 DOCUMENT RESUME

ED 082 488 EM 011 457

AUTHOR schultz, Gary D.;

TITLE The CHAT System: 'An 05/360 MVT Time-Sharing Subsystem
for Displays and Teletype. Technlcal Progress '
Report.

INSTITUTION North Carolina Univ., Chapel Hill. Dept. of Computer

SPONS AGENCY

Science.
National Science Foundation, Washington, D.C.

REPORT NO ONC—-TPR=~CAI-6

PUB DATE May 73 '

NOTE 225p.; Thesis submitted to the Department of Computer
Science, University of North Carolina

EDRS PRICE NF-%0.65 HC~$9.87

DESCRIPTORS Computer Programs; Input Output Devices:
*Interaction; #*Man Machine Systems; Masters Theses;
Program Descriptions; #*Systems Development; Technical
Reports; *Time Sharitg

IDENTIFIERS #*Chapel Hill Alphanumeric Terminal; CHAT; CRT Display
"Stations; 0S 360; PL I:i Teletype

ABSTRACT

The design and operation of a time-sharing moritor

are descrlbed. It runs under 0S5/360 MVT that supports multiple .

application program interaction with operators of CRT {(cathode ray
tube) display stations and of a teletype. Key. design features
discussed include: 1) an interface. allowing applicatiom programs to
be coded ir either PL/I or assemblef language; 2) use of the teletype
for: subsysten control and diagnostic purposes; and 3) a novel
interregional conduit allowing an application program runrning under
the Chapel Hill Alphanumeric Terminal (CHAT)_ monitsor to
interact--like a terminal operator--with a coaversational language
processor in another region of the 057360 installation. {(Author)

- s

FILMED FROM BEST AVAILABLE COPY

CLET

[
Wi

ED OC

University of North Carolina
at Chapel Hill

Department of Computer Science

\/\ O\ 457

ED 082488

THE CHAT SYSTEM: AN 0S/360 MVI TIME-SHARING
SUBSYSTEM FOR DISPLAYS AND TELETYPE

Gary D. Schultz

May 1973

Technical Progress Report CAI-6
to the
National Science Foundaticon

under Grant GJ-755

U.5.DEPAR TMENT OF NEALTH,
EDULATION L WELFARE
NATIOHAL (NSTITUTE oF

EOULATION

THIS DUCUMENT HaS BEEN REPRD.

OUCED EXALTLY AS RECEIVED FROM

THE PERSON OR ORGANIZATION QR IGIN.

ATING IT, POINTS OF VIEW DR OPINIDNS
- STATED DO NOT NECESSARILY REPRE.

SENT OFFICIAL NATIGNAL INSTITUTE OF

EDUCATION POSITION GR POLICY.

DEPARTMENT OF COMPUTER SCIENCE
University of North Carclina at Chapel Hlll

THE CHAT SYSTEM: AN 0S8/360 MVT TIME-SHARING
SUBSYSTEM FOR DISPLAYS AND TELETYPE

4

+

by

Gary D. Schultz

A thesis submitted to the faculty

of the University of North Carolina

at Chapel Hill in partial fulfillment

of the requirements for the degree of
. Master of Sclence in the Department

of Computer Science.

-Chapel-HiIL

1973

Approved by:

LA P9 %]\h'h‘

p ¥
Adviser

Tg%w o

E l{l\C | . . | Read,é'r

GARY DENNIS SCHULTZ. The CHAT System:
An 05/360 MVT Time-Sharing Subsystem
for Displays and Teletype. (Under
the direction of DR. FREDERICK P.
BROOKS, JR.)

This thesis describes the design and operation of a time-sharing
monitor running under 05/360 MVT that supports multiple application pro-
gram interaction with operators of CRT display stations and of a Teletype.
Some key features of the de;ign are (1) an interface allowing applica-
tion programs to be coded in either PL/I or assembler, (2) use of the
Teletype for subsystem control and diagnostic purposes, (3) a novel
interregional conduit allowing an application program running under the
CHAT monitor to interact--like a terminal operator--with a conversa-

tional language processor in another region of the 05/360 installation.

1

AC NOWLEDGMENTS

I extend my profound appreciation to William H. Blair for his
collaboration in making the CHAT System a working reality. Throughout
the two—and-a-half vears of system development, I beaefited daily from
his insights and assistance and his unrivaled dedication to quality
work. His companion thesis [B3], and the many references to it herein,
only reveal his technical contributions to the project. For his other
congributions, I thank him heartily.

I also thank J. Craig Mudge for his willingness to assist in
tasting sessions at 811 hours of day and night--sacrificing his own
scarce time to do so.

Dr. Frederick P. Brooks, Jr., gave valuable criticism and advice
on early drafts of this thesis; improving its organization, style, and
clarity. For this, the readers will perhaps thank him as much as I do.

Partial support of the project was funded by the National Science

Foundation under NSF Grant Number GJ-753.

o

TABLE OF CONTENTS

Acknowlédgments
1. . INTRODUCTION

Concerns and -Organization of the Thesis
Related Literature

2. SYSTEM OVERVIEW

Hardware Specifics
Configuration
Operation
Texrminal Usage

Organization and Functions of the Monitor
Task Structure and Control _
‘Core Layout and Intraregional Protection
Communication and Linkage

Initialization of the Region

3. THE APPLICATION PROGRAM INTERFACE

Display Usage
Controlling the Slide Projector
Writing on the Display Screen
Reading from the Display
Getting the Lightpenned Coordinates
Time and Keyboard Synchronization
Teletype Usage
CPS Access
Establishing Connection to CPS
Reading from CPS
Writing to- CPS
Interrupting CPS Activity
General Use Procedures
Exception-Condition Signalling
Writing an Application Program

4. REGION AND SUBTASK CONTROL)

" Time-Slicing
Subtask Priority Scheduling
Remarks ,on Scheduling _
Other Executive:Functions

ne

iii.

16

17
- 17
19
26
34
36
38
45
56
62
64
64
65
69
70
72
75
76
76
76
78
78
8O

82
84

87

89
96

- 102

104

5. ' DISPLAY I/0O MANAGEMENT
An Initialization Step
Waiting, Linking, and Queueing
" Insensitivity to Number of Displays
Scheduling Rule :
Servicing Attentions ’
I1/0 Initiation and Completion
Channel Programming
Completion and Posting
Hard Error Handling
Shutdown
6. TELETYPE CONSOLE SUPPORT
Detailé on Teletype Usage
Modes : T
Paper Tape
Ending a Message
Monitor Commands ,
Messages Sent to the Teletype Operator
Structure.of the Telet¥pe Support
7. THE INTERREGIONAL CONDUIT
Design of the Conduit: -Linkage and Fungtibns
Inside the Conduit . : :
Initialization and Checking
. How CPS Works '
Simqlating the Teletype
Experilence with the Conduit
.8. ON-LINE TERMINAL TEST FACILITY
Objectives and Usage -
The I/0 Interface For OLTEST
Commands -
Otitput for the LOG Command
9. FACTS AND FIGURES
 CHAT Parameters and How to Change Them
Storage Requirements
References

-Appendix A. List of Acrunyms

Apbendik.ﬁ.- Code Listings (Separate Cover)

iv

105

107
110
115
117
120
123
123
124
126
127

128

130
130
131
131
133

136

l40
143

146
153
153
161
165
176 -

177

181
183

" 193

202

208

208
212

215

218

The way to avoid the machine taking command is not to take
more and longer vacations from a life dominated by machines, or
from a machine regulatéd existence. The solution lies in finding
ways to make this zn age where humanity dominates despite the use-
fulness of machines, and to do this by making fullest use of their
convenlence.... :

...The advantages of the wachines are so obvious and so
desirable, that we tend to become, small step by small step,
seduced into ignoring the price we pay for their unthinking use. .
The emphasis here is on unthinking uge, because they all have their
good use€s. But the most careful thinking and planning is needed to
enjoy the good use of any technical contrivance without paying a
price for it in human freedom. -

Bruno Bettelhelm
The Informee Heart

CHAPTER 1: INTRODUCTION

The Chapel Hill Alphanumeric Terminal (CHAT) System is a cdmplex
of-computer-linked terminals for which access to a iibrary of inter-
active programs 1s suppérted by a time-sharing monitor operating under
05/360 MVT. The terminal complex consists of (1) a cluster of display
stapions sharing, by pfogram-controlled multiplexing, a singlehlink-to
the computer and (2) a Teletype connected by common~carrier dial-up
facilities. The program library includes a number of application
p%ogramsqcreated by studgnts and faculty of tbe University of North
Carolina Computer Science Department as part of the'Department's
research project in computef—assisted instruction (CAI). These programs
gover a variety of applications, including é gamut of student-, teacher-,
and author-controlled CAI as well as some on~line services similar tol
those present in other time-sharing systems.

Witﬁ respect to the CAT Project emphasis and intended terminal
usage, the CHAT System centers around the displdy stations, each of which
is a multicomponent unit--including keyboard and lightpen for data gntry
and fouf—color CRT and r;ndom—accéés slide projector for display of out;
put. The program library reflects this focus, with most applications
of importange and complexity being designed for intgraétién with the
displéy stations. 'Tﬁe Teletype plays anlimportant role in terms of
ramote operatof conﬁrol of'the CHAT programming subsystem——-somewhat akiﬁ

to the computer console control of the overall inpt&]lﬂ?ion multipro-

gramming system B) means of a primitive command language, the Tele-
type operator can communicate directiy w1th the CHAT Munitor for
purposes of subsystem control énd fault diagnosis. It is .also possible
to invoke an application proéram from the Teletype and, indeed, sub-
system control can be interleaveé with appiichtion program Iinteractions
if desired. ‘

Some of the application programs in the CHATIprogram library
-antedate the existence of the CHAT System, having undergone interface
and/or device-adaptive changes prior to inélusion in the syétem.
Brownlee's'PAMEL& [B4], an interactive assembler for theISystemIBGO
assembler ianguage, was originally written for a staédalone CC—SO display
terminzl--the same display used in the CHAT cluster—-but using a disﬁlay -
IfO interface entirely differént from ihat presented by the CHAT Mcnitor.
Pikaplot [B2)] was adapted for a standalone CC-30 from Oliver's numerical
analysis laboratory simulator [01] for the IBM ﬁ250 graphics-display.
Pikaplot exploits the slide projector to capture some of the power of
the 2250's graphics facilit§ and originally used a display 1/0 interface
diffe?ent from both PAMELA's aﬁd CHAT's. Hypertext [Cl] , Brown Uni-~
versity's text editiﬁg system, also for the 2250; ﬁas adapted by Wait
[W1] for the CHAT System displays directly.

0f thé.major nembers of the program lihrary, only Mudge's DIAL
- [M1] was developed exclusively with the CHAT System in mind. DIAL
iz a total computer—administefed progrém instructign (cAPT) system;
iﬁcluding authof“que, studeﬁt modé, its own comprehensive file manage-~
-ment, record-keeping, and faciliiies for:checkpoint/réstart. DIAL's
author‘que allows for consi&grable enlargement of the CHAT library:

authors can- create an ever-expanding number of authors' programs that

3

~can be executed on the "DIAL machinéé in student mode for CAL purposes.
Another member of the iibrary that was developed exclusively for
the CHAT System is a cléver program by Blair [Bﬂi that exploits an
hinterregional conduit" facility of the CﬁAE Monitor. This f;ciligy,
intendedhprimarily to enhénce the power of DIAL, is exploited by Blaif's‘
program to allow interaction-between the display terminals and theIIBM
teletypewriter-oriented Conversational Programming System (CPS) {[Il], an
interactive PL/I-dialect language processor residing in a separate region
from the CHAT érogramming sysfem. -
- The CHAT Sysﬁem has brought these severél applicétions together’
into a single subsyspem library. Thé development of a time-sharing suﬁ—'
_sYstem'monitor and a commﬁn terminal I/0 interface éuppo?ts both multi-

application operation and multiterminal aqéess within a single region

of an 0S/360 MVT multiprograwming installationm.

CONCERNS AND ORGANIZATION OF THE THESIS

‘The primary concerns of this thesis are the design and facilities
of the CHAT Monitor and the dynamics of the CHAT System operation. With
the'exception of one application program, OLTEST (Qp~£ine igg&)——a diag~
nostic extension of the Monitor-—-little will be said here concerning the
details of the‘ﬁembers-of the CHAT subsystem application library; these
are documented in the previously Eited references. Frequently, the
application programs are referred to only generically as application
subtasks-~-reflecting their subo;dinate role in the task-control hierarchy
within the CHAT programming region of the 05/360 instal;ation. The CHAT
Monitor has no scheduling~ or control-bias or an& other sensitivity based
upon the particular application program(s) in é#ecutien.

The basic concerns of the thesis aré; (1) the facilities offered
by the Monitor, including the interfaces wisible to terminal operators
and application programs, the manageﬁent of the terminal and execution-
time resources, and the mechanisms proﬁided for CHAT_subsystem control;
(2) the internal érogramming structure of the Monitor; and (3) the phi-
losophy and constraints influencing the Monitor design. In the follow—
ing paragraphs we elaborate somewhat on these'concégts and describe their
relationships to the organizatién of the remaining chapters of the the-
sis.

The Monitor acts as the intermediary for all communication ex-
changes betWeen terminal operators and application programs. Iq this
role, the Monitor provides an interféce to each side that hides the com— -
plicated control mechanisms involved. Chapter 3 describes the PL/I appli-

cation program interface to the CHAT System resources--display.equipment,

Teletype, CPS processing services. A semantically identical and
usyntactically similar (identical except for minor variations due to un-
-avdidable language differences) assenbler macro interface for assembler-
coded application pfograms is described by Blair [B3]; common Monitor
procedures are invoked from both languages. The interface provides a
high-levellappearance of the resources to the application program, hiding
the complex multistep mechanisms involved iu contrdl of the equipment
“and in System/360 I/0 programming.

The interféce to the terminal operator, because of its unobtrusive-
ness, is less explicit. Chapter 2 (see “Hardware Specifics") describes
the simple terminal operator k;yboard usage required to send data from
either a display station or the Teletype to an application program.
While the idea was to simplify display station keyboard operation as
much as pqssible (it is function-key ridden, éllowing the possibility of
ovérly low~level operator control of eguipment oﬁerétion); the idea for
the Teletype was to enhance its caéability. Thus, certain keys on the
Teletype are given special meaning for line- and character-editing
purposes.

Taken tpgethef, Chapters 2 and 3 show a certain ihtendéd symmetry
in the design of the terminal and application 1nterfacés. The applica-
tion interface resembles operator keyboard conventions in its provisions
for (display) cursor control, message formattiug, and lack of concern
for primitive non—data functiﬁns. Both interfaces feature Monitor-re-
porting of pathological circumstances, such as application program fail-
ures ‘(via "proctor messages" to the terminals) and equipment failures
(vi; "on-unit" condition-signalling to the application programs). Each

side 1s given aid related to tiﬁe-lapse abnormalities at the other side

of which the Monitor is not aware. For the application interface, pro-
vision is made for allowing interval time-outs of program read-operations,
whereupon the application program is reactivated and free to try a new
operation. ‘At the terminal-side, abnormal time lapses are humanly evi-
'dent; here the Monitor allows certaiﬁ operator cecmventions such as
"extra-interrupts” and operator-controlled aborting of the application
program to test for or to eliminate unresponsive, looping programs.
Finally, each interface provides a-view of one member at the other end:
just as an operator deals only with one application program {(at a time),
so each application program 1s coded to "'see" just a single operator--
even though a single appiication (via Monitor usage of 08/360 multi-
taskiné} may be serving many operators.

In the multiterminal/multiapplication environment of the CHAT Sys—

tem, resource multiplexing 1s of key importance in determining the re-

sponsiﬁeness of the CHAT System frém the viewpoint of the terminal oper-
ators. The two resources that require multiplexing, or ﬁse—sharing, are
the single link connecting the display cluster to the computer and exe-
‘cutiqn-time on the central processing unit (CPU). Chapter 2 and Chapter
5 describe the display muitiplexing, while Chapter 4 describes the Moni-
tor's sﬁaring of CPU~time among the application subpasks. The 1attgr
multiplexing involves two types of scheduling by the Monitor: en bloc
application schedﬁling inlagcordance with a formula edicted by the multi-
- programming installatioh manager (for CHAT- vs. other-region use of the
CPU) and sharing among CHAT app}ication subtaskg of the time—slice allot-

ted to CHAT by the first scheduling formula,

Subsystem control refers to console-like control of the CHAT sub-

system for such capabilities as region-shutdown, subtask aborfing, and

fault diagnosis. The Teletype serves as the subsystem console for these
purposes, Chapter 6 describes the use of the Teletype for this role,
while Chapter 8 describes an application program invokable from the
Teletype which greatly enmhances the on-line testing capability for
equipment diagnosis.

The internal programming structure of the Monitor is outlined in

Chapter 2 and detailed in Chapters 4-8, where tiie separate components

are discussed individually. Chapter 2 gives an ovecview of the dynamics
of subsystem operation--how the components of the Monitor communicate
and work together and how application subtasks are linked to Monitor-
controlled resources. The later chapters deal more Ffully with the
functions of the sepavate components acting in isolation from each other.

Insofar as design constraints and design philosophy are concerned,

it is difficult to know, much less to expose, all facets of these influ-
ences on the design of a system. Frequently, a designer's initial theo-
retical sense of what constrains a design (restrictively) or emhances it,
changes after further experience and practice. Some constraints can be
imagined, while certain biases are not even recognized--simply due to
muddle~headedness or lack of perspective on the part cf the designer.
Such faults are certainly present in the design and exposition of
the CHAT Monitor. (But then Computer Science, itself, is more engineer-
ing than science!) The attempt througlout the thesis is to expose vhat
the author recognized zs motivating the design and as impinging on design
alternatives. Here, we cite only two major factors affecting the design.
The major constraint on the CHAT Monitor design, apart from the
equipment itself, was the necessity to run within a single region of a

multiprogramming installation controlled by 08/360 MVT. This meant that

CHAT requirements had to be compatible with the broader installation
perspective on system "'z, ge, but at the same time gave CHAT the power-
ful multitasking capabilities provided by the MyT-version of 08/360
to achieve its design objectives. Chapter 2 weighs some of the advan-
tages and shortcomings of this dual-faceted constraint, while later
chapters frequently reiterate its consequencen.

A second major factor, more a bias than a constraint, was that the
CHAT System operation and design must exhibit the quality and robustness
of a production system. No formal or rigorous measure of the depree to
which CHAT meets a production standard is possible, since the standard
itself is wholly subjective. Some of the effects of this standard on
the CHAT design include (1) insulation of the CHAT Monitor from misuse
or abuse of the terminal and application interfaces and protection of
one application program from another, {2) exhaustive analysis and retry
of all transient and "hard"” failures in equipment operation, (3) logging
and reporting {(where useful) of abnormal conditions, (4) diagnostic
services geared to abnormal stat:s of the equipment, (3) long-life con-
siderations: design features avoiding control program release-depend-
encies and promoting ease of extension for obviously anticipated growth
of installation equipment, ard (6) efficient use of installation re-
sources, most especially main sStorage. Various other implications could
be cited but these should suffice to show the fundamental application of

the idea. The author's choice of antonym for proiuction is experimental

{(or short—-term).
With this introduction to the concerns and organization of the the=-
sis, four reading strategies are suggested for the remainder of the the-

sis., The application proprammer interested in writing a program to run

9
on CHAT should read Chapters 2 and 3. The CHAT System proctor should
read Chapters 2, 6, and 8 to learn all aspects of terminal and command

usage (and also to find out what proctor means)., Theé interested reader.

should read the entire thesis. The systems proprammer inheriting respon-

sibility for major extensions, revisions, or maintenance of the CHAT

Monitor should be an interested reader but, in addition, should thoroughly

POre over the codellistinga issued under separate cover as an appendix

to the thesis. For all reading strategies, where Blair'slthesis [B3] is

referenced aﬁd is necéssary tro full understanding, it should be consulted.
As ; final recommendation, when the use of acronyms becomes too

dense, consult Appendix A for the meaning of those less commonly used and

most easily'fqrgotten.

10

RELATED LITERATURE

A number of references are recommended to readers of this thesis—-
either because they directly supplement or illuminate the description or
because they discuss similar or alternative versions of CHAT design
features.

For background purposes, references on 0S/360 are useful: the
terminology of this thesis derives from IBM usage and frequent mention
is made of 0S/360 interfaces and services. Witt's articl:> [W4] and the
IBM concepts manual [I3] are excellent introductions. IBM publishes a
lavge number of manuals on 0S/380--too many to cite here; [I4] and [I5}
are sufficient to learn more about the specific 0S5/360 supervisory serv-
ices and macro instructions mentioned in the thesis, while {16} and [I7}
provide more than enough exposure to othar aspects of 0S/360 to satisfy
the readers.

An application programmer reading Chapter 3 will probably already
be acquainted with the IBM reference manual on the PL/I language [I10].
Similarly, to use the programming interface for access to CPS or to
berter understand the interregional conduit, the reader should know the
contents of the IBM [Il1] or TUCC [Tl] veferences.

Only the systems programmer inheriting responsibility for the CHAT
Monitor will be interested in the manufacturer manuals on the display
equipment [C2}-[C6}. The material ("Hardware Specifics") in Chapter 2
and hands-on experience at a display station should satisfy the needs
of any other reader.

Certain articles are of great "cultural” value, although not

directly related to the CHAT programming epnvironment. Depnis and Van Horn

11

[D2} pz.vide alternative terminology (widely used outside of IBM) for
concepts similar to those in 05/360--especially with regard to muiti-
tasking. Indeed some of their generalizations of the task (“process”)
concept surpass those implemented in 0S8/360 MVT--a matter further dis-
cussed in Chapter 2.

Denning's fine article {D1] on modern control program design is &
rich source o0f tutorial and survey material on the history, trends, and
basic concerns of existing systems. ¢ is useful reading in order to
place 05/360 and, indeed, CHAT itself, #n - ~oper perspective vith regard
to other systems. One particular idea of Denning's (and others) is to
characterize the combined hardware/software interface visible to a pro-
gram as a machine.

An idea due to Dijkstra [D3] involving layering, or onion-skin
design, provides an interesting modification of this concept. Dijkstra
describ = a design of a control program whereupon the basic hardware of
a computing system is completely enclosed by the innermost or most primi-
-tive layer of the control program. This layer would in turn present for
all capabilitieé below ir a completely new, possibly extended or even
difrerent, interface to the next layer in tie onion above it. Hence
each successive layer presente, in gimilar fashion, a totral, new machine.
The concept 1s shown by Dijkstra ro give added modularity of design,
testing, and control and ro promote debugging and proof of program
correctness.

Neither CHAT nor 0S/360, itself, exhib*ts such layering. 08/260 and
System/360 together represent a machine in Denning's sense, but 05/360
is not a total layer for the System/360. The CHAT Monitor also is not

a layer in Dijkstra’s sense although <he combination System/360, 05/360,

12

and the CHAT Monitor comprises a machine. The CHAT Monitor does form a
layer over the CHAT System equipment and deoes provide some layered con-—
trol (subtask management)-—-invisible to applications--but application
programs have completely free and unmonitored access directly to 05/360
and System/360 facilities. Two disadvantages of layering are obvious:
each layer requires increasing progr§mming ef fort and the time to cioss
layers may inhibit performance. (One measure of layering performance is
that functions in a lower, more primitive, layer should be accomplishable
in a time negligible with respect to the time scale in the next layer
above [L1].) The first disadvantage determined CHAT's layer-lessness.

In later chapters of this thesis, comparisons relating to program
design and control program usage are made among CHAT and various IBM-
released interactive programming systems built on 0S/360. <CpPS [Il] is
an interpretive system offering interactive support for teletypewriters
and a language intérface which is a dialect of PL/I. While CPS, like
other interpretive systems, does represent a clgsed machine interface,
it does not fully layer all capabilities helow it—-some facilities are
simply not available to its interface users. The eal-Time Operating
System (RT0S) {W2] and the Time-Sharing Option (TSO) [S1] are nonlayered
05/360 extensions built on, respectively, pre-release and late versioms
of MVT. These are discussed further in Chapter 2,

Another aspect of the CHAT Monitor worth comparing with other
system designs is the means provided foy terminal- and CPS-access. In
the case of terminal-access, CHAT was faced with two design problems:
(1) how to program its own terminal control logic (at the assembler
language level) using 0S8/360 and (2) what form of high-level interface

to present application programs, which were intend.d to be coded pri-

13

marily in PL/I.

The Monitor support for the CCI display equipment had to be bnilt
on the 08/360 Execute-Channel-Irogram (EXCP) interface [I4] [17] since
CCI offe*ed no support package and the IBM support for its own manu-
factured displaya was not usable because of fundamental differences
in cdevice operation. In the case of the Teletype, the IBM access method
BTAM [I2] does provide support but this was considered inadequate and
is not used by the CHAT Monitor-—EXCP is.

The form of the high~level interface for application programs was
designed without kuowledge of other systems. No display-access support
exists in the IBM PL/I language definition and although CCI displays
have been widely sold, no literature by CCI customers has been located.

Gwynn [G2] has suggested that CRT terminal access be given more
actention in high-level language design and has briefly reported on the
interfaces developed at his own institution, Stanford University, and
at California Institute of Techﬁology for COBOL and FORTRAN, respec-
tively. The COBOL support is for alphanumeric CRT displays which are

polled, while the FORTRAN support is for interrupt-driven graphics

terminals. The interfaces descrihed by Gwynn appear to be similar
syntactically and semantically to that offered by CHAT for PL/I. 1In
each case, the interfaces use the call-mechanisms of the languages to
invoke the terminal-access support.

Anderson and Farber [Al] report an interesting system developed at
The Rand Corporation in which their POGO graphics—control support is
combined with a Rand variant of the IBM CPS syetem [I1]. They extend
the CPS (a PL/1 dialect) language interface definition rather than use

the call-mechanism to give graphics-terminal access to the CPS pro-

14

grammer. They extend the CPS language by adding: (1) a statement for
entering a "construction-mode’ whereby POGO facilities are madec avail-
able, (2) more options in the GET and PUT statements, and {(3), an addi-
tional ON-condition sensitive to lightpen or stylus actions.

1his idea of extending a language definition involves changes to
the Interpreter and implies continued maintenance of the language from
release to release. For CHAT, this approach would entail extensicn and
continued maintenance of the PL/I compiler in use-~an undesirable re-
quirement. The idea, however, of building application support on a
facility such as CPS, an already existing time-sharing system, has
merit--if che language facilities are adequate for the applications'
broader reguirements.

The CHAT Monitor feature allowing application program access to the
CPS program in another region of the multiprogramming installation can
also be compared with other schemes descrihed in the literature. Grant
[G1], although he did not build his proposed mechanisms, describes in
his Ph.D. dissertation the general uses for and design of a 'psuedo-tele-
type' interface to join communicating programs. The interface he pro~
poses is similar to the CHAT interface described in Chapter 3 ("CPS
Access"), but he does not provide explicitly for such CHAT-implemented
mechanisms as time-lapse signals on read operations, signalling and
clean-up operations for one-program-down conditions, or the full capa-
bility of the CHAT attention ("ATNCPS") fac<lity. The internal mechanism
for controlling the communication--akin to the CHAT interregional conduit
described in Chapter 7--Grant terms a stream modulator. One of the
applications he considers ''grandiose’ is precisely what the CHAT conduit

allows--namely for a CHAT application program to enter, have compiled,

15

and execute Programs on CPS and then get back output from such programs.
Balzer [Bl] describes a gineralization he calls ports, an out-
growth of his work on actual mechanisms constructed at the Rand Corpora-
tiot to run on 0S/350 and on the Rand ISPL interactive system (akin io
CP8). He defines an interface again resembling CHAT'sS but omits (at
least in his discusgion) the capabilities that we mentioned Grant omitted.
In his 0S/360 version, Balzer used the 0S/360 1/0 facilities, simply
changing a routine address in a system control block referred to in the
I/0 instruction. This caused a procedure he called a joiner to be in-
voked at the time of I/0 macro execution, rather than the system 1/0
control. In ISPL, Balzer geperalizes the interface to give a program a
common port-representation for I/0 devices, files, communicating programs,
and the supervisor itself, His internal mechanism employs a slight vyari-
ation of Dijkstra's so-called P- and V-semapliores [D3] for control pur-

poses.,

CHAPTER 2: SYSTEM OVERVIEW

This chapter deals with the CHAT System--both hardware and soft-
ware aspects--as a whole. Besldes describing the hardware configuration
and programming organization and defining the general dispersion of
function among components and modules, the discussion includes a de-
tailed elaboration of the dynamics, interfaces, and communication proto-
cols involved in the operation of the system. These latter concerns are
an inevitable source of complexity for any interactive system involving
stochastic events, multilevel control, and asynchronous parallel opera-
tion. They are stressed in the overview to pgilve the reader a clearer
background sense of overall system activity when confronted In subse-
quent chapters with more detailed accounts of specific functions and
modules.

The intent 1s not simply to describe the design features, but also
to reflect on the reasons for and constraints on various design decisions.
Where appropriate, alternative methods and other existing systems are

discussed.

17

HARDWARE SPECIFICS

This section describes the CHAT System hardware conriguration, the
operational characteristics of the terminal equipment, and tlie manner in

which the terminals are used by an operator.

Configuration: Figure 2.1 shows the CHAT System hardware configuration.

The central processing unit is an IBM System/360 Model 75 with 256K
bytes of fast core and 1024K bytes of large capacity storage (LCS). The
terminal equipment includes a Teletype Model 33 with paper-tape perfora-
tor and reader, connected by common—carrier dial-up facilities to an IBM
2701 Data Adapter Unit, and a display complex consisting of the follow-
ing components: (1) a CC-?OlZ channel adapter, (2) a CC-72 multiplexeg!
and (3) a ciuster,of CC-30 display stations.

| Each CC-30 display station is a multicomponent unit having a CC-301
controller with 1024 bytes of core storage that performs local device
control {character generation, display refresh, buffer storage, cursor
control, etc.). A four-color (red, green, yellow, blue) CRT, a light
pen, and an alphanumeric keyboard are connected to each CC-301. 1In éd—
dition, .each CC-301 has an output channel to which a Kodak Carousel
RA-950 random-access slide projectqr is attached. Except for the slide
squipment, all display components are produced by Computer Communications
Incorporated (CCI). -
. The CC-7012 and CC~72 are connected by a 50 kilobit/second "long
1ine" cable. An earlier version of the CHAT System had the CC-7012 and
CC-72 connected by means of common-carrier leased-line facilities (in-

cluding AT&T 201Bl data sets) operating at 2400 bits per second. The

System/360
Model 75
with LCS

Multiplexor Channel

Common Carrier

1/0 Devices-

e Princer

*Card Reader/
Punch

*Disks

« Tapes

Data = gromei) g
2701 Set Dial-up Equipment

SOKb
CC-7012 eyt (72

Long Line // Telecype

r cC-301 CC-301
|

CcC-30 { D

N o

Figure 2.1 CHAT System Configuration

497

19

CPU was then located at the Triangle Universities Computation Center
{TuCC), allocation some twelve miles from the multiplexer. Reloca-
tion of the CPU to the UNC ComputationlcencEr on the UNC cémpus per-.
mi;ted reconfiguration to the simpler and higher performance cabling.
Significantly, apart from a minor programming accommodation for the in-
crease in data transmission speed, the programming support was insensi-
Five to this change in linkage.

During development of the CHAT Monitor thereIWEre five display sta-
tions connected to the CC-72 multiplexer; curréntly, this number 1s being
increased to ten. The multiplexer has a maximum capacity for thirty-two
such statians. The CHAT Monitor is coded' such-that minimal repara-
meterization and simple reassembly suffice to accommodate an increase 1n

the number of attached displays.

Cperation: The display complex is novel and complicated in operation
and less familiar to the general reader than the widely used Teletype.

- Qur concern is not with the myriad details that fiil several manu-
facturer's manuals [C2]-[C6] but with the éeneral éspécts that have in-
fluenced the Monitor design. In particulér, we emphasize here the link
multiplexing, with details of display Statiqn device control deferred
to later sections.

The feature of forémost significaqce is_tﬁe sharing of a single
path‘to the computer by the various display stations. The operation of
the link is similar to that of a telecommunications facility, ;1Eﬁddéh
here no common-carrier equipmenE is (now) involved. The link is used
for both data tfénsmission and device control, where orders to and

status returned from the equipment outboard from the CC-7012 channel

20
adapter are encoded as characters either isolated from, framing, or em-
bedded in-the regular déta stream. The link operates serial-by-bit and
clock-synchronous with a half-duplex protocol--the latter meaning that
two-way traffic proceeds by al;ernation rather than simultaneously.

Link-sharing and various specialized multipoint attachments are by
‘no means novel-in computey~communications systems.: However, it is a
good deal more common in timefsharing or interactive systems for each
remote station to be attached, frequently by dial-up facilities, to a
separate multiplexor channel port dedicated to that terminal aloﬂe.
Where link-sharing is used, it typically involves a terminal polling
discipline less elegant than that employed in the CCI complex described
here and also less suitable for the particular CHAT environment of low-
density, high—speedltraffic,

Where individual stations. are all attached through deﬁicated ports,
the programming problem is esseptially entirely in muitiplexing; or
time-sharing, the CPU to effect the appearance of response imﬁediacy S0
crucial to.an interactive system. hEach station is easily identified
through its individual port address in which all higher-level control
blocks #ve rooted. Concurrency and independence of 1/0 for the separate
stations are essentially total.

In the CHAT System configuration ;here is only one port address for
the display complex and, particularly at the iine SPeéd of the original ’
configuration on which the Monitor waé devélaped, the I1/0 for the sép-
arate display statioﬁs may be interfering. Thus, two new fésponsibilities,
not found in the dedicated-port systems, are fmposed ‘on ihe CHAT Monitor.

" The firs; is to provide added support to correctly associate aﬁ applica-

tion with its interacting station. On output this inveolves a&ditional

addressing so that appropriate routing can occur at the remote multi-
plexer: on input, additional control exchanges are required to identify
interrupting ready stations--an identification no longer implied by the
local port address.

The second responsibility concerns the multiplexing of link usage
for fair and efficient sharing among the various active display stations.
This 1is quite as complex as the algorithm for multiplexing the CPU X
resource~-involving queueiug oi delayed requests, scheduling according
to priorities related to botit transmission direction and operation type,
and providing various faciiities for continual two-way monitoring of the
data link. In addition, the various "boxes" (channel adapter, multi-
plexer, controller, and device) in the path between source and sink are
all quite visible to the Monitor and must be primed and controlled
through a mixture of commands and orders differentiated by box--where
commands refer to channel program control of the /360 channel and
CC-7012 and orders, to control characters sent to the remote boxes.

The CCI equipment is remarkably flexible in the latitude allowed
to the programmer in defining & data link control protocol for reliable
and orderly exchange of data, orders, and status over the transmission
line. This is a consequence of the fact that the exchange protocrl is
almost entirely order~driven by the computer program. Hard-wired auto-
matic "responses" such as are typically found in "standard" cata link
control protocols are absent from this design. Tor this reawscn it is
almost assuredly true that no two programmers would devise identical
procedures for controlling the data link. Nevertheless, the CCI equip-
ment 1s clearly optimized for the programmer to make use of the

attention mechanism for terminal soliciting of input servicing; although,

at some expense of the CPU resource, the equipment is capable of being

22

programmed as a pure polling system. The CHAT Monitor takes full ad-
vantage of the attention mechanism but, for priority reasons, does some
polling as well,.

"State" control and register accessing are both important in pro-
gramming the attention mechanism. The CC-7012 channel adapter has two

states: attention—enabled and attention-disabled. In the enabled state,

the CC-7012 will react to the arrival of a specilal character (ENQ--the
"inquiry"” character) from the remote multiplexer by signalling the
System/360 channel status word (CSW) attention status [I9]; this is done
despite the absence of a channel program command pending on the multi-
plexor channel. To activate this state, or the disabled state, a pre-
viously issued chamnel command must have been executed by the adapter.
(Actually, there is another "enakled" adapter-state that is always
activated by the Monitor in ¢onjunction with the ENQ-enabled state:
this is the enabled-for-any-character state. The need for this stems
from real-world vagaries: an ENQ can be scrambled by stochastic noise
on the physical link and thus could arrive in unrecognizable condition.
Additional "sense" information distinguishes the two events. This de-
tail illustrates that some operational characteristics of any real
system are outside the scope of an overview.)

Because the link is half-duplex in operation, there must be no
danger of the remote multiplexer sending an inquiry character when the
computer is u-ing the link for an output operation, for this would
scramble both signals and neither would be recognized. Hence, the pro-
gram can disable or ¢nable the multiplexar, with respect to its send-
ing ENQ, by transmitting an appropriate order to set its state,

The CC-72 has three registers that can be read or reset under

23

computer program control: a 6-bit short status (8S) register, a 32-bic
station acknowledgment status {SAS) register, and a stacion interrupt
status register having tro ranks (SIS-1, SIS-2), each of which is 32
bits. The SS register has only two bits of interest to the program:

one bit indicating a bit is "on" in tiie SAS register, another bit indi-
cating a bit is on in SIS~Z. Other bits in the SS reglster are of
interest to a technician using an electronic strobe for equipment diag-
nosis. The SAS register has 2 bit to represent each of the maximum (32)
number of statiops that can be attached to the multiplexer. FEvery
message sent over the link is character- and block-parity checked. If no
parity error is detected, a station receiving the message causes its

bit in the SAS to be turned on. {This means the SAS must be cleared
prior to sending the message since the SAS is unchanged from its pre-
vious gtatus on receipt of a bad-parity message.) Reading the SAS
register is costly (it is encoded as six characters for transmission)
and unnecessary if multiple-station messages are not transmitted with-
out intervening line turnarounds (which they are not under the CHAT
Monitor support). Instead, the SS register (encoded as a single charac~-
ter) may alone be read to determine if the prevdously cleared SAS regis-
ter is non-zero after message transmissior-

The SIS-1 and SIS-2 register-ranks participate in the attention
mechanism. Here again each bit in the rank represents a station. When
a station operator strikus the interrupt (INT) key on the keyboard, a
bit is set in SIS-2. Whenever the multiplexer is enabled, a2 non-zero
S15-2 causes it to send the ENQ over the transmission line, after which
it disables itself. The computer program, provided the adapter is en-

abled, receives the attention status signal, and transmits an order for

24

the multiplexer to send the result (a 6~character encoded sequence) of
(inclusive) OR-inrg SIS-1 and SIS~2. This order has the gide effects of
also storing the result in SIS-1 (for possible retransmigsion) and
clearing §IS-2., If the computer receives the result error-free, all
stations now ready to be serviced can be identified and the SIS-1 rank
can be cleared by another order.

Besides the foregoing basic attention rechanism, there are a few
nuances of equipment operation. Earlier it was stated that the 85
register serves to provide acknowledgment status for message receipt at
a display station; a similar need exists for orders sent to the multi-
plexer. In particular, it is obvious that the computer program requires
assurance that an order to enable the multiplexer has been ex:cuted.
This is particularly compelling because there is no way for the multi-
Plexer to be enabled by an action at the remote site-—-an obvious hard-
ware designh flaw. To meet this requirement, uyse is made of a convenient
capability of the multiplexer: the ability to receive orders together
inte a single parity-checked character. The Monitor simply simulta-
necusly orders enabling with reading of th- S8 register. Receipt of the
85 is prima facie evidence that the multiplexer is enabled—-examination
of the 585 contents is unnecessary (and irrelevant).

In general, various race conditions and frequent transient errors
are indigenous to the CHAT environment; it is, after all, an inter-
active system with numerous components. And the technology, particu~
larly in the earlier configuration employing common-carrier linkage, is
error prone. A good example of a race condition concerns, again, the
attentlion mechanism: an order to disable the multiplexer can be .ent at

the sane time the multiplexer, yet enabled, is sending an inquiry signal.

This contention state is a logical, though rare, conBrgunee of e prod (e
aol design and presents no great difflculty. ‘rhe mnlLIplunvr. anoped e
earlier, disables itself aftecr scnding ENQ, holdlIng Iun repglntecn [ooael .
This provides the necessary-harQwarc cooperatlon vo pravent coul Inved
contention. Atlthe computer end, the transmlt ohurnLJnn wlil Jlkely
end With unsatisfactory response gtatus indleated, thaeruby 1nvuktnu
Monitor orror recovery procedures to retry the operntion. Hoblen b
'the requirement far the SIS-2 rank 18 a consequence of anothoer phrvnlfnl
race condition exacerbated by the neceggary dLJny botwean randding and.
clearing of the SIS-1 rank Other racc,conditions cﬁncarnlng frtirae-
tion conflicts, not strictly-involving hafdwarc, nra-mﬁ(q Yialhla (6
the Moniﬁor which invokes programmed precedence ducialoﬂu.

| Transient errors geherally reault from the vulnerabilivy of tLhe
data path to envirommental electrical nois&. Agsin, these are Jnﬁ#ihabiq
and, as 1s the case for the race conditions, tha!r scconmod sl lon 18
basic to Lbe dﬁsign of the Monitor. Becauze of the zfzable number of
different operztions, the camplea'comhination of primitive ategs oo’
prising_eaéh operztion, and tha differsnt errots t&at Qaﬂ oeotir , Lie
error recdavery procedures, whicﬁ;a;e Intended ro be ?7hdbutf9€, forn %
cousiderzble :u_)_k. of the Monitor code. - Trhey z:r:a,l however, £l }.7 Auatde

fizd by the desire for robust operaticu of the system——one degiygriad foc
Finally, thers iz sm ilntricsfic dizzdvaatzfe of the havdwszse con-
Fignrarise. This is che avaiia&iiicyaexgczure zregnding Gase of the
sizgle Ifzk. 2oy "Bard" error that ceouxs bevwesn mulriplecer sud cHan-
zel aéag.ce:x i:q::i;:si‘ve, :c&'zrr—lza f_:z totzl dlaplay-gyacen culsgé., Glodn

a

che obiec LiHE'LﬁEL :Ee r&a_ ﬁvsbam dﬁﬁ.& aﬁ of gyzﬁaﬁvfsn«syaﬁaﬂ quakiey,

[mc

= e Provided by ERC - . d

26

some diagnostic cgpability was clearly needed for the CHAT equipment. A
two~fold complication constrained the designer's options for p;oviding
this capability: (1) manufacturer-provided diagnostic programs were
incomﬁatiblévwith the instéllation aperatinglsystem and reqﬁired a dedi-
catedlsfétemf360 to run; and (2) the multiprogramming installationlcould
not generally be dedicated to CHAT System reqﬁirements because of other
user needs.

These circumstances levied a basic requirement that the CHAT Monitor
provide on~line diagnostic tools. The substance of this support, which
uses the Teletype as a control console to drive the prdgrammed diag-

nostics, is discussed ' in detail in later sections.

Terminal Usage: 1In this section we afe concerned primarily with the
mechanics-of terminal usage. The information cogtent of transactions
depends on the particular applicatioﬁ program invoked., The Monitor
serves only as the controlling intermediary between terminal and process.
in the case of the ﬂisplay étation, the idea was to keep the me-
chanics as simple as possible for the station opgratdr. The display
keyboard is equipped with a number of function kéys, along with the
necessary character generating and cursof control keys. A number of
these function keys are required only for off-line operation, being re-
dundant‘in on~-line operation where Monitor program control can supplant
their use, Their presence is another indication of the flexibility of
the CCI equiément for accommodating different control strategies. Vari~
ous tradeoffs are possible, allowing the mechanics of data transmission
to be shared in different fashion by terminal operator Qnd control pro-

3

gram,- depending on the varying emphases placed on human factors and pro-

27

gram complexity. For example, message transmission from the display to
the computer involves various steps for cursor placement, end-of-text
marking, and vransmit-initiation which can be controlled at the display
keyboard but which the CHAT Monitor performs through its own control
sequences. The intent of the CHAT Monitor support is to do as much in
programming as is possible.

in first encountering an idle CHAT display, the operator need only
depress the interrupt (INT) key. This leads to the responding display
on the CRT of a 1list of CHAT application programs and initiates an inter-
action session. This "table of contents" of available programs is shown,
sans color highlighting, in Figure 2.2. The operator can lightpen one
of the listed program names or else type in one of those or an unlisted
one. In either case, the program must reside in the CHAT library,
which is defined through the JOBLIB facility of the 08/360 Jsb Control
Language (JCL) uged in initiating the CHAT job. Us ally an «perator
would type only to specify the name of a program recently added to the
CHAT library but not yet listed in the displayed contents. The pro-
gram listed as TASKLIB is a special program, written by Blair {B3],
that allows on-line specification of a program conrained in a private
library--a useful aid during new program development. Further details
on TASKLIB and the library facilities are given in [B3].

Transmission of keyed-in data is very simple: after keying in the
data, the operator merely depresses the INT key. This automatically
locks the keybcard and, by the previously discussed attention mechanism,
alerts the CHAT Monitor. The actual reading opera~iion is a multistep
process initiated by the Monitor. It involves initialization of the

multiplexer and the displ:. controller, reading the cursor coordinates

e N

Chapel Hill Alphanumeric Terminal System

e T e

oCAT «CPS °oRJE *TASKLIB

°HYPERTXT °¢PIKAPLOT °PAMELA TSTPROGM

Instructions For Program Selection

o For CAY, simply hit the INT key.....O0R
o LIGHTPEN the name of the desired
program above, then hit INTerrupt...OR
o TYPE the program name here: /_ / ‘/

Figure 2.2, CHAT Application Program "Table of Contents"

28

29
{contained in 2 controller register), saving the character over the cur-
sor, placing a special control character (ETX--end of text) in its place
to stop the read, setting the cursor to a program-determined starting
location preceding the final cursor location, ordering the controller to
transmit data between the cursor start location ind the ETX, and then
rastoring the previously stored cursor character and the cursor itself
as» they were at the time of interrupr. Of course, some status exchange
also occurs to check the success of particular steps. At the end of the
operation, the keyboafd is still locked. It is unlocked in response tro
an application program command or issuance of a new read request,

A light pen operation is similar. The operator illumines the back-
ground of some character position on the CRT and again initiates an
interrupt. This interrupt is signalled using the interrupt button on
the light pen barrel. Completion of the sutsequent read operation, also
a multistep process, causes the search characrer illumining the light
penned position to be removed from view.

Both operations--lightpen reading and message reading--are visible
to the display operator, although on the current 50-kilobit/second link-
age a message-read takes a long message and a quick eye to see the cur-
sor motion. The Monitor gives high priority to a read operation, higher
than that given, for example, to a program—-initiated write operation.
This allows the operator quick assurance of completion of the "mechanical”
aspect of his input operation where delay is less tolerable than it is
in awaiting the responding output from the application program. The
interference between display stations is obviously less for the current
linkage than it was for the 2400 bit/second linkage on which the Monitor

was developed.

30
While the Monitor is generally invisible to the display operator,
it can participate in visible fashion when the application program in use

runs into difficulty. For example, the application program can end ab-

normally. In this case, the Monitor sends a froctor message to the af-
fected display station. This message includes a code denoting the type
of termination involved. A code prefixed by "S" indicates that the
operating system initiated program termination; the three hexadecimal
digits in the code are system-defined and their meaning is given 1n the
IBM manual on system completion codes. A code prefixed by "U" followed
by four decimal digits defines a termination initiated by application
program issuance of an operating system ABEND macro instruction. The
code 1s application-program defined. A four-digit decimal code without
a letter prefix denotes an application program termination involving a
non-zero 'return code." The code displayed at the CRT represents the
return code and 1s also application program dependent. A contrived termi-
nation involving a proctor message 1s illustrated in Figure 2.3.

An applicatibn program can run into difficulty without actually
terminating. Here, another Monitor facility may be useful. If the ap-
plication program suddenly appears 'dead” (perhaps because of a program
loop), the operator may enable the keyboard, if necessary, by hitting
the “master clear'' key; type in "ABORT" (or "abort") anywhere except
split across the bottom and top lines of the screen; and hit the INT key,
master clear key, and INT key in succession. If a previous Interrupt was
not acted upon, only the first Interrupt in the above sequence 1s neces~
sary. The Monitor recognizes the extra "unsolicited” interrupt, reads
the abort request, and terminates the application program. (Extra inter-

rupts sent without an abort request cause the Monitor to place a "?"

’f'_ STUDY THE SLIDE ABOVE

Which gates will be opened for a LOAD
instruction?

2 and 5

TTBASE CALL PROCTOR
SUBTASK ENDED: 1§29 _

A

/

Figure 2.3. Example of Application Termination

with a Proctor Message

31

32

character at the cursor location.) This is useful 1if the difficulty in-
volves a program delay, but will not otherwise always work. For this
reason, the application program cay also be terminated by entering a
SABORTnn command at the Teletype, where "nn" dcnotes the display station
from which the program was invoked. All of these facilities are particu-
larly valuable In the course of on-linc testing and development of new
application programs.

Operetor use of the Teletype is also simple. Connection to the CPU
is established by a dialing operation. In place of a table of contents
display the operator is given a welcome message from the Monitor., A
set of commands, described In detail in a late- chapter, 1is available
for direct interaction with the Monitor. An application program can be
invoked by typing in the $XEQ command followed by the program name. The
commands to the Monitor can be used even while an application program
is active. This 1is the reason for the $-prefix on the Monitor commands:
it distinguishes them from all application program transmissions.

Operator messages to the computer are always ended by the X-0ff
control character. Line-and-character-editing are provided by the
Monitor. Cancellation of a line is indicated by using the X-On char-
acter rather than x-dff to signal message completion. Character de-~
letion can be done by use of the underscove or back-arrow character,
whichever 1s present on the Teletype in use. The Monitor signals its
acceptance of a Teletype message by sending carrier-return and line-feed
to the Teletype. When it is ready to resume reading it prints a "?"
character at the beginning of the fresh line.

Special use is made of the "Break" button. This allows the opera~

tor additional capability to interleave Monitor commands with applica-

33

tion program interactions. The Break function_is useful when the opera-
tor wants to get the attention of the Monitor while the application pro-
gram is not ready to read (no "?" character has yet been printed) or dur-
ing the period ﬁhen the application program 1s printing many lines of
outpnt; Tée Break'sigﬁal causes the Moqitor to Fespond immediately with
an invitdtion to the operator to enter a command. Once the command has
been read ;nd its execution reparted in the form pf a‘Teletype output
message by the Monitor, the application program activity 1s resumed. In
the case of an interrupted output sequence, the Monitor retransmits the
interrupfed'line go no data is iost. One obvious‘use for this Break
facility is in the*case, again, of a faulty application program. Here,
the operator ﬁay wish to enter tﬁe $ABORT command to terminate the ap-
plication program. B

Just as for the display stations, the Monitor:provides fallure re-
ports on Teletype-invoked application program. In these cases, the
"please call proctor" part-i; dﬁitted, becanselthe proctor'is generally
the sole-user of the Teletype. Additional details-on the comﬁand

language, of interest more to a pfoctcr than to the general reader, are

given in Chapter 6.

34

ORGAMIZATION AND FUNCTIONS OF THE MONITOR

The decision to bﬁild the programming suppert for the CHAT System
within the ava}labig System/ 360 multip;ogramming system was never a mat-
ter for debate. The cost~effectiveness of including the CHAT Support,l
whiich clearly does ﬁﬁt require a dedicated maﬁhine, as a single LCS-based
service sharing the multiple-service installation with otﬁer users was
justification enough for this decision. Also, the extensive, and famil-
iar, program library facilities and the high-level "machine" presented
5y 08/360 were équally Important considerations. Thus, application
‘ programs could-be written in PL/I and could exploit the high-level 08/360
data management services for disk-based files——even sharing access to
them with other programs entered through the independent batch faciliﬁiesf
of the installatien. h

The facilities of tﬁe operating system of central concern to the
design of the Monitor are those for multitasking. These facilities; and
the task concept itself,'are one of the-léitmgtifs of this thesis, war-
ranting some preliminary background aiscussion. |

The,kéy abstraction developed for 08/360 MVT was thé notion of the
task, a concept apparently originated cencurrently in other design pro-
jects of the early 1960's tcf. Denning [D1])-——in particular MULTICS (cf.
Dennis and Van Horn [D2])--and denoted by the name process (perhaps less
appropriate a term because of the ambiguity of "multiprocessing")._ Es-
sentially, the task concept résulted in the downward extension of the
facilities fqy scheduling, setting priorities; accounting, and partitipn-
ing which had been necessary for multiprogramming among independent jbbs,

to tﬁe cooperating_modules'of_a single job. Additional problém program

35

interfaces to these control program facl’ ‘' _les were added to permit such
cooperation. It was, perhaps, a result of insufficient foresight that
the 0S/360 implementation is characterized by multiprogramming without
adequate provision for interregional or job cooperation (running programs
should also have been recognized as system resources)--a matter discussed
further Iin Chapter 7--and by cooperative subtasking without sufficient
protection, which is discussed more fully in a later section of this
chapter. Both issues reflect an operating system (and System/36()

design dominated by a batch operation orientation rather than one for

interactive time-sharing; neither issue is crippling in practice.

Two other concepts of 05/360 are appendages and exit routines, both

of which are used in the CHAT Monitor. Appendages are user-written pro-
gram extensions to control program supervisory facilities which are in-
voked as part of the supervisory control of such events as I/0 interrupts.
Exit routines are used by the Monitor in its handling of timer-events

in its time-slicing implementation (Chapter 4). They involve a type of
autonomy of execution for the exit routine of a task that resembles Con~-
way's coroutine notion [C7]. An exit routine to handle timer events can
be specified by @ task (by use of STIMER) to be scheduled and the subse-
quent activation of the exit routine preempts but does not otherwise
change the execution-flow of the task.

For efficiency reasons, appendages and exit routines may also be
used to complement the tasking facility. For example, the IBM special-
purpose “hypervisory” real-tima monitor (RTM) [I8] uses appendages to
avoid costly tusk-switching on real-time responses. The real-time oper-
ating system (RTOS) [W2], designed by IBM and NASA for the Apollo program,

devised an alternative idea of a "system task" requiring only four per

36

cent of the overhead of the conventional 05/360 attaching mechanism.
In the following subsections, we indicatz how these 05/360 facilities

are employed by the CHAT Monitor for its control purposes,

Task Structure and Control: Basically, the CHAT Monitor consists of

three control tasks. In order of dispatching priority, these are: the
Monitor Subtask Scheduler (MSS8), the Monitor I/0 Scheduler for displays
(MIOS), and the Monitor 1/0 Scheduler for the Teletype (MIWX). The term
monitor is also more generally applied in this thesis to include compo-
nents not part of the three named tasks, This includes code such as the
subroutines useo in the interface between the application_programs and
MIOS or MIWX. These are packaged with the ofﬁer Honitor code but operate
under control of the application task. Anothet component facility, the
interregional conduit, includes code that runs, in part, under the eeme
task control as'HIOS-and! in part, as an extension of tBe-control proérem.
Indeed, it is further complicated because the code is located outside the‘
CHAT region. (in "LINKPACK"); in addition, some CfS appendage code (in‘the
CPS region) executes under MIOS task control! i

_The division of the Monitor into three control tasks is primarily
modular by function. This was important initially in the design and
testing stages of the Honitor development. It allowed 2 cleaner separa-
tion of function and produced greater ease of debugéing. The modules
could pbe incrementally tested and tasking mede localization of failures

both quicker and easier te resolve. Device dependencies are confined to

the modules serving the device. Thus, wholesale changes to, say, the

. display equipment in use would reguire no changes to MSS and MTWX, Sim-

ilarly, removal or suppression of. the Teletype operation would entail.

37

simple removal or 'non-attaching" of the MIWX code. _
The task modularity also allows more graceful failure of the CHAT

.

subsystem during execution. Like most medium-to-large sized programming

il -

systems, the CHAT Monitor is liable to contain undiscovered latent er;
rors; moreover, as the CHAT support grows, new errors may be introduced.
- Thus, it is usefql in a system planned for production operation to take
advantage of thé 0S/360 MVT facilities for partitioning and signalling
task failures to allow orderly termination and .possible restart,

MSS is the topmost task in the CHAT region tagk control hierarchy,
being aqtached'by"the control program initiator ahd, in turn, attachihg
the other control tasks. This activity is performed during the initiali-
zation phase of the CHAT region and involves exepution of code having
only tranéient résidénce in the region. This initia}ization phése activ~
ity is sufficiently comﬁlex that the details are left to a Separate
section at the end of this Chapter. '

The relative priority of the two remain;ng control tasks is a func-
tion of the order in which they are attached ﬁy M8S8--obviously a simple -
matter to éhange. 6urrent1y, this order involves attaching MIO§ first,
then MTWX, which gives display I/0 scheduling an intrinsically higher
priority than Teletype I/0 scheduling.

MSS continuall& attaches, task-manages, and detéches application
programs. Thus, MSS is thé “"owner" of gll tasks in the CHAT region.

This design involves cooraination between the othéf control tasks and

MS8S, both for task initiation. and, at-timgs, for task termination.

-

MIOS, for example,'firét detects the'éhange from inactive to active

e

status of a display by detecting an interrupt from it. Similarly, MIOS

may also detect improper behavior in an application task's usage of the

38

display interface that cailé for task dismissal from the system. Each
need is communicated to MSS by MIOS through the post/wait protocol,
Conversely, MSS occasionally needs to signal MIQS or MIWK of an abnormal
termination of an applicaﬁion task so that 1/0 términation ﬁrocedures
I(e;g., the display of the "Proctor message') can be taken., Chapter 4
discusses the advantage MSS takes of the 0S/360 task management services

to do scheduling of CHAT applications,

Core Layout and Intraregional Protection: The core layout of the CHAT

region is interrelated with intraregional protection. Hence, some back-
ground is needed on the protection mechanisms of the CHAT environment.

The System/360 protection scheme is guite simple. -Each storage

block may have one of sixteen storage keys (0-15). Read/write access is
governed by a matchinglof a key in the program status word (PSW)'withl
the storage key on execution of instructionsliﬂ?OlVing core storage. A
similar mechanism governs chamnel accesses to core. This is enough
storage keys in an environment involving.solgly'batch-type mﬁltiprogram—
minétin.whichltask and jof are, in practice, naturally synonymous,. . Where
-jobs %upport interactive computing from a multitude of terminals this
number is no longer satisfactory, and the limit of one nonzero key per
job imposed by 08f360 is utterly incénsistenthwith the tasking concept.,
This shortcoming does not appear in the Dennis and Van_Horn definition
[D2}]. | o . /

. :Interactive computing from a multitude of terminals usually involves
a number of aytonomous Program-execution gctivatiopa, or threa&s, equal

to the number of connected terminals. -Multithreading requires control

program support for both thread—switching and- protection of threads from

39

violation by other threads. Multithreading can be realized by a number

of mechanisms. Strictly interpretive systems (e.g., CPS, APL), where-

upon all user programs exeCuce,on a closed high-level machine, can be
built upon any one of the variants (MFT, MVT) of 08/360. ilere thread-
switching and protection afe'features of the higher—ieﬁel machine. (Qther
interactive support systems such as IBM's Time-Sharing Option (TS0O) {511,
RTOS [W2], and CHAT are extensions to 08/360 MVT that do miltithreading
by exploiting the control~program multitasking services, and must somehow
compensate for 08/360%s omission of complete individual task protection.
Let us quickly review these techniques.

TS0 uses-an approach with performance complications and couples
storage protection with the mechanism of swapping providéd for program
storage management. Each terminal thread is treated as a separate job
and multiple jobs share Ehe use of a storage region (and a common key).
When job sw@tching occurs the old job is_rolled out and the newly active
job 1is rolled into the region from secondary storage. To enhance per-
formance,_a number of regions dedicated to TSO can be specified. A de-
generate fofm of the TS0 method, avaiding swapping, is to allocate one
regioﬁ'ﬁéf terminal; but tﬁiﬁ approach suffers from the OSféGO limit on
the maximum allnwablé number of regions; ﬁote that because a fresh copy

-

of a program sharing a key with anoéﬁer must be fetched from secondary
storage prior to its activation, the TSO approach is not able to take
full advantagé.qf unlimited storage availability.

RTOS takes a differenmt tack. There, the notion of "independent

task" is defined. (Recall RTOS also definmed an unrelated "system task").

T . . .
Creation of an independent task results from an RT0S-defined RTATTACH

rather than through use of the standard 05/360 ATTACH (which RTOS also-

‘RTOS, all 1/0 is governed by an access method (RTAM). occupying its own

L0

ailowa). Thu;, RTOS extends the 0S/360 MVT tasg‘creatipn facility to
give independent pfotection to "independent tasks" within a single region.
What is not clear from the available documentation [W2] is how the task-
switching facilities of 08/360 MVT are also modif;ed to achieve the
promised intraregional protéction.

A possible implementation would be to modify the task-switching
meckenism to allow the sharing of an "active"-(noﬁzero) key. The deacti-
vated task (and possible subtasks) could have all its storage changed to
an "inactive" key, while the storagelkeys and task key of the activated
task {(and subtasks} coqld be assigned the value of the shared active -
key. This approach also has performance difficulties since storage key
changing, pgrticularly where stovage is fragmented, is not notably ef-
ficient in the System/360 (a fact that could lgad an implementation to.-
share a '"pool"” of active keys to improve performance).

Furthermore, I/0 realities represent a complicatioﬁ for such a
design. A deaétivated task c¢an have pen&ing, or on-going, I/0 operations
which are also governed bf the storage key mechanism of System/360. 1In
separate rég;on (ana storage key}; and stopage buffering for 1/0 is \
ceﬁtraiized in this region.- 1/0 is a problem in TSO as well. Thefe,
the telecomﬁunitations'lfo is also centralized and performed 'in "fixed"

storagé rather than in the “swappable" storage, because of its intrinsic

~ slowness relative to swapping rate.

The RTOS approaéh, whatever its implementation difficulties for
general-purpose syﬁport, embraces a geuneralization that probabiy should
have been inclu&ed in 05/360 MVT~-with the protection attribute perhaps

included as an additional operand in the standard ATTACH rather than

"
[P |

“
implicitly through a separate operator.

The_CHAT implemnntation approach is to lessen the protection ex-
posure without fully eliminating it. Swapping was clearly beyond the
manpower- and time constraints of the CHAT desipgn effort, particularly
since no primitives exist in 0S/360 to facilitate designing1such a
facility. Modificatiomns to control program facilities to achieve "inde-
pendent tasking;" a la RTOS, violates the basic constraint that CHAT
would avoid release~dependent updating to crucial contrbl pProgram
faqilities. Finally, incorporation of the CHAT subport in a non~
dedicated multiprogramming installation limited CHAT's residence to a
single region because_of the 0S/360 1imit on the number of regions:

The CHAT support, of course, requires that the Monitor be protected
from applicati~n program interference and that deviationé or "bugs" in
one application-program not be allowed to destroy the operatipn of another
application program. The approach CHAT takes to give protection is_to
_maké use of dual keys and storage '‘checkerboarding."

The Monitor program modules and soﬁe,application programs intended
.for multiterminal use are marked as '"reentrant" (to the linkage éditor)
and are thereby loaded into key-zero storage. Their t;sk keys, which

determine their PSW-keys, are all sét to the nonzero key allocated by

i

the control program to the CHAT region. Thus, no reentrant progrém stor-
age in,thé SHAT regioh can be ﬁrittgn_iﬁto by an active task. Dynaﬁically
allocated data areas are resident in storage having the same (nonzero)
sto;age key_as the common PSW¥key.

Another category of nonreentrant applicatioh programs exists. These

programs generally include those application programs {e.g., PAMELA)

mentioned in Chapter 1 that'were_éonverted to CHAT and which were ori-

42

ginally designed for single-terminal operation. They may be used for
multiterminal operation, buﬁ because they are not marked reentrant,

an individual copy of the program is loaded for each terminal invocation.

Multiterminal uSége of the reentrant application programs involves

sharing of a single copy of the program since such programs must, In

fact, be truly reentrént. The nonréentrant pPrograms are loaded, génarally
with contiguous static data storage, into storagg having the nonzero tasl
key. Thus, program and data storage are modifiable.

The Monitor itself does violate certain reentrancy criteria. it
cannot be shared to serve more thaﬁ one CHAT multiplexer-display cluster
and éﬁe of the Monitof tésks does indeed perform modification of program-
storage. The sharing constraint is apparently not a drawback, since we
do not anticipate multiple clusters. The program-storage modification
ac;ually_involves a mechanism for lessening the protection exposure and
thereby increasiﬂg the debuggabilitf of Monitor failures. Tﬁe pertinent
‘Monitor task is MIOS, which does chanﬁel program generation and 1/0 within
the MIOS program-storage area to isolate these activities morelfully from
attack by tasks. This effectively reduces the confouqding of intrinsi-
cally complex hardware failures with CHAT reéion program-anomalies. ‘The
task key of MIOS must be changed to zero during the course of such mod-
ification. -

Figure 2.4 illustrates fhe core 1ay0ut of the CHAT region Qith
storage keys indicated. The 0S8/360 control program allocates Etofage
starting from thelhighvaddress portion of the region for Hynamically
ailoéated storage and reentrant-marked programs_aﬁd starting from the
low-address portiop fof_ndnfeentrant progfams. As stated previouélj, the

®

CHAT tasks-operate with the single CHAT region nonzero key, with the

43

= {7771 1T

(MS8/MI0S/MTWX/MTOC/IFCSECT)

] Reentrant program storage
t Dynamically allocated data storage
P Reentrant program storage
t Pynamically allocated data storage
t Dynamically allocated data storage

(High‘end allocation)

.
.
.
(Low‘?nd allocation)
¥
t Non-reentrant program storage
t Monitor control storage)
Storage Low end

key

t: nonzero key assigned to the CHAT
region (agrees with the task key)

Figure 2,4. CHAT Region Core Layout (im LCS)

44

exception of periodic excursions by MIOS into key-zerof Part of the
initialization procedure to be discussed in the last section of this
chapter, 1s to lﬁad the Monitor storage into Ehe low-end of the region
by marking it as nonreentrant "program" storage.

Notice that the storage areas that can be written into, i.e. those
with the nonzero storage kev, alternate with the_key-zero storage ar€as,
which are write-protected. This effect, for lack of a better metaphor,
is referred to as "checkerboarding."- The layout of CHAi storaﬁe varies
wich time and usage. The invocation of application programs is subject
to terminal operator selection and, hence, Figure 2.4Iis only one pos-
sible layout. Only the program and data stﬁrage'for the Monitor are
fixed. It is, in fact, possible that a nonreentrant program will be
located above reentrant.program areas, depending on core availability
at thé time of loading.

CHAT, then, dées not offer §u11 protection but its techuiques dqr
lessen the exposure. Programs that attempt to write improperly into
non-owned storage within the region must‘hit:On nonzerorstoyagg in srder
to qQ harm. Sinéé such storage "misses” are more likely to be too high
(particuilarly for those applip;tion programs coded in. PL/I, where sub-
script efrors, at least, are seldom negative—vaiuéd), the placement of
the Monitor data storége at the low end of the region yields an additional.

X pfo;gct%ph advantage. A heartening,méasufe of theldegree of the threat
is that such & prﬁtection violation has never been observed in experience
with the CHAT System during its more than two years of operation. This

is all the more remarkable considering that this period has seem a large

- . . - j‘r . . .
number of newly developed programs introduced into the CHAT subsystem.

45

Despite this good report on CHAT operation using only the facilitiesg
available, one still wonders why the design of 05/360 ignores the reguire-

ments of the interactive computing environment for fuller protectimi.

Communication and Linkage: Modularity brings increased communication

complexity. Within the CHAT region, communication is essential to intra-
Monitor control as well as between Monitor and application tasks. The
Monitor data storage area contains two primary divisions: the Monitor
working storage and the storage occupied by the station control blocks
(SCBs).

The Monitor working storage is addressable from all three control
tasks and, with the previously cited exception of MIOS-controlled chan-
nel program areas, contains all constants and variables used during
execution of the Monitor tasks. For the purpose of coordinating
"regional events,” e.g., region shutdown, control task failure, and
Teletype- initiated display-complex reinitialization, certain event con-
trol blocks (ECBs) are defined within the working storage., Communi~
cation among the Monitor control tasks for such regional control uses
these ECBs in conjunction with the 0S8/360-supported wait/post protocol.

The SCBs are used to hold all constants and variables needed for
operation of the individual stations (displays and Teletype) in the CHAT
configuration and for associating the appropriate application program sub-
task to the station from which it was inltially invoked. The individual
fields in an SCB include those used as event control blocks associated
with various requests and outcomes connected with individual station and
subtask operation, a field for holding the address of the associated ap-

Plication program task control block (TCB) for linking subtask to station,

46

and varinus other fields for inmput and output data. PL/I "dope vector"
type informationm, and current I/0 and subtask status conditions.

Association of station to application subtask 15 an invoelved pro-
cess established initially at the timz the first intervupt arrives from
a previously idle display or when the "'$XEQ" command 1s received from
the Teletype. 1In elither case, MIOS or MIWX posts an MSS-owned ECB in
the corresponding SCB, which causes MSS to attach a module named MTOC
(for Monitor table of contents routine) written by Blair (B3}, MTOC is
reentrant and always resident, being packaged with the modules compris-
ing the Monitor program storage shown 1n Flgure 2.4, MTOC represents a
"front end" to every application program that runs in the CHAT region.
It is MTOC that causes the program table of contents to be displayed
on the display CRT and decodes the operator's application-invoking re-
quest (in the case of the Teletype, the decoding proceeds at $XEQ-time,
without an intervening "display"). MTOC sets up the name of the re-
quested application program and issucs am 08/360 XCTL (Transfer Control)
macro operation. Thus, the invoked application program inherits the
MTOC TCB.

The purpose of the front-end MTOC is primarily to protect the Moni-
tor. Under 08/360, if an attached program cannot be located or if stor-
age 1s pot available for it to be loaded, the attaching task 1s aborted.
Thus, such circumstances have dire effect oa MIOC but, under 05/360, are
simply "reported" (via posting) to MSS., MSS can then initiate a proctor-
message to inform the station operators

Two other operations are performed during this MSS-attaching of
MTOC: MSS, on completion of the 0S/360 ATTACH macro, stores the 0S/360-

returned TCB address in a field of the SCB, while MTOC, via a Blair-

named IFCSECT which is not a part of the appliéation program load

47

written SVC [B3], stores the SCB address in the so-called "TCBUSER"
field of its ovm {and thus the application's) TCB. (The TCQ ig in key-
zero storage—-hence, the need for q*fpgivileged" SVC to write into it.j
The SCB address 1s passed to MTOC by MSS thréugh a parameter—passingll
mechénism of the OSf360'attéEhing protocol, Storiné of the TCB ad;
drgss in khe SCB and of the SCB address in the application TCB ef~
feétively weds station to application subtask.

To hide this connection from application programs, rather than{ say,
including the SCB address as a Paramgter within the interface languaée
{see Chapter 3), the linkggéfis reestablished upon every call of a
Monitor-controlled function. This is done within an assembler-language
coded interface routine linked within every application program load
module., This "linkage routine" has three primary functions. The first

is to select an entry point within a group of subroutines collectively

i

packaged within another module (ox G3/360 assembler language "CSECT')

modules but is packaged with the Monitor. (See Figure 2.5.)

A second function of the linkage routine is to select the appro-
priate SCB. This is done by a seafch throﬁghlan MVT-defined control
block chain shown ianigure 2.6. Finding the address of the SCB means
that the address Of the appropriate IFCSECT suBroutine can also be loca-~
ted, A bointer exists in the SCB to a list of the subroutine entry
points; entry to the linkage routine determines the index into this.
list. Beforé branching to the appropriate subroutine entrf, the linkage
routine sets up a register with the SCB address to give the subroutine
addressability to SCB storage. ‘When the TFCSECT subroﬁtine posts an

ECB for a Monitor control task, the address of the SCB forms thé low-

48

Application Program

linkage routine
I . Application load module

T T

B Monitor load module
IFCSECT
subroutines
' MIOS MTWX

B: Synchronous Branching
P/W: Post/Wait

Figure 2.5 Linkage Between Application and Monitor

(‘“Location 16

@cyT
@LCBTCB
CVT ==¥
| N/a
rcerce =YL
| @ rurrently active TCB
TCBTCB+4="
TCB .y
”
1
TCBUSER ==~ @SCB
b
1

Figure 2.6 0S5/360 MVT Chain to TCBUSER Field

50
order three bytes of the ECB fullword completion code. This passing of
the SCB ;ndress via- the ;65 io followed throughout the Monitor during
posting of station or application .subtask related events.

The third function of the linkage routine is to set up addressa-
bility to a parameter list containing the.PL/l:like "éTDP" and
"ABNORM-condition signalling™ routines. In the case of applisation pro-
grams written in PL/I, these are the addresses of the actual PL/I-provided
library routines. (See Chepter 3 for definition of the ”ABNORM”Icon—
dition.) Completion codes set by the Monitor contrel tasks in posting
IF&SECT subroutine ECBs (aleoJin the SCB).as well as IFCSECT sub-
routine detected errors inuepplication‘program passed. parameter lists
cause these routines to he invoked. |

In current practice any one of four different linkage routines can
be linked in with the application program load module, depending on the
intent of the application and the l;nguage in which it is coded. These
are named IFNTRYS, lFNTWXS, OLNTIRYS, and IFNTRfAS, the latter one of
which was coded by Blair [B3)] and the others by the author. The first
three linkage routines are for use by application?programs codeo in PL/I.
Each linkage routine has the same-éeneral structure. The PL/I pro-
graﬁ's execution of a call-statement or fuuetion reference specifying
a-Monitor—controlled facility (eee Chapter 3 for a description-of this
interface) results in a linLage to one of the entry points in a multiple—

entry branch table in the linkage routine. Each branch statement

branches to a join~locatidn while simultaneously initializing register

15 (the entry point regiéter, itself-—and the only free registet at
this point’ in the linkage) to a value indioating the entry point. At

the join point, code common to all entries is executed, saving registers,

S
[P

31

estéblishiﬁg code addressability, searching through the MVT control
block chain (figu?e 2.6) to load a register with the correct SCB ad-
dress, and developing an index value from the value put in register 15
by entry into the linkage routine.

This new inde# is used in conjunction with &n_address obtained from
a fleld in the newly located SCB. This address isla pointer to a list
of IFCSECT subroutine addresses. The index ig used to c¢hoose the ap-
‘propriate subroutine for the 1inkagef¥0ut1né to branch to as its final
.step. Of course, certain other functions are performed by the 11nkage
routine prior to bfanching to the subroutine, like setting up ad-
.dressability for the gubroutine to a paraﬁetér list containing such ad-
dresses as those of the PL/I 1ibrary routines for STOP and SIGNAL. A
simple validity check 1s a}so performed to insure that a Teletype ap;
piication pfogram has ng&zpeen invoked from one of the displgys or vice
versa. (The Teietype éééfis "mérkeﬂ.")

_ The linkage routines vary in the access they allow to IFCSECT sub-
routines. This is achieved by tailoring the multiple-entry branch table
to the subroutine access required--a need, in turn, determined by the
CHAT interface calls and function references included in the application
program. IFNTRYS, for example, is the linkage routine provided when the
application program inciudes the display énd copﬂuit interfacg;' IFNTWXS
is provided for Telétype app%iéation programs.'IOLNTRYS is a speéihl-
'purpose linkage routine that permits accgss to both 313p1a§ and Téietype.
_‘subroutines. It is used solely By a Telet}pe;invoked on-line test aﬁ—I;
pliﬁation program (OLTEST)f OLTEST 1s the only application program th;t-
ié permitted access to both the‘Telépre and the displays. -Further dis-

cussion of ;his program- along with the additional functions'proyided to

52
allow its unique interface privileges is deferred to a later chapter.

IFNTRYAS 1s the linkare routine provided for application programs
coded in assembler language. It is invoked by assembler macro-instructions
having a syntax nearly identical to that provided by the CHAT interface
for the PL/I programs. These macro~instructions are described by Blair
[B3] who defined them. One important user of the assembler interface
is MTOC which uses it, for example, for the display of the program table
of contents on a display station CRT. (MTOC does not do Teletype 1/0.)

IFNTRYAS i.s similar to IFNTRYS In being display-access oriented.
it, in conjunct.on with Blair's macros, has certain additional responsi-
bilities for creating PL/I-like environment characteristics, such as
imitating the "dope vector" conventions and duplicating the STOP and
SIGNAL capabilities. These patters are discussed further in {I10].
IFNTRYAS 1s like the other linkage routines in itsmbranching to IFCSECT
subroutines; thus, the semantics of the assembler language macro inter-
face is identical to that of the equivalent PL/I interface. This link-
age technique could very well be extended to allow the interfacing of
application programs written in still other languages besides PL/I and
assambler.

The IFCSECT subroutines are reentrant and are packaged in the
Monitor program load module. This means that their program storage
overhead appears once in the CHAT regilon, with a1l currently resident
application programs sharing their use. This is in contrast to the
linkage routines, yhich are duplicated for each copy of an application
program in residence.

The IFCSECT subroutines operate under control of the same TCB used

by the application program whose linkage routine branches to them.

53

Depending upon the function requested by the application program, these
Subroufines may represent the final or a still-intermediate stage of
linkage in carrying out the semantics of the applicatiop program ;e-
quest. Some requests can be honored by a simple translatioﬁ or by an
acceésing of a field in the SCB; others involve more complicated cbm—
municatioﬁ with one or more of the Monitor control tasks fo initiaté an
1/0 operation and to await its signailed completion.

Communication between IFCSECT subroutines and the Monitor involves
both SCB storage and the post/wait protocol. Parameters passéd from the
applicafion program via dope vectors are placed in thé SCB by the sub-
routines to control the Monitor's fulfiliment of reqﬁested operations.
Information stored in the SCB by the Monizor is uéed by tﬁe subroutihes
to update the dope vectors and application data storage pfior to‘re—
furning to.the applicatiqn program. Each SCB also contains a number of
fields used as event control blocks (ECBs). -Certain ECBs are owvned
("waited upon")lby the subroutines, while others are separately owned
by fhe.va;ious Monitor control tasks, (Joint ownership is impossible.)
These ECBs, like Dijkstré's.semaphores,'are used inf;ynchronizing sub-
routine and Monitor by post and wait coordimation. The subroutine re-
quests an operation by initializing a. request type field and then post-
ing a Monitor-owned ECB; the Monitor signals-a completion by posting the
subroutine-owned ECB.

Variatiohé to this 'simple protocol are also possible. For example,
the Monitor task, MIOS, is Qesigned to act on display interrupts inde-
pendentlf of a pending appligation request for‘input. In the ;ése of a
lightpenning &action, the Monitor may have completed the entire sequénce

of obtainiﬁg lightpen coordinates and lightpenned character, including‘

54
storing the information in the SCB, prior to the application program's
official request. 1In such a case the subroutine will detect by a ''status”
field in the SCB that communication via post/wait is not needed. Instead,
the information can be immediately retrieved, the "stat&s“ modified to
reflect this pickup, and control returned to the application program.

Still another variation involves synchronization constrained by
time, where an application program has issuved a read operation with a
time limit (see "PAUSE" in Chapter 3). In this case, uée is made of an
asynchronous IFCSECT ''timer completion exit routine” (a coroutine of the
IFCSECT subroutine). Here, if the SCB status does not show the input to
have already occurred, the subroutine will initialize the request-type
field in the SCB, post an MIOS ECB, issue a timer request (via 0S5/360
"STIMER") specifying the exit routine, and wait on two ECBs. One can be
posted by MIOS, the other by the exit routine. When one of the ECBs is
posted, the IFCSECT subroutine regains control and, after determining
which event occurred, cancels the other request, Cancellation of the
timer request involves (for PAUSE) obtaining the amount of time expended,
for the purpose of relaying this information to the application program.

For operations involving I/0, the IFCSECT subroutines are concerned
piimarily with signalling -he request, depending on the target station,
to either MIOS or MIWX ard then synchronizing the reactivation of the ap-
plication with the posted completion., Input requests involve a slight
elaboration to allow additional communication with MSS. Here, the sub-
routines set an ''idle-flag" in the SCB prior to awaiting completion of
the input request. This allows MSS to remove the application subtask
from its queue of dispatchable subtasks to reduce execution overhead

during its time-slicing and subtask scheduling epochs or to suppress

55

such epochs entirely if all application gubtasks are idle. This allows
the CPAT region to quiesce entirely during protracted periods of
idleness.

On completion of such input, the reactivated IFCSECT subroutine
posts an MS8S-owned ECB in the SCB to alert MSS of its newly-regained
dispatchability. MSS can then include the application subtask once
again in its scheduling process before the subroutine returns to the
application program.

Subroutine requests to the Monitor control tasks resu}t in con-
siderably more complicated activity within these tasks, depending upon
the current state of the transmission line and the existence of other
outstanding requests. The queueing and scheduling techniques employed
are described in subsequent chapters dealing with these components of

rhe Moniror. Monitor I/0 completion posting can involve three types

of indicators for the subroutine: proceed normally, invoke an applica-

tion program 'on-unit,"

or stop the application program. Hence, the
reactivated IFCSECT subroutine can take any one of three return exits.
The subroutine can, itself, initiate the "on-unit" return when an ap-

plication program's request-parameters are faulty. Specific conditions

causing these various exits are also described in subsequent chapters.

56

INITIALIZATION OF THE REGION

fnitialization df the CHAT region is a complicated multistep process.
Its primary objectives are to produce the initial regional layout of the
Monitor indicated in Figure 2.4--the Monitor control storage at the low
end, and the Menitor program load module at the high end--and to prepare
tne resident control tasks to perform their donitoring activities during
subsequent CHAT System usage. To'prepare the control tasks, it is
necessary to give them addressability to the control storage, to
initialize the control storage so that all required run-time parameters
and linkages are set up for use, and to perform any once-needed start-
up initialization'of the equipment. A design goal, that none of this
" initialization code would be permanently resident in the CHAT region,
complicated the sequencing and linkages of the initin}ization steps.

The design of this step sequencing and 1inkage~w§§”’he joint effort of
'the author and Biair, although Blair's inspiration dominated.

Figure é.? gives a gross view of the initialization steps. - The type
of linkage involved from step to step is shown in parentheses along the
arrows; the other names are those of the actual code_steps-invoked.
(ROOTCAL AND INITCAL were named before the acronym CHAT vas contrived,

. when the CAI Project was foremost in mind; better names would be

-ROOTCHAT and INITCHAT.) ‘The functions of the various steps are briefly

as follows:

ROOTCAL - ThiS_Smnll root of code is assembled in the low end of
) the'quitor control storage load module. It is attached as

the CHAT job step task (ef. Chapter 4)--an identity in-

Y

rooTcarls»2

(LINK)
INITCAT!
l (XCTL) 1 Transient code
M555 2 Assembled in control storage
(Branch) 3 Overlays Previously executed
code in contrel storage
CALIMIDF1,3 4
Zeroes-out last executed code
LOAD residing in control storage
Branch
* 1 5 Resident code
MIDF
Move code)
‘ Branch
pLTLNK] 3
(LINK)
Y 1.4
MSSINIT? (ATTACH)
}
(XCTL) MIOoSINIT!)
5 MTWXINIT
MSS (XCTL)
s (ACTL)
MIOS | J
MTWX?

Figure 2.,7. Initialization Steps

58
herited by MSS wvia the initializgtion-linkagé. ROOTCAi serves
two important purposes:: (1) Because ROOTCAI is part of the
Qontrol storage load module and is ;arked as a mon-reentrant
program, 0S/360 loads the Mo;itor-control storage at the low
end of the.region; (2) ROOTCAI passes the address of the
control Sto:ége through the subsequent linkage protocols to
.the Monitor control tasks. It uses the 05/360 LINK macro

to pass control to INITCAI.

" INITCAI - This step passes addre;.ssability‘ to Blair's "sVC 233" [B3]
and loads the 05/366 abnormal dump resident module (also
. described by Blair [BS])'and moves the CALLMIDF code into
the Monitor control stopage,'overlaying ROOTCAI{_ It then
uses the 951350 XCTL macro to transfer control to MSS, which
in the process cauées'03/360 to load the ﬁonitér program

load module into the high end of the region.

MSS‘; After some standard establish;ent of addressability (needed
forf;ﬁu-time oper;tion), MSS branches to thé CALLMIDF‘code
in the control storage, passing the addfess'of an entry
poiné table.identifying_ﬁheﬁlocations of other comﬁonents
of the Monitor program load module~-a list of the IFCSECT
subrqutinés,:beéj-ﬁwa; MIQC,'and the MIOS Start 1/0

appendage.

' CALLMIDF - This step begins some "middle functions™ necéssary to in-

iﬁialization. It uses the 03/360 LOAD macro.to load MIDF

and then branches to MIDF.
. e :
i ')

%

MIDF -

DLILNK -

MSSINIT -:

59

Tﬁis step continues the middle functions: it ﬁses the 08/360
IDENTIFY macro to make MIOS, MIWX, and HTOC known as entry
points to 0S/360, stores the address of the entry point table
in control storage, and also moves the DILTLNK code there,
Qverlaying CALLMIDF. It then branches to DLTLNK.

This step invokes an 0S/360-supplied SVC to delete MIDF (de-
_leting the linkage a§ the acror;m implies) and ﬁses the

0S/360 LINK macro to branch to MSSINIT.

.This step initlalizes the station control blocks (scBs) in

. control storage with the address 5f_the list -of the IFCSECT

subrﬁutines 50 that the application program entry linkage
invoked by the application interface (described in Chapter 3)
can find the subroutines. It also initializes the porticn

of control storage used by MSS: it clears the entry point
list address and DLTLNK code moved there by MIDF and stores
taskrﬁriorify increéent/decrgment values used by MSS for
Eime—slicing and application subtask scheduling. This in- ’
itialization involves searching through the CVP-chain (shown.

in Figure 2.6)_:0 find the active TCE which contalins the -

e

current run—time priority.céiling for CHAT. The final func-
tion of MSSINIT i to attach MIOSINIT and MTWXINIT (in that

order) which operate ag separate Monitor control tasks. -
|

MSSINIT then XCTLs to MSS. at an entry point (MSSWAIT) which

walts for a run—-time event to -oceur.

60

MIOSINIT - This is the most complex and involves the most code of all
initialization steps. Chapters 5, 7 and B give additional
details; here we mention only that it initializes the inter-
regional conduit and prepares the display. equipment for run-
time use. When done, it XCTLs to MIOS, ﬁhich inhErits its

task identity as one of the three Monitor control tasks.

MTWﬁINIT - This step prepares MIWX for .its run-time operation of the
Teletype. Besides.iﬁitiaiizing some cont;ol-étorage fields,
it‘translates'from EBCDIC to Teletype code the text of

-me;s;ges MTWX .sends- to .the Teletype inisupport of its com—
" mand functions. It usg;’thé”03f360 OPEN macro to initialize
the Teletype control Biock needed for input/output opera-

'tiops ané proVidgs MTWk.addreséability to .the 08/360 gnif

Coqtfol Biock (UCB). .needed for a Halt I/0 function it per-.

. forms. When aone,'MIWXINIT XCTLs to MIWX, which inherits

its tégk;identity;

Because of the linkage conventions employed, when MSS, MIOS, and

: MTWﬁ_ére finally initialized and ready for CHAT System 6pefation all

:traceéfafitheudescribed initialization steps are removed from’the'region.

This includes even the linkage to them, with the unavoidable exception

of twq_instrﬁctioné-in MSS'for'branéhing-to CALLMIDF;:'As-an illustra-

tion, howevér; that'CHAI, like mqst systems, violates its purity of
intgn;ion;-MTWX contains a small amount éf code_io'put_the addresses
of its two "channel end appendageé":in an-05f360 control block prior
td_beginning its operation. This deviation was & conscious tfadeoff

i

1

favoring time and resources {(and sleth) over purity and further com-

plexity. (MTWX was coded last.?

1

CHAPTEF. 3: THE APPLICATION PROGRAM INTERFACE

This chapter describes the subroutines and functions that may be in-
voked by the application program in order to access Monitor-controlled
facilities such as display and Teletype input and output and the conduit
to CPS. For an application program coded in PL/I, these procedures are

invoked by means of call statements and function referemnces. The Syntax

and semantics of these procedure references are discussed in sufficient
detail to allow this chapter to serve as external specifications for
the PL/I application programmer interested ln writing a program for the
CHAT system.

A simple metalanguage is employed in presenting the procedure ref-
erences: underscored referents represent arguments; altermative coding
formats for peneric procedures are shown by stacking the optional ver-
sions within braces. Names preceded by the "$" symbol are not part of
the metalsnguage but are actual CHAT variable names defined In declara-
tions which the programmer will normally have generated at compile-time
by use of the ZIHCLUDE preprocessor statement. The values of the $-
named variables are purposely not shown here., If the programmer de-
sires this informatiom, it .:n be obtained by examination of a source
listing containing these compile-time i{ncluded declaration:-. Use of
this compile-time facility is discussed in more detail in a later sec-
tion of this chapte:r.

To 1llustrate the metalanguage, suppose a fictitious CHAT procedure,

PROCNAME, were provided with the metalinguistic representation:

63

variablel,variable2
CALL PROCNAME (s SSYMBOL Y .

In this case, the description (following the metalinguiscic representa-
tion) of PROCNAME would g've attribute and range (or value) requirements

for the variablel and variable? arguments. If the two-argument farmat

were used, the programmer would declare and set two variables of his
own choosing, say ARGl and ARG2, and would code:

CALL PROCNAME (ARG1,ARG2).
The second format would be coded as shown:

CALL PROCNAME ($SYMBOL)
where $SYMBCL would be declared in the compile-time Included text pro-
vided by CHAT.

The procedures discussed here can alsco be invoked by applicatien
programs coded in assembler language, using a set of assembler macros
designed by Blair [B3). These macros are similar syntactically to the
PL/I procedure references described here and imitate the PL/I internal
linkage and parameter-passing conventions sufficiently thatr the invoked
procedures are insensitive te (he source language of the invoking pro-

gram. The invoked procedures are themselves coded in assembler language.

b4

DISPLAY USAGE

Frocedure references are provided to display text on the display
screen, to read data that the display operator has keyed or light-
pennhed and to control the slide projector connected to the display

station output channel.

Controlling the Slide Projector: There are two different types of slide

control offered to the programmer: turning the slide prnajector power on
or off and selecting a specific glide for display. These are accomplished
by means of the generic procedure reference SLIDE (a difference in

number or attribute of allowed arguments requires generic definition In

PL/1):

Sow

CALL SLIDE(Y $OFF).

slidenumber
SON and SOFF (both BIT(1) variables) perforu the functieons to which they
mnemonically refer: glidenumber is any FIXED BINARY(15,0) variable in
the range 0-80 corresponding to the carousel slide position to be selec-
ted. The programmer need not explicitly code the power-on function: the
invoked subroutine will turn power on automatically if a carousel mction
1s requested when the projector has power off.

The experienced display station user is familizr .th the fact that,
while the slide slets are numbered In base-10 represcntation on the
carousel, keyboard control of the slide egquipment requires base-9 repre-
sentation. This 1s tiue also for computer control of the slide equipment

{where tle base-9 codes must also be sent in the ASCII format). However,

the ajplication programmer need not worry about this vexing base-9 c¢introl;

04
CHAT transforms the application program base-1(representation to basc-Y
(in ASCII) automatically.
On completion of a slide operation, the cursor location and key-
board state (locked/unlocked) are the same as prior to the SLIDE

issuance.

Weiting on the Display Screen: To display alphanumeric text on the dis-

play screen, the programmer uses the generic procedure reference DISPLAY:

message
CALL DISPLAY dmessage,rov).

message,row,col

The row and col arguments are FIXED BIN(15,0) variables specifying wheve
the cursor is to be positioned prior to the display of the message
character string. The absence of che row and col arguments in the top
format means the message character string is to be displayed starting at
the current _vsition of the curstr, that is; wherever it was left at the
completion of the last operation. As explained below, the message argu-

ment can contua - embedded format controals to control cnrsor placement,

thereby obviating the necd for the row and col argur.ents. The middle
fo.mat above, with col absent, is taken to imply the first position
(column) of the specified row. The value represented hy the Xow argu-
ment tust he a legal row number; i.e., in the range 1-20; similarly, the
col argument nust represent .1 value in the range 1-40. The message
drgument must represent a cha.2cter string of length 0-8l0 characters, a
limitatinn to he discussed shortly.

Tablz 3.1 contains a list of format controls: S-named variables

and a function reference, LCAR, that represent format characters, which,

when sent to the display, control cursor placemeut, keyboard enabling,

66

Cursor Control:

sC Clear display screenj place cursor at first position
of first row (CLEAR).

SR Return cursor to firgt position of current
row (RETURN).

$U Move cursor up one row (¢).

$D Move cursor down ore row (¢).

$B Backspace curser one position (e,

$F Forespsce cursoyw one position («#).

$8 Move cursor to first position of first row {RESET).
$T Move cursor to 21st position of current row (TAB).
SL Display New Line syabol (#) at current cursor

position and move cursor to first position of
next row (LINE).

$DR Same as SDI ISR (¢,RETURN).
SDDR Same as $D!1$D/ISR ($,4,RETUPN).
LCAR(xow, col) A function reference for "random" cursor placement;

cursor to be moved to position with coordinates
specified by the FIXED BIN(15,0) row and col

arguments.

Keyboar! Control:

$E Enable {unleock) keyboard (MASTER CLEAR).
Color Selection:

SGRE Select green (SPECIAL CODE + Q).

$RED Select red (SPECIAL CODE + R).

$BLU Select blue (SPECIAL CODE + S).

SYEL Select yellow (SPECIAL CODE + T).

Table Z.1l: Format Controls

67

and color selection.
In the table, the keycap names corresponding to the functions are .

shovm 1in parentheses. Experimentation with an actual keyboard willl best

" familiarize the reader with the functions described. An equivalent key-

board function for LCAR dogs not exist; while a four-character control
character sequence sent from the computer provides the function, it can
only se accomplished at the keyboard by compound usic of the other keys.

The format characters themselves are eight—bit unprlntable characters

vl
r/fin "EBCDIC. The $-names in the table, with the exception of $DR and

‘the programming task.

SDDR, represent one—character controls; $DR and S$DDR represent two— and

i
threejcharacter controls, respectively. The function reference LCAR

causes a four-character string representing control of "random" cursor

Placement to be returned to the point of imvocation within a message

string to bé gent to a display. - Since the actual control characters re-

=~

quired by the display equipment are foreign to the PL/I programmer (they
are not only unprintable in EBCDIC, but require a Monitor translation to

ASCII code when transmitted), the format controls were invented to ease

!
/

' Two constraints are imposed on the use of the format controls: iﬁ
used, $C must appear as the ipitial character of the message argumenr;
while $E, if used, qust be the_final character. If either rule ls viola-
ted, the'function is not perforimed; instead a blank character is sent‘lq

place of the misplaced character. Somefillpstrative examples and further

) +

C- d*scu551on should clarify the use of DISPLAY and the format controls.

EX1: CALL DISPLAY($CI[EXAMPLE MSG IILCAR(ZO 11
' "ENTER CODE I!$F!I$E),

The above statement capses the display screen to be cleared, dis-

plays.E#AMPLE MSG on the top line, positions the cursor. at location

'

68

(20,1), displays ENTER CODE there (the bottom line of the screen), moves
the cursor one more space {(leaving it at location (29,12)), and enables
the keyboard. Enabling the keyboard need not be done explici:ly in this
way: the Monitor will automatically enable the keyboard on i;suance of
a subsequent read-tvpe call statement that follows a DISPLAY where $E
is not used. When SE is omitted, the keyboard is left in the locked
state at the completion of the display operation. The point of pro-
viding the explicit function is to permit the keyboard to be unlocked
immediately upon .ompletion of a display operation that is to be
followed by a read-type operation. In thig manner, delays in issuing
the subsequent read are not noticed by the station operator.

EX2: CALL DISPLAY(S$BLU!IMSG1I|S5DRIISRED,R10);

The above example demonstrates the use of color formatting. The
character string represented by MSGl, appropriately declared elsewhere
in the program, is displayed in b_ie starting at the first position of
rc s ten, assuming that R10 is given this value of ten elsewhere in the
program. The cursor is left at the first position of the row follow-
ing the row displaying the last character of the MSGl string. Because
SRED is used, upon completion of the oprration the cursor is displayed
in red and, if a read-type operation s pext to occur, any keyed-in
characters will appear on the screen in red, thereby distinguishing
computer responscs from operator input. Notice that the above example,
by omitting the SE control, leaves the keyboard locked.

Earlier, the length bounds for the message argumenn ywere given as
0 and 810. The reader may wonder what a DISPLAY with a null message
argument does, The answer is that it simply loct the keyboard. At the

other extreme, 810 characters 1s sufficient to permit the display of a

69 -

full sgrgpn}‘BOO charactefs, and to allow up to ten control characters

as well. An upper limit'is necessary because of tﬁelfacc that the MOni;
tor uées an intermediate buffer into ﬁhich the message argument string

is transferred prior to beiné transmitged over thé coméunication link.

In the unlikely case that thewprogrammer needs to define a megsage argu~ -~

ment of length greater than 810, the recourse 1s to uge more tham 2

 single DISPLAY statement..

" If at the completion of ; DISPLAY, the programmer'wiéheé to de-
termine where the cu;sdr was left, he ma} use the CUkSOR call statement:
CALL CURSOR(row,col) |
The invokéaﬂg;broutine returns the cursor iocation in the FIXED BIN{15,0)
row and Egl'argumenté.._Thiéfcall‘statement, if iésued after a READ ;all
(discussed-beldw), will return-the position of the cursor aé it'was left
at the end of that operation.

Reading'froﬁ:the Display: To read data that the disﬁlay operéfbf'has

keyed in at the display station, the programmé; uses the generic pro-’
cedure READ: . Lol - -

ﬁnessage ,
CALL READ{message,row,coll)
)

The FIXEDmﬁgﬂﬁiﬁ,O) row and gg;_afgumentgﬂépééify the/gggtting
poéitioﬁ oﬁ the sdééen'fof the_read_dperation. In the toﬁ;format; where
these arguments are omitted, the st‘é.rt:i.ln-g point 15 assumed to be at the
position where the cursor was left at the end af the last operation,
whether this was a DIS?EAYlor‘another READ.I-The'message a}éument'repre-

sents the location where the received message strirng is to be returned

by‘the invoked subroutine. It may have maximum length of the programmer's

choi¢e (including zero). Providifig a.maximum length shorter thgﬁwfhg

-

70
keyed-in string causes a truncated message to be returned. The Monitor
will reqﬁﬂfrom the specified (6r implied) starting point through the
posiﬁion preceding the-location whick the cursor holds at the time the
display operator preéses the interrupt (IﬁT) key. This assumes the
final cursor loéatiﬁn {at interrupt;time) is greater than- the starting
location. If this order 1s reversed, the Monitor will Tead from the
starting location to the last position on the scréén.

In either case, the issuance of the CURSOR call following the READ

will result in the coordinates the cursor held at interrupt time being

returned. The Monitor not only restores the cursor to the position it
. held at interrupt time, but restores the chéracter:jtypiqglly.a blank) "
over the cursor, since.reading from the display invoives Eemporarily..

. placing an "end" character (ETX) after the final data position.

Getting the Lightpenned Coordinates: To read the location of the search-

iqdicator that iilggiges the background of a lightpenned character,. the

programmer issues one of two procedure references: T

s

-~

. CALL READLP (row,col)
7 CALL LPLOCN(row,col)

Iﬁ either case, the coordinates of ghe lightpénned‘p;sition are returned
in the FIXED BIN(15,0) row.and égl?argﬁ;énts, If the diéplay operator
" has pressed the INT key-withdut lightpenning sométhing, :gg_and col are

sét to (0,0). QOtherwise, the'véiue_returned in row will be in the range
1-20; thé value_reguf;ed in col, in the_rénge,1-40.-

. Before explain;ng why theré ére two variants fof ligﬁtﬁen-reading, ?:3_—i
itlis necessary to discuss the geng:al'nptioﬁ of readiné from the display,
a discﬁasion\that applies to'the READ qperétion as well. Reading f#om

the_displayuis not like reading a tape record:. creation of .d4-display.

- - .- . - . f
- .

\‘1 ' R B . ' . .I: - - et

- 71
"recqfﬁﬁri;'a dynamic thing and at the time of program readiness to read,
the record may not yet be composed b& the display operator. We need
the interfupt signal, in general, to inform ﬁs that such a record nﬁw_
exists. Th;s, the Monitor initiates the actual read operatigﬁ odly in
response to an interrupt signaimreééived from the digplay operator.-
¢ Sucﬁ gg’iﬁ?é}rdpt can, in fact, precede the program issuance of a read-
‘type call, in which case, the read is initiéted immediately upon issuance.
This synchronizatign of read operations (and also PAUSE, described
below) with the interrupt signal means that on issuance of such an opéra—
tiqn-the keyboard must bg en;bled (uglqcked), allowing the opératqr to

" key in aata and to use the interrupt key. ¥or operations, then, that are

interrUbt-gggpoﬁsive (read operations and PAUSE), the Mcaitor always

enables the ke?66ard, if this is necessary}:_Where such an operation has
been préceded by a‘ﬁISPLAY uéing_the SE f;nction, the keyboard is already
enabled and the Monitor need nqt'égain perform tﬁis function. _If an
~interrupt has beéq receiégd prior to an interrupt-responsive call, the
enabling operation is not necessary: the read operation is ready to Se
performed.l |

This means that_Fhe ﬁonitor is aware of occurring interrupts even
if the.appl;cation pfogram has no call outsténding. The Monitor re-—
members an interrupt by setting an internal flag, which, for discussion
pu;poées, we here refer to as the I~flag. In the case of a 1ight-l
penning interrupt, the Moﬁitor_reads'the lightpenned coordinates and the

lightpenned character, as well. Prereading of a message cannot, of

r

courée, be doner the starting point is_uﬁknown uﬂtil-defined by the ~

aRplicat%qn-progrém{'

Isauance qf'g SLIQE, DISPLAY, READ, or READLF call-statement resets

72

the I—flag, LPLOCN does not.. SLIDE and DISPLAY reset 1t because it is
assumed that a subsequentmread mist reeeivela message which 1is con-
versationally responsive to whatever inforﬁationﬁthese operations im-
parted tolthe display operator. READ and READLP reset the flag because
they service the associlated interrupt.

Herein lies the aeed for LPLOCN: the program may want the start-
ing location of a READ to be defined by the operator in a'dynamie‘
fashion, for éxample, in the case of a text-editing operation. Light-
pena}pg is a convenient way for the operator to perform this function.
Hence, by firSt issuing LPLOCN, the program may then issue ;i READ with
the row and col arguments set to the values returned ty the preceding
LPLOCN and service the same interrupt the LPLOCN responded to. This
saves multiple 1nterruptsiat the display station.

After a'succeesful lightpen reading the program eay\want to know
. the character that was lightpenned., This is achieved by use of the

I

LPCHAR function reference: . ' - e
EX: X = LPCHAR;
where in the above example the lightpenned character is returned at the

indicated invocation of LPCHAR, and in turn sets X to the desired char-

acter value.

Time and Keyboard Syhehronization: Obvious programming difficulties can

arise in reading from the diaplayi the program eannot always anticipate

the display operator' ‘s response. Will he lightpen something or key in

r'

some data before hitting'interrupt? “Or will he;_in fact, do anythihg ét

all when the program has a read pending9 If a-READ overation is'EOm—

——
:

p1eted by a lightpenuing response, the Monitor retn=ns a null message,

79
if a KEADLP or LPLOCN completes because of a message-assoclated inter-
" rupt, the Monitor returms zero values for-lightpen coordinates, These
are indirect fmeans the program has of detecting the mismatch between
program and oberator activity. Howavef, to deal with these diffi-
cuities more directly and‘also to impose a-limit on operator tardiness,
the program may first isaue the PAUSE procedure ret%renﬁe'
CALL PAUSE(tlme return). ’”’

The FIXED BIN(31,0) time argument specifies the maximum nonnegé—
tive time interval, in seconds, that the program desires to wait for
. the display operator to hit interrupt. At completion of the qperétion,
the BIT(S) return afgument is set by the invoked Qubroutine to - one of

the following valués,.whefe as before the $-names are part of the compile-

time included dgciatations:

STIM °~ -no interrupt has been received within the spec%@ied
interval.

S$Lp, - an interrupt has been received with Lightpenning indicatedt

$INT an interrﬁpt has bggn,réceived without lightpenning indi-

- catéd‘ a messagé:is ready to be read.

Also onf;;;pletion ‘of the operation, the time argument 1s set to
theltime elapaed'frym-the time the PAUSE was issugd to the time the
inferrupt was receiﬁe;. fﬁ-the ééée where STIM is returned? thg Eigg
argument obviously is ﬁnchgnged, sinﬁe‘the entire interval has elapséd.-
“In the case'where‘%n interrupt hgé been received prior fo the PAUSE
issuanéé, time wili be set to'zero; sincelno_time-has elapsed. |

A peculiar interpretation js given to a PAUSE that is issued with

74

the time argument representing a zero:value: the maximum interval to
wailt for an interrupt'ié taken to be infinity. Here, only $SINT or SLP
can be, returned; the time argument is left at zero on completion of the
PAUSE.

The fAUSE procedure, 11ke LfLOCN, does not cause the Monitorigﬁ.re—
set the I;flag (if on). A read oberation, following a PAUQEHEO¥-which
. $LP or -$INT was returned, will Bémgkecuted in full immedigtely upon issu-

ance and doef® not require a new interrupt to. be received. , -

. 75

J"‘-

. TELETYPE USAGE

Programming ihpuﬁ and output Tor the Teletype is done by use of
the tw0<procedure-féferences:

CALL WRTWX(outareai
CALL RUTWX(inarea)

The outarea argument must be a chaf;cter string of 1eﬁ§éﬁ?6—80. Each
WRTWX automatical;y ;auses the carrier to be positiomned to the left mar-
gin of a new line beforéﬂfﬁe outarea character string is printed.

The inareg argument camn have up to 80 characters reﬁurned, depend-
ing on the length attfibute definea by the program for inarea and the
amount of data keyed by the Teietype operator.. Each time & RDTWX call
is issued,-the Teleﬁfpe operator.is alerted by the printing of the
"?" symbol at the first position of a fresh line. Apérdpfiate control
‘ (X—On)'is:élso provided to aiiow automatic reading of paper:;ébeff The
Monitor*strips out any control characters, such as carrier‘return or
line faed, before presenting the keyed message to the prog}am. Similarly,
‘editing is performed to handle characte; corfeétions the- operator has
indicated duriug_yis keying operation througﬁ use ;f th%;uadefscore Gﬁ},

-
on some Teletypes, the back-arrow) key. -

I

g
&

lreference RDCPS:

_ .76
CPS ACCESS

-

The procedure references provided for application program access 19}

the CPS conduit are dcscribed here. Both the description and, more
importantly, the use of the access facilities presume a knowledge on

the part of the programmer of the manner in which he'ﬁould interact with

o~)

CPS if he were accessing that program from a CPS teletypewritéf termi-
nal. Other readers are referred to reference [I1]for de:..ils on the

CPS terminal operation. ' S

L

Internally, the conduit employs the Teletype interface to CP§

L

tails of the internal design of the conduit are given in Chapter 7;
/,_.,.-—-'

here we desEfibe the programning interface for using it.

Eﬁtéblishigﬁ_Connection to CPS: To establish connection with the CPS
faciliﬁy, the program must issue one of the following versions of the

__,T;-,: - «rw;;‘:s@a\u-_—'-

generic proceéure reference LOGCPS:! 1o et

{LOG CPS
] CALL 1 106cPS (Libname)
The no~-argument format naﬁsés a "standard" log-in fo[be performed;..
sign-on identifiers are supplied by the Monitor. -Thé_sebond'format
above useslthe one- to six-character libname argument to specify a

¢ : -
load/save library idenéifier for this sign-on.” When connection has not
yel heen esfablished, ghe application program must issue one-of the

LOGCPS calls prior to using one of the calls described below.

,Reé&ing €fom CPS: - To read output from CPS, the-program uses the procedure

-

I

17

CALL RDCPS(inarea,time,return)

The inarea argument must be declarad as a VARYING character string
with léngth of the programmer'sﬂgﬁggging. CPS output is ﬁruncated On'f
the right if it is lorger than the defined maximum for inaiea., CPS
mesg?ges are presented to-tae application program with all line and termi-
nal control characters stripped out and in normal EBCDIC representation.

The FIXED BIN(15,05 time argument spééifiés the maximua;tige inter-

val, in seconds, that i5 to be allowed for completion of this operation.

" The invoked procedure enforces a minimum specifiable deléy of one second;
an ;hstantaneouéméompletion is not possible because computer operations
aéé not infinitely fast. (In faet, CHAT itself contends with CPS for
use of the CPU-~perhaps locking out CPS for brieﬁ,periods;) ﬁence, a

. request of gg;g_secon@é is treated as one. -

Upon completion of the operation; the BIT(8) return argument is set

to a value represented by onerof the following $-names:

éTIM CPS has not résﬁﬁnded within the interval specified by
the time argument,

SMSG the inarea argument ﬁontains the message character string
returned by CPS.

SNULL CPS-has no output, but instead is veady to read from the

apﬁlication program.

. The action of the application. program following the completion of
RDCPS is a function of the value returned in the;feturn argument. Typi-

ca1ly,-i£ $TIM_is returned,{ihe_program ﬁayvtry-another RDCPS or an

ATNC?S,,diSéussedlbelow. Affer.$NULL, it is likely that a WRCPS will be

78

P Y - - - !
issued, " In the case of §MSG, the application program's next actigngill
likely be determined by the content of tthreturned characte;_sﬁfing,

the analysis.of which is'the ;espoﬁsibiiity of the application program.

Weiting to CPS: To send text to CPS, the gpplication program uses the
;procéddre reference WRCPS: ‘ _
CALL WRCPS (text) | | : —'f?-"f'j

The text argument is a chafacter string of varying 1éngth_pot longer
than 256 characters, a 1imit“imposed by CPS. |

Because the CHAT interface provides no explicit-lqgodi procedure,

]

the application program can achieve this by sending a ﬁogout-requeSC-

: y l

using-WRCPS., The logout format is déscribed in [1I1) where different

versions -aré; shown. Notice that CPS responds with run-time statistics; -

2Ty

P

‘these can be réad by thg application program in the usual way u31ng RDCPS.
If the application pfogram uses‘che 1ogoutfresume variant, the.nex; log-
in may be achieved by use of LOGCPSIor, becaﬁsé CPS never really "dis~
connected,"lby use of WRCPé with the text argument specifying the iﬁgin
tnformation. |

The applicgtion program, of course, may eﬁd'withOuflexplicitly dis-
'connect}nﬁ from CPS. Iﬁ thislcase the Monitor takes care pf disconﬁ‘

"necting CPS as part of the normal termination of the application program.

Intérruptigg_CPS Activity: The experienced user of CPS is familiar with
the occasional need to signal the Sysﬁem to éhangehététe.' For instanEe,

CPS may be doing automatic line numbering in "collect" mode and the |
J ' ' ' o

application program has reached the point of wanting to switch'tb "direct"

e mr

- mode--for example, to request.execution of the prqgrém just gengraté&.,-

79
Another example océurs when a program-inﬁééecutimd by CPS is in a loop,
- producing nothing. Aiternatively, the exgcuting program may be giving
too much output because of a different type of looping. All of these
needs to gtop CPS are sérviced by the simple procedqre reference ATNCPS._
(Attention CPS): -I
CALL ATNCPS

" No arguments are passedﬂto this procedure, The action performed is
dependent upon the context. if CPS is currently ready to write, the
effect is the same as a terminal operator'sxh;tting the "Breakﬁ key at

a Teletype. 1In the case of a CPS read opg?gtion, it has the effect of

- !

the same operaéion being ended-at the”%eletyhe'by hittiﬁg the "'n::qn'ltrol-Q”"r
" (%-0n) kay., Finally, if the application program issues ATNCPS follqﬁingj'
a RPCPS that has timed out, it,ﬁas thg effect of forcipg CPS to‘respond
with a write opération, typically informing where a looping or too-slow

program has been stopped by the signal.

80
GENERAL USE PROCEDGRES

Fivefprocedures are'available‘for-general_use. Three of these, ENQ,
DEQ,_and DDNAME, are the work of Blair [B3]. . DDNAMﬁ is a function refefiffﬁ
ence whose invocation causes a tuo—character,i&entifier to be returned
that denotes the station address of theﬁterminal (display_or Teletype)
_from which the application program uas invoked. Two:uses of this are
foreseen:ﬂ”programs can determine the station uith which they are inter-
acting and programs thatlrequire task—unique:qualifiers for“shared data‘h
sets can'achieve_it thus. Fy -

ENQ and DEQ provide pasically the same facility as the IBM Operating
Systemf360 ENQ;and DEQ macros. Tnat is, they allow concurrently active-

d a

tasks to share access to common data sets in orderly, nonincerfering

fashion. Curiously, the PLfI designers did not include any equivalent

facility in the language definition.

© Two other procedures, ERRCODE, a function reference;discussed in
the next section, and DELAY are available. The DELAY call-statement 1is ‘
identical in purpose to the standard PL/I DELAY statenent:‘ |

_ CALL'DELAY(Eigg)

The FlXEb BIﬁ(lS;O) time argument specifies the number of seconds (thel
PL/I standard-DELAY'accepts millisec'”ds) that the application program |
execution 1s to be suspended. One possible use of this procedure is to
allow a measured delay between consecutive display operations, where
the message displayed by the first in the sequence of display operations
is to be erased or overwritten by the next operation in the sequence.
" This allows the station operator sufficient time to read & message before

e is destroyed by the next action of the application progrum. For over-

81

-
-

to use of the stgﬁdard PL/I version. The procedure invoked by the CHAT

DELAY infofﬁs_the Monitor of the suspension request. This causes the
Monitor to suppress scheduling overhead for the invoking application sub-
task for the duration of inactivity, and gii'time-sliéing activicy if

no 6ther subt;sks are active. Since the Monitor is not informed of ap-
plication program-usage'of the standard PL/I DELAY, that usage does not

suppress the unneeded overhead.

*a

M

82

EXCEPTION~CONDITION SIGNALLING

All exceptional conditions reia;ed to .the CHAT Monitor—coqtrolled
facilities are signalled to the applicition program by raigfﬁé a

programmer~naﬁed condition identified as ABNORM. Each application pro-

- gram must define an on-unit for this condition,-typically through inclus-—
ion of a begin block preceded by the condition prefix:

ON CONDITION(ABNORM)
BEGIN;

{action logic)

|]
- |]
|]
I

s END; —

]

Once the ABNORM coridition has béen raised, the application program
" can obtain further information on the specific condition that caused the

ABNORM_condition to be signalled through use of the function reference

fEﬁiabDE(_ Invocatioﬁ of ERRCODE causes the return of one of the FIXED

BIN{(31,0) values shown below in pareﬁthgses:

(1) PROGRAM FRROR: indicates the application program has passed an
argument with an invalid value or lenéiﬁ attribute to one of the

subroutines discussed in this chapter.

]

S

(2) SLIDE ERROR: indicates the Monitor has detected an error during
execution of a slide operation that characterizes-an-uncorre;tablé

.slide projector malfunction.

(3) LINE ERROR: indicates the Monitor has detected an error that means

H3

the transmission path to the display statlon [s nonoperadcionat,

(4) WRITE I..[ERLOCK: indicates a sequencing problem in the asplication
program's use of the CPS couuwuit facility: both CPS and the appli-
cation program are simultancously attempting 1 write apera~icu. In
the case of the application program, a WRCPS or LOGCPS has becn
issued to cause this irterlock problem. A RDCPS or ATNUPS will

brea' the ccntention.

(5) LOG-IN EXCEPTINN: indicates the application program has issued one¢

of the other CP8 corduit calls when <aly LOGCPS is permitted.

(6) CPS DEAD: indicates a CPS conduit call issued by the application
program cannot be successfully eaecuted because CPS is peot currently

present in the system.

The error conditions ¢ssociated with LINE ERROR and CPS DEAD arc
fatal ones, requiring the application program to ceasc¢ further use of
the corresponding facilities. 1In the case of the LINF ERROR condition,
tiris means the calls associated with display usage can no longer be
issued; in the case of CPS DEAD, the conduit calls are not to be used.
If the application program vicolates this protocol, the Monitor simply

stops the appiication program when it issues the offending call.

34

WRITING AN APPLICATION PROGRAM

An applicatfon program designed Egr_rhe CHAT system is written

with the idea that only one station exists. This means that a program
: . !
intended for concurrent use from multiple displays is noft burdened by

‘the logic for handling multiple terminal operation. The Moniror, ex-
‘ploitlng the multltasking facility of the 0S/360 MVT control Program,
_artaches';he program as a separate task for each invocation of the pro-
gram from a distinct display station. Thus, there are as many con-

currently executing application tasks in the CHAT region as. there are

active terminals. Some of these tasks may be the same application pro-
gram attached in multiple, whiie others may be-entirely different appli-

cation programs singly attached.

While this feature .simplifies the design of an applicatlon program
. iritended for multiple dlsplay usage, it has a restrictive effect in
that an application program cannot include Support for both the Teletype
gndra display station. - ‘

. The declarations needeg to define the-vérious $-named Variables-and
the entry pornts to the procedures discussed in-tﬁis chapter can be in-
cludéd in the application program at the point in thg'prdgram where thel

programmer has inserted the following preprocessor statement:

cerpeL| - ' _ ‘ .
#INCLUDE QraxocLp - : o
CCIDCL and TWXDCL are member names inwﬁYSLIB. The confining of appliéa-

Q

_ tion program support to either a display or the Teletype is reflected in

1,

" the text identifier cptions provided for the compile;rime facility.

The CCIDCL identifier results in the generation of édurce text con~

sisting of the declarations needed for display statioﬂ Supﬁort; this ih— '

-

v

85

" cludes a1l procedure references and $-named variables discussed in this

chapter with the,exéébtion of WRIWX znd RDTWX. The TWXDCL identifier

B

cauégs Ehe éénefagion of the declar;tiéns for WRTWX, RDTWX, ENQ, DEQ,
EkxCODE, DELAY, and DDNAME., Notice that the CPS conduit facility is not
accessible‘from a Teletyﬁe application program. (We saw no requirement
for Teletype application program access of CPs; and Teletype.operatdr
access to CPS is supportea.by CPS itself--the operator can dial CPS
.directly.)"_': . . ’
In.désigﬁing an application program for multiple-display usage,
. the pfogrammer has two -concerns that he cannot ignore. One is the.co-
ordination of access to shared, but serial-reusablg, data sets, an 1ssue

mentioned earlier in the description of ENQ and DEQLH'This is a logical

issue. The other concern is p;oéram reenterability. By designing én ap-
piication program t6 be reentrant, the programmer permits the multiple
attéchiqg-of a single copy of the program load modulé. ~This is a storage
efffé;encz issue., Application programs that are not reentrant require

a separate copy of the program to be loaded sach time the proéram is
atégched.l (Because of the presence of only the single Teletype in the
CHAT System, a Teletype application need nq;’Bé‘reentrant.)

_hBasically; to achieve reentrancy, the application program should be
codgd so that only read-only variables occupy static storége. Detailed
guidelines for achieving reentrancy in PLXI afe beyond ﬁhe scope of this
document and in fact appéar to be a matter of taste (cf; Mudge [M2] aﬁd
Sneeringer [52]). Thefexﬁérience of using the overlay faéilitj in conjunc-
S tion wiﬁh a reentra@t;assembler language application program is discussed

by WaiF-[WI]. 4 h -

-

" F0r the sake of completeness we mention a reatrictidﬁ and a poteatial-

86
ity which ére of .1ittle significance to anticipated CHAT System applica-
tions. Ihéwfﬂgfriction forbids thé application program to use Ehg_muléi~
ﬁasﬁing'option within itself. The CHAT Monitor is not implemented éo
allow it because of thke way thé ngégpr Subtask Scﬁedﬁler (¥38) does

't}me-slicing and subtask scheduling--see Chapter 4. (In particular,
the PL/1 mulﬁitasking option is too idiosyncratic to support.) The

potenﬁiality is that concurrently active application subtasks can inter-

act with each other, even though the CHAT Momitor does not supr.rt this.
This can be acbieved via common 0S/360 data sets and appli;ation-
program supported queue-sampling; Blair's ENQ and DEQ are useful in con-
trolling access to the shaggéﬁfile%L_ ih;s technique is now a familiar

one to the 08/360 user conmunity; it was one of the earliest methods

used to pass data between jobs in separate regiéns.

[

CHAPTER 4: PEGION AND SUBTASK CONTROL

Two logically distinet CPU-scheduling services are provided by
the CHAT Monitor., The first uf these, time-slicing, ensures that the
computational activity.of the CHAT application tasks does not pPreempt

‘ustallation CPU’usage beyond a specified maximum fraction of the total

time available. is is a gervice to the installation management ﬁho

=requ1re assurance that the OVBrall multlprogrammlng throughput performance

not be severely degraded by CHAT region activ1ty. During the development

of the CHAT Monitor on the TUCC installation, the TUCC manager imposed

the limlt that not more than five percent of the total CPU time could

be preempted_by CHAT application computing. At TUGC, multiprogranming
included, besides CHAT, six batch jobs as well as HASP, RJE, APL, and
CrS (serving real teletypewriters as well as CHAT "ports"). This same

limit has been carried over to the UNC lnatallation which ehrrently

pii

supports no interactive computing other than CHAT ang only three batch
jobs, along with HASP and satellite-RJE (to TUCC).
The second scheduling service provided by the CHAT Monitor is a

suballoeation of the region slice among_the competing active application

tasks. Thls subtask'prloritz_scheduling involves a modified round-robin
scheduling technique, allowing eaeh_terninal to be given timely service,

- Botn scneauling serviees_are performed by MSS-tthe Monltor'Subtask.-
Seheﬂuler>--the'highest erioritf and chief executive control task within'

the cﬁAT region. Additional reaponsibilities of MSS, which owns all

;o

- 88

tasks in the CHAT region, are creation and termination of application
tasks, as well as coordination of reglon shutdown in response cither

te an operator request or to certain pathological circumstances. These
matters, along with the scheduling services,‘are described in greater

detail in the following secticns.

TIME-SLICING

ﬁndep 05/360 MVT, every-task in the system has.a limit priority

and a dispatching priority, each having a numerical value-iﬁ the range
0-255. :The control program maintains a task dispatching queue with faskg’
bfdere@ for execution according to dispatching priority.,lThé Job step
Lask for a regiom is given-its limit and éispatchinglpriorities as
Ispecified by parameters in the Job-Control<ﬁanguage (JCL) statements used
to create it (and the region); this limit_priﬁrity is the ceiling far

all task dispatching priorities within the region.'ISubtasks.Of the job
step task are given their ihitiai priorities by parameters in the

05/360 ATTACH macros used to create them. ' Another 08/360 macro, CUAP,

can be used to change the Qispatchiqg‘priority of a subtask-

In the CHAT'regionloﬁly 6ne Limit ?riority is used, and the dis-
patching priorities of the Monitor control tasks érelall equal to it,
MSS; as the job step task, is created fir;t and théreﬂy has thé highest
priority--length of time that a dispatching priority is feld being the
secondary detérmipant of dispatching order. This cbmﬁon disﬁatching
priority is higheé.than that for the installation batch reg;ons, but lower
than. that of wvarious system tasks, e.g., HASP. -Thus, the CHAT Moﬁitor
‘can be blocked by system supervisory activity but not by lengthy compu-~
tation in the batch jbbs.

The basic idea of CHAT time-slieiﬁg ié,to dynamically change the
dispatching p?iority of theICHA$‘£pplication subtaské, relative to the
batch tasks, inlaccordanqe witﬁ the five peréent formula. This alter-
nétiﬁg promofibn and demotion oflthe application subtasks is done by MSS

through use of the CHAP macro. ~ Thé Moniter control tasks, because of

90

their supervisofy role, are not themselves affected, buc‘always remaiﬂ
at the same high level.

A CHA;;E;ge-slicing cycle consists of two intervals: one 1n which
CHAT application subéasks hold high priority relative to batch, followed
' by one in which the relative ériorities are reversed. The high-priority
interval is referred to asi;mEHAT slice; thé low-priority interval, as
a CHAT igg. |

Computer‘timing, because:of-the p}e;ence of a digital clock, is
granular--with clock resolutiﬁn characterized by a smallest measurable
time quantum, q. 'The UNC System/360 Model 75 is equifped with the
st;ndard System/360 clock, a line-fréﬁuency timer whose clocking epochs
(instances when the clock value' is changed) occur every one-sixtieth of
a second. Thus, here q = 16 2/3 milliseconds.

The five percent formulalrequireé that the ratio of slice to low
be nq:19nq; With a sufficiently small q, the optimum valﬁe of n would
be difficult to determine--requiring sufficient expe%ience with gnd
analysis of the running CHAT System. Thelgrossness of the ﬁctual clock
resolution, however, made the choice of n=l an obviocus one.

When no aﬁplication subtasks exist in the-CHAT region, or when all
present are idle,.awaiting an external event such as a timer interrupt
or an input signal from a te;minél, there is no need for time-slicing.
Accordingly, the QHAT Monitor will suspend time-~slicing. This period
of suspended time-élicing is referred to as a GHAT—ELEER- A run of con-

secutive time-slicing cycles uninterrupted by a slump is referred to as

a time-slicing burst.‘ '

91

Initially, followinguiniFialization of the CHAT reglon, the CHAT
state is a slump. .- Then upon receipt of a diéplay station interrupt
signal or of the $XEQ command from the Teletype, MSS attaches Blair's
MTOC [B3] at a dispatchiqg priority equal to the CHAT regioﬁ limit
priority. MSS also issues an OSIBGOISTIMER‘macro'instfuct;on specifying
an interval of q (16 2/3) milliseconds. This changes the CHAT state to
a slice and begins the first cycle of a time-slicing burst.

M

At the end of the slice interval, a timer completion exit routine

specified in the STIMER macrc ga.ins cgntrolland posts an event control
block (ECBS, which is one of several that MSS waits on when it has no
schedgled work. Under 08/360 this exit rautine is an event-activated
cogoutiﬁe of MsS; it executes under the same tasﬁ control (TCB) as MSS

and has the addressing capability equivalent to an in-line’sub;outine

‘of MSS without being permitted to disturb ;he Yactivation record” (Pro-
gram Status Word apd registerss of Mss., It does, however, have preemptive
priority over the execution of any in-line code of MSS.

MSé réacts to the posted ECB by using CHAP to demote the application
subtask tﬁ‘a’dispatéﬁing priority below that of batcﬁ. Tﬂén a new STIMER
is issued specifying an interval of qu.(316 2/3) milliseconds and the
CHAT state is changed to a low. At the completion of the low, the exit
routine again posts the ECB of MSS which in turn prbmotes the active sub-l
task to the CHAT limit priority and issues an STIMER Lo start the slice
of a new éycle.

Because the application subtasks are demoted, not suspended, during
CHAT lows, they rémain dispa;chgble at all timés. This allows the 0S/360
task-switching facility to dispatch any rea&y CHAT subtéSks duringlperiods

when the other regions of the system are all in the wait state. This has

92

the twouéold advantage ©f not only allowing CHAT applications to gain
faster access to the CPU resourxce but also shifting some CHAT activity
from preemptive qselof system time to system time tﬂat would otherwise
be dead; thereby increasing overall installation efficiency.

In genefal, there ‘can be several application sgbtasks in the CHAT
region. For thigtreason, MSS keeps a2 chain of pointers to the TCBs
for the various ;%plication subtasks that are present. This chain is

used during the CHAP-scans that MSS perxforms to alternately promote and

demote the subtasks. Indeed, there are two such chains: a high prioxity

chain and a regular prioriéy chéin. The need for two priority groupings

follows from the subtask priority scheduling scheme discussed in the next
fecﬁidp. Here we are concerned with ﬁhe chaining mechanism itself.

Within the station contrxol biock (SCB) associated with an appliéa—.
tion subtask is a field for chaining information called the subtask TCB
element (STCBE). Figure 4.1 ghows the format ofl this field. If no
application subtask exists for the assoclated station, the STCBE is all
Zeros. _

" The first woxrd of the STCBE holés'thg address of the TCB for the
application subtask. This 'woxd is initialized by MSS upcon attaching the
sdbtask, and the pointer is subsequently passed-as an argument on execu—
tion of the CHAP macro. _

The second woxrd of the STCBE is used for chaining. When the STCBE
is on one of the chains, this word- contains a pointer to thelnext STCBE
on that chain. It contains zexes if the STCBE is last on fhe chain. A
subtask represented on one of the chains participates in dispatchigg
priority promofion‘or demotioﬁ during the CHAP-scaﬁs pexformed by MSS-‘E

for time-~slicing.

«

SCB

S

STCRE

TCB Address

Next STCBE Address

Status

P w—

H

Figure 4.1 STCBE and Status Flags

93

94

The status Lyte of the STCBE contains information concerning the
current status of the application subrask. {(The X-bit is not used, while
the I-bit is not pertinent to time-slicing.) The H- and R-flags are sct
according to which of the two chains the STCBE has heen placed on by
MSS. These flags are reset by MSS as it purges an STCBE from a chain.
Purging is done when an application subtask is tv be terminated and
detached from the system or when MS8S finds either the W- or P-flag set
during a CHAP-scan (at the end of a slice or a low).

The W (Wait) and P (Pause) flags are set by the application subtask
itself via one of the IFCSECT subroutines discussed in Chapter 2. An
IFCSECT subroutine that waits for input from a CHAT-controlled source
{(READ, RDCPS, RDTWX, PAUSE, etc.) or for completion of a timer interval
{e.g., DELAY) set one {or both) of these flags. This allows M55 to purge
the idle subtasks from the chains during the next CHAP-scan. After being
purged, the subtask is allowed to remain at the high dispatching prioricy.

The advantage of this purging is that MSS upon finding the chains
empty at the end of a low can suspend time-slicing, aveiding unpreductive
timer interrupts and unneeded CHAP-scans. Whenever an application sub-
task again becomes ready, the same subroutine that originally ser the W-
or P-flag will report its readiness L0 resume execution to MSS by posting
an ECB. MSS then restores the subtask to a chain and resumes time -slicing.
Notice that responsiveness is enhanced by this event-acrivated resumption
of time-slicing: in a sparsely ective system like CHAT the activated
subtask cun gain immediate access t0 a slice rather than having te wait
an averapge of 150 milliseconds if time-slicing were never suspended.

The remaining A (Abort) and B (Break) flags iIn the STCBE status bvte

are set in conjunction with two types of "CHAT-instigated" aborts to be

95

described iq_the final gection of this chapter. " 1In the casé‘of.such an
ébort, MSS éurges the affected suﬁtask from the chain and gives it the
high dispatching priority even during a CHAT low before issuing an ABEND
to abort it. The 05/360 execution of the ABEND logic involves certain
critiéél sections that suspend all other activity within a region--even
that of higher priority tasks. (The ABEND logic is executed with the
dispatching priority of the task being aborted.) Thus, this feature is
the single vioiation in CHAT of the five percent formula; Without it,
the degradation of the CHAT region responsiveness was shown by experience
to be.intolerabie during saturated loading of the ‘installation. Sub-

,,,,,,

period--hoursf—-to get control to execute a CHAP. This was due to the
fact that MS8S invoked ABEND for é subtask duriné a 1;w~—whén the sub;'
task had low priority. Because (1) the ABEND internal control logic
| then was dispatchable at‘fhé low priority of'thelsubtaék and locked out
other CHAT regionltasks (e.g., MS85) despite their high priority (why this
is necessary remains a myster&); and (2) during heavy loading, batch
regions cqntinuously execute at higher priority, this meant the yhole
CHAT region was locked out until the ABEND logic could be dispatched and

completed. The CHAT design was quickly altered to promote a sﬁbtask

first before issuing ABEND--this corrected the‘problem.

96

SUBTASK PRIORITY SCHEDULING

The schgduling of application subtasks is inéended to offer the
quickest response time to those subtasks which, at the time of conten-
tion, take:the least computation time to respond to input. This pblicy
has a human factors advantage: - a terminal operator making a request of

an applieation program which involves trivial processing time can expect

. a quick response-—and consistently so. Requests involving more prolonéed

} processing may be somawhat-delayed because of preemption by other requesté
arriving during theilr processing, but the added delay in these cases is
less significant to the human operator. Freeman and Pearson [F1] show
-that statistically this scheduling bias results in a reduection in the
variance of overall system résponse time-—-a responsiveness measure that
they emphésizé for batch systems as well. This basic idea of servieing
small processiné demands,jlzgg_appears generally in time~sharing systems—-
for which, see Wilkes [W3].

The CHAT dé;iéﬁ recognizes two pridrity groupings among contending
(dispatchable) subtasks: a high priority group consisting of those
subtasks that have become ready (e.g., by the arrival of input from a
terminal) during the current time-slicing cycle, and a regular priority
group consisting of those that have been continubusly dispatchable for
two Or more coﬁsecutive cycles. These grdupings res;lt in the newly
ready subtasks getting top priority with respect ko other CHAT subtasks
for the first cycle of their conteﬁtion, apd then getting a regular share
of the CPU resource over the subsequent eyeles that they remain continu-
ousiy.active.

This effectively establishes the following criterion:. a qulck Te-

1
Ta

o7

—

sponse capability is one in which the maximum guaranteed CPU allotment
to CHAT within a cycle suffices to meet the subtask's execution-time
requirements for responding. The.guaranteed_time is, of cogrse, simply
the slidé interval--16 2/3 milliseconds.l This is a considerable dura-
tion on the System)360 Model 75, even considering ;hat CHAT execution
is from LCS. Adding to this whatever {non~guaranteed) system dead-time
may be available (see previous sEcEion) during the low of the cycle, the
ceiling for quick responses appears even more substantial.

For the first cycle that a subtask is in the regular group, it has
top priority within thig group~-being preempted only by newly activated

subtasks added to the high priority group. Hence wg can define a fairly .

gduick response cgpability that requires some-~compute requirement--namely,
two slice intervals.

At the end of the second cycle of continuous activation, thé subtask
loses its favored status and is demoted to lowest priority in fhe ragu~
lar group. It must then work its way up tﬁ top priority within the reg-
ular group over a period_of cycles in accordance with tﬂg Monifor's

round-robin sharing of the CPU resource ameong it and other high-compute

subtask activations. The round-robin process is ;epeated for fhe dura;
tion of the high-compute activation, i.e., until it once again returns
to the idle, or suspended state.

To implement this scheduling idea, MSS maintains two service

chains-~a regular service chain {corresponding to the R-bit previocusly

described) and a high service chain (corresponding to the H~bit), Fig-

ure 4.2 shows the structure and a,possibl% occupancy for these chains.

Forward chaining, only,,ié employed because purging usually occurs only

during a full scan of the chains {(exceptions being primarily subtask-ends),

) 1Except for the first slice of a time-slicing burst which, because
it begins asynchronous with the clock, averages 8 1/3 milliseconds.

S I T

Number in Chain

First in Chain

2 Last in Chain 1

@STCBE1l @STCBE3
@STCBE2 @STCBE3

TCBE2
7722 R 7

STCBE3

222 B /74

STCBE1
_////// @STCREZ 77

(a) Regular-service Chain (b) High-service Chain

Figure 4.2 Service Chains for Active Application Tasks

29

while qdditiéns are made to the end of the chains,.

The STCBEs on the. regular chain represent subtasks that have heen
continuocusly active for more than one cycle iu the'current time-slicing
burst, An excéption is the first subtask to become active when the
CHAT state has been a slump-~here only the one subtask is now ready, so
it is simply placed on the regular chain right away. The higﬁ chain %
holds ﬁhose subtasks that become ready during a time-slicing éycle
of an on-going burst. These can be subtasks newly attached by MSS or
can be suspended éubtasks gignalling their readiness to resume by postiné
an event control block (ECB)(of MSS.,

?he two chains are treated by MSS as follows: during the CHAP-scan
at the end of a CHAT slice, those subtasks on the high chain are.given
a dispatching priority equﬁl to one, while those represénted on the reg-
ular chain are given a dispatching priority equal to zero. These pri-
orities--both 16wer than batech region priorities——are held by the active
subtasks for the duration of the CHAT low. At the end of the low, MSS
begins its CHAP-scan with the high chain, then continues wigh the regu-
lar chain, promoting all subtasks back to the sLice_priority, above that
of the batch regions. The high chain is emptied by placing those STCBREs
found on it in their cﬁrrent order at the front of the regular chain.

Subtasks which are purged from a chain because they have gone in-
active (waiting) sre allowed to stay at the high dispatching priority.
Thus,'SUbtasks purged during the CHAP~scan at-the end of a low are pro-
moted along with the still-active suﬁtasks, but at the end of a slice
purged (suspended) subtasks are not demoted--they are only removed from

the chain. Notice that long-idle sub tasks will appear ahead of more re-

cently active subtasks on the 0S/360 dispatchability chain even during

100

a CHAT slice. This ailows newly ready subtasks to gain fast accesé to
theldéU, since the whole MSS scheduling idea is based on the management
by 08/360 of its dispatching chain.

If a purged subtask becomes ready during a time-slicing cycle it is
addéd Lo the end of the high chain. If this occérs during a slice, this
is all that is necessary. However,. during a low, MSS also issues a CHAP
to demote the subtask to priority one so as not to interfere with the
batch regions. So that MSS becomes immediately aware of the‘status thange,
the subtask (in the reactivated IFCSECT subroutine) posts an MSS ECB to
signal readiness. ' On rare occasions it may happen that a subtask is
suspended and then signals readiness to resume-before MSS has performed
the next CﬁAP—scan to purge i; from its current chain. If the subtask
appears on the regular chain, MSS will iﬁmediately, at the time of ready-
signalling, purge it and then add it to the end of the high chain., If
this occurs during a low, MSS also will change the subtask's priority

© from zexro to one. Similarly, during a time-slicing cycle, newly created
subtasks are added to the end of the high chain and are aétached at the
slice pribrity or at the one priority depending upon whether they arrive
-during a slice or a low.

To sharé priority among application subtasks equally, MSS performs
a round-robin reordering of the regular chain at the end of a slice prior
to the CHAP-scan. -The current fi?st STCBE becomas the last in the chain,
while all others are moved up by one position. This new order is held
through both the low and the following slice, when reordering is again
performed:' o

Two exceptions will cause this reordering to be suspended and the

current order held. for an additional cycle: (1) if a subtask is detached

101

from the region during the current slies or (2) if the high chain is
found nonempty at the end of slice., In either case, it 1s impossible to
know how much execution time the still-ready subtasks had during the
ending slice. (Recall that the slice interval is also the smallest
resolvable clock quantum.)

Overall, this technique, designed'to allow each subtask to gain its
fair share of the CPU and to give high priority to newly activatéd sub-
tasks so that quick responses are favored, seems to work very well in
practice. Terminal usage experilence shows the dgsign intention to be

realized satisfactorily by the implementation.

102

REMARKS ON SCHEDULING

Having described the details of the scheduling services provided
by M8S, we consider again the necessity for such services and compare
the implementation with that of other time-sharing systems.

‘Considering the types of applications already implemented for
CHAT, it seems unlikely thét the CHAT region demand'on CPU usage would
normally ever reach a‘five percent 1evelfvat least not over an appreci-
able period. But the‘Monitdr cannot limit itself to just normal opera-
tion considerations, since in the real world-~no matter what amount of
testing has been performed--programs are apt to coﬂtain latent errors.
This possibility, a;ong with the important requirement to introduce new
application pfogréms into the CHAT produétion system during their devel-
opment and testing, means that time-slicing has the important function
of protecting the multiprogramming instéllatiﬁn from endless loops in
CHAT application programs. Only in a perfect world is there 1itt1g need
for time-slicing. (Notice that it is presumed that Monitor control
tasks--which are unaffected bf time-élicing~-afe free of latent endless
loops. Perhaps remarkably, no such bug has ever been detected in the
Monitor——even during development testing.} The same principle of pro-
tection from loops méans that subtask scheduling should not be implementgd
as first-come-first-served with execution continuiig to suspension.

It 1s interesting to contrast the CHAT implémentation with time-
sharing imﬁlementations achievable in interprgtive systems such as APL
or CPS. By presehting a high-level "machine" to an applicatign program,
these systems h;ve full control of the sequencing and context of the

application process through interpretive execution. This allows these

103
systems to ﬁarcel cut CPU time by allotting each competing process in
turn 2 fixed number of interpretively executed operations. This is not
possible in CHAT since it does not tnresent a closed machine interface
to executing subtasks.

As a concluding aside, we mention the existence of IBM's Time
Slicing Facility [I7], an 08/360 system generation option for time-
slicing., This facility was not useful to CHAT because of its static
assignment of dispatching priorities to the tasks comprising the "time-
slice group.” IBM's implementation assumes a static priority is és;ah-
lished for these tasks relative to othex tasks in the installafion.
Whenever tasks in tﬁe time-slice group have work to do (are dispatchablej,
they have preemptive priority AVer lower priority tasks in the system.
Depending on what values are set for fhe priority of the time-slice group,
thexe may also be tasks in the system that have preemptive priorxity over
the time-slice é%oup itself--potentially 1ocking cut members of the group
for extended periods. Hence, CHAT would still be required to perform
bHAP-scans to use this facility.

Additional characteristics of the fag;lity, sucﬁ as (1) its pure
round-xobin dispatching of the group members (no quick response capabil-
ity) and (2) its dependence in practice on a clock of much finer granu-
larity than the standard System/360 option, made the IBM support unat-

tractive for use by CHAT.

104

OTHFR EXRCUTIVE FUNCTIONS

Because of its role as the job step task for the CHAT region and
Iits ownership-of all other tasks-—both control and application, MSS has
éﬁecial requirements for sxecutive control. Brieflz, these involve
matters related to application subtask creation and termination and to
gegion shutdown.

Creation of subtasks, via thg 08/360 ATTACH macro, gives MSS the
right to manage the dispatchability of these subtasks (via CHAP) during
time-slicing. It is also alerted by 0S/360 to subtask terminations,
upon which it provides reporting and cleén—up services. . The proctor~
message discussed in Chapter 2 is originally composed by MSS through its
analysis of subtask ending status. MSS also initiates suhtask—tefmina~
tions in responée to requests to do so from the display and Téletype
‘control taskg--matters distussed furtﬁef in Chapters 5 and 6.

Region shutdown 1s performed when MS§ detectls erronsous termination
of the other Monitor control tasks or'upon commands to shut down from
the Teletype (via MIWX). FErroneous termination of Monitor control tasks
is also reported to MSS by OSf360,'since MSS owns these tasks‘as well-—
see Chapter 2 ("Initialization of the Region"). The Teletype commands
for shutdown are described further in Chaptqf 6. Region shutdowm is
signalled by MSS to the installstion console by means of a message saying

80.

CHAPTER 5: DISPLAY I/0 MANAGEMENT

This chaptér désdribes how the CHAT Monitor manages the CHAT dis-
play cluster and coordinates I/0 activity between display stations and
their attached appiication subtasks. The Monitor control task in charge
of this display activity is called the Monitor I/0 Scheduler (MIOS)--a
slight misnomer, since MTWX and, indeed, the conduit also d; 1/0.

MIOS is the largest component of the Monitor (ﬁore than double the
size of the next 1argest5‘and is quite complex. The complexity is caused
by (1) the inherent complications of its multiplexing services; {(2) the
funéfion-richness of the display equipment, and (3) the large number of
possible error conditionmns Which:need to be accommodated by its error
recovefy logic.

This chapter 1s not concerned with describing the primitive control
of the equipment_in the sense of detailing individual channel program
structures Oor precise sequences bf orders sent-to the ;emotely-linked
display cluster--even thouéh some invention exists there. These-matters
are more fundamental to thé equipment design than to programming options..
Similarly, little will be said about the myriad pﬁssible I/0 etrors that
can (and do) occurlor the error recovery protocols invoked to handle them.
Error-handling logic is challengingly teéious--with such sensibility—
shattering delights as compound errérs (requiring status scanning preced-
ences), ambiguous errors, and "should-not-occur" errors—-which occur.

These matters are documented in thé code listings.

106

The main focus here 1s on the control of the multitermiral/mulii-
application I/0 activity-environment of the CHAT System. - Chapter 2
elaborated on the hardwére attention mechanism and link-ch~:iing--hoth
of‘which are fundamental concerns in the Monitor program design. The
attention mechanism is an interesting altern;tivelto polling--a morea

commonly used iinkrconvention whereby all input signals from terminals

are explicitly (and, frequently, unproductively) solicited by the com-

puter program. 3Both the attention mechanism--for its control implica-
tions-—and the link-sharing--because of 1its requirements for scheduling~—
are important throughout the discussion.

The basic I/0 control concerns of the chapter are (1) the programming
environment produced by initialization of the CHAT region; (2)_the con-
trol and daga structures for identifying, synchronizing aﬂd coordinating
1/0 inla'multiple (applicationi réquest context; (3) program design fea-~
tures for cluster-size lndependence; (4) ordering of operations (by type
and direction) for link-multiplexing; (5) some activity-threads involving
the link-use; énd () a genergl treatment of the underiying I/0 control
using the 0S/360 EXCP interface.

Besides controlling I/O, MIQS8 participates jn some other activities--
for example, subtask control. The role of MIOS in attaching and termi-
‘nating subtasksland in reporting failures-—-to the subtask about I/0, or
to the display operator about the subtask--will also be described. Two
other activities of MIQS are only briefly mentioned in this chapter--con-
duit access control and hard, or fatal, I/0 error logging. These are
described in detail in Chapters 7 and 8 which discuss the -conduit and the

on-line test facility more fully.

107

AN INITIALLZATION STEP

During CHAT-region initialization at job-imitiation, a transient
roul.’ne named MIOSINIT is invoked. MIOSINIT is attached instead of
MIOS and after successfully performing its functions, transfers control
(XCTLs) to MIOS and-disappears. MIOS inherité the same 08/360-assigned
Task Control Block (TCB) and becomes the Monitor control task formerly

represented by MIOSINIT.
| MIOSINIT obtains addressability for MIOS to the Monitor comtrol
storage and initializes the environment for I/0 to proceed. This involves
issuance of the 08/360 OPEN macro for the display cluster Data Control
Block_(DCB); initializing anothér 08/360 control block so that the MIOS
Start I/0 appendage (to be described) is known to the system, and ini-
talizing the display compleﬁ channel adapter and multiplexer. These are
all cne-time requirements and need not appear in resident code.

M;OSINIT can experience problems in attempting initialization of the
display comblex. This initialization invoives a channel program that can
"hang" or repeatedly fail, Both conditions are described im Chapter 8
where remedies ére also given. MIOSINLT alsc includes some logic for
‘communicating with the installation console cperator in the case of hard
failure. " Because this requirement has been obviated by the on-line test
facility now available at the Teletype, it will not be described. It was
useful during testing before the Teletype support was included in CHAT.

- The code listing describes if in detail.

When MIOSINII successfully iﬁitializes the display equipment, it

does two-more things. First, it prints_on the iné;aliation console:

CC-7012 INITIALIZATION COMPLETE. This is useful for prompting. Second,

108

it initializes a linkage required for MIOS to be sipgnalled when the
System/360 Attention status occurs in the System/3€0 channel status word
(CSW) associated with the physical channel port for the CC-7012 chanmel
adapter.

The Attention status plays an important role in the System/360.

It allows the chamnel adapter to signal arross the System/360 channel

even when no channel program is currently active. It does, however, intro-
duce added complexity in the system control program in order for the I/0
Jupervisor (I0S) to identify to whom the status should be signalled.

When a channel program is active this is ne problem, since a :hain of
058/360 control blocks links the Unit Control Block (UCB) to the using
program, and the UCB is itself linked by sysgenned location to the physi-
cal port. VWithout the chain the task is more difficult.

05/360 poffers a sysgen option, whereby an Attention-handling routine
can be specified and its address tied to a field in the UCB. At Attention-—
tire this routine is then invoked (regardless of whether a channel program
is or is not active).

CHAT has such an Atteantion-handling routine, whoce invocati.n simply
results in its posting an Event Control Block (ECB) belonging to MIOS,
This CHAT Attention-handling routine was coded by Blair who also describes
the sysgen protocol for including it [B3].

To inform this routine where the MIOS ECB is, MIOSINIT issues Blair's
svC 239 [B3] passing the address of the ECB. This links MIOS to the
Attention-handler. For added generality, the protocol alse includes pass-
ing the address of the CC-7012 UCB (via the ECB). The Attention—~handler
associstes the UCB with the FCB in its control storage so that the Atten—

ticn~handler ecan be shared across .CBs.

109

After completing this last step, MIOSINIT transfers controgl to

MIOS.

110

WALTING, LINKING, AND QUEUEING

Mostlof the time MIOS does nothing at all byt wait for one of the
events it handles to occur. If this were not the case, MIOS wbuld repre-
sent too much overhead and CHAT would be inefficien:t. When MIOS is acti-

" vated by one of its events, it has three immediatz problems: (1) What
happéned? (2) Who did it? (3) What can be done about it?

The first problem and, in part, ghe second are solved by the wait-
protocol that MIOS follows. Figure 5.1 shows the list of ECB addresses
(and their meaningg) that MIOS waits upon (using the 0§/360 WALT macro)
when it has nothing eise to do. The list 1s ghown in the order that MIOS
scans it when one of the 1istéd ECBs is posted. Apart‘from the urgency
associated with a shutdownlrequest, the orderipg is not overly ;ignifi—
cant.

Shutdown, $E72 (a request from ﬁTWX to Enable the CC-72 multiplexer,
discussed further in Chaptgr 6), éhd ?he Attention signal are not single-
station—associlated activities. Who poste& them and what is to be done are
clear; the details will be deferred to later sections.

An I/0 completion presents the problem of determining the station
(if any) with which the current I/Q is associated. Once this is determined,
MIOS must decide which I/Q operation to initiate next.

The other events associated with the ECBs shown in Figure 5.1 are
also station—associated. However, part of their posting-protocol involwves
passing thé address of the SCB (Station Control Block) to which thé event
applies. This ;s logically redundant since the ECBs ;hemselves are lo-
cated in their associated Sst; the protocol is followed for eff@ciency

reasons.

N+1

List of ECB
Addresses (full-words)

@shutdown ECB

@8E72 Requast ECB

@1/0 Completrion ECB

@Attention ECB

Addresses of
Lisplay-Request ECBs *
Addresses of
Termination—-Event ECBs *
Addresses of
CPS-access Request ECBs *
Addresses of
Port-active ECBs *

N: Number of Displays in
the CHAT cluster, (NUMCC39S)

11}

Posted By:

MSS

MTWX
08/360 10S
Attention-Handler

Individual Subtasks

MSS

Individual Subtasks

Conduit CPS~side

*: Posting includes passing

the address of the S5CB
involved.

Figure 5.1 MIOS ECBs and Their Posting

112

While station-association in these cases is ne problem, honoring
the regquest associated with the ECB posting might be. Display requests
can arrive while I/0 is in progress for another station, or the request
(e.yy., to read) might require an Attention-signal (display activity) first
before anything can be done. A termination event, on the other hand, may
require MIOS to send a proctor message (see Chapter 2) to the display;
chis, too, 1s affected by current I/0 activity. The other two aevent
classes involve the coaduit and are described in Chapter 7.

Tigure 5,2 shows how both problems are golved by MIOS; for brevity,
we assume only three display stations. Asg shown in the figure, MIOS holds
I/0 requests in queues; one queue exists for each type of operation.
(Exceptions involve multiplexer-only activity.) 1Indexes are uSed to
allow small queue clements (one hyte per index) and to locate the addresscs
of their associated SCRBs via indexing of the 1list of LCB addresses
(SCBOLIST) residing in MIOS control storage. (STATINDX ig described in
a later section.)

When an 1/0 request occurs, MIOS obtains the index from the SCB and
Places it at the end <f the queue associated with the request type. The
counts shown are also updated. Whenever MIOS initiatee an I/0 operation,
it stores a code defining the type. (There are more types thun queues.)
Upon completion of the 1/0, MIOS branches t¢ the routine chat handles
the type; and this routine, by knowing which gueuwe is involved, can locate
the SCB involved--the first index in the queue is used. The index is then
taken off the queue and the counts updated. Queue-handling subroutines
are invoked for Putting on and taking off--the latter returning the SCB
address. When I/0 scheduling can be performed after I/0 completions, the

counts are used to determine quickly what activity to start, if any. The

List of

SCB

addresses

1113

') SCB)
ﬁgB@LIST / Index
7 N 00
7 ", -
STATINDX ,,’/’, N
” -
04 L
08 -/ SCB
’
00 8
/ff 04
SCB
List of dynamically
ordered indexes used
for device rotation 08
Type_1/0 Code
Total-Queued Count

S

BT T

Queue counts

\

=]

Loo f o]

=

tion branch table.
The routine branched-
to knows which 1/0
queue ir involved, if
any.

Slots for holding
queued indexes (One
byte per index)

Figure 5.2 $CB Indexing and Queues

114

scheduling involves a priority scan of the queues to he described.
Figure 5.2 shows a possihle occupancy of the queucs in which all three
displays are active.

Two exceptlons to immediate dueueing of redquests are possible. -If
the request is READ, READLP, or PAUSE (none of whick can be forced hut
require operator activity) and no interrupt is yet pending, the request
is queued when the interrupt later arrives. n the .ther hand, if gne of
these requests occurs after the event that would satisfy it has occurred,
the completion is posted immediately to the subtask. (Recall from
Chapter 3 that a lightpen interrupt satisfies a READ as well as READLP

and PAUSE.)

115

INSENSITIVITY TO NUMBER OF DISPLAXS

MIOS is insensitive to the actual pumber of displays in the CHAT
System configuration, allowing any number from 1-32 (the multiplexer
maximum). To increase the current number defined, the CIAT svystem pro-
grammer need only code a CHAT-defined macro (SCB) for each new display,
specifying a few display parameters, and change a single equate card
{(NUMCC3@S) that specifies the naw number. By then reassembling all of
the CHAT Monitor components, the Process is complete. {(More details on
the SCB macro are given in Chapter 9.)

To achieve this insensitivity, MIOS depends exclusively on the
NuUMCC3®¥s parameter in all of its code. This means that list-lengths and
queve-sizes are everywhere determined by this parameter. (This is com-
plicated--particularly because of cross~references between Monitor
control storage and the SCBs--by the need also to initialize lists of
addresses at assembly-time.) Similarly, all loop control for scanning
and searching through the SCBs iz parameterized. Where dirfplay-dependent
values are required, such as for dicplay addressing, these values are
fetched by MIOS from their standard locations in the SCB currently in use--
the SCB macros assembled them there.

This idea is illustrated in Figure 3.1, where N denotes the current
value. The N+l shown is not a violation of this idea, but accommodates
the Teletype-attached application subtask (described in Chapter B} that
"seizes'" a display and makes display I/0 requests. The Teletype is not
accommodated in the other lists because termination events are diverted
to MIWX, while CPS-access is not defined for this usage. (It isn't needed.)

This insensitivity through parameterization is total in MIGS and,

indeed, is total throughout the CHAT Monitor, with the exception of
the conduit. Chapter 7 describes some minor limitations in its

design and some sysgen needs for increasing Teletype UCBs that it uses.
Even the conduit, however, js parameterized except where uanavoildable.
The effect of this implementation ig that as the CHAT System frows its
configuration can hbe redefined by anyone with even the most cursory
knowledge of its software support. It does not reduire the presence of

its designer.

117

SCHEDULING RULE

In Chapter 2, we described the general rule that MIOS favors
input into the CHAT region over output from the applications to the
displays. Néw we elsborate upon this rule and discuss the detailed
implementation.

Table 5.1 shows the scanning order for the I/0 queues when a new
operation is to be scheduled., Lightpen operations (reérieval of light-
pen coordinates or lightpenned character) are performed automatically by
MI0S at the time-of_Attention—signalling which is asynchronous with the
application subtasks’ eﬁplicit requests for-lightpen information.
Attention-handling is always exhausted through this step for all active
stations before other operations are performéd. Keyboard emzbling is
scheduled when a subtask issues a request for interrupt notificatiom
(READ, READLP, PAUSE) and MIOS notices that the display station's key-
board is locked. It is:given high priority s¢ the station operator can
begin to use his keyboard. Input Qperations requested via READ are also
given good priority to provide quick mechanical response to the operator's
hitting éf the INT key after typing. The last high pricrity is given to
extra-interrupt signals (those received when a previously received inter-
rupt has not been serviced by rae application subtask) which MIOS detects
from the display. This servicing involves reéding the five characters
preceding the current location of the cursor and either terminating the
subtask if ABORT (orlghgsg) is read or placing a "?" Syﬁbol at the cursor
location 1if ABORT 1is not read. This assures tﬁe operator that CHAT 1is
alive and acti#e even though the application may not be,

The next check MIOS makes 1s to examine an interrﬁpt-pending_flag

Prioriiy
1

2

*Not a queue

118

Queue
Lightpen Operations
Enable Keyboard Operations
Input to Subtasik Operations
Extra~Interrupt Servicing
Interrupt~Pending Flag*
Slide Actions

Output to Display Operations

Table 5~1 1I/0 Qu:ue~Scanning Order

119

before scanning the low priority queues. This flag is turned ON only
after a low-priority operation-hés previously completed. These operations
always entail a channel programming step rhat reads in the Short Status
(8S) described in Chapter 2. Within the 5§ is a flag telling whether the
CC-72 multiplexer has sone interrupt status buffered in itg Station
Interrupt Status (SIS) register. When MIOS detects this flag at I/0 com-
pletion time it sets the interrupt-pending flag for use in its nexr
scheduling scan. At that time, iy will defer serving the two 'ow priority
queues and poll tie SIS register just as it does when an Attrention is
signalled. Notic2 that this rule gives good service to all stations even
if one subtask °s doing an enormous amount of repeated output (perhaps
because of a loop). After each output message, MIOS checks for any input
requests ro be serviced and satisfies all those found before continuing
with more output. In the case where all subtasks are doing output only,
no subtask can lock out the others. Each output request (maximum: 810
characters transmitted) involves CPU time to invoke the DISPLAY procedure
(see Chapter 3); the round-+-obin priority scheduling of subtasks described
in Chapter 4 ensures that each subrask is given CPU time to issue its out-
put request.

Afrer MIOS has exhausted all queued requests, it enables both the
CC-72 and the CC-7012 for a new Attention status to occur and waits for

some new event to happen.

SERVICING ATTENTIONS

When an attention-signal is received, or if the interrupt-pending
flag is ON, MIOS schedules an operation to read the SIS register of the
CC~72. fhis wes previously described in Chapter 2 as involving a 6-char-
acter enzoding representing hoth the Short Status (S8) -uu ibe 32 station-
interrupt status (SIS) flags.

Upon receipt of the SIS characters, MIOS uses the station index list
{STATINDX) shown in Figure 5.2 to determine the order of checking the
interrupt status. MIOS picks up the first index in this list to choose
the starting point in the SCBELIST. When MIOS is done using the SCB thusly
chosen to see if an interrcupt has occurred at that station, it picks up
the SCB address jndexed by,the next index in STATINDX. This continues
until the STATINDX list is exhausted {(controlled by NUMCC3@S loop control).
At this time, MIOS reorders STATINDX (also controlled by NyMCC3@g) such
that the indexes are 2ll moved up by one in this list, exceplL for that

index that had been first. This one is now put at the end of STATINDX so

that a2 round-robin device rotation is effected. At the next Attention,

this new order will be used and STATINDX again reordered.

The reason for device rotation is to avoid any possible displav
station favoritism that might pecome visible at the remote site. When
concurrent interrupts are received and handled, the first one found is
the first one placed in an operation queue. A fixed scan might eventually
become known and operators then might vie for the favored displays. This
has been countered by dynamic reordering of STATINDX. (Its significance
has been greatly diminished by the increase in bandwidth resulting from

the move of CHAT from TUCC to UNC.)

121

When an SCB address is picked up, MIOS performs a test using a
byte-offset and a bit-mask obtained from atandardllocationﬁ in the SCB.
Each SCB has unique values assembled in the standard byte-offset and
bit-mask field locations. The byte-offset indexes the SIS character
string, while the bit-mask corresponds to the interrupt-status bit in
the indexed SIS byte associated with the current SCB. This allows MIOS -
to check 1if the assoclated station has an interrupt pending without
requiring code sensitivity in MIOS to the stétus checking.

If a match is found, MIOS does one of three things. If no subtask
is attached for the interrupting station it signals MSS to attach one.
If an interrupt is already penaing for this station, it places the

" station index in the extra-interrﬁpt servicing queue. Otherwise, it
places it in the lightpen oéeration queue,

Completion of the subsequent lightpen operation (getting the co-
ordinates from the CC-301 lightpen register) defines the type of imterrupt.
A bit in the ?eceived coordinates is sé} éefore bgingltransmitted by the
remote display according to whether the coordinates were valid (search
character present). If the search character was not present at Fhe time
of the interrupt, the remote display will set the bit to the invalid
state. This permits MIOS to queue an applicationlsubtask's READ request
(1f one). If the coordinates are valid, MIOS completes the lightpen
operation by scheduling an operation'to get the lightpenned character.
These lightpen operations proceed even when no application request is
present and the results are saved in the SCB for later pick—up when the
request occurs.

It is possible that interrupts may be received when the subtask

wants to do output. In these cases, the output will be scheduled. after

122

MIOS has finished the lightpen protocol {(and discarded the results).

Details are to be found in the code listing.

123

I1/0 INITIATION AND COMPLETION
This section delcribes I/0 activities in genmeral. Only the gross
mechanisms and issues are discucsed. Detalls of the individual opoura-

ticns may be found in the code.

Channel Programming: Once an operation has been chosen for iniriatiom

by the scheduling rule, MIOS chooses the appropriate chammel program.
There are ten of these, and most are multistep channel operations of
some complexity. Begides controlling the direction of transmiss.on over
the System/360 they send a large number of display station and multi-
plexer coatrol characters to control the transmission environmen: there
for the purposes of sending and receiviug data.

Most channel programs are skeletal, requiring differemt types of
filling in of variables to meet current usage needs. Once filled iu, the
channel program is ready for use; MIOS uses the 05/360 EXCP interface.
This filling in and initiation involves a change in the protecrion status
of MIOS: they are executed when MIOS is in keyzero state. The reason
for this is that the channel programs and the buffer MIOS uses are in the
MIOS program module storage and require keyzero privilege for storage
modification. By issulng the EXCP in keyzero, the channel program can
subsequently read into the protected buffer. Once issuing the EXCP, MI0S
lcaves keyzero state and reverts to its normal TCB key., This placement
in the program module is tg plve added protection against gtorage viola-
tions damagirg them--I/0 is complex emough without confcunding errots.

MIOS also defines a Start I/0 appendage. This is invoked by 0S/3860

105 after the EXCP but p-ior to : .z2cuting the System/360 Start I/O

124

instruction. The sole purpose of this appendage is to change the
channel program starting point in-the System/360 Channel Address Word
(CAW), in the case where the operation involves a restart for error
recovery. Here, the channel program origin is set to the restart
location (obtained from the standard restart field in the IOB) s0 that
certain origin and offset information needed for MIOS hard error bandling
is preserved. Then the .appendage exits to I0S for further processing.
When output is being performed, MIOS first moves data from the
application sﬁbtask area into the buffer before issuing the EXCP. Both
the location and size of the application area are obtained from the
8CB as the IFCSECT (discussed in Chapter 2) gougine posting the‘request

has initialized it, using the PL/I parameter lists {dope vectors). The

data is translated after being placed in the buffer. The channel program
may also send out various display control characters present in fields

of the SCB as initialized by MIOS.

Completion and Posting: Completion of I/0 results in the ;everse process.
On inﬁut the data in the buffer is translated to EBCDIC from ASCII and
moved into the subtask's area. The Ehannel programs, however, are subject
to a multitude of errors. Hence, prior to conpletion, MIOS may have

invoked error recovery procedures to correct transient errors. Some-

times errors nannﬁt be recovered from and MIOS ﬁust regard them as hard
errors.

Posting to the requesting IFCSECT routine may be of two types: mnormal
and abnormal. The first causes the reqpesting routine to return normally
fo the application, while the second causes it to raise the ABNORM condi-

tion described in Chapter 3. A third posting by MIOS is defined for a

/—\

125

subtask request that viclates the rule not to ¢ontinue to uge a line
for which LINE DEAT has been signalled. This posting is done in lieu
of the EXCP and causes the requesting IFCSECT routine to invoke the

PL/I stop routine for the subtask.

126

HARD ERROR HANDLING

Hard errors are defined as occurring when the error recoverv
procedures reach a maximum failure count on a single operation.
Chapter 8 describes the details of the error logging by MIOS and how
an error record can be accessed from the Teletype. Illere we describe
the other activities performed by MIOS at the time of hard error
detection.

If the error is confined to a single display station, the request
is first dequeued and the subtask is notified. In the case of a slide
projector failure this is all that is done (see Chapter 3) and the
subtask may even continue using the display. In the case of a display
failure, MIOS prints the following message on the installation console:
I1/0 ERROR ON CCI STATION. The subtask is not permitted further access
to it.

In the case of a multiplexer or channel adapter error the procedure
is more complex, since now all subtasks are affected. MIOS purges all
of its request queues and notifies all waiting subtasks. OQther subtasks
are notified as they issue requests. In addition, MIOS prints the fol-
lowing message on the installation console:; I/0 ERROR ON CCIL COMPLEX.

It then goes to wait for a new event to occur.

SHUTDOWN

M10S executes its shutdown protocol in response to 4 request from
Mss (the Monitor control task controlling the CHAT reglon and all tasks
in it). This may be either because MSS has detected abnormal termination
of MTWX (the Monitor Teletype control task) or because MTWX has telaved
to MSS the request from the Teletype (see Chapter 6).

The first step MIOS performs 1s to use its SCBRLIST (Figure 5.2)
to scan for any active subtasks. Whenever one is found (@ TCB address
is present in the SCB), MIOS posts a request to M85 (using an ECB in
the SCB) to terminate it abnormally. This is what shutdown implica—-
stop everything immediately.

In addition, MIOS zeroes out its own TCB address located in the
conduit. This requirement is discussed in Chapter 7. Finally, MIOS
issues Blair's SVC 239 again, this time to pass the location of an
M1OS control storage field holding the address of the CC-7012 UCB. This
is to stop the Attention-hani”™ .r from continuing to post future Attention

statvs to MIOS, MIOS then exits.

CHAPTER 6: TELETYPE CONSOLE SUPPORT

At the time of the original CAI Project meetings to set design ob-
jectives for CHAT, the role of the Teletype was fuzzy. The Department
already owned a Teletype and » connection port at the System/360 which
were to be inherited by the CHAT System. Only some vague notions that a
CAIL proctor terminal would be desirable kindled interest.

One such notion was that hard copy of CAI statistics cbtained inter-
actively by the proctor might be yseful. This implied a need for the
CHAT Monitor to include Teletype I/0 support and an I/0 interface for
application programs that served proctor inquiries. CHAT weets these
requirements by the PL/I I/0 interface support described in Chapter 3 and
by the inclusion of a Teletype I/0 control task named MIWX within the
CHAT Monitor.

In practice, tle Teletype Interface has nct yet been applied for
CAl inquiry. 1Instead, programs producing CAIL statistics use the high
performance system printer and the installation batech facilities rather
than CHAT. Blair designed ENQ and DEQ [B3) (see also Chapter 3) to work
system-wide for PL/I (as 0S/360 provides at the assembler level) so that
batch jobs can share files with CHAT application subtasks while the lat-
ter are active. This power, combined with the geographical nearness of
the CPU installation to the proctor, has lessened the interest in
Teletype-based CAIL inquiry.

Another role for the Teletype has come to the fore, stemming from

121
its convenlence for allowilng CHAT reglon control from the CAIl site di-
rectly and interactively with the CHAT Monitor. Henece the emphasis in
this thesis 1s on the Teletype as a CHAT submonitor conscle. Functions
such as selectively terminating CHAT application subtasks and shutting
down t'e CHAT reglon can be done from the Teletype by commands to MIWX.
CHAT initiation still requires calling the installation's human console-
operator. (During the TUCC era, trhe proctor could also initiate CHAT
from the Teletype by dialing the TUCC support for remote job entry. This
was useful during development but not in production since it means run-
ning under control of HASP.)

The remainder of this chapter discusses detailed usage of the Tele-
type, the command set, Monltcr messages to the Teletype, and some de-
talls of the implementation and structure of the Teletype support.
Chapter 8 describes a CHAT facility for on-line testing that is built
o1 the Teletype 1/0 application interface; it makes the Teletype an even

better console for CHAT.

130

DFTAILS ON TELETYPE USAGE

In the System Overview (Chapter 2) we covered the general usage of

the Teletype; here we add some details.

Modes: Because the Teletype can be used to acceas both an applicatioﬁ
subtask and the Monitor, MIWX needs to distinguish between the two types
of access. When no application subtask is attached, this is simple: any

input must be a command and MTWX-is in command mode. When an applica-

tion subtask is present, MIWX is normally in application mode. In this

mode MTWX will pass zall input to the application suybtask unless it de-
tects a $-prefixed command from the set described in the next section;
this will be ereated as input to MTWX. (InpuE such a5-$1.98 would be’
givenato the-aqelication program.) After execution, MTWX remains in ap-
plication mode. MIWX will change from apelication mode to command
mode 1f the-Teletype operator uses'the Break key during output of appli-
cation data (stoppiné it in mid-line possibly) or when the epplicatioﬁ
program is executing something other than a Teletype I/0 statement.
This latter condition holds when the Teletype carrier is at the leftmost-
position of a new line and the “?" character is not displayed. Forced
into command mode, MTWX again requires a command. After receivieg en&
‘ executing one, MTWX will restore application I/0 and return to epplica-
tion mode~-unless the command intentionally deseroyed the subtask or the
region. Notice that application mode allows interleaving of commands
and application data.‘

Break has no functional meaning in command mode although it can dis=

turb MIWX I/0. In such cases error recovery logic overcomes the diaturb-—’

Tupr applicsrion mode, MTWZ suppreeses its norszsl papsr cepe, 2ctivEiion
to zllow keyed inut. On return to azpplication mode, MTWX resuzss paper

tzpe activation,

Ynding a Yeegaze: The philosophy of the CEAT support is that the Tele-
type 1z fundamentally z typewriter (despite its lethargic button key-
board). Thue, when the operator has typed ail he needs to on 2 line, he
need only hit the Z-0ff button to signify completion. The Monitor pro-
vides the functions of carrier-return and line-feed. This design bias
gtems from the preference of the author for the IBM 2741 "Returp" key
(which provides all three functions by hardware) over the Teletype 3-
button apﬁroach, as well as his distaste for software support that re-
quires the operétor to hit the three buttons before it accepts a line--
cf. TUCC's RIE. The CHAT-supported carrier-return/line-feed also provides
vinible assurance that CHAT, at least, is there. CHAT allows the 3-
button approach {(which can be useful in producing papér tape to be local-
ly printed) but strips out thehcarrier-returnfline—feed,Ihere as well as
anywhere elsc in'thé transmission, priér to delivering the inmput to the
applilcacion program. It alsc sends 1its usual carrie;—returufline*feed

1n acknowledgment,

132
Similarly, the Monitor ends an application program write (<ee

WRTWX in Chapter 3) by also sending carrier-return/line-ieed.

133

MONITOR COMMANDS

The following $-prefixed commands are supported by MIWX for CHAT
subsystem control. Syntactic and contextual abuses of the commands are

discussed in the following section.

$E72 This command (Enable CC-72) is.included in the command set to
counter & deficiency in the design of the display hardware complex.
The CC-72 display multiplexer is enabled to send an inquiry (at-
tention) control character, signifying readiness to transmit from
a display station, only through the gracilous services of the s/360-
resident Monitor (MIOS): MIOS sends an explicit enable order to
the multiplexer. Once enabled, the CC-72 disables itself at the
time when it sends the inquiry signal and awaits an interrupt-
register polllby the signalled program. (0f course, the Monitor
can also explicitly disable the CC-72 at will to avoid unnecessary
transmit-contention.) Unfortﬁnately, synchrozjsm*loss because of
liﬁe noise can prevent the Monitor from detecting the inquiry; if
the Moniéor has no need to communicate to the CC-72 (say, no ap-
pli;ation subtasks are present or else all present subtasks are
awaiting non-timed input) the Monitor will remain ignorant of the
readiness of the remote)displays. This is bécause no "enable-
switch" exists at the remote CCf72 allowing the fully conscious hu-
man operator to intercede and to re-enable the equipment manually.

The command causes MIWX to post an MIOS event control block

alerting MIOS to execute a CC-72-enabling channel program. Command

execution does not guarantee that the CC-72 will become enabled,

134

since other hardware errors may be present.

$XEQ <load wmodule name> This command (load and execute) causes MTWX to
invoke a Teletype application program (if one is not already at-
tached)., One blank (or space) is required between the command and

the <load module name> which must have standard 0S/360 format.

$ABORT This command causes MIWK to request 0S8/360 (via MS8S) to abnor-
mally terminate the currently attached Teletype application program.
It is useful for terminating a looping application program or avoid-

ing lengthier application-defined sign-off protocols,

'$ARORTnn This cohmand allows abnormal termination-of an application
program attached to a display statign_identified by the nn identi-
fier, which corresponds to the display station address on the CC-72
multiplexer--also prominently displayed on the door of the room in
which the appropriate display resides., Evidence of the subtask's
complete removal from the system is displayed at the display station

by a proctor message.

$SHUTDOWN This ‘command causes MIWX to disconnect thé Teletype to request
termination of any Teletype application subtask present, and to noti-.
fy M58 of the shutdowm redﬁest, while terminating its (MTWX) own
presence in the system. MSS in turn notifies MIOS of the shutdown
and, after termination of all display application subtasks and MIOS,
MSS displays a ;essage on the CPU system_consoie and exits. This

"removes CHAT from the installation.

135
SRESTART This command 1g currently ideuirical to $SHUTDOWN (except for

certain future-relevant bit-settings). The idea is that this com-
mand will someday [B3] allow a shutdown followed by automatic re-
fresh of the CHAT region. Currently, rcfresh involves intervention
by the installation CPU console operator, who simply performs the

standard console-initiation of CHAT.

SNULL This is the null command. It does nothing except to cause MTWX
to change from command mode to application mode when an application
program is present (one can hit the Break key accidentally).

Otherwise, it is simply aa acknowledged ''No-0p."

136

MESSAGES SENT TO THE TELETYPE OPERATOR

“his section describes all messages which the Teletype operator can

receive from the CHAT Monitor.

MTWX HERE...ENTER A COMMAND This message 1s sent:

(a) when the operator successfully dials into the CHAT region,

(b} immediately following the COMMAND EXECUTED message (below)
when an appalication subtask is not present,

(c} following the receipt by CHAT of the Bre:! signal when an
application subtask is active, or

(d) when an attached Teletype application subtask has just
terminated.

It signifies that MIWX is in command mode.

COMMAND EXECUTED This is sent to acknowledge that the last $-command
was executed. If an application subtask is present, it also =igni-
fies the escape frcm command mode to application ﬁode. This
message 1s not sent, however, following $SHUTLOWN or $RESTART since
the resulting disconnection of the Teletype 1c¢ visible-enough evi~

dence that the command was recognized and honored.

NOT A LEGAL COMMAND,...RETRY This message is sent for a variety of
reasonss
(a) a syntactically incorrect (misspelled or no $~sign) command
has been received in command mode,

(b) $ABORT has been received but no application subtask 1s present,

137

{c) SXEQ has been received with too lomg (8 chatacters) a load
module name specified,

{d) SABORTnn has been received but the nn does not correspond
to any known display station in the system, or

{e) SABORTnn has been receiéed and the nn does correspond to a
known display, but it is the one currently '"seized" by the
Teletype application subtask (OLTEST). (The notion of
seizure is described in Chapter 8. A SABORT command would
succeed here--getting tid of OLTEST and '"releasing" display

nn at the same time.)

SUBTASK ALREADY PRESENT This is sent when MIWX receives & syntactically
correct SXEQ command while a Teletype {pplication subtask is cur-
rently present in the system. Because of system delays in ab-
normally terminating a subtask, this message may be received even
though MTWX has iust previously acknowledged honoring a SABORT
command., (MIWX . -.nowledges as soon as its part in instigating
the process is complete; evidence of the subtask's presence re-

mains visible to MIWX until 0S/360 and MSS complete its removal.)

SUBTASK ENDED: <code> This message was discussed in Chapter 2 (cf.
"proctor messages" in the "Terminal Usage" section) where <code>
signifies system (0S/360) or user (application) ABEND codes or
user return codes. It is not sent after the Teletype operator has
used $ABORT; it is presumed that the operator remembers that he
caused the termination. {(However, $ABORTnn does result in a proc-

tor message being Jisplayed at the affected display station to pro-

138
tect against devilish or malicious tampering from a Teletype with
display stations. It also confirms removal-completion therc.)
Note: After MIWX has acknowledged a $XEQ, it may happen that this
message will immediately appear with an "Snnn'" code, signifying
"1oad module not found" or "load room (CHAT free core) not avail-

able." These errors are found by 0S/360, not by MIWX.

TJPUT TOO LONG This message is sent because a message from the Teletype

LINE

appears too long to the Monitor message editing logic {an "I0S
appendage"). It is either the Teletype operator's fault or due to a
communication line error (sometimes indistinguishable). In command
mode the total transmitted message length should not exceed twenty
characters (including controls such as X~0ff and the CHAT-defined
character~delete); in application mode the total transmitted message
length should not exceed ninety characters {(including controls) or
fafter editing) eighty, without controls. (An application program is
constrained by CHAT to a maximum input length per read of eighty.)
The MIWX channel program allows one to transmit a message of in-
finite length, but when one finishes (!), this message will appear.
(The overflow is read into a single storage byte via a channel pro-

gram READ/TIC loop.)

NOISE...REKEY This message 1s sent yhen tie message editing logic
detrcts via 5/360 TRT-scanning of the inpuct that a parity error
exists in the input data (the hardware does no parity checking for
the Teletype). IE this message is frequently seen during a con-

nection, the operator should try disconnecting and redialing. If it

139
is persistently frequent across connections, inform the local tele-

phone company communications specialist.

14n

STRUCTURE OF THE TELETYPE SUPPORT

The Teletype support involves the cooperation of a number of Moni-
tor components. The main one is MIWX which is one of the three Monitor
control tasks. MIWX initiates Teletype I/0 using the 0S§/360 EXCP
(Execute Chammel Program) interface with dynamically modified CHAT-
defined channel program skeletons. MIWX controls the overall sequencing
of 1/0 operations in accordance with:

e application program requests,

e current activity at the Teletype,

e requests to shut down, (the Monitor control task controlling subtask
scheduling)

¢ reports from MSS of Teletype application terminations, and

e I/0 "hard-error" reports.
All $-command interpretation occurs in MTWX although MIOS {(the Monicor
control task controlling the displays) and MSS may be invoked to help.

Like MI0S, MIWX interfaces with an application program through sub-
routines included in IFCSECT described in Chapter 2. Recall that these
subroutines synchronize application activity with I/0 completions and
request I/0 by post-wait protocnls. I/0 type and application parameters
(1/0 area, length) are passed to MIWX and MIOS via fields in the appro-
priate station control block (SCB).

The SCB for the Teletype contains the same standard fields as a
display SCB but also has an extension for Telerype-only requirements.
The standard portion of the Teletype SCB allows MSS to be unconcerned
with the identity (MIOS or MIWX) of the requester of standard Monitor
services related to application subtask scheduling (attacﬂing, aborting,

detaching) which are indepeadent of whether the application is servicing

141
the Teletype or a display. In other cases there is a need to distinguish
between the two types of SCB--an exémple being to prevent an operator
loading & display application program from the Teletype or vice versa.
Hence, one of the standard SCB fields has a flag denoting ¢he terminal
type.

MIWX has help on the 1/0 Supervisor (I0S8) side of I/0 handling.
The 08/360 EXCP interface allows the programmer to specify up to fivé
éggendaggs {for details, see the IBM 08/360 System Programmer's Guide).
Two CHAT-defined appendages (called CEAPP and ABAPP) havé been included
for the Teletype support. These are invoked by I0S as subroutines at
channel end/device end interrupt-handling time. IOS chooses one or the
other of the r10S appeﬁdages depending on whether the channel end/
device end status 1s (ABAPP-~Abnormal End Appendage) or is not (CEAPP-~
Channel End Appendage) accompanied by unit check status. Unit check
means an I1/0 srror.

The I0S appendages provide a number of functions:

¢ Input editing including control éharacter stripping,

e character aelefiqn,

¢ line cancel,

translation to EBCDIC,

e parity checking, and

. lenggﬁ gpeciing.
Error recover§ is performed in the appendages without notifying MTWX un-
less a retry threshold is reached for é single channel program. In this
case, the appendage sets a fatal, ox hard érror code that is posted to
MTWX. |

Appendages return to IOS via one of three exits (actually four are

142

allowed but one is not used here) which determine whether I0S will

.(l) post an I/Q completion to MTWX using a code passed by the ap-

pendage, |

(2) 1ignore the interrupt (by not posting), or

(3) restart I/0 according to an appendage-set restart point.
" CEAPP and ABAPP use exit fl) to inform MIWX that a nofmal completion or
hard error has occurred. Exit (2) involves Halt I/Q activity initriated
by MIWX but whose completion is not of interest. Exit (3) 1s the main
advantage in appendage-processing. It gives quick handling of error re-
tries as well as quick dispatching of queued I/0 requests--a matter re-
lating to special use of the "Prepare" channel command within the Monitor
for Teletype moqitoring. It allows continuous wonitoring of Teletype

activity when no otﬂe; I/0 activity is ready to be scheduled. Details
are documented in the code. o

MTWX has some logiq also for accommodating the display-seizure func-
tion described in Chapter 8, This is minop--involvingbprimarily cleaning
up (releasing the displayj if the subéask that seilzed the display has ab-
normally terminated or is requested to bg;gvia_$ABORT) by the Teletypel
operator. This function gf'éeiéure has élso eplarged the Teletypé éCB
beyond the need to preserve staﬁdard_fields; selzure permits concurrent

usage of display and Teletype, so a larger SCB is needed that permits

both activities to use it.

CHAPTER 7: THE INTERREGIONAL CONDUIT

"The interregional conduit is a CHAT feature designed for a special
need of Mudge's DIAL [Mi],_an application program running under the CHAT
'ﬁbnitor. This need was fo? access to the string-handling and other
capabilities of the IBM Conversational Programming System (CPS) [Il].

An early question was: How? Storage limitations ruled out the
notion of including whatever portion of CPS was needed within DIAL or
elsewhere in the CHAT region. Such inclusion in any case would have been
particularly wasteful, since a full copy qf CPS resided (at TUCC) in
another region as a nonterminating job. Thus, the only answer was to
somehow use the already-resident copy of CPS. This imposed the reﬁuire-
ment on thé CHAT Monitor to provide an interface betﬁeen the application
subtask and CPS. Three critica% probleﬁs were !

1. That copy of CPS belonged to the TUCC community and it was élear
that TUCC management would (rightly:) not tolerate abuss of ‘
that valuable property.

2. The CPS program was ver);' big, wvery compléx, and .very poorly docu-
mented., In fact, the in;erﬁal specifications manual was virtually‘
worthless and the code listings were mostly empty of comments.

3. No facilities exist in 0S/360 for_inferaction between separate
regions. Indeed, a central concept of 08/360 is to completely

insulate one region from another because of protection concerns.

144

The author chose te tie to CPS'gy méans of one interface it
already pfesented to the world-—-namely, its termindl'iptefface. This

Ih;; the following advantages:

1. . This interface is an external one that is well documented [11].

2. It is an interface using programmed support (1/0 channel programs)
in CPS that is stable and unlikely to change from release-to-release
of that product.

3. The L/O support in the CPS code,'while atrociously commented,
could be understood with study because the functions provided
were understood.

4, CHAT's interface to its gpplication programs could offer thé-
well—known and powerful functions familiar to the applica;ién
programmer through his own CPS terminal use. ‘

CPS offers programming support for the IBM 2741, the IBM 1050,
 and the Teletype. The Teietype interface was selected. This has no

impact on CHAT's application interface (see "CP$ ACCESS" in Chapter 3)

since terminal-dependencies such as line codes &nd control characters

are not visible to application programs. On the other hand, this selec-
tion was beneficial to the author whose. experience alregdy included
- 08/360 BTAM programming of £he Teletype and who had ready access to a

Teletype. This aided in learning CPS's I/0 logic by exercising it and

doing software'"énapshot“ probing. ‘This was handy in getting through

sone of the Eéally myster;ous~code in CPS and also in debugging the CHAT

" conduit. It was also an-opportunity to learn functional Sﬁpport (better

e

channel programs, richer interactive orientation) superior to that

offered in BTAM.

The CHAT MIWX Teletyﬁé‘control and channel pfograms borrow concepts

Q : R

145

obtained from this study of CPS—-in_particular, the use of the Prepare
command for constant line-monitoring (along with Halt I/0 to allow
scheduled operations) and the avoidance of unnecessary "timeﬂouts"'(by
using Inhibit instead of‘the Read channel control word).

The consequence of this design of communicating with CPS via its

Teletype 1/0 interface is that not a single change has had to be pade to

the CPS program. Only édditional data definition (DD) cards (see Blair
{831) in the JCL initiating CPS8 are necessary. These specify the exist-
ence Qf-adﬁftional Teletype address ports on the System/360 channei-—
although none such exist physically. The next sections describe the

conduit's design in detail.

146

DESIGN OF THE CONDUIT: LINKAGE AND FUNCTIONS

The conduit is located in the system LINKPACK and is always
resident irrespective of whether CHAT and CPS are. It is activated
early in system fire-up by a scheduled Job written by Blair [B3]. This
job places the conduit in the EXCP-intercept 1iﬁkagg chain which allows
it to_look for all EXCP (actually, "syc @™ issuances OflinterESt.tO
CHAE. Other components ip the system, e.g., RJE and HASP, also intercept
before the 0S/360 SVC @ logic gets a chance--hence, the linkage chain.
Blair's program stores the address of the next interceptor (aftér the
conduit) into the conduit's storage. The conduit ﬁses this address
for braaching when an EXCP is not of interest. When intercepting, the
conduit ig in supervisor, interrupt-disabled mode.

Figure 7.1 shows a simplified ovérview of the conduit and the
progrém elements interacting with it. The conduit has 2 CPS-side aﬁd
a CHAT-side, which are packaged togéther and share common control storage.
The CP8-side intercepts CPS EXCPs and analyzes channel programs directed
to a CHAT "'port." It stores information about the channel program in the
control storage it shares with the CHAT-side and, after posting MIOS,

branches baék to CPS via the standard 08/360 code to end an SVC routine.

o F
- i L -

EXCP

CPS reSumes_exeéution at the instruction followiﬁg EXCP. Part of the

bt L

EE?QEGQBi{iS to pasé the I/0 Block (I0OB) to the conduit. This control
block containg the address of the channel program which defines the

type of operatibn {e.g., read/write) and the location and 1eng§h_of data
areas. The g?sfside posts the océurfence of the CPS-initiated event to

MIOS via an event control block {(ECB) in the station control block (SCB)I

- associated with the port to which CPS directed the channel program. The

147

Y
APPJ-;-EEE:-;E " ﬂizz === Data Access Linkage
-
B 4) Control Linkage
% IFNTRYS |3 \ B: Lo ehing
™ 'y ¢ Linkage by branching
S e g {synchronous.)
F B B P Linkage by posting
B 4 (asynchronous)
IFCSECT ”’
. L7 [
. AR |
. , \
Post { \
] \
Wait P H -
! \
.-] \
-
P \

/ CHAT-side

108

LY

CPS 1/0 e :
Appendages |
: " EXGP :
WALT ‘ ,'

. y
Data
L. Area

Figure 7.1 The Interregional Conduit

148
conduit gets addressability tolthe CHAT SCBs by another initialization
action described later.

The yse of the word port heré stems from the presence in the system
of actual Unit Control Blocks (UCBs) representing the fictitioﬁs physical
channel addresses, or ports, defined for communication petween CPS and
CHAT, UCBs are the most primitive I/0 control blocké in 0S/360 and must.
exist before any I/0 related activity can be done. Even though no physi-
cal I/0 ever sccurs ueing these UCBs, they are needed so that 05/360 will
accept the DD cards in the CPS JCL and CPS's use of 05/360 services like
OPEN and CLOSE. Because it has legal UCBs, CPS can use these services
with gay abéndon—-we again did not have to change énything in ig; code.
(Aside: Although CPS makes heavy use of Halt 1/0, as will be explained,
it ;;i; igsues'the‘Sys;emf360 HIO for a port once in-iine, as part of
initialization.. Since System/360 allows HIo-for a nonexistent physical
address, without program-checking, even this did not require change.)

Currently, ten UCleare defined as CHAT ports--more than the current
number of display stations, to aliow for growth. These coﬁtain the
hexadecimal physical port addresses X'F@' to X"F9'--the F being the way
the CPS-side detects an EXCP to CHAT. Hence UCBs are useful to the
conduit to detect and.identify CHAT-port requests; théy are found via
the 103 (I/0 Block). The UCBs are included in the system by a system
geﬁeratidn process described by Blair'[BS]: To save storage in CPS,

- the number of DD cards for CHAT ports is equal to the current number
of display stations deffned in CHAT, s0 gome CHAI UCBs are not yet
referenced by CPS.

Because of the posting by the CPS-side, the 0S/360 task scheduler '

eventually activates MIOS, which has been waiting for any of the

149
sundry events it handles to occur. Synchronization of a CPS action with
‘a CHAT application subtask action 1s a key concern. MIOS, therefore,
first checks in the posted SCB to see if a field there indicates that
the attached subtask has 2 request pending to communicate with C?S. If
so, MIOS executes a branching protocol for direct entry into the CHAT-
side of thé condﬁit. Assume; however, that no request is pending: then
MI0S ignores the post from the gPS-side and waits for a requeét from
the application subtask. (Nothing can be done until the application

program presents a compatible request, giviﬁg appropriate data pointers,
etc.)

An application program may use any of the CPS-access procedures
discussed in Chapter 3 and listed again in Table ?.1._ A call dinvokes
a corresponding subroutine in IFCSECT which puts the application program's
data area address and length a% well as the request type in the SCB,
posts MIOS, and waits for MIOS to respond. RDCPS algo issues an 0S/360
STIMER macro specifying time, prior to walti=y, and waits for either the
message -arrival or the time-out evént o occur. The first event to occur
causes RDCPS to cancel the other and to report the first cne to the
application via the return argument. If, for example, the time interval
elapses, RDCPS sets the CPS-access request t&pe in the SCQ to zero, erasing
the request., Thus if the CPS—-side theﬁ posts MIOS, MIOS ignores it until
the next aﬁplication request.

When HIdS is posted by the IFCSECT routiné, it checks whether the
application gubtask had previously been informed by ABNORM-signalling
that CPS is dez-xdi"i If so, MIOS doe% not allow‘thé new request and posts

the IFCSECT routine with a code requesting it to stop the violating

application. If MIOQS does not detect a violation it executes the branch-

150

Standard Log-Omn: _ LOGCPS

Log-on with file name: LOGCPS (libname)

Read from CPS ’ RDCPS (inarea, time, return)
Write to CPS: WRCPS " (text)

IAttention, CPS: ATNCPS

Table 7.1 CPS-Access Procedures

: 151

ing protocol to the CHAT-side of the conduit. ‘ ‘
The branching protocol involves a change of program-state:

MIOS executes an SV?}(Blair's SVC 239 [B%])_giviﬁg it key-zero super-—

 visory privilege. It then disables interrupts to create the same

machine state for the CHAT-side that. the CPS-side is Biven. This also

allows the later-used CPS I/0 Appendages to have the state which their

coding assumed. |

L]

The CHAT-side has a choice qf three return points in MIOS when it
has completed handling the request: ‘
1. Normal Return - exchange between the CHAT subtask and CPS was

completed succesafully. . -~
2, Abnormal Retur& - Oﬁexof the following errors occurred:

a. WRITE INTERLOCK

b. LOG-IH EXCEPTION .- .-

c. CPS DEAD

(See Chapter 3) A field in the SCB indicates whiéh one.
3. CPs-hot-ready Return - The CHAT requeét was not éompleted

because CPS has not yet issved its next EXCP.
For each return, MIOS reverts to its normal inteéruﬁt-enabled, problem
Program sfafe. For the normal return (1.), MIOS posts the IFCSECT
routine and e;ages'the request type in the SCB. fhe IFCSECT routine can
then link back to its caller in normal fashion.

For abnormal return (2.), MIOS erases the request, turns on a flag
if CPS DE@D is inéiéated {to remember that the application has been noti-
fied),land posts the special code to the IFCSECT routine requesting it to

signal ABNORM to the application subtask. The code stored by-the CHAT-

side is picked up by ERRCODE when this procedure is called from the

&

152

'application's‘on—unit (see Chapter. 3).

4 For return (3.), MIOS does not érase the request and does not
post the IFCSECT routine. Instead it waits for the (PS-side to post
the occurrence of the next CPS EXCP for this port so it can retry the
exchange.

This completes the discussion of the interactions of the CHAT °
components outside the conduit both witb the conduit and among themselves.
In the next section more is given about internal conduit logic and the
internal relationships of the CPS~gide and CHAT-side with each other and

with the CPS I/0 Appendages.

153

INSIDE THE CONDUIT
This section examines the inner workings of the conduit in
greater detail: dits initialization, its interactions with CPS and
CHAT, and the cooperative activity between the CPS—side and the CHAT-
side., Figure 7,2 shows the internal layout of the conduit and will be

referred to in the following subsections.

Initialization and Checking: The discussion based on Figure 7.1 took
for granted that the linkage mechanism was already in place: that CHAT

could locate the conduit and that the conduit could locate both CHAT

and CPS,. In actual operation, the mechanism requires linkage-initializa-

tion as well as checking overhead during execution of the linkage. Ini-

tialization involves, primarily, making CPS known to the conduit, and
CHAT and the conduit known to one another. Checking is performed to
protect against improper linkage when CHAT is present But CPs is not, or
vice versa--either because one has never been loaded into the system or
because ﬁﬁ; ﬁas left the system before the other. .

The two sides of the conduit experience no difficulty in communicating
with each other: they are assembled in the same load module and can shafe
comronly addressable control storage. In fact, one subroutine, for
analyzing CPS channel programs, is used by both.

The CPS-side linkage with CPS is also easily established, Blair's
progrém {B3], mentioned earlier, h;s a root in the conduit load module.
This allows it access to the conduit control field'into which it places

the address of the next interceptor in the EXCP-~intercept chain. This root

is invoked at system fire—up; issues Blair's catch-all SVC 239 [B3], stores

®'.P @MIOS TCB

Q1

’;,/('Blair's Program Root’{/’l

CPS-side

= @CHAT-side

-

@Control storage

CHAT-s1de

A

@Translation Tables (3) @

@

SCB Addresses

IOB Addresses

RIe [© 9]

UCB Addresses

_Port-Status byte-string

Program switch

@CPS TCB @‘1

@IOS (next interceptor) (:)[

Cons tants :
{Standard Log-in message! .

Save Areas "

154

{CAITOCPS)

Entry known to 05/360
contents supervision

Obtained by MIOSINIT via
"LOAD EP=CAITOCPS."

. 'MIOSINIT puts @CHAT-side
in MIDNS storage.

@ Initialized by MIOSINIT.

Location of this conduit
field stored by MIOSINIT
in MIOS storage.
) Contents zeroed—out by

MIOS at CHAT Shutdown.

¥} Contents stored by CPS-

side at each successful

intercept.

Initialized by Blair's
program root at system
fire-up.

Number of elements In each
list (or string) equals
the number of CHAT ports
currently defined.

Figure ?.i Internal Layout of the Conduit

155

the information returned (see Figure 7.2), and exits with its misstion
acconplished. CPS remains completely unaware 0} the interception
' mechanism and requires no knowledge of the conduit.‘

- During subsequent operatioa, when the CPS-side successfully inter-
cepts a CPS channel program to a CHAT port, the CPS5-side obtains, as
part of the standard EXCP protocol, the address of the 05/360 Task
Contro; Block (TCB) for CPS and the address of the IOB that CPS has
defined for the CHAT port currently in use.

The TCB address is useful for three reasons:

1. The CPS-side uses iﬁ at interception~time to determine quickly
whethgr CPS issued the EXCP. It determines this by checking the
progfam name associated with (and accessed through) the TCB ‘
address passed by the standard EXCP (SVC @) prdtogol. At TUCC,
the CPS rrogram has the tongue-twisting name: TUCSYSCPCPS. If
it is CPS, with a channel program directed to a CHAT poFt, the
CPS-side stores the TCB address in the conduit control storage.
This is done each interception time, so that the conduit has the
latest location (CPS may leave the uystem and come back again
later).

2. Both conduit-sidés need the CPS TCB address when posting CPS5--—
the 0S/360 posting protocol requires it.

_3. Thé CHAT-side needs the CPS TCB address to check whether CPS is

alive and well when CHAT (MIOS) requests access to CPS. " However,

because the CHAT-side and CPS operate asynchronously, the CHAT-side
checking is somewhat involved. It may be that no CPS TCB address
is stored in the conduit; in this case, CPS has not yet been inter-

cepted Ty the CP5-side and cannot be located. Alternatively, a 1CB

156

 address may be stored but the TUCSYSCPCPS name-check failsj this
indicates CPS has appeared in the system and then died {its TCB has
been reused by 0S/360). Finally, the ngme-check may succeed but
cer;ain bit-settings, or flags, in the TCB may indicate CPS is
currently in the ﬁropess of termination. Any-of these negative
‘indications prevents current use of CPS, causing‘tﬁe CHAT-side to
return to MIO$ with the CPS DEAD status.
The IOBIaddress intercepted by the CPS-side establishes the con-

duit's means of accessing CPS.’ Figuré 7.3 shows the detailed linkages

involved; some of the linkages, such as that conﬁerning the Start I1/0

Appendage and that for Halt I/0 (HIO IOB), are described in a laten.suB:n_

section,

The CPS-side storeslthe I0B address into the conduit control storage
fFigure 7.2)Iin the element of the I0B address-list indgied by‘the UICB
hexadecimal X'Fx' idéntifier shown in figure ZLB.M»The zone digiﬁ'(f) -,
in the hexadecimal-identifier informs the CPS;side that CPS is using
a CHaT port. The CPS-side extracts the xX~digit from the hexadecimal-iden—
tifier, multiples itﬂby four, and uses the result to index-the:corre—:"-'

'sponding element of;the conduit iOB list in which to save the current IOB
_a&dress. Thus, X'F@ causes storing in the first ﬁullword element of the
listy X'F1', in the second; and so forth, (This design comstrains the
mgﬁimum number oY CHAT ports to l6--more than we beliéved‘would ever be

| néeded for the actual CHAT-SyStem. The design could be exfended to allow
another‘zone to be defined and checked, theréby increasiqg-the number Lo
32--the maximum number of displays glloyed by the CHAT aisplayfﬁulfi-
plexer.) - |

The same indexing applieé to the conduit's list (Figure 7.2) of CHAT

157

HIQO IOB
DCB
1/” T
T kL.
108 UCB
-
; DCB x' 57 !
/' N\ DEE)
UCB
e indicates CPS
/’ Halt I/0 request
CPS ECB X'’
e #}
Channel Lindexeq I0B/SCB lists
Program AVT
CHAT port indicator
4 —
Size
P e CPS I/0-End
ppendagei
CPS Data Area
Abnormal Norral
(Unit Fnd
CPS _ Check)
Start I/0 Appendage |End
By~passed
by the
conduit
CP5-~side

Figure 7.3 10B Linkage to CPS

158

v station control blocks (SCBs); the initialization of this list we have
not yeg described. Each SCB contains thefgémégidentifier, without the
zone; for quick indexing by the CHAT-side when it needs to pick out thé
I0B address associated with the SCB address passed to it by MIOS, Tigure
7.4 1llustrates this correspondence,'assuming*fdr brevity only three
ports. (The same principle applies to the canduit‘s 1ist of UCB ad-
dresses; but beéause this list was useful primarily during debug testing
of the conduit, we omit furtﬁé; mention of it in the thesis.s fhis
associétion of SéB Witﬂ IOB is the means the Eonduit uses to connect a
specific application program to a specific CPS CHAT-port and to control
concurrent activity at all porté. (Note: The index shown in Figure 7.4
is distinct froﬁ that defined in_Chapter 35 in Figure 5.2.)

.The I0B permits full access to CPS from the conduit. Notice (Figure
7.3} that it allows posting of CPS (the CPS ECB), access to CPS data areas
(via the CPS channel programs), and access to CPS I/0 appendages, wﬁicﬁ-
are discusged later; The‘Dgta Control Block (DCB), Dbata Extent Bloék
(DEB), and Appendage Vector Table (AVT) are 082360-defined control blocks.
Thé; are not of interest here apart from their intermediate role in the
linkage and will not be described.

... The SCB provides access in the other direction. The CHAT-side re-
ceives an address of an SCB through the MIOS branching-protocol describeu

"and the location and sizéﬂof épplication progrém areas. An MIOS ECB {one

that MIOS waits to have posted) is defined within each SCB. Hence, the
CP3-side can post an ECB in a particular SCB to simultaneously wake up
MIOS and signify to MIOS which CHAT port is active, MIOS can then, if

needed, enter the. CHAT-side, passing the address of the active SCB.

159

I |
CHAT i Conduit [CPs
i |
J I
!
| i
SCB l SCB List : 108
x'o1' i - !
| |
i '
" I0B List ' X
[}
Initialized e
B
at CHAT i >~ i
assembly I X'F1°
I
| | 4
: |
H Initializ.ed at
installation
sysgen.

Figure 7.4 SCB and IOB Linkage

160
Making CHAT and the conduit known to each other is accomplished
dering_the initialization of the CHAT region by an initialization routing
named MIOSINIT. " MIOSINIT is attached by the MSS control task and thus
represents (temporarily) one of the three monitor control tasks,. When
it finishes its work“'MIOSINIT transfers control (XCTLs) to MIOS which
inherits the TCB Gsed for MIOSINIT: WMIOS becomes the resident control
:—;ask in place of MIOSINIT and MIOSINIT, by using XCTL, disappears from.
the CHAT region. (It }s transient.) While active, MIQSINIT pecforms
various initialization functions: amoné them our present concern.
MIOSINIT locates the conduit using the serviees of 0S/360 contents
supervision, as indicated in Figure 7.2. A name, CAITCCPS, of a parameter
list is declared an ENTRY-and its address is returned when MIOSIﬂIT
specifies it in an 0S/360 LOAD macro., This is all the addressahility
MIOSINIT needs-iﬂ order to do tﬁe initialization. Inte the eonduit
control storage, it stores its own TCB address (the one inherited by
ﬂibS) and the list of SCB—addresses correctly ordered according to index.

The addresses of three translation tables are also placed in the conduit.

These tablesg are resident in_the CHAT Monitor control'storaée-but are'
used by the conduit for EBCDIC-to-Teletype and Teletype-to-EBCDIC code
translation and for Teletype control eharaeter stripping The two code
translation tables are shared by the CHAT Monitor eontrol task, MTWX.
(MIWX uses a dlfferent table, however, for contrel eharaeter stripping
and parity checking.))

MIOSINIT also initiaiizes the CHAT Monitor contrecl storage used by
MI0S. There, it_stores'the addrecss ef the entry point to the CHAT—side
of the conduit so MIQS can branch to it. MIOSINIT also stores. inte MIOS
control storage the address of the conduit field in which it stored its

'EKC

wll Toxt Provided by ERIC

161
own TCB address. This aliowa MIOS as part of its shutdown brotocol ;u
zero-out this field in the conduit so that the CﬁS—slﬁo will know CHAT
is not present. (MSShdoes this as part of its shutdown protocol Il MIOS
has abnormally terminated.} All of this initialization acﬁivity by
MIOSINIT (and that by MIOS or MSS in zeroing~out the MIOS TCB address)

is performed in supervisor, interrupt-disabled mode.... ..

"The CPS-side, which is asynchronous with reépect.to CHAT, has
simpler‘chécking-to perform because of this shutdown cleanup. Before
posting MIOS, it checks only whether the MIOS TCB addreés is pregsent in

:“Eﬁé conduit.. If it 1is, then the CPS-~side can post MIOS {passing the TCB
address te .0S/360) uﬁ}ng the, now addressable, SCB of interest. JIf the
TCB address is not’fresent, 1t will not post but instead will force the
cﬁrrently active CHAT port to the disconnected state-—a process to he
described. Similarly,'the other active CHAT ports (if any) are forced

to disconnect as their activity is intercepted."lf CHAT is later restored,

the MIOS TCB address will again appear in the conduit and be seen by the

CP5-side.

This completes the detailed discussion of the checking and linkage-
initialization required for the conduit to provide robust- exchanges
betwegg_gHﬁI and CPS. It also illustrates how elaborate mechanisms are
sométimes needed to perform a function not provided for (indeed, "pro-

hibited") within the host control program. .

How CPS Works: Since the conduit uses the Teletype I/0 interface Presented

by CPS, we need to describe briefly how CPS normally uses it, in cbmmuni—
cation wiph a real Teletype. Some familiarity with the CPS external
PR ‘l .

specifications manual [I1] on operator usage of a CPS Teletype might be

O . . i R

162

helpful to the reader here, but not at all crucial. The following
description is based on the author's line-by-line tracing through CPS
source code listings—--no other reference can be cited.
CPS uses seven distinct channel programs for the Teletype. These
will be characterized Ey their five main functioms:
Enable - This channel pfogram iz the one used by CP3 to answer
a dialed call from a Teletypef_ It is the first one
issued to a port and does not complete (it "hangs')
unt$l a call is received. The channel program includes
a write command that causes the familiar CPS "hello"
type message to be printed at the calling Teletype.
Diséble - This simply disconnects the Teletype. CPS follows this

with an Enable: channel brogram to awailt a new call.

Read - | This 1is used by CPS to read keyed—in data from the
Teietype. -
Write - - This is uqéa‘by“CPS-to print out data“qn-thefTeletype.
—_ CPS uses ;gggé versions of this channel program, depending

.upon- how it wants to control Teletype carrier-return/liase-

o .. Feed. Each version involves a different channel program

. structure.,
Prepare - This channel program is used by CPS to moﬁiéor the line
.from the Teletype wﬁen no other channel program is avail-
:able (ready). This ?é}ﬁits CPS to learn that the oberator

has hit Break or the X-On key (attention) when no other

——

channel program is monitoring line activity. fCompiétion
of a Prepare causes only I/0 status to be signalled; no

data is received (read).

) 163
In using the 08/360 EXCP interféce, CPS also defines three I/C

appendagesf two for handling channel—endideviee-eqd (CE/DE) 1/0
interrupts and one Start I/0 appendage {see Figure 7;3). A Start I/0 ...
appendage is given control by the 08/360 I/0 Superviscr (I0S) after an

EXCP (SVC §) has been issued but before the actual System/360 Start I/0

_________ ’

‘-1n$trﬁction is executed b& 10S. Since a Start IIO“appéndage, like the
1/0 ihterrﬁpt~handling appendages, has supervisor, interrupt-disabled.
_ privilegeé, it can‘be used to do some thiﬁgs not allowed the problem-
state program issuing the EXCP. WHotice that the mechanism allows for
;nterceptihé all EXCPs for which the appendage is defined [I71.

i Start 1/0 appendages can have various uses~-CﬁS uses its'Starf /¢
appendaée to stop I/0! This rather exotic usége.(ggg copied by the
CHAT Moﬁitor support for the Teletype which borrows other féatures of
the CPS Teletype support) stems from_thgmprogramming complication ingro-

duced by the added functioun that the Prepare channel program Provides.

—

To maintain continuous surveillance_gfgf’the connected Teletype, CPS
constantly alternates EXCPs for thef?Egpgyéﬁchanﬁél program with those
for Read and Write chamnel érogfams that do work sche@yled by the CPS

' user program or by the CPS Interpreter itself. Eachlaérthe lattef CPS
programs experiences processing delays, during which the Prepare channel
program ;s needed to be active on the System/360 channel. H&wever!mghés
means that an incompletégbrepare must be removed ;n order to Ho tH; sub-

sequent, scheduled I/0.

j CPS employs a somewhat complicated technique which we simplify here.
On complépion of a Read or Write opergtian, CPS issues a mew FEXCP, pass~
ing the standard IOB shown in Figure 7.3 and using the Prepare channel

program. Then, when scheduled Read or Write work is to be performed,

a————

164
CPS fills in a bogus IOB--shown in figﬁre 7.3 as the HIO IOB. ﬁoth ghe
I0B used for the Prepare and the HIO I0B are examined by_thé_CPS Start
I1/0 Appendage when it gains coptrol. The former is passed through to
10S for Start I1/0 execution. The latter is trapped by the Start I/0

appendage. Through linkage not shown in Figure 7.3 (which is oriented

toward the conduit's concerns), the Start I/0 appendége_manages to locate

the Prepare IOB-to-UCB chain and issues a System/360 Halr I/0, setting'

a f;ég (called IOBHALT) in the IOB. The Start I1/0 appendagehthen returns
to the problem program, by-passing the I0S Start 1/0 exécution.

When the interrupt caused by .the Halt 1/0 occufs, one of the CPS
1/0 appendéges is invoked by IOS interrupt-handling. On detecting that
the TOBHALT flag is ON,’the i!o appendage, through some other devious
linkage not shown in Flgure 7.3, 10cateé ££§?2;§1y schaeduled Read or

Write channel Program, fills in the (real) IOB, and uses the exit to I0S

for restarting I/0--in this case the new channel program. The Kalt ‘1/0

caused interrupt 1s not posted to CPS. Later, when the Read or Write

successfully completes, the I/0 appendage takes the exit to Id§ specifying

to post ¢PS. The cycle then continues. . T

Figure 7.3 shows 1inkage involving the HIO I0B. This is defined

within CPS, but its use is more gegggne'to‘the conduit. CPS-includes

a DD control card in its jobfinitiéfion\JCL that specifies a real, sys-

genned UCB with the unit identifier X'57'. This is to satisfy 08/360 -

CPS never links to it. The pCB itself represents an address of a fic-

ticious physical device, just 1ike CHAT ports.

T,

—————

[P

165

Simulating the Teletype: The CPS operation, while exotic, is a felici-

tous design for the purposes of the conduit: it allows the conduit to -
" gimulate the operation’of the Teletype without change to CPS code.

The implementation of Halt I/O'through a Start I/0 appendage
allows the conduit to intqugpt the process, 1f CHAT portslare involved,
-before the appendagé‘;s reaéﬂédﬁ The presence of a specially marked
(X'57') UCB, uniéue to this purpose, allows the intercepting (PS-side
to éetect the requirement. One of the CPS "clégg;“'linkages——the pointer
" in the ﬁIO I0B to the true DCB (shown in Fiéure ?.3)—~a110ﬁs the CPS-side
to find the real UCB affectea.‘ This 1s the only CPS—unique linkage used
by the conduit. {CPS puts the pointer to the true DCB in the IOBSTART
field of the Hio I0B—a field normally used fgn.a pointer to the channel
program to be sta;ted.) When the CPS—-side fihds ;;gf the true UCB iden-
tifies- a CHAT port, it uyses the x—digit in the UCBE to index the conduit
I0B list where the true IOB addréss is already stored--since tﬁe previous
Prepare channel program.had been intercepted in-the regular way.

In intercepting CPS- EXCPs for CHAT ports,ttheICPsﬁside completely
by-passes the CPS Start I/O-appéndage, although CPS activity for non-
CHAT ports continug§*t6 invéﬂé it, Both sides of the conduit do make
use of the CPS 1/6 appepdages, however, and in fact share usage pf the
same COPy that éérves concurrent CPS activity unrelated to CHAT.

Figure 7.5 gives a siﬁplified view of how the CPS-side responds
to a CPS EXCP to a CHAT porﬁ. If the CPS EXCP specifies the true IOR,
the CPS—-side obtains the‘address of the channel program from the I0OB
) gné examines the channel program to determine which one of the seven it

is. A Disable is handled by the CPS-side withoui assistance from the

CHAT-side. The CPS-side enters the CPS I/O’gppendagé, with I/0- inter-

166

CPS EXCP
Halt I/0 True 1/0
needed intercepted
Modify Analyze {Disable)
Port-status Erase all
1/0 type port-status
Set up L/0 ‘
completion Store in §:t up I/0
environmant por t-status r.‘ompletion
R environment
TOBHALT +
flag 108 p*rotocol
+
I0S protocol (Prepare) Co to CPS
1/0 Appendage
* Read
Write *
Gr to CPS Enable
/0 appendage Pos
- t CPS
{which then ‘
returns)
Post MI0S
L -Jp» Return to

CPS

Figure 7.5 Simplified View of CPS-sicde Logic

167

rupt status simulated; the appendage processes the I{O completion intexr-
rupt just as it does fér a real Teletype and returns to the CPS-side
using its standard I0S-defined exit protocol (here, the exit signifying
to post). The CPS—-side then invokes the 08/360 posting protocol, which
posts CPS5, and the CPS5-side then returms to bPS at the location following
its EXCP-issuance. (Amugingly, this means the I/0 completion has been
posted before CPS is—aware that its EXCP has finist;d- Since I/0 com-
Pletions are normaily asynchronousvﬁitﬁmphe program's sequencing,‘this
causes no difficﬁlty--even thO;gh real ones cannot océur in interrupt-
disabled mode.)

The other changél PrOgrams are handleﬁ differently. A Prepare
normglly causes-éhe CPS-side simply to update the conduit’'s records for
the port (IOB address, current status) and to return to CPS. Read, Write,
and Enable are of intérest to CHAT, so the CPS5-side posts these events

to MIOS (if present) and then returns to CPS. These channel Pprograms,

.....

unlike Disable, remain pending untillg CPS Halt'I/0 r;quest {to stoPp the
Preparg) or a CHAT-side event occurs.

A Halt I/0 request is handled in more involved fashion. The CPS-
side creates thgﬁg;oper environment for a halted channel program inter-
rupt and invokes the-CPS I)O complgtion appendage to process Et. The
apﬁendage uses its standard clever way of locating the new channel
Program and retﬁrns to the qPS~aide-via the I0S-defined restart exit,
with the I0B properly re-initialized; Since this-must be in agcordance
With-ias-defined pProtocol, the CPS—gide easily locates the new chaﬁnel
progréﬁ and go&s to the‘analysis logic as shown in Figure 7.5,

Simulating the Teletype involves also simulating the System/360

channel (and the outboard control unit) and IOS, insofar as CPS append-

I

168

ages are sensitive to thelir operation. The invoked CPS appendage must
find System/360 channel status word (CSW) and I0S-defined information of
the standard format and in the standard locations in the I0B (108 places
the CSW information Iin the IOR, as one of its standard services).
Similarly, the conduit must adhere to the standard IOS protocols on
entry to and exit from the appendepes, since these are the ones assumed
in the appendage-coding. This involves initializing standard registers
with standard pointers on entry and providing the exit support defined
by I08. The appendages must also find flags set the way the by-passed
CPS Start I/0 appendage would have set them if it had heen invoked. (PRe-
sides IOBHALT, there is also an IOBBUSY flag not described here.)

The port-status referred to in Figure 7.5 is shown in greater detail
in Figure 7.6. Each CHAT port is represented by a byte in the conduit's

port-status hyte~string shown in Figure 7.2. Here again the familiar

indexing tactic applies: each CPAT port is represented by the hyte in
the string indexed by the x-digit in the SCB and UCB associated with it.
Thus, the . .atus for the port associated with the SCB/IOB pair shown in
Figure 7.4 1s kept in the second byte of the string.

The meaning and usage of the individual bit~fields of the status
are as follows:
Bit @ - This is turned ON by the CHAT-side to request that the CPS-

side force the port to the disconnected state. A port is

disconnected when CPS is awalting a new dial~in. This means
it has an Enabhle channel program pending.

Bit 1 - This is turned ON when the CHAT-side simulates completinn of
an Enable channel program. It remains ON until a Disable

occurs. It is useful for Informing the CHAT-side of the

1¢9

CHAT request CPS Connected |} Type of CPS CHAT
for (After Enable channel Signalling
port-disconnect Completes) program attention
rending
(1f any)
Bit: ¢ 1 2-6 7

Figure 7.6 Port-status Byte

170

connection status even though no CPS channel program wmay be
pending when the CHAT-side is invoked. {(Note that CHAT and
CPS compeie for CPl~usage; so CHAT itself ﬁan be the cause
of Crs's delay.)

Bits 2-6 - %hese bits inform the CHAT-side of the type of channel
program cur?pncly pending (if any). They are set by the
channel program analysis routine and.reset when an I/0
completion ig simulated.

Bic 7 - fhis is set ON bj fhe CHAT-side when the CHAT applicafion

ﬂu?(‘) subtask has 1ssued ATNCPS at an instant when‘no channel
péogram is pending. It alters the subsedquent intercept-
activity showm in Figure 7.5 where the Prepare handling is
qoncernéd: the‘bPSvside will execute the branch to- post
MIOS. .

A; indicated in“Figure 7.5, the CPS—side_sets all bits to zero when it

intercepts a Disable.

TheICPS—side intercepthgctivity is also altered from thé way shown
in Figure 7.5 if Bit-ﬁ is-0ON: ‘the handling of Read, Write, and Prepare
is changed. For these cgannel p;ogfams, the CPS-side executes 1/0
completion simulation and does not post MIOS. (MIOS is not interested.)

For Read, this involves creating the environment associateé with
arrival of the Teletype EOT control charaéter and System/360 unit excep-
tion status in the CSW. Thg'normal—end'CPS appendage (see F;gure 7.3) is
invoked and, upon féturn, the CPS-side posts CPS and returns to CPS.

For Write ;nd Prepare, the CPS-sjide creates the comp;etion euviron-
ment associated with line-breakage (pnit check.stagdé;'intepvention- |

required sénse—bit, and I0S error-indicators). and invokes the abnormal-

171

end CPS appendage. The CPS-side then posts CPS and returns to it.
Unfortunately, the machine-status itseif iz ambjguous, being also
signalled for the case where a Teletype operator hits the Break key
when these channel programs are active. THﬁs, CPS will assume the non-
fatal cause and invoke its own Break—protocol., This involves a new
Write for which the CP8-side on the new EXCP interception must persist-
ently signal iine—breakage, since the CPS abnormal-end appendape, at
this time, will repeatedly return by the I0S~defined restart exit until
its retry count is exhausted., Only then does CPS accept the fatal cause
and give up. (The process can be further csmplicatéd because CPS extends
"attention" handling to CPS user programs in itf language definitiﬁn,
é?en permitﬁing fested attention on—-units. Thus, a number of Write
EXCPs can be issued until the imermost attention-handler (CPS) is reacheﬂ.
Oﬁly on this imnermost one does CPS retry to exhaustion.)

The CHAT~side also participates im the Teletype simulation process
and does all the ﬁork to move data between CP8 and ¢HAT. Figure 7.7
shows a simplified view of how the CHAT-side Qorﬁs.l MIOS enters the
CHAT-side for an additional reason beside those previpﬁsly ment ioned-—t 2

.... [R "

force the port to-be disconnected if it is not alréad& so. MI0S does
this whenever an application suhtask associated with the port terminates
or if it-is-performing shutdown.
The conventionspgg Figure 7,7 are:
® The all-capitalized names correspond to CHAT requests to the
conduit--ejither from tﬁe;application subtask (LOG,.READ, WRITE, ATN}
or froﬁ MIOS for the disconnect reasoh (DISCj. The request type is .

obtained by the CHAT-side from the SCB.

o The exits refer to those previously described for retﬁrning to MIODS.

172

From M10S

is —No EISC . O o Enable _:m_.,,@
port eques ﬁépending?

Connected?
Yes Yes

LOG Request? Xo

Yas (not ncedead) i"l'eﬁ (sv.o)
Complete the
v Enable
+
CPS Channel Program
Pending? Post CPS

.

\ (Second step
\\ ncoded)

Yes DISC Request ?

Mark port-status

ATN Request?

Which CHAT
Request? é No
Yes
READ ATN
LG DISC Mark
WRITE port-status

Force I/0 Completion

Prepare +
() Match with CPS Post CPS

WRITE/, , Cnannel Program

10G Writ
READ/Read
OOK.
(SWR) Move Data (SNULL)
@ normal exit
Complete 1/0 Back
+ (::) abnormal exit H:gs

Post; CPS
é @ wait exit

Figure 7.7 Simplified View of CHAT-side logic

173

Reference to the CPS channel programs is as before——capitalized

first letter.

- & The $—Sym$ols specify the type of abnormal condition detectEdf"j
$WR - both CHAT and CPS are trying to write to each other)
(CHAT loses).
$LOG -~ the application program needs to log-in to CPS because
| CPS is awaiting a new call (not connected).’ _
$NULL - both CHAT and CPS_are trying to read from each othgr.
This could happen if a CHAT application subtask is
reading from CPS and letting-this indicator inform it
of the end of a sequence.
® The comments along the arrows are obvious, except possibly those
from the match-test: the;e indicatg which CPS channel pfogram ls
pendiné and the nature of the mismatch.
~ Notice that the CHAT-side completes the simulation of--the Teletype
1/0 for those channel programs that the CPS-side left pending. The
'CHAT-siée completes I/0 by also using the CPS appendagas, in the same
way described for the CPS-side; However, because it executes the mpV;:
ment of data between CHAT and CPS, it also has Teletype code and control
characters to maﬁipuléte. Code translation is reguired in both directions,
while Teletype control character deletion/addition deéends on direction.
The conduit has no intermediate buffer, but moves data directly from the
CHAT application program data area épecified in tha SCB to the GPg data
area specified in the channel program--or vice versa. All céde transla-
tion, of course, is performed at the éigﬁﬂgfter moving. Trd;cation (on

the right) is performed if the source-length exceeds the sink-léngth.

Certain steps shown in Figure 7.7 require additional comment. The

174

LOG request involves two invocations of the CHAT-side. When it Is

—

'issued by the ‘application program, the port will normally not yet be
connected: an Enable channel program is pending. Since CPS does no
reading in this channel pragram, the CHAf—side mugpfcqmplete it first
(the "hello" message is not moved into CHAT) and wait for_the CPS-side
to post MIOS that the next chanﬁel program has been intercepted. This
one will be a CPS Read, and the CHAT-side. can then move the application
program's log-in message (the standard conduit-supplied log-in message
with or without an application program specifiéd load/save-file) into
CPS's data area. The application program does its own_log-pff using
the interface facilities for writingléo CPS. 1If the pfogram writes a
log-off/resume message [Il],‘it can issue a LOG that will take only
one invocation of the CHAT-side to c&mplete. (It can alsp use a WRITE
to format its own log-in message.)

Notice in Figure 7.7 that the CHAT-side attempts to 1nit1ate dis-
connection of the port if a channel program is pending when the DISC
request arrives. It marks the request for thg CPS-side even in this case
(not shown in Figure 7.7), so that if aﬁy further attempts are necessary-
thé cps-side will cohtinue them.

The AIN request causes the CHAT-side to indicate the reqﬁest in
the port-status if no chamnel program is pénaing‘ This'is to force thé
CPS-side to post MIOS on a Prepare so that the application program can
get CPS's attention even in this case., The indicator is turned off by
the CPS-side as it posts. When a channel program is pending, the CHAT-
side does not indicate the ATN request in the pdft—statﬁs but honors the
¥eque3£ itself. Thislmeans on a Prepare or Write that the éondition

described earﬂier as ambiguous is set for the simulated I/0 cbmpletion.

175

This time the subsequent CPS Break-protocol Write can succecd. For -/ *“h--"j
Read, the simulated completion is made to appear as if the X-On (Control~-

Q) key has been hit on a Teletype [Il]. This is unambiguous.

—

176 -

EXPERIENCE WITH THE CCNDUIT

The original purpose of the. conduit wasnéo serve Mudge's DIAL
program; as described at tH;LEegiﬁning of this cﬁapter. This purpose,
however, was never rgalized for two reasons: (1) the move of the CﬁAT
Sysfem from TUCC to UNC resulted in both a critical reduction in avail-
able core size and no other community needs fo¥ CPS in the new CHAT
host installation; (2) Mudge's program was found ndt' really to re-quir-ew'
usage -of CP5. The UNC version of the CHAT System does not use the
conduit.

The conduit was, however, complefely tested andvfully debugged at
TUCC. In addition, Blair [B3] wrote an applicatioﬁ program using the
PL/T conduit interface which proved the conduit's soundness and useful-
ness. This program was invokable froﬁ'any display staéion and provided
display station access to CPS, since Blair used both the conduit CPS-

access interface facilities as well as those for the display in his

program,. This ingenious application program has also been logt to the

CHAT System because of the move. The CPS program at TUCC has reverted

to its former staid existence of serving only real teletypewriter

.

terminals.

CHAPTER 8: ON-LINE TERMINAL TEST FACILITY

Early ekperience with-the display equipment gave pungent evidence
of the need to inciude a diagnoétic and testing facility ﬁithin CHAT .
During the development of the CHAT Monitor, the display equipment fre-
quently broke down. Restoring it t;-working order was inconvenient, S
expensive, and, during‘one lengthy period, nearly hopéless. The problém
was worsened at this perlod (at TUCC) by the communication lines and
AT&T 201Bl data sets (involving three different telephone companies) used
to connect the CC~7012 to the CC-72. The_commoﬁ—carr;e? equipment did
not offer Swiss-watcﬁ reliability: within a year, three line breakéges
occurred and five data set replacements ﬁere necessary.

Bell gives responsive service--in part, because its manageme@t ran—
domly "bugs" and tapes customer calls to Bell service centers. Bell di-
agnosis of datg'sets consists of running a series of set-to-set tests
using special equipment with myriad lighté to check that particular,
repeated-data patterns are corréctly received at ~ach end. Maintenance
consists of replacing a defective data set by a spare that the service

" man carries qlqng; if the Bell tests show no error, the daté set 1s not
replaced and- the problem is blamed on tﬁé other venaor(s).

Unfortunately, the tests are not as exhzustive us they'éppear:

After "succéssful" completion of Bell's testing of a data set, the author
noticed a suﬁtl& uneven cursor-motion on the display screen and sugéested

to the service man that the data set crystél oscillator timer was bad

178

{the CCI equipment derives its transmission tiwming from the data set),

The service man confessed that he had no test for this component im his
standard dn~site repertoire; some ad hoc strobing by the service man
proved the oscilllator was awry-—-the dala set was replaced.

Diagnosis'and servicing of the CCI equipment was hindered by the
following deficiencies:

1. Nq hardware service aids otherlthan the oséilloscope aﬁd gtrobes.
This meant an almogt total re;iance on scftware control in ;ﬁe
computer and on the standard {possibly defecfive) installed L e
equipment to diagnose problems, |

2. Ignorance on the part of the servicing personnel of the logical
properties of the CCI equipmentlregisters and of he communication

ar pro;ocols involved in data exchange (bit-x in the CC-72 SS-register

__means “this" after "that" action). IHence, strobing only established
voitage 1gve1§ and did noy easily pinpoint logical problems (such
as transmission parity blOck;checks). |
3. | éis-desigp of the CC-72 multiplexer (no line-testing mode)--it
| requires computer program contfol in order to send anything, even
thé signal that one of 1ite stations is ready to send a messagé.
The computer;program,lof course, req;ires peitect action by the

CC-7012 and’communication equipment for its enabling order to

arrive at the CC-72. (Scenario: Author-to-Bellé "I think something

ig wrong with .our equipment and .I'm not sure whether it's yoﬁ or

CCI causing the problem. I thought I'd call you first. Bell-to-

author {later): Well go ahead and send something; we're monitbring

the line. Autﬁor-to-Bell (brief pause): Er--uh, well, I can't;

my local egquipment rejhires computer control before it can send and, -

179 -

" well, I he.: no on-line computer support (see next point).-
Can't you send vour mar. out with that box with all those lights?...)
4. Yoor manufacturer-supplied software diagnostic suppor.. This
sﬁpport was grossly inadeduate for ﬁse by thé manufacturer service
personnel and not at 21l useful to fhe'gHAT designers who could
never get documentation on wha; it -did or what its output meant.

Furthermore, this diagnostic support offered no interaction with

the CPU console to allow operator control or inquiry, but communicated

only with one of the unreachable‘displays. Its output, if any, was
printed on the installatioa printer in cryptic format. The most)
crippling asﬁect of the-Support was that it was a standalone (cgrd-
loaded)bprogram coded to run on the basic System/360 machine.
-Hence, it \pldlonly be used when. the installation management was
-Willfgé/{£9:hut down the oﬁerating system. —

One scarring episodé illustrates the gravity of the above defi-

ciencies. During~development76fmthe CHAT Monitor when no.code had yet.

been successfully tested for the displays, the author noticed that the

equipment didn't work and reported the .problem. Six months later, after

|
innumerable weekénds and mid-night hours of fumbling about and not ﬂso—

lating the error, the author decided the outage was too persistent. Rven
the author's installation-acceptance tést program was dusted off duriﬁg

this period--teing better at_pimes than nothing! The equipment was dis-

installed from the System/360_and shipped back to the California factory.

There they found errors in both the CC-72 and the CC-7012; meanwhile,
Bell--acting on a request for re-testing of its equipment-—-located a prob-
lem in the UNC-based data set.

This pattern of ilnadequate diagnosis and service was an important

180
lesson during the design period: -fhe CHAT System had to provide a
testing facility:ih\arder to be a viahle productién syétem. CﬁAT does
include such a facility, centgred in the on-line testing”program, OLTEST
(gﬁfLiﬁe Test)-—-a Pi}I progfam invokable from the Teletype. This chapter
1s about OLTEST--its objectives and usage, its special needs with regard
to CHAI Monitor ;xtensions. its interactions with the CHAT Monitor, its
I/0 programming interface, and the test command set and output presented
af the Teletype.
Blair gave major assistance in the actual doding of OLTEST, " He
‘ devised the basic scannihg teéhniqug in QLTEST for parsing commands
_and also suggested Inclusion ;f exercising-commands beyand those intended

by the author. Thg_facility is more ambitious and the human factors

quality higher as a consequence of his interest and participation.

.--‘v"-l_,_m_'

- - o , . 181

OBJECTIVEE AND USAGE

Two general requirements had to be met b§ the testing facility
for the CHAT System. It had to provide: | ‘
1. A diagnostic feature for use at the time an.error or outage
became visible to a display operator. What kind-of Errors
were seen by the CHAT Monitor? What kind of I/0 was involved?
By kncwingtbofh the external symptoms and internal machine status

of am error one might quickly <iagnose the cause or specific
1ocati;n-of the problem.
2; " An equipment-exercising feature for use at the time of méintenance
or service. in step with a current service diagnostic tactic, it
should be-possible to initiate a pgrticular operation,,tO'exeréise
a specific component, or to send & chosen character string.
The Teletype was the obvioué éonsole from which to control these
features and €0 OLTEST was designed as a Teletype application prbgram
. running under the control of the CHAT Monitor. This capabil%iy for control
and requesting-of test results at the site of the-displafs is wvery con-
veniernt, Depending upon the CHAT region-size at the time, it 15 possible
to run OLTEST concurrently with other application subtasks. Thus, if
only one display station is dowq, it can be tested on-line while the other
displays are in production use. |
bLmEST provides a set of commands for testing a display cﬁosen by
the Teletype operator and for requesting a status or log report. These
commands and the output logging are described later in this dhapter._ The
.use of OLTEsT for eiefcising the equipment should be easy for anyone who

can use the Teietype. Interpretation of the log output for diagnostic

182

purposes ic easier the more the observer understands about the operation

Il

of the disp}ay equipment and the channel programs used by MIOS. In

.‘ ’} A .
actual prucktice, one visiting CCI sgervice man, who examined the log

_ output ‘from OLTEST and compared it to the MIOS channel program it refer—

enced, understood easily what errov was rccutring. (CCI service persunnel

understand channel programming.)

Il

4L

183

THEZ I/O INTERFACE FOR OLTEST

- OLTEST had one special requireqent that the application program
interfaces desc?ibed in Chapter 3 do not allow: access to bgth the
Teletyye and the display equipment from one program. Furtherwnre,

OLTEST needed to choose a display from the group as currently directed
by the Teletype operator. Both requirrqments, as well as ap additional

. need to acceés Monitor stbrage for status—lﬁgging, are met by a special-
purpose interface.

h OLTEST includes in its source the preprocessor statement:
- ZINCLUDE (OLTDCL); |

-where OLTDCL is 2 member name in SYSLIB. This .auses inclusion of the
declarations needed to defihe the S$-named vériables and procedure
enfries for 511 Fhe procedures described in Chapter 3 (exéépt those for
CPS access, which OLTEST doesn't need) as well as three special proce-
dures described below. '

OLTEST in using ﬁhis interface is provided the special assemfler-
coded linkage ;ouiine, OLNTRYS, mentioned in Chap;er 2. This differs
from the linkage routines provided other application programs by including
more than linkage to IFCSECT; where the display .and Teletype procedures
reside. The procedureé'to execute the new functions‘required for OLTEST
;re packaged with OLNTRYS (in tﬁe OLTEST load wmodule) so they are resident
in the CHAT region only when OLTEST is, Recall that IFCSECT is packaged
with the Monitor and is always resident.

In describing the new procedures rhe sam~ formaé is uééd as in
Chapter 3.

CALL SEIZE (station, return);

184
The CHAR(2) station argument specifies the numeric 1ldentifier of
the display for which all future display procedures invoked by the
program are Lo apply. The identifier is the same as that appearing on
the door of the room in which the display resides. (This should corre-
spond to the “J-connection" numeric on the back panel of the CC-72
multiﬁlexer where the station is attached.) The return argument {a BIT(8)
ALIGNED variable) is set by the called procedure as follows:
'0000 0000'R - The specified station has been
| seized successfully.
'0000 0001'B - The specified station has not been
seiged Becausé it is busy--some
other application subtask is currently
in use there: ‘
'0000 0010'B - The specified station has not been
seized~-no display inm the CHAT System
has the specified station identifier.
After successful seizure, the program is in seized-mode. To escape from
selzed-mode the program invokes‘RELEASE:
ICALL RELEASE;
This nh—argumeut procedure reference causes release of the currently
seized sta£ion (if any) and causes the progfém to escape seized-mode.
It is a No-0p if the invoking program is not in seized-mode.
Two rules are enforced by OLNTRYS:
l.l The program must be in seized-mode at the time it invokes a
procedure associated with display station activity.
2. The program cannot invoke SEITZE when alreédy in seized-mode.

(It should release the previous one first.)

185

OLNTRYS enforces these rules by stopping the violating program at the
time of the offending call.

The intermal implementation of seizure pf a display is simple:
OLNTIRYS, after finding thatlthe specified station exists and is free,
tempora;ily enters superviso£ state ana disables interrupts so that it
can modify an address list used by MIOS. The process is illustraged
in Figure 8.1 where we assume for brevity tﬁat‘chere are only three dis-
plays. The address list is used by MIOS at tiwmes when it must locate
a particular SCB indirectly (on I/O eompletions) rather than directly
{on I/0 requests where the posting task passes the SCB address). OLNTRYS
also moves some station-specific information for addressing from the
target station's SCB into the Teletype SCB and sets a flag indicating
seized-mode exists.‘ This flag is examined elsewhere in the Monitor:

MTWX uses it to clean up after the application if it terminatés without
releasing the seized station;_MIOS will not initiate termination action
for-the application using the SCB. (You cannot ABORT 6LTEST from a
display.)

Notice that the figure shows that the address of the true SCB- for
the seized station is stored in the Teletype SCB extension. This allows
the release logic in OLNTRYS to un-do seizure. The extension also con-
tains (not showm) the address of the Monitor's data-storage; this is how
OLNTRYS findé the list it modifies. (The verification-of-station-id
process also requires this list.)

The effect of this list-modification is very powerful considering
its simplicity. OLTEST gains full access to. the display using the sgand-
ard display procedures and the same internal mechanisms. MIOS is insensi-

tive to the S5CB-switch in its handling of requests.

1806

{a) Before Seizure

SCBR 02
0
0
Statijon
information
ASCB 03 0 N 8]
ASCB 04
L SCB address
list used by SCR 04
MI10S THWASCBH 0
1
w0 TWX 0
seize-flag Flag
rlb----ﬂ----
Extension to
standard SCB
(b) After Seizing Starion 03
5CR 02
0
§]
AsCB 02 SCs 03
o
@TWXSCB Q #*
@scB 04
TWXSCR — - 2CB_O4
0
1
1 * 0
@scep J3

Figure B.1 Seizure uvf a Display

187

~ The following procedure may be invoked regardless of mode. It
provides the means whereby OLTEST obtains current I/0 status information
about equipment and malfunctions.

CALL ERRINFO (mios-flags, type—io, codes, sense, stat-id, return);

If the BIT(8)ALIGNED return argumeﬁt has been set by ERRINFO to the

~ value ‘0600 0000'B, then a hard-failure record was fownd to have been
stored by MIOS; all the other arguments will carry information from that
record. The ERRINFO procedure (logic in OLNTRYS) will also have unlocked
'the record-storage used by MIdS to allow MIOS to store a new record.

MIOS only stores information on one hard-failure at a time. When its
record-storage has béen unlocked it re-uses it for the next hard-failure
to oceur, locks 1it, and walts for the locked record to be retrieved be-
fore storing a record Oon any new ha?d—failure. Hence, ERRINFO retrieves
the record‘of the first hard-failure to occur since the previous invoca-

tion of ERRINFO., This means the following sequence is useful: ;
(1.) Invoke ERRINFO to clear any oid record.
(2.) Invoke a digplay procedure to perform some
operation of interest.
{3.) Invoke EﬁRINFO afterwérds to obtain the
hard-failure record for the display
operation if it failed. (This clears the
record, too.)
(4.) Go to (2.);
In the later section on OLTEST commands the reader will learn how the
Teletype operator can direct OLTEST through this sequence and get the

results at the Teletype.

If no hardffailure record is found by ERRINFO .(the record-storage

. 188

is not locked), it sets the return argument to ‘0000 0001'R and returns
values in the mios-flags and tgpe-io arguments {nothing in the other
arguments) about on-going MIOS I/0 activity at Ehe.instant-ERRINFO was
invoked. This information is useful in detecting "hanging" I/0, as
will be discussed in more detail.

The arguments of ERRINFO have the following attributes:

mios-flags: BIT(8) ALIGNED

type-io: = FIXED BIN(15,0)
codes: CHAR(*)
sense: CHAR(*)
stat-id: CHAg(Z)
return: - | BIT(8) ALIGNEDF

The codes and sense arguments have their lengths governed by the value
of a variable, MAXFAIL, which is part of the compile—tiﬁe—included source.
Currently, it ié initialized to 7, corresponding tottge MIOS-defined
failu:g threshold {maximum numbér of failures). This is an assembled

" parameter {(also called MAXFAIL in MIOS) that determines how many errors
MIOS will tolerate on a single operatioﬂ before giving up-and treating
it as "hard." FEach failure iﬂ the sequence leading to the threshold
causes MIOS to store information defining the failure. The codes and
sense arguments correspond to two byte-étrings kept by MIOS in %ts hard-
failure record. The first byte in each string corresponds to the first
failure; the secogd byte, to the second failure, and so-forth. Hence,
the lengﬁh of eaéh string is also go%erned By the maximum number of
failures in a single sequence (MAXFAIL).

For return set to zero (hard-failure record returned),-tzge~io will

"beé set to one of the values shown in Table 8.1. These values specify

185

Value . Channel Program
0 " GET STATION INTERRUPT STATUS (SIS)
4 GET LIGHT PEN CHARACTER
8 ENABLE KEYBOARD
12 GET LIGHT PEN COORDINATES
16 : INPUT ALPHANUMERIC

Part 1 if mios-flags = 'XOXXXXXX'B
Part 2 1if mios—flags = "X1XXXXXX'B

(X = not relevant)

20 '~ OUTPUT ALPHANUMERIC

24 PERFORM SLIDE ACTION

28 (Reserved for Card Reader--Never Implemented)
32 : READY-FOR-ATTENTION

36 VERIFY BREAK-FUNCTION

40 : RESPONSE TO BOGUS BREAK

(NO "ABORT" ON SCREEN)

Table 8.1 Values Possible for type-io

190

which channel programs were executed at the time of the hard-failure.
These channel programs can be found in the code listing for MIOS; the

. names in the table correspond to commenté heading each channel program
listing. The mios—-flags argument has relevance only for one particular
channel program as shown also in Table 8.1. (That channel program has
two parts——each requiring its own MIOS-initiated EXCP.) Possible values
for each byte of codes are shown in Table 8.2, Although defined as a
cﬁaracter—string,‘ggggg réquires use of the PL/I feature, UNSPEC, since
it is really a hexadecima% string. As shown in Table 8.2 the sense
argument has relevance only in certain bytes in correspondence to "offset"
bytes in codes. In this case, a byte in sense will be the sense-byte
read in. for the given failure. The stat-id argument gives the identifier
of the display station involved during the hard-failure sequence or, if
none (in the case of a multiplexer operation--see values 0 and 32 in

Table 8.1), the characters NA for not applicable.

A
R

When return is set to one (no hard-failure record found), mioé-flags
tells whether MIOS had a channel program working on the System/360 channel
at the time ERRINFO was invoked (and it picked up the MIOS status byte):

miog-flags = 'OXXXXXXX'B means inactive

= "1XXXXXXX'B means active
(X = Not relevant)

The type-io argument gives the most recently initiated channel pro-
gram and can_be any one of the values shown in Table 8.1, However, two
char values are possible if the initialization of the CHAT region is
still incomplete. This will ﬁappen when the initializatioen routine

L _

MIQSINIT has eiperienced a problem initializing the CC-7012 and CC-72.

In this case one of the following values is given:

191

Value) Meanin

<X'10' A zero-origin index of the position of \
a CCW within a channel program. The CCW
failed with unit-check status. The corre-
sponding byte in sense gives the sense
information accompanying the unit-check.

>x'ior A failure code signifying the type of
failure in the display operation detected
by MIOS. It concerns an inaction by the
remote multiplexer or displays to MIOS
orders. The corresponding byte in sense
has no meaning. Specific‘failuré codes

are shown below,

X'10! * Cursor not restored (4)

X'20° Keyboard not enabled (8) :

'X'30' Cursor not restored (16)

X140 - No acknowledgment to slide action (24)
*’50' Cursor not restored (24)

X'60" No acknowledgment to MiOS-sent message (20)
X'70°" Keyboard not enabled (20)

X's80’ | No acknowledgﬁent of Break-rejection

message (40)

Table B.2 Values possible for codes (per byte)
shown in hexadecimal. The numbers in
parentheses refer to the channel pro-
grams involved and correspond te the
values in Table 8.1,

192

254 — MIOSINIT has reached the failure threshold in
its inirializing operation.
255 - MIOSINIT has not yet had its initializing
channel program posted complete-—-a case of
hanging I/0.
OLTEST provides g special message at the Teletype for each of these
two conditions (as indeed it does for all others described).
In the former case {254) the Teletype operator should enter the
MTWX command $E72. MIWK will post MIOSINIT which, in turn, will transfer
control (XCTL) to MIOS where the more powerful hard—-failure logging is
per formed and accessible rhrough OLTEST. MIOSINIT will log on the
CPU console on request but does not need to on the Teletypec because
MIOS has this capability.
OLTEST has one privilege that no other application program has:
when the ABNORM condition has been Signalied and ERRCODE rccurns the
value signifying LINE ERROR (see Chapter 3), OLTEST may continue to use
the display equipment procedures. Other programs are stopped if . hey
attempt further equipment use. This added privilege is necessary since
OLTESY has irs greatest use when the displav equipment is producing nard
failures. The privilege is implemented by OLNTRYS as pact of irs linkage

to display procedures; it is one instruction to rurp off a flag.

193

COMMANDS

OLTEST provides'a set of commands for the Teletype operator
to exercise the display equipment and to request-a log-out at the Tele-
type of the error and status Iinformation ohtained from the ERRINFO
procedure. Naturally, OLTEST reformats the information given by ERRINFO
and provides more readable copy. Some exampléguéﬁe shown in the next

- section. |

Figure 8.2 shows a typewriter version of an actual Teletype
listing of an interaction with OLTEST. Notice that the operator uses
the MTWX $XEQ commaﬁd to invoke OLIEST, receives acknowledgment from
MTWX, and begins receiving from OLTEST.

OLTEST always prompts the operator when it is ready for a new
command. Aftef'feaaiﬁg and execufing a command, OLTEST will print
ﬁONE if the commané does not result in any other output on the Teletype.
As showﬁ, the HELP command does produce output, giving a summary of the

Vv

facility and instructions for its use.

_ Figure 8.3 shows the consequence of using HELP ALL. A lengthy and
detailed exposition of the QLTEST commands is printed on the Teletype.
A typewriter version of this listing will serve the same purpose here. We

- add oanly a few remarks:

1. Notice that OLTEST does mot .require the operator to release a
seized station prior to seizing a new omne. It does this for
him automatically.

2. The permitted short forms oélthe commands are not too useful--
they are difficult to remember.

3. OLTEST accepts SIEZE to mean SEIZE (!).

6.

194

OLTEST provides some error analysis on operator abuse of the

commands which is not shown ﬁere. No abuse ever causes program

stoppage.

Tﬁe operator should feel free to interleave MIWX $-commands

witﬁ the OLTEST cbmmands, particularly $E72 or SABORTmn (to get rid

of soﬁe other application subtask "ﬁanging“g;n'a display to be

seized). SABORT is useful to stoP OLTEST itself if the operator

is tired of seeing a long output sequence; he can quickly re-

initiate OLTEST using $XEQ.

It might be ugeful to have a short version of the OLTEST program--
7

one without the HELP procedure-~to save storage (if concurrent use

of other applications is desired in a smaller tegion). This should

not be difficult to do; but it has not yet been implemented.

195

MTWX HERE...ENTER A COMMAND
78KE(Q OLTFEST
COMMAND EXEfUTED

==> ON-LINE TEST: DATE: 08/123/71 TIME: 23:43:29 ~==
ENTER COMMAND OR "HELP"
?HELP

#-%-% TNTRODUCTION TO ON-LINE TEST *-*-%

CLTEST 18 INTENDED TO BE USED TO:
1. EXERCISE THE CCI DISPLAY STATIONS—--PARTICULARLY
TN CONJUNCTION WITH MATINTENANCE SCRVICE.
2. LOG OUT CURRENT I/0 STATUS OR "HARD" FAILURE
SEQUENCES STORED BY THE MONITOR.
3. AID IN THE DIAGNOSIS OF EQUIPMENT PROBLEMS.

*-%-% LIST OF OLTEST COMMANDS *—*-%

LOG SEIZE RELEASE END
SEND SLIDE REPEAT LCAR PAUSE READ READLP

*_%_%x AGRING FOR MORE HELP *-%—%

IF YOU DESIRE FURTHFR INFORMATIGN ON USE OF THE
ABOVE COMMANDS, TYPE IN "HELP" FOLLOWED RY THE
COMMAND NAME(S) IN WHICH YOU ARE INTERESTED.

EXAMPLES: "HELP LoOG"

"HELP SEIZE,RELEASE,SEND"

IF YOU TYPE "HELP SENSE", YOU WILL GET A DESCRIPTION
OF THE SENSE BYTE ABBREVIATIONS USED ON LGG OUTS.
IF YOU TYPE "HELP ALL'", YOU WILL GET A DESCRIPTION
OF ALL COMMANDS (AS WELL AS "SENSE'").

#-%_% ENDING OLTEST *-#-%
SIMPLY TYPE IN "END" AT ANY TIMF.

Kokok_h_k_%

NO GO ANEAD AND USE OLTEST.
ENTER COMMAND OR “HELP"

Figure 8.2 OLTEST Qutput for the HELP Command

196

PHELP ALL
kek-k LOG COMMAND *--%

WHEN YOU TYPE IN "LOG", OLTEST WILL PRINT OUT ONE
OF THE FOLLOWING:

1. THE INFORMATION STORED BY THE MONITOR FOR A
""HARD' FATLURE--A SEQUENCE OF 7 CONSECUTIVE
FAILURES ON A SINGLE I/0 OPFRATION WITHOUT
RECOVERY. BY GETTING THIS :RROR LOC PRINTED
OUT, YOU SIMULTANEOUSLY "CLEAR" THE MONITOR'S
RECORD OF IT. (YOU CAN CLEAL. THIS RECORD WITHOUT
PRINTING BY TYPING '"LOG CLEAR".) THE MONITOR
RECORDS INFORMATION ONLY ON THE FIRST "HARD"
FAILURE OCCURRING STNCE THE LAST "LOG". TPUS,
YOU WILL COMIONLY USE "LOG" IN ALTERNATION
WITH THE OLTEST COMMANDS THAT EXERCISE
THE EQUIPMENT.

2. IF NO "HARD" FATLURE HAS BEEN RECORDED, YOU
WILL BE GIVEN THE MOST RECENT I/O STATUS
QF THE MONITOR. THIS IS USEFUL IN THE CASE
WHEN AN I/0 OPERATION IS "HANGING' (ON A READ
CCW GENERALLY), BECAUSE THE LINE 1S DOWN OR
THE CC-72 MULTIPLEXER IS DOWN OR OFF,

k-k~% LOG OUTPUT *-*—%

A CURSORY KNOWLEDGE OF THE I/0Q OPERATIONS AND
CHANNEL PROGRAMS (IN THE MONITOR MODULE "MIoS'") 18
HELPFUL IN INTERPRETING THE LOG OUTPUT--PARTICULARLY
FOR "HARD" FAILURES WHERE CHANNEL COMMAND WORD (CCW)
OFFSETS ARE CONCERNED. FOR "HARD" FAILURES YOU ARE
GIVEN THE STATION INVOLVED (OR NA-NOT APPLICABLE-FOR
A MULTIPLEXER OPERATION), THE TYPE I/0 (CHANNEL
PROCRAM) THAT FAILED, AND THE SEQUENCE OF 7
FAILI'RES. SOME FAILURES INVOLVE SO~CALLED "SENSE"
INFORMATION FOR SPECIFIC CCWS. 1IN THIS CASE,

THE ¢CW IS IDENTIFIED BY ITS (O-ORIGIN) POSITION

IN THE CHANNEL PROGRAM, WHILE THE SENSE IS SHOWN

IN ABBREVIATED MANNER (SEE BELOW).

Figure 8.3 OLTEST Output for the HELP ALL Command

197

*_%.% SENSE BYTE INFORMATION *-%-%

WHEN THE SENSE BYTE INFORMATION IS LOGGED OUT,
THE FOLLOWING ABBREVIATIONS ARE USED:
CR = COMMAND REJECT

IR = INTERVENTION REQUIRED

BO = BUS OUT

3?7 = BIT-3 OF SENSE (NOT USED BY CCI WHEN CC-72 PRESENT)
DC = DATA CHECK

OR = OVERRUN

TO = TIME OUT

7?7 = BIT-7 OF SENSE (NOT USED ON "UNMIT CHECK" BY CCI)
(DETAILS ON THESE ERROR INDICATORS CAN BE FOUND
IN THE CCI MANUAL ON THE CC-7012.)

KRRk

#—%-% SEIZE COMMAND %—d#-%

THIS COMMAND MUST BE USED BEFORE YOU CAN USE
THE COMMANDS ¢
SEND SLINE REPEAT LCAR PAUSE READ READLP
TO EXERCISE A PARTICULAR DISPLAY STATION.
YOU TYPE IN “SEIZE" FOLLOWED BY A 2-CHARACTER
NUMERIC IDENTIFYING THE DESIRED STATION.
EXAMPLE: "SEIZE 04" _
THIS EXAMPLE CAUSES STATION 04 TO BE SEIZED
IF IT IS FREE. (YOU CANNOT SEIZE A STATION
WHICH IS IN USE FOR ANOTHER APPLICATION.)
THE 2~CHARACTER NUMERIC WILL AGREE WITH
THE "J-CONNECTION' NUMERIC FOR THE STATION
(SEE BACK PANEL OF THE CC-72 MULTIPLEXER).
YOU MAY CANCEL THE EFFECT OF A PREVIOUS "'SEIZE"
BY TYPING A NEW "SEIZE" OR BY USING "RELEASE".

KRk kak

Figure 8.3 (Continued)

198

#-%-% RELEASE COMMAND *-*-%

THIS COMMAND CAUSES A SEIZED STATION TO
BE RELEASED. A SHORT FORM, "RLS", MAY BE USED.
EXAMPLES: "RELEASE"
"RLS"

Aok hok

*.%_% END COMMAND *-*-%

THIS COMMAND ENDS THE OLTEST PROGRAM.

ARk ko k

*_%-% SEND COMMAND *-*-*

THIS COMMAND IS USED TO SEND A MESSAGE

TO THE CURRENTLY SEIZED DISPLAY STATION.
EXAMPLE: '"SEND 'ABCDEF'"

THE CHARACTER STRING WITHIN THE SINGLE

QUOTES WILL BE DISPLAYED ON THE DISPLAY

STARTING AT THE CURRERT CURSOR LOCATION.

Kok

Figure 8.3 (Continued)

%_%_% REPEAT COMMAND *-%-%

THIS COMMAND CAUSES THE SCREEN OF A SEIZED
STATION TO BE CLEARED AND THEN A SPECIFIED
CHARACTER TO BE DISPLAYED IN ALL POSITIONS.
EXAMPLES: '"REPEAT A"

"REDEAT 1]

"REPEAT"
THE FIRST EXAMPLE SPECIFIES "A" AS THE
REPEATED CHARACTER; THE SECOND SPECIFIES
“"BLANK"; ANpD THE THIRD,. "#', THE DEFAULT
CHARACTER. ONCE YOU SPECIFY "REPEAT",
THE PROGRAM REPEATS THE OPERATION EACH
TIME YOU SEND "X-OFF'". YOU MAY CHANGE
THE CHARACTER BY TYPING A NEW CHARACTER
BEFORE YOUR "X-OFF". YOU END THE REPEAT
OPERATION BY -TYPING "STOP"™ (OR "END'--IF
YOU WANT ALSO TO END THE OL.TEST PROGRAM).

R Mg Rk

*—#_% SLIDE COMMAND *-%—%

THIS COMMAND CAUSES A.SLIDE ACTION
TO BE PERFORMED AT THE SEIZED DISPLAY
STATION.
EXAMPLES: "SLIDE ON"
"SLIDE 40"
"SLIDE OFF"
A SHORT FORM, "SLD", MAY BE USED.

ok koh_kok

Figure 8.3 (Continued)

199

200

*-%-% PAUSE COMMAND *-%—%

THIS COMMAND ALLOWS YOU TO SPECIFY A TIME
INTERVAL FOR THE OLTEST TO PAUSE, AWAITING
AN INTERRUPT FROM THE SEIZED STATION.
AFTER YOU ENTER "'PAUSE", TYPE SOMETHING
AT THE DISPLAY AND HIT INTERRUPT. (YOU
MAY ALSO LIGHTPEN THE STARTING LOGATION
OF THE INFORMATION TO BE READ, IF YOU
LIKE.) OLTEST WILL REPORT THE RESULTS
OF ITS READ OPERATION ON THE TELETYPE.

EXAMPLES: “PAUSE 10"

"PAUSE"

THE FIRST EXAMPLE CAUSES OLTEST TO WAIT
10 SEGCONDS FOR AN INTERRUPT FROM THE
SEIZED DISPLAY; THE SECOND EXAMPLE CAUSES
IT TO WAIT INDEFINITELY FOR THE INTERRUPT
(S0 DOES "PAUSE 0").

Rk k_ h_k_ %

*-k—% READ COMMAND #—_%-i

TRIS COMMAND CAUSES OLTEST TO READ
FROM THE SEIZED DISPLAY. TYPIGALLY,
YOU WILL ENTER "READ" HERE; GO TO THE
DISPLAY--ENTERING A MESSAGE THERE
(WITH AN INTERRUPT); AND THEN RETURN
TO THE TELETYPE TO SEE OLTEST'S REPORT
OF THE NUMBER OF CHARACTERS READ, -

hoko ko k%

Figure 8.3 (Continued)

%_%_% READLP COMMAND %-_%

THIS COMMAND CAUSES OLTEST TO READ

THE LOCATION COORDINATES AND CHARACTER
YOU LIGHTPEN AT THRE SEIZED DISPLAY.
TYPICALLY, YOU WILL ENTER ''READLP" HERE;
GO TO THE DISPLAY--LIGHTPENNING THERE

(AND HITTING INTERRUPT): AND RETURN TO THER
TELETYPE TO SEE OLTEST'S REPORT. '

A SHORT FORM, "RLP", IS A1.S0 PERMITTED.

ok Rk

. #ek-% LCAR COMMAND #-%_%

THIS COMMAND IS USED TO POSITION THE CURSOR
OF A SEIZED STATION TO A SPECIFIED ROW
AND COLUMN ON THE SCREEN.
EXAMPLE: ''LCAR(10,25)"
(THE CURSOR WILL BE POSITIONED TO ROW 10,
COLUMN 25.) '
ALWAYS SPECIFY 2 DIGITS FOR EACH COORDINATE,
USING A LEADING ZERD IF NEEDED.
EXAMPLE: "LCAR{(05,01)"

oo koo ok

ENTER COMMAND OR "HELP"
o

Figure 8.3 (Continued)

201

202

OUTPUT FOR THE LOG COMMAND

This séction shows and discusses some examples of actual output
given by the LOG command. While in all cases the examples are faithful
typewritten reproductions of real T=letype sessions, the eqﬁipment errors
illustraté& were contrived--e.g., by disconnecting the equipﬁent COmpo-
nent involved. |

Figure 8.4 illustrates several ideas mentioned earlier in the
chapter. The figure illustrates the case where the CC-7012 channel
adapter is not operational at the time the CHAT region is initiated. In
this case, the initialization routine MIOSINIT has not successfully
finished its work and, thﬁs, has not yat transferred cont;ol to MIOS.

As the figure indicates, the Teletype operator is able to dial
into CHAT and to invoke OLTEST-—-since MIWX is active. The output for
the first LOG command reveals to the operator the existence of the in-
complete~initialization status. The operator then enters the $-command
(to MTWX), $E72, asking that MIOS be invoked to enablé the equipﬁent.
{OLTEST does not see this command.) The operator then enters the second
LOG comaand of the session and, this time, gets a full report on the
nature of the problem, since MIOS—-with all its hard error record-keep-
ing capability-—has done its job. MIOSINIT is no longer in the system,
having transferred contfol to MIOS at $E72 time; Nétice how OtTEST gives
LOG output in descriptive fashion~-converting all-those codes received,
via its use of ERRINFO, into more réadable language.

The error logout shows, via the gtation identifier (NA) and type of
I/0. that a multiplexer operation has failed. Ready-for-attention is

the first channel program tried by MIOS when it iniﬁially gains control.

203

MTWX HERE...ENTER A COMMAND
?$XEQ OLTEST
COMMAND EXECUTED

==> ON-LINE TEST: DATE: 08/04/71 TIME: 19:23:10 <==
ENTER COMMAND OR "HELP"

7L0G

NO "HARD" I/0 ERRORS RECORDED SINCE LAST LOG REQUEST

LAST I/0 STARTED: (HARDERR IN MIOSINIT; AWAITING DIRECTION)
WHEN INSPECTED, 1/0 wASs NOT IN PROGRESS

7E72

COMMAND EXECUTED

7L0G

==> ERROR LOG ON 08/04/71 AT 19:24:10 <==

ERR SYMPTOM--- STATION BA TYPE I/0 =READY FOR ATTENTION
CCW= 0, SENSE=IR

SAME

SAME
SAME

SAME
SAME
SAME

-~ O B L0 R

7L0G

NO "HARD" I/0 ERRORS RECORDED SINCE LAST LOG REQUEST
LAST I/0 STARTED: READY FOR ATTENTION

WHEN INSPECTED, I/0 WAS NOT IN PROGREsS
7$E72

COMMAND EXECUTED

7L0G

==> ERROR LOG ON 08/04/71 AT 19:25:06 <e=
ERR SYMPTOM--- STATION NA TYPE I/0 =GET SIS
CCW= 0,SENSE=IR

SAME

SAME

SAME

SAME

SAME

SAME

~ A Bl D

Figure 8.4 CC-7012 Outage at CH'T-Initiation Time

204

The first errof recorded shows that the first (zero-origin indexing)
Channel Control Word (CCW) failed with Intervention Required (IR) de-
tected in the sense-byte. The first CCW in this particular channel pro-
gram is a coomand to the CCf7012. Intervention Required ending status
means the CC-7012 1is not "powered-up" correctly. The same error has
persisted through attempts 2-7 as indicated.

The output for the next LOG command illusctrates how the previous
1.0G command had cleared the hard error record--only the current state
of 1/0 activity is reported, The final LOG output shows continued
persistence of the problem. Get-SIS (Station Interrupt Status) is the
standard channel program executed by MIOS in response to a $E72 request--
usually when the CC-72 requiyes enabling, it also has a station-interrupt
pending.

Figure 8.5 11lustrates some additional aspects of OLTEST. For this
example, we deliberately turnea off the power at a diéplay station to
simulate station outage. Notice the OLTEST syntax- and coﬁtext—error
messages to the operator for SEIZE 7 and SEND 'X‘,.respectively.

The response of OLTEST to the SEND 'HELLO' request is a consequence
of its (1) using the DISPLAY procedure {of Chapter 3) to send HELLO to
the display station and (2) being informed by the Monitor via ABNORM-
condition signalling (also Chapter 3) that the operation failed. The"
1/0 ERROR report is sent by thé invoked on-uni; of OLTEST to alert the
Teletype operator immediatzly. |

The subsequent LOG command output shows that the channel program
for DISPLAY (to Station 06) failed persistently on the eighth (zero-
origin, again) CCW With-gime~gpt {T0) indicated in the Sense—ﬁyte. This

partiﬁular CCW is the first Read command in the channel program that

205

?8ET2T 06

DOME

?SEIZE 7

k% TWO CHARACTER NUMERIC STATION ID REQUIRED -~ REENTER **

ENTER COMMAND OR “HELP"

7SEIZE 06

DONE

7SEND 'HELLO'

*% 1/0 ERROR ON STATION/LINE

ENTER COMMAND OR '""HELP"

?7LOG

==> ERROR LOG ON 08/04/71 AT 19:26:23 <==

ERR SYMPTOM~—— STATION 06 TYPE I/0 =QUTPUT ALPHANUMERIC

CCW= 7 ,5ENSE=TO

SAME

SAME

SAME

SAME

SAME

SAME

?RELEASE

DONE

7SEND *X'

*% INVALID REQUEST —-- RO C€C-3C _TATION HAS BEEN
SEIZED BY USE OF THE "SEIZE" COMMAND, #**

ENTER COMMAND OR "HELP"

7L0G

NO "HARD" I/0 ERRORS RECORDED SINCE LAST LOG REQUEST

LAST I/0 STARTED: READY FOR ATTENTION

WHEN INSPECTED, I/0 WAS NOT IN PROGRESS

7$SHUTDOWN

wOh LB LD D

Figure 8.5 Display Station Outage

206

requires a display station response. Several errors could cause the
symptom; but the fact‘that an earlier Kead in the same channel program--
requiring a CC-72 respunse--succeeded, narrows the problem to the display-
side éf'the multiplexer. Observation of the CRT-screen at the time of
failure, to detect whether a Write—-preceding the failing Read--also sﬁc—
ceeded, will furfher narrow the problem.

As a final example, Figure 8.6 shows the normal state of the CHAT
System. The first LOG output reveals the usual state of 1/0: MIOS is
awaiting some event te occur and the link te the displays is idle and
ready for either-direction use, The second LOG cutput is a rare occur-
rence: although CHAT does a great deal of 1/0, the fraction of time used
is very small apd in practice an I/0-in-progress message is difficult to
capture.

Thelfinal output in the figure alsc concludes the chapter,

207

7L0G
NO "HARD" I/0 ERRORS RECORDED SINCE LAST LOG REQUEST

LAST 1/0 STARTED: READY FOR ATTENTION

WHEN INSPECTED, I/0 WAS NOT IN PROGRESS

210G

NO “HARD" 1/0 ERRORS RECORDED SINCE LAST LOG REQUEST
LAST 1/0 STARTED: OUTPUT ALPHANUMERIC

WHEN INSPECTED, 1/0 WAS IN PROGRESS

2END

*% OLTEST ENDED **

Figure 8.6 Normal State of the CHAT System

CHAPTER 9: TFACTS AND FIGURES

This chapter covers two important points about the CHAT Monitor:
how to change it and how big it is. The first point is particularly
important for growth requirements.

From the outset of the design of the Monitor, it was anticipated
that the CHAT System would grow in number of display stations attached
to the remote CC-72 multiplexer. Every effort was made to free the
CHAT Monitor of design sensitivities to the number of displays currently
in the cluster--as Chapter 5 described in some detail. The next sec-
tion describes the simple-to-use facilities provided to re-parameterize
the Monitor when there is a change made in the display configuration.

The Monitor can be modified in other ways not described here.

For example, it may be desirable at some future time to modify the
time-slicing parameters which are located in Monitor control storage.
This type of change, however, is more the interest and concern of the

system programmer inheriting CHAT responsibility; and thus such matters

are left to the code listing. Other matters such as system generation
and library maintenance are described by Blair in his companion thesis

[B3] on CHAT.

209

CHAT PARAMETERS AND HOW TO CHANGE THEM

Table J.1 lists a number of CHAT parameters that were designed
to be changed easily without affecting the logic of the CHAT Monitor.
The Monitor <ode uses these parameters as implied--without assuming
a fixed value for any of them.

NIZ:cc3fs is che most important of tham since it defines the number
of display stations to be supported. As shown, its current value is
6. To change it, simply replace the current equate defined in the
macro definition, GENPARM. GENPARM is used widely in the CHAT Monitor
(in almost every component) to generate the shown names as vell as others
in common use.

If the number of displays is to be increased, aa SCB must be de-
fined for each new display to be added. A macro by the same name is
defined for this purpose. It should be coded as follows:

label SCB NXT, ID=nn,CPSUCB=$x,ETX=etx

A label is rcquired and the currently used labeling convention
is recommended. The NXT operand should be used to generate any new
SCB. The ID operand 5p3cﬁfies the address identifier widely mentioned
throughout this thesis; ié corresponds to the identifier of the J-connec-
tion on the back of the CC-72 where the new display is attached. The
CPSUCBE operand specifies the CHAT-port to be used in the conduit as
described in Chapter 7. The ETX operand specifies the hexadecimal code
for the ETX control character in use at the display. This operand may
be omitted and @3 will be assumed. {(One old display used 13.) The CPSUCB
operand may also be omitted in which case #P is assumed.

The current SCBS are also defined by macro and are located in the

Name
NUMCC 3¢S

MAXFAIL

CMAXLEN
RMAXLEN

MAXDATAL

Current Value

6

7

20
90

80

Table 9.1 Parameters in GENPARM

210

211

ROOTCAI source deck which includes the COMN macro defining the Monitor
control storage and the TWXSCB (which also uses a variant of this macro}.
Place the new SCRs in their logical order with respect to the currcut

ones. The TWXSCB must be the last SCB in the deck. (Note: A version

of the SCB macro exists for generating the SCB DSECT--simply code "SCB D.')
The other parameters in Table 9.1 probably need never be changed.
MAXFAIL specifies the paximum I1/0 failure threshold while the remaining
parameters determine the Teletype buffering constraints in MIWX (see
Chapter 6). The currently defined values appear quite satisfactory.
(Aside: Actually, the Teletype support has an error threshold different
from MAXFAIL, which MIOS uses. In fact, two are parameterized: One is
defined for use by the Teletype appendages; the other, by MIWX. This is
for inner- aud outer-error loop ccntrel and the author does not recommend

changing them. They are MAXERR and MAXAPERR, assembled only in MTWX.)

212

STORAGE REQUIREMENTS

Table 9.2 lists the true core usage by ﬁhe varilous components
jointly referred to as CHAT Monitor support in this thesis (with the
Acceptance Test "glebule" thrown in for good measure). All except OLIEST
are coded in assembler language. |

Table 9.3 lists the CHAT reglon requirements for residence of the
CHAT Monitor load moduleé. Discrepancies are due to 08/360's 2K-block

allocation.

213

Initlalization Code

MIDF 108
MSSINIT 502
MIOSINIT 1603
MIWXINIT 252

Resident Code

MSS 2072
MI0sl 6024
MTIWX 2632
MTOC [B3] 1024
LFPCSECT 2568
Conduit 2176

Monitor Control Storage

COMN 2746
SCBs 128.N
TWXSCB2 328

Resident with Subtask Modules

IFNTRYS 176

IFNTRYAS [B3] 312

TFNTWXS 112

OLNTRYS 696

Others

OLTEST (PL/I} 56,200

CHAT svCs [B3) See [B3]

Acceptance Test 5656 {(Not in CHAT)

lincludes the display buffer
2Includes the Teletype buffers

Table 9.2 Storage Usage

_ MSS+MIOS+MIWX+IFCSECT+MTOC
Control Storage (N < 8)
Subpool @

Subpool 252
Abend Dump (Disk only)

Total

Table 9.3 CHAT Monitor Load Module in the Regiomn

16K

4K
2K

2K

26K

214

[A1]
[B1]
[BRZ]
[B3]
[B4]
[c1]
fc2]

(c3]

[ca]

[c5]
(cél

[c7]

REFERENCES

Anderson, R. H., and Farber, D. J. Extensions to the PL/I
Language for Interactive Computer Graphics. The Rand
Corporation, RM-6028-ARPA, Santa Monica. (January 1970).

Balzer, R. M. Ports——A Method for Dynamic Interprogram Communi-
cation and Job Control. The Rand Corporation, R-605-ARPA,
Santa Monica (August 1971)

Beyer, William F., III, Black, Sylvia S., Hamiin, Griffith A., Jr.,
Mailliard, Margaret A., and Wright William V. Pikaplot—-
Laboratory Project Final Report for Computer Science 101.
University of North Carolina at Chapel Hill (May 1969).

Blair, William H. Master's Thesis. University of North
Carolina at Chapel Hill (In preparation).

Brownlee, Edward H., Jr. PAMELA: An Interactive Assembler
System for the IBM/360 Computer. Master's Thesis. University of
North Carolina at Chapel Hill, 1970.

Carwody, S., Gross, W., Nelson, T. H., Rice, D., and van Dam, A.

A Hypertext Bditing System for the System/360. Pertinent Concepts
in Computer Graphics, Faiman, M, and Nievergelt, J., (Eds.).
University of Illinois Press, Urbama, 1969, 291-330,

Computer Communications, Incorporated. .CC-BD Communications
Station Referemce Manual. CCI, Inglewcod, California, 1968.

Computer Communications, Incorporated. C(CC-30 Imnstallation
Procedures Guide. - CCI, Inglewood, Califormia, 1968.

Computer Communications, Incorporated. CC-7012/CC-72/CC-30

Communications System Programming Manual. CCI, Inglewcod,
California, 1968.

Computer Communications, Incorporated. (CC-7012 Channel Adapter
Reference Manual, CCI, Inglewood, California, 1968.

Computer Communications, Incorporated. (CC-72 Multiplexer

Reference Manual, CCI, Inglewood, California, 1968.

Conway, Melvin E. Design of a Separable Transition~Diagram
Compiler. Communications of the Association for Computing
Machinery 6,7 (July 1963), 396-408.

[p1].

[D2]

[p3]

[F1]

[G1]

(G2]

[11]
[12]
[13]
{14}
[15]
[16]
[17]
[18]
[19]

[I10]

216

Denning, P. J, Third Generation Computer Systems, Computing
Surveys 3,4 (December 1971), 175-216.

Dennis, J. B., and Van Horn, E. C. Programming Semantics for
Multiprogrammed Computations, Communications of the Association
for Computing Machinery 9, 3 (March 1966), 143-155,

Dijkstra, E. W. The Structure of the "THE" Multiprogramming
System, Communications of the Association for Computing
Machinery 11, 5 (May 1968), 341-346.

Freeman, D. N., and Peanson; R. R, Efficiency vs, Responsiveness
in a Multiple-Services Computer Facility. Proceedings of the
Assoclation for Computing Machinery 23rd Mational Conference,
Association for Computing Machinery, New York, 1968, 25-34B,

Grant, Charles A. Command Communication between Processes,
Ph.D. Dissertation., TUniversity of California, RBerkeley, 1971,

Gwynn, J. W, CRT Termlnal Access from High-Level lLauguages,
1972 Society for Information Displays International Symposium
Digest of Technical Papers, Volume 3, Society for Information
Displays, 1972, &46-47,

IBM Corporation. Conversational Programming System (CPS)
Terminal User's Manual. IBM Form GH20-0758.

IBM Corporation. IBM System/360 Operating System: Basic
Telecommunications Access Method., IBM Form GC30-2004,

IBM Corporation., IBM System/360 Operating System: Concepts
and Facilities. IBM Form C28-6535.

_ IBM Corporation., IBM System/360 Operating System: Supervisor

and Data Management Macro Instructions. IBM Form GC28-6647.

IBM Corporation, IBM System/360 Operating System: Supervisor and
Data Management Services, IBM Form GC2B-6646,

IBM Corporatiom. IBM System/360 Qgerating System: System Control
Blocks. IBM Form GC28-6628,

IRM Corﬁoration. IBM System/360 Operating System. System
Programmer's Guide., IBM Form GC28-6550,

IBM Corporation. Introduction to the Real—Time Monitor (RTM).
IBM Form GH20-0824

IBM Corporation. System/360 Principles of Operation., IBM Form
A22-6821, : .

IBM Corporation. IBM System/360, PL/I Reference Manual. IBM
Form GC28-8201, .

(L1}

(M1]

[M2]

(01]

[s1}

[s2}

[T1}

w1}

w2}

[w3}

(w4}

217

Lynch, W. C. Operating System Performance, Communications_of the
Associatrion for Computing Machinery 15, 7 (July 1972), 579-585.

Mudge, J. Craig. npuman Factors in the Design of a Computer-
assisted Instruction Syatem. Ph.D, Dissertation. University
of North Carolina at Chapel Hill, 1973.

Mudge, J, Craig. On Writing Reentrant Programs in PL/I. SACM
Newsletter--: Publication of the University of North Carolina
Student Chapter of the sssociation of Computing Machinery, Chapel
Hill (November 1971), 2-3,

Oliver, Alfred, A Measurement of the Effectiveness of an inter-
active Displas System in Teaching Numerical Analysis, Ph.D.
Dissertation. University of North Carolina at Chapel Hill, 1969,

Scherr, A, L., and Larkin, D. C. Time~sharing for 0S, AFIPS
Conference Proceedings, 317, 1970 Fall Joint Computer Conference.
American Federation of Information Processing Societies Press,
Montvale, Ney Jersey, 1970, 113-117.

Sneeringer, James. ilore on Writing Reentrant Programs in PL/I.
SACM Newsle:ter--a Publication of the University of North Carolina
Student Chapter of the Association of Cowputing Machinery, Chapel
Hill (December 1971), 5-7,

Triangle Universities Computation Center. CPS Terminal User'a
Manual, TUCC Memorandum No., LS-55. January 8, 1969,

Wait, Ty. Conversion of the Hypertext Editing System from the
IBM 2250 Graphics Terminal to the CC-30 Alphanumeric Terminal.
Master's Thesis., University of North Carolina at Chapel Hill,
1572,

Weiler, P. W., Kepp, R. S., and Dorman, R. G. A Real-Time Operat-
ing System for Manmed Spaceflight. IEEE Transactions on Computers
C-19, 5 (May 1970), 388-398,

Wilkes, M. V. Time Sharing Computer Systems. American
Elsevier, New York, 1968,

Witt, L. I. The Functional Structure of 0S8/360, Part II, Job and
Task Management. IBM System Journal 5,1 (1966), 12-29,

APPENDIX A

List of Acronyms
This @ppendix lists some of the more obscure acronyms that appear
in the text.

BTAM Basic Telecommunications Access Method

CCl Computer Communications, Inc.
CPs Conversational Programming System
cvT Communication Vector Table

DCB Data Control Block

ECB Event Control Block

&XCP Execute Channel Program

HASP Houston Automatic Spooling Program
HIO Halt 1/0

INT Interrupt

108 Input/Output Block

JCL Job Control Language

MIOS Monitor I/0 Scheduler for displays
MSS Monitor .ubtask Scheduler

MTOC Monitor Table of Contents

MTWY. “ionitor Teletype control task
OLTEST On-Line Test

PSW Program 3Status Word

RTM Real-Time Mouitor

RTOS

SAS

SCB

SIS

§S

STCBE

TCB

TSO

TUCC

UCB

XCTL

Real-Time Operating System

Station Acknowledgment Status

Station Control Blosk

Station laterrupt Status

Short Status

Subtask TCB Element

Task Control Block

Time-Sharing Option

Triangle Universities Computation Center
Unit Control Block

Transfer Control

C

