved in the SCE for later pick-up when the

request occurs.

It is possible that interrupts may be received when the subtask

wants to do output. In these cases, the output will be scheduled. after

122

MIOS has finished the lightpen protocol (and discarded the results).

Details are to be found in the code listing.

123

I/O INITIATION AND COMPLETION

This section de::cribes I/O activities in general. Only the grot;s

mechanisms and issues are digc4cqed. Details of the individual opera-

tions may be found in the code.

Channel Programming: Once an operation has been chosen for initiation

by the scheduling rule, MIOS chooses the appropriate channel program.

There are ten of these, and most are multistep channel operations of

some complexity. Besides controlling the direction of transmission over

the System/360 they send a large number of display station and multi-

plexer control characters to control the transmission environment there

for the purposes of sending and receiving data.

Most channel programs are skeletal, requiring different types of

filling in of variables to meet current usage needs. Once filled in, the

channel program is ready for use; MIOS uses the OS/360 EXCP interface.

This filling in and initiation involves a change in the protection status

of MIOS: they are executed when MIOS is in keyzero state. The reason

for this is that the channel programs and the buffer MIOS uses are in the

MIOS program module storage and require keyzero privilege for storage

modification. By issuing the EXCP in keyzero, the channel program can

subsequently read into the protected buffer. Once issuing the EXCP, MtOS

leaves keyzero state and reverts to its normal TCB key. This placement

in the program module is to give added protection against storage viola-

tions dnmagihg them--I/0 is complex enough without confounding errors.

NIOS also defines a Start I/O appendage. This is invoked by OS/360

IOS after the EXCP but p:ior to ,,lcuting the System/360 Start I/O

124

instruction. The sole purpose of this appendage is to change the

channel program starting point in the System/360 Channel Address Word

(CAW), in the case where the operation involves a restart for error

recovery. Here, the channel program origin is set to the restart

location (obtained from the standard restart field in the I0B) so that

certain origin and offset information needed for MIOS hard error handling

is preserved. Than the.appendage,exits to IOS for further processing.

When output is being performed, MIOS first moves data from the

application subtask area into the buffer before issuing the EXCP. Both

the location and size of the application area are obtained from the

SCB as the IFCSECT (discussed in Chapter 2) routine posting the request

has initialized it, using the PL/I parameter lists (dope vectors). The

data is translated after being placed in the buffer. The channel program

may also send out various display control characters present in fields

of the SCB as initialized by MIOS.

Completion and Posting: Completion of I/O results in the reverse process.

On input the data in the buffer is translated to EBCDIC from ASCII and

moved into the subtask's area. The channel programs, however, are subject

to a multitude of errors. Hence, prior to completion, MIOS may have

invoked error recovery procedures to correct transient errors. Some-

times errors cannot be recovered from and MIOS must regard them as hard

errors.

Posting to the requesting IFCSECT routine may be of two types: normal

and abnormal. The first causes the requesting routine to return normally

to the application, while the second causes it to raise the ABNORM condi-

tion described in Chapter 3. A third posting by MIOS is defined for a

1.25

subtask request that violates the rule not to continue to use a line

for which LINE DEA7 has been signalled. This posting is done in lieu

of the EXCP and causes the requesting IFCSECT routine to invoke the

PL/I stop routine for the subtask.

126

HARD ERROR HANDLING

Hard errors are defined as occurring when the error recovery

procedures reach a maximum failure count on a single operation.

Chapter 8 describes the details of the error logging by MIOS and how

an error record can be accessed from the Teletype. here we describe

the other activities performed by MIOS at the time of hard error

detection.

If the error is confined to a single display station, the request

is first dequeued and the subtask is notified. In the case of a slide

projector failure this is all that is done (see Chapter 3) and the

subtask may even continue using the display. In the case of a display

failure, MIOS prints the following message on the installation console:

I/O ERROR ON CCI STATION. The subtask is not permitted further access

to it.

In the case of a multiplexer or channel adapter error the procedure

is more complex, since now all subtasks are affected. MIOS purges all

of its request queues and notifies all waiting subtasks. Other subtasks

are notified as they issue requests. In addition, MIOS prints the fol-

lowing messaga on the installation console: I/O ERROR ON CCI COMPLEX.

It then goes to wait for a new event to occur.

127

SHUTDOWN

MIOS executes its shutdown protocol in response to a request irom

MSS (the Monitor control task controlling the CHAT region and all tasks

in it). This may be either because MSS has detected abnormal termination

of MTWX (the Monitor Teletype control task) or because MTWX has relayed

to MSS the request from the Teletype (see Chapter 6).

The first step MIOS performs is to use its SCII@LIST (Figure 5.2)

to scan for any active subtasks. Whenever one is found (a TCB address

is present in the SCB), MIOS posts a request to MSS (using an ECB in

the SCB) to terminate it abnormally. This is what shutdown implies- -

stop everything immediately.

In addition, MIOS zeroes out its own TCB address located in the

conduit. This requirement is discussed in Chapter 7. Finall, MIOS

issues Blair's SVC 239 again, this time to pass the location of nn

MIOS control storage field holding the address of the CC-7012 UCB. This

is to stop the Attention-han4':.r from continuing to post future Attention

status to MIOS. MIOS then exits.

CHAPTER 6: TELETYPE CONSOLE SUPPORT

At the time of the original CAI Project meetings to set design ob-

jectives for CHAT, the role of the Teletype was fuzzy. The Department

already owned a Teletype and , connection port at the System/360 which

were to be inherited by the CHAT System. Only some vague notions that a

CAI proctor terminal would be desirable kindled interest.

One such notion was that hard copy of CAI statistics atained inter-

actively by the proctor might be useful. This implied a need for the

CHAT Monitor to include Teletype I/O support and an I/O interface for

application programs that served proctor inquiries. CHAT meets these

requirements by the PL/I I/O interface support described in Chapter 3 and

by the inclusion of a Teletype I/O control task named MTWX within the

CHAT Monitor.

In practice, tle Teletype interface has not yet been applied for

CAI inquiry. Instead, programs producing CAI statistics use the high

performance system printer and the installation batch facilities rather

than CHAT. Blair designed ENQ and DEQ M3 (see also Chapter 3) to work

system-wide for PL/I (as OS/360 provides at the assembler level) so that

batch jobs can share files with CHAT application subtasks while the lat-

ter are active. This power, combined with the geographical nearness of

the CPU installation to the proctor, has lessened the interest in

Teletype-based CAI inquiry.

Another role for the Teletype has come to the fore, stemming from

120

its convenience for allowing CHAT region control from the CAI sill., di-

rectly and interactively with the CHAT Monitor. Hence the emphasig in

this thesis is on the Teletype as a CHAT submonitor console. Functions

such as selectively terminating CHAT application subtasks and shutting

down t'e CHAT region can be done from the Teletype by commands to IITt ;x.

CHAT initiation still requires calling the installation's human console-

operator. (During the TUCC era, the proctor could also initiate CHAT

from the Teletype by dialing the TUCC support for remote job entry. This

was useful during development but not in production since it means run-

ning under control of HASP.)

The remainder of this chapter discusses detailed usage of the Tele-

type, the command set, Monitor messages to the Teletype, and some de-

tails of the implementation and structure of the Teletype support.

Chapter 8 describes a CHAT facility for on-line testing that is built

on the Teletype I/O application interface; it makes the Teletype an even

better console for CHAT.

130

DETAILS ON TELETYPE USAGE

In the System Overview (Chapter 2) we covered the general usage of

the Teletype; here we add some details.

Modes: Because the Teletype can be used to access both an application

subtask and the Monitor, MTWX needs to distinguish between the two types

of access. When no application subtask is attached, this is simple: any

input must be a command and MTWX is in command mode. When an applica-

tion subtask is present, MTWX is normally in application mode. In this

mode MTWX will pass all input to the application subtask unless it de-

tects a $-prefixed command from the set described in the next section;

this will be treated as input to MTWX. (Input such as $1.98 would be'

given to the application program.) After execution, MTWX remains in ap-

plication mode. MTWX will change from application mode to command

mode if the Teletype operator uses'the Break key during output of appli-

cation data (stopping it in mid-line possibly) or when the application

program is executing something other than a Teletype I/O statement.

This latter condition holds when the Teletype carrier is at the leftmost

position of a new line and the "9" character is not displayed. Forced

into command mode, MTWX again requires a'command. After receiving and

executing one, MTWX will restore application I/O and return to applica-

tion mode -- unless the command intentionally destroyed the subtask or the

region. Notice that application mode allows interleaving of commands

and application data.

Break has no functional meaning in command mode although it can dis-

turb MTWX I/O. In such cases error recovery logic overcomes the disturb-

MTFL.ratranamits e -ifs=pted -)trpro: nessage. Cctasicr-.4-

MTW7. will iteelf { sate a Break signel.in order to cleal. certain Ii=e ccn-

irions. Ussi Of Break ift dirs-crion recu4res rhat the opera:sr

it the Break-re-Lease to uniock tha keyboard.

?per ape: MTW/ supports paper tape usage. When Break is umed to int=r-

rapt application Mode, 1 TW7 suppresses its normal paper cape,acrivezis:

to allow keyed input. On return to application ode, MTWK resumes paper

tape activation.

Eadiag a Message: The philosophy of the CHAT support is that the Tele-

type is fundamentally a typewriter (despite its lethargic button key-

board). Thus, when the operator has typed all he needs to on a line, he

need only hit the 7.-Off button to signify completion. The Monitor pro-

vides the functions of carrier-return and line-feed. This design bias

stems from the preference of the author for the IBM 2741 "Return" key

(which provides all three functions by hardware) over the Teletype 3-

button approach, as well as his distaste for software support that re-

quires the operator to hit the three buttons before it accepts a line- -

cf. TUCC's RJR. The CHAT-supported carrier-return/line-feed also provides

visible assurance that CHAT, at least, is there. CHAT allows the 3-

button approach (which can be useful in producing paper tape to be local-

ly printed) but strips out the carrier - return /line -feed, here as well as

anywhere else ithe transmission, prior to delivering the input to the

application program. It also sends its usual carrier-return/line-feed

in acknowledgment.

132

Similarly, the Monitor ends an application program write (see

WRTWX in Chapter 3' by also sending carrier-return/line-feed.

133

MONITOR COMMANDS

The following $- prefixed commands are supported by MTWX for CHAT

subsystem control. Syntactic and contextual abuses of the commands are

discussed in the following section.

$E72 This command (Enable CC-72) is included in the command set to

counter a deficiency in the design of the display hardware complex.

The CC-72 display multiplexer is enabled to send an inquiry (at-

tention) control character, signifying readiness to transmit from

a display station, only through the gracious services of the S/360-

resident Monitor (MIOS): MIOS sends an explicit enable order to

the multiplexer. Once enabled, the CC-72 disables itself at the

time when it sends the inquiry signal and awaits an interrupt-

register poll by the signalled program. (Of course, the Monitor

can also explicitly disable the CC-72 at will to avoid unnecessary

transmit-contention.) Unfortunately, synchronism-loss because of

line noise can prevent the Monitor from detecting the inquiry; if

the Monitor has no need to communicate to the CC-72 (say, no ap-

plication subtasks are present or else all present subtasks are

awaiting non-timed input) the Monitor will remain ignorant of the

readiness of the remote!, displays. This is because no "enable-

switch" exists at the remote CC-72 allowing the fully conscious hu-

man operator to intercede and to re-enable the equipment manually.

The command causes MTWX to post an MIOS event control block

alerting MIOS to execute a CC-72-enabling channel program. Command

execution does not guarantee that the CC-72 will become enabled,

134

since other hardware errors may be present.

$XEQ <load module name> This command (load and execute) causes MTWX to

invoke a Teletype application program (if one is not already at-

tached). One blank (or space) is required between the command and

the <load module name> which must have standard OS/360 format.

$ABORT This command causes MTWX to request OS/360 (via MSS) to abnor-

mally terminate the currently attached Teletype application program.

It is useful for terminating a looping application program or avoid-

ing lengthier application-defined sign-off protocols.

$ABORTnn This command allows abnormal termination-of an application

program attached to a display station identified by the nn identi-

fier, which corresponds to the display station address on the CC-72

multiplexer--also prominently displayed on the door of the room in

which the appropriate display resides. Evidence of the subtask's

complete removal from the system is displayed at the display station

by a proctor message.

$SHUTDOWN This'command causes MTWX to disconnect the Teletype, to request

termination of any Teletype application subtask present, and to noti-,

fy MSS of the shutdown request, while terminating its.(MTWX) own

presence in the system. MSS in turn notifies MIOS of the shutdown

and, after termination of all display application subtasks and MIOS,

MSS displays a message on the CPU system console and exits. This

removes CHAT from the installation.

135

$RESTART This command is currently ideaulcal to $SHUTDOWN (except for

certain future-relevant bit-settings). The idea is that this com-

mand will someday [B3) allow a shutdown followed by automatic re-

fresh of the CHAT region. Currently, refresh involves intervention

by the installation CPU console operator, who simply performs the

standard console-initiation of CHAT.

$NULL This is the null command. It does nothing except to cause MTWX

to change from command mode to application mode when an application

program is present (one can hit the Break key accidentally).

Otherwise, it is simply ad acknowledged "No-Op."

13f,

MESSAGES SENT TO THE TELETYPE OPERATOR

This section describes all messages which the Teletype operator can

receive from the CHAT Monitor.

MTWX HERE...ENTER A COMMAND This message is sent:

(a) when the operator successfully dials into the CHAT region,

(b) immediately following the COMMAND EXECUTED message (below)

when an application subtask is not present,

(c) following the receipt by CHAT of the Brea'. signal when an

application subtask is active, or

(d) when an attached Teletype application subtask has just

terminated.

It signifies that MTWX is in command mode.

COMMAND EXECUTED This is sent to acknowledge that the last $-command

was executed. If au application subtask is present, it also signi-

fies the escape from command mode to application mode. This

message is not sent, however, following $SHUTA,OWN or $RESTART since

the resulting disconnection of the Teletype iE visible-enough evi-

dence that the command was recognized and honared.

NOT A LEGAL COMMAND...RETRY This message is sent for a variety of

reasons:

(a) a syntactically incorrect (misspelled or no $- -sign) command

has been received in command mode,

(b) $ABORT has been received but no application subtask is present,

137

(c) $XEQ has been received with too long (>8 characters) a load

module name specified,

(d) $ABORTnn has been received but the nn does not correspond

to any known display station in the system, or

(e) $ABORTnn has been received and the nn does correspond to a

known display, but it is the one currently "seized" by the

Teletype application subtask (OLTEST). (The notion of

seizure is described in Chapter 8. A ABORT command would

succeed here--getting rid of OLTEST and "releasing" display

nn at the same time.)

SUBTASK ALREADY PRESENT This is sent when MTWX receives a syntactically

correct $XEQ command while a Teletype 4pplication subtask is cur-

rently present in the system. Because of system delays in ab-

normally terminating a subtask, this message may be received even

though MTWX has j4St previously acknowledged honoring a $ABORT

command. (MTWX ..--nowledges as soon as its part in instigating

the process is complete; evidence of the subtask's presence re-

mains visible to MTWX until OS/360 and MSS complete its removal.)

SUBTASK ENDED: <code> This message was discussed in Chapter 2 (cf.

"proctor messages" in the "Terminal Usage" section) where <code>

signifies system (05/360) or user (application) ABEND codes or

user return codes. It is not sent after the Teletype operator has

used $ABORT; it is presumed that the operator remembers that he

caused the termination. (However, $ABORTnn does result in a proc-

tor message being misplayed at the affected display station to pro-

138

tect against devilish or malicious tampering from a Teletype with

display stations. It also confirms removal-completion there.)

Note: After MTWX has acknowledged a $XEQ, it may happen that this

message will immediately appear with an "Senn" code, signifying

"load module not found" or "load room (CHAT free core) not avail-

able." These errors are found by OS/360, not by MTWX.

TNPUT TOO LONG This message is sent because a message from the Teletype

appears too long to the Monitor message editing logic (an "IOS

appendage"). It is either the Teletype operator's fault or due to a

communication line error (sometimes indistinguishable). In command

mode the total transmitted message length should not exceed twenty

characters (including controls such as X-Off and the CHAT-defined

character-delete); in application mode the total transmitted message

length should not exceed ninety characters (including controls) or

(after editing) eighty, without controls. (An application program is

constrained by CHAT to a maximum input length per read of eighty.)

The MTWX channel program allows one to transmit a message of in-

finite length, but when one finishes (!), this message will appear.

(The overflow is read into a single storage byte via a channel pro-

gram READ/TIC loop.)

LINE NOISE...REKEY This message is sent when tae message editing logic

detects via S/360 TRT-scanning of the input that a parity error

exists in the input data (the hardware does no parity checking for

the Teletype). If this message is frequently seen during a con-

nection, the operator should try disconnecting and redialing. If it

139

is persistently frequent across connections, inform the local tele-

phone company communications specialist.

140

STRUCTURE OF THE TELETYPE SUPPORT

The Teletype support involves the cooperation of a number of Moni-

tor components. The main one is MTWX which is one of the three Monitor

control tasks. MTWX initiates Teletype I/O using the OS/360 EXCP

(Execute Channel Program) interface with dynamically modified CHAT-

defined channel program skeletons. MTWX controls the overall sequencing

of I/O operations in accordance with:

application program requests,

current activity at the Teletype,

requests to shut down, (the Monitor control task controlling subtask
scheduling)

s reports from MSS of Teletype application terminations, and

I/O "hard-error" reports.

All $-command interpretation occurs in MTWX although MIOS (the Monicor

control task controlling the displays) and MSS may be invoked to help.

Like MIOS, MTWX interfaces with an application program through sub-

routines included in IFCSECT described in Chapter 2. Recall that these

subroutines synchronize application activity with I/O completions and

request I/O by post-wait protoc'ls. I/O type and application parameters

(I /O area, length) are passed to MTWX and MIOS via fields in the appro-

priate station control block (SCB).

The SCB for the Teletype contains the same standard fields as a

display SCB but also has an extension for Teletype-only requirements.

The standard portion of the Teletype SCB allows MSS to be unconcerned

with the identity (MIOS or MTWX) of the requester of standard Monitor

services related to application subtask scheduling (attaching, aborting,

detaching) which are independent of whether the application is servicing

141

the Teletype or a display. In other cases there is a need to distinguish

between the two types of SCB--an example being to prevent an operator

loading a display application program from the Teletype or vice versa.

Hence, one of the standard SCB fields has a flag denoting the terminal

type.

MTWX has help on the I/O Supervisor (I0S) side of I/O handling.

The OS/360 EXCP interface allows the programmer to specify up to five

appendages (for details, see the IBM OS/360 System Programmer's Guide).

Two CHAT-defined appendages (called CEAPP and ABAPP) have been included

for the Teletype support. These are invoked by /OS as subroutines at

channel end/device end interrupt-handling time IOS chooses one or the

other of the /OS appendages depending on whether the channel end/

device end status is (ABAPP--Abnormal End Appendage) or is not (CEAPP --

Channel End Appendage) accompanied by unit check status. Unit check

means an I/O error.

The /OS appendages provide a number of functions:

input editing including control character stripping,

character deletion,

line cancel,

translation to EBCDIC,

parity checking, and

length' checking.

Error recovery is performed in the appendages without notifying MTWX un-

less a retry threshold is reached for a single channel program. In this

case, the appendage sets a fatal, or hard error code that is posted to

MTWX.

Appendages return to /OS via'one of three exits (actually four are

142

allowed but one is not used here) which determine whether IOS will

(1) post an I/O completion to MTWX using a code passed by the ap-

pendage,

(2) ignore the interrupt (by not posting), or

(3) restart I/O according to an appendage-set restart point.

CEAPP and ABAPP use exit (I) to inform MTWX that a normal completion or

hard error has occurred. Exit (2) involves Halt I/O activity initiated

by MTWX but whose completion is not of interest. Exit (3) is the main

advantage in appendage-processing. It gives quick handling of error re-

tries as well as quick dispatching of queued I/O requests--a matter re-

lating to special use of the "Prepare" channel command within the Monitor

for Teletype monitoring. It allows continuous monitoring of Teletype

activity when no other I/O activity is ready to be scheduled. Details

are documented in the code.

MTWX has some logic also for accommodating the display-seizure func-

tion described in Chapter 8. This is minor--involving primarily cleaning

up (releasing the display) if the subtask that seized the display has ab-

normally terminated or is requested to be (via_SABORT) by the Teletype

operator. This function of seizure has also enlarged the Teletype SCB

beyond the need to preserve standard fields; seizure permits concurrent

usage of display and Teletype, so a larger SCB is needed that permits

both activities to use it.

CHAPTER 7: THE INTERREGIONAL CONDUIT

The interregional conduit is a CHAT feature designed for a special

peed of Mudge's DIAL [K1], an application program running under the CHAT

Monitor. This need was for access to the string-handling and other

capabilities of the IBM Conversational ProgrammingSystem (CPS) [Il].

An early question was: How? Storage limitations ruled out the

notion of including whatever portion of CPS was needed within DIAL or

elsewhere in the CHAT region. Such inclusion in any case would have been

particularly wasteful, since a full copy of CPS resided (at TUCC) in

another region as a nonterminating job. Thus, the only answer was to

somehow use the already-resident copy of CPS. This imposed the require-

ment-on the CHAT Monitor to provide an interface between the application

subtask and CPS. Three critical problems were:

1. That copy of CPS belonged to the TUCC community and it was clear

that TUCC management would (rightly!) not tolerate abuse of

that valuable property.

2. The CPS program was very big, very complex, and very poorly docu-

mented. In fact, the internal specifications manual was virtually

worthless and the, code listings were mostly empty of comments.

3. No facilities exist in OS/360 for interaction between separate

regions. Indeed, a central concept of OS/360 is to completely

insulate one region from another because of protection concerns.

144

The author chose to tie to CPS by means of one interface it

already presented to the world--namely, its terminal interface. This

has the following advantages:

1. This interface is an external one that is well documented [W.

2. It is an interface using programmed support (I/O channel programs)

in CPS that is stable and unlikely to change from release-to-release

of that product.

3. The I/O support in the CPS code, while atrociously commented,

could be understood with study because the functions provided

were understood.

4. CHAT's interface to its application programs could offer the

well-known and powerful functions familiar to the application

programmer through his own CPS terminal use.

CPS offers programming support for the IBM 2741, the IBM 1050,

and tae Teletype. The Teletype interface was selected. This has no

impact on CHAT's application interface (see "CPS ACCESS" in Chapter 3)

since terminal-dependencies such as line codes and control characters

are not visible to application programs. On the other hand, this selec-

tion was beneficial to the author whose experience already included

_OS/360 BTAM programming of the Teletype and who had ready access to a

Teletype. This aided in learning CPS's I/O logic by exercising it and

doing software "snapshot" probing. This was handy in getting through

some of the really mysterious code in CPS and also in debugging the CHAT

conduit. It was also an opportunity to learn functional support (better

channel programs, richer interactive orientation) superior to that

offered in BTAM.

The CHAT MTWX Teletype control and channel programs borrow concepts

145

obtained from this study of CPS--in.particular, the use of the Prepare

command for constant line-monitoring (along with Halt I/O to allow

scheduled operations) and the avoidance of unnecessary "time- outs" (by

using Inhibit instead of the Read channel control word).

The consequence of this design of communicating with CPS via its

Teletype I/O interface is that not a single change has had to be made to

the CPS program. Only additional data definition (DD) cards (see Blair

(B31) in the JCL initiating CPS are necessary. These specify the exist-

ence of-additional Teletype address ports on the System/360 channel--

although none such exist physically. The next sections describe the

conduit's design in detail.

166

DESIGN OF THE CONDUIT: LINKAGE AND FUNCTIONS

The conduit is located in the system IINKPACK and is always

resident irrespective of whether CHAT and CPS are. It is activated

early in system fire-up by a scheduled job written by Blair [B3]. This

job places the conduit in the EXCP-intercept linkage chain which allows

it to_ look for all EXCP (actually, "SVC 0") issuances of interest, to

CHAT. Other components in the system, e.g., RJE and HASP, also intercept

before the OS/360 SVC 0 logic gets a chance--hence, the linkage chain.

Blair's program stores the address of the next interceptor (after the

conduit) into the conduit's storage. The conduit uses this address

for branching when an EXCP is not of interest. When intercepting, the

conduit is in supervisor, interrupt-disabled mode.

Figure 7.1 shows a simplified overview of the conduit and the

program elements interacting with it. The conduit has a CPS-side and

a CHAT-side, which are packaged together and share common control storage.

The CPS-side intercepts CPS EXCPs and analyzes channel programs directed

to a CHAT "port." It stores information about the channel program in the

control storage it shares with the CHAT-side and, after posting MIOS,

branches back to CPS via the standard OS/360 code to end an SVC routine.

CPS resumes execution at the instruction following EXCP. Part of the

tXCP\prItocol is to pass the I/O Block (I0B) to the conduit. This control

block contains the address of the. channel program which defines the

type of operation (e.g., read/Write) and the location and length of data

areas. The CPS-side posts the occurrence of the CPS-initiated event to

MIOS via an event control block (ECB) in the station control block (SCB)

associated with the port to which CPS directed the channel program. The

Application 1 Data

Subtask ! Area

3
IFNTRYS

*10

IFCSECT

Post

1
I

II
I

IS

147

'-""' Data Access Linkage

Control Linkage

IS: Linkage by branching
(synchronous.)

IP: Linkage by posting
(asynchronous)

CHAT-side

\\\0/CPS-side

r Pws
IOB

CPS I/O

Appendages

Figure 7.1 The Interregional Conduit

CPS

'EX9P

WAIT

Data
. Area

148

conduit gets addressability to the CHAT SCBs by another initialization

action described later.

The use of the word port here stems from the presence in the system

of actual Unit Control Blocks (UCBs) representing the fictitious physical

channel addresses, orports, defined for communication between CPS and

CHAT. UCBs are the most primitive I/O control blocks in OS/360 and must.

exist before any I/O related activity can be done. Even though no physi-

cal I/O ever occurs using these UCBs, they are needed so that OS/360 will

accept the DD cards in the CPS JCL and CPS's use of OS/360 services like

OPEN and CLOSE. Because it has legal UCBs, CPS can use these services

with gay abandon--we again did not have to change anything in its code.

(Aside: Although CPS makes heavy use of Halt I/O, as will be explained,

it only issues the-System/360 H2O for a port once in-line, as part of

initialization.. Since System/360 allows HIO for a nonexistent physical

address, without program-checking, even this did not require change.)

Currently, ten UCBs are defined as CHAT ports--more than the current

number of display stations, to allow for growth. These contain the

hexadectmal physical port addresses X'FO' to X'F9'--the F being the way

the CPS-side detects an EXCP to CHAT. Hence UCBs are useful to the

conduit to detect and identify CHAT-port requests; they are found via

the JOB (I/0 Block). The UCBs are included in the system by a system

generation process described by BlairE31. To save storage in CPS,

the number of DD cards for CHAT ports is equal to the current number

of display stations defined in CHAT, so some CHAT UCBs are not yet

referenced by CPS.

Because of the posting by the CPS-side, the OS/360 task scheduler

eventually activates MIOS, which has been waiting for any of the

149

sundry events it handles to occur. Synchronization of a CPS action with

a CHAT application subtask action is a key concern. MIOS, therefore,

first checks in the posted SCE to see if a field there indicates that

the attached subtask has a request pending to communicate with CPS. If

so, MIOS executes a branching protocol for direct entry into the CHAT-

side of the conduit. Assume,-however, that no request is pending! then

MIOS ignores the post from the CPS-side and waits for a request from

the application subtask. (Nothing can be done until the application

program presents a compatible request, giving appropriate data pointers,

etc.)

An application program may use any of the CPS-access procedures

discussed in Chapter 3 and listed again in Table 7.1. A call invokes

a corresponding subroutine in IFCSECT which puts the application program's

data area address and length as well as the request type in the SCE,

posts MIOS, and waits for MIOS to respond. RDCPS also issues an OS/360

STIMER macro specifying time, prior to waiti7Ag, and waits for either the

message arrival or the time-out event to occur. The first event to occur

causes RDCPS to cancel the other and to report the first one to the

application via the return argument. If, for example, the time interval

elapses* RDCPS sets the CPS-accessiequest type in the SCE to zero, erasing

the request. Thus if the CPS-side then posts MIOS, MIOS ignores it until

the next application request.

When MIOS is posted by the IFCSECT routine, it checks whether the

application subtask had previously been informed by ABNORM-signalling

that CPS is dead. If so, MIOS does not allow the new request and posts

the IFCSECT routine with a code requesting it to stop the violating

application. If MIOS does not detect a violation it executes the branch-

150

Standard Log-On: LOGCPS

Log-on with file name: LOGCPS (libname)

Read from CPS RDCPS (inarea, time, return)

Write to CPS: WRCPS'(text)

Attention, CPS: ATNCPS

Table 7.1 CPS-Access Procedures

151

ing protocol to the CHAT-side of the'conduit.

The branching protocol involves a change of program-state;

MIOS executes an SVC (Blair's SVC 239 [B3]) giving it key-zero super-
, .

visory privilege. It then disables interrupts to create the same

machine state for the CHAT-side that the CPS-side is given. This also

allows the later-used CPS I/O Appendages to have the state which their

coding assumed.

The CHAT-side has a choice of three 'return points in MIOS when it

has completed handling'the request:'

1. Normal Return.- exchange between the CHAT subtask and CPS was

completed successfully. -

2. Abnormal Returri - One of the following errors occurred:

a. WRITE INTERLOCK

b. LOG-IN EXCEPTION

c. CPS DEAD

(See Chapter 3) A field in the SCB indicates which one.

3. CPS -not -ready Return - The CHAT request was not completed

because CPS has not yet issued its next EXCP.

For each return, MIOS reverts to its normal interrupt-enabled, problem

program state. For the normal return (1.), MIOS posts the IFCSECT

routine and erases the request type in the SCB. The IFCSECT routine can

then link back to its caller in normal fashion. ,

For abnormal return (2.), MIOS erases the request, turns on a flag

if CPS DEAD is indicated (to remember that the application has been noti-

fied), and posts the special code to the IFCSECT routine requesting it to

signal ABNORM to the application subtask. The code stored by-the CHAT-

side is picked up by ERRCODE when this procedure is called from the

152

application's on-unit (see Chapter 3).

For return (3.), MIOS does not erase the request and does not

post the IFCSECT routine. Instead it waits for the CPS-side to post

the occurrence of the next CPS EXCP for this port so it can retry the

exchange.

This completes the discussion of the interactions of the CHAT

components outside the conduit both with the conduit and among themselves.

In the next section more is given about internal conduit logic and the

internal relationships of the CPS-side and CHAT-side with each other and

with the CPS I/O Appendages..

153

INSIDE THE CONDUIT

This section examines the inner workings of the conduit in

greater detail: its initialization, its interactions with CPS and

CHAT, and the cooperative activity between the CPS-side-and the CHAT-

side. Figure 7.2 shows the internal layout of the conduit and will be

referred to in the following subsections.

Initialization and Checking: The discussion based on Figure 7.1 took

for granted that the linkage mechanism was already in place: that CHAT

could locate the conduit and that the conduit could locate both CHAT

and CPS.. In actual operation, the mechanism requires linkage-initializa-

tion as well as checking overhead during execution of the linkage. Ini-

tialization involves, primarily, making CPS known to the conduit, and

CHAT and the conduit known to one another. Checking is performed to

protect against improper linkage when CHAT is present but CPS is not, or

vice versa--either because one has never been loaded into the system or

because one has left the system before the other.

The two sides of the conduit experience no difficulty in communicating

with each other: they are assembled in the same load module and can share

commonly addressable control storage. In fact, one subroutine, for

analyzing CPS channel prlgrams, is used by both.

The CPS-side linkage with CPS is also easily established. Blair's

program [B3], mentioned earlier, has a root in the conduit load module.

This allows it access to the conduit control field into which it places

the address of the next interceptor in the EXCP-intercept chain. This root

is invoked at system fire-up, issues Blair's catch-all SVC 239 [B3], stores

0

/7/Blair's Program Rooti/j

CPS-side

@CHAT-side

@Control storage

CHAT -side

@Translation Tables (3) 0

@MIOS TCB 00
SCE Addresses 0
IOB Addresses

UCH Addresses

_Port-Status byte-string

Program switch

@CPS TCB

@IOS (next interceptor)

Constants
(Standard Log-in message)

Save Areas

154

(CAITOCPS)

Entry known to OS/360
1 contents supervision

0 Obtained by MIOSINIT via'
"LOAD EP=CAITOGPS."

0-MIOSINIT puts @CHAT-side

in MIOS storage.

0 Initialized by MIOSINIT.

°Location of this conduit
field stored by MIOSINIT
in MIOS storage.

0 Contents zeroed-out by
MIOS at CHAT shutdown.

0 Contents stored by CPS-
side at each successful
intercept.

Olnitialized by Blair's
prograM root at system
fire-up.

O.Number of elements in each
list (or string) equals
the number of CHAT ports
currently defined.

Figure 7.2 Internal Layout of the Conduit

155

the information returned (see Figure 7.2), and exits '.7ith its mission

accomplished. CPS remains completely unaware of the interception

mechanism and requires no knowledge of the conduit.

During subsequent operation, when the CPS-side successfully inter-

cepts a CPS channel program to a CHAT port, the CPSside obtains, as

part of the standard EXCP protocol, the address of the OS/360 Task

Control Block (TCB) for CPS and the address of the IOB that CPS has

defined for the CHAT port currently in use.

The TCB address is useful for three reasons:

1, The CPS-side uses it at interception-time to determine quickly

whether CPS issued the EXCP. It determines this by checking the

program name associated with (and accessed through) the TCB

address passed by the standard EXCP (SVC 0) protocol. At TUCC,

the CPS r.fogram has the tongue-twisting name: TUCSYSCPCPS. If

it is CPS, with a channel program directed to a CHAT port, the

CPS-side stores the TCB address in the conduit control storage.

This is done each interception time, so that the conduit has the

latest location (CPS may leave the L.ystem and come back again

later).

2. Both conduit-sides need the CPS TCB address when posting CPS- -

the OS/360 posting protocol requires it.

The CHAT-side needs the CPS TCB address to check whether CPS is

alive and well when CHAT (MIOS) requests access to CPS. However,

because the CHAT-side and CPS operate asynchronously, the CHAT-side

checking is somewhat involved. It may be that no CPS TCB address

is stored in the conduit; in this case, CPS has not yet been inter-

cepted by' the CPS-side and cannot be located. Alternatively, a TCB

156

address may be stored but the TUCSYSCPCPS name-check fails; this

indicates CPS has appeared in the system and then died (its TCB has

been reused by OS/360). Finally, the name-check may succeed but

certain bit-settings, or flags, in the TCB may indicate CPS is

currently in the process of termination. Any of these negative

`indications prevents current use of CPS, causing the CHAT-side to

return to MIOS with the CPS DEAD status.

The LOB address intercepted by the CPS-side establishes the con-

duit's means of accessing CPS. Figure 7.3 shows the detailed linkages

involved; some of the linkages, such as that concerning the Start I/O

Appendage and that for Halt I/O (RIO 10B), are described in a later sub-

section.

The CPS-side stores the IOB address into the conduit control storage

(Figure 7.2) in the element of the IOB address-list indexed by the UCB

hexadecimal X'Fx' identifier shown in Figure 7_.3.--The zone digit (F)

in the hexadecimal-identifier informs the CPS-side that CPS is using

a CHAT port. The CPS-side extracts the x-digit from the hexadecimal-iden-

tifier, multiples it by four, and uses the result to index the .corre-

sponding element of the conduit IOB list in which to save the current IOB

address. Thus, X'FO causes storing in the first fullword element of the

list; X'F1', in the second; and so forth. (This design constrains the

maximum number of CHAT ports to 16--more than we believed would ever be

needed for the 'actual CHAT System. The design could be extended to allow

another zone to be defined and checked, thereby increasing the number to

32--the maximum number of displays allowed by the CHAT display-Kulti-

plexer.)

The same indexing applies to the conduit's list (Figure 7.2) of CHAT

IOB

CPS tCB=

By-passed

by the
conduit
CPS-side

HIO IOB

DCB

EB

UCB

DCB

DEB

UCB
..---"'-'41'

Channel
Program

Size

40.....,....44.......91

CPS Data Areal

AVT

X'Fxs

ilindexes IOB /SCB lists

CHAT port indicator

157

indicates CPS
Halt I/O request

(?)

CPS //0-End
itppendaget

III

CPS
Start I/O Appendage

...

Figure 7.3 IOB Linkage to CPS

Norval
End

4,

158

---' station control blocks (SCBs); the initialization of this 1ist we have

.-.
not yet described. Each SCB contains the. same'identifier, without the

zone, for quick indexing by the CHAT-side when it needs to pick out the

IOB address associated with the SCB address passed to it by MIOS. Figure

7.4 illustrates this correspondence, assuming-for brevity only three

ports. (The same principle applies to the conduit's list of UCB ad-

dresses; but because this list was useful primarily during debug testing

of the conduit, we omit further mention of it in the thesis.) This

association of SCB with IOB is the means the conduit uses to connect a

specific application program to a specific CPS CHAT-port and to control

concurrent activity at all ports. (Note: The index shown in Figure 7.4

is distinct from that defined in Chapter 5, in Figure 5.2.)

.The IOB permits full access to CPS from the conduit. Notice (Figure

7.3) that it allows posting of CPS (the CPS ECB), access to CPS data areas

(via the CPS channel programs), and access to CPS I/O appendages, which

are discussed later. The Data Control Block (DCB), Data Extent Block

(DEB), and Appendage Vector Table (AVT) are OS /360- defined control blocks.

They are not of interest here apart from their intermediate role in the

linkage and will not be described.

The SCB provides access in the other direction. The CHAT-side re--

ceives an address of an SCB through the MIOS branching-protocol describeu

in the previous section. Fields in the SCB describe the type of request

and the location and size of application program areas. An MIOS ECB (one

that MIOS waits to have posted) is defined within each SCB. Hence, the

CPS-side can post an ECB in a particular.SCB to simultaneously wake up

MIOS and signify to MIOS which CHAT port is active. MIOS can then, if

needed, enter the_CHAT-side, passing the address of the active SCB.

CHAT

SCB

Conduit

SCB List IOB

1S"

Initialized
at CHAT
assembly

I

1

1

1 IOB List

1

1

1

1

1

1

Figure 7.4 SCB and IOB Linkage

Initializ4vi at
installation
sysgen.

160

Making CHAT and the conduit known to each other is accomplished --

duringthe initialization of the CHAT region by an initialization routine

named MIOSINIT. "MIOSINIT is attached by the MSS control task and thus

represents (temporarily) one of the three monitor control tasks,--Jihen

it finishes its work7-MIOSINIT transfers control (XCTLs) to MIOS which

inherits the TCB used for MIOSINIT: MIOS becomes the resident control

task in place of MIOSINIT and MIOSINIT, by using XCTL, disappears from.

the CHAT region. (It is transient.) While active, MIOSINIT performs

various initialization functions: among them our present concern.

MIOSINIT locates the conduit using the services of OS/360 contents

supervision, as indicated in Figure 7.2. A name, CAITOCPS, of a parameter

list is-declared an ENTRY and its address is returned when MIOSINIT

specifies it in an OS/360 LOAD macro. This is all the addressability

MIOSINIT needs in order to do the initialization. Into the conduit

control storage, it stores- its own TCB address (the one inherited by

MIOS) and the list of SCB-addresses correctly ordered according to index.

The addresses of three translation tables are also plaCed in the 'conduit.

These tables are resident in the CHAT Monitor control -storage but are

used by the conduit for EBCDIC-to-Teletype and Teletype -to- EBCDIC code

translation and for Teletype control character stripping. The two code

translation tables areshared by the CHAT Monitor control task, MTWX.

-(MTWX uses a different table, however, for control character stripping

and-parity checking.)

MIOSINIT alsO initializes the CHAT Monitor control storage used by

MIOS. There, it stores the address of the entry point to the CHAT-side

of the conduit so MIOS can branch to it. MIOSINIT also stores. into 14105

control storage the address Of the conduit field in which it stored its

'161

own TCB address. This allows MIOS as part of its shutdown protovo1 to

zero-out this field in the conduit so that the CPS -side will know CHAT

is not present. (MSS does this as part of its shutdown protocol 11 M108

has abnormally terminated.) All of this initialization activity by

MIOSINIT (and that by MIOS or MSS in zeroing-out the MIOS TCB address)

is performed in supervisor, interrupt-disabled mode._

The CPS-side, which is asynchronous with respect to CHAT, has

simpler checkingto perform because of this shutdown cleanup. Before'

posting MIOS, it checks only whether the MIOS TCB address is present in

the conduit.- If it is, then the CPS-side can post MIOS (passing the TCB

address to OS/360) using the, now addressable, SCB of interest. If the

TCB address is not present, it will not post but instead will force the

currently active CHAT port to the disconnected state--a process to be

described. Similarly, the other active CHAT ports (if any) are forced

to disconnect as their activity is intercepted. If CHAT is later restored,

the MIOS TCB address will again appear in the conduit and be seen by the

CPS-side.

This completes the detailed discussion of the checking and linkage-

initialization required for the conduit to provide robust exchanges

between CHAT and CPS. It also illustrates-how elaborate mechanisms are

sometimes needed to perform a function not provided for (indeed, "pro-

hibited") within the host control program.

How CPS Works: Since the conduit uses the Teletype I/O interface, resented

by CPS, we need to describe briefly how CPS normally uses it, in communi-

cation with a real Teletype. Some familiarity with the CPS external

specifications manual (II) on operator usage of a CPS Teletype might be

162

helpful to the reader here, but not at all crucial. The following

description is based on the author's line-by-line tracing through CPS

source code listings--no other reference can be cited.

CPS uses seven distinct channel programs for the Teletype. These

will be characterized by their five main functions:

Enable - This channel program is the one used by CPi to answer

a dialed call from a Teletype. It is the first one

issued to a port and does not complete (it "hangs")

until a call is reciived. The channel program includes

a write command that causes the familiar CPS "hello"

type message to be printed at the calling Teletype.

Disable - This simply disconnects the Teletype. CPS follows this

with an Enable- channel program to await a new call.

Read - This is used by CPS to read keyed-in data from the

Teletype.

Write - This is used by-CPS to print out data.on-the'Teletype.

CPS uses three versions of this channel program, depending

Jition-how it wants to control Teletype carrier-return/liae-

feed. Each version involves a different Channel program

. structure..

Prepare - This channel program is used by CPS to monitor the line

from the Teletype when no other channel program is avail-

able (ready). This OrMits CPS to learn that the operator

has hit Break or the X-On key (attention) when no other

channel program'is monitoring live activity. -Completion

of a Prepare-causes only I/O-status to be signalled; no

data is received (read).

163

In using the OS/360 EXCP interface, CPS also defines three I/O

appendages: two for handling channel-end/device-end (CE/DE) 1/0

interrupts and one Start I/O appendage (see Figure 7.3). .A Start .1/0

appendage is given control by the OS/360 I/O Supervisor (I0S) after an

EXCP (SVC 0) has been issued but before the actual System/360 Start I/O

instruction is executed by IOS. Since a Start I/O-appendage, like the

I/O interrupt-handling appendages, has supervisor, interrupt-disabled

privileges, it can be used to do some things not allowed the problem-

state program issuing the EXCP. Notice that the mechanism allows for

intercepting all EXCPs for which the appendage is defined [Ill.

Start I/O appendages can have various uses--CPS uses its Start I/O

appendage to stop I/O ! This rather exotic usageJnot copied by the

CHAT Monitor support for the Teletype which borrows other features of

the CPS Teletype support) stems from_the_programming complication intro-

duced by the added function that the Prepare channel program provides-
-

To maintain continuous surveillance over the connected Teletype, CPS

constantly alternates EXCPs for the'Prepare,:channel program with those

for Read and Write channel programs that do work scheduled by the CPS

user program or by the CPS Interpreter itself. Eachof the latter CPS

programs experiences processing delays, during which the Prepare channel

program is needed to be active on the System/360 channel. However,_this

means that an incomplete Prepare must be removed in order to do the sub-

sequent, scheduled I/O.

CPS employs a somewhat complicated technique which we simplify here.

On completion of a Read or Write operation, CPS issues a new EXCP, pass-

ing the standard IOB shown in Figure 7.3 and using the Prepare channel

program. Then, when scheduled Read or Write work is to be performed,

164

CPS fills in a bogus 10B--shown in Figure 7.3 as the HIO IOR. Roth the

TDB used for the Prepare and the HIO SOB are examined by the CPS Start

I/O Appendage when it gains control. The former is passed through to

IOS for Start I/O execution. The latter is.trapped by the Start I/O

appendage. Through linkage not shown in Figure 7.3 (which is oriented

toward the conduit's concerns), the Start I/O appendage manages to locate

the Prepare'IOB-to-UCB chain and issues a System/360 Halt I/O, setting

a flag (called IOBHALT) in the I0B. The Start I/O appendage then returns

to the problem program, by-passing the IOS Start I/O execution.

When the interrupt caused byIthe Halt, I/O occurs, one of the CPS

I/O appendages is invoked by IOS interrupt-handling. On detecting that

the IOBHALT flag is ON, the I/O appfndage, through some other devious

linkage not shown in Figure 7.3, locates the newly scheduled Read or

Write channel program, fills in the (real) 10B, and uses the exit to IOS

for restarting I/0--in this case the new chinner.program. The Halt:I/0

caused interrupt is not posted to CPS-.- Later, when the Read or Write

successfully completes, the I/O appendage takes the 'eicit to 106 specifying

to post CPS. The cycle then continues.

Figure 7.3 shows linkage involving the HIO DOB. This is defined

within CPS, but its use is more germane to the conduit. CPS includes

a DD control card in its job - initiation -JCL that specifies a real, sys-
de

genned_UCB with the unit identifier X'57'. This is to satisfy OS/360

validity-checking (the bogus IOB must be linked to a legal UCB), since

CPS never links to it. The UCB itself represents an address of a fic-

ticio4Cphysical device, just like CHAT ports.

165

Simulating the Teletype: The CPS operation, while exotic, is a felici-

taus design for the purposes of the conduit: it allows the conduit to

simulate the operation of the Teletype without change to CPS code.

The implementation of Halt I/0 through a Start I/O appendage

allows the conduit to intercept the process, if CHAT ports are involved,

'before the appendage-is reached: The presence of a specially marked

(X'57') UCB, unique to this purpose, allows the intercepting CPS-side

to detect the requirement. One of the CPS "clever" linkages--the pointer

in the HIO IOB to the true DCB (shown in Figure 7.3)--allows the CPS-side

to find the real UCB affected. This is the only CPS-unique linkage used

by the conduit. (CPS puts the pointer to the true DCB in the IOBSTART

field of the HIO IOB - -a field normally used for.a pointer to the channel

program to be started.) When the CPS-side finds that the true UCB iden-

tifies a CHAT port, it uses the x-digit in the UCB to index the conduit

IOB list where the true IOB address is already stored--since the previous

Prepare channel program_had been intercepted inthe regular way.

In intercepting CPSEXCPs for CHAT ports, the CPS-side completely

by-passes the CPS Start I/O appendage, although CPS activity for non-

CHAT ports continues -to invoke it. Both sides of the conduit do make

use of the CPS I/O appendages, however, and in fact share usage of the
, -

same copy that serves concurrent CPS activity unrelated to CHAT.

Figure 7.5 gives a simplified view of how the CPS-side responds

to a CPS EXCP to a CHAT port. If the CPS EXCP specifies the true I0B,

the CPS-side obtains the address of the channel program from the IOB

and examines the channel program to determine which one of the seven' it

is. A Disable is handled by the CPS-side without assistance from the

CHAT-side. The CPS-side enters the CPS I/O appendage, with I/0 inter-

166

CPS EXCP

rL
Halt I/O True I/O
needed interce ted

Modify
Port-status

4
Set up I/O
completion
environment

TOBHALT
flag

IOS protocol

GP to CPS
I/O appendage
(which then
returns)

Analyze

I/O type

(Disable)
-----r--410 Erase all

port-status

4
Sat up I/O
completion
environment

IOS protocol

(Prepare) Go to CPS
I/O Appendage

Post CPS

Store in
port-status

Read
Write
Enable

Post MIOS

.100 Return to
CPS

Figure 7.5 Simplified View of CPS-side Logic

167

rupt status simulated; the appendage processes the I/O completion inter-

rupt just as it does for a real Teletype and returns to the CPS-fide

using its standard 10S-defined exit protocol (here, the exit signifying

to post). The CPS-side then invokes the OS/360 posting protocol, which

posts CPS, and the CPS-side then returns to CPS at the location following

its EXCP-issuance. (Amusingly, this means the I/O completion has been

posted before CPS is-aware that its EXCP has finished. Since I/O com-

pletions are normally asynchronous with the program's sequencing, this

causes no difficulty--even though real ones cannot occur in interrupt-

disabled mode.)

The other channel programs are handled differently. A Prepare

normally causes the CPS-side simply to update the conduit's records for

the port (ICE address, current status)'and to return to CPS. Read, Write, i

and Enable are of interest to CHAT, so the CPS-side posts these events

to MIOS (if present) and then returns to CPS. These channel programs,

unlike Disable, remain pending until a CPS Half-I/0 request (to stop the

Prepare) or a CHAT-side event occurs.

A Halt I/O request is handled in more involved fashion. The CPS-

side creates the proper environment for a halted channel program inter--

rupt and invokes the CPS I/O completion appendage to process it. The

appendage uses` its standard clever y of locating the new channel'

program and returns to the CPS-side via the IOS-defined restart exit,

with the IOB properly re-initialized; Since this must be in accordance

with IOS-defined protocol, the CPS-side easily locates the new channel

program and goes to the analysis logic as shown in Figure 7.5.

Simulating the Teletype involves also simulating the System/360

channel (and the outboard control unit) and ICS, insofar as CPS append-

168

ages are sensitive to their operation. The invoked CPS appendage most

find System/360 channel status word (CSW) and /0S-defined information of

the standard format and in the standard locations in the IOB (IOS places

the CSW information in the I013, as one of its standard services).

Similarly, the conduit must adhere to the standard lOS protocols on

entry to and exit from the appendages, since these are the ones assumed

in the appendage-coding. This involves initializing standard registers

with standard pointers on entry and providing the exit support defined

by WS. The appendages must also find flags set the way the by-passed

CPS Start I/O appendage would have set them if it had been invoked. (Be-

sides IOBHALT, there is also an IOBBUSY flag not described here.)

The port-status referred to in Figure 7.5 is shown in greater detail

in Figure 7.6. Each CHAT port is represented by a byte in the conduit's

port-status byte-string shown in Figure 7.2. Here again the familiar

indexing tactic applies: each CHAT port is represented by the byte in

the string indexed by the x-digit in the SCB and UCB associated with it.

Thus, the . .atus for the port associated with the SCB/IOB pair shown in

Figure 7.4 is kept in tLe second byte of the string.

The meaning and usage of the individual bit-fields of the status

are as follows:

Bit 0 - This is turned ON by the CHAT-side to request that the CPS-

side force the port to the disconnected state. A port is

disconnected when CPS is awaiting a new dial-in. This means

it has an Enable channel program pending.

Bit 1 - This is turned ON when the CHAT-side simulates completion of

an Enable channel program. It remains ON until a Disable

occurs. It is useful for informing the CHAT-side of the

CHAT request
for

port-disconnect

I.

CPS Connected
(After Enable
Completes)

Type of CPS
channel
program
Fending
(if any)

CHAT
Signalling
attention

Bit: 0 1 2-6

Figure 7.6 Port-status Byte

7

iF9

170

connection status even though no CPS channel program may be

pending when the CHAT-side is invoked. (Note that CHAT and

CPS compete for CPU-usage; so CHAT itself can be the cause

of CA'S's delay.)

Bits 2-6 - These bits inform the CHAT-side of the type of channel

program currencly pending (if any). They are set by the

channel program analysis routine and reset when an I/O

completion is simulated.

Bit 7 - This' is set ON by the CHAT-side when the CHAT application

subtask has issued ATNCPS at an instant when no channel

program is pending. It alters the subsequent intercept-

activity shown in Figure 7.5 where the Prepare handling is

concerned: theaPSeeide will execute the branch to post

MIOS.

As indicated in Figure 7.5, the CPS-side sets all bits to zero when it

intercepts a Disable.

The CPS-side intercept-activity is also altered from the way shown

in Figure 7.5 if Bit 0 is-ON: the handling of Read, Write, and Prepare

is changed. For these channel programs, the CPS-side executes I/O

completion simulation and does not post MIOS. (MIOS is not interested.)

For Read, this involves creating the environment associated with

arrival of the Teletype EOT control character and System/360 unit excep-

tion status in the CSW. The normal-end CPS appendage (see Figure 7.3) is

invoked and, upon return, the CPS-side posts CPS and returns to CPS.

For Write and Prepare, the CPS-side creates the completion euviron-

_ ,

nent associated with line-breakage (unit check - status, intervention-
.-

required sense-bit, and IOS error-indicators)_ and invokes-the abnormal-

171

end CPS appendage. The CPS-side then posts CPS and returns to it.

Unfortunately, the machine-status itself is ambiguous, being also

signalled for the case where a Teletype operator hits the Break key

when these channel programs are active. Thus, CPS will assume the non-

fatal cause and invoke its own Break-protocol. This involves a new

Write for which the CPS-side on the new EXCP interception must persist-

ently signal line-breakage, since the CPS abnormal-end appendage, at

this time, will repeatedly return by the IOS-defined restart exit until

its retry count is exhausted. Only then does CPS accept the fatal cause

and give up. (The process can be further complicated because CPS extends

"attention" handling to CPS user programs in its language definition,

ePen permitting nested attention on-units. Thus, a number of Write

EICPs can be issued until the innermost attention-handler (CPS) is reached.

Only on this innermost one does CPS retry to exhaustion.)

The CHAT-side also participates in the Teletype simulation process

and does all the work to move data between CPS and CHAT. Figure 7.7

shows a simplified view of how the CHAT-side works. MIOS enters the

CHAT-side for an additional reason beside those previously mentionedto

force the port tobe disconnected if it is not already so. MIOS does

this whenever en application subtask associated with the port terminates

or if it is performing shutdown.

The conventions of Figure 7.7 are:

The all-capitalized names. correspond to CHAT requests to the

conduit--either from the application subtask (LOG, READ, WRITE, ATN)

or from MIOS for the disconnect reason (DISC). The request type is

obtained by the CHAT-side from the SCB.

The exits refer to those previously described for returning to MIOS.

From M1OS

172

No DISC No o. EnableIs --111 ----y
Port Request? A,Pending,?

Connected?

Yes

CPS Channel Program
Pending?

Yes

Which CHAT
Request?

LGG
WRITE

READ

P epare

Matc). with CPS

WRITyWelt

Channel Program

LOG

O.K.

($WR) Move Data

4
Complete I/O

Post CPS
.s. 0 abnormal exit to

MIOS

(1,Yes

(not needed)

No

Yes

LOG Request? :%:o

Yes (S .0(:)

Complete the
Enable

Post CPS

(!) (Second step
needed)

DISC Request?

yeNP.4:311411,

Mark port-status ATN Request?

ATN
DISC Mark

port-status

Force I/O Completion

Post CPS

READ/Read

($NULL)
normal exit

1}1

Rack

(17) wait exit

Figure 7.7 Simplified View of CHAT-side Logic

173

Reference to the CPS channel pro'grams is as beforecapitalized

first letter.

The $-symbols specify the type of abnormal condition detected: j

$WR - both CHAT and CPS are trying to write to each other

(CHAT loses).

$LOG - the application program needs to log-in to CPS because

CPS is awaiting a new call (not connected):

$NULL - both CHAT and CPS :re trying to read from each other.

This could happen if a CHAT application subtask is

reading from CPS and letting this indicator inform it

of the end of a sequence.

The comments along the arrows are obvioUs, except possibly those

from the match-test: these indicate which CPS channel program is

pending and the nature of the mismatch.

Notice that the CHAT-side completes the simulation ofthe Teletype

I/O for those channel programs that the CPS-side left pending. The

CHAT-side completes I/O by also using the CPS appendages, in the same

way described for'the CPS-side. However, because it executes the move-

ment of 'data between CHAT and CPS, it also has Teletype code and control

characters to manipulate. Code translation is required in both directions,

while Teletype control character deletion/addition depends on direction.

The conduit has no intermediate buffer, but moves data directly from the

CHAT application program data area specified in the SCB to the CPS data

area specified in the channel program - -or vice versa. All code transla-

tion, of course, is performed at the sink after moving. Trdncation (on

the right) is performed if the source-length exceeds the sink-length.

Certain steps shown in Figure 7.7 require additional comment. The

174

LOG request involves two invocations of the CHAT-side. When tr 1m

issued by the application program, the port will normally not yet be

connected: an Enable channel program is pending. Since CPS does no

reading in this channel program, the CHAT-side must,. complete it first

(the "hello" message is not moved into CHAT) and wait for the CPS-side

to post MIOS that the next channel program has been intercepted. This

one will be a CPS Read, and the CHAT-side can then move the application

program's log-in message (the standard conduit-supplied log-in message

with or without an application program specified load/save file) into

CPS's data area. The application program does its own log-off using

the interface facilities for writing to CPS. If the program writes a

log-off/resume message 1111, it can issue a LOG that will take only

one invocation of the CHAT-side to complete. (It can also use a WRITE

to,format its own log-in message.)

Notice in Figure 7.7 that the CHAT-side attempts to initiate dis-

connection of the port if a channel program is pending when the DISC

request arrives. It marks the request for the CPS-side even in this case

(not shown in Figure 7.7), so that if any further attempts are necessary

the CPS-side will continue them.

The ATV requeit causes the CHAT-side to indicate the request in

the port-status if-.no channel program is pending. This'is to force the

CPS-side to post MIOS on a Prepare so that the application program can

get CPS's attention even in this case. The indicator is turned off by

the CPS-side as it posts. When a channel program is pending, the CHAT-

side does not indicate the ATN request in the port-statUs but honors the

request itself. This means on a Prepare or Write that the condition

described earijier as ambiguous is set for the simulated I/O completion.

This time the subsequent CPS Break-protocol Write can succeed. For

175

Read, the simulated completion is made to appear as if the X-On (Control-

(1) key has been hit on a Teletype [Ill. This is unambiguoui.

176,

EXPERIENCE WITH THE CONDUIT

The original purpose of the conduit was to serve Mudge's DIAL

program, as described at the Beginning of this chapter. This purpose,

however, was never realized for two reasons: (1) the move of the CHAT

I'System from TUCC to UNC resulted in both a critical reduction in avail-

able core site and no other community needs for CPS in the new CHAT

host installation; (2) Mudge's program was found not really to require

usageof CPS. The UNC version of the CHAT System does not use the

conduit.

The conduit was, however, completely tested and fully debugged at

TUCC. In addition, Blair (1131 wrote an application program using the

PL/I conduit interface which proved the conduit's soundness and useful-

ness. This program was invokable from any display station and provided

display station access to CPS, since Blair used both the conduit CPS-

access interface facilities as well as those for the display in his

program. This ingenious application program has also been lost to the

CHAT System because of the move. The CPS program at TUCC has reverted

to its former staid existence of serving only real teletypewriter

terminals.

CHAPTER 8: ON-LINE TERMINAL TEST FACILITY

Early experience with the display equipment gave pungent evidence

of the need to include a diagnostic and testing facility within CHAT.

During the development of the CHAT Monitor, the display equipment fre-

quently broke down. Restoring it to working order was inconvenient,

expensive, and, during one lengthy period, nearly hopeless. The problem

was wcrsened at this period (at TUCC) by the communication lines and

AT&T 201B1 data sets (involving 'three different telephone companies) used

to connect the CC -7012 to the CC-72. The common-carrier equipment did

not offer Swiss-watch reliability: within a year, three line breakages

occurred and five data set replacements were necessary.

Bell gives responsive service--in part, because its management ran-

domly "bugs" and tapei customer calls to Bell service centers. Bell di-

agnosis of data'sets consists of running a series of set-to-set tests

using special equipment with myriad lights to check that particular,.

repeated data patterns are correctly received at rich end. Maintenance

consists of replacing a defective data set by a spare that the service

'man carries along; if the Bell tests show no error, the data set is not

replaced and the problem is blamed on the other vendor(s).

Unfortunatply, the tests are not as exhaustive us they appear:

After "successful" completion of Bell's testing of a data set, the author

noticed a subtly uneven cursor-motion on the display screen and suggested

to the service man that the data set crystal oscillator timer was bad

'178

(the CCI equipmentderives its transmission timing from the data set).

The service man confessed that he had no test for this component in his

standard on-site repertoire; some ad hoc strobing by the service man

proved the oscillator was awry--the data set was replaced.

Diagnosis and servicing of the CCI equipment vas hindered by the

following deficiencies:

1. No hardware service aids other than the oscilloscope and strobes.

This meant an almost total reliance on software control in the

computer and on the standard (possibly defective) installed

equipment to diagnose problems.

2. Ignorance on the part of the servicing personnel of the logical

properties of the CCI equipment registers and of Zile communication

protocols involved in data exchange (bit-i in the CC-72 SS-register

means "this" after "that" action). Hence, strobing only established

voltage levels and did no;: easily pinpoint logical problems (such

as transmission parity block-checks).

3. Mis-design of the CC-72 multiplexer (no line-testing mode)--it

requires computer program control in order to send anything, even

the signal that one of its stations is ready to send a message.

The computer: program, of course, requires perfect action by the

CC-7012 and communication equipment for its enabling order to

arrive at theCC-72. (Scenario: Author-to-Bell: 'I think something

is wrong with .our equipment and,I'm not sure whether it's you or

CCI causing the problem. I thought I'd call you first. Bell-to-

author (later): Well go ahead and send something; we're monitoring

the line. Author-to-Bell (brief pause): Er--uh, well, I can't;

my local equipment reccuires computer control before it can send and,

179-

well, I hc.: no on-line computer support (see next point).

Can't you send your man out with that box with all those lights? ...)

4. Poor manufacturer-supplied software diagnostic suppor_. This

support was grossly inadequate for use by the manufacturer service

personnel and not at all useful to the'CHAT designers who could

never get docUmentation on what it did or what its output meant.

Furthermore, this diagnostic support offered no interaction with

the CPU console to allo4 operator control or inquiry, but communicated

only with one of the unreachable displays. Its output, if any, was

printed on the installation nrinter in cryptic format. The most

crippling aspect of the support was that it was a standalone (card -

loaded) program coded to run on the basic System/360 machine.

Hence, it uld only be used when, the installation management was

willing o shut down the operating system.

One scarring episode illustrates the gravity of the above defi-

ciencies. During .development Ofthe CHAT Monitor when no.code had yet

been successfully tested for the displays, the author noticed that the

equipment didn't work and reported the.problem. Six months later, after

innumerable weekends and mid-night hours of fumbling About and not Iso-

lating the error, the author decided tlr outage was too persistent. Even

the author's installation- acceptance test program was dusted off during

this period--being better at times than nothing! The equipment was dis-

installed from the System/360 and shipped back to the California factory.

There they found errors in both the CC-72 and the CC-7012; meanwhile,

Bell--acting on a request for re-testing of its equipment--located a prob-

lem in the UNC-based data set.

This pattern of inadequate diagnosis and service was an important

180

lesson during the design period: the CHAT System had to provide a

testing facility.in order to be a viable production system. CHAT does

include such a facility, centered in the on-line testing program, OLTEST

(On-Line Test) - -a PL/I program irmokable from the Teletype. This chapter

is about OLTEST--its objectives and usage, its special needs with regard

to CHAT Monitor extensions, its interactions with the CHAT Monitor, its

I/O programming interface, and the test command set and output presented

at the Teletype.

Blair gave major assistance in the actual coding of OLTEST. 'Re

devised the basic scanning technique in OLTEST for parsing commands

and also suggested inclusion of exercising-commands beyond those intended

by the author. The facility is more ambitious and the human factors

quality higher as a consequence of his interest and participation.

4

181

OBJECTIVES AND USAGE

Two general requirements had to be met by the testing facility

for the CHAT System. It had to provide:

1. A diagnostic feature for use at the time an,error or outage

became visible to a display operator. What kind of errors

were seen by the CHAT Monitor? What kind of I/0 was involved?

By knowing both the external symptoms and internal machine status

of an error one might quickly diagnose the cause or specific

location of the problem.

2. An equipment-exercising feature for use at the time of maintenance

or service. In step with a current service diagnostic tactic, it

should be possible to initiate a particular operation, to exercise

a specific component, or to send a chosen character string.

The Teletype was the obvious console from which to control these

features and so OLTEST was designed as a Teletype application program

running under the control of the CHAT Monitor. This capability for control

and requesting of test results at the site of the displays is very 'con-

venient. Depending upon the CHAT region-size at the time, it is possible

to run OLTEST concurrently with other application sub tasks. Thus, if

only one display station is down, it. can be tested on-line while the other

displays are in production use.

OLTEST provides a set of commands for testing a display chosen by

the Teletype operator and for requesting a status or log report. These

commands and the output logging are described later in this chapter. The

use of OLTEST for exercising the equipment should be easy for anyone who

can use the Teletype. Interpretation of ,the log output for diagnostic

182

purposes.i* easier the more the observer understands about .the operation

of the display equipment and the channel programs used by MIOS. In

actual prac :ice, one visiting CCrservice man, who examined the log

output,from OLTEST and compared it to the MIOS channel program it refer-

enced, understood easily what error was occurring. .(CCI service persunnel

understand channel programming.)

183

THE I/O INTERFACE FOR OLTEST

OLTEST had one special requirement that the application program

interfaces described in Chapter 3 do not allow: access to both the

Telet)17, and the display equipment from one program. Furtherunre,

OLTEST needed to choose a display from the group as currently directed

by the Teletype operator. Both requirements, as well as an additional

need to access Monitor storage for status-logging, are met by a special-

purpose interface.

OLTEST includes in its source the preprocessor statement:

%INCLUDE (OLTDCL);

where OLTDCL is a member name in SYSLIB. This keuses inclusion of the

declarations needed to define the $-named variables and procedure

entries for all the procedures described in Chapter 3 (except those for

CPS access, which OLTEST doesn't need) as well ia.three special proce-

dures described below.

OLTEST in using this interface is provided the special assembler-

coded linkage routine, OLNTRYS, mentioned in Chapter 2. This differs

from the linkage routines provided other application programs by including

more than linkage to IFCSECT, where the display amd Teletype procedures

reside. The procedures'to execute the new functions required for OLTEST

are packaged with OLNTRYS (in the OLTEST load module) so they are resident

in the CHAT region only when OLTEST is. Recall that IFCSECT is packaged

with the Monitor and is always resident.

In describing the new procedures the same format is used as in

Chapter 3.

CALL SEIZE (station, return);

184

The CHAR(2) station argument specifies the numeric identifier of

the display for which all future display procedures invoked by the

program are to apply. The identifier is the same as that appearing on

the door of the room in which the display resides. (This should corre-

spond to the '1J-connection" numeric on the back panel of the CC-72

multiplexer where the station is attached.) The return argument to BIT(8)

ALIGNED variable) is set by the called procedure as follows:_

'0000 0000'B - The specified station has been

seized successfully.

'0000 00011B - The specified station has not been

seized because it is busy--some

other application subtask is currently

in use there;

'0000 001041 - The specified station has not been

seized--no display in the CHAT System

has the specified station identifier.

After successful seizure, the program is in seized mode. To escape from

seized-mode the program invokes RELEASE:

CALL RELEASE;

This n(,- argument procedure reference causes release of the currently

seized station (if any) and causes the program to escape seized-mode.

It is a No-Op if the invoking program is not in seized-mode.

Two rules are enforced by OLNTRYS:

1. The program must be in seized-mode at the time it invokes a

procedure associated with display station activity.

2. The program cannot invoke SEIZE when already in seized-mode.

(It should release the previous one first.)

185

OLNTRYS enforces these rules by stopping the violating program at the

time of the offending call.

The internal implementation of seizure of a display is simple:

OLNTRYS, after finding that the specified station exists and is free,

temporarily enters supervisor state anei disables interrupts so that it

can modify an address list used by MIOS. The process is illustrated

in Figure 8.1 where we assume for brevity that there are only three dis-

plays. The address list is used by MIOS at times when it must locate

a particular SCB indirectly (on I/O completions) rather than directly

(on I/O requests where the posting task passes the SCB address). OLNTRYS

also moves some station-specific information for addressing from the

target station's SCB into the Teletype SCB and sets a flag indicating

seized-mode exists. This flag is examined elsewhere in the Monitor:

MTWX uses it to clean up after the application if it terminates without

releasing the seized station; MIOS will not initiate termination action

for the application using the SCB. (You cannot ABORT OLTEST from a

display.)

Notice that the figure shows that the address of the true SCEfor

the seized station is stored in the Teletype SCE extension. Thii allows

the release logic in OLNTRYS to un-do seizure. The extension also con-

tains (not shown) the address of the Monitor's data-storage; this is how

OLNTRYS finds the list it modifies. (The verification-of-station-id

process also requires this list.)

The effect of this list-modification is very powerful considering

its simplicity. OLTEST gains full access to -the display using the stand-

ard display procedures and the same internal mechanisms. MIOS is insensi-

tive to the SCB - switch in its handling of requests.

(a) Before Seizure

l@SCB 02 SCB 03

SCB address
list used by
MIOS

seize-flag

(b) After Seizing Station 03

I@SCB 02

@SCETWXSCB

B 04

SCB 02

TWX
Flag

1 Extension to
standard SCB

0

18f)

Station
identificntion
informe.tion

SCn 04

0

Figure 8.1 Seizure of a Display

187

The following procedure may be invoked regardless of mode. It

provides the means whereby OLTEST obtains current I/O status information

about equipment and malfunctions.

CALL EMU° (mion-flags, type -io, codes, sense, stat-id, return);

If the BIT(8)ALIGNED return argument has been set by ERRINFO to the

value '0000 0000'B, then a hard-failure record was found to have been

stored by MIOS;_ all the other arguments will carry information from that

record. The ERRINFO procedure (logic in OLNTRYS) will also have unlocked

the record-storage used by MI08 to allow MIOS to store a new record.

MIOS only stores information on one hard-failure at a time. When its

record-storage has been unlocked it re-uses it for the next hard-failure

to occur, locks it, and waits for the locked record to be retrieved be-

fore storing a record on any new hard-failure. Hence, ERRINFO retrieves

the record of the first hard-failure to occur since the previous invoca-

tion of ERRINFO. 'This means the following sequence is useful:

(1.) Invoke ERRINFO to clear any old record.

(2.) Invoke a display procedure to perform some

operation of interest.

(3.) Invoke ERRINFO afterwards to obtain the

hard-failure record for the display

operation if it failed. (This clears the

record, too.)

(4.) Go to (2.).

In the later section on OLTEST commands the reader will learn how the

Teletype operator can direct OLTEST through this sequence and get the

results at the Teletype.

If no hard-failure record is found by ERRINFO (the record-storage

.188

is not locked), it sets the return argument to '0000 0001'B and returns

values in the mios-flags and type-io arguments (nothing in the other

arguments) about on-going MIOS I/O activity at the instant ERRINFO was

invoked. This information is useful in detecting "hanging" I/O, as

will be discussed in more detail.

The arguments of ERRINFO have the following attributes:

BIT(B) ALIGNED

type-io: FIXED BIN(15,0)

codes: CHAR(*)

sense: CHAR(*)

stat-id: CHAR(2)

return: BIT(8) ALIGNED

The codes and sense arguments have their lengths governed by the value

of a variable, MAXFAIL, which is part of the compile-time-included source.

Currently, it is initialized to 7, corresponding to-the MIOS-defined

failure threshold (maximum number of failures). This is an assembled

parameter (also called MAXFAIL in MIOS) that determines how many errors

MIOS will tolerate on a single operation before giving upand treating

it as "hard." Each failure in the sequence leading to the threshold

causes MIOS to store information defining the failure. The codes and

sense arguments correspond to two byte-strings kept by MIOS in its hard-

failure record. The first byte in each string corresponds to the first

failure; the second byte, to the second failure, and so forth. Hence,

the length of each string is also governed by the maximum number of

failures in a single sequence (MAXFAIL).

For return set to zero (hard-failure record returned), type-io will

'be set to one of the values shown in Table 8.1. These values specify'

189

Value Channel Program

0 GET STATION INTERRUPT STATUS (S/S)

4 GET LIGHT PEN CHARACTER

8 ENABLE KEYBOARD

12 GET LIGHT PEN COORDINATES

16 INPUT ALPHANUMERIC

Part 1 if mios-flags = 'XOXXXXXX'B

Part 2 if !dos-flags = 'X1XXXXXVB

= not relevant)

20 OUTPUT ALPHANUMERIC

24 PERFORM SLIDE ACTION

28 *(Reserved for Card Reader - -Never Implemented)

32 READY-FOR-ATTENTION

36 VERIFY BREAK-FUNCTION

40 RESPONSE TO BOGUS BREAK

NO "ABORT" ON SCREEN)

Table 8.1 Values Possible for type -io

190

which channel programs were executed at the time of the hard-failure.

These channel programs can be found in the code listing for MIOS; the

names in the table correspond to comments heading each channel program

listing. The mios-flags argument has relevance only for one particular

channel program as shown also in Table 8.1. (That channel program has

two parts - -each requiring its own MIOS-initiated EXCP.) Possible values

for each byte of codes are shown in Table 8.2. Although defined as a

character-string, codes requires use of the PL/I feature, UNSPEC, since

it is really a hexadecimal string. As shown in Table 8.2 the sense

argument has relevance only in certain bytes in correspondence to "offset"

bytes in codes. In this case, a byte in sense will be the sense-byte

read in for the given failure. The stat-id argument gives the identifier

of the display station involved during the hard-failure sequence or, if

none (in the case of a multiplexer operation--see values 0 and 32 in

<:5,

Table 8.1), the characters NA for not applicable.

When return is set to one (no hard-failure record found), mios -flags

tells whether MIOS had a channel program working on the System/360 channel

at the time EFRINFO was invoked (and it picked up the MIOS status byte):

mios -flags = tOXXXXXXX'B means inactive

= TIMOWDEX'S means active

(X = Not relevant)

The type-io argument gives the most recently initiated channel pro-.

gram and can be any one of the values shown in Table 8.1. However, two

other values are possible if the initialization of the CHAT region is

still incomplete. This will happen when the initialization routine

MIOSINIT has experienced a problem initializing the CC-7012 and CC-72.

In this case one of the following values is given:

191

Value Meaning

<X'10' A zero-origin index of the position of

a CCW within a channel program. The CCW

failed with unit-check status. The corre-

sponding bytein sense gives the sense

information accompanying the unit-check.

>X'10' A failure code signifying the type of

failure in the display operation detected

by MIOS. It concerns an inaction by the

remote multiplexer or displays to MIOS

orders. The corresponding byte in sense

has no meaning. Specific failure codes

are shown below.

X'101 Cursor not restored (4)

X'20' Keyboard not enabled (8)

X'30' Cursor not restored (16)

X'40' No acknowledgment to slide action (24)

*150' Cursor not restored (24)

X'60' No acknowledgment to MIOS-sent message (20)

X'70' Keyboard not enabled (20)

X'80' No acknowledgment of Break-rejection

message (40)

Table 8.2 Values possible for codes (per byte)
shown in hexadecimal. The numbers in
parentheses refer to the channel pro-
grams involved and correspond to the
values in Table 8.1.

192

254 - MIOSINIT has reached the failure threshold in

its initializing operation.

255 - MIOSINIT has not yet had its initializing

channel program posted complete--a case of

hanging I/O.

OLTEST provides a special message at the Teletype for each of these

two conditions (as indeed it does for all others described).

In the former case (254) the Teletype operator should enter the

MTWX command $E72. MTWX will. post MIOSINIT which, in turn, will transfer

control (XCTL) to MIOS where the more powerful hard-failure logging is

performed and accessible through OLTEST. MIOSINIT will log on the

CPU console on request but does not need to on the Teletype because

1IOS has this capability.

OLTEST has one privilege that no other application program has:

when the ABNORM condition has been signalled and ERRCODE rccurns the

value signifying LINE ERROR (see Chapter 3), OLTEST may continue to use

the display equipment procedures. Other programs are stopped if ,hey

attempt further equipment use. This added privilege is necessary since

OLTEST has its greatest use when the display equipment is producing hard

failures. The privilege is implemented by OLNTRYS as pazt of its linkage

to display procedures; it is one instruction to turn off a flag.

193

COMMANDS

OLTEST provides a set of commands for the Teletype operator

to exercise the display equipment and to request a log-out at the Tele-

type of the error and status information obtained from the ERRINFO

procedure. Naturally, OLTEST reformats the information given by ERRINFO

and provides more readable copy. Some examples are shown in the next

section.

Figure 8.2 shows a typewriter version of an actual Teletype

listing of an interaction with OLTEST. Notice that the operator uses

the MTWX $XEQ command to invoke OLTEST, receives acknowledgment from

MTWX, and begins receiving from OLTEST.

OLTEST always prompts the operator When it is ready for a new

command. Afterreading and executing a command, OLTEST will print

DONE if the command does not result in any other output on the Teletype.

As shown, the HELP command does produce output, giving a summary of the

facility and instructions for its use.

Figure 8.3 shows the consequence of using HELP ALL. A lengthy and

detailed exposition of the OLTEST commands is printed on the Teletype.

A typewriter version of this listing will serve the same purpose here. We

add only a few remarks:

1. Notice that OLTEST does not require the operator to release a

seized station prior to seizing a new one. It does this for

him automatically.

2. The permitted short forms of'the commands are not too useful--

they are difficult to remember.

3. OLTEST accepts SIEZE to mean SEIZE (i).

194

4. OLTEST provides some error analysis on operator abuse of the

commands which is not shown here. No abuse ever causes program

stoppage.

5. The operator should feel free to interleave MTWX $- -commands

with the OLTEST commands, particularly $E72 or SABORTnn (to get rid
-

of some other application subtask lianging':0 on'a display to be

seized). $ABORT is useful to stop OLTEST itself if the operator

is tired of seeing a long output sequence; he can quickly re-

initiate OLTEST using $XEQ.

6. It might be useful to have a short version. of the OLTEST program--

one without the HELP procedure--to save storage (if concurrent use

of other applications is deSired in a smaller tegion). This should

not be difficult to do, but it has not yet been implemented.

toS

MTWX HERE...ENTER A COMMAND
?$XEQ OLTESI
COMMAND EXE(UTED

==> ON-7.,INE TEST: DATE: 08/1:1/71 TIME: 23:43:29 ' --
ENTER COMMAND OR "HELP'
?HELP

--* INTRODUCTION TO ON-LINE TEST *-*-*

OLTEST IS INTENDED TO BE USED TO:
1. EXERCISE THE CCI DISPLAY STATIONSPARTICULARLY

IN CONJUNCTION WITH MAINTENANCE SERVICE.
2. LOG OUT CURRENT I/O STATUS OR "HARD" FAILURE

SEQUENCES STORED BY THE MONITOR.
3. AID IN THE DIAGNOSIS OF EQUIPMENT PROBLEMS.

--* LIST OF OLTEST COMMANDS *-*-*

LOG SEIZE RELEASE END
SEND SLIDE REPEAT LCAR PAUSE READ READLP

--* ASKING FOR MORE HELP *-*-*

IF YOU DESIRE FURTHER INFORMATION ON USE OF THE
ABOVE COMMANDS, TYPE IN "HELP" FOLLOWED 1W THE
COMMAND NAME(S) IN WHICH YOU ARE INTERESTED.

EXAMPLES: "HELP LOG"
"hELP SEIZE,RELEASE,SEND"

IF YOU TYPE "HELP SENSE", YOU WILL GET A DESCRIPTION
OF THE SENSE BYTE ABBREVIATIONS USED ON LOG OUTS.
IF YOU TYPE "HELP ALL", YOU WILL GET A DESCRIPTION
OF ALL COMMANDS (AS WELL AS "SENSE").

--* ENDING OLTEST *-*-*

SIMPLY TYPE IN "END" AT ANY TIME.

--*_*_*_*

NO GO AHEAD AND USE OLTEST.
ENTER COMMAND OR "HELP"

Figure 8.2 OLTEST Output for the HELP Command

?HELP ALL

196

--* LOG COMMAND *-*-*

WHEN YOU TYPE IN "LOG", OLTEST WILL PRINT OUT ONE
OF THE FOLLOWING:

I. THE INFORMATION STORED BY THE MONITOR FOR A
"HARD" FAILURE - -A SEQUENCE OF 7 CONSECUTIVE
FAILURES ON A SINGLE I/O OPERATION WITHOUT
RECOVERY. BY GETTING THIS ',RROR LOG PRINTED
OUT, YOU SIMULTANEOUSLY "CLEAR" THE MONITOR'S
RECORD OF IT. (YOU CAN CLEAT: THIS RECORD WITHOUT
PRINTING BY TYPING "LOG CLEAR".) 1HE MONITOR
RECORDS INFORMATION ONLY ON THE FIRST "HARD"
FAILURE OCCURRING SINCE THE LAST "LOG". THUS,

YOU WILL COMMONLY USE "LOG" IN ALTERNATION
WITH THE OLTEST COMMANDS THAT EXERCISE
THE EQUIPMENT.

2. IF NO "HARD" FAILURE HAS BEEN RECORDED, YOU
WILL BE GIVEN THE MOST RECENT I/O STATUS
OF THE MONITOR. THIS IS USEFUL IN THE CASE
WHEN AN I/O OPERATION IS "HANGING" (ON A READ
CCW GENERALLY), BECAUSE THE LINE IS DOWN OR
THE CC-72 MULTIPLEXER IS DOWN OR OFF.

--* LOG OUTPUT *-*-*

A CURSORY KNOWLEDGE OF THE I/O OPERATIONS AND
CHANNEL PROGRAMS (IN THE MONITOR MODULE "MIOS") IS
HELPFUL TN INTERPRETING THE LOG OUTPUT--PARTICULARLY
FOR "HARD" FAILURES WHERE CHANNEL COMMAND WORD (CCW)
OFFSETS ARE CONCERNED. FOR "HARD" FAILURES YOU ARE
GIVEN THE STATION INVOLVED (OR NA-NOT APPLICABLE-FOR
A MULTIPLEXER OPERATION), THE TYPE I/O (CHANNEL
PROGRAM) THAT FAILED, AND THE SEQUENCE OF 7
FAILURES. SOME FAILURES INVOLVE SO-CALLED "SENSE"
INFORMATION FOR SPECIFIC CCWS. IN THIS CASE,
THE CCW IS IDENTIFIED BY ITS (0-ORIGIN) POSITION
IN THE CHANNEL PROGRAM, WHILE THE SENSE IS SHOWN
IN ABBREVIATED MANNER (SEE BELOW).

Figure 8.3 OLTEST Output for the HELP ALL Command

197

--* SENSE BYTE INFORMATION *-*-*

WHEN THE SENSE BYTE INFORMATION IS LOGGED OUT,
THE FOLLOWING ABBREVIATIONS ARE USED:

CR = COMMAND REJECT
IR = INTERVENTION REQUIRED
BO = BUS OUT
3? = BIT-3 OF SENSE (NOT USED BY CCI WHEN CC-72 PRESENT)
DC = DATA CHECK
OR = OVERRUN
TO = TIME OUT
7? = BIT-7 OF SENSE (NOT USED ON "UNIT CHECK" BY CCI)

(DETAILS ON THESE ERROR INDICATORS CAN BE FOUND
IN THE CCI MANUAL ON THE CC-7012.)

--*-*-*-*

--* SEIZE COMMAND *-*-*

THIS COMMAND MUST BE USED BEFORE YOU CAN USE
THE COMMANDS:

SEND SLIDE REPEAT LCAR PAUSE READ READLP
TO EXERCISE A PARTICULAR DISPLAY STATION.
YOU TYPE IN "SEIZE" FOLLOWED BY A 2-CHARACTER
NUMERIC IDENTIFYING THE DESIRED STATION.

EXAMPLE: "SEIZE 04"
THIS EXAMPLE CAUSES STATION 04 TO BE SEIZED
IF IT IS FREE. (YOU CANNOT SEIZE A STATION
WHICH IS IN USE FOR ANOTHER APPLICATION.)
THE 2-CHARACTER NUMERIC WILL AGREE WITH
THE "J- CONNECTION" NUMERIC FOR THE STATION
(SEE BACK PANEL OF THE CC-72 MULTIPLEXER).
YOU MAY CANCEL THE EFFECT OF A PREVIOUS "SEIZE"
BY TYPING A NEW "SEIZE" OR BY USING "RELEASE".

--*-*-*-*

Figure 8.3 (Continued)

198

--* RELEASE COMMAND *-*-*

THIS COMMAND
BE RELEASED.

EXAMPLES:

--*-*-*-*

CAUSES A SEIZED STATION TO
A SHORT FORM, "RLS", MAY BE USED.
"RELEASE"
"RLS"

--* END COMMAND *-*-*

THIS CaMMAND ENDS THE OLTEST PROGRAM.

--* SEMD'COMMAND *-*-*

THIS COMMAND IS USED TO SEND A MESSAGE
TO THE CURRENTLY SEIZED DISPLAY STATION.

EXAMPLE: "SEND 'ABCDEF'"
THE CHARACTER STRING WITHIN THE SINGLE
QUOTES WILL BE DISPLAYED ON THE DISPLAY
STARTING AT THE CURRENT CURSOR LOCATION.

--*-*-*-*

Figure 8.3 (Continued)

199

--* REPEAT COMMAND *-*-*

THIS COMMAND CAUSES THE SCREEN OF A SEIZED
STATION TO BE CLEARED AND THEN A SPECIFIED
CHARACTER TO BE DISPLAYED IN ALL POSITIONS.
EXAMPLES: "REPEAT A"

"REPEAT "

"FFPEAT"
THE FIRST EXAMPLE SPECIFIES "A" AS THE
REPEATED CHARACTER; THE SECOND SPECIFIES
"BLANK"; AND THE THIRD, - " * ", THE DEFAULT

CHARACTER, ONCE YOU SPECIFY "REPEAT",
THE PROGRAM REPEATS THE OPERATION EACH
TIME YOU SEND "X-OFF". YOU MAY CHANGE
THE CHARACTER BY TYPING ANEW CHARACTER
BEFORE YOUR "X-OFF". YOU END THE REPEAT
OPERATION BY TYPING "STOP" (OR "END"--IF
YOU WANT ALSO TO END THE OLTEST PROGRAM).

--*-*-*-*

--* SLIDE COMMAND *-*-*

THIS COMMAND CAUSES A. SLIDE ACTION
TO BE PERFORMED AT THE SEIZED DISPLAY
STATION.

EXAMPLES: "SLIDE ON"
"SLIDE 40"
"SLIDE OFF"

A SHORT FORM, "SLD", MAY BE USED.

--*-*-*-*

Figure 8.3 (Continued)

200

--* PAUSE COMMAND *-*-*

THIS COMMAND ALLOWS YOU TO SPECIFY A TIME
INTERVAL FOR THE OLTEST TO PAUSE, AWAITING
AN INTERRUPT FROM THE SEIZED STATION.
AFTER YOU ENTER "PAUSE", TYPE SOMETHING
AT THE DISPLAY AND HIT INTERRUPT. (YOU
MAY ALSO LIGHTPEN THE STARTING LOCATION
OF THE INFORMATION TO BE READ, IF YOU
LIKE.) OLTEST WILL REPORT THE RESULTS
OF ITS READ OPERATION ON THE TELETYPE.

EXAMPLES: "PAUSE 10"
"PAUSE"

THE FIRST EXAMPLE CAUSES OLTEST TO WAIT
10 SECONDS FOR AN INTERRUPT FROM THE
SEIZED DISPLAY; THE SECOND EXAMPLE CAUSES
IT TO WAIT INDEFINITELY FOR THE INTERRUPT
(SO DOES "PAUSE 0").

--*-*-*-*

--* READ COMMAND *-*-*

THIS COMMAND CAUSES OLTEST TO READ
FROM THE SEIZED DISPLAY. TYPICALLY,
YOU WILL ENTER "READ" HERE; GO TO THEN
DISPLAY - -ENTERING A MESSAGE THERE
(WITH AN INTERRUPT); AND THEN RETURN
TO THE TELETYPE TO SEE OLTEST'S REPORT
OF THE NUMBER OF CHARACTERS READ.

--*-*-*-*

Figure 8.3 (Continued)

201

--* READLP COMMAND *-*-*

THIS COMMAND CAUSES OLTEST TO READ
THE LOCATION COORDINATES AND CHARACTER
YOU LIGHTPEN AT THE SEIZED DISPLAY.
TYPICALLY, YOU WILL ENTER "READLP" HERE;
GO TO THE DISPLAY--LIGHTPENNING THERE
(AND HITTING INTERRUPT); AND RETURN TO THE
TELETYPE TO SEE OLTEST'S REPORT.
A SHORT FORM, "RLP", IS ALSO PERMITTED.

*-*_*-*_*_* .

.*-*-* LCAR COMMAND *-*-*

THIS COMMAND IS USED TO POSITI)N THE CURSOR
OF A SEIZED STATION TO A SPECIFIED ROW
AND COLUMN ON THE SCREEN.

EXAMPLE: "LCAR(10,25)"
(THE CURSOR WILL BE POSITIONED TO ROW 10,
COLUMN 25.)

ALWAYS SPECIFY 2 DIGITS FOR EACH COORDINATE,
USING A LEADING ZERO IF NEEDED.

EXAMPLE: "LCAR(05,01)"

--*-*-*-*

ENTER COMMAND OR "HELP"
?*

Figure 8.3 (Continued)

202

OUTPUT FOR THE LOG COMMAND

This section shows and discusses some examples of actual output

given by the LOG command. While in all cases the examples are faithful

typewritten reproductions of real Teletype sessions, the equipment errors

illustrated were contrived - -e. g., by disconnecting the equipment compo-

nent involved.

Figure 8.4 illustrates several ideas mentioned earlier in the

chapter. The figure illustrates the case where the CC-7012 channel

adapter is not operational at the time the CHAT region is initiated. In

this case, the initialization routine MIOSINIT has not successfully

finished its work and, thus, has not yet transferred control to MIOS.

As the figure indicates, the Teletype operator is able to dial

into CHAT and to invoke OLTEST--since MTWX is active. The output for

the first LOG command reveals to the operator the existence of the in-

complete-initialization status. The operator then enters the $-command

(to MTWX), $E72, asking that MIOS be invoked to enable the equipment.

(OLTEST does not see this command.) The operator then enters the second

LOG command of the session and, this time, gets a full report on the

nature of the problem, since MIOS--with all its hard error record-keep-

ing capability--has done its job. mosum is no longer in the system,

having transferred control to MMOS at $E72 time. Notice how OLTEST gives

LOG output in descriptive fashion--converting all those codes received,

via its use of ERRINFO, into more readable language.

The error logout shows, via the station identifier (NA) and type of

I/O, that a multiplexer operation has failed. Ready-for-attention is

the first channel program tried by MIOS when it initially gains control.

203

MTWX HERE...ENTER A COMMAND
?$XEQ OLTEST
COMMAND EXECUTED

ON-LINE TEST: DATE: 08/04/71 TIME: 19:23:10 <=.
ENTER COMMAND OR "HELP"
?LOG
NO "HARD" I/O ERRORS RECORDED SINCE LAST LOG REQUEST
LAST I/0 STARTED: (HARDERR IN MIOSINIT; AWAITING DIRECTION)
WHEN INSPECTED, I/O WAS NOT IN PROGRESS

?E72
COMMAND EXECUTED
?LOG
==> ERROR LOG ON 08/04/71 AT 19:24:10 <==
ERR SYMPTOM-- STATION NA TYPE I/O =READY FOR ATTENTION
1 CCW= 0, SENSE=IR
2 SAME
3 SAME
4 SAME
5 SAME
6 SAME
7 SAME

?LOG
NO "HARD" I/O ERRORS RECORDED SINCE LAST LOG REQUEST
LAST I/O STARTED: READY FOR ATTENTION
WHEN INSPECTED, I/O WAS NOT IN PROGREsS
?$E72

COMMAND EXECUTED
?LOG
==> ERROR LOG ON 08/04/71 AT 19:25:06 <==
ERR SYMPTOM-- STATION NA TYPE I/O =GET SIS
1 CCW= 0,SENSE=IR
2 SAME
3 SAME
4 SAME
S SAME
6 SAME
7 SAME

Figure 8.4 CC-7012 Outage at CHAT -Initiation Time

204

The first error recorded shows that the first (zero-origin indexing)

Channel Control Word (CCW) failed with Intervention Required (IR) de-

tected in the sense-byte. The first CCW in this particular channel pro-

gram is a command to the CC -7012. Intervention Required ending status

means the CC-7012 is not "powered-up" correctly. The same error has

persisted through attempts 2-7 as indicated.

The output for the next LOG command illustrates how the previous

LOG command had cleared the hard error recordonly the current state

of I/O activity is reported. The final LOG output shows continued

persistence of the problem. Get-SIS (Station Interrupt Status) is the

standard channel program executed by MIOS in response to a $E72 request- -

usually when the CC-72 requires enabling, it also has a station - interrupt

pending.

Figure 8.5 illustrates some additional aspects of OLTEST. For this

example, we deliberately turned off the power at a display station to

simulate station outage. Notice the OLTEST syntax- and context-error

messages to the operator for SEIZE 7 and SEND 130, respectively.

The response of OLTEST to the SEND 'HELLO' request is a consequence

of its (1) using the DISPLAY procedure' (of Chapter 3) to send HELLO to

the display station and (2) being informed by the Monitor via ABNORM-

condition signalling (also Chapter 3) that the operation failed. The

I/O ERROR report is sent by the invoked on-unit of OLTEST to alert the

Teletype operator immediately.

The subsequent LOG command output shows that the channel program

for DISPLAY (to Station 06) failed persistently on the eighth (zero-

origin, again) CCW with Time-Out (TO) indicated in the sense-byte. This

particular CCW is the first Read command in the channel program that

205

?SETZn 06
DONE
?SEIZE 7
** TWO CHARACTER NUMERIC STATION ID REQUIRED - REENTER **
ENTER COMMAND OR "HELP"
?SEIZE 06
DONE
?SEND 'HELLO'
** I/O ERROR ON STATION/LINE
ENTER COMMAND OU "HELP"
?LOG
==> ERROR LOG ON 08/04/71 AT 19:26:23 <==
ERR SYMPTOM-- STATION 06 TYPE I/O =OUTPUT ALPHANUMERIC
1 CCW= 7,SENSE=TO
2 SAME
3 SAME
4 SAME
5 SAME
6 SAME
7 SAME
?RELEASE
DONE
?SEND 'X'
** INWLID REQUEST -- NO CC-s0 ..TATION HAS BEEN

SEIZED BY USE OF THE "SEIZE" COMMAND. **
ENTER COMMAND OR "HELP"
?LOG
NO "HARD" I/O ERRORS RECORDED SINCE LAST LOG REQUEST
LAST I/O STARTED: READY FOR ATTENTION
WHEN INSPECTED, I/O WAS NOT IN PROGRESS
7$SHUTDOWN

Figure 8.5 Display Station Outage

206

requires a display station response. Several errors could cause the

symptom; but the fact that an earlier Read in the same channel program- -

requiring a CC-72 responsesucceeded, narrows the problem to the display-
.

side of 'the multiplexer. Observation of the CRT-screen at the time of

failure, to detect whether a Write--preceding the failing Read--also suc-

ceeded, will further narrow the problem.

As a final example, Figure 8.6 Shows the normal state of the CHAT

System. The first LOG output reveals the usual state of I/O: MIOS is

awaiting some event to occur and the link to the displays is idle and

ready for either-direction use. The second LOG output is a rare occur-

rence: although CHAT does a great deal of I/O, the fraction of time used

is very small and. in practice an I/O-in-progress message is difficult to

capture.

The final output in the figure also concludes the chapter.

207

?LOG
NO "HARD" I/O ERRORS RECORDED SINCE LAST LOG REQUEST
LAST I/O STARTED: READY FOR ATTENTION
WHEN INSPECTED, I/O WAS NOT IN PROGRESS
?LOG
NO "HARD" I/O ERRORS RECORDED SINCE LAST LOG REQUEST
LAST I/O STARTED: OUTPUT ALPHANUMERIC
WHEN INSPECTED, I/O WAS IN PROGRESS
?END
** OLTEST ENDED **

Figure 8.6 Normal State of the CHAT System

CHAPTER 9: FACTS AND FIGURES

This chapter covers two important points about the CHAT Monitor:

how to change it and how big it is. The first point is particularly

important for growth requirements.

From the outset of the design of the Monitor, it was anticipated

that the CHAT System would grow in number of display stations attached

to the remote CC-72 multiplexer. Every effort was made to free the

CHAT Monitor of design sensitivities to the number of displays currently

in the cluster--as Chapter 5 described in some detail. The next sec-

tion describes the simple-to-use facilities provided to re-parameterize

the Monitor when there is a change made in the display configuration.

The Monitor can be modified in other ways not described here.

For example, it may be desirable at some future time to modify the

time-slicing parameters which are located in Monitor control storage.

This type of change, however, is more the interest and concern of the

system programmer inheriting CHAT responsibility; and thus such matters

are left to the code listing. Other matters such as system generation

and library maintenance are described by Blair in his companion thesis

[B3] on CHAT.

209

CHAT PARAMETERS AND HOW TO CHANGE THEM

Table 1.1 lists a number of CHAT parameters that were designed

to be changed easily without affecting the logic of the CHAT Monitor.

The Monitor :ode uses these parameters as implied -- without assuming

a fixed value for any of them.

NUIT,C3OS is .he most important of th3m since it defines the number

of display stations to be supported. As shown, its current value is

6. To change it, s4mply replace the current equate defined in the

macro definition, GENPARM. GENPARM is used widely in the CHAT Monitor

(in almost every component) to generate the shown names as well as others

in common use.

If the number of displays is to be tncreased, as SCB must be de-

fined for each new display to be added. A macro by the same name is

defined for this purpose. It should be coded as follows:

label SCB NXT,ID=nn,CPSUCB4x,ETX=etx

A label is required and the currently used labeling convention

is recommended. The NXT operand should be used to generate any new

SCB. The ID operand specifies the address identifier widely mentioned

throughout this thesis; is corresponds to the identifier of the J-connec-

tion on the back of the CC-72 where the new display is attached. The

CPSUCB operand specifies the CHAT-port to be used in the conduit as

described in Chapter 7. The ETX operand specifies the hexadecimal code

for the ETX control character in use at the display. This operand may

be omitted and 03 will be assumed. (One old display used 13.) The CPSUCB

operand may also be omitted in which case 00 is assumed.

The current SCBs are also defined by macro and are located in the

210

Name Current Value

NUMCC30S 6

MAXFAIL 7

CMAXLEN 20

RMAXLEN 90

MAXDATAL 80

Table 9.1 Parameters in GENPARM

211

ROOTCAI source deck which includes the COMN macro defining the Monitor

control storage and the TWXSCB (which also uses a variant of this macro).

Place the new SCB in their logical order with respect to the current

ones. Tha. TWXSCB must be the last SCB in the deck. (Note: A version

of the SCB macro exists for generating the SCB DSECT--simply code "SCB D.")

The other parameters in Table 9.1 probably need never be changed.

MAXFAIL specifies the maximum I/O failure threshold while the remaining

parameters determine the Teletype buffering constraints in MTWX (see

Chapter 6). The curreatly defined values appear quite satisfactory.

(Aside: Actually, the Teletype support has an error threshold different

from MAXFAIL, which MIOS uses. In fact, two are parameterized: One is

defined for use by the Teletype appendages; the other, by MTWX. This is

for inner- and outer-error loop ccntrol and the author does not recommend

changing them. They are MAXERR and MAXAPERR, assembled only in MTWX.)

212

STORAGE REQUIREMENTS

Table 9.2 lists the true core usage by the various components

jointly referred to as CHAT Monitor support in this thesis (with the

Acceptance Test "globule" thrown in for good measure). All except OLTRST

are coded in assembler language.

Table 9.3 lists the CHAT region requirements for residence of the

CHAT Monitor load modules. Discrepancies are due to OS/360's 2K-block

allocation.

213

Initialization Code

MIDF 108

MSSINIT 502

MIOSINIT 1605

MTWXINIT 252

Resident Code

MSS 2072
MIOS1 6024

MTWX 2632

MTOC (B3] 1024

£FCSECT 2568

Conduit 2176

Monitor Control Storage

COMN 2746
SCBs 128.N

TWXSCB2 328

Resident with Sub task Modules

/FNTRYS 176
IFNTRYAS (B3] 312

IFNTWXS 112

OLNTRYS 696

Others

OLTEST (PL/I) 56,200

CHAT SVCs (B33 See (B33
Acceptance Test 5656 (Not in CHAT)

'Includes the display buffer

2lncludes the Teletype buffers

Table 9.2 Storage Usage

214

MSS+MI0S+MTWX+IFCSECT+MTOC 16K

Control Storage 8) 41t

Subpool 0 2K

Subpool 252 2K

Abend Dump {Disk only) 2K

Total 26K

Table 9.3 CHAT Monitor Load Module in the Region

REFERENCES

[fil] Anderson, R. H., and Farber, D. J. Extensions to the PL/I
Language for Interactive Computes; Graphics. The Rand
Corporation, RM-6028-ARPA, Santa Monica.(January 1970).

[B].] Balzer, R. 101. Ports - -A Method for Dynamic Interprogram Communi-
cation and Job Control. The Rand Corporation, R-605-ARPA,
Santa Monica (August 1971).

[B2] Beyer, William F., III, Black, Sylvia S., Hamlin, Griffith A., Jr.,
Mailliard, Margaret A., and Wright, William V. Pikaplot--
Laboratory Project Final Report for Computer Science 101.
University of North Carolina at Chapel Hill (May 1969).

[B3] Blair, William H. Master's Thesis. UniVersity of North
Carolina at Chapel Hill (In preparation).

1B4] Brownlee, Edward H., Jr., PAMELA: An Interactive Assembler
System for the IBM/360 Computer. Master's Thesis. University of
North Carolina at Chapel Hill, 1970.

[C1] Carmody, S., Gross, W., Nelson, T. H., Rice, D., and van Dam, A.
A Hypertext Editing System for the System/360. Pertinent Concepts
in Computer Graphics, Faiman, M. and Nievergelt, J. (Eds.).

University of Illinois Press, Urbana, 1969, 291-330.

[C2] Computer Communications, Incorporated. CC-30 Communications
Station Reference Manual. CCI, Inglewood, California, 1968.

[C3] Computer Communications, Incorporated. CC-30 Installation
Procedures Guide. CCI, Inglewood, California, 1968.

[C4] Computer Communications, Incorporated. CC-7012/CC-72/CC-30
Communications System Programming Manual. CCI, Inglewood,
California, 1968.

[C5] Computer Communications, Incorporated. CC-7012 Channel Adapter
Reference Manual. CCI, Inglewood, California, 1968.

[C6] Computer Communications, Incorporated. CC-72 Multiplexer
Reference Manual. CCI, Inglewood, California, 1968.

[C7] Conway, Melvin E. Design of a Separable Transition-Diagram
Compiler. Communications of the Association for Computing
Machinery 6,7 (July 1963), 396-408.

[D1]. Denning, P. J. Third Generation Computer Systems. Computing,
Surveys 3,4 (December 1971), 175-216.

[D2]

[D3]

[F1]

[G1]

[G2]

[11]

[12]

[I3].

[14]

[IS]

[16]

[17]

[I8]

[19]

[110]

216

Dennis, J. B., and Van Horn, E. G. Programming Semantics for
Multiprogrammed Computations. Communications of the Association
for Computing Machinery 9, 3 (March 1966), 143-155.

Dijkstra, E. W. The Structure of the "THE" Multiprogramming
System. Communications of the Association for Computing
Machinery, 11, 5 (May 1968), 341-346.

Freeman, D. N., and Pearson, R. R. Efficiency vs. Responsiveness
in a Multiple-Services Computer Facility. Proceedings of the
Association for Computing Machinery 23rd National Conference.
Association for Computing Machinery, New York, 1968, 25-34B.

Grant, Charles A. Command Communication between Processes.
Ph.D. Dissertation. University of California, Berkeley, 1971.

Gwynn, J. W. CRT Terminal Access from High-Level Languages.
1972 Society for Information Displays International Symposium
Digest of Technical Papers, Volume 3, Society for Information
Displays, 1972, 46-47.

IBM Corporation. Conversational Programming System (CPS)
Terminal User's Manual. IBM Form GH20-0758.

IBM CorpOration. IBM System/360 Operating System: Basic
Telecommunications Access Method. IBM Form GC30-2004.

IBM Corporation. IBM System/360 Operating System: Concepts
and Facilities.. IBM Form C28-6535.

IBM Corporation. IBM System/360 Operating System: Supervisor
and Data Management Macro Instructions. IBM Form GC28-6647.

IBM Corporation. IBM System/360 Operating System: Supervisor and
Data Management Services. IBM Form GC28-6646.

IBM Corporation. IBM System/360 Operating System: System Control
Blocks. IBM Form GC28-6628.

IBM Corporation. IBM System/360 Operating System: System
Programmer's Guide. IBM Form GC28-6550.

IBM Corporation. Introduction to the Real-Time Monitor (ETM).
IBM Form GH20-0824.

IBM Corporation.
A22-6821.

IBM Corporation.
Form GC28-8201.

System/360 Principles of Operation. IBM Form

IBM System/360, PL/I Reference Manual. IBM

217

[L1] Lynch, W. C. Operating System Performance. CommunicationR of Lhe
Association for Computing Machinery 15, 7 (July 1972), 579-585.

[1411 Mudge, J. Craig. *human Factors in the Design of a Computer-
assisted Instruction System. Ph.D. Dissertation. University
of North Carolina at Chapel Hill, 1973.

[M2] Mudge, J. Craig. On Writing Reentrant Programs in PL/I. SACK

Newsletter--s Publication of the University of North Carolina
Student Chapter of the Association of Computing Machinery, Chapel
Hill (November 1971), 2-3.

[01] Oliver, Alfred. A Measurement of the Effectiveness of an inter-
active Displuj System in Teaching Numerical Analysis. Ph.D.
Dissertation. University of North Carolina at Chapel Hill, 1969.

[Si] Scherr, A. L., and Larkin, D. C. Time-sharing for OS. AFIPS
Conference Proceedings, 37, 1970 Fall Joint Computer Conference.
American Federation of Information Processing Societies Press,
Montvale, New Jersey, 1970, 113-117.

[S2] Sneeringer, James. More on Writing Reentrant Programs in PL/I.
SACM Newsletter--a Publication of the University of North Carolina
Student Chapter of the Association of Computing Machinery, Chapel
Hill (December 1971), 5-7.

(Ti] Triangle Universities Computation Center. CPS Terminal User's
Manual. TUCC Memorandum No. LS-55. January 8, 1969.

[W1] Wait, Ty. Conversion of the Hypertext Editing System from the
IBM 2250 Graphics Terminal to the CC-30 Alphanumeric Terminal.
Master's Thesis. University of North Carolina at Chapel Hill,
1972.

[W2] Weiler, P. W., Kopp, R. S., and Dorman, R. G. A Real-Time Operat-
ing System for Manned Spaceflight. IEEE Transactions on Computers
C-19, 5 (May 1970), 388-398.

D433 Wilkes, M. V. Time Sharing Computer Systems. American
Elsevier, New York, 1968.

[1,14] Witt, B. I. The Functional Structure of OS/360, Part II, Job and
Task Management. IBM System Journal 5,1 (1966), 12-29.

APPENDIX A

List of Acronyms

This appendix lists some of the more obscure acronyms that appear

in the text.

BTAM Basic Telecommunications Access Method

CCI Computer Communications, Inc.

CPS Conversational Programming System

CVT Communication Vector Table

DCB Data Control Block

ECB Event Control Block

£XCP Execute Channel Program

HASP Houston Automatic Spooling Program

HIO Halt I/O

INT Interrupt

IOB Input/Output Block

JCL Job Control Language

MIOS Monitor I/O Scheduler for displays

MSS Monitor .abtask Scheduler

MTOC Monitor Table of Contents

MTWK ".c,nitor Teletype control task

OLTEST On-Line Test

pSw Program Status Word

RTM Real-Time Monitor

219

RTOS Real-Time Operating System

SAS Station Acknowledgment Status

SCB Station Control Blof.k

SIS Station laterrupL Status

SS Short Status

STCBE Subtask TCB Element

TCB Task Control Block

TS0 Time-Sharing Option

TUCC Triangle Universities Computation Center

UCB Unit Control Block

XCTL Transfer Control

