ED 082 487

AUTHOR
I'TITLE

INSTITUTION
SPONS AGENCY
REPORT NO

PUB DATE
NGTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME
EM 011 456

Mudge, J. C.

Human Factors in the Design of a Computer-Assisted
Instruction System. Technical Progress Report.

North Carolina Univ., Chapel Hill. Dept. of Computer
Science.

National Science Foundation, Washington, D.C.
UNC-TPR-CAI~-7

Jun 73

324p.; Thesis submitted to the Department of Computer
Science, University of North Carolina

MF-3$0.65 HC-$13.16

*Computer Assisted Instruction; Computer Proqrams;

Doctoral Theses; *Human Engineering; Interaction;

%*Man Machine Systems; Programers; Programing

languages; *Systems Development; Technical Reports
CAI; DIAL; DIAL 2; *Display Based Interactive Author
Language; Sieve; Translator Writing System; THS

A research project built an author-controlled

computer—assisted instruction (CAI) system to study ease-of-use
factors in student-system, author-system, and programer-system

interfaces.

Interfaces were designed and observed in use and

systematically revised. Development of course material by authors,
use by students, and administrative tasks were integrated into one
system whose nucleus was a display-based interactive author language
(DIAL). The design permitted systematic language impleasentation and
easy language modificaiior and used a translator writing system (TWS)
to generate compilers. Authoring by teachers required simplicity of
the language and its operational environment. A measared high level
of user acceptance proved the design to be sound, and a significant
reduction in authoring time was achieved. DIAL was observed to be a
superior language, for machine intrusion was low and other syntactic
improvements were possible. An answer—evaluating technique, called
the sieve, was devised aud a syntactically improved DIAL/Z laaguage
derived. The TWS helped to implement DIAL and to remediate language
weaknesses. Although the THWS was not available for the command
lanquage of the operational environment, the human-factors debugging
period revealed the desirability of such. (Author/PB)

N
b
3.

FILMED FROM BEST AVAILABLE COPY

University of North Carolina
at Chapel Hill

Department of Computer Science

ED 082487

HUMAN FACTORS IN THE DES
'ESTGN OF A
COMPUTER~ASSISTED INSTRUCTION
SYSTEM

J.C. Mudge

June 1873

Technical Progress Report CAI-7
) to the
National Science Foundation

under Grant GJ-755

U.S. DEPARTMENTOF HEALTH,
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HaS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OF FICIAL NATIONAL INSTITUTE of
EDUCATION POSITION OR POLICY

DEPARTMENT OF COMPUTER SCIENCE

University of North Carolina at Chapel Hill

HUMAN FACTORS IN THE DESIGN OF A
COMPUTER~ASSISTED INSTRUCTION
SYSTEM

Jonathon Craig Mudge

A Dissertation submitted to the faculty of
the University of North Carolina at Chapel
Hill in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy
in the Department of Computer Science.

Chapel Hill

1973

Approved by:

%@FM@

AdVanjvm\ C‘ZV@\ w‘/ﬁ__

Reader

Gyula M

Reader\J

JONATHON CRAIG MUDGE. Human Factors in the Design
of a Computer-Assisted Instruction System (Under
the direction of DR. FREDERICK P. BROOKS, JR.)

This research is an exploratory case study of ease-
of-use factors in man-computer interfaces.

The approach has been to build and evaluate a real
man-machine system, giving special attention to the form
of all man-machine and machine-man communications. Author-
controlled computer~assisted instruction was selected.

Such a system has three principal interfaces: student-
system, author-system, and computer programmer-system.

The method was to design, build a large subset of the
design, 11 '.e systematic observations of the three inter-
faces in use, and then iterate on the design and on the
observations. The system has been in regular class use
for a year.

Interactive development of course material by authors,
execution of instructional programs by students, and the
requisite administrative tasks are integrated into a
single production-oriented system. The nucleus of the
system is a new display-based interactive author language,
DIAL. The design demands a language implementation which
1s systematic and which permits easy language modification.
A translator writing system, based extensively on McKeeman's,
assists computer programmers in generating compilers for

new versions of the language.

Two of the design assumptions (that the course author
is always an experienced teacher and that he does his own
programming in- DIAL, without an intermediary CAl language
programmer) are major departures from most CAI authoring
systems. Professorial-level authdring imposes stringent
requirements on the ease-of-use and simplicity of the
language and the operational environment in which 1t is
embedded.

A measured high level of user acceptance proved tle
soundness of the design and illuminated the relatively few
mistakes made. A factor-of-five improvement in authoring
time over data published for other systems was observed.
Several improvements in DIAL over existing CAI languages
were observed. The underlying machine intrudes much less
than in existing languages, and there are other syntactic
improvements. The provision in DIAL of a pattern matching
function allowed a very general answer-evaluating techni-
que, called the sieve, ta be devised. Analysis of author
use of DIAL has derived DIAL/2, which is radically differ-
ent syntactically but only slightly enriched functionally.

The translator writing system proved very useful in
progressive implementation of DIAL and in the remediation
of language weaknesses &s they were discovered. Although
a translator writing system was not available for the
command ilanguage of the operational environment, the human-
factors debugging period (necessary for all user-oriented

systems) revealed the desirability of such.

To my parents

ACKNOWLEDGMENTS

I am greatly indebted to Professor I'rederick P.

Brooks, Jr., for his insight, for many valuable suggestions,

and for his guidance throughout this research. For his
tutorials on machine design and for his authoring use of
my system, I am also most grateful.

I thank 0. Jack Barrier for his help in the long days
and nights of the CAI System's first use in production and
for subsequently assuming rezponsibility for the continued
operation and improvement of the system. I also thank
Gary D. Schultz for his ultra-reliable CHAT System,
William H. Blair for the support provided by his deep
systems programming knowledge, and the proctors who manned
the system during the Fall and Spring class use.

Professor Peter Calingaert's encouragement and
interest are gratefully acknowledged.

My wife, Anne, provided a great deal of encouragement
and understanding.

I am grateful to the National Science Foundation for
partial support under NSF Grant Number GJ-755 and for the
hardware facility, provided under the University Science

Development Program.

e
e
e

CONTENTS

Chapter
1. INTRODUCTION
1.1 User-orientation in system design
1.2 An approach to research in comp-iter-
assisted instruction (CAI)
1.3 The UNC CAI Project
1.4 Language design in computer science
2. EXISTING CAI SYSTEMS AND LANGUAGES

N RN RO
L - L]
£ w N

THE

THE

FEFFEFFFEFEFE
WO F wN

The scope of the chapter

Coursewriter systems -
Other languages

Discussion

DESIGN PHILOSOPHY UNDERLYING DIAL

Motivation

A priori design decisions

Objectives for the language per se
Objectives for the interactive programming
system

Why not adapt a general purpose program-—
ming language?

DIAL LANGUAGE

Introduction

Writing a simple instructional program
Default branching in a program
Classifying recognized responses
Expressiona and assignment statements
The IF-statement for branching
Non-exact matching

The sieve

The naming-statement

o
[Ge]
0]

}_J

0 3 e

11

11
1y
23
32

37

37
39
43

3
147
53

53
55
B4
67
68
70
7h
78
81

4.10 Repetition constructs 82
k.11 Cathode-ray tube screen formatting 84
4.12 Light pen usage 89
4.13 The RESUME-statement 92
k.14t Subroutines 92
4.15 Input-output synchronization 95
4L.16 DIAL specifications 99
5. THE OPERATIONAL ENVIRONMENT 12y

5.1 The host computer system 124
5.2 The Chapel Hill Alphanumeric Terminal 128

(CHAT) System -
5.3 The student/author work station 130
5.4 System overview 134
5.5 Instructional programming in DIAL -

author use of the system 138
5.6 The execution of an instructional

program - student use of the system 150
5.7 Proctor facilities 154

6. MODIFYING AND EXTENDING DIAL - THE TRANSLATOR

WRITING SYSTEM 157
6.1 Introduction 157
6.2 The compiler and the CAI System 159
6.3 The CAI translator writing system 162
6.4 Steps in using the CAI translator
writing system 171
6.5 The class of grammars acceptable to
the translator writing system 173
7. EXPERIMENTAL METHOD AND RESULTS 175
7.1 Introduction 175
7.2 Collection of student use data 176
7.3 Analysis of student use data 185
7.4 Author use data 191

8. DISCUSSION
8.1 Introduction
8.2 The student-system interface
8.3 The author-system interface
8.4 The computer programmer - system interface
8.5 Observations about human factors
8.6 The cost of designing and implementing
the system
8.7 Is 1t widely upplicable?
9. SUGGESTIONS FOR FURTHER WORK
9.1 Introduction
9.2 DIAL/2
9.3 Author-defined cc-mnands for student use
9.4 Debugging aids for DIAL programming
9.5 Answer processing subsystems
9.6 A man-machine interface for unrecognized
answers
9.7 More service programs
9.8 Color cathode-ray tube terminals
APPENDIX
A Questionnaire A and summaries of student
responses
B Questionnaire B.and summaries of student
responses
C Posttest
D Program listing of the CAI System

(bound separately)

SELECTED BIBLIOGRAPHY

194

194
195
201
237
240

24k
247

251
252
259

263
264
260
268
270

273

280
304

306

LIST OF FIGURES

Figure Page

A student/author work :tation showing
cathode-ray tube, keyboard, light pen,
slide projector and screen Frontispiece

4.1 The metalanguage used to define the
syntax of DIAL 58

4.2 A DIAL program segment showing a sieve
for answer evaluation of the expected

response SAM:DO X=1 TO 50; 79
4.3 The slide struch used in Fzample 4.6 91
4.4 An execution of Example 4.6 91
4.5 A DIAL machine 101
4.6 The "onion structure" implementation of the

CATI System 103
5.1 The CHAT System hardware configuration 129
5.2 The CHAT Monitor Table of Contents (MTOC) 131

display
5.3 An overall flowchart of the CAI System 135

5.4 The cathode-ray tube screen format in
author mode . 141

5.5 The summary sheet of commands for work
station use 1y7

5.5 The cathode-ray tube and slide displays
during a typical student session 151

5.7 The logic for setting the RECOVNEEDED switch 153

vii

Figure

6.

6.

1

2

The two parts of the translator Writing system

The invocation of COMPILER by the controlling
routine AUTHOR

The main compilation loop in COMPILER showing
the relationship between ANALYZE, SCAN and
CODEGEN

A lexical flowgraph for an early version of
DIAL

The CODEGEN sections corresponding to three
productions in a recent version of DIAL

A typical sequence of author sessions

A change being made to a statement

Page

160

161

165

170

172
207

210

viii

CHAPTER 1

INTRODUCTION

1.2 User-orientation in system design

1.1.1 Users, by and large, do not feel that computer
systems are yet accommodatingly matched to their human
users. People are flexible and can make remarkable
adaptations to machine inflexibilities. Machine designers
have always exploited that flexibility, sometimes
ruthlessly. However, the more a user is forced io adapt,
the less productive he will be. Thus, just as aircraft-
cockpit designers have done, computer systea designers

are turning to the study of ease-of-use factors in the

man-machine interface.

1.1.2 The approach in this thesis research has be=n to
design and evaluate a real man-machine system. Author-
controlled computer-assisted instruction was selected for
three reasons.
(1) The man-~machine system required was small enough
for one person to design a total, production-

oriented, hence real, system.

(2) The resulting syst 1 was potentially useful for
instruction at the University.
(3) The closest possible user feedback obtains;

the tool builders and users are one.

The method of investigation was to design, build a
large subset of the design, make systematic observations
of users, and then iterate on the design and on the ob-
servations.

The nucleus of the design is a display-based inter-
active author language, DIAL. Interactive development of
course matcrial by authors, execution of instructional
programs by students, and the requisite administrative
tasks are integrated into a single system. The uesign
demands a language implementation which is systematic
and which permits easy language modification. A translator
writing system, based extensively on McKeeman's, assists
computer programmers in generating compilers for new
versions of the language.

The evaluation of the design focusses on the three
principal interfaces: student-system, author-system, and
computer programmer-system.

Two of the design assumptions (that the course author
is always an experienced teacher and that he does his own

programming in DIAL, without an intermediary CAI language

programmer) are major departures from most CAT authoring
systems. Professorial-level authoring imposes stringent
requirements on the ease-of-use and simplicity of the
language and the operational environment in which it is
embedded. Becavse it has been forced to adapt morc to the
user than most CAI systems, this system is probably a better

tool for studying human factors than most.

1.1.3 The scope of the research is the syntactic as
opposed to the semrntic elements of a man-machine systemn.
That is, I am concerned with the form of communication
between a system and its user., as contrasted with its
meaning. The more obvious syntactic elements include
programming language syntax and command-language syntax.
I also view the following as essentially syntactic in the
sense of pertaining to form of communication: the physical
work—étation design and its operating procedures; the
removal of redundant operations in order to minimize

user action; and the invention of general purpose

primitives to subsume several special operations.

1.1.4 The following is a selection of the results of this

research.

A measured high level of user acceptance proved the

soundness of the design and illuminated the relatively few

4

mistakes made. A factor-of-five improvement in authoring
time over data published for other systems was observed.

Several improvements in DIAL over existing CAI
languages were observed: there is much less intrusicn of
the underlying machine; some general, powerful, and easily
used mechanisms have been borrowed from general program-
ming languages; and a consistent syntax .mbodies its func-
tional facilities.

Analysis of author use of DIAL has derived DIAL/2,
which is radically different syntactically but only
slightly enriched functionally. This contrasts with my
early prediction that DIAL would be deficient semantically,
not syntactically.

The translator writing system proved very useful in
progressive implementation of DIAL and ir the remediation
of language weaknesses as they were discovered. It is
expected to be very useful in implementing DIAL/2.

Although a translator writing system was not avail-
able for the command language of the operational environ-
ment, the human-factors debugging period (inherent in user-
oriented systems) revealed the desirability of such.

The provision in DIAL of a pattern matching func-
tion allowed a very general answer evaluating technique,

called the sieve, to be devised.

1.2 An approach to research in compuler-asuistoed

instruction (CAI)

The last decade has seen computer-assisted instruc-
tion go through two stages, an experience not uncommon
in several computer application areas. In the first
stage, potential users were led to expect great benefits
from the use of computers in the instructional process.
The rapid increase in the availability of time-sharing
systems added support to the arguments of the CAI pro-
ponents. The second stage has hbeen the realization that
the success of CAI has fallen far short of the claims
made for it, and that a reassessment of approaches should
be made.

The approach taken in this thesis postulates that
real measurable progress can be made by restricting the
instructional subjec*t matter to subjects which are highly
structured. Elementary computer programming has been
chosen from the class of structured subjects for two
reasons: (1) researchers will be professionally familiar
with the subject'matter and its pedagogy, and (2) the
research results can be directly applied and measured
in an existing course at the University.

It must be emphasized that this project is con-

cerned with computer science aspects of CAI rather than

purely educational aspects. Examples of efforts in this
latter category are those by Stolurow [1968], who i: con-
cerned with the psyéhological foundations of tedac...~ 0
learning, and by Bunderson [1970], whose major receurcih
effort is on the design of instructional programs. More-
over, therz are computer science areas which have been ex-
cluded from the scope of this project, e.g., CAI hardware
research (being attacked on a large scale by the PLATO
project [Bitzer and Skaperdas, 19701), andA’naturql'
language question-answering research. Thig latter area i~
typical of many research areas which have long-term appil-
cations in CAI, and relate to the system designed in this
project insofar as its flexibility allows new developments
to be incorporated as they become available.

Two papers which do well in capturing the current
status of CAI are '[Bundy, 1968] and [Alpert and Bitzer,
19701].

To be a valid tool, both for the University and for a
study of human factors, the system designed has to be
total and production-oriented. To be total, it has to
serve all classes of users associated with the CAI environ-
ment: students, authors, proctors, and instructors in

charge of CAIT classes.l The implications of a production,

1In this thesis, this operational environment is
collectively referred to as the CAI System, or, for short,

the sttem.

rather than an experimental, system permecatce both desipn
and implementation. The production implications include:
(1) concurrent multiple-author and multiple-student
uses
(2) complete tr:atment of abnormal termination
-(ABEND) situations;
(3) comprehensive supporting programs for
administrative jobs;
(4) procedures for recovery after system failure;
(5) sefficient programming of the implementation;

(6) operational procedures for the CAI Center.

1.3 The UNC CAI Project

The current computer-assisted instruction work at
the University falls into several project areas, which
may roughly be classified into student-controlled CAL,
teacher-controlled CAI, and author-controlled CAI. This
thesis results from work done in Phase II of the author-
controlled project. Phase I was the development of a
conventional Computer Administered Programmed Instruction
(CAPI) System [Brooks, 1970] using an IBM 1050 audio-
visual terminal (typewriter-based), for teaching a
beginning course in the programming language PL/I.

The Phase I system was converted, with as few changes

as possible, to operate on a Computer Communications Inc.

CC-30 terminal (CRT-based). As a result, feasibility

of this terminal for the envisaged CAI work was

established and the Phase II objectives laid down.
This second phase called for the following.

(1) the installation of new communications equipment:
a medium-speed leased line to the Triangle Univer-
sities Computation Center (TUCC), a general purpose
campus computing facility, to give character
speeds beyond the 15 character/second possible
via dial-up facilities.

(2) six CC-30 terminals, each consisting of a CRT,
keyboard, light pen, and random-access slide
projector.

(3) the building of a monitor program for the CAI
region of Large Capacity Storage at TUCC to con-
trol the brograms in the region and to provide
communications device programming support.

(4) the design and building of student/author work
stations based on the CC-30 terminals.

(5) the development of a CAI control program whicﬁ
simultaneously presents course material from
several different courses to several student

work stations.

(6) the design of an author language and building of an
incremental compiler which generates code for pre-
sentation as course material by the CAI control
program.

(7) the preparation of course material for an elementary
programming course in PL/I. |

(8) evaluation of the system by class trial.

Mr. Gary D. Schultz [1973]1 reports items (1), (2),
and (3), which form his Cuapel Hill Alphanumeric
Terminal (CHAT) System.

This thesis reports items (4) through (8). The
course material, item (7), was programmed by Professor
F. P. Brooks, Jr. The off-line supporting programs,
e.g., the student file maintenance program, were written
by other CAI Project workers (Section 5.7) to my external
specifications. My contributions are the design of (4),
(5), (6), and (8), and the implementation of (5), (6),

and (8),

1.4 Language design in computer science

Language design is an art. Given a particular ob-
jective, there is no algorithm for designing a program-
ming language to meet that objective; there is not even

any clear delineation of various tradeoffs involved, let

10

alone any quantitative measures of them [Sammet, 1969].
n the remainder of the thesis, I therefore:
attempt to define the objectives which have been
set:
discuss the design decisions made (pointing out what
are thought to be twradeoffs involved);

attempt to see if the objectives have been met.

CHAPTER 2

EX7T'TING CAT :tVI3TEMS AND LANGUAGLS

2.1 The scope of the chapter

A wide variety of languages and systems 1s being used
for programming interactive use of computers for instruc-
tional purposes.

Before turning to deécribe that subset which is
appropriate for this chapter, we must define the area of
instructional use of computers at which DIAL is directed.

This area is based on presentation of successive
"frames" or units of course material, to a student. In
each frame the student is expected to respond in an
anticipated manner to the material presented to him in
that frame. The order of presentation of frames 1is
under the control of an author by means of the instruc-
tional strategy he has programmed into his course material.
Since an author is the agent controlling the irteraction
between student and computer system, this area is usually

called author-ceontrolled CAI. Two other modes can be

distinguished. Consider a computer graphics system

programmed to display step-by-step graphic solutiong to

numerical analysis problems [(Qliver and Brooks., 19697.
Hands-on laboratory use of this system by individual
students 1s an example of student-controlled CfI. Teacher-
controlled CAI is exemplified by the use of this same
system by a teacher in front of a class of students.

In this chapter, then, I discuss specially devised
author languages for author-controlled CAI; IBM's Course-
writer typifies this class of languages.

The chapter specifically excludes the following.

1. Discovery-mode systems

Here the student presents questions, usually phrased
in natural language, to a system which interrogates a
highly-structured data base specially prepared tc cover
the subject matter being taught. Examples of such systems
are Thompson's REL System [1969], Simmons's PROTOSYNTHEX
III [1970] and Carbonell's SCHOLAR [1970]. Incidentally,
experience with these experimental systems is aiding
research being done on the linguistic and semantic analysis

of constructed responses in author-controlled CAI.

2. Conversation machines
ELIZA [Weizenbaum, 19661 is the best known of those
systems which, in providing conversation within a limited

context, have been used for CAI.

13

3. Interactive programming languages

Some writers include in CATI fhe'use of interactive
programming languages by students for working exercises,
programming simulations, etc. This aspect of CAI is
clearly excluded from this chapter; however, such
languages have been adapted as author languages, and

these are discussed in Chapter 3.

4. Highly tail red systems

An interesting example of this type of system is
the TEACH System [Fenichel, et al., 1970] developed at
the Massachusetts Institute of Technology to ease the cost
and improve the results of elementary instruction in
computer programming. The system was designed for this
subject matter only, and includes a specially designed
programming language, UNCL, in which a student writes
specific programs requested of him by TEACH. The system,
by monitoring the execution of such a program, attempts to

present meaningful feedback to the student.

5. Course generators
An author enters course material as a structured file;

standard procedures draw exercises from the file and present

- them to a student. Such systems are particularly useful for

drill-and-practice and have so been used for arithmetic and

spelling drill. Examples of such systems are TSA (Teacher

14

Student Algol) at Staniord University [Suppes, et al.,
1968] and CG-1 (Course Generator) [Meadow, et al., 1968].

Author languages for such systems are characterized
by having

(1) data structures - usually vectors - for storing

questions, answers and scores,
and (2) a greater naming freedom than the languages
described in later sections of this chapter.

A recent system developed by Wexler at the University
of Wisconsin [Wexler, 1970a and b! should generate coﬁrse
material and interactions which appear quite intelligent
to the student. His system, which has a structured
information net of factual material, has made use of
results from artificial intelligence and natural language

processing which are common to the discovery-mode systems

mentioned above.

2.2 Coursewriter systems

2.2.1 The IBM Corporation is responsible for the most
widely used author languages and CAI systems, all based on
the original Coursewriter I for the IB4 1400 series of
computers. Coursewriter II and Coursewriter III are
available as program products from IBM and are functionally

complete, serving students, authors, and administrative

15
personnel in the CAI environment. Since CWIII is typewriter
terminal based and CWII is CRT terminal based, they are not
in a successor relationship nor are they strictly compati-

ble, and features of both will be described.

2.2.2 Coursewriter III [IBM 196%a, b, and c; 1970a]

2.2.2.1 Hardware

The stucent/author station is an IBM 1050 typewriter
terminal with slide projector. It uses a host computer
system, the IBM System/360, via a low-speed communications
line. A random-access audio tape can be attached to fhe

station as a special cption.

2.2.2.2 The CWIII Language

Variables operated on by a CW program are of six
types and are described in the following table. They

are called storage areas, and one copy is kept for each

student.

16

Name for
addressing Attributes
Storage area in CW language of contents
counters c0 - ¢30 signed integer
buffers b0 - b6 character b0 1is
strings up the stu-
to 100 dent
characters input
in length buffer
return registers rl - r6 label
switches s0 - 31 binary digit
course parameters p0 - p31 binary digit
auxiliary storage a byte string

Other data types are character string constants and
integer constants.

Operations (statements) have the syntactic form

operation code optional argument(s)
modifier
Text and questions are presented by the qu, rd, and ty
operation codes which take as arguments a character string

constant or a buffer. Arithmetic is specified by the
ad, sb, mp, and dv

operation codes which take two integer arguments each.
Assignment is specified by the 1ld operation ccde which
takes two arguments (of the same type). Conditional and

unconditional branching is effected by the

\

17

br operation code .

The following example [IBM, 1969a:20] illustrates

each of theseh

Author Mode
q5
pr
aufp) 146 {voice osks ''spell copital. Albany is the copital of New York Stote.')
od 1/c2
sb ¢3/c3
ep
ad 1/¢3
co copitol
oulp) 147 (voice soys '"'Good. Next we will consider o homonym'')
od 1/c4
wo copital
ou(p) 148 (voice soys '"No. Thot is o homonym of the word 1 osked for. Try ogoin.''}
un No.
be g5A//c3/ge/3
ty Try ogain.

Explonotion

Exemple g5 uses counters and o conditionol bronch. The student is asked a question by the oudio device. At the
end of the oudio messoge one is odded 10 counter two, which records the number of questions osked. Counter 3 is
set to zero by subtracting if from itself. The system then pouses ot ep ond woits for the student to respond. Af;er
the response, one is odded to counter three, which counts the number of responses to the question. If the response
motches the ca statement, the au statement immediotely following is transmitted, one is added to counter 4, and

the system moves on to the next pr, qu, or rd, Counter 4 notes the number of questions onswered correctly.

The conditionol bronch tokes the student ‘o lobel g5A if he hos mode three ottempts to onswer the question ond

hos not yet onswered it correctly.

Answer matching is specified by the operation codes
ca, cb, wa, wb, aa, and ab,

and certain misspellings can be ignored by a selective

character string match specification.

O

ERIC

Aruitoxt provided by Eic:

18

One level of indirect addressing of a storage area
can be specified with some operation ccdes. For certain
statements, modifiers can be placed in parenthesis after
the operation code to specify a modified operation. For
example

ca(l) re*d
uses the 1 (line processing) modifier to eliminate the
third character from response comparison.

Two powerful features of CW are provided by the fn
operation code and the macro facility. The argument field
of a fn statement names a machine language subroutine and
the arguments to be passed to it. The macro facility
permits authors to write frequently-used course statement
sequences in a skeleton form. Macro definition and
invocation facilities are similar to those found in the
macro facilities of assembler languages.

In summary, the language can be characterirzed as an
assembler-level language. Naming of data and the anount
available seem to be the major restrictions. Auxiliary
storage is used to increase the amount of space available,
but its addressing is not by name but by absolute
location, e.g.,

1d a, 738, 46/b3
means that an area whose leftmost byte position is byte

738 and whose rightmost is 783 is loaded into buffer 3.

19

With such restricted format, low-level commands, explicit
addressing and restrictions on sizes of data areas. the
software implementation can be both fast and frugal in
memory usage. Such implementation benefits are obtained

at the cost of author convenience.

2.2.2.3 Student use of the system

The student signs on by typing the command sign on,
his student number preceded by the designation s and the
name of the course for which he is registered. Once he
has gained access to the system he has three commands
available

help

go to

sign off
The go to command allows him to invoke a particular
section from a list of course sections provided by the

author.

2.2.2.4 Author use of the system

An author signs on in the same manner as'a student,
but precedes his number by the letter a.

CW statements are entered in fixed format using the
1052 Printer-Keyboard. An author can view the execution

of his course by signing on in student mode by prefixing s

20

to nis number. Labelled segments of the course can be
executed while he is in author mode by using the go to

command. He returns from such an execution by entering

"author®.
Other author commands are concerned with editing
his program:

insert after

delete

ggplace

move

A listing can be obtained by the ccmmand type.

2.2.2.5 Supervision and monitor commands

The production orientation of CWIII systems is
reflected in the comprehensiveness of the set of commands
available to the system supefvisors and monitors. The
commands are'for administrative tasks associated with
student registration on the system and for changing

system parameters [IBM, 1969c and 1970al.

2.2.3 Coursewriter IX

2.2.3.1 Hardware

An IBM 1500 Instructional System consists of a number

of student/author stations connected locally to a dedicated

721

computer, either the IBM 1800 or 1130. FLach station con-
sists of a CRT display with light pen. keyboard and slide

projector. Random-access audio tape is optional.

2.2.3.2 The CWII Language

The language is essentially the same as CWIII, with
the differences arising from the properties of the
terminal.

Explicit screen-formatting information is required.
Light pen commands are included. In the following exampleM
[IBM, 1968: Part II, 77], the second and seventh statements
show these two aspects. The former, the dt statement,
displays '"that barks" beginning at coordinates (8,3) on the
CRT. The latter, the ca statement, specifies that a match
occurs if the light pen touches the response area defined

by a rectangle with its top left hand corner at coordinates

(13,9) and depth 4 and width 3.

22

T T T T Ty Tr T T TYrrr

5-

TT Ty rrrrrr7rrir{rrryreryy vy o rrTrTrrT

1_4-aq-ﬁj_.q_.—_.q_1-§.

y o

AN SRR S S S S S S Sun Bt T B S Bt B e S S EE S B au B g VA7 AR SR 3 A1

[C 7 3V 20 A4

.«_dﬁ__.-‘_..u-q_.q._-_ﬂjal_lq_].\-qu..-unjdqa
T

T 7Y 1T

T T T T T T

T T T T Y

qqﬂjjggﬂ}m _!\.m. :N h d L u
TN OW Uy Y I RO TR O P TOg 7 Ty }
8¢ #d 9 -

15 o i 9 1€ % 3 9 (s
1- '

ﬁﬁ bop; ﬂmnrﬁﬁﬁn

RPN o
&%
u

D@D 5UOTSa) PUNDID RUDY JUD|q

Peoadxae st esuodses siaym Deuo payyBl)

*s)Joq 1oy}
JPWIUD @Y} $0 SwWdU Iyl 0} luiod

23

A feature of CWII is the facility for special
graphics display.

Indirect addressing as in CWIII is not provided.

2.2.3.3 Author use of the system

The author can operate in one of two modes: assembly
or checkout mode. In assembly mode the editing and list-
ing commands are as for CWIII. In checkout mode, he can
view the execution of a course by entering the command

EXECUTE. Provision is made for assembly from card input.

2.3 Other languages

2.3.1 WRITEACOURSE

This language was developed at the University of
Washington by a project aimed at producing a language
which is natural for the teacher, highly readable, and
suitab’e for machine-independent implementation [Hunt and

Zosel, 1968].

2.3.1.1 The language

The language, which is typewriter-terminal based, is
very simple, having ten operations. The following example
[Hunt and Zosel, 1968:926] illustrates display of text,

use of counters (a number preceded by the symbol @), answer

2h
classification and branching, and its limited arithmetic
capability.

(1) SET @54,@41 TO O PRINT "WHAT DISCOVERY

(2) LEAD TO LASERS?Y]

(3) 3 ACCEPT CHECK "MASER" "QUASER"

(W) "CANDLES" IF 1 CHECKS THEN GO TO 6|

(5) ADD 1 TO @41 IF O CHECKS THEN GO TO HO'

(8) IF 2 CHECKS THEN PRINT “THAT IS IN ASTRONOMY."

(7) GO TO u0|

(8) IF 3 CHECKS THEN PRINT "DO NOT BE SILLY."!

(8)40 IF @ul < 3 THEN PRINT "TRY AGAIN" GO TO 3}

(10) ADD 1 TO @54 PRINT "THE ANSWER IS MASER."|

(11)6 PRINT "HERE IS THE NEXT QUESTION"I

In the example, the first statement initializes
counters 54 and 41 and prints a question. The statements
in lines (3) and (4) specify three anticipated responses.
If the first response matches the student's answer ("IF 1
CHECKS™") then the program branches to statement 6 on line
(11). Unrecognized ("IF O CHECKS") and wrong answers
cause incrementation of counter 41 and a branch to line
(9). There a test on counter 4l determines whether the
answer should be printed.

Statements are grouped into lessons, and lessons are
grouped into courses. Since it is possible tc activate
one lesson from another in the same course, a subroutine
facility exists. It appears that parameterization would

have to be done via counters known to both the invoking

and invoked lessons.

2.3.1.2 The oggggtional environmeqﬁ

After a student has gained access to the system he
types XEQ and then supplies the Jlesson name and course
name when requested.

The system is placed in author mode by the command
///COMPILE. A new lesson is begun by ///PROGRAM NEW
lesson-name/course-name. Each statement is checked for
syntax errors as it is entered. The editing commands
are ///ADD, ///DELZTE and ///LIST.

The WRITEACOURSE language translator, written in
PL/I, is an incremental compiler producing an internal
form which is interpreted at run time. This internal
form is the only representation of the source code kept

and is decompiled when a source listing is requested.
2.3.2 FOIL

This language was developed at the University of
Michigan by a project aimed at producing a language which
is easy to use, has good computational capability and whose
implementation is sufficiently flexible to allow language

modification [Hesselbart, et al., 19691.

2.3.2.1 The language

The language is for a student/author station con-

sisting of a teletypewriter with optional slide projector.

26

It is a high-level language, as the following example

[(Hesselbart, 1968:94] illustrates

TY WOULD YOU LIKE TO CONTINUE THE EXERCISE

ACCEPT
IF 'NO,' GO TO FINISH
IF 'YES,OK!
NUM = NUM + 1
GO TO NEXT

GO BACK PLEASE ANSWER YES OR NO

Specification of an answer set is done as follows.
A set of keywords to be treated as equivalent is written,
separated by commas, between single quotes (as YES and OK
in the above example). Exact matching is indicated by
enclosing the anticipated respoises in quotation marks.
A digit following a list of keywords specifies the number
of keywords which must match if other than one; a percent-
age match can also be specified.

The language is computationally powerful, allowing
arithmetic expressions and vector data.

There is no subroutine facility in FOIL; however,
FORTRAN subroutines can be invokecd.

The syntax of the language, although restrictive,
is clean; moreover, source listings of programs reveal a
clear logical flow. A good deal of the computational and
logical power of the underlying machine is available to

the author in a natural way.

2.3.2.2 The operational environment

A student, once having signed on to the FOIL system,
enters $SOURCE NAME to commence the course NAME.

An author begins the creation of a course by entering

SSRUN FOIL 6=*MSOURCE* 7=%*MSINK®* 8=zcoursename

9=qualifier

$SSOURCE #MSQURCE®
Card input facilitizs are also available.

The implementation of FOIL is by an interpreter
written in FORTRAN. The stated rationale for this is to
enable an implementation (1) having few constraints on the
syntax of the language, (2) permitting easy transfer to
other time-sharing systems, and (3) allowing easy modi-
fication of the language.

To view the execution of a course, the author signs
on as a student. Limited editing can be done while he 1is

signed on as a student. Substantial revision is done by

using a text editor unrelated to the FOIL system.
2.3.3 PLANIT

The language was developed at System Development
Corporation and is claimed to be a multipurpose language
for computer-human interaction, and simple cnough to

allow non-programmers to use it easily [Feingold, 19t7].

28

The student/author station is a teletypewriter con-
nected to a time-sharing system. The PLANIT system
operates in four modes: lesson-building, editing,
execution, and calculation. The student has access to the
last two modes, an author to all four.

A lesson is composed of a set of frames, of which
there are five types: Problem, Question, Multiple Choice,
Decision, and Copy.

Lesson~building is done interactively with the author
entering data (questions and answers) into the fixed format
of the frames. The following example [Feingold, 1967:549]
illustrates this. Note that data entered by the author

follow an asterisk typed out by the system.

System prompt and author response: Comments:

*Q the question frame
FRAME 2.¢¢LABEL=*MATH labelled MATH

2. SQ. specify question
*LETS SEE WHAT YOU REMEMBER ABOUT question (one line at
TEMPERATURE. USING F FOR DEGREES a time)

*FAHRENHEIT AND C FOR DEGREES CEN=-
TIGRADE, WRITE THE FORMULA FOR
*CONVERTING FROM DEGREES FAHREN-
HEIT TO DEGREES CENTIGRADE.
*HINT: F=8%C/5+32 CONVERTS FROM
CENTIGRADE TO FAHRENHEIT.

* end of question
3. SA. speclfy answer

*FORMULAS ON turn on algebraic
matching
*A+C=(5/9)%(F-32) + signifies correct
answer, answer A
*B F=9%C/5+32 answer B

®C C=(5/9)%F=-32 answer C

ofe
"w

29

%. SAT. specify action to be taken
*A F: B:7 A first time:Feedback §
branch to frame
*B R:YOUR ANSWER IS THE SAME AS B first time
THE ONE I GAVE YOU, TRY
AGAIN . .
*A F: NOW YOU'VE GOT IT. B:15 A second time
*B R:YOU'RE STILL CONVERTING FROM!|B second time
CENTIGRADE TO FAHRENHEIT, TRY
AGAIN . . .
“#BC F:NOTE THE DIFFERENCE.C:B:0UT
:':_R
:‘:_C:

ot
“w

The decision frame contains branching specifications.

The aids to answer processing are phonetic comparison,
keyword match and formula equivalence (by algebraic
matching).

The calculation mode includes functions, matrices

and statistical tables.

2.3.4 TUTOR

TUTOR [Avner and Tenczaf, 19691 is the principal
author language for the PLATO systém developed at the
Computer-based Education Research Laboratory of the
University of Illinois [Bitzer and Skaperdas, 19701].

The central computer is a Control Data 6400; the system
is intended to serve 4000 student terminals on-line at once.
The student/author work station is based on a plasma-

display panel developed by the PLATO project. Slide

- ——

30

images can be superimposed on the text and graphic symbols
displayed on the plasma panel. Several spccial keys, e.g.,
NEXT, BACK, HELP, and TERM, for lesson control, have been

added to a typewriter keyboard.

2.3.4.1 The language

The author language was designed ". . . specifically
for use by lesson authors lacking prior experience with
computers”" [Avner and Tenczar, 1969:1]. The following
example illustrates display of text, slides, simple
answer analysis, and branching [Avner and Tenczar, 1968:28].

UNIT DAVINCI

NEXT RUBEN:3

BACK INTRO

FELP DHELP1

WRITE NAME THE ARTIST WHO
PAINTED THIS PICTURE -

SLIDE 24
ARROW 1110
ANS LEONARDO

WHERE 1301

WRITE THE COMPLETE MNAME IS LEONARDO DA VINCI-

SPELL

ANS LEONARDO DA VINCI

WHERE 1301

WRITE YOUR ANSWER TELLS ME THAT YOU
ARE A TRUE RENAISSANCE MAN.

WRONG WHISTLER

WHERE 1301

WRITE I HOPE YOU ARE JOKING.

WRONG

WHERE 1301

WRITE HINT - MONA LISA - HINT

WRONG MICHELANGELO

NEXT MREVIEW

31

This is a simple example, mainly intended to show the
format of TUTOR statements; the full language has «bout
70 verbs, called commands, and is functionally very rich,
although syntactically it is at the level of assembler
language.

The verbs for answer evaluation specify words and
characters which may or may not appear in a correct
student response. Some spelling correction is performed.
The verbs MUST, CANT, and DIDDL are used in the following
example [Avner and Tenczar, 19€9: command descriptions,
DIDDL].

UNIT NURSE
WRITE DIABETES IS A RESULT OF A MALFUNCTION

IN THE
ARROW 1001
ANS ABILITY TO METABOLIZE SUGAR

MUST METABOLISM, UTILIZATION, BURNING, TOLERATION,
METABOLIZE, UTILIZE, USE, BURN, TOLERATE

WRITE VERY GOOD _

MUST SUGAR, SUGARS, GLUCOSE, GLYCOGEN

CANT FAT, FATS, PROTEIN, PROTEINS, VITAMIN,
VITAMINS, CELLULOSE

WRITE YOU MUST BE THINKING OF A DIFFERENT DISEASE

DIDDL ABILITY, CAPABILITY

Each lesson has 63 varianles to store integers, real
numbers, and alphanume ic characters. The variables have
fixed names, e.g., 123, Al0, and Fl. The partitioning

of the 63 variables invo the three data types is con-

trolled by the author.

RV

2.3.4.2 The operational environment

A student gains access to the system simply by typing
his name. He is then resumed where his previous session
finished.

An author moves a work station into author mode by
pressing the TERM key and entering a password. There are
eight author commands, called options [Avner and Tenczar,
1963: Chapter 91. As TUTOR statements are keyed by an
author, they are stored on disk, without any checking by
the system. The READIN command initiates a batch compile,
at the end of which errors are displayed. To correct
errors, an author DELETE's the lesson just read in, issues
the command EDIT to make his changes, and, having made them,
he re-issues READIN. The system allows only one
READIN request at a time; it is thus not a truly multiple-

author system.

2.4 Discussion

2.4.1 Coursewriter is the only system which can be said to
be production-oriented. If a CAI system is to deal with a
large number of real students, with varying motivation,
then it must do more than provide rudimentary facilities
for student execution and course material p;eparation.

To move from experimental to production status, a system

should add facilities for:

33

(1) registration of students and maintenance of
student records:

(2) performance recording;

(3) concurrent use by everal authors and several
students;

(4) protection of instructional programs from
tampering by students and authors;

(5) minimizing the effect of system breakdown on

user performance and attitudes.

A fundamental point to recognize is that an instructional
program is a non-terminating program. Thus the run-time
environment of each student, which may require a large
amount of storage for its representation, must be carried
over from one session to the next. The implications of |
this pervade almost all aspects of the operational

environment of a production system.

2.4.2 All of the languages have neglected the power of a
computer for character string manipulation for two
significant tasks - presenting text and specifying answer
sets. String manipulation is of course used 1n answer |
processing. The simple ability to name a character
string would reduce effort when the same text message is
used repeatedly. Incorporating string expréssions and

operations, such as concatenation, in the language further

34

reduces coding effort. Not only is effort reduced but run
time efficiency and readability are enhanced.

For example, in a PL/I-like language, if a character
string variable named ANSIS has the value 'THE ANSWER IS ',
then the display text statement

DT ANSIS||'BASE'
would print

THE ANSWER IS RASE

2.4.3 Instructional programs are continually being revised
by their authors - during debugging of the first version
and as feedback from students is received. Powerful
editing and debugging facilities should therefore be a
major part of the operational environment. Instead we

find minimal editing facilities, and debugging often can
only be done by signing on in student mode. If

initiating an execution takes more than minimal effort and
response time then an author will perhaps tend to spend

his time visualizing what his program will do rather than

seeing what the student will see.

Most of the systems are typewriter based. The
transient image of a CRT terminal allows more natural
editing than a typewriter terminal. However, more could
be done for the author using a typewriter terminal, e.g.,

context editors, than is being done. Moreover, the

35

distinction sometimes made between major and minor

revisions 1is artificial.

2.4.4 Inspection of source listings of instructional
programs written in these author languages reveals many
extraneous symbols and much unnatural syntax. Moreover,
the languages do not conveniently illustrate the structure
of lessbns; FOIL is an exception in this respect. The
properties of the underlying computer system or language
translator often intrude upon the language. Examples are:
(1) the subroutine linkage mechanism in Coursewriter
is exactly the basic machine operation of
branch and return on a register;
(2) the @ symbol to denote the counters in
WRITEACOURSE stems from a translator
deficiency;
(3) 1labels are defined in FOIL by preceding the
label identifier with the symbol :. This
device is used to simplify the scanning algorithm
of the tranélator.
(4) parentheses are not allowed in arithmetic
expressions in TUTOR. This restriction simpli-

fies the parsing algorithm of the translator.

36

2.4.5 Because new requirements in author languages are
continually being identified, almost all of the language
designers acknowledge the need for extensibility in their
languages. Those existing systems which try to attain this
do it in two ways:
(1) provide a linkage to subroutines written
in some other language (assembler in
Coursewriter, FORTRAN in FOIL);
(2) dimplement the language translator in a
high~level language so that rewrites are
more feasible.
While (1) has the advantage that it does not disturb
existing system code, it has the disadvantage that it
involves an author in a language with which he is usually
unfamniliar. Moreover, the syntax of a subroutine
linkage - CALL with a list of parameters ~ is not usually
a natural syntactical specification. The second method
has the disadvantage that some of the most intricate
system code, namely the translator, has to be changed,
and changed in an ad hoc manner. Neither method is
satisfactory; what appears to be needed is
(1) flexibility which allows extension naturally
at the syntactical level, and
(2) a highly systematized implementation of the
language translator so that changes can be

incorporated according to some formal model.

CHAPTER 3

THE DESIGN PHILOSOPHY UNDERLYING DIAL

This chapter discusses the design philosophy formu-

lated early in the project.

3.1 Motivation

3.1.1 The cost of preparing instructional programs

The cost of preparing instructional programs is high
- costs exceeding $100,000 for a one-semester course are
not uncommon, for example [Hansen, 1969]. The number of
hours ~f author time to produce one (terminal-time) hour
of course material is high. Estimates of 200 or more are
reported [Bunderson, 1970]. A major part of this cost is
due to extremely time-consuming iterations on the testing
and revising phases in course preparation. One wants to
reduce these costs. The effects on the total cost of
each of the author language and the operational environ-
ment for instructional programming have been separated

for attack by the CAI System.

38

3.1.2 Difficulty of use of existing languages

As can be seen from Chapter 2, the syntactic awkward-
ness of existing languages and the clumsiness of command in
existing systems make it difficult for an author to concen-
trate on his main task, that of preparing instiructional

material.

3.1.3 Lack of effectiveness of existing languages

To be effective, the semantics of an author language
should enable an author to use the unigue capabilities of
a computer. If these memory, file, and decision capabili-
ties cannot be used, the resulting instructional rrograms
are no different from conventional Programmed Instruction
material and the systemc deserve the name "expensive page

turners" given by Oettinger [19691].

3.1.4 Need for understanding of languages for man-machine

systems

Designing a language for CAI and the ¢xperience gained
from evaluating it and its interactive programming environ-
ment should shed some light on the more general problem of
man-machine communication. Moreover, the system, once
built, could be a valuable research tool for evaluating
such languages if the language impiementation admits of

easy language modification.

39

3.1.5 Conclusions

These motivating factors lead to two major require-
ments -

ease of use and modifiability.

3.2 A priori design decisions

3.2.1 The system should be interactive at course prepara-

tion time

The benefits of interactive, or conversational,
programming are well known. This mode of programming is
particularly economical when a program is being changed
frequeritly. This is exactly the situation in CAI, where
revision of course material is continually taking place
as an author receives feedback from students taking his
course.

Moreover, by '"seeing what the student sees'" as he
composes, an author is subject to the same restrictions,
e.g., line length, response time, and noise, as his

students.

3.2.2 Authors will be experienced teachers

This affects the quality of instructional programs

more than the design objectives of DIAL.

40

3.2.3 Authors will be experienced computer programmers

This is a major departure from the assumpfions of
most CAI languages. It is justified on two grounds:

(1) pragmatically, it describes the situation of the
first subject matter to be taught on the system;

(2) constructing instructional algorithms is just like
constructing other algorithms; algorithmic technique
cannot be avoided, and it is better and no more
costly to learn it for programming in general than

for just instructional programming.

But the author inexperienced in computer programming
is by no means excluded or ignored. Consider the follow-
ing.

(1) DIAL is méant to be a language simpler than a
language of the complexity of FORTRAN. Its level ~f
simplicity should be comparable to BASIC.

(2) An author, whether experienced in computer program~
ming or not, has to learn the CAI-oriented features
of a language which is new to him.

(3) In trying to cater to the inexperienced, a language
designer is strongly tempted to over-assist. However,
an author preparing any non-trivial instructional
program in any new author language, will soon get

beyond the stage where assistance with language

N

mechanisms is needed. An author's facility in using
the language should not be underestimated.
(4) There are well-known techniques for assisting

learner programmers, e.g., the default concept.

3.2.4 Computer programming will be favor.d if a subject-

matter-dependent design decision arises.

3r2.5 The language should favor the tutorial mode of

author~controlled CAI rather than drill-and-

practice.

3.2.6 The slide scveen, rather than the CRT, will be the

main vehicle for the presentation of fixed tex+*ual

information.

Since color and graphic symbols can be used, the in-
formation storage capacity of a slide is high. Note that
this assumption obviates the need for picture-drawing

facilities in the language.

3.2.7 The basic system approach is CAPI, not question-

answering.

In an attempt to improve on the "intelligence" of
existing systems as they appear to their student users,
time was spent, and the temptation was strong to spend

much more, on exploring existing experimental question-

42

answering systems. These systems have been built in
research efforts in natural language processing and
artificial intelligence {[Simmons, 19701].

However, existing systems are indeed experimental
and moreover have required major programming efforts to
implement. So rather than follow this route, the decision

was made to build a well-engineered system, of less

ambitious goals. With the generality of a programming
language, the tools are provided for an author to produce

intelligent instructional programs.

3.2.8 There will be no coder for an author.

I have observed in Coursewriter installations that
placing a coder (sometimes called an instructional
programmer) between an author and his instructional pro-
gram generally results in programs that disappoint the
author. Instructional programs are, by necessity, repre-
sentations of algorithmic prccesses. Too often in this
environment, authors describe a concept to a coder and
then vaguely define the instructional logic framework
in which it is to be presented, without appreciating the
algorithmic nature of tlie problem. For this reason I
believe that an author must face, at first hand, the

task of structuring his micrcscopic concepts.

43

3.2.9 The work station wil.i be CRT-based and fast.

Terminal speed will be sufficient to fill the CRT
screen in less than 5 secs (an 800 character CC-30 screen
served by a medium-speed communications line -- 2400 bits
per second -~ is filled in 2 1/3 seconds). An author
language designed for a low-speed line (a teletype-speed
line fills a CC-30 screen in 80 seconds) would have a
different flavor.

The terminal will be CRT-based, so if hard copy is
needed, an auxiliary mechanism for providing it will have

tc be devised as part of the system.

3.3 Objectives for the language per se

3.3.1 First and foremost it should be a programming

1anguage.

DiAL must be a language for describing algorithms.
Thus it should

allow symbolic names for entities manipulated,

provide a subroutine facility,

have the statement types expected in algorithmic

languages,

allow user-defined functions, and

provide a library subroutine facility.

Yy

Although CAI workers differ greatly in their
approach to using the properties of a computer, there is

an agreed-upon requirement for providing individualized

instruction. Thus there is the need for author tools

for answer analysis and decision making (at the frame
level and globally across a course). The need clearly
emerges for the author language to have the senerality

of a programming language.

3.3.2 Special CAI-oriented operators

Because a theory of instructional program writing
has not yet been developed, it is not possible to design,
or even recognize, an optimal author language. There is,
‘however, a generally accepted set of CAI-oriented commands
and utilities. This set should be a part of any author
language.

Obviously, given the current level of understending
of the process of writing instructional programs, this set
must be embedded in a very flexible system, which can

adapt to a variety of different writing techniques.

3.3.3 A general CC-30 display users lengfuage

It is anticipated that there will be research
(unrelated to CAI) at the University where there will be

a need to write programs which use the CC-30. It would

bh

thus be useful if DIAL could serve as a general display

users language.

3.3.4 Portability

The system should be able to run on computer

installations other than the University's.

3.3.5 Advantages of a high level language

Sammet [1969] lists the following six advantages:

ease of learning;

ease of codin® and understanding;

ease of debugging;

ease of maintaining and documentings

ease of conversion;

reduced elapsed time for proilem-solving.
My final design objective, which may appear to be obvious,
is that these advantages of a higher level language will

in fact exist in the final product.

3.4 Objectives for the interactive programming system

The operational environment has as much bearing on
ease of use for an author as the language itself. The.
chief components are the command language and its

implementation.

46

The design objectives for these are as follows.
An author should not be aware of the translation from
his DIAL statements to machine language. He should
feel as if he is programming a "DIAL machine", that
is, a machine which directly executes his statements
without the need for translation.
The CAI System, while in author mode, should at every
step try to anticipate an author's next move and
position the CRT cursor accordingly.
The language processor should be an incremental com-
piler, not just a fast batch compiler entered
interactively. The system could then maintain a
consistent response time even when changes to
existing source are made.
When the known properties of the language, environment,
and application dictate system actions that are
normélly user~specified in .a general-purpose system,
the CAI System should handle them automatically.
Diagnostic messages given by the system should
specifically identify the location and type of errors,
not just signal that an error has occurred.
The CAI System should be responsive to the experience-
dependency of an author. For example, the explanatory
level of diagnostics given him should decrease as he

becomes more familiar with the mechanisms of using

u7

the system.

3.5 Why not adapt a general purpose programming language?

The notion of adapting a well-proven general purpose
programming language, such as PL/I, APL, FORTRAN, BASIC, or
CPS, was not rejected casually.

For this discussion, the term base language describes

the general purpose language, and the term CAI language

describes the base language augmented by a set of CAI-
oriented routines.

The advantages of adapting a base language include

the following.

1. I would not need to write a compiler. Obviously, the
routines making up the augmentation must be written,
but the programming involved is generally easier than
compiler writing.

2. The users of the system would have a well-proven im-
plementation without compiler maintenance
responsibilities.

3. A large body of subroutines written in the base
language would Lz available.

4. Authors who kncw the base language may take less
time to learn the CAI language.

5. One would have the generality argued for in section

3.3.1.

b8

In my opinion, the advantages are outweighed by the

following disadvantages.

1. Deficiencies in the base language

This impacts writing both augmentation routines and
instructional programs in the CAI language. Input/output
facilities are not oriented to terminals, particularly
CRT's. The absence of file input/output in APL is a
severe deficienéy. APL and FORTRAN do not have good

string handling facilities.

2. Deficiencies in the base language implementation

If the base language is not interactive then one is
faced with conversion. The systems programming effort
required to convert a base language batch compiler to an
interactive incremental compiler would probably be as much
as that required to build a compiler for a new author
language.

Because the ratio of execution to modification is
high, one needs compilative execution to give fast

response and low cost for student mode. However, most of

the interactive implementations are interpreters.

3. The operational environment is compromised

If there is an interactive implementation of the base
language available, e.g., APL/360 or CPS-PL/I, then there

is an opportunity to use its command facilities for the

43

CAI application. But then ins*ructional programs are just
like any other programs in the system - a student must
load, initiate and terminate a program just as an author,
or any other user, does. Other activities, such as student
record file processing, performance recording, dumping
against system failupe, and proctor actions, must also

be handled within the existing framework of the host en-

vironment. My design philosophy requires an integrated

system serving students, authors, and proctors. This
cannot be achieved with the general purpose interactive
systems available to the project. A special purpose sub-
system must be built or the desired operational environ-

ment compromised.

4. Overhead

The base language would contain many language
features which would never be used by an author. The
overhead which results would be felt mainly at compile
time, as extra memory space and response time when
compiling‘in author mode. This effect is relatively

small.

5. Difficulty of use

Invoking the special CAI facilities, in most

languages; would be done by a CALL statement.

50

This not only adds superfluous code in an instruc-
tional program, which can cause readability to deteriorate,
but, more importantly, the syntax of the CAI language is
awkward to the CAI user. For example,

CALL RESUME;

CALL FRAME;

CALL SHOWAS (Note ||'The variable has been used

before.',A,B);

CALL MATCH (PAT('¢DO ¢=¢'),PAT(X||Y), X||Y,L);

Not all base languages, however, require invocation
by CALL. APL has the cleaner function invocation, but
parameter passing is awkward. PL/I also has user-
defined functions, but a function is invoked by the

appearance of its name in an expression. This will, for

some operations, result in unnatural syntax at the
invocation point. Consider a user-defined function for
reading. One would prefer to say:
READ;
but the function name must be in an expression, so one
is obliged to say:
ANSWER = READ;
For control structures, e.g., REPEAT-UNTIL and UNREC
in DIAL, even more additional code is needed in the form of

labels and G0 TO statements.

The macro pre-processor of 'L/l (the "compile-1imne

facilities") does provide a solution - a Pre-processor pass

could substitute correct PL/I syntax for user-oriented

syntax.

However , when the design decision was made there

were no production-status interactive systems providing

<o . 1 ..
the macro facility. fioreover, user errors would not be

detected until the PL/I translation stage.

My reasons for not adapting a general purpose lang-

uage can be presented another way. Those requirements

for a base language and its implementation which would

make adaptation my preferred approach are:

[¢%
(2)

(3)

().

the base language to be PL/I;

the availability of a good incremental
compile:;

a well-designed command language for the
incremental compiler;

the availability of the PL/I macro facility

for implementing the CAI specialized operations

with most natural syntax;

1Since that time, TSO, the Time Sharing Option of
Operating System 360 with the MVT configuration, has been
announced and is available at TUCC. However, it presents
the same problems for the CAI application as do APL and
CPS: the operational environment would be compromised.

(5)

52
the operating system to ccntain a user inter-
face language allowing a user program to execute
system commands within a program. As an example
of the function, not the syntax, needed, con-

sider an APL program (which is not in fact valid
{

in APL/360):

V CAI

STUDENTAID <« [I
STUDENTAWS <« SEARCH STUDENTAID

)LOAD STUDENTAWS

NéXT: EXECUTE

SAVEACOUNT < SAVEACOUNT + 1
+ (SAVEACOUNT < 3)/NEXT
)SAVE STUDENTAWS

SAVEACOUNT <« O

SNLEXT

With such a facility one would be able to layer
the CAI command language on top of the wnore
general, and hence complicated, command language

of the base language's operational environment.

CHAPTER 4

THE DIAL LANGUAGE

4.1 Introduction

This chapter describes the author language itself;
the command language used by an author while interactively
programming in DIAL at a work station is covered in
Chapter 5. Hence this chapter specifies the language in
which an author writes an instructional program, whi;h is
independent of whether he programs interactively or in
batch mode from cards were such a facility provided.
Another reason for separating the descriptions of DIAL and
the command language is that DIAL is the variable part --
chenges in the language are implemented by the Translator

Writing System described in Chapter 6.

Layout of the chapter

Since this chapter is intended to serve as a guide
to using the language, a set of language specifications
alone would be inadequate. The development of the chapter
is as follows. Section 4.2 presents enough of DIAL to

allow complete programs to be written, but with the

Hy

simplification that all student answers are recognized by
exact matching. The remaining sections gradually introduce
the full facilities of the language.

The last section, 4.16, DIAL specifications, is a
summary of DIAL and can be used for reference purposes by
authors experienced in the language.

Since the chapter aims to help a prospective author
learn DIAL, rigor is traded for clarity in some sections.

The specifications section, however, is rigorous.

A DIAL machine

The design of the language and its operational
environment is such that an author can take the view
that he is programming a "DIAL machine." This machine
directly executes DIAL statements without the need for
translation. Thus, as a policy, this chapter avoids

referring to the compiler for DIAL.

Color messages

The CRT can display characters in green, red, blue,
or yellow. This useful facility enables an author to
highlight portions of a CRT message and provide color
cues to message content. Because color selection is done
in the operational environment, not the language, it is

not treated here.

4.2 Writing a simple instructional program

Consider the following segment of an instructional

program dealing with logical operations on bit strings:

1 SHOW 'If the bit strings B and C contain
110 and 011 respectively, what 1s the
value of A after the execution of A=B&C?'
$ 2 BACK:MATCH '010', OK
3 MATCH '111l', NOK
4 SHOW 'Wrong, try again.'
5 GOTO BACK
6 NOK: SHOW 'No. By definition 0 & 1 is always 0.
Your answer is correct for A=B|C.
Try again.'
7 GO TO BACK
8 OK: SHOW 'Right.' <4
Example 4.1
Statement 1 presents a question by displaying the
text

If the bit strings . . . of A=B&C?
on the CRT; statements 2 and 3 specify the student
responses anticipated, together with the actions to be
taken for those responses. Thus, if the student answers
010 the program branches to the statement labeled OK
which displays 'Right.'

Statements are the units of omeration within the

language. They will normally be executed consecutively as
written. However, this sequenze of operations may be

broken by branching statements. The MATCH and GOTO

statements in Example 4.1 are branching statements. A
statement may be optionally prefixed by a label, as
statement 6 is.

Identifiers, or names, are created by an author to

identify program units in a DIAL program. They have no
inherent meaning but serve for the identification of

variables, labels and subroutines. An identifier is a

sequence of upper or lcwer case letters and digits, not

exceeding ten characters, beginning with a letter, e.g.,

X Cl cardformat BACK clw?
Only identifiers for labels occur in Example 4.1.
An identifier naming text, for example, could be R, and so
if R had been set previously in the program by the

assignment statement

R <- 'Right.'
then the étatement
OK: SHOW R
would be equivalent to statement 8 in Example 4.1.

DIAL statements are free form. Blanks may be used
freely throughout a statement. A blank is needed to |
separate two tokens in a statement if there is no other
delimiter which the DIAL machine can use to determine the
separation. For example, X+Y is eqﬁivalent to X + Y but
GOTOBACK is not equivalent to GOTO BACK. Any number of

blanks may appear wherever one blank is allowed.

57

Composite operators, e.g., <- and == cannot contain blanks.

Unrecognized responses

In the example, only the responses 010 and 111 are
recognized. Thus, by the program sequencing rules, any
other response will cause statements 4 and 5 to be

executed, (with the possibility of a continuous loop:

The UNREC statement is a branching statement

specifying program action in case unrecognized responses
are received. The forunat of this statement is defined

using the notation (Figure 4.1) to be used from now on.

UNREC-statement:
Format:l
UNREC label [,labell . .
Action:
The ith unrecognized response to the controlling
th

SHOW-statement will cause a branch to the i

label in the UNREC label list.

lIn this chapter, the first time a statement is
presented, usually an abbreviated fopm will be given.
For example, the symbol #* can be an i*em in an UNREC
label-list. The chapter progressively develops the
full format for each statement.

58

A uniform system of notation is used to define the format of each DIAL
statement. The notation is not a part of DIAL; it is a metalinguistic device
to describe the structure of DIAL statements and can be used to describe most
programming languages. It indicates the order in which the elements may (or
must) appear, the punctuation that is required, and the options that are
allowed. The notation is a subset of that used in IBM PL/I publications
[IBM 1970b, Section Al.

A notation variable names a general class of elements in the language,
e.g., label, text-constant, frame-name, and is one of the syntactic units.
Other syntactic units are DIAL verbs, e.g., UNREC, punctuation, e.g., a
comma, and special characters, e.g., *.

Syntactic units are combined by juxtaposition, braces, and square
brackets as follows.

- vertical stacking of syntactic units indicates that a choice
is to be made, e.g.,

h)

TEXT
DCL identifier
SLIDE

- square brackets denote options. Anything enclosed in brackets
may appear one time or may not appear at all. For example,
FNDLESSON [lesson-namel
indicates that a lesson-name is optional in an ENDLESSON statement.

.. - three dots denote the occurrence of the immediately preceding
syntactic unit one or more times in succession. For example,

(,labell . . .
A label preceded by a comma may or may not occur since it is

surrounded by brackets. If it does occur, it may be repeated
one or more times.

The following example contains each part of the notaticn.

label
{label:] MATCH texi~-constant [| text=-constantl . . . ,
*
Valid MATCH-statements are
d2w: MATCH 'alpha' | 'beta' | 'gamma' , *

MATCH 'alpha', k3

Figure 4.1 -~ The metalanguage used to define the syntax of DIAL.

ERIC

Aruitoxt provided by Eic:

ExamEle:
UNREC L1,L1,HELP,ANS1

This will cause the statement labeled L1 to be
executed after both the first and second unrecog-
nized responses are received. The statements
labeled HELP and ANS1 will be executed on receipt
of the third and fourth unrecognized recsponses,
respectively. Example 4.2 (statement 4) shows

this UNREC-statement embedded in a program segment.

1 SHOW Q

2 BACK: MATCH '010',0K

3 MATCH '111',NOK

L UNREC L1,L1,HELP,ANS1

5 Ll: SHOW '"Wrong, try again'

6 GOTO BACK

7 HELP: SHOW '"Wrong', LOGICH,
"'Now try agaia'

8 GOTO BACK

3 ANSL: SHOW '"No. The answer is 010'

10 GOTO NEXT

11 NOK: SHOW Bl

12 GOTO BACK

13 OK: SHOW 'Right.'

14 NEXT:

Example 4.2

QAR screen division

The CRT screen is divided concertually into three

areas: Question, Answer, and Response:

60

| I

Thé Q-area is filled by one or more SHOW's presenting a
question. When a MATCH is encountered, the cursor is
placed at che beginning of the A-area for the sfudent to
enter his answer. The author's feedback response appears
in the R-area and the cursor is then placed back in.the
A-area so inviting the student's next attempt. The
student edits his previous answer using the inherent
editing properties of the CRT.

For Example 4.1, if the student first entered 111,

the screen would appear as

If the bit strings B and C contain
110 and 011 respectively, what is the
value ¢of A after the execution of A=BE&C?

111

No. By definition 0 & 1 is always 0.
Your answer 1s correct for A=B|C.
Try again.

6l

Showing slides

As well as displaying text, the SHOW~statement shows
slides; for example
SHOW nesteddo
would, if nesteddo is an identifier naming a slide
variable rather than a text variable, show that slide
number to which nesteddo is currently set.
The format for the SHOW-statement so far in the

development is

SHOW slide-variable slide-variable

text-variable text-variable]
3
text-const text-const

Example: Line 7 of Example 4.2,
Slide variables can be set by assignment-statements; for
example,
nesteddo <- 2307
would cause SHOW nesteddo to show slide number 7 in

rarousel 23.

Comments

Comments are enclosed between the markers /* and */
and may be placed anywhere in a DIAL program that a blank
is permitted. ‘Any characters may be used in a comment
except the pair */, which ends the comment. Comments are

completely ignored by the DIAL machine, but their use

62

adds to the readability of an instructional program.

Declarations

Two types of variables have been discussed - the
slide variable and the text variable. Notice that an
identifier naming a variable has the same formation
rules whether the variable is slide or character, but
its interpretation in, for exampl:, a SHOW operation
will be different. Thus the system must know whether
it is to show a slide or text.

This property-designating information comes from
associating an attribute with each variable. A variable

1s given an attribute by one of the two following means.
(1) An author specified declaration

A declare statement is used.

Format: |
DCL identifier attribute

Examples:
DCL nesteddo SLIDE
- DCL Q TEXT

A DCL-statement may appear anywhere in a lesson as

long as it appears before the first use of the identifier

it names.

63

Other attributes are introduced in later sections of

the chaptef.
(2) A default declaration

Unless an author specifies an attribute for a

variable, it is assumed by default to be TEXT.

A complete program

Brief consideration for the operational environment
is all that is needed now to write a complete lesson. The
lesson must be named so that an author can refer to it in
the CAI System. This is done by the)LESSON command;
since Chapter 5 discusses the command language, i1t will
not be treated here.

The action to be taken by the student at the end of
a lesson must be specified. This is done with the

ENDLESSON statement.

Format:
ENDLESSON [lesson-namel
Action:
The following system message is displayed.
END OF LESSON
DO YOU WISH TO GO ON TO THE NEXT LESSON?
TYPE YES OR)OFF

The last statement executed in a lesson must be

this statement.

Bl

A set of lessons constitute a course and a student
takes the course lessons in sequence. The simplest
complete program, then, is a one-lesson course and

Example 4.3 shows such a program.

/% An example of a complete program */
DCL logiclt SLIDE |
logich% <- 2301

SHOW 'Message', logich

ENDLESSON

NI wN

Example 4.3

4.3 Defaulting branching in a program

Many programmed actions are repetitive, e.g., the
action of displaying 'Right.' and branching to the next
part of the course material to be presentéd. The DIAL
default .actions help an author by allowing him to
indicate that he will take the default action and so
need not explicitly program an action himself.

To take advantage of the default branching it is
necessary to give the system some help; an author has to

put a little more Structure2 on a lesson by organizing it

2This is more structure than usually found in
programs written in a general-purpose programming
language, but is the norm for computer-assisted
programmed instruction.

bh

into frames. A frame is a logically self-contained part
of a lesson enclosed by
frame-name: FRAME
and
END frame-name
where frame-name is an identifier. The DIAL statements in
a frame are usually ordered to give the following structure:
‘frame-name: FRAME
present textual information on slides and CRT
present question
accept answer
[classify answer

~ respond according to answer classification—;
END frame-name

All defaults actions are requested by the symbol * as
follows:
MATCH-statement
Example: MATCH '010°,%
Action: If the match is successful then
(1) the system displays 'Right.' in green,
(2) the program branche: to the next

frame.3

3Note that this is the only part in the language in
which the "correct answer" has any significance. Some CAI
systems give additional special treatment to the correct
answer, e.g., an author can mark a particular text as being
the correct answer for later automatic display if the stu-
dent fails the question. Although the distinction is use-
ful, I believe that the important distinction is not
between correct and incorrect responses, but between
recognized and unrecognized responses.

66
UNREC~statement

Example: UNREC *,%*,L

Action: for each default label:

(1) the system displays the UNREC message
in yellow. This message reads
Your answer was not recognized. It may
be wrong, or it may be right in content
but wrong in form, spelling or punctua-
tion. Examine your answer and try again.
(2) the program branches back to the first
MATCH-statement (the lead MATCH) of
.he controlling SHOW-statement.
GOTO-statement
Example: GOTO =

Action: The program branches to the next fram,

Example 4.4 shows the program segment in Example 4,2

recoded using the default sequencing facility.

SHOW Q
BACK : MATCH '010',%
MATCH ‘'111',NOK
- UNREC *,% HELP,ANS1
HELP: SHOW 'Wrong', LOGICH
'Now try again'
GOTO BACK
ANS1: SHOW 'No. The answ:r is 010'
GOTO =
NOK: SHOW B1
GOTO BACK

Example 4.4

.4 Classifying reccgnized responses

Since, for the branching purposes of a particular
question, several responses may be equivalent, it is
natural to allow more than one argument in a MATCH-

statement. The definition of the MATCH-statement is now

text-const T L % {
J

MATCH

variable variable ' Jlabeli
text-const ’

If at least one of the specified texts in the list matches
the student's answer, then the program branches to label
or takes the default action if #. Examples are statements

3 and 6 of Example 4.5.

Thus classification of recognized responses for each

question. takes the form:

MATCH v, | ry, [oeov.oo.., label-1
MATCH 1, | «oeennn.n. , label-2
MATCH r_; | . | r > label-m

where rs3 is the jth recognized response in the ith

equivaléncc class. The vertical bar separator hetween

arguments is to be read as or.

68

—

1 Q <~ "Write an expression which means

"multiply A by B and assign the
result to C'"! :

2 Ll: SHOW Q

3 MATCH 'C = A*B'] 'C = B®*A', OK

b UNREC *,L2,REMED /#0:1 the third, go see what */

/*help he needs */

5 L2: SHOW 'No. Type the two variables being

multiplied’

6 MATCH 'A B' | 'A,B' | 'B A' | 'B,A',NX .

7 GOTO REMED /*Unrecognized, so go w/

/*see what help he needs */

8 NX: SHOW 'Yes. Multiplying them would

be achieved by A*B. Try the
question again '

9 G0TO L1 /*Back to original question */
10 OK: /* Present alternative correct answers: ®/
11 SHOW 'Yes. C = B*A and C = A*B

are both right.'
17 REMED:

Example 4.5

4.5 Expressions and assignment statements

We have already encoun.ered the assignment statement-
a value is assigned to the variable cr the left hand side.
However, in the examples so far, thz right hand side
contained only one item. It is porsible to construct an

expression on the right hand side containing several

items (variables and constants) with operational symbols

(operators) linking the items. For example

Y <- A+ B

is an assignmen: statement which upon execution will
cause the expre«szion A+B to be evaluated and its vailve
assigned to Y.

The exprescs o1l 3 is an arithmetic expression.

Other expressions in DIAL are text, slide, logical, and

comparison expressions. The items combined by operators
are called operands. Operators can only act on operands
of the same class, i.e., arithmetic operators can cnly

act on operands witn the attribute INTEGER.
Examples:

(1) a text expression using the concatenation operator:
al| 'Dog' ||
(2) An arithmetic expression:
a*(b + c)
(3) A slide expression to add one to the slide variable
THM:
THM + 1
The two classes of expressions called logical and
comparison result in truth values and are discussed 1ir.
later sections.
A complete definition of DIAL expressions is given
in the specifications.
Expressions are not restricted t: assignment state-

ments; a new rule is now introduced: whenever text can

70

appear in a statement, a text expression may appear.
So w< nave
MATCH A||B, LS
and
SHOW a]]‘Dog‘]]b , THM
"he general format of the assignment statement is
text-expr

variable <- slide-expr
arith-exp

ExamEles:
L5: REPLY <- ANSIS]l'Dog'

SCORE <- A* B+ 7

I <- 1+ 1

4.6 The IF-statement for branching

The MATCH-statement is a branching statement which
applies tezcts to the ANSWER register. With the IF-state-
ment, much move general tests can be applied. For
example

IF QCOUNT > 3 THEN SEOW R1
SHOW R2

cornpares QCOUNT with 3. If the former is greater, i.e.,
the test is successful, then the statement SHOW Rl is
executed and then SHOW R2. If the test is unsuccessful,

SHOW Rl is skipped.

71

Tests to be performed are specified by a comparison-
expression. QCOUNT > 3 1is such an exnression. Its
evaluation results in a truth value (1 = true, O = false).
The format af the IF-statement 30 far is

IF comparison-expression THEN statement

It is sometimes convenient to specify a group of
statements to be executed 1if a test is true. For DIAL,
statements can be grouped into a DO-group by using the
DC and END, e.g.,

DO
X<-X+1
SHOW R2
SHOW R3

END

he format of the IF-statement is now:

statemenél

IF comparison-expr THEN DO-group J

in a second, rore general form, the IF-statement
controls the execution of two a&ternaciye statements.
The simple IF-THEN clause is expanded by the ELSE-clause.
If present, it always follows after the THEN-clause.
For exarmnle,
IF A > 2 THEN X <- Y
ELSE X <- =Y
The THEN-clause is executed only if A > 2 is truej the
ELSE-clause is.execufed only if A > 2 is false. As with

THEN, a DO-group may follow ELSE.

Since the comparison-expressions have truth values,
they cait be combined by logical operators which take
truth values as operdnds. Thus

(A >3) | (B< 5)

is a logical-expression.

The format now becomes

IF comparison—exp THEN statement
logical-~expr DO-group

ELSE statement
DO-group

-

Typical uses of the IF-statement

(1) For structuring instructional logic
a. At the frame level
IF LENGTH (ANSWER) > 10 THEN _.Ty REMA4

"b.{ Globally in a lesson
Let BADCT be a score kept throughout a less»n
and PATH?2 an integer set to 1 or 0 to indicate
whether a particular path was taken. The
following statements specify branching based on

the variables BADCT and PATH2.

IF (BADCT>25) & (PATH2=1) THEN DO
' SCALEY <~ SCALEH + 1

/*Increment performance */
/*measure. w/
GOTO LAB7 /#%#Remediation ey
END
ELSE GOTO L5
/¥%continue 1n main v/
/¥stream. g %/
7 (2) TFor general programming.
a. A7 the micro level
/*Remove the first occurrence of %/
/*the substring AND from the ®/
/*ANSWER register : - */

J <- INDEX (ANSWER, 'AND')
IF J ~= 0 THEN /*If J=0 then was not in ANSWER ¥/
ANSWER <- SUBSTR(ANSWER,1,J-1)}| SUBSTR(ANSWER,J+3)

b. Loop control

/*in carousel 15 : -

DCL SL SLIDE

SL <- 1500 /®Initialize %/
—>L1: SL <- SL + 1

/*Loop t¢ shnw the first 20 slides #/
i/

AN IF SL > 1520 THEN GOTO EXIT-
SHOW SL
EXTTGOTO Ll
T: = _
Nesting

IF-statements can be nested, for example:

IF A + B THEN
IF X = Y THEN Z <- O
ELSE Z <- 1

EL .,E
IF X > Y THEN P <~ O
ELSE P <~ -4

74

Finally, note the equivalencz oI the following two
statements.

MATCH 'ALPHA'|'BETA' , LS
IF (ANSWER='ALPHA')| (ANSWER='BETA')THEN GO TO L5

The MATCH-statement is an abbreviated form of an IF-
statement with the ANSWER register as an implied

comparand.

4.7 Non-exact matching

To confirm the need for some assistance in
recognizing responses, consider the problem of answer

processing for the question "What is the name of the UNC

student newspaper?'" The responses
'Daily Tar Heel ', ' Daily Tar Heel', 'DAILY TAR HEEL',
'"The Tar Heel', '"The TAR HEEL',

"DAILY TAR Heeel', and '"DAILY Gazett:'

.can all be viewed &8s correct, except for the last oune.
Restricting answer classification to exact matching would
obviously place an intolerable burden on an author, no
matter how carefully he phrased his queétions.

With the simplification (Chapter 3) that sbphisticated
linguistic analysis of responses will not be provided in
the current phase of the CAI Project, the problem of non-
exact matching is left mainly to the ingenuity of the

author. The approach taken to heln the author combines

I3

(a) the provision in DIAL of system-matching-[{unctions
;(smf's) and (b) requiring the author to observe certain
.cdnvgntions.

The conventions apply to message preprocessing -- a
student's typed response always goes through a preproceosor
before ANSWER is filled. The prepirocessor

(1) strips preceding and followirg blanks

surrounding a typed response, and

(2) squeezes excess blanks between non-blank

characters. -
This preprocessing always occurs. To deal with the
upper case - lower case problem, the DIAL machine's
preprocessor has a switch named CASE which, when on,
causes all lower case letters in the response to be
converted to upper case as ANSWER is being filled.

Thus while CASE is on, matching will not distinguish
bctween upper case and lower case if MATCH-statement items
are written in upper case. For egample,

MATCH 'THE TAR HEEL'I 'DAILY TAR HEEL' , L&
would, with CASE switched on, recognize all but the last
two in the example.

CASE is set by an assignment statemern:

CASE <- arith-expr

for example,

CASE <- U4
CASE <- 0

Thus although CASE stores an integer it haz only two
states, namely, on if its value is non-zero; off if zero.
A second preprocessor switch, called SQ7. squeezes

all blanks from a typed response.

System matching functions

The smf's are PAT for pattern matching against the
ANSWER register and PEN for using the light pen. The
latter is detailed in a later section. The smf's return
a truth value and hence are (one-item) logical expression:.
To effect branching based on the vaiues returned, smf's
can arnear in MATCH-statements and IF-statements.

The PAT smf uses the pattern specified as its
argument and searches ANSWER for the occurrence of that
pattern. A pattern is rmade up of a sequence of pattern
elements separated by a cent symbcl, the "don't care"
symbol, where any number of ncolse symbols may appear.
For example, PAT('¢§¢+¢‘) would be true if ANSWER con-
tained ALPHA % BETA + D.

By making answers to questions of the type "Give an
expression which nultiplies two variables" rather than

"Give an expression which multiplies A and B" quite easy to

process, the PAT function should encourage an author Lo
go from the specific to the general in his questioning.

Because PAT is quite general it covers simpler
functions often found in CAI languages. Keyletter and
keyword matching are two examples. Keyletter matching
is intended to cope with spelling errors in a student
response. For example,

'/ MATCH PAT ('¢IDENT¢F¢R¢'), LS

would cope wi?’ certain misspellings of the word
"identifier."

All correct answers, except the last, in the Tar
Heel example would be recognized by the keyword matching
PAT ('¢TAR HEEL¢')

if CASE is on.

Note that the text funcion INDEX can also be used
for keyword matching.

Notice also that PAT has an implied oriering by the
order of the pattern elements. So the following two
segments are equivalent: |

(1) MATCH PAT ('¢TAR¢HEEL¢'), L1
GOTO L2

(2) J <- INDEX(ANSWER,'TAR'")
K <- TNDEX(ANSWER, 'HEEL')
IF J=0 | K=0 THEN GOTO L2
.7 K > J THEN GOTO L1
GOT) L2

78

4.8 The sieve

Shortly after Brooks began to use DIAL (Chapter 7)
he invented the sieve; it was made possible by the PAT
system matching function.

Figure 4.2 gives an example. The actual sieve is
contained in statements 224 through 250.

The sieve consists of an ordered set of expected
responses. The first is correct; each successor allows
one more erroneous element, or conversely requirzs one
fewer correct z2lement. The responses are arrdanged in
order of increasing seriousness of error.

An answer falls through the sieve until it
encounters the first r2sponse that requires no more
correct elements than the answer has.

The feedback for each response ic designed to teach
about precisely the error that distinguishes that
response from the one above it, and it alﬁays requires
that the student try again.

This correspondence between feedback and sieve level
works properly for several reasons. Falling through to
that level means the student surely made at least the
¢rror addressed. Falling no further means ﬁe made a no
more serious error. The ordering medans that the error

addressed is the most serious one he made, however man:’

200 d2: /0000824000 tsbbssssestse,

RPSUNE;
202 CASEOPF;
204 S don, CLEAR;
203 PINT;
212 :
210 ;
220 SAS CLEAR,

‘Write a statement lareled SAM that will
iterate the group ot statemecnts it
controls 50 times. Use the variable X

44 yor~ index.';
224 d'm: M *SAM:IDO X=1 TO 50;¢,¢2r;

22R M *SAM:IDO X=1 TO S0¢,4d2v7;

210 M PAT{*SAM:DO X=1 TH 5C«"),
d2via;

232 r. PAT('SAMDO X=1 70 50¢0),
d2w2;

23 M PAT('¢DO X=1 TO 50¢°') ,d2w];

240 4 PAT('€DC X=1 TO¢'),d2vi;

264 B PAT('¢D0 X=1g*},d2w5;

246 M PAT(*¢DO X=¢+) ,d2wb:

243 M PAT('¢DO¢'),d2w7;

250 U = .

252 SAS

'Your statement should contain DO.',t;

254 GOTO d2m;

256 d2w1:S ny,forqotsemi,t;

257 GOTQ d2m;

258 d2vla:S extramsq,t;

259 GOTO d2m;

260 d2w2:SAS
*Ar colon should follcw the label.',t;

—

. DIAL VERE ABRRFVIATIONS:

262 GOTO d2m; M MATCH
2h8 d2wl:SAS "8 WOW
'Ihe stavement should be labeled SAM.',t SAS HOWAS
. u UNREG
266 GOTO d2m;
26H 0244 :SAS 2. TEXT CONTTANTS NAMED FARLIFR 1Y
'The upper limit of the iteration count THE PROGRA':
should Le SC.',t; extramsg 'You have entered somethipe in
270 GOTC d2m; addition to or jinstead of the
272 4245, 8AS semicolen vhich should end a
'The vord TO separates the starting and PL/C statement.' (hlue)
ending values of the iteration count.', forgotsemi 'You forgot the semicolon.'
t; (hlue)
274 GOTC d2m;
276 d2v6b:SAS na "Not. auite. ' (vellow)
*The iteration count should start with 1
.ty r 'Right, ! (preen)
27 GOTC d2u;
278 d2wr:SAS t '"Trv again. ' (red)

'The iteratica ccunt expression should
3. don is slide 151, named earlier in the

heqin program, It {s shown in Fipure S.A,
X= LIPS 4. PINT, a temporarv addition to NIAL (see
280 GNTO §2m; 8.3.3.2,2), displayvs “Press INT to cortinun
282 d2t: S r; when ready.'" and then waits for INT,
100
Pigure 4.7 - A DIAL program segment showing o sieve (or answer evaluation

2t the expected response SAMIDO X=1 10 50,

ERIC

Aruitoxt provided by Eic:

80

others there may be. Trying again means the errors are
all treated, one at a time. The result 1s an analyzer
whose length and complexity grows linearly with the
number of anticipated errors, but which is capable of
handiing all combinations of them.

Progressive teaching also results from this ordering
of the sieve elements. If the student has no idea what the
answer should be he will be led, step by step, through the
construction of the right answer. Such a trace of the

sieve in Figure 4.2 is:

Sieve element
MATCHed (DIAL

Student Response statement #) Feedback
(null) 250 (UNREC message)
(null) 252 Your statement should

conta.n DO.
Try again.

DO 248 The iteration count
expression should
begin

X=
Try again.

DO X= 246 The iteration count
should start with 1.

Try again.
DO X=1

4.9 The naming statement

The assignment-statement of Example 4.5 assigns a
text constant value to the variable 7). This is a useful
technique when a particular text is to be used repeatediv,
as it saves rewriting the complete text each time. There
1s a DIAL statement solely for this naming function,
which uses = to indicate identity rather than < - which

is used to indicate setting of a variable value.

FormaE:

identifier = text-const

ExamEleii
(bs = 'Observe the slide above.'
pint = 'Press INT to continue.'

When an identifier is so used, it is given the TEXT
(constant) attribute.

Variables, by definition, require the DIAL machine
to keep a separcte copy for each studer. . In contrast,
when an author uses a naming-statement he is signalling
that the identifier is a name, not a variable-name. Hence
only one copy is needed for all students. Substantial
savings result in the storage of the DIAL machine.

While such hames.cannot be used on the left hand

side of an assignment statement, they can form text-

expressions, e.g.,
SHOW obs]||pint
There is a similar naming facility for slide
constants, e.g.,

nesteddo = 233

4.10 Repetition constructs

DO~-WHILE and REPEAT-UNTIL are available for con-
trolling the repetitive execution of a group of state-

ments. They are motivated in [Dijkstra, 1970]. The

constructs
——)DO WHILE *? —M™ REPEAT
statement statement
group JL group
A .
—— ENDDO —— UNTIL 7

can be diagrammed as followus:

82

M WHILE REPEAT UNTIL

| R
| L ? | | l l
| v | a o
| | | |
| statement i | statement ‘
| group | ' group I
|
? s
|)) |
] L_____(_};___ET:'__I
(leading decision) (trailirg decision)
Exambles:
(1) /*HARDWARE TEST PROGRAM ®/
/*Show all slides in carousel 3:- */
DCL s SLIDE
s <- 300
REPEAT
S<- 5+ 1
SHOW s
UNTIL s = 380
(2) pint = 'Iress INT to continue'

REPEAT
SHOW pint
UNTIL PAT('')

6h

(3) I <- 1
DO WHILE I <= 100
SIHIOW T
I« I+ 1
ENDDO
Format:

DO WHILE comparison—exprl
logic-expr J

ENDDO [do-while-labell
REPEAT

UNTIL comparison-expr
logical-expr

4.11 Cathode-ray tube screen formatting

The CRT ¢f the CC-30 can display 800 characters,
arranged as 20 rows, each of 40 chqrécters. Two aspects
of CRT screen formatting concern the author, (1) the
relative pbsitioning of successive screen messages and
(2) the relative positioning of characters within a

message.
(1) Relative positioning of screen messages

Successive text-expressions in a SHOW-statemert are
separated by commas. When the statement is executed,
each text-expression is evaluated and treated as one
screen message. Each screen message is displayed be-

ginning at the next free screen row. For example, if

the text-variable GAM contained 'GAMMA' then the state-
ment:
SHOW 'ALP'||'HA', 'BETA', GAM
would result in
ALPHA
BETA
GAMMA
whereas the statement
SHOW 'ALP'||'HA'||'BETA'|]|GAM
would result in
ALPHABETAGAMMA
The above discussion applies to messages within
the Q-area and A-area. The first SHOW-statement of a
frame begins at the top of the Q-area. The QAR
boundaries are floating and can be changed by assignmant
to the system variables QVALUE, AVALUE, and RVALUE. For
example,
AVALULE <- 15
RVALUE <- 17
These thfee system variables have default values of 1, 11,
and 13. An author must ensure that screen messages fit
within the QAR division; overflows will be displayed 1in
the next area, for example, a too large (Q-area messag:

will overwrite the A-area.

86

(2) Relative positioning of characters within a message

The exact format of a screen message is important
if the message is a table or list of items, whereas if it
is entirely prose, its format is of less concern.

For exact screen formatting, the SHOWAS-statement
(to be read "Show as formatted") is used. It has the

same syntactic format as SHOW, namely,

SHOWAS

text expr | [text-expr N
b]
slide-expr

slide-expr J

When a display statement is encountered during
execution, the DIAL machine, for each text-expression,
evaluates the expression and then

(1) 41if it is in a SHOWAS-statement the screen

message is displayed as it was originally
formatted,

(2) 4if it is in a SHOW-statement the machine

formats the message by removing instances of
word~breaks over screen lines énd then displays

the result.

8

Examples:

Statement executed:

112 next: SHOW 'The slide screen abo
ve is used for presenting the bulk of th
e TEXTUAL MATERIAL.'

Result :
The slide screen above 1s used for
presenting the bulk of the TEXTUAL
MATERIAL.

Statement executed:

250 SHOWAS ‘
DIAL has been designed for
AUTHOR-CONTROLLED CATI'

Result:

DIAL has been designed for
AUTHOR-CONTROLLED CAI

Thus characters within text are formatted in two wavs.
By using SHOW, an author need not be concerned with word
breaks as he is typing text. By using SHOWAS he can
specify the exact layout of a display.

The following illustrates the display of text constants.
Let the text be named by the statement

150 studyslide='STUDY THE SLIDE ABOVE AN
D PRESS INT TO CONTINUE.'

88

Then typical uses are the following.

Statement executed:

750 SHOW studyslide
Result:

STUDY THE SLIDE ABOVE AND PRESS INT TO
CONTINUE.

Statemenf executed:

850 SHOWAS studyslide
Result:

STUDY THE SLIDE ABOVE AN
D PRESS INT TO CONTINUE.

y

Statement executed:

950 SHOWAS studyslide,'ALPHA'||'BETA'

Result:

STUDY THE SLIDE ABOVE AN
D PRESS INT TO CONTINUE.
: ; ALPHABETA

89

4.12 Light pen usage

Instructional programs can be written so that a
student indicates his response to a multiple-choice

question by pointing with the light pen.

Presenting the multiple-choice guestion

The mul*iple-choice ifems are referred to as light

pen targets and must obey the following rules.

(1) Each item must begin with the character %3

(2) Each item must occupy no more than one row;

(3) There can be no more than eight targets.
Figure 4.4 has four targets. An author will normally use
a SHOWAS-statement to present his targets in a multiple-

choice question.

Recognizing the student's response

~When a student points to a target and presses the
pen's button, a light pen hit is said to have occurred
(the system recognizes only cne hit at a time). An
author specifies a hit and its branching action by using
the system-matching-function PEN in a MATCH-statement or
IF-statement. Examples are

MATCH PEN(3)|PEN(5),L5

and

IF PEN(2) THEN SHOW DIAG

30

A complete example of light pen usage is given by the
program segment in Example 4.6 and its execution in

Figures 4.3 and 4.h4.

113 SHOW struch,ref, 'ADDRESS on line 5
is followed by STREET, CITY, and STATE,
which are all declared with a greater le
vel number than ADDRESC. You can see
that STREET, CITY, and STATE are contain
ed in ADDRESS.'
120 SHOWAS !

Since ADDRESS has data items in it,
it is:-

* a major structure
* a minor structure
* an elementary name
* (none of these)'
130 L1: MATCH PEN(2),%*
MATCH PEN(1),MAJOR
MATCH PEN(3)|PEN(4),BAD
~ 140 BAD:

180 MAJOR:

Example 4.6

1 DECLARE

2 1 PERSONNEL,

3 2 NAME CHAR(2Y4),

i 2 PHONE CHAR(9),

"5 2 ADDRESS,

6 3 STREET CHAR(25),

7 3 CITY CHAR(15),

8 3 STATE CHAR(2),

9 1 YEAR -TO_DATE, '
10 2= GROSS FIXED DEC(8,2),
11 2 TAX - FIXED DEC(7,2);

Figure 4.3 -~ The slide strucl used in Example 4.6.

Refer to the slide.

ADDRESS on line 5 is followed by STREET,
CITY, AND STATE, which are all declared
with a greater level number than
ADDRESS. You can see that STREET, CITY,
and STATE are contained in ADDRESS.

Since ADDRESS has data items in 1t,
it is:- .

a major structure

a minor structure

an elementary name
(none of these)

o ar
EO

%

Figure 4.4 -- An Execution of Example 4.6.

g2

4,13 The RESUME-statement

The point at which a student terminates a particular
session may not be the best point for him to begin his
next session. It may be better pedagogically if he is
restarted at a point just prior to the end of the last
session. An author therefore places RESUME-statements
at suitable points throughout the lesson.

Format:

RESUME

Acétion:

Causes the CAI System to copy the student's com-

plete status to the RESUMDUMP file.

4.14 Subroutines

4.14.1 Since subroutines in DIAL have the same definition
and invocation conventions as subroutines in a general
purpose programmning language, they will not be described
in detail. The specifications section of this chapter
defines the CALL, PROC and END statements needed.

There are two types of subroutine procedures -

DIAL subroutines and PL/I subroutines.

93

(1) DIAL subroutines

Example 4.7 1s a subroutine, DELETE, to delete all

occurrences of specified characters from ANSWER.u A
sample invocation is

CALL DELETE ('AEIOU'Y)

DELETE: PROC(DELS)

/*This subroutine deletes from ANSWER %/
/#*all +the occurrences of the characters in%*/
/*DELS. . %/
/*(Not= the length restriction of 10 on */
/*DEL{ imposed by the dimension of */
/*vector C) */
DCL DELS TEXT /*Parameter®/
DCL L INTEGER /*Length of, i.e., number of %/
/*elements in, DELS </
DCL C(10) TEXT /*Holds the elements after ®/
/*unpacking from T_.LS %/

L <- LENGTH(DELS)

I <-3
OUTER: I <- 1+ 1
IF I > L THEN GOTO RETURN
C(I) <~ SUBSTR(DELS,I,1) /*unpuack next element */|

INNER:
J <- INDEX (ANSWER,C(I})
IF J=0 THEN GOTO OUTER
ANSWER <- SUBSTR(ANSWER,1,J-1)||SUBSTR(ANSWER,
J+1)
GOTO INNER
RETURN :

END DELETE

Example L.7

L‘This subroutine also shows the use of vectors in
DIAL.

9y

Example 4.8 is a subroutine, MULTI, to display
multiple-choice items for light pen selecticn and to

return the student's choice. A sample invocation is

CALL MULTI ('Point to the name oif
the animal that barks:',
'dog', ‘cat', 'rat', aj

(2) PL/I subroutines

Subroutines written in PL/I can be :walled from a
DIAL program. This provides a meanrt of augmenting the
power of DIAL. It is anticipa*ed that experienced and
resourceful authors will uée this facility in their
answer analysis. Experience will show which PL/I
facilities are the most popular; these will then be
conéidered for implementation in DIAL itself.

Invocation of PL/I subroutines is exactly the same
as for DIAL subroutines. The subroutine names, however,
must be declared with the attribute PLISUB, é.g.,

PCL sub PLISUB
The subroutines themselves are defined outside of

the CAI System.

4.14.2 The name scope rule is as follows. The scope of -
a declaration is a lesson unless the declaration is within
a procedure.‘ Then its scope is that procedure including

all contained procedures except those containing another

explicit declaration of the same identiifier.

MULTI: PROC(FREAMB,ITEM1,ITEM2,ITEM3,PENR)
/*A subroutine to present three multiple-
/*choice items for light pen selection. A
/%preamble in PREAMB introduces the items.
/*The student res)onse is returned in PENR.
DCL PENR INTEGER

/®%%Ppesent multiple-choice:- =%/
SHOW PREAMB
ITEM1 <- '# '|[ITEM1 /%Pprefix % %/
ITEM2 <- '#* '||ITEM?
ITEM3 <- '% '|IITEM3

SHOWAS ITEM1,ITEM2,ITEM3

/*%**Read student response: - ®&/
IF PEN(1) THEN DPENR <- 1
IF PEN(2) THEN PENR <- 2
IF PEN(3) THEN PENK <~ 3

END MULTI

SN L

Example 4.8

4.15 Input-output synchronization

Output from a DIAL program, effected by the SHOW
or SHOWAS statemernts, consists of a CRT display or the
projection of a slide. Input to the program, effected

by the MATCH statement, is a typed or penned response.

96

Output

Although a SHOW or SHOWAS statement may contain
several separate text-expressions and a slide, each
separated by a comma in the operand list, these separate
items are displayed without any time delay between them.5
There is, however, a time delay equal to the setting of

the PAUSE register between two successive SHOW's without

an intervening MATCH.

Input

There is no explicit read statement in DIAL; reading
is implicitly requested by MATCH-statements. The first
MATCH-statement encountered after a SHOW causes the DIAL
machine to issue a read - the blue Proceed light (Keyboard
Enabled light) comes on and the read is completed when the
student sends his response by depressing INT. If the next
statement to be executed is also a MATCH statement, it
will not issue a read but will perform the answer matching
using the contents of the ANSWER register filled by the
preceeding MATCH-statement. These rules apply not only to

MATCH but also to PEN and PAT.

5If there is more than one slide, only the onc
appearing last will remain projected.

97

To further clarify this synchronization consider the
DIAL macnine's internal mechanism to effect it. Arn
internal switch named READISSUED is tested by each state-
ment that accesses the student's response. If READISSUED
is off, then a read is issued and the switch turned on, if
it is on then no read is issued. It is also turned off
by a SHOW-statement and an UNREC-stAa.ement.

As an example, trace an execution of the following

DIAL program segment of nine statements

SHOW
SHOW
SHOW
MATCH
MATCH , LB
MATCH
UNREC #,%,L3
L5: SHOW
SHOW

(D O ~ITO U Wi

The trace could be

Statement Number Action

1 show
2 pause

show
3 pause

show
L no pause

read

unsuccessful match
5 no read

unsuccessful match
6 no read
' unsuccessful match
7 show UNREC-message
L read

unsuccessful match
5 .no read

successful match

98

8 no pause
show

9 pause
show

Note that the sequence which controls the synchroni-

zation is the order of execution not the (sequential)

statement numbering. A *trace of the following interaction

(involving a subroutine call) further exemplifies this

point.
1 SHOW
2 SHOW
3 CALL PINT
b SHOW
5 SHOW

100 PINT: PROC
/*This procedure returns control to the
/*calling point when a plain interrupt has w
/*been received. The PAUSE register :
/%is zeroed for the duration of PINT so
/*that the proceed request is displayed
/*immediately

101 DCL SAVEL INTEGER

102 SAVEL <- PAUSE

103 PAUSE <=~ 0

104 L1:SHOW 'Press INT to continue'

105 M ', L2

106 GOTO Ll /*not plain interrupt */

107 L2:PAUSE <- SAVEL

108 END PINT

as,
o

NN NN NN NN

st mn, e ae
El S

Trace:

Statement Number Action
1 show
2 pause
show
3
100
101
102
103
104 pause (of zero seconds)
show
105 read
unsuccessful match
106
104 no pause
show
105 read
successful match
107
108
b no pause
show
5 pause
show

4.16 DIAL specifications

Since this section can be used for reference purposes,

the following listing of section headings may be useful.

4.16.1 Message preprocessing

4,16.2 Statements

(1) Declarations
(2) Input/output to the student
(3) Branching

(4) Assignment

100

(5) TFRAME-statement

(6) DO-group head

(7) PROC-statement

(8) END-statement

(9) CALL-statement
(10) ENDLESSON-statement
(11) RESUME-statement
(12) Naming-statement

(13) Repetition statements

4.16.3 Text fmanipula:ion

4.16.4 Expressions

4,.16.5 System matching functions

4.16.6 Light pen usage

4.16.7 Default actions

4.16.8 Abbreviations

4.16.9 Restrictions

The metalanguage used to define the syntax of DIAL 1is
a subset of the syntax notation used in IBM PL/I publica-
tions [IBM 1970b: Section Al and is given in Figure 4.1.

The CAI System has been designed so that an author
can take the view that he is programming a "DIAL machine."
This machine, which is diagrammed in Figure 4.5, has the

following characteristics:

TRUTYSPW VI ¥ -- G 2andTg

indynQ (8)N3d "~ “(1)N3d
< < 3sNvd
. HIMSNV
Tndu - SY3LS193Y
3SVD
A _ wpJiboid
40SS3004d34d |DUOHONIISU] 104 W 1Va

AVH904d TYNOILONYLSNI

-102

(1) it directly executes DIAL statements without the
need for translation;
(2) 1t has a one-level store, which can hold
arbitrarily large programs.
This view 1s possible because the CAI System has been
implemented in accordance with the "onion structure'" given

in Figure 4.6,

4,16.1 Message Preprocessing

A student's typed response.is always preprccessed
before author-specified answer classification, or matching,

begins.

Automatic preprocessing

The preprocessor always does the following:
(1) strips preceding and following blanks surrounding
an answer
(2) squeezes excess blanks between non-blank
characters in an answer.
Example:
Let b represent the blank character. If the
answer typed by a student is
YRB=pBABY+¥BY; bY
then the ANSWER register contents after automatic pre-
processing will be

Kp=pAB+PBY;

Sy eAe Yo eyl IO ucTieausweTdwT L, 941.10NALS UOTUO, @Yl -- 9°h SANDBIJ

09¢ /S0

940MmpUDY Q9¢ /WG] PUD O -2D
wayshkS |YHD

I/771d

wayshs |v)
wpiboiud jpuoljonijsul sioyiny

\

wbiboud
|DUOIJONILSULI UD JO UOI4NI8Xad jusapnig

10y

Switchable preprocessing

Wher the CASE switch is on, all lower case letters in
a typed response are converted to upper case as ANSWER 1is
being filled. CASE is in the on state by default.

When the SQZ switch is on, all blanks are squeezed
(removed) as ANSWER is being filled. SQZ is in the on
state by default.

The SQZ and CASE switches are actually registers
holding INTEGER data in the DLAL machine. The on/off
states are

on register non-zero

of{ register zero

Since both SQZ and CASE are system variables, their
settings can be changed by assignment statements, e.g.,
CASE <- 1
SQZ <~ 0
Although these registers are set by assigning in-
tegers to them, when they are read they return a truth
value. Thus
IF CASE THEN CASE <- 0
and
IF -~ SQZ THEN SHOW MSG
are valid, but the following is not:

IF CASE = 10 THEN CASE <- 0

j
o

4.16.2 Statements

A DIAL lesson, or program, 1s constructed from basic

program elements called statements. Statements make 1p

larger program elements: DO-groups, frames, procedure—
definitions, REPEAT-UNTIL blocks, and DO-WHILE Dlocks.
A DO-group is a sequence of statements headed by a DO-
statement and terminated by a corresponding END-statement.
A ffame is delimited by a FRAME-statement and an END-
statement. A procedure-definition is delimited by a
PROC-statement and an END-statement.
Execution passes sequentially into and out of a frame,
whereas a procedure must be invoked by a CALL-statement.
Comments are enclosed between the markers /% and */
and may be placed anywhere in a DIAL program that a bliank
is permitted. Any characters may be used in a comment
except the pair #/, which ends the comment. Comments
are completely ignored by the DIAL machine.

Definitions of each statement follow.

4

(1) Declarations - the DCL-statement and attributes
Syntax:
DCL

NEW
U

identifier attribute-specification

108

Action:

The statement 1s used to declare explicitly the
attributes of identifiers. The attributes in
DIAL are:

TEXT
SLIDE
INTEGER
PLISUB
GLOBAL
LABEL

The attribute specification contains the attribute
name and, when allowed, a vector dimension.

A DCL-statement may appear anywhere in a lesson

as long as it appears before the first use of the
identifier it names.

(a) Vector identifiers

An identifier may name a vector {(a one-
dimensional array) of variables of the same
attribute. The dimension of the vector
precedes the attribute-name and is enclosed
in parentheses. Tor example,

DCL SCORES(10) INTEGER
(b) Label vectors

These vectors allow a "computed-GO-TO" facility
in DIAL and can be used only in this way.
There are no label variables as in PL/I.

(¢) Constants and slide constants

When an identifier appears in a naming-statement
it is given the TC or SC attribute; TC and SC
cannot appear in a DCL-statement.

(d) GLOBAL

Identifiers with this attribute have the
implied attribute INTEGER and have name scope
across all lecssons in a course.

Note that the)INCLUDE facility (Chapter 5)
provides a means of giving text constants
global scope.

(e) PLISUB

If arguments are to be sent to the PL/I sub-
routine then the attributes of their correspond-
ing parameters must be given. If a parameter
is a vector then this is indicated by appending
(#) to the attribute. TFor example,

DCL P PLISUB (TEXT,INTEGER(#),TEXT)

would define a subroutine with three parameters.
A sample invocation is

CALL P (ANSWER,SCORES,REPLY)

(£f) Summary

DCL identifier [(dimension)] TEXT

NEW SLIDE
INTEGER
GLORAL

IDCL identifier (dimension) LABEL
NEW .

DCL identifier PLISUB

NEW

[(parameter-attribute-1list)]
(2) Input/output to the student
a. SHOW-statement
Syntax:

text-expr K text-expr

SHOW slide-expr ,{slide-expr
arith—equj arith-expr

Action:

108

Each expression is evaluated and then sent as an
output to the terminal.

(a) text expressions
each character string is treated as a
separate screen message and is displayed
at the beginning of the next free CRT row.
Characters appear with no words broken
over rows.

(b) slide expressions
the slide is shown, and remains projected
until the next slide action.

(c) arithmetic expressions
the result of the evaluation is converted
to character form and displayed on the
next free row.

Examples:

SHOW 'Central Processing Unit'
SHOW ANSIS||'UNIT', 'Refer to the
slide above', DIAG?2

SHOWAS-sfatement

(to be read as "Show as formatted")

Syntax:
text-expr ‘text-expr
SHOWAS slide=-expr , { slice-expr
arith-expr arsth-expr
Action:

As for SHOW-statement except that no word-break
removal is performed on text. Thus characters
are formatted exactly as they appeared when
originally entered.

RN

CRT screen formatting

QAR screen division

The CRT screen is divided concentually into
three areas: Question, Answer, and Response:

The Q area is filled by one or more SHOW's
presenting a question. When a MATCH is
encountered, the curso» is placed at the
beginning of the A-area for the student

to enter his answer. The author's feedback
response appears in the R-area and the
cursor is then placed back in the A-area so
inviting the student's next attempt.

The QAR boundaries are floating and can be
changed by assignment to the system variables
QVALUE, AVALUE, and RVALUE. Their default
settings are 1, 11, and 13.

Relative positioning of successive screen messages

Each successive text-expression results in a
SHOW-statement or SHOWAS-statement is displayed
beginning at the next free row in the Q-area or
R-area.

110

Relative positioning of characters within a
message

This positioning is done by the system accord-
ing to whether SHOW or SHOWAS is used.

d. Duration of slide showing

A slide shown will remain projected until
one of the following occurs:

(1) the system slide constant RMV is shown
(2) a new frame bcgins execution
(3) another slide is shown
(4))OFF is received.
Note that RMV is an opaque slide occupying
position 0 of each carousel. Thus only
positions 1 through 80 are for author use.

e. Reading a student's response

The keyboard will be enabled, so inviting
a student's typed or penned response, whenever
the first MATCH-statement after the controlling
SHOW-statement, or SHOWAS-statement, is executed.
The response is then read and processed by
MATCH-statement(s).
(3) Branching

a. MATCH-statement

Syntax:

text-exprl | | Jtext-expr Jlabel
MATCH ¢ _°% b . l p
Action:

If at least one of the operands matches the
ANSWER register then the program branches to label
(or takes the default branch if #)., Otherwise,
the next statement is executed.

Examgles:

MATCH 'Identifier'|JOE|'Variable', LS
MATCH PEN{3)|PEN(5), L7

MATCH PEN(I), RESP(I)

MATCH PAT('¢AB¢'), %

UNREC-statement

Syntax: -

UNREC { lagel ’ {la%ell ‘
k LT

Action:

The i‘D unrecognized response to the controlling
SHOW-statement will cause a branch to the ith 1label
in the UNREC label list.

Examgle:
UNREC *, *, L3

Unconditional branch

Syntax:
GOTO $ {label$
G0 TO ®
i J
Examples:
GOTO *
GOTO Lu

GOTO ARITH(#4)

IF-THEN-ELSE

Syntax:
comparison-expr statement
1F logical-expr THEN DO -group

statement]
ELSE DO=-group J

(4)

Action:

The expression in the IF-clause is evaluated
to give a truth value as result.

Case 1: ELSE-clause not present:

If the truth value is 1, the THEN-clause 1is
executed and control passes to the statement
following the IF-statement.

If the truth value is 0, the THEN-clause is
not executed.

ExamEle:
IF QCOUNT > 3 THEN X <- X + 1

Case 2: ELSE-clause present:

If the truth value is 1, the THEN-clause is
executed and control skips the ELSE-clause and
passes to the next statement.

If the truth value is 0, the THEN-clause is
skipped and the ELSE-clause is executed.

Example:

IF NQN(2) > 3 THEN X <- X *+ 1
ELSE X <- X -~ 1

Assignment

Syntax: .
text-expr
variable <- slide-expr
arith-expr

Action:

The expression on the right hand side is evaluated
and the result is assigned to the variable on the left
hand side. No data conversion is done; the attributes
of the variable on the right hand side must agrce with
the attribute of the right hand side result. Identi-
fiers with the TC or SC attributes may not appear on
the left hand side. Note that the system variables
CASE, SQZ and PAUSE are set by assignment.

(5)

(6)

(7)

(8)

113

FRAME-statement
antax;

frame-name: FRAME
where frame-name is an identifier.
Action:

Serves to define the beginning of a set of state-
ments which constitute a frame. Use of the frame
facility is optional. It is used to take advantage
of default branching and default screen formatting.
DO-group head
Syntax:

{DO-group-label:1 DO
where DO-group-~-label is an identifier.
Action:

Serves to define the beginning of a DO-group.
Procedure-statement
Syntax:

procedure-name: PROC [(parameterl,parameter]...)]
where procedure-name and parameter are identifiers.
Action:

Serves to begin a DIAL procedure definition and
to define the procedure's parameter list.

END~statement

Syntax: .

- procedure-name

END frame-name
DO-group-label

11y

Action:

a. procedure-name
Serves both to end the definition of a procedure,
and upon.execuﬁlon, to return program control to
the calling point.

b. frame-name
Defines the end of a frame

c. DO-group
Defines the end of a DO-group.

(9) CALL-statement
Syntax:
CALL procedure-name [(argumentl ,argument]...)]

Action:

The procedure named in the statement is invoked
with the arguments (if any) in the argument list.
Execution resumes at the statement following the
CALL-statement.

(10) ENDLESSON-statement
Syntax:
ENDLESSCN [lesson-name]
Action:
The following system message is displayed:
END QF LESSON

DO YOU WISH TO GO ON TO THE NEXT LESSON?
TYPE YzS OR J)OFF

(11)

(12)

(13)

115

RESUME-statement
Syntax:

RESUME
Action:

Defines a resume point in a lesson. Chapter &,
Section 6, defines the RESUME process.

Naming-statement
Syntax:
identifier =

{text—const

slide—constj

Action:

Names a read-only constant and gives the TC or
SC attribute to the identifier. Note that such
identifiers cannot appear on the left hand side of
an assignment statement.

Examples:

pint = 'Press INT to continue'
MVT = 2705

Repetition statements
Syntax:
comparison-exp

DO WHILE
logical exp]

group of statements
ENDDO [do-while-labell

Action:

The group of statements so bracketed is repeatcodly
executed while the expression in the DO-WHILE clause
remains true. The decision is made before each
repetition. T

antax:

REDEAT
‘group of statements
comparison-expr
UNTIL
logical-expr
Action:

The group of statements so bracketed is repeatedly
executed until the expression in the UNTIL clause

becomes true. The decision is made after each
repetition; thus the group will be executed at least
once, ‘

h.16.3 Text manipulation

The three operators

SUBSTR,
INDEX, and
LENGTH,

together with concatenation, form @ workable set of primi-
tives for text manipulation. The definitions of SUBSTR,
INDEX and LENGTH in DIAL are exactly the definitions of the
built-in functions of the same names in PL/I-F [IBM 1970b:
Section GJ] and are summarized as

SUBSTR (text-expr, j [,k1)

INDEX (text-expr, configuration-text-expr)

LENGTH (text-expr)

Examples of string expressions using these operators

are:
A || B || SUBSTR (ANSWER, 1, 3)
SUBSTR (EXAMPL, INDEX(C,'H') + 1)
LENGTH (ANSWER)
SUBSTR (INFORM,u4)||ANSWER||'what you meant
to type?!

117

4.16.4 Expressions

An expression is a representation of a value. A
single constant or a variable is an expression. Combina-
tions of constants and/or variables, along with operators
and/or parentheses, are expressions. An expression that

contains operators is an operational expression. The

constants and variables of an operational expression are
called operands.
The rules for the five classes of expressions in

DIAL are as follows:

Valid

Class{Operators {Operands Result Example

S |SUBSTR |TEXT variables TEXT Al 'Dog!

H TC

.,

E | text constants SUBSTR(ANS,u)||X

+ - SLIDE variables SLIDE mvthm + 1

. . SC

= slide constants '

H INTEGER variables

0 INTEGER constants *

o |- ® INTEGER variables INTEGER { a + b

SHEE INTEGER constants A+BHCH(X-Y) {
J

{ i

S £] = expressions hav- vouth (AA=1)6(BR=1)

§ ing truth values value PAT ("¢ SA7: ')

] _ .

o > 7= any expression truth I> 4

Mo < <= other than value ANSWER = Al|B

&g 1. _ logical LENGTH (ANS)> =

59 |7 7F o IDENT > 'DOG’

O

118

Operands combined by an operator to form an expression

must have the same attribute.

4.16.5 System matching functions

The smf's are PEN and PAT; both of them
(1) operate on the student's response (the contents of the
registers ANSWER or PEN(1),...,PEN(8), and
(2) return a truth value.
a. PEN

§Xptax:

PEN(arith-expr)

Actigg:

The results of the arithmetic-cxpression must
be one of the integers 1 through 8. PEN (1)
returns the truth value 1 if the light pen hit
occurs on the ith multiple-choice entry.

Examples:
PEN(4)
PEN(I)
b. PAT
Syntax:
PAT(text-expr)
Action:

The text-expression defines a pattern and
PAT returns the truth value of 1 1f the pattern
matches ANSWER.

The pattern is made up of a series of pattern
elements separated by a cent symbol, the "don't
care" symbol, where noise characters may appear.
A match occurs if each of the pattern elements
(in the order they appear in the pattern) occurs
in ANSWER. The symbol ¢ cannot be in a pattern
element.

119
Examples:

(1) To test if ANSWER contains the key-letters
A, B, and C:

PAT('¢A¢B¢Ce')
Note there are three pattern elements.
(2) To test for a substring of ANSWER

EX <- '¢AND¢'
MATCH PAT(EX),Lu

(3) To specify an answer of the form
“NEXT: CALL P(ALPHA,BETA);"

SHOW 'Give an example of a statement
which invokes the subroutine P
having two parameters'

MATCH PAT('¢CALL P¢(¢,¢)¢3¢"),L5

The pattern elements in this example are:

CALL P
(

;

PAT('') matches only the null string.
CPAT('¢'") matches all strings. PAT('A¢B') will
match 'AB'.

4.16.6 Light pen usage

Multiple—choice items as targets must obey the
following rules

(1) each item must begin with the character *

(2) each item must occupy no more than one row

(3) there can be no more than eight targets.

120

Light pen hits are specified by the PEN smf. The system

recognizes only one hit at a time.

L.,16.7 Default actions

Item Default
Attribute TEXT
CASE on
SQZ on
PAUSE 2 seconds

Branching with #::-

MATCH "Right" is displayed in green, then
branch to next frame.

UNREC The following message is displayed in
yellow.

Your answer was not recognized. It may

be wrong, or it may be right in content
but wrong in form, spelling or punctua-
tion. Examine your answer and try again.

GOTO Branch to next frame.
QVALUE 1
AVALUE 11

RVALUE 13

4.,16.8 Abbreviations

These abbreviations are accepted:

Word Abbreviation
ANSWER ANS
MATCH M

SHOW S
SHOWAS SAS
UNREC U

4,16.9 Restrictions

(1) Character set
The CC-30 character set, for the purposes of
DIAL programming, is divided into ordinary

characters (those which have significance in the

language) and string characters (those which may

only occur in character string constants).
Ordinary characters:
A,B,C,...,2, a,b,c,.sc.52

0,1,...,9

String characters:

122

(2) Length of Character strings and DIAL statements

The CRT screen imposes the maximum length; since
there are 800 characters displayable on the CRT, and
the CAI System reserves the use of rows 18, 19, and
20 in author mode, the maximum character string

length and statement length is 680.

(3) Length of identifiers
All idéntifiers, CATI System-wide, may be up to

ten characters long.

(4) Reserved words

These words may not be used as identifiers:

ANS INDEX RMV
ANSWER INTEGER S

CALL LABEL SAS
CASE LENGTH SHOW
DCL M SHOWAS
DO MATCH SLIDE
ELSE NEW SQZ
END PAT SUBSTR
ENDDO PAUSE TEXT
ENDLESSON PEN THEN
FRAME PLISUB TO
GLOBAL PROC U

elo) REPEAT UNREC
GOTO RESUME UNTIL
IF WHILE

(5) Other

Item

Integer
PAUSE
Slide

carousel range

slide range

Number of ligﬁt
pen targets

PAT pattern elements

PAT pattern element
length

123

Range
-32768 to 32767

0 to 120 seconds

1 to 100
1 to 80

1 to 8

1l to 16

1 to 80

CHAPTER 5

THE OPERATIONAL ENVIRONMENT

5.1 The host computer system

Instead of using a computer dedicated to CAi, as most
workers have done, this project planned to use the IBM
System/36C at the Triangle Universities Computation Center
(TUCC), of which UNC is a one-third owner. Although a
dedicated machine may be appropriate for public-school use,
the use of a general campus facility, with both its system
and staff resources, is especially economical for colleges.
The major difficulties with this approach occur during
system development and are common to most projects which
involve embedding a sophisticated sub-system, using
essential but often privileged services, into a host
system already serving a large community of users. The
approach was explored during Phase I of the UNC project
and found to be sufficiently feasible in terms of system
debugging inconvenience and service received by the
working system, to adopt the same approach in the Phase II
system. Although debugging in a non-dedicated environ-

ment is considerably more difficult, the benefits in our

125

case, in addition to the economic ones, were considered
to be worth the price paid. These benefits result from
the extended scope of a comprehensive operating system
(CS/360 with the MVT - Multiprogramming with a Variable
number of Tasks - option) and include:
(1) the availability of PL/I a: the language for
programming the CAI System
(2) the availability of other 1aﬁguage processors
a. the Conversational Programming System (CPS),
possibly for extending the answer processing
capability of DIAL
b. the PL/I (F) level compiler for portions
of the answer analysis of constructed
responses as suggested in Chapter 9.
(3) comprehensive file handling capability used for:
a. instructional program storage
b. loggi~g (data gathering) of student
responses
¢. the File Management System of the CAI System.
(4) a well established teleprocessing environment
The primary data communications programs for the
CAI System (those supporting the multiplexed
CC-30's) are in the CHAT System. However,

secondary requirements, e.g., administrative

126
programs, data analysis programs and systems

debugging programs, were met by the existing
remote job entry facilities of TUCC.

The TUCC system is described in [Brooks, et al., 1968;
Freeman, 1968; Freeman and Pearson, 1968] where both
technical and organizational aspects are discussed. The
hardware cenfiguration during the early part of the CAI
System development was: (

S/360 Model 75 CPU

Main Storage lOZMK’bytes

Large Capacity Storage 2048K bytes

Disk Units 3 x 231k

Drum Units 2 x 2301

Magnetic Tape Units 1 x 2401-IT, 4 x 2402-IT

Line Printer - 1403

Card Reader-Punch 2540

Communications Equipment

2701 Data adapter for high speed lines to
S/36M's at Duke, NCSU and UNC

2703 Transmission control with 48 ports for
low speed terminals

During the summer of 1971, TUCC replaced its Model 75
by a System/370 Model 165 with 2048K bytes of main storage.
Replacing UNC's Model 50 as its on-campus terminal to TUCC
is the Model 75 formerly at TUCC. The CIIAT System, under

which the CAI System runs, was developed and operated on

the Model 75 while it was at TUCC. It operates entirely

from the low-cost 8 microsecond storage (LCS). The new

Model 165 at TUCC does not have such storages; its two

million bytes of fast storage
configuration. Therefore the
UNC with the Model 75, and it

slow core.

The host computer system

are less than the former TUCC
CHAT System was moved to

continues to operate f{rom

for production use of the

CAI System is therefore a System/360 Model 75 with the

following configuration.

S/360 Model 75 CPU
Main Storage

256K bytes

Large Capacity Storage 1024K bytes

Disk Unit 231u

Magnetic Tape Units 2 x 2415

Line Printers 2 x 1u03

Card Feader-Punch 2540

Card Reader-Punch 2540 housed in IRSS
building

Line Printer 1403 | nearby

Plotter

Graphics Displa.® System
Vector General and PLP-11/45

Communications Equipment
2701 Data adapter for high speed line to TUCC

1270 (Memorex) Data adapter for low speed and
medium speed lines

128

CC-7012 (CCI) Channel adapter

5.2 The Chapel Hill Alphanumeric Terminal (CHAT) System

The CHAT System was designed and implemented by
Gary D. Schultz [1973] of the UNC CAI Project. It is a
single—regionl resident time-sharing system wherein
various programs share the execution time by CHAT's use
of the 0S/MVT multitasking facilities. An application
program runs as a subtask with respect to one of the
executive tasks of CHAT. This monitor program also
provides the CC-30 input/output programming support to
application programs.

While CHAT was operating at TUCC, a medium speed
communication line (2400 bits per second) connected the
CAI Center to TUCC. The proximity of the CAI Center to
the UNC Computation Center installation has made it
possible to dispense with the communications line and use
a direct hardwire connection instead. The CHAT System
hardware configuration at UNC is shown in Figure 5.1.
The line transmission speed with this direct connection

causes the CRT screen to be filled in one~tenth of a

1The main memory subdivision that is allocated to a
job step in 0S/360 is known as a region under the MVT
option and a partition under MFT.

‘UGTIPANSTIUOD 2dPMPARY Wa1SAS IYHD ®YJ -- T°§ =2J4n3Tg

ININDIND3 H31dvaY
IdALIIAL d :\..ﬁ_o VLva
135
L _ﬁ A 1022
viva
| _/ -
HIINYYD =
: "S0¢-90D -NOWWOD T
. >
’ 20
M Fﬁ_ _\/ﬁ ¥3Ldvay | |Fh
TINNVHD r
H3IXIAILINW ANT1 ONO 3L
) =99 A 210.-00
axM 0S
G/ 13AONW
09¢/IWILSAS

31N VD

d31LN3O NOILVLNAWOD

130

second. Using the former 2400 bit line, we experienced
a 2 1/3 second screen-fill time, which we found to be
quite adequate.

The UNC CAI System is a complete subsystem running
as an application program under CHAT. Other subsystems
include Brown University's Hypertext editor, a numerical
analysis laboratory simulater and an interactive
assembler.

Access to a subsystem of CHAT is provided by the
CHAT Monitor Table of Contents (MTOC) display shown in
Figure 5.2. The default selection is CAI, i.e., de-
pressing INT in response to MTOC's invitation is equiva-
lent to either pointing to CAI or typing CAI and

depressing INT.

5.3 The student/author work station

5.3.1 The work station, pictured in the frontispiece, is
designed around a Computer Communications Incorporated
CC-30 Communications Station. The work station is
normally used by just one person (a student or author)
but has been designed also to allow.two students tu be
seated so that we can experiment with learning in pairs,

with perhaps one student using the keyboard and the other

the light pen.

131

« TYPE tha proaram name hara:

-

. [

Figure 5.2 -- The CHAT Monitor Table of Contents
(MTOC) display.

ERIC

Aruitoxt provided by Eic:

132

Output to the user is displayed either on the CRT or
on the slide screen above the CRT. A further output
facility, audio tape, is being studied for later
inclusion.

Input from the screen is either a message typed from
the keyboard and displayed on the CRT, or a 1light pen
position on the CRT.

A desk work area is part of the work station; authors
can use it for course-plan notes, instructional program
listings, etc.3; students for note-taking and performing
exercises which require pen and paper.

A proctor call switch is mounted on the left side »f
the display housing. When switched, é buzzer sounds in
the proctor office and panel lights show which station 1is

calling.

5.3.2 The CCI £N-"3 Communications Station

The nucleus of the station is the CC-301 TV Display
Controller. This has three major sections:.a magnetic
core buffer memory, a character/graph generaztor, and an
input-output section. The buffer has two functions: it is
both the data source ror refreshing the CRT, at the rate
of sixty times per second, and the stourage facility for

the station.

The CC-300 TV Display is a standard television set
or television monitor. In the aiphanumeric mode the
characters stored in the buffer memory in ASCII format are
displayed on the CRT in a format of 20 lines of 40
characters each. When operating in graph mode, data are
displayed by means of a 108 x 85 matrix of dots.

The CC-304 Light Pen, similar in shape, size &and
weight to an ordinary fountain pen, employs a photo-
transistor detector. When it is directed towards the
display, a marker appears on the CRT indicating the
charactér position at which the light pen is positioned.
This marker is a brightening of the character background.
The coordinates of the cnaracter are stored in the CC-301
when the interrupt button on the pen is depressed.

A fandard liodel 350 Koudak Rantdom Access Carousel
slide projector is connected as an output unit to the
CC-301 by a specially designed interface. The four
commands for the projector are: lamp on, lamp off,
show slide nn and show the next slide.

Further details on the station are given in the

manufacturer's manual.-[CCI, 19681.

5.3.3 Gaining access to the CAI System

As soon as the user is seated at the work station he

134

depresses the INT key, which results in the CHAT Monitor
Table of Contents di5p1ay2 of Figure 5.2. Depressing
INT once more initiates the CAI System which then
invites the user to sign-on, by displaying the message
SIGN ON BY ENTERING YOUR ID
)JSIGN ON _

Whether he is an author or student is determined by
his identification number. An author is put under the
control of the program foutine AUTHOR and invited to enter
his first command. A student identification number causes
the appropriafe instructional program to be loaded and
execution of it to begin, after a restart procedure if

necessary.

5.4 System overview

This section is intended to provide a background to
the discussion, in subsequent sections, of author and
student use of the system.

The overall flowchart of Figure 5.3 shows the two

main parts of the CAI System, student and author modes.

2This is the only direct contact (c.f. Figure 4.6)
that a CAI System author/student user has with CHAT
under normal operating conditions.

(START)

Sign-on an
operator

Type

Load the lesson
to be worked on

Handle interactive
programming
until
Yoff
or collapse.

\QE\iiiiiiiﬁ}/

VY

¥

Resume the course

at a sensible point
OR

Recover the student

if last session

terminated abnorm-

ally

Present course mat-
erial, continually
logging each
response and check-—
pointing recovery
information
until

Yoff
or collapse

Sign-off the
operator

END

Figure 5.3 -- An overall flowchart of the CAI

System.

136

Student mode

Presentation of course material to a student occurs
in this mode. The instructional programs preparéd by
authors are executed in a paging environment implemented
in the CAI System. The run-time storage environment
for each student's execution of a program is carried from
one session to the next. Each action of a student is
logged for later off-line analysis, and status information
is continvally checkpointed to minimize the effects of

system breakdown on students' progress and attitudes.

Authcr mode

Preparation of course material occurs in this mode.
A command language interpreter controls the compiler
ior DIAL and author testing of program segments. The
system tries to anticipate, at every step during inter-

active programming, the author's next type of input.

Protection

There is absolute protection of a lesson in use by
students from author tampering. Identification number
protection is provided between users (both authors and
students). Protection against UNC Computation Center

system failure, CAI equipment failure and CAI software

failure is attempted. Additionally, the operator 1in
student mode is protected against making any change in

course material or any explicit change in other files.

Course structure

A set of lessons constitutes a course; the only
communication between lessons is by means of identifiers
with the GLOBAL attribute. Such a cotvrse structure was
designed to meet the following requi.ements

(1) flexibility in course preparation;

(2). the setting of a practical (from an implementa-

tion view) maximum program size;

(3) protection of sections of course material in

student use from author tampering.

File management system

With the exception of the student record and author
record files, which are held on two 0S/360 ISAM (Indexed
Sequential Access Method) data sets, all logical files for
the CAI System (files for log, instructions, source code,
recovery, directories, etc.) are held on one physical
0S/360 BDAM (Basic Direct Access Method) dataset named
CAIFILES. The File Management System, the part of the
system which handles the management of CAIFILES, is not

described in the thesis since it is not seen by the user,

133

but is covered elsewhere in the system documentation
[Mudge, '1972]. Briefly, its functions are to handle
(1) disk storage management;
(2) the wvarious logical files;
(3) the coordinated use of external seriallv
reusable resources;
(4) directories of courses, lessons, source code,

etc.

5.5 Instructional programming in DIAL - author use of the

system

Since Chapter 4 gives the DIAL specification, we are
here concerned only with the command language, i.e., we
treat the mechanisms for interactively programming in DIAL.

Each command is preceded by the character), e.g.,
)list, chosen because no syntactically valid construct
in the language can begin with closing parenthesis.

The author converses with AUTHOR by means of the command
language and the statement-numbering mechanism.

Before a DIAL statement can be entered, the lesson to
which it belongs must be defined. If a new lesson is
being created, the)lesson command is entered, in the

format

Jlesson lesson-name

139

and causes the appropriate directory entries to be made
and disk storage space allocated. If a DIAL statement
being entefed is to be a change or an addition to an
existing lesson, then that lesson is defined by the)load
command.

A statement number must appear to the left of each
DIAL statement. It provides the author and the system |
with a way of referring to the statement which follows 1t.
Consequently, every statement number must be unique; 1f two
statements are entered with the same number, only the one
typed lést will be retained. Numbers must lie between 1

and 9999.°

The author can ask the system to generate
statement numbers by preceding any line with Jm,n where
m is the base number and n is the desired increment. The
system signifies its aceeptance of a valid numbering
request by overwriting the request with the first
statement number.” Fcr example,

)200,10
would be accepted and overwritten by 200. Then, after a

DIAL statement has been accepted, thec system would prompt

the author by displaying 210.

A numbering scheme allowing decimal points was
rejected to conserve precious CRT space.

140

Although statements in a DIAL program may be entered
in any order, their order for execution is determined by
their numbers.

The role of the statement-numbering mechanisms 1s thus
twofold:

(1) it serves to indicate that code entered by an
author has been accepted as error-free by the
compiler. This is signalled by the system
displaying the next statement number and
enabling the keyboard.

(2) as an editing facility: statements may be
replaced, deleted or inserted by preceding
a statement with the appropriate statement
number.

The CRT screen format is shown'mn Figure 5.4. The
first seventeen lines of the scieen are available to an
author for entering statements. Line .18 displays the
light pen buttons, and lines 19 und QC are used to display
diagnostics given by the compile™ or ccmmand language
interpreter. The figure shows a typical diagnostic,
with the cursor at the position at which the compiler
thinks the error hés occurred. When an author has used
down through line 17 of the screen, the CAI System clears

the screen and resumes at line 1. This action is known as

141

780 d7: ;********#XW!&T |

i _ - RE
202 T SHOW uloep 11 \ .
_'Call uouh toop bu th. i‘b"\LOGP

Uh.n uou hov- uhitt.ﬁ vha co*&ict.v‘

- .:.t of ml:xinq :tnt.maht: out\on~

. paper., th.n ' h
) o . ¢, pint \

Figure 5.4 -- The cathode-ray tube screen format
in author mode.

142

throwing and can be forced by pointing at the light pen
function #*THROW®.

To view the execution of a segment of his lesson, an
author types)xeq m,n, where m and n are the statement
numbers delimiting the segment. The other options for the
Jxeq command are:

)xeq m begin execution at m and end at the highcst

number known in the lesson

Jxeq m. execute statement m only
)xeq begin execution at the lowest statement
number

The parameters m and n can be DIAL labels as well as
statement numbers.

Execution of a program segment can be terminated by
the author entering)stdp. 0f course the keyboard must
be enabled for him to do this, and it will be so Whenever
his program is expecting a student input.

When an author has fully tested a lesson he attaches
it to a course by the command

Yattach 1lesson-name to course-name
The lesson then becomes inaccessible to him in authdr mode.
If he wants to keep an accessible copy for himself, he can
do so by using the command

Jrename new-lesson-name

which will make a copy of the lesson currently loaded

143

and name the copy new-lesson-name.

A group of one or more DIAL statements may be
retrieved from a library and included in a DIAL lesson
by the Jinclude command. Two libraries are available
to an author, his own and the public 1ibrarylto which
all authors have access. The Jinclude command has two
forms

)Jinclude group-name
and)include group-name public

There are no structural restrictions on the DIAL
statements which constitute a group, e.g., the group need
not be a subroutine. A groﬁp is put into a library by

)group group-name

the group of DIAL statements

)enégroﬁp
The form
)group group-name public
is used for the publiic library.
As an example, consider a set of character constants
an author would like to use in each lesson in a course

he is building but wishes %o avoid entering them for each

Luy

new lesson. The group would be placed in the library by

JGROUP CCONS
100 /#character constants:-%/
110 /*************ﬁ*********/
120 0OBS='Observe the slide above '
130 PINT="PRESS INT TO CONTINUE'
140 TYNO='Type yes or no'
150
Jendgroup
and Jinclusion followéd by a J)listing
300
310
JINCLUDE CCONS
JLIST 900

would appear as

900
910
920 /*character constants:-%/
930 /**k********************[

G40 .0BS='Obcerve the slide above'
950 PINT='PRESS INT TO CONTINUE'
960 TYNO='Type yes or no'

970

The remaining commands and their functions are:

)load lesson-name locates the named DIAL lesson in the
author's directory and by loading it
makes it available for him to wWork on.

)Jlist m,n displays the program segment delimited
by statement numbers m and n. If mcre
than seventeen screen lines are con-
tained in the segment, it is shown in

successive batches of 17, the author

pressing INT to obtain the next batch.

Jdelete m,n

145

Thus the author can quickly "page
through" a DIAL lesson. The options
J1list m,)list m. and)list are
available and the scopes are the
same as for J)xeq.

deletes the program segment delimited
by m and n. The options of)xeq are

available.

Jreseq m, n from p by q

Ydirectory

Jnumber

Insertions and corrections often iake the
the final form of a program consider-
ably different from that of i1ts early
stages. To avoid the inconvenience
that this can cause, e.g., in trying to
insert a ‘statement between 1004 and
1005, the Jreseq command is provided.
The command resequences the program
segment delimited by m and n beginning
with p aind using q as increment.

lists all lessons in the author's
directory.

The command is overwritten with the
next free statement number for the

lesson loaded.

146

Jpurge lesson~name Purges the lesson from the system.
Since the actions performed by this
command are irrevocable, a response
1s senw instructing an author to
repeat the command; then, if he does,
the purging is carried out.

Jprint [lesson-name] Produces & printed listing on the host
computer. If no lesson-name is given,
the lesson currently loaded 1is
printed.

)1id The command ig overwritten with the
name (ID) of the lesson currently
loaded.

Joff Invokes the sign-off procedure and

hence termination of the session.

A summary of the commands is given in Figure 5.5. Three-
letter abbreviations for each of the commands are
acceptable. The commands may be entered in upper or

lower case.

Reading from the screen

Whenever the keyboard is enabled, an author is free
to move the cursor to any of the 800 character positions.

But the CHAT interface uses the cursor position to define

147

AUTHOR COMMANDS

Fur-tion Command Other Options
sign off Joff
new lesson)lesson <>
listing)list Jlist m i
)1list m.
)1list m,n !
Jprint
lexecution)xeq Yxegq m
)Xeq m.
)Xeq m,n
)stop
general)load <>
)1id
Jm,n
Jnumber
lesson/course)directory
structuring Jrename <>
Jattach <> to <>
Jpurge <>
editing ~Jdelete Jdelete m
)Jdelete m.

Jdelete m,n
Jreseq i,J from k by 2%

glibrary Jinclude <>
;)group
3 Jendgroup

" Notes: 1. <> is a lesson Or course name.
! 2. m and n are statement numbers or labels.
3. i,j,k, and & are statement numbers.
. 4. Three letter abbreviations of the commands
| are acceptable.
: 5. Either upper or lower case can be used for
the commands.
Figure 5.5 —- The summary sheet of commands for work

station use.

iu8

which part of the screen will be transmitted to the CAI
System as authcr input. Hence it was necessary to estab-
lish a convention for reading from the screen.

A window 1s that part of the CRT which the CAI
System will read. Changes made or new text entered by an
author will be effective only in this window.

The system expects the window to contain either a
DIAL statement or a command and will respond with a
diagnostic message otherwise.

/ifter processing the contents of a window, the system
tries to anticipate the type of the next action and
positions the cursor in the row of the new window top.

The end of the window is the position of the cursor when
the author revressces INT to send his action to the system.
The window may be moved by an author at any time,

for example, to cover a DIAL statement further up the
screen, by pointing the light pen to the row he wants to
be the new window top.

To summarize, screen reading is defined by a window

(1) of shape l s

(2) of variable size (1 to 17 rows) according to the

length of the author action it contains,

149

(3) with its top being the row where the cursor
was left by the system (anticipated next move
or in response to a move window request),

(4) with its end being the cursor position when
INT is depressed.

When DIAL statements are being entered sequentiaily
the window top moves down after each statement has been
accepted. During editing an auvthor will move the window
to cover a statement in a segment he has)listed.

The action of the light pen function *THROW®* can be
recast in terms of the window - a throw request causes the

screen to be cleared and the window, with its current

contents, to be repositioned with its top at row 1.

The *SUBST#* function

A text manipulation facility is available to an
author, with which he uses the light pen to point to parts
of his program at which he wishes to substitute, insert,
or delete text. To use this facility he first points at
SUBST with the light pen. The system then displays
the prompt TEXT? on row 18 (overwriting SUBST in green)
and positions the cursor at the beginning of row 19 in-
viting him to enter the text. When he has entered the
text, he presses INT, is asked FROM? and points to a

position on the screenj; then he is asked T0? The system

150

inserts the text, restores the *SUBST#* button, and enables
the keyboard again.

The #*SUBST#* function can also be used to delete text
if a null string is entered. In summary, the protocol
for *SUBST* is

(1) pen #®SUBST*

(2) TEXT? - if author enters nothing, then a delete

function occurs,
- 1f author enters non-null, then a sub-

stitute or insert function occurs,

(3) FROM? start of replaced text,

(4) TO? - end of replaced text.

5.6 The execution of an instructional program - student

use of the system

Because the current design is strictly author-
controlled CAI, there is only one system command avail-
able to the student, namely

Yoff
All’other responses from the student are elicited by the
author, and take the form of typed input or light pen
input. Figure 5.6 shows the CRT and slide displays.

during a typical student interaction.

ERIC

IToxt Provided by ERI

shou(l.d ’ b “

Tra oqcf. [

Pigure 5.6 -- The cathode-ray tube and slide displays
during a typical student session.

ERIC

Aruitoxt provided by Eic:

152

The point in a lesson at which a student is restarted
at each new session has received special attention in the
system design. Unless the previous session terminated
abnormally, the system goes through the RESUME process in
which the student is restarted at an author-specified
point in a lesson. To help the student's orientation,
this point is usually at a frame just prior to the end
of the last session. The system message displayed to
indicate a RESUME 1is

NORMAL RESUMPTION -- YOU ARE RESUMING
LESSON ¢ AT A SUITABLE POINT

PRIOR TO WHERE YOU SIGNED OFF.
If the previous session terminated abnormally, the system
goes through the RECOVER process, in which the student is
restarted at the point at which recovery information was
last taken. The system message displayed to indicate
a RECOVER is

ABNORMAL RESUMPTION -- YOU ARE RESUMING

IN LESSON b AT A POINT JUST PRIOR

TO SYSTEM FAILURE.
Thus during each session the system needs to periodicalily
copy RESUME and RECOVER information to CAIFILES. At sign-
on, to choose between the two processes, the system uses
the setting of the switch RECOVNEEDED on the student record

file STUREC. The logic of its settings is given in

Figure 5.7.

153

RESUME RECQVER ,

Turn on
RECOVNEEDED
on STUREC

THIS
SESSION

’

termination?

RECOVNEEDED
‘‘‘‘ stays on on
STUREC
Turn off Y
RECOVNEEDED
1 STUREC

Figure 5.7 -- The logic for setting the RECOVNEEDED
switch.

154

5.7 Proctor facilities

A third type of user of the system is the proctor,
who 1is present in the CAI Center building during all
student sessions, and has both administrative and peda-
gogical roles. To date we have examined only his
administrative duties, where, for example, he is
responsible for intrcducing new students to the system
(by entering the student's identification number on to
the student record file and teaching him to operate the
work station) and dealing with operational difficulties
during student sessions. In his pedagogical role the
proctor is the on-~site representative of an author;
this thesis does not examine this role.

The procteor terminal is a standard Type 33 ASR Téle—
type located in the proctor office. A current implemen-
tation restriction that prevents communication between
sub-tasks in the CAI region, in particular between the
proctor sub-task and a student suE—task, consequently
prevents real-time interaction between the proctor and the
student via the system. Interaction of this type could,
for example, cause the proctor terminal to type a message
that a given student had reached a RESUME point in the
instructional program. Abnormal conditions such as

student station failure or the student entering proctor

mode, could also be signal=d.

5.7.1 Proctor override

A facility is provided whereby the proctor can
override the normal sequence of execution of an
instructional program. Our Phase I experience clearly
revealed the need for this facility

(1) to correct situations caused By hardware and

software failures,

and (2) to enable the student to repeat a particular
segment of the course.

Although the RESUME and RECOVER processes should handle

For

most of the problems, I feel there is still a need
an override mechanism.
The proctor can use this mechanism at any stege in a
student session after sign-on by entering)proctor on
the display. The system responds with)_ and tue
proctor then completes
Joverride statement-number

where statement-number is the DIAL source-code statement

in the current lesson at which he wants program execution

uThis situation is intimately involved with the
instructional process and, like other forms of pedagogical
assistance given by the proctor, must be strictly con-
trolled in any experiment aimed at evaluation of CAI.

156

to be resumed. Joverride lesson~-name causes a jump to the

beginning of the named lesson.

5.7.2 AdminisStrative programs for proctor use

These off-line programs, most of which were written

by Robert Cannon, have facilities for

tile maintenance of STUREC, the file of student records,
file maintenance of AUTHREC, the file of author records,
printing the log file held or. CAIFILES,

and vreporting the student statistics gathered by the

system.

An on-1line file inquiry program has been written
by Mitchell Bassman to display the contents of a
student's STUREC record. The program is used at a
student/author work station but is accessible only to

proctors.

CHAPTER 6
MODIFYING AND EXTENDING DIAL - THE

TRANSLATOR WRITING SYSTEM

6.1 Introduction

An important requirement in the design of DIAL was to
include in its implementation the ability to modify and ex-
tend the language. The purpose of this chapter is to give
an understanding of the Translator Writing System to a level
which will be helpful in assessing the fiexibility of the

,
implementation of DIAL. Furthermore, the chapter should
provide a perspective for a systems programmer working with
an author in changing the language.

Translators for high level languages are among the
most complex types of computer programs and hence are
expensive to build. Research in computer science, in
particulgr in formal language theory, and experience with
existing translators have led to a better theoretical and
practical understanding of the processes involved in
writing translators. Translator Writing Systems are now
available which automate major portions of the task. For an

excellent review of the field, see [Feldman and Gries, 19681].

The utility of a Translator Writing sttem (TWS) is
based on the observation that most transla%ors hav~ many
tasks in common - scanning of source text,gsyntax analysis,
and generation of output. If these probleés are solved
once, in general form, the writer of an inéividual trans-
lator can concentrate on that part of the éob which is
unique to his translator, i.e., the connec%ion of‘his
meanings (Seméntics) to his forms (syntax)é

The TWS built for the CAI System to eéable users to
modify and extend DIAL is based extensivel§ on the TWS
designed by McKeeman and others at Stanforé University.
This latter system ard the construction of?a translator
for the language XPL are described in [McKéeman, et al.
1970]. In this thesis it is referred to a% the XPL TWS.

The metalanguage BNF (Backus-Naur Forﬁ) is used to
describe the syntax of a language for which a translator
is to be built. The semantic definition o the language
consists of a set of user-written routines‘in the completed
translator, where a semantic routine is called each time
a syntactic construct has been recognized in the source

language program being translated.

lPor a complete treatment of certain topics, I direct
the reader to [McKeeman, et al., 1970]. 1In this chapter
it is referred to as A Compiler Generator.

159

The TWS in the CAI System (CAI TWS) consists of
two principal parts:
(1) CONSTRUCTOR,2 a translator from BNF into syntax
tables (also called recognition tables) used in:
(2) COMPILER, a table-~driven translator written in
PL/I using user-written semantic routines.

These two parts are shown in Figure 6.1.

6.2 The compiler and the CAI System

Each DIAL compiler is produced with the aid of the
CAI TWS and is known as the routine COMPILER in the CAI
System. The routine named AUTHOR converses with an authcre,
and, in response to a DIAL statement, invokes COMPILER as
shown in Figure 6.2. The object code generated is a set
of machine language instructions for a conceptual machine,
called a delta machine. The instruction format is one-
address. An interpreter for delta code is in the routine
named EXECUTOR. This routine executes programs for both

student and author modes.

2This part is-called ANALYZER in A Compiler Generator.
I prefer the term constructor from [Feldman and Gries,
19681 to avoid confusion with the term (syntax) analysis
in compiler construction.

L6o

CONSTRUCTOR

S

Grammar
in BNF

CONSTKUCTOR

Grammar
analysis

Recognition
tables for
COMPILER

COMPIULER: DIAL
source

program

Lexical
analysis

Tokens

Svntax
analysis

A RN

Semantic routines
for code generation

Recognition
tables

Figure 6.1 -- The two parts of the translator
writing system.

o
(START } L6

Read DIAL source
statement from
CRT

Try to compile the

statement by pass- COMPILER
ing it to '

COMPILER ~r_______j§_////

Y

Erriii////
J

N

Display diagnostid
message and
position cursor td

Signify OK by location of error
displaying next

statement number

]

Read corrected
text from CRT

Figure 6.2 -~ The invocation of COMPILER by the
controlling routine AUTHOR.

162

6.3 The CAI translator writing system

6.3.1 Introduction

The CAI TWS differs from the XPL TWS in three
respects.3
(1) Due to the lexical flowgraph notation, lexical

analysis is less grammar dependent.

(2) The CAI TWS uses PL/I, not XPL, for the description
of translators.

(3) Some a priori knowledge of the CAI language environ-
ment has been used.

To elaborate this third point, consider further the
generality requirement of a TWS. Syntax analysis is
grammar independent (provided, of course, that the
grammar is acceptable), code generation is highly grammar
dependent and lexical analysis is normally grammar de-
pendent. As regards lexical analysis we know, for
example, that the CC-30 character set is constant, and
that the wide variety of tokens normally encountered,
e.g., flnating point constants, will probably not be

required in the CAI environment.

3Since these are only minor differences, A Compiler
Generator is still the major documentation for th "AI TWS.

L¥Except, of course, as data for DIAL programs.

163

This a priori knowledge of the tokens to be
encountered has reduced the extent to which SCAN :rust
allow easy modification. SCAN can therefore take a
reasonably simple approach to lexical analysis and yet,
by the lexical flowgraph notation, be fairly independent
of grammar changes within the DIAL environmenf.

For some grammatical constructs there is a choice
(in the construction of any compiler) between recognizing
them in thie syntax analysis phase and in the lexical
phase. ‘As a policy (aimed at keeping COMPILER as
systematic as possible) the burden of all but trivial
recognition tasks is put onto the syntax analyzer. This
generality and systematization is achieved a+* the expense
of efficiency, but seems worth the cost.
Note that the recognition of an identifier, which
has the following syntactic definition,5 is done by SCAN.
<identifier> ::= <letter>
| <identifier><letter>
| <identifier><digit>

<letter>

AlB|.... |Z]a]b |z

<digit> o1f...]9

5The length restriction (ten) is not tshown in this
BNF definition.

164
Since this definition is unlikely to change as DIAL is

extended, the TWS loses little in generality.

6.3.2 - CONSTRUCTOR

The output of CONSTRUCTOR is a set of recognition
tables in the form of PL/I DECLARE statements (with the
INITIAL attribute used to provide table values) for the
version of COMPILER being built. This PL/I version of the
constructor was supplied by John Walters [19701].

An XPL constructor is used fcr most of the runs
during debugging of the grammar expressed in BNF as it is
much faster and produces a better grammar analysis. How-
ever, it produces XPL declarations. Therefore the final
run of a set of BNF 1s done on the PL/I version.

CONSTRUCTOR is described in A Compiler Generator,

Chapters 7 and 10.

6.3.3 COMPILER
COMPILER is made v of three main parts:

(1) SCAN, which performs the lexical analysis and passes
tokens to:

(2) ANALYZE, the main driQing loop which performs the
syntax analysis. The recognition tables from the
constructor are read-only data for this routine,
which upon recognizing a syntactic construct calls:

(3) CODEGEN, the semantic routines.

168

‘ ANALYZE)

-«
Get next token SCAN —\\\\
pres STACKING \

Stack? > Stack the
token

N

Reduce

Seiect the
production

Generate
‘code

Reduce by
applying the
production

Figure 6.3 -- The main compilation lcop in COMPILER
showing the relationshir betwer . ANALYZE, SCAN
and CODEGEN.

166
Their interrelationships are shown in Figure 6.3.

6.3.3.1 ANALYZE

This parsing algorithm is the nucleus of the TWS

and is described in Chaptefsu and 9 of A Compiler Genere-

tor. The PL/I version used in COMPILER is included in
Appendix D to this thesis. It is based on a PL/I version

by Walters [1970].

5.2.3.2 The lexical flowsraph

So thet SCAN could be changed easily, a notation
was developed for describing lexical analysis.

Cheatham's lexical graph [1967] has been modified
so that advantage can be taken of certain properties of
DIAL and so that there is a close correspondence between
the lexical flowgraph and the actual PL/I code used in
COMPILER.

A lexical flowgraph is a collection of nodes,
directed line segments and labels; recognition of a token
consists of a successful traversal of the flowgraph from
the rode <:> to a node [_].

Before the complete notation is introduced, consider
a simple example. The recognition of the terminal symbol
<identifier>, whcse syntactic definition was given in

Section 6.3.1, can be described by the following flowugraph.

167

a/CI

a/C s
.) I .
@ Q_ 7 "’(iz
)
(n/CI
\,

N

-

ERE

Starting at (:), with register I set to nul' , an alphabetic
character (class a) causes a move to the second node and
Concatenates the character into‘register I. Then the
graph loops on the second node, concatenating alphabetic
characters and numeric characters (class n) into I, until
another class of symbol appears. Tr 1 the traversal is
complete at node [| where 2 is placed into 'the Type
register to signify <identifier>. |
Thére are three parts of the notation:
(1) Phrase structure grammar notation
v the set of non-terminal symbols.

N

Vo the set of terminal syﬁbols, i.e., terminals as
far as ANALYZE is concerned and hence sometimes
referred to as tokens.

T1 the set of direct terminalé. A direct terminal

is a terminal which is recognized directly by

SCAN, e.g., GOTO, +, and <=.

168

VT2 the set of derived terminals. A derived
terminal is one which is derived according to
some rule operating on elements of the
character set, e.g., <text constant>.

K a partition of the character set into classes:

a={A,B,...,Z,a,b,...,2}
n = {0,1,...,9}

3y = {3}

+ = {+} etc.

A the ~mpty string, of length zero.

(2) The communication registers in COMPILER

A set of registers is filled by SCAN for use by
other parts of the compiler. The registers and their
contents for the current implementation of DIAL are:

N BCD of number constant

S BCD of text constant

I BCD of <lexical identifier>

T type (l=element of Vj 2=<lexical identifier>,

13
3=constant)
D constant type (non-null only for T=3; l=text,

2=number) .

(3) Flowgraph nodes and labels
The start point <§> has already been seen. At (é)

the registers N, S, and I contain A.

169

LP . pointer to the next character in the input
string to be scanned.

labels labels on line segments are of the form k/A
where k € K is the class to which the character
belongs, and A 1s the action to be taken. A
can either be the null action o, or CR which

means compose the character into register P,

e.g.,

means "if the character is alphabetic then
concatenate it into the I register.”
An unlabelled 1ine segment means "anything not

accounted for."

denotes end c¢f traversal. An element of VT has

been recognized ind the appropriate codes

entered into the registers. The convention that

LP is always set ready for the next traversal

has been adopted.

<:::> the . .rmal program flowchart decision symbol.
.Figure 6.4 shows the lexical flowgraph of the

scanner used in an early version of DIAL.

/e,

170

(alphanumeric
identifier)

(nurelv alnha
identi fier)

N (direct terminal)

T=3mz

umber
constant)

T=3
D=}
(text
constant)
Note: Certain elements of Vi, ,€.8., ¢~
and 7=, are not recognized by this simple
version. The current version recognizes
them by extra line segments on the /CI
path leaving <§)
Figure G.4 -- A lexical flowgraph for an e oly

version of DIAL.

17]

6.3.3.3 CODEGEN

Recall from figure 6.3 that CODEGEN 1s called by the
main compilation loop just before each reduction is dene.
CODEGEN 1is highly systematic and modular: to each pro-
duction in the grammar there corresponds one code
section. Figure 6.5 shows code sections for three
productions in a recent version of DIAL. Many of these
code sections remain completely unchanged as DIAL 1is

extended.

6.% Steps in using the CAI translator writing system

A systems programmer using the TWS has available to
him the program listings and other documentation in the
Systems Programmer Manual [Mudge, 1972]1. The following
is Jjust a list of the steps he will follow in modifying

an” extending DIAL.

(1) Express the grammer in BNF. ©

(2) Debug the grammar using the XPL constructcr.
(3) Make a final run with the PL/I CONSTRUCTOR to punch

recognition tables.

6Inexpressables are handled in the usual ad hoc way
' by code in COMPILER (mainly in CODEGEN).

O

| ERIC

\

/.......‘..........30.......0....................ﬁ..................‘”
PE(19):
/e 19 CHATCH FRIMARY> :1:- <CUAR CONGI> ./

CALL EMIT(READT,0);
CALL EMIT(CONPARELIT,Tu.i_LNFU2),

DO_REF: /¢% INSERI Tk JE INSTRUUT2O8 IN TuE CHAIN AND BMIT IT LY
/%% SINCE wE WON'T KNOW THE JUNP AUDRESS FCR JB UNTIL WE REACH THE *¢/
/%** LABEL AT THE END OF THo STATEM:LNT, WE HAVEL A BREF_CHAIN LINKING®es,
ses% ALL THESE Jb INSTRUCTION3. THUS UO_KBP HERE INSERTS THE JE IN s¢s/
/%%t THE CHAIN. seey
1 = REF_PTH:
REF_P1LR = P_COUNTEFR /. FHEE_INSIN;

IF #_FLIRST THEN DU; /*FIRST <OPERAND> SO USIGNIFY END OF CHAIN s/
L = 0;
M_FPLasT = 0%y,
END,

CALL ENMIT{JE,I):
RETURN,

AL e A T L AL R LA L A LAl
P8 (uo0):
/* 40 <oaTo ST> o= <GOTU> <IDENTIPIER> s/

/%%* NOTE THAT THIS CODE I3 ALSO JUMFED TO FROM CLABEL LIST> PRODNS.*/

IF TOS_TYPE = 9 THEN 00; /*PREVIOUSLY DEFINED LABEL S0 EMIT THE */
/*COMPLErZ INSTRUCTION. LV
CALL EMIT (JUMP,TOS_ADLR);
RETUNN;
ERD,;
1¥ TOS_TYPFE = 0 THEN DU; /%IT 1S [HE FIRST REFERENCE TO A FORWARD .
/*LABEL 30 INITIALIZE THE FIXUF CHAIN. 4
‘CALL EN1T(JunP,0); /*ZERC = END UF CHAIN .y

ADDR (TOS_Li NFUZ)= P_CUUNTER + (FPREE_INSTN-1);
/% FCLAT TO THIS YND ELEMENT OF THE CHAIN. */

/% NGTE THAT P_COUNTER REFEHRENCES THE 0 OP-*/
/% CODE LNSTRUCTION PREFIXED TO TEMP_LNSTNS*/
/% BY AULHONX. POR GOTO STATEMENTS, .
/% (FREL_INSTN-1) WILL ALWAYS BB 1. FOR A4
/% PRODUCTIONS, E.G,, CLABEL LIST>, WHICH e/
/% JUMP HERE, ([PREE_INSTN=-1) WILL ONLY BE */
/* 1 POR THE FIRST LABEL IN THE LABEL LIST.*/

TYPE(TOS_INFUZ)= 10; /*INDICATE IT IS A LABEL */

/*NOW NEEDING PIXUP. s
RETURN
BND;
IF TOS_TYPE = 10 THEN DU; /#IT IS ANOTHER PORWARD REFBRENCE ./

CALL EMIT (JUMP,TOS_ADDR); /*ADD EL'T TO CHAIR */
AUDR (TOS_INFCZ) = P_COUNTER ¢ (FREE_INSTN-1);

/*POINT TO THI5 LAST ELEMENT ADDED. LV
/*¢s SEE NOTE ABOVE PCR TOS_TyPE = 0. #%eee,
KETURN;
END;
ERKOR = 2863 /*CONPLICTING ATTRIBUTE -~ IDENTIFIER NOT A LABEL. Y,

RETURN;

/.‘......“...‘..‘...........‘....‘.%.‘..‘....“..“‘.“.““““““./

Pe(uly .
VAd 41 CASSIGN sT» ::= <YARD> <ARKUND> <LOGICEX> */
,"*% CHECK TYEE COMPATIBILITY .

J=C_SYM_DOPE.TYPE {31TACK, INFO2(SP-2)) ;
IP J=1 THEN IP TOS_INFO~=T_TEXT ‘HEN ERROR=E£13;
1 LSe;
ELSE IP J=4 THEN IF TOS_I!FU~=T_INTEGER THEN ERROR=E14;
LLSE; .
cLse IF J=6 THEN IP TOS_INPO~=T_SLIDE
THEN BRROR=E15;
ELSE;
ELSE SRHEOR=E27;
1¥ PRROR~=0 THEN RETUL,

J = C_SYya_DUOPE.ADDR(STACK.IRFOL(SP~2)});

IF TOS_INFO = T_TEXT 7 &N CALL EMIT(SFORECH,J) ;
IF TOS_INFO = T_SLIVE -MEN CALL EMIT({(STXS,J)
IFP TOS_INFO = T_INTEGER THEN CALL EMIT(5TX,J)
RETURN;

Figure 6.5 -- The CODEGEN sections corresponding to theee
productions in o recent version ol DIAL

172

p—
~J
(o)

(4) TIf necessary, modify 3CAN (by hand) in accord with
the conventions of the lexical flowgraph.7

(5) Put the new recognition tables in PARSER® and run it
with some DIAL source.

(6) Go back to step (2) if PARSER runs reveal a probloem.

(7) Write the new parts of CODEGEN and debug piece by
pilece.

(8) If necassary, write additions to EXECUTOR's delta

code interpreteﬁgénd debug piece by piece.

(9) Perform final test.

6.5 The class of grammars acceptable to the translator

writing system

A grammar is acceptable tc¢ the TWS if it is accept-
able to the syntax analysis algorithm in COMPILER. The
algce ~ithm used is a Mixed Strategy Parsing (MSP)
algorithm of degree (2,1;1,1) according to McKeeman's
definition. The tz2sks of describing in detail the parsing
algorithm and of giving an adequate explanation of the

degrec are beyond the scope of this thesis. Chapter 4 of

7In most cases, the only changes will be to the
symbcl table routine in SCAN.

g

This 13 a routine in the CAI TWS wnrich performs
lexical and syntax analysis only. It prints a parse
trace and is useful in planning CODEGEN.

17y

A Compiler Generator gives several parsing algorithms

and the rationale for the MSP approach.

It suffices to say here that the class of acceptable
grammars is large because grammars which are bounded
context of degree (2,1) are allowed, but the algoritim
does not suffer from the inefficiency usually associated
with extended precedence grammars. The improvement
results from the mixed strategy approach: it uses as
degree (1,1) stacking decision function w’th three
values ('"stack", "don't stack" and "conflict”) and
reverts to a (2,1) predicate only for pairs where the
(1,1) predicate is undefined. The central idea of the
MSP algorithm, then, is to use simple (small) tables to
make as many c¢3cisionc as possible but to extend the
class of acceptable grammars by using more complex
tables for the exceptional cases.

In practice, a user wishing to implement his own
language will use the constructor and Chapter 7

("Programming in BNF") of A Compiler Generator as aids

to obtaining an acceptalle grammer.

CHAPTER 7

EXPERIMENTAL METHOD ANL RESULTS

7.. Introductiqg

This chapter evaluates the CAI System in use in the
actual enviromment for which it was designed.

Some systems are easier to evaluate than others: with
compilers, time and space are measurable; with information
retrieval systems, precisioq and recall are good measures.
However, programming languages and man-machine environments
are difficult to evaluate. Validating a system whose
single consistent design aim was ease of use is especially
difficult. This is because of the large number and
diversity of human factors involved and the lack of objec-
- tive measures.

The approach taken was to make systematic observat.ons,
both quantitative and qualitative, of student and author
use of the system.

In the latter part of Summer, 1972, FT P. E ooks, Jr.,
Chairman of the Department of Computér Science, as course
author, programmed course material for the subject matter

taught in the first four weeks of COMP 18 and 139. These

176
two course numbers are the humanities and social science
sections of the beginning programming course taken for
credit at the University. In the Fall one complete class
section of 22 students took the CAI course. The class was
the test group in a controlled experinent to compare
learning performance on the CAI System with conventional
classroom instruction.

The Fall experi=nce was so encouraging that in the
following semester, Spring 1873, the CAI System was used
for production teaching of three classes totalling 79
students.

The combined Fall and Spring use represents 406
student hours of online production use of the system.
This figure dnes not include those sessions of students
who dropped or students from courses other than COMP 18

and 19.

7.2 Collection of student use data

7.2.1 Experimental design

7.2.1.1 The objective of the experiment was to determine
whether, for the particular subject matter, students re-
ceiving instruction via the CAI System achieved equal or
better learning performance <than those receiving conven-

tional classrocom instruction.

177

If the learning performance could be shown to be a*
least as good, or better, then this would validate the
design of the student-system interface. Furthermore. the
Computer Science department would adcpt the system for

routine teaching of several sections of COMP 18 and 19.

7.2.1.2 The score on a posttest, a 50-minute, in-class,
closed-book examination on the subject matter, was the
measure to be used in formulating statistical hypotheses.

Appendix C contains the examination.

7.2.1.3 The methods of instruction, two similar versions
of conventionual teaching and one of CAI, were assigned to

crmplete classes as follows.

f

Conirol |
Methods Instructor 1 | Instructor 2 - CAT
Experimental Class 1 Class 2 Class 3
Units
(COMP 18-3, (COMP 18-1) (COMP 18-2,
218X-1) 218X-2,
| 19, 219X)

The first two clastos were control groupss; the

third was the test group.

178

The conventional method

The usual procedure for teaching tlre course was
followed: the instructors were graduate students in the
Computer Science department; they conducted three 50-minute
lecture-periods each week; and designed and graded their

own assignments.,

The CAI method

The students received all formal instruction via the
CAI System 1in the CAi Center. A weekly, optional-attend-
ance guestion period was provided by the instructor in
charge of the class. Assignments were designed jointly by
the course author and instructor and graded by the
instructor. |

At the first class meeting the course author was
introduced to the students.l He addressed the class on
the expected advantages, e.g., individualization, of CAI
and discussed its answer analysis limitations. A good
rapport was observed.

Work station resources were allocated as follows.
Three concufrent hour slots from 9 a.m. to 5 p.m. were

available for student use, except for the first week when

11 view this student-author link as an important
human factor in a potentially depersonalized form of
instructic .

two stations were available. As back-up there was one
corplete work station and two >ther complete CC-30
terminale. Stations were scheduled on a student signup
board. Each student was allow<d to sign up for no more
than two sessions per week.

One proctor, drawn from a roster of three, was on
duty at all times. For experimental control reasons the
proctor was not allowéd to answer subject matter questions
when called by a student. His function was to adminis-
trate and to acsist the students when system hardware
or software problems arose. A procior log of problems
was kept. At the end of each session a student received,
from the proctor, copies of the slides shown in that
session.

The CAI course had the following lessons.

Lessons Subjects
al The basic obJects (integers and charac-
az ter strings), creation of variables
a3 (declarations), and assigning
ah values to them (assignment).
bl The basic operations on integers
b2 and character strings.
c A complete program and basic
input/output.
d Looring by DO--loop.
e IF-THEN-ELSE for decisions and branching.
f Documentation, nested DO-loops,

and nested IF-THEN-ELSE.

180

The subdivisions within lessons a and b were
necessitated by a software bug which constrained the
max imum size of a lesson. This was corrected by the time

lesson ¢ was written.

7.2.1.4 Most experiments include undesired sources of
variation which may affect the value of the variable being
measured. In this experiment the identifiable extraneous

variables were controlled as follows.

(1) Teaching ability of instructors
This variable was controlled by using different

instructors for the two control groups.

(2) osubject matter coverage
The two control group instructors and the CAI

course author agreed on a common syllabus.

(3) Posttest

The questions on the examination came from
four sources in approximately equal proportion - the
two control group instructors, the course author,
and the instructor in charge of the CAI class. The
originator of a question graded that question for
all students. =Students' answer sheets were identi-
fied by a number only, so that the graders could not

tell to which class they belonged.

181

(4) Hawthorne effect
The students in all three classes were told that
they were involved in an experiment to compare

different teaching methods.

(5) "New gadget" effect

This variable was ignored.

(6) Inherent variability between students

Students vary, of course, in intelligence,
attitude, year in school, aptitude, and other traits
which may affect learning performance. At course
registration time, that is, when students were
choosing courses for the coming ‘semester, they knew
neither that an experiment was to be conducted nor
that a new method of instruction was to be used.
The assumption was made therefore that students were

assigned randomly to the three classes.

(7) Prior knowledge of the subject matter
Based on a cursory study of students in previous
classes, this was assumed to be negligible for all

students.

(8) Scientific bias of investigator
I disqualified myself from proctor duty, grading
the examinations, and other pedagogical contact with

the students.

7.2.1.5 Sample Size

The sample size of approx.imately 20 seemed to be
adequate to justify the agsumptions of normality to be

usea 1n the analysis of the data

7.2.2 The guestionnaires

The questionnaires were intended to provide data
to substantiate the assumptions made about student char-
acteristics, for qualitative evaluation of the design of
the CAI System, for improving the authc ''s course material,
and for hnproving:the organizational aspects of production
teaching.

Appendices A and B contain the two questionnaires.
Questionnaire A was completed by all three classes at the
class meeting following the examination.

Questionnaire B was for the CAI group only. Sections
T, IT, and III were completed during the same class period
as Questionnaire A; Section IV was returned on the

following class meeting.

7.2.3 Production teaching in Spring

Because the Fall experiment showed that the CAI
System met the learning performance -criterion,as discussed
in Section 7.3.2, the system was used for three classes

in the Spring semester. The objective of this next use

~
*!

of the system was to get more real experience rather than
to conduct a controlled experiment. Because the emphasis
was on teaching as well as possible, rather than on careful
control for evaluation purposes, new freedoms to improve
instruction were possible. For example, the proctors were
allowed to answer subject-matter questions when called
during a session.

Specifically, this additional experience with the
system was intended to gather more questionnaire data,
to enlarge the set of unanticipated answers for Iater
course material improvement, to evaluate the effect of
improvements suggested by the Fall experience, and to
subject the system to a heavier workload, namely, three
times that of the Fall.

Work station resources were allocated as follows.
Four -:oncurrent slots from 9 a.m. to & p.m. were avail-
able for student use. As back-up there was one complete
work station and two other CC-30 terminals complete
except for slide projectors. Seventy nine students were
registered on the system.

There was cne proctor, drawn from a roster of three,
on duty at all times. During the first week, in anticipa-
tion of a high number of proctor calls, an additional Fall-
experienced proctor was on duty; this extra help turned

out to be unnecessary.

184

The same quiz and questionnaires were used. Several
questions which were applicable only to the Fall, e.g.,
ITII.5 on Questionnaire B, were deleted. The arrangements
for completing the questionnaires, taking the exam and
grading the exam were the same as for the Fall except
that I graded the course author's ques:zion (#uy) on the
exam. Because I used the same written grading standard
as he used in the Fall, I feel that no scientific biaé
was 1introduced.

The following changes to the Fall system were made.

(1) Course organization and CAI Center operation

A 1l minute hands-on introductory session was
given to each student on the first day of classes.

The role of the text book was clarified.

Work station assignments were made on the
student signup board by the proctor ahead of the session-
change hour so that the students themselves could take
over a work station. This was done to reduce the amount
of activity on the hour.

The constraint on the maximum number of sessions
rer week was relaxed from two to three.

¢2) Course material

Only minor changes were made. They included
coalescing lessons al through a4 into lesson a, and

bl and b2 into b. "Press INT to continue when ready"

185

was added to those course messages which had been removed
too quickly. The very few errors in the slides were
corrected.
(3) The on-line system and work station
No design changes were made to the CAI System
or to the work station.
The following implementation changes were made:
CAIFILES v as enlarged, *he routine to handle the free
block list was changed, and some of the known bugs were
corrected. The terminal menufacturer improved the CC-30u
light pen and corrected a design fault in the slide
projector interface.
(4) The off-line system
Extensive additions were made to improve the

daily reporting on student activity.-

7.3 Analysis of student use data

7.3.1 Introduction

Results from both Fall and Spring are presented.
However, only the Fall data are used in comparing CAI

versus the standard method of instruction.

7.3.2 Fall posttest scores

The posttest scores have a maximum of 50. The merns

and standard deviations were

186

Conventional
. CAT
r
Instiuctor 1 Instructor 2
m = 34.2 m = 31.4 m = 34.5
s = 10.3 s = 10.0 s = 10.0
n = 16 n= 22 n = 21

Because of the large standard deviations, it can be
seen, by inssection, that thne null hypothesis that there
is no difference in learnin; performance cannot be
rejected. Homogeneity of variance is also obvious by
inspection.

There is insufficient evidence to conclude that the
CAI method is significantly better or significantly worse
than the conventional method.

If indeed the CAI method is different, I have been
unable to detect the difference because of the high
standard deviations in.the scores. There is no reason
to believe that the standard deviation would be different
in future experiments of the same experimental design.
Thus, in order to detect a significant difference, if such
existed, one would need a much larger sample size. For
example, using a one-tail Student's t-test, for a differ-

ence in sample means of 0.5, a standard deviation of 10.0,

187
and testing at the 85% level, n would have to be at least

2165 [Kirk, 1968].

7.3.3 Posttest scores for both Fall and Spring

For completeness the Spring scores are included to

give the following:

Conventional CAT
Instructor 1 Instructor 2 Fall Spring
m = 34,2 m = 31.u4 m = 34,5 m = 35.0
s = 10.3 s = 10.0 s = 10.3| s = 9.5
n = 16 n = 22 n =21 n = 64

7.3.4 Time data

The times for the CAI groups are from summaries of
the daily log data. The control group time 1is ccinputed
as 10 lectures of 50 minutes each (I am assuming that
each student who missed a class period spent the equiva-
lent amount of his own time to catch up). The first class
meeting is not included for any group. The times in

hours and minutes are:

188

CAI
Control Fall Spring
constant mean 4:34 4:01
8:20
median b:19 3:45
range 2:10-8:43 |2:08-8:586

The CAI times do not include the week.iy question
periods because it is difficult to assess the length
and usefulness of ihese periods. 1In the Fall the periods
terminated when student questions stopped; the three
periods lasted approximately 20, 30 and 30 minutes.
Moreover, the responses to question I.14 of Questionnaire
B cast doubt on the usefulness of the periods. The free-
dom fr~ experimental control in the Spring allowed the
instructors to raise questions for discussion. They
discussed problem areas exposed by the proctor log and the
daily log from the system. 1In addition they lectured on
algorithm design and the mechanics of running programs and
interpreting program listings. Each of the three periods

was the planned 50 minutes long. Using these figures as

bounds we have

189

Control CAT
—
B Fall Spring
mean 5:54 6:31
i constant
8:20 median 5:39 6:15
range 3:30-10:03| 4:38-11:26

I conclude. even with these consefvative bounds,
that tie CAI method saved most students a considerable
zmount of time.?2

A consequence of this time data is that the first
part (CAI) of the next COMP 18 and 19 course will be
collapsed from four weeks to three. In the Spring, two
of the students completed the CAI course on the first
Aay of the second week and 40 had completed it within two
and a half weeks. The daily student report td the

‘rstructors shows which students need to schedule extra

sessions.

7.3.5 Questionnaire data

Appendices A and B give the questionnairesAand sum-
maries of the student responses. A large portion of the

data gathered pertains to quality of course material,

2Similar' time savings have been observed at other
CAI installations.

134

reaction to the CAI method per se, etc.; hence their
analysis is beyond the scope of this thesis.

The following conclusions pertain to the CAI System
itself, as distinct from the course material. For most
students, the system was transparent in the communica .ion
between author an? student. The students felt they were
concentrating on the course material, not {ilLe system

(QB.II.17 3

22, and 30). The system was reliable (QB.III.u)
and the response time was adequate most of the time
(QB.I.17). The work station was firmly approved

(QB.IV.5 and QB.III.16). However, QB.III.13 suggests
that winter use requires better room ventilation. The
mode and median times for students tc get used to the
operation of the system were both 10 minutes (QB.III.2).
Assuming three contact hours per week, the majority of
the students chose 2:1 as the best balance between CAI
and in-class instruction (QB.I.lS)q. Other questionnaire
data are used in Chapter 8 to substantiate the discussion
of design decisions.

With regard to the students' reactions to the CAI

method as they experienced it in this setting, I conclude

3This is an abbreviation for Questionnaire B,
Question 17 of Section II.

q?his is an improvement over the Phase I system
(Chapter 1) where a 1:2 ratio was chosen by the majority
of its students.

the following. The students enjosed the scheduling
freedom (QB.I.3), felt they could work at their own pace
(QB.II.18), and felt that it made efficient use of their
time (OB.II.25 and QB.II.31). They disagieed with the
statements that (1) CAI is inflexible (QB.II.35), (2) CAI
makes learning too mechanical (QB.II.19 and QB.II.40J,
and (3) CAI made them tense (QB.II.22 and QB.II.32).

The aésumptions made about diffevences in student
lcharacteristics were substantiated. Ques*tionnaire A shows
no substantial differences in attitude or previous computer

experience.

7.4 Author use data

DIAL and its operational environment were first put
to production use in the preparation of the course material
for the Fall experiment. The course author, Brocks, used
the following approach for each session. Before he started
a work-station session he would prepare final draft copies
cf each slide in the lesson. This defined the concepts
and their order of presentation. With each slide, he
prepared the questions to be asked, but not the answer
analysis. Then, on the system, he keyed in the actual
questions, and composed in DIAL the answer classification,
feedback, and program sequencing. All composing of new

DIAL code and debugging was done on-line.

N 19
Several problems, which were a consequence of this

being the first use of the system, should be considered

in interpreting the time data given below. The problems

were:

1. A severe deadline

Lesson a was started on August 22 and had to be,ready
for students cn September 4. The course was completed on
September 20. This had the following consequences: (1) the
scheduled pre-Fall-course testing of the course material
was not done; (2) some Fall students missed sessions because
the next batch of material was not ready; (3) the author

had long, often five-hour work-station sessions.

2. Software bugs

Software bugs are always expected in a new system;
several minor ones were detected and corrected quickly.
However, a bug in SOURCE, the routine which handles
editing of an author's DIAL statements, sometimes
scrambled the current copy of a lesson. The bug was
elusive and the aeadline intensified the anguish it

provoked.

5Brooks's preferred session is 2 hours.

193

3. Recompile time

Because recompile time was long . «thor avouded
frequent recompiles and hence lost s Sibility. This
implementation, not design, problem ir ussed 1n

Section 8.3.

The course consisted of &6 paggs (50 lines per
page) of DIAL program listings and 64 slides.
The mean student time for the Fall course was 4 hours 34
minutes. The total amount of author time, about 75% of
which was spent on the CAI System, was 108 hours 30 minutes.
Thus the number of author hours to produce one (work-
station time) hour of course material was 24. To compare
this with published ratios from other projects we must
include the (estimated) time spent by author-support
personnel. Typing the slide copy took 33 hours; photo-
graphic laboratory time was 8 hours; and delivery of
Jprint listings, etc., took another 10 hours. Thus the
ratio is 159:30/4:34 or about 35 author-hours per student-
hour. This is a factor-of-five improvement over other

reported results from systems of authoring (Section 8.3).

CHAPTER 8

DISCUSSION

8.1 Introduction

This thesis is concerned with designing and building

tools - tools to
(1) build a CAI course for the beginning computer
programming course at the University;
(2) serve as a framework for CAI research;
(3) study human factors in interactive CRT-based
systems.

The single consistent design aim was ease of use -

this implies that the system should be well engineered

as regards human factors. By minimum impedance to
students' learning, the system would be attractive for

CAI research; by being easy to use it would lower the

cost (in author time) of preparing instructional programs.
The quantitative data set forth in Chapter 7 will perhaps
be less valuable to a designer of such a system than a
set of qualitative observations, opinions, and satis-

factions and regrets derived from experience.

195

Hence this chapter discusses some of the decisions
weighed in designing the language and its operational

environment and gives opinions on the results.

8.2 The student-system interface

8.2.1 This interface should be as transparent as possible:
the desired communication is between a student and an
author via the author's instructional program. Hence the
CAI System aims to intrude upon this communication as
little as possible. Sackman, in reporting a large-scale
experiment at the U.S. Air Force Academy, warns against
complicated interfaces [Sackman, 1970:180].
The array of special calis, instructions,
and online procedures, requiring direct inter-
face between the user and the computer, can bLe

overwhelming for many neophytes.

The following measures were taken in the CAI System.

Debugged work station

The work station design was debugged over a period
of eighteen months, during which time three successive

prototypes were built.

Simple commands for getting ¢n and off the system

All that the student enters is his identification

"number - the CAI System uses it to locate the course the

Lgb

student is taking and to set up the session using his
position in the course. Leaving the system is achieved

by the command)OFF.

8.2.2 To minimize the effect of system breakdown
(hardware or software) on a student's progress and
attitudes, frequent recovery dumps are taken during each
session. If the system does break down, these dumps
enable the System to restart the student, when he next
signs on, at a point just prior to the breakdown, without

his having to take any special action.

8.2.3 At all times that students are using the system a
proctor is in the CAI Center building. The students
requested his help, considered him essential, and approved
of the proctor call switch (Questionnaire B III. 6, 7, and

8).

8.2.4 The response time of interactive systems is
critical. Sackman's study of the SAGE air defense

network introduces an important new conversational

principle [Sackman. 1967: 4361]:

Human performance in man-computer dialogue
will vary with the similarity of the responding
computer system to the real time exchange
characteristic of human conversation in situations
closely related to the operator task environment.
As computer response-time and message pattern
deviate increasingly from realtime parallelism

197

with the appropriate convergsational and problem-

solving norm, so will user performance deteriorate

with regard to the achievements of system goals,

leading to increasing compensatory, erroneous

and maladaptive behavior toward the computer.
In short, people are happiest and most productive when
their interactions with computers follow the same pat*.vns
as their interactions with people. The environment being
paralleled in CAI is the learning environment - a mixture
of classroom and self-study.

In a later study concerned with user characteristics
in time-sharing systems, Sackman says [1970:27]

Users with tasks requiring relatively small

computations become increasingly uncomfortable

as computer response time to their requests ex-

tends beyond 10 seconds, and as irregularity

and uncertainty of computer response time in-

creases; users with problems requiring much

computation tolerate longer intervals, up to

as much as 10 minutes for the largest Jjobs.
For example, while an author will be sympathetic to a
longer response time if he has just entered a command,
e.g., JRESEQ, which he knows will cause heavy file
manipulation, the student will be always expecting a
response time consistent with his classroom experience.

In human conversations, people usually give some
response to an utterance within a few seconds, even if a
reply has to await longer thought. If this is to be
paralleled by an interactive zomputer syste:n, the same

time patterns should be tle target. It is somewhat

more demanding than Sackman's l0-gsecond figure.

198

For replies which will take longer than a few scconds
to produce, the CAI System design requ;res that an immed-
iate acknowledgement be given. For example, the pause
between requesting CAI from the CHAT Monitor Table of
Contents (MTOC) and the display of the sign-on message is
eight seconds. Times up to 30 seconds lave been observed
during heavy activity on the host compute: system. Th=
acknowledgement

PREPARATION FOR SIGN ON
IS NOW TAKING PLACE

is given. Another example is the running acknowledgement
during the recompile process in author mode.

In a student session, except for sign-on and sign-off,
the system is providing for student execution of an in-
structionalvprogram. The response time then is less than
one second. When host system activity is high, response
time varies between one and four seconds. According to
the students (QBI.17) response time is adequate.

To reduce the four-second response time, modifications
must be made, not to the CAI System implementation, but to
task dispatching in the operating system on the host com-
puter. The relevant parameters include (1) the frequency
of CHAT's time slice, (2) the duration of each time-slice,

and (3) the dispatching priority assigned to CHAT.

Those aspects of the CAI System implementaticn which
contribute to the fast response time are: compilatuive
rather than interpretive execution of DIAL programs,
efficient disk access, no magnetic tape input/output, and
adequate workspace in main memory for each active
terminal. The Phase I system's use of ISAM datasets
clearly showed the need for faster disk work. In the
current implementation, course material is held on a
file with PL/I Regional 1 organization and tiie basic
BDAM access method. The student and author record files,
however, are ISAM processed. Since they are used only
at sign-on and sign-off, their slower response time is
acceptable. The other contribution to the longer
response time at sign-on comes from initiation of, the
CAI System.

The time it takes to display output once it begins
is also important. My observations of the Phase I system,
and typewriter-based CAI systéms at other installations,
have shown that students often lost interest while
waiting for long (several hundred characters) textual
messages to come out. Here, reading is being paralleled.
Since a student can read faster than a typewriter can

produce output, the waiting is a system intrusion on his

200

communication with the author. We eliminate this by our

CRT terminal and fast communication lines.

8.2.5 A substitute for hard copy

Because of the transitory nature of the display on a
CRT . 1 student does not have a record of his preceding
work. However, on a typewriter terminal he does. He
may use the hard-copy output for looking back during a
seasion or for reference after the session.

During the exploratory stages in the design, I
planned to develop special measures (initiated by student
command) to substitute for the loss of hard copy. Later,
however, R. 0. Deartorn in an experiment at the University
showed that such measures may be difficult to justify
[Dearborn, 1970: abstractl:

Three groups of students were exposed to the
same computer-administered programmed instruction

in numerical differentiation with different degrees

of access to the output from the typewriter terminal.

Analysis of co-variance showed no significant

difference on posttest scores between students who

were allowed to keep the output and those who were
not, nor between those students who could look back
during the session at previous output and those
whose view was restricted to the most recent output.

I have not therefore provided any hard copy
facilities for student mode. Authors, however, may obtain

printed listings of their DIAL programs by the)PRINT

command; they have routinely done so.

The students in the class trial indicated that they
would have liked printed copies of the questions and

answers (Questionnaire B, I.9).

8.3 The author-system interface

8.3.1 Author experience

8.3.1.1 One of the a priori design decisions (Chapter 3)
was that authors would be the experienced master teachers
themselves, without intermediary coders. The potential
tutorial power of such a system is only realized when the
master teacher himself sits at it and brings his ex-
perienced intuition into the detailed interplay with the
conceptions and misconceptions of his students. This

has far reaching consequences for system design.

1. The system must be so simple that he can use 1it.
Because the professor is an occasional user of the

system, he cannot justify a long retraining time at the

beginning of each period of use. Design for any occasion-

al user faces a much more stringent requirement for

1The consequences apply equally to systems designed
for other professional workers, for example, doctors and
business executives.

202
simplicity than that imposed by a full-time user, who can

be expected to stay current in the details of even a

complex operating procedure.

2. The system must be so easy to use that he will use it.
Unlike the graduate assistant, the professor car choose
whether he will use the system. If a system has many
idiosyncrasies, is awkward, is slow, or rejuires him to he
constantly referring to manuals, he will nct use it. He
will delegate the task instead. As a general criterion,
a system such as this 1s well-designed when it quickly
becomes transparent to the user, so his whole conscious

thought focusses on the subject matter.

With regard to whether the author-system interface
met its design goals, the following observations are

csignificant.

8.3.1.2 The author work pattern has been describecd.
Briefly, s”“des, text, and questions were prepared in
advance. Less than one-fourth of the guestions are
multiple-choice; the rest require the student to construct
a response.- Nevertheless, the system power and ease of

" use was such that Brooks composed all answer analyses and
all DIAL code on line; most of it about as fast as he could
(touch) type. His learning time was short. The tool

did not intrude - he concentrated on the course material

and the course material alone while at a work station.

This tool transparency 1is reported not only by Brooks but
by another faculty member who observed while Brooks

worked. The instant replay via)xeq meant that he could
see his errors; the system eace of use allowed him to
correct them himself immediately and iteratively. Finally,
the author-hours/student-hours ratio was a factor of five
better than has been reported for other systems; this is

discussed next.
8.3.1.3 Bunderson [1970:51] says of CAI projects:

. especially those involving considerable

text and display authoring in connection with

the production of tutorial sequences. These

projects can require 200, 300, or more hours

of work on the part of a team of authors, in-

structional designers, programmers, and media

specialists to produce a sequence that would take

an average student only one hour to complete.

To produce one student hour of course material,
Brooks spent 24 hours; the total team time was 35 hLours

(Section 7.4). This factor-of-five improvement over

Bunderson's ratio of 200 is attributable to the following.

1. Author effects

The author is a very experienced teacher and his
pedagogical philosophy was formulated before he began

to write DIAL lessons. He touch-types.

204

This author experience meant that much of the usual
course-material iteration had in effect been done over the
years before the DIAL experiment was started. The system
design objective, however, was precisely to hirness such

experience by offering the necessary level of ease-of-use.

2. System effects

The interactive operational environment gavie him
immediate feedback. There are two levels of immediacy
in the feedback: firstly, the DIAL compiler checks each
statement as soon as it is entered; secondly, the)xeq
facility provides interaction with the course material
just written. The programming and pedagogical errors
so discovered are corrected immediately by the powerful
editing operations.

Good lesson library service is provided by the
command language.

The user-oriented design of the entire disk system
presents a one-level store to the DIAL programmer and.’
hides all management of disk storage allocation.

The DIAL language is also an improvement over those
existing languages which were studied; this is discussed

in Section 8.3.3.

205
3. Organizational effects

An author saves much time by not having to explain
his ideas to intermediary CAI language programners or
to correct *heir misconceptions or awkwardnesses.

Support personnel were provided for tyving the final
slide copy, photographic processing, and delivery of
J)print listings to the work station. Such support is
helpful, no* ha:awvdous, because it does not intrude

on the author-student interacticn.

Each of the three effects contributed to
faster instructional program writing and debugging
and to achieving essentially the final version on the
first iteration. Class testing and study of the
student errors contained in the protocols turned up
only minor corrections to the course material

pruvduced on the first iteration.

AN

206

8.3.2 The interactive environment

8.5.2.1 Figure 8.1 shows typical sequences of author
actions during a session to prepar« and test a lesson.

In contrast to the systems in Chapter 2, the author
in DIAL does not switch back and forth between creation
and alteration modes; both are done in one mode. At all
times (other than when he is executinga .piece of course
material) he has the cne display format before him and he
is free to cause any action. A right parenthesis starting
an entry signals a command; a statement number signals a
statement. The statement may be a new statement, an
insertion, or a change; these are distinguished merely by
the statement number.

The inherent properties of the CRT are exploited
for text é&diting. These properties are (1) a transient
image and (2) a two-dimensional format (hence pointing
carries more information content). Any statement on the
CRT may be changed, by establishing the window around it, if
it is not already there. Figure 8.2 shows a change being
made to statement 536. (Since 536 was not already on the
CRT, the author displayed it together with surrounding
statements to provide context). If, during the change,
extra room is needed for the enlarged 536, a *THROW?® is

requested.

207

0y bax | puv 9FUdWAYVYY
QY OoW Y0 2U0 dBuUYYD-
dooy buybbngop 2aYyoDUIFU]

p uogysy %0 uorymooxy
bax(

YOUY2 UY ¥ YO Yym
¥wod FUWIXVEY VLYY ¥Ipun paovyd
YY ¥09¥ND Y} U2Yyy puv 2¥)youborg

(vowwa 9$71)

AYoYIUINb2 9 YFuUdWAYVPYY

‘YT JUNU FUDWIXDFY XXIN
T¥ 10 woxU? puv 2v0dwo)

(pogzoox2p wowyo ou Y1)

hOT
, "uossaT snotasad a2yl JO °9PTTS 1SeT 9yl
MaTADd S, ,1°T fa1satig, ‘pu=2o> S 00T

00T

(

(
0€6 LV NO Q3INDIS IOUNW °O°F

h¢00T(

b s9T(

: 9tZ9hc9he NO NOIS(
NO NOIS(

NQISS3S

asuodsaa we31sAg UOT3I0® aoyiny

8.1 -- A typical sequence of author
sessions.

Figure

O

Aruitoxt provided by Eic:

E

208

016

s3uTJls oa3ut

LV 440 QINDIS

P 1S3l TOouwW=p

0 d v

(

008 IV NO dINDIS IDANW "O° 0

0hTT

NO NOIS(

LV 440 Q3INDIS

F30(

U0YY92y ynornowd uy
v 6ngop puv 2v0dwo)

JWNSIY :LP 0¢S

mu (

P BOT(

ITP(

QhZQ Thhg HO NODIS(

N0 iS§S3S

FFo(

“dooy

gYYY UY Ppoyn 09yY YV YPpUDWMOD
yurvd(puv ‘yery(‘buryip?
YL CIINYIY dYY Mern

.

Figure 8.1 -- continued.

O

Aruitoxt provided by Eic:

E

209

s8uTJls

(
a . 1S3l Towsp
0J3uT 0 q v

aTP(

— O7Id ©3 P 33®B(

_ q uaa(

PTT(

NOISS3S

yxuopnyy oY Apvow
YY U0YY2y YY Frrun 2009V U0YYIIY
UY 90 JUOYIIRY FVUIADY YFIYM 2NUTYFUO)

g

Figure 8.1 -- continued.

O

IC

E

Aruitoxt provided by Eic:

210

Author action System response

)1is 534

Display screenful of statements,
beginning with 534

Light-pen action as shown:

r8iwa:
The lv‘\:zu e

FLOOR_NUMBER; 17 ueu want the reenm
numbers arranaed Pleer-bu-fleer *,¢;
. rSim; :
. 638 fElve SRS

‘The liait for Lhe sutear feep ahou‘l."
L

ba dhe nushar of Plsers. ', Los
?

Move window; place cursor as 536

Change statement 536,zided by
cursor controls

Advance cursor to end of window;
press INT

Figure 8.2 A change being made to a statement.

Q

ERIC

Aruitoxt provided by Eic:

211

The *SUBST#* function has not yet been implemented;
even without it, editing proved to be very easy and
smooth. Thus its implementation priority has been

lowered.

8.3.2.2 Chapter 3 laid down certain goals for the

interactive environment. How well are they met?

Source level

Inspection of the system commands shows that there
are no commands concerned with the translation of an
author's DIAL source to object code or with the manipu-
lation, linking or loading of object code. All of his
work 1s done at the source code level. He can therefore
view the system as one which directly executes his DIAL
statements. However, in explaining the response time
variability over certain editing opérations, one cannot
avoid a discussion of translation. Thus, while an
author can view conceptually the system as a DIAL machine
if he so desires, the way he uses the system is influenced
by the implementation; to date this phenomenon has been seen

only with recompiling.

2172

Anticipating an author's next move

After processing the contents of a window, the System
tries to antinipate the type (statement or command) of the
next action. It then repositions the window and the cursor
within it to the most convenient place and generates part
of the next action if possible. 'This both saves keystrokes
and provides a time and action cue for the author. The
following actions are taken. The author can of course
override by keyboard action.

Window, cursor, and cue
Case anticipated generated by the System

command |7

correction to statement |
(Cursor positioned under |
portion in error. For
example, see Fig. 5.4.)

next statement in oL6
sequence -

(can't predict)

Debugging an interactive system after it has been
programmed requires not only the usual program debugging,
but also a separate human-factors debugging that cannot
be done on paper. Human-factors debugging requires the
system designer to use his own system and to work with a

few typical users. Brooks's use of the system showed that

CRT cursor positioning met my goal of anticipating an
author's next move. However, it revealed a related bad
awkwardness:)LIST as originally designed put author
mode into a state which an author left by either ex-
hausting the)LIST request or by entering)FINISH.
Furthermore, if any other command was entered while in

this state, the system responded with a fixed-time diag-
nostic forcing a wéit of 5 seconds. It became clear

that)FINISH and the special in-list state were both redun-

dant and they have since been removed.

Minimizing user direction

Wherever possible, the design attempts to relieve
the author from having to supply direction to the
system. An author can be completely unaware of the
existence of the five different logical files associated
with each lesson - he views a lesson as a set of DIAL
statements with a name. A directory in the File Main-
tenance System keeps track of a lesson's location,
protects it from other authors, and protects it from
tampering once it has been attached to a course. Neither
need he be concerned with the system's use of backing
storage - he views his DIAL machine as a one-level-
store machine. Another example is that all source code

entered is automatically saved against system breakdown -

21u

he does not have to request such protection.

With the small number of functionally rich commands
there is a price that the user must pay - he loses
flexibility while gaining simplicity. For example,

(1) an author has no means of structuring his
instructional programs and data so that they
run more efficiently;

(2) there is no way an author can suppress the
disk actions necessary for saving source code.

Such flexibility vs.rigidity tradeoffs are made in
any system design. The Job Control Language of 0S/360
provides an extreme example. There is a large 1rumber of
primitives and thus one can do almost anything; it is,

however, difficult to use.

Experience-dependencies

The system 1s not responsive to changes in an author's
skill in using the system. Whether he is new to the system
or has been using it for several months he will receive the
same level of diagnostic messages. Although this may annoy
the experienced author, because of the speed of display of

messages, he loses no appreciable terminal time.

An incremental compiler

The design called for an incremental compiler as the
language processor for DIAL. The possible software imple-
mentations of a language cover a spectrum with an inter-
preter at one end and an incremental compiler at the
other. The current implementation of DIAL is around the
middle of these two limits in the spectrum - a fast batch
compiler entered interactively. There are two major files
assocliated with each lesson - the sonurce code and object
code files. When statements are entered sequentially,
response time has a distribution skewed over 1 o b
seconds witl the mode'at 2 seconds. This fast response
time is due to overlapping disk work with user entry of
the next statement, but, more importantly, new coae is
being added to the end of the existing object code file.
However, when an out-of-sequence statement is entered,
e.g., when an author is editing, such a change to the
source code triggers a recompilation of the complete
lesson and the building of a new object code file. Re-
sponse time is then unacceptable - of the order of 20
seconds for a small (40 statement) lesson. However,
when host computer system activity is high and a complete
lesson must be recompiled, the author might wait 20

minutes. The current implementation does, however,

216

provide a way of avoiding this long response time for
each source ccde change. A *C#% light button appears on
the author mode display format.2 Triggering of recom-
pilation is suppressed by turning cff #C*, Thus
by batching his changes - entering them all with *C¥% off -
he need only suffer the long response cnce, for his last
change. This batching, in fact, matches how one thinks.
Nevertheless, the long recompile time is a severe
problem for an author: it wastes his time, he loses
flexibility during a session because he avoids frequent
recompiles, and it discourages him from using the system
during high host computer system activity. Improving the
"recompile time involves a major software change which could
itot be made during Brooks's use of the system because of
the deadline. I did, however, provide a running acknow-
ledgement (a “statement-number odometer") in lieu of a
reply; this greatly improved the human factors.
An incremental compiler would avoid producing a new
object code file for each source code change by structuring

the object code file as a chained list, with each node

[

béing a set of object code instructions corresponding to
one source code statement. This would provide 1t e im-

portant fast response to author changes. It should be

21t is not shown in the Chapter 5 examples.

217

the next task undertaken in improving the implementation
of the CAI System. Note, however, that such a chained
structure can, by introducing another level of indirect-
ness, result in a slower execution. So, at say)ATTACH
time, all references should be resolved to absolute ones,
and the code linearized, so that the execution speed is
equivalent to the directly compiled code in the current
implementation.

Some reprogramming of the current implementation
could result in a language processor closer in the
spectrum to the incremental compiler. For example, the
system could make some ad hoc determination of which
parts of the object code file need not be discarded.

An interpretive implementation, while easier to
build, was not used because of the execution-time cost

in student mode.

Diagnostic messages

When an error is detected by the system, the ease
with which an author can determine the true cause of the
error is important. Two classes of diagnostic messages
exist - those caused by errors in using the system commands
and those caused by errors detected by the compiler. The

messages produced by the compiler when it detects a

218.

semantic inconsistency have been carefully worded and
are effective. For syntax errors, however, the
characteristics of McKeeman's syntax analyzer are very
evident - the diagnostic for the following error

MATCH x | L?

|

is ILLEGAL SYMBOL PAIR: <M OPLIST> | _

I have not, in the current implementation, made any
attempt;to improve on such diagnostics. Improvements
must be made, particularly on those diagnostics, e.g.,
NO PRODUCTION FOUND. IMPOSSIBLE
TO CONTINUE PARSE.
which do very little apart from signalling that an
error has been detected. In practice, however, they are
infrequent.
A general principle for systems on top of others
is that diagnostics from the inner system must be trans-
lated into the terminology of the outer one before being

fed to the user.

8.3.2.3 The following changes were made as a result of

human-factors debugging.

1. The QAR screen division (Chapter 4) into automatically
formatted question, answer, and response areas, was intro-

duced into DIAL. The change was made over the weekend

after the first week of Fall student use. This was the

most important human-factors change.
2. The)FINISH command was removed.

3. The identifier rule in DIAL was changed to allow
lower case letters; similarly, the comma..d language
interpreter was changed to accept lower case as well as

upper case.

4. The)LID command was added to help avoid erroneous

(and disastrous) RENAME's.

5. The qualifiers to the)LIST and)XEQ commands were

changed as follows

old de. .gn current ‘esign
m thru ... m

m m.

m thru n m,n

In practice, the first of these turned out to be most

frequent by far, so its invocation was made most succinct.

8.3.3 The language DIAL

Here I will discuss the strengths of, the inherent

weaknesses in, and the current omissions from the DIAL

language itself.

220

8§.3.3.1 Stﬁengths

1. The language aims at ease of use by being syntactically

consistent and by being procedure-oriented and problem-
oriented rathe~ than reflecting the underlying machine.
This contrasts with many CAI lanéuages, which are
essentilally assembly-language level.

The following comparative examples are used to

illustrate this.

Subroutine linkage mechanism

The following Coursewriter example shows the linkage

via return register 4 to the subroutine yesno

Invocation: Comment:
1d next /ru save return address

br yesno

next

qu

Subroutine:

yesno
qu Type yes or no

br r4 - return to pcint of
invocation

ra
The equivalent DIAL code 1s

Invocation:

CALL yesno

Subroutine:

yesno: PROC

END yesno

Arithmetic

To perform the DIAL computation
E<-(A+B+C)*D

one would code the following in CW

comment :
1d cl/c5 load A (in counter 1)
into E (counter 5)
ad c2/cb add B
ad c3/chH acz C
mp cl/ch multiply by D

In TUTOR one would code

F1 + FZ + F3
F5 * FhL

CALC F5
CALC F.

o

Screen formatting

Instead of supplying explicit screen formatting in-
formation (row, column coordinates) as in the CW IT
example in Section 2.2.3, the DIAL author merely formats

the display the way he wishes it to appear to a student.

222
Thus the CW II example of Chapter 2:

dt 4.3//,3/Point to the name of the animal
dt 8,3//,3/that barks.
dt 14,10///0dog
dt 18,10///0cat
dt 22,10///0rat
in DIAL would be

SHOWAS

' Point to the name of the animal

that barks.
*dog
*cat
*rat!

Branching decisions

Contrast the mnemonic value and naturalness of the
DIAL statement
IF NWRONG >= 3 THEN GOTO Q5A
to the equivalent CW statement
br q5A//c3/ge/3,
or the equivalent TUTOR statement
JUMP I3,X,X,X,X,Q5A.

Generality in naming

In contrast to the fixed name assignments in CW, TUTOR,
and WRITEACOURSE for counters, switches, etc., an author
chosen identifier in DIAL can be used to name any data type

whether it be a counter, register, switch, or buffer.

The naming of slides affords another example of this
same point:
In DIAL

MVT=130; /*Mean Value Thm diagram */

SHOW MVT;
In FOIL

MVT=30

TYPE *MVT
In CW

fp(p) 30

Mnemonics

(1) Machine registers or states

CW name DTAL name

b0 ANSWER (ANS is accepted as
equivalent)

p0 CASE

pl SQZ

(2) CW restart pcints
If pl3 is on, then the system will restart a student
who has been signed off at the label defined in
return register 5. Thus, a program in CW with

restart points would appear as

224

1d arithl/»5
arithl

1d arith2/r5
arith? '

In DIAL this would be

ARITH1: RESUME

ARITHZ2: RESUME

String manipulation for presenting text

As pointed out in Section 2.4.2, existing languages
have neglected the potential of a.computer for presenting
text. Consider, however, just the simple ability to name
an often-used text, e.g., the statement of a theorem to be

used 1n several distinct paths in a frame. In DIAL this

would be done by

SHOW THM

SHOW THN

SHOW.THM

With no such ability to name a character string, as is the

case in almost all author languages, the author must type

the complete theorem whenever he needs it in his program.
Note however that with CW the determined author

can avoid the retyping by using buffer storage as a

temporary naming facility.

2286

For example

14 The thecrem states that

—— e D S = S e - S = = S

—— o — = " e = e ——— .

qu.b2

qu b2

However there are two restrictions on this type of
programming - there are only five buffers and each one
can hold only 100 characters. Multiple constants can be
stored in one buffer and then fetched by a substring

operation. The program then is hardly straightforward.

Clean syntax

Chapter 3 argued against adapting another language,
using the possibility of awkward syntax as one of the
arguments. The HumRRO Project IMPACT author language

[HumRRO, 1970} is an extension of CW III which has better

22

text manipulation facilities. The awkwardness of the

extension can be seen in this example [HumRRO, 1970:25]

qu ((DIS D260,1),(SET GLOS=0))

which is an IMPACT-Coursewriter instruction to retrieve a
display from a text file prepared independently on a text

editing system.

2. Subroutine facility

The subroutine concept is an important contribution
of computer science to the design of algorithmic processes.
It should be as useful in instructional programming as in
conventional computer programming, once an author under-

stands the invocation and parameterization mechanisms.

3. Text constants

The text manipulatioca facilities of DIAL can be used
for preparing text arguments for SHOW-statements. FTor

example, consider the following progra:.n segment.

228

OBS <- 'Study the slide above.'
PINT <~ 'Press INT to continue when ready.'
PENIND <- 'INDICATE YOUR ANSWER WITH THE LIGHT PEN'

SHOW OBS, MVT /#%*Show Mean Value Thm slide */

SHOW OBS | PINT

.

SHOW OBS, PENIND

Note that the assignment statement is only being .sed in
this example to name a string of text, not to ascign a
value to a variable. Such a text appears only as read-
only data in the program. However, once a variable 1is
set up in this reentrant progiam 9&-'ronment,3 it must
be kept in each activatior r: zcord, il.e., there must be
one copy per stuaent.

This special nature of text data has been recognized
and capitalized upon to improve the efficiency of the

. . b4 . . .
implementation. By using a naming-statement (=) instead

I am referring to the reentrant program representa-
tion of authorsg' DIAL programs running on the DIAL machine,
not the CAI System, which is also reentrant.

“1In a multi-pass compiler (DIAL has a one-pass com-
piler) this could be done without user help.

of assignment &=} an author assures the compiler that the
target symbol is constant, not a variable, and hence
read-only. Such text (or slide) constants become part of
the fixed part of the reentrant program representation.
There is only one copy no matter how many students are
active.

The above example then becomes

OBS = 'Study the slide above.'

PINT = 'Press INT to continue when ready.'
PENIND = 'INDICATE YOUR ANSWER WITH THE LIGHT PEN'

SHOW OBS, MVT
SHOW OBS||PINT

SHOW OBS, PENIND

4. The generality of a programming language

The features in DIAL that give the generality
mentioned in Chapter 3 are the

(1) generality in resource allocation

(2) naming generality

(3) PAT system matching function

(4) CALL statement

230

(5) character string operations
(6) SHOWAS statement allowing arbitrary formatting
(7) one IF-THEN-ELSE for all kinds of tests

(8))INCLUDE facility for library material.

5. Consistency

Examples of the consistency argued for in Chapter 3
are
(1) modality, e.g., CASE and SQZ, are uniformly
treated,
(2) naming of character string and slide constants,
(3) expressions, e.g., wherever text may appear,

a text expression may appear.

Note that these measures set a precedent for con-
sistent extensions to DIAL.

In trying to achieve consistency I found the
formalism of a grammar for the language to be very
helpful. As a guide to the ease of use of a particular

syntactical construct, I found the number of productions

to be useful.

8.3.3.2 Weaknesses

1. No timed response facility

There is no provision in DIAL for an author to get

control back from the student if he has not answered a

231

question within a certain time period. Although this is
consistent with my main client's pedagogical philosophy of
not wishing to pressure the student, it is a weakness in
the language because I preclude the use of timed responses
by other authors.

Another author use, which i1s pressure-independent, for
a timed response facility, i1s in tailoring the course
material to speed of student responses.

Note, however, that since the CHAT interface does pro-
vide tools for these facilities, DIAL could be so extended.
An author does haQe the data in the log file as to how long

students take to answer each question.

2. PAUSE

The rate at which succeeding unité of instructional
program output are given depends on whether or not a user
response separates the units. Waen th=re is no intervening
response, an author must be sure that PAUSE is set
appropriately and so has to make the {(sometimes difficult)
judgment on how long the average student will take to
read a unit. He may not, however, agree with this style
of progressing a student, and instead, prefer that the
student indicate when he is ready for the next unit.
Perhaps a new statement is needed in DIAL, one which
displays 'Press INT to continue when ready'. The same

effect can be achieved in the current design, not by a

232

special statement, but by a CALL to procedure INT, where

INT is defined as:

INT: PROC
REPEAT
S'Press INT fo continue when ready.'
UNTIL PAT('') .
END INT

Class use showed in fact that such student-initiated
progression is better. The course material was so changed
for the Spring use. A new statement, PINT, has been
added to DIAL; this temporary language change will remain

until procedures have been implemented.

3. Data types

The data types in DIAL are

text
slide
integer
label.

The data structures are scalar and vector.

hese were regarded as essential for an author
language. Other data types, for example
arrays

global text variables
real numbers

5

SNote that global text constants are provided by
the)INCLUDE facility.

are not in DIAL. The usual tradeoff between usefulness
and cost of implementation (size of the main-memory-

resident language translator) excluded them.
8.3.3.3 Omissions
The following are designed omissions.

1. A HINT facility

The HINT (or HELP) facility is usually designed so
that a student may request a hint for each question pre-
sented. Hence an author must prepare a hint action for
each question - if he does not, the student may be
adversely affected by the standard system response
'NO HINT FOR THIS QUESTION'. I brefer amplificatory
sequencing to be explicitly programmed. For example,
in DIAL, use

UNREC *, L2, L3
with the code sections at L2 and L3 being amplifization
of the question. Furthermore, I believe that being able
to request a hint or help at every interaction in a
teacher-student dialogue is not natural.

Notice that HINT requires an author to define two
teaching tactics for every micro-pcint. As contrasted
with such preparation of both a coarse-grained teaching

tactic and a fine-grained one, it is less costly for the

234
author to put all students through the fin=z-grained one;
and if display and response are fast, it may not be any
more costly and tedious to the good student. (But then
again, it may.) For the poor student, the success

psychology is considerably better than failure psychology.

2. A calculation mode

Outside of the CAI System, our students have nready
access to many terminals providing APL. Moreover, it
is planned that some interactive PL/I service be a sub-
system of CHAT. Perhaps the omission in DIAL of calc, is
really a question of subject matter bias. Calc is impor-
tant to PLANIT because it is directed mainly at statistics;
the numeric tests for equivalence in PLCLS [Oldehoeft, 19691
Erovide an attractive rorm of answer analysis for
numerical analysis. The UNC CAI Project intends to add a
facility which is attractive for answer analysis in com-

puter programming - a PL/I language processor (Chapter 9).

8.3.3.4 General comments

1. The DIAL subset used

The following are not in the current implementation
of the DIAL language specs: vectors, the FRAME-statement,

procedures, SUBSTR, INDEX, LENGTH, and IF-THEN-ELSE.

215

The language features actually used by Brooks were:

naming, assignment, SHOWAS, SHOW, MATCH, PEN, PAT,

UNREC, GOTO, RESUME, CASE, ENDLESSON.

2. Reserved words

Reserved words are those appearing in the grammar,
e.g.s OSHOW IF MATCH . They cannot be used in any way
except in their intended structural use in DIAL, a con-
sequence of the implementation based on McKeeman's Transla-
tor Writing System. The effect of this limitation can be
summarized by saying that it violatés the criterion of

"
.

modularity stated in [Radin and Rogaway, 19657:

but if you don't need it you don't have to specify it or
even learn about its existence," as one of the de-
sign criteria for the language PL/I.

This criterion, however, is not really applicable
to DIAL. There are only 40 reserved words; an author

can learn them all, a virtually impossible task for PL/I.

3. Two branching statements

Branching conditions and actions can be described
by the IF-statement alone. However, because of the very
frequent occurrence of

(a) a logical expression with the ANSWER register

as a comparand

236

(b) responses which are equivalent for branching
purposes
the MATCH-statement is provided to give a more compact
notation, at the expense of mnemonic value.
The following two DIAL program segments produce the

same result.

IF ANSWER = '2A' | ANSWER = '2C' THEN GOTO L1
IF ANSWER = '2B' THEN GOTO L2
MATCH '2A' | '2¢c', Ll

ATCH '2B', L2

4., The)INCLUDE facility

The design called for a library subroutine facility
whereby subroutine procedures are made availéble in 3ome
library for inclusion as procedures in an author's in-
structional program. This facility is widely accepted in
computing and has been used in most computer installat. ons
for several years.

Rather than a library subroutine facility, the CAI
System has the)INCLUDE command, a facility which is
conceptually more powerful. It is more powerful in the
sense that arbitrary text, not just subroutines, can be

6 o s . . '
included. Moreover, it 1is consistent with the DIAL

B . . .

As an analogy, the PL/I compile-time %INCLUDE will
accept arbitrary text, whereas the 0S/360 linkage editor
accepts only valid subroutine procedures.

machine concept - an author manipulates only source

text, not compiled code as well.

8.3.3.5 Summary

DIAL is an improvement over existing author
languages. The improvements can be seen both in the
language itself and, more importantly, in the operational
environment in which it is embedded - an integrated,
functionally complete system serving authors, students,
proctors, and computer programmers. Implementation with
a translator writing system has been seen to simplify
the remediation of weaknesses as they are discovered.

As can be seen, DIAL offers little new in CAI function.
However, some gerneral, powerful, and easily used
mechanisms have been borrowed from general programming
languages, and embodied in a consistent syntax to provide .

features not usually seen in CAI languages.

8.4 The computer programmer - system interface

The interface discussed is the one involved in using
the CAI Translator Writing System. Chapter 6 should help
the reader in his assessment of the flexibility of the

DIAL implementation.

238

Of the three parts of a compiler for a new version
of DIAL, the lexical and syntactic parts are taken care
of by the TWS. The semantic routines, however, require
a PL/I programmer with knowledge of the internal structure
of COMPILER. To assist him, the design of that routine
is highly modular, particularly in the semantic ioutine
CODEGEN.

The CAI TWS has proved useful in the following

situations.

1. Progressive implementation of a fixed design

Several versions of DIAL, embodying progressively
larger subsets of the specifications in Chapter 4, have

been implemented.

2. Improvement in design

The language design process did not stagnate during
progressive implementation, and several improvements have
occurred. One replaced the CC and SC attribute declara-
tions by the naming statement. For example

m 0BS = 'Observe the slide'
used to be achieved by
DCL OBS CC 'Observe the slide'
This change was handled entirely at the syntactic level

by the CAI TWS. Another improvement, but one which

239

requires some semantic change, was the generalization of
mode switching. For example

CASE <- arithmetic-expression
replaced the two statements

CASEON and CASEOFT

The CAI TWS promises to prove useful in two other situa-

tions as well.

3. .Correction of mistakes

Of those mistakes discovered during human-factors
debugging, for example, the redundancies discussed in
Section 9.2, DIAL/2, the majority of them are correctable

at the syntactic level.

4. Extension beyond specifications in Chapter U

This is, of course, the situation in which the TWS
is most attracfive. However, most of the computer
programmer's work will be in writing and detugging at
the semantic level. DIAL/2's PARSE function is an

example.

DIAL/? i3 a language radically different from current
DIAL. But the differences are predominantly syntactic,

not semantic. This further justification of a TWS

2410

implementation of DIAL was unexpected because I had
predicted that DIAL would have semantic, not syntactic,
limitations.

A good measure of the effectiveness of the computer
programmer-system interface could be obtained when the
next step in progressive implementation is taken. For
at each step the changes are well defined. Time and
effort data should be gathered for each of the following
tasks, which are defined in Chapter 6:

language definition;

BNF programming;

PARSER runs;

writing CODEGEN additions;

writing new delta code interpretation
in EXECUTOR;

debugging.

8.5 Observations about human factors

This section presents a selection of the more im-
portant human-factors considerations involved in my
research. I believe, but have not proved, that these
observations are generalizable to the design of most

man-machine interfaces.

< < AR T
-~ N m . - o LewmA RGN
R A Y RN SN “n RSN
ASN AN L X AN A - PRSI »
. N N N
AR . 3, N s - R R
R S SO A S “ I AN R T D TR R PO
[[N “ . SN
PN YR IR B A VON ae G ate o wbaaas s D NN NN s ey
P s AR s e b N A el [N oAt N W N A . -.\7\‘\\‘.- N |
- ~ " ., = . - DN .
W N . S v 2w o L R S T TR SN, ARNAN N e S iy s N N
N . S N et oAl el
R s B T S S RN ISR M\\\.,\x.\ P Y :.\ N NN A N
(NS N N N ~ .
3N, - ~ AN A vaLa N Taear oy aan 2o T RN A
[& N aRATRY L LTI LAY R PRI MUY \
N N M
- .
e e e Y
R N
oL RN <o A ws N s PR
AL e at E . St TIN aavraloya -
AR O O S R AMAWNW RSSO W
» - ~ - N > ~ h) -~ N \
- T S S T LT TP T ¥ SN N -
IO FOTO - LR A T TR S L N e N T S SO .
N s “
NF o enmeLn Ayt _awe R T R I T T TS T Y N T NP
. OV PN DR R N Y R IR [NATII L R
v Moeiea o M unen v s N R N T P T L L T T S T T TPV Ry
[L N R 0 RN LS NP . N ATEURCRRRN RN RSN D O R R A L A L VA
. a3) N
AT am e M [T Borivaase Ny o
AN v e onL LN AR o svaan N
3 .
3. A
s, TR NN e
RN :--_x\-\ SN
. .
v 3 LR R SN N NN Y e oy
ARG Taaee LN R RE S
- PN .
Ny e T I T IR R TN
AWETT UC VIS WALLTON AW

3 Y vyl vyes & Yoat e Fysais
e schoduio pus? condaitn g humans=iacioeg

dobug andy and the Daplomentiat ion meed be Uiexd

T would like O have had a TWE fov the opevational
cnvivonment suah as Nowman's Diwasl, not Juat a Tws

for the DIAL languapce.

§.5.2 7 Conmintenay {(ov unitormity)d

S s u

To the tont that command languapes, progvanming

languages, and operating procedures deviate from the

ERIC

Aruitoxt provided by Eic:

242

rule '"the same things should be done in the same way
wherever they appear", they violate the psychological
principle of uniferamity. They will usually be more
difficult to learn and more difficult to use without
error.

Several components of language are involved:
syntactic, e.g., consistency in display format7;
semantic; pragmatic, e.g., consistency with the user's
real-woeld experience; stylistic, e.g., tone of messages;
and lexical, e.g., rules ior forming abbreviations.

A conseguence of the need for consistency is that
instant design cannot t=2 done; any change generally
reverberates throughout the whole design.

Consistency throughout is part of the conceptual
integrity of deSign. This integrity is far simpler to
achieve when there is only one system architect specifying
all the elements of the user-system interface. Two
designers may agree completely on principles; there will
still be differences in style, and these differences will

inevitably show in the micro-decisions of the design.

7The student user of the CAI System has just one dis=-
play format, QAR, to master, from sign-on through instruc-
tion to sign-off. The author has just two: QAR and the
author-mode format.

8Sometimes, to maintain consistency, a designer will
include facilities which he predicts will never be used.
The m,n option on J)list is an example.

243

8.5.3 Sackman's conversational principle

This principle (Section 8.2.4) is a very useful
guideline.

However, response time, while critical, is not the
only factor in paralleling human interactions. I suspect
that because respoﬁse time is readily measurable (compared
to other factors, such as command language ease-of-use),

i* has been overemphasized in the literature.

8.5.4 Top-down design

Top-down design, or outside-in in this case, helps to
ensure that the design focus is on the man in the man-

machine interface, not the machine or implementer.

8.5.5 User-initiated progression

There are now very few intervals when messages are
displayed for a fixed time in the CAI System; in most
cases, and always for long messages, the user, not the
system decides when to progress. This change in philosophy
evolved during testing. It turned out that when a
message is displayed for a fixed time, the slow user will
miss part of it, and the fast user will get impatient.

If an author's course material does this, it not only
reduces individualization, but also frustrates both fast

and slow students; the same applies to the system in which

24y
the course material is embedded.
The 3ame is true in author mode, where the messages
are generally diagnostic messages. An experienced author
detects the cause of his error very quickly and wants to

get on with fixing it.g

8.5.6 Minimality ~ the search for powerful primitives

As with computer architecture, programming language
design, and command language design, the search is for
powerful, general-purpose primitives. Sometimes these are
found by seeking them to start with. Thus, a goal con-
tinually pursued in this research was a single canonical
form for answer matching. The pursuit of this goal (not
yvet achieved) led to development, for example, of the
PAT function, which subsumes the functions of MUST,

CANT, DIDDL, keyl, etc., found in other languages.
Often such primitives are arrived by iteration, e.g.,

collapsing several commands into one.

8.6 The cost of designing and implementing the system

Developing the CAI System used for the Fall 1972

class took 2358 man/hours over a period o. three years.

9Fixed—time diagnostics annoy the experienced user
in the same way that long typewriter-terminal diagnostics
do.

244

This includes both the design of the system presented in

this thesis and the implementation and documentat’on of

the subset defined in the Systems Programmer Manual [Mudge,
1972]. It does not include the thesis writing time.

The size of the CAI System, i.e., the on-line
routines, at the end of August, 1972 was as follows.

11,000 printed lines of PL/I source code

(including blank lines for readability)
3,691 PL/I statements
About 200 of the 3691 statements are DECLARE's,
almost all of which declare many identifiers,
which leaves about 3500 statements.

Hence, the 11,000 printed lines aré made up of
comments, blank lines, declarations, and about 3500
executable statements.

As with any software engineering project, the time

inciudes the following activities.

1. Building scaffolding
Apart from the usual scaffolding there was
a. CC-=30 i/o simulator (the CHAT interface simulator)
b. PARSER to debug the syntax analyzer and to aid

in using the TWS

2u6

c. offline service routines
- crude versions of file maintenance of STUREC,
AUTHREC, CAIFILES
- 1lesson listing: an offline)PRINT command
2. Scrapped code
3. Project meetings
4. Demonstrations and discussions for site visitors
5. Systems Programmer Manual
6. Test programs for PL/I
- learning language features new to me
- testing features obscurely described in manuals
- choosing among alternative PL/I methods

The time also includes the student/author work-
station design and prototrype construction.

Because of the method I use to record my time
(effective hours), each time figure given in this section
should be inflated by 20% to account for coffee breaks,
etc., 1f they are to be compared to industrial work hours.

The high proportion of time spent in a project like
this on design, tooling, and scaffolding is reflected by
the fact that over one half of the 3500 instructions were
written and debugged in the Fall semester of 1971. These
1800 instructions were done in 594 hours. This was straight
vroding and debugging after all design, scaffolding and

c¢ata structures had been taken care of. TFor this sprint

247

period, productivity was at a rate of about 5000 debugged
PL/I statements/man-year. The overall project ratc is

about 2470 statements/man-year.

8.7 Is it widely applicable?

Could another university install the CAI System?
Could a high school install a work station with access
to DIAL at a remote host computer?
Given the properties of current time-sharing systems,
the most portable system would be one which is written
in, FORTRAN and which uses a teletype as terminal. Indeed,
the FOIL, WRITEACOURSE and PLANIT systems of Chapter 2
state this sort of high portability as a design requirement.
These constraints were rejected as too rigid and
awkward for this project, but the same sorts of

portdbility were goals.

8.7.1 Portability of the software

(1) The implementation language

The CAl System is written entirely in the machine
independent language PL/I, and in this respect it is
highly portable. The particular implementation used is
the F-level 0S/360 compiler. Changes may have to be made

to run with other PL/I environments because

X

248

a. some implementations are a subset of PL/I (F).

b. the run-time environment of PL/I (F) is
intertwined with 0S/360.

c. the machine-dependent UNSPEC function of PL/I

is used in the CAI System.

(2) The host computer's operafing¥system

An absolute requirement for CHAT is 0S/360 with the
MVT option. Only minor changes need to be made localliy.
Without CHAT the prospective user is faced with two
problems: communications support and multiterminal support.
The communications support for single terminal operation
would be reasonably inexpensive t¢ build. This is cer-
tainly not the case for multiterminal support, the major

part of CHAT.

8.7.2 The host computer

¢ A medium scale computer, e.g., a S/360 Model 50,
would provide the amount of main memory and type of disk
backing storage needed for the on-line routines of the
CAI System. Thus the system is expensive, but a price
must be paid for richness of function and good perform-
ance. Main memory usage is one copy of the reentrant
load module (155,000 bytes) and a work space (the

activation record) for each active user. The latter

49

is dynamically allocated by the CAI System; space is re-
quested when needed and freed when available. This results
in a substantial improvement in memory use over static
allocation. However, this dynamic behavior makes meaguce-
ment difficult. The lower bound of each student work-space
is 21,000 bytes; the upper bound throughout a session is
about 25,000 bytes except at sign-on and sign-off times
when 42,000 byteslO are used. The overall utilization
of memory could be improved if work spaces were swapped
out during user think times; the resulting :esponse time
degradation would not meet my design goals, however. The
lower bound of an author work space is 10,000 bytes; the
work space grows to 14,000 bytes when a statement is being
compiled, and peaks at 26,000 bytes during author execution
of a DIAL program.

Schultz's CHAT monitor has been carefully crafted in

assembler language and requires only 28,000 bytes.

8.7.3 The terminal hardware

The student/author work station is built around a
terminal which, if not in widespread use, is commercially

available and based on establislied technology.

1026,000 bytes of this are used by the 0S/360 input/
output routines, e.g., the indexed sequential access method
routines. They are required only at sign-on and sign-off.

250

8.7.4 The communications hardware

To achieve a performance consistent with the design,
remote terminals must be linked by a line of at least
medium speed (2400 bits per second). Teletype~speed
lines are certainly inadequate. Since our terminal and
communications equipment from Computer Communications,
Inc., can be configured flexibly (with the addition of a
CC-70 communications processor if necessary), terminals

in widely separéted sites are possitle.

CHAPTER 9

SUGGESTIONS FOR FUTURE WORK

9.1 Introduction

This chapter recommends seversal directions in which
the present CAI System design might be extended, as well
as presenting some research topics. Recommended improve-

ments in the current implementation of the design are not

discussed, as they are covered in the Systems Frogrammer
Manual.

In contrast to the speEﬁSic suggestions in this
chapter, the goals of Phase III of the CAI Project provide
more general direction. Phase II1 produced Schultz's CHAT
monitor, the CAI System, and Brooks's course¢: material. As
the Broject formulates the goals for the next phase, we
find that we are more interested in results that teach us
something about interactive systems in general thean we are

in attempting to devise new CAI methods and strategies as

1See Chapter 1 for its goals.
i

s

252

such.? The West House facility will be used to investigate
the factors in system design which make interactive CRT
systems easy or hard to use. This includes work-station
design, design of application-oriented languages, system
command languages, system robustness and graceful-fail
features, operational procedures, and integration of human
assistants with machine systems. This thesis has investi-
gated these factors severally, but their integration and
interaction ultimately determines ease of use.

The wide class performance variances observed in our
tests show that a new methodology for evaluating such
factors must be developed; probably it will be based on
systematic observation of users, error-rate data, timing

data, and user questionnaire data.

9.2 DIAL/2

In contrast to on-line entry of a program written

prior to an on-line sessiy..., on-line composition places
greater demands on a language. A much clearer understand-

ing of these demands came from actual use of the system.

2Note, however, that in the pure CAI area, the Project
has made available a proven, total, flexible system for
teaching. Already several researchers in the University
and in the state have shown interest in using the System
for research in instructional programming, learning theory,
and cost-effectiveness of CAI.

263

The proposals in this section reflect this experierce and
also the influence of Dijkstra's structured programmning
[Dijkstra, 19701.

The exact syntax and semantics of the pro?osals are
not given. Moreover, their smooth integration with
current DIAL to maintain a consistent uniform design is

not covered at all.

9.2.1 Response sets

The response set provides a more powerful means of
classifying respcnses in a MATCH-statement. The extra
power comes both from the increase in function and from
its generality. A set is defined by

set-name = <elements>.
As an example
MATCH set_1l|set_2| <'Y', "YES'>, next
would branch to next if at least one of the elements in
the three sets matches.

Examples of gets are
l. set_1 = <'INTEGER', 'AN INTEGER'>
2. set_2 = <'CHARACTER STRING', 'A CHARACTER STRING'>
3. set_ 12 = <set_1l, set_2>
4, numeric = <'0', '1', '2', ... '9'>

5. yes = <'Y', 'YES'>

254

6. oddpen <PEN(1), PEN(3), ...PEN(9)>

7. gamma = <'DOG', PAT('¢(DOG¢'), Pu>

Example 3 names a set which 1is the union of two other sets;
any number of sets could form a hierarchical structure.
The element P4 in example 7 is a subroutine which operates
on the ANSWER register. TFor instance, it might be a
general indefinite article remover that does the work
of examples 1 and 2.

Other set operations might be provided, e.g., inter-
section, complementation, and element selection.

Note that response sets provide a clean syntactical
integration of the natural language processing subsystems

of Section 9.5.

9,2.2 The semantics of CASE

The system log showed that students frequently entered
PL/I statements in lower case instead of the mandatory
upper case. An author would like to identify this error
rather than respond with the UNREC message. He can do
this in DIAL/1 with the CASE statement, but for this
particular need it is clumsy. He would like to put a
CASE switch in the body of a siéve and cause the ANSWER

register to be retranslated. However, case translation

would then no longer be a preprocessing function.

Changing the semantics of CASE thus requires a rethinking
of the preprocessor concept in the DIAL machine. Perhaps
what i1s needed is a general function like TRANSLATE in

PL/I which would certainly handle the CASE problem.

9.2.3 Block structure

Real author use of DIAL showed certain elements of
redundancy. Consider the present typical frame

structuring.

SHOWAS
MATCH response set, branch forward

MATCH response sets, branch
MATCH

UNREC

branchlabel: SHOW feedback
branch back

This shows two redundancies:
(1) the branch to the feedback (juxtaposition would

solve 1it), and

3See Figure 4.2 for a typical sieve.

256

(2) the branch from the feedback (always either back to
the lead-MATCH or on to the next frame).
The first is a burden not only because of the necessity
for generating multitudes of labels, but also because the
author must stack feedback messages in his memory as he
enters the sieve response sets and then unstack them after
the UNREC.
The following vertical bracketing into blocks, one
for each sieve element,
MATCH
response sets
feedback

branch
MATCH

solves the first problem. Also, readability is greatly
enhanced. The branch could be dispensed with if the
single case of forward branching were distinguished by
the operator, MATCHR, sc then an implied branch back 1is
part of each ordinary MATCH block.

Most labels are obviated. DIAL/1l demands extensive
use of labels, an annoying burden in on-line composition.
My aim noﬁ is self-referencing branches: branches should be

relative not absolute.u

lJ'For* example, DO-WHILE and UNREC * are self-
referencing.

257

9.2.4 Branching functions

Consider the following block structure

[~

with a set of branching functions which take blocke as

(explicit
in move
out move
up move
down move

exit move

or implicit) arguments:

in to the next contained block

out to the next containing block

to predecessor block on the same level
to successor block on the same level

to outermost containing block, i.e., exit is

the function composition of out's

Then, viewing a program as a two-dimensional space,

horizontal movement comes fro.» the notion of depth into

a nesting

motion is

cf blocks. In current DIAL, only vertical

possible: amplification of a concept, con-

ceptually a horizontal movement, must be done by a GOTO.

Return to a lead maich is also done by a GOTO, unless

U % 1is used.

258

9.2.5 A small number of control structures

DIAL/1 has cpecialized control structures, e.g., U *,
Two new ones are proposed: branching functions and MATCH-
block. While specialized control structures in a special
purpose language can be justified on the grounds of con-
ciseness of expression and application-orientation,
there is the danger that the language may have sﬁch a
diversity of different control structures that ease of
learning and use suffer. Thus, ih adding function and
providing self-referencing branches, the air should be

a small set of uniform, consistent control structures.

9.2.6 A PARSE system matching function (due to Brooks)

PARSE -7ould take a grammatical specification, in RNF
for example, as its argument and return 1 if the student's
response parsed correctly, 0 otherwise. For example, if
ident names a set of BNF productions for a PL/I identifier,
then

PARSE(ident)
coi1ld be used in the answer analysis of a response to the

question "Construct a va'id PL/I identifier."

9.2.7 The operational environment

Whenever DIAL is changed, the implicatio. “~»r the

operational environment should be studied. Cousider the

)

)
S
\

Tt Ty T ™ T

259

following.

Indentation enhances the readability of block-
structured programs. The)LIST command could reformat an
author's statements according to the structure of DIAL as
NEATER? [Conrow and Smith, 1970] does for PL/I. Thus an
author need not spend time indenting as he is entering his

code.

9.3 Author-defined commands for student use

Currently the only command available to a student is

JOFF. All other student inputs are in response to
explicit directions from a DIAL program. This section
proposes an extension to DIAL which would enable

an author to define a set of commands for student users
of his instructional program.

Each. student response would be checked to see if a
command is being given. The occurrence of a command would
result in the execution of the action specification for
that command. An author would provide a complete defini-
tion of each command by a set of command units, each one
consisting of a name and action specification. For

example,

ON REVIEW DO

SHOWAS 'Review sequences are
available for the following
topics. Indicate your choice
with the light pen:

* ARITHMETIC OPERATIONS
o

* No review - return to lesson'
MATCH PEN(l), ARITH

END
A command unit has the form
ON command-name action-specification
where action-specification is a statement or a DO-group.

If execution of the action-specification does not
result in a branch out of the command unit, then execution
rasumes at the SHOW-statement controlling the read.

I suggest that such author-defined commands do not
use the special start symbol) since this should be
reserved for additicnal system commands. An author may,
however, wish to establish the convention that all begin
with some other special symbol, e.g., #, §, or @. This
wou1d not be necessary if the rule is established that all
MATCH~specified responses are checked before the list of
commands .

A command facility would add to the ease of use of

DIAL; to achieve the equivalent in the current design, an

261

author must specify the response in every MATCH group, e.g.,
MATCH 'REVIEW', REV;
Moreover, it would add flexibility to the CAI System; an

author could nrovide for much greater student control over

the path through a set of course material.

As a simple example consider a command MENU:
ON MENU DO
SHOWAS'Select the section you wish to
work next:
*EXPRESSIONS
*PROGRAM STRUCTURE
*DECISION MAKING
*#*CHARACTZR STRINGS
*ITERATION

END
The command MENU is roughly equivalent to go to in
Coursewriter.
Other examples of author-defined commands are:
(1> a status reporting command, which would display
certain measuv.es of performance kept by an
author in his DIAL program.
(2) a command by which a student can consult a
dictionary or glossary. If the vector DEF contains
definitions and is keyed by the vector KEY then an

action-specification could be as follows.

ON DEFINE DO

L?. SHOW 'Enter word to be defined!’
ARG <=~ ANSWER
I <-0

LO0OP: /*Linear search of keys®/
I <-1+1
IF T > NDEFS THEN GOTO NOT;

/* not found */

IF ARG = KEY(I) THEN GOTO FOUND;
GOTO LOOP;

FOUND:
SHOW DEF(I);
GOTO EXIT; /f return to controlling */

/% SHOW via the default */
NOT :
SHOW 'This term is not in the course
dictionary. Perhaps you micspelled.';
EXIT:

END;

The responses to Questions IV.2 and IV.3 on the Fall
and Spring questionnaires show the desirability of the
DEFINE and REVIEW facilities.

Finally, recall the timed-response facility dis-
cussed in Section 8.3.2.2 and notice the semantic
similarities to the proposed author-defined commands.

The action-specification would be

ON TIMEUP DO

END
but the system rather than the student would signal the

command.

S h03

9.4 Debugging aids for DIAL programming

The most important debugging facility is the inter-
active environment itself. However, this should probably
be supplemented by scme other aids. Study is needed to
determine what aids are necessary and how they can be
incorporated into the CAI System in a manner consistent
with the design philosophy.

As a departure point for this stucdy, the following

could be considered.

1. Tracing

A step-by-step J)XEQ optic : for every statement
executed, two screen displays would appear - a debug
screen and a student screen. The debug screen would
display information such as

(1) the DIAL statement executed

(2) the values of variables, registers, etc.

referenced in the statement.

The author would advance such an execution with tﬂe INT

key, with successive depressions causing the debug and

student screens to appear alternately.

2. Value assignment
This would enable an author to assign values to

variables just prior to an JXEQ.

20u

Some aids would be added as part of the language,
others as part of the operational environment. Some may
be implemented by inserting checks in the object code
(subscript checks, for example), others by a monitor
controlling author-invoked execution.

Attribute tables, cross-reference lists, etc.,
should be added to the listing obtained by the)PRINT

command.

9.5 Answer processing subsystems

For certain types of constructed responses, e.g.,
when some meaning must be extracted from a typed responée,
conventional author languages are sometimes not very
powerful. As an alternative to introducing such power
into the author language itself, this section proposes
a study of existing computer programs for processing
semantic information. Suiltable programs could be attached
as subsystems to the CAI System.

Not only should the systems programming job of
attaching subsystems be studied, but also the interface

with an author through DIAL.

9.5.1 An existing language processor for the programming
language being used in an introductory computer program-

ming course co@ld be harnessed as a subsystem. It would

265

then be possible for an author to elicit a program segment
from a student and the CAI System to pass the student's
answer to the language processor for analysis and
execution. The design challenge here is meaningful
communication between the execution and the author's
insteructional program so that the student can be given

pedagogically useful feedback. Project TEACH [Fenichel,

18701 has implemented and evaluated a modest subset of the
proposed environment; the project has now launched into a
substantial research program aimed at coming closer to the
full environment.

As a first step, I suggest a syniax checker. Each

program segment would be analyzed syntactically only. A
vehicle for this c~uld be the syntax analyzer (uising a

PL/I grammar) of the CAI TWS described in Chapter 6.

9.5.2 The above subsystems are restricted to only one
subject matter. To get real general power, one wants to
incorporate natural language processing subsystems. Al-
though Chapter 3 argued that such systems are still too
experimental to form the central framework for a production-
orientec iuthor-controlled CAI Systeim, system developers
must keep this goal in sight. What one really wants for

CAI is a subsystem which matches the semantic content of

a response against that of a single canonical form given

2086

by an author.

9.6 A man-machine interface for unrecognized answers

The following man-machine system is proposed as a

generalized unrecognized answer nodel for research. For

each grcup of n students (n to be determined) there would
be a tutor station consisting of a m:n and a special
console. Whenever a student response was not recognized
in a DIAL program, the CAI System would route the prcblem
to one of the tutor stations.

The situation is'a suitable candidate for a man-
machine system. The instructional task would be parti-
tioned such that the inherently algorithmic parts (text
display, sequencing, etc.)} are handled by the machine
and the parts that are best hendled by a man (patteru,
context and judgment problems. would be allocated to the
wutor.

The number of minutes per hour that the tutor spends
on the average with each student must be very low for the
system to even approach cost-effectiveness.

In terms of the pressure characteristics of the
sysfem, the job of tutor would be similar to one in tihe
busiest air traffic control center, wh re duty periods

are as short as one hour.

267

Some of the challenges involved and questions raised

are the following.

1. Information display to the man
The context surrounding the student unrecognized
response must be displayed at the console of the tutor

station in such a way that the tutor can quickly see the

problem and decide on his response.

2. Input from the man

Once the man has decided what his response will be,
he muct be able to enter it quickly so he can be freed to
serve the next problem. Thus typed input is excluded. A
menu of responses to be selected by light pen suggests
itself. This menu should be part of the problem display.
An obvious menu is the s2* of branch labels appropriate
to the problem section of the DIAL program. This, however,
requires the man to be intimately familiar with every
micro-point in the irstructional program. An alternative
for the menu might be a "s2ale of wrongness" which the
System would translate into branch labels.

The tutor console might enable the tutor to «ontrol

a pointer on the student's CRT screen.

268

3. Multiple interactions

If the tutor cannot decide on an action for a
particular problem, he may want to get more information
from the student; a two-way channel for multiple inter-

actions pcr problem is then needed.

4. Instructional preogramming
There are many implications for the instructional

program structure and for the author langucage.

While the situation proposed may never be implemented,
it would serve as a model, the investigation of which
should throw light on important problems not only in man-
machine dialogue, but also in learning theory.

Finally, note that the system would be ideal for a
HELP or HINT facility. When a student types HELP the
system would display the context at the tutor station.

The tutor could use a voice link for his reply.

¢.7 More service programs

Much data is gathered by the CAl System from each
student session and stored in various files. Prcgrams
o7er and above the existing ones are needed to analyze
this informaticii for authors and proctors. A study

should determine

269

(1) what information is pertinent;
(2) a language for accessing it;
(3) whether batch or interactive programs should
be used. .
There are three potential sources for information for

analysis:

1. The STUREC file
Each student's record conteins statistics on terminel

time, personal data and the number of recovers and resumes.

2. LOGFILE
This contains, for cach student session, student
responses (typed or penned) and a trace by DIAL statement

number diachronically.

3. The student activation record

This record is called SCB (studen* control block) in
the CAI System. It is not diachronic but a snapshot of the
state of all variables, DIAL machine registers, etc., at an
instant in time.- In contrast to the log file, SCB has
instant in time but all in kind. At sign-off it is
transterred into g%%C.SCB_PART on the student's record in

file STUREC.

270
The work at Florida State University [Davenport, 1968]

on the analysis of Coursewriter-generated performance

records may be useful in the study.

¢.8 Color cathode-ray tube terminals

In the Spring of 1972 the CAI Project added a color
option to the dispiey of the work station, a very useful
modification. It involved replacing the existing CC-300
TV Display by a color TV and modifying the CC-301 TV
Display Controller. Characters can be displayed in green,
red, blue o>r yellow.

Character color is specified by four (non-displayed)
control characters. These codes are:

(1) entered from the keyboard by simultaneous depression
of the special code key (SP) and one of Q,R,S,or T, or
(2) sent from the computer. |
Once a color selection has
been made, all characters received by the controller are
stored with that color designation until the next color
code is received. Thus color codes act as shift
characters. But when a message is transmittea from the
CC-301 to the computer thcse control characters cannot be
retrievea. Because of this harcdware deficiency, software
is needed to transmit an encoding of these characters to

the computer so that when messages are sent back the

27

appropriate color control characters will be inserted.

An interim solution has been implemented. Four
system text constants, GREEN, RED, BLUE, and YELLOW, were
added tc the language. They can appear in a DIAL text-
expression just as any other text constant. For example,

SHOW 'The fullowing is an example of an

| |[RED} | farithmetic ' ||BLUE|| 'expression'
. A better solution, in that it does not intrude on
the language, is to make colo:r changing part of the
operational environment. Four light buttons (one for
each color) at the bottom of the author mode display
format could make color changing appear to be in the
hardware. Thus, to show "arithmetic" in red, as above,
an auther would enter

SHCW 'The following is an example of an

arithmetic expression.'
but after "an" he would pen the red light button. The
cursor would then change color; after "arithmetic" he
would pen blue.

This solution is perhapns as neat as can be done by
software alone. The right solution from a human factors

viewpoint requires minor hardware changes.

APPENDIXES

APPENDIX A

QUESTIONNAIRE A AND SUMI: RIES OF STUDENT
RESPONSES

For each question, four sets of responses are givern.

They represent the totals from each class, as shown in

the following example.

b 8 2
1 15 4 1
2 12 7
& 39 17

In the Fall, 58 students
completed the questionnaire.

a possible t3 completed it.

<+ Fall, 1972, Conventional
method-Instructor 1

< Fal', 1972, Conventional
meth->d-Instructor 2

« Fall, 1972, CAI

+ Spring, 1973, CAI

out of a possible 60

In the Spring, 56 out of

NAME .

COMPUTER-ASSISTED INSTRUCTION STUDY

FALL 1972

Student guestionnaire for control groups and experimental
group

Please fill out the attached questionnaire as completely
and accurately as possible. The information gathered will
help »lanning for more effective methods of teaching com-
puter science courses.

You will not be graded on your responses to this question-
naire. In fact, neither your instructor nor the course
supervisor will ever see any completed questionnaire.
Neither will any student be listed or mentioned h:7 name or
number in reports describing the results of this study.

To be completed in class on Monday, October 2, 1972.

J. C. Mudge

Experimenter

JCM/v3
9 72

Page 2
1. Year at UNC:
2 3 4 1 5 1
2 b 5 10
2 1 9 5 b
6 § 14 132 12 3
Fresh- Soph~ Junior Senior Grad- Other (Please
man omore uate specify
Student)
2. Major or intended maior:
3. How would you rate your attitude to the subject

matter of this course? Restrict your rating to the
subject matter itself, rnot the method or quality
of instruction.

9 b 3
2 14 5
9 6 5 1
14 34 7 1
very : very
positive positive neutral negative negative
L. What previous experience have you had with computers?
Circle all
that apply:
8 12 10 37: none
1 5: other programming courses
1 I: computer appreciation course
1 3 : this course b=fore
6 6 5 13 use of pre-programmed packages,
e.z., statistical packages
1 3 2 3. programming in language(s) other
than PL/I

1 2 5 10 other (Please specify)

276
Page 3

5. Why are you taking this course?

Circle all that apply:

1

N =

10

6. (a)

(b)

1 2

2

10 9

3 8
5

12 15

6 2

6:
1:
9.

it 1s a prerequisite for other
courses I plan to take

it is required in my program

it satisfies the language re-
quirement for a graduate degree
solely for a broadening
experience

it will help me get a job

it satisfies the math requirement
for my degree

programming will be a useful"
research skill

other (please specify)

At the beginning of the semester I felt that
obtaining a good grade in the course was

n

13
6

22

very impo:tant somewhat

10 2
8

12 3

25 9

not important
important

At this time, I feel that obtaining a good grade
in the course 1is

very important

11 2
8
9 5
25 10
somewhat not important

important

Page U4
(a) In comparison with courses which have a similar
relationship (e.g., elective, required course)
to my program, the amount of time I now allot to
this course is
5 9 2
6 12 2 1
13 . B 1
9 28 14 2 1
much 1more average less much
more than i than less
than average average than
average average
(b) At the beginning of the course I had expected this
time allocation to be
6 8 2
1 15 U4 1
2 12 7
§ 30 17 1
much more average less much
more than than less
than average average than
average average
!
This course has been frustrating:
1 7 6 2
1 5 10 5
3 b 12 2
3 5 28 15
all of most of some of only never
the time the time the time occasionally

277

278
Page 5

9. (&) With respect to intellectual challenge, before T
began the course I expected the subject matter

to be
3 8 5
2 13 5 1
2 11 8
6 37 - 13
very challenging about trivial very
challenging average trivial

(b) With respect to intellectual challenge, I would
now rate the subject matter as

2 Sy 9 1
5 11 5
7 11 | 2 1
10 29 16 1
very challenging about trivial very
challenging average trivial

10. (a) Before I began the course I would have rated the
subject matter as

5 7 3 1
2 17 2
8 10 3
18 35 9
very valuable about worthless very
valuable average worth-

less

279

Page 6
10. (b) I now rate the subject matter as
5 7 3 1
2 17 1 1
6 9 6
9 36 12
very valuable :zbout worthless very
valuable average worthless

ll. Do you believe that teaching can be automated?

12 4
10 11
15 6
36 17

yes no

APPENDIX B

QUESTIONNAIRE B AND SUMMARIES OF STUDENT
RESPONSES

For each cuestion, two sets of responses are given.
The italicized set represents the total from the Spring
class, the other set represents the Fall class. Some.
questions, e.g., Section III, Questions 10 and 11, were
not applicable to the Spring class and sO were not
printed on the Spring questionnaire.

Section II of this questionnaire is a "student
reaction inventory"1 developed at Pennsylvania State
Univevsity.

In the Fall, 21 students out of a possible 22
completed the questionnaire. In the Spring, 56 out
of 69 completed Sections I to III, and 36 out of 69

completed Section IV.

Ce ;TheﬁDeVelopment‘and Presentation of Four College

Courses by Computer Teleprocessing. Computer Assisted

Instruction Laboratory, The Pennsylvania State University,
Q University Park, Pennsylvania. June 30, 1967.

| 281
FAME: J

COMPUTER-ASSISTED INSTRUCTION STUDY

FALL 1872

Student Questionnaire for the CAI Group

Please fill out the attached questionnaire as completely
and accurately as possible. The information gathered will
be used to enhance the Department of Computer Science's
CAI System. We are seeking information, not compliments;
please be frank.

You will not be graded on your responses to this question-
naire. Neither will any student be listed or mentioned
by name or number in reports describing the results of

this study.
-

. C. Mudge
Experimenter

~ Sections I, II and III are to be completed in class on
Monday, October 2, 1972. Section IV is to be handed in
at the beginning of class on Wednesday, October 4, 1872.

JCM/ v

1.

282

SECTION I

I have had contact with computer-assisted instruction
prior to this course:

20 1
51 5

no yes (please specify)

My initial reaction when informed that the first weeks
of instruction would be by CAI was

12 6 3
9 - 30 [5
very favorable indifferent unfavorable very
- favorable , S unfavor-
’ " able

I enjoyed the scheduling freedom provided by CAI

B 15
1 4 21 30
strongly disagree uncertain agree strongly

disagree agree

283

Section T

Page 2
1 use a typewriter keyboard
7 7 4 3
§ 2 2

12 32

by touch by touch hunt-and- hunt-and- (not familiar

fluently halting- peck peck with a type-
1ly. rapidly haltingly writer
keyboard)

I prefer the lesson units to be

3 15 2
9 44 3
longer the length shorter

they were

My first and second choices for lesson length are
[Responses were weighted for - 2 for first choice,
1 for second.]

8 11 11 13 . 8
2 16 41 54 48
10 mins 20 mins 30 mins 45 mins 60 mins

I would like more opportunity during a CAI session
to review :

2 15 1 3

2 43 3 8
complete parts of lessons, slides only (no review)
.lessons both slides and

questions

284

» _ Section I
- Page 3

B. I reviewed slide handouts between CAI sessions

3 8 5 '3 2
12 15 16 11 : Y
all the most of some of ' only never

time the time +the time occasionally

9. After each CAI session I would like a printed copy of
the questions and answers covered in the session

1 5 15
] 4 24 27
strongly disagree uncertain agree strongly
- disagree agree

10. For entering my answer tou a multiple-choice guestion,
I prefer tc use

5 16
19 ' 34
the light pen numbers entered from

- the keyboard

11. Messages on the TV screen were removed too quickly

- 3 6 11 1
' 10 25 21
all the most of some of only never

- time the time the time occasionally

12.

13.

14,

284

Section I
Page Y4

I prefer to press INT to signal when I have read a
message on the TV screen

1 12 8

4 32 20
strongly disagree uncertain agree strongly
disagree agree

Some slides had no questions. A I prefer one or more
questions after each slide

2 7 . B 5 1

1 22 18 12 3
strongly disagree uncertain agree strongly
disagree agree

I found the weekly question-and-answer sessions with
the instructor to be

7 11 3
5 30 ’ 18 3
very sometimes not very (I didn't go)

helpful helpful helpful

15-

16.

17.

286

Section I
Page 5 -

Assuming three contact hours per week, what would be
the best balecnce between CAI and in-class instruction?

6 12 1 2
10 39 4 2
CAI hours 3 2 1 0
in-class hours 0 1 2 3

Compared to a regular in-class lecture, duiing a CAI
session I felt I had to concentrate

5 10 4 A
11 30 9 6
much more more about the same less much

less

When I entered an answer the computer responded with
adequate speed

4 16 1
5 28 9 4
all the most of some of only never

time the time the time occasionally

CIRCLE THE RESPOHISE THAT MOS

REACTION EACH OF THE

1.

O

ERIC

Aruitoxt provided by Eic:

T

While taking

SECTTIOH

ol

STAT

Computer As

challenged to do my best

3

2 14

Strongly
Disagree

The materizl pr
Instruction cau
cgred vynether 1
7 17
127 34
Strongly Dicag
Digzgree
The method Dy W
z right or Woon

T 5 - R

T e oy i, 4 T - -
SXIUnELY Ligz
-,

Ty o o v

e TR~ ce

[

N
N

W

Disagree Uncertain

T

HEARLY PEPREGLITS
EMENTO BELGY:

YO

sinted Lnstruction 1 faell

WYY,

1y s ey
k b

D
—

Clreaply
fprces

Lyprice

5ome Ly Computer fesinted
Fecl that no ane rexlly
or not,

rtain fpoeo Lhpeng iy
Foprec

whnecitnee 1 nza

mOnGLOnGUSE .

AL
——

[AN NN
L \Y

oa. N o
LY LY

Fr e

ARE

288

I was concerned that I might not be understanding the
material. ’

1 5 2 12 1

1 22 6 23 4
Strongly Disagree Uncertain Agree- Strongly
Disagree : Agree

I was not concerned when I missed a question because
no one was watching me anyway.

7 9 5

9 28 6 13
Strongly Disagree Uncertain Agree Strongly
Disagree Agree

While taking Computer Assisted Instruction I felt
isolated and alone.

2 3 3 13
3 4 4 16 29
All the Most of Scme of Only Never
time the time the time occasionally

While taking Computer Assisted Instruction I felt as
if someone were engaged in conversation with me.

1 1 5 6 8
4 7 17 10 18
All the Most of Some of Only Never

~time the time the time occasionally

289

8. The responses to my answers seemed appropriate.

1y -6 1
2 26 27 6 [
All the Most of Some of Only Never
time the time the time occasionally

9. I felt uncertain as to my performance in the programmed
course relative to the performance of others.

3 3 5 7 3
4 7 12 17 15
All the Most of Some of Only Never
time the time the time occasionally

10. I found myself just trying to get through the material
rather than trying to learn.

1 1 5 7 7
Z Z 18 21 ' 13
All the Most of Some of Only Never
time the time the time occasionally

11. I knew whether my answer was correct or not before I

was told.

T 7 6 3 1

3 31 ' 15 5 Z
Quite Often Occasionally Seldom Very Seldom
often

12. T guessed at the answers to questions.

1 1 11 2 6
2 2 30 16 6
Quite Often Occasionally Seldom Very Seldom

often

13.

14,

15.

16.

290

In a situation where I am trying to learn some ‘iing,
it is important to me to know where I stand relative
to others.

3 11 1 4 .2

6 - 25 13 11]
Strongly Disagree Uncertain Agree Strongly
Disagree Agree

I was encouraged by the responses given to my answers
of questions.

1 3 7 9 1

2 14 17 23
Strongly Disagree Uncertain Agree . Strongly
Disagree Agree

As a result of having studied some material by Computer
Assisted Instruction, I am interested in trying to find
out more about the subject matter.

1 2 5 ' 11 2
6 15 34 1
Strongly Disagree Uncertain Agree Strongly
Disagree Agree

In view of the time allowed for learning, I felt too
much material was presented.

1 5 -8 7
2 4 14 36
All the Most of Some of Only Never

time the time the time occasionally

291

17. 1 was more involved in running the machine than in
understunding the material.

2 , 7 12
1 2 5 31 17
All the Most of Some of Only Never

time the time the time occasionally

18. I felt I could work at my own pace with Computer
Assisted Instruction.

1 2 g 9

3 1 32 20
Strongly Disagree Uncertain Agree Strongly
Disagree Agree

19. Computer Assisted Instruction makes the learning too

mechanical. ‘
5 11 2 2 1
13 32 6 -5
Strongly Disagree Uncertain Agree Strongly
Disagree Agree

20. I felt as if I had a private tutor while on Computer
-Assisted Instruction.

1 7 2 10 1

1 21 11 16 7
Strongly Disagree Uncertain Agree Strongly
Disagree Agree

21. I was aware of efforts to suit the material specifi-
cally to me. '

1 5 9 6
6 24 16 9 !
Strongly Disagree Uncertain Agree Strongly

Disagree Agree

22.

23.

24,

25.

26.

297

I found it difficult to concentrate on the course
material because of the hardware.

11 10
4 24 28
All the Most of Some of Only Never
time the time the time occasionally

The Computer Assisted Instruction sit:ntion made me
feel quite tense.

7 11 2 1
18 33 2 3
Strongly Disagree Uncertain Agree Strongly
Disagree Agree

Questions were asked which I felt were not relevant
to the material presented.

1 10 10
| 4 30 21
All the Most of Some of Only Never
time the time the time occasicnally

Computer Assisted Instruction is an inefficient use of
the student's time.

8 10 3
21 25 5 4)
Strongly Disagree Uncertain Agree Strongly -
Disagree Agree

I put in answers knowing they were wrong in order to
get information from the machine.

1 1 8 Yy 7
1 6 21 15 13

Quite often Often Occasionally Seldom Very Seldom

27.

28.

29.

30,

293

Concerning the course material I took by Computer
Assisted Instruction, my feeling toward the material
before I came to Computer Assisted Instruction was:.

3 11 5 A 2
5 . 33 17
Very Favorable Indifferent Unfavorable Very
favorable ' Unfavor-

able

Concerning the course material I took by Computer
Assisted Instruction, my feeling toward the material
after I had been on Computer Assisted Instruction is:

2 17 2
8 37 9
Very Favorable Indifferent Unfavorable Very
favorable Unfavor-

able

I was given answers but still did not understand the
questions.

11 3 6

1
1 3 28 14 10
Quite often Often Occasionally Seldom Very
Seldom

While on Computer Assisted Instruction I encountered
mechanical malfunctions.

1 10 6 L
J 6 24 12 11
Quite often Often Occasionally Seldom Very

Selidom

24

31. Computer Assisted Instruction made it possible for me
to learn quickly.

5 12 3

1 5 21 24 5
Strongly Disagree Uncertain Agree Strongly
Disagree Agree

32. I felt frustrated by the Computer Assisted Instruction

situation.

3 12 3 2 1

11 31 6 6 I
Strongly Disagree Uricertain Agree Strongly
Disagree Agree
33. The responses to my answers seemed to take into account
the difficulty of the question.
7 6 8

1 19 17 17 !
Strongly Disagree Uncertain Agree Strongly
Disagree ' Agree

34. I could have learned more if I hadn't felt pushed.

4 8 6 2 1

6 35 7 6
Strongly Disagree Uncertain Agree Strongly
Disagree Agree

35. The Computer Assisted Instruction approach is

inflexible.

1 9 b 6 1

I 38 10 5 I
Strongly Disagree Uncertain Agree Strongly

Disagree Agree

295

36. Even otherwise interesting material would be boring
when presented by Computer Assisted Instruction.

4 14 2 1

& 37 6 4
Strongly Disagree Uncertain Agree Strongly
Disagree Agree

37. In view of the effort I put into it, I was satisfied
with what I learned while taking Computer Assisted

Instruction.

1 3 13 4

2 6 5 36 6
Strongly Disagree Uncertain Agree Strongly
Disagree Agree

38. In view of the amount I learned, I would say Computer
Assisted Instruction is superior to traditional
instruction.

2 1 7 7 4

2 13 18 17 4
Strongly Disagree Uncertain Agree Strongly
Disagree Agree

33. With a course such as I took by Couputer Assisted
Instruction, I would prefer Computer Assisted
Instruction to traditional instruction.

1 3 2 10 5
2 7 17 21 §
Strongly Disagree Uncertain Agree Strongly

Disagree Agree

296

0. L am not in favor of Computer Assisted Instyruction
because it is just another step toward de-personalizad
instruction.

5 1y 1 1
10 29 8 7 2
Strongly Disagree Uncertain Agree Strongly

Disagree Agree

297

SECTION III

The West House CAI Center was a smoothly running
operation.

15 6
7 41 6 1
all the most of some of only never
time the time the time occasionally

How long did it take you to get used to the operation
of the CAI System?

minutes

40 50 60

Did you receive adequate instruction in operating the
work station? '

15 6
53 Z
yes no

(please suggest improvements)

298

Section ITI
Page 2

4, How many scheduled CAI sessions did you miss because
the CAI System was inoperative?

IR s

4:|':oo
|

5. How many scheduled CAI sessions did you miss because
the next batch of course material was not ready?

i
|

6. During my CAI sessions I requested help from the

proctor
1 8 11 1
1 15 32 4 3 -

quite often often occasionally s3seldom very seldom

7.

10.

299

Section I11
Page 3

I consider the availability of a proctor to be
17 3 1
41 ' 11 3

essential highly desirable desirable not essential

T consider the proctor call switch to be a good
method of summoning the proctor.

17 : I

54 ' 1
yes no

(Please give reason)

When I needed assistance from a proctor I felt he was
familiar with Dr. Brooks's course material.

7 11 1 2
27 19 4 2 2
‘all the most of some of only never
time the time +the time occasionally

For experimental control reasons, the proctor was not
allowed to answer subject matter questions.

If this restriction was removed I would prefer to be
able to ask the proctor questions on the subject
matter. '

1 3 ' 12 5

strongly disagree uncertain agree strongly
disagree agree

11.

12.

13.

1.

15.

304

Section TI1I
Page U4

I had difficulty reading the black-and-white slides

1 Y 8 2
all the most of some of only never
time the time the time occasionally

Viewing the TV screen and slide screen resulted in
eyestrain

8 13
2 4 12 37
all the most of some of only never
time the time the time occasionally
I found the work station room to be
(Circle all that apply)
2 ' . 18

6 21 12 2 29

too cold too hot stuffy too noisy comfortable

I prefer the room lighting to be

9 12
%3 §
on off

I prefer to work with the work station door

3 18
10 44

open closed

16.

17.

18.

301

Section IIT

Page 5
I prefer the keyboard height to be
20 1
1 52 2
lower about the same higher

I was distracted by noise outside the work station

6 15
7 48
often sometimes never

I felt uncertain as to how I should be m2king use of
the prescribed texts for this course

1 1 1 4 4
2 13 5 26 9
strongly dicagree uncertain agree strongly

disagree agree

LNAME:

Student Questionnaire for the CAI Group

SECTION IV

(To be handed in at the beginning of class on Wednesday,
October 4, 1972)

1. A hint facility in a CAI system would respond with an
author-prepared hint when requested during a question/
answer sequence.

I view such a }int facility as

11 b
1§ 12 2

H O

mandatory highly desirable desirable not necessary

2. A definition facility in a CAI system would allow a
student to consult an author-prepared dictionary or
glossary stored in the system. Sample student
requests might be

Ydefine variable
Ydefine |
Ydefine INDEX

I view such a definition facility as

3 10 8
7 21 7 1

mandatory highly desirable desirable not necessary

303

3. A student-controlled review facility in a CAI system
would enable a student to request a review at any time
in a session. The request)review would result in the
display of a menu of topics available for review. The
student would light pen his selection.

In the CAI course you have just taken, opportunities
for review were given in later lessons and then only
at author-specified points.
, I view a student-controlled review facility as
9 : 7 U4 1
7 18 9

mindatory highly desirable desirable not necessary

4. I would like all of the courses this semester to be on
the CAI system

3 _ 6 5 5 2

9 12 8 4 2
strongly disagree uncertain agree strongly agree
disagree

[This question is of doubtful use because of a typo-
graphical error - I intended "courses" to be singular.]

5. I suggest the following improvements to the work
station: '

6. 1 suggest the following improvements to the West House
operation:

7. O0f the courses I have taken I feel that the following
are suited to presentation by CAI:

8. Any other comments:

JCM/ v
1072

(5 min.)

(10 min.)

(5 min.)

(10 min.)

3.

304

APPENDIX C

POSTTEST

What is an algorithm? Give a brief
example of an algorithm.

Distinguish between variables and values.
How may variables be given values?

Find all of the errors in each of the

PL/C statements below. Use the space
provided beneath each statement to

describe the errors in the statement.

If a statement contains no errors, indicate
this by writing NO ERRORS FOUND beneath

the statement.

LABEL 1: GET LIST X,Y,Z;

X = 2UX % Y3

Two numbers are in variables FIRST and
SECOND. Write a PL/C statement using IF
to put the larger number into a variable
called BIG. Assume everything has been-
properly declared.

305

(20 min.) 5. What is the output from this program?
Draw a box around your answer.

Hint: Trace through the program as if it
were executing. Note each change
in the value of any variable. If
your answer is incorrect, any
partial credit given will be based

on your trace. If necessary, you
may use the blank page following this
one.

PGM: PROC OPTIONS (MAIN);
DCL (I,Y) FIXED;
DODO: DO I = 1 TO 5,
GET LIST (Y);
IF Y < 5 THEN L: DO;
PUT LIST (Y);

Y = 2 % Yy
END L;
PUT LIST (Y);
END DODO3
END PGM;

*DATA
1, 2, 4, 8, 16

SELECTED BIBLIOGRAPHY

SELECTED BIBLIOGRAPHY

Alpert, D., and Bitzer, D. L. Advances in computer-based
education. Science 167, (March 20, 1970), 1582-1590.

Avner, R. A., and Tenczar, Paul. The TUTOR manual.
Computer-based Education Research Laboratory,
University of Illinois - Urbana, 1-69.

Bitzer, Donald, and Skaperdas, D. The economics of a
large-scale computer-based education system: Plato IV.
In Computer-assisted Instruction, Testing, and
Guidance, Wayne H. Holtzman, (Ed.), Harper and Row,
New York, 1870, 17-29.

Brooks, F. P. Jr., Ferrell, J. K., and Gallie, T. M.
Organizational, financial, and political apsects
of a three-university computing center, Proc. IFIP
Congress 1968, North Holland Publishing Co.,
Amsterdam, 923-927. ' ‘

Brooks, F. P. Jr. Computer-man communication: Using
computer graphics in the instructional process.
In Advances in Computers, W. Freiberger, (Ed.),
Academic Press, New York, 1970, 1u48-173.

Bunderson, C. Victor. The computer and instructional
design. In Computer-assisted Instruction, Testing,
and Guidance, Wayne H. Holtzman, (Ed.), Harper and
Row, New York, 1970, 45-73.

Bundy, Robert F. Computer-assisted instruction -- Where
are we? Phi Delta Kappan 49, 8 (Apr. 1968), 424-429.

Carbonnel, J. R. AI in CAI: An artificial intelligence
approach to computer-assisted instruction. IEEE
Transactions on Man-Machine Systems MMS-11, 4
(Dec. 1970), 190-202.

3G8

Cheatham, T. E. The Theory and Construction of Compilers,
Excerpts, Second Edition. Computer Associlates, Wake-
field, Mass. 1967.

Computer Communications, Inc. CC-30 Communications
Station Reference Manual. 1868.

Conrow, K., and Smith, R. G. NEATER2: A PL/I source
statement reformatter. Communications of the ACM
13, 11 (Nov. 1870), 669-675.

| Davenport, B. A. and others. The Florida State University
Data Management System for the IBM 1500/1800 Instruc-

tional System (Introductory Documentation). Computer-
Assisted Instruction Center, Florida State University,
July, 1968.

Dearborn, R. 0. A study of the value of hard copy output
in computer-assisted instruction. M.S. Thesis,
University of North Carolina, Chapel Hill, 1870.

Dijkstra, E. W. Notes on Structured Programning. EWD 249,
Technical Peport, Technical University Eindhoven, 1970.

Feingold, S. L. PLANIT - A flexible language designed for
computer-human interaction. Proc. AFIPS 1967 SJCC,
Vol. 30, AFIPS Press, Montvale, N. J., pp. 545-552.

Feldman, J. A., and Gries, D. Translator writing svstems.
Communications of the ACM 11, 2 (Feb. 1968), 7v-113.

Fenichel, R. R., Weizenbaum, J., and Yochelson, J. C.
A program to teach programming. Communications of
the ACM 13, 3 (Mar. 1970), 1al-1us.

Freeman, D. N. A storage hierarchy system for batch
processing. Proc. AFIPS 1968 SJCC, Vol. 32, AFIPS
Press, Montvale, N. J., pp. 229-243.

Freeman, D. N., and Pearson, R. R. Efficiency vs
responsiveness in a multiple-services computer
facility. Proc. ACM, 23rd Nat. Conf., 1968, 25-34b.

Gries, D. Compiller Construction for Digital Computers.
Wiley, New York, 19771.

309

Hansen, D. N. Development of CAI Curriculum. In CAT
Center, Florida State University: Annual Progress
Report, January 1, 1968, through December 31, 1968,
Florida State University, Tallahassee, Florida,
18969, 119-138.

Hesselbart, J. C. TOIL - a file-oriented interpretive
language. Proc. ACM, 23rd Nat. Conf., 1968, 93-98.

Hesselbart, J. C., D'Arms, T., and Zinn, K. L. File-
oriented Interpretive Language, Part I, A Manual
for Authors. Unilversity of Michigan, April, 1969.

HumRRO. Project IMPACT - Computer-Administered Instruc-
tion: Description of the Hardware/Software Subsystem.
Human Resources Research Organization, December, 1970.

Hunt, E., and Zosel, M. Writeacourse: An educational
programming language. Proc. AFIPS 1968 FJCC, Vol. 33,
AFIPS Press, Montvale, N. J., pp. 923-928.

IBM Corporation. IBM 1500 Coursewriter II Author's Guide,
Form Y26-5681. July, 1968. -

Coursewriter III for System/360-Version 2,
Applicatlon Description Manual, Form H20~0587.
August, 1969.

. Coursewriter III for System/SGOLVersiOn 2,
Author's Guide, Form GH20-0609. December, 1969.

Coursewriter IIT for System/360-Version 2,
Student/Monitor Users Guide, Form GH%O—OGOS.
September, 1969. ’

Coursewriter IIT for -System/360-Version 2,
Supervisor's Gulde, Form GH20-0610. January, 1970.

IBM System/360 Operating System, PL/I (F)
Language Reference Manual, Form GC28-8201. June,
1970.

Kirk, R. E. Experimental Design Procedures for the
Behavioral Sciences. Brooks/Cole, Belmont, 1968.

McKeeman, W. M., Horning, J. J., and Wortman, D. B.
A Compiler Generator. Prentice-Hall, Englewood
Cliffs, 1970.

310

Meadow, C. T., Waugh, D. W., and Miller, F. E. CG-1,
a course generating program for computer-assisted
instruction. Proc. ACM, 23rd Nat. Conf., 1968,
99~-110. '

Mudge, J. C. UNC CAI System ~ Systems Programmer Manual,
Department of Computer Science, University of North
Carolina, Chapel Hill, 1972.

Naur, P. (Ed.) Revised report on the algorithmic
language ALGOL 60. Communications of the ACM 6,
1 (Jan. 1963), 1-17.

Newman, W. M. A system for interactive graphical
programming. Proc. AFIPS 1968 SJCC, Vol. 32,
AFTIPS Press, Montvale, N. J., pp. W7-5u4,

Oettinger, A. G. Run, Computer, Run. Collier, New York,
1969.

Oldehoeft, A. E. Analysis of constructed mathematical
responses by numeric tests for equivalence.
Proc. ACM, 24th Nat. Conf., 1969, 117-12&.

0liver, P., and Brooks, F. P., Jr. Evaluation of an
interactive display system for teaching numerical
analysis. Proc. AFIPS 1969 FJCC, Vol. 35, AFIPS
Press, Montvale, N. J., pp. 525-533.

Pakin, S. APL/360 Reference Manual, Science Research
Associates, Inc., Chicago, 1968.

Radin, G., and Rogaway, H. P. Highlights of a new:
programming language. Communications of the ACM 8,
1 (Jan. 1965), 9-17.

Sackman, H. Computers, System Science, and Evolving
Society. Wiley, New York, 1967.

Sackman, H. Man-Computer Problem Solving. Auerbach,,
Princeton, 1970. :

Sammet, J. E.. Programming Languages: History and
Fundamentals. Prentice-Hall, Englewood Cliffs,
1969.

311

Schultz, G. D. CHAT: An 0S/360 MVT time-sharing sub-
system for displays and teletype. M.S. Thesis,
University of North Carolina, Chapel Hill, 1973.

Simmons, R. F. Natural language question-answering
systems: 1969. Communications of the ACM 13, 1
(Jan. 1970), 15-30.

Stolurow, L. M., and Peterson, T. I. Harvard University
Computer-Aided Instruction (CAI) Laboratory, Technical
Report No. 6, March, 1968.

Suppes, P., Jerman, M., and Brian, D. Computer-Assisted
Instruction: Stanford's 1965-66 Arithmetic Program.
Academic Press, New York, 1968.

Suppes, P., and Morningstar, M. Computer-assisted
instruction. Science 166, (Oct. 17, 1969), 3u43-3L0,.

Thompson, F. B., Lockeman, P. C., Dostert, B., and
Deverill, R. S. REL: A rapidly extensible language
system. Proc. ACM, 24th Nat. Conf., 1969, 399-1417.

Walters, J. Private communicatior.. 1970.

Weizenbaum, J. ELIZA - a computer program for the study
of natural language communications between man and
machine. Communications of the ACM 89, 1 (Jan. 1966),
36-45,

Wexler, J. D. A generative, remedial and query system
for teaching by computer. Ph.D. Thesis, University
of Wisconsin, 1970.

Wexler, J. D. Information networks in generative computer-
assisted instruction. IEEE Transactions on Man-Machine
Systems, MMS-11, 4 (Dec. 1970), 181-189.

Zinn, K. L. A comparative study of languages for
programming interactive use of computers in
instruction. EDUCOM, Boston, 1969.

