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Abstract

A summary of the technical problems encountered in performing

Bayesian m group regression is given. Grade-point averages for students

entering a vocational-technical program are predicted using ability

assessments from the Career Planning Profile (CPP), a development of

The American College Testing Program (ACT). The theory derived by

Lindley (see Lindley and Smith, in press); a method developed by Jackson

Novick, and Thayer (1971); and the cross-validation performed by Novick,

Jackson, Thayer, and Cole (in press) are cited; and the relation to

conventional least squares is explored.
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Introduction

Least-squares regression equations are commonly used for the

prediction of educational performance. Least-squares estimates,

unfortunately, are subject to serious sampling fluctuations, especially

when the sample size is small. Under certain circumstances, some

meaningful improvements are possible. One such situation occurs when

the same predictions must be made in several groups. For this case,

Lindley (1970) provided a theory for determining simultaneous Bayesian

regression equations so that the collateral information available in

the other (m - 1) groups improves the prediction equation for each group.

Jackson, Novick, and Thayer (1971) provided a detailed method for

obtaining the Bayesian estimates. Novick, Jackson, Thayer, and Cole

(in press) showed that Lindley's method led, in one study, to a reduction

of mean-squared error of prediction or, alternatively, to a saving in

sample size when compared to the least-squares estimates in a cross-

validation experiment.

In a companion paper, the authors presented Bayesian regression

equations computed for 22 vocational-technical programs. Each program

was offered by at least six institutions. For our present discussion,

we have chosen to focus on 10 institutions who trained students wishing

to become machinists. The Machine Work program serves to illustrate the

process of predictor selection and that of Bayesian m group regression.

The predictors considered consisted of the seven ability scales of

the Career Planning Profile (CPP Form F).

1. Mechanical Reasoning

2. Nonverbal Reasoning



3. Clerical Skills

4. Numerical Computation

5. Mathematical Usage

6. Space Relations

7. Reading Skills

3



Explanation of the Model

The model proposed by the Bayesian method As identical at the

beginning to the classical linear model:

Y = 'CiB
i
+ ei i = 1, m (1)

where:

4

Y
i

is the n
i
-dimensional column vector of freshman grade-point

averages at the i-th college.

X is a (I. + 1) x n
i
matrix deriving from R. ability assessments made

on n. individuals.
1

B is a (t + 1)-dimensional column vector of weights

e
i

is a n
i
-dimensional column vector of error components which are

normally distributed with a certain residual variance.

The Bavesian model deviates radically, however, in its assumptions

regarding the vector Bi . Instead of assuming that each Bs, is a fixed (but

unknown) point in Euclidean space, we assert a probability distribution

from which we assume the Bi to be randomly sampled. This assumption can

be justified in a Bayesian context by the De Finetti, Hewitt, Savage

theorem when our beliefs about the regressions, apriori, are symmetric

(exchangeable); that is, our feelings about any one in no way differ from

those about any other. In this particular case, the Bi are assumed to

behave as a raAom sample from a multivariate normal distribution. The

model is then complete when we express our beliefs about the parameters

in the distribution of the Bi . A full discussion of the model and of the

assumptions regarding distributions on parameters is contained in Novick,

Jackson, Thayer, and Cole (in press).
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The Bayesian method refers to the assumptions regarding the parameters

as prior information. After collecting data, we perform certain mathematical

operations to fuse the data and the prior information. If we wish to

assign little weight to the prior information, we can do so, and the

choice of an appropriately vague prior will be reflected in the fact

that the posterior distribution will be based primarily upon present sample

information. The form of the prior will typically be chosen to

facilitate the integrations or mathematical operations; the practitioner

must, as usual, decide whether or not mathematical convenience provides him

with an accurate statement of the relationships among his data.

Lindley (1970) has obtained the posterior Bayes density of the

regression weights and the residual variances 0 . The joint modal value

of this posterior density can be obtained as the solution of 2m linear

equations of the form:

i 1
(Y X.) 9

i

,

(X X')
--1

1

(v' + m - PI)Ev'E + (p - pd]-1 = 9' (2)

- (n + 2)
-1

(Y'Y 20.16'(( Y ) +
i
1B!(X.XI)N

1

m + 1 1

m -1
4) (0 + K)

for i = 2, ..., m

where

, (3)
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K m a small positive constant to be specified.

v* = degrees of freedom constant.

= population covariance matrix for the Si .
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The first set of matrix equations (2) is solved by inserting the

starting values and approximating the actual equation with a linear equation;

the new values are reinserted to stabilize the solution temporarily. An

analogous operation is performed with (3), althe.Igh here we are dealing with

a single scalar (pi . The procedure described above constitutes a single

cycle. Normally, 50 cycles suffice for convergence if it is going to occur

(at least to the degree of accuracy that interests us). Possible reasons

for nonconvergence will be discussed later. The larger the number of

predictors, the greater the number of cycles required. Using three

predictors for 3C institutions, which represents the maximum number of

institutions for which the program is currently dimensioned, fewer than

50 cycles were actually needed.

It is possible to infer from the form of the equations the direction

that certain Bayesian analyses will take. Extremely large diagonal entries

in the E matrix reflect heterogeneity among institutions; this will result

in estimates of B. that are close to the least-squares estimate
-1

e = (X X')-1 X y i - 1, m . (4)

Conversely, small diagonal entries in E will cause the estimates for those

variates to regress immediately to the average weight across institutions.

Moreover, the amount of movement of Bi from the least-squares starting point

will depend upon the difference between Bi and 8* with outliers being

regressed a greater distance than values close to the average value B* .

Similarly, as sample information accumulates for a given institution

(assuming m fixed), the growth of the XiX1 and Xiyi arrays, relative to the

other terms in (2), causes the.Bayesian estimate to be close to the least-

squares estimate. If we have comparatively little information on any given



et0

institution but m is of respectable magnitude, the effect is to regress

estimates for small institutions toward the average estimate across

institutions. Finally, observe that if sample sizes increase dramatically

and if the least-squares estimate Bi is substituted for N., then the

residual variance estimator 0
i
approaches the classical estimate.



There are five distinct phases of the Bayesian analysis:

1. Formation of sum of cross-products (SCP) matrix.

2. Selection of variables.

3. Production of cards with SCP matrix in required form

and using only the selected variables.

4. BPREP program to compute "ideal point" and variance

estimates for parameter distributions.

5. Bayesian m group regression (BAYREG) program.

Phases 1 and 3 are basically data processing operations requiring some

attention to the details of the model. Phase 2 involves a resource

person's talents. Phase 4 is a preparatory step designed to reduce the

computing time required for Phase 5 and to transform the data so that the

assumptions of the model are more nearly satisfied.

We will now discuss these operations in greater detail.

1. The SCP matrix will be a symmetric array containing the sample size

of the institution, the sums of the predictors and the dependent variable,

and the sums of cross-products of the predictors and the dependent variable.

If predictors are involved, the SCP matrix will be of order (t + 2). For

example; for

appear as

SCP =

two predictors, the order will be four, and the matrix

n
i

Ex
ilj

Ex
i2j

E .

Yij

Ex
2

Exiij
ilj

Exiljxi2.1 Ex
ilj

yij

Ex
i2j

Ex
ilj

x
i2j

Ex
2

i2j
Exi2iyij

2
Eyij Ex

ilj
y
ij Ex12jyij

Eyij

will

(5)

where the summation is over the n
i

students in the i-th school.

1
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Ten institutions offered vocational training for machinists; thus, 10 SCP

matrices were created, one for each institution. These matrices collectively

summarize all information required for the statistical part of the Bayesian

analyses.

Students of matrix theory will recognize that the SCP matrix can be

written in partitioned

SCP =

form as

111 l'Xi

X1 X
1- i-X i

3.l'y yy
i ix'--i

l'y
i

X v
-it i

Yi
- i

(6)

where 1 designates a column vector containing n4 elements each being unity.

In the application being discussed, seven predictor variables gave

rise to a SCP matrix of order nine. Each SCP matrix (one for each college)

was then stored on disk file. One advantage of this procedure is that we

quickly summarized the data for all future analyses involving these variables

and did not need to look at the individual student records again. Another

advantage is that by using isk files, we could utilize interactive computer

systems. Twenty-two vocat!onal-technical programs were analyzed in all.

2. We were then ready for the selection of variables. First, the resource

person was consulted in advance to avoid unnecessary analyses. For example,

we would not ordinarily use Mechanical Reasoning to predict social work grades

because that skill has no face validity here. However, we might use Numerical

Computation if it happened that this skill was necessary to achieve in core

courses taken by social work majors.

As a general rule, we used one, two, or at most three predictor

variables. Inclusion of more predictors will result in substantial error
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variation being entered into the prediction. As a rule of thumb, one can

remember that for any desired degree of accuracy, an f-fold increase in the

number of variables necessitates as f-fr .se in the number of

observations. The disadvantage of using too many predictors ,:an be

highlighted by the appearance of negative partial regression weights

where theory and common sense suggest that there should be none.

A total of only 163 observations spread over 10 colleges was available

for the Machine Work program. We should, therefore, choose at most two

variables. Consultation with the resource person experienced in the

CPP Assessment suggested that the four most likely candidates for predictors

were Mechanical Reasoning, Numerical Computation, Space Relations, and Reading

Skills. Table 1 reports the results of four variable combinations arranged

in the order that the analyses were performed. The least-squares regression

slopes are presented, but the intercepts are excJded as they are irrelevant

to the problem of predictor selection. The standard deviations of the

predictors are similar, so that it is reasonable to study regression weights

in place of partial correlations.

The first analysis used Mechanical Reasoning, Numerical Computation, and

Space Relations. The Mechanical Reasoning weights fluctuate greatly from one

institution to another, but the average weight of .025 is substantial.

Similarly, Numerical Computation contributes effectively. Space Relations,

however, does noL appear to be an effective predictor; if we were to perform

Bayesian regression analysis this set of variables, the Space

Relations weights would be close to zero.

Logically, the next step was to substitute Reading Skills for Space

Relations. Comparing the verage weights, we observe that Numerical



Analysis 1:

Analysis 2:

Table 1

Least-Squares Weights for Different Variable

Combinations for Machine Work Students

School N Mechanical Numerical Space Relations

1 12 .088 .035 -.058

2 14 -.037 .077 -.031

3 24 -.012 .044 -.001

4 10 .037 .070 -.019

5 12 .027 .065 -.019

6 17 .075 .026 -.002

7 27 .006 .017 .030

8 19 .072 .017 -.003

9 11 .002 .106 -.035

10 17 -.009 .049 -.002

Average Weight .023 .051 -.014

School N Mechanical Numerical Reading

1 12 -.018 .021 .074

2 14 -.067 .081 .031

3 24 -.011

4 10 .030 .055 .002

5 12 .022

6 17 .071 .026 .004

7 27 .003 .005 .040

8 19 .075

9 11 -.026 .091 .021

10 17 -.009 .055 -.015

Average Weight .007 .046 .014



Analysis

Analysis 4:

School N Numerical Reading

1 12 .011 .065

2 14 .054 .007

3 24 .041 -.010

4 10 .063 .016

5 12 .069 .002

6 17 .036 .027

7 27 .004 .041

8 19 .016 .015

9 11 .089 .010

10 17 .051 -.015

Average Weight .043 .016

School N Mechanical Numerical

1 12 .050 .007

2 14 -.060 .083

3 24 -.013 .043

4 10 .031 .056

5 12 .020 .057

6 17 .073 .026

7 27 .018 .019

8 19 .069 .018

9 11 -.011 .091

10 17 -.009 .048

Average Weight .017 .045
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Computation is again the strongest predictor. However, the presence of a

,large number of negative weights on Mechanical Reasoning and Reading Skills

leads us to reject the use of these two predictors together.

Analyses 3 and 4 attempt to assess whether we should retain Mechanical

Reasoning or Reading Skills as the second predictor (in addition to Numerical

Computation). Examination of the average weights suggests that Mechanical

Reasoning and Numerical Computation should be used as predictors though, with

samples of the present size, that judgment cannot be at all firm.

For an institution enrolling a very large number of Machine Work students,

the final Bayesian prediction equation would be close to the least-squares

solution. On the other hand, if an institution has very few students, the

weights would be close to the generalized weight equation (GWE) which is

roughly the average of the least-squares regression weights across colleges.

For schools with modest. to large numbers of students in this type of program,

a compromise solution between these extremes is automatically provided by

the Bayesian analysis. The nature of the compromise reflects the amount of

information tilable from that particular institution and from the other

institutions.

Three ih.portant points should be made with respect to the GWE:

a) Extreme values (outliers) are regressed more toward the GWE

than values close to the GWE.

b) Weights for institutions providing small samples will be

regressed more toward the GWE than those for large insti-

tutions. This reflects the fact that we place more confi-

dence in estimates computed from a large sample.

c) The GWE is provided as part of the final Bayesian m group

analysis. This initial calculation of the average

regression weights is intended primarily to aid in selection
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of variables. One benefit is that it is usually possible

to avoid the occurrence of negative weights in the final

solution.

3. Once selection of variables has been completed, the SCP matrices were

transferred from disk file to cards. Before transfer, however, rows and

columns containing the predictors that were no longer of interest were

deleted.

By this stage, the sheer quantity of cards was no longer a major

consideration. Moreover, by using card input in further analysis, it was

possible to combine programs where appropr'.ate, as well as delete institu-

tions for some programs. For example, a few institutions continued to

exhibit negative weights and very low correlations even after m group

regression had been completed. 74detion of these schools had only a slight

influence on the GWE.

4. The BPREP program performs several vital functions in preparation for

the final run. The most important function is the provision of starting

points. Names have been coined for these sets of starting points: they are

called least-squares and classical Model II estimates. The classical Model II

estimates represent an educated guess as to what the least-squares estimates

will look like after Bayesian m group regression has been completed. Roughly,

they are some simple weighted averages of the individual regressions with

the generalized regressions. These are discussed in detail by Jackson (1971).

BPREP also estimates the variability of the parameters--a necessary

procedure in Bayesian prediction. If the underlying parameters vary little

from one institution to the next, we tend to estimate the same quantity for

each institution. Since unrealistically small, positive, or even

negative variance estimates can arise, a lower bound can be set to avoid

nonsensical results. Some care is needed here. In some applications.
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these variances are really zero or almost zero, and taking too large values

for the T 's can result in one getting a suboptimum solution if the amount

of data is small.

Another function of BPREP is to calculate the "ideal point" at

which the predictors should be centered. This point arises from theoretical

considerations discussed in Novick, Jackson, Thayer, and Cole (in press).

For a single predictor scaled to the ideal point, the slope and intercept

parameters are statistically independent, and hence, uncorrelated. The

purpose here is to obtain a scale of measurement such that the off-diagonal

elements of E can be presumed to be very nearly zero.

5. The final step in the procedure involves combining the SCP matrix

and the output from BPREP to conduct Bayesian m group regression (BAYREG).

This computer program is a relatively sophisticated program designed to

solve the simultaneous equations described above. Although the Lindley

equations are nonlinear, it is possible to approximate the nonlinear terms

using initial estimates of the unknowns. As the system begins to converge,

the approximates become more exact.

The principle method of solution is the Crout factoriz.' i method.

This numerical analysis technique is a modification of the Gauss reduction

method and involves the reduction of a linear system to a triangular matrix,

followed by successive substitution of each unknown to obtain a solution.

A full discussion of this method is to be found in Fox (1964).

Other subroutines in the BAYREG program compute geometric and harmonic

means, invert matrices, and compute the inner-dot product of two vectors.

Output includes printing of the least-squares and classical Model II starting

points as well as the Bavesian solutions resulting from the use of these starting

points. When the Bayesian solutions agree for both sets of starting points,
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we have some assurance that the solution does not depend upon the starting

point. Some possible situations which produce lack of agreement are

discussed in the next section. In the present investigation, the numerical

methods produced slopes which agreed in the first five digits (of which

the first three digits were judged significant).

Table 2 reports the least squares and Bayesian estimates for the

Machine Work program. For each kind of estimate, we list the number enrolled,

the intercept, the slopes for predictors 1 and 4, the estimate of the

multiple correlation coefficient, and the residual variance estimate.

In addition, we give the generalized weight equation for predicting grades

in a Machine Work program at an institution on which we have no information.

Note that the generalized weights for 6
1
and B4 are close to the average

least-square values reported for Mechanical Reasoning and Numerical

Computation reported in Table 1.

The slopes for Numerical Computation were regressed toward the

generalized weight for this predictor to a greater extent than the slopes

for Mechanical Reasoning. This was due to the fact that the variance

estimate (tau beta) for the former slope parameter was smaller. As a

result, the estimates for B
1
do not always strictly move in the direction

of the generalized vqight. We emphasize, however, that none of the Bayesian

slope estimates are negative or even close to zero. This strongly suggests

that there are true differences in the regressions across the groups and

further suggests that an overall pooling method would be suboptimal.

The estimates of the multiple R allow an interesting comparison to

be made. The least-squares multiple Rs fluctuate a good deal and almost

certainly tend to overestimate the true degree of association. The median

of these values is .6340.



Table 2

Least-Squares and Bayesian Estimates for the Machine Work Program

Least-Squares
Estimates

Bayesian
Estimates

School
13o il 84

R ci)

1 12 .017 .050 .007 .4749 1.0706

2 14 1.994 -.060 .083 .7609 .3728

3 24 .666 -.013 .043 .6175 .3130

4 10 -1.283 .031 .056 .8524 .4256

5 12 -1.677 .020 .057 .5727 .3833

6 17 -2.690 .073 .026 .7362 .1966

7 27 .801 .018 .019 .3323 .4396

8 19 -1.938 .069 .017 .6505 .4784

9 11 -1.951 -.011 .091 .6695 .7053

10 17 .492 -.009 .048 .4676 .8964

School N 6
o 81 $4

i ;

1 12 - .173 .023 .035 .5900 .3855

2 14 .613 .005 .039 .5931 .3822

3 24 .139 .004 .038 .5925 .3791

4 10 - .573 .032 .036 .5964 .3810

5 12 - .703 .021 .038 .5941 .3803

6 17 - .886 .033 .035 .5954 .3785

7 27 - .089 .021 .033 .5906 .3817

8 19 -1.444 .043 .033 .5931 .3823

9 11 - .307 .010 .040 .5920 .3835

10 17 .067 .006 .039 .5891 .3862

GWE 163 - .336 .020 .037 .3820
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The Bayesian estimates of R, however, tend to characterize the program

rather than the individual school. Bayesian estimates are computed from

the formula

A = (1 4-- )1/2

To

where 0 = residual variance estimate obtained from m group regression

with 2, predictors,

0
o
= residual variance estimate obtained by using no predictors.

Finally, the Bayesian estimates of the residual variance tend to

cluster. Apparently, the true residual variances are nearly equal for

these 10 institutions. The median of the Bayesian estimates is .5928.
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Special Technical Problems

1. One important issue is the problem of selection of elements of E,

the covariance of the intercept and slope parameters for a given program.

These parameters are assumed to have a aultivariate normal distribution

with mean p and covariance matrix E . If the parameters enjoy independent

distributions, then E will be diagonal.

If the predictors have been scaled to their ideal points, the intercept

parameter will be independent of the slope parameters. The ideal point

will, in general, be close to the mean of the predictor values. In lieu of

further information, it is convenient to assume that E is diagonal. Jackson,

Novick, and Thayer (1971) demonstrate that moderate departures from this

assumption are unimportant.

Once the decision has been made to make E a diagonal matrix, the

question arises of what to place in the diagonal entries. The Model II

estimates of the variances of the slopes and of the intercept from BPREP

are given by the following formulas developed by Jackson, Novick, and

Thayer (1971).

where

T = - 1)
-1

E(B - B)
2

m
-1

EN) /S
2
(xi) 1 (7)

E(a - a.)
2

T
a

=
m - 1

dpi = (n1 2) 1E(Yii ai 8ixi1) '

S2(xi) = E(x
ij

-
)2

(8)
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ai yi. Bixi.

2
6

1
(1 - m )T

6
+ B.P) /S (x )]

B

(1 T M-1);(3 [()i/s
2
(xi)]

(The dot notation indicates an averaging over the respective quantities.)

We refer to these quantities subsequently as tau beta and tau alpha.

Note that what is being done here is not strictly Bayesian, but experience

suggests that reasonable results will be forthcoming provided one does

not ignore real prior information.

It is well known that classical Model II estimates of variance components

can be negative. Bayesian m group regression required that a realistic

positive estimate be furnished in every case. Since it is unbelievable

that the variances are negative or zero, it is appropriate to find some

value below which we assign little prior probability for the tau betas.

The choice of a default value (or lower bound) for tau beta was

made in the following fashion. The investigators believed from preliminary

analyses that the domain of the parameter in question was from 0.0 to

0.05. Assume temporarily that the parameter happens to be distributed

c
2

uniformly over this interval. The variance is then given by IT where

c denotes the interval length. We, therefore, compute

2
.00)2

approximate T(B) = C - "" .I
12 12

= 2(10)-4

As a result of this calculation, we resolve to set 10
-4

as a lower bound

of the variance.



Another investigator may decide that a slightly different default

value is appropriate. The important point, however, is that we prevent

estimates of tau beta from deviating by more than an order of magnitude

from some reasonable norm. There is not much difference between 10
-4

and -'1(10)
-4

, but there is a great deal of difference between 10
4

and

10-7 . Again, it would be folly to impose a high apriori value for T

when the basic situation suggests that this value may be near zero.

The particular method used here will be satisfactory only if we are

reasonably certain, apriori, that differences actually exist.

Another difficulty derives from choosing too small a value for tau

beta. In this case, the estimates will totally regress to the average

value of the starting points; this abnormality conforms to the (possibly)

erroneous but possibly correct) assumption that the institutions are

identical with respect to this particular regression weight. Moreover,

other regression weights will be affected in a multipredictor problem

if one or more predictors are totally regressed. Thus, we should avoid

setting prior estimates of different tau betas that differ by more than

an order of magnitude from each other.

2. Several reasons exist for lack of convergence in the Bayesian m

group regression analysis. One possibility is that the posterior

distribution is bimodal. In this case, of course, we do not obtain a

unique modal estimate by differentiating the posterior density and setting

the derivative qual to zero. Bimodality may occur in cases in which

the sample information is not sufficiently conclusive to overwhelm the mode

furnished by the prior density.

In order to certify convergence, the Lindley examinations are

routinely solved using both the least-squares and classical Model II
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regression weights as starting values. This gives some protection against

bimodality resulting from the existence of outliers.

The least-squares starting point is, incidentally, to be preferred in

the unlikely event that we were predicting grades for m identical colleges,

each obeying the model

Y = X'S + e i = 1, m (Q)

Examination of the Lindley equations reveals that use of the least-

squares starting points result in attaining the unweighted average of the

least-squares estimates at the end of the first cycle. If the diagonal

elements of E are small (i.e., less than 10
6 ), the system will stabilize

at that point for each of the m institutions. Interestingly enough, this

beta vector is the least-squares estimator obtained by pooling the information

for all m institutions.

Experience has shown that indiscriminate running of more cycles

is not a panacea for lack of convergence. In the initial stages of

analysis, an investigator may wish to run only 10 cycles; it may be

that this is sufficient to guarantee convergence. We do not do this

routinely simply because the added cost for computation of the additional

cycles is small compared with the bother and cost of rerunning even a

small percentage of the analyses. Printing the logarithm of the posterior

density function at the end of each cycle is a good means of gauging

progress in convergence. Ordinarily, the logarithm will increase

dramatically for several iterations until it reaches its classical Model II

level.

3. It may be necessary on occasion to delete an institution from the

m group regression analysis. Such exclusion should be done only for clearly

defined reasons. In this set of analyses, several situations required a

decision: First, the schools in the sample had been, in effect,
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preselected by their cooperativeness in agreeing to be tested and following

established test procedures. Second, the institutions were required to

have a certain minimum number of students. For most programs, we stipulated

10 students as the minimum number. In certain programs, however, we had

surplus colleges; thus, we increased the required figure to 15 or 20.

Th'-d, did the results from the Bayesian m group regression analysis

ind*.cate that the college was an outlier? If the partial regression weights

were seriously negative for a large school, we concluded that that school

was seriously atypical and excluded it. Fortunately this circumstance

did not occur frequently.

4. A resource person who is knowledgeable in the substantive area

being investigated is in a position to improve the prediction system

markedly. For example, suppose that the preliminary statistical analysis

causes us to be indifferent in choosing between Numerical Computation and

Mathematical Usage. The high correlation between the two tests inclines

us to be skeptical about choosing both predictors, and so we are forced

to choose between them. The resource person may indicate that one predictor

or the other is more appropriate in this case; moreover, a predictor with

higher face validity may perform better in cross-validation on a subsequent

year's data.

In addition, the advice of the resource person may reduce the number

of preliminary analysis required. Once we have established an on-going

prediction program, it is not desirable to reconsider all possible subsets

of a set of predictors; selectivity is not only more economical but also

indicates presence of rational thought.
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Running a Bayesian m Group Analysis

The data decks for BPREP and for BAYREG are quite similar, since

the data deck for BPREP is a subset of the deck for BAYREG. Accordingly,

the data deck for BAYREG is described below:

1. Identification Card
Col. 1-80

2. Parameter Card

(10A8)
Identification for data

(314, 3F5.0, 312)

Col. 1-4 Number of schools (maximum of 30)

5-8 NV Number of predictors ( maximum of 9)

9-12 NCY Number of cycles (usually 50-200)

13-17 CKAPPA Small constant (.001)

18-22 DCON A = DCON.: (normally DCON = 3)

23-27 PHIMIN Minimum 4 allowed (can be arbitrarily
small)

28-29 IBRAN 0 - T
BK

's from BPREP used (typical)

1 - All T
aK

's set to some prespecified

value

2 - Some T
aK

's set to .001

30-31 ISP 1 Use least square and classical
Model II starting values (typical)

2 - Use Bayesian starting values
(read in)

32-33 IFN 0 - Log of height of function not
printed

1 - Print log of height (typical)

3. Predictor Card
Col. 1-8

9-16

(10A8)

Name of 1st predictor
" " 2nd

4. Scaling Card for Original Scaling (10F8.0)

Points

Col. 1-8 Value to which predictor 1 has been scaled

9-16 Value to which predictor 2 has been scaled

Value to which criterion has been scaled



5. Scaling Card for Ideal Points
Col. 1-8

9-16

23

(10F8.0)
Ideal scaling point for predictor 1

u u 11 u predictor 2

Value criterion has been scaled to

6. Format Card for SCP Matrix (10A8)

The cross products must be read in floating point form.

7. SCP Matrix Cards

For each group, there must be an upper triangular cross-product

matrix punched according to the format specified by card 6. The cross-

product matrices have the following form for the case of two predictors:

Row 1

Row 2

Row 3

Row 4

=MEP

n
i

Ex
2

ilj

Ex
2

i2j

Ey
2

Ex
ilj

Ex
ilj

x
i2j

Ex
i2j

y
ij

Ex
i2j

Ex
ilj

y
ij

Eyii

Comparison of this matrix with formula (5) reveals that rows 2, 3, and 4

have been translated to the left. These cross products are scaled to the

values given by card 4.

8. Coefficient card (5D16.8)

For each group, there must be a coefficient vector and a vector

for the squared error of beta. The coefficient vector consists of

(cpi, ai, 811., ..., B-zi) The Cli is for the data coded to approximate

means given by item 3. The squared error of beta vector starts on a new

card; it consists of IS
2
(Bli), **, S20 M.

U.
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9. Population Variance Estimates Card (5D16.8)

The estimates for population variances are the components of

6
a' 01'

If IBRAN (card 2, columns 28-29) is 0, then

to and
tih

are values computed by BPREP program; if some of the original

estimates were negative, then these estimates will be set equal to 10
-3

If IBRAN equals 1, then all TBh are set to some prespecified value.

The data deck for BPREP differs from that for BAYREG in the following

ways. The scaling card for ideal points is not included, nor are the

coefficient cards or the population statistics (all these cards result

from the BPREP analysis). Summarizing: The respective items in the

data decks are listed below.
BPREP BAYREG

1. Identification Card Yes Yes

2. Parameter Card Yes Yes

3. Predictor Card Yes Yes

4. Scaling Card for Original Scaling Points Yes Yes

5. Scaling Card for Ideal Points No Yes

6. Format Card for SCP Matrix Yes Yes

1. SCP Matrix Cards Yes Yes

8. Coefficient Cards No Yes

9. Population Variance Estimates Card No Yes

Items 8 and 9 are provided as part of the punched output from

BPREP. Item 5, however, must be punched by the investigator and inserted

in the data deck (the necessary information regarding the ideal scaling

points is contained in the printed output from BPREP).
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Several bits of information required in items 1-9 can be placed

in the context of Bayesian methodology. The constant CKAPPA bounds the

posterior density away from the point at which the residual variances

are equal. The value DCON is a factor which inflates the estimates of

tau beta by multiplication; thus, it helps ensure that these estimates

will not be too small. PHIMIN places a lower bound on the residual

variance estimate for an given group.

Often it is desirable to set the value of IFN to one, since the

investigator will then be able to observe the computer's search for

the mode of the posterior distribution. (The reason that the log of

the height function is printed rather than the actual height is that

storage of the actual height might cause problems within the computer

when the height is very small.) As the iteration process converges, the

log of the height function will increase to the modal value and then

exhibit very small fluctuations about this value.

The scaling values for the original scaling points (item 4) may be all

zero (indicating lack of scaling) if desired; however, if the investigator

uses variables with large means, he may wish to scale the variables

to their approximate means before producing the SCP matrix. To do this,

he simply subtracts a constant from each individual's score. Such a

procedure will tend to reduce the magnitude of the numbers contained in the

SCP matrix and may decrease the chances for rounding errors in a problem

involving large sample sizes. A different scaling point, of course, may

be selected for each variable.

The original scaling points should be distinguished from the ideal

scaling points. The ideal scaling points are not a mere matter of
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convenience; they are intrinsic to the Bayesian method being discussed.

Also, the ideal points apply only to the predictor variables, whereas,

the original scaling points are relevant to the predictors and to the

criterion.

We punch the symmetric SCP matrix in a special upper-triangular

form. The first row contains the full number of (2. + 2) elements.

If necessary, the punching continues on subsequent cards according to

the format card. The second row must begin on a new card but omits

the first element in order to begin with the diagonal element in the

second row; thus, the punched form of the second row has only (2. + 1)

elements. Continuing in this fashion, we find that the last row, when

punched, contains only the diagonal (last) element.
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