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PREFACE

This is one of a continuing séries of reports of the Ford Foundation
sponsored Research Program in University Administration at the University
of Californisa, Befkeley. The guiding purpose of this Program is to under-
take quantitatiﬁg reséérch which will ésgiét:university administrators
and other iqdividuals seriously conterned with fhe'maﬁagement 6f uﬁivér—
sity;systems both to understand the basic functions of their complex
systems and to utilize effectiyely'the tools of modern management in the
allocation of educational resources. .

In this'paper we argue tﬁ;t the decision structures of educational
institutions are multi-~level, multi-decision-maker hierarchies which can
be described and analyzed in decision théoretic terms. Furthermore, we

show that these multi-level, multi-decision-maker hierarchies can be re-

" duced to equivalent one-level, one-decision-maker formulations, which

[1

Y .
Qan be solved either analytically or numerically by the techniques pre- .

Y S
sented in this paper. An illustrative example is given which first
identifies and then solves for a set of optimal resource allocation and
policyxde;isions. A listing of the computer program used in this problém

and #he input data specifications are included in the Appendix. : -

ii
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INTRODUCTION

Institutions of higher education currently face a number of major
policy choices which will largely determine their character for the next
twenty-five years. The tremendous expansion 0f American higher education
in the last twenty-five years was driven by burgeoning enrollment growth
and by massive fedéral commitment to doctoral production in the sciences
and technologies. Both of these forces are abating rapidly. Nationally,
enrollments in higher education are forecasted to peak in 1980, then de-
cline until the late 1980's and not approach the 1980 level until after
1995. Many schools are now experiencing enrollment levels below their
previous expectations. This is not a short-run phenomenon; rather, cur-
rent enrollment shortfalls are harbingers of the next twenty-five years.
Colleges and universities must learn to survive and to prosper with a
decreasing demand for their services.

It is far less likely that in the future the federal govermment will
rescue the expectations of higher education as they have done in the post-
Sputnik era. The United States will probably have a surplus of highly
trained scientific and technical manpower for at least the next decade

!
without major additional federal expenditures [Brode (1971)]. The re-
duced rate of undergraduate enrcllment expansion will drastically reduce
the number of new teaqhers needed in colleges and universities, thereby
reducing the future demand for additional Ph.D.'s and, therefore, the
need for large doctoral programs, Furthermore, the federal priorities

have shifted from scientific manpower to equality of student access and

the quality of educational experience. Both of these major federal
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objectives impact undergraduate education far more than graduate programs
and they move counter to many instituﬁions' prestige and elitist orienta-
tions.

" While the demands for educational services by students and govern-
ments will probably be decreasing in the coming decades_(first in rate of
growth and then in absolute number), the costs of educational institutions
continue to rise. As Cheit [1670] has pointed out, a significant number
of America's colleges and universities are headed for financial difficul-
ties and current institutional rigidities preclude those cost adjust-
ments necessary to maintain fiscal viability.1 Furthermore, the techno-
logy of education has changed very little in the last three or foﬁr
decades; indeed, some would argue that educational technology has changed
very little since Socrates. In essence, there has been no observable
productivity increase in American post-secondary education in the last
four decades [0'Neill (1971)].

If it were not so;painful, we might examine with considerable in-
tellectual interest the experience of ﬁublic and private- eleemosynary
institutions beset by diminishing demands for services and risiag costs,
increasing institutional rigidities and no productivity increase$.2
Unpleasant as it may be, educational administrators are having to ask the

 the "varieties of the financial crisis" are explored by Balderston
[1971] in a recent paper prepared for the American Council on Education.

2This description closely resembles the experience of the American
railroads. One inciteful observation on the decline of: the railroad
companies was that unfortunately railroad managers viewed their industry
as '"railroads" versus ''transportation."” At the time of burgeoning new
modes of transportation, the railroad companies were in an excellent
position to diversify and expand-~-but that was neither their tradition nor
their self-concept. Are our schools in the 'formal instruction' industry
or the "education" industry?



O

ERIC

Aruitoxt provided by Eic:

tough questions: What are our objectives? How would we know if we
achieved them? How can we reallocate resources to be more productive?
What activities are really essential for an educational institucion?
Who should make these decisions; and many others?

The purpose of this paper is to look at institutional resource
management decisions in the context of institutional goals and objec-
tives. After describing one view of institutional decision making, we
present a simple yet comprehensive mathematical model which explicates’
the interrelationships of major institutional variables. Sample data
are then used to derive resource allocations which would be optimal for
the institution. The use of this model in educational policy analysis

is then discussed before presenting our conclusions.



INSTITUTIONAL DECISION MAKING

The decision making structures of educational institutions are as
diverse as the institutions themselves. Some colleges and universitiesv
are highly authoritarian while others are highly egalitarian; some insti-
tutions are ruled by presidents and others by committees. Some educa-
tional systems have many layers of administrative superstructure while
others do not. Theré is often little resemblance between the organiza-
tional structure and the decision or power structure of an inétitution‘

_ Often individuals with no delegated authority have great influence on
decisions.

While these complex interactions have been analyzed from many per-—-
spectives,3 we have chosen to analyze institutional decision making from
a decision theoretic basis. 'Initially we distinguish between the values
used in arriving at policy decisions and ghe authority structure in
which the decisions are made. Focusing first upon the structure of de-
cisions, we observe that the decision structures of most educational
institutions are hierarchical, with students, individual faculty members,
department chairmen, deans, provosts, and presidents playing different,
but important, deci;ion making roles.

These roles are distinguished primarily by the variables each level
can control. For example, students deqide which of the available courses

they will take; faculty decide how to allocate their time between formal

.

3Wildavsky [1964] looks at the resource allocation process in govern~-
ment from a political theory perspective; Downs {1967] and Braybrooke and
Lindblom [1963) view bureaucratic decision making as a behavioral and organi-
zational process; Glenny [1969] and Palola [1970] approach educational
decisicn making from the perspective of governance.
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instruction, preparation, informal meetings with students, research,
committees, community service, professional advancement, and leisure;
department chairmen decide, with consultation to be sure, the course and
committee assignments of faculty, the allocation of support services,
recommendations on salaries and promotions, and curriculum proposals;
deans allocate new faculty positions to departments, increasingly will
reallocate faculty positions between departments, determine salaries and
promotions,; establish departmental budgets, endorse éurriculum changes,
and approve research programs; provosts or presidents in turn allocate
faculty positions and budgets between schools, review or approve salaries
and promotions, recruit deans, approve curricula and aéaaemic programs.
Table 1 summarizes some of these distinctions.

Another characteristic of the hierarchical structure of educational

decision making is the direct interrelationships of the various decision

‘making levels. As illustrated in Table 1, the control variables at one

level often become constraints at the next lower level. For example,

the president can allocate faculty positions to the Qarious schools in
his institution to the limit of his budget. 1In turn, deaﬁé can allocate
faculty to departments up to the limit permitted by the president's bud-
get. What was initially a decision to the president later becomes a con-~
straint tqQ the dean.

Another component of our analysis of institutional decision making
is the distinction between the implementation structure and the decision
struct;re. The implementation structure is usually reflected in the
institution's organization chart; it is the array of deans, department

chairmen, accounting officers, purchasing agents, budget officers, ad-

missions officers, registrars, librarians, and all the other functional



TABLE 1

Examples of Interrelationships of Institutional Decision Makers

Decision Makers

Control Variables

Constraints

President/Provost

Dean

Department Chairmen

Budgets
Faculty Positions
Program Approval

Departmental Budgets
Faculty Positions
Program Approval

Faculty Assignments
Support Services
Salaries and Promotions
Curriculum

Income or Appropriations

President's Budget
President's Budget
President's Approval

Dean's Budget
Dean's Budget
Dean's Budget
Dean's Approval




specialists who keep an institution running effectively. On the other
hand, the decision structure is rarely reflected in a school's organiza-
tion chart. At issue here is who is responsible for what decisions and
how are the reéommendations for these decisions made.

The operations cycle of an institution is illustrated in Figure 1.
Once made, a decision is communicated to the implementation.structure
where functional specialists establish the operating policies and pro-
cedures which actually move the organization in the desired direction.
These implementation managers need operating data for their effeétive
functioning. For example, the accounting officer needs payroll infor-
‘mation to process checks and charge the appropriate accounts. _On the
other side of this circle, those who are charged with recommending de-
cisions need institutional data to evaluate past decisions and as input
to future decisions. In addition, external dsta on student demand, man-~
power supply and demand, community needs, attractive fesearch areas and
a variety of other issues are needed for decision recommendations- The
process of synthesizing these data and institutional objectives into a
coherent, consistent strategy for future action is nebulous if not non-
existent at most institutionsf Yet, if educational leaders are going to
be able to deal effectively with the serious social and economic challenges
confronting their institutions, much more attention will have to be de-
voted to their decision structures. The approach and the mathematical
model presented in this paper is one small step in this direction.

In addition to the process of decision are the values upon which
the decision is hased. One of the functions of each decision maker
is to choose the values appropriate for the decisions at hand.

This is another way of raising the question of governance: Who will

ERIC
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Decisions
Policies

Implementation
Structure

Operationa
Policies and
Directives

Decision
Maker
Operational
Data
Institutional
Activities
FIGURE 1

ﬁ—\\\\Recommendat1‘ons for

Decisions and
Policies

Decision
Structure

i

External
Cata

Institutional
Data

Operations Cycle of an Institution:
Decision - Execution - Evaluation - Decision
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decide and whose values will he use when he decides? Furthermore, what
attributes of ﬁhe educational system are important to the decision maker,
what does he consider to be the outputs of his system?a How important

are more uﬁdefgraduates versus more graduate students, morz researchers
versus more instructors, more computing power versus more iibrary services,
more faculty versus more facilities, and a thousand-and-one other possible
tradeoffs? Taken together, all of these choices and tradeoffs comprise a
decision maker's value system.

These value systems also serve to connect the hierarchical decision
systems which were discussea earlier. In many cases, the président of
an institution is deeply concerned about the classroom environment and
the interaction of students and faculty, even though he cannot directly
control any of the operative variables. However, the president often
makes his budgetary and faculty allocations with their educational con-
sequences in mind and adjusts his allocations to correspond to his assess-~
ment of the educational use to which these resources are put. In other
words, the consequences'of decisions.at a lower level are important to
decision makers at higher levels.

There is a circular flow of information in a hierarchical decision
system: decisions are passed downward and value signals are passed upward.
These in tufn affect the decisions which are passed downward in a subse-
quent cycle, as shown in Figure 2. It is this two~way flo& of information
that makes delegated authority operational and renders a decentralized or
hierarchical sfstem controllable; this notion of decentralized control will

be explored in more detail shortly.

4The outputs of higher education have received increasing attention in
the last few years; see Lawrence, Weathersby and Patterson [1970],
Breneman ané Weathersby [1970] and Huff [1971].
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Analytical Description of Institutional Decision Making

This conceptual analysis of educational decision making can be made more
precise by describing the decision interrelationships in mathematical terms.

To begin with, we need some definitions:

ui(t) = the vector of decision variables available to decisicn
maker (DM) i 1in period t ;

zi(t) = the wvector of predetermined variables impinging upon the
system relevant to DM i in period ¢t ; ‘

xi(t) = the vector of consequences (or state variables) in

period t resulting from the decisions of DM i and rele-

vant exogenous influences.
The relationship of consequences to decisions (or output to input) is often

called the production function:

x (641) = £, G (6), vy (), 2,(0), o). | ¢

Finally, the value to DMi of making a decision ui(t) when confronted
with the predetermined variables zi(t) is written

Vi(xi(t), ui(t), zi(t), t). (2)
Expressions (1) and (2) describe the horizontal flows shown in Figure 2
at each decision making level.

The decision problem faced by each administrator is to maximize his
own values subject to his constraints of authority and resources and sub<
ject to the responsiveness of his systeﬁ to the application of policy or
rasource decisions. Furthermore, a decision maker often looks several

For a complete exposition of this approach and the motivation for
these definitions, see Weathersby [1969a, 1969b].
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years in advance and wants to ‘-maximize his values ovei a plauning horizon

of N periods. We may write this deci<ion problem as:6

N .
J = v.[x.(t), u, (), z.(t), t (3)
u-(o)sfn-a?{su-(N_l) tzo + + 1 1
i i
subject to:
xi(t+l) = fi[xi(t)’ ui(t), zi(t), t] t=o,l...,n-1 (1)
xi(o) knoﬁn
and
x, (t)
c u, (t) ibi(t) tmo,l...,n-1 ", (%)
i

In this formulation, C 1is the constraint function and bi(t) are the
resource and other conséraints relevant to DMi in period t .

In general, there is a solution u:(t), t=0,1,...,n-1 which maxi-
mizes the overall value function, J , provided the necessary and suffi-
cient conditions are satisfied.7 Furthermore, an optimal solution is in

general a function of all preceding variables.8
* * *
ui(t) = gi[ui(o)s°-°sui(t—l)s xi(o)s'°°sxi(t)s Zi(o)""xi(t)’

b, (0)se..b (£, c} . (5)

The general form of the N period value function is Vi xi(o),
X (1)5 0%, (), u (0), u (), .. ,u, (NA1), zi(o),...,zi(N—l)} which can
i N
be separated into tZo Vi[xi(t)’ ui(t), zi(t), tJ + Vi[xi(N), ] by the
assumption of weak separébility (Weathersby [1969a]). Notice that present

value discounting is a special case of the time functicn of V(x,u,z,t).

7The solution procedure will be described in more detail later and
the algorithm used in this study is described in the Appendix.

See Aoki [1969] for a discussion of general recursive solution.
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The consequences which result from an optimal decision sequence can be

calculated from equation (1);

N Al
*eeq1) = €| .
X3 (t+1) fiin(t), uf(t), z; (), cJ
* .
= hi{xi(o),...,xi(t), zi(o),...,zi(t), bi(o),...,bi(t),t
(6)
after equation (5) is substituted for u?(t). In other words, when the

parameters of the decision problem are known, i.e., equations (1), (3),
(4), and (5), one can replace the decision problem by equation (6) which-
describes the consequer zes cf an opfimally controlled sysfem.

In a strict hie.: hical decision structure, there is one such deci-
sion problem for earh dacisics waker. In the three level hierarchy shown
in Figure 3, n deans /eport to the president and m, department chair-
men report to the ith dean. The interrelationships are:

1. At levels 1 and 2, the predetermined variables z(t) and

resource constraints b(t) can be controlled or influenced

at the .ext higher level. For example,

1,1[x1,1(t)’ ul,l(t)’ zl,l(t)’ u2,1(t)’ Zz,l(t)’

u3,1(t), 23,1(t)“.

xl,l(t+l) = f

2. The values associated with the consequences of decisions by
decision-makers at levels 2 and 3 can include the decisions

and consequences of lower level decision-makers. For example:

V3,1 = V3’1(x3,l(t), 63,1(t), 23,1(t), xz,l(t), xz,z(t),...,xz,“ﬂt),

u2,1(t)""’u2,n(t)’ t
The first interrelationship describes the downward flow of decisions either
directly or indirectly while the second form of interrelationship describes

the upward flow of accountability or value. Both of these interrelationshins
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level 3 3,1
(President)

level 2 e . 2,1 T 2,n

(Deans)

Tevel 1 ( 1,1,7
(Depart.
Chairmen)

1,n,mp

FIGURE 3

' Array of Decision Makers in Thiree Level Hierarchy
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are necessary for a controllable hierarchical system; however, they are not
sufficient conditions for total systems controllability.

The basic strategy of solution of a strict hierarchical decision
structure (i.e., interrelationships only between adjoining levels) is to
reduce the structure down to a one decision maker problem by folding up
from the bottom.9 This approach would replace each decision making node

at level 1 in Figure 3 by his corresponding optimal decision function

*

. . « For
1,i,j

gi i3 and the corresponding opntimal production function h
b b

each level 2 decision maker, the m, departmental chairmen's decision

i

[ERJ!:‘ - 9For a complete presentaticn of this approach, see Weathersby [1969b].
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problems are replaced by 2mi vector equations for the g*'.and, h* func-
tions. These 2mi vector equations then are effectively production functions
to ghe ith dean which augment his own pfodugtion function. Now we can fold
the dean's decision probiems up to the presidents' level by the same tech-
nique. ;Tﬁus, we can collapse a multi-layer, multi-decision maker hierarchy

to an eqﬁivalent one-decision~maker problem. Correspondlngly; if we can

solve the one-decision-maker decision problem, we can conceptually solve

the multi-layer, multi-decision maker problem. Therefore, the remainder

of this study will focus on the single decision maker problem.

The President's Model:

Single Decision Maker Paradigm

The basic decision problem of the president is to maximize the achieve-
ment of his own values, or the values he chooses to operate with as presi-
dent, subject to resource limitations and the responsiveness ofvhis insti-
tution. The formal statement of this problem was given previously in
equations (3), (1), and (4). The three major components of the problem
are: (1) the president‘s value function; (2) the institutional response
or producti;n function; and (3) the resource, legal and other constraints.

One obvious difficulty with the decision theoretic formulation is
that generaliy presidents, and other administrators, cannot articulate
their value function. Mosit of us are not trained to think in terms of
multi-attributed utility functions and, therefore, any approach which re-
quires a méthematical description of a decision maker's value function is
destined to grave difficulty if not failure.

There have been two major techniques for circumventing the assess-

ment difficulties associated with a full description of the value function.
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Geoffrion and Dyer [1970, 1971] have éhown that one need only assess the
local gradient of the value function at the current operating point. In
their wirk, they ask a dean or department chairman to select one of his
.variables as a numeraire and then assess the pairwise tradeoffs of all the
other policy relevant variables with respect to the chosen numeraire. This
is the local gradient which shows an improving direction along which the de-
cision maker selects a new and improved operating point.. At this new point,
however, the local gradient must be assessed again because it is generally
different at eyery point on the utility surface. In other words, the
Geoffrion and Dyer approach replaced a global assessment of the multi-
dimensional value surface with a series of local assessments of the tangent
plane, which is a much easier task. This requires interaction between the
decision maker and the mathematical programming algorithm because the path
along the value surface is unpredictable a priori.

A second approach to the reduction of the dimensionality of the value
assessments is to express the decision—maker's objectives in terms of
targets. This is the approach used in the study reported in this paper.

For simplicity of exposition, consider a president's value function that

is defined over only the consequences of state vector x , i.e., V{(x) , and

that the president wants to achieve a most desirable level of x , say x* .

In other words, the president believes that the optimal state of his institu-
tion would be a student enrollment of 10,000 with 1,000 faculty members,

600 of whom would be tenured, and so forth.

The key to the target approacﬁ is that if the institution is initially
reasonably near the desired targets, then the general utility maximization
problem can be expressed by an approximately equivalent loss minimization
O >blem where the loss functior is quadratic, independent of the form of

ERIC

Aruitoxt provided by Eic:
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the utiixty function as long as the utility function is twice differen-

tiable, i.e., smooth and continuous. Although we may know nothing more

about the president’s utility function than that it ought to be concave and
10 . . . .

smooth, we do know that in the neighborhood of his targets his loss

function is quadratic to second order.

By choosing targets x* , a decision maker indicates that

V(x*) > V(x) for all x . (7)

*

For x near x* , we can expand V(x) about x by Taylor series

Vix) = V(x*) + VV[*(x-x*) + 1/2(x-—x*)t VZV I*(x—x*)
X X

4 Higher Order Terms. (8)

If V(x*) is a maximum, as indicated by expression (7), then the local
gradient must be zero at x* and the second right hand side term in equa-
tion (8) must be zero. Furthermore, the second derivative of V must be
negative definitive for x* to be a strict maximal point. Therefore, the
third right hand side term in equation (8) must be negative for all x

This argument proves that, to chond order,

. *
maXx V(x) = min 1/2{(x—x*)tV2V| (x~x )} . (9)
x X x*
One point of indeterminancy remains in equation (9); in general, the
matrix of second partial derivatives of V 1is not known. Two approaches

may be used here. One can ask the decision maker to choose a numeraire

and assess the relative pairwise comparison losses that he would exper-

10
o We can assess the relative relationship between the first and
EI{!(?ond derzvztives of a decision-maker's utility function by a discussion
-his risk aversion (Pratt [1964]).
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ience at x* and use this one set of assessments in place of VZV . Alter-
natively, one could recognize that the magnitudes of VZV change the rela-
tive shape of the quadratic loss structure but not its minimum, which is
x* . Near the minimum, the solution to (9) is often insenritive to the
global shape of V2V and‘a much simpler procedure is possible: namely
choose an arbitrary weighting matrix K in place of V2V such that the
magnitudes of loss of one unit variation in every dimension are identical.
Both of these approaches require minimal assessment.

In summary, we have argued that the decision structures of educational
institutions are multi-level, multi~decision-maker hierarchies which can
be described and znalyzed . in decision ¢heoretic terms. Furthermore, we
have argued that these multi-level, multi~decision-maker hierarchies can
be reduced to equivalent one level, one decision-maker formulations. In
turn, these single decision-maker problems can be solved either analyti-~
cally or numerically by the techniques discussed in this and the following
section., We now proceed with the formulation and solution of a speéific

decision model and discuss its implications.

ERIC

Aruitoxt provided by Eic:
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SMALL CAMPUS PLANNING MODEL

The concepts of the previous section are illustrated in this section in
a specific analytical modeling context. For the purposes of exposition, we
have focused on the instructional program of an institution partly because
this seems to be an area of great interest to most colleges and partly be-
cause instructional activities have far more in common among institutions
than the various research and public service programs. The paradigm of this
model is the liberal arts undergraduate institution or that component of a
major university.

The Small Campus Planning Model (SCPM) is designed to provide a con-
trol theoretic solution to the problem of finding an optimal‘sequence of new
student admissions, new faculty hirgs, and new physical construction over
an N-year planning horizon. It assumes that the flows of students, faculty,
construction, and money can be characterized by linear dynamic equations
and that the campus administrator's preferences for student and faculty mix,
for space, and for solvency are sufficiently close to the insfitution's cur-
rent experience that actual deviations from targéts can be adequately ex-
pressed in terms of quadratic penalty functions.

The model is still in the investigatory stages and will undoubtedly
undergo further revision before it is considered a finished product. Ul-
timately it is hoped that SCPM, because of itg minimal data requirements
and low implementation and calculation coséé,'may serve as a useful plan-
ning device for college administrators who have neither the funds nor the

. . . 11
data base to support 1mp1ementat10n of other, more complex, models.

11
For a structural comparlson of other recent analytical models for

F l(:ver51ty planning, see Weathersby and Weinstein [1970].
oot
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SYSTEM DYNAMICS OF SCPM

The generalized form of SCPM's dynamics may be characterized by

x(t+l) = Ft x (t) + Gt u(t) + H z(t) (1)
where:

x(t) = n-vector of state variables at time ¢t

u(t) = m-vector of control variables at time ¢t

z(t) = n-vector of predetermined variables at time t

Ft = n X n matrix of transition coefficients for period ¢t

Gt = n X m matrix of transition coefficients for period ¢t

Ht = n x n matrix of transition coefficients for period ¢t .

It is assumed in SCPM that Ft =F, Gt =G , and Ht = H for all
t , i.e., that the transition matrices are not time dependent. This is
not neéessary for solution, but facilitates estimation and reduces sub-
stantially the data requirements. Furthermore, :hese matrices are not
Markovian, i.e., the row sums do not total 1.0, because the absorption

states for students, faculty, space and money are excluded. Under the- 

stationarity assumption, equation (1) becomes
x(t+l) = F x (t) +6G u(t) + H z(t) . (2)

The state, control, and predetermined variables as defined in SCPM are
divided naturally into four groups: students, faculty, space, and money.

We consider each separately for purposes of exposition.

Faculty

We define the variables xl(t) to x4(t) to be the number of full-

time equivalent full professors, associate professors, assistant professors



and instructors who were in the institution last year (at time t-1) and

who remained in the system at the start of this year (period t). Simiiarly,
we define the variables ul(t) to uA(t) tovbc the number of faculty who

are hired at corresponding ranks at the start of period t . Then, ex-

pressing the matrices F and G by their elements fij and gij , we have

xl(t+1) = fllxl(t) + f12x2(t) + gllul(t) + glzuz(t)

x4(t+l) = f44x4(t) : + g44u4(t) . 3)

Here, fij is the promotion rate of faculty from level j in period t
to level i in period t+1 , fii is the continuation rate for faculty
at the same rank, and gij is the promotion and continuation rates of

new faculty who were hiied in period t at level j and who are at level

i in period t+l

Students

We define the variables xs(t) to x8(t) to be the number of continu-
ing freshman, sophomore, junior and senior students at the start of period
t . Similarly, we define the variables us(t) to u8(t) to be the number

of students admitted to the corresponding student levels at the start of

period t . Once again, we may write the scalar equations
xs(tfl) = fSSXS(t) + gSSuS(t)
x8(t+1) = f87x7(t) + f88x8(t ) + g87u7(t) + g88u8(t) (4

The coefficients fij and gij have the same advancement and retention

interpretations as before. Attrition of faculty and students is accounted

Q for by omission of state variables corresponding to the "out state. For




22

manpower planning or other purposes one could define two additional states
of successful degree completion and ''stopping out.'" This would provide

specific degree output information and render the student system Markovian.

Space

We assume thaf physical construction takes an average of four
years to complete once it has begun. A conscious -simplification at this
stage is the assumption of fully interchangeable space types and uses.
Equation (5) could be repeated for each space type if the additional de-
tail would be worth the additional cost. SCPM also assumes a constant

depreciation rate of ¢ = [l-f12 12] + Accordingly we define
9

amount of new construction measured in Assignable
Square Feet (ASF) which begins in period t e

.

ug(t)

xg(t) ASF begun in period t-1
xlo(t) = ASF begun in period t-2
xll(t) = ASF begun in period t-3

xlz(t) = ASF which is available and usable at the start of period

Thus,
xg(t+1) =»u9(t) i.e., g9’9= 1.0
xlo(t+1) = xg(t) i.e., f10,9 =1.0 (5)
xll(t+1) = xlo(t) i.e., fll.lO =1.0
xlz(t+1) = xll(t) + f12,12 xlz(t) i.e., f12,11 =1.0
Money

Finally, we assume that there are two kinds of funds which_adequately

describe the administrator's financial concerns: restricted funds (endow-

ment) and unrestricted funds (operating plus capital funds). Once again,



these fund categories could be expanded if needed. It is further assumed
that interest earned on endowment funds may be allocated arbitrarily be-
tween funds, but that the income and capital gains use policy is fixed in
advance. If flé,j is the value (cost if negative) of one unit of xj

and 814 3 is the value (cost) of one unit of uj , and performing all
H

calculations in constant dollars, we can define

zlS(t) = restricted gifts in period t (estimated or assumed known)
zlq(t) = unrestricted gifts in period t (estimated or assumed
known)
and write:
X3 (641 = £14 3% 3(0) + hyq 5429 5(0)

(6)
x4 (1) = g E14,5%(0) + § 814,595 (8) + By 15713000 + g, 0,20, (0)

While equation (6) looks quite complicated, each of its romponents
is very simple and traditional.

to £ = the average faculty salary by rank including

f
14,1 14,4 direct support costs.
f14 5 to f14 g = the net institutional cost per student by level
T ’ (excluding faculty salaries and direct faculty
support costs and including student fees and
tuition). '
f14,9 to f14’12 = the average cash flow.cost per ASF in each
year of new construction.
£ = the average rate of return on endowment that
14,13 . . .
is available for operating expenses.
f14 14 = the proportion of last year's net cash balance
3

available in the current year (usually 1.0).
The numerical values of these and the other coefficients used in the com-
putational example are given in Table 3. Note that equation (25 is just
the aggregate of equations (3) through (6). 1If the state vector x(1) is
known and the gift funds 2(t) , t = 1,...,N~1 are predicted, thén the
control sequence u(t), t=1,...,N~1 with (2) defermines x(t) for all

[ERJ!:‘ future periods ¢t = i,...,N‘. After making various assumptions about the
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1ike1y levels of state aid and gifté in the future, SCPM determines optimal
enrollment, hiring, and construction policies for a given set of institu-
tional objectives, which are described in the next section.

Student tuition could be included as a control variable instead of a
predetermined factor. This would more accurately reflect the decisions of
most privafe institutions and a growing number of public institutions. How-
ever, two major problems have to be dealt with to include tuition as a uncon-
strained ¢ontrol variable. A conceptual problem is the effect of additional
tuit’on on student demand for éttendance and on the quality of students able
to pay the higher tuition.12 A minor technical problem i; the non-linearity
of the money dynamics introduced by controllable tuition. The solution al-
gorithm given in the Appendix will accommodate both linear and nonlinear dy-
namic systems.

However, this does raise the issue of the validity of the linearity as-
sumption embodied in the SCPM systems dynamics. While in any specific imple-
mentation, the functional form of the dynamics would be an empirical ques-
tion, there are several justifications for the use of linear dynamics in
our example: _(1) the ease of interpretation of coefficients in terms of tran-
sition probabilities, depreciation factors, faculty salaries, etc.; (2) the
experimental ease of formulation and modification; and (3) the lack of any

information of a more generally useful and accurate formulation.

12 _
See Miller [1971] for a discussion of recent- attempts to estimate

student demand functions and Jewett [1971] for a presentation of a national
student ability - willingness to pay model and analysis.
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CRITERION FUNCTION

The general form of the criterion function used by SCPM is
N~

min J = P(x(N)} + z

1
Vt(x(t),u(t),z(t)z} (7)
t

1
where P and Vt are the relative quédratic loss functions darived in

a previous section. In this study, P is the sum of four quadratic terms
and Vt (Vt=V for all t) is a summation of nine quadratic terms. For
purposes of exposition we separate V into five sets of terms relating

to the administrator's objectives expressed in terms of the student/
faculty ratio, faculty mix, space requirements, student mix, and finan-

cial stability. P will be discussed separately.

Student/Faculty Ratio

One proxy measure of the amount and quality of student/faculty inter-
action at an institution is the ratio of studenté to its (FTE) faculty.
SCPM enables a campus administrator to specify a targeted ratio and then
seeks a set of controls which minimizes the deviation of the actual student/

faculty ratio from the target. If we define

r, = target studenﬁ/faculty ratio,

,kl = some scalar weight, '

TFt = izl[xi(t) + ui(tﬂ , whiéh is the total faculty at time t, and
8

TSt = i£5 *i(t) + ui(t) , which is the total students at time t,

then the first term of Vt may be written

- 2 ,
kl(rlTFt TS, ) . (1)
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If an administrator wished, this term could be expanded to reflect étu—
dents by level and faculty by rank to describe, for example, the exposure
of lower division students to tenured faculty. Similar expansions are
possible in most of the terms of the criterion function but were not re-
ported here because they do not alter the solution procedure or the basic

utility and results of the model.

Faculty Mix

-

»

Another proxy criterion for assessing the quality or prestige of a
college is the mix of its faculty by rank. [See Rowe, Wagner and Weathersby
(1970).] In the case of communi*y colleges, or any other cases for which
there are no ranks but rather salary schedules, we may interpret the four
(or fewer) levels of faculty purely in terms of salary. 1In any case, we
a;sume that the administrator has preferences over different mixes of
faculty by level and we allow him to specify target ratios which describe
the desired mix.

If we define

Fi(t) = xi(t) + ui(t), i =1,2,3,4, which is the number of FTE
faculty at level i in year ¢t ,

ri = target ratios of each rank relative to the number of
full professors, 1 = 2,3,4, and

ki = scalar weights i = 2,3,4,

then the next three terms of Vt are
k (r, F,(t) - F(©))%, i=23,4 . (i1)
ivti 1 i ’ >




Space

Typically space needs are largely determined by either student en-
rollment or faculty size or a combination of the two. SCPM makes the
simplifying assumptions that space is interchangeable and available.in
continuously variable amounts. For a small, homogenous college, space
interchangeability may not be a devastating assumption because in liberal
arts subjects rocms of each type can be used by most disciplines even
though one cannot easily interchange lecture halls and offices. The assump-
tion of continuously variable spacelis a weakness of the model, because new
construction occurs by project or building and, therefore, occurs in quan-
tum jumps. However, we do include the time lag of construction from start
to completion. Recalling that xlz(t) is the available space at t , we let

k be a scalar weight and

5

C15C5sCq be space standard coefficients determining space needs
as a linear combination of total faculty (TFt) and total students (TSt)
The fifth term of Vt is then

ks(cl + c TSt + c

2

3 TF, = xlz(t))z : (iii)

Student Mix‘

Fiscal planning can be much more effective if student enrollments
can be forecasted several years into the future. SCPM does not attempt
to describe enrollments by discipline, although it could by defining
additional state variables and e;uations; instead, SCPM focuses on student
levels. Furthermore, for small colleges it was felt that average costs

would not vary significantly across disciplines because these small colleges

rarely can afford massive commitments of dollars to facilities and
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faculties in the hard sciences and enginéering, traditionally the most ex-
pensive disciplines. (8chools such as Cal Tech and MIT are clearly
exceptions to this ..'e2 and they would need to recognize student discip-
line and lebel.) The next three terms of Vt are censtructed f;om the
same pattern as for faculty.
k. (r; sg(t) - si(c)]?' , 1=6,7,8 , and S, = students of level 1
(iv)

Monetary Balance

The last term of Vt is a balance eqqation, expressed as a quadratic
penalty function, which forces the annual net cash balance at the end of
each period towards zero. Campus administrators are assumed to seek
policies so that the cash inflow, e.g., transfers from endowment, gifts,
and student revenues, is equal to the outflow, e.g., transfers to endowment,
faculty salaries, construction costs, maintenance costs, and other operating
costs. Otherwise, too much is withdrawn from income producing investments
or, conversely, not enough is invested—both of which have an opportunity
cost to the institution and should be avoided. The net cash balance is
given by xlA(t+l) ; however it is included in Vt as a function of
x(t), u(t), z{t) . With
k, = a scalar weightband

9

fl4,j R gl4,j defined as before, the final expression in Vt is

' 2
k9[§ fl4’jxj (t) +§ 814,juj (t) + hl4’13313(t) + 214(t) . (V)
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Terminal Conditions

Because this optimal decision problem is formulated as a finite horizon
differential dynamic programming problem, it is necessary to introduce "ar-
tificial' targets in the last planning period to correct for the truncated
horizun. To prevent SCPM from 'selling off" uncompleted space in the last
three periods (space which is not usable during the model's lifetime, arnd

therefore, space of no va. ‘e to the insiitution) we drive x9(N),x10(N),xll(N)

to zero by including in P(N)

kloxi(N)2 , i = 9,10,11 , where k is a scalar weight. (vi)

10
The last term of P(N) 1is the net cash balance équation expressed as a func-

tion of xn(N) , and write
kqox (N)Z k., a scalar weight (vii)
9%14 > %9 ght-

When put'in the form of equation (7), expressions (i) - (vii) constitute the
criterion functién currently being investigated.

As discussed previously, the scalar weights were chosen to equalize unit
losses and thereby avoid inducing artificial minima. Table 3 shows the values
for the scalar weights used in this study.

"Although the target ratios were chosen to be constant over time, it
would be pbssible to choose target paths showing the evolution of the var-
iables over time and SCPM would'then solve for tﬁe optimal decisions for this
path. Another formulation of the criterion function would enable the campus
planner to determine the shortest time in which the desired targets could be

achieved., However, the numerical results reported in the next section em-

ployed equations (i) through (vii).
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SUMMARY QOF RESULTS

To assess the realism of the model, a reference set of input data was
developed which represents the operations of an "average' small liberal arts
college. Actually, these data were modelled after data in the University
of Santa Clara [1970]. Changes in this reference set (denoted Data Set 1)
were made to reflect different operating policy decisions which might be
made by campus administrators and to reflect different assumptions about
future levels of external financial support. The optimal decisions for
these new environments were then compared to the base case results. (See
Tables 2 and 3 for a summary of Data Set 1).

Additionally, the college's optimal decision problem was solved for
only non-negative values for the control variables. The resulting values
thereby achieve sub-optimal solutions which trade thimally for more rea;
listic results. It was shown that these solutions achieve'the targeted
ratips and provide adequate space as specified by the objective function
but that they result in a much greatef variation in the net cash balances
at the end of each operating period. (See Table 5 for a comparison of net
cash balances.)

Student admissions, faculty hiring, and new construction decisions
are the normal outputs of the model. In addition, the model can answer
questions about the operational effects of alternative funding metheds
.which are of considerable interest to external funding agencies such as
state and local governments. To examine these questions, three additional

data sets were analyzed from this policy perspective.

ERIC

Aruitoxt provided by Eic:
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Accounting Summary for SCPM Examp1e*
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(Enrollment Level: 800)
% of % of
EXPENSE Total INCOME Total
Instruction $ 104,400 6.39 || Tuition & Fees | $ 970,400 58.07
Student Aid 119,200} 7.31 || Transfers from 115,200 6.89
Student Services 266,800 | 16.33 || Endowment
Total Student Related $ 490,400 | 30.03 || G1fts & Grants ) 364,000 21.78
Salaries: Teaching Faculty 418,000 | 25.60 Ofggs.t. aid) 221,600 | 13.26
Salaries: Admin./Other Fac. 222,000 | 13.60 TOTAL $1.671,200 | 100.00
Total Fac./Admin. Salaries | § 640,000 | 39.20
Plant M&0 208,000 {12.73
Plant Additions 294,450 | 18.04
Total Plant $ 502,450 | 30.77
$1,632,850 100.00

TOTAL

*
This accounting summary was derived from "An Introduction to Program Planning

Budgeting and Evaluation for Colleges and Universities" - July 1970 - University
of Santa Clara--0ffice of Institutional Planning.

Additional Assumptions:

1) Eighty percent of instructional costs are faculty salaries;

2

4

administrative staff exclusive of support.

) There are $3,840,000 of restricted funds yielding 3% per annum;
3) Plant M&0 costs $2/ASF; there are 130 ASF/student;
) Student/faculty ratio is 16/1; faculty incl:des teaching, research and
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TABLE 3
Data Set 1
F-MATRIX
1 2 3 4 5 6 7 8 9 10 11 12 . 13 14
1 10.93 0.05
2 0.85 0.05
3 0.80 0.50
4 0.10
5 S
6 0.95 0.02
7 0.70 0.03
8 0.70 0.04
9
10 1.00
11 | 1.00
12 _ 1.00 0.98
13 1.00
14 {-1.7 -1.4 -1.1 -0.8 0.06 0.06 0.06 0.06 -4.5 -4.5 -2.0 -0.2 0.03 1.00

G-MATRIX
1 2 3 4 5 6 7 8 9
1 0.70
2 0.70
3 0.95 0.30
4 ' 0.10
5 0.03
6 0.60 0.02
7 0.70  0.03
8 0.70 0.04
9 1.00
10
1
12
13
O

=
=

-1.7 -1.4 -1.1 -0.8-0.06 0.06 0.06 0.06 -1.5
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TABLE 3 (continued)

Vector of Initial x-Values A
x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x{it) x(11) x(12) x(13) x(14)
10. 12. 15. 1.0 10. 170. 140. 130. 2.08 2.08 2.08 104. 384. 0.0

Vector of Predetermined Funds ($10,000's)

Per. Amount Per. Amount  Per. Amount Per. Amount
1) 58.5¢ 6) 61.55 1) 64.69 16) 67.99
2) 59.15 7) 62.17 12) 65.34 17) 68.67
3) 59.74 8) 62.79 13) 65.99 18) 69.36
4) 60.34 9) 63.42 14) 66.65 19) 70.05

5) 60.94 10) 64.05 15) 67.32

TARGETS AND WEIGHTS

Item Target Weight Item Target Weight
Assoc/Full: 1.5° 1.0 Soph/Frosh: 0.7 1.0
Asst/Full: 2.0 1.0 ‘Fr./Frosh: 0.65 1.0
Inst/Full: 0.5 1.0 ~ Sr./Frosh: 0.5 1.0
Stu/Faculty: 16.0 0:01 ASF/Studerit: 130. 50.0

Net Cash Bal: 0.0 0.5
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Comparison of Optimal versus Sub-Optimal Results

The general form of the optimal control problem is to

="
Min {J = P(x(V) + ) V(x(t),u(t),z(t),t)}
u(t) t=0

' subject to

x(0) : known

x(t+1) = f{x(t),u(t),z(t),t) .
This formulation does not constrain the sign of either the state or con-
trol variables. This is the form for which the solution algorithm given in
the Appendix was aesigned, While fivring full professors and selling
newly constructed space may appeal to some interests, negative values for
control variables are in general not meaningful. Furthermore, our stuay
revealed that unconstrained solutions to the optimal policy problem usually
contained several such negative decision values, which, while small
in magnitude, were nevertheless inappropriate and unrealistic.

‘Rather than impose inequality constraints which would require a re-~
formulation of the model or attach penalty functions to the criterion
function to facilitate the use of a sequential optimization aigbrithm, we
initially included a switch in the computer program which set negative
values of the computed control ‘variables to zero within the iteration
sequence.13 Since the algorithm computes the improved u(t) values
based on small variations in‘ x(t) and since those variations are not

stbstantially altered by zeroing out negative values of u(t-1) , the

Une can solve the general formulation with inequality constraints
at considerable additional complexity and expense, see Jacobson [1969],
but we-concluded that at this stage of development these refinements were
not worth the additional cost because the constrained and unconstrained
results were so similar.
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resulting sub-optimal path should provide acceptable solutions. A compari-
son of the two sets of results copfirms this assertion.

Three sets of comparison runs were made to determiﬁe the loss from
sub—optimization. These runs were based on the original Data Set 1, Data
Set 2 in which exogenous funds grow at 2% per year, and Data Set 3 in
which per-student income increased by $100 per year. Tables 4 and 5 show
the differences in control variables and in the yearly net cash balances
for Data Set 1. Similar results obtained for Data Sets 2 and 3. The
differences between the two sets of control variable solutions for Data

Set 1 are summarized below.

Mean of The
Mean Value Mean Value Absolute

Control Variable Unconstrained - Constrained Differences
Full Professors 0.12 0.15 0.25
Assoc. Professors 1.86 1.85 0.63
Asst. Professcrs 2.26 2.35 : 0.73
Instructors 4.74 4.88 . 0.30
Freshmen 286.39 287.52 5.03
Sophomores 23.37 23.75 5.39
Juniors 42.22 42.67 4.73
Seniors 8.12 8.36 4.01
New Construction 2.92 2.94 3.41

(000's ASF)

It is clear from an examination of Table 6 that in terms of the tar-
- geted values specified by the objective function, there is very little
loss of utility associated with using the constrained formulation.
Pecause the negative values for the control variables generated by the
unconstrained solutions are unrealistic, we shall concentrate on the

constrained, sub-optimal results for the balance of this discussion.
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Comparison of Control Variables

TABLE 4

Data Set 1

Unconstrained vs Non-Negative Modes

NEW FACULTY

Unconstrained Men-Negative
Per. Prof. | Assoc. | Asst. | Inst. Prof. | Assoc. | Asst. | Inst.
1 0.10 3.20 5.11 3.82 0.10 3.20 5.11 3.82
2 -0.03 1.68 1.43 4.63 0.00 1.68 1.43 4.63
3 0.12 1.75 2.25 4.43 0.00 1.48 2.10 4.66
4 0.02 1.54 2.03 4.53 0.16 1.89 ¢.19 4.37
5 0.39 2.12 2.78 4.67 0.31 1.94 2.67 4.77
6 -0.21 1.23 1.36 4.47 0.00 1.14 1.5C 4.85
7 0.43 2.20 3.13 4.73 0.12 2.08 2.45 4.38
8 -0.06 1.46 1.62 4.63 0.32 2.00 2.78 4.93
9 0.22 1.92 2.60 4.66 0.00 0.38 1.08 5.68
10 0.10 1.71 2.21 4.80 0.00 1.38 1.77 5.24
11 0.18 1.90 2.36 4.69 0.97 4.01 4.18 4.49
12 0.05 1.66 2.18 4.79 0.00 1.14 1.33 5.14
13 0.25 1.98 2.62 4.90 0.00 0.62 1.53 5.50
14 0.12 1.84 2.14 4.72 0.00 1.73 2.17 5.18
15 0.00 1.56 2.28 5.02 0.53 3.25 3.64 4.95
16 0.53 2.53 3.07 4.89 0.00 1.05 1.36 5.47
17 -0.42 0.96 1.13 4.83 0.00 1.70 2.05 4.88
18 0.77 2.81 4.12 5.33 0.39 2.67 3.40 5.04
19 -2.27 1.37 |.0.87 4.56 0.02 1.83 1.89 4.77
NEW STUDENTS
Unconstrained ' Non-Negative
Per. Frosh Soph. Jr. Sr. Frosh Soph. Jr. Sr.
1 270.8 26.5 42.5 10.4 270.7 26.5 42.5 10.4
2 272.8 20.7 39.5 7.1 272.7 20.8 39.6 7.1
3 272.8 21.4 39.5 7.1 272.8 21.4 39.5 7.1
4 272.8 21.3 39.5 7.0 272.8 21.3 39.5 7.0
5 282.1 27.9 45.6 11.7 282.4 28.0 45.7 11.8
6 271.9 15.2 34.4 2.3 276.3 18.1 37.1 4.4
7 285.5 30.5 48.0 13.7 277.6 22.3 40.7 7.7
8 279.4 18.4 37.6 4.5 289.1 29.8 47.7 12.9
9 284.3 25.1 43.5 -| 9.5 282.8 18.5 37.9 4.5
10 286.3 23.8 42.5 8.4 278.9 19.2 38.3 5.2
11 287.9 23.5 42.5 8.2 301.4 37.4 54 .9 18.4
12 288.1 22.7 41.8 7.5 294.5 19.4 39.5 4.6
13 294 .1 26.7 45 5 10.4 288.6 18.7 38.7 4.6
14 292.2 21.8 41.4 6.7 289.1 22.7 42.0 7.6
15 294.5 24.4 43.8 8.7 307.0 35.2 53.5 16.4
16 304.2 29.8 48.9 12.5 300.2 19.7 40.3 4.7
17 289.5 13.8 34.6 0.6 294.2 19.1 39.5 4.6
18 315.3 40.2 58.4 20.1 309.3 33.4 52.3 15.1
19 294.0 10.4 32.2 -2.2 302.5 19.8 40.6 4.8




TABLE 5

Comparison of Unrestricted Funds Balances

Unconstrained vs Non-Negative Modes

(Data Set 1)

Per. Unconstrained Non-Negative
1 $ 15,240. $ 15,220.
2 -24,096. - 47,390.
3 13,195. 16,260.
4 - 5,672. 26,660.
5 856 . 54,500.
6 787. 14,030.
7 678. 45,840.
8 - 4,560. . -139,320.
9 G,166. - 97,000.

10 ~-11,996. 146 ,450.

11 10,543. 109,970.

12 - 3,486. -128,660.

13 - 8,290. - 52,060.

14 20,927. 101,730.

15 -28,550. 23,120.

16 25,150. - 11,670.

17 - 7,584, 16,080.

18 -21,526. 7,077.

19 25,923. 14,157.

NET $ 6,833. $ 5,974.
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Comparison of Control Variables

Unconstrained vs Non-negative Modes
(Data Set 1)

New Construction
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Comparison of Results from Various Policy Alternatives

Perhaps the most striking feature of the solutions generated by the
model is that they do not show a smooth expansion path, either in terms of
total enrollments or in terms of any of the control variables. This is not
surprising mathematically, but it may surprise administratcrs unfamiliar with
controllable, dynamic systems with different response times.

Intuitively, what has happened to the referénce data set for the con-
strained case is the following. 7The preference funection desires the ratio
of available ASF per student to be fixed at 130. Enrollments are therefore
coﬁstrained during the initial four years by the amount of physical space
under construction at the beginning of the planning period, (x9’x10’ and X11
at t = 1). For the reference data set, these are set at a level which ex-
actly counteracts the depreciation of the existing capital stock. For the
first four years therefore, the physical space available remains constant.
Because faculty is linked to enrollmeénts through the Student/Facultv Ratio,
it is unnecessary to spend opefating dollar balances resulting from ﬁhe 1%
growth in outs® "~ funds, to increase the size of the faculty during this
period. As a resurt, the model spends any "excess funds" on new capital
construction. This becomes available after the fourth year at which time
enrollmenfs begin to increase.

Although students yield a net dollar gain from the tuition level, they
induce costs in the form of faculty salaries, capital needs, etc., so that
it is impossible to pay for additional space by simp:. adding students to
the rolls. When enrollments increase, therefore, the amount of new con-
struction must decline relatively. This will eventually causélste decline
in enrollment levels from peak periods, and thus induce a cyclical pattern

of physical expansion and student growth.
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Although the system dynamics and the solution process are considerably
more complex, the foregoing is the predominant reason for the cyclical var-
jability in the expansion path. Another reason is the different time con-
stants or response times for the various state variables. Full professors
spend a longer average time in the system than instructors, freshmen more
than entering seniors, and so forth. The time behavior of aggregates is
built up from many of these overlapping transients and, therefore, the ag-
gregates show a cyclical time behavior.

Data Sets 1 and 2 differ only in the assumptions concerning the levels
of external aid, with a 1% yearly increase in gifts, grants and government
assistance-reflected in Data Set 1 and a 27 yearly increase contained in
Data Set 2. Both employ the same levels of aid fpr the initial year. At
enrollment levels of 800 students, these funds account for 357% of current
income in the initial year and 36.02% and 37.91% respectively for the total
planning horizon. ‘A comparison of the enrollment patterns generated is
shown in Table 7. As can be seen from the table, there is no substantial
increase in enrollménts until the 10th period despite the fact that an
additional $225,700 has been received by the institution through the 9th
pefiod. Since the 19-year "marginal-cost'" of increased enrollments is ap-
proximately $5,500, one might irtuitively expéct that a smooth expanéion
path would be generated which should have enrolled an additional 41 stu-
dents through the first 10 years. In fact, the school has only enrolled
an additional 3 students.

Ancther way of looking at the data is to examine the increase in

external funds in relation to the total income over the 19-year period.

Here it can be seen that the additional $1.1876 million generated by Data
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. Set 2 is 3.51% of the total income generated via Data Set 1. This 3.5%
increase in total income tnus would result in a 1.35% increase in total
enrollments if if were to come in the form of additional gifts, grants,
and government aid according to this exponentially increasing function
of time.

Suppose instead the incrzase in income had come from tuition charges.

Data Set 3 simulates the effect of a $100 increase in tuition charges (or
equivalently, an additional subsidy of $100 per student) .y changing the

" net return from students from $600 to $700. (Recall that the coefficients

i , j=5-8 , are the difference between tuition and average

14,5 274 814 5
student-related costs such as adwissions, counseling, student—aid and health
facilities.)
If the institution were to increase tuition aﬁd fees by $100, neglect-
ing per-student student aid increases, enrollments would increase 3.57%
over the 19-year period. The increase in total income represented_by this
policy change is $2,356,449 or approximately 7%. Table 8 shows a compari-
son of enrollments and income under the assumptions of Data Sets 1 and 3.
Looking at these results from the point of view of a potential fundor,
such as the State or Federal government, it would appear at fixrst blush
that the most productive means of funding the institution would be the per-
student instituticnal subsidy. In crder to investigate the question more
thoroughly, Data Set 4 was developed. This data set increases the external
inputs by an amount equal to the $100/student-additional income generated
by the increase in tuition at optimal enrollment levels. Table 9'shows
the enrollments generated by Data Sets 2, 3 and 4 and the marginal costs
of enrollments. A comparison of theseicosts shows that for the purpose of

increasing enrollments, it is more effective to fund the institution directly
Qo
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rather than paying a per-student amount. The same subsidy, in terms of
both total dollars and timing, has been assumed by Data Sets 3 and 4, yet
the solution to the planning proble.. generates greater enrollments when

th:e subsidy is given as a flat grant.14

Conclusion

These examples show that realistic and relevant results can be obtained
relatively easily and inexpensively by SCPM. The control theoretic appreoach
both incorporates the multi-level, multi-decision maker hierarchical struc-

tures of higher education and enables educational planners to derive improved.

institutional plans and to evaluate many alternative operating policies. The

robustness and flexibility of SCPM suggest that it could make a major con-

-

tribution to improved educational planning.

14This counterintuitive result does not hold for the unconstrained
case, if the optimal value of the criterion function is zero. If it is
possible to achieve all the targets exactly in all planning periods, then
MIN J = 0 and the optimal enrollments for Data Sets 3 and 4 would be
identical. An alternative view of student tuition models and the effects
of gov:rnment subsidies is given in Weathersby [1970]. The above conclu-
sion 1s supported in this supply and demand analysis.
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APPENDIX

Solution Procedure

The 1inear—qﬁadratic minimization problem is solved in one step using
an adaptation of an algorithm devised by David Mayne [1966}. The following
computer program is based on this algorithm.

A non-optimal trajectory is generated using a nominal control sequence.
The effect on the criterion (penalty) function of small variations of the
control sequence is determined. This enables an improved sequence to be
chosen. 1In the case of a quadratic criterion and linear system dynamics,
‘the first improved sequence is optimal.

The advantage of Mayne's approach over conventional dynamic programming
approaches lies in immense reduction of core requirements. In place of the
optimal return function V° of Bellman, Mayne uses Ve , the optimal
variation in the non-optimal return function due to variation of the state
variable. VV° is expanded in a power series (to second order) of the
variaFion in "x , and difference equations are derived for the coefficients
of the series. It is the identification of these coefficients which prb;
vide, in aunalytic form, the optimal change in x(t) , and hence, by working
backward in time, of u(t - 1).

The program, in its present form handling 25 variables and 20 planning
periods, requires approximately 50K bytes of core and 1.5 minufes CPU time
on IBM's 360-65 0.S. On the University of California Administrative Data
Processing System this éists approximately $10.00 for an adequate numerical
solution for one case. It is hoped that Fufiite versions will reduce the

§ize and cost of running this program.
¢
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COMPUTER PROGRAM

Fi
FORTRAN Iv G LEVEL 18 MAIN DATE = 71300 10/27/%9

C

c THIS PROGRAM EMPLOYS AN ITERATIVE PRUGCERUUFRE TU FIND A SEQUENCE

C 3F CONTROL VECTIRS WHICH MINIMIZES A NON-LINEAR N-PERIOUL CBJCCTIVE

C FUNCTYION SUBJECT TUO LINEAR-DYNAMIC CONSTRAINTS. THE PLOGRAM [S

C 3ASED 3N AN ALGORITHM DEVELIPED 8Y DAVID MAYNE, PUBLISHED 8Y

C INT. JJURNSAL OF CONTROL (1966). .

¢

0001 COMMON X{14420),U009,19) eNXsNUSNPP VX (14}, UXX(1a914)oVUX(Ty1l4),
LVUI(99 9 s VXX2{ 109143, VU( ) 4LPPyVX2(124) 4, V(20)sF(14s14),G(14,9),
2! IN,IOUT g NUMRUN

£oG2 REAL 44,0PT

0003 DIMENSTON A€1%,14)4B(9,04) 3 ALPHAIG¢119),BETA(9¢14,19) ¢HU(D),
IH{LG014) vZ(14919) o XNEW(14220) s DELU(9) aW(14,14),
2C(9+9)CINV(9,91),0C({45)

0004 DCUBLE PRECISION C,CINV ¢CC
c00S 1IN=1
0006 1CUT=6
r .
C READ BASIC DATA
c-.
ooe? 1 READUIIN,GS03) NUMIT LPRNT,NUJNXs NPPyNUMRUN,OPT
0093 ) IF (NUMIT.GT.9%) STOP
aco9 LPP=NPP+1
C1 IFINUMAUNGGT 1) GO TO 150
on1l 2 0G i00 I=1lsNX ;
0312 10 READ(IINGGOLI(F(Isddad=1oNX)
co13 I F(NUMRUN+GT.1) GO TO 150
2014 3 D0 101 I=14NX
€015 121 READ(IING9OLI(G(I,J)sd=1,NU)
0516 ‘ 1F(HNUMRUNGSGT.1) GO TO 150
Ge17 6 DO 102 I=1,nX
o0l8 102 READITINGIOLI(HIT ¢ JbeJd=1eNX)
0019 iF(NUMRUN.GT. 1) GO YO 150
0G20 5.DC 103 I=1,NX
0021 . 103 READ(IINZSOLI(Z(T1,J),J=1NPP)
0022 IFINUMRUN.GT.1) 50 TO 150
c
C INITIALIZE SYSTEM
Cc .
0023 6 READIIINGOOLILX{T»X)eI=1sNX)
0024 , I FINUMRUN.GT.1) GO TO 150
0025 7 0C 110 I=1,NVU
0026 110 READ(IIN,S01I(U(TI,J)sd=1,NPP)
027 IF(NUMRUNCEQ. 1) GO TO 1000
0026 150 READ(IIN,922) ICHNGE
Q029 CO TO {1000¢2¢345954697) s ICHNGE
c -
C CALCULATE iINITIAL STATE VARIABLES
o .
Ge30 1000 NCYCLE=O
0531 DG 120 L=1l,NPP
5032 H=L+l ,
0033 0O 121 I=1,NX
00346 121 X(I,4M)¥=0.0
0035 DC 126 1=l 4NX
0036 DO 122 J=LleNX
0037 122 XL yMI=X(LaMieF (L)X {doL)+H{E,d) 82 (J,L)
0038 DG 120 J=1,NU

ERIC

Aruitoxt provided by Eic:
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0039

2040
0041
0C42
G043
CCa4
0C45
0045
0047
0Ga8
CO49
0050
0051
0052
0053
2054
0055

G0%6
0CsT
0C58
CCs9
I
0 ol
Ga62
0U63
0064
0065

QC6s
0357
0C68
GCe9
Qo070
0071

Ga7r2
co73
0GCT4
G075
0076
covy
[eeg:]

0079
0080

CCsl

ERIC

Aruitoxt provided by Eic:

LEVEL 18 MA IN

[3¥a X R}

(e Nel el

e XaXsl

OO

0o

120 X(I4MlaX( L M)+G(I,J)eU(J,L)
ECHO CHECK INITIAL DATA

WRITECIQUT,902) NUMRUN
WRITELIQUT ¢903) (I,I=14NX)
DC 200 [=1.NX

200 WRITECIOUT 904} I+(F(I4g)ed=1,NX])
WRITE(IOUT,905)
WRITE(IOUT.903) (1,1=1sNU)
DC 2C1 1=1sNX

221 WRITE(IQUT.904) T1,(G(I+d)sJmleNU)
WRITE(IGUT,9C6)
WRITECLIGUT(9033(1,I=1,NX)
CO 202 I=14NX

202 HRITECIOUTy9064) I4(HIT,J)sdmlgNX)
WRITE{IOQUT +507)
WRAITECIOUT 903) (1 oI=14NX)
OC 203 J=1l.NPP

203 WRITEUIOUT+904) Je(2(14J)eialyNX)

BEGIN IVERAT{VE PROCEDURE

CALL CALCV(O}

300 WRITE(ICUT»508) NIYCLE .
WRITE{IOUT 309} (1,1=1,NU)
DC 301 J=1,.NPP

301 WRITE(LIOUT,910) Jo(ULI,J)sI=14NU)
WRITEL{IOUT 911
WRITECIOUT,909) (Joed=1,LPP)
DO 302 I=1,NX

302 WRITELIOUT,912) Yo(X{12J)sJd=1,LPP)
CALL CALCviLPP}

CALCULATE JS-VALUE

JJd=0.0
D0 310 I=1.LPP

310 JJ=JJd+VviI) .
WRITE(ICQUT »9131(1,I=1,LPP)
WRITELIQUT 9140 (V) 1ul,LPP)
WRITE(IOUT 915344

DATE = 71330

SHECK 7D SEE IF CURRENT CONTROLS ARE OPTIMAL

CHRECK=ABS(JJ-0PT }
IF(CHECK.CT.0.02) GO YO 320
WRITECIOUT. 916}
G0 YO 1 ’
0 IFINUMIT-NCYCLE) 321+4322,322 v
1 WRATZUIQUT 917
60 7O 1 :

UV 37
o N

3EGIN MAJOR LCOP

322 AA=0.0
00 400 II=1,NPP
IT=LPP~1]

49

10/27/59
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0082 CALL CALCVILIT)
C
C CALCULATE MATRIX A = VXX + F' VXX(T+1) F
- c
0023 NO 401 J=1,NX
0084 00 401 I=1,NX
00&5 All.d)=0.0
00436 DO 401 K=1,NX
00137 401 AL J)=ALL1,J)+F(Ky 1)aVXX2(Ked)
0028 DC 402 J=1,NX
0059 00 402 f=1,NX
0030 WilyJ1=0.0
009l DO 402 K=1,NX
0072 432 WilyJddewld, J)‘A(I'K)*F(K'J)
03593 DC 403 J=1,NX
0094 00 4C3 I=1,\X
3095 4C3 Al Ji=Wl1,9)+VXX(I,J)
C
T CALCULLATE MATRIX 8 = VUX + G VXX(T+l) F
« .
0696 0C 404 I=1,NU
o007 00 404 J=1,NX
co=ws B(Isd1=0.0
0099 DG 406 K=1l4NX
3100 406 S{I UV mBll eI +G (eI )IRVXX2(KoJ)
01901 DO 405 I=1,\NU
01062 DL 405 J=1,RX
0103 nw(lsd)=0.0
0104 DN 405 K=1,NX
5168 435 WlLed) =Wl 4 J)+B(14K)*F(K,J)
0188 0G 406 I=1,NU
0:37 NG 406 J=1,NX
2108 40346 B (Lod)sUWll,d)eVUXII )
C
C Cal CULATE MATRIX C = VUU + G* VXX(T+#1) G
~
o1C9 DO 407 I=1,NU
011 LC 407 J=1,NX
o111} w(led)=0,0
OLL2 DC 407 K=1,NX
I113 637 W{laJ3=W(L,S)+G(Ky I)SVXX2Z(KyJ)
oLl4 CO «U8 1=1,NU
0115 03J 4038 J=14NVU
0116 C{1,31=0.00
0li7 D0 404 K=1,NX
0118 408 CUIeI=CULT, ) +W(1+KI¥G(K,J)
0il9 DG 409 I=i,NU
0120 G 409 J=1.NV
cl21l 429 C(Iyd)mC{ladI+VUULT )
c
S PLACE UPPER TRIANGLE OF C INTO CC BY COLS.
c
0122 K=1
o123 D0 419 J=1,NU
0124 DC ¢18 I=1,4
0125 IF(CLIed)) 2l5,4164410
cl26 415 CCU<i=0MAXL(C(T1J),4C(J,I))
0127 GC TO 418

10/727/59



FURTRAN IV G LEVEL

0L28
0129
D130
0131
0132
0133

0134
0135
Q136
0137
0138
0139
0140
0141
0l42
0143
Ol4s
Glas
0l46

0147
0148
0l49
Gls0
G151
o152
0153
0154
0155
0156
0157

0158
0159
G160
0161
0l62
0163
0164
0165

0166 .

0167
0lé68
0169
0170
0171
0L72
oL73
o174
0175
0176
O
ERIC
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‘C

c

416

418

419

18 MAIN DATE = 71300
CC(K1=DMINL(CL{Esd),4ClI, 1))
K=K+l
CONTINUE
I ER=0

EPS=. 000001
CALL DSINVIZCsNUsEPS,IER)

PLACE CC IN CINV

c .

c
C
c

c
c
c

480
485

“a11
410

L=l

DC 485 J=14NU

D0 48C I=1.+4
CINV{I,.JI=CCIL}
IF{I.NE.J) CINVIJsI)=CCiL)
L=l+1

CCNTTNUE

DO %10 J=1leNU

Hy{J1=0.0

DO 411 [=1,NX
HUlJI=HU () +VX2 (1} *G{I,J}
HU(J) =HULJI ) +VU(J)

CALCULATE ALPHA{IT)+BETA(IT)

421
420

431
430

DO 420 I=1,NU

ALPHA(T,iT)=0.0

DO 421 J=1,40U .
ALPHACT ITI=ALPHAC L, 1TI+CINVIE 2 J)%HUL Y)Y
ALPHA(T, IV ¥=-ALPHA( I, IT)

DO 430 I=1sNU

00 430 J=1,NX

BETA(I.JI{T)=0-0

D0 431 K=lsNU

BETACI, 3, IT)sBEVALI U, ITI+CINVIIZKI*B(KsJ)
BETA(L s JoIT)=~BETA{L4d,IT}

CALCULATE NEW VXX2 AND NEW VX2

440

441

o2

450

DO 440 I=}y4NX

Wllyl)=D4U

DC 440 J=1,NU }

WL 1 )=W( i, L) FBETA T, Lo 1T 2HUL )
D0 441 I=leNX

W{ls2)=0.D

DO 441 Jr1,NX
WUla2)=W(L+2)4VX2(II*F(Js 1)
D0 442 I=14NX
VX2UDI=VXC T +R AT a L)W (T4 2)

DO 452 I=1sNU

DO 450 J=1,NX

Wllyd)=0.0

DO 450 K=1,NU .

WL J uW( I, J4CINVET,K)¥B(K,d)
DQ 451 I=1,NX

DO 451 J=1,NX

VXX2([4J)=0,0

DC 452 Kal 4NU

w~

51
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oL77 452 VXX2 (1 4J)=VXX2 (1 ¢J1+BIKs T %4 (Ko J)
0178 451 VXX2{TsJI=A(1,4J)=VXX2(14J)

00N

CALCULATE AA TO INDICATE EXPECTED IMPROVEMENT IN J-VALUE

0179 - . W(l,11=0.0
0180 OC 460 I=1,NU
LEE:H 460 WlLlg1)=Wll, L) #HU(I)CALPHRALI,IT)
o182 430 AA=AA+D.5%(1,1)
o
C CALCULAYE NEw CGNTROLS AND NEW STATE VARIABLES
. [ .
01&3 0C 560 I=l,NU
c184% UGTs13=U(1,1)+ALPHA(L 41}
0139 PFIUGT41).LTe0e) UI1g1)=0.
0185 520 CCNTINUE
o187 00 501 I=1,NX
0183 XNEW(I42)=0.0
0189 DO 502 Jd=1 ¢NX
G190 - 502 XNEW(IS2)=XNEA(L42)14F (1, J) % X{JsLI+H{ L oJ)%2Z(Js1)
6191 DC 501 J=1 ,NU
ol92 501 XNEW(Eio2)=XKEW(I42)4G(ToJ)*U(Jsl)
0193 DO 51D L=2,N¢P
Ccl194 M=L+1
0195 DO 511 Ial,NU
o136 DELULINI=0.0
c197 00 512 Jd=l 4NX
6193 512 DELU(L) = BETA(L ¢ J o LYSCINEW(I L LI=X{J,L))*DELU(L)
0199 U(IeL)= DELULT)+ALPHA(I,L)+2{1,L}
0260 IF(ULT L) oLTY.8s) UlIal)=0.
c201 511 CONTINUE
0202 00 513 Isl,NX%
0203 : AXNEW(IsM)=0,0
0204 T 00914 J=14NX
0205 516 ANEW(T oM)=XNEWCTyMI+F (Lo J)EXNEN(JoLI+HTT o3I HZ(J,4L)
0206 00 513 J=l4NU
0207 513 XAEWS( Lo MI=XNEW(T , MI+GLT,J)%U(J,eL )
0208 ) $10 CUNT{NUE
0209 DO 520 I=1,NX
0210 SQC 520 J=?,LPP
0211 520 X{LoJI=XNEWll )
0212 NCYCSLE=NCYCLE®]
0213 WRITE{IOUT »918)AA
0214 GO TU 300
0215 970 FCORMAT(OI3,F8.0)
0216 9931 FCRAATI(LOFB.0)
0217 902 FORMAT(1H1,20X,'DATA FOR RUN NUMBER® ¢13//20X¢*F~MATRIX?*)
0218 903 FORMAT (/3%X,1419)
0219 904 FCRMAT(LX [2,14F9.2) 2
0220 905 FORMAT(//20%,'C~MATRIX) :
0221 906 FCRMAT{1HL,20X,*'H~-MATRIX ")
0222 907 FCORMAT(//20X,*'Z~TRANSPQSE" )
0223 908 FORMAT(1H1,10X,"'STATISTICS FOR CTYCLE NUMBER'.14//20Xs* CONTROL VARIL
1AELESH) :
0224 909 FORMAT(/I3X,10112))
0225 9L0 FORMAT{1Xy12,5%Xs10G12.4)
0226 911 FCRMAT(1HL 420X *STATE VARIABLES®)
0227 912 FORMAT(/2X,*X%X{%12+s°') '410C12.4/(8X410612.47))

ERIC

Aruitoxt provided by Eic:
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0 o x5 n X i o o e o ade X o ale ok K X0 T KO RO R R R R R DR LKA RE TR A ERE AR R AT &

PURPDSE
INVERT A GIVEN SYMMETRIC POSITIVE DEFINITE MATRIX

US ACE
CALL DSINVIANLEPS, IER)

DESCRIPTION OF PARAMETERS
A DOUBLE PRECISICN UPPER TRIANGULAR PART DF GIVEN SYHMETRIC
POSITIVE DEFINITE N BY N MATRIX.
ON RETURN A CONTAINS THE RCSULTANT UPPERTRIANGULAR MATRIX
IN DOUBLE PRECISION.
N CRCER OF THE GIVEN MATRIX
EPS- SINGLE PRECISION INPUT PARAMETER WHICH 1S USED AS RELATth
TOLERANCE FuUk TEST UN LCSS GF SIGNIFICANCE.
TER RESULTING ERROR PARAMETER COJED AS FCLLONWS
[ER=0 NO ERROR
[ER=~-] ND RESULT BECAUSE OF WRCNG INPUT PARAMETER N OR
BECAUSE SOME RADIZAND IS NON-POSITIVE (MATRIX A IS
IS NCOT POSITIVE DCFINITE, POSSIBLY DUE TO LDSS OF
SIGNIFICANCE,)
1E€R=5 ‘WARNING VWiHiCH INDICATES LOSS GF SIGNIFICANCE.

REMARKS
THE UPPER TRIANGULAR PART OF GIVEN MATRIX IS 4SSUMCO TO BE STORED
COLUMMWISE IN nw{N+1)/2 SUCCESSIVE STCQRAGE LOCATIONS. [IN THE
SAME SYQRAGE LOCATICNS THE RESULTING UPPER TRIANSULAR MATRIX IS
STORED COLUMNWISE TGO.
THE PROCEDURE GIVES RESULTS if N IS GREATCR THAN O AND ALL
CALCULATED RADICANDS ARE pPOSITIVE.

SUBKIUTINE REQUIRED =~ OMFSD

OO0 IO OO OO QOO0 n

(3 LR EE 2 T F STV 2 T2 AR S 2 -2 R 232 R R R R RS SRR R RS

0001 SUSBROUTINE DSINV(ASN,EPS,IER)
C

0002 DIMENSIGN A(1}

0003 DOUBLE PRECISION A,0IN,WORK
C
c FACTCRIZE GIVEN MATRIX BY MEANS OF SUBROUTINE DMFSD
c A=TRANSPOSE(T) * T

0004 CALL DMFSD(A,N,EPS,IER)

0005 IF(LER)Y 9911
c
c INVERT UPPER TR IANGULAR MATRIX T
- PREPARE INVERSICN-LOOP

0Co06 1 IPIV=N®(N¢11/2

00GC7 IND=1PIV
C “
c INITIALIZE INVERSIQN~-LOGP

CCOE DO 6 I=]1,M

0cu9 DIN=1.DG/A(IPIV)

o010 A(IPIV)=DIN

0011 MIN=N

00tr2 KEND=I~-1

co1l3 LANF=N~KENO

0014 IFIKEND)S,5,2

ERIC

Aruitoxt provided by Eic:
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0015

00le
0017
Qo138
0019
acz20

0021
0022
0023
0024

0025
00zé

0027
0028

0029
0330
0031

0032
0033
0034

0035
0836
3037
0038

NC39
0040

0041
0042

(s X g)

[ X e

(s X el

CTCICIOIT Y

o0

18 DSINV DATE = 71300

2 J=IND

INITIALIZE ROW-LDOP
DO &% K=1,KEND
WORK=0.D0
MIN=MIN-1
LHOR=IPIV
LVER=J

START INNER LOOP
DO 3 L=LANF,4IN
LVER=LVER+1
LHROI=LHOR4 L
WORK=WDRK+AILVER) %A (LHOR)
END OL INNER LOOP

A{J)=~WORK®OIN
J=J=-MIN
END OF ROW-LOGP

IPIv={PIv-MIN
IND=IND-1
END OF INVERSION-LIOP

CALCULATE INVERSE(A) BY MEANS OF INVERSE(T)
INVERSE{A}<INVERSE {T)#TRANSPOSE(INVERSE(T) )}
INITIALIZE MULTIPLICATION-LIOOP

DO 8 I=1,N

[PIV=IPLV+I]

JalPlv

INITIALI2E ROW-~-LOOP
DO 8 K=I,N

‘WGRX=0.D0

LHOR=J

START INNER LOB3P
Dg 7 =K ¢ N
LVER=LHGOR&K=~]
WORK=WIRK+A(LHOR J %A (LVER]
LHOR=LHOR+L

END OF INNER LOQOP

A (S =WORK
J=J+K
END CR ROW~ AND MULTIPLICATION-LOQP

RETURN
END

1C/727/%9
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0001

0002
. 0003

G004
(sTele}~

0C26
0707
1008

55
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o0

L)n(‘v(in(’]hh(7&)(‘);lnn(ln(’ﬁn(‘)ﬁ(’)(’?(!hlrr‘)n(‘bn(l(rn(ﬁ(lnﬁﬁ(rnnnnnn

AR PRt 2 T 2 a A Pl R R R ST R R AL R R Rl Y]

PURPUOSE
FACTOR A GIVEN SYMMITRIC POSITIVE DEFINITE MATRIX

US AGE
CALL OHMFSO{A,N,EPS,y IER)

DESCRIPTION OF PARAMETERS

A DIVUBLE PRECISION UPPER TRIANGULAR PART GF GIVEN
SYMMETRIC POSITIVE DEFINITE N BY N MATRIX
N THE NUMBER OF ROWS(COLUMNS} IN GIVED MATRIX

GN RETURN A COMTAINS THE RESULTANT UPPER
TRIANGULAR MATRIX IN OCUBLE PRECISION

EPS SINGLE PRECZISION 1 )T CONSTANT wWHICH [S USEOD
AS RELATIVE TOLERAn.E FOR TEST ON LOSS OF
SIGNIFICANCE

TER RESULTING ERRORPARAMETER COCED AS FOLLOWS
IER=0 - NO-ERRCR ’

- IER=~1 ~ NO RESULT BECAUSE OF WRCONG INPUT PAPRAMETER

N OR BECAUSE SO4E RADICAND IS NON-POSITIVE
(MATRIX A IS NOT POSITIVEDEFINITE ~
POSSIBLY DUE TO L3SS OF SIGNIFICANCE}
IER=K ~ WARVING WHICH INDICATES LDSS OF SIGNIFICANCE
THE RADICAND FORMED AT FACTORIZATION
STEP K+l wWAS STILL POSITIVE B3UT NO LONGER
GREATER THAN ABSU{EPSH#X+1,X+1)}
REMAIKS :
THE UPPER TRIANGULAR PART OF GIVEN MATRIX IS ASSUMED TD RBE
STORED COLUMNWISE IN N%(N+1)/2 SUCCESSIVE SYORAGE LOCATIONS.
IN THE SAME SVYORAGE LICATIONS VHE RESULYIMG UPPER TRIANGULAR
MATRIX IS STORED COLUMNWISE TOO.
THE PRICENDURE GIVES RIESULTS IF N IS GREATLER THAN 0 AND ALL
"CALCULATED RADICANDS ARE FOSITIVE. '
THE PRECUCT CF REYURHED DLAGUONAL TERMS IS EQUAL T THE
SQUARE-ROOT OF THE CETERMINANT OF YHE GIVLN MATRIX.

ME THOD
SQLUTION IS DONE USING THE SQUARE-ROOT METHOD OF CHOLFSKY.
THE GIVEN MATRIX IS REPRESENTED AS PRIODUCT COF TWd TRIANSULAR
MATRICES. THE LE: T HAND FACTOR IS THE TRANSPOSE OF THE
THE RETURNED RIGHT HAND FACTOR.

O Kok A AR AR KR R R XA R AR UGB CNGEURR ARG RGN G R R X R SO SRk "
SUBIBDUTINE OHFSD(A,N,EPS,IER)

D IMENSION A(D)
OCUBLE PRECISICN DPIV.DSUMsA

TEST ON WRONG INPUT PARAMETER N
IE{N~-1)12s1,41
1 1ER=0

INITIALIZE DIAGNONAL-LGOP
KPIV=0
GC 11 Kel,N
KFIV=KPIV+K
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0009 INO=KP IV
0010 LEND=K-1
C
4 CALCULATE TOLERANCE
0011 . TOL=ABSIEPS*SNGL(A(KPIV)))
E START FACTORIZATION-LOUOP OVER K~-TH ROW
oqQl2 20 11 I=K,N
0013 DSU%=0,D9
0014 IE(LEND 24492
c
.. START INNER LOOP.
0015 . 2 DG 3 L=1,LEND
0016 LAaNF=KPIV~L
oaty L INC=IND-L
0G1s 3 DIUM=DSUM+ALLANFI*A(LING)
c END CF INNER LDOP
(o
c TFANSFORM ELEMENT A(IND)
0019 <. 4 DSUM=A{TIND)~DSUM
0020 IF(I-K) 10e5,1L0
c
C TEST FOR NEGATIVE PIVOT ELEMENT AND FOR LOSS OF SIGNIFICANCE

9521 5 IF{SNGL{OSUMI-TOL) 64649 <
0022 6 LF(DSUM) 1241247
Q1 23 7 IFUIER) 6,8,9
0124 8 [ER=K-1

[

c COMPUTE PIVOT ELEMENT
D625 9 OPIV=DSQRT (DSUM) :
acre ALKPTYY=0P IV
2021 CPIV=1.00/0PLV
2028 6N 10 i1

~

c CALCULATE TERMS IN ROW
0029 10 ALINGI=DSUN4DPIV
0630 11 INC=INDe]

< END OF DIASGONAL LOOP

c :
0c3t RETURN
0032 12 1ER=-1
0033 _ RETURN
0034 ENO

ERIC
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0001 SULROUTINE CALCV(IPER)
C . IN WHICH IS CALCULATED VXsVi, VXXsVUXs VUU,AND V
c THERE ARE THREE SECTIONS TU THE RUJT INE
C 1 PARAMETERS ARE READ IN,SECOND DERIVATIVE MATRICES SET YO 0.0
C 2 V IS CALCULATED USING UPDATED X AND UsALSO YX2(LPP) AND UXX2(LPP)
C . SUMMARY STATISTICS ARE PRINTED CUT
C 3 VXsVUJVKX,VUX, VUUs ARE CALCULATED FCR PERIOD IT AS DEFINED IN MAIN
c
0002 COMMON X(14520),U109¢19) sNXsNUJNPP,VX(14)y  VXX(14,14),VUX{9,14),
LVUJ (9491 ,VXX2( Lae141s VLD 2LPPoVX2( 142V 20) oF (144 141,G(14,91,
21 £N, [0UT o NUMRUN
0003 D IMENSION R(8),P(8)
0004 REAL K{9)
005 IF(IPER.EQ.0) GO TO 100
0006 IE(IPERLEQ.LPP) GO TO 200
0007 60 70 320
c
C READ BASIC DATA
¢ ‘
0008 100 [F(NUMRUN.EQ.1) GO TO 103
¢009 READ(1IK,904) ICHNGE
G010 TF{ICHKNGELEQ.D) GO TU 101
Goll 103 READ{TINS90G) KeR¢C14C24C3
co1z 151 WRITE(IOUT,901) KyR,C1,C2,C3
e
C CALCULATE VXX VUXs VUU {WHICH IS INVARIANT)
c .
€13 DC 102 J=l,14
tol4 DO 102 I=1,4
0015 102 VXX(1+41=0.0
0016 D=KEL)#R(1)&R2 +K(5)eCI%%2
0017 VXZLig 1) =DHKE2 D4R (2) 024K (3D 2{ 3)#B24K{ 4} ¥R ( 4) %42
6013 VXX(12)20-K(2)6R(2)
0019 VXX(1y3)=D=K({3)%R(3)
6020 VXX(1,4)=D-K(4)%R(4)
0o21 VXX{2,2)=D+K(2)
0022 VXX(243)=0
0023 VXX(2,43=D
coz4 VXX(3,43) =D+K(3)
0025 VXX(3,4}=0
cn26 VAXi&04) =D4K(4)
c027 00 110 I=1,4
0028 00 110 J=5,8
ce29 110 VXX(I,d)==K{L)#R{L)+K(5)%C2#C3
0030 00 11l I=1,4
G031 111 VXx{1,12) = -K(5)%C3
0032 DER(L)+K(5)0C2%%2
0033 VXXE59S1=0+K(6)RIEIEN24K( TI*RETINH24K(BI®R(8) #¥2
0034 VXX(5,6)=D-K(6)¥R(6)
co3s VXX{5¢7) =D=K(T)%R(7)
0035 VXR(5,8)=0-K(8)¥R(8)
0037 VXXU6 46§ =D+K(6)
2038 VXX{65 71 =D
0039 VXX (608)=D
C040 VXX(T7,7) 5D+K(7)
0041 VXX{7,8)=0
0042 VXX(8y8)=D+K(B)
0043 DO 112 I=5,8
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L 044 112 VXK(E,12}=5-K(5)%C2
0645 VXX(12y12)€KL5)
5046 DC 121 J=1,14 :
0047 00 121 I=1,d N
n04s 121 VXXUE4J)=KI9) BFUL4, 1) 0F{ b sd) +VXX(I 44}
0049 DO 120 I=2,1%
0050 IM1=1~1
0951 00 120 J=1,1M1
0cs2 120 VXX(1,J1=VXX 1)
0053 DO 130 I=1,8
0054 DS 130 J=1,8
0055 VUULL o 13 =V XX{T 4 J)
2958 130 VUKL I, d)=VXX(T4d)
€057 DC 131 (=l,8
0058 DA 131 J=9,14
0659 121 VUX{I4Jd=YXX{ 142
0060 DG 132 J=1,1%
0061 132 vuxtq,J)=K(9)«F(14gdzvc(14.9)
0062 DO 133 J=1,8
0043 VLULD ¢ J) =VUX (9 4 ) -
G054 133 VUULJI+91 =vUu(9,J!
0065 VULIS 4G =K 9V 4GE Lo,y G) 652 .
0066 GC TG 00
c
C CALCULATE PREFERENCE FUNCTIDN AND VXX2(LPP),VX2(LPP)
C
0067 200 WRITE(IOQUT,902)
0063 DO 210 J=1,NPP
A% CC 2G1 I=1,8
0170 201 PUII=X(1,3)+Ul1,J}
07 YS$=0,.0
cc72 TF=0.0
0073 DC 202 I=1.4
COTé TF=TF+P{1)
0075 202 TS=TS+p{l+4)
oC76 PL23=p12)/7P(1)
G077 PI3}=P(3)/P(L)
ce7y PlaY=p{6)/P(L)
0c79 P(1Y=TS/YF
0C80 Al=P(6}/PL5)
0051 A2=P(7)/P(5)
6082 A3=P(B)/P(5]
0083 A4=CE+C2¥TS+C3RTE
NC84% WRITE(ICUT,903)J,TS,TF(P{1) 151, 411 ALIAZIAS L AG,X(L24 )
QUES AL=R{1)%TF-TS
0085 A2=R42) 8 (X{1, 31 +ULL JY)=(X(2,J )fU(?vJ))
0067 AZ=2(374(XCLsdN4UCLad ) ) =(X(3,3)vU(343))
00468 AG=RE& IR (X {1y I4UCT4d) b=(X (4,3} +Ul4yd))
6089 AS=CLeC2¢TS+CIRTF=X{124J)
0096 AB=RIEIEIXIS,IIFILS, I3 3-(X{6,)¢ULO,I}
0091 AT=R(TI*(X(S I vULS,d) 1=(X{T5314U(T,0})
0092 ABRLBIS(X(5,JI+U{5,30 )=t X183} +UI(ByJ)
S093 VDI SR UL AL AR 24K (2 JHA2% 424K (31 FA2 %3 4 K( 4) 88 46% 2eK(S) 0 AS242
1+ K(6) AGuu2+K{TI#AT# 24K (B )0 AZHS24K(G )X (Lby J41) 422
0094 210 V(JI=v(J)r2.0
0G95 VEILPPI=0.54KI9)4X (L4 LPP)%¥2
1+ D.9%R{S) ¥ XLDLOPIS¥24X{10sLFP) #0224 X{ L1 4LPP)®#2)
0695 DC 220 I=1.13

10727759
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0097
0093
0099
0130
0101
0102
0103
0i04
0105
0106

0107
0198
0109
0110
Oll1l
o112
0113
Nlla
0115
Sllo
0117
Gli3
ol19
0129
0121
0122
cl23
012%
J212%
0126
0127
o128
0129
0130
0121
0132
N133
0134
D135
0136
0137
o158
0129
140
Olal

0l42
0143

0144

0145
0l46

. 0147

[aXa Lt

220

221

222
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13 CALCV OATE = 71300 10/27/59

VX2¢(1)=0.0

DC 221 I=l4l%

00 221 J=1,14
VXX2(1+4)20.0

D 222 1=9,11

VALY =R(S)eX(I,LPP}
VXX2{ I, 11=R(5)

VX2{14is= K(9)#X(1l4,LFP)
VXX2( 145 14)=K{")
GG TO 800

CALCULAYE VX(IPER}

300

301

302

8GO0

900
231
932

933
Q04

TF=0.0

DC .201 I=ls%

TF=TF+X(1, IPERY+U(I, IPER)

LC = X{54IPER) + X{&4IPER) +U(S.IPER)+U(6,y IPER)
UD = XU7,IPER) + X[ B,IPER) +UL7+IPER)+U(B+IPER)
TS = 0 + UD

DO 302 I=lslé4

VX{I)=0.0

J=IPER

Al=R(LYETF~TS:

A2=R{23% (X (1, i3 eU(1,0)0-(X(2,0)+Ul{2,35))

Z=R(3) (L JI+UL L) 1= (X (3 44)+U(3,3))
A4=04){X{lyJ 14U L4 j={X{%ed)tUl4,J))
AS=Cl4C2%TS+C3%TF=-X{12,J) )
AC=RUG)IC(X(S59J1+U(5,0))=(X (0, J)*Ul6,J))
AT=R(T7I#(XLS, JI4U5J))=(X{T7,5)+U(T,0) )

AB={8) 2 IR(5,J)+UL5¢d)I=({X(84J)+U(B,J))}
O=Rl1}#AL*RI1I+K(S) AS%C3

VX(1)=Dek (2)5A2¥RI2I+K{3)12A3¥R( 3 )+K (&) *A4XR [ 4)
VX(2)=p-K(2)vaz

LV XI3)=0-K(3)2A3

VA& )=D-K(4 ) %A4

Da=K{L)®AL+K(5)%AS*C2

VX(5)= 3+K(6)*&6*R(6)+K(7)*A7#R(7)+K(BI*AB‘R(B)

VX{6Y=0-KI6) &R

VALT)=0-K(T)*AT
VXIB)=D-K(8)%AS
VX(12)=-K(5)%AS
DO 303 I=1,414
VA =vx (1) #K (913X (14,041} %7 (16,1)

DC 310 I=1,6

VUL =vx( 1)

VUGS )I={9) *X (L4 9y J+1 }4G(14e9}

C ONT I NUE

R ETURN

FORMAT(9F8.0/8F8.,0/3F8,0)

£CRMAT {1H1 y 20X 'PREFERENCE FUNCTIDN WEIGHTS'//1X'K1-K9',9F12,6//
LIX'K1~R8Y ¢8F12.6//1 %Xs%C1l~L3¢,3F12.6}

FORMAT{1HL 50Xy ' SUMMARY STATLISTICS'//1X,"PER® 44X, "TS1,9X,'TF*, 6X,
LY TS/VE Y yOX g VF2/FLY g 6R, "F3/E 1Y, 6Xs"F4/F LT 46Xy*SC/FRY ¢ 46X ! JRIFR?
26Xyt SR/FRY 35Xy *ASF REQ® 46X 9P ASF BUILT'/)

FORMAT (1Xs1392(3XsF8.1) g T(IXeF Ba3) ¢2{3XF942)1}

FCRYAT(I1)

END
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DATA INPUTS FOR MULTIPLE RUNS

To make multiple comparison runs without respecifying all the data
inputs, coded data-change cards are used. Changes may be made in either
the. data inputs to the main routine or to CALCV or both.

Changes in the data for MAIN must be preceded by a RUN card and
followed by a card with "1" in column 1. Changes made in CALCV data must
be preceded by a card with "2" in column 1. If no changes are made in
MAIN data, a card with "1" in column 1 must follow the RUN card. If no
changes are made in CALCV data, a card with "@" (zero) must follow the
last card in the data set which changes MAIN, i.e., the card with "1" in
column 1. The END card which follows the data in single runs is to be
made the last card of the change—data sets. (There is only one END card

for the program.).
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FORM OF INPUT DATA

I. DATA FOR MAIN ROUTINE

Item Var.MName| Value| # Cols. | # Rows Format
1) RUN card: : (13,3x,413,F8.0)

a) # Iterations this run NUMIT

b) # Control Variables NU

c) # State Variables NX

d) # Planning Periods NPP

2)} Run Number NUMRUN 001

f) Est. Optimal Value eof p.f. OPT
2) State Variable Transition

Matrix

(read in by rows) F NX NX (10 F8.0)
3) Control Variable Transition

Matrix

(read in by rows) G NX NU (10 F8.0)
4) Excgenous Variable Transition ’

Matrix : .

(read in by rows) H NX NX (10 F8.0)
5) Exogenous Variables for all ‘

Periods

(read in by rows) Z NPP NX (10 F8.0)
6) Initial State Variables

. X 1 (10 F8.0)

7) Initial Control Variables

for all Periods

(read in by rows) U NPP NU (10 F8.0)

II. DATA FOR CALCV SUBROUTINE

1) Vector of p.f. Weights, K 9 | 1 {9 F8.0)

2) Vector of p.f. Ratios R , 8 1 (8 F8.0)
(Note R(5) is wt for LPP .
X9,X10:X11) | :

3) Vector of Coefficients for c 3 1 (3 F8.0)
ASF Needs )
END CARD 100 (13)




62

DATA STRUCTURE FOR MULTIPLE RUNS

Item Var.Name | Value | # Cols. | # Rows Format

1) RUN card (as before)
2) MAIN data (as before)
' 3) CALCV data (as before)
4) RUN card (as before except
run number)
e) NUMRUN | >002
5) Change code ICHNGE 1-7 - (1)
New F-Matrix follows 2
New G-Matrix-follows 3
New H-Matrix follows 4
_. New Z-Matrix follows 5
New Initial-state Variables 6
follow
New Initial-control Variables 7
follow
No (Further) changes in MAIN 1
data
Following each change coded card,
the appropriate variables are
specified as before.
6a) If there are no changes in
CALCV data
ICHNGE 0 (11)
6b) If there are changes in CALCV
data ICHNGE 2 (11)
Complete set of CALCV data as
before
Repeat 4 - 6
as needed
L7) END- CARD 100 . (13)
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