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PREFACE

This is one of a continuing series of reports of the Ford Founda-

tion sponsorei. Research Program in University Administration at the Uni-

versity of California, Berkeley. The guiding purpose of this Program is

to undertake quantitative research which will assist university admini-

strators and ether individuals seriously concerned with the management of

university systems both to understand the basic functions of their com-

plex systems and to utilize effectively the tools of modern management

in the allocation of educational resources.

This study investigates the resource allocation problem of faculty

hiring and promotion patterns using the techniques of optimal control

theory. If is both an extension and a synthesis of the conceptual ana-

lysis of faculty structure introduced in earlier papers in this series.

The principal characteristics of the faculty system considered are:

(1) linear system propagation; (2) a convex preference function to rank the

relative values of varying the states of the system; and (3) four state var-

iables and four control variables including the stocks and flows of (a) full

professors, (b) associate professors, (c) assistant professors, and (d) in-

strtctors. The specific approach adopted for this investigation assumes

that the promotion policies and attrition rates of faculty members are

relatively fixed over the short run and the only variables left open to

achieve a desired faculty structure are the institutional hiring policies.

Under these conditi( q, the optimal open loop faculty hiring paths are cal-

culated and their se..sitivity is investigated. Finally, this study inves-

tigates and evaluates several solution procedures.

This paper was presented at the Eleventh American Meeting of The In-

stitute of Management Science, October 19-21, 1970.



I. INTROUCTION

The analytical techniques of optimal resource allocation have been ap-

plied to decision making in general and in institutions of higher education

in particular.
1

One area that is both financially dominant in the public

sector and academically essential is the educational administrator's need

to dee.de on the most desirable pattern of faculty hiring and promotion.

On a national basis, faculty salaries are the most expensive component of

an institution's budget, accounting for $5.5 billion in 1968-69,2 and the

number of faculty positions is often fixed by law or slowly evolves under

tenure restrictions. Furthermore, the quality of the faculty is essential

because they set the tenor of the institution and participate in many of

the academic and administrative decisions.

Some aspects of this problem were discussed in a recent paper concer-

ning equilibrium faculty patterns resulting from current in :utional ap-

pointment and promotion policies.
3

Using the Berkeley campus of the Uni-

versity of California as an example, it was shown that the logical extrapo-

lation of the current data would result in no feasible equilibria for cur-

rent policies.
4

More generally, present policies have resulted in facul-

ties more heavily concentrated in tenure ranks than is often desired. Fur-

thermore, under present policies this situation will tend to worsen over

time because of the current youthful faculty age distribution reflecting

1
For an extensive discussion of this research area, see Weathersby [16].

2
Howard R. Bowen, "Financial Needs of the Campui," in Robert H.

Connery [3].
3
Oliver [ 9]. See also: Bartholomew [l], Halpern [ 4], Reisman [10],

and Reisman and Taft [11].

"In this context, feasibility was defined as those regions which fulfilled
certain tenure/non-tenure proportional constraints as well as the enforced dy-
namics of the system under current appointment and promotion policies.
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the rapid faculty expansion of the past decade. Therefore, one major pro-

blem of the educational administrator is to allocate his open faculty posi-

tions wisely by choosing hiring and promotion policies which fulfill his

long-term goals of faculty rank distribution while meeting his budgetary

or other resource constraints.

One approach to the analysis of this problem is for a campus or system

level administrator to assume that in the short run the promotion policies

and attrition rates of faculty members are both relatively fixed and beyond

his immediate control. While it is true that over time an administrator

can affect promotion and attrition rates by policy changes and financial in-

centives, often the only control variables available to the campus decision

maker to help him achieve a desired faculty structure in the short run are

the institutional hiring policies. The scarce resource constraint can be

interpreted as either a limit on the total funds available for academic

salaries or a limit on the total number of full time equivalent teaching

positions allowed.

While there are clear political and bureaucratic costs associated with

exceeding an administrator's available resources, there is also concern as-

sociated with the under-utilization of a resource in the public sector.

Unused resources often have high opportunity costs associated with them

and public fiducial rasp'nsibility requires the maximum productive use of

public funds. Furthermore, unmet public needs can foster political dis-

content when funds are not used to their full availability. Finally, the

future budget allocation of a scarce resource is frequently dependent upon

the full use of that resource in the current period. Administrators are

aware that under-utilization in one period may very well lead to a lesser

budget for the following period.

In addition to the resource constraint, the decision maker must also
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consider institutional preferences for a well-balanced faculty, not only in

terms of subject field but also in terms of professorial rank. While the

definition of this factor may vary widely, the balance of senior and junior

facqlty is nevertheless important and relevant in the decision process.

The decision system described in this study is a multi-stage decision

system, in which the results of current decisions are perceived in subsequent

years and current decisions are constrained by past hiring decisions. The

degree to which the decision maker fulfills his goals can be measured by a

utility or scoring function which is defined for the particular decision

maker in question.

This paper is concerned with the application of control theory to the

solution of,the optimal open-loop faculty hiring problem. Chapter II con-

tains a description and estimation of the formal model of the faculty struc-

ture. Chapter III contains a mathematical formulation of the analysis.

Chapter IV contains discussion of the numerical results derived from the

application of the model, and Chapter V summarizes the conclusions drawn

from this study, and discusses future research. The computer program used

for these solutions was written in a generalized format so that it could

be easily applied by other researchers to similarly defined allocation pro-

blems. Appendix B described how a copy of the user's manual or the pro-

gram may be obtained from the Aothors.
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II. THE CONCEPTUAL MODEL, DATA, AND ESTIMATION

8F. THE WEN DYNAMICS

Conceptual Formulation

For the purposes of this analysis, the variables which characterize

faculty structure can be divided into (a) those variables which the deci-

sion maker can directly control, called control variables and designated by

the symbol u ; (b) those endogenous variables which cannot be controlled

by the decision maker, called state variables and designated by the symbol

x ; and (c) those exogenous variables impinging upon the system, which are

designated by the symbol z . To avoid the possibility of the problem be-

coming degenerate, we assume that neither x nor u is empty.
5

For the

pUrpcses of this analysi3, these variables are assumed to be related by

the liner dynamic propagation equation:

x(i + 1) = Fx(i) + Gu(i) + Hz(i) i = 0, 1, I ., N - 1 (1)

where the initial x(0) is given and where i is the planning period and

N is the total number of planning periods considered. We either knew or

can measure the initial state of the system, x(0) . Also basic to the model

is a preference function formulated by the decision maker to describe the

relative values of the states of the system. The intensity of preference

for a particular state can be written as a function of the current state var-

iables, control variables and the decisicn period, and is denoted as

V (x, u, i) . Because we are eoncerned with an N period decision pro-

5
If u is empty, the decision maker has no control over the faculty struc-

ture and the decision problem is meaningless. If x is empti, the problem is
directly analagous to the problem of consumer demand with the same solution.
See Samuelson [12].
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blew, we must further define a scalar summary measure for the future stream

of preferences,
6
which we denote as J :

N-1
J = a

N
V(x(N), u*(N), N) + F a

i
V(x(i), u(i), i)

i-0

The N
th

term is separated from the first N - 1 terms t-.) reflect the

(2)

truncation of an infinite sequence after N periods. The symbol cci de-

notes a weighting or discount factor introdu:ed to refle:t the time prefer-

ence of the decision maker's utility. Using this notation, the multi-stage

public sector resource allocation decision problem is to choose from the ad-

missible set the control sequence u(i), i = 0, 1, 2, . . N - 1 to

N-1
Max 0 = a

N
V[x(N), u*(N), N] + y a

i
v[x(i), u(i), ill

i=0

subject to

(3)

x(i + 1) = Fx(i) + Gu(i) + Hz(i) i = 0, 1, . . ., N - 1 (4)

x(0) given ,

and any budgetary or physical constraints.

Application to the Faculty Structure Problem

To apply this resource allocation decision model to the optimal faculty

structure problem, we define the system variables as follows. The state and

control vectors, x and u , refer to the foul: academic instructional ranks

of all disciplines: (1) full professor, (2) associate professor, (3) assis-

tant professor, and (4) instructor, where x(i) are the number of faculty of

e;..ch rank continuing at the end of academic year i , and u(i) are the num-

ber of faculty of each rank hired at the beginning of year i . We may write

6
This assumes the intertemporal separability of preference to enable

feasible assessment and tractable solution.
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the dynamics of the faculty structure as
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In other words, the number of full professors in the system at the end of next

year is a function of the number of full professors completing this year (per-

sistence), the number of associate professors completing this year (promotion),

and the number of full professors hired this year. We assume that (1) no fac-

ulty member is promoted more than one rank in each year, (2) no faculty mem-

ber is demoted to a lower rank, and (3) no newly hired faculty member is

promoted within the first year of his contract. There have been very few

exceptions to these assumptions in the recent history of the University of

California.

There are several logical restrictions thct should be imposed on the

elements of the F and G matrices. Each year some people leave the sys-

tem because of death, retirement, or resignation; therefore,

0 < f < 1.0 and

0 <
gii

< 1.0 for i 1, 2, 3, 4, and

4

< 1.0 for j 2, 3, 4 .

i1 ij

The assumption of linear system equations allows one to use the tech-

niques of multiple linear regression to estimate statistically the elements

of the F and G matrices. Data were available for the total number of

full time equivalent (FTE) faculty by rank for the academic years 1962-63,
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to 1967-68 and a summary of the data is given in Table 1 and a correlation

matrix is given in Table 2. The number of new hires for each rank and year

were subtracted out for use as an independent variable in the regression

equations. The results of the ordinary least squares multiple regression

on data for total University of California are shown in Table 3. While

the coefficients of multiple determination (R
2
) were very high (.96 to .99),

fire of the eleven coefficients violated the logical sign and magnitude

restriction: This is not surprising because the ordinary least squares

regression did not recognize any inequality coefficient constraints.

The estimation of transition probabilities has been discussed exten-

sively in the literature and a number of techniaues have been developed
7

to avoid the difficulties of ordinary least squares. Most of iese tech-

niques are formulated for equations in which the transition probability

is the dependent variable rather than the coefficient applied to an inde-

pendent or predetermined variable. However, one approach that recognizes most

of the logical coefficient restrictions is quadratic programming which

minimizes [x(t + 1) - Fx(t) - Gu(t)]tlx(t + 1) - Fx(t) - Gu(t)] . This

quadratic programming estimation technique was used on the same data and

produced the coefficient estimates given in Table 4. We observe that all

sign and magnitude restrictions are met by these estimates.

It is interesting to compare the results derived by ordinary least

squares with the estimates computed by quadratic programming. Table 5 shows

that the sum of squared residuals and the standard error as a percent of the

mean derived by quadratic programming estimation are very close to the cor-

responding quantities derived by ordinary least squares, except in the case

7
See Lee, Judge and Cain [ 8] for a comparison of five alternative esti-

mation techniques; Zellner and Lee [17] for a d' -ussion of Logit, Frobit,

Gompit, weighted least squares and joint estimation techniques; and Theil

and Rey [13] for a discussion of quadratic programming.
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of instructors.

Finally, a set of subjectively assessed coefficients was used cs a test

for sensitivity and reasonableness. These values are given in Table 6 and

indicate that annually 10% of the instructors are g).- mated to assistant pro-

fessors, and 20% of both the assistant professors and the associate professors

are promoted one rank. Furthermore, these judgmental values indicate that

only 5Z of the faculty Isavetthe system each year. This is greater than the

recent attrition experience of about 2% at the University of California.
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TABLE 1: SUMMARY OF DATA USED

Variable Mean
Standard

Deviation

Full Professors 1576.9 211.15

Associate Professors 899.24 8C.652

Assistant Professors 1299.4 246.15

Instructors 102.71 16.164

New Full Professors 76.333 25.617

New Associate Professors 56.833 25.816

New Assistant Professors 366.50 99.863

New Instructors 68.667 14.091
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TABLE 3: TRANSITION MATRICES DERIVED FROM UNCONSTRAINED

MULTIPLE REGRESSIONS

F -Matrix

Full Associate Assistant Instructor

Full 0.6854 1.11 0.0 0.0

Associate 0.0 -0.0689 0.1088 0.0

Assistant 0.0 0.0 0.4956 -0.5818

Instructor 0.0 0.0 0.0 -0.2955

G -Matrix

Full Associate Assistant Instructor

Full 0.9112 0.0 0.0 0.0

Associate 0.0 2.050 0.0 0.0

Assistant 0.0 0.0 0.8138 0.0

Instructor 0.0 0.0 0.0 0.2413

Z-Vector 'constants)

Full Associate Assistant Instructor

-413.6 703.9 275.2 28.26
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TABLE 4: TRANSITION MATRICES DERIVED FROM QUADRATIC

PROGRAMMING ESTIMATION

F -Matrix

Full Associate Assistant Instructor

Full 0.7058 0.5242 0.0 0.0

Associate 0.0 0.9570 0.03 0.0

Assistant 0.0 0.0 0.960 0.450

Instructor 0.0 0.0 0.0 0.526

G-Matrix

Full Associate Assistant Instructor

Full 1.000 0.0 0.0 0.0

Associate 0.0 ' 0.63 0.0 0.0

Assistant 0.0 0.0 0.23 0.0

Instructor 0.0 0.0 0.0 0.738
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TABLE 5: COMPARISON OF EFFICIENCY OF ORDINARY

LEAST SQUARES AND QUADRATIC PROGRAMMING ESTIMATION

Full

Ordinary Leasc Squares

Associate Assistant Instructor

Sum of Squared Residuals 4960 11590 19690 730

Standard Error of Estimate 49.8 76.1 99.2 15.6

Standard Error as Percentage

of Mean 3.04 8.30 7.30 15.97

Quadratic Programming

Sum of Squared Residuals 5045 11591 33541 1513

Standard Error of Estimate 50.2 76.1 129.5 22.5

Standard Error as Percentage
of Mean 3.07 8.30 9.50 22.95
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TABLE 6: JUDGMENTALLY ASSESSED TRANSITION MATRICES

Full Associate Assistant Instructor

Full 0.95 0.20 0.0 0.0

Associate 0.0 0.75 0.20 0.0

Assistant 0.0 0.0 0.75 0.10

Instructor 0.0 0.0 0.0 0.0

G-Matrix

Full Associate Assistant Instructor

Full 0.90 0.0 0.0 0.0

Associate 0.0 0.90 0.0 0.0

Assistant 0.0 0.0 0.90 0.0

Instructor 0.0 0.0 0.0 1.0
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III. FORMULATION OF THE ANALYSIS

Chapter II presented the general framework of public sector resource al-

location decision analysis in terms of the decision maker's utility function

V defined over the state and control variables. However, it is often more

convenient to transform the analysis from one of maximizing utility to one of

minimizing loss, with loss defined around the most desired targets. Near the

targetL, the loss structure is approximately quadratic independent of the

form of the utility function.
8

Several criterion functions were used and most combined considerations of

the relative composition of faculty by rank and either a monetary or absolute

constraint on the total number of faculty positions. The relative composi-

tion of the faculty was measured by the ratio of :Ale number in each rank to

the number of full professors. The desired distrilution is then a target or

goal sought in some or all periods. The various criterion functions are sum-

marized in Table 7.

8
If V(x, u) has a maximum at

order Taylor series expansion about
3V

V(x, u) V(x*,u*) + --Ax
ax

Near the optimum

I - o
ax I 3u

x* u* x*,u*

x*, u* (desired targets), then the second

x*, u* is

av t a2v t a2v
+ --Au 4-1/2Ax --2-Ax 1/2Au ---2- Au +

au ax au

t

3x
a2v

+ Ax ----Au + HOT
u

and

[Vxx Vxul AV(x, u) =V(x*,u*) + 1/2[Ax
t
Au

t
] [l + HOT

V
ux

V
uu Au

Therefore, the maximization of V(x, u) is equivalent to minimization of the

quadratic term on the right hand side.
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TABLE 7

SUMMARY OF CRITERION FUNCTIONS USED IN THIS ANALYSIS

Criterion Function Targets Met in Constrained by Weights Used

1 all periods budget various

2 budget various

3 all periods budget Kalman

4 last period budget various

5 last period budget Kalman

6 alirppriods positions various

7 last period positions various

Dematift pj(i) as the average annual salary for faculty of rank j

in period i , B(i) as the total academic salary budget for period i , r

as the target ratios sought, and kj and 0 as weights indicating relative

loss, we may write the criterion function used as

and

4

V(i) k h (i) 2

j2 xl(i) J

r 1 + p4(i)(xj(i) + uj(i)) - B(i) 2

for i 0, 1, . . N - 1 (1)

4 xi(N)

V(N) k kiwy rj12

J2 1

The weights k
i

describe the relative loss of deating from the distri-

butional targets of each rank. Several methods were used to derive these

(2)

weights including (1) the average salary of each rank relative to the average
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salary of full professors expressing the relative monetary loss of a unit

deviation from the desired targets, (2) the Kalman variance in each period

of each state variable relative to the variance in that period of the number

of full professors expressing the relative uncertainty in each state var-

iable, and (3) weights chosen roughly proportional to the first derivative of

V(i) to insure rapid convergence. With the exception of the Kalman variance

weights, both types (1) and (3) were used in most numerical experiments.

There are other important objectives served in the management of a fac-

ulty structure. In some cases, the total number of faculty positions is fixed

in each period and all composition adjustments must occur within these ceil-

ings. This case can be accommodated within our framework by setting all the

annual faculty salaries equal to 1.0 and the total academic salary budget

equal to the chosen ceilings. Two other objectives not included in this ana-

lysis are (1) the maintenance of a steady flow of promotions to avoid faculty

ossification and discouragement and (2) the elimination of no longer produc-

tive faculty through early retirement or some other means. These last two

examples show that this analysis cannot solve all of the problems in the manage-

ment of an academic faculty structure. On the contrary, this study illustrates

that some faculty management decisions can be analyzed in a cogent and sophis-

ticated manner.
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Stochastic Considerations

In addition to the deterministic model just described, we may also

introduce a stochastic element in the academic structural equations in the

following fashion. We consider an additive random error in a linear dynamic

system:

x!i + 1) = Fx(i) + Gu(i) + Hz(i) +1i(i) (3)

where c(i) is assumed to be independently normally distributed with zero

mean and variance-covariance matrix Q , which is assumed constant over time.
9

The decision maker can observe the state of his system at the beginning of per-

iod i by the linear scheme

y(i) = S(i) x(i) + v(i) (4)

where S(i) is the current sampling scheme matrix, :TM is the sampling er-

ror with variance - covariance matrix R(i) , and y(i) the observation vector.

It may now be derived
10

through use of the Kalman filter that, while the prior

9
Estimates of the elements of the variance - covariance matrix Q can be de-

rived from the results of either the linear regressions or the quadratic pro-
gramming estimation performed to develop the F and G matrices. Where ei4

is the ith residual and ej the mean residual of the jth prediction equa-

tion (i.e., for state j 1,2, ..., NX), and N is the number of data points

used in each calculation, we have that

E

11
(ei - ; )?

Var(e
ij

) = N - 1
for j i 1, 2, .

and
(eiJ - 1) (eik - ek)

Cov(e
ij'

e
ik

)
N - 1

for j = 1, 2, . . NX ; k 1, 2, . . NX ; j 0 k .

10
Bryson and Ho [2], Chapter 12.



variance-covariance matrix of x before measurement, M , is

M(i + 1) = FP(i)Ft + Q

19

(5)

the posterior variance-covariance matrix of x after measurement, P , is

P(i) = M(i) - M(i)St(i)(S(i)M(i)St(i) + R(i)]-1S(i)M(i) . (6)

In this way, given WO) , Q , H(i) , and R(i) for i = 0, 1, . . N ,

we may precompute the posterior variance-covariance matrix, P , before attack-

ing the deterministic optimization problem. While this stochastic element is

not considered in the optimization process p61 80, its use in the formulation

of the preference function can be quite relevant. In the special case.of a

quadratic criterion function And linear system dynamics perturbed by additive

Gaussian noise, a "certainty equivalence" principle is applicable which al-

lows one to separate the estimation and optimizaton procedures without af-

fecting the final optimal solution.
11

This is due to the fact that for the

quadratic preference function, the expected value of the preference func-

tion, V(i) , can be separated into its mean and variance. This is also

true of negative-exponential and linear preference functions.

11
Joseph and Tou [6].
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IV. NUMERICAL RESULTS

This chapter is devoted to presenting numerical examples of the

results derived from the implementation of the model discussed in the

previous chapters. All of the examples described here were designed to in-

vestigate the behavior of the model under various conditions. Basic

to this investigation were the following characteristics:

1. The criterion functions used were those described in Section

2. All the faculty ratios are in proportion to the number of full

professors.

3. Five or ten planning periods were used.

4. The data employed were for the total University of California.

The initial state variable assignments were adapted from the

actual FTE faculty appointment schedule
12

for the 1467-68 aca-

demic year: full professors (1807), associate professors (822),

assistant professors (1189), and instructors (13).
13

5. No discounting was used on the preference function (i.e., all

a = 1.0).

6. All prices and the total number of positions are assumed to

increase 5.0% per year while the budget constraint increases

at the historical 12.0% per year.

7. The control assignments of the initial iteration were all zeroes.

8. For practical purposes, the computations were terminated when

neither Cie control set nor the criterion function value showed

any pronounced variation. This was usually 50-100 iterations.
14

12
University of California, 1967-68 Statistical Summary - Students and

Staff (14].

13
The unusually low figure for instructors was due to the one-year con -

tract for faculty of this rank. Practically all instructors are new hires.

14
The inaccuracies caused by any pre-mature terminations were thought

to be of minimal importance for this particular study due to the cancella-

tions of error upon comparison with other similarly handled runs.
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In addition to examining several criterion functions, a number of

variations in the basic formulation were investigated by changing the

relative size of the parameters of the criterion function. Three specific

variations were in the: (1) price and budget vectors, (2) relative p -'alty

weights, and (3) faculty ratios. In addition to these preference function

variations, three different Sets of F and G transition matrices were

used as were several different solution algorithms including both first

and second order methods. Examples of these variations along with their

derived results will now be described.

op
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Analysis with Constrained Least Square Transition Matrices and Second

Order Optimization Technique

Budget Constrained

The first investigation focused on criterion functions 1 and 4 which

represent an institutional decision maker striving to achieve faculty

distributional targets in each period or only in the final period while

meeting the budget constraints. In this case, five planning periods were

used. The results of this analysis are given in Table 8 and Figures 1

and 2.

In all the analyses performed, the distribution of faculty chosen

as the desired target was either the distribution included in the Regents

Budget of the University of California, the existing pattern in 1967-68,

or an arbitrary target. (See below)

Table 8

Source Distributional 7.atios

Assoc. Prof. Asst. Prof. Instr.

Full Prof. Full Prof. Full Prof.

Actual 1967-68 .459 .666 .007

Budget 1967-68 .544 1.192 .200

Arbitrary .900 1.500 .050

Table 9 shows that even under optimal control the arbitrary faculty

distributional targets were unachievable in any period because of resource

and system constraints and there was very little difference in performance



between the two criterion functions. Furthermore, as in virtually all

of the cases investigated, the budget constraint was very closely approxi-

mated.

Figure 1 shows the values of the control variables that are optimal

for each of the two criterion functions under open loop control. While

both hiring patterns average roughly 300 new faculty f each rank in each

year, the patterns have striking differences. The 71rge number of new

assistant professors hired under the first criterion function is necessary

to maintain the requisite balance in the face of the severe estimated

first year attrition of new assistant professors (see Table 4). Meanwhile,

the fourth criterion function includes faculty distribution in the last

period only and, consequently, the last decisions diverge considerably

from the previous pattern in an effort to achieve the desired tar,ets.

From Figure 2 we observe that the total number of faculty of each

rank also display quite different growth patterns. Under the first cri-

terion function, the number of full professors increases very slowly at

first and more rapidly at the end of the planning period, while under the

fourth criterion furetion the number of full professors follows exactly

the opposite growth pattern. The number of instructurs is another extreme

case which varies from a smooth increase (#1) to an initial jump of 700

followed by a gradual decline of 200 positions C1141, It is interesting to note

that with the same resources available and striving for the same targets

an institution managed by criterion function 1 acquires more of the tenured

ranks while an institution managed by criterion function 4 acquires propor-

tionately more junior ranks.
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Position Constrained

The second series of analyses focuses on a similar set of decision

problems with total position constraints instead of total budget con-

straints. The faculty distributional targets in this case are the bud-

geted ratios of 1967-68. Once again, the decision maker could seek to

achieve these targets in every decision period (#6) or only in the final

decision period (07). The results of this analysis are given in Table

10 and Figures 3 and 4.

The evidence of Table 10 indicates that the budgeted faculty dis-

tributional targets are also infeasible with the system description and

position constraints used in this analysis. While the numbers of as-

sociate professors exceed its target, both assistant professors and

1.-.structors have significantly lower ratios.' Meanwhile, both formu-

lations closely adhere to the forecasted budgets.

The initial presence of full professors in excess of the proportion

indicated by the budgeted targets leads the analysis to recommend firing

several hundred full professors as shown in Figure 3. While this is in-

stitutionally infeasible and non-negativity constraints could be imposed

on the new hires, these results are included to show the logical conse-

quences of the budgeted faculty distributional ratios. The average new

hires of about 100 per rank per year is significantly less than the ap-

proximately 300 new hires of each rank in each year found under the bud-

get constraint because the number of positions increases at an assumed

5.0% per year as opposed to an assumed net 7,0% per year budget increase.

The patterns of total faculty at each position are shown in Figure 4

which again reveals abrupt alterations in the last decision period for

the case of distributional targets in the last period only.



T
A
B
L
E
 
1
0
:

C
O
M
P
A
R
I
S
O
N
 
O
F
 
P
R
E
F
E
R
E
N
C
E
 
F
U
N
C
T
I
O
N
S
 
6
 
A
N
D
 
7

A
 
d
e
c
i
s
i
o
n
 
m
a
k
e
r
 
w
i
t
h
 
p
r
e
f
e
r
e
n
c
e
 
f
u
n
c
t
i
o
n
 
n
u
m
b
e
r
 
6

E
l
e
e
k
a
 
t
o
 
a
c
h
i
e
v
e
 
t
a
r
g
e
t
s
 
i
n
 
e
a
c
h
 
p
l
a
n
n
i
n
g
 
p
e
r
i
o
d

w
i
t
h
 
a
 
t
o
t
a
l
 
p
o
s
i
t
i
o
n
s
 
c
o
n
s
t
r
a
i
n
t
.

a
s
s
o
c
/
f
u
l
l

a
s
s
t
/
f
u
l
l

i
n
s
t
/
f
u
l
l

w
e
i
g
h
t
s

1
0
0
0

1
0
0
0

1
0
0
0

t
a
r
g
e
t
s

.
5
4
4

1
.
1
9
2

.
2

P
e
r
i
o
d

2 3 4 5 6

0
.
4
5
5

0
.
5
7
9

0
.
5
7
9

0
.
5
8
1

0
.
5
7
9

0
.
5
9
8

R
a
t
i
o
s
 
G
e
n
e
r
a
t
e
d

0
.
6
5
8

0
.
8
1
3

0
.
7
7
3

0
.
7
7
9

0
.
7
8
4

0
.
7
8
8

0
.
0
0
7

0
.
0
3
8

0
.
1
3
5

0
.
1
3
5

0
.
1
1
6

0
.
1
1
3

B
u
d
g
e
t
 
W
e
i
g
h
t
 
=
 
.
0
1

P
e
r
i
o
d

P
o
s
i
t
i
o
n
s
 
G
e
n
e
r
a
t
e
d

P
o
s
i
t
i
o
n
s
 
B
u
d
g
e
t
e
d

1 2 3 4 5

P
e
r
i
o
d

1 2 3 4 5 6

3
7
9
9
.
3
0

4
0
0
7
.
3
4

4
2
1
8
.
0
6

4
4
2
8
.
8
2

4
6
6
2
.
6
3

3
8
3
1
.
0
2

4
0
2
2
.
5
7

4
2
2
3
.
2
0

4
4
3
4
.
8
9

4
6
5
6
.
6
3

P
r
e
f
e
r
e
n
c
e
 
F
u
n
c
t
i
o
n
 
V
a
l
u
e
s

3
4
0
.
3

1
7
5
.
5

1
8
6
.
6

1
8
1
.
7

1
8
0
.
0

1
7
7
.
9

C
r
i
t
e
r
i
o
n
 
F
u
n
c
t
i
o
n
 
V
a
l
u
e
 
=
 
1
2
4
2

A
 
d
e
c
i
s
i
o
n
 
m
a
k
e
r
 
w
i
t
h
 
p
r
e
f
e
r
e
n
c
e
 
f
u
n
c
t
i
o
n
 
n
u
m
b
e
r
 
7

s
e
e
k
s
 
t
o
 
a
c
h
i
e
v
e
 
t
a
r
g
e
t
s
 
i
n
 
t
h
e
 
l
a
s
t
 
p
e
r
i
o
d
 
o
n
l
y

w
i
t
h
 
a
 
t
o
t
a
l
 
p
o
s
i
t
i
o
n
s
 
c
o
n
s
t
r
a
i
n
t
.

a
s
s
o
c
/
f
u
l
l

a
s
s
t
/
f
u
l
l

i
n
s
t
/
f
u
l
l

w
e
i
g
h
t
s

1
0
0
0

1
0
0
0

1
0
0
0

t
a
r
g
e
t
s

.
5
4
4

1
.
1
9
2

.
2

R
a
t
i
o
s
 
G
e
n
e
r
a
t
e
d
 
i
n
 
P
e
r
i
o
d
 
6

.
6
1
6

.
7
2
2

.
1
3
1

B
u
d
g
e
t
 
W
e
i
g
h
t
 
=
 
.
0
1

P
e
r
i
o
d

P
o
s
i
t
i
o
n
s
 
G
e
n
e
r
a
t
e
d

P
o
s
i
t
i
o
n
s
 
B
u
d
g
e
t
e
d

1
3
8
2
9
.
5
5

2
4
0
2
7
.
6
1

3
4
2
2
0
.
6
2

4
4
3
9
7
.
7
8

5
4
6
0
7
.
3
8

3
8
3
1
.
0
2

4
0
2
2
.
5
7

4
0
2
3
.
7
0

4
4
3
4
.
8
9

4
6
5
6
.
6
3

P
r
e
f
e
r
e
n
c
e
 
F
u
n
c
t
i
o
n
 
V
a
l
u
e
s

P
e
r
i
o
d

1
.
0
2
1
5

2
.
2
5
3
8

3
.
0
9
5
0

4
1
3
.
7
7

5
2
4
.
2
7

6
2
3
1
.
3



3
0
0
 
,

N E
2
0
0

W

1
0
0
 
-

H I

0
R E S

1
0
0

D
E
C
I
S
I
O
N
 
M
A
K
E
R
 
S
E
E
K
S
 
T
A
R
G
E
T
S
 
I
N

E
A
C
H
 
P
E
R
I
O
D
,
 
T
O
T
A
L
 
P
O
S
I
T
I
O
N
 
C
O
N
S
T
R
A
I
N
T

A
s
s
t

I
n
s
t

.
.
.
.
.
-
-
-
-
"
A
s
s
o
c

F
u
l
l

2
0
0

3
0
0

1
2

N
E
W
 
H
I
R
E
S

3

P
e
r

F
u
l
l

A
s
s
o
c

A
s
s
t

4 I
n
s
t

5

P
l
a
r
n
i
n
g

P
e
r
i
o
d

.
-
2
5
4
.
2
0

3
0
.
3
7

1
4
2
.
0

6
5
.
1

.
6
9
.
9
3

7
8
.
0
3

1
3
0
.
8

2
4
1
.
6

.
6
6
.
2
3

8
3
.
7
7

1
1
3
.
2

1
4
8
.
7

.
7
4
.
7
1

8
2
.
4
2

1
3
7
.
5

1
1
3
.
2

.
5
7
.
3
7

1
2
4
.
0

1
2
7
.
3

1
3
1
.
2

3
0
0
-

N E
2
0
0

W H I R E

D
E
C
I
S
I
O
N
 
M
A
K
E
R
 
S
E
E
K
S
 
T
A
R
G
E
T
S
 
I
N
 
L
A
S
T
 
P
E
R
I
O
D
,

T
O
T
A
L
 
P
O
S
I
T
I
O
N
 
C
O
N
S
T
R
A
I
N
T

/

A
s
s
o
c

/

/
t 1

S
1
0
0
-

2
0
0
- ,,,

3
0
0
-
.

C
O
N
T
R
O
L
 
V
A
R
I
A
B
L
E
S

F
I
G
U
R
E
 
3

N
E
W
 
H
I
R
E
S

F
-

5

P
l
a
n
n
i
n
g

P
e
r
i
o
d

P
e
r

F
u
l
l

A
s
s
o
c

A
s
s
t

I
n
s
t

1
.

2
0
.
6
6

3
0
.
7
7

-
1
0
9
.
8

5
6
.
9

2
.

7
6
.
4
4

8
5
.
7
1

6
1
.
3

6
4
.
7

3
.

3
8
.
6
3

9
2
.
5
7

1
0
4
.
0

1
1
9
.
1

4
.

2
7
0
.
3
0

-
9
3
.
8
9

1
2
2
.
4

1
1
8
.
0

t
s
.
)

1
/
4
0

5
.

-
2
0
0
.
4
0

2
5
9
.
7
0

1
3
3
.
4

1
9
0
.
6



D
E
C
I
S
I
O
N
 
M
A
K
E
R
 
S
E
E
K
S
 
T
A
R
G
E
T
S
 
I
N

E
A
C
H
 
P
E
R
I
O
D
,
 
T
O
T
A
L
 
P
O
S
I
T
I
O
N
 
C
O
N
S
T
R
A
I
N
T

T
 
2
0
-

0
 
1
8
-

T
 
1
6
_

1
4

1
2

A
s
s
t

L F A C U
6

F
u
l
l

1
0
_

8
-

L
4

T Y

2
-

0
1
(

T
O
T
A
L
 
F
A
C
U
L
T
Y

A
s
s
o
c

I
n
s
t

1
1

5
6 P
l
a
n
n
i
n
g

P
e
r
i
o
d
s

P
e
r

F
u
l
l

A
s
s
o
c

A
s
s
t

I
n
s
t

1
.

1
8
0
7
.

8
2
1
.
8

1
1
8
9
.

1
3
.
2

2
.

1
4
5
2
.

8
4
1
.
3

1
1
8
0
.

5
5
.
0

3
.

1
5
3
6
.

8
8
9
.
7

1
1
8
8
.

2
0
7
.
2

4
.

1
6
1
6
.

9
3
9
.
8

1
2
5
9
.

2
1
8
.
7

5
.

1
7
0
8
.

9
8
9
.
1

1
3
3
9
.

1
9
8
.
6

6
.

1
7
8
2
.

1
0
6
5
.
0

1
4
0
4
.

2
0
1
.
3

T
2
0
-
(
x
1
0
0
)

0
1
8
-

T
1
6
.
0
.

A

1
4
-

L

1
2
-

F

1
0
-

A

8
-
-

C U
6
-

L
4
+

T
2
.
.

Y

0

S
T
A
T
E
 
V
A
R
I
A
B
L
E
S

F
I
G
U
R
E
 
4

D
E
C
I
S
I
O
N
 
M
A
K
E
R
 
S
E
E
K
S
 
T
A
R
G
E
T
S
 
I
N
 
L
A
S
T
 
P
E
R
I
O
D
,

T
O
T
A
L
 
P
O
S
I
T
I
O
N
 
C
O
N
S
T
R
A
I
N
T

s
.
.
.
.
.
.
,
,
.
.
.

F
u
l
l

ss
t

A
s
s
o
c

I
n
s
t

1
1

1
I
-

1
2

3
4

5
6

P
l
a
n
n
i
n
g

P
e
r
i
o
d
sL

A
) 0

T
O
T
A
L
 
F
A
C
U
L
T
Y

P
e
r

F
u
l
l

A
s
s
o
c

A
s
s
t

I
n
s
t

1
.

1
8
0
7
.

8
2
1
.
8

1
1
8
9
.

1
3
.
2

2
.

1
7
2
7
.

8
4
1
.
5

1
1
2
2
.

4
9
.
0

3
.

1
7
3
6
.

8
9
3
.
0

1
1
1
3
.

7
3
.
6

4
.

1
7
8
2
.

9
4
6
.
3

1
1
2
6
.

1
2
6
.
6

5
.

2
0
2
4
.

8
8
0
.
0

1
1
6
6
.

1
5
3
.
7

6
.

1
6
9
0
.

1
0
4
1
.

1
2
1
9
.

2
2
1
.
5



31

Use of Varianc s as Penalty Weights

The weights used in the previous criterion functions were chosen either

to balance the convergence of the solution algorithm or to reflect the

relative cost of a one unit deviation from the targets. Another approach

is to incorporate in the criterion function the current uncertainty in the

estimate of the future magnitude of the state variables. In other words,

a decision maker may choose to exert stricter control over the most uncer-

tain components of his system. As discussed in Section III, the propa-

gation cf variance in a linear dynamic system is independent of the control

chosen and, therefore, may be computed in advance and used as a set of

fixed weights in the optimization. Furthermore, the relative magnitudes

of the variance of the state variables will differ if the decision maker

chooses to sample in the future. The results calculated using equation

(III-6) for variance propagation are given in Table 11 for the case in

which faculty distributional targets are sought in every decision period

and in Table 12 for the case a only final period target ratios. The

corresponding hiring and total faculty sequences are shown in Figures 5,

6, 7, and 8.

While the previous example penalized deviations from target ratios

equally, the relative variances differ by about 50-100 to 1 with much less

weight given the instructor target. As a consequence, the optimal number

of newly hired instructors goes negative at some point in 3 out of 4 of

the cases shown in Figures 5 and 7. This suggests that an educatiorll

decision maker would readily eliminate instructors to maintain balance in

his other ranks - it result observed in practice (see Table 8). Other-

wise, the hiring patterns for the top three ranks with the variance weightings

closely resemble the previous arbitrarily weighted results shown in Figure 1.
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As before, the terminal target only case exhibits more extreme behavior

in the last decision period.
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TABLE 13: SUMMARY OF THE EFFECTS OF CHANGING THE PLANNING HORIZON

A decision maker with a preference function that seeks to achieve

faculty ratios in Last period only.

assoc full asstifull inst full budget

weights: 1000.0 500.0

Salaries Generated; 10 le,

250.0 0.0000005

Salerits Socketed Salaries Generated; 5 Yr.
Period

1 88446.0625 88516.00 88361.875

2 99073.875 99138.00 99161.0625

3 111155.875 111034.00 111467.500

4 124507.4375 124358.00 124746.125

5 139624.5000 139281.00 139421.4375

6 155578.1875 155995.00

7 175045.6250 174714.00

8 195762.8750 195680.00

9 218870.4750 219161.00

10 244766.5625 245461.00

Ratios

assoc full asst/fill inst full

Targets 0.459 0.666 0.007

Generated (10 Yr.) 0.519 0.617 0.101

Generated ( 5 Yr.) 0.475 0.661 0.064

10 Year Horizon:

1) 0.002446 2) 0.002056

6) 0.08687 7) 0.05499

Preference Function Values

Criterion Function Value:

5 Year Horizon:

1) 0.01188 2) 0.0002659

6) 1.060

3) 0.007427 4) 0.01117

8) 0.003434 9) 0.04223

1.251

3) 0.09396 4) 0.07532

Criterion Function Value: 1.251

5)

10)

5)

0.05900

0.2411

0.009861

11) 7.005
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Analysis of Sensitivity to Alternative Transition Matrices - First

Order Optimization Technique

Basic to the propagation of the state of the system over time is

the structure and composition of the F and G transition matrices.

The resulting effect of these matrices on the optimum allocation pattern

is vividly shown in Figure 11. These curves show the re..ults of using

two different sets of transition matrices on otherwise identically defined

allocation problems. Example (a) uses matrices derived from uncon-

strained multiple regressions on actual data (see Table 3). Example (b)

uses matrices assessed by subjective reasoning (see Table 6).

The total faculty curves for example (a) show some system instability

as opposed to the smooth growth pattern characteristic of example (b).

This is due to the multiplicative effect of the coefficients present in the

transition matrices estimated by regression analysis which contained pro-

blems of realism, as earlier discussed. These results should be compared

with Figure 2 (#1) which used the constrained least squares estimate.

This comparison accentuates the importance of developing valid and

reasonable coefficients to describe the propagation of the system,

without which onz cannot hope to produce reasonable results. It appears

that constrained least squares regression is the best approach for determining

these coefficients provided enough valid data are available. However,

care must be taken in usisig the results of the regressions to evaluate

their accuracy and reasonableness.
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Variation of Weight on Resource Constraint with First Order Solution
Technique

As described in Section III, the preference function can be divided

into two parts: (1) the faculty distribution constraint and (2) the total

resource constraint. Each of these terms is weighted by coefficients

which determine how strictly the constraint is to be enforced. A large

weighting coefficient will increase the penalty resulting from the

deviation; similarly, a small weighting coefficient will decrease the

penalty. This section investigates the effects of the weighting coeffi-

cient, B , on the resource constraint.

Again we compare the results of decision problems which are identical

in every respect except in the single characteristic of the budget weighting

coefficient, B . These runs were made using the ordinary least squares

regression results for transition matrices. Figure 12 shows the results

of a moderate variation in B . The resource constraint is still operative

when B is decreased from 0.01 to 0.001, although it is obviously not

as effective. Notice that there is little change in the degree to which

the system continues to fulfill the faculty ratio constraint,

In Figure 13, we see a much greater effect resulting from a variation

in a . In this case, reducing B from 0.001 to 0.0001 makes the

resource constraint completely inoperative. There is now a negative cor-

relation between the budgeted total faculty and the calculated faculty.

Furthermore, we note that there is now a marked increase in the system's

ability to fulfill the faculty ratio constraints.

In other words, the relative size of a regulates the balance between

the resource constraint and the faculty ratio constraints. Consequently,

a must be chosen carefully to simulate correctly the goals of the

decision maker.
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Variation in Method for Calculating the Step-size in First Order Solution

Procedure

When investigating the convergence properties of the solutior to

this formulationtwo different methods for calculating the incremental

step-size, c , were investigated: (1) a single step-size, and (2) a

multiple step-size. With the single-c method, the same step-size is applied

to the entire control set through the relationship

ali
u . u + c--
new old - au

15
(1)

In this way, the size of the increment is proportional to the associated

gradient.

The multi-e method uses an individually computed step-size, c
J

(i)

for each control el-sent and is applied using the relationship,

u
j
(i)

new
i. u

j
(i)

old
+ e (i) .

- j
(2)

Under the multi-e method, adaptive increments are computed by bisecting

the previous iteration's step-size when the associated gradient changes

sign.

Although the single-c method was the most straightforward and most

easily implemented of the two procedures, its convergence peoperties often

proved to be less satisfactory than the convergence of the multi-.e method. In

almost all cases, the speed of convergence dropped off considerably as the opti-

mum point was approached. This was caused by a large decrease in the size

15
H E V(x,u,t) + A

t
(t + 1)[Fx(t) + Gu(t)].
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of the gradient which then resulted in too small an incremental step-

size. Moreover, attempts to correct this by starting with a large initial

c -value resulted in divergence of the solution algorithm. These problems

with the single -c method led to the development of the multi-E method.

The result was a much quicker overall convergence.

An example of the difference in convergence properties for the two

methods is shown in Figure 14. There is a break-even point between the

speed of convergence for the two methods; consequently, a preferable mixed

strategy would be to change from the single -c method to the multi -c method

when the slopes of the two curves are equal. However, there is no method

available at this time for determining where this point occurs.
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Comparison of Three Solution Algorithms

Finally, we present a comparison of the first-order gradient and

multi-c methods and the second order gradient method. Table 14 compares

similar solutions to one of the decision formulations and shows that the

second order method is much better at meeting the chosen targets than

either of the other methods, while maintaining approximately a 1%

tolerance on the budget target. For this reason, the second order method

was primarily used on this analysis.
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TABLE 14: SUMMARY OF SOLUTION ALGORITHMS

Multi-c Gradient Second Order

Budget Weight .0001 .0000001 .000001

Faculty Weights 100,50.25 1000,800,500 1000,800,500

F and G matrices UNCONSTRAINED MULTIPLE REGRESSION

After 30 iterations with initial controls 0

Ratios Targets Achieved Achieved Achieved

assoc/full

asst/full

inst/full

0.9

1.5

0.05

0.363

0.245

0.024

0.582

0.426

0.016

0.897

1.480

0.035

Salaries Budget % Diff. % Diff. % Diff.

1 88516. 88507. .01 59102. 32.23 89568. 1.19

2 99138. 99149. .01 57702. 41.8 98171. .08

3 111034. 111039. .01 5,397. 48.31 110989. .05

4 124358. 124373. .01 56401. 54.65 119774. 3.69

5 139281. 139276. .01 55845. 59.91 139181. .08

J-value 107.7 2728. 25.32
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V. CONCLUSIONS AND FUTURE RESEARCH

This analysis has described the mathematical structure of an academic

faculty by a linear dynamic model whose parameters were estimated from ac-
,

tual data by two different techniques. The new faculty hiring decision pro-

blem was formulated as an optimal control problem defined in terms of desired

faculty distributional targets. Finally, either total budget or total posi-

tion constraints were imposed upon the system through a penalty function.

This multi-stage optimization problem subject to dynamic constraints was

then solved by three alternate numerical methods.

While many interesting and illuminating results were obtained and dis-

cussed in this paper, a number of unresolved problems remain. The proper

estimation of meaningful transition matrices is difficult without a long his-

tory of individual faculty flows. The transition probabilities used in this

analysis were based on aggregate data available for an entire institution

and consequently obscured individual faculty time paths through the rank

structure. If this kindofmodel is to be used for institutional decision

making, a more complete and disaggregated data base would be needed.

The criterion functions used in this analysis focused exclusively on the

number and mix of faculty independent of student enrollments, available

facilities, support staffs, or other relevant institutional parameters. This

deliberate abstraction enabled a first step of demonstrable computational

feasibility; however, the scope of the model should be expanded in future

formulations to include at least the student body, the physical plant and

the financial parameters of the system.

Uncertainty is explicitly included in tha system dynamics in the form of
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a random additive error term. This presumes that the transition probability

matrices are known and fixed, which certainly is not the case. A full ana-

lysis of uncertainty would include random transition matrices as well as ran-

dom errors and would recognize the improved information available through

sampling in the future - information which would provide new, updated esti-

mates of transition probabilities.

The conceptual formulation used in this analysis is most appropriate

for a campus or system executive officer and provides little guidance to

the chairman of a department. Presumably, the department chairman can keep

most of the relevant parameters in mind while he considers possible new fac-

ulty members. However, a college chancellor or president must balance many

competing pressures calling for more faculty and would probably desire a

more disaggregate model than the one discussed in this paper. It would be

feasible to extend the current model to the discipline or departmental level

and to recognize additional categories of faculty including visiting and ir-

regular faculty and teaching assistants. This would necessitate a larger

computer program and a calculation time longer than the current 1-2 minutes

on an IBM 360/65; one hundred organizational units or groupings and ten cat-

egories of faculty could easily be accommodated.

This analysis is only a beginning. It shows that a decision and con-

trol formulation, which is more comprehensive and informative than simula-

tion analysis, is economically feasible and potentially very useful in Cie

analysis of faculty hiring decisions. The problems and difficulties of

this approach deserve the attention of quantitative analysts. The promise

and potential of this approach deserve the serious consideration of academic

administrators.
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APPENDIX A: SOLUTION METHOD

The solution of this WNW faculty allocation problem may be approached in

a number of ways, one of which Is the use of the techniques of modern control

theory. Since the mathematical background of these methods is adequately de-

scribed elsewhere,
1
only a brief discussion of the specific technique used

will be presented here.

We begin the solution method by adjoining the linear propogation con-

straint to the criterion function with the use,Ofialapange multiplier,

thereby reducing the problem to an unconstrained optimization problem. 2

Letting

and

V(i) = V[x(i), u(i), i] (1)

f(i) = Fx(i) + Gu(i) + Hz(i) (2)

we may write the augmented criterion function, J , as

N-1
J V(N) + {v(i) + At(i + - x(i + 1)]} .

J.()

We now define the Hamiltonian, H(i) , as

(3)

H(i) = V(i) + A
t
(i + 1)f(i) (4)

)Bryson, A. E., Jr., and Yu-Chi Ho, Applied Optimal Control: Optimiza-
tion, Estimation and Control, (Waltham, Massachusetts: Blaisdell Publishing
Co.), 1969.

2
For convex criterion functions.withIlinear constraints the stationary

solution of the adjoineci criterion function is the same as the stationary
solution of the original criterion function. In other cases, the proper-
ties of the criterion function and constraint set need to be investigated
carefully.
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and may subsequently write the augmented criterion function as

N-1
5 - V(N) + I At(i + 1)x(i + 1)]

i-o

By changing the index of summation, we obtain

N-1
5 = V(N) - At(N)x(N) + [H(i) At(i)x(i)] + H(0) .

im0

For a stationary point, we require that the total differential of J

be equal to zero along the entire sequence of allocations.
3

Therefore,

dJ = 0 = dl = P(00 At(Nddx(N)
[ax

N-1
T 1[7(1) At

ii0 ax( )

ad
dx(1) +

Lau(1)

+ DUO dxf0` + rOaiR(1 du(())
L9x(0)] I u(0)

Since the initial state of the system, x(0) , is assumed given and fixed,

dx(0) = 0 . In order to force dJ to zero we require that

(5)

(6)

(7)

A
t
(i) =

aH(i)
i = 0, 1, 2, . . N - 1 (8)

ax(i)

subject to the boundary condition that

A
t
(N) =

aV(N)

ax(N)

and also that

aH(i)

au(i)

(9)

i = 0, 1, . . N - 1 (10)

This provides us with the following first-order conditions necessary for an

optimal allocation pattern:

3
The requisite second order conditions necessary for a maximum or a

minimum are given in Bryson and Ho, op. cit., Chapter 6.
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(1) x(i + 1) = Fx(i) + Gu(i) + Hz(i) i = 0, 1, . . ., N - 1 (11)

x(0) given;

all(i)
(2) A

t
(i) = ax(i)

i - 0, 1, . . ., N 1

aV(i) t
+ A (i + 1)F (12)

A
t
(N) =

aV(N)

ax(N)

(3) 0 =
MO
au(i)

i = 0, 1, . . ., N - 1

av(i)

au(i)
+ A

t
(i + 1)G

It should be noted that nowhere in the previous discussion are there

any specific limitations on the format of the preference function,

V[x, u, i] , other than certain convexity requirements
4

and the necessary

inclusion of at least two non-empty variables sets: u(i) and x(i) . In

other words, the formulation of the preference function is left completely

up to the user.

4
See footnote 2.

(13)
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APPENDIX B: OPCON: A USER'S MANUAL

A copy of both the user'A manual and the program are available upon re-

quest and may be obtained :)y writing

Dr. George B. Weathersby
Ford Foundation ReseArch Program
Office of the Vice President -

Planning and Analysis

247 University Hall
University of California
Berkeley, California 94720.

A nominal fee will be charged for duplicating and loading the program. The

manual is available at no charge. Requests tor further information should

be sent to the same address.
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