
DOCUMENT RESUME

ED 082 487 EM 011 456

AUTHOR Mudge, J. C.
TITLE Human Factors in the Design of a Computer-Assisted

Instruction System. Technical Progress Report.
INSTITUTION North Carolina Univ., Chapel Hill. Dept. of Computer

Science.
SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO UNC- -TPR- CAI- -7

PUB DATE Jun 73
NOTE 324p.; Thesis submitted to the Department of Computer

Science, University of North Carolina

EDRS PRICE MF-$0.65 HC-$13.16
DFSCRIPTORS *Computer Assisted Instruction; Computer Programs;

Doctoral Theses; *Human Engineering; Interaction;
*Man Machine Systems; Programers; Programing
Languages; *Systems Development; Technical Reports

IDENTIFIERS CAI; DIAL; DIAL 2; *Display Based Interactive Author
Language; Sieve; Translator Writing System; TWS

ABSTRACT
A research project built an author-controlled

computer-assisted instruction (CAI) system to study ease-of-use
factors in student-system, author-system, and programer-system
interfaces. Interfaces were designed and observed in use and
systematically revised. Development of course material by authors,
use by students, and administrative tasks were integrated into one
system whose nucleus was a display-based interactive author language
(DIAL). The design permitted systematic language implementation and
easy language modificalion and used a translator writing system (TWS)
to generate compilers. Authoring by teachers required simplicity of
the language and its operational environment. A measured high level
of user acceptance proved the design to be sound, and a significant
reduction in authoring time was achieved. DIAL was observed to be a
superior language, for machine intrusion was low and other syntactic
improvements were possible. An answer-evaluating technique, called
the sieve, was devised and a syntactically improved DIAL/2 language
derived. The TWS helped to implement DIAL and to re mediate language
weaknesses. Although the TWS was not available for the command
language of the operational environment, the human-factors debugging
period revealed the desirability of such. (Author/PB)

FILMED FROM BEST AVAILABLE COPY

University of North Carolina
at Chapel Hill

Department of Computer Science

'-

CO

00
CD

HUMAN FACTORS IN THE DESIGN OF A
COMPUTER-ASSISTED INSTRUCTION

SYSTEM

J.C. Mudge

June 1973

Technical Progress Report CAI-7
to the

National Science Foundation

under Grant GJ-755

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
Al ING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

DEPARTMENT OF COMPUTER SCIENCE

University of North Carolina at Chapel Hill

HUMAN FACTORS IN THE DESIGN OF A
COMPUTER-ASSISTED INSTRUCTION

SYSTEM

by

Jonathon Craig Mudge

A Dissertation submitted to the faculty of
the University of North Carolina at Chapel
Hill in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy
in the Department of Computer Science.

Chapel Hill

1973

Approved by:

461/1/1

sz
Reader

JONATHON CRAIG MUDGE. Human Factors in the Design
of a Computer-Assisted Instruction System (Under
the direction of DR. FREDERICK P. BROOKS, JR.)

This research is an exploratory case study of ease-

of-use factors in man-computer interfaces.

The approach has been to build and evaluate a real

man-machine system, giving special attention to the form

of all man-machine and machine-man communications. Author-

controlled computer-assisted instruction was selected.

Such a system has three principal interfaces: student-

system, author-system, and computer programmer-system.

The method was to design, build a large subset of the

design, e systematic observations of the three inter-

faces in use, and then iterate on the design and on the

observations. The system has been in regular class use

for a year.

Interactive development of course material by authors,

execution of instructional programs by students, and the

requisite administrative tasks are integrated into a

single production-oriented system. The nucleus of the

system is a new display-based interactive author language,

DIAL. The design demands a language implementation which

is systematic and which permits easy language modification.

A translator writing system, based extensively on McKeeman's,

assists computer programmers in generating compilers for

new versions of the language.

Two of the design assumptions (that the course author

is always an experienced teacher and that he does his own

programming in DIAL, without an intermediary CAl language

programmer) are major departures from most CAI authoring

systems. Professorial-level authoring imposes stringent

requirements on the ease-of-use and simplicity of the

language and the operational environment in which it is

embedded.

A measured high level of user acceptance proved the

soundness of the design and illuminated the relatively few

mistakes made. A factor-of-five improvement in authoring

time over data published for other systems was observed.

Several improvements in DIAL over existing CAI languages

were observed. The underlying machine intrudes much less

than in existing languages, and there are other syntactic

improvements. The provision in DIAL of a pattern matching

function allowed a very general answer-evaluating techni-

que, called the sieve, to be devised. Analysis of author

use of DIAL has derived DIAL/2, which is radically differ-

ent syntactically but only slightly enriched functionally.

The translator writing system proved very useful in

progressive implementation of DIAL and in the remediation

of language weaknesses as they were discovered. Although

a translator writing system was not available for the

command language of the operational environment, the human-

factors debugging period (necessary for all user-oriented

systems) revealed the desirability of such.

To my parents

ACKNOWLEDGMENTS

I am greatly indebted to Professor Frederick P.

Brooks, Jr., for his insight, for many valuable suggestions,

and for his guidance throughout this research. For his

tutorials on machine design and for his authoring use of

my system, I am also most grateful.

I thank 0. Jack Barrier for his help in the long days

and nights of the CAI System's first use in production and

for subsequently assuming re3ponsibility for the continued

operation and improvement of the system. I also thank

Gary D. Schultz for his ultra-reliable CHAT System,

William H. Blair for the support provided by his deep

systems programming knowledge, and the proctors who manned

the system during the Fall and Spring class use.

Professor Peter Calingaert's encouragement and

interest are gratefully acknowledged.

My wife, Anne, provided a great deal of encouragement

and understanding.

I am grateful to the National Science Foundation for

partial support under NSF Grant Number GJ-755 and for the

hardwafe facility, provided under the University Science

Development Program.

iii

CONTENTS

Chapter Page

1. INTRODUCTION 1

1.1 User-orientation in system design 1

1.2 An approach to research in compiter-
assisted instruction (CAI) 5

1.3 The UNC CAI Project 7

1.4 Language design in computer science 9

2. EXISTING CAI SYSTEMS AND LANGUAGES 11

2.1 The scope of the chapter 11
2.2 Coursewriter systems 14
2.3 Other languages 23
2.4 Discussion 32

3. THE DESIGN PHILOSOPHY UNDERLYING DIAL 37

. 1 Motivation 37

. 2 A priori design decisions 39
3.3 Objectives for the language Per se 43
3.4 Objectives for the interactive programming

system 45
3.5 Why not adapt a general purpose program-

ming language? 47

4. THE DIAL LANGUAGE 53

4.1 Introduction
4.2 Writing a simple instructional program
4.3 Default branching in a program
4.4 Classifying recognized responses
4.5 Expressions and assignment statements
4.6 The IF-statement for branching
4.7 Non-exact matching
4.8 The sieve
4.9 The naming-statement

53
55
64
67
68
70
74
78
81

iv

4.10 Repetition constructs
4.11 Cathode-ray tube screen formatting
4.12 Light pen usage
4.13 The RESUME-statement
4.14 Subroutines
4.15 Input-output synchronization
4.16 DIAL specifications

82

84

89

92
92
95
99

5. THE OPERATIONAL ENVIRONMENT 124

5.1 The host computer system 124
5.2 The Chapel Hill Alphanumeric Terminal 128

(CHAT) System
5.3 The student/author work station 130
5.4 System overview 134
5.5 Instructional programming in DIAL -

author use of the system 138
5.6 The execution of an instructional

program - student use of the system 150
5.7 Proctor facilities 154

6. MODIFYING AND EXTENDING DIAL - THE TRANSLATOR
WRITING SYSTEM 157

6.1 Introduction 157
6.2 The compiler and the CAI System 159
6.3 The CAI translator writing system 162
6.4 Steps in using the CAI translator

writing system 171
6.5 The class of grammars acceptable to

the translator writing system 173

7. EXPERIMENTAL METHOD AND RESULTS 175

7.1 Introduction 175
7.2 Collection of student use data 176
7.3 Analysis of student use data 185
7.4 Author use data 191

8. DISCUSSION 194

8.1 Introduction 194
8.2 The student-system interface 195
8.3 The author-system interface 201
8.4 The computer programmer system interface 237
8.5 Observations about human factors 240
8.6 The cost of designing and implementing

the system 244
8.7 Is it widely ,Ipplicable? 247

9. SUGGESTIONS FOR FURTHER WORK 251

9.1 Introduction
9.2 DIAL/2
9.3 Author-defined cc-mands for student use
9.4 Debugging aids for DIAL programming
9.5 Answer processing subsystems
9.6 A man-machine interface for unrecognized

answers
9.7 More service programs
9.8 Color cathode-ray tube terminals

APPENDIX

A Questionnaire A and summaries of student
responses

B Questionnaire Band summaries of student
responses

C Posttest
D Program listing of the CAI System

(bound separately)

251
252
259
263
264

266
268
270

273

280
304

SELECTED BIBLIOGRAPHY 306

vi

LIST OF FIGURES

Figure Page

A student/author work tation showing
cathode-ray tube, keyboard, light pen,
slide projector and screen Frontispiece

4.1 The metalanguage used to define the
syntax of DIAL

4.2 A DIAL program segment showing a sieve
for answer evaluation of the expected
response SAM:DO X=1 TO 50; 79

4.3 The slide struc4 used in Fxample 4.6 91

4.4 An execution of Example 4.6 91

4.5 A DIAL machine 101

4.6 The "onion structure" implementation of the
CAI System 103

5.1 The CHAT System hardware configuration 129

5.2 The CHAT Monitor Table of Contents (MTOC) 131
display

5.3 An overall flowchart of the CAI System 135

58

5.4 The cathode-ray tube screen format in
author mode 141

5.5 The summary sheet of commands for work
station use 147

5.6 The cathode-ray tube and slide displays
durng a typical student session 151

5.7 The logic for setting the RECOVNEEDED switch 153

vii

Figure

6.1 The two parts of the translator writing system

6.2 The invocation of COMPILER by the controlling
routine AUTHOR

6.3 The main compilation loop in COMPILER showing
the relationship between ANALYZE, SCAN and
CODEGEN

6.4 A lexical flowgraph for an early version of
DIAL

6.5 The CODEGEN sections corresponding to three
productions in a recent version of DIAL

8.1 A typical sequence of author sessions

8.2 A change being made to a statement

Page

160

161

165

170

172

207

210

viii

CHAPTER 1

INTRODUCTION

1.1 User-orientation in system design

1.1.1 Users, by and large, do not feel that computer

systems are yet accommodatingly matched to their human

users. People are flexible and can make remarkable

adaptations to machine inflexibilities. Machine designers

have always exploited that flexibility, sometimes

ruthlessly. However, the more a user is forced o adapt,

the less productive he will be. Thus, just aE aircraft-

cockpit designers have done, computer system designers

are turning to the study of ease-of-use factors in the

man-machine interface.

1.1.2 The approach in this thesis research has been to

design and evaluate a real man-machine system. Author-

controlled computer-assisted instruction was selected for

three reasons.

(1) The man-machine system required was small enough

for one person to design a total, production-

oriented, hence real, system.

(2) The resulting syst si was potentially wwful for

instruction at the University.

(3) The closest possible user feedback obtains;

the tool builders and users are one.

The method of investigation was to design, build

large subset of the design, make systematic observations

of users, and then iterate on the design and on the ob-

servations.

The nucleus of the design is a display-based inter-

active author language, DIAL. Interactive development of

course material by authors, execution of instructional

programs by students, and the requisite administrative

tasks are integrated into a single system. The uesign

demands a language implementation which is systematic

and which permits easy language modification. A translator

writing system, based extensively on McKeeman's, assists

computer programmers in generating compilers for new

versions of the language.

The evaluation of the design focusses on the three

principal interfaces: student-system, author-system, and

computer programmer-system.

Two of the design assumptions (that the course author

is always an experienced teacher and that he does his own

programming in DIAL, without an intermediary CAI language

programmer) are major departures from most CAI ,iuthoring

systems. Professorial-level authoring imposes stringent

requirements on the ease-of-use and simplicity of the

language and the operational environment in which it

embedded. Becal e it has been forced to adapt more to the

user than most CAI systems, this system is probably a better

tool for studying human factors than most.

1.1.3 The scope of the research is the syntactic as

opposed to the semantic elements of a man-machine system.

That is, I am concerned with the form of communication

between a system and its user, as contrasted with its

meaning. The more obvious syntactic elements include

programming language syntax and command-language syntax.

I also view the following as essentially syntactic in the

sense of pertaining to form of communication: the physical

work-station design and its operating procedures; the

removal of redundant operations in order to minimize

user action; and the invention of general purpose

primitives to subsume several special operations.

1.1.4 The following is a selection of the results of this

research.

A measured high level of user acceptance proved the

soundness of the design and illuminated the relatively few

mistakes made. A factor-of-five improvement in authoring

time over data published for other systems was observed.

Several improvements in DIAL over existing CAI

languages were observed: there is much less intrusion of

the underlying machine; some general, powerful, and easily

used mechanisms have been borrowed from general program-

ming languages; and a consistent syntax ,mbodies its func-

tional facilities.

Analysis of author use of DIAL has derived DIAL/2,

which is radically different syntactically but only

slightly enriched functionally. This contrasts with my

early prediction that DIAL would be deficient semantically,

not syntactically.

The translator writing system proved very useful in

progressive implementation of DIAL and it the remediation

of language weaknesses as they were discovered. It is

expected to be very useful in implementing DIAL/2.

Although a translator writing system was not avail-

able for the command language of the operational environ-

ment, the human-factors debugging period (inherent in user-

oriented systems) revealed the desirability of such.

The provision in DIAL of a pattern matching func-

tion allowed a very general answer evaluating technique,

called the sieve, to be devised.

1.2 An approach to research in computer-alLed

instruction (CAI)

The last decade has seen computer-assisted instruc-

tion go through two stages, an experience not uncommon

in several computer application areas. In the first

stage, potential users were led to expect great benefits

from the use of computers in the instructional process.

The rapid increase in the availability of time-sharing

systems added support to the arguments of the CAI pro-

ponents. The second stage has been the realization that

the success of CAI has fallen far short of the claims

made for it, and that a reassessment of approaches should

be made.

The approach taken in this thesis postulates that

real measurable progress can be made by restricting the

instructional subject matter to subjects which are highly

structured. Elementary computer programming has been

chosen from the class of structured subjects for two

reasons: (1) researchers will be professionally familiar

with the subject matter and its pedagogy, and (2) the

research results can be directly applied and measured

in an existing course at the University.

It must be emphasized that this project is con-

cerned with computer science aspects of CAI rather than

purely educational aspects. Examples of effortn in thi

latter category are those by Stolurow [1968], who in con-

cerned with the psychological foundations of tea,:.

learning, and by Bunderson [1970], whose major reearel

effort is on the design of instructional programs. More-

over, there are computer science areas which have been ex-

cluded from the scope of this project, e.g., CAI hardware

research (being attacked on a large scale by the PLATO

project [Bitzer and Skaperdas, 1970]), and 'natur,i1'

language question-answering research. This latter area 1'

typical of many research areas which have long-term appli-

cations in CAI, and relate to the system designed in this

project insofar as its flexibility allows new developments

to be incorporated as they become available.

Two papers which do well in capturing the current

status of CAI are TBundy, 1968] and [Alpert and Bitzer,

1970].

To be a valid tool, both for the University and for a

study of human factors, the system designed has to be

total and production-oriented. To be total, it has to

serve all classes of users associated with the CAI environ-

ment: students, authors, proctors, and instructors in

charge of CAI classes. 1 The implications of a production,

1 In this thesis, this operational environment is
collectively referred to as the CAI System, or, for short,
the System.

rather than an experimental, system permeate bo1h def;in

and implementation. The production implications include:

(1) concurrent multiple-author and multiple-student

use;

(2) complete tr,?.atment of abnormal termination

(ABEND) situations;

(3) comprehensive supporting programs for

administrative jobs;

(4) procedures for recovery after system failure;

(5) efficient programming of the implementation;

(6) operational procedures for the CAI Center.

1.3 The UNC CAI Project

The current computer-assisted instruction work at

the University falls into several project areas, which

may roughly be classified into student-controlled CAI,

teacher-controlled CAI, and author-controlled CAI. Tnis

thesis results from work done in Phase II of the author-

controlled project. Phase I was the development of a

conventional Computer Administered Programmed Instruction

(CAPI) System [Brooks, 1970] using an IBM 1050 audio-

visual terminal (typewriter-based), for teaching a

beginning course in the programming language PL/I.

The Phase I system was converted, with as few changes

as possible, to operate on a Computer Communications Inc.

8

CC-30 terminal (CRT-based). As a result, feasibility

of this terminal for the Pnvisaged CAI work was

established and the Phase II objectives laid down.

This second phase called for the following.

(1) the installation of new communications equipment:

a medium-speed leased line to the Triangle Univer-

sities Computation Center (TUCC), a general purpose

campus computing facility, to give character

speeds beyond the 15 character/second possible

via dial-up facilities.

(2) six CC-30 terminals, each consisting of a CRT,

keyboard, light pen, and random-access slide

projector.

(3) the building of a monitor program for the CAI

region of Large Capacity Storage at TUCC to con-

trol the programs in the region and to provide

communications device programming support.

(4) the design and building of student/author work

stations based on the CC-30 terminals.

(5) the development of a CAI control program which

simultaneously presents course material from

several different courses to several student

work stations.

(6) the design of an author language and building 01 ,111

incremental compiler which generates code for pre-

sentation as course material by the CAI control

program.

(7) the preparation of course material for an elementary

programming course in PL/I.

(8) evaluation of the system by class trial.

Mr. Gary D. Schultz [1973] reports items (1), (2),

and (3), which form his Chapel Hill Alphanumeric

Terminal (CHAT) System.

This thesis reports items (4) through (8). The

course material, item (7), was programmed by Professor

F. P. Brooks, Jr. The off-line supporting programs,

e.g., the student file maintenance program, were written

by other CAI Project workers (Section 5.7) to my external

specifications. My contributions are the design of (4),

(5), (6), and (8), and the implementation of (5), (6),

and (8).

1.4 Language design in comp-uter science

Language design is an art. Given a particular ob-

jective, there is no algorithm for designing a program-

ming language to meet that objective; there is nit even

any clear delineation of various tradeoffs involved, let

10

alone any quantitative measures of them [Sammet, 1969].

Tn the remainder of the thesis, I therefore:

attempt to define the objectives which have been

set;

discuss the design decisions made (pointing out what

are thought to be tradeoffs involved);

attempt to see if the objectives have been met.

CHAPTER 2

EX "'TING CAI '2,TEMS AND LANGUAGES

2.1 The scope of the chapter

A wide variety of languages and systems is being used

for programming interactive use of compilers for instruc-

tional purposes.

Before turning to describe that subset which is

appropriate for this chapter, we must define the area of

instructional use of computers at which DIAL is directed.

This area is based on presentation of successive

"frames" or units of course material, to a student. In

each frame the student is expected to respond in an

anticipated manner to the material presented to him in

that frame. The order of presentation of frames is

under the control of an author by means of the instruc-

tional strategy he has programmed into his cmirse material.

Since an author is the agent controlling the interaction

between student and computer system, this area is usually

called author-controlled CAI. Two other modes can be

distinguished. Consider a computer graphics system

programmed to display step-by-step graphic solutions to

12

numerical analysis problems [Oliver and Brooks, 1969].

Hands-on laboratory use of this system by individual

students is an example of student-controlled C.I. Teacher-

controlled CAI is exemplified by the use of this same

system by a teacher in front of a class of students.

In this chapter, then, I discuss specially devised

author languages for author-controlled CAI; IBM's Course-

writer typifies this class of languages.

The chapter specifically excludes the following.

1. Discovery-mode systems

Here the student presents questions, usually phrased

in natural language, to a system which interrogates a

highly-structured data base specially prepared to cover

the subject matter being taught. Examples of such systems

are Thompson's REL System [1969], Simmons's PROTOSYNTHEX

III [1970] and Carbonell's SCHOLAR [1970]. Incidentally,

experience with these experimental systems is aiding

research being done on the linguistic and semantic analysis

of constructed responses in author-controlled CAI.

2. Conversation machines

ELIZA [Weizenbaum, 1966] is the best known of those

systems which, in providing conversation within a limited

context, have been used for CAI.

13

3. Interactive programming languages

Some writers inc)ude in CAI the use of interactive

programming languages by students for working exercises,

programming simulations, etc. This aspect of CAI is

clearly excluded from this chapter; however, such

languages have been adapted as author languages, and

these are discussed in Chapter 3.

4. Highly tai2::red systems

An interesting example of this type of system is

the TEACH System [Fenichel, et al., 1970] developed at

the Massachusetts Institute of Technology to ease the cost

and improve the results of elementary instruction in

computer programming. The system was designed for this

subject matter only, and includes a specially designed

programming language, UNCL, in which a student writes

specific programs requested of him by TEACH. The system,

by monitoring the execution of such a program, attempts to

present meaningful feedback to the student.

5. Course generators

An author enters course material as a structured file;

standard procedures draw exercises from the file and present

them to a student. Such systems are particularly useful for

drill-and-practice and have so been used for arithmetic and

spelling drill. Examples of such systems are TSA (Teacher

3.4

Student Algol) at Stanford University [Suppes, et al.,

1968] and CG-1 (Course Generator) [Meadow, et al., 1968].

Author languages for such systems are characterized

by having

(1) data structures - usually vectors - for storing

questions, answers and scores,

and (2) a greater naming freedom than the languages

described in later sections of this chapter.

A recent system developed by Wexler at the University

of Wisconsin [Wexler, 1970a and b7 should generate course

material and interactions which appear quite intelligent

to the student. His system, which has a structured

information net of factual material, has made use of

results from artificial intelligence and natural language

processing which are common to the discovery-mode systems

mentioned above.

2.2 Coursewriter systems

2.2.1 The IBM Corporation is responsible for the most

widely used author languages and CAI systems, all based on

the original Coursewriter I for the IBi 1400 series of

computers. Coursewriter II and Coursewriter III are

available as program products from IBM and are functionally

complete, serving students, authors, and administrative

15

personnel in the CAI environment. Since CWIII is typewriter

terminal based and CWII is CRT terminal based, they are not

in a successor relationship nor are they strictly compati-

ble, and features of both will be described.

2.2.2 Coursewriter III [IBM 1969a, b, and c; 1970a]

2.2.2.1 Hardware

The student /author station is an IBM 1050 typewriter

terminal with slide projector. It uses a host computer

system, the IBM System/360, via a low-speed communications

line. A random-access audio tape can be attached to the

station as a special option.

2.2.2.2 The CWIII Language

Variables operated on by a CW program are of six

types and are described in the following table. They

are called storage areas, and one copy is kept for each

student.

16

Storage area

Name for
addressing
in CW language

Attributes
of contents

counters c0 c30 signed integer

buffers b0 b6 character
strings up
to 100
characters
in length

b0 is
the stu-
dent
input
buffer

return registers rl - r6 label

switches sO - s31 binary digit

course parameters p0 - p31 binary digit

auxiliary storage a byte string

Other data types are character string constants and

integer constants.

Operations (statements) have the syntactic form

operation code optional
modifier

argument(s)

Text and questions are presented by the ay., rd, and ty

operation codes which take as arguments a character string

constant or a buffer. Arithmetic is specified by the

ad, sb, a, and dv

operation codes which take two integer arguments each.

Assignment is specified by the ld operation cc,cie which

takes two arguments (of the same type). Conditional and

unconditional branching is effected by the

17

br operation code .

The following example [IBM, 1969a:20] illustrates

each of these.

Author Mode
q5

pr

au(p) 146 (voice asks "spell capitol. Albany is the copitol of New York Stote.")

od 1/c2

sb c3 /c3

ep

ad 1/c3

co copitol

ou(p) 147 (voice soys "Good. Next we will consider o homonym")

od 1/c4

wo copital

ou(p) 148 (voice soys "No. Thot is o homonym of the word I asked for. Try again. 1

un No.

br q5A//c3/9e/3

ty Try ogain.

Explonotion

Example q5 uses counters and o conditionol bronch. The student is asked a question by the oudio device. At the

end of the oudio messoge one is added to counter two, which records the number of questions osked. Counter 3 is

set to zero by subtracting if from itself. The system then pouses at ep ond woits for the student to respond. After

the response, one is odded to counter three, which counts the number of responses to the question. If the response

matches the ca statement, the au statement immediately following is transmitted, one is added to counter 4, and

the system moves on to the next pr, qu, or rd. Counter 4 notes the number of questions onswered correctly.

The conditionol bronch tokes the student lobel OA if he hos mode three attempts to onswer the question ond

hos not yet onswered it correctly.

Answer matching is specified by the operation codes

ca, cb, wa, wb, aa, and ab,

and certain misspellings can be ignored by a selective

character string match specification.

18

One level of indirect addressing of a storage area

can be specified with some operation codes. For certain

statements, modifiers can be placed in parenthesis after

the operation code to specify a modified operation. For

example

ca(1) red

uses the 1 (line processing) modifier to eliminate the

third character from response comparison.

Two powerful features of CW are provided by the fn

operation code and the macro facility. The argument field

of a fn statement names a machine language subroutine and

the arguments to be passed to it. The macro facility

permits authors to write frequently-used course statement

sequences in a skeleton form. Macro definition and

invocation facilities are similar to those found in the

macro facilities of assembler languages.

In summary, the language can be characterized as an

assembler-level language. Naming of data and the ari.ount

available seem to be the major restrictions. Auxiliary

storage is used to increase the amount of space available,

but its addressing is not by name but by absolute

location, e.g.,

ld a, 738, 46/b3

means that an area whose leftmost byte position is byte

738 and whose rightmost is 783 is loaded into buffer 3.

19

With such restricted format, low-level commands, explicit

addressing and restrictions on sizes of data areas. the

software implementation can be both fast and frugal in

mr:mory usage. Such implementation benefits are obtained

at the cost of author convenience.

2.2.2.3, Student use of the system

The student signs on by typing the command sign on

his student number preceded by the designation s and the

name of the course for which he is registered. Once he

has gained access to the system he has three commands

available

help

.E2 to

sign off

The go to command allows him to invoke a particular

section from a list of course sections provided by the

author.

2.2.2.4 Author use of the system

An author signs on in the same manner as a student,

but precedes his number by the letter a.

CW statements are entered in fixed format using the

1052 Printer-Keyboard. An author can view the execution

of his course by signing on in student mode by prefixing s

20

to his number. Labelled segments of the course can be

executed while he is in author mode by using the go to

command. He returns from such an execution by entering

"author'.

Other author commands are concerned with editing

his program:

insert after

delete

replace

move

A listing can be obtained by the command type.

2.2.2.5 Supervision and monitor commands

The production orientation of CWIII systems is

reflected in the comprehensiveness of the set of commands

available to the system supervisors and monitors. The

commands are for administrative tasks associated with

student registration on the system and for changing

system parameters [IBM, 1969c and 1970a].

2.2.3 Coursewriter II

2.2.3.1 Hardware

An IBM 1500 Instructional System consists of a number

of student/author stations connected locally to a dedicated

21

computer, either the IBM 1800 or 1130. rach :tation con-

sists of a CRT display with light pen. keyboard and slide

projector. Random-access audio tape is optional.

2.2.3.2 The CWII Language

The language is essentially the same as CWIII, with

the differences arising from the properties of the

terminal.

Explicit screen-formatting information is required.

Light pen commands are included. In the following example

[IBM, 1968: Part II, 77], the second and seventh statements

show these two aspects. The former, the dt statement,

displays "that barks" beginning at coordinates (8,3) on the

CRT. The latter, the ca statement, specifies that a match

occurs if the light pen touches the response area defined

by a rectangle with its top left hand corner at coordinates

(13,9) and depth 4 and width 3.

P
oi

nt
t
o

t
h
e

n
a
m
e

o
f

t
h
e

a
n
i
m
a
l

t
h
a
t

b
a
r
k
s

lig
ht

ed
 a

re
a

w
he

re
 r

es
po

ns
e

is
 e

xp
ec

te
d

:f
ne

n
de

in
 car
ea

a
d

bl
an

k
fr

am
e

ar
ou

nd
 r

es
po

ns
e

ar
ea

re
sp

on
se

I
I

e
a
t

I

r
a
t

78
90

1113

T
ex

t

16
21

26
31

36
41

44
S

I

or
.

4
A

 X
L

, S
A

R
od

 r
i 1

1
fi

lo
. d

lh
e,

 il
a,

),
*

.C
tf

,
rii

hP
i

ai
ni

 m
a

te
>

,
,

i

..
.

j.,
3,

41
,&

iik
a.

t l
 a

 a
i r

k.
 S

 .
g

)
L.

t
.

1
1

1
11

1

ti.
L

A
 4

);
:m

 r
ic

te
,§

,-
-,

t
lll

lll
ll

1
.

k

.
S

e
0E

1
I,,

A
4x

(i
at

er
,"

."
,"

(
"i

 ,
i

al
1

,l

. .
;,.

k
,,,

,,
e.

. ,
re

ze
0,

 ll
lll

lll
lll

lll
lll

ll
.

..
,

,

to
.,

.
_1

.'1
1,

11
11

11
11

 1
11

1
11

_1
11

1_
lA

p
13

 il
A

1,
19

1/
1

:4
01

11
11

11
,1

11
11

11
1(

1a
11

11
11

11
11

11
1

...
.

.
a

b
Ir

t i
r

le
iS

 .4
1)

a
I

I
I

1
I

1
a

I
I

I
I

I
I

I
a

I
I

I
I

a_
 1

,1
_1

4 ri
ji.

O
PI

IM
E

17
.

,li
 ll

lll
lll

lll
lll

lll
lll

lll
lll

lll
11

1
...

 I
1

l
tr

.
f

I!.
 4

f.d
.

7P
1I

44
,_

1
X

,1
4

/t
""

",
.,-

,,.
,

..-
...

.
,

23

A feature of CWII is the facility for special

graphics display.

Indirect addressing as in CWIII is not provided.

2.2.3.3 Author use of the system

The author can operate in one of two modes: assembly

or checkout mode. In assembly mode the editing and list-

ing commands are as for CWIII. In checkout mode, he can

view the execution of a course by entering the command

EXECUTE. Provision is made for assembly from card input.

2.3 Other languages

2.3.1 WRITEACOURSE

This language was developed at the University of

Washington by a project aimed at producing a language

which is natural for the teacher, highly readable, and

suitabl.e for machine-independent implementation [Hunt and

Zosel, 1968].

2.3.1.1 The language

The language, which is typewriter-terminal based, is

very simple, having ten operations. The following example

[Hunt and Zosel, 1968:926] illustrates display of text,

use of counters (a number preceded by the symbol @), answer

24

classification and branching, and its limited arithmetic

capability.

(1) SET @54,@41 TO 0 PRINT "WHAT DISCOVERY
(2) LEAD TO LASERS ? "(
(3) 3 ACCEPT CHECK "MASER" "QUASER"
(4) "CANDLES" IF 1 CHECKS THEN GO TO 61
(5) ADD 1 TO @41 IF 0 CHECKS THEN GO TO 401
(6) IF 2 CHECKS THEN PRINT "THAT IS IN ASTRONOMY."
(7) GO TO 401
(8) IF 3 CHECKS THEN PRINT "DO NOT BE SILLY."1
(9)40 IF @41 < 3 THEN PRINT "TRY AGAIN" GO TO 31
(10) ADD 1 TO @54 PRINT "THE ANSWER IS MASER."I
(11)6 PRINT "HERE IS THE NEXT QUESTION"!

In the example, the first statement initializes

counters 54 and 41 and prints a question. The statements

in lines (3) and (4) specify three anticipated responses.

If the first response matches the student's answer ("IF 1

CHECKS") then the program branches to statement 6 on line

(11). Unrecognized ("IF 0 CHECKS") and wrong answers

cause incrementation of counter 41 and a branch to line

(9). There a test on counter 41 determines whether the

answer should be printed.

Statements are grouped into lessons, and lessons are

grouped into courses. Since it is possible to activate

one lesson from another in the same course, a subroutine

facility exists. It appears that parameterization would

have to be done via counters known to both the invoking

and invoked lessons.

2.3.1.2 The operational environment

After a student has gained access to the system he

types XEQ and then supplies the lesson name and course

name when requested.

The system is placed in author mode by the command

///COMPILE. A new lesson is begun by ///PROGRAM NEW

lesson-name/course-name. Each statement is checked for

syntax errors as it is entered. The editing commands

are ///ADD, ///DEUETE and ///LIST.

The WRITEACOURSE language translator, written in

PL/I, is an incremental compiler producing an internal

form which is interpreted at run time. This internal

form is the only representation of the source code kept

and is decompiled when a source listing is requested.

2.3.2 FOIL

This language was developed at the University of

Michigan by a project aimed at producing a language which

is easy to use, has good computational capability and whoGe

implementation is sufficiently flexible to allow language

modification [Hesselbart, et al., 1969].

2.3.2.1 The language

The language is for a student/author station con-

sisting of a teletypewriter with optional slide projector.

2G

It is a high-level language, as the following example

[Hesselbart, 1968:94] illustrates

TY WOULD YOU LIKE TO CONTINUE THE EXERCISE
ACCEPT

IF 'NO,' GO TO FINISH
IF 'YES,OK'

NUM = NUM + 1
GO TO NEXT

GO BACK PLEASE ANSWER YES OR NO

Specification of an answer set is done as follows.

A set of keywords to be treated as equivalent is written,

separated by commas, between single quotes (as YES and OK

in the above example). Exact matching is indicated by

enclosing the anticipated respc,ises in quotation marks.

A digit following a list of keywords specifies the number

of keywords which must match if other than one; a percent-

age match can also be specified.

The language is computationally powerful, allowing

arithmetic expressions and vector data.

There is no subroutine facility in FOIL; however,

FORTRAN subroutines can be invokecl.

The syntax of the language, although restrictive,

is clean; moreover, source listings of programs reveal a

clear logical flow. A good deal of the computational and

logical power of the underlying machine is available to

the author in a natural way.

2.3.2.2 The operational environment

A student, once having signed on to the FOIL system,

enters $SOURCE NAME to commence the course NAME.

An author begins the creation of a course by entering

$$RUN FOIL 6=*MSOURCE* 7=*MSINK* 8=cour9ename
9=qualifier

$$SOURCE *]SOURCE*

Card input facilities are also available.

The implementation of FOIL is by an interpreter

written in FORTRAN. The stated rationale for this is to

enable an implementation (1) having few constraints on the

syntax of the language, (2) permitting easy transfer to

other time-sharing systems, and (3) allowing easy modi-

fication of the language.

To view the execution of a course, the author signs

on as a student. Limited editing can be done while he is

signed on as a student. Substantial revision is done by

using a text editor unrelated to the FOIL system.

2.3.3 PLANIT

The language was developed at System Development

Corporation and is claimed to be a multipurpose language

for computer-human interaction, and simple enough to

allow non-programmers to use it easily [Feingold, 190 1.

28

The student/author station is a teletypewriter con-

nected to a time-sharing system. The PLANIT system

operates in four modes: lesson-building, editing,

execution, and calculation. The student has access to the

last two modes, an author to all four.

A lesson is composed of a set of frames, of which

there are five types: Problem, Question, Multiple Choice,

Decision, and Copy.

Lesson-building is done interactively with the author

entering data (questions and answers) into the fixed format

of the frames. The following example EFeingold, 1967:549]

illustrates this. Note that data entered by the author

follow an asterisk typed out by the system.

System prompt and author response:

*Q

FRAME 2.44LABEL=*MATH
2. SQ.
*LETS SEE WHAT YOU REMEMBER ABOUT
TEMPERATURE. USING F FOR DEGREES
*FAHRENHEIT AND C FOR DEGREES CEN-
TIGRADE, WRITE THE FORMULA FOR
*CONVERTING FROM DEGREES FAHREN-
HEIT TO DEGREES CENTIGRADE.
*HINT: F=9*C/5+32 CONVERTS FROM
CENTIGRADE TO FAHRENHEIT.

3. SA.
WORMULAS ON

A+C=(5/9)(F-32)

*B F=9*C/5+32
*C C=(5/9)*F-32

Comments:

the question frame
labelled MATH
specify question
question (one line at

a time)

end of question
specify answer
turn on algebraic

matching
+ signifies correct
answer, answer A

answer B
answer C

4. SAT.
*A F: B:7

*B R:YOUR ANSWER IS THE SAME AS
THE ONE I GAVE YOU, TRY
AGAIN . . .

*A F: NOW YOU'VE GOT IT. B:15
*B R:YOU'RE STILL CONVERTING FROM

CENTIGRADE TO FAHRENHEIT, TRY
AGAIN . . .

*BC F:NOTE THE DIFFERENCE.C:B:OUT
*-R
*-C:

29

specify action to be taken
A first time:FeeJlback

branch to frame
B first time

A second time
B second time

The decision frame contains branching specifications.

The aids to answer processing are phonetic comparison,

keyword match and formula equivalence (by algebraic

matching).

The calculation mode includes functions, matrices

and statistical tables.

2.3.4 TUTOR

TUTOR [Avner and '2enczar, 1969] is the principal

author language for the PLATO system developed at the

Computer-based Education Research Laboratory of the

University of Illinois [Bitzer and Skaperdas, 1970].

The central computer is a Control Data 6400; the system

is intended to serve 4000 studentterminals on-line at once.

The student/author work station is based on a plasma-

display panel developed by the PLATO project. Slide

30

images can be superimposed on the text and graphic symbol,,-;

displayed on the plasma panel. Several special keys, e.g.,

NEXT, BACK, HELP, and TERM, for lesson control, have been

added to a typewriter keyboard.

2.3.4.1 The language

The author language was designed ". . . specifically

for use by lesson authors lacking prior experience with

computers" [Avner and Tenczar, 1969:1]. The following

example illustrates display of text, slides, simple

answer analysis, and branching [Avner and Tenczar, 1969:28].

UNIT DAVINCI
NEXT RUBEN'S
PACK INTRO
HELP DHELP1
WRITE NAME THE ARTIST WHO

PAINTED THIS PICTURE -
SLIDE 24
ARROW 1110
ANS LEONARDO
WHERE 1301
WRITE THE COMPLETE NAME IS LEONARDO DA VINCI.
SPELL
ANS LEONARDO DA VINCI
WHERE 1301
WRITE YOUR ANSWER TELLS ME THAT YOU

ARE A TRUE RENAISSANCE MAN.
WRONG WHISTLER
WHERE 1301
WRITE I HOPE YOU ARE JOKING.
WRONG
WHERE 1301
WRITE HINT - MONA LISA - HINT
WRONG MICHELANGELO
NEXT MREVIEW

31

This is a simple example, mainly intended to show the

format of TUTOR statements; the full language has about

70 verbs, called commands, and is functionally very rich,

although syntactically it is at the level of assembler

language.

The verbs for answer evaluation specify words and

characters which may or may not appear in a correct

student response. Some spelling correction is performed.

The verbs MUST, CANT, and DIDDL are used in the following

example [Avner and Tenczar, 1969: command descriptions,

DIDDL].

UNIT NURSE
WRITE DIABETES IS A RESULT OF A MALFUNCTION

IN THE ...
ARROW 1001
ANS ABILITY TO METABOLIZE SUGAR
MUST METABOLISM, UTILIZATION, BURNING, TOLERATION,

METABOLIZE, UTILIZE, USE, BURN, TOLERATE
WRITE VERY GOOD
MUST SUGAR, SUGARS, GLUCOSE, GLYCOGEN
CANT FAT, FATS, PROTEIN, PROTEINS, VITAMIN,

VITAMINS, CELLULOSE
WRITE YOU MUST BE THINKING OF A DIFFERENT DISEASE
DIDDL ABILITY, CAPABILITY

Each lesson has 63 variables to store integers, real

numbers, and alphanume is characters. The variables have

fixed names, e.g., 123, A10, and Fl. The partitioning

of the 63 variables into the three data types is con-

trolled by the author.

3'1

2.3.4.2 The operational environment

A student gains access to the system simply by typing

his name. He is then resumed s,;here his previous session

finished.

An author moves a work station into author mode by

pressing the TERM key and entering a password. There are

eight author commands, called options [Avner and Tenczar,

1969: Chapter 9]. As TUTOR statements are keyed by an

author, they are stored on disk, without any checking by

the system. The READIN command initiates a batch compile,

at the end of which errors are displayed. To correct

errors, an author DELETE's the lesson just read in, issues

the command EDIT to make his changes, and, having made them,

he re-issues READIN. The system allows only one

READIN request at a time; it is thus not a truly multiple-

author system.

2.4 Discussion

2.4.1 Coursewriter is the only system which can be said to

be production-oriented. If a CAI system is to deal with a

large number of real students, with varying motivation,

then it must do more than provide rudimentary facilities

for student execution and course material preparation.

To move from experimental to production status, a system

should add facilities for:

33

(1) registration of students and maintenance of

student records;

(2) performance recording;

(3) concurrent use by everal authors and several

students;

(4) protection of instructional programs from

tampering by students and authors;

(5) minimizing the effect of system breakdown on

user performance and attitudes.

A fundamental point to recognize is that an instructional

program is a non-terminating program. Thus the run-time

environment of each student, which may require a large

amount of storage for its representation, must be carried

over from one session to the next. The implications of

this pervade almost all aspects of the operational

environment of a production system.

2.4.2 All of the languages have neglected the power of a

computer for character string manipulation for two

significant tasks - presenting text and specifying answer

sets. String manipulation is of course used in answer

processing. The simple ability to name a character

string would reduce effort when the same text message is

used repeatedly. Incorporating string expressions and

operations, such as concatenation, in the language further'

34

reduces coding effort. Not only is effort reduced but run

time efficiency Lnd readability are enhanced.

For example, in a PL/I-like language, if a character

string variable named ANSIS has the value 'THE ANSWER IS ',

then the display text statement

DT ANSISIPBASE'

would print

THE ANSWER IS BASE

2.4.3 Instructional programs are continually being revised

by their authors - during debugging of the first version

and as feedback from students is received. Powerful

editing and debugging facilities should therefore be a

major part of the operational environment. Instead we

find minimal editing facilities, and debugging often can

only be done by signing on in student mode. If

initiating an execution takes more than minimal effort and

response time then an author will perhaps tend to spend

his time visualizing what his program will do rather than

seeing what the student will see.

Most of the systems are typewriter based. The

transient image of a CRT terminal allows more natural

editing than a typewriter terminal. However, more could

be done for the author usi,ig a typewriter terminal, e.g.,

context editors, than is being done. Moreover, the

35

distinction sometimes made between major and minor

revisions is artificial.

2.4.4 Inspection of source listings of instructional

programs written in these author languages reveals many

extraneous symbols and much unnatural syntax. Moreover,

the languages do not conveniently illustrate the structure

of lessons; FOIL is an exception in this respect. The

properties of the underlying computer system or language

translator often intrude upon the language. Examples are:

(1) the subroutine linkage mechanism in Coursewriter

is exactly the basic machine operation of

branch and return on a register;

(2) the @ symbol to denote the counters in

WRITEACOURSE stems from a translator

deficiency;

(3) labels are defined in FOIL by preceding the

label identifier with the symbol :. This

device is used to simplify the scanning algorithm

of the translator.

(4) parentheses are not allowed in arithmetic

expressions in TUTOR. This restriction simpli-

fies the parsing algorithm of the translator.

36

2.4.5 Because new requirements in author languages are

continually being identified, almost all of the language

designers acknowledge the need for extensibility in their

languages. Those existing systems which try to attain this

do it in two ways:

(1) provide a linkage to subroutines written

in some other language (assembler in

Coursewriter, FORTRAN in FOIL);

(2) implement the language translator in a

high-level language so that rewrites are

more feasible.

While (1) has the advantage that it does not disturb

existing system code, it has the disadvantage that it

involves an author in a language with which he is usually

unfamiliar. Moreover, the syntax of a subroutine

linkage - CALL with a list of parameters - is not usually

a natural syntactical specification. The second method

has the disadvantage that some of the most intricate

system code, namely the translator, has to be changed,

and changed in an ad hoc manner. Neither method is

satisfactory; what appears to be needed is

(1) flexibillty which allows extension naturally

at the syntactical level, and

(2) a highly systematized implementation of the

language translator so that changes can be

incorporated according to some formal model.

CHAPTER 3

THE DESIGN PHILOSOPHY UNDERLYING DIAL

Ttis chapter discusses the design philosophy formu-

lated early in the project.

3.1 Motivation

3.1.1 The cost of preparing instructional programs

The cost of preparing instructional programs is high

- costs exceeding $100,000 for a one-semester course are

not uncommon, for example [Hansen, 1969]. The number of

hours -c author time to produce one (terminal-time) hour

of 2ourse material is high. Estimates of 200 or more are

reported [Bunderson, 1970]. A major part of this cost is

due to extremely time-consuming iterations on the testing

and revising phases in course preparation. One wants to

reduce these costs. The effects on the total cost of

each of the author language and the operational environ-

ment for instructional programming have been separated

for attack by the CAI System.

38

3.1.2 Difficulty of use of existing languages

As can be seen from Chapter 2, the syntactic awkward-

ness of existing languages and the clumsiness of command in

existing systems make it difficult for an author to concen-

trate on his main task, that of preparing instructional

material.

3.1.3 Lack of effectiveness of existing languages

To be effective, the semantics of an author language

should enable an author to use the unique capabilities of

a computer. If these memory, file, and decision capabili-

ties cannot be used, the resulting instructional Trograms

are no different from conventional Programmed Instruction

material and the systems deserve the name "expensive page

turners" given by Oettingev [1969].

3,1.4 Need for understanding of languages for man-machine

systems

Designing a language for CAI and the cxperience gained

from evaluating it and its interactive programming environ-

ment should shed some light on the more general problem of

man-machine communication. Moreover, the system, once

built, could be a valuable research tool for evaluating

such languages if the language implementation admits of

easy language modification.

39

3.1.5 Conclusions

These motivating factors lead to two major require-

ments -

ease of use and modifiability.

3.2 A priori design decisions

3.2.1 The system should be interactive at course prepara-

tion time

The benefits of interactive, or conversational,

programming are well known. This mode of programming is

particularly economical when a program is being changed

frequently. This is exactly the situation in CAI, where

revision of course material is continually taking place

as an author receives feedback from students taking his

course.

Moreover, by "seeing what the student sees" as he

composes, an author is subject to the same restrictions,

e.g., line length, response time, and noise, as his

students.

3.2.2 Authors will be experienced teachers

This affects the quality of instructional programs

more than the design objectives of DIAL.

40

3.2.3 Authors will be experienced computer programmers

This is a major departure from the assumptions of

most CAI languages. It is justified on two grounds:

(1) pragmatically, it describes the situation of the

first subject matter to be taught on the system;

(2) constructing instructional algorithms is just like

constructing other algorithms; algorithmic technique

cannot be avoided, and it is better and no more

costly to learn it for programming in general than

for just instructional programming.

But the author inexperienced in computer programming

is by no means excluded or ignored. Consider the follow-

ing.

(1) DIAL is meant to be a language simpler than a

language of the complexity of FORTRAN. Its level -f

simplicity should be comparable to BASIC.

(2) An author, whether experienced in computer program-

ming or not, has to learn the CAI-oriented features

of a language which is new to him.

(3) In trying to cater to the inexperienced, a language

designer is strongly tempted to over-assist. However,

an author preparing any non-trivial instructional

program in any new author language, will soon get

beyond the stage where assistance with language

mechanisms is needed. An author's facility in t_ing

the language should not be underestimated.

(4) There are well-known techniques for assisting

learner programmers, e.g., the default concept.

3.2.4 Computer programming will be favor,1 if a subject-

matter-dependent design decision arises.

3:2.5 The language should favor the tutorial mode of

author-controlled CAI rather than drill-and-

practice.

3.2.6 The slide screen, rather than the CRT, will be the

main vehicle for the presentation of fixed textual

information.

Since color and graphic symbols can be used, the in-

formation storage capacity of a slide is high. Note that

this assumption obviates the need for picture-drawing

facilities in the language.

3.2.7 The basic system approach is CAPI. not question-

answering.

In an attempt to improve on the "intelligence" of

existing systems as they appear to their student users,

time was spent, and the temptation was strong to spend

much more, on exploring existing experimental question-

42

answering systems. These systems have been built in

research efforts in natural language processinL, and

artificial intelligence LSimmons, 1970].

However, existing systems are indeed experimental

and moreover have required major programming efforts to

implement. So rather than follow this route, the decision

was made to build a well-engineered system, of less

ambitious goals With the generality of a programming

language, the tools are provided for an author to produce

intelligent instructional programs.

3.2.8 There will be no coder for an author.

I have observed in Coursewriter installations that

placing a coder (sometimes called an instructional

programmer) between an author and his instructional pro-

gram generally results in programs that disappoint the

author. Instructional programs are, by necessity, repre-

sentations of algorithmic processes. Too often in this

environment, authors describe a concept to a coder and

then vaguely define the instructional logic framework

in which it is to be presented, without appreciating the

algorithmic nature of tie problem. For this reason I

believe that an author must face, at first hand, the

task of structuring his microscopic concepts.

43

3.2.9 The work station will be CRT-based and fast.

Terminal speed will be sufficient to fill the CRT

screen in less than 5 secs (an 800 character CC-30 screen

served by a medium-speed communications line -- 2400 bits

per second -- is filled in 2 1/3 seconds). An author

language designed for a low-speed line (a teletype-speed

line fills a CC-30 screen in 80 seconds) would have a

different flavor.

The terminal will be CRT-based, so if hard copy is

needed, an auxiliary mechanism for providing it will have

to be devised as part of the system.

3.3 Objectives for the language per se

3.3.1 First and foremost it should be a programming

language.

DIAL must be a language for describing algorithms.

Thus it should

allow symbolic names for entities manipulated,

provide a subroutine facility,

have the statement types expected in algorithmic

languages,

allow user-defined functions, and

provide a library subroutine facility.

4 4

Although CAI workers differ greatly in their

approach to using the properties of a computer, there is

an agreed-upon requirement for providing individualized

instruction. Thus there is the need for author tools

for answer analysis and decision making (at the frame

level and globally across a course). The need clearly

emerges for the author language to have the generality

of a programming language.

3.3.2 Special CAI-oriented operators

Because a theory of instructional program writing

has not yet been developed, it is not possible to design,

or even recognize, an optimal author language. There is

however, a generally accepted set of CAI-oriented commands

and utilities. This set should be a part of any author

language.

Obviously, given the current level of understanding

of the process of writing instructional programs, this set

must be embedded in a very flexible system, which can

adapt to a variety of different writing techniques.

3.3.3 A general CC-30 display users la:;!uage

It is anticipated that there will be research

(unrelated to CAI) at the University where there will be

a need to write programs which use the CC-30. It would

thus be useful if DIAL could serve as a general display

users language.

3.3.4 Portability

The system should be able to run on computer

installations other than the University's.

3.3.5 Advantages of a high level language

Sammet [1969] lists the following six advantages:

ease of learning;

ease of coding and understanding;

ease of debugging;

ease of maintaining and documenting;

ease of conversion;

reduced elapsed time for problem-solving.

My final design objective, which may appear to be obvious,

is that these advantages of a higher level language will

in fact exist in the final product.

3.4 Objectives for the interactive programming system

The operational environment has as much bearing on

ease of use for an author as the language itself. The.

chief components are the command language and its

implementation.

46

The design objectives for these are as follows.

1. An author should not be aware of the translation from

his DIAL statements to machine language. He should

feel as if he is programming a "DIAL machine", that

is, a machine which directly executes his statements

without the need for translation.

2. The CAI System, while in author mode, should at every

step try to anticipate an author's next move and

position the CRT cursor accordingly.

3. The language processor should be an incremental com-

piler, not just a fast batch compiler entered

interactively. The system could then maintain a

consistent response time even when changes to

existing source are made.

4. When the known properties of the language, environment,

and application dictate system actions that are

normally user-specified in a general-purpose system,

the CAI System should handle them automatically.

5. Diagnostic messages given by the system should

specifically identify the location and type of errors,

not just signal that an error has occurred.

6. The CAI System should be responsive to the experience-

dependency of an author. For example, the explanatory

level of diagnostics given him should decrease as he

becomes more familiar with the mechanisms of using

the system.

3.5 Why not adapt a general purpose programming language?

The notion of adapting a well-proven general purpose

programming language, such as PL/I, APL, FORTRAN, BASIC, or

CPS, was not rejected casually.

For this discussion, the term base language describes

the general purpose language, and the term CAI language

describes the base language augmented by a set of CAI-

oriented routines.

The advantages of adapting a base language include

the following.

1. I would not need to write a compiler. Obviously, the

routines making up the augmentation must be written,

but the programming involved is generally easier than

compiler writing.

2. The users of the system would have a well-proven im-

plementation without compiler maintenance

responsibilities.

3. A large body of subroutines written in the base

language would be available.

4. Authors who know the base language may take less

time to learn the CAI language.

5. One would have the generality argued for in section

3.3.1.

In my opinion, the advantages are outweighed by the

following disadvantages.

1. Deficiencies in the base language

This impacts writing both augmentation routines and

instructional programs in the CAI language. Input/output

facilities are not oriented to terminals, particularly

CRT's. The absence of file input/output in APL is a

severe deficiency. APL and FORTRAN do not have good

string handling facilities.

2. Deficiencies in the base language imalenan±aLian

If the base language is not interactive then one is

faced with conversion. The systems programming effort

required to convert a base language batch compiler to an

interactive incremental compiler would probably be as much

as that required to build a compiler for a new author

language.

Because the ratio of execution to modification is

high, one needs compilative execution to give fast

response and low cost for student mode. However, most of

the interactive implementations are interpreters.

3. The operational environment is compromised

If there is an interactive implementation of the base

language available, e.g., APL/360 or CPS-PL/I, then there

is an opportunity to use its command facilities for the

49

CAI application. But then ins'-ructional programs are just

like any other programs in the system - a student must

load, initiate and terminate a program just as an author,

or any other user, does. Other activities, such as student

record file processing, performance recording, dumping

against system failure, and proctor actions, must also

be handled within the existing framework of the host en-

vironment. My design philosophy requires an integrated

system serving students, authors, and proctors. This

cannot be achieved with the general purpose interactive

systems available to the project. A special purpose sub-

system must be built or the desired operational environ-

ment compromised.

4. Overhead

The base language would contain many language

features which would never be used by an author. The

overhead which results would be felt mainly at compile

time, as extra memory space and response time when

compiling in author mode. This effect is relatively

small.

5. Difficulty of use

Invoking the special CAI facilities, in most

languages, would be done by a CALL statement.

50

This not only adds superfluous code in an instruc-

tional program, which can cause readability to deteriorate,

but, more importantly, the syntax of the CAI language is

awkward to the CAI user. For example,

CALL RESUME;

CALL FRAME;

CALL SHOWAS (Note InThe variable has been used

before.',A,B);

CALI:MATCH (PAT('DO 'W),PAT(XIIY), XJIY,L);

Not all base languages, however, require invocation

by CALL. APL has the cleaner function invocation, but

parameter passing is awkward. PL/I also has user-

defined functions, but a function is invoked by the

appearance of its name in an expression. This will, for

some operations, result in unnatural syntax at the

invocation point. Consider a user-defined function for

reading. One would prefer to say:

READ;

but the function name must be in an expression, so one

is obliged to say:

ANSWER = READ;

For control structures, e.g., REPEAT-UNTIL and UNREC

:;_n DIAL, even more additional cod6:. is needed in the form of

labels and GO TO statements.

The macro pre-processor of PL/.I. (Lhe "compiie-Lim

facilities") does provide a solution - a pre-processor pass

could substitute correct PL/I syntax for user-oriented

syntax. However, when the design decision was made there

were no production-status interactive systems providing

the macro facility. 1
noreov,..-!r, user errors would not be

detected until the PL/I translation stage.

My reasons for not adapting a general purpose lang-

uage can be presented another way. Those requirements

for a base language and its implementation which would

make adaptation my preferred approach are:

(1) the base language to be PL/I;

(2) the availability of a good incremental

compile?;

(3) a well-designed command language for the

incremental compiler;

(4) the availability of the PL/I macro facility

for implementing the CAI specialized operations

with most natural syntax;

1
Since that time, TSO, the Time Sharing Option of

Operating System 360 with the MVT configuration, has been
announced and is available at TUCC. However, it presents
the same problems for the CAI application as do APL and
CPS: the operational environment would be compromised.

52

(5) the operating system to contain a user inter-

face language allowing, a user program to execute

system commands within a program. As an example

of the function, not the syntax, needed, con-

sider an APL program (which is not in fact valid

in APL/360):

V CAI

STUDENTAID 4- 0

STUDENTAWS 4- SEARCH STUDENTAID

)LOAD STUDENTAWS

NEXT: EXECUTE

SAVEACOUNT SAVEACOUNT + 1

(SAVEACOUNT < 3)/NEXT

)SAVE STUDENTAWS

SAVEACOUNT 0

-j 'TEXT

V

With such a facility one would be able to layer

the CAI command language on top of the r.ore

general, and hence complicated, command language

of the base language's operational environment.

CHAPTER 4

THE DIAL LANGUAGE

4.l Introduction

This chapter describes the author language itself;

the command language used by an author while interactively

programming in DIAL at a work station is covered in

Chapter 5. Hence this chapter specifies the language in

which an author writes an instructional program, which is

independent of whether he programs interactively or in

batch mode from cards were such a facility provided.

Another reason for separating the descriptions of DIAL and

the command language is that DIAL is the variable part --

changes in the language are implemented by the Translator

Writing System described in Chapter 6.

Layout of the chapter

Since this chapter is intended to serve as a guide

to using the language, a set of language specifications

alone would be inadequate. The development of the chapter

is as follows. Section 4.2 presents enough of DIAL to

allow complete programs to be written, but with the

simplification that all student answers are recognized by

exact matching. The remaining sections gradually introduce

the full facilities of the language.

The last section, 4.16, DIAL specifications, is a

summary of DIAL and can be used for reference purposes icy

authors experienced in the language.

Since the chapter aims to help a prospective author

learn DIAL, rigor is traded for clarity in some sections.

The specifications section, however, is rigorous.

A DIAL machine

The design of the language and its operational

environment is such that an author can take the view

that he is programming a "DIAL machine." This machine

directly executes DIAL statements without the need for

tr,anslation. Thus, as a policy, this chapter avoids

referring to the compiler for DIAL.

Color messages

The CRT can display characters in green, red, blue,

or yellow. This useful facility enables an author to

highlight portions of a CRT message and provide color

cues to message content. Because color selection is done

in the operational environment, not the language, it is

not treated here.

55

4.2 Writing a simple instructional program

Consider the following segment of an instructional

program dealing with logical operations on bit strings:

1 SHOW 'If the bit strings B and C contain
110 and 011 respectively, what is the
value of A after the execution of A=B&C?'

II. 2 BACK:MATCH '010', OK
3 MATCH '111', NOK
4 SHOW 'Wrong, try again.'
5 GOTO BACK
6 NOK: SHOW 'No. By definition 0 & 1 is always O.

Your answer is correct for A=B1C.
Try again.'

7 GO TO BACK
8 OK: SHOW 'Right.'

Example 4.1

Statement 1 presents a question by displaying the

text

If the bit strings . . . of A=B&C?

on the CRT; statements 2 and 3 specify the student

responses anticipated, together with the actions to be

taken for those responses. Thus, if the student answers

010 the program branches to the statement labeled OF

which displays 'Right.'

Statements are the units of ol?eration within the

language. They will normally be executed consecutivel as

written. However, this sequence of operations may be

broken by branching statements. The MATCH and GOTO

6

statements in Example 4.1 are branching statements. A

statement may be optionally prefixed by a label, as

statement 6 is.

Identifiers, or names, are created by an author to

identify program units in a DIAL program. They have no

inherent meaning but serve for the identification of

variables, labels and subroutines. An identifier is a

sequence of upper or lower case letters and digits, not

exceeding ten characters, beginning with a letter, e.g.,

X Cl cardformat BACK clw2

Only identifiers for labels occur in Example 4.1.

An identifier naming text, for example, could be R, and so

if R had been set previously in the program by the

assignment statement

R <- 'Right.'

then the statement

OK: SHOW R

would be equivalent to statement 8 in Example 4.1.

DIAL statements are free form. Blanks may be used

freely throughout a statement. A blank is needed to

separate two tokens in a statement if there is no other

delimiter which the DIAL machine can use to determine the

separation. For example, X+Y is equivalent to X + Y but

GOTOBACK is not equivalent to GOTO BACK. Any number of

blanks may appear wherever one blank is allowed.

57

Composite operators, e.g., <- and --1= cannot contain blanks.

Unrecognized responses

In ti-le example, only the responses 010 and 111 are

recognized. Thus, by the program sequencing rules, any

othev response will cause statements 4 and 5 to be

exeLluted, (with the possibility of a continuous loop:

2, 3, 4, 5).

The UNREC statement is a branching statement

specifying program action in case unrecognized responses

are received. The fomat of this statement is defined

using the notation (Figure 4.1) to be used from now on.

UNREC-statement:

Format:
1

UNREC label [,label] .

Action:

The ith unrecognized response to the controlling

SHOW-statement will cause a branch to the .th

label in the UNREC label list.

1In this chapter, the first time a statement is
presented, usually an abbreviated form will be given.
For example, the symbol * can be an item in an UNREC
label-list. The chapter progressively develops the
full format for each statement.

58

A uniform system of notation is used to define the format of each DIAL
statement. The notation is not a part of DIAL; it is a metalinguistic device
to describe the structure of DIAL statements and can be used to describe most
programming languages. It indicates the order in which the elements may (or
must) appear, the punctuation that is required, and the options that are
allowed. The notation is a subset of that used in IBM PL/I publications
[IBM 1970b, Section AL

A notation variable names a general class of elements in the language,
e.g., label, text-constant, frame-name, and is one of the syntactic units.
Other syntactic units are DIAL verbs, e.g., UNREC, punctuation, e.g., a
comma, and special characters, e.g., +.

Syntactic units are combined by juxtaposition, braces, and square
brackets as follows.

- vertical stacking of syntactic units indicates that a choice
is to be made, e.g.,

TEXT
DCL identifier

SLIDE

- square brackets denote options. Anything enclosed in brackets
may appear one time or may not appear at all. For example,

EqDLESSON [lesson -name)

indicates that a lesson-name is optional in do ENDLESSON statement.

- three dots denote the occurrence of the immediately preceding
syntactic unit one or more times in succession. For example,

['label] . .

A label preceded by a comma may or may not occur since it is
surrounded by brackets. If it does occur, it may be repeated
one or more times.

The following example contains each part of the notaticn.

{label}
[label:] MATCH tex.r.-constant [I text-constant] . . .

*

Valid MATCH-statements are

d2w: MATCH 'alpha' I 'beta' I 'gamma' ,

MATCH 'alpha', k3

Figure 4.1 -- The metalanguage used to define the syntax of DIAL.

59

Example:

UNREC Ll,Ll,HELP,ANS1

This will cause the statement labeled Ll to be

executed after both the first and second unrecog-

nized responses are received. The statements

labeled HELP and ANSI will be executed on receipt

of the third and fourth unrecognized responses,

respectively. Example 4.2 (statement 4) shows

this UNREC-statement embedded in a program segment.

1

2

3

4

5

6

7

8

9

10
11
12
13
14

BACK:

Ll:

HELP:

ANSI:

NOK:

OK:
NEXT:

SHOW
MATCH
MATCH
UNREC
SHOW
GOTO
SHOW

GOTO
SHOW
GOTO
SHOW
GOTO
SHOW

'010',OK
'111',NOK
L1,L1,HELP,ANS1
'Wrong, try again'
BACK
'Wrong', LOGIC4,
'Now try again'
BACK
'No. The answer is
NEXT
Bl
BACK
'Right.'

010'

Example 4.2

QAR screen division

The CRT screen is divided conceptually into three

areas: Question, Answer, and Response:

60

A

R

The Q-area is filled by one or more SHOW's presenting a

question. When a MATCH is encountered, the cursor is

placed at she beginning of the A-area for the student to

enter his answer. The author's feedback response appears

in the R-area and thc cursor is then placed back in the

A-area so inviting the student's next attempt. The

student edits his previous answer using the inherent

editing properties of the CRT.

For Example 4.1, if the student first entered 111,

the screen would appear as

If the bit strings B and C contain
110 and 011 respectively, what is the
value of A after the execution of A=BSC?

111

No. By definition 0 1 is always 0.
Your answer is correct for A=B1C.
Try. again.

61

Showing slides

As well as displaying text, the SHOW-statement shows

slides; for example

SHOW nesteddo

would, if nesteddo is an identifier naming a slide

variable rather than a text variable, show that slide

number to which nesteddo is currently set.

The format for the SHOW-statement so far in the

development is

1

text-variable
,

text - variable
1SHOW slide-variable

text-const text-const
.

Example: Line 7 of Example 4.2.

Slide variables can be set by assignment-statements; for

example,

nesteddo <- 2307

would cause SHOW nesteddo to show slide number 7 in

2arousel 23.

Comments

Comments are enclosed between the markers /* and */

and may be placed anywhere in a DIAL program that a blank

is permitted. Any characters may be used in a comment

except the pair *1, which ends the comment. Comments are

completely ignored by the DIAL machine, but their use

adds to the readability of an instructional program.

Declarations

Two types of variables have been discussed the

slide variable and the text variable. Notice that an

identifier naming a variable has the same formation

rules whether the variable is slide or character, but

its interpretation in, for example, a SHOW operation

will be different. Thus the system must know whether

it is to show a slide or text.

This property-designating information comes from

associating an attribute with each variable. A variable

is given an attribute by one of the two following means.

(1) An author specified declaration

A declare statement is used.

Format:

DCL identifier attribute

Examples:

62

DCL nesteddo SLIDE

DCL Q TEXT

A DCL-statement may appear anywhere in a lesSon as

long as it appears before the first use of the identifier

it names.

63

Other attributes are introduced in later sections of

the chapter.

(2) A default declaration

Unless an author specifies an attribute for a

variable, it is assumed by default to be TEXT.

A complete program

Brief consideration for the operational environment

is all that is needed now to write a complete lesson. The

lesson must be named so that an author can refer to it in

the CAI System. This is done by the)LESSON command;

since Chapter 5 discusses the command language, it will

not be treated here.

The action to be taken by the student at the end of

a lesson must be specified. This is done with the

ENDLESSON statement.

Format:

ENDLESSON [lesson-name]

Action:

The following system message is d1splayed.

END OF LESSON
DO YOU WISH TO GO ON TO THE NEXT LESSON?
TYPE YES OR)OFF

The last statement executed in a lesson must be

this statement.

614

A set of lessons constitute a course and a student

takes the course lessons in sequence. The simplest

complete program, then, is a one-lesson course and

Example 4.3 shows such a program.

1 /* An example of a complete program
2 DCL logic4 SLIDE
3 logic4 <- 2301
4 SHOW 'Message', logic4
5 ENDLESSON

Example 4.3

4.3 Defaulting branching in a program

Many programmed actions are repetitive, e.g., the

action of displaying 'Right.' and branching to the next

part of the course material to be presented. The DIAL

default-actions help an author by allowing him to

indicate that he will take the default action and so

need not explicitly program an action himself.

To take advantage of the default branching it is

necessary to give the system some help; an author has to

put a little more structure2 on a lesson by organizing it

2
iThis is more structure than usually found in

programs written in a general-purpose programming
language, but is the norm for computer-assisted
programmed instruction.

into frames. A frame is a logically self-contained part

of a lesson enclosed by

frame-name: FRAME

and

END frame-name

where frame-name is an identifier. The DIAL statements in

a frame are usually ordered to give the following structure:

frame-name: FRAME
present textual information on slides and CRT
present question
Ar_accept answer
classify answer
respond according to answer classification-4

END frame-name

All defaults actions are requested by the symbol * as

follows:

MATCH-statement

Example: MATCH 'KV,*

Action: If the match is successful then

(1) the system displays 'Right.' in green,

(2) the program branche) to the next

frame.
3

3Note that this is the only part in the language in
which the "correct answer" has any significance. Some CAI
systems give additional special treatment to the correct
answer, e.g., an author can mark a particular text as being
the correct answer for later automatic display if the stu-
dent fails the question. Although the distinction is use-
ful, I believe that the important distinction is not
between correct and incorrect responses, but between
recognized and unrecognized responses.

6

UNREC-statement

Example: UNREC *,*,L

Action: for each default label:

(1) the system displays the UNREC message

in yellow. This message reads

Your answer was not recognized. It may
be wrong, or it may be right in content
but wrong in form, spelling or punctua-
tion. Examine your answer and try again.

(2) the program branches back to the first

MATCH-statement (the lead MATCH) of

he controlling SHOW-statement.

GOTO-statement

Example: GOTO

Action: The program branches to the next fram.

Example 4.4 shows the program segment in Example 4,2

recoded using the default sequencing facility.

SHOW Q
BACK: MATCH '010',*

MATCH 'ill'INOK
UNREC *,*,HELP,ANS1

HELP: SHOW 'Wrong', LOGIC4
'Now try again'
GOTO BACK
SHOW 'No. The answ!r, is 010'
GOTO *

NOK: SHOW Bl
GOTO BACK

Example 4.4

67

4.4 Classifying recognized responses

Since, for the branching purposes of a particular

question, several responses may be equivalent, it is

natural to allow more than one argument in a MATCH-

statement. The definition of the MATCH-statement is now

MATCH

1

variable variable

text-const 1 text-const

labeli

L"

If at least one of the specified texts in the list matches

the stu-lentis answer, then the program branches to label

or takes the default action if *. Examples are statements

3 and 6 of Example 4.5.

Thus classification of recognized responses for each

question takes the form:

MATCH r
11 1 r12 1

, label-1

MATCH r
21

1 label-2

MATCH rml 1 1 rte, label -m

where r1 .. is the jth recognized response in the ith

equivalence class. The vertical bar seprator between

arguments is to be read as or.

68

1 Q <- 'Write an expression which means
"multiply A by B and assign the
result to C"'

2 Ll: SHOW Q
3 MATCH 'C = A*B' 1 'C = B*A', OK
4 UNREC *,L2,REMED /*0:1 the third, go see what */

/*help he needs */

5 L2: SHOW 'No. Type the two variables being
multiplied'

6 MATCH 'A B' 1 'A,13' 1 'B A' 1 'B,A',NX
7 GOTO REMED /*Unrecognized, so go */

/*see what help he needs
8 NX: SHOW 'Yes. Multiplying them would

be achieved by A*B. Try the
question again '

9 GOTO Ll /*Back to original question */

10 OK: /* Present alternative correct answers: */

11 SHOW 'Yes. C = B*A and C = A*B
are both right.'

17 REMED:

Example 4.5

4.5 Expressions and assignment statements

We have already encountered the assignment statement-

a value is assigned to the variable GT the left hand side.

However, in the examples so far, tma right hand side

contained only one item. It is po.c.ible to construct an

expression on the right hand side containing several

items (variables and constants) with operational symbols

(operators) linking the items. For example

Y <- A B

h9

is an assignmen: staement which upon execution wild

cause the exprecsion A+B to be evaluated and its value

assigned to Y.

The expresE-loa is an arithmetic expression, .

Other expression,, in DIAL are text, slide, logical, and

comparison expressions. The items combined by operators

are called operands. Operators can only act on operands

of the same class, i.e., arithmetic operators can only

act on operands with the attribute INTEGER.

Examples:

(1) a text expression using the concatenation operator:

(2) An arithmetic expression:

a*(b + c)

(3) A slide expression to add one to the slide variable

THM:

THM + 1

The two classes of expressions called logical and

comparison result in truth values and are discussed if.

later sections.

A complete definition of DIAL expressions is given

in the specifications.

Expressions are not restricted t, assignment state-

ments; a new rule is now introduced: whenever text can

'70

appear in a statement, a text expression may appear.

So have

and

MATCH AllB, L5

SHOW all'Dog'llb , THM

',le general format of the assignment statement is

-expr
variable <- slide-expr

arith-exp

Examples:

L5: REPLY <- ANSISII'Dog'

SCORE <- A * B + 7

I <- I + 1

4.6 The IF-statement for branching

The MATCH-statement is a branching statement which

applies tests to the ANSWER register. With the IF-state-

ment, much mote general tests can be applied. For

example

IF QCOUNT > 3 THEN SHOW Rl
SHOW R2

compares QCOUNT with 3. If the former is greater, i.e.,

the test is successful, then the statement SHOW Rl i6

executed and then SHOW R2. If the test is unsuccessful,

SHOW Rl is skipped.

71

Tests to be performed are specified by a comparison-

expression. QCOUNT > 3 is such an expression. Its

evaluation results in a truth value (1 = true, = false).

The format of the IF-statement So far is

IF comparison-expression THEN statement

It is sometimes convenient to specify a group of

statements to be executed if a test is true. for DIAL,

statements can be grouped into a DO-group by using the

DO and END, e.g.,

DO
X<-X+1
SHOW R2
SHOW R3

END

The format of the IF-statement is now:

IF comparison-expr THEN
statemen tl

DO-group f

In a second, more general form, the IF-statement

controls the 'execution of two alternacive statements.

The simple IF-THEN clause is expanded by the ELSE-clause.

If present, it always follows after the THEN-clause.

For example,

IF A> 2 THEN X <- Y

ELSE X <- -Y

The THEN-clause is executed only if A > 2 is true; the

ELSE-clause is executed only if A > 2 is false. As with

THEN, a DO-group may follow ELSE.

Since the comparison-expressions have truth values,

they can be combined by logical operators which take

truth values as operands. Thus

(A > 3) I (B < 5)

is a logical-expression.

The formal now becomes

IF
comparison-exp
logical-expr

THEN statement
DO-group

ELSE statement
DO-group

Typical uses of the IF-statement

(1) For structuring instructional logic

a. At the frame level

IF LENGTH (ANSWER) > 10 THEN REM4

. Globally in a lesson

Let BADCT be a score kept throughout a lesson

and PATH2 an integer set to 1 or 0 to indicate

whether a particular path was taken. The

following statements specify branching based on

the variables BADCT and PATH2.

IF (BADCT>25) C (PATH2=1) THEN DO
SCALE4 <- SCALE4 + 1
/*Increment performance
/*measure.

GOTO LAB7 /*Remediation
END

ELSE GOTO L5
/*continue in main
/*stream.

(2) For general programming.

a. A-r. -che micro level

73

/*Remove the first occurrence of */

/*the substring AND from the */

/*ANSWER register : - */

J <- INDEX (ANSWER, 'AND')
IF J 0 THEN /*If J=0 then was not in ANSWER */
ANSWER <- SUBSTR(ANSWER,1,J-1)IISUBSTR(ANSWER,J+3)

b. Loop control

/*Loop tc, show the first 20 slides
/*in carousel 15 : -

DCL SL SLIDE
SL <- 1500 /'Initialize */

Ll: SL <- SL + 1
IF SL > 1520 THEN COTO EXIT
SHOW SL
GOTO Ll

EXIT:

Nesting

be nested, for example:IF-statements can

IF A + B THEN
IF X = Y THEN Z <- 0

ELSE Z <- 1

EL ,E

IF X > Y THEN P <- 0

ELSE P <- -4

74

Finally, note the equivalen or the following two

statements.

MATCH 'ALPHATBETA' , L5

IF (ANSWER='ALPHA')1(ANSWER='BETA')THEN GO TO L5

The MATCH-statement is an abbreviated form of an IF-

statement with the ANSWER register as an implied

comi-sarand.

4.7 Non-exact matching

To confirm the need for some assistance in

recognizing responses, consider the problem of answer

processing for the question "What is the name of the UNC

student newspaper?" The responses

'Daily Tar Heel ', ' Daily Tar Heel', 'DAILY TAR HEEL',

'The Tar Heel', 'The TAR HEEL',

'DAILY TAR Heeel', and 'DAILY Gazett::'

can all be viewed (:.s correct, except for the last one.

Restricting answel, classification to exact matching would

obviously place an intolerable burden on an author, no

matter how carefully he phrased his questions.

With the simplificiation (Chapter 3) that sophisticated

linguistic analysis of responses will not be provided in

the current phase of the CAI Project, the prob)em of non-

exact matching is left mainly to the ingenuity of the

author. The approach taken to help the author combines

(a) the provision in DIAL of system-matching-functions

:(surf's) and (b) requiring the author to observe certain

conventions.

The conventions apply to message preprocessing a

student's typed response always goes through a preproceLo

before ANSWER is filled. The preprocessor

(1) strips preceding and following blanks

surrounding a typed response, and

(2) squeezes excess blanks between non-blank

characters.

This preprocessing always occurs. To deal with the

upper case -lower case problem, the DIAL machine's

preprocessor has a switch named CASE which, when on,

causes all lower case letters in the response to be

converted to upper case as ANSWER is being filled.

Thus while CASE is on, matching will not distinguish

between upper case and lower case if MATCH-statement items

are written in upper case. For example,

MATCH 'THE TAR HEEL' I 'DAILY TAR HEEL' , LE

would, with CASE switched on, recognize all but the last

two in the example.

CASE is set by an assignment statemeL":

CASE <- arith-expr

for example,

CASE <- 4
CASE <- 0

76

Thus although CASE stores an integer it ha.7- only two

states, namely, on if its value is non-zero; off if zero.

A second preprocessor switch, called SQZ, squeezes

all blanks from a typed response.

System matching functions

The smf's are PAT for pattern matching against the

ANSWER register and PEN for using the light pen. The

latter is detailed in a later section. The smf's return

a truth value and hence are (one-item) logical expressionL.

To effect branching based on the values returned, smf's

can ,.."7pear in MATCH-statements and IF-statements.

The PAT smf uses the pattern specified as its

argument and searches ANSWER for the occurrence of that

pattern. A pattern is ,--,ade up of a sequence of pattern

elements separated by a cent symbol, the "don't care"

symbol, where any number of noise symbols may appear.

For example, PAT('W) would be true if ANSWER con-

tained ALPHA * BETA + D.

By making answers to questions of the type "Give an

expression which nultiplies two variables" rather than

"Give an expression which multiplies A and B" quite easy to

process, the PAT function should encourage. yin author La

go from the specific to the general in his questioning.

Because PAT is quite general it covers simpler

functions often found in CAI languages. Keyletter and

keyword matching are two examples. Keyletter matchin

is intended to cope with spelling errors in a student

response. For example,

MATCH PAT ('IDENTFR'), LS

would cope witi certain misspellings of the word

"identifier."

All correct answers, except the last, in the Tar

Heel example would be recognized by the keyword matching

PAT ('STAR HEEL')

if CASE is on.

Note that the text func'ion INDEX can also be used

for keyword matching.

Notice also that PAT has an implied or tering by the

order of the pattern elements. So the following two

segments are equivalent:

(1) MATCH PAT ('TARHEEW), Ll
GOTO L2

(2) J <- INDEX(ANSWER,'TAR')
K <- INDEX(ANSWER,'HEEL')
IF J=0 IK=0 THEN GOTO L2

K > J THEN GOTO Ll.
GOTO L?

78

4.8 The sieve

Shortly after Brooks began to use DIAL (Chapter 7)

he invented the sieve; it was made possible by the PAT

system matching function.

Figure 4.2 gives an example. The actual sieve is

contained in statements 224 through 250.

The sieve consists of an ordered set of expected

responses. The first is correct; each successpr allows

one more erroneous element, or conversely requires one

fewer correct dement. The responses are ar anged in

order of increasing seriousness of error.

An answer falls through the sieve until it

encounters the first response that requires no more

correct elements than the answer has.

The feedback for each response is designed to teach

about precisely the error that distinguishes that

response from the one above it, and it always requires

that the student try again.

This correspondence between feedback and sieve level

works properly for several reasons. Falling through to

that level means the student surely made at least the

error addressed. Falling no further means he made a no

more serious error. The ordering means that the error

addressed is the most serious one he made
,
however man-

200 d2; /
RPSUME;

202 CASEOFF;
204 S don, CLEAR;
20d PINT;
212 ;

216 ;

220 SAS CLEAR,
'Write a statement laeled SAM that will

iterate the group of statements it

controls 50 times. Use the variable X

as yol- index.';
224 d2m: M 'SAM:DO 101 TO 50:1,e:2r;
22H M 'SAM:DO X=1 TO 50,,4241;
210 M PATOSAM:DO X=1 T') 52e1),

d2w1a;
232 r, PATOSAMXDO X=1 TO 50M"),

d2w2;
2i M PAT('ODO X=1 TO 50[0),d2w3;
240 M PAT('OD0 X=1 TO0),d2w4;
244 M PAT(teD0 X=10"),d2w5;
246 M PAT(0tDO X=O0),d2w6;
24d M PATOOD00),d2w7;
250 U *;
252 SAS
'Your statement should contain 00.,,t;
254 GOTO d2m;
256 d2w1:S ng,forgotsemi,t;
257 GOTO d2m;
25H 42w1a:S extramsq,t;
259 GOTO d2m;
260 d2w2:SAS
'A colon should follow the label.',t;
262 GOTO d2m;
264 d2w3:SAS
'rhe statement should he labeled SAM.',t

266 GOTO d2m;
26H ,12+4: SAS
'The upper limit of the iteration count

should Le 50.,,t;
270 COTC d2m;
272 d2w5:SAS
'The yard TO separates the starting and

onding values of the iteration count.',
t;
274 GOTC d2m;
276 d2w6:SAS
'The iteration count should start with 1

',t;
2:7 GOTC d2m;
27H d2e7 :SAS
'The iteratica ccunt expression should

begin

X= ',t;
2130 GOTO 622;
2H2 d2:: r;
100 ;

79

1. DIAL VERB ABBREVIATIONS:

vATCR
'S uow

SAS ,nwAS

U YMPEC

2. TEXT CnN-,TANTS NAYPD rAPLIFH Tr

THE DROCRAM:

extramsg 'You have entered somet.'ion in
addition to or instead pr the
semicolon which should end a
PL/C statement.' (blue)

forgotsemi 'You forgot the semicolon.'
(hlue)

n,1

r

t

'Not (mite. ' (yellow)

(green)

'Try again. ' (red)

3. don is slide 151, named earlier in the
program. It is shown in inure R.6.

4. PINT, a temporary addition to nIAL (see
8.3.3.2,2), displays "Press 1NT to continue
when ready." and then wafts For INT.

rigure -- A program sommt nhowing a niwie Cor
-)1 the expected response !;AM:DO X=1 TO 50;

others there may be. Trying again means the errors are

all treated, one at a time. The result is an analyzer

whose length and complexity grows linearly with the

number of anticipated errors, but which is capable of

handling all combinations of them.

Progressive teaching also results from this ordering

of the sieve elements. If the student has no idea what the

answer should be he will be led, step by step, through the

construction of the right answer. Such a trace of the

sieve in Figure 4.2 is:

Sieve element
MATCHed (DIAL

Student Response statement #) Feedback

(null) 250 (UNREC message)

(null) 252 Your statement should
contaTh DO.
Try again.

DO

DO X=

DO X=1

248 The iteration count
expression should
begin

X=
Try again.

246 The iteration count
should start with 1.
Try again.

4.9 The naming statement

The assignment-statement of Example 4.5 assigns a

text constant value to the variable Q. This is a useful

technique when a particular text is to be used repeatedly,

as it saves rewriting the complete text each time. There

is a DIAL statement solely for this naming function,

which uses = to indicate identity rather than < - which

is used to indicate setting of a variable value.

Format:

identifier = text-const

Example.;:

cbs = 'Observe the slide above.'

pint = 'Press INT to continue.'

When an identifier is so used, it is given the TEXT

(constant) attribute.

Variables, by definition, require the DIAL machine

to keep a separcte copy for each studer. , In contrast,

when an author uses a naming-statement he is signalling

that the identifier is a name, not a variable-name. Hence

only one copy is needed for all students. Substantial

savings result in the storage of the DIAL machine.

While such names cannot be used on the left hand

side of an assignment statement, they can form text-

expressions, e.g.,

SHOW obsIlpint

There is a similar naming facility for slide

constants, e.g.,

nesteddo = 233J .

4.10 Repetition constructs

DO-WHILE and REPEAT-UNTIL are available for con-

trolling the repetitive execution of a group of state-

ments. They are motivated in [Dijkstra, 1970]. The

constructs

*DO WHILE ?

statement
group

ENDDO

can be diagrammed as follows:

REPEAT

statement
group

UNTIL

82

Do WHILE

statement
group

L
(leading decision)

Examples:

REPEAT UNTIL

statement
group

(trailing decision)

(1) /*HARDWARE TEST PROGRAM */

/*Show all slides in carousel 3:- */
DCL s SLIDE
s <- 300
REPEAT

S<- S 1

SHOW s
UNTIL s = 380

(2) pint = 'Press INT to continue'

REPEAT
SHOW pint

UNTIL PAT('')

(3) I <- 1

DO WHILE I <= 100
SHOW I
I I + 1

ENDDO

Format:

{.

DO WHILE comparison-exprl
logic-expr

ENDDO [do-while-label]

REPEAT

[

UNTIL comparison-expr
logical-expr

4.11 Cathode-ray tube screen formatting

The CRT of the CC-30 can display 800 characters,

arranged as 20 rows, each of 40 characters. Two aspects

of CRT screen formatting concern the author, (1) the

relative positioning of successive screen messages and

(2) the relative positioning of characters within a

message.

(1) Relative positioning of screen messages

Successive text-expressions in a SHOW-statement are

separated by commas. When the statement is executed,

each text-expression is evaluated and treated as one

screen message. Each screen message is displayed be-

ginning at the next free screen row. For example, if

the text-variable GAM contained 'GAMMA' then the state-

ment

SHOW 'ALP'! 'HA', 'BETA', GAM

would result in

ALPHA

BETA

GAMMA

whereas the statement

SHOW 'ALP'll'HAIIPBETA'11GAM

would result in

ALPHABETAGAMMA

The above discussion applies to messages within

the Q-area and A-area. The first SHOW-statement of a

frame begins at the top of the Q-area. The QAR

boundaries are floating and can be changed by assignment

to the system variables QVALUE, AVALUE, and RVALUE. For

example,

AVALUE <- 15

RVALUE <- 17 .

These three system variables have default values of 1, 11,

and 13. An author must ensure that screen messages fit

within the QAR division; overflows will be displayed in

the next area, for example, a too large Q-area message

will overwrite the A-area.

8G

(2) Relative positioning of characters within a message

The exact format of a screen message is important

if the message is a table or list of items, whereas if it

is entirely prose, its format is of less concern.

For exact screen formatting, the SHOWAS-statement

(to be read "Show as formatted") is used. It has the

same syntactic format as SHOW, namely,

text expr
SHOWAS

slide- expr

1

slide-expr J

When a display statement is encountered during

execution, the DIAL machine, for each text-expression,

evaluates the expression and then

(1) if it is in a SHOWAS-statement the screen

message is displayed as it was originally

formatted,

(2) if it is in a SHOW-statement the machine

formats the message by removing instances of

word-breaks over screen lines ,end then displays

the result.

Examples:

Statement executed:

112 next: SHOW 'The slide screen abo
ve is used for presenting the bulk of th
e TEXTUAL MATERIAL.'

Result:

The slide screen above is used for
presenting the bulk of the TEXTUAL
MATERIAL.

Statement executed:

250 SHOWAS
DIAL has been designed for
AUTHOR-CONTROLLED CAI'

Result:

DIAL has been designed for
AUTHOR-CONTROLLED CAI

Thus characters within text are formatted in two ways.

By using SHOW, an author need not be concerned with word

breaks as he is typing text. By using SHOWAS he can

specify the exact layout of a display.

The following illustrates the display of text constants.

Let the text be named by the statement

150 studyslide='STUDY THE SLIDE ABOVE AN
D PRESS INT TO CONTINUE.'

88

Then typical uses are the following.

Statement executed:

750 SHOW studyslide

Result:

STUDY THE SLIDE ABOVE AND PRESS INT TO
CONTINUE.

Statement executed:

850 SHOWAS studyslide

Result:

STUDY THE SLIDE ABOVE AN
D PRESS INT TO CONTINUE.

Statement executed:

950 SHOWAS studyslide,'ALPHAIWBETA'

Result:

STUDY THE SLIDE ABOVE AN
D PRESS INT TO CONTINUE.

ALPHABETA

39

4.12 Light pen usage

Instructional programs can be written so that a

student indicates his response to a multiple-choice

question by pointing with the light pen.

Presenting the multiple-choice question

The multiple-choice items are referred to as light

pen targets and must obey the following rules.

(1) Each item must begin with the character *;

(2) Each item must occupy no more than one row;

(3) There can be no more than eight targets.

Figure 4.4 has four targets. An author will normally use

a SHOWAS-statement to present his targets in a multiple-

choice question.

Recognizing the student's response

When a student points to a target and presses the

pen's button, a light pen hit is said to have occurred

(the system recognizes only one hit at a time). An

author specifies a hit and its branching action by using

the system-matching-function PEN in a MATCH-statement or.

IF-statement. Examples are

MATCH PEN(3)jPEN(5),L5

and

IF PEN(2) THEN SHOW DIAG

90

A complete example of light pen usage is given by the

program segment in Example 4.6 and its execution in

Figures 4.3 and 4.4.

110 SHOW struc4,ref,'ADDRESS on line 5
is followed by STREET, CITY, and STATE,
which are all declared with a greater le
vel number than ADDREST. You can see
that STREET, CITY, and STATE are contain
ed in ADDRESS.'
120 SHOWAS

Since ADDRESS has dJ.ta items in it,
it is:-

* a major structure
* a minor structure
* an elementary name

(none of these)?
130 Ll: MATCH PEN(2),*

MATCH PEN(1),MAJOR
MATCH PEN(3)IPEN(4),BAD

140 BAD:

180 MAJOR:

Example 4.6

91

1 DECLARE
2 1 PERSONNEL,
3 2 NAME CHAR(24),
4 2 PHONE CHAR(9),
5 2 ADDRESS,
6 3 STREET CHAR(25),
7 3 CITY CHAR(15),
8 3 STATE CHAR(2),
9 1 YEAR TO _DATE,

10 2= GROSS FIXED DEC(8,2),
11 2 TAX FIXED DEC(7,2);

Figure 4.3 -- The slide struc4 used in Example 4.6.

Refer to the slide.
ADDRESS on line 5 is followed by STREET,
CITY, AND STATE, which are all declared
with a greater level number than
ADDRESS. You can see that STREET, CITY,
and STATE are contained in ADDRESS.

Since ADDRESS has data items in it,
it is:-

* a major structure
a minor structure

* an elementary name
* (none of these)

Figure 4.4 -- An Execution of Example 4.6.

92

4.13 The RESUME-statement

The point at which a student terminates a particular

session may not be the best point for him to begin his

next session. It may be better pedagogically if he is

restarted at a point just prior to the end of the last

session. An author therefore places RESUME-statements

at suitable points throughout the lesson.

Format:

RESUME

Adtion:

Causes the CAI System to copy the student's com-

plete status to the RESUMDUMP file.

4.14 Subroutines

4.14.1 Since subroutines in DIAL have the same definition

and invocation conventions as subroutines in a general

purpose programming language, they will not be described

in detail. The specifications section of this chapter

defines the CALL, PROC rind END statements needed.

There are two types of subroutine procedures -

DIAL subroutines and PL/I subroutines.

(1) DIAL subroutines

Example 4.7 is a subroutine, DELETE, to delete all

occurrences of specified characters from ANSWER.
4

A

sample invocation is

CALL DELETE ('AEIOU')

93

DELETE: PROC(DELS)
/-This subroutine deletes from ANSWER */

/*all the occurrences of the characters in*/
/*DELS. */

/* (Note the length restriction of 10 on */

/'DELL imposed by the dimension of */

/*vector C) */

DCL DELS TEXT /*Parameter*/
DCL L INTEGER /*Length of, i.e., number of */

/*elements in, DELS
DCL C(10) TEXT /*Holds the elements after */

/*unpacking from TLS */

L <- LENGTH(DELS)
I <- 0

OUTER: I <- I + 1
IF I > L THEN GOTO RETURN
C(I) <- SUBSTR(DELS,I,1) /*unpdck next element*/

INNER:

RETURN:

J <- INDEX (ANSWER,C(I))
IF J=0 THEN GOTO OUTER
ANSWER <.- SUBSTR(ANSWER,1,J-1)11SUBSTR(ANSWER,

J+1)
GOTO INNER

END DELETE

Example

4 This subroutine also shows the use of vectors in
DIAL.

94

Example 4.8 is a subroutine, MULTI, to display

multiple-choice items for light pen selection and to

return the student's choice. A sample invocation is'

CALL MULTI ('Point to the name of
the animal that barks:',

'dog', 'cat', 'rat', a)

(2) PLiI subroutines

Subroutines written in PL/I can be :...celled from a

DIAL program. This provides a mear- of augmenting the

power of DIAL. It is anticipai6d that experienced and

resourceful authors will use this facility in their

answer analysis. Experience will show which PL/I

facilities are the most popular; these will then be

considered for implementation in DIAL itself.

Invocation of PL/I subroutines is exactly the same

as for DIAL subroutines. The subroutine names, however,

must be declared with the attribute PLISUB, e.g.,

DCL sub PLISUB

The subroutines themselves are defined outside of

the CAI System.

4.14.2 The name scope rule is as follows. The scope of

a declaration is a lesson unless the declaration is within

a procedure. Then its scope is that procedure including

all contained procedures except those containing another

explicit declaration of the same identifier.

MULTI: PROC(FREAMB,ITEM1,ITEM2,ITEM3,PENR)
/*A subroutine to present three multiple-
/*choice items for light pen selection. A
/*preamble in PREAMB introduces the items.
/*The student res)onse is returned in PENR.

DCL PENR INTEGER

/***Present multiple-choice:- **/
SHOW PREAMB
ITEM1 <- '* 'IlITEM1 /*Prefix *
ITEM2 <- '* 'IlITEM2
ITEM3 <- t* TIIITEM3
SHOWAS ITEM1,ITEM2,ITEM3

/***Read student response: - **/

IF PEN(1) THEN PENR <- 1

IF PEN(2) THEN PENR <- 2

IF PEN(3) THEN PENR <- 3

END MULTI

Example 4.8

4.15 Input-output synchronization

Output from a DIAL program, effected by the SHOW

or SHOWAS statements, consists of a CRT display or the

projection of a slide. Input to the program, effected

by the MATCH statement, is a typed or penned response.

96

Output

Although a SHOW or ,',HOWAS statement may contain

several separate text-expressions and a slide, each

separated by a comma in the operand list, these separate

items are displayed without any time delay between them.
5

There is, however, a time delay equal to the setting of

the PAUSE register between two successive SHOW's without

an intervening MATCH.

Input

There is no explicit read statement in DIAL; reading

is implicitly requested by MATCH-statements. The first

MATCH-statement encountered after a SHOW causes the DIAL

machine to issue a read - the blue Proceed light (Keyboard

Enabled light) comes on and the read is completed when the

student sends his response by depressing INT. If the next

statement to be executed is also a MATCH statement, it

will not issue a read but will perform the answer matching

using the contents of the ANSWER register filled by the

preceeding MATCH-statement. These rules apply not only to

MATCH but also to PEN and PAT.

5
If there is more than one slide, only the one

appearing last will remain projected.

97

To further clarify this synchronization consider the

DIAL machine's internal mechanism to effect it. An

internal switch named READISSUED is tested by each state-

ment that accesses the student's response. If READISSUED

is off, then a read is issued and the switch turned on, if

it is on then no read is issued. It is also turned off

by a SHOW-statement and an UNREC-statement.

As an example, trace an execution of the following

DIAL program segment of nine statements

1 SHOW
2 SHOW
3 SHOW
4 MATCH
5 MATCH , L5
6 MATCH
7 TJNREC *,*,L3
8 L5: SHOW
9 SHOW

The trace could be

Statement Number Action

1 show
2 pause

show
3 pause

show
4 no pause

read
unsuccessful match

5 no read
unsuccessful match

6 no read
unsuccessful match

7 show UNREC-message
4 read

unsuccessful match
5 no read

successful match

8

9

no pause
show
pause
show

98

Note that the sequence which controls the synchroni-

zation is the order of execution,not the (sequential)

statement numbering. A trace of the following interaction

(involving a subroutine can) further exemplifies this

point.

1 SHOW
2 SHOW
3 CALL PINT
4 SHOW
5 SHOW

100 PINT: PROC
/*This procedure returns control to the
/*calling point when a plain interrupt has
/*been received. The PAUSE register
/*is zeroed for the duration of PINT so
/*that the proceed request is displayed
/*immediately

101 DCL SAVEL INTEGER
102 SAVEL <- PAUSE
103 PAUSE <- 0
104 Ll:SHOW 'Press INT to continue'
105 M ", L2
106 GOTO Ll /*not plain interrupt */
107 L2:PAUSE <- SPVEL
108 END PINT

1)(3

Trace:

Statement Number Action

1 show
2 pause

show
3

100
101
102
103
104 pause (of zero seconds)

show
105 read

unsuccessful match
106
104 no pause

show
105 read

successful match
107
108

4 no pause
show

5 pause
show

4.16 DIAL specifications

Since this section. can be used for reference purposes,

the following listing of section headings may be useful.

4.16.1 Message preprocessing

4.16.2 Statements

(1) Declarations

(2) Input/output to the student

(3) Branching

(4) Assignment

100

(5) FRAME-statement

(6) DO-group head

(7) PROC-statement

(8) END-statement

(9) CALL-statement

(10) ENDLESSON-statement

(11) RESUME-statement

(12) Naming-statement

(13) Repetition statements

4.16.3 Text frianipula:ion

4.16.4 Expressions

4.16.5 System matching functions

4.16.6 Light pen usage

4.16.7 Default actions

4.16.8 Abbreviations

4.16.9 Restrictions

The metalanguage used to define the syntax of DIAL is

a subset of the syntax notation used in IBM PL/I publica-

tions [IBM 1970b:Section Al and is given in Figure 4.1.

The CAI System has been designed so that an author

can take the view that he is programming a "DIAL machine."

This machine, which is diagrammed in Figure 4.5, has the

following characteristics:

IN
S

T
R

U
C

T
IO

N
A

L
P

R
O

G
R

A
M

D
A

T
A

 fo
r

In
st

ru
ct

io
na

l
P

ro
gr

am

R
E

G
IS

T
E

R
S

A
N

S
W

E
R

P
A

U
S

E
P

E
N

(
I)

,
P

E
N

(8
)

P
R

E
P

R
O

C
E

S
S

O
R

C
A

S
E

S
Q

Z

F
i
g
u
r
e

4
.
5

-
-

A

D
I
A
L

m
a
c
h
i
n
e
.

In
pu

t

O
ut

pu
t

102

(1) it directly executes DIAL statements without the

need for translation;

(2) it has a one-level store, which can hold

arbitrarily large programs.

This view is possible because the CAI System has been

implemented in accordance with the "onion structure" given

in Figure 4.6.

4.16.1 Message Preprocessing

A student's typed response is always preprccessed

before author-specified answer classification, or matching,

begins.

Automatic preprocessing

The preprocessor always does the following:

(1) strips preceding and following blanks surrounding

an answer

(2) squeezes excess blanks between non-blank

characters in an answer.

Example:

Let t represent the blank character. If the

answer typed by a student is

tXt=ttAtt+tIA;tY,

then the ANSWER register contents after automatic pre-

processing will be

aztA16-1-16Bt;

S
tu

de
nt

 e
xe

cu
tio

n
of

 a
n

in
st

ru
ct

io
na

l
p

ro
g

ra
m

A
ut

ho
r's

 in
st

ru
ct

io
na

l
pr

og
ra

m

C
A

I S
ys

te
m

P
L/

I

C
H

A
T

 S
ys

te
m

C
C

-3
0

an
d

IB
M

/3
60

 h
ar

dw
ar

e

O
S

/3
60

F
i
g
u
r
e

4
.
6

-
-

T
h
e

"
o
n
i
o
n

s
t
r
u
c
t
_
i
r
e
"

i
m
r
.

o
f

t
h
e

C
A
I

1014

Switchable preprocessing

When the CASE switch is on, all lower case letters in

a typed response are converted to upper case as ANSWER is

being filled. CASE is in the on state by default.

When the SQZ switch is on, all blanks are squeezed

(removed) as ANSWER is being filled. SQZ is in the on

state by default.

The SQZ and CASE switches are actually registers

holding INTEGER data in the DIAL machine. The on/off

states are

on register non-zero

off register zero

Since both SQZ and CASE are system variables, their

settings can be changed by assignment statements, e.g.,

CASE <- 1

SQZ <- 0

Although these registers are set by assigning in-

tegers to them, when they are read they return a truth

value. Thus

IF CASE THEN CASE <- 0

and

IF -1 SQZ THEN SHOW MSG

are valid, but the following is not:

IF CASE = 10 THEN CASE <- 0

.1.05

4.16.2 Statements

A DIAL lesson, or program, is constructed from basic

program elements called statements. Statements make ip

larger program elements: DO-groups, frames, procedure-

definitions, REPEAT-UNTIL blocks, and DO-WHILE blocks.

A DO-group is a sequence of statements headed by a DO-

statement and terminated by a corresponding END-statement.

A frame is delimited by a FRAME-statement and an END-

statement. A procedure-definition is delimited by a

PROC-statement and an END-statement.

Execution passes sequentially into and out of a frame,

whereas a procedure must be invoked by a CALL-statement.

Comments are enclosed between the markers /* and */

and may be placed anywhere in a DIAL program that a blank

is permitted. Any characters may be used in a comment

except the pair */, which ends the comment. Comments

are completely ignored by the DIAL machine.

Definitions of each statement follow.

(1) Declarations - the DCL-statement and attributes

Syntax:

DCL
NEW

identifier attribute-specification

Action:

106

The statement is used to declare explicitly the
attributes of identifiers. The attributes in
DIAL are:

TEXT
SLIDE
INTEGER
PLISUB
GLOBAL
LABEL

The attribute specification contains the attribute
name and, when allowed, a vector dimension.
A DCL-statement may appear anywhere in a lesson
as long as it appears before the first use of the
identifier it names.

(a) Vector identifiers

An identifier may name a vector (a one-
dimensional array) of variables of the same
attribute. The dimension of the vector
pliecedes the attribute-name and is enclosed
in parentheses. For example,

DCL SCORES(10) INTEGER

(b) Label vectors

These vectors allow a "computed-GO-TO" facility
in DIAL and can be used only in this way.
There are no label variables as in PL/I.

(c) Constants and'slide constants

When an identifier appears in a naming-statement
it is given the TC or SC attribute; TC and SC
cannot appear in a DCL-statement.

(d) GLOBAL

Identifiers with this attribute have the
implied attribute INTEGER and have name scope
across all lessons in a course.

10'1

Note that the)INCLUDE facility (Chapter 5)
provides a means of giving text constant:
global scope.

(e) PLISUB

If arguments are to be sent to the PL/I sub-
routine then the attributes of their correspond-
ing parameters must be given. If a parameter
is a vector then this is indicated by appending
(#) to the attribute. For example,

DCL P PLISUB (TEXT,INTEGER(#),TEXT)

would define a subroutine with three parameters.
A sample invocation is

CALL P (ANSWER,SCORES,REPLY)

(f) Summary

{.

DCL identifier [(dimension)] TEXT
NEW SLIDE

INTEGER
GLOBAL

IDCL}

identifier (dimension) LABEL
EW

{

DCL identifier PLISUB
NEW

[(parameter-attribute-list)]

(2) Input/output to the student

a. SHOW-statement

Syntax:

SHOW
text-expr
slide-expr
arith-exprj

text-expr
slide-expr
arith-expr

b.

108

Action:

Each expression is evaluated and then sent as an
Output to the terminal.

(a) text expressions

each character string is treated as a
separate screen message and is displayed
at the beginning of the next free CRT row,
Characters appear with no words broken
over rows.

(b) slide expressions

the slide is shown, and remains projected
until the next slide action.

(c) arithmetic expressions

the result of the evaluation is converted
to character form and displayed on the
next free row.

Examples:

SHOW 'Central Processing Unit'
SHOW ANSISIPUNIT', 'Refer to the

slide above', DIAG2

SHOWAS-statement

(to be read

Syntax:

as "Show as

text-expr

formatted")

text-expr
SHOWAS slide-expr

arith-expr
slue -expr
ar.Lth-expr

Action:

As for SHOW-statement except that no word-break
removal is performed on text. Thus characters
are formatted exactly as they appeared when
originally entered.

c. CRT screen formatting

QAR screen division

The CRT screen is divided conceptually into
th.ree areas: Quest5.on, Answer, and Response:

The Q area is filled by one or more SHOW's
presenting a question. When a MATCH is
encountered, the curso,., is placed at the
beginning of the A-area for the student
to enter his answer. The author's feedback
response appears in the R-area and the
cursor is then placed back in the A-area so
inviting the student's next attempt.

The QAR boundaries are floating and can be
changed by assignment to the system variables
QVALUE, AVALUE, and RVALUE. Their default
settings are 1, 11, and 13.

Relative positioning of successive screen messages

Each successive text-expression results in a
SHOW-statement or SHOWAS-statement is displayed
beginning at the next free row in the Q-area or
R-area.

110

Relative positioning of characters within a
message

This positioning is done by the system accord-
ing to T;hether SHOW or SHOWAS is used.

d. Duration of slide showing

A slide shown will remain projected until
one of the following occurs:

(1) the system slide constant RMV is shown

(2) a new frame bcgins execution

(3) another slide is shown

(4))OFF is received.

Note that RMV is an opaque slide occupying
position 0 of each carousel. Thus only
positions 1 through 80 are for author use.

e. Reading a student's response

The keyboard will be enabled, so inviting
a student's typed or penned response, whenever
the first MATCH-statement after the controlling
SHOW-statement, or SHOWAS-statement, is executed.
The response is then rea. p', and processed by
MATCH-statement(s).

(3) Branching

a. MATCH-statement

Syntax:

MATCH
text-expr
smf

Action:

text-expr
smf

label}

If at least one of the operands matches the
ANSWER register then the program branches to label
(or takes the default branch if *). Otherwise,
the next statement is executed.

Examples:

MATCH 'IdentifierTIJOEI'Variablet, L5
MATCH PEM(3)IPEN(5), L7
MATCH PEN(I), RESP(I)
MATCH PAT(' AIW),*

b. UNREC-statement

Syntax:

"}UNREC
label

Action:

ilabell
3)

The ith unrecognized response to the controlling
SHOW-statement will cause a branch to the ith label
in the UNREC label list.

Example:

UNREC *, *, L3

c. Unconditional branch

Syntax:

Examples:

GOTO label
GO TO

j L

GOTO
GOTO L4
GOTO ARITH(4)

d. IF-THEN-ELSE

Syntax:

comparison-expr statement
IF THEN

logical-expr DO-group

{

statement
[ELSE DO-group I

112

Action:

The expression in the IF-clause is evaluated
to give a truth value as result.

Case 1: ELSE-clause not present:

If the truth value is 1, the THEN-clause is
executed and control passes to the statement
following the IF-statement.

If the truth value is 0, the THEN-clause is
not executed.

Example:

IF QCOUNT > 3 THEN X <- X + 1

Case 2: ELSE-clause present:

If the truth value is 1, the THEN-clause is
executed and control skips the ELSE-clause and
passes to the next statement.

If the truth value is 0, the THEN-clause is
skipped and the ELSE-clause is executed.

Example:

IF NQN(2) > 3 THEN X <- X 1

ELSE X <- X - 1

(4) Assignment

Syntax:
text-expr

variable <- slide-expr
arith-expr

Action:

The expression on the right hand side is evaluated
and the result is assigned to the variable on the left
hand side. No data conversion is done; the attributes
of the variable on the right hand side must agree with
the attribute of the right hand side result. Identi-
fiers with the TC or SC attributes may not appear on
the left hand side. Note that the system variables
CASE, SQZ and PAUSE are set by assignment.

113

(5) FRAME-statement

Syntax:

frame-name: FRAME

where frame-name is an identifier.

Action:

Serves to define the beginning of a set of state-
ments which constitute a frame. Use of the frame
facility is optional. It is used to take advantage
of default branching and default screen formatting.

(6) DO-group head

Syntax:

[DO- group- label:] DO

where DO-group-label is an identifier.

Action:

Serves to define the beginning of a DO-group.

(7) Procedure-statement

Syntax:

procedure-name: PROC [(parameter[,parameter]...)]

where procedure-name and parameter are identifiers.

Action:

Serves to begin a DIAL procedure definition and
to define the procedure's parameter list.

(8) END-statement

Syntax:
procedure-name

END frame-name
DO-group-label

114

Action:

a. procedure-name

Serves both to end the definition of a procedure,
and upon execution, to return program control to
the calling point.

b. frame-name

Defines the end of a frame

c. DO-group

Defines the end of a DO-group.

(9) CALL-statement

Syntax:

CALL procedure-name [(argument[,argument]...)]

Action:

The procedure named in the statement is invoked
with the arguments (if any) in the argument list.
Execution resumes at the statement following the
CALL-statement.

(10) ENDLESSON-statement

Syntax:

ENDLESSON [lesson-name]

Action:

The following system message is displayed:

END OF LESSON
DO YOU WISH TO GO ON TO THE NEXT LESSON?
TYPE YES OR)OFF

(11) RESUME-statement

Syntax:

RESUME

115

Action:

Defines a resume point in a lesson. Chapter 5,
Section 6, defines the RESUME process.

(12) Naming-statement

Syntax:

text-const
identifier =

slide- constJ

Action:

Names a read-only constant and gives the TC or
SC attribute to the identifier. Note that such
identifiers cannot appear on the left hand side of
an assignment statement.

Examples:

pint = 'Press INT to continue'
MVT = 2705

(13) Repetition statements

Syntax:

comparison -exp
DO WHILE

logical exp j

group of statements

ENDDO Edo-whiie-label]

Action:

The group of statements so bracketed is repeatc.(11y
executed while the expression in the DO-WHILE clause
remains true. The decision is made before each
repetition.

Syntax:

RF?EAT

[group of statements

comparison-expr
UNTIL

logical-expr

Action:

116

The group of statements so bracketed is repeatedly
executed until the expression in the UNTIL clause
becomes true. The decision is made after each
repetition; thus the group will be executed at least
once,

4.16.3 Text manipulation

The three operators

SUBSTR,
INDEX, and
LENGTH,

together with concatenation, form a workable set of primi-

tives for text manipulation. The definitions of SUBSTR,

INDEX and LENGTH in DIAL are exactly the definitions of the

built-in functions of the same names in PL/I-F [IBM 1970b:

Section G] and are summarized as

are:

SUBSTR (text-expr, j [,k])
INDEX (text-expr, configuration-text-expr)
LENGTH (text-expr)

Examples of string expressions using these operators

A 11 B 11 SUBSTR (ANSWER, 1, 3)

SUBSTR (EXAMPL, INDEX(C,'16') + 1)
LENGTH (ANSWER)
SUBSTR (INFORM,4)11ANSWER11'what you meant

to type?'

117

4.16.4 Expressions

An expression is a representation of a value. A

single constant or a variable is an expression. Combina-

tions of constants and/or variables, along with operators

and/or parentheses, are expressions. An expression that

contains operators is an operational expression. The

constants and variables of an operational expression are

called operands.

The rules for the five claSses of expressions in

DIAL are as follows:

Class Operators
Valid
Operands

TEXT variables
TC
text constants

Result

TEXT

Exam le

0
z
H
p4
H
m

SUBSTR

11

All 'Dog'

SUBSTR(ANS,4)11X

w
n
.-

m

- SLIDE variables
SC
slide constants
INTEGER variables
INTEGER constants

SLIDE mvthm + 1

c)
H I-1

EI
1=4 T-q

- * INTEGER variables

INTEGER constants

INTEGER a + b

Ai-B*C*(X-Y)

.1
<
c..)

H
0
o

I
-1 expressions hav-

ing truth values
truth
value

(AA=1)g(BR=1)

PAT('5A7(P)

H

<z
a o

cf)

o
U

>=

<7.:

--Ir.

any expression
other than
logical

truth
value

I > 4

ANSWER = All B
LENGTH(ANS)>=1-1
IDENT > 'DOG

118

Operands combined by an operator to form an expression

must have the same attribute.

4.16.5 System matching functions

The smf's are PEN and PAT; both of them

(1) operate on the student's response (the contents of the

registers ANSWER or PEN(1),...,PEN(8), and

(2) return a truth value.

a. PEN

Syntax:
PEN(arith-expr)

Action:

The results of the arithmetic-expression must
be one of the integers 1 through 8. PEN (i)
returns the truth value 1 if the light pen hit
occurs on the ith multiple-choice entry.

Examples:

b. PAT

Syntax:

PEN(4)
PEN(I)

PAT(text-expr)

Action:

The text-expression defines a 4attern and
PAT returns the truth value of 1 if the pattern
matches ANSWER.

The pattern is made up of a series of pattern
elements separated by a cent symbol, the "don't
care" symbol, where noise characters may appear.
A match occurs if each of the pattern elements
(in the order they appear in the pattern) occurs
in ANSWER. The symbol cannot be in a pattern
element.

1119

Examples:

(1) To test if ANSWER contains the key-letters
A, B, and C:

PAT(' ABC

Note there are three pattern elements.

(2) To test for a substring of ANSWER

EX <- 'AND'
MATCH PAT(EX),L4

(3) To specify an answer of the form
"NEXT: CALL P(ALPHA,BETA);" :

SHOW 'Give an example of a statement
which invokes the subroutine P
having two parameters'

MATCH PAT('CALL P;0),L5

The pattern elements in this example are:

CALL P
(

5

PAT(") matches only the null string.
PAT('') matches all strings. PAT('AB') will
match 'AB'.

4.16.6 Light pen usage

Multiple-choice items as targets must obey the

following rules

(1) each item must begin with the character *

(2) each item must occupy no more than one row

(3) there can be no more than eight targets.

120

Light pen hits are specified by the PEN smf. The system

recognizes only one hit at a time.

4.16.7 Default actions

Item

Attribute TEXT

CASE on

SQZ on

PAUSE 2 seconds

Branching with ::-

Default

MATCH "Right" is displayed in green, then
branch to next frame.

UNREC The following message is displayed in
yellow.

Your answer was not recognized. It may
be wrong, or it may be right in content
but wrong in form, spelling or punctua-
tion. Examine your answer and try again.

GOTO Branch to next frame.

QVALUE 1

AVALUE 11

RVALUE 13

121

4.16.8 Abbreviations

These abbreviations are accepted:

Word Abbreviation

ANSWER ANS
MATCH
SHOW
SHOWAS SAS
UNREC

4.16.9 Restrictions

(1) Character set

The CC-30 character set, for the purposes of

DIAL programming, is divided into ordinary

characters (those which have significance in the

language) and string characters (those which may

only occur in character string constants).

Ordinary characters:

A,B,C,...,Z, a,b,c,...,z

0,1,...,9

& () * + , :

< > I

String characters:

! $ % . / ? @ \ 7 LJ

122

(2) Length of Character strings and DIAL statements

The CRT screen imposes the maximum length; since

there are 800 characters displayable on the CRT, and

the CAI System reserves the use of rows 18, 19, and

20 in author mode, the maximum character string

length and statement length is 680.

(3) Length of identifiers

All identifiers, CAI System-wide, may be up to

ten characters long.

(4) Reserved words

These words may not br used as identifiers:

ANS INDEX RMV
ANSWER INTEGER S

CALL LABEL SAS
CASE LENGTH SHOW
DCL M SHOWAS
DO MATCH SLIDE
ELSE NEW SQZ
END PAT SUBSTR
ENDDO PAUSE TEXT
ENDLESSON PEN THEN
FRAME PLISUB TO
GLOBAL PROC U
GO REPEAT UNREC
GOTO RESUME UNTIL
IF WHILE

123

(5) Other

Item Range

Integer -32768 to 32767

PAUSE 0 to 120 seconds

Slide

carousel range

slide range

1 to 100

1 to 80

Number of light
pen targets 1 to 8

PAT pattern elements 1 to 16

PAT pattern element
length 1 to 80

CHAPTER 5

THE OPERATIONAL ENVIRONMENT

5.1 The host computer system

Instead of using a computer dedicated to CAI, as most

workers have done, this project planned to use the IBM

System/360 at the Triangle Universities Computation Center

(TUCC), of which UNC is a one-third owner. Although a

dedicated machine may be appropriate for public-school use,

the use of a general campus facility, with both its system

and staff resources, is especially economical. fDr colleges.

The major difficulties with this approach occur during

system development and are common to most projects which

involve embedding a sophisticated sub-system, using

essential but often privileged services, into a host

system already serving a large community of users. The

approach was explored during Phase I of the UNC project

and found to be sufficiently feasible in terms of system

debugging inconvenience and service received by the

working system, to adopt the same approach in the Phase II

system. Although debugging in a non-dedicated environ-

ment is considerably more difficult, the benefits in our

125

case, in addition to the economic ones, were considered

to be worth the price paid. These benefits result from

the extended scope of a comprehensive operating system

(CS/360 with the MVT Multiprogramming with a Variable

number of Tasks - option) and include:

(1) the availability of PL/I a the language for

programming the CAI System

(2) the availability of other lElguage processors

a. the Conversational Progra:tming System (CPS),

possibly for extending the answer processing

capability of DIAL

b. the PL/I (F) level compiler for portions

of the answer analysis of constructed

responses as suggested in Chapter.- 9.

(3) comprehensive file handling capability used for:

a. instructional program storage

b. loggi-g (data gathering) of student

responses

c. the File Management System of the CAI System.

(4) a well established teleprocessing environmenL

The primary data communications programs for they

CAI System (those supporting the multiplexed

CC-30's) are in the CHAT System. However,

secondary requirements, e,g., administrative

126

programs, data analysis programs and systems

debugging programs, were met by the existing

remote job entry facilities of TUCC.

The TUCC system is described in [Brooks, et al., 1968;

Freeman, 1968; Freeman and Pearson, 1968] where both

technical and organizational aspects are discussed. The

hardware configuration during the early part of the CAI

System development was:

S/360 Model 75 CPU

Main Storage 1024K bytes

Large Capacity Storage 2048K bytes

Disk Units 3 x 2314

Drum Units 2 x 2301

Magnetic Tape Units 1 x 2401-11, It x 2402-11

Line Printer - 1403

Card Reader-Punch 2540

Communications Equipment

2701 Data adapter for high speed lines to

S/360's at Duke, NCSU and UNC

2703 Transmission control with 48 ports for

low speed terminals

During the summer of 1971, TUCC replaced its Model 75

by a System/370 Model 165 with 2048K bytes of main storage.

Replacing UNC's Model 50 as its on-campus terminal to TUCC

is the Model 75 formerly at TUCC. The CHAT System, under

which the CAI System runs, was developed and operated on

127

the Model 75 while it was at TUCC. It operates entirely

from the low-cost 8 microsecond storage (LCS). The new

Model 165 at TUCC does not have such storage; its two

million bytes of fast storage are less than the former TUCC

configuration. Therefore the CHAT System was moved to

UNC with the Model 75, and it continues to operate from

slow core.

The host computer system for production use of the

CAI System is therefore a System/360 Model 75 with the

following configuration.

S/360 Model 75 CPU

Main Storage 256K bytes

Large Capacity Storage 1024K bytes

Disk Unit 2314

Magnetic Tape Units 2 x 2415

Line Printers 2 x 1403

Card Reader-Punch 2.540

Card Reader-Punch 2540 housed in IRSS
building

Line Printer 1403
1

nearby

Plotter

Graphics Displa' System
Vector General and PIP -11/45

Communications Equipment

2701 Data adapter for high speed line to TUCC

1270 (Memorex) Data adapter for low speed and
medium speed lines

128

CC-7012 (CCI) Channel adapter

5.2 The Chapel Hill Alphanumeric Terminal (CHAT) System

The CHAT System was designed and implemented by

Gary D. Schultz L1973] of the UNC CAI Project. It is a

single-regionl resident time-sharing system wherein

various programs share the execution time by CHAT's use

of the OS/MVT multitasking facilities. An application

program runs as a subtask with respect to one of the

executive tasks of CHAT. This monitor program also

provides the CC-30 input/output programming support to

application programs.

While CHAT was operating at TUCC, a medium speed

communication line (2400 bits per second) connected the

CAI Center to TUCC. The proximity of the CAI Center to

the UNC Computation Center installation has made it

possible to dispense with the communications line and use

a direct hardwire connection instead. The CHAT System

hardware configuration at UNC is shown in Figure 5.1.

The line transmission speed with this direct connection

causes the CRT screen to be filled in one-tenth of a

1
The main memory subdivision that is allocated to a

job step in OS/360 is known as a region under the MVT
option and a partition under MFT.

C
O

M
P

U
T

A
T

IO
N

 C
E

N
T

E
R

I
C

A
I C

E
N

T
E

R

S
Y

S
T

E
M

 /3
60

M
O

D
E

L
75

C
C

-7
0I

2
C

H
A

N
N

E
L

A
D

A
P

T
E

R

27
01

 _
I

D
A

T
A

S
E

T
D

A
T

A
A

D
A

P
T

E
R

50
 K

b

11

C
C

-7
2

LO
N

G
 L

IN
E

M
U

LT
IP

LE
X

E
R

C
O

M
M

O
N

-
C

A
R

R
IE

R

D
IA

L
-U

P
E

Q
U

IP
M

E
N

T

C
C

-3
0

s

T
E

LE
T

Y
P

E

F
i
g
u
r
e

5
.
1

-
-

T
h
e

C
H
A
T

S
y
s
t
e
m

h
a
r
d
w
a
r
e

c
o
n
f
i
g
u
r
a
t
i
o
n
.

t
V

130

second. Using the former 2400 bit line, we experienced

a 2 1/3 second screen-fill time, which we found to be

quite adequate.

The UNC CAI System is a complete subsystem running

as an application program under CHAT. Other subsystems

include Brown University's Hypertext editor, a numerical

analysis laboratory simulator and an interactive

assembler.

Access to a subsystem of CHAT is provided by the

CHAT Monitor Table of Contents (MTOC) display shown in

Figure 5.2. The default selection is CAI, i.e., de-

pressing INT in response to MTOC's invitation is equiva-

lent to either pointing to CAI or typing CAI and

depressing INT.

5.3 The student/author work station

5.3.1 The work station, pictured in the frontispiece, is

designed around a Computer Communications Incorporated

CC-30 Communications Station. The work station is

normally used by just one person (a student or author)

but has been designed also to allow two students t,) be

seated so that we can experiment with learning in pairs,

with perhaps one student using the keyboard and the other

the light pen.

LAGHTPEN noLme of At%* .cIttsi4ed
progrotm--fri th, citbo*.tcLble
T4tPE tIA4 .orooit-om na,me

132

Output to the user is displayed either on the CRT or

on the slide screen above the CRT. A further output

facility, audio tape, is being studied for later

inclusion.

Input from the screen is either a message typed from

the keyboard and displayed on the CRT, or a light pen

position on the CRT.

A desk work area is part of the work station; authors

can use it for course-plan notes, instructional program

listings, etc.; students for note-taking and performing

exercises which require pen and paper.

A proctor call switch is mounted on the left side)f

the display housing. When switched, a buzzer sounds in

the proctor office and panel lights show which station is

calling.

5.3.2 The CCI CC- Ccwhunications Station

The nucleus of the station is the CC-301 TV Display

Controller. This has three major sections:,a magnetic

core buffer memory, a character/graph generil.tor, and an

input-output section. The buffer has two .f-unctions: it is

both the data source for refreshing the CRT, at the rate

of sixty times per second, and the storage facility for

the station.

The CC-300 TV Display is a standard television set

or television monitor. In the alphanumeric mode the

characters stored in the buffer memory in ASCII format are

displayed on the CRT in a format of 20 lines of 40

characters each. When operating in graph mode, data are

displayed by means of a 108 x 85 matrix of dots.

The CC-304 Light Pen, similar in shape, size and

weight to an ordinary fountain pen, employs a photo-

transistor detector. When it is directed towards the

display, a marker appears on the CRT indicating the

character position at which the light pen is positioned.

This marker is a brightening of the character background.

The coordinates of the character are stored in the CC-301

when the interrupt button on the pen is depressed.

A tandard 05G 1(kidak Rantium Access Carousel

slide projector is connected as an output unit to the

CC-301 by a specially designed interface. The four

commands for the projector are: lamp on, lamp off,

show slide nn and show the next slide.

Further details on the station are given in the

manufacturer's manual-CCCI, 1968].

5.3.3 Gaining access to the CAI System

As soon as the user is seated at the work station he

134

depresses the INT key, which results in the CHAT Monitor

Table of Contents display 2 of Figure 5.2. Depressing

INT once more initiates the CAI System which then

invites the user to sign-on, by displaying the message

SIGN ON BY ENTERING YOUR ID

)SIGN ON

Whether he is an author or student is determined by

his identification number. An author is put under the

control of the program routine AUTHOR and invited to enter

his first command. A student identification number causes

the appropriate instructional program to be loaded and

execution of it to begin, after a restart procedure if

necessary.

5.4 System overview

This section is intended to provide a background to

the discussion, in subsequent sections, of author and

student use of the system

The overall flowchart of Figure 5.3 shows the two

main parts of the CAI System, student and author modes.

2This is the only direct contact (c.f. Figure 4.6)
that a CAI System author/student user has with CHAT
under normal operating conditions.

Load the lesson
to be worked on

Handle interactive
programming
until

)off

or collapse.

135

Resume the course
at a sensible point

OR
Recover the student
if last session
terminated abnorm-
ally

V

Present course mat-
erial, continually
logging each
response and check-
pointing recovery
information
until

)off

or collapse

Sign-off the

operator

END

Figure 5.3 -- An overall flowchart of the CAI
System.

136

Student mode

Presentation of course material to a student occurs

in this mode. The instructional programs prepared by

authors are executed in a paging environment implemented

in the CAI System. The run-time storage environment

for each student's execution of a program is carried from

one session to the next. Each action of a student is

logged for later off-line analysis, and status information

is continually checkpointed to minimize the effects of

system breakdown on students' progress and attitudes.

Author mode

Preparation of course material occurs in this mode.

A command language interpreter controls the compiler

for DIAL and author testing of program segments. The

system tries to anticipate, at every step during inter-

active programming, the author's next type of input.

Protection

There is absolute protection of a lesson in use by

students from author tampering. Identification number

protection is provided between users (both authors and

students). Protection against UNC Computation Center

system failure, CAI equipment failure and CAI software

137

failure is attempted. Additionally, the operator in

student mode is protected against making any change in

course material or any explicit change in other files.

Course structure

A set of lessons constitutes a course; the only

communication between lessons is by means of identifiers

with the GLOBAL attribute. Such a course structure was

designed to meet the following requi..,ements

(1) flexibility in course preparation;

(2). the setting of a practical (from an implementa-

tion view) maximum program size;

(3) protection of sections of course material in

student use from author tampering.

File management system

With the exception of the student record and author

record files, which are held on two OS/360 'SAM (Indexed

Sequential Access Method) data sets, all logical files for

the CAI System -(files for log, instructions, source code,

recovery, directories, etc.) are held on one physical

OS/360 BDAM (Basic Direct Access Method) dataset named

CAIFILES. The File Management System, the part of the

system which handles the management of CAIFILES, is not

described in the thesis since it is not seen by the user,

133

but is covered elsewhere in the system documentation

[Mudge,'1972]. Briefly, its functions are to handle

(1) disk storage management;

(2) the various logical files;

(3) the coordinated use of external serially

reusable resources;

(4) directories of courses, lessons, source code,

etc.

5.5 Instructional programming in DIAL - author use of the

systemn

Since Chapter 4 gives the DIAL specification, we are

here concerned only with the command language, i.e., we

treat the mechanisms for interactively programming in DIAL.

Each command is preceded by the character), e.g.,

)list, chosen because no syntactically valid construct

in the language can begin with closing parenthesis.

The author converses with AUTHOR by means of the command

language and the statement-numbering mechanism.

Before a DIAL statement can be entered, the lesson to

which it belongs must be defined. If a new lesson is

being created, the)lesson command is entered, in the

format

)lesson lesson-name

1

and causes the appropriate directory entries to be made

and disk storage space allocated. If a DIAL statement

being entered is to be a change or an addition to an

existing, lesson, then that lesson is defined by the)load

command.

A statement number must appear to the left of each

DIAL statement. It provides the author and the system

with a way of referring to the statement uhich follows it.

Consequently, every statement number must be unique; if two

statements are entered with the same number, only the one

typed last will be retained. Numbers must lie between 1

and 9999.
3 The author can ask the system to generate

statement numbers by preceding any line with)m,n where

m is the base number and n is the desired increment. The

system signifies its acceptance of a valid numbering

request by overwriting the request with the first

statement number.- For example,

)200,10

would be accepted and overwritten by 200. Then, after a

DIAL statement has been accepted, the system would prompt

the author by displaying 210.

3
A numbering scheme allowing decimal points was

rejected to conserve precious CRT space.

140

Although statements in a DIAL program may be entered

in any order, their order for execution iS determined by

their numbers.

The role of the statement-numbering mechanisms is thus

twofold:

(1) it serves to indicate that code entered by an

author has been accepted as error-free by the

compiler. This is signalled by the system

displaying the next statement number and

enabling the keyboard.

(2) as an editing facility: statements may be

replaced, deleted or inserted by preceding

a statement with the appropriate statement

number.

The CRT screen format is shown in Figure 5.4. The

first seventeen lines of the sceeen are available to an

author for entering statements. Line 18 displays the

light pen buttons, and lines 19 end 2C are used to display

diagnostics given by the compile., or command language

interpreter. The figure shows a typical diagnostic,

with the cursor at the position at which the compiler

thinks the error has occurred. When an author has used

down through line 17 of the screen, the CAI System clears

the screen and resumes at line 1. This action is known as

700 d7: /******************,.
RESUME;
sHosj.uleoP

49.ur to;p bm eb \LOciFet

Uhln 406 havo writtein tI s cetete
set of eisiinq stetements out \o-

paper, then.

Figure 5.4 -- The cathode-ray tube screen format
in author mode.

1142

throwing and can be forced by pointing at the light pen

function *THROW*.

To view the execution of a segment of his lesson, an

author types)xeq m,n, where m and n are the statement

numbers delimiting the segment. The other options for the

)xeq command are:

)xeq m begin execution at m and end at the highest

number known in the lesson

)xeq m. execute statement m only

)xeq begin execution at the lowest statement

number

The parameters m and n can be DIAL labels as well as

statement numbers.

Execution of a program segment can be terminated by

the author entering)stop. Of course the keyboard must

be enabled for him to do this, and it will be so whenever

his program is expecting a student input.

When an author has fully tested a lesson he attaches

it to a course by the command

)attach lesson-name to course-name

The lesson then becomes inaccessible to him in author mode.

If he wants to keep an accessible copy for himself, he can

do so by using the command

)rename new-lesson-name

which will make a copx of the lesson currently loaded

143

and name the copy new-lesson-name.

A group of one or more DIAL statements may be

retrieved from a library and included in a DIAL lesson

by the)include command. Two libraries are available

to an author, his own and the public library to which

all authors have access. The)include command has two

forms

)include group-name

and)include group-name public

There are no structural restrictions on the DIAL

statements which constitute a group, e.g., the group need

not be a subroutine. A group is put into a library by

)group group-name

the group of DIAL statements

)endgroup

The form

)group group-name public

is used for the public library.

As an example, consider a set of character constants

an author would like to use in each lesson in a course

he is building but wishes to avoid entering them for each

L'

new lesson. The group would be placed in the library by

)GROUP CCONS
100 /*character constants:-*/
110 /***********************/
120 OBS='Observe the slide above '

130 PINT='PRESS INT TO CONTINUE'
140 TYNO=1Type yes or no'
150
)endgroup

and)inclusion followed by a)listing
900
910
)INCLUDE CCONS
)LIST 900

would appear as

900
910
920 /*character constants:-*/
930 /**********************/
940-OBS='ObLerve the slide above'
950 PINT='PRESS INT TO CONTINUE'
960 TYN0='Type yes or not
970

The remaining commands and their functions are:

)load lesson-name locates the named DIAL lesson in the

author's directory and by loading it

makes it available for him to work on.

)list m,n displays the program segment delimited

by statement numbers m and n. If more

than seventeen screen lines are con-

tained in the segment, it is shown in

successive batches of 17, the author

pressing INT to obtain the next batch.

145

Thus the author can quickly "page

through" a DIAL lesson. The onions

)list m,)list m. and)list are

available and the scopes are the

same as for }xeq.

}delete m,n deletes the program segment delimited

by m and n. The options of)xeq are

available.

)reseq m, n from p by q

Insertions and corrections often nake the

the final form of a program consider-

ably different from that of its early

stages. To avoid the inconvenience

that this can cause, e.g., in trying to

insert a statement between 1004 and

1005, the }resect command is provided.

The command resequences the program

segment delimited by m and n beginning

with p and using q as increment.

}directory lists all lessons in the author's

directory.

)number The command is overwritten with the

next free statement number for the

lesson loaded.

] 4 6

}purge lesson-name Purges the lesson from the system.

Since the, actions performed by this

command are irrevocable, a response

is sent instructing an author to

repeat the command; then, if he does,

the purging is carried out.

)print [lesson-name] Produces a printed listing on the host

compute/.. If no lesson-name is given,

the lesson currently loaded is

printed.

)lid The command is overwritten with the

name (ID) of the lesson currently

loaded.

)off Invokes the sign-off procedure and

hence termination of the session.

A summary of the commands is given in Figure 5.5. Three-

letter abbreviations for each of the commands are

acceptable. The commands may be entered in upper or

lower case.

Reading from the screen

Whenever the keyboard is enabled, an author is free

to move the cursor to any of the 800 character positions.

But the CHAT interface uses the cursor position to define

1 4 7

FurcAion

AUTHOR COMMANDS

Command

sign off)off

ew lesson)lesson <>

Other Options

listing)list)list m
)list m.
)list m,n

)print

execution)xeq)xeq m
)xeq m.
)xeq m,n

)stop

general)load
)lid
)m,n
)number

lesson/course)directory
structuring)rename <>

)attach <> to <>
)purge

editing)de.l.ete)delete m
)delete m.
)delete m,n

)reseq i,j from k by £

library)include
)group
)endgroup

Notes: 1. <> is a lesson or course name.
2. m and n are statement numbers or labels.
3. i,j,k, and 2, are statement numbers.
4. Three letter abbreviations of the commands

are acceptable.
5. Either upper or lower case can be used for

the commands.

Figure 5.5 -- The summary sheet of commands for work
station use.

1118

which part of the screen will be transmitted to the CAI

System as author input. Hence it was necessary to estab-

lish a convention for reading from the screen.

A window is that part of the CRT which the CAI

System will read. Changes made or new text entered by an

author will be effective only in this window.

The system expects the window to contain either a

DIAL statement or a command and will respond with a

diagnostic message otherwise.

After processing the contents of a window, the system

tries to anticipate the type of the next action and

positions the cursor in the row of the new window top.

The end of the window is the position of the cursor when

the author depresst_s INT to send his action to the system.

The window may be moved by an author at any time,

for example, to cover a DIAL statement further up the

screen, by pointing the light pen to the row he wants to

be the new window top.

To summarize, screen reading is defined by a window

(1) of shape

(2) of variable size (1 to 17 rows) according to the

length of the author action it contains,

149

(3) with its top being the row where the cursor

was left b; the system (anticipated next move

or in response to a move window request),

(4) with its end being the cursor position when

INT is depressed.

When DIAL statements are being entered sequentially

the window top moves down after each statement has been

accepted. During editing an author will move the window

to cover a statement in a segment he has)listed.

The action of the light pen function *THROW* can be

recast in terms of the window - a throw request causes the

screen to be cleared and the window, with its current

contents, to be repositioned with its top at row 1.

The *SUBST* function

A text manipulation facility is available to an

author, with which he uses the light pen to point to parts

of his program at which he wishes to substitute, insert,

or delete text. To use this facility he first points at

SUBST with the light pen. The system then displays

the prompt TEXT? on row 18 (overwriting SUBST in green)

and positions the cursor at the beginning of row 19 in-

viting him to enter the text. When he has entered the

text, he presses INT, is asked FROM? and points to a

position on the screen; then he is asked TO? The system

150

inserts the text, restores the *SUBST* button, and enables

the keyboard again.

The *SUBST* function can also be used to delete text

if a null string is entered. In summary, the protocol

for *SUBST* is

(1) pen *SUBST*

(2) TEXT? - if author enters nothing, then a delete

function occurs,

- if author enters non-null, then a sub-

stitute or insert function occurs,

(3) FROM? - start of replaced text,

(4) TO? - end of replaced text.

5.6 The execution of an instructional program - student

use of the system

Because the current design is strictly author-

controlled CAI, there is only one system command avail-

able to the student, namely

)off

All other responses from the student are elicited by the

author, and take the form of typed input or light pen

input. Figure 5.6 shows the CRT and slide displays

during a typical student interaction.

- c

Ts,*

shot* d 'SS
T o.oPn,

*-

"

""^

152

The point in a lesson at which a student is restarted

at each new session has received special attention in the

system design. Unless the previous session terminated

abnormally, the system goes through the RESUME process in

which the student is restarted at an author-specified

point in a lesson. To help the student's orientation,

this point is usually at a frame just prior to the end

of the last session. The system message displayed to

indicate a RESUME is

NORMAL RESUMPTION -- YOU ARE RESUMING
LESSON c AT A SUITABLE POINT
PRIOR TO WHERE YOU SIGNED OFF.

If the previous session terminated abnormally, the system

goes through the RECOVER process, in which the student is

restarted at the point at which recovery information was

last taken. The system message displayed to indicate

a RECOVER is

ABNORMAL RESUMPTION -- YOU ARE RESUMING
IN LESSON b AT A POINT JUST PRIOR
TO SYSTEM FAILURE.

Thus during each session the system needs to periodically

copy RESUME and RECOVER information to CAIFILES. At sign-

on, to choose between the two processes, the system uses

the setting of the switch RECOVNEEDED on the student record

file STUREC. The logic of its settings is given in

Figure 5.7.

START

Sign-on

nraviou
session ter-

normall

RESUME

Turn on
RECOVNEEDED
on STUREC

RECOVER

THIS

SESSION

abnormal

normal
by)off

Turn off
RECOVNEEDED

/

on STU Fr

,c

C END

RECOVNEEDED
stays on on
STUREC

153

Figure 5.7 -- The logic for setting the RECOVNEEDED
switch.

154

5.7 Proctor facilities

A third type of user of the system is the proctor,

who is present in the CAI Center building during all

student sessions, and has both administrative and peda-

gogical roles. To date we have examined only his

administrative duties, where, for example, he is

responsible for intrcJucing new students to the system

(by entering the student's identification number on to

the student record file and teaching him to operate the

work station) and dealing with operational difficulties

during student sessions. In his pedagogical role the

proctor is the on-site representative of an author;

this thesis does not examine this role.

The proctor terminal is a standard Type 33 ASR Tele-

type located in the proctor office. A current implemen-

tation restriction that prevents communication between

sub-tasks in the CAI region, in particular between the

proctor sub-task and a student sub-task, consequently

prevents real-time interaction between the proctor and the

student via the system. Interaction of this type could,

for example, cause the proctor terminal to type a message

that a given student had reached a RESUME point in the

instructional program. Abnormal conditions such as

student station failure or the student entering proctor

155

mode, could also be signaled.

5.7.1 Proctor override

A facility is provided whereby the proctor can

override the normal sequence of execution of an

instructional program. Our Phase I experience clearly

revealed the need for this facility

(1) to correct situations caused by hardware and

software failures,

and (2) to enable the student to repeat a part:_cular

segment of the course. 4

Although the RESUME and RECOVER processes should handle

most of the problems, I feel there is still a need 'for

an override mechanism.

The proctor can use this mechanism at any stage in a

student session after sign-on by entering)proctor on

the display. The system responds with and tie

proctor then completes

)override statement-number

where statement-number is the DIAL source-code :tatement

in the current lesson at which he wants program execution

4 This situation is intimately involved with the
instructional process and, like other forms of pedagogical
assistance given by the proctor, must be strictly con-
trolled in any experiment aimed at evaluation of CAI.

156

to be resumed.)override lesson-name causes a jump to the

beginning of the named lesson.

5.7.2 Administrative programs for proctor use

These off-line programs, most of which were written

by Robert Cannon, have facilities for

file maintenance of STUREC, the file of student records,

file maintenance of AUTHREC, the file of author records,

printing the log file held on CAIFILES,

and reporting the student statistics gathered by the

system.

An on-line file inviry program has been written

by Mitchell Bassman to display the contents of a

student's STUREC record. The program is used at a

student/author work station but is accessible only to

proctors.

CHAPTER 6

MODIFYING AND EXTENDING DIAL - THE

TRANSLATOR WRITING SYSTEM

6.1 Introduction

An important requirement in the design of DIAL was to

include in its implementation the ability to modify and ex-

tend the language. The purpose of this chapter is to give

an understanding of the Translator Writing System to a level

which will be helpful in assessing the flexibility of the

implementation of DIAL. Furthermore, the chapter should

provide a perspective for a systems programmer working with

an author in changing the language.

Translators for high level languages are among the

most complex types of computer programs and hence are

expensive to build. Research in computer science, in

particular in formal language theory, and experience with

existing translators have led to a better theoretical and

practical understanding of the processes involved in

writing translators. Translator Writing Systems are now

available which automate major portions of the task. For an

excellent review of the field, see [Feldman and Gries, 1968].

158

The utility of a Translator Writing System (TWS) is

based on the observation that most translaors hav- many

tasks in common - scanning of source text,syntax analysis,

and generation of output. If these probleiIs are solved

once, in general form, the writer of an individual trans-

lator.can concentrate on that part of the -.:Aob which is

unique to his translator, i.e., the connec-

meanings (semantics) to hiF forms (syntax),

The TWS built for the CAI System to er

ion of his

.able users to

modify and extend DIAL is based extensively on the TWS

designed by McKeeman and others at Stanforc University

This latter system and the construction of a translator

for the language XPL are described in [McKEeman, et al.,

1970]. In this thesis it is referred to aE, the XPL TWS.
1

The metalanguage BNF (Backus-Naur Form) is used to

describe the syntax of a language for which a translator

is to be built. The semantic definition o: the language

consists of a set of user-written routines in the completed

translator, where a semantic routine is called each time

a syntactic construct has been recognized in the source

language program being translated.

1For a complete treatment of certain topics, I direct
the reader to [McKeeman, et al., 1970]. In this chapter
it is referred to as A Compiler Generator.

159

The TWS in the CAI System (CAI TWS) consists of

two principal parts:

(1) CONSTRUCTOR,
2

a translator from BPIF into syntax

tables (also called recognition tables) used in:

(2) COMPILER, a table-driven translator written in

PL/I using user-written semantic routines.

These two parts are shown in Figure 6.1.

6.2 The compiler and the CAI System

Each DIAL compiler is produced with the aid of the

CAI TWS and is known as the routine COMPILER in the CAI

System. The routine named AUTHOR converses with an author,

and, in response to a DIAL statement, invokes COMPILER as

shown in Figure 6.2. The object code generated is a set

of machine language instructions for a conceptual machine,

called a delta machine. The instruction format is one-

address. An interpreter for delta code is in the routine

named EXECUTOR. This routine executes programs for both

student and author modes.

2This part is called ANALYZER in A Compiler Generator.
I prefer the term constructor from [Feldman and Gries,
1968] to avoid confusion with the term (syntax) analysis;
in compiler construction.

CONSTRUCTOR :

COMPILER:

Recognition
tables

Grammar
in BNF

CONSTRUCTOR

IRecognition
tables for
COMPILER

(IA-1:\
source

`program

)

Lexical

analysis

Tokens

Syntax

analysis

V/ v
Semantic routines

for code generation

Grammar
analysis

Figure 6.1 -- The two parts of the translator
writing system.

16]
START

Read DIAL source
statement from
CRT

Try to compile the

statement by pass-
ing it to
COMPILER

COMPILER

Error?

W

N

Signify OK by
displaying next
statement number

Display diagnostic
message and
position cursor tc
location of error

_Y

Read corrected
text from CRT

Figure 6.2 -- The invocation of COMPILER by the
controlling routine AUTHOR.

162

6.3 The CAI translator writing_s_ystem

6.3.1 Introduction

The CAI TWS differs from the XPL TWS in three

respects.
3

(1) Due to the lexical flowgraph notation, lexical

analysis is less grammar dependent.

(2) The CAI TWS uses PL/I, not XPL, for the description

of translators.

(3) Some a priori knowledge of the CAI language environ-

ment has been used.

To elaborate this third point, consider further the

generality requirement of a TWS. Syntax analysis is

grammar independent (provided, of course, that the

grammar is acceptable), code generation is highly grammar

dependent and lexical analysis is normally grammar de-

pendent. As regards lexical analysis we know, for

example, that the CC-30 character set is constant, and

that the wide variety of tokens normally encountered,

e.g., f2nating point constants, will probably not be

required in the CAI environment.
4

3Since these are only minor differences, A Compiler
Generator is still the major documentation forth -AI TWS.

4Except, of course, as data for DIAL programs.

1133

This a priori knowledge of the tokens to be

encountered has reduced the extent to which SCAN ;:ust

allow easy modification. SCAN can therefore take a

reasonably simple approach to lexical analysis and yet,

by the lexical flowgraph notation, be fairly independent

of grammar changes within the DIAL environment.

For some grammatical constructs there is a choice

(in the construction of any compiler) between recognizing

them in the syntax analysis phase and in the lexical

phase. As a policy (aimed at keeping COMPILER as

systematic as possible) the burden of all but trivial

recognition tasks is put onto the syntax analyzer. This

generality and systematization is achieved at the expense

of efficiency, but seems worth the cost.

Note that the recognition of an identifier, which

has the following syntactic definition, 5
is done by SCAN.

<identifier> ::= <letter>

1<identifier><letter>

1<identifier><digit>

<letter> ::= AIBI.... IZIaIb

<digit> ::= 0111...19

I z

5
The length restriction (ten) is not shown in this

BNF definition.

16[1

Since this definition is unlikely to change as DIAL is

extended, the TWS loses little in generality.

6.3.2 CONSTRUCTOR

The output of CONSTRUCTOR is a set of recognition

tables in the form of PL/I DECLARE statements (with the

INITIAL attribute used to provide table values) for the

version of COMPILER being built. This PL/I version of the

constructor was supplied by John Walters [1970].

An XPL constructor is used for most of the runs

during debugging of the grammar expressed in BNF as it is

much faster and produces a better grammar analysis. How-

ever, it produces XPL declarations. Therefore the final

run of a set of BNF is done on The PL/I version.

CONSTRUCTOR is described in A Compiler Generator,

Chapters 7 and 10.

6.3.3 COMPILER

COMPILER is made u of three main parts:

(1) SCAN, which performs the lexical analysis and passes

tokens to:

(2) ANALYZE, the main driving loop which performs the

syntax analysis. The recognition tables from the

constructor are read-only data for this routine,

which upon recognizing a syntactic construct calls:

(3) CODEGEN, the semantic routines.

165

CANALYZE

Get next token

Stack?

SCAN
STACKING

N

Reduce

Select the
production

Generate

code

Reduce by
applying the
production

Stack the

token

CODEGEN

Figure 6.3 -- The main compilation lcop in COMPILER
showing the relationship betwe" , ANALYZE, SCAN

and CODEGEN.

166

Their interrelationships are shown in Figure 6.3.

6.3.3.1 ANALYZE

This parsing algorithm is the nucleus of the TWS

and is described in Chapters4 and 9 of A Compiler Genera-_ _

tor. The PL/I version used in COMPILER is included in

Appendix D to this thesis. It is based on a PL/I version

by Walters [1970].

5.3.3.2 The lexical flowgraph

So thE't SCAN could be changed easily, a notation

was developed for describing lexical analysis.

Cheatham's lexical graph [1967] has been modified

so that advantage can be taken of certain properties of

DIAL and so that there is a close correspondence between

the lexical flowgraph and the actual PL/I code used in

COMPILER.

A lexical flowgraph is a collection of nodes,

directed line segments and labels; recognition of a token

consists of a successful traversal of the flowgraph from

the rode (S) to a node F-1.

Before the complete notation is introduced, consider

a simple example. The recognition of the terminal symbol

<identifier>, whose syntactic definition was given in

Section 6.3.1, can be described by the following flowgraph.

Starting at

a/C

a/C
I

T = 21

167

with register I set to nul:, an alphabetic

character (class a) causes a move to the second node and

Concatenates the character into register I. Then the

graph loops on the second node, concatenating alphabetic

characters and numeric characters (c'.ass n) into I, until

another class of symbol appears. T1 a the traversal is

complete at node ET where 2 is placed into 'the Type

register to signify <identifier>.

There are three parts of the notation:

(1) Phrase structure grammar notation

V
N

the set of non-terminal symbols.

V
T

the set of terminal symbols, i.e., terminals as

far as ANALYZE is concerned and hence sometimes

referred to as tokens.

V
Tl the set of direct terminals. A direct terminal

is a terminal which is recognized directly by

SCAN, e.g., GOTO, +, and <=

168

V
T2

the set of derived Lerminals. A derived

terminal is one which is derived according to

some rule operating on elements of the

character set, e.g., <text constant>.

K a partition of the character set into classes:

a = fA,B,...,Z,a,b,...,z1

n = {0,1,...,9}

= { ;}

= { +} etc.

A the empty string, of length zero.

(2) The communication registers in COMPILER

A set of registers is filled by SCAN for use by

other parts of the compiler. The registers and their

contents for the current implementation of DIAL are:

N BCD of number constant

S BCD of text constant

I BCD of <lexical identifier>

T type (1=element of VT1, 2=<lexical identifier>,

3=constant)

constant type (non-null only for T=3; 1=text,

2=number).

(3) Flowgraph nodes and labels

The :,:tart point) has already been seen. At

the registers N, S, and I contain X.

1.69

LP pointer to the next character in the input

string to be scanned.

labels labels on line segments are of the form k/A

where k E K $s the class to which the character

belongs, and A is the action to be taken. A

can either be the null action o, or CF which

means compose the character into register P,

e.g.,

O

a/C

means "if the character is alphabetic then

concatenate it into the I register."

An unlabelled line segment means "anything not

accounted for."

denotes end of traversal. An element of V
T

has

been recognized and the appropriate codes

entered into the registers. The convention that

LP is always set ready for the next traversal

has been adopted.

the .
.rmal program flowchart decision symbol.

Figure 6.4 shows the lexical flowgraph of the

scanner used in an early version of DIAL.

/c
CI

T
(alphanumeric
Identifier)

(Purelv alnha
identiNer)

(direct terminal)

/

(number
constant)

(text
constant)

Note: Certain elements of VT1 ,e.g., <_
and -!=, are not recognized by this simple
version. The current version recognizes
them by extra live segments on the /CT

path leaving

Figure 6.4 -- A lexical flowgraph for an e oly
version of DIAL.

170

6.3.3.3 CODEGEN

Recall from Figure 6.3 that CODEGEN is called by the

main compilation loop just before each reduction is done.

CODEGEN is highly systematic and modular: to each pro-

duction in the grammar there corresponds one code

section. Figure 6.5 shows code sections for three

productions in a recent version of DIAL. Many of these

code sections remain completely unchanged as DIAL is

extended.

6.4 Steps in using the CAI translator writing system

A systems programmer using the TWS has available to

him the program listings and other documentation in the

Systems Programmer Manual [Mudge, 1972]. The following

is just a list of the steps he will follow in modifying

anr'l extending DIAL.

(1) Express the grammer in BNF.6

(2) Debug the grammar usThg the XPL constructor.

(3) Make a final run with the PL/I CONSTRUCTOR to punch

recognition tables.

6lnexpressables are handled in the usual ad hoc way
by code in COMPILER (mainly in CODEGEN).

172
/
PO(19):
/5 19 <MATCH IRIMARY> cCHAR CON.; I>

CALL FMIT(READT,0);
CALL ENIT(COMPAHELIT,TO.;_INPO1);

DO_REF: /* INSERT THE JE INSTRUCTION IN THE CHAIN AND EMIT IT */

/*** SINCE IE WON'T KNOW THE JUMP ADDhESS FCR JE UNTIL WE REACH THE **I
Po.* LABEL AT THE END OF TH. STATEMENT, WE HAVE A BEE_CHAIN LINKING***/
/0** ALL THESE JE INSTRUCTIONS. THUS b0_1113F HERE INSERTS THE JE IN ***I
/00* THE CHAIN. ***/

I = REF_PT11;
REF_PTR = P_COUNTEF , FREE INSTN;
IF E_FIRST THEN DU; /'FIRST <OPLRAND> SO SIGNIFY END OF CHAIN

L = 0;
M_FIRST = .0.11;

END;
CALL EMIT(JE,I);
kFTVPN;

****,..
PO(40):
/' 40 <unro ST> :;= <GOTU> <IDENTIFIER> /
I*** NOTE THAT THIS CODE IS ALSO JUHPZO TO FROM <LABEL LIST> PRODNS.*/

IF TOS_TYPE = 9 THEN DO; /*PREVIOUSLY DEFINER UBEL SU EMIT THE
/*COMPLETE INSTRUCTION. *I

CALL EMIT(JaP,TOS_ADLR);
RETUNN;

END;
IF TOS_TYPE = 0 THEN DO; /*IT IS THE FIRST REFERENCE TO A FORWARD '/

/*LA1EL SO INITIALIZE THE MOP CHAIN. */

CALL EnoT(JUMP,0); /*ZERO = END OF CHAIN */

ADDR1'TOS_INF,)2). P_COUNTER (FREE_INSTN-1);
/0 FCINT TO THIS NED ELEMENT OF THE CHAIN. '/

1* NOTE THAT P_COUNTER REFERENCES THE 0 OP-*/
/* CODE INSTRUCTION PREFIXED TO TEMP_INSTNS*/
/* BY kUXH04. FOR GOTO STATEMENTS, '/

/* (FREL_INsTN-1) WILL ALWAYS BE 1. FOR */
/* PRODUCTIONS, E.G., (LABEL LIST>, WHICH */
/* JUMP HERE, (FREE_:'HSTN-1) WILL ONLY BE */
/* 1 FOR THE FIRST LABEL IN THE LABEL LIST.'/

TYPE(TOS_IMPU2). 10; /*INDICATE IT IS A LABEL */
/*NOW NEEDING FIXUP. /

RETURN:,
END;

IF TOS_TYPE = 10 THEN DO; /*IT IS ANOTHER FORWARD REFERENCE
CALL EMIT(JUMP,TOS_ADDR); /*ADD EL'T TO CHAIN */
AUDR(TOS_INFC2).- P_COUNTER (FREE_INSTN-1);

/*POINT TO THIS LAST ELEMENT ADDED. *I
/*** SEE NOTE ABOVE FOR TOS_Ti0E - O.

RETUAN:
END;

ERROR = 2b; /*CONFLICTING ATTRIBUTE -- IDENTIFIER NOT A LABEL. '1
PETURN;

pp*
PI(41):
/* 41 <ASSIGN ST> ::= <VAR> <ARROW> <LOGICEX>

,!** CHECK TYPE COMPATIEILITY

J=C_SYM_DOPE.TYPE(STACK.INFO2(5P-2));
IF J=1 THEN IF TOS_INFO-.=T_TEET ;'HEN ERROR.E13;

1LS.;
ELSE IF J=4 THEN IF TOS_IIP0,=1_INTEGER THEN ERROR =E14;

ELSE;
ELSE IF J=6 THEN IF TOS_INFO-.=T_SLIDE

THEN ERROR=E15:
ELSE;

ELSE 1RROR=E27;
IF ERROR =0 THEN RFTSIA;

J = C_SSo_DOPE.ADDR(S7ACK.INFO2(SP-1));

IF TOS_INFO * T_TEXT T AN CALL AMIT(STORECH,J) ;

IF TOS_INFO T_SLIDE -.:!EN CALL EMIT(STXS,J) ;

IP TOS_INFO = T_INTEGER THEN CALL EMIT(STX,J) ;

RETURN;

rigure 6.S -- The CODEGEN c,rre,:ponding to three
production:; in d recent version of I)1 AL

173

(4) If necessary,. modify SCAN (by hand) in accord with

the conventions of the lexical flowgraph. 7

(5) Put the new recognition tables in PARER8 and run it

with some DIAL source.

(6) Go back to step (2) if PARSER run's reveal a probiwn.

(7) Write the new parts of CODEGEN and debug piece by

piece.

(8) If necessary, write additions Lo EXECUTOR's delta

code !.nterpretexand debug piece by piece.

(9) Perform final test.

6.5 The class of grammars acceptable to the translator

writing system

A grammar is acceptable to the TWS if it is accept-

able to the syntax analysis algorithm in COMPILER. The

algc-ithm used is a Mixed Strategy Parsing (MSP)

algorithm of degree (2,1;1,1) according 'co McKeeman's

definition. The tasks of describing in detail the parsing

algorithm and of giving an adequate explanation of the

degree are beyond the scope of this thesis. Chapter 4 of

7
In most cases, the only changes will be to t'ae

syml.c1 tP.ble routine in SCAN.

This a routine in the CAI TWS -.41-.ich performs
lexical and syntax analysis only. It prints a parse
trace and is useful in planning CODEGEN.

1714

A Compiler Generator gives several parsing algorithms

and the rationale for the MSP approach.

It suffices to say here that the class of acceptable

grammars is large because grammars which are bounded

context of degree (2,1) are allowed, but the algoritim

does not suffer from the inefficiency usually associated

with extended precedence grammars. The improvement

results from the mixed strategy approach: it uses a'

degree (1,1) stacking decision function w:',th three

values (''stack", "don't stack" and "conflict") and

reverts to a (2,1) predicate only for pairs where the

(1,1) predicate is undefined. The central idea of the

MSP algorithm, then, is to use simple (small) tables to

make as many dcisionE as possible but to extend the

class of acceptable grammars by using more complex

tables for the exceptional cases.

In practice, a user wishing to implement his own

language will use the constructor and Chapter 7

("Programming in BNF") of A Compiler Generator as aids

to obtaining an acceptable grammer.

CHAPTER 7

EXPERIMENTAL METHOD ANL RESULTS

7,_ Introduction

This chapter evaluates the CAI System in use in the

actual environment for which it was designed.

Some systems are easier to evaluate than others: with

compilers,time and space are measurable; with information

retrieval systems, precision and recall are good measures.

However, programming languages and man-machine environments

are difficult to evaluate. Validating a system whose

single consistent design aim was ease of use is especially

difficult. This is because of the large number and

diversity of human factors involved and the lack of obf,ec-

tive measures.

The approach taken was to make systematic observat.Lons,

both quantitative and qualitative, of student and author

use of the system.

In the latter part of Summer, 1972, F. P. Looks, Jr.,

Chairman of the Department of Computer Science, as course

author, programmed course macerial for the subject matter

taught in the first four weeks of COMP 18 and 19. These

two course numbers are the humanities and social science

sections of the beginning programming course taken for

credit at the University. In the Fall one complete class

section of 22 students took the CAI course. The class was

the test group in a controlled experiment to compare

learning performance on the CAI System with conventional

classroom instruction.

The Fall experience was so encouraging that in the

following semester, Spring 197'3, the CAI System was used

for production teaching of three classes totalling 79

students.

The combined Fall and Spring use represents 406

student hours of online production use of the system.

This figure does not include those sessions of students

who dropped or students from courses other than COMP 18

and 19.

7.2 Collection of student use data

7.2.1 Experimental design

7.2.1.1 The objective of the experiment was to determine

whether, for the particular subject matter, students re-

ceiving instruction via the CAI System achieved equal or

better learning performance than those receiving conven-

tional classroom instruction.

177

If the learning performance could be shown to be at

least as good, or better, then this would validate the

design of the student-system interface. Furthermore, the

Computer Science department would adcpt the system for

routine teaching of several sections of COMP 18 and 19.

7.2.1.2 The score on a posttest, a 50-minute, in-class,

closed-book examination on the subject matter, was the

measure to be used in formulating statistical hypotheses.

Appendix C contains the examination.

7.2.1.3 The methods of instruction, two similar versions

of conventional teaching and one of CAI, were assigned to

complete classes as follows.

Methods
ConI7-ol

CAIInstructor 1 Instructor 2

Experimental
Units

Class 1

(COMP 18-3,
218X-1)

Class 2

(COMP 18-1)

Class 3

(COMP 18-2,
218X-2,
19, 219X)

The first two clasEos were control groups; the

third was the test group.

178

The conventional method

The usual procedure for teaching t)-e course was

followed: the instructors were graduate students in the

Computer Science department; they conducted three 50-minute

lecture-periods each week; and designed and graded their

own assignments.

The CAI method

The students received all formal instruction via the

CAI System in the CAI Center. A weekly, optional-attend-

ance question period was provided by the instructor in

charge of the class. Assignments were designed jointly by

the course author and instructor and graded by the

instructor.

At the first class meeting the course author was

introduced to the students.' He addressed the class on

the expected advantages, e.g., indiyidualization,of CAI

and discussed its answer analysis limitations. A good

rapport was observed.

Work station resources were allocated as follows.

Three concurrent hour slots from 9 a.m. to 5 p.m. were

available for student use, except for the first week when

1I view this student-author link as an important
human factor in a potentially depersonalized form of
instructic

1.7 9

two stations were available. As back-up there was one

complete work station and two other complete CC-30

terminals. Stations were scheiuled on a student signup

board. Each student was allowed to sign up for no more

than two sessions per week.

One proctor, drawn from a roster of three, was on

duty at all times. For experimental control reasons the

proctor was not allowed to answer subject matter questions

when called by a student. His function was to adminis-

trate and to aE,sist the students when system hardware

or software problems arose. A proci.or log of problems

was kept. At the end of each session a student received,

from the proctor, copies of the slides shown in that

session.

The CAI course had the following lessons.

Lessons Subjects

al The basic objects (integers and chardc-
a2 ter strings), creation of variables
a3 (declarations), and assigning
a4 values to them (assignment).

bi The basic operat:_ons on integers
b2 and character strings.

c A complete program and basic
input/output.

d Looping by DO-loop.

e IF-THEN-ELSE for decisions and branching.

f Documentation, nested DO-loops,
and nested IF-THEN-ELSE.

180

The subdivisions within lessons a and b were

necessitated by a software bug which constrained the

maximum size of a lesson. This was corrected by the time

lesson c was written.

7.2.1.4 Most experiments include undesired sources of

variation which may affect the value of the variable being

measured. In this experiment the identifiable extraneous

variables were controlled as follows.

(1) Teaching ability of instructors

This variable was controlled by using different

instructors for the two control groups.

(2) .subject matter coverage

The two control group instructors and the CAI

course author agreed on a common syllabus.

(3) Posttest

The questions on the examination came from

four sources in approximately equal proportion - the

two control group instructors, the course author,

and the instructor in charge of the CAI class. The

originator of a question graded that question for

all students. Students' answer sheets were identi-

fied by a number only, so that the graders could not

tell to which class they belonged.

181

(4) Hawthorne effect

The students in all three classes were told that

they were involved in an experiment to compare

different teaching methods.

(5) "New gadget" effect

This variable was ignored.

(6) Inherent variability between students

Students vary, of course, in intelligence,

attitude, year in school, aptitude, and other traits

which may affect learning performance. At course

registration time, that is, when students were

choosing courses for the coming semester, they knew

neither that an experiment was to be conducted nor

that a new method of instruction was to be used.

The assumption was made therefore that students were

assigned randomly to the three classes.

(7) Prior knowledge of the subject matter

Based on a cursory study of students in previous

classes, this was assumed to be negligible for all

students.

(8) Scientific bias of investigator

I disqualified myself from proctor duty, grading

the examinations, and other pedagogical contact with

the students.

182

7.2.1.5 Sample Size

The sample size of approximately 20 seemed to be

adequate to justify the assumptir:?ns of normality to be

used in the analysis of the data.

7.2.2 The questionnaires

The questionnaires were intended to provide data

to substantiate the assumptions made about student char-

acteristics, for qualitative evaluation of the design of

the CAI System, for improving the authc''s course material,

and for improving the organizational aspects of production

teaching.

Appendices A and B contain the two questionnaires.

Questionnaire A was completed by all three classes at the

class meeting following the examination.

Questionnaire B was for the CAI group only. Sections

T, II, and III were completed during the same class period

as Questionnaire A; Section IV was returned on the

following class meeting.

7.2.3 Production teaching in Spring

Because the Fall experiment showed that the CAI

System met the learning performance criterion, as discussed

in Section 7.3.2, the system was used for three classes

in the Spring semester. The objective of this next use

18":2,

of the system was to get more real experience rather than

to conduct a controlled experiment. Because the emphasis

was on teaching as well as possible, rather than on careful

control for evaluation purposes, new freedoms to improve

instruction were possible. For example, the proctors were

allowed to answer subject-matter questions when called

during a session.

Specifically, this additional experience with the

system was intended to gather more questionnaire data,

to enlarge the set of unanticipated answers for later

course material improvement, to evaluate the effect of

improvements suggested by the Fall experience, and to

subject the system to a heavier workload, namely, three

times that of the Fall.

Work station resources were allocated as follows.

Four concurrent slots from 9 a.m. to 5 p.m. were avail-

able for student use. As back-up there was one complete

work station and two other CC-30 terminals complete

except for slide projectors. Seventy nine students were

registered on the system.

There was one proctor, drawn from a roster of three,

on duty at all times. During the first week, in anticipa-

tion of a high number of proctor calls, an additional Fall-

experienced proctor was on duty; this extra help turned

out to be unnecessary.

1814

The same quiz and questionnaires were used. Several

questions which were applicable only to the Fall, e.g.,

111.5 on Questionnaire B, were deleted. The arrangements

for completing the questionnaires, taking the exam and

grading the exam were the same as for the Fall except

that I graded the course author's ques-don (#4) on the

exam. Because I used the same written grading standard

as he used in the Fall, I feel that no scientific bias

was introduced.

The following changes to the Fall system were made.

(1) Course organization and CAI Center operation

A 13 minute hands-on introductory session was

given to each st-adent on the first day of classes.

The role of the text book was clarified.

Work station assignments were made on the

student signup board by the proctor ahead of the session-

change hour so that the students themselves could take

over a work station. This was done to reduce the amount

of activity on the hour.

The constraint on the maximum number of sessions

per week was relaxed from two to three.

(2) Course material

Only minor changes were made. They included

coalescing lessons al through a4 into lesson a, and

bl and b2 into b. "Press INT to continue when ready"

185

was added to those course messages which had been removed

too quickly. The very few errors in the slides were

corrected.

(3) The on-line system and work station

No design changes were made to the CAI System

or to the work station.

The following implementation changes were made:

CAIFILES gas enlarged, the routine to handle the free

block list was changed, and some of the known bugs were

corrected. The terminal manufacturer improved the CC-304

light pen and corrected a design fault in the slide

projector interface.

(4) The off-line system

Extensive additions were made to improve the

daily reporting on student activity.-

7.3 Analysis of student use data

7.3.1 Introduction

Results from both Fall and Spring are presented.

However, only the Fall data are used in comparing CAI

versus the standard method of instruction.

7.3.2 Fall posttest scores

The posttest scores have a maximum of 50. The mer.ns

and standard deviations were

18E)

Conventional
CAI

Instl.uctor 1 Instructor 2

m = 34.2
s = 10.3

m = 31.4
s = 10.0

m
s

= 34.5
= 10.0

n = 16 n = 22 n = 21

Because of the large standard deviations, it can be

seen, by inspection, that the null hypothesis that there

is no difference in learnin; performance cannot be

rejected. Homogeneity of variance is also obvious by

inspection.

There is insufficient evidence to conclude that the

CAI method is significantly better or significantly worse

than the conventional method.

If indeed the CAI method is different, I have been

unable to detect the difference because of the high

standard deviations in the scores. There is no reason

to believe that the standard deviation would be different

in future experiments of the same experimental design.

Thus, in order to detect a significant difference, if such

existed, one would need a much larger sample size. For

example, using a one-tail Student's t-test, for a differ-

ence in sample means of 0.5, a standard deviation of 10.0,

187

and testing at the 95% level, n would have to be at least

2165 [Kirk, 1968].

7.3.3 Posttest scores for both Fall and Spring

For completeness the Spring scores are included to

give the following:

Conventional CAI

Instructor 1 Instructor 2 Fall Spring

m = 34.2 m = 31.4 m = 34.5 m = 35.0

s = 10.3 s = 10.0 s = 10.3 s = 9.5

n = 16 n = 22 n = 21 n = 64

7.3.4 Time data

The times for the CAI groups are from summaries of

the daily log data. The control group time is computed

as 10 lectures of 50 minutes each (I am assuming that

each student who missed a class period spent the equiva-

lent amount of his own time to catch up). The first class

meeting is not included for any group. The times in

hours and minutes are:

188

CAI
Control Fall Spring

constant mean 4:34 4:01
8:20

median 4:19 3:45

range 2:10-8:43 2:08-8:56

The CAI times do not include the weekly question

periods because it is difficult to assess the length

and usefulness of these periods. In the Fall the periods

terminated when student questions stopped; the three

periods lasted approximately 20, 30 and 30 minutes.

Moreover, the responses to question 1.14 of Questionnaire

B cast doubt on the usefulness of the periods. The free-

dom firm'- experimental control in the Spring allowed the

instructors to raise questions for discussion. They

discussed problem areas exposed by the proctor log and the

daily log from the system. In addition they lectured on

algorithm design and the mechanics of running programs and

interpreting program listings. Each of the three periods

was th planned 50 minutes long. Using these figures as

bounds we have

I 8 (.)

Control CAI

Fall Spring

mean 5:54 6:31
constant
8:20 median 5:39 6:15

range 3:30-10:03 4:38-11:26

I conclude. even with these conservative bounds,

that CAI method a.ved most students a considerable

amount of time.2

A consequence of this time data is that the first

,art (CAI) of the next COMP 18 and 19 course will be

collapsed from four weeks to three. In the Spring, two

of the students completed the CAI course on the first

(Ity of the second week and 40 had completed it within two

and a half weeks. The daily student report to the

'vstructors shows which students need to schedule extra

e ions.

7.3.5 Questionnaire data

Appendices A and B give the questionnaires and sum-

maries of the student responses. A large portion of the

data gathered pertains to quality of course material,

2 Similar time savings have been observed at other
CAI installations.

190

reaction to the CAI method per se, etc.; hence their

analysis is beyond the scope of this thesis.

The following conclusions pertain to the CAI System

itself, as distinct from the course material. For most

students, the system was transparent in the communica_ion

between author an' student. The students felt they were

concentrating on the course material, not -Lilo system

(QB.II.17,3 22, and 30). The system was reliable (QB.III.4)

and the response time was adequate most of the time

(QB.I.17). The work station was firmly approved

(QB.IV.5 and QB.III.16). However, QB.III.13 suggests

that winter use requires better room ventilation. The

mode and median times for students to get used to the

operation of the system were both 10 minutes (QB.III.2).

Assuming three contact hours per week, the majority of

the students chose 2:1 as the best balance between CAI

and in-class instruction (QB.I.15)
4

. Other questionnaire

data are used in Chapter 8 to substantiate the discussion

of design decisions.

With regard to the students' reactions to the CAI

method as they experienced it in this setting, I conclude

3 iThis is an abbreviation for Questionnaire B,
Question 17 of Section II.

4', his.his s an improvement over the Phase I system
(Chapter 1) where a 1:2 ratio was chosen by the majority
of its students.

the following. The students enjoied the scheduling

freedom (QB.I.3), felt they could work at their own pace

(QB.II.18), and felt that it made efficient use of their

time (QB.II.25 and QB.II.31). mhey disagi,eed with the

statements that (1) CAI is inflexible (QB.II.35), (2) CAI

makes learning too mechanical (QB,II.19 and QB.II.40),

and (3) CAI made them tense (QB.II.22 and QB.II.32).

The assumptions made about differences in student

characteristics were substantiated. Questionnaire A shows

no substantial differences in attitude or previous computer

experience.

7.4 Author use data

DIAL and its operational environment were first put

to production use in the preparation of the course material

for the Fall experiment. The course author, Brooks, used

the following approach for each session. Before he started

a work-station session he would prepare final draft copies

of each slide in the lesson. This defined the concepts

and their order of presentation. With each slide, he

prepared the questions to be asked, but not the answer

analysis. Then, on the system, he keyed in the actual

questions, and composed in DIAL the answer classification,

feedback, and program sequencing. All composing of new

DIAL code and debugging was done on-line.

Several problems, which were a consequence of this

being the first use of the system, should be considered

in interpreting the time data given below. The problems

were:

1. A severe deadline

Lesson a was started on August 22 and had to be ready

for students on September 4. The course was completed on

September 20. This had the following consequences: (1) the

scheduled pre-Fall-course testing of the course material

was not done; (2) some Fall students missed sessions because

the next batch of material was not ready; (3) the author

had long, often five-hour work-station sessions. 5

2. Software bugs

Software bugs are always expected in a new system;

several minor ones were detected and corrected quickly.

However, a bug in SOURCE, the l'outine which handles

editing of an author's DIAL statements, sometimes

scrambled the current copy of a lesson. The bug was

elusive and the deadline intensified the anguish it

provoked.

SBrooks's preferred session is 2 hours.

1.93

3. Recompile time

Because recompile time was long Athnr avoided

frequent recompiles and hence lost s Thi;;

implementation, not design, problem it ussed in

Section 8.3.

The course consisted of 66 pages (50 lines per

page) of DIAL program listings and 64 slides.

The mean student time for the Fall course was 4 hours 34

minutes. The total amount of author time, about 75% of

which was spent on the CAI System, was 108 hours 30 minutes.

Thus the number of author hours to produce one (work-

station time) hour of course material was 24. To compare

this with published ratios from other projects we must

include the (estimated) time spent by author-support

personnel. Typing the slide copy took 33 hours; photo-

graphic laboratory time was 8 hours; and delivery of

)print listings, etc., took another 10 hours. Thus the

ratio is 159:30/4:34 or about 35 author-hours per student-

hour. This is a factor-of-five improvement over other

reported results from systems of authoring (Section 8.3).

CHAPTER 8

DISCUSSION

8.1 Introduction

This thesis is concerned with designing and building

tools tools to

(1) build a CAI course for the beginning computer

programming course at the University;

(2) serve as a framework for CAI research;

(3) study human factors in interactive CRT-based

systems.

The single consistent design aim was ease of use -

this implies that the system should be well engineered

as regards human factors. By minimum impedance to

students' learning, the system would be attractive for

CAI research; by being easy to use it would lower the

cost (in author time) of preparing instructional programs.

The quantitative data set forth in Chapter 7 will perhaps

be less valuable to a desiger of such a system than a

set of qualitative observations, opinions, and satis-

factions and regrets derived from experience.

1 9 5

Hence this chapter discusses some of the deci5ions

weighed in designing the language and its operational

environment and gives opinions on the results.

8.2 The student-system interface

8.2.1 This interface should be as transparent as possible:

the desired communication is between a student and an

author via the author's instructional program. Hence the

CAI System aims to intrude upon this communication as

little as possible. Sackman, in reporting a large-scale

experiment at the U.S. Air Force Academy, warns against

complicated interfaces [Sackman, 1970:180].

The array of special calls, instructions,
and online procedures, requiring direct inter-
face between the user and the computer, can be
overwhelming for many neophytes.

The following measures were taken in the CAI System.

Debugged work station

The work station design was debugged over a period

of eighteen m^nths, during which time three successive

prototypes were built.

Simple commands for getting on and off the system

All that the student enters is his identification

'number- the CAI System uses it to locate the course the

19

student is taking and to set up the session using his

position in the course. Leaving the system is achieved

by the command)OFF.

8.2.2 To minimize the effect of system breakdown

(hardware or software) on a student's progress and

attitudes, frequent recovery dumps are taken during each

session. If the system does break down, these dumps

enable the System to restart the student, when he next

signs on, at a point just prior to the breakdown, without

his having to take any special action.

8.2.3 At all times that students are using the system a

proctor is in the CAI Center building. The students

requested his help, considered him essential, and approved

of the proctor call switch (Questionnaire B III. 6, 7, and

8).

8.2.4 The response time of interactive systems is

critical. Sackman's study of the SAGE air defense

network introduces an important new conversational

principle [Stickman, 1967: 436]:

Human performance in man-computer dialogue
will vary with the similarity of the responding
computer system to the real time exchange
characteristic of human conversation in situations
closely related to the operator task environment.
As computer response-time and message pattern
deviate increasingly from realtime parallelism

197

with the appropriate conversational and problem-
solving norm, so will user performance deteriorate
with regard to the achievements of system goals,
leading to increasing compensatory, erroneous
and maladaptive behavior toward the computer.

In short, people are happiest and most productive when

their interactions with computers follow the same pat4-1-qc

as their interactions with people. The environment being

paralleled in CAI is the learning environment - a mixture

of classroom and self-study.

In a later study concerned with user characteristics

in time-sharing systems, Sackman says [1970:27]

Users with tasks requiring relatively small
computations become increasingly uncomfortable
as computer response time to their requests ex-
tends beyond 10 seconds, and as irregularity
and uncertainty of computer response time in-
creases; users with problems requiring much
computation tolerate longer intervals, up to
as much as 10 minutes for the largest jobs.

For example, while an author will be sympathetic to a

longer response time if he has just entered a command,

e.g.,)RESEQ, which he knows will cause heavy file

manipulation, the student will be always expecting a

response time consistent with his classroom experience.

In human conversations, people usually give some

response to an utterance within a few seconds, even if a

reply has to await longer thought. If this is to be

paralleled by an interactive computer systt,a, the same

time patterns should be tLe target. It is somewhat

more demanding than Sackman's 10-second figure.

L9 8

For replies which will take longer than a Few seconds

to produce, the CAI System design requires that an immed-

iate acknowledgement be given. For example, the pause

between requesting CAI from the CHAT Monitor Table of

Contents (MTOC) and the display of the sign-on message is

eight seconds. Times up to 30 seconds Lave been observed

during heavy activity on the host compuIt.,2 system. Th,.

acknowledgement

PREPARATION FOR SIGN ON
IS NOW TAKING PLACE

is given. Another example is the running acknowledgement

during the recompile process in author mode.

In a student session, except for sign-on and sign-off,

the system is providing for student execution of an in-

structional program. The response time then is less than

one second. When host system activity is high, response

time varies between one and four seconds. According to

the students (QBI.17) response time is adequate.

To reduce the four-second response time, modifications

must be made, not to the CAI System implementation, but to

task dispatching in the operating system on the host com-

puter. The relevant parameters include (1) the frequency

of CHAT's time slice, (2) the duration of each time-slice,

and (3) the dispatching priority assigned to CHAT.

Those aspects of the CAI System implemeritaticn which

contribute to the fast response time are: compilative

rather than interpretive execution of DIAL programs,

efficient disk access, no magnetic tape input/output, and

adequate workspace in main memory for each active

terminal. The Phase I system's use of ISAM datasets

clearly showed the need for faster disk work. In the

current implementation, course material is held on a

file with PL/I Regional 1 organization and tile basic

BDAM access method. The student and author record files,

however, are ISAM processed. Since they are used only

at sign-on and sign-off, their slower response time is

acceptable. The other contribution to the longer

response time at sign-on comes from initiation of, the

CAI System.

The time it takes to display output once it begins

is also important. My observations of the Phase I system,

and typewriter-based CAI systems at other installations,

have shown that students often lost interest while

waiting for long (several hundred characters) textual

messages to come out. Here, reading is being paralleled.

Since a student can read faster than a typewriter can

produce output, the waiting is a system intrusion on his

2 0 U

communication with the author. We eliminate this by our

CRT terminal and fast communication lines.

8.2.5 A substitute for hard copy

Because of the transitory nature of the display on a

CRT a student does not have a record of his preceding

work. However, on a typewriter terminal he does. He

may use the hard-copy output for looking back during a

seElqion or for reference after the session.

During the exploratory stages in the design,

planned to develop special measures (initiated by student

command) to substitute for the loss of hard copy. Later,

however, R. 0. Dearborn in an experiment at the University

showed that such measures may be difficult to justify

[Dearborn, 1970: abstract]:

Three groups of students were exposed to the
same computer-administered programmed instruction
in numerical differentiation with different degrees
of access to the output from the typewriter terminal.
Analysis of co-variance showed no significant
difference on posttest scores between students who
were allowed to keep the output and those who were
not, nor between those students who could look back
during the session at previous output and those
whose view was restricted to the most recent output.

I have not therefore provided any hard copy

facilities for student mode. Authors, however, may obtain

printed listings of their DIAL programs by the)PRINT

command; they have routinely done so.

201

The students in the class trial indicated that they

would have liked printed copies of the questions and

answers (Questionnaire B, 1.9).

8.3 The author-system interface

8.3.1 Author experience

8.3.1.1 One of the a priori design decisions (Chapter 3)

was that authors would be the experienced master teachers

themselves, without intermediary coders. The potential

tutorial power of such a system is only realized when the

master teacher himself sits at it and brings his ex-

perienced intuition into the detailed interplay with the

conceptions and misconceptions of his students. This

has far reaching consequences for system design.
1

1. The system must be so simple that he can use it.

Because the professor is an occasional user of the

system, he cannot justify a long retraining time at the

beginning of each period of use. Design for any occasion-

al user faces a much more stringent requirement for

1The consequences apply equally to systems designed
for other professional workers, for example, doctors and
business executives.

202

simplicity than that imposed by a full-time user, who can

be expected to stay current in the details of even a

complex operating procedure.

2. The sy.3tem must be so easy to use that he will use it.

Unlike the graduate assistant, the professor can choose

whether he will use the system. If a system has many

idiosyncrasies, is awkward, is slow, or reqoires him to he

constantly referring to manuals, he will not use it. He

will delegate the task instead. As a general criterion,

a system such as this is well-designed when it quickly

becomes transparent to the user, so his whole conscious

thought focusses on the subject matter.

With regard to whether the author-system interface

met its design goals, the following observations are

significant.

8.3.1.2 The author work pattern has been described.

Briefly, s-'_des, text, and questions were prepared in

advance. LesS than one-fourth of the questions are

multiple-choice; the rest require the student to construct

a response. Nevertheless, the system power and ease of

use was such that Brooks composed all answer analyses and

all DIAL code on line; most of it about as fast as he could

(touch) type. His learning time was short. The tool

did not intrude - he concentrated on the course material

and the course material alone while at a work station.

203

This tool transparency is reported not only by Brooks but

by another faculty member who observed while Brooks

worked. The instant replay via)xeq meant that he could

see his errors; the system ease of use allowed him to

correct them himself immediately and iteratively. Finally,

the author-hours/student-hours ratio was a factor of five

better than has been reported for other systems; this is

discussed next.

8.3.1.3 Bunderson [1970:51] says of CAI projects:

. . . especially those involving considerable
text and display authoring in connection with
the production of tutorial sequences. These
projects can require 200, 300, or more hours
of work on the part of a team of authors, in-
structional designers, programmers, and media
specialists to produce a sequence that would take
an average student only one hour to complete.

To produce one student hour of course material,

Brooks spent 24 hours; the total team time was 35 1--)urs

(Section 7.4). This factor-of-five improvement over

Bunderson's ratio of 200 is attributable to the following.

1. Author effects

The author is a very experienced teacher and his

pedagogical philosophy was formulated before he began

to write DIAL lessons. He touch-types.

204

This author experience meant that much of the usual

course-material iteration had in effect been done over the

years before the DIAL experiment was started. The system

design objective, however, was precisely to h-Irness such

experience by offering the necessary level of ease-of-use.

2. System effects

The interactive operational environment gave him

immediate feedback. There are two levels of immediacy

in the feedback: firstly, the DIAL compiler checks each

statement as soon as it is entered; secondly, the)xeq

facility provides interaction with the course material

just written. The programming and pedagogical errors

so discovered are corrected immediately by the powerful

editing operations.

Good lesson library service is provided by the

command language.

The user-oriented design of the entire disk system

presents a one-level store to the DIAL programmer and2,'

hides all management of disk storage allocation.

The DIAL language is also an improvement over those

existing languages which were studied; this is discussed

in Section 8.3.3.

705

3. Organizational effects

An author saves much time by not having to explain

his ideas to intermediary CAI language programners or

to correct their misconceptions or awkwardnesses.

Support personnel were provided for typing the final

slide copy, photographic processing, and delivery of

)print listings to the work station. Such support is

helpful, nol- ha:ardous, because it doeq not intrude

on -he author-student interaction.

Each of the three effects contributed to

faster instructional progvam writing and debugging

and to achieving essentially the final version on the

first iteration. Class testing and study of the

student errors contained in the protocols turned up

only minor corrections to the course material

produced on the first iteration.

206

8.3.2 The interactive environment

8.3.2.1 Figure 8.1 shows typical sequences of author

actions during a session to prepar, and test a lesson.

In contrast to the systems in Chapter 2, the author

in DIAL does not switch back and forth between creation

and alteration modes; both are done in one mode. At all

times (other than when he is executinga piece of course

material) he has the one display format before him and he

is free to cause any action. A right parenthesis starting

an entry signals a command; a statement number signals a

statement. The statement may be a new statement, an

insertion, or a change; these are distinguished merely by

the statement number.

The inherent properties of the CRT are exploited

for text editing. These properties are (1) a transient

image and (2) a two-dimensional format (hence pointing

carries more information content). Any statement on the

CRT may be changed, by establishing the window around it, if

it is not already there. Figure 8.2 shows a change being

made to statement 536. (Since 536 was not already on the

CRT, the author displayed it together with surrounding

statements to provide context). If, during the change,

extra room is needed for the enlarged 536, a *THROW* is

requested.

A
u
t
h
o
r

a
c
t
i
o
n

S
y
s
t
e
m

r
e
s
p
o
n
s
e

S
E
S
S
I
O
N

)
S
I
G
N

O
N

)
S
I
G
N

O
N

2
4
6
2
4
6
2
4
6

J
.
C
.

M
U
D
G
E

S
I
G
N
E
D

O
N

A
T

9
3
0

H
.

)
1
e
s

d

)
1
0
0
,
4

c
o

1
0
0

1
0
0

S

c
e
n
d
,

'
F
i
r
s
t
,

l
e
t

"
s

r
e
v
i
e
w

t
h
e

l
a
s
t

s
l
i
d
e

o
f

t
h
e

p
r
e
v
i
o
u
s

l
e
s
s
o
n
.
' 1
0
4

>

C
o
m
p
o
s
e

a
n
d

e
n
t
e
i
t
.

D
I
A
L

(
1
6

n
o

u
t
A
v
t
.

d
e
t
e
c
t
e
d
)

"d
.

4
t
a
t
e
m
e
n
t
'
s

4
e
q
u
e
n
t
i
a
t
t
y

N
e
x
t

'
s
t
a
t
e
m
e
n
t

nu
m

b
en

.
C

D
 H

C
O

C
O H
.

Pi
(

IA
v
u
t
c
o
t
.
)

D
i
a
g
n
o
r
t
i
c

a
n
d

t
h
e
n

t
h
e

C
C

JA
/S

O
A

. 4
:6

C
O

C
D

p
t
a
c
e
d

u
n
d
e
i
t
.

t
h
a
t

6
t
a
t
e
m
e
n
t

p
a
i
t
t

w
h
i
c
h

i
z

£
n

u
u
t
o
i
t
.

o
)
x
e
q

E
x
e
c
u
t
i
o
n

o
6

t
e
6
6
o
n

d

.
-
-
t
,

l
n
t
e
i
t
a
c
t
i
v
e

d
e
b
u
g
g
i
n
g

t
o
o
p

a
-
c
h
a
n
g
e

o
n
e

o
n

m
i
t
e

6
4
t
a
t
e
m
e
n
t
6

a
n
d

)

x
e
q

t
o

v
%

0
:
w

t
h
e

t
e
z
u
t
t
.

T
h
e

e
d
E
t
i
n
g
,

)
t
i
z
t
,

a
n
d

)
p
c
i
n
t

c
o
m
m
a
n
d
'
s

a
t
e

c
c
a
o

c
o
e
d

i
n

t
h
J

L
o
o
p
.

)

o
f
f

S
E
S
S
I
O
N

)
S
I
G
N

O
N

2
!
-
!
c
t
.
.
6
2
4
6

)
d
i
r

)
l
o
a

d

)

n
u
n
.

5
2
0

d
7
:

R
E
S
U
M
E

C
o
m
p
o
t
e

a
n
d

d
e
b
u
g

a
z

i
n

p
t
e
v
i
o
u
z

z
e
z
z
i
o
n

)
o
f
f

S
I
G
N
E
D

O
F
F

A
T

1
1
4
0

)
S
I
G
N

O
N

J
.
C
.

M
U
D
G
E

S
I
G
N
E
D

O
N

A
T

8
0
0

A
B

C
i
n
t
r
o

s
t
r
i
n
g
s

d
e
m
o
l

T
E
S
T

d
) 5
2
0

5
2
4

S
I
G
N
E
D

O
F
F

A
T

9
1
0

H
i

Y
. M F
S M

S
E
S
S
I
O
N

)
1
i
d

C
o
n
t
i
n
u
e

w
i
t
h

i
s
e
v
e
A
a
t

4
e
4
4
i
o
n
'
s

a
'
s

i
n

i
s
e
i
s
i
s
i
o
n

a
b
o
v
e
,

u
n
t
i
t

t
h
e

t
e
i
s
i
s
o
n

-
(
1
4

h
e
a
d
y

4
o
A

'
s
t
u
d
e
n
t
s

d
c
o

)
_

1
-
-
-
.

)
r
e
n

D

i
)

1

)
a
t
t

d

t
o

P
L
C

o
)

0 r
i
-

P
.

)

d
i
r

A
B

C
i
n
t
r
o

s
t
r
i
n
g
s

m
d
e
m
o
l

T
E
S
T

D
c
a
.

)

210

Author action System response

)lis 534

Display screenful of statements,
beginning with 534

Light-pen action as shown:

Move window; place cuPsor as 536

Change statement 536,aided by
cursor controls

Advance cursor to end of window;
press INT

Figure 8.2 A change being made to a statement.

21.1

The *SUBST* function has not yet been implemented;

even without it, editing proved to be very easy and

smooth. Thus its implementation priority has been

lowered.

8.3.2.2 Chapter 3 laid down certain goals for the

interactive environment. How well are they met?

Source level

Inspection of the system commands shows that there

are no commands concerned with the translation of an

author's DIAL source to object code or with the manipu-

lation, linking or loading of object code. All of his

work is done at the source code level. He can therefore

view the system as one which directly executes his DIAL

statements. However, in explaining the response time

variability over certain editing operations, one cannot

avoid a discussion of translation. Thus, while an

author can view conceptually the system as a DIAL machine

if he so desires, the way he uses the system is influenced

by the implemeatation; to date this phenomenon has been seen

only with recompiling.

27.2

Anticipating an author's next move

After processing the contents of a window, the System

tries to anti-ipate the type (statement or command) of the

next action. It then repositions the window and the cursor

within it to the most convenient place and generates part

of the next action if possible. This both saves keystrokes

and provides a time and action cue for the author. The

following actions are taken. The author can of course

override by keyboard action.

Window, cursor, and cue
Case anticipated generated by the System

command

correction to statement

P--

(Cursor positioned under 1

portion in error. For
example, see Fig. 5.4.)

next statement in
246sequence

(can't predict)

Debugging an interactive system after it has been

programmed requires not only the usual program debugging,

but also a separate human-factors debugging that cannot

be done on paper. Human-factors debugging requires the

system designer to use his own system and to work with a

few typical users. Brooks's use of the system showed that

2 1 3

CRT cursor positioning met my goal of anticipating an

author's next move. However, it revealed a relateL bad

awkwardness:)LIST as originally designed put author

mode into a state which an author left by either ex-

hausting the)LIST request or by entering)FINISH.

Furthermore, if any other command was entered while in

this state, the system responded with a fixed-time diag-

nostic forcing a wait of 5 seconds. It became clear

that)FINISH and the special in-list state were both redun-

dant and they have since been removed.

Minimizing user direction

Wherever' possible, the design attempts to relieve

the author from having to supply direction to the

system. An author can be completely unaware of the

existence of the five different logical files associated

with each lesson - he views a lesson as a set of DIAL

statements with a name. A directory in the File Main-

tenance System keeps track of a lesson's location,

protects it from other authors, and protects it from

tampering once it has been attached to a course. Neither

need he be concerned with the system's use of backing

storage - he views his DIAL machine as a one-level-

store machine. Another example is that all source code

entered is automatically saved against system breakdown -

2114

he does not have to request such protection.

With the small number of functionally rich commands

there is a price that the user must pay he loses

flexibility while gaining simplicity. For example,

(1) an author has no means of structuring his

instructional programs and data so that they

run more efficiently;

(2) there is no way an author can suppress the

disk actions necessary for saving source code.

Such flexibility vs.rigidity tradeoffs are made in

any system design. The Job Control Language of OS/360

provides an extreme example. There is a large number of

primitives and thus one can do almost anything; it is,

however, difficult to use.

Experience-dependencies

The system is not responsive to changes in an author's

skill in using the system. Whether he is new to the system

or has been using it for several months he will receive the

same level of diagnostic messages. Although this may annoy

the experienced author, because of the speed of display of

messages, he loses no appreciable terminal time.

215

An incremental compiler

The design called for an incremental compiler as the

language processor for DIAL. The possible software imple-

mentations of a language cover a spectrum with an inter-

preter at one end and an incremental compiler at the

other. The current implementation of DIAL is around the

middle of these two limits in the spectrum - a fast batch

compiler entered interactively. There are two major files

associated with each lesson - the source code and object

code files. When statements are entered sequentially,

response time has a distribution skewed over 1 5

seconds witY the mode at 2 seconds. This fast response

time is due to overlapping disk work with user entry of

the next statement, but, more importantly, new cone is

being added to the end of the existing object code file.

However, Wien an out-of-sequence statement is entered,

e.g., when an author is editing, such a change to the

source code triggers a recompilation of the complete

lesson and the building of a new object code file. Re-

sponse time is then unacceptable - of the order of 20

seconds for a small (40 statement) lesson. However,

when host computer system activity is high and a complete

lesson must be recompiled, the author might wait 20

minutes. The current implementation does, however,

216

provide a way of avoiding this long response time for

each source code change. A *C* light button appears on

the author mode display format.
2

Triggering of recom-

pilation is suppressed by turning cff *C*. Thus

by batching his changes entering them all with *C* off -

he need only suffer the long response once, for his last

change. This batching, in fact, matches how one thinks.

Nevertheless, the long recompile time is a severe

problem for an author: it wastes his time he loses

flexibility during a session because he avoids frequent

recompiles, and it discourages him from using the system

during high host computer system activity. Improving the

*recompile time involves a major software change which could

uot be made during Brooks's use of the system because of

the deadline. I did, however, provide a running acknow-

ledgement 4a "statement- number odometer") in lieu of a

reply; this greatly improved the human factors.

An incremental compiler would avoid producing a new

object code file for each source code change by structuring

the object code file as a chained list, with each node

being a set of object code instructions corresponding to

one source code statement. This would provide i-e im-

portant fast response to author changes. It should be

2 It is not shown in the Chapter 5 examples.

117

the next task undertaken in improving the implementation

of the CAI System. Note, however, that such a chained

structure can, by introducing another level of indirect-

ness, result in a slower execution. So, at say)ATTACH

time, all references should be resolved to absolute ones,

and the code linearized, so that the execution speed is

equivalent to the directly compiled code in the current

implementation.

Some reprogramming of the current implementation

could result in a language processor closer in the

spectrum to the incremental compiler. For example, the

system could make some ad hoc determination of which

parts of the object code file need not be discarded.

An interpretive implementation, while easier to

build, was not used because of the execution-time cost

in student mode.

Diagnostic messages

When an error is detected by the system, the ease

with which an author can determine the true cause of the

error is important. Two classes of diagnostic messages

exist - those caused by errors in using the system commands

and those caused by errors detected by the compiler. The

messages produced by the compiler when it detects a

218

semantic inconsistency have been carefully worded and

are effective. For syntax errors, however, the

characteristics of McKeeman's syntax analyzer are very

evident - the diagnostic for the following error

MATCH x I L7

is ILLEGAL SYMBOL PAIR: <M OPLIST> I_

I have not, in the current implementation, made any

attempt to improve on such diagnostics. Improvements

must be made, particularly on those diagnostics, e.g.,

NO PRODUCTION FOUND. IMPOSSIBLE

TO CONTINUE PARSE.

which do very little apart from signalling that an

error has been detected. In practice, however, they are

infrequent.

A general principle for systems on top of others

is that diagnostics from the inner system must be trans-

lated into the terminology of the outer one before being

fed to the user.

8.3.2.3 The following changes were made as a result of

human-factors debugging.

1. The QAR screen division (Chapter 4) into automatically

formatted question, answer, and response areas, was intro-

duced into DIAL. The change was made over the weekend

219

after t.le first week of Fall student use. This was the

most important human-factors change.

2. The)FINISH command was removed.

3. The identifier rule in DIAL was changed to allow

lower case letters; similar3y, the commalld language

interpreter was changed to accept lower case as well as

upper case.

4. The)LID command was added to help avoid erroneous

(and disastrous) RENAME's.

5. The qualifiers to the)LIST and)XEQ commands were

changed as follows

old de,...gn current 'esign

m thru

m m.

m thru n m,n

In practice, the first of these turned out to be most

frequent by far, so its invocation was made most succinct.

8.3.3 The language DIAL

Here I will discuss the strengths of, the inherent

weaknesses in, and the current omissions from the DIAL

language itself.

220

8.3.3.1 Strengths

1. The language aims at ease of use by being syntactically

consistent and by being procedure-oriented and problem-

oriented rathe-, than reflecting, the underlying machine.

This contrasts with many CAI languages, which are

essentially assembly-language :Level.

The following comparative examples are used to

illustrate this.

Subroutine linkage mechanism

The following Coursewriter example shows the linkage

via return register 4 to the subroutine yesno

Invocation:

ld next /r4

br yesno

next

qu

Subroutine:

yesno

qu Type yes or no

br r4

Comment:

save return address

return to point of
invocation

I2 I

The equivalent DIAL code is

Invocation:

CALL yesn'a

Subroutine:

yesno: PROC

END yesno

Arithmetic

To perform the DIAL computation

E <- (A + B + C) * D

one would code the following in CW

comment:

ld cl/c5 load A (in counter 1)
into E (counter 5)

ad c2/c5

ad c3/c5

mp c4/c5

add B

add C

multiply by D

In TUTOR one would code

CALC F5 = Fl + F2 + F3
CALC P, = F5 * F4

Screen formatting

Instead of supplying explicit screen formatting in-

formation (row, column coordinates) as in the CW II

example in Section 2.2.3, the DIAL author merely formats

the display the way he wishes it to appear to a student.

222

Thus the CW II example of Chapter 2:

dt 4.3//,3/Point to the name of the animal
dt 8,3//,3/that barks.
et 14,10///0dog
dt 18,10///Ocat
dt 22,1Q / / /Drat

in DIAL would be

SHOWAS

' Point to the name of the animal
that barks.

*dog

*cat

*rat'

Branching decisions

Contrast the mnemonic value and naturalness of the

DIAL statement

IF NWRONG >= 3 THEN GOTO Q5A

to the equivalent CW statement

br q5A//c3/ge/3,

or the equivalent TUTOR statement

JUMP I3,X,X,X,X,Q5A.

Generality in naming

In contrast to the fixed name assignments in CW, TUTOR,

and WRITEACOURSE for counters, switches, etc., an author

chosen identifier in DIAL can be used to name any data type

whether it be a counter, register, switch, or buffer.

2 2 3

The naming of slides affords another example of this

same point:

In DIAL

MVT=130; /*Mean Value Thm diagram */

SHOW MVT;

In FOIL

MVT=30

TYPE *MVT

In CW

fp(p) 30

Mnemonics

(1) Machine registers or' states

CW name DIAL name

b0 ANSWER (ANS is accepted as
equivalent)

p0 CASE

pl SQZ

(2) CW restart pc4nts

If p13 is on, then the system will restart a student

who has been signed off at the label defined in

return register 5. Thus, a program in CW with

restart points would appear as

224

arithl

arith2

ld arithl/r5

ld arith2/r5

In DIAL this would be

ARITH1: RESUME

ARITH2: RESUME

String manipulation for presenting text

As pointed out in Section 2.4.2, existing languages

have neglected the potential of a computer for presenting

text. Consider, however, just the simple ability to name

an often-used text, e.g., the statement of a theorem to ire

used in several distinct paths in a frame. In DIAL this

225

would be done by

that

THM = The theorem states

SHOW.THM

SHOW THM

SHOW.THM

With no such ability to name a character string, as is the

case in almost all author languages, the author must type

the complete theorem whenever he needs it in his program.

Note however that with CW the determined author

can avoid the retyping by using buffer storage as a

temporary naming facility.

For example

ld The theorem states that

qu b2

qu b2

qu b2

/b2

226

However there are two restrictions on this type of

programming - there are only five buffers and each one

can hold only 100 characters. Multiple constants can be

stored in one buffer and then fetched by a substring

operation. The program then is hardly straightforward.

Clean Syntax

Chapter 3 argued against adapting another language,

using the possibility of awkward syntax as one of the

arguments. The HumRRO Project IMPACT author language

[aumRRO, 1970] is an extension of CW III which has better

22'1

text manipulation facilities. The awkwardness of the

extension can be seen in this example [HumRRO, 1970:25]

qu ((DIS D260,1),(SET GLOS=0))

which is an IMPACT-Coursewriter instruction to retrieve a

display from a text file prepared independently on a text

editing system.

2. Subroutine facility

The subroutine concept is an important contribution

of computer science to the design of algorithmic processes.

It should be as useful in instructional programming as in

conventional computer programming, once an author under-

stands the invocation and parameterization mechanisms.

3. Text constants

The text manipulation facilities of DIAL can be used

for preparing text arguments for SHOW-statements. For

example, consider the following progran segment.

228

OBS <- 'Study the slide above.'
PINT <- 'Press INT to continue when ready.'
PENIND <- 'INDICATE YOUR ANSWER WITH THE LIGHT PEN'

SHOW OBS, MVT /*Show Mean Value Thm slide */

SHOW OBS 11 PINT

SHOW OBS, PENIND

Note that the assignment statement is only being ed in

this example to name a string of text, not to asLign a

value to a variable. Such a text appears only as read-

only data in the program. Howe\'er, once a variable is

set up in this reentrant profk,am ..-..-mment,3 it must

be kept in each activation :2ord, be., there must be

one copy per stuaent.

This special nature of text data has been recognized

and capitalized upon to improve the efficiency of the

implementation.
4

By using a naming-statement (=) instead

3
I am referring to the reentrant program representa-

tion of authors' DIAL programs running on the DIAL machine,
not the CAI System, which is also reentrant.

4 In a muati-pass compiler (DIAL has a one-pass com-
piler) this could be done without user help.

229

of assignment an author assures the compiler that the

target symbol is constant, not a variable, and hence

read-only. Such text (or slide) constants become part of

the fixed part of the reentrant program representation.

There is only one copy no matter how many students are

active.

The above example then becomes

OBS = 'Study the slide above.'
PINT = 'Press INT to continue when ready.'
PENIND = 'INDICATE YOUR ANSWER WITH THE LIGHT PEN'

SHOW OBS, MVT

SHOW OBSI1PINT

SHOW OBS, PENIND

4. The generality of a programming language

The features in DIAL that give the generality

mentioned in Chapter 3 are the

(1) generality in resource allocation

(2) naming generality

(3) PAT system matching function

(4) CALL statement

230

(5) character string operations

(6) SHOWAS statement allowing arbitrary formatting

(7) one IF-THEN-ELSE for all kinds of tests

(8))INCLUDE facility for library material.

5. Consistency

Examples of the consistency argued for in Chapter 3

are

(1) modality, e.g., CASE and SQZ, are uniformly

treated,

(2) naming of character string and slide constants,

(3) expressions, e.g., wherever text may appear,

a text expression may appear.

Note that these measures set a precedent for con-

sistent extensions to DIAL.

In trying to achieve consistency I found the

formalism of a grammar for the language to be very

helpful. As a guide to the ease of use of a particular

syntactical construct, I found the number of productions

to be useful.

8.3.3.2 Weaknesses

1. No timed response facility

There is no provision in DIAL for an author to get

control back from the student if he has not answered a

231

question within a certain time period. Although this is

consistent with my main client's pedagogical philosophy of

not wishing to pressure the student, it is a weakness in

the language because I preclude the use of timed responses

by other authors.

Another author use, which is pressure-independent, for

a timed response facility, is in tailoring the course

material to speed of student responses.

Note, however, that since the CHAT interface does pro-

vide tools for these facilities, DIAL could be so extended.

An author does have the data in the log file as to how long

students take to answer each question.

2. PAUSE

The rate at which succeeding units of instructional

program output are given depends on whether or not a user

response separates the units. Viten there is no intervening

response, an author must be sure that PAUSE is set

appropriately and so has to make the (sometimes difficult)

judgment on how long -the average student will take to

read a unit, He may not, however, agree with tbis style

of progressing a student, and instead, prefer that the

student indicate when he is ready for the next unit.

Perhaps a new statement is needed in DIAL, one which

displays 'Press INT to continue when ready'. The same

effect can be achieved in the current design, not by a

232

special statement, but by a CALL to procedure INT, where

INT is defined as:

INT: PROC
REPEAT
S'Press INT to continue when ready.'

UNTIL PAT('')
END INT

Class use showed in fact that such student-initiated

progression is better. The course material was so changed

for the Spring use. A new statement, PINT, has been

added to DIAL; this temporary language change will remain

until procedures have been implemented.

3. Data types

The data types in DIAL are

text
slide
integer
label.

The data structures are scalar and vector.

These were regarded as essential for an author

language. Other data types, for example

arrays
global text variables 5

real numbers

sNote that global text constants are provided by
the)INCLUDE facility.

2 3 3

are not in DIAL. The usual tradeoff between usefulness

and cost of implementation (size of the main-memory-

resident language translator) excluded them.

8.3.3.3 Omissions

The following are designed omissions.

1. A HINT facility

The HINT (or HELP) facility is usually designed so

that a student may request a hint for each question pre-

sented. Hence an author must prepare a hint action for

each question - if he does not, the student may be

adversely affected by the standard system response

'NO HINT FOR THIS QUESTION'. I prefer amplificatory

sequencing to be explicitly programmed. For example,

in DIAL, use

UNREC *, L2, L3

with the code sections at L2 and L3 being amplification

of the question. Furthermore, I believe that being able

to request a hint or help at every interaction in a

teacher-student dialogue is not natural.

Notice that HINT requires an author to define two

teaching tactics for every micro-point. As contrasted

with such preparation of both a coarse-grained teaching

tactic and a fine-grained one, it is less costly for the

234

author to put all students through the fine-grained one;

and if display and response are fast, it may not be any

more costly and tedious to the good student. (But then

again, it may.) For the poor student, the success

psychology is considerably better than failure psychology.

2. A calculation mode

Outside of the CAI System, our students have ready

access to many terminals providing APL. Moreover, it

is planned that some interactive PL/I service be a sub-

system of CHAT. Perhaps the omission in DIAL of calc, is

really a question of subject matter bias. Calc is impor-

tant to PLANIT because it is directed mainly at statistics;

the numeric tests for equivalence in PLCLS [Oldehoeft, 1969]

provide an attractive :arm of answer analysis for

numerical analysis. The UNC CAI Project intends to add a

facility which is attractive for answer analysis in com-

puter programming - a FLLI language processor (Chapter 9).

8.3.3.4 General comments

1. The DIAL subset used

The following are not in the current implementation

of the DIAL language specs: vectors, the FRAME-statement,

procedures, SUBSTR, INDEX, LENGTH, and IF-THEN-ELSE.

The language features actually used by Brook woro:

naming, assignment, SHOWAS, SHOW, MATCH, PEN, PAT,

UNREC, GOTO, RESUME, CASE, ENDLESSON.

2. Reserved words

Reserved words are those appearing in the grammar,

e.g., SHOW IF MATCH . They cannot be used in any way

except in their intended structural use in DIAL, a con-

sequence of the implementation based on McKeeman's Transla-

tor Writing System. The effect of this limitation can be

summarized by saying that it violates the criterion of

modularity stated in [Raclin and Rogaway, 1965]: ".

but if you don't need it you don't have to specify it or

even learn about its existence, . . ." as one of the de-

sign criteria for the language PL/I.

This criterion, however, is not really applicable

to DIAL. There are only 40 reserved words; an author

can learn them all, a virtually impossible task for PL/I.

3. Two branching statements

Branching conditions and actions can be described

by the IF-statement alone. However, because of the very

frequent occurrence of

(a) a logical expression with the ANSWER register

as a comparand

236

(b) responses which are equivalent for branching

purposes

the MATCH-statement is provided to give a more compact

notation, at the expense of mnemonic value.

The following two DIAL program segments produce the

same result.

IF ANSWER = '2A' I ANSWER = '2C' THEN GOTO Ll
IF ANSWER = '2B' THEN GOTO L2

MATCH '2A' 1 '2C', Ll
MATCH '2B', L2

4. The)INCLUDE facility

The design called for a library subroutine facility

whereby subroutine procedures are made available in some

library for inclusion as procedures in an author's in-

structional program. This facility is widely accepted Li

computing and has been used in most computer installat:ons

for several years.

Rather than a library subroutine facility, the CAI

System has the)INCLUDE command, a facility which is

conceptually more powerful. It is more powerful in the

sense that arbitrary text, not just subroutines, can be

included.
6

Moreover, it is consistent with the DIAL

6
As an analogy, the PL/I compile-time %INCLUDE will

accept arbitrary text, whereas' the OS/360 linkage editor
accepts only valid subroutine procedures.

237

machine concept - an author manipulates only source

text, not compiled code as well.

8.3.3.5 Summary

DIAL is an improvement over existing author

languages. The improvements can be seen both in the

language itself and, more importantly, in the operational

environment in which it is embedded - an integrated,

functionally complete system serving authors, students,

proctors, and computer programmers. Implementation with

a translator writing system has been seen to simplify

the remediation of weaknesses as they are discovered.

As can be seen, DIAL offers little new in CAI function.

However, some general, powerful, and easily used

mechanisms have been borrowed from general programming

languages, and embodied in a consistent syntax to provide

features not usually seen in CAI languages.

8.4 The computer programmer - system interface

The interface discussed is the one involved in using

the CAI Translator Writing System. Chapter 6 should help

the reader in his assessment of the flexibility of the

DIAL implementation.

238

Of the three parts of a compiler for a new version

of DIAL, the lexical and syntactic parts are taken care

of by the TWS. The semantic routines, however, require

a PL/I programmer with knowledge of the internal structure

of COMPILER. To assist him, the design of that routine

is highly modular, particularly in the semantic routine

CODEGEN.

The CAI TWS has proved useful in the following

situations.

1. Progressive implementation of a fixed des:Lgn

Several versions of DIAL, embodying progressively

larger subsets of the specifications in Chapter 4, have

been implemented.

2. Improvement in design

The language design process did not stagnate during

progressive implementation, and several improvements have

occurred. One replaced the CC and SC attribute declara-

tions by the naming statement. For example

OBS = 'Observe the slide'

used to be achieved by

DCL OBS CC 'Observe the slide'

This change was handled entirely at the syntactic level

by the CAI TWS. Another improvement, but one which

239

requires some semantic change, was the generalization of

mode switching. For example

CASE <- arithmetic-expression

replaced the two statements

CASEON and CASEOFF

The CAI TWS promises to prove useful in two other situa-

tions as well.

3. Correction of mistakes

Of those mistakes discovered during human-factors

debugging, for example, the redundancies discussed in

Section 9.2, DIAL/2, the majority of them are correctable

at the syntactic level.

4. Extension beyond specifications in Chapter 4

This is, of course, the situation in which the TWS

is most attractive. However, most of the computer

programmer's work will be in writing and debugging at

the semantic level. DIAL/2's PARSE function is an

example.

DIAL/2 is a language radically different from current

DIAL. But the differences are_ predominantly syntactic,

not semantic. This further justification of a TWS

240

implementation of DIAL was unexpected because I had

predicted that DIAL would have semantic, not syntactic,

limitations.

A good measure of the effectiveness of the computer

programmer-system interface could be obtained when the

next step in progressive implementation is taken. For

at each step the changes are well defined. Time and

effort data should be gathered for each of the following

tasks, which are defined in Chapter 6:

language definition;

SNP programming;

PARSER runs;

writing CODEGEN additions;

writing new delta code interpretation
in EXECUTOR;

debugging.

8.5 Observations about human factors

This section presents a selection of the more im-

portant human-factors considerations involved in my

research. I believe, but have not proved, that these

observations are generalizable to the design of most

man-machine interfaces.

would. 1.N.o to h..1..ve TWS the ol,rrational

oily il\mimon t. :w1/4.7.11 NovnIc:.11% ' 1;16;Z I. ISO

CQV the DIM. laneAtago.

Cons,..h;tenev (or unitormitvl

To the extent thclt commAnd Lnymngo, Iwow'Ammin

1angua8oL;, and opot:Ating rv000dtwo dOvin(0 tl'om iho

242

rule "the same things should be done in the same way

wherever they appear", they violate the psychological

principle of unifc=ity. They will usually be more

difficult to learn and more difficult to use without

error.

Several components of language are involved:

syntactic, e.g., consistency in display format
7

;

semantic; pragmatic, e.g., consistency with the user's

real-wo.1,1d experience; stylistic, e.g., tone of messages;

and lexical, e.g., rules for forming abbreviations. 8

A consequence of the need for consistency is that

instant design cannot h2 done; any change generally

reverberates throughout the whole design.

Consistency throughout is part of the conceptual

integrity of design. This integrity is far simpler to

achieve when there is only one system architect specifying

all the elements of the user-system interface. Two

designers may agree completely on principles; there will

still be differences in style, and these differences will

inevitably show in the micro-decisions of the design.

7The student user of the CAI System has just one dis-
play format, QAR, to master, from sign-on through instruc-
tion to sign-off. The author has just two: QAR and the
author-mode format.

8 Sometimes, to maintain consistency, a designer will
include facilities which he predicts will never be used.
The m,n option on)list is an example.

2 I+ 3

8.5.3 Sackman's conversational principle

This principle (Section 8.2.4) is a very usefli

guideline.

However, response time, while critical, is not the

only factor in paralleling human interactions. I suspect

that because response time is readily measurable (compared

to other factors, such as command language ease-of-use),

i- has been overemphasized in the literature.

8.5.4 Top-down design

Top-down design, or outside-in in this case, helps to

ensure that the design focus is on the man in the man-

machine interface, not the machine or implementer.

8.5.5 Ust,..tr-initiated progression

There are now very few intervals when messages are

displayed for a fixed time in the CAI System; in most

cases, and always for long messages, the user, not the

system decides when to progress. This change in philosop'ly

evolved during testing. It turned out that when a

message is displayed for a fixed time, the slow user will

miss part of it, and the fast user will get impatient.

If an author's course material does this, it not only

reduces individualization, but also frustrates both fast

and slow students; the same applies to the system in which

244

the course material is embedded.

The same is true *n author mode, where the messages

are generally diagnostic messages. An experienced author

detects the cause of his error very quickly and wants to

get on with fixing it.9

8.5.6 Minimality - the search for powerful primitives

As with computer architecture, programming language

design, and command language design, the search is for

powerful, general-purpose primitives. Sometimes these are

found by seeking them to start with. Thus, a goal con-

tinually pursued in this research was a single canonical

form for answer matching. The pursuit of this goal (not

vet achieved) led to development, for example, of the

PAT function, which subsumes the functions of MUST,

CANT, DIDDL, keyl, etc., found in other languages.

Often such primitives are arrived by iteration, e.g.,

collapsing several commands into one.

8.6 The cost of designing and implementing the system

Developing the CAI System used for the Fall 1972

class took 2358 man/hours over a period (DI three years.

9 Fixed-time diagnostics annoy the experienced user
in the same way that long typewriter-terminal diagnostics
do.

?45

This includes both the design of the system presented in

this thesis and the implementation and documentation of

the subset defined in the Systems Programmer Manual [Mudge,

1972]. It does not include the thesis writing time.

The size of the CAI System, i.e., the on-line

routines, at the end of August, 1972 was as follows.

11,000 printed lines of PL/I source code

(including blank lines for readability)

3,691 PL/I statements

About 200 of the 3691 statements are DECLARE's,

almost all of which declare many identifiers,

which leaves about 3500 statements.

Hence, the 11,000 printed lines are made up of

comments, blank lines, declarations, and about 3500

executable statements.

As with any software engineering project, the time

includes the following activities.

1. Building scaffolding

Apart from the usual scaffolding there was

a. CC-30 i/o simulator (the CHAT interface simulator)

b. PARSER to debug the syntax analyzer and to aid

in using the TWS

246

c. offline service routines

- crude versions of file maintenance of STUREC,

AUTHREC, CAIFILES

- lesson listing: an offline)PRINT command

2. Scrapped code

3. Project meetings

4. Demonstrations and discussions for site visitors

5. Systems Programmer Manual

6. Test programs for PL/I

- learning language features new to me

- testing features obscurely described in manuals

- choosing among alternative PL/I methods

The time also includes the student/author work-

station design and prototype construction.

Because of the method I use to record my time

(effective hours), each time figure given in this section

should be inflated by 20% to account for coffee breaks,

etc., if they are to be compared to industrial work hours.

The high proportion of time spent in a project like

this on design, tooling, and scaffolding is reflected by

the fact that over one half of the 3500 instructions were

written and debugged in the Fall semester of 1971. These

1800 instructions were done in 594 hours. This was straight

,:oding and debugging after all design, scaffolding and

cata structures had been taken care of. For this sprint

2 ! 7

period, productivity was at a rate of about 5000 debugged

PL/I statements/man-year. The overall project ratc is

about 2470 statements/man-year.

8.7 Is it widely applicable?

Could another university install the CAI System?

Could a high school install a work station with access

to DIAL at a remote host computer?

Given the properties of current time-sharing systems,

the most portable system would be one which is written

in, FORTRAN and which uses a teletype as terminal. Indeed,

the FOIL, WRITEACOURSE and PLANIT systems of Chapter 2

state this sort of high portability as a design requirement.

These constraints were rejected as too rigid and

awkward for this project, but the same sorts of

portbility were goals.

8.7.1 Portability of the software

(1) The implementation language

The CAl System is written entirely in the machine

independent language PL/I, and in this respect it is

highly portable. The particular implementation used is

the F-level OS/360 compiler. Changes may have to be made

to run with other PL/I environments because

248

a. some implementations are a subset of PL/I (F).

b. the run-time environment of PL/I (F) is

intertwined with OS/360.

c. the machine-dependent UNSPEC function of PL/I

is used in the CAI System.

(2) The host computer's operating system

An absolute requirement for CHAT is OS/360 witl- the

MVT option. Only minor changes need to be made locally.

Without CHAT the prospective user is faced with two

problems: communicaiions support and multiterminal support.

The communications support for single terminal operation

would be reasonably inexpensive to build. This is cer-

tainly not the case for multiterminal support, the major

part of CHAT.

8.7.2 The host computer

.3 A medium scale computer, e.g., a S/360 Model 50,

would provide the amount of main memory and type of disk

backing storage needed for the on-line routines of the

CAI System. Thus the system is expensive, but a price

must be paid for richness of function and good perform-

ance. Main memory usage is one copy of the reentrant

load module (155,000 bytes) and a work space (the

activation record) for each active user. The latter

24(ji

is dynamically allocated by the CAI System; space is re-

quested when needed and freed when available. This results

in a substantial improvement in memory use over static

allocation. However, this dynamic behavior makes measure-

ment difficult. The lower bound of each student work-space

is 21,000 bytes; the upper bound throughout a session is

about 25,000 bytes except at sign-on and sign-off times

when 42,000 bytes 10
are used. The overall utilization

of memory could be improved if work spaces were swapped

out during user think times; the resulting response time

degradation would not meet my design goals, however. The

lower bound of an author work space is 10,000 bytes; the

work space grows to 14,000 bytes when a statement is being

compiled, and peaks at 26,000 bytes during author execution

of a DIAL program.

Schultz's CHAT monitor has been carefully crafted in

assembler language and requires only 28,000 bytes.

8.7.3 The terminal hardware

The student/author work station is built around a

terminal which, if not in widespread use, is commercially

available and based on established technology.

10 26,000 bytes of this are used by the OS/360 input/
output routines, e.g., the indexed sequential access method
routines. They are required only at sign-on and sign-off.

250

8.7.4 The communications hardware

To achieve a performance consistent with the design,

remote terminals must be linked by a line of at least

medium speed (2400 bits per second). Teletype-speed

lines are certainly inadequate. Since our terminal and

communications equipment from Computer Communications,

Inc., can be configured flexibly (with the addition of a

CC-70 communications processor if necessary), terminals

in widely separated sites are possible.

CHAPTER 9

SUGGESTIONS FOR FUTURE WORK

9.1 Introduction

This chapter recommends several directions in which

the present CAI System design might be extended, as well

as presenting some research topics. Recommended improve-

ments in the current implementation of the design are not

discussed, as they are covered in the Systems Programmer

Manual,

In contrast to the spe@Tic suggestions this

chapter, the goals of Phase III of the CAI Project provide

more general direction. Phase II 1 produced Schultz's CHAT

monitor, the CAI System, and Brooks's cour-3(: material. As

the Project formulates the goals for the next phase, we

find that we are more interested in resultfs that teach us

something about interactive systems in general than we are

in attempting to devise new CAI methods and strategies as

1See Caapter 1 for its goals.

252

such.
2 The West House facility will be used to investigate

the factors in system design which make interactive CRT

systems easy or hard to use. This includes work-station

design, design of application-oriented languages, system

command languages, system robustness and graceful-fail

features, operational procedures, and integration of human

assistants with machine systems. This thesis has investi-

gated these factors severally, but their integration and

interaction ultimately determines ease of use.

The wide class performance variances observed in our

tests show that a new methodology for evaluating such

factors must be developed; probably it will be based on

systematic observation of users, error-rate data, timing

data, and user questionnaire data.

9.2 DIAL/2

In contrast to on-line entry of a program written

prior to an on-line sessJ.,-, on-line composition places

greater demands on a language. A much clearer understand-

ing of these demands came from actual use of the system.

2 Note, however, that in the pure CAI area, the Project
has made available a proven, total, flexible system for
teaching. Already several researchers in the University
and in the state have shown interest in using the System
for research in instructional programming, learning theory,
and cost-effectiveness of CAI.

2 5 3

The proposals in this section reflect this experierce and

also the influence of Dijkstra's structured programming

[Dijkstra, 1970].

The exact syntax and semantics of the proposals are

not given. Moreover, their smooth integration with

current DIAL to maintain a consistent uniform design is

not covered at all.

9.2.1 Response sets

The response set provides a more powerful means of

classifying respcnses in a MATCH-statement. The extra

power comes both from the increase in function and from

its generality. A set is defined by

set-name = <elements>.

As an example

MATCH set liset 21 <'Y', ''YES'>, next

would branch to next if at least one of the elements in

the three sets matches.

Examples of sets are

1. set 1 = <'INTEGER', 'AN INTEGER'>

2. set 2 = <' CHARACTER STRING', 'A CHARACTER STRING'>

3. set 12 = <set_l, set_2>

4. numeric = <'0', '1', '2' , '9'>

5. yes = <!Y"5 'YES'>

254

6. oddpen = <PEN(l), PEN(3), ...PEN(9)>

7. gamma = <tDOW, PAT('DOGO), P4>

Example 3 names a set which is the union of two other sets;

any number of sets could form a hierarchical structure.

The element P4 in example 7 is a subroutine which operates

on the ANSWER register. For instance, it might be a

general indefinite article remover that does the work

of examples 1 and 2.

Other set operations might be provided, e.g., inter-

section, complementation, and element selection.

Note that response sets provide a clean syntactical

integration of the natural language processing subsystems

of Section 9.5.

9.2.2 The semantics of CASE

The system log showed that students frequently entered

PL/I statements in lower case instead of the mandatory

upper case. An author would like to identify this error

rather than respond with the UNREC message. He can do

this in DIAL/1 with the CASE statement, but for this

particular need it is clumsy. He would like to put a

CASE switch in the body of a sieve and cause the ANSWER

register to be retranslated. However, case translation

would then no longer be a preprocessing function.

255

Changing the semantics of CASE thus requires a rethinking

of the preprocessor concept in the DIAL machine. Perhaps

what is needed is a general function like TRANSLATE in

PL/I which would certainly handle the CASE problem.

9.2.3 Block structure

Real author use of DIAL showed certain elements of

redundancy. Consider the present typical frame

structuring.
3

SHOWAS
MATCH response set, branch forward

MATCH response sets, branch
MATCH

UN RE C

branchlabel: SHOW feedback
branch back

This shows two redundancies:

(1) the branch to the feedback (juxtaposition would

solve it), and

3 See Figure 4.2 for a typical sieve.

256

(2) the branch from the feedback (always either back to

the lead-MATCH or on to the next frame).

The first is a burden not only because of the necessity

for generating multitudes of labels, but also because the

author must stack feedback messages in his memory as he

enters the sieve response sets and then unstack them after

the UNREC.

The following vertical bracketing into blocks, one

for each sieve element,

MATCH
response sets
feedback
branch

MATCH

solves the first problem. Also, readability is greatly

enhanced. The branch could be dispensed with if the

single case of forward branching were distinguished by

the operator, MATCHR, so then an implied branch back is

part of each ordinary MATCH block.

Most labels are obviated. DIAL/1 demands extensive

use of labels, an annoying burden in on-line composition.

My aim now is self-referencing branches: branches should be

relative not absolute. 4

4
For example, DO-WHILE and UNREC * are self-

referencing.

257

9.2.4 Branching functions

Consider the following block structure

with a set of branching functions which take block as

(explicit or implicit) arguments:

in move in to the next contained block

out move out to the next containing block

a move to predecessor block on the same level

down move to successor block on the same level

exit move to outermost containing block, i.e., exit is

the function composition of out's

Then, viewing a program as a two-dimensional space,

horizontal movement comes fro the notion of depth into

a nesting of blocks. In current DIAL, only vertical

motions possible: amplification of a concept, con-

ceptually a horizontal movement, must be done by a COTO.

Return to a lead match is also done by a GOTO, unless

U * is used.

258

9.2.5 A small number of control structures

DIAL/1 has specialized control structures, e.g., U *.

Two new ones are proposed: branching functions and MATCH-

block. While specialized control structures in a special

purpose language can be justified on the grounds of con-

ciseness of expression and application-orientation,

there is the danger that the language may have such a

diversity of different control structures that ease of

learning and use suffer. Thus, in adding function and

providing self-referencing branches, the air should be

a small set of uniform, consistent control structures.

9.2.6 A PARSE system matching function (due to Brooks)

PARSE -Mould take a grammatical specification, in RNF

for example, as its argument and return 1 if the student's

response parsed correctly, 0 otherwise. For example, if

ident names a set of BNF productions for a PL/I identifier,

then

PARSE(ident)

cc,,Ild be used in the answer analysis of a response to the

question "Construct a va'.id PL/I identifier."

9.2;7 The operational environment

Whenever DIAL is changed, the implicatio, --)r the

operational environment should be studied. Co-Isider the

259

following.

Indentation enhances the readability of block-

structured programs. The)LIST command could reformat an

author's statements according to the structure of DIAL as

NEATER2 [Conrow and Smith, 1970] does for PL/I. Thus an

author need not spend time indenting as he is entering his

code.

9.3 Author-defined commands for student use

Currently the only command available to a student is

)OF. All other student inputs are in response to

explicit directions from a DIAL program. This section

proposes an extension to DIAL which would enable

an author to define a set of commands for student users

of his instructional program.

Each student response would be checked to see if a

command is being given. The occurrence of a command would

result in the execution of thr-2 action specification for

that command. An author would provide a complete defini-

tion of each command by a set of command units, each one

consisting of a name and action specification. For

example,

260

ON REVIEW DO
SHOWAS 'Review sequences are
available for the following
topics. Indicate your choice
with the light pen:

* ARITHMETIC OPERATIONS

* No review - return to lesson'
MATCH PEN(1), ARITH

END

A command unit has the form

ON command-name action-specification

where action-specification is a statement or a DO-group.

If execution of the action-specification does not

result in a branch out of the command unit, then execution

rasumes at the SHOW-statement controlling the read.

I suggest that such author-defined commands do not

use the special start symbol) since this should be

reserved for additional system commands. An author may,

however, wish to establish the convention that all begin

with some other spJcial symbol, e.g., #, $, or @. This

would not be necessary if the rule is established that all

MATCH-specified responses are checked before the list of

commands.

A command facility would add to the ease of use of

DIAL; to achieve the equivalent in the current design, an

267

author must specify the response in every MATCH group, e.g.,

MATCH 'REVIEW', REV;

Moreover, it would add flexibility to the CAI System; an

auq:1-,or coulc: provide fo2 much greater student control over

the path through a set of course material.

As a simple example consider a command MENU:

ON MENU DO
SHOWAS'Select the section you wish to
work next:

*EXPRESSIONS
*PROGRAM STRUCTURE
*DECISION MAKING
*CHARACTER STRINGS
*ITERATION

END

The command MENU is roughly equivalent to to to in

Coursewriter.

Other examples of author-defined commands are:

(1) a status reporting command, which would display

certain measures of performance kept by an

author in his DIAL program.

(2) a command by which a student can consult a

dictionary or glossary. If the vector DEF contains

definitions and is keyed by the vector KEY then an

action-specification could be as follows.

262

ON DEFINE DO
L2 SHOW 'Enter word to be defined'

ARG <- ANSWER
I <- 0

LOOP: /*Linear search of keys*/
I <- I + 1
IF I > NDEFS THEN GOTO NOT;

/* not found */
IF ARG = KEY(I) THEN GOTO FOUND;
GOTO LOOP;

FOUND:
SHOW DEF(I);
GOTO EXIT; / return to controlling */

/* SHOW via the default */
NOT:

SHOW 'This term is not in the course
dictionary. Perhaps you misspelled.';

EXIT:
END;

The responses to Questions IV.2 and IV.3 on the Fall

and Spring questionnaires show the desirability of the

DEFINE and REVIEW facilities.

Finally, recall the timed-response facility dis-

cussed in Section 8.3.2.2 and notice the semantic

similarities to the proposed author-defined commands.

The action-specification would be

ON TIMEUP DO

END

but the system rather than the student would signal the

command.

9.4 Debugging aids for DIAL programming

The most important debugging facility is the inter-

active environment itself. However, th-is should probably

be supplemented by some other aids. Study is needed to

determine what aids are necessary and how they can be

incorporated into the CAI System in a manner consistent

with the design philosophy.

As a departure point for this study, the following

could be considered.

1. Tracing

A step-by-step)XEQ optic : for every statement

executed, two screen displays would appear - a debug

screen and a student screen. The debug screen would

display information such as

(1) the DIAL statement executed

(2) the values of variables, registers, etc.

referenced in the statement.

The author would advance such an execution with the INT

key, with successive depressions causing the debug and

student screens to appear alternately.

2. Value assignment

This would enable an author to assign values to

variables just prior to an)XEQ.

264

Some aids would be added as part of the language,

others as part of the operational environment. Some may

be implemented by inserting checks in the object code

(subscript checks, for example), others by a monitor

controlling author-invoked execution.

Attribute tables, cross-reference lists, etc.,

should be added to the listing obtained by the)PRINT

command.

9.5 Answer processing subsystems

For certain types of constructed responses, e.g.,

when some meaning must be extracted from a typed response,

conventional author languages are sometimes not very

powerful. As an alternative to introducing such power

into the author language itself, this section proposes

a study of existing computer programs for processing

semantic information. Suitable programs could be attached

as subsystems to the CAI System.

Not only should the systems programming job of

attaching subsystems be studied, but also the interface

with an author through DIAL.

9.5.1 An existing language processor for the programming

language being used in an introductory computer program-

ming course could be harnessed as a subsystem. It would

26b

then be possible for an author to elicit a program segment

from a student and the CAI System to pass the student's

answer to the language processor for analysis and

execution. The design challenge here is meaningful

communication between the execution and the author's

inst.2uctional program so that the student can be given

pedagogically useful feedback. Project TEACH LPenichel,

1970] has implemented and evaluated a modest subset of the

proposed environment; the project has now launched into a

substantial research program aimed at coming closer to the

full environment.

As a first step, I suggest a syn'..:ax checker. Each

program segment would be analyzed syntactically only. A

vehicle for this c--,1d be the syntax analyzer (using a

PL/I grammar) of the CAI TWS described in Chapter 6.

9.5.2 The above subsystems are restricted to only one

subject matter. To get real general power, one wants to

incorporate natural language processing subsystems. Al-

though Chapter 3 argued that such systems are still too

experimental to form the central framework for a production-

orientec iuthor-controlled CAI System, system developers

must keep this goal in sight. What one really wants for

CAI is a subsystem which matches the semantic content of

a response against that of a single canonical form given

2C6

by an author.

9.6 A man-machine interface for unrecognized answers

The following man-machine system is proposed as a

generalized unrecognized answer :node' for research. For

each group of n students (n to be determined) there would

be a tutor station consisting of a man and a special

console. Whenever a student response was not recognized

in a DIAL program, the CAI System would route the problem

to one of the tutor stations.

The situation is'a suitable candidate for a man-

machine system. The instructional task would be parti-

tioned such that the inherently algorithmic parts (text

display, sequencing, etc.) are handled by the machine

and the parts that are best handled by a man (pattern,

context and judgment problems; would be allocated to the

tutor.

The number of minutes per hour that the tutor spends

on the average with each student must be very low for the

system to even .approach cost-effectiveness.

In terms of the pressure characteristics of the

system, the job of tutor would be similar to one in the

busiest air traffic control center, wh vie duty periods

are as short as one hour.

267

Some of the challenges involved and questions raised

are the following.

1. Information display to the man

The context surrounding the student unrecognized

response must be displayed at the console of the tutor

station in such a way that the tutor can quickly see the

problem and decide on his response.

2. Input from the man

Once the man has decided what his response will be,

he mutt be able to enter it quickly so he can be freed to

serve the next problem. Thus typed input is excluded. A

menu of responses to be selectec by light pen suggests

itself. This menu should be part of the problem display.

An obvious menu is the s-2-1- of branch labels appropriate

to the problem section of the DIAL program. This, however,

requires the man to be intimately familiar with every

micro-point in the instructional program. An alternative

for the menu might be a "s-.ale of wrongness" which the

System would translate into branch labels.

The tutor console might enable the tutor to control

a pointer on the student's CRT screen.

268

3. Multiple interactions

If the tutor cannot decide on an action for a

particular problem, he may want to get more information

from the student; a two-way channel for multiple inter-

actions pc-r, problem is then needed.

4. Instructional programming

There are many implication,,,. for the instructional

program structure and for the author language.

While the situation proposed may never be implemented,

it would serve as a model, the investigation of which

should throw light on important problems not only in man-

machine dialogue, but also in learning theory.

Finally, note that the system would be ideal for a

HELP or HINT facility. When a student types HELP the

system would display the context at the tutor station.

The tutor could use a voice link for his reply.

.7 More service pronrams

Much data is gathered by the CAl System from each

student session and stored in various files. Programs

offer and above the existing ones are needed to analyze

this information for authors and proctors. A study

should determine

269

(1) what information is pertinent;

(2) a language for accessing it;

(3) whether batch or interactive programs should

be used.

There are three potential sources for information for

analysis:

1. The STUREC file

Each student's record contains statistics on terminal

time, personal data and the number of recovers and resumes.

2. LOGFILE

This contains, for each student session, student

responses (typed or penned) and a trace by DIAL statement

number diachronically.

3. The student activation record

This record is called SCB (student control block) in

the CAI System. It is not diachronic but a snapshot of the

state of all variables, DIAL machine registers, etc., at an

instant in time. In contrast to the log file, SCB has

instant in time but all in kind. At sign-off it is

transterred into S tC.SCB PART on the student's record in

file STUREC.

270

The work at Florida State University [Davenport, 1968]

on the analysis of Coursewriter-generated performance

records may be useful in the study.

S:.8 Color cathode-ray tube terminals

In the Spring of 1972 the CAI Project added a color

option to the displiy of the work station, a very useful

modification. It involved replacing the existing CC-300

TV Display by a color TV and modifying the CC-301 TV

Display Controller. Characters can be displayed in green,

red, blue or yellow.

Character color is specified by four (non-displayed)

control characters. These codes are:

(1) entered from the keyboard by simultaneous depression

of the special code key (SP) and one of Q,R,S,or T, or

(2) sent from The computer.

Once a color selection has

been made, all characters received by the controller are

stored with that color designation until the next color

code is received. Thus color codes act as shift

naracters. But when a message is transmitted from the

CC-301 to the computer these control characters cannot be

retrieved. Because of this hardware deficiency, software

is needed to transmit an encoding of these characters to

the computer so that when messages are sent back the

2 .1

appropriate color control characters will he inserted.

An interim soution has been implemented. Four

system text constants, GREEN, RED, BLUE, and YELLOW, were

added tc the language. They can appear in a DIAL text-

expression just as any other text constant. For example,

SHOW 'The fallowing is an example of an

IIREDWarithmetic ((BLUE(('expression' .

A better solution, in that it does not intrude on

the language, is to make colo, changing part of the

operational environment. Four light buttons (one for

each color) at the bottom of the author mode display

format could make color changing appear to be in the

hardware. Thus, to show "arithmetic" in red, as above,

an author would enter

SHOW 'The following is an example of an

arithmetic expression.'

but after "an" he would pen the red light button. The

cursor would then change color; after "arithmetic" he

would pen blue.

This solution is perhaps as neat as can be done by

software alone. The right solution from a human factors

viewpoint requires minor hardware changes.

APPENDIXES

APPENDIX A

QUESTIONNAIRE A AND SUMRIES OF STUDENT
RESPONSES

For each question, four sets of responses are given.

They represent the totals from each class, as shown in

the following example.

6 8 2

1 15 4

2 12 7

8 30 17

Fall, 1972, Conventional
method-Instructor 1

1 t Fa12, 1972, Conventional
method- Instructor 2

Fall, 1972, CAI

Spring, 1973, CAI

In the Fall, 58 students out of a possible 60

completed the questionnaire. In the Spring, 56 out of

a possible L9 completed it.

274

NAME:

COMPUTER-ASSISTED INSTRUCTION STUDY

FALL 1972

Student questionnaire for control groups and experimental
group

Please fill out the attached questionnaire as completely
and accurately as possible. The information gathered will
help Manning for more effective methods of teaching com-
puter science courses.

You will not be graded on your responses to this question-
naire. In fact, neither your instructor nor the course
supervisor will ever see any completed questionnaire.
Neither will any student be listed or mentioned -'r name or
number in reports describing the results of this study.

To be completed in class on Monday, October 2, 1972.

J. C. Mudge
Experimenter

JCM/vj
9 72

2 7 5

Pape 2

1. Year at UNC:

2 3 4 1 5J 1

2 4 5 10
2 1 9 5 4

6 8 14 13 12 3

Fresh- Soph- Junior Senior Grad- Other (Please
man omore uate specify

Student)

2. Major or intended major:

3. How would you rate your attitude to the subject
matter of this course? Restrict your rating to the
subject matter itself, riot the method or quality
of instruction.

9 4 3

2 14 5

9 .6 5 1

14 34 7 1

very very
positive positive neutral negative negative

4. What previous experience have you had with computers?

Circle all
that apply:

8 12 10 37: none
1 5: other programming courses

1 1: computer appreciation course
1 3 : this course before

6 6 5 13: use of pre-programmed packages,
statistical packages

1 3 2 3: programming in language(s) other
than PL/I

1 2 5 10: other (Please specify)

5. Why are you taking this course?

Circle all that apply:

it is a prerequisite for other
courses I plan to take
it is required in my program
it satisfies the language re-
quirement for a graduate degree
solely for a broadening
experience
it will help me get a job
it satisfies the math requirement
for my degree

programming will be a useful
research skill
other (please specify)

1 1 2 6:

2 1:

4 2 9:

6 10 9 34:

4 3 8 11:

2 5 6:

10 12 15 41:

3 6 2 7:

276

Page 3

6. (a) At the beginning of the semester I felt that
obtaining a good grade in the course was

4 10
13 8

6 12
22 25

2

3

9

very important somewhat not important
important

(b) At this time, I feel that obtaining a good grade
in the course is

3 11 2

13 8

7 9 5

21 25 10

very important somewhat not important
important

277

Page 4

7. (a) In comparison with courses which have a similar
relationship (e.g., elective, required course)
to my program, the amount of time I now allot to
this

5

6

13

9

course is

9

12
6

28

2

2

1

14

1

2 1

much more average less much
more than , than less
than average average than
average average

(b) At the beginning of the course I had expected this
time allocation to be

6 8 2

1 15 4 1

2 12 7

8 30 17 1

much more average less much
more than than less
than average average than
average average

8. This course has been frustrating:

1 7 6 2

1 5 10 5

3 4 12 2

3 5 28 15

all of most of some of only never
the time the time the time occasionally

278

Page 5

9. (a) With respect to intellectual challenge, before I
began the course I expected the subject matter
to be

3 8 5

2 13 5

2 11 8

6 37 13

1

very challenging about trivial very
challenging average trivial

(b) With respect to intellectual challenge, I would
now rate the subject matter as

2 4 9 1

5 11 5

7 11 2 1

10 29 16 1

very
challenging

challenging about trivial very
average trivial

10. (a) Before I began the course I would have rated the
subject matter as

5 7 3 1

2 17 2

8 10 3

18 35 9

very valuable about worthless very
valuable average worth-

less

.279

Page 6

10. (b) I now rate the subject matter as

5 7 3 1
2 17 1 1
6 9 6

9 36 12

very valuable about worthless very
valuable average worthless

11. Do you believe that teaching can be automated?

12 4
10 11
15 6

36 17

yes no

APPENDIX B

QUESTIONNAIRE B AND SUMMARIES OF STUDENT
RESPONSES

For each ouestion, two sets of responses are given.

The italicized set represents the total from the Spring

class, the other set represents the Fall class. Some.

questions, e.g., Section III, Questions 10 and 11, were

not applicable to the Spring class and so were not

printed on the Spring questionnaire.

Section II of this questionnaire is a "student

reaction inventory"
1
developed at Pennsylvania State

In the Fall, 21 students out of a possible 22

completed the questionnaire. In the Spring, 56 out

of 69 completed Sections I to III, and 36 out of 69

completed Section IV.

'The.-TieVeldpMent. and Presentation of Four College
Courses. by Computer TeleproteSsIng. Computer Assisted
Instruction Laboratory, The Pennsylvania State University,
University Park, Pennsylvania. June 30, 1967.

281

NAME:

COMPUTER-ASSISTED INSTRUCTION STUDY

FALL 1972

Student Questionnaire for the CAI Group

Please fill out the attached questionnaire as completely
and accurately as possible. The information gathered will
be used to enhance the Department of Computer Science's
CAI System. We are seeking information, not compliments;
please be frank.

You will not be graded on your responses to this question-
naire. Neither will any student be listed or mentioned
by name or number in reports describing the results of
this study.

J. C. Mudge
Experimenter

Sections I, II and III are to be completed in class on
Monday,.October 2, 1972. Section IV is to be handed in
at the beginning of class on Wednesday, October 4, 1972.

JCM/vj

282

SECTION I

1. I have had contact with computer-assisted instruction
prior to this course:

20
51

1

5

no yes (please specify)

2. My initial reaction when informed that the first weeks
of instruction would be by CAI was

12 6 3

9 30 12 5

very favorable indifferent unfavorable very
favorable unfavor-

',/ able

3. I enjoyed the scheduling freedom provided by CAI

6 15
1 4 21 30

strongly disagree uncertain agree strongly
disagree agree

283

Section I
Page 2

4. I use a typewriter keyboard

7 7 4 3

12 32 8 2 2

by touch by touch hunt-and- hunt-and- (not familiar
fluently halting- peck peck with a type-

ly. rapidly haltingly writer
keyboard)

5. I prefer the lesson units to be

longer

15 2

44 3

the length shorter
they were

6. My first and second choices for lesson length are
[Responses were weighted for 2 for first choice,
1 for second.]

8 11 11 13 8

2 16 41 54 48

10 mins 20 mins 30 mins 45 mins 60 mins

7. I would like more opportunity during a CAI session
to review

2 15 1 3

2 43 3 8

complete parts of lessons,
lessons both slides and

questions

slides only (no review)

284

Section I
Page 3

_8. I reviewed slide handouts between CAI sessions

3 8 5 3 2

12 15 16 11 2

all the most of some of only never
time the time the time occasionally

9. After each CAI session I would like a printed copy of
the questions and answers covered in the session

1 5 15
1 4 24 27

strongly disagree uncertain agree strongly
disagree agree

. 10. For entering my answer to a multiple-choice question,
I prefer to use

5 16
19 34

the light pen numbers entered from
the keyboard

11. Messages on the TV screen were removed too quickly

3 6 11 1
10 25 21

all the most of some of only never
time the time the time occasionally

2 8!,

Section I
Page 4

12. I prefer to press INT to signal when I have read a
message on the TV screen

1

4

12 8

32 20

strongly disagree uncertain agree strongly
disagree agree

13. Some slides had no questions. I prefer one or more
questions after each slide

2 7 6 5 1

1 22 18 12 3

strongly disagree uncertain agree strongly
disagree agree

14. I found the weekly question-and-answer sessions with
the instructor to be

7 11 3

5 30 18 3

very sometimes not very (I didn't go)
helpful helpful helpful

286

Section I
Page 5

15. Assuming three contact hours per week, what would be
the best balance between CAI and in-class instruction?

6 12 1 2

10 39 4 2

CAI hours 3 2 1 0

in-class hours 0 1 2 3

16. Compared to a regular in-class lecture, during a CAI
session I felt I had to concentrate

5 10 4 2

11 30 9 6

much more more about the same less much
less

17. When I entered an answer the computer responded with
adequate speed

4

5

16 1

38 9 4

all the most of some of only
time the time the time occasionally

never

SECTION Tf

CIRCLE THE RESPONSE THAT MOST NEARLY REPRESENTS YOUP
REACTION TO EACH OF THE STATEMENTS BELOW:

1. While taking Computer assisted Instruction I fell_

challenged to do my best work,

2

`?-

14

13

1 3

Strongly Disagree Uncertain
Disagree

21 6

Agree SI-rongly

2. The material presented to me by Computer Af..sted
Instruction caused me to feel that no One refly
cared whether I learned or not.

7 12
12 34 6 2 1

Strongly Disagree .j.ricertain. Agree
Disa,2-r,ee

Strongly
Agree

The method by which I wa a. told whether I
a right or wrong answer became monOtonoufri.

2 7

3 24

Strongly
Disagree

Li agree Uncertain

12

Agree S'':rongy
Agfee

288

4. I was concerned that I might not be understanding the
material.

1 5 2 12 1

1 22 6 23 4

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

5. I was not concerned when I missed a question because
no one was watching me anyway.

7 9 5

9 28 6 13

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

6, While taking Computer Assisted Instruction I felt
isolated and alone.

2 3 3 13
3 4 4 16 29

All the Most of Some of Only Never
time the time the time occasionally

7. While taking Computer Assisted Instruction I felt as
if someone were engaged in conversation with me.

1 1 5 6 8

4 7 17 10 18

All the Most of Some of Only
time the time the time occasionally

Never

8. The responses to my answers seemed appropriate.

2

14 -6 1

26 22 6 1

289

All the Most of Some of Only Never
time the time the time occasionally

9. I felt uncertain as to my performance in the programmed
course relative to the performance of others.

3 3 5 7 3

4 7 12 17 15

All the Most of Some of Only Never
time the time the occasionally

10. I found myself just trying to get through the material
rather than trying to learn.

1 1 5 7 7

2 2 18 21 13

All the Most of Some of Only Never
time the time the time occasionally

11. I knew whether my answer was correct or not before
was told.

4 7 6 3 1

3 31 15 5 2

Quite Often Occasionally Seldom Very Seldom
often

12. I guessed at the answers to questions.

1 1

2 2

11 2 6

30 16 6

Quite Often Occasionally Seldom Very Seldom
often

290

13. In a situation where I am trying to learn some' 'ling,
it is important to me to know where I stand relative
to others.

3 11 1 4 2

' 6 25 13 11 1

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

14. I was encouraged by the responses given to my answers
of questions.

1 3 7 9 1

2 14 17 23

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

15. As a result of having studied some material by Computer
Assisted Instruction, I am interested in trying to find
out more about the subject matter.

1 2 5 11 2

6 15 34 1

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

16. In view of the time allowed for learning, I felt too
much material was presented.

1 5 8 7

2 4 14 36

All the Most of Some of Only Never
time the time the time occasionally

17. I was more involved in running the machine than in
understanding the material.

1

2 7 12
2 5 31 17

291

All the Most of Some of Only Never
time the time the time occasionally

18. I felt I could work at my own pace with Computer
Assisted Instruction.

1 2 9 9

3 1 32 20

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

19. Computer Assisted Instruction makes the learning too
mechanical.

5 11 2 2 1

13 32 6 5

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

20. I felt as if I had a private tutor while on Computer
Assisted Instruction.

1 7 2 10 1

1 21 11 16 7

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

21. I was aware of efforts to suit the material specifi-
cally to me.

1 5 9 6

6 24 16 9 1

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

2`37

22. I found IL difficult to concentrate on the couri
material because of the hardware.

All the
time

Most of
the time

4

11
24

Some of Only
the time occasionally

10
28

Never

23. The Computer Assisted Instruction sjtition made me
feel quite tense.

7

18

Strongly
Disagree

11
33

2

2

Disagree Uncertain

3

Agree

1

Strongly
Agree

24. Questions were asked which I felt were not relevant
to the material presented.

All the
time

1

1

4

10
30

Most of Some of Only
the time the time occasicnally

10
21

Never

25. Computer Assisted Instruction is an inefficient use of
the student's time.

8

21

Strongly
Disagree

10
25

3

5 4

Disagree Uncertain Agree

1

Strongly
Agree

26. I put in answers knowing they were wrong in order to
get information from the machine.

1 1

6

8

21

4

15

7

13

Quite often Often Occasionally Seldom Very Seldom

293

27. Concerning the course material I took by Computer
Assisted Instruction, my feeling toward the material
before I came to Computer Assisted Instruction was:

3 11 5

5 . 33 17

2

Very Favorable Indifferent Unfavorable Very
favorable Unfavor-

able

28. Concerning the course material I took by Computer
Assisted Instruction, my feeling toward the material
after I had been on Computer Assisted Instruction is:

2

8

17 2

37 9

Very Favorable Indifferent Unfavorable Very
favorable Unfavor-

able

29. I was given answers but still did not understand the
questions.

1
3

11 3 6

28 14 10

Quite often Often Occasionally Seldom Very
Seldom

30. While on Computer Assisted Instruction I encountered
mechanical malfunctions.

1 10 6 4

2 6 24 12 11

Quite often Often Occasionally Seldom Very
Seldom

2'111

31. Computer Assisted Instruction made it possible for me
to learn quickly.

1

5 12 3

5 21 24 5

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

32. I felt frustrated by the Computer Assisted Instruction
situation.

3 12 3 2 1

11 31 6 6 1

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

33. The responses to my answers seemed to take into account
the difficulty of the question.

1

7 6 8

19 17 17 1

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

34. I could have learned more if I hadn't felt pushed.

4 8 6 2 1

6 35 7 6

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

35. The Computer Assisted Instruction approach is
inflexible.

1 9 4 6 1

1 38 10 5 1

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

295.

36. Even otherwise interesting material would be boring
when presented by Computer Assisted Instruction.

4 14 2 1

8 37 6 4

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

37. In view of the effort I put into it, I was satisfied
with what I learned while taking Computer Assisted
Instruction.

1 3 13 4

2 6 5 36 6

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

38. In view of the amount I learned, I would say Computer
Assisted Instruction is superior to traditional
instruction.

2 1 7 7 4

2 /3 18 17 4

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

39. With a course such as I took by ariiputer Assisted
Instruction, I would prefer Computer Assisted
Instruction to traditional instruction.

1 3 2 10 5

2 7 17 2l 8

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

296

110. L am not in Favor of Computer Assisted Instruction
because it is just another step toward de-personaiii,ed
instruction.

5 14 1 1
10 29 8 7 2

Strongly Disagree Uncertain Agree Strongly
Disagree Agree

2 9 7

SECTION III

1. The West House CAI Center was a smoothly running
operation.

15 6

7 41 6 1

all the most of some of only never
time the time the time occasionally

2. How long did it take you to get used to the operation
of the CAI System?

15

10

5

minutes

10 20 30 40 50 60

3. Did you receive adequate instruction in operating the
work station?

15 6

53 2

yes no
(please suggest improvements)

298

Section III
Page 2

4. How many scheduled CAI sessions did you miss because
the CAI System was inoperative?

0
8

43

1
9

17

2
3

3

1

4

4 1

5. How many scheduled CAI sessions did you miss because
the next batch of course material was not ready?

12

1 7

2

3

6. During my CAI sessions I requested help from the
proctor

1 8

15

11 1

32 4

quite often often occasionally seldom very seldom

299

Section III
Page 3

7. I consider the availability of a proctor to be

17 3 1

41 11 3

essential highly desirable desirable not essential

8. I consider the proctor call switch to be a good
method of summoning the proctor.

17
54 1

yes no
(Please give reason)

9. When I needed assistance from a proctor I felt he was
familiar with Dr. Brooks's course material.

7 11 1 2

27 19 4 2 2

all the most of some of only
time the time the time occasionally

never

10. For experimental control reasons, the proctor was not
allowed to answer subject matter questions.
If this restriction was removed I would prefer to be
able to ask the proctor questions on the subject
matter.

1 3 12 5

strongly disagree uncertain agree strongly
disagree agree

300

Section II]
Page 4

11. I had difficulty reading the black-and-white slides

1 4 8

all the most of some of only never
time the time the time occasionally

12. Viewing the TV screen and slide screen resulted in
eyestrain

8 13
2 4 12 37

all the most of some of only never
time the time the time occasionally

13. I found the work station room to be

(Circle all that apply)
2 18
6 21 12 2 29

too cold too hot stuffy too noisy comfortable

14. I prefer the room lighting to be

9

4 '

on

12
8

off

15. I prefer to work with the work station door

3 18
10 44

open closed

16. 1 prefer the keyboard height to be

1

lower

301

Section III
Page 5

20 1

52 2

about the same higher

17. I was distracted by noise outside the work station

often

6 15
7 48

sometimes never

18. I felt uncertain as to how I should be making use of
the prescribed texts for this course

1 1 1 14 4

2 13 5 26 9

strongly disagree uncertain agree strongly
disagree agree

302

[NAME:

Student Questionnaire for the CAI Group

SECTION IV

(To be handed in at the beginning of class on Wednesday,
October 4, 1972)

1. A hint facility in a CAI system would respond with an
author-prepared hint when reqUested during a question/
answer sequence.

I view such a 1:int facility as

6 11 4

4 18 12 2

mandatory highly desirable desirable not necessary

2. A definition facility in a CAI system would allow a
student to consult an author-prepared dictionary or
glossary stored in the system. Sample student
requests might be

)define variable

)define 11

)define INDEX

I view such a definition facility as

3 10 8

7 21 7 1

mandatory highly desirable desirable not necessary

303

3 A student-controlled review facility in a CAI system
would enable a student to request a review at any time
in a session. The request)review would result in the
display of a menu of topics available for review. The
student would light pen his selection.

In the CAI course you have just taken, opportunities
for review were given in later lessons and then only
at author-specified points.

I view a student-controlled review facility as

9 7 4 1
7 18 9 2

mandatory highly desirable desirable not necessary

4. I would like all of the courses this semester to be on
the CAT system

3 6 5

9 12 8

5 2

4 2

strongly disagree uncertain agree strongly agree
disagree
[This question is of doubtful use because of a typo-
graphical error - I intended "courses" to be singular.]

5. I suggest the following improvements to the work
station:

6. I suggest the following improvements to the West House
operation:

7. Of the courses I have taken I feel that the following
are suited to presentation by CAI:

8. Any other comments:

JCM/vj
1072

304

APPENDIX C

POSTTEST

(5 min.) 1. What is an algorithm? Give a brief
example of an algorithm.

(10 min.) 2. Distinguish between variables and values.
How may variables be given values?

(5 min.) 3. Find all of the errors in each of the
PL/C statements below. Use the space
provided beneath each statement to
describe the errors in the statement.
If a statement contains no errors, indicate
this by writing NO ERRORS FOUND beneath
the statement.

LABEL 1: GET LIST X,Y,Z;,

A B = C;

X = 24X Y;

(10 min.) 4. Two numbers are in variables FIRST and
SECOND. Write a PL/C statement using IF
to put the larger number into a variable
called BIG. Assume everything has been-
properly declared.

305

(20 min.) 5. What is the output from this program?
Draw a box around your answer.

Hint: Trace through the program as if it
were executing. Note each change
in the value of any variable. If
your answer is incorrect, any
partial credit given will be based
on your trace. If necessary, you
may use the blank page following this
one.

PGM: PROC OPTIONS (MAIN);
DCL (I,Y) FIXED;
DODO: DO I = 1 TO 5;

GET LIST (Y);
IF Y < 5 THEN L: DO;

PUT LIST (Y);
Y = 2 * Y;
END L;

PUT LIST (Y);
END DODO;

END PGM;
DATA
1, 2, 4, 8, 16

SELECTED BIBLIOGRAPHY

SELECTED BIBLIOGRAPHY

Alpert, D., and Bitzer, D. L. Advances in computer-based
education. Science 167, (March 20, 1970), 1582-1590.

Avner, R. A., and Tenczar, Paul. The TUTOR manual.
Computer-based Education Research Laboratory,
University of Illinois Urbana, 1'69.

Bitzer, Donald, and Skaperdas, D. The economics of a
large-scale computer-based education system: Plato IV.
In Computer-assisted instruction, Testing, and
Guidance, Wayne H. Holtzman, (Ed.), Harper and Row,
New York, 1970, 17-29.

Brooks, F. P. Jr., Ferrell, J. K., and Gallie, T. M.
Organizational, financial, and political apsects
of a three-university computing center, Proc. IFIP
Congress 1968, North Holland Publishing Co.,
Amsterdam, 923-927.

Brooks, F. P. Jr. Computer-man communication: Using
computer graphics in the instructional process.
In Advances in Computers, W. Freiberger, (Ed.),
Academic Press, New York, 1970, 149-173.

Bunderson, C. Victor. The computer and instructional
design. In Computer-assisted Instruction, Testina,
and Guidance, Wayne H. Holtzman, (Ed.), Harper and
Row, New York, 1970, 45-73.

Bundy, Robert F. Computer-assisted instruction -- Where
are we? Phi Delta Kappan 49, 8 (Apr. 1968), 424-429.

arbonnel, J. R. AI in CAI: An artificial intelligence
approach to computer-assisted instruction. IEEE
Transactions on Man-Machine Systems

5

MMS-11, 4
(Dec. 19705-, 190-202.

308

Cheatham, T. E. The Theory and Construction of Compilerr
Excerpts, Second Edition. Computer Associates, Wake-
field, Mass. 1967.

Computer Communications, Inc. CC-30 Communications
Station Reference Manual. 1968.

Conrow, K., and Smith, R. G. NEATER2: A PL/I source
statement reformatter. Communications of the ACM
13, 11 (Nov. 1970), 669-675.

Davenport, B. A. and others. The Florida State University
Data Management System.for the IBM 1500/1800 Instruc-
tional System (Introductory Documentation). Computer-
Assisted Instruction Center, Florida State University,
July, 1968.

Dearborn, R. 0. A study of the value of hard copy output
in computer-assisted instruction. M.S. Thesis,
University of North Carolina, Chapel Hill, 1970.

Dijkstra, E. W. Notes on Structured Proramming. EWD 249,
Technical Report, Technical University Eindhoven, 1970.

Feingold, S. L. PLANIT - A flexible language designed for
computer-human interaction. Proc. AFIPS 1967 SJCC,
Vol. 30, AFIPS Press, Montvale, N. J., pp. 545-552.

Feldman, J. A., and Gries, D. Translator writing systems.
Communications of the ACM 11, 2 (Feb. 1968), 7'/-113.

Fenichel, R. R., Weizenbaum, J., and Yochelson, J. C.
A program to teach programming. Communications of
the ACM 13, 3 (Mar. 1970), 141-146.

Freeman, D. N. A storage hierarchy system for batch
processing. Proc. AFIPS 1968 SJCC, Vol. 32, AFIPS
Press, Montvale, N. J., pp. 229-243.

Freeman, D. N., and Pearson, R. R. Efficiency vs
responsiveness in a multiple-services computer
facility. Proc. ACM, 23rd Nat. Conf., 1968, 25-34b.

Gries, D. Compiler Construction for Digital Computers.
Wiley,-New York, 1971.

309

Hansen, D. N. Development of CAI Curriculum. In CAI
Center, Florida State University: Annual Progress
Report, January 1, 1968, through December 31, 1968,
Florida State University, Tallahassee, Florida,
1969, 119-138.

Hesselbart, J. C. FOIL a file-oriented interpretive
language. Proc. ACM, 23rd Nat. Conf., 1968, 93-98.

Hesselbart, J. C., D'Arms, T., and Zinn, K. L. File-
oriented Interpretive Language, Part I, A Manual
for Authors. University of Michigan, April, 1969.

HumRRO. Project IMPACT - Computer-Administered Instruc-
tion: Description of the Hardware/Software Subsystem.
Human Resources Research Organization, December, 1970.

Hunt, E., and Zosel, M. Writeacourse: An educational
programming language. Proc. AFIPS 1968 FJCC, Vol. 33,
AFIPS Press, Montvale, N. J., pp. 923-928.

IBM Corporation. IBM 1500 Coursewriter II Author's Guide,
Form Y26-5681. July, 1968.

. Coursewriter III for System/360-Version 2,
Application Description Manual, Form H20-0587.
August, 1969.

. Coursewriter III for System/3601-Version 2,
Author's Guide, Form GH2O -0609. December, 1969.

. Coursewriter III for System/360-Version 2,
Student/Monitor Users Guide, Form GH2190-0608.
September, 1969.

. Coursewriter III for .System/360-Version 2,
Supervisor's Guide, Form GH20-0610. January, 1970.

. System/360 Operating System, PL/I (F)
Language Reference Manual, Form GC28-8201. June,
1970.

Kirk, R. E. Experimental Design Procedures for the
Behavioral Sciences. Brooks/Cole, Belmont, 1968.

McKeeman, W. M., Horning, J. J., and Wortman, D. B.

A Compiler Generator. Prentice-Hall, Englewood
Cliffs, 1970.

310

Meadow, C. T., Waugh, D. W., and Miller, F. E. CG -1,
a course generating program for computer-assisted
instruction. Proc. ACM, 23rd Nat. Conf., 1968,
99-110.

Mudge, J. C. UNC CAI System - Systems Programmer Manual,
Department of Computer Science, University of North
Carolina, Chapel Hill, 1972.

Naur, P. (Ed.) Revised report on the algorithmic
language ALGOL 60. Communications of the ACM 6,
1 (Jan. 1963), 1-17.

Newman, W. M. A system for interactive graphical
programming. Proc. AFIPS 1968 SJCC, Vol. 32,
AFIPS Press, Montvale, N. J., pp. 47-54.

Oettinger, A. G. Run, Computer, Run. Collier, New York,
1969.

Oldehoeft, A. E. Analysis of constructed mathematical
responses by numeric tests for equivalence.
Proc. ACM, 24th Nat. Conf., 1969, 117-124.

Oliver, P., and Brooks, F. P., Jr. Evaluation of an
interactive display system for teaching numerical
analysis. Proc. AFIPS 1969 FJCC, Vol. 35, AFIPS
Press, Montvale, N. J., pp. 525-533.

Pakin, S. APL/360 Reference Manual, Science Research
Associates, Inc., Chicago, 1968.

Radin, G., and Rogaway, H. P. Highlights of a new
programming language. Communications of the ACM 8,
1 (Jan. 1965), 9-17.

Sackman, H. Computers, System Science, and Evolving
Society. Wiley, New York, 1967.

Sackman, H. Man-Computer Problem Solving. Auerbach
Princeton, 1970.

Sammet, J. E. Programming Languages: History and
Fundamentals. Prentice-Hall, Englewood Cliffs,
1969.

311

Schultz, G. D. CHAT: An OS/360 MVT time-sharing sub-
system for displays and teletype. M.S. Thesis,
University of North Carolina, Chapel Hill, 1973.

Simmons, R. F. Natural language question-answering
systems: 1969. Communications of the ACM 13, 1
(Jan. 1970), 15-30.

Stolurow, L. M., and Peterson, T. I. Harvard University
Computer-Aided Instruction (CAI) Laboratory, Technical
Report No. 6, March, 1968.

Suppes, P., Jerman, M., and Brian, D. Computer-Assisted
Instruction: Stanford's 1965-66 Arithmetic Program.
Academic Press, New York, 1968.

Suppes, P., and Morningstar, M. Computer-assisted
instruction. Science 166, (Oct. 17, 1969), 343-350.

Thompson, F. B., Lockeman, P. C., Dostert, B., and
Deverill, R. S. REL: A rapidly extensible language
system. Proc. ACM, 24th Nat. Conf., 1969, 399-417.

Walters, J. Private communication. 1970.

deizenbaum, J. ELIZA - a computer program for the study
of natural language communications between man and
machine. Communications of the ACM 9, 1 (Jan. 1966),
36-45.

Wexler, J. D. A_generative, remedial and query system
for teaching by computer. Ph.D. Thesis, University
of Wisconin, 1970.

Wexler, J. D. Information networks in generative computer-
assisted instruction. IEEE Transactions on Man-Machine
Systems,MMS-11, 4 (Dec. 1970), 181-189.

Zinn, K. L. A comparative study of languages for
)1-,ogramming interactive use of computers in
Instruction. EDUCOM, Boston, 1969.

