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Estimation of Latent Ability and Item Parameters

When There Are Omitted Responses

Abstract

Omitted items cannot properly be treated as wrong when estimating

ability and item parameters. A convenient method for utilizing the

information provided by omissions is presented. Some theoretical and

considerable empirical justification is adduced for the estimates obtained

by both old and new methods.



Estimation of Latent Ability and Item Parameters

When There Are Omitted Responses*

At Lhe time the likelihood equations for item characteristic curve

(icc) theory were written down [Lord, 1?53], there seemed to be three major

obstacles to practical applications:

1. Solution of the likelihood equations for data of real interest

did not seem practicable from a computational point of view

[Torgerson, 1958, p. 388].

2. Icc theory dealt with unspeeded tests, whereas almost all

standard tests are administered with a time limit th;;It

prevents some examinees from finishing.

3. Icc theory was first developed for dichotomous items.

Typical test answer sheets, however, carry at least three

distinct types of examinee response: correct response,

wrong response, no response ("omits"). These three types

of response often receive different scoring weights (for

example, 1, - , and 0, respectively), but even if

omitted responses are scored as wrong they can not rea-

sonably be treated as wrong in the likelihood equations.

Solution of equations. Numerical solutions to the likelihood equa-

tions have now successfully been obtained for large data sets [Lord, 1968;

Bock & Lieberman, 1970; Bock, 19721. Even the maximum likelihood estimate

of the parameter representing the icc lover asymptote, sometimes incor-

rectly called the chance level, can now be obtained by maximum likelihood

*Research reported in this paper has been supported by grant GB-32781X
from National Science Foundation.
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[Wingersky & LDrd, 19731 whenever there is enough data to determine this

part of the curve.

-Speededness. Time-limit tests are, for some examinees, partly a

measure of something called speed, which is quite distinct from the ability

measured by the power score that would be obtained if the test were adminis-

tered without time limit. Ice theory is not presently equipped to deal with

the speed dimension explicitly, but the theory can still be used to analyze

answer sheets obtained in timed test administrations. To do this requires

the assumption that examinees answer test questions in order. For each

examinee, the items following his last recorded response (this item is

called the last item attempted) are ignored throughout the estimation process.

(In practice, examinees answering less than a third of the n items

are omitted from all analyses.) Thus examinee ability 8 is estimated

from his responses to items actually attempted and item parameters are

estimated nom the responses of examinees who attempt the item.

This does not complicate the likelihood equations or the process of

solving them. A key property of icc theory is that item parameters do not

depend on the group of examinees tested, within reaoonable limits; and that

examinee ability ( ) does not depend on the items administered, assuming

that all items measure the same psychological dimension. Thus, ignoring

various examinees and various items ought not to have serious effects.

It is true that a 9 estimated in this way will approximate the

examinee's ability under power conditions only if his responses to the

items'actually attempted would have been the same in the absence of a

time limit. Regardless of this, a 8 estimated in this way appropriately
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reflects the examinee's effective ability level under the timed conditions

actually provided.

If an examinee does not reach an item because of the time limit,

this fact contains no usable information for inferring his ability level

0 under the icc model. The one-dimensional icc model considered here

provides no way to make use of any relationship (ordinarily curvilinear)

that may exist between speed of response and 9 The term omitted

response or simply omit will hereafter refer only to items actually reached,

not to items after the "last item attempted."

Omitted items. The_present paper proposes and discusses a method

for the effective use of the information represented by omitted responses

when estimating ability and item parameters. Another method has been

proposed and used by Bock [1972]. With the implementation of adequate

methods for dealing with omitted resronses, the application of icc theory

to typical testing data is now effective and practical.

Omitted Responses

The meaning of an omitted response varies depending on the type of

item and how the test is scored. It will be assumed throughout this paper

that the items --re multiple choice. If the score is the number of right

answers, to be denoted by x , then the examinee who omits any item is

acting against his own best interests. We will not consider such cases

here.

The only common alternative to the number-right score is the formula

score containing a penalty for wrong answers. If A is the number of



alternative responses provided for the test item, the usual formula score

is

(1)
a

Y
a a A - 1

where w
a

is the number of wrong responses given by examinee a .

We will assume hereafter that (1) is used; also that examinees wish

to maximize their expected scores and that they are fully informed about

their best strategy for doing this. Under these conditions, an examinee

should omit an item only if he believes his chance of success on the item

is no greater than c e . On the other hand, since the item has A

alternative respoases, his chance of success cannot be less than c ,

since he can always do this well by strictly random guessing. Following

this reasoning, we will assume hereafter that if an examinee were required

to respond to a long series of A -choice items that he had omitted, his

proportion of correct answers would be c . [Slakter 196.8) presents

empirical evidence that examinees omit more items than they should according

to this assumption; however, his examinees were not explicitly instructed

as to their best strategy.]

T1 1CC Nodel

In item characteristic curve (ice) theory, the probability that

examinee a will answer item i correctly may be denoted by Pia E Pi(Ga) ,

here assumed to be an increasing function of his ability Oa . It might

seem from the preceding paragraph that Pi(9a) = c whenever examinee a

is required to answer an item i that he previously had omitted. This

cannot be correct, however. If examinee b omits the same item, we would
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have P.(0
b
) = c , from which it would follow that Ga Ob . Since two

examinees who omit the same item may be at very different ability levels,

it is clear that the probability c is a different kind of probability

than P.

It might seem natural to think of Pia as the relative frequency of

correct, answers when item i is repeatedly administered to examinee a

under some hypothetical conditions requiring him to forget his previous

responses. This interpretation of Pia is considered in detail by

Meredith [1965]. We cannot use this interpretation here (nor in most

practical work). Examinee a might know the answer to item i = 1 and

so have a probability of 1 of answering it correctly. At the same time,

he might be misinformed about item i = 2 and so have a probability of 0

of answering it correctly. At the same time, examinee b might have

probability 0 of answering item 1 correctly and probability 1 of answering

item 2 correctly. If the items measure the same trait, the four equations

Pi(%) . 1p2(91)) . 1 and P3(0a) = P1(9b) = 0 are very difficult to

reconcile.

Pia is most simply interpreted as the probability that examinee a

will give the right answer to a randomly chosen item having the same ice

as item i . An alternative interpretation is that P.(0 ) is the proba-
a

bility that item i will be answered correctly by a randomly chosen exam-

inee of ability level 9 . 9
a

. These two interpretations will usually be

assumed to hold simultaneously.

These interpretations tellrus nothing about the probability that a

specified examinee will answer a specified item correctly. It is this
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last probability that would equal c if an examinee were required to

answer an item he has omitted.

The Likelihood Function

Let the response of examinee a to item i be denoted by uia . For

a correct response, let uia = 1 ; for an incorrect response, let uia = 0

Whenexamineeaanswersatestcomposedofnitems,theu.la are assumed

independent (assumption of local independence). If he does not omit any

items, the likelihood function for his responses can be written

n u. 1-u.
(2) La(u1a,u2a,

""unalQa)
ia

la la

is

1=1

where0.:=1-PiaIf the item parameters in P. that characterizeis is

item i are known (approximately, from Pretesting), then the maximum like-

lihood estimate a
a

of the examinee's ability can be obtained from this

likelihood function by standard procedures.

If the item parameters are unknown, they can be estimated at the same

time as 0
a from the responses of many (preferably two or three thousand)

examinees. In this case, the likelihood function is

N n u. 1-u.
(3) L(U (0) It 11 P.1 la

is 'la
a= l 1=1

where U is the matrix guiall and 0 is the vector 101,02,...,0141 .

The maximum likelihood estimates of 0 and of the item parameters can
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actually be obtained in practice from this likelihood function by standard

procedures (somewhat surprisingly, in view Of the very large number of

parameters to be estimated). The practical effectiveness of this procedure

is being demonstrated in work with real data (for example, Lord, 1970)

despite the (presumably temporary) lack of a rigorous proof that the

maximum likelihood estimates are consistent.

If the examinee omits certain items, it might seem that one could

simply omit these items altogether from (2) or (3) and proceed as before.

This cannot be right, however, since the fact that the examinee omitted

certain items carries the important information that 1 .tid not know the

answers to these items--that his chance of success was roughly only c on

each. We cannot afford to ignore this information. If we did, an examinee

could obtain as high a 9 as he wished, simply by omitting qUestions

whenever he was not completely sure of the correct answer.

One way to deal with this situation would be for the psychometrician to

replace each omitted response by a response drawn at random with probability

of success c After all, this is just what some examinees do in actual

practice, instead of omitting items. According to the model, the likeli-

hood function (2) or (3) will hold for data so obtained.

Although this Procedure should yield consistent estimates (as n ),

it is objectionable from two related points of view. From the examinee's

point of view, it is unfair to saddle him with a possibly unfortunate set

of random responses. From the statistician's point of view, the procedure

degrades the data by introducing random error; it can only increase error

variance, it cannot possibly be truly beneficial.
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It would be desirable to replace (2) or (5) by a likelihood function

that includes provision for omitted responses. Such a function, however,

would depend in part on the true Probability that examinee a will omit

r- a -randomly chosen item having the same item parameters qs item i

( i ). This true probability would be a function, similar to

P.(0 ) but not the same, depending not only on 0
a

and on certain

characteristics of the item, but also on a new trait of the examinee

representing his willingness to omit items. Even after simplifying

assumptions, there would be at least one new examinee parameter and one

new item parameter to estimate, considerably complicating the already com-

plicated and expensive estimation procedure.

New Estimation Procedure

The following estimation procedure has been used on several large sets

of data, apparently with great success, as briefly indicated in the next

section. The likelihood function (--) is replaced by

() 1,*a (v v
la' 2a' "1/na a

n vi 1-vi
li P. Q.

is is

where via 1, 0, or c according to whether the response is right, wrong,

or omitted, respectively. Since for the present the item parameters must be

estimated at the same time as 0
a

, the responses of many (preferably two

or three thousand) examinees are analyzed simultaneously, so that (4) is

replaced by
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N n v. 1-via

L* (V IQ) =
II P' Q"

a=1 i=1
is is

matrix wialJ In the new procedure as actually used,

we find the values of 0
a

for the N examinees and the values of three

item parameters for theft-items that maximize (5). These values are

taken as the PPrameter estimates desired.

Since (ii) and (5) are not likelihood functions. these estimates are

not maximum likelihood estimates. The estimate of 0 from (ii) or (5)

will be denoted by 0* . It is shown in the Appendix that in the case

of (ii), the 0* converge for large n to the same values as do the 0

obtained from (2) after omits have been replaced by random responses.

Moreover, if there are omits, the sampling error of G* for large n is

less than the sampling error of the maximum likelihood estimate obtained

from the degraded data.

Discussion of Assumptions

Many people prefer number-right scoring to the formula scoring con-

sidered here. Some common misinterpretations will be avoided by pointing

out that certain assumptions are not made here.

1. There is no assumption here that formula scores are superior

to number-right scores. If number -right scores were used, the

problem considered here should not arise, since in that case

examinees should not omit any items at all.
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2. There is no assumption here that examinees guess at random

when they do not know the answer to an item. On the con-

trary, many of the item characteristic curves found so far

in the analysis of nationally used tests show that

ability examinees tend to do less well on difficult ....ems than

they would have done if they had responded at random. This

situation presumably arises because certain of the possible

item responses have been cleverly made so attractive that low-

level examinees tend to choose them in preference to the

correct answer.

3. The model given here is consistent with the obvious fact

that examinees use mIsinformation and partial information

in answering item F-)r a few items in nationally adminis-

tered tests, the Ice lever go below pi(0) = .30 or

P.(0) - .40 regardless of 0 level. This suggests that

on some items even very low-level examinees may be able to

rule out two or three of the possible item responses as

incorrect.

It is assumed that the probability oe a correct answer would be

c s 1/A if an examinee were required to respond to the A -choice items

he has omitted. As explained previously, this assumption is made because

an examinee who wants to maximize his expected score should never omit an

item if he can do better than choose among the A responses at random.
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Empirical Results

Sever-1_ questions can be raised about the various parameter estimates

that have been discussed. In the first place, many people distrust the

assumptions of the ice model, particularly the assumption that there is

only one dimension 0 underlying the test. The best way to resolve this

question is not to try to prove that the assumptions hold for a particular

set of data (they will never hold exactly), but to show that the parameter

estimates obtained provide a useful and effective summary of the data,

capable of predicting new sets of data not yet observed. Th.,.! main purpose

of this section is to show just that, insofar as possible with the limited

investigations made to date.

MPximum likelihood estimates obtained from (3) are open to a further

objection--there exists no rigorous proof that these estimates are con-

sistent. A related but distinct problem is that it may seem hard to

believe that several thousand parameters can really be successfully esti-

mated simultaneously. It would be valuable to have a mathematical proof

of the asymptotic properties of the estimates. Any final answer to both

questions, however, must come by demonstrating the usefulness of estimates

obtainable in practice from samples of reasonable size.

Estimates obtained from (1i) and (5) are open to further objections.

Equations (1i) and (5) are not likelihood functions. No clear statistical

justification has been given for choosing these functions to be maximized

(there seems to be an interesting and unanswered question in statistical

inference here). Some justification of the estimates obtained are
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2. Relation of Estimated Ability to Test Score

Figure 1 shows for test m the relation of the ability estimates Go:

obtained from (5) to fortuula score on the total test. Under the proba-

bilistic icc model, scatter of scores about the test characteristic curve

(the regression of test score on ability) is to be expected, because of

sampling fluctuations provided for in the model. The correlation ratio

of formula score on 0 was .978. For test v , a correlation ratio of

.982 was computed, but coarse grouping of formula scores makes this

somewhat too low.

3. Predicting Test Score from Estimated Ability

For given Ga , the expected number-right score of examinee a is

n
a

(6) ex
a

--- E P.(0 )

n
a

where E represents summation over all items actually answered. The
n
a

correlation between E Pt(0*) and number-right score corrected for omits
1 a

was obtained for tests V and m . Here Pt(0*) represents P.(0 ) with-
]. a

parameter estimates from (5) substituted for the unknown values. The

number-right score corrected for omits is xa 4 oa/A , where oa is

the number of omitted items. For 60-item m , the correlation was .981;

for 90-item V , .992.

These high correlations show that the estimated parameters summarize

the data on the examinees' answer sheets very effectively.
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Again, some scatter of scores about their expected value, due to

sampling fluctuations, is provided for in the model. The scatter is

less than it would be if true parameters had been used instead of estimated

parameters. The reason is that chance irregularities in the data are

to some extent fitted in the course of the estimation process. Cross

validation procedures, using a second random sample of data, could be

used to eliminate this.

4. Comparing Estimates of the Distribution of Ability

The histogram in Figure 2 shows for the 1807 examinees who answered-

the last item in test m the frequency distribution of 0 obtained from

(3). The smooth curve shows an estimate h(0) o: the frequency distri-

bution of 0 (not 0 ) obtained by the method outline.? below. The two dis-

tributions are obtained in very different ways, under totally different sets

of assumptions, as detailed in Lord [1970], where icc were estimated by the

two different methods and compared.

In order to obtain h(0) the frequency distribution ga) of

true score was estimated from the observed distribution of number-

right scores under the compound-binomial error model [Lord, 1969]. By

definition, true score is expected observed score, so by (6)

(7)

n

to E
pi(Oa)

When the item parameters are known, this equation defines t as a function

of 0 or 0 as a function of t . Thus the distribution of ability

h(0) was estimated for the group of 1807 examinees by first estimating

the distribution g() from the distribution of their number-right scores
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Figure 2. Distribution of Estimated 0 (histogram) and Estimated

Distribution of 0 (curve).
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and then transforming this distribution to that of 0 by the functional

relationship (7) with estivited item parameters substituted for their

unknown true values.

T1' discrepancies between the two distributions in Figure 2 occur where

they should. The 0 properly show a slightly more dispersed distribution

than the 0 (represented by the smooth curve), since the 0 contain

errors of estimation. Because m is a difficult test, these errors are

quite large for low ability examinees, as discussed in an earlier section.

In view of the very different assumptions made, the excellent correspondence

shown in Figure 2 is strong evidence for the meaningfulness and practical

usefulness of the models and estimation procedures used to obtain these

results.

5. Estimated Frequency Distribution of Number-Right Scores

According to the ice model, the probability generating function

[Kendall & Stuart, 1958, section 1.37] for the frequency distribution of

number-right scores is

(8) E 0(x) tx )1 Ni(o) t pi(o)] h(o) do
x=o i=1

Using the estimated h(0) in Figure 2 and using estimated item parameters

in P.(0) and Q.(0) , the frequency distribution of number-right scores

was estimated from (8). The resulting ?(x) agreed to at least two decimal

places with that obtained under the compound-binomial error model. The

latter 4(x) agrees well with the actually observed distribution of scores,

the calculated chi square being near the 30-th percentile of the X
2

distribution for 34 degrees of freedom.
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6. Correlation of New Estimates and MIR

For test M , correlations were calculated between item parameter esti-

mates obtained by the two methods (eqs. 3 and 5). For the lower asymptote

( ci ) of the icc, the correlation was .990. For the discriminating power

( a. ) the correlation was .995. For the difficulty parameter ( a ) -;he

correlation was .9996. These results show that for purposes of estlmating

item parameters, the new estimation method yields results virtually equira-

lent to a maximum likelihood procedure based on the usual icc model and

filled-in observations.

Tests v , V , m , and M are all difficult for low ability examinees.

As a result, the ability parameter 0 cannot be estimated accurately at

the lowest levels--one cannot effectively distinguish between 0
a

-5

and 0
a

-500 This makes no practical difference as long as the problem

is to predict the performance of the examinee on other tests that are about

equally difficult for them. When the examinees with estimated 0 is

below 3.0 are omitted, the correlation between estimated 0 's obtained

from (3) and (5) is .997 for the remaining 2867 examinees.

7. LikeliAoods

For tests M and V , a new set of data was set up for cross-

validation by replacing the omits by a second set of random responses

chosen independently of the first. No parameters were estimated from

these cross-validation data. Instead, the estimated log L was evaluated

for these data, using estimated parameters in place of the unknown true

values in (3).



-19-

For test M , when the estimated parameters were MLE's obtained from

the original degraded data, the estimated log L of (3) for the cross-

validation data was -5231x8, approximately; when the estimated parameters

were obtained from the original undegraded data by (5), the estimated log L

of (3) for the cross-validation data was -52295. Thus the new method (5)

seems to provide better estimates of the parameters of the conventional icc

model (higher likelihood for the cross-validation data) than does the

conventional method itself.

The test V results support the same conclusion. When the estimates

were MLE's obtained from (3), log L in (3) for the cross-validation data

was -58277; when the estimates were obtained by (5), log L in (3) for the

cross-validation data was -58224.
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Appendix A

We are given answer sheets with three kinds of responses: rights,

omits, and wrongs, which will be denoted by vi = 1, c, and 0, respectively.

This appendix deals with the new estimation procedure for the case where

there is just one examinee, the item parameters having been already

determined.

Rewriting (4) with the subscript a dropped from most of the symbols,

we have

n V. 1-v

(Al) la (v
l'
v
2'. ,v n19) = P.10 i

inl

Our estimate of the ability of the examinee tested is 9* , the value of

9 that maximizes (Al).

If we replace all omits by randomly assigned responses, the likelihood

function under the icc model is

(A2) L (u.
'

u
n

10
1.'

n u. 1-a.
1

!: P. Q.

where u. .,-- 1 or 0 . This equation is the same as ( ,-) except that a has

been dropped from most of the subscripts. The FLT 9 of the examinee's

ability obtained from (A2) is justified b;, the icc model. The empirical

results given in the last section suggest that 9* may be a superior

estimator to 9 . It is most desirable, however, to have mathematical

proofs of some of the properties of G* No such proofs have been giver.
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so far. The purpose of this Appenui.x is to indicate some relationships

between 0* and 0 that hold for large n . will be shown that 0*

is a consistent estimator with a sampling variance smaller than that of

a (obtained after replacing omits by random responses).

In all that follows, we assume that 9 is bounded, at least for any

group of examinees that we consider testing. Another limitation is that

we cannot estimate the ability of examinees who answer all items correctly

or all items incorrectly. We deal only with examinees who give at least

one right answer and at least one wrong answer. Since 9 is bounded,

the probability that an examinee will be excluded by this limitation

approaches 0 for large n .

We will assume that P. is an increasing function of 0 , differentia-

ble,with0<c.<P.<1 , c. being the lower asymptote. These

assumptions are easily satisfied by all ice ordinarily used for cognitive

tests. We w.1.11 avoid using extremely difficult or extremely easy items,

sowecanassumethatP.is bounded away from 0 and 1.

Let us reorder the items so that the s omitted items are numbered

i = 1,21...,s . Then equations (A1) and (A2) become respectively

u. 1-u.

(A3) P.c Q.
1 c

P.Q.1
a

i=sil

s u. 1-u. n u. 1-u.

L
a

= 1q. 1(A4) P.Q. 1
H P.1

3. 3.
i=1 i=s+1
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Taking logarithms and dividing by n we can write

P.1 Pi 1 P1
(A5)

. n
Q1 i=1

n 1
i=s+1 Qi

1 1 s
P.

(A6) - log L* = log L
a

1
- Z (u. - c) log

1
n a n n

1=1 Qi

Since the u.
1

are assigned at random with probability c that

u.
1

1 , the quantity Z defined by

P.

(A7) ZE1 L (u. - c) log -1
1 Qii=1

is the average of s observations, each on a random variable having a mean

of zero. If s co , the variance of (A7) always --)0 (since Qi 'is bounded

away from 0). Consequently the last term in (A6) always converges in

probability to zero.

Thus, for large n the likelihood function (A2) and the new function

(Al) tend to the same limit. This result makes the function (Al) a

plausible function to investigate, even though (Al) is itself not a

likelihood function.

Likelihood Equation

The log likelihood from (A2) is Liui log Pi q- - udlog Qi

Taking the derivative with respect to G gives the result



(A8)
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d log L
a

n u. 1 u.
1 1 p!

dO
5. 1

P. 0./1
.1

where P!
1

= dPi/d0 . Setting this derivative equal to zero yields a

familiar likelihood equation

(A9)

d log L
a

-

i

n P!

(10 P.Q.
E
1

1 Q
Cu . P.) - 0

= 1 1

Similarly, setting d log L:/d0 0 , we obtain from (Al)

(A10)

d log L11. n P!

a - E
i=1

(v. - P. - 0dO 1 P.O.
1

When the items are ordered With omitted items first, (A10) can be written

d log L: d log La P! .

E Cu. - c) 1 - 0
dO dO P.Q.i1 1 1

Consistency

Cramer's well-known proof [1946, section 33.3] that a likelihood equa-

tion has A solution that converges in probability to the true value Go

as n -40,0 applies with minor modifications to 3 obtained from (A9)

(the cited proof only covers identically distributed variables). Cramer's

approach can also be used to prove that G* , the solution of (A11), con-

verges in probability to the true value Go . When (U1) is divided by n

and then d log Laid0 expanded by a three-term Taylor's formula, we ob-

tain after replacing 0 by 8*



(Al2)

d log L:

dO

P*'

B
0 n

E (u. - c) 1

G* i=1 i i

where

B -
0

where

P4!' e P. (G
1 1

1
d log L

a

B (G*-
1

et cetera, !pi

B -
1 n

o

0* and

1
Go) 4- pB7

< 1 , and

d
2

log L
a

2
(G* Go )

2

B
2

0

1
E

y

1
d

3
log L

a

n dO

01 lies between

dO
2

o
. The quantity

-
n

dG
2

(u. - c)P!'"/P.O.

can now be combined with the first (lowest order) term and neglected when

n is large. Cramer's argument then shows that Ole converges to Go .

Sampling Variance and Efficiency

Let E denote expectation over the population of items, so that

o o
ea. = P.

o
and Var u1. = P.1 Qi , where

Pi
? = P.(00) , et cetera. The

1 1

asymptotic sampling variance of the maximum likelihood estimator is

d log L -

(A13) Var = [e(
dO

a f

0'
P.

= lei l z (u. p?)
1

1 12r1
0011

PlQi

ot o'
n n P. P.

=[ E e(u. - P7.)(u. - P°.)ri

i=1 j=1 P°Q?P°.0°. 1

PO )J-1

1 0 '0
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o '2
n P.

-1

= ( E 02102
Var ui)

i=1 P.
1

Q .

o'2
n P.

1 1

i=1

Thus, frmil (Al2), following Cramer,

(A14)
dO

1
d log L

a

67(0' -Go)

s Pt'

c)-
1

E (u. - c)

i=
PtCsit

0
o

1 41

-B1
1

pB2(0* - Go)

As n increases, (G* - Go) , so the second term in the

denominator converges to zero. Thus, the entire denominator converges to

1
d
2

log La
C

n
dG

2
1

- k
2

, say,

o
n Var a 0

Since Var 5' is of order 1/n k
o

is independent of n to our order

of approximation. If, as we suppose, sin -,some constant as n 00 ,

then the entire numerator is a random variable with zero mean and a

finite variance, which we must now proceed to determine.

1
d log L

a
The term

variance

dO
Go

is a random variable with zero mean and
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d log
1. et

L
a 12

/

1 k2
k
on d0

n Var
0

Pt'1
The term E (u. - c)

1
has zero mean. When s is fixed and large,

tiqt
1

P
1 1

its variance is approximately

o
,2

s Pi s P.

(A16) = E e[(111 -0-
1 1

-
n n o2 o2

1.1 Pt
2
Q*

2
i=1 P. Q.

1 i 1

since the
1 1

, i = 1,2, s are not used in computing the Pt . For

fixed s , the covariance between the two numerator terms in (A14) is

found from (A9), using the same argument, to be

o'
n P1 Pt'

1
(Al?) IT E[ E (u. - P?1 ) 1

0 o J
E (u. - c) --a- i

1 PtQt
1.1 P.1 Q.

1
j=1 J J

o'
n s P. Pt'

= 11- :E E el[1((1. - c) +
1

(c - Pi)} --1 (u. - c) ]

PtQt
P7.q J Ji=1 j=1

s Po. Pt'

=
n

1E el (u. c )2]

j=1 PjQj PIQ1

,2

s Po.

. c(1 - c) E
1

n o2 o2 /

i=1 P.
1 1

Q.

approximately for large s and n
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We will need the general formulas for any random va-iables y

s :

(A18) Var(y) = e[Var(yls)] + Var[E(y1s)]

(A19) Cov(y,z) = e[Cov(Y,z1s)] + Cov[E(y1s), e(zis)]

Conveniently, the second term on the right of each formula is zero for the

present application. Thus, by taking the expectation of (A16) with respect

to s , we obtain the unconditional asymptotic variance

1 1s
Pt'

(A20) Var[ E (u. c) 7.)(.pF7 ]

17 Ca C)S p

1171 i=1 1

where

,2

?
o
,2

s P.
0

P. w.

: E E
1

- E
1 1(A21) S

o2 '
i.1 Po2. Qo2. i=1 Po2. Q.

1 1 1 1

a positive quantity, where wi is the probability that the examinee will

omitanitemwithcharacteristiccurveP..Similarly, the unconditional

covariance corresponding to (A17) is found to be the same quantity,

1
- c(1 - c)S .

From (A15) and (A20), we find the unconditional asymptotic variance

of the numerator in (A14) to be

2
k -

1-c(l - c)S
n

Finally, then, the asymptotic variance of - 00) is this divided by

k or



-28-

(A22) Var 0* = Var 0 [1 - c(l - c)S Var 9]

n ,2

1 - c(l - c)S i( E /P°iQ7.)

i=1

n ,2
po /Con0

i /
i=1

It is thus seen that the new method applied to the raw data (eqs. 4

and Al) has a smaller asymptotic sampling error than does the maximum

likelihood method applied (of necessity) to the filled-in data (eqs. 2

and A2). The relative efficiency of the MLE is given by the term in

brackets on the right of (A22).*

*The writer is indebted to Prof. Robert Jennrich for finding an
error in an earlier version of this conclusion.
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