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PREFACE

This is one of a continuing series of reports of the Ford Foundation

sponsored Research Program in University Administration at the University

of California, Berkeley. The guiding purpose of this Program is to under-

take quantitative research which will assist university administrators

and other individuals seriously concerned with the management of univer-

sity systems both to understand the basic functions of their complex

systems and to utilize effectively the tools of modern management in the

allocation of educational resources.

In this paper we argue that the decision structures of educational

institutions are multi-level multi-decision-maker hierarchies which can

be described and analyzed in decision theoretic terms. Furthermore, we

show that these multi-level, multi-decision-maker hierarchies can be re-

duced to equivalent one-level, one-decision-maker formulations, which

an be solved either analytically or numerically by-the techniques pre- .

sented in this paper. An illustrative example is given which first

identifies and then solves for a set of optimal resource allocation and

policy,deAsions. A listing of the computer program used in this problem

and the input data specifications are included in the Appendix.

ii
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INTRODUCTION

Institutions of higher education currently face a number of major

policy choices which will largely determine their character for the next

twenty-five years. The tremendous expansion of American higher education

in the last twenty-five years was driven by burgeoning enrollment growth

and by massive federal commitment to doctoral production in the sciences

and technologies. Both of these forces are abating rapidly. Nationally,

enrollments in higher education are forecasted to peak in 1980, then de-

cline until the late 1980's and not approach the 1980 level until after

1995. Many schools are now experiencing enrollment levels below their

previous expectations. This is not a short-run phenomenon; rather, cur-

rent enrollment shortfalls are harbingers of the next twenty-five years.

Colleges and universities must learn to survive and to prosper with a

decreasing demand for their services.

It is far less likely that in the future the federal government will

rescue the expectations of higher education as they have done in the post-

Sputnik era. The United States will probably have a surplus of highly

trained scientific and technical manpower for at least the next decade

without major additional federal expenditures [Brode (1971)]. The re-

duced rate of undergraduate enrollment expansion will drastically reduce

the number of new teachers needed in colleges and universities, thereby

reducing the future demand for additional Ph.D.'s and, therefore, the

need for large doctoral programs. Furthermore, the federal priorities

have shifted from scientific manpower to equality of student access and

the quality of educational experience. Both of these major federal
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objectives impact undergraduate education far more than graduate programs

and they move counter to many institutions' prestige and elitist orienta-

tions.

While the demands for educational services by students and govern-

ments will probably be decreasing in the coming decades (first in rate of

growth and then in absolute number), the costs of educational institutions

continue to rise. As Cheit [1970] has pointed out, a significant number

of America's colleges and universities are headed for financial difficul-

ties and current institutional rigidities preclude those cost adjust-

ments necessary to maintain fiscal viability.
1

Furthermore, the techno-

logy of education has changed very little in the last three or four

decades; indeed, some would argue that educational technology has changed

very little since Socrates. In essence, there has been no observable

productivity increase in American post-secondary education in the last

four decades [O'Neill (1971)].

If it were not so painful, we might examine with considerable in-

tellectual interest the experience of public and private. eleemosynary

institutions beset by diminishing demands for services and risiag costs,

increasing institutional rigidities and no productivity increascs.
2

Unpleasant as it may be, educational administrators are having to ask the

1
The "varieties of the financial crisis" are explored by Balderston

[1971] in a recent paper prepared for the American Council on Education.
2
This description closely resembles the experience of the American

railroads. One inciteful observation on the decline of the railroad
companies was that unfortunately railroad managers viewed their industry
as "railroads" versus "transportation." At the time of burgeoning new
modes of transportation, the railroad companies were in an excellent
position to diversify and expand-,-but that was neither their tradition nor
their self-concept. Are our schools in the "formal instruction" industry
or the "education" industry?
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tough questions: What are our objectives? How would we know if we

achieved them? How can we reallocate resources to be more productive?

What activities are really essential for an educational institution?

Who should make these decisions; and many others?

The purpose of this paper is to look at institutional resource

management decisions in the context of institutional goals and objec-

tives. After describing one view of institutional decision making, we

present a simple yet comprehensive mathematical model which explicates

the interrelationships of major institutional variables. Sample data

are then used to derive resource allocations which would be optimal for

the institution. The use of this model in educational policy analysis

is then discussed before presenting our conclusions.
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INSTITUTIONAL DECISION MAKING

The decision making structures of educational institutions are as

diverse as the institutions themselves. Some colleges and universities

are highly authoritarian while others are highly egalitarian; some insti-

tutions are ruled by presidents and others by committees. Some educa-

tional systems have many layers of administrative superstructure while

others do not. There is often little resemblance between the organiza-

tional structure and the decision or power structure of an institution.

Often individuals with no delegated authority have great influence on

decisions.

While these complex interactions have been analyzed from many per-

spectives,
3 we have chosen to analyze institutional decision making from

a ddcision theoretic basis. Initially we distinguish between the values

used in arriving at policy decisions and the authority structure in

which the decisions are made. Focusing first upon the structure of de-

cisions, we observe that the decision structures of most educational

institutions are hierarchical, with students, individual faculty members,

department chairmen, deans, provosts, and presidents playing different,

but important, decision making roles.

These roles are distinguished primarily by the variables each level

can control. For example, students decide which of the available courses

they will take; faculty decide how to allocate their time between formal

3
Wildaysky [1964] looks at the resource allocation process in govern-

ment from a political theory perspective; Downs [1967] and Braybrooke and
Lindblom [1963] view bureaucratic decision making as a behavioral and organi-
zational process; Glenny [1969] and Palola [1970] approach educational
decision making from the perspective of governance.
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instruction, preparation, informal meetings with students, research,

committees, community service, professional advancement, and leisure;

department chairmen decide, with consultation to be sure, the course and

committee assignments of faculty, the allocation of support services,

recommendations on salaries and promotions, and curriculum proposals;

deans allocate new faculty positions to departments, increasingly will

reallocate faculty positions between departments, determine salaries and

promotions, establish departmental budgets, endorse curriculum changes,

and approve research programs; provosts or presidents in turn allocate

faculty positions and budgets between schools, review or approve salaries

and promotions, recruit deans, approve curricula and academic programs.

Table 1 summarizes some of these distinctions.

Another characteristic of the hierarchical structure of educational

decision making is the direct interrelationships of the various decision

making levels. As illustrated in Table 1, the control variables at one

level often become constraints at the next lower level. For example,

the president can allocate faculty positions to the various schools in

his institution to the limit of his budget. In turn, deanS can allocate

faculty to departments up to the limit permitted by the president's bud-

get. What was initially a decision to the president later becomes a con-

straint to the dean.

Another component of our analysis of institutional decision making

is the distinction between the implementation structure and the decision

structure. The implementation structure is usually reflected in the

institution's organization chart; it is the array of deans, department

chairmen, accounting officers, purchasing agents, budget officers, ad-

missions officers, registrars, librarians, and all the other functional
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TABLE 1

Examples of Interrelationships of Institutional Decision Makers

Decision Makers Control Variables Constraints

President/Provost Budgets Income or Appropriations

Faculty Positions

Program Approval

Dean Departmental Budgets President's Budget

Faculty Positions President's Budget

Program Approval President's Approval

Department Chairmen Faculty Assignments Dean's Budget

Support Services Dean's Budget

Salaries and Promotions Dean's Budget

Curriculum Dean's Approval
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specialists who keep an institution running effectively. On the other

hand, the decision structure is rarely reflected in a school's organiza-

tion chart. At issue here is who is responsible for what decisions and

how are the recommendations for these decisions made,

The operations cycle of an institution is illustrated in Figure 1.

Once made, a decision is communicated to the implementation structure

where functional specialists establish the operating policies and pro-

cedures which actually move the organization in the desired direction.

These implementation managers need operating data for their effective

functioning. For example, the accounting officer needs payroll infor-

mation to process checks and charge the appropriate accounts. On the

other side of this circle, those who are charged with recommending de-

cisions need institutional data to evaluate past decisions and as input

to future decisions. In addition, external data on student demand, man-

power supply and demand, community needs, attractive research areas and

a variety of other issues are needed for decision recommendations. The

process of synthesizing these data and institutional objectives into a

coherent, consistent strategy for future action is nebulous if not non-

existent at most institutions. Yet, if educational leaders are going to

be able to deal effectively with the serious social and economic challenges

confronting their institutions, much more attention will have to be de-

voted to their decision structures. The approach and the mathematical

model presented in this paper is one small step in this direction.

In addition to the process of decision are the values upon which

the decision is based. One of the functions of each decision maker

is to choose the values appropriate for the decisions at hand.

This is another way of raising the question of governance: Who will
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decide and whose values will he use when he decides? Furthermore, what

attributes of the educational system are important to the decision maker,

what does he consider to be the outputs of his system?
4

How important

are more undergraduates versus more graduate students, more researchers

versus more instructors, more computing power versus more library services,

more faculty versus more facilities, and a thousand-and-one other possible

tradeoffs? Taken together, all of these choices and tradeoffs comprise a

decision maker's value system.

These value systems also serve to connect the hierarchical decision

systems which were discussed earlier. In many cases, the president of

an institution is deeply concerned about the classroom environment and

the interaction of students and faculty, even though he cannot directly

control any of the operative variables. However, the president often

makes his budgetary and faculty allocations with their educational con-

sequences in mind and adjusts his allocations to correspond to his assess-

ment of the educational use to which these resources are put. In other

words, the consequences of decisions at a lower level are important to

decision makers at higher levels.

There is a circular flow of information in a hierarchical decision

system: decisions are passed downward and value signals are passed upward.

These in turn affect the decisions which are passed downward in a subse-

quent cycle, as shown in Figure 2. It is this two-way flow of information

that makes delegated authority operational and renders a decentralizeJ or

hierarchical system controllable; this notion of decentralized control will

be explored in more detail shortly.

4
The outputs of higher education have received increasing attention in

the last few years; see Lawrence, Weathersby and Patterson [1970],
Breneman and Weathersby [1970] and Huff [1971].
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in a Hierarchical Decision Structure
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Analytical Description of Institutional Decision Making

This conceptual analysis of educational decision making can be made more

precise by describing the decision interrelationships in mathematical terms.

To begin with, we need some definitions:
5

u.(t) = the vector of decision variables available to decision

maker (DM) i in period t ;

z.(t) = the vector of predetermined variables impinging upon the

system relevant to DM i in period t ;

xi(t) = the vector of consequences (or state variables) in

period t resulting from the decisions of DM i and rele-

vant exogenous influences.

The relationship of consequences to decisions (or output to input) is often

called the production function:

xi(t+1) = fi(xi(t), ui(t), zi(t), t). (1)

Finally,thevaluetoMof making a decision u.(t) when confronted

with the predetermined variables z
i
(t) is written

V.(x.(t), u.(t), z.(t), t). (2)

Expressions (1) and (2) describe the horizontal flows :shown in Figure 2

at each decision making level.

The decision problem faced by each administrator is to maximize his

on values subject to his constraints of authority and resources and sub.-

ject to the responsiveness of his system to the application of policy or

resource decisions. Furthermore, a decision maker often looks several

5
For a complete exposition of this approach and the motivation for

these definitions, see Weathersby [1969a, 1969b].
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years in advance and wants tomaximize his values ovel.. a platming horizon

of N periods. We may write this decion problem as:
6

subject to:

and

N

max .(11x.(09 ti.(09 zi(t), ti (3)

u.(0),...,u.(N-1) t=o

[.(t-1-1)=qc.(0,u.(t),z.(t), t] t=o,1...,n-1 (1)

x
i
(o) known

x. (t)

C u(t) < bi(t) ta.o 91... , n-1 (4)

Inthisformulaticri,Ciseleccristraintalncticriandb.(t) are the

resource and other constraints relevant to DMi in period t .

In general, there is a solution u
i
(t), t=0,1,...,n-1 which maxi-

mizes the overall value function, J , provided the necessary and suffi-

cient conditions are satisfied.
7

Furthermore, an optimal solution is in

general a function of all preceding variables.
8

u g (t-1),
i( i

b.(0"..b.(t), t) . (5)

6
The general form of the N period value function is V

i
(x

i
(o),

xj..(1)..-xj.(10 11.1(0,, z.(o),...,z
i
(N-1)) which can

1N-1
be separated into V4(x4(t), ui(t), zi(t), t) + V.(x.(N), N) by the

to
assumption of weak separability (Weathersby [1969a]). NJtice that present
value discounting is a special case of the time functIon of V(x,u,z,t).

7
The solution procedure will be described in more detail later and

the algorithm used in this study is described in the Appendix.
8
See Aoki [1969] for a discussion of general recursive solution.
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The consequences which result from an optimal decision sequence can be

calculated from equation (1);

x'!(ti-1) = f x.(t), u!'(t), z (t)
'

tJ

= hi xi(o),...,xi(t), zi(o),...,zi(t), bi(o),...,bi(t),t

(6)

after equation (5) is substituted for ut(t). In other words, when the

parameters of the decision problem are known, i.e., equations (1), (3),

(4), and (5), one can replace the decision problem by equation (6) which

describes the consequer-.1es of an optimally controlled system.

In a strict hiehical decision structure, there is one such deci7

sion problem for each in the three level hierarchy shown

inFigure3,rideans!'eporttothepresidentandm.department

i
th

chair-

men report to the dean. The interrelationships are:

1. At levels 1 ani3 2, the predetermined variables z(t) and

resource constraints b(t) can be controlled or influenced

at the ..next higher level. For example,

x1,1(t+1) f ix1,1 1,1(t)' u1,1(t)' xi,
(t), u2,1(t), z2,1(t),

u3,1(t), z3,1(t)

2. The values associated with the consequences of decisions by

decision-makers at levels 2 and 3 can include the decisions

and consequences of lower level decision-makers. For example:

V =
3,1

V3 3,1(t), u3,1(t), z3,1(t), x2,1(t),

tl

The first interrelationship describes the downward flow of decisions either

directly or indirectly while the second form of interrelationship describes

the upward flow of accountability or value. Both of these interrelationships
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level 3
(President)

level 2
(Deans)

level 1

(Depart.
Chairmen)

FIGURE 3

Array of Decision Makers in Three Level Hierarchy

are necessary for a controllable hierarchical system; however, they are not

sufficient conditions for total systems controllability.

The basic strategy of solution of a strict hierarchical decision

structure (i.e., interrelationships only between adjoining levels) is to

reduce the structure down to a one decision maker problem by folding up

from the bottom.
9

This approach would replace each decision making node

at level 1 in Figure 3 by his corresponding optimal decision function

g, and the corresponding optimal production function h, . . . For
1,1,3

each level 2 decision maker, the m
i

departmental chairmen's decision

9
For a complete presentation of this approach, see Weatherby [1969b].
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*
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and h* func-

tions. These 2m
i

vector equations then are effectively production functions

to the i
th

dean which augment his own production function. Now TAT, can fold

the dean's decision problems up to the presidents' level by the same tech-

nique. Thus, we can collapse a multi-layer, multi-decision maker hierarchy

to an equivalent one-decision-maker problem. Correspondingly, if we can

solve the one-decision-maker decision problem, we can conceptually solve

the multi-layer, multi-decision maker problem. Therefore, the remainder

of this study will focus on the single decision maker problem.

The President's Model:

Single Decision Maker Paradigm

The basic decision problem of the president is to maximize the achieve-

ment of his own values, or the values he chooses to operate with as presi-

dent, subject to resource limitations and the responsiveness of his insti-

tution. The formal statement of this problem was given previously in

equations (3), (1), and (4). The three major components of the problem

are: (1) the president's value function; (2) the institutional response

or production function; and (3) the resource, legal and other constraints.

One obvious difficulty with the decision theoretic formulation is

that generally presidents, and other administrators, cannot articulate

their value function. Most of us are not trained to think in terms of

multi-attributed utility functions and, therefore, any approach which re-

quires a mathematical description of a decision maker's value function is

destined to grave difficulty if not failure.

There have been two major techniques for circumventing the assess-

ment difficulties associated with a full description of the value function.
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Geoffrion and Dyer [1970, 1971] have shown that one need only assess the

local gradient of the value function at the current operating point. In

their w.rk, they ask a dean or department chairman to select one of his

variables as a numeraire and then assess the pairwise tradeoffs of all the

other policy relevant variables with respect to the chosen numeraire. This

is the local gradient which shows an improving direction along which the de-

cision maker selects a new and improved operating point. At this new point,

however, the local gradient must be assessed again because it is generally

different at every point on the utility surface. In other words, the

Geoffrion and Dyer approach replaced a global assessment of the multi-

dimensional value surface with a series of local assessments of the tangent

plane, which is a much easier task. This requires interaction between the

decision maker and the mathematical programming algorithm because the path

along the value surface is unpredictable a priori.

A second approach to the reduction of the dimensionality of the value

assessments is to express the decision-maker's objectives in terms of

targets. This is the approach used in the study reported in this paper.

For simplicity of exposition, consider a president's value function that

is defined over only the consequences of state vector x , i.e., V(x) , and

that the president wants to achieve a most desirable level of x , say x* .

In other words, the president believes that the optimal state of his institu-

tion would be a student enrollment of 10,000 with 1,000 faculty members,

600 of whom would be tenured, and so forth.

The key to the target approach is that if the institution is initially

reasonably near the desired targets, then the general utility maximization

problem can be expressed by an approximately equivalent loss minimization

problem where the loss function is quadratic, independent of the form of



17

the utilIty function as long as the utility function is twice differen-

tiable, i.e., smooth and continuous. Although we may know nothing more

about the president's utility function than that it ought to be concave and

smooth,
10

we do know that in the neighborhood of his targets his loss

function is quadratic to second order.

By choosing targets x* a decision maker indicates that

V(x*) > V(x) for all x (7)

For x near x* , we can expand V(x) about x
*

by Taylor series

V(x) = V(x*) + VV1*(x-x*) + 1/2(x-x*)
t v2v, 1*(x_3:*)

x x

Higher Order Terms. (8)

If V(x
*
) is a maximum, as indicated by expression (7), then the local

gradient must be zero at x
*

and the second right hand side term in equa-

tion (8) must be zero. Furthermore, the second derivative of V must be

negative definitive for x* to be a strict maximal point. Therefore, the

third right hand side term in equation (8) must be negative for all x .

This argument proves that, to second order,

max V(x) = min 1/2(x-x*)tV2V1 (x-x*) (9)

x
*

One point of indeterminancy remains in equation (9); in general, the

matrix of second partial derivatives of V is not known. Two approaches

may be used here. One can ask the decision maker to choose a numeraire

and assess the relative pairwise comparison losses that he would exper-

10
We can assess the relative relationship between the first and

second derivatives of a decision-maker's utility function by a discussion
of his risk aversion (Pratt [1964]).
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ience at x
*

and use this one set of assessments in place of V
2
V . Alter-

natively, one could recognize that the magnitudes of V
2
V change the rela-

tive shape of the quadratic loss structure but not its minimum, which is

x . Near the minimum, the solution to (9) is often insenr-itive to the

global shape of V
2
V and a much simpler procedure is possible: namely

choose an arbitrary weighting matrix K in place of V
2
V such that the

magnitudes of loss of one unit variation in every dimension are identical.

Both of these approaches require minimal assessment.

In summary, we have argued that the decision structures of educational

institutions are multi-level, multi-decision-maker hierarchies which can

be described and analyzed in decision Theoretic terms. Furthermore, we

have argued that these multi-level, multi-decision-maker hierarchies can

be reduced to equivalent one level, one decision-maker formulations. In

turn, these single decision-maker problems can be solved either analyti-

cally or numerically by the techniques discussed in this and the following

section. We now proceed with the formulation and solution of a specific

decision model and discuss its implications.



19

SMALL CAMPUS PLANNING MODEL

The concepts of the previous section are illustrated in this section in

a specific analytical modeling context. For the purposes of exposition, we

have focused on the instructional program of an institution partly because

this seems to be an area of great interest to most colleges and partly be-

cause instructional activities have far more in common among institutions

than the various research and public service programs. The paradigm of this

model is the liberal arts undergraduate institution or that component of a

major university.

The Small Campus Planning Model (SCPM) is designed to provide a con-

trol theoretic solution to the problem of finding an optimal sequence of new

student admissions, new faculty hires, and new physical construction over

an N-year planning horizon. It assumes that the flows of students, faculty,

construction, and money can be characterized by linear dynamic equations

and that the campus administrator's preferences for student and faculty mix,

for space, and for solvency are sufficiently close to the instjtution's cur-

rent experience that actual deviations from targets can be adequately ex-

pressed in terms of quadratic penalty functions.

The model is still in the investigatory stages and will undoubtedly

undergo further revision before it is considered a finished prcduct. Ul-

timately it is hoped that SCPM, because of its minimal data requirements

and low implementation and calculation costs, may serve as a useful plan-

ning device for college administrators who have neither the funds nor the

data base to support implementation of other, more complex, models.
11

11
For a structural comparison of other recent analytical models for

university planning, see Weathersby and Weinstein [1970].
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SYSTEM DYNAMICS OF SCPM

The generalized form of SCPM's dynamics may be characterized by

where:

x(t +l) = Ft x + Gt u(t) + Ht z(t) (1)

x(t) = n-vector of state variables at time t

u(t) = m-vector of control variables at time t

z(t) = n-vector of predetermined variables at time t

F
t

=nxnmatrix of transition coefficients for period t

G
t

=nxmmatrix of transition coefficients for period t

H
t

=nxnmatrix of transition coefficients for period t.

It is assumed in SCPM that F
t
=F

2

G
t

= G , and H
t
=H for all

t , i.e., that the transition matrices are not time dependent. This is

not necessary for solution, but facilitates estimation and reduces sub-

stantially the data requirements. Furthermore, these matrices are not

Markovian, i.e., the row sums do not total 1.0, because the absorption

states for students, faculty, space and money are excluded. Under the

stationarity assumption, equation (1) becomes

x(t +l) = F x (t) + G u(t) + H z(t) . (2)

The state, control, and predetermined variables as defined in SCPM are

divided naturally into four groups: students, faculty, space, and money.

We consider each separately for purposes of exposition.

Faculty

We define the variables x1(t) to x4(t) to be the number of full-

time equivalent full professors, associate professors, assistant professors
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and instructors who were in the institution last year (at time t-1) and

who remained in the system at the start of this year (period t). Similarly,

we define the variables u
1
(t) to u4(t) to the number of faculty who

are hired at corresponding ranks at the start of period t . Then,

fij
gij
rde have

xl(t+1)
fllx1(t) f12x2(t) gllul(t) g12u2(t)

x4(t+1) =
f44x4(t) g44u4(t)

(3)

liere,f_is the promotion rate of faculty from level j in period t

to level i in period t+1 , fii is the continuation rate for faculty

at the same rank, and g.. is the promotion and continuation rates of

new faculty who were hied in period t at level j and who are at level

i in period t+1 .

Students

We define the variables x 5( t) to x8(t) to be the number of continu-

ing freshman, sophomore, junior and senior students at the start of period

t . Similarly, we define the variables u5(t) to u8(t) to be the number

of students admitted to the corresponding student levels at the start of

period t . Once again, we may write the scalar equations

x5(t+1) = f55x5(t) g55u5 (t)

x8(t +l) = f87x7(t)
f88x8(t ) g87u7(t) g88u8(t)

. (4)

Thecoefficientsf..andg..have the same advancement and retention

interpretations as before. Attrition of faculty and students is accounted

for by omission of state variables corresponding to the "out" state. For
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manpower planning or other purposes one could define two additional states

of successful degree completion and "stopping out." This would provide

specific degree output information and render the student system Markovian.

Space

We assume that physical construction takes an average of four

years to complete once it has begun. A conscious. simplification at this

stage is the assumption of fully interchangeable space types and uses.

Equation (5) could be repeated for each space type if the additional de-

tail would be worth the additional cost. SCPM also assumes a constant

depreciation rate of
a

[1- f12,12] Accordingly we define

u9(t) = amount of new construction measured in Assignable
Square Feet (ASF) which begins in period t

x9(t) = ASF begun in period t-1

x
10

= ASF begun in period t-2

x
11

= ASF begun in period t-3

x
12

(t) = ASF which is available and usable at the start of period t .

Thus,

x9(t +l) = u9(t) i.e., g9,9= 1.0

x10(t +l)
x9(t) f10,9

1.0
(5)

x11(t +l)
x10(t) i.e., f11,10 1.0

x12(t+1) x11(t) f12,12 x12(t) i.e.' f12,11
1.0

Money

Finally, we assume that there are two kinds of funds which adequately

describe the administrator's financial concerns: restricted funds (endow-

ment) and unrestricted funds (operating plus capital funds). Once again,
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these fund categories could be expanded if needed. It is further assumed

that interest earned on endowment funds may be allocated arbitrarily be-

tween funds, but that the income and capital gains use policy is fixed in

advance. If f
14,j

is the value (cost if negative) of one unit of x.

and g14,. isthevalue(cost)ofoneunitofu.,and performing all

calculations in constant dollars, we can define

z13(t) = restricted gifts in period t (estimated or assumed known)

z
14

(t) = unrestricted gifts in period t (estimated or assumed
known)

and write:

x13(t +l) = f13,13x13(t) + 1113,13z13(t)
(6)

x14(t +l)
f14,jxj(t) g14,juj(t) h14 ,13z13(t) h14,14z14(t)

While equation

is very simple and

f
14,1

to

f
14,5

to

f
14,9

to

f
14,13

f
14,14

(6) looks quite complicated, each of its components

traditional.

f
14,4

= the average faculty salary by rank including
direct support costs.

f
14,8

= the net institutional cost per student by level
(excluding faculty salaries and direct faculty
support costs and including student fees and
tuition).

f
14,12

= the average cash flow cost per ASF in each
year of new construction.

= the average rate of return on endowment that
is available for operating expenses.

= the proportion of last year's net cash balance
available in the current year (usually 1.0).

The numerical values of these and the other coefficients used in the com-

putational example are given in Table 3. Note that equation (2) is just

the aggregate of equations (3) through (6). If the state vector x(1) is

known and the gift funds z(t) , t = 1,...,N-1 are predicted, then the

control sequence u(t), t = 1,...,N-1 with (2) determines x(t) for all

future periods t = . After making various assumptions about the
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likely levels of state aid and gifts in the future, SCPM determines optimal

enrollment, hiring, and construction policies for a given set of institu-

tional objectives, which are described in the next section.

Student tuition could be included as a control variable instead of a

predetermined factor. This would more accurately reflect the decisions of

most private institutions and a growing number of public institutions. How-

ever, two major problems have to be dealt with to include tuition as a uncon-

strained control variable. A conceptual problem is the effect of additional

tuition on student demand for attendance and on the quality, of students able

to pay the higher tuition.
12

A minor technical problem is the non-linearity

of the money dynamics introduced by controllable tuition. The solution al-

gorithm given in the Appendix will accommodate both linear and nonlinear dy-

namic systems.

However, this does raise the issue of the validity of the linearity as-

sumption embodied in the SCPM systems dynamics. While in any specific imple-

mentation, the functional form of the dynamics would be an empirical ques-

tion, there are several justifications for the use of linear dynamics in

our example: (1) the ease of interpretation of coefficients in terms of tran-

sition probabilities, depreciation factors, faculty salaries, etc.; (2) the

experimental ease of formulation and modification; and (3) the lack of any

information of a more generally useful and accurate formulation.

12
See Miller [1971] for a discussion of recent attempts to estimate

student demand functions and Jewett [1971] for a presentation of a national
student ability - willingness to pay model and analysis.



CRITERION FUNCTION

The general form of the criterion function used by SCPM is

{

N-1
min J = P(x(N)) + Vt(x(t),u(t), .z(t))

t=1
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(7)

where P and V
t

are the relative quadratic loss functions derived in

a previous section. In this study, P is the sum of four quadratic terms

and V
t

(V
t
=V for all t) is a summation of nine quadratic terms. For

purposes of exposition we separate V into five sets of terms relating

to the administrator's objectives expressed in terms of the student/

faculty ratio, faculty mix, space requirements, student mix, and finan-

cial stability. P will be discussed separately.

Student/Faculty Ratio

One proxy measure of the amount and quality of student/faculty inter-

action at an institution is the ratio of students to its (FTE) faculty.

SCPM enables a campus administrator to specify a targeted ratio and then

seeks a set of controls which minimizes the deviation of the actual student/

faculty ratio from the target. If we define

r
1

= target student/faculty ratio,

k
1

= some scalar weight,

TFt = [xi.W , which is the total faculty at time t, and
i=1

TS ijxj(t) +11.(6.1, which is the total students at time t,

then the first term of V
t

may be written

(i)
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If an administrator wished, this term could be expanded to reflc,ct stu-

dents by level and faculty by rank to describe, for example, the exposure

of lower division students to tenured faculty. Similar expansions are

possible in most of the terms of the criterion function but were not re-

ported here because they do not alter the solution procedure or the basic

utility and results of the model.

Faculty Mix

Another proxy criterion for assessing the quality or prestige of a

college is the mix of its faculty by rank. [See Rowe, Wagner and Weathersby

(1970).] In the case of community colleges, or any other cases for which

there are no ranks but rather salary schedules, we may interpret the four

(or fewer) levels of faculty purely in terms of salary. In any case, we

assume that the administrator has preferences over different mixes of

faculty by level and we allow him to specify target ratios which describe

the desired mix.

If ,we define

F.(t) = xi(t) + u.(t), i = 1,2,3,4, which is the number of FTE

faculty at level i in year t ,

r
i

= target ratios of each rank relative to the number of

full professors, i = 2,3,4, and

k
i

= scalar weights i = 2,3,4,

then the next three terms of V
t

are

)2
ki(ri F1(t) Fi(t)j , i = 2.3,4 . (ii)
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Space

Typically space needs are largely determined by either student en-

rollment or faculty size or a combination of the two. SCPM makes the

simplifying assumptions that space is interchangeable and available 4n

continuously variable amounts. For a small, homogenous college, space

interchangeability may not be a devastating assumption because in liberal

arts subjects rooms of each type can be used by most disciplines even

though one cannot easily interchange lecture halls and offices. The assump-

tion of continuously variable space is a weakness of the model, because new

construction occurs by project or building and, therefore, occurs in quan-

tum jumps. However, we do include the time lag of construction from start

to completion. Recalling that x12(1) is the available space at t , we let

k
5

be a scalar weight and

c c
2'

c
3

be space standard coefficients determining space needs

as a linear combination of total faculty (TFt) and total students (TSt)

The fifth term of V
t

is then

k
5
(c

1
c2TSt + c3 TFt

x12(t))2
(iii)

Student Mix

Fiscal planning can be much more effective if student enrollments

can be forecasted several years into the future. SCPM does not attempt

to describe enrollments by discipline, although it could by defining

additional state variables and equations; instead, SCPM focuses on student

levels. Furthermore, for small colleges it was felt that average costs

would not vary significantly across disciplines because these small colleges

rarely can afford massive commitments of dollars to facilities and
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faculties in the hard sciences and engineering, traditionally the most ex-

pensive disciplines. (Schools such as Cal Tech and MIT are clearly

exceptions to this ..1e and they would need to recognize student discip-

line and level.) The next three terms of V
t

are constructed from the

same pattern as for faculty.

-N2
k.(r. S S.(t)J2 , i = 6,7,8 , and Si = students of level i .

(iv)

Monetary Balance

The last term of V
t

is a balance equation, expressed as a quadratic

penalty function, which forces the annual net cash balance at the end of

each period towards zero. Campus administrators are assumed to seek

policies so that the cash inflow, e.g., transfers from endowment, gifts,

and student revenues, is equal to the outflow, e.g., transfers to endowment,

faculty salaries, construction costs, maintenance costs, and other operating

costs. Otherwise, too much is withdrawn from income producing investments

or, conversely, not enough is invested both of which have an opportunity

cost to the institution and should be avoided. The net cash balance is

given by x14(t +l) ; however it is included in V
t

as a function of

x(t), u(t), z(t) . With

k = a scalar weight and

f
14,j '14,j

defined as before, the final expression in V
t

is
'

9[X f14,jxj(t) + g14,juj(t) h
-14,13213 (t) 214(t))2 (v)
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Terminal Conditions

Because this optimal decision problem is formulated as a finite horizon

differential dynamic programming problem, it is necessary to introduce "ar-

tificial" targets in the last planning period to correct for the truncated

horizon. To prevent SCPM from "selling off" uncompleted space in the last

three periods (space which is not usable during the model's lifetime, and

therefore, space of no va. 'e to the institution) we drive x9(N),x10(N),x11(N)

to zero by including in P(N)

k10 x (N)
2

, i = 9,10,11 , where k10 is a scalar weight. (vi)

The last term of P(N) is the net cash balance equation expressed as a func-

tion of x(N) , and write

k9x14(N)2 , k
9

a scalar weight. (vii)

When put in the form of equation (7), expressions (i) (vii) constitute the

criterion function currently being investigated.

As discussed previously, the scalar weights were chosen to equalize unit

losses and thereby avoid inducing artificial minima. Table 3 shows the values

for the scalar weights used in this study.

Although the target ratios were chosen to be constant over time, it

would be possible to choose target paths showing the evolution of the var-

iables over time and SCPM would then solve for the optimal decisions for this

path. Another formulation of the criterion function would enable the campus

planner to determine the shortest time in which the desired targets could be

achieved. However, the numerical results reported in the next section em-

ployed equations (i) through (vii).
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SUMMARY OF RESULTS

To assess the realism of the model, a reference set of input data was

developed which represents the operations of an "average" small liberal arts

college. Actually, these data were modelled after data in the University

of Santa Clara [1970]. Changes in this reference set (denoted Data Set 1)

were made to reflect different operating policy decisions which might be

made by campus administrators and to reflect different assumptions about

future levels of external financial support. The optimal decisions for

these new environments were then compared to the base case results. (See

Tables 2 and 3 for a summary of Data Set 1).

Additionally, the college's optimal decision problem was solved for

only non-negative values for the control variables. The resulting values

thereby achieve sub-optimal solutions which trade optimally for more rea-

listic results. It was shown that these solutions achieve the targeted

ratios and provide adequate space as specified by the objective function

but that they result in a much greater variation in the net cash balances

at the end of each operating period. (See Table 5 for a comparison of net

cash balances.)

Student admissions, faculty hiring, and new construction decisions

are the normal outputs of the model. In addition, the model can answer

questions about the operational effects of alternative funding methc2s

which are of considerable interest to external funding agencies such as

state and local governments. To examine these questions, three additional

data sets were analyzed from this policy perspective.
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TABLE 2

Accounting Summary for SCPM Example*
(Enrollment Level: 800)

EXPENSE
% of
Total INCOME

% of
Total

Instruction $ 104,400 6.39 Tuition & Fees $ 970,400 58.07

Student Aid 119,200 7.31 Transfers from 115,200 6.89

Student Services 266,800 16.33
Endowment

Total Student Related $ 490,400 30.03
Gifts & Grants 364,000 21.78

Salaries: Teaching Faculty 418,000 25.60
Other
(govit. aid)

221,600 13.26

Salaries: Admin./Other Fac. 222,000 13.50
TOTAL $1,671,200 100.00

Total Fac./Admin. Salaries $ 640,000 39.20

Plant M&O 208,000 12.73

Plant Additions 294,450 18.04

Total Plant $ 502,450 30.77

TOTAL $1,632,850 100.00

*
This accounting summary was derived from "An Introduction to Program Planning
Budgeting and Evaluation for Colleges and Universities" - July 1970 University
of Santa Clara--Office of Institutional Planning.

Additional Assumptions:

1) Eighty percent of instructional costs are faculty salaries;

2) There are $3,840,000 of restricted funds yielding 3% per annum;

3) Plant M&O costs $2/ASF; there are 130 ASF/student;

4) Student/faculty ratio is 16/1; faculty inclAdes teaching, research and
administrative staff exclusive of support.
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F -MATRIX

1 2 4 5 6

TABLE 3

Data Set 1

7 9 10 11 12 . 13 14

0.93 0.05

0.85 0.05

0.80 0.50

0.10

0.95 0.02

0.70 0.03

0.70 0.04

1.00

1.00

1.00 0.98

1.00

-1.7 -1.4 -1.1 -0.8 0.06 0.06 0.06 0.06 -4.5 -4.5 -2.0 -0.2 0.03 1.00

G-MATRIX

1 2 5 6 9

0.70

0.70

0.95 0.30

0.10

0.03

0.60 0.02

0.70 0.03

0.70 0.04

1.00

-1.7 -1.4 -1.1 -0.8 0.06 0.06 0.06 0.06 -1.5
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TABLE 3 (continued)

Vector of Initial x-Values

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) x(12) x(13) x114)

10. 12. 15. 1.0 10. 1:0. 140. 130. 2.08 2.08 2.08 104. 384. 0.0

Vector of Predetermined Funds ($10,000's)

Per. Amount Per. Amount Per. Amount Per. Amount

1) 58.55 6) 61.55 11) 64.69 16) 67.99

2) 59.15 7) 62.17 12) 65.34 17) 68.67

3) 59.74 8) 62.79 13) 65.99 18) 69.36

4) 60.34 9) 63.42 14) 66.65 19) 70.05

5) 60.94 10) 64.05 15) 67.32

TARGETS AND WEIGHTS

Item Target Weight Item Target Weight

Assoc/Full: 1.5' 1.0 Soph/Frosh: 0.7 1.0

Asst/Full: 2.0 1.0 Fr./Frosh: 0.65 1.0

Inst/Full: 0.5 1.0 Sr./Frosh: 0.5 1.0

Stu/Faculty: 16.0 0.01 ASF/Student: 130. 50.0

Net Cash Bal: 0.0 0.5
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Comparison of Optimal versus Sub-Optimal Results

The general form of the optimal control problem is to

N-1
Min {J = P(x(N)) V(x(t),u(t),z(t),0}
u(t) t=0

subject to

x(0) : known

x(t +l) = f(x(t),u(t),z(t),t) .

This formulation does not constrain' the sign of either the state or con-

trol variables. This is the form for which the solution algorithm given in

the Appendix was designed, While firing full professors and selling

newly constructed space may appeal to some interests, negative values for

control variables are in general not meaningful. Furthermore, our study

revealed that unconstrained solutions to the optimal policy problem usually

contained several such negative decision values, which, while small

in magnitude, were nevertheless inappropriate and unrealistic.

Rather than impose inequality constraints which would require a re-

formulation of the model or attach penalty functions to the criterion

function to facilitate the use of a sequential optimization algorithm, we

initially included a switch in the computer program which set negative

values of the computed control variables to zero within the iteration

sequence.
13

Since the algorithm computes the improved u(t) values

based on small variations in x(t) and since those variations are not

substantially altered by zeroing out negative values of u(t-1) , the

13
can solve the general formulation with inequality constraints

at considerable additional complexity and expense, see Jacobson [1969],
but we-concluded that at this stage of development these refinements were
not worth the additional cost because the constrained and unconstrained
results were so similar.
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resulting sub-optimal path should provide acceptable solutions. A compari-

son of the two sets of results confirms this assertion.

Three sets of comparison runs were made to determine the loss from

sub-optimization. These runs were based on the original Data Set 1, Data

Set 2 in which exogenous, funds grow at 2% per year, and Data Set 3 in

which per-student income increased by $100 per year. Tables 4 and 5 show

the differences in control variables and in the yearly net cash balances

for Data Set 1. Similar results obtained for Data Sets 2 and 3. The

differences between the two sets of control variable solutions for Data

Set 1 are summarized below.

Mean Value Mean Value
Mean of The

Absolute

Control Variable Unconstrained Constrained Differences

Full Professors 0.12 0.15 0.25

Assoc. Professors 1.86 1.85 0.63
Asst. Professors 2.26 2.35 0.73
Instructors 4.74 4.88 0.30
Freshmen 286.39 287.52 5.03

Sophomores 23.37 23.75 5.39
Juniors 42.22 42.62 4.73
Seniors 8.12 8.a6 4.01

New Construction 2.92 2.94 3.41

(000's ASF)

It is clear from an examination of Table 6 that in terms of the tar-

geted values specified by the objective function, there is very little

loss of utility associated with using the constrained formulation.

Because the negative values for the control variables generated by the

unconstrained solutions are unrealistic, we shall concentrate on the

constrained, sub-optimal results for the balance of this discussion.
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TABLE 4

Comparison of Control Variables
Data Set 1

Unconstrained vs Non-Negative Modes

NEW FACULTY'

Unconstrained Von-Negative

Per. Prof. Assoc. Asst. Inst. Prof. Assoc. Asst. Inst.

1 0.10 3.20 5.11 3.82 0.10 3.20 5.11 3.82
2 -0.03 1.68 1.43 4.63 0.00 1.68 1.43 4.63

3 0.12 1.75 2.25 4.43 0.00 1.45 2.10 4.66

4 0.02 1.54 2.03 4.53 0.16 1.89 2.19 4.37
5 0.39 2.12 2.78 4.67 0.31 1.94 2.67 4.77

6 -0.21 1.23 1.36 4.47 0.00 1.14 1.50 4.85

7 0.43 2.20 3.13 4.73 0.12 2.08 2.45 4.38
8 -0.06 1.46 1.62 4.63 0.32 2.00 2.78 4.93
9 0.22 1.92 2.60 4.66 0.00 0.38 1.08 5.68

10 0.10 1.71 2.21 4.80 0.00 1.38 1.77 5.24

11 0.18 1.90 2.36 4.69 0.97 4.01 4.18 4.49

12 0.05 1.66 2.18 4.79 0.00 1.14 1.33 5.14
13 0.25 1.98 2.62 4.90 0.00 0.62 1.53 5.50

14 0.12 1.84 2.14 4.72 0.00 1.73 2.17 5.18

15 0.00 1.56 2.28 5.02 0.53 3.25 3.64 4.95
16 0.53 2.53 3.07 4.89 0.00 1.05 1.36 5.47

17 -0.42 0.96 1.13 4.83 0.00 1.70 2.05 4.88

18 0.77 2.81 4.12 5.33 0.39 2.67 3.40 5.04

19 -0.27 1.37 0.87 4.56 0.02 1.83 1.89 4.77

NEW STUDENTS

Unconstrained Non-Negative

Per. Frosh Soph. Jr. Sr. Frosh

,

Soph. Jr. Sr.

1 270.8 26.5 42.5 10.4 270.7 26.5 42.5 10.4

2 272.8 20.7 39.5 7.1 272.7 20.8 39.6 7.1

3 272.8 21.4 39.5 7.1 272.8 21.4 39.5 7.1

4 272.8 21.3 39.5 7.0 272.8 21.3 39.5 7.0

5 282.1 27.9 45.6 11.7 282.4 28.0 45.7 11.8

6 271.9 15.2 34.4 2.3 276.3 18.1 37.1 4.4

7 285.5 30.5 48.0 13.7 277.6 22.3 40.7 7.7

8 279.4 18.4 37.6 4.5 289.1 29.8 47.7 12.9

9 284.3 25.1 43.5 9.5 282.8 18.5 37.9 4.5

10 286.3 23.8 42.5 8.4 278.9 19.2 38.3 5.2

11 287.9 23.5 42.5 8.2 301.4 37.4 54.9 18.4

12 288.1 22.7 41.8 7.5 294.5 19.4 39.5 4.6

13 294.1 26.7 45 5 10.4 288.6 18.7 38.7 4.6

14 292.2 21.8 41.4 6.7 289.1 22.7 42.0 7.6

15 294.5 24.4 43.8 8.7 307.0 35.2 53.5 16.4

16 304.2 29.8 48.9 125 300.2 19.7 40.3 4.7

17 289.5 13.8 34.6 0.6 294.2 19.1 39.5 4.6

18 315.3 40.2 58.4 20.1 309.3 33.4 52.3 15.1

19 294.0 10.4 32.2 -2.2 302.5 19.8 40.6 4.8
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TABLE 5

Comparison of Unrestricted Funds Balances

Unconstrained vs Non-Negative Modes
(Data Set 1)

Per. Unconstrained Non-Negative

1 $ 15,240. $ 15,220.

2 -24,096. - 47,390.

3 13,195. 16,260.

4 - 5,572. 26,660.

5 856. 54,500.

6 787. 14,030.

7 678. 45,840.

8 - 4,560. -139,320.

9 9,166. 97,000.

10 -11,996. 146,450.

11 10,543. 109,970.

12 - 3,486. -128,660.

13 - 8,290. - 52,060.

14 20,927. 101,710.

15 -28,550. 23,120.

16 25,150. - 11,670.

17 - 7,584. 16,080.

18 -21,526. 7,077.

19 25,923. 14,157.

NET $ 6,833. $ 5,974.
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Comparison of Results from Various Policy Alternatives

Perhaps the most striking feature of the solutions generated by the

model is that they do not show a smooth expansion path, either in terms of

total enrollments or in terms of any of the control variables. This is not

surprising mathematically, but it may surprise administrators unfamiliar with

controllable, dynamic systems with different response times.

Intuitively, what has happened to the reference data set for the con-

strained case is the following. The preference function desires the ratio

of available ASF per student to be fixed at 130. Enrollments are therefore

constrained during the initial four years by the amount of physical space

under construction at the beginning of the planning period, (x9,x10, and x
11

at t = 1). For the reference data set, these are set at a level which ex-

actly counteracts the depreciation of the existing capital stock. For the

first four years therefore, the physical space available remains constant.

Because faculty is linked to enrollments through the Student/Faculty Ratio,

it is unnecessary to spend operating dollar balances resulting from the 1%

growth in outs'', funds, to increase the size of the faculty during this

period. As a result, the model spends any "excess funds" on new capital

construction. This becomes available after the fourth year at which time

enrollments begin to increase.

Although students yield a net dollar gain from the tuition level, they

induce costs in the form of faculty salaries, capital needs, etc., so that

it is impossible to pay for additional space by simpl adding students to

the rolls. When enrollIa:mts increase, therefore, the amount of new con-

struction must decline relatively. This will eventually cause some decline

in enrollment levels from peak periods, and thus induce a cyclical pattern

of physical expansion and student growth.
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Although the system dynamics and the solution process are considerably

more complex, the foregoing is the predominant reason for the cyclical var-

iability in the expansion path. Another reason is the different time con-

stants or response times for the various state variables. Full professors

spend a longer average time in the system than instructors, freshmen more

than entering seniors, and so forth. The time behavior of aggregates is

built up from many of these overlapping transients and, therefore, the ag-

gregates show a cyclical time behavior.

Data Sets 1 and 2 differ only in the assumptions concerning the levels

of external aid, with a 1% yearly increase in gifts, grants and government

assistance reflected in Data Set 1 and a 2% yearly increase contained in

Data Set 2. Both employ the same levels of aid for the initial year. At

enrollment levels of 800 students, these funds account for 35% of current

income in the initial year and 36.02% and 37.91% respectively for the total

planning horizon. A comparison of the enrollment patterns generated is

shown in Table 7. As can be seen from the table, there is no substantial

increase in enrollments until the 10th period despite the fact that an

additional $225,700 has been received by the institution through the 9th

period. Since the 19-year "marginal-cost" of increased enrollments is ap-

proximately $5,500, one might intuitively expect that a smooth expansion

path would be generated which should have enrolled an additional 41 stu-

dents through the first 10 years. In fact, the school has only enrolled

an additional 3 students.

Another way of looking at the data is to examine the increase in

external funds in relation to the total income over the 19-year period.

Here it can be seen that the additional $1.1876 million generated by Data
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Set 2 is 3.51% of the total income generated via Data Set 1. This 3.5%

increase in total income thus would result in a 1.35% increase in total

enrollments if it were to come in the form of additional gifts, grants,

and government aid according to this exponentially increasing function

of time.

Suppose instead the increase in income had come from tuition charges.

Data Set 3 simulates the effect of a $100 increase in tuition charges (or

equivalently, an additional subsidy of $100 per student) changing the

net return from students from $600 to $700. (Recall that the coefficients

f14,j
and g1, . , j=5-8 , are the difference between tuition and average

,J

student-related costs such as admissions, counseling, student-aid and health

facilities.)

If the institution were to increase tuition and fees by $100, neglect-

ing per-student student aid increases, enrollments would increase 3.57%

over the 19-year period. The increase in total income represented by this

policy change is $2,356,449 or approximately 7%. Table 8 shows a compari-

son of enrollments and income under the assumptions of Data Sets 1 and 3.

Looking at these results from the point of view of a potential fundor,

such as the State or Federal government, it would appear at first blush

that the most productive means of funding the institution would be the per-

student instituticnal subsidy. In order to investigate the question more

thoroughly, Data Set 4 was developed. This data set increases the external

inputs by an amount equal to the $100/student-additional income generated

by the increase in tuition at optimal enrollment levels. Table 9 shows

the enrollments generated by Data Sets 2, 3 and 4 and the marginal costs

of enrollments. A comparison of these costs shows that for the purpose of

increasing enrollments, it is more effective to fund the institution directly
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rather than paying a per-student amount. The same subsidy, in terms of

both total dollars and timing, has been assumed by Data Sets 3 and 4, yet

the solution to the planning problE. generates greater enrollments when

ti:e subsidy is given as a flat grant.
14

Conclusion

These examples show that realistic and relevant results can be obtained

relatively easily and inexpensively by SCPM. The control theoretic approach

both incorporates the multi-level, multi-decision maker hierarchical struc-

tures of higher education and enables educational planners to derive improved

institutional plans and to evaluate many alternative operating policies. The

robustness and flexibility of SCPM suggest that it could make a major con-

tribution to improved educational planning.

V

14
This counterintuitive result does not hold for the unconstrained

case, if the optimal value of the criterion function is zero. If it is
possible to achieve all the targets exactly in all planning periods, then
MIN J = 0 and the optimal enrollments for Data Sets 3 and 4 would be
identical. An alternative view of student tuition models and the effects
of go,i.rnment subsidies is given in Weathersby [1970]. The above conclu-
sion is supported in this supply and demand analysis.
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The linear-quadratic minimization problem is solved in one step using

an adaptation of an algorithm devised by David Mayne [1966j. The following

computer program is based on this algorithm.

A non-optimal trajectory is generated using a nominal control sequence.

The effect on the criterion (penalty) function of small variations of the

control sequence is determined. This enables an improved sequence to be

chosen. In the case of a quadratic criterion and linear system dynamics,

the first improved sequence is optimal.

The advantage of Mayne's approach over conventional dynamic programming

approaches lies in immense reduction of core requirements. In place of the

optimal return function V° of Bellman, Mayne uses VV° , the optimal

variation in the non-optimal return function due to variation of the state

variable. VV° is expanded in a power series (to second order) of the

variation in , and difference equations are derived for the coefficients

of the series. It is the identification of these coefficients which pro-

vide, in analytic form, the optimal change in x(t) , and hence, by working

backward in time, of u(t - 1).

The program, in its present form handling 25 variables and 20 planning

periods, requires approximately 50K bytes of core and 1.5 minutes CPU time

on IBM's 360-65 O.S. On the University of California Administrative Data

Processing System this costs approximately $10.00 for an adequate numerical

solution for one case. It is hoped that EutUre versions will reduce the

size snd cost of running this program.
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COMPUTER PROGRAM

FORTRAN IV G LEVEL 18 MAIN DATE 1= 71300 10/27/59

C
C THIS PROGRAM EMPLOYS AN ITERATIVE PROCEOURE TO FIND A SEQUENCE
C 3F CONTROL VECTDRS 0:H1C1 MI \IMIZES A N3NLiNEAR NPER:OU OBJECTIVE
C FUNCTION S48JECT TO LINEARDYNAMIC CONSTRAINTS. THE PrtOCRAM IS
C 3ASE0 ON AN ALGORITiM DEVELOPED BY DAVID MAYNE, PUBLISHED BY
C INT. 3URNAL OF CONTROL (1966).
C

0001 COMMON X(14.20).11(09.19).NX.NU.NPPIVX(14), VXX(14,14).VUX(9.14).
1VUj(9.9),VXX2Wr.14/.VU(9),LPP.VX2(14).V(20) .F(14.14) .0I14.911
2:IN.-IOUT.NUMRUN

0002 REAL JJ,OPT
0003 DIMENSION A(14.141,8(.9./.4),ALPH0.(9.19).BETA(9,14.19).MUI9/,

1H(14,14),Z(14.19),XNEWI14.20/.DELU(9)1W(14,14),
20(9.9)ECINV(9.9).CC(45)

0004 DOUBLE PRECISION C,CINV
0005 IIN=I
0006 IOUT=6

r

C READ BASIC DATA .

0007 1 READIIIN.900I NUMIT.LPRNT.NU.NX.NPP.NUMRUN.OPT
0008 IF (NUMIT.GT.99) STOP
0009 LPP=NPp.../
OCIO IF(NUUUN.GT.1) GO TO 150
0i11 2 DO 100 I=1,4X
3312 100 READ(IIN.901)(F(IeJ)iJ=-104X1
0013 IF(NUMRUN.GT.1) GO TO 150
0014 3 00 101 I=1.NX
0015 131 READ(IIN,901)IG(I.J).J=1.NU)
0016 1FINUMRUN.GT.1) GO TO 150
0017 4 DO 102 I =1,NX
0018 102 READ(IIN.901)(HII.JI.J=1tNX)
0019 IF(NUMRUN.GT.1) GO TO 150
0020 5 DC 103 1.1,NX
0021 103 READ(11N,901)(ZII.JI.J=IINPP)
0022 IF(NUMRUN.GT.1) GO TO 150

C

C INITIALIZE SYSTEM
C

0023 6 READ(IIN.901)IX(I.11.I=1.NX)
0024 IF(NUMRUN.GT.1) GO' TO 150
0025 7 DC 110 I=1.NU
0026 110 READIIIN.9011(U(I,J).J=1.NPP)
0027 IFI4UMRUN.E0.11 GO TO 1000
0026 150 READ(11N0221 ICH4GE
0029 GO TO (1000.2.3,4,5.6.7),ICHNGE

C

C CALCULATE INITIAL STATE VARIABLES
C

0030 1000 NCYCLE=0
0031 DG 120 0.1.NPP
0032
0033 DO 121 :=1.NX
0034 121 X(I.M)=0.0
0035 DC 120 /=I.NX
0036 DO 122 J=IgNX
0037 122 X( IIM)=X( IIM)+F(I,J)4X(J,L)+MII.J/01(J,L)
0038 DO 120 J=1.NU



FORTRAN IV C LEVEL 18 MAIN

0039 120 X(100.X(/IM) +G(I,J)*UIJ,L/
C

C ECHO CHECK INITIAL DATA

3040 WRITE(IOUT,902) NUMRUN
0041 WRITE(IOUT.903) (1,1=1,NX)
0042 DO 200 I=1,NX
0043 200 WRITEIIOUT.904/
0044 WRITEIIOUT,905/
0045 WRITEIIOUT,9031 II.I=1.NU1
0046 DO 201 I=1.NX
0047 231 WRITE(IOUT,904) 1.(G010.1).J.1.NU)
0048 WRITE(IOUT.906)
0049 WRIYEIIOUT.903)II.I=1.NX1
0050 DO 202 I=1,NX
0051 202 WRITE(iOUT,904) I.(HII.J).J.1,NX1
0052 WRITE(1007007)
0053 WRITEIIOUT.9031 (1.1=1..NX)
0054 DO 203 J=IgNPP
0055 203 WRITEIIOUT.9041 J.I2(I.J),Im1yNX1

49

DATE . 71330 10/27/59

C
C BEGIN ITERATIVE PROCEDURE
C

0056 CALL CALCV(01
3C57 300 WRITEIIOUT,908) NCYCLE
0058 WRITEIIOUT,9091 (1.1=1.NU)
0059 DO 301 J=1,NPP

331 WRITE(IOUT,910) J.(UII,J1.1=1,NU)
0::01 WRITE(1007.9111
0062 WRITE(IOUT.909) IJ.J.1.LPP/
0363 00 302 I=1,NX
0064 302 WRITHIOUT.912) 1,(X(lt.1),J=IILPP)
0065 CALL CALCVILPP1

C CALCULATE J-VALUE
C

0066 JJ=0.0
0067 00 310 I=1,IPP
0068 310 JJ.JJ+V(I)
0069 WRITEIIOUT.9131(1,1=1,IPP)
0070 WRITE(IQUT.914)(V(11.1.1.LPP)
0071 WRITEIIOUT,915/JJ

C

C :HECK TO SEE IF CURRENT CONTROLS ARE OPTIMAL
C

0072 CMECR=ABS(JJ-OPT)
0073 IFICHECK.07.0.02/ CO TO 320
0074 WRTTEIIOUT.916/
0075 GO TO 1

0076 320 IF!NUM/T-NCYCLE) 321,322,322
0077 321 WRITEI1OUT.9171
0078 GO TO 1

C

C BEGIN MAJOR LOOP
C

0079 322 AA=0.0
0080 00 400 II.1.NPP
0081 1T=LPP--11
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FORTRAN

0082

0083
0084
0085
0086
0037
0038
0069
0090
0091
0092
0093
0094
0095

0096
00c:7

CO.-)8

0099
0100
0101
0102
0103
0104
0105
0106
0L07
0108

0109
0110
0111
0112
011:3
0114
0115
0116
0117
0118
0119
0120
0121

0122
0123
0124
0125
0126
0127

IV G LEVEL 18 MAIN DATE

CALL CALCV(IT)
C
C CALCULATE MATRIX A = VXX + F' VXX(T+1) F
C

DO 401 J=1,NX
00 401 I=1,NX
A(I,J)=0.0
00 401 K=1,NX

401 A(1,..1)=A(1,J)+F(Kg1)4VXX2(K,J)
DC 402 J=1,NX
00 402 I=1,NX
W(I,J) =0.0
DO 402 K=1,NX

402 W(10.1)=WII,J14,A(1,K)*F(KgJ)
DC 403 J=1,X!:
DO 4C3 I=1,NX

403 AII,J)=W(10J)+VXX(I,J)
C

CALCULATE MATRIX 8 = VUX + G' VXX(T+1) F

. OC 404 I=1,NU
00 404 J=1,NX
8(10.7)=0.0
00 404 K=1INX

404 8(1,..1)=8(/,J)+G(K,I)*VXX2(KIJ)
DO 405 I=1,NU
DC 405 .1=1,NX

DO 405 K=1,NX
W(1,J)=W(1,J)+8(1,K)*F(K,J)
DO 406 I=1,NU
00 406 J =1,NX

436 8(10..1)=4411,j)+VUX(1,J)
C

C 0j4CULATE MATRIX C VUU + G' VXX(T+11 G

DO 407 I =1,NU
CC 407 J=1,NX
W(I,J)=0.0
DC 407 K=1,NX

407 W(I,J1,41((0J)+G(K,I)*VXX2(KIJ)
CO 408 I=1,NU
00 408 J=1,NU
0(100)=0.00
DO 408 K=1,NX

408 CII*J)=C(I,J)+W(I,K)*G(K,J)
DO 409 1=10NU
00 409 J=1,NU

409 0(1,..1)=C(1,J)+VUU(1,J)
C

PLACE UPPER TRIANGLE OF C INTO CC BY COLS.
C

K=1
00 419 J=1,U
DC 418 1=1,J
IF(C(',J)) 415.416,416

415 00(()=DMAXI(C(I,J),0(J,I))
GC TO 418

= 71300 10/27/59
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FORTRAN IV C LEVEL 18 MAIN DATE = 71300 10/27/59

0128 416 CC(K)=DMIN1(C(1,J)IC(JII))
0129 418 K=K+1
0130 419 CONTINUE
0131 IER=0
0132 ppsm.moon
0133 CALL OSINVICC,NUIEPS,IERI

'C

C PLACE CC IN CINV
C

01.34 L=1
OAS DC 485 J=1,INU
0136 DO 48G I=1.J
0137 CINV(I,J)=CCILI
013E1 IF(I.NE.J) CINVIJO)=CC(L)
0139 480 L=L+1
01.40 485 CCNTTNUE
0141 IFUER.E0.....11 GO TO 1
0142 DO 410 J=1*NU
0143 MU(J)=0.0
0144 DO 411 I=1,NX
0145 411 MUCJI=NU(J)+VX2(I)*C(I,J)
0146 410 HU(J)=HU(J)+VU(J)

C

C CALCULATE ALPHA(IT).8ETA(IT)
C

0147 DO 420 I=1,NU
0148 ALPHA(1,IT)=0.0
0149 DO 421 J=1,NU
G150 421 Al.?HA(I,IT)=ALPMA(I,17)+CINV(1..1)*HU(.1)
G151 420 ALPHA(1,1T)=-ALPHA(1,IT)
0152 DO 430 I=1,NU
0153 DO 430 J=1,NX
0154 BETA(1,J1(7)=0.0
0155 . DO 431 K=1,NU
0156 431 BETA(I,j,IT)=BETA(I1J,171+CINV(1,K)*(1(K,J)
0157 430 BETA(I,J.17)=-8ETA(1.J1171

C
C CALCULATE NEW VXX2 AND NEW VX2
C

0158 DO 440 I=11,NY
0159 W(1,1)=0.0
0160 DO 440 J =1 ,NU
0161 440 W(1,1)=W(1)+BETAIJ11,171*NU(J)
0162 DC 441 I=!.,NX
0163 W(1,2)=0.0
0164 DO 441 J1,NX
0165 441 14(1.2)=W(I,2)+VX2(Ji*F(JII)
0166. DO 442 I=1.NX
0167 :42 VX2(I) =VX(I)+W1I11)+W(it2)
0168 DO 453 I=1INU
0169 DO 450 J=1,NX
0170 W(I,J)=0.0
0171 DO 450 K=1,NU
0172 450 W(I1J124W(I,J)4CINV(1,K)*(3(KIJ)
0173 DO 451 I=1,NX
0174 DO 451 .1=1,NX
0175 VXX2(I,J) =0.0
0176 DC 452 Km1,NU
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0177
0178

0179-
0180
0181
0182

452 VXX2(I,J)=VXX2(I,J)+81KII)*W(KIJ)
451 VXX2(I,J)=AIIIJIVXX2(11J)

C CALCULATE AA TO INDICATE EXPECTED IMPROVEMENT IN JVALUE

W(111)=0.0
DC 460 1=1,NU

4b0 W(1,1)=W(111)+HU(1)*ALPHA(I,IT)
430 AA:AA+0.5*14(1#1)

C :ALCULATE NEW CONTROLS AND NEW STATE VARIABLES
C

01E3 DC 500 1=1INU
0184 U(I.1)=U(I.1)+ALPiA(I,1)
0135 IFIJ(III).LT.0.) U11.1)=0.
0186 530 CCNTINUE
0187 DO 501 I=1,NX
0183 XNEW(I,2)=0.0
0189 DO 502 J=1,NX
0190 532 XNEW( 112 )=XNEA( 1,2 )+FII,J)*X(Jr 1)+H( I.J)4Z(Jel)
0191 DC 501 J=1.NU
0192 501 XNEW(iv2)=XNEW(II2)+G(IsJ)*U(J,1)
0193 DO 510 L =2,N -P
0194 M=L+-1
0195 DO 511 1=1,NU
01776 DELU(1)=0.0
0197 DC 512 J=1fNX
0193 512 DELU(I) = BETA(I,J,L)*INEW(J,L)X(JIL.))'DELU(I)
0199 DELU(1)+ALPHA(1,0+J(I,L)
6200 IF(Uf1,1).17...)
0201 511 CONTINUE
0202 DO 513 1,..1,NX
0203 XNEW(I,M)=0.0
0204 DO 514 J=1,NX
0205 514 XNEW(1,M)=XNEW( IIM)+F(I.J)*XNEW(JoL)+H(I,J)*Z(J,L)
0206 00 513 J=IIINU
0207 513 XNEW(I,M)=XNEW(I,M)+GII,J)*U(J.L)
0208 510 CONTINUE
0209 DO 520 1.1,NX
0210 DC 520 J=7,LPP
0211 520 X(I,J)=XNEW(I,J)
0212 NCYCLE=NCYCLE*1
0213 WRITE(IOUTs918)AA
0214 GO TO 300
0215 900 FORMATI6I3.F8.0)
0216 901 FCR4AT(10F8.0)
0217 902 FORMAT(1H1,20X,IDATA FUR RUN NUMBER's13//20X0FMATRIX')
0218 903 FORMAT( /0X.1419)
0219 904 FCRMAT(IX,I2,14F9.2)
0220 905 FORAAT( / /2DWGMATRIX')
0221 906 FCRMAT(1H1,20X1'11MATRIX')
0222 907 FCRMAT( //20X0ZTRANSPOSE')
0223 908 EORMA',T(IM1,10XOSTATISTICS FOR CYCLE NUMBER',14//20X000NTROL

lABLESCI)

VARI

0224 909 FORMAI( /I3X.10112))
0225 910 FORMATi1XvI2,5X,(0012.4)
0226 911 FCRMAT(1H1120XOSTATE VARIABLES')
0227 912 FORRATI/2X.'X(".12s1) 1.10G12.4/(8X110G12.4/))
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C ***0*.e..************************4*******,:.***44.********0***************
C

C PURPOSE
C INVERT A GIVEN SYMMETRIC POSITIVE DEFINITE MATRIX

C USAGE
C CALL DSINV(A.N,EPS.IER)

C DESCRIPTION OF PARAMETERS
A DOUBLE PRECISICN UPPER TRIANGULAR PART OF GIVEN SYMMETRI:

POSITIVE DEFINITE N BY N MATRIX.
C ON RETURN A CONTAINS THE RESULTANT UPPERTRIANGuLAR MATRIX

IN DOUBLE PRECISION.
C N ORDER OF THE GIVCN MATRIX
C EPS- SINGLE PzECISION INPUT PARAMETER WHICH IS USED AS RELATIVE
C TOLERANCE FUR TEST ON LOSS OF SIGNIFICANCE.
C IER RESULTING ERROR PARAMETER CODED AS FCLLOWS
C IER=0 NO ERROR

IER -1 NO RESULT BECAUSE OF WRCNG INPUT PARAMETER N OR
C . BECAUSE SOME RADICAND IS NONPOSITIVE (MATRIX A IS

IS NOT POSITIVE DEFINITE, POSSIBLY DUE TO LDSS OF
SIGNIFICANCE')

C IER=5 WARNING WHICH INDICATES LOSS OF SIGNIFICANCE.

REMAT!KS
C THE UPPER TRIANGULAR PART OF GIVEN MATRIX IS ASSUMED TO BE STORED

CCLUMOWISE IN NvIN+1)/2 SUCCESSIVE STORAGE LOCATIONS. IN THE
C SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGULAR MATRIX IS
C STORED COLuMNwISE TOO.
C TH2 PRD:EDURE GIVES RESULTS IF N IS GREATER THAN 0 AND ALL
C CALCULATED RADICANDS ARE POSITIVE.
r

SUBROUTINE REQUIRED OMFS0
C
C *****#*******0*******#************************************40********

0001 SUBROUTINE DSINv(A,NTEPS,IER)
C

0002 DIMENSION A(1)
0003 DOUBLE PRECISION A,DIN,WORK

C
C FACTORIZE GIVEN MATRIX BY MEANS OF SUBROUTINE DMFSD

A=TRANSPOSE(T) * T
0004 CALL OMFSD(AT4TEPS,IER)
0005 'FILER) 9,1,1

C

C

0006
0007

INVERT UPPER TRIANGULAR MATRIX T
PREPARE INVERSICi LOOP

1 IPIV=N*(N+1)/2
IND=1PIV

C

C INITIALIZE INVERSIONLDOP
0008 DO 6 I=1,N
0009 DIN=1.00/A(IPIV)
0010 A(ID:V)=DIN
0011 MIN-N
0012 KEND=I-1
0013 LANF=NKEND
0014 IFIKEND)5,5,2
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0015 2 J.IND
C

C INITIALIZE ROW-LOOP
0016 DO 4 K=1,KEND
0017 wORK=0.00
0018 MIN=MIN-1
0019 LMOR=IPIV
0020 LVER=J

START INNER LOOP
0021 DO 3 L=LANF,MIN
0022 LVER=LVER+1
0023 LHOR=LHOR4L
0024 3 WORK=WDRK+A(LVER)4A(LHOR)

ENO OL INNER LOOP

0025 A(J)=-WORK*OIN
0026 4 J=J-MIN

C END OF ROW-LOOP
C.

0027 5 IPIV=IPIV-MIN
0028 6 IND=IND-1

C END OF INVERSION-L3OP
C

CALCULATE INVERSE(A) BY MEANS OF INVERSE(T).
C INVERSE(Ai=INVERSECTI*TRANSPOSE(INVERSE(T))

INITIALIZE MULTIPLICATION-130P
0029 DO 8 I=1,N
0030 IFIV=IPIV+1
0031 J=IPIV

C
C INITIALIZE ROW-LOOP

0032 DO 8 K=I,N
0033 wORK=0.D0
0034 LMOR=J

C

C START INNER LOOP
0035 DO 7 ,=K,N
0036 LVER=LFOR4K-I
3037 WORK=AORK+A(LHORP+A(LVER)
003V 7 LHOR=LHOR+L

END OF INNER. LOOP
C

0039 A(J)=WORK
0040 8 J=J+K

END OR ROW- AND MULTIPLICATION-LOOP
C

0041
0042

9 RETURN
ENO
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C ********#**************************t****************4,**0*(.******0*****
C

PURPOSE
C FACTOR A GIVEN SYMMLTRIC POSITIVE DEFINITE MATRIX
C

USAGE
CALL DMESO(A,N,EPS,IER)

C
C DESCRIPTION OF PARAMETERS
C A DOUBLE PRECISION UPPER TRIANGULAR PART OF GIVEN

SYMMETRIC POSITIVE DEFINITE N BY N MATRIX
C N THE NUMBER OF ROWS(COLUMNS) IN GIVEN MATRIX
C ON RETURN A CONTAINS THE RESULTANT UPPER

TRIANGULAR MATRIX [N DOUBLE PRECISION
EPS' SINGLE PRECISION CONSTANT WHICH IS USED

C AS RELATIVE TOLERAN,.E FOR TEST ON LOSS OF
SIGNIFICANCE

C IER RESULTING EPRORPARAMETER CODED AS FOLLOWS
C IER=0 NOERROR

IER0-1 NO RESULT BECAUSE OF WRONG INPUT PARAMETER
C N OR BECAUSE SOlE RADICAND IS NONPOSITIVE

(MATRIX A IS NOT POSITIVE:DEFINITE
C POSSIBLY DUE TO LOSS OF SIGNIFICANCE)

IER=K WARNING WHICH IVOICATES LOSS OF SIGNIFICANCE
C THE RADICAND FORMED AT FACTORIZATION
C STEP K+1 WAS STILL POSITIVE BUT NO LONGER
C GREATER THAN A8S(EPS*X+1,'A+1))
C REMARKS
C ThE UPPER TRIANGULAR PART OF GIVEN MATRIX IS ASSUMED TO EE

STORED COLUMNWISE IN NI.lN1I/2 SUCCESSIVE STORAGE LOCATIONS.
C IN THE SAME STORAGE LOCATIONS .HE RESULTING UPPER TRIANGULAR
C MATRIX IS STORED COLUMNWISE TOO.

THE PROCEDURE GIVES RESULTS IF N IS GREATER THAN 0 AND ALL
C 'CALCULATED RADICANDS ARE 'POSITIVE.

THE PRODUCT OF RETURNED DIAGONAL TERMS IS EQUAL TO THE
SQUAREROOT OF THE CETERMINANT OF THE GIVEN MATRIX.

C

C METHOD
SOLUTION IS DONE USING THE SQUAREROOT 4!ETHOD OF CHOLFSKY.

C THE: GIVEN MATRIX IS REPRESENTED AS PRODUCT CF TWO TRIANGULAR
MATRICES. THE LE:' HAND FACTOR IS THE TRANSPOSE OF THE

C THE RETURNED RIGHT HAND FACTOR.
C

0001 SUBROUTINE OHFSD(A,N,EPS,IEK)
C

C

0002 DIMENSION A(1)
0003 OCUBLE PRECISION DPIV,DSUMIA

C

C TEST ON WRONG INPUT PARAMETER N
C004 'FIN-1112)1o1
0005 1 IER=0

C

INITIALIZE DIAGNUNAL LOOP
0006 KPIV=0
0(07 00 11 K=1,N
D008 KFIV..KPIV+K
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0009 1ND=KPIV
0010 LEND=K-1

C
CALCULATE TOLERANCE

0011 TOL=ABSIEPSSNGL(A(KPIV)

C STARt FACTORIZATION-LOOP OVER K-TH ROW
0012 DO 11 I=K,N
0013 DSU'4 =0.DJ
0014 it ILEND2,4,2

START INNER LOOP.
0015 2 00 3 L=1,LEND
001b LANF=KP1V-L
0017 LIND=IND-L
0018 3 0Sum=0SjM+A(LANF)*A(LINJ1

END CF INNER LOOP
C

TPANSFORM ELEMENT A(IND)
0019 4 0S0m=A(1N0)-)SUM
0020 IFtl-K1 10,5,10

C

C TEST FOR NEGATIVE PIVOT ELEMENT AND FOR LOSS OF SIGNIFICANCE
0021 5 l(SNGL(DSUM)-TOL) 6,6,9
002.2 6 ff.-(MSUM) 12,12,7
0(23 7 !Fl ER) 8,3,9
0_24 8 IER=K-1

C COMPUTE PIVOT ELEMENT
'3025 9 GP1V=DSOKT(DSUM)
00b ACKPIvI=DRIV
.3027 DPIV=1.00/GPIV
0028 GO TO 11

C CAt.CULATE TERMS IN ROW
0029 10 ACINOI=DSUM*DPIV
0030 11 INO=IND+I

C END OF DIAGONAL LOOP
C

0031 RETURN
0G32 12 1ER=-1
0033 RETURN
0034 END
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0001 SUI.;t0UTINE CALCV(IPER)
C AN WHICH IS CALCULATED VX,VU,VXX,VUX,VUU.AND V
C THERE ARE THREL SECTIONS TO THE RUJTINE
C I PARAMETERS ARE READ IN,SECOND DERIVATIVE MATRICES SET TO 0.0
C 2 V IS CALCULATED USING UPDATED X AND UfALSO VX2(LPP) ANO UXX2(LPP)

SUMMARY STATISTICS ARE PRINTED OUT'
C 3 VX.V.J.VXXfVUX.VUU, ARE CALCULATED FOR PERIOD IT AS DEFINED IN MAIN
C

0002 COMMON X(14,20).U(09.19),NX,NU,NPP.VX(14), VXX(14,14),VUX(9,14),
1V11J(9.9),VXX2(141114)IVU(9),LPP,VX2(14),V(20),F(14,14),G(14.9),
211N,IOUT.NOMRUN

0003 DIXENSIDN R(810(8)
0004 REAL K(9)
0005 IF(IPER.EQ.0) GO TO 100
0006 IF(1FEk.EQ.LPP/ GO TO 200
0307 GO TO 330

C

C READ BASIC DATA
C

0008 100 IF(NUMRUN.EQ.1) GO TO 103
0009 READ(IIN,904) ICHNGE
0010 IF(ICHNGE.EQ.D) GO TO 101
0011 103 REP.D(IiNg900) K1RoCl/C2fC3
C012 131 WRITE(IOUT1901) K,RvCI.C21C3

C
C CALCULATE VXX,VUX,VUU (WHICH IS INVARIANT)
C

C013 DC 102 J=1,14
G014 00 102 I=1,J
0015 102 VXX(1,J)=0.0
0016 0=K(1)*R(1)**2 +K(5)*C3**2
0017 VXX(111)=D+K(2)*R(2)*02+K(3)*i(3)4*2+K(4) *R(41**2
0013 VXX(1.2).0K(2)CR(2)
0019 VXX(1,3)=DK(3)*R(3)
0020 VXX(1,4)=0K(4)*R(4)
0021 VXX(2,2)=D+K(2)
0022 VXX(2o3)=0
0023 VXX(2,4)=D
CO24 VXX(3,3)=D+K(3)
0025 VXX(3,4)=D
G026 VXXi4,4)=O+K(4)
CO27 DO 110 1=114
0028 00 110 J=5,8
CC29 110 VXX(17,1)=K(I)OR(1)+K(5)*C2*C3
0030 DO 111 1 =1,4
0031 111 VXX(1,12) = K(5)*C3
0032 D=K(1)+K(5)4C2**2
0033 VXX(515)=D+K(6) *R(6)*02+K(71*1(7)**2+K(8)*R(8)4*2
0034 VXX(5,6)=DK(6)*R(6)
0035 VXX(51,7)=DK(7)*R(7)
0035 VXX(5,10=0K(8)*R(8)
0037 VXX(6,61=D+K(6)
3038 VXX(6,7)=D
0039 VXX(6,8)=D
0040 VXX(7/7)=D+K(7)
0041 VXX(7,8)=D
0042 VXX(8,8) 0D+K(8)
0043 00 112 1..5,8
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,0044 112 VXX(I,12) = K(5)*CZ
0045 VXX(12,12)=K151
0046 DC 121 J=1,14
0047 DC 121 I=1,J
0048 121 VXMI,J)=K19)VF(1411)*F(14,J) +VXX11,J1
0049 DC 120 I=2,1
0050 1R1=I-1
0051 00 120 J=1,1M1
0052 120 VXX(1,J)=VXX(J,I)
0053 DO 130 1=1,8
0054 DO 130 J=1,8
0055 VUU(IIJI=VXX(I1J)
D356 130 VUX(I,J)=VXX(I,J)
0057 DC 131 1=1,8
0058 DO 1.31 J=9,14
0059 171 VUX( I,J)=VXX(I,J)
0060 DC 132 J=1,14
0061 132 VUX(9,J)=K(9)+F(14,J1*0(1419)
0062 DO 133 J=1,8
0063 VUU(9,J)=VUX(91.1)
0064 133 V0U(J,9)=VUU(9,J)
0065 VW:C19)=K(91.vG(1419)**2
0066 CC TO 800

C

C CALCULATE PREFERENCE FUNCTID4 AND VXX211.PPieVX2(LPP)
C

0067 200 WRITE(1007,902)
UO3 6 00 210 J=1,NPP
0CY CC 201 1=198
0:70 201 P(I) =X(IfJ)+U11,J/
0071 T50.0
GC72 TF=0.0
0073 DC 202 1=114
0074 TF=TF+P(1)
0075 232 TS=TS+P(I+4)
0076 P(2?=r)(2) /P(1)
0077 P(3)=P(3)/P(1)
0073 1)(4)=1'141/P(1)
0079 P(1)=T5 /TF
0060 A1=P16)/P(5)
0031 A2=P(7)/P(5)
0082 A3=P(8)/P(51
0083 A4=014-C2*T5+C3*TF
008,- WRITE(IOUT,903)J,TSITF,(PIIIII=I1410A1,A2,A31A4,X(12,J1
00E5 AI=R(1)*TFTS
0086 A2=R2)*(X(1,J)+U(1,J))(X(21J)+U(21,11)
0067 A2=k(3)*(X(1,JI+U(1,J1)(X(3,J),,U(3,J1)
0068 A4=R(4)*(X(1,J)+U(11.11)(X(4,J)+U(4,J)1
0089 A5=C1+C2*TS+C3*TFX(12,J)
0090 A6=Rt6)*IX(510)+J(51.31)-1X(6,J)+0(6,013
0091 A7=R( 7)*(X(5,J1+U(5.J))(X(7,J1+U(7,J))
0091_ A6=2(8)*1X(5,0)+015.0))lX(B,J)1U(8,J1)
3093 V(J)=K(1)*A14*2+K(2)*A2**2i-K(31*A3*K(4)*A4**2*K151*A5**2

1+K(614A6*42+1(171*A7442+K(8)*A8**2+K(9) *X1141J+1/**2
0094 210 V(J1=V(J1 /2.0
0095 V(LPP)=0.5*K(9)*X(14,LPP)4-*2

1 + 0.50,1(5)0(X(9,LPP)**2+X(10sLPP)**2+X(111LPP)**21
0096 DC 220 1=1113
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0097 220 VX2(11=0.0
0093 00 221 1=1114
0099 00 221 J.1.14
0100 221 VXX2(1.J1=0.0
0101 DO 222 1=9.11
0102 Vg2(1)=R15)0)(11.1.FP1
0103 222 VXX211111=R15,
0104 VX2(14).. K(9)0X114.LPP1
0105 VXX2(14.14)=W)
0106 GO TO 800

C CALCULATE VXIIPER/
C

0107 300 TF=0.0
0108 00.301 1=1.4
0109 301 TF.JF+X(1,1PERI+U(1,1RER)
0110 LO X(5.1FER) + X(6,IPER) +U(5.1PER)+U(6.IPER)
0111 U0 + XI8.IPER/ +U(7.1PER)+U(81IPER)
0112 TS = + U0
0113 00 302 1+1.14
0114 302 VX111 ..0.0
0115 J=IPER
0116 Al=q(1) tTFTS.
0117 A2=R(2)*(X(1..1)+U(I.J))(X12.J)+U(21j)/
G113 A2.R(3) 0(X11,J)+U(1.J))(X(3.J) +U(3.J))
0119 A4=2(4)4,(X(1.J)+U(1.J1)(X(47J)+U(4,j))
0120 A5=C1+C2ITS+03*TFX(12.J)
0121 A6=R161*(X(5.J)+U(51J)1(X16.J1+U(6.J1)
0122 A7=R(7)*(1(15,..1)+U(5,J1)-1X(7,J)+U(7.j)/
C123 A8=R(8)+UX(5.J)+U(51J))IX(8.J)+U(8,J))
0124 0.,KII1*A1 *R(1)+K(514..A5*C3
0125 VX(1)=D+K(2)*A2*R(2)+KI3/*A3*R131+KI4/*A4*R(4)
0126 VX(2)=0K(2)A2
0127 VX(3)=0K(3)*A3
0128 VX(4)=0KI4/*A4
0129 0=K(I)*A11-K(5)*A5*C2
0130 VX( 5)=0+K(6)*A6*RI6/+KI71*A7*R(7)+K(8)*A8*RI81
0131 VX{6/.0K(61*A6
0132 VX(71 =0K(714'A7
0133 VX(8).0K(8)*A8
0134 VX(121=KI51*A5
0135 DO 303 1=1.14
0136 333 VX(1)=VX(1)+K(9)4(114.J+1)*F(14,1)
0137 DO 310 1=1.8
0138 310 VU(1)=VX(1)
0139 VU(9)=.91*X(14,J+1)4G(14.91
140 800 CONTINUE
0141 RETURN

C

0142 900 FORMAT(9F8.0 /8F8.0/3F8.0)
0143 901 t'CRMATIIH1.20X,PREFERENCE FUNCTION WEIGHTSe//1)0K1K9'.9F12.6//

11X'k1R8'18F12.6//1X0C1G3'.3F12.6)
0144 902 FORMAT11H1,50WSUMMARY STATISTICS1//1WRER1.4XOTS1.9X.1TF*,8X,

l'TS/TF',61X.1F2/F11.6X,1F3/F11.6)(11F4/F1',6X.ISO/FR'.6X.IJR/FRit
26X0SR/FR115X..ASF REQ1.6X0ASF BUILT' /)

0145 933 FOR4AT(1X113.213X,F8.11.7(3X.F8.3).2I3X.F9.2))
0146 934 FORMATII1/

. 0147 ENO
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To make multiple comparison runs without respecifying all the data

inputs, coded data-change cards are used. Changes may be made in either

the data inputs to the main routine or to CALCV or both.

Changes in the data for MAIN must be preceded by a RUN card and

followed by a'card with "1" in column 1. Changes made in CALCV data must

be preceded by a card with "2" in column 1. If no changes are made in

MAIN data, a card with "1" in column 1 must follow the RUN card. If no

changes are made in CALCV data, a card with "0" (zero) must follow the

last card in the data set which changes MAIN, i.e., the card with "1" in

column 1. The END card which follows the data in single runs is to be

made the last card of the change-data sets. (There is only one END card

for the program.).
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I. DATA FOR MAIN ROUTINE

Item Var.Name Value # Cols. # Rows Format

1) RUN card:

a) # Iterations this run
b) # Control Variables
c) # State Variables
d) # Planning Periods
o) Paln Number
f) Est. Ostimal Value of p.f.

NUMIT
NU
NX
NPP
NUMRUN
OPT

001

(I3,3x,413,F8.0)

2) State Variable Transition
Matrix

(read in by rows) F NX NX (10 F8.0)

3) Control Variable Transition
Matrix
(read in by rows) G NX NU (10 F8.0)

4) Exogenous Variable Transition
Matrix
(read in by rows) H NX NX DO F8.0)

5) Exogenous Variables for all
Periods
(read in by rows) Z NPP NX (10 F8.0)

6) Initial State Variables
(10 F8.0)

7) Initial Control Variables
for all Periods
(read in by rows) U NPP NU (10 F8.0)

II. DATA FOR CALCV SUBROUTINE

1) Vector of p.f. Weights.

2) Vector of p.f. Ratios
(Note R(5) is wt for LPP
x9,x10,x11)

3) Vector of Coefficients for
ASF Needs

K

R

C

9

8

3

1

1

1

(9 F8.0)

(8 F8.0)

(3 F8.0)

END CARD 100 ( I3)
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DATA STRUCTURE FOR MULTIPLE RUNS

Item Var.Name Value # Cols. # Rows Format

1) RUN card (as before)

2) MAIN data (as before)

3) CALCV data (as before)

4) RUN card (as before except
run number)

e) NUMRUN >002

5) Change code ICHNGE 1-7 (I')

New F-Matrix follows 2

New G-Matrix follows 3

New H-Matrix follows 4

New Z-Matrix follows 5

New Initial-state Variables 6

follow
New Initial-control Variables 7

follow
No (further) changes in MAIN 1

data

Following each change coded card,
the appropriate variables are
specified as before.

6a) If there are no changes in
CALCV data

ICHNGE 0 (I1)

6b) If there are changes in CALCV
data ICHNGE 2 (I1)

Complete set of CALCV data as
before

Repeat 4 - 6
as needed

--

7) END CARD 100 (I3)
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