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MODELS FOR PREDICTING GRASS ENROLLMENTS

AT THE UNIVERSITY OF CALIFORNIA

I. INTRODUCTION

1. Background

The purpose of this report is to discuss and compare two mathematical

models for predicting student enrollments at the University of California.

One has already been proposed in the scientific literature and w will

refer to it as the Gani-Young-Almond model (GYA), while the second has

been used by the State of California since 1963 to forecast student

enrollments; we will refer to the latter as the Grade Progression Ratio

method (GPR).

Enrollment forecasts are required for different purposes. At the

departmental level, for example, they are used to predict faculty work-

loads and make faculty, classroom and advising assignments. At the

statewide level forecasts are used for overall budget and planning

purposes. In this report we are primarily concerned with forecasts of

the latter type in the absence of quota restrictions on total enrollments.

The effect of such quotas will be studied at a later time.

Forecasts differ not only in the degree of fineness to which they

predict various categories of students, but they often refer to different

periods of time. Predictions of gross enrollments may refer to an upper

division enrollment during an academic year, while the forecasts of

departmental majors may only be useful if they refer to class enrollments

at the beginning of eaLh quarter. Besides the usual statistical question



-2-

of the reliability of any forecast, an item of major importance is the

degree to which numbers obtained by aggregating grades and time oeriods

in one model is consistent with numbers obtained from a separate model

that predicts gross enrollment figures in an unaggregated form.

A second item of importance is the clear distinction between the

variables being predicted and those identified as policy variables. As

we will point out in later sections of this report, this distinction is

particularly important in periods where enrollment quotas are imposed

and one attempts to find admission, redirection and student reclassifi-

cation policies that maintain these quotas or other restrictions imoosed

by a university administration.

The specific problems that we address in this report are the

prediction of gross enrollments, i.e., freshmen, sophomores, etc., for

a particular campus or the University as a whole. Although we restrict

our experimental data to undergraduates, the discussion and conclusions

are probably appropriate to graduate levels as well.

Figure 1 is a plot of the actual numbers and forecasts of Berkeley

campus enrollments in the period 1963-1967. The solid line refers to

actual enrollments, the dashed lines to forecasts made before the

beginning of Fall 1963 and Fall 1964 by the Department of Finance of the

State of California.
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11. PiRnIIMENT inIZFCASTS

I. Iwo Mathemotical Models

Denote by Xi(t) the number of enrolled students in grade i at the

beginning of time period t. The subscript index might, for example,

refer to sophomores, and the parameter t might refer to the beginning of

the fall quarter 1967. Denote by Y.:(t) the new admissions to grade i

during the tth time period. It is the purpose of enrollment forecast

models to make a prediction or estimate of Xi(t+1) on the basis of cer-

tain historical information and past trends on enrollment and admission

data.

One model that has evoked considerable interest assumes that the

fraction which leave grade i and qo to (made j is a fraction
Pi3

such

that

X.(t+1) z X.(t) p.. + Y.(t+1)
i=1 1J 3

m
where it is understood that for some i, E p" < 1. The Is may

j=1
Pij

themselves be time dependent.

(1)

Gani (1963) used such a model for predicting gross enrollments in

the Australian university system. His statistical data seems to

indicate that it is reasonable to assume that transitions between

grades have a fixed probability over time for time periods of the order

of five years. In 1965 Gani adopted a revised model for use at

Michigan State University which also took into account (i) the number
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of credits completed by the student, and (ii) the possibility of trans-

fers between majors.

The GYA model has the important feature that cnAributions to the

enrollments in one grade are identified by their origins (Prior grades,

return to the same grade, new admissions, etc.) and are added to give a

total enrollment figure. Secondly, it has the appealing feature that

the fractions pij can be interpreted as transition probabilities and

thus allows one to adopt useful results from the theory of Markov Chains

even though the process itself may not be Markovian. Th',Ydly, the

conditional short-term forecasts given today's enrollments have an

intuitively correct structure, and finally, the method has some experi-

mental evidence to support it.

A second model that has been used by the State of California

Department of Finance for predicting gross campus enrollments at the

University of California is called the Grade Progression Ratio methok".

Although there are no published reports to document its mathematical,"

structure, the method is based on defining progression ratios all and

ai,j+1 for the j
th

grade and then using these ratios to predict enroll-

ments Z .(t) for future periods by means of the system of first-order

difference equations,

Z1(t+1) = all Z1(t) + Y1(t)

(t+1) = a.3.

,3
.

+1
Z.(t) +

Yj+1
(t+1)

all p11 is the fraction of freshmen who return to that grade in the

next period.

(2)
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The ratio ai,j4.1 has the interpretation that it is the fraction of

continuing students in grade j+1 (total minus new admissions) relative

to total enrollments of a lower grade at the beginning of a previous

period. In many of the applications that we have seen these coeffi-

zients also vary with time.

Throughout the remainder of this report we will make the further

assumption that student flows between grades are only of three types:

(i) to the same grade, (ii) to the next higher grade, or (iii) by

departure from the university system. In this case Equation (1) can

be specialized to yield the result

X3. (t+1) = X.(t) .,.1. + X.+1(t) pj+1,i+1 + Yi+1(t+1)
3

o33+1 (3)

In other words, enrollees in grade (j+1) at the beginning of time

period (t+1) come from grade j or grade .j +1 in the previous period or

represent new admissions. In the absence of quota restrictions on new

admissions or total class size, Equation (3) is assumed to represent

the underlying stochastic process and the problem is reduced to one of

(a) estimating pi,j and pj,j4.1 terms

(b) estimating Yi(t) terms

(c) recursively computing forecasts and estimates of fluctuations

from Equation (3)

(d) establishing time periods which are natural to the forecasting

process
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(e) making experimental comparisons of fGrecast and real data.
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2. One-Period Forecasts

In this section we consider the distribution of returning and new

students given today's enrollments. Given the value Xi(t) for the

enrollments in grade j at time t, the number that return to the same

grade, that advance to the next higher grade or that drop out in the

succeeding time period are multinomially distributed. Tc state,

we denote by Xj,i the random number that do ilot advance, by Xj,j+1 the

number that advance from grade j to j+1 in one time period and by Xi

the number that drop out. The probability that there are x returning

to grade j, y advancing and z leaving is

Pr{X. = x X, j,j1.1 = y, Xj,0 = z I Xj = n}.

(4)

n! ,Ix , y z

x!y!z! (Pj 9j) (rj)

p.
J

+ q.
J
+ r.

3
= 1

x +y+z= n

where, to simplify notation, we have deleted the time parameter and

substituted pi for pm, gi for pi,j+1 and rj for the drop-oat

probability, 1 Pm Pj,j+1*

The probability distribution for the total number of continuing

students, i.e., those remaining in grade plus those advanced from a

lower grade, given the actual enrollments in the previous period is
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Pr(X. . + x. . k 1 X. ... m, X. = n13,j+1 3+1,j41 j j+1

k
ml n!. 7

i=0
i!(m - i)! (k - i)!(n - k - i)!

X i(1 - .)M-i (pj+1
Pj+1)

)k-i (1 n-k-i
NJ

(1

J ]

(5)

It follows from (5) or direct expectation arguments that the conditional

one-period expectations are

E[Xj+1 1 m, n] = mgj + npj+1 + E[Yj+1] (6)

where, once again, the time parameter is suppressed. With the further

assumption that Yj .'s are statistically independent of previous X.'s, the
3

conditional variance of enrollments in the next period is

Var [Xj+1 1 m, n] = myl - gi) + npj+1(1 - pi+1) + Var [Yi+1] (7)

given m students in grade j and n students in grade j+1.

The variance to mean ratio for one-period forecasts of continuinn

students given that there are m students in grade j, n in grade j+1 is

1 - Max (gj, pin) <
myl - gj) + npi4.1(1 - pj.4.1)

mqj + nI/j'l
(8)

< 1 - Min (gj, pj+1)

with the GYA model. This variance to mean ratio may be reduced or

increased by new admissions and transfer of students as is indicated
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mq.(1 qj .) + np.
+1 j

(1 - p.
+1

) + Var [Y
j+1

]
j

mqj + npj+1 + E[Yjil]
(9)

for next period enrollments. When new admissions can be forecast

exactly, Var = 0; the denominator of (9) is larger than (8) and

the variance to mean ratio of enrollments is considerably smaller than

the corresponding figure for continuing students. If the Cy process

is characterized by a sequence of independent Poisson variables, then

the ratio of (9) is larger than the ratio in (8).

Consider, for example, the case of sophomore enrollments in the

year 1961 at the Berkeley campus. When we assume that q-
1 p12 0.58,

P2 p22 = 0.23, m = 3843, n = 3445, the variance to mean ratio for

continuing students in 0.51. The number of new sophomore admissions in

1961 is 751 students. If this number were known with certainty, then

the variance to mean ratio of the one-period enrollment forecast is

reduced from 0.51 to 0.41. If, on the other hand, the new sophomore

admissions for fall 1960 are Poisson with Var [Y2] = E[Y2] = 751, then

the variance to mean ratio for the one-period forecast increases to the

value of 0.61. The usual method for reporting forecasts is to give a

figure for the mean plus or minus two standard deviations. In the first

case we would predict a figure of 3772 ± 79 students enrolled in the

sophomore class of 1961 while in the latter case we would obtain

3772 ± 96 students.



Since we are unable to find published accounts for the GPR model,

it is difficult to guess what the underlying stochastic process might

be for continuing students. It may be reasonable to assume that each

undergraduate at grade j > 2 leads to k = 0, 1, 2, 3, ... continuing

undergraduates at the next higher grade with probability distribution pk

having mean and variance

pi = X kpk;

' k

0.2 = E (k - 0)
2

pk .

3 k

Our data seems to suggest that for the transitions from grade j to

grade j+1

p = aJ. .

J ,J1

Using conditional expectation arguments and the assumption that each

student acts independently of all others, we obtain

and

E[Y
j+1

(t+1) 1 Y.(t) = m] = maJ.
,J+1

(10)

m 2
Var [Yi+1(t+1) 1 Yj(t) = m] = E gj = mai

2
. (12)

It is important to notice that with such a model the one-period expecta-

tions are unaffected by the number of enrollments, say n, in grade j+1

at time period t. Furthermore, the variance to mean ratio for continuing

students is independent of m as distinct from the results of (8) which
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dopond OH both m (Ind n. Those are (mine of thp rp,p,on,, why one might be

tompted to rely more hedvi 1 y on the GYA than on the GPR model.
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3. Admissions, Enrollments and Lonj Term Forecasts

If Equation (1) represents the underlying stochastic process, it is

possible to recursively compute expectations and variances of enrollments

in future periods. If we write (1) in matrix form,

X(t +l) = P X(t) + Y(t +l) (13)

we compute recursively on t to obtain

t
X(t +l) . Ptil vo) + E Pj Y(t -j +l)

j=0
(14)

It is well known that elements of higher powers of P decrease geometri-

cally with t; hence the initial enrollments represented by X(0) in the

matrix equation of (14) have vanishingly small effect on distant enroll-

ment forecasts. In the case of a university system and where few

students jump grades, the typical lifetime of an undergraduate student

is of the order of four or five years; thus the major contribution to

X(t +l) is due to new admissions in one, two or three years just prior to

the forecast date. Notice, for example, that the second power of P is

P
2=

2

Pll
0

2

P12(13111122) P22

0 0

0 0

2

pl2p23 P23(1322+1333) P33 0

20
P23P34 P34(1333+1344'

1

1 '44
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Since the magnitude of the typical grade advance probability at the

University of California lies between 1/2 and 3/5 while the return to

grade probability is less than or equal to 1/19, terms on the diagonal

of powers of P tend to become small rapidly in comparison with non-zero

terms below the diagonal and the advance of students through grades is

rapid in comparison to a typical management hierarchy where the diagonal

terms tend to be much larger.

The calculation of expected enrollments at the beginning of period

t is straightforward: we simply substitute E[X(t)] for X(t) and E[Y(t)]

for Y(t) in (13) or (14). To get some idea of the fluctuations that we

can expect, it is useful to compute the variances of X(t). To do this

we make use of the result that the unconditional variance of X(t +l) is

related to the conditional variance and expectation of X(t) by means of

the formula

Var [X(t +l)] = E[Var X(t+1) X(t)] + Var [E[X(t+1) I X(t)]] (15)

Considering enrollments in the freshman class we have from (14)

E[X1(1
)] p11 X1(0)

E[Y1(1)]

E[X1(2)] = p11
2

X1(0) + p11 E[Y1(1)] E[V1(2)]

E[X1(3)] = P113 X1(0) p112 E[Y1(1)] Pll E[Y1(2)] E[Y1(3)]

(16)
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where X1(0) is known and given. The variance of X1(1) is obtained from

Var [X1(1)
I
X1(0)] p11(1 p11) X1(0) + Var [Y1(1)]

E [X1(1) 1 X1(0)]
P11X1(°)

+ E [Y1(1)]

Since E [X1(0)] = X1(0) and Var [X1(0)] = Var CE plom = 0, the

unconditional variance of X
1
(1) is just equal to our earlier result in

Equation (7)

Var [X1(1)]
P11(1

P11) X1(0) + Var [Y1(1)] . (17a)

In the next period additional terms enter because

,Var [X1(2)
I
X1(1)]

P11(1 p11) X1(1) + Jar [Y1(2)]

E [X1(2) 1 X1(1
)]

P11X1(1) + E [Y1(2)]

and the sum of the expected value of the former and the variance of the

latter yields the result

Var [X1(2)]
P112(1 P11) X1(0) P113(1 P11) X1(0)

P11(1 P11) E [Y1(1)] P112 Var [Y1(1)] (17b)

+ Var [Y1(2)]

In this way one can recursively compute Var [Xj(t)]; efficient matrix

methods for computing them are described by Pollard (1967) and



Bartholomew (1967). For long term forecasts, the effect of fluctuations

due to the initial enrollments becomes small and the dominant terms are

due to variances in the new admissions of the immediately preceding years

and the variances due to uncertainty of continuing students.

.In making long term forecasts one of the two cases that usually

interestsuscorresporidstotheassumptionthatY.(t) are known exactly;

with such an assumption, fluctuations in enrollments are entirely due to

the random nature of attritions and uncertainty in a student's progress

once he has enrolled. A second case corresponds to Poisson adnissi,ns;

in this case enrollment fluctuations are due to the superposition of

random admissions with the random behavior of students once they are in

the system.

Pollard (1967) has shown that if the number of new admissions are

sequences of independent Poisson variables, then the students remaining

in grade k at the beginning of the next time period are also Poisson

distributed. Since the total enrollments in any grade are the sum over

all students who have entered in prior years plus new admissions, the

total number of enrollments in each grade are also Poisson distributed.

The usefulness of this result lies in the fact that the variance and

mean value of the Poisson distribution are equal and that it probably

represents a realistic estimate of the magnitude of fluctuations in new

admissions.
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4. Iho Grady Pro-royjon Ratio Method

To illustrate she mit'-smatical structure of the GPR forecasting

model we conside- crecast_ of the four undergraduate grades as obtained

from Equation (2):

Z
1
(t+1)

Z
2
(t+1)

Z
3
(t+1)

Z4(t +l)

a110 0 0

a
12

0 0 0

0 a-3 00

0 0 a
34

0

I Z (0
1

Z
2
(0

Z
3
(0

Z4(t)

+

Y
1
(t+1)

Y
2
(t+1)

Y
3
(t+1)

Y
4
(t+1)

In matrix notation,

Z(t+1) = AZ(t) + Y(t+1) (18)

The coefficient all = oll is the fraction of returning freshmen. All

other non-zero entries lie below the main diagonal and may be less than,

equal to or greater than one. By iteration one obtains the (t+1
)st

forecast in terms of the new admissions in prior periods and powers of A

t

Z(t +l) = At +l Z(0) + z, /kJ Y(t - j+1).
j=0

(19)

Since all = p11 < 1, it is possible to discuss the asymptotic character

of powers of A even though values for a
i,j4.1

may be greater than one.

In fact, Equation (19) is identical to the development of forecasts of

X.(t) in powers of P except that A is substituted for P and Z for X.
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!he dttference lies in the structure of A, its rank, and the fact thdt

it may not be oossiblo to neglect high powers of A. For example, the

second and third powers of A are given by:

A
2

A
3

=

=

a
11

2
0 0

a
12

a
11

0 0 0

a
23

a
lc

0 0 0

0 a
23

a
24

0 0

P..

11
3 0 0 0

a
12

a
11

2
0 0 0

a
23

a
12

a
11

0 0 0

a
23

a
34

a
12

0 0 0

and it is likely that the product a23a34a12 is large enough so that new

freshman admissions of earlier years may dominate all other terms in the

forecasts for seniors. For large t the first column entries of At are

all
t

al2all
t-1

a
23

a
12

a
11

t-2

a
23

a
34

a
12

a
11

t-3

while all other entries are zero. Hence for large t the typical con-

tribution to the forecast of grade j is due to a fraction of earlier

freshman enrollments.



-19-

Although we do not make any attempt to discuss the statistical

problem of estimating pij or aj,j4.1 terms, it has been common practice

by the State of California to estimate values for aj,14.1 on the basis

of recent observations of the random enrollment data, namely, to define

a time-dependent ratio

- Xj+1(t+1) Yj+1(t4-1)
a
i,j+1

(t+1)

X.(t)
(20)

where X and Y now refer to actual realizations of the enrollments.

Suppose that Equation (3) represents the underlying stochastic process;

then the enrollment in grade j+1 at time period t+2 is

(t+2) = .(t+1) p. . + X. (t+1) p. . + Y. (t+2) . (21)Xj+1 Xj
J,J+1 J+1 3+1,3+1 3+1

If, in making forecasts, we were to use Grade Progression Ratios gener-

ated by (3) and (20), then

X.(t) pJ. . + X (0
Pj+1 ,j+1a

J ,J+1
(t+1 ) - J ,J+1 j+1

X .(t )

(22)

X ..0(t)

Pj,j+1 + x(t) Pj+1,j+1

J

Generating the sequence of numbers obtained by substituting (22) into

Zj+1(t+2) . Zi(t+1) aj,i+1(t+1) + Yj+1(t+2) , (23)



yields the result

Zio(t+2) = X.(t+1) +
Pj,j+1

-20-

X
j+1

(t)
Yi4.1(t+2) (24)

which, though. similar to Equation (21), leads to substantially different

valueswhenenrollmentsX.(t) are time-dependent.

There are two obvious cases where the sequences generad by (24)

and (21) do, in fact, agree. If pj+1,j+1 terms vanish, then thi- only

contribution to Zi4.1(t+2) is due to continuing students from a lower hraJe

and new admissions. In this case the sequence {X .(t)f and {Z.(t)} are

identical.

Furthermore, if an equilibrium has been reached in the sense that

Y.(t) Y ; x.(t) X. independently of t

then the ratio in square brackets in (24) is one and we obtain the simpler

time-independent recursion

Xj
j

p . + Xjj p + y0+1 +i +i ,j+1
V. (25)

which agrees with (21) upon deletion of the time parameter t and substitu-

tion of .1.for XZj1
j+1 .
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III. NUMERICAL EXAMPLES AND COMPARISON OF FORECASTS

1. Berkeley Campus Forecasts, 1960-1966

Table I lists two forecasts and the actual observed enrollments of

undergraduate students on the Berkeley campus for the period 1962-1966.

The top entry in each cell is computed by the GYA model with the new

admission data shown in Table II.. It was assumed that the transition

probabilities for Fall to Spring and Spring to Fall semesters were those

given by the P1 (Fall to Spring) and P2 (Spring to Fall) matrices below:

P1

Fresh. Soph. Junior Senior

.9277 0 0 0

. 0005 .8612 0 0

0 .0313 .9089 0

0 0 .0047 .7937

. 0964 0 0 0

.6990 .1001 0 0
P
2

=

0 .7924 .1393 0

0 0 .7493 .2917

Entries in both of these matrices were estimated from Berkeley campus

student performance and attrition data that has been collected and

summarized by the Office of Institutional Research for the academic
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year 1961. The second entry in each :011 is calculated by the GPR

method using the ratios

all = 0.0970

a
12

= 0.7877

a
23

= 0.8766

a
34

= 0.9944

published by the State Department of Finance for the year 1960-1961.

Initial enrollment and admission data for the forecast period are the

same as those used in the GYA model. The third entry in each cell is

the actual observed student enrollment. In Table I an italicized

entry denotes which forecast is closer to the actual enrollment count.

We should point out that the interval between GPR forecasts was

one year (Fall semester to Fall semester), while the forecast period

for the GYA model was one semester; in Table I we only list the values

appropriate to the beginning of the Fall semester. This fact in com-

bination.with the intrinsically larger forecast variances of the GPR

model for ai,j+1 > 1 would seem to account for the discrepancies in

the junior year.

In applying data to these models we have used the following

convention: a new student is one coming to the U.C. Berkeley campus

for the first time; in other words, he has not been registered before.

A continuing student is one who has, with the exception of the summer

sessions, a record of continuous registrations. For example, a student
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-23=

registered in the Spring semester of 1963 is a continuing student if he

registers in Fall 1963. A returning student is a student who was once

registered at the campus but has left for one or more semesters.

In calculating the diagonal entries of P1 and P2 we divided the

number of continuing and returning students in one semester by enroll-

ments of the previous semester. Clearly, from the definitions given

above it would be Defier to relate returning students to enrollments of

a semester two or more periods in the past.
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