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I. Introduction o,

Words and symbols mean difierent things to dificrent people. Whot
does the word horse mean to the reader? What do we think of when the
word lorse is used in casual conversation? What would we think of if
we reflected not so easually about the meaning of the word forse?
Surely the concept horse is not a fixed concept the same for all people.
Try to imagine what the word means to a three-year-old child. to a
farmer, to the owner of a racing stable, to a zoologist, or to a linguist.

Enough about korse. We propose to look at 2. We have looked at 2
many times. Maybe it has been a long time since we thougin about the

-meaning of 2. Maybe our concept of 2 is a puny little thing like.a three-_

year-old child’s idea of 2. Perhaps a comprehensive view of 2 will provide
some nourishment to enhance the growth of our coneept of 2.

We propose to Jook at a modern portrait of 2. Our purpose is uot to
trace the historical development, of number coneepts. Rather it is our
purpose to present a glimpse of 2 as it appears in the minds of men
today. We shall sce 2 in an environment, of other numbers. In order to
nnderstand 2 it is necessary to know something of these number systems.
So we shall develop the number systens to such a point as will enable
us to see 2 in its proper setting. In addition to looking at 2 as a nunber
we shall look at 2 as a symbol or as part of a composite symbol, We shall

. . - .1 .
see 2 by itself and we shall see 2 in 21, 2 in =, and 2 in §2,

W"’?f.(;,,




II. The Natural Number 2

The sumplest of the number systems is the system of natural numbers,
or counting numbers if you prefer: 1, 2, 3, --- . We use this symbol to
suggest an unending sequence of numbers. the natural iambers i their
natural order. Each number in this sequence has an immediate sueeessor
and an immediate predecessor exeept that 1 does not have a predecessor.
The mathematician thinks of i natural number in two distinet ways, as=
an ordinal namber and as a esrdinal ymmber. In counting the objeets
of @ collection anch as A, B, €, 1 small ehild says 1. 2. 3. pointing in
suecession to .1, 10 B, and then to C. Objeet B is the second object.
abject number 2. in this collection of three objects. The youngster has
established at one-to-ome corsespondence between 1, B, £ and the words
12,50 .1 i=mated to 1, B is mated 10 2, and € is mated to 3. The direct
countisic of any ficite collection of objects amounts to establishing
one-to-one correspondence between the vbjeets in the coliection and a
set of natural pumbers, Thus we think of 2 as a grunt which is part of
the ritual of counting, If there is more than a single item jn the collee-
tion counted, then 2 is the gront which comes immediately after the
grunt L. Thus our portrait of 2 inclndes a gimp=e of 2 as a counting
grunt. a< an ordinai mneber.

~

QRDINAL: Mary is number 2 in this lineup.
CArDINAL: There are 5 persons in this lineup.

-

Tet us now look at 2 as a eardinal number. The cardinal number of a
set of objects is a word which conveys the idea of how many objects
are in the set. The cardinal number of a set has nothing to do with the
arrangement or order of the clements in the set. In fact we may re-
arrange the clements of a set in any way and the eardinsl number of the
set remains unchanged. Two sets have the same cardinal number if
there exists a one-to-one correspondence between the elements of one
of the sets and the clements of the other set. Thus the set S, consisting
of the letters A and B has the same eardinal number as the set S: con-

I
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II. Tue Nateran Neapie 2 3

sisting of the letters ¢ and 1. For if we mate A to Cand B to 1) xio
have a one-to-one correspondence between the elemenis of S; and the
clements of S—each element in S has - unique mate in S. :nd cach
clement iz S has a unique mate in ;. Xny set whicl: has the <ame
cardinal number as the et S; consisting of the two letters 4 and B is
said to have the cardinal number 2; or we might say that the cardinal
number of the set is 2. Thus the set S which has the ¢ty of New York
as one clement and my typewriter as another element and whiel has
no other clements is a set which has the eardinal number 2. -
We have been talking about the cardinal number 2 as something
which a set has. The critieal reader may say that a sef has clemenis
and that is all it has. The clements comprise the set. The sot consisting
of New York City and my typewriter has two clements: New York
City is one and my typewriter is the other. Who may declare that it
has something else, a mystice thing called a cardinal sumber? OF course,
no one would sag that the cardinal uumber 2 is a thing. But do we realiy
clarify the sitnation by saying that 2 is a property—bhy saying that the
“set eonsisting of New York City and my typewriter has the property of
twoness? Do we make it elearer by saying that 2 is the property which
ali pairs have in comnon? What is a common proper(y? All pairs have
several propertics in common. For example, all pairs have the following
two properties in common. Property 1: Each pair of things ix a set of
things with more than onc clement. Property 2: Fach pair of things 1s o
set of things with a cardinal number which is less than the cardinal
number of the set of fingers on my left hand. B

Fortnnately the portrait of the cardinal number 2 is not. so mystic or
abstract as the foregoing comments might indicftcBefore stating the
modesn point of view let vs think of the concept of a set for a minuie.
We shall not attempt to define “set.”” We think of a set as composed of
clements. We consider the words set, collection, and class as synonyms,
The clements of a set may be other sets. Thus to avoid confusion we may
speak of a class of sefs or of a collection of sets, or of a collection of
classes. As an example, consider the class of all married couples in the
United States. Each clement in this class is a- set, a set which has as
clements a man and a woman. Another example is the set of classes
which graduated from Iarvard at the June commencements in 1910
to 1950 inclusive. There are 11 clements in this set. Exach element is one
of the June graduating classes. Of course, each of these classes is a set
of clements, cach clement being a person. And of course cach person
might be considered as a set of cells, each cell is a set of molecules, and
each molecule is a set of particles studied in nuclear physics. But the
modern concept of the cardinal number 2 is not quite that complicated.
It is simply this: the cardinal number 2 is the class of all pairs; or in

]
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other words it is the class of all sets each of which satisfies the condi-
tion that its clements can be put into 2 one-to-one correspondence with
1he clements of the set, for example, which has New York City as an

clement, my typewriter as an element, and no other elements. Having

defined 2 as this ¢lass we must now clarify what we mean when we say
thatthe enrdinal number of 2 set S is 2, when we say“that set S has the
eardinal pumber 2. We mean that S is an element of the class which we
st defined above as the cardinal number 2. ~I have 2 dollars” means
shiat the set svhich consists of my dollars’is an element of the ¢lass which
we defined as thc cardinal number 2. Thus our portrait of 2 includes a
glisupse of 2 as 2 cardinal number, a glimpse which reveals 2 as the class

of uli puire. I

$'| < NEW YORK CITY

Ceeet

$] <——» MY TYPEWRITER

Let us now consider 2 as an clement of the system of natural numbers
ithe counting numbers 1, 2, 3, - - -). We have mentioned before that a
number system is a set of numbers and certain operations. We concern

'n-n.rscha:s for the present with the operations of adwtion, subtraction.

raltiplication, and division. In studying the properties of these funda-
mcnml operations the mathematician regards them as binary opera-
tione. A binary operation is an operation which operates on two numbers.
T'hus—is a svmbol which denotes the operation of addition and 2 + 3
i a composite symbol which indicates that the operation of addition
is to be performed or has been performed on the numbers 2 and 3.
When an operation takes place there is 2 result. What is the result of the
operation of zddition when performed on the numbers 2 and 3? The
anxwer is that the result is another natural number, namely 5. Now a

" sehool child looks -t 2 4+ 3 and sees nothing but 2 job to be done; he

does it by writing 2 + 3 = 5. To him the resuit is denoted Ly 5 and
that is all. But to a mathematician 2 -+ 3 does not produce an uncon-
querable urge to write 5. One way of looking at 2 + 3 is that it is a
composite symbol (formed from three basic symbols) which denotes the
same natural number as is denoted by the symbol 5. Instead of looking
at 2 4- 3 as an indicated addition, a job to be done, the modern mathe-
natician sometimes looks at 2 4 3 as though the addition were already
done and the answer is 2 4 3. From this point of view Grade III arith-
metic becomes very easy. Problem: Add 435 and 29. Answer: 435 - 29.

¥4
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Of course, the teacher would like a statement from the child that (in
the Arabic svstem of enmeration) 164 denotes the same natural number
as is denoted by the composite symbol 435 + 29. Now, getting baek to
the properties of {he fundamental operations in the natural nmumber
system, we note that every pair of numbers can be added, that every
pair can be nmltiplied, and that the sum and product are again natural
mmmbers. We say that the svstem of natural numbers is closed with
respeet o addition and multiplication. We are using the word closed
in aceordance with the following definition: A system of nwmbers is
elosed arith respecl to a binary operation if the resnll of the operation, when
performed on any pair of numbers i the system, s « number-in the system.
The system of natural nmnbers is indesd dosed with respect to addition
and multiplication but it is not closed with respect to subtrection or
division. Thus the composite symbols 5 ~ 7,2 — 2,4 = 6 are meaning-
less in the system of natural numbers. Of course 7 — 5,3 — 1,8 + 4
are meaningful symbols, meaningful in that they are composite symbols
denoting threc natural numbers.

We have gone into somne detail talking about the natural mnnber
system. Is all this necessary for an intelligent glimpse of 22 I believe it is.
In relation to composite symbols we sce that the natural numnber 2 may
be denoted in many different ways. Thns:

2=141=3-1=4-2=5~3=6—1=-..,
2=2X1=2+]=3+2=G+83=8=+4=-...

This suggests, too, that 2 may be obtained iz an infinite number of
different ways as the result of 2 binary operation performed in the system
of natural numbers. Thinking some more about 2 in relation to opera-
tions and other numbers, we note that the possibility or impossibility
of dividing a natural nmumber by 2 separates ail the natural nmnbers
into two mutually exclusive classes. (Mutually exclusive means that
these two classes have no conmmon clement.} One class consists of all the
numbers which can be divided by 2; the other class consists of all the
numbers which eannot be divided by 2. Thus the concepts of even
number and odd number appear as we study the portrait of 2. Similarly
we might think of the class of all natural numbers which can be sub-
tracted from 2 and the class of all natural nmmbers which eannot be
subtracted from 2. The first of the classes consists of onc element,
namely 1. It is the only natural number less than 2. I'he numbers which
cannot be subtracted from 2 include 2 itself and all numbers which
are greater than 2. Of course, the class of 1l natural munbers greater
than 2 is identieal with the elass of all numnbers from which 2 can be
snbtracted in the natural number system. Enough about 2 as a natural
number in an environment of natural numbers.
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. The Numeral 2

Having rested our eyes for a second we are ready for another peek
at the portrait of 2. This time we see 2 as a numeral, as a symbol for a
number or as part of a composite symbol. We bave seen that the numeral
2 considered as one symbol denotes the second of the natural numbers.
But what does the numeral 2 mean in the composite symbol 272 What
does it mean in the composite symbol 1.324? In the Arabie systemn of
numerals there are {en clements, namely 0, 1, 2, 3,4, 5,6, 7, 8, and 9.
Every natural number is deroted by one of these symbols or some
combination of them. The combinations of which we speak hefe, as
373 or 47522, are not composite symbols which include symbols for
operations as 8 4- 2,8 — 2,8 X 2, 8 + 2, but are composite symbols
formed on the basis of a place-value principle. Thus the immediate
suceessor of 9 in the system of natural numbers is ten, denoted by 10,
a combination of two numerals written in a definite order. And we know

how these combinations are formed for any integer greater than 10.

1t is important, however, to have a deeper insight into these symbols
than that reflected by the ability to form the symbols. Thus, we teach
tne clementary-school child that 37 means 3 tens and 7 ones. In more
sophisticated language 37 is the cardinal number of the set which is
formed when the elements of three sets Sy, Sz, S;, each of cardinal
sumber 10, and the elements of one sel S¢ of eardinal number 7 are
collected or combined into one set. It is to be understood here that no
object is an element of more than one of the sets Sy, Sz, Ss, S ; that is,
we assume that the clements of these four sets are all distinct. Similarly,
202202 is the cardinal number of the set which is the union of fwo sets of
cardinal 100000, two sets of cardinal 1000, two sets of cardinal 100,
and one set of cardinal 2, the elements of these sets all being distinct
The system of numeration has been expanded so that using the Arabic
numerals 0, 1, and so on to 9, and a decimal point, we may formn a
symbol for any decimal fraction. Thus 2.022 denotes the rational number

(more about these later) which results if one adds the numbers 2, 1_3—0 ,

o

To0i In concluding this glimpse we note that the innocent-looking little

-symbol 2, the numeral 2, may have different meanings dependent upon

its position in a composite symbol.
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IV. The Integer 2

We move next into the system of all integers. “Ihis system includes
all the positive whole numbers, all the negative whole numbers and
wro: -« -, =3, =2, ~1,0, 41, 42, +3, --- . Note that one of the
elements in this system is 42, read positive two, and another —~2, read
negative two. What is the relationship of these signed integers Lo the
natural number 22 What does the porirait of 2 reveal? Several pre-
liminaries are in order before we are in a position to answer these ques-
tions. I'irst, let us review some uses of these numbers in clementary
mathematics and in everyday affairs. We note that 0 (read zero) is a
number in this system. Yes, we talked about 0 before; we listed it as one
of the ten Arabic numerals; we saw it in such symbols as 10 and 202202.
But 0 is not one of the counting numbers. The preschool child learns to
count, 1, 2, 3; 4, 5; but he has no concept of zero as a number. In school
he is confronted with subtraction problems as2 — 2 or 3 — 3; he knows
from his experiences with subtiaction that 2 — 2 “should be nothing”;
he is taught to write 0. Ile should learn eventually that subtraction is
the inverse of addition, that 3 — 2 is that number which when added
to 2 yields 3, that 2 — 2 = 0 is mathematically equivalent to 2 4 0 =
2. We ccald take all the counting numbers together with zer as a new
number system. That is what happens abiout Grade IT or III in the
clementary schools. Of course @ is a very uscful number. It appears
frequently in inventory lists, balance-on-hand entries, in teachers’ grade
books, and s0 on. The other numbers in the system of all integers are
useful, too. Think of the stock-market report where the net change in
selling price during a 24 hour period is reported as a positive number or
a negative number, or the weather reparts during a cold snap when
many of the citics have had subzero temperatures, or a college grade
point system in which F = —1, A = 43, and so on. But we-must
move along to a consideration of the integers as a system.

The system of all integers is a set of numbers - - - y =3, =2, —1,
0, 41, 42, 43, --- together with the fundamental operations of addi-
Lion, subtraction, multiplication, and division. The Grade IX algebra
student learns to perform these operations on signed numbers. He
knows that (+2) + (+3) = 435, (4+2) + (=3) = —1, (+2) — (+3) =
~1, (+2) — (=3) = 435, ete. The system is closed with respect to
addition, multiplication, and subtraction, but it is not closed with
respect to division. Subtraction is not_always possible in the system of
natural numbers, but, in the system of all integers, subtraction is always
possible.

-1




8 ‘ A Porrrarr or 2
The portrait of 2 reveals --2 and —2 as elements of the system of all
integers. In this environment we see that 42 and —2 have many
representations as composite symbols, for example:

+2 =(=15) - (=17) = (=1) = (=3) =0 — (—2),
.

+2=4+1-(-1)=(+2) -0=(+3) — (+1) = -_-F[
+2 = (=15) + (+17) = (=1) + (+3) = (=1) X (~2),

= (=17) = (=18) = (=3) = (=1) = (=2) = 0 = (+6) — (+8),
+11 =2

+1 .

Do not be confused by thie dual uses of the symbols 4 and — when
working in this system. The symbol may be a part of a composite
symbol denoting a signed: integer, as in +2 or —2, or it may denote
an operation as the midde + sign’in the follomng: +2) + (+2).
Assuming that we have a pretty-good picture of the system of all integers
let us consider now the relationship of this system to the system of
natural numbers. The ease with which a ninth-grader learns to add and
multiply in the system of all integers indicates that this relationship is
a close one. IIe does not need to learn a lot of new_addition facts or a
new multiplication table; all he needs is a rule of signs and a knowledge
of addition and multlpllcqtlon in the system of natural numbers. Thus
our ninth-grader might say that (+2) 4 (+3) = +5 because 2 + 3 = 5.
In his mind he is identifying consciously or unconsciously 2 and +2 as
the same number. But the portrait of 2 does not reveal the natural
number 2 as being identical with the integer +2. What does it reveal?
It reveals the integer ag a creation of the human mind, as something
created from the natural numbers, as something involving the concepts
of ordered pair and class of ordered pairs. Intuitively the signed integer
—2 is created to give meaning to the composite symbols 1 — 3,2 — 4,

2_zI6
-5

-2 =(-1)X (+2) =

- 3 =5, -+ . You might guess then that —2 is defined as the class of all

such ‘Sylrxbols, all symbols ¢ — b in w hich a “and b are natural numbers
and b — a = 2. But the portrait of 2 shows something which has proved
to be much better than this, but whick has this idea as its basis.
Ordered pairs of numbers appear in clementary work on graphing
equations in two letters, say « and y. A point is given in terms of its
coordinates as an ordered pair of numbers, such as (3,5). The order of
the numbers is significant; (3,5) is different from (5,3). Ordered pairs
of numbers are indeed important as coordinates in algebra and in analytic
geometry. They arc also iriportant in the modern treatments of the
nature and structure of number, For our purpose we define an ordered
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pair of nambers as a composite symbol (a,b) in which « and b are symbols
denoting numbers. Thus (7,5), (5,7), (5,10), and (—17,9) arc ordered
pairs of numbers. We consider (7,5) and (5,7) as different ordered pairs.

Consider then the following ordered pairs of natural numbers: (5,3),
(8,6), (17,15), (3,1), (151,149). What common property scems apparent
here? Note that 5 ~3 =8 -6 =17 - 15=3 — 1 = 151 — 149 =
2. The portrait of 2 reveals the integer +2 as the class of all ordered
pairs of natural numbers (a,b) in whicha — b = 2 and —2 as the class
of all ordered pairs of natural numbers (a, b) in which b — ¢ = 2. In
studying the system of integers, we prefer (3,3) or (7,5) or (100,98)
rather than +2 as a symbol for the integer, positive two. We define
+2 to be a certain class of ordered pairs and then we use any element
of the class as a symbol for the-class. We define equality, consequently,
so that (5,3) = (7,5) = (100,98) cte. The formal definition: If a, b,
¢, d are symbols denoting natural numbers and if (a,b), (c,d) _are_symbols
denoting inlegers, then (ad) = (cd) ifa — b =c~dorb— a =
d — c.Thus (5,3) = (7,5) in the system of integers, since 5 — 3 =7 ~ 5
in the system of natural numbers; (3,10) = (8,15) in the system of
integers, since 10 — 3 = 15 — 8 in the system of natural numbers.
The other integers are defined in a mammer similar to that for +2
and —2 above. Thus if n is any symbol denoting a natural number,
then $n and —n are symbols denoting integers (+n a positive integer
and —n a negative integer): +n is the class of all ordered pairs of

natural numbers (a,b) where ¢ = b = nand —n is the class of all ordered ~ -

pairs of natural numbers (a,b) where b — a = n. Thus +7 = 8,1) =
(9)2) = (10)3) = (11)4) =y —7= (1)8) = (2)9)7= (3)10) =
For completeness we define the integer 0 as the class of all symbols
(a,@) in which a is a natural number. Thus 0 = (1,1) = (2,2) = (3,3) =

Boss: What was the net change in Cities Service?

SECRETARY: +2,

Boss: 422

SECRETARY: Yes, you know, the class of all ordered pairs of natiral numbers
{a,b) in which @ and b have the property that  — b = 2.

We now define addition and subtraction in the system of integers.

Definition. (ab) + (cd) = (a + ¢, b{+ d),
(ab) — (cd) = (a + d,b + ¢).

Let us see if these definitions *“work.” To add +5 and —3 we first
change to ordered pair of natural nubers representations. Thus 45 =
(6,1}, =3 = (2,5). Then (+35) + (—3) = (6,1) + (2,5). We look at

'\4




10 - A PoRTRAIT OF 2

the definition and we think:a = 6,b = 1,¢ = 2,d = 5,a + ¢ = §,
b+4+d=0(a+c b+ d) = 8,6). Wewrite: (4-3) + (—=3) = (6,1) -
(2,5) = (8,6) = 2.

Similarly, (4+5) — (—=3) = (6,1) — (1,4) = (10,2) = +8, (-3
(+5) =(1,4) — 6,1 = (2,10) = -=8.

Is the system of all integers closed with respect to subtraction?
Yes, just look at the definition again, (a,b) — (cd) = (a + d, b + ¢).
Since a, b, ¢, d denote natural numbers and since the system of natural
numbers is closed with respect to addition, it follows that a- + d and
b 4 ¢ are natural numbers, ar.  hence that (@ + d, b -+ ¢) is an integer.
We could go into great detail studying all the operations in this system.
But we do not want too many details; we just want enough to get some
insight into the nature of 2 as revealed in the portrait. We conclude the
discussion of this system, then, by proving one theorem in the theory
of integers. ) )

Theorem: Addition of integers s commutative. (This means that the
result of adding two integers is independent of the order in which they
are added.)

Proof: If we use our definition of additiun,

(ab) + (¢,d) = (@ + ¢, b + d), and
(c,d) 4 @b) = (¢ + a,d + D).

Since addition is commutative in the system of natural numbers,
wehavea +c=c+a,b + d = d 4+ b. From our definition of equality
in the system of integers it follows that (@ -+ ¢, b+ d) = (¢ + a,b + d),
which completes the proof.

JOHN- Do you understand that proof, Alexander?

ALEXANDER: Why sure. I'll show you how it works in a special case. Suppose
you wish to add 47 and. —11. Convert to the ordered pair representations:
+7 = (8,1}, =11 = {1,12). Add in one order and then in the other order:

(+7) 4 (=11) = (8,1) + (1,12) = (9,13) = —4,
(=11) 4 (+7) = (1,12) -+ (8,1) = (9,13} = —4.

Since8-+1=14+8=9and1 -4 12 =12 4+ 1 = 13 in the natural num-
ber system, we see that (8,1) + (1,12} = (1,12) + (8,1}, that is, (+7) + (—11) =
(=) + (+7) = —4,

So we have seen that the integers can be created from the natural
numbers using the concept of classes of ordered pairs, and we have
indicated that the fundamental operations and their properties for
integers can be based rigorously upon the properties of the fundamental
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operations in the system of natural numbers. In particular, the portrait
of 2 reveals 42 as the class of all ordered pairs (a + 2, @), and —2
as the class of all ordered pairs (@, @ + 2), in which a denotes a natural
number.

We return now to the notion that the natural number 2 and the
integer 42 are essentially the same. We accused the typical ninth-
grader of having such an idea. Perhaps some of us had such an idea
hefore we started gazing at the portrait of ™ Of course, 2 and +2
are clements of two different number systems. Every integer is a class
. of ordered pairs of natural numbers. So no integer is the same as a
natural number. But some of us may insist that 2 and +2 are alike;
at least our intuition says they are alike. How is this likeness reflected
in the portrait of 2? To answer this question we must introduce a very
sophisticated concept, namely the concept of isomorphism. The structure
of the word isomorphism indicates that it ought to mean the property
of having the same form. What ought to have the same form as what?
We speak of an isomorphism as existing between the eclen:ents of one
number system and the elements of another number system, or between
some of the numbers in one system and all the numbers in another
system. We say the systems are isomorphic,-or that a part of one system
is isomosphic to the other system. But what does it mean? - -

Definition. A number system S, with clements a, b, ¢, - - - is 1somorphic
lo @ number system S with clements A, B, C, --- if there cxists a one-
lo-one correspondence belween the clements of Sy and the clements of S,
(as suggested by the symbol a & A, b & B, ¢ & C, clc.) which has the
property that if a and b arc any clements in Sy and A and B are their
males in S, lbL’lLQ‘;*;Q_‘:’ A+ B,and a-be 4-B.

Thus, if S; and 8, are isomorphic, one might “translate” from one
system to the other to perform the fundamental operations. Thus to
add a and b in 8y, find the mate of a and the mate of b in Sz, call them
4 and B respectively. Add A and B in S; to get A - B. Find the
mate of A 4 B in ;. This number is a + b.

As an example consider two systems 4 and B of “numbers.” Suppose
that A consists of the elements a and b, that-B-consists of the elements
a and 8, and that addition and multiplication are defined as follows:

at+a=aa+b=0bb4+a=0b+b=aq,
=i - - =
a+a-—a,‘a+ﬁ-ﬁ,ﬁ+a-—ﬁ,ﬁ+ﬁ—-a,

ga=ga,ab=aqaba=abb=0,

aa=a,af=@qfa=af8=24
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We propose to show that the systems A and B are isomorphic. We
matea 1o o, b 10 B: @ > «, "> B. This establishes a one-Lo-one corre-
spondence between the elements of A and the clements of B. We shall
show that this correspondence safisfies the requirement as stated in
the definition of isomorphic. Consider the pair ¢, and their mates
a,a. Note that « 4 ¢ = a, « + « = « and that a & a. Also note that
a-a= aq,aa = q and that a & «. Consider next the pair a,b and their
mates 8. Note thata + 0 = b,a 4+ 8= 8, a-b = ¢, a8 = a. Adding

« - -@and b yields b; adding the mates of @ and b yiclds the mate of b. Multi-

“plying a and b yields a; multiplying the mates of @ and b yields the

mate of a. Similarly we check the pair b,a and their mates 8,a, and the
pair bb and their mates g,8. If we add (multiply) any two clements
of 4 (not necesqarily distinet elements) and if we add (multiply) the
mates of these two elements in B, we find that the two sums (products)
are mates. This completes the proof that the systems A and B are iso-
morphic. .

Let S; denote the system of all natural numbers and S: the system
of all integers. Let Sz be the number system whose clements are all the
positive integers in S; and in which the fundamental operations are
defined as they are in Sz, provided the result is a number in S;. Then
S; is the system consisting of the numbers 41, 42, 43, --- , and these
numkers arc added, subtracted, multiplied, and divided just as they are

~in 82 . Now we assert that the system S, is isvomorphic to the system S;.

¥

For let us mate elements as follows: 1 & -1, 24> 42, 34> 43, -- -,
n &> -n, ---, Then every clement in S has a unique mate in S; and
vice versa; that is, this mating constitutes a one-to-one correspondence
between the elements of S; and the elements of S; . Also, we note that if
n and m are any two natural nombers, then n & 4, m & +m,
(n 4+ m)e> +(n + m), (n-m) & +(n-m). But addition and multi-
plieation are defined in S; so that +(n + m) = (+n) + (4m),
+(n-m) = (4n)-(+m). Therefore, (n + m) & (+n) + (4m),
(n-m) s {4n)-(4m), and the one-to-one correspondence is an iso-

morphism. Structurally the systems S; and S, are the “same.” In- S,

the sum of 3 and 5 is 8; the product of 3 and 5 is 15. In S; the sum of
43 and 45 is +8; the product of -3 and +5 is -+15. In conclusion
then, 2 and +4-2 are united, united as mates, in the isomorphism which
exists between the system of natural numbers and the system of positive
integers. We accused the ninth-grader of thinking that 2 and +-2 are
the samne thing. Really we should not have accused him at.all. Most
textbooks and most teachers say the same thing. A textbook has this
exercise: 3 4+ (—4) = ? Here is an indicated addition of a natural
number 3 and an integer —4. Does this have meaning? No, not on the
basis of our theories of the systems of natural numbers and the system
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of integers. But let us not fight the problem. Let us not be difficult.
Let ns admit that most people study and use mathematics because it is
a useful tool. And if the people who use mathematics say that 3 4 (—4) =
—1; we shall agree with them. But we shall explain it to our mathematies
friends by saying that they mean (43) -+ (—4) = —1. So the portrait
of 2 is clouded by the practical man who uses 2 as a symbol for the
natural number 2 and also as a symbol for the integer +2. This does
not bother the mathematics student; the picture for him is made clear
by a coneept called isomorphism, ’

TeEacHER: Add XVIIl and XXIV.

JiM: XVIIl <= 18, XXIV <> 24
18 - 24 = 42, 42 «> XLI. Therefore,
XVIIE 4 XXIV = XLIL

TEACHER: Add -2 and +-3. -
MARY: 42422, +3%> 3,2 -} 3 = 5,5 <> +5,(+2) + (+3) = +5.
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So far we have seen 2 as a numeral], as an element of the system of
natural numbers, and as an element of the system of integers. We next
see 2 as an clement of the systemn of all rational numbers. Later we shall
construct the rationals from the integers in terms of classes of- ord red
pairs-—a procedure similar to the one we used to create the integers from
the natural numbers. But right now, let us think about rational numbers
as they are thought of by most people who use mathematies as a tool,
that is, as “simple fractions.” But-whal is simple? What is a fraction?

Does a rational number need to be a fraction? Is 2 a simple fraction?

3
5

of 2 reveals 2 as a rational number. So where are we? In the first place

a fraction is something with a_numerator and a denominator; it is a

composite symbol denoting a number, the component parts of this

composite symbol being two symbols for numbers and one symbol-
indicating the operation of division; it is an indicated division or—it is

a symbol for the number which results when the numerator is divided

by the denominator. So a fraction is a symbol which has a certain form.

Actually any number whatsorver may be written in the form of a

fraction. For if = denotes any number in any system discussed in this

z
1
may or may not be denoted by a fraction. An elementary definition is:
A rational number is a number which can be wrillen as the quotient of lwo
:f’ , 11«%' %—, and g as symbols denoting
rational numbers; each of them is a symbol indicating the quotient of

Is a simple fraction? Of course 2 is not a fraction. But the portrait

Looklet, then = also denoles this same number, Well, a4 rational number

‘)
inlegers. "Ihus we think of 5,

two integers. But 0.5, =3, ﬁ, 3.1416, and 2l are also rational num-
3v2 2

1 -3 V2 _1 31416 ., 1 _ 5

g, I _-"=-_—=.._.7:4—-=-', T emcmees § 2-=—.

bers. For 0.5 3 3 373 3,31416 10000"md 533

2

In this elementary sense, then, 2 is a rational number. For 2 = f = ;

from our knowledge of the system of integers.
Why do we have rational numbers? Arc they important? Of course
we can think of situations in which it is desirable and convenient to use

. 1 . .
rational numbcrs:§ an apple, the farm owner and his tenant sharing

14
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2 : - . -
on a-g and?—) plan, a weight of 3;;- Ib., a tolerdnce of 0.0001 incli-

What can we d¢ in the system of rational numbers that we cannot do
in the system of integers? Both systems are closed .with respect to
addition, subtraction, and multiplication. The system of integers is not
closed with respeet to division; the system of rational numbers is closed
with respect to division with the exception that division by 0 is im-
possible. Thus (+2) <+ (—3) is meaningless in the system of integers,
but (4+2) = (=3) = -—33, a rational umber. Working in the systzm
of rationals we can solve equations that have no solutions ir. the system
of integers. For example, 2z = -5 cannot be solved in the system of
integers; in the system of rationals it has the root g Thus we need the

-t
rational numbers to give us freedom in performing the fundamental
operations. And we sce 2 in an environment of rational numbers, We

see 2 + 1 as an indicated sum of two rational numbers; we see 2 — %

3
as a composite symbol for £ rational number. We see 2 as the rational
. 7. . 7 .3 7 24
number which results \\-hcn-g- is hvided by o OF a8 3+ 3 oras o7

-We have a fecling that this rational 2 is ¢losely related to the integer -2

-
¥

and the natural number 2. We suspect that there is another isomorphism
lurking in the shadows, and we are right. But we must reveal the rational
number in=much sharper outlines hefore we are ready to explore the
isomorphisni. This brings us to the high point in the theory of the
rational number—the creation of the rational number as u eclass of
ordered pairs of integers.

~ The student of clementary algebra knows that (¥) ; = :-—g = g =
} haad's

16 _"14 w2 _—3_4_ 8 7 .

T=F and that ( )E = "3 B~ On the bhasis of the

development in this booklet and an interpretation of % as an alternate

way of writing @ = b, we note that the symbols in the set (*) of the
preceding sentence are meaningful in the system of integers. Each of the
five composite symbols in that set is a symbol for the integer, positive
two. On the other hand, the symbols in the set (**) are meaningless in
the systent of integers. For 2 cannot be divided by 4, —3 cannot be
divided Ly ~6, ete., in the system of integers. In ereating the rational
numbers we give meaning to the symbols in the set (**), and simul-
tancously we give new meaning to the symbols in the set (*).

3, .
e es Veesr
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We could define the class of all symbols % in which a and %are iztegers

and b = 2a to be the rational number -,1; (This same rattmal number

might also be denoted byg or ;:é or any other symbol in the class.)

Similarly, then, the class of all symbols g in which @ and b are integers

and @ = 2b should be the rational number 2. Some confusion might
result if we defined rational numbers-in-this manner. Should we say

that g is a symbol for the rational number 2 or a symbol for the integer

+2 or a symbol for the natural number 2? The portrait of 2 avoids this
confusion by defining a rational number as a class of ordered pairs of
integers. And, although it does not appear generally in the classical
literazure on number systems, we shall use brackets in writing these
ordered pair symbals. We do this to climinate any confusion which
might arise due to our definition of an integer in terms of ordered pairs
of natural numbers.

Definition. The rational number 2 is the class of all ordered pairs of
integers [a,b) in which a and b are integers, b 5 0 and @ = 2b. (The symbol
# is read s not equal lo.)

Any one of these pairs, as [2,1), [6,3], or [=8,—4], is a symbol denoting
the rational number 2. In our formal devclopment of the rational
number systen we prefer this ordered pair symbol. Later we shall
use again the ordinary symbols of the scientist and the engineer.

We have defined the rational number 2. Tet us now define rational
numbers generally. If a and b are any lwo inlegers and if b 5 0, then
[a,b] is a symbol for a rational number. This rational number is the class
of all ordered pairs of integers [cd) in which d # 0 and ad = be. And
any one of these symbols [c,d] denotes the same rational number as is
denoted by the symbol [a,b]). Implicit i this definition of rational number
is the following explicit dcfinition of equality for rational numbers:
[a,b) = led] if and only if ad = be. Thus [3,4] und [6,8] are symbols

denoting the sane rational nuniber { the fifth-grader writes it as’y sinee

3.8 = 4-6. Similarly, [-+3.~2] and [—75,-50] are ordered pair symbols

for the rational number which the ninth-grader writes as —g

-

-y
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We proceed to the definitions of the fundamental operations in the
rational number system:

[a,b] + [e,d] = [ad + be, bd],

— [a,b] = [ed] = [ad — be, bd], -

[a,b)-[ed] = [ac, bd],
[a,b] + [cd] = [ad, be).

In the symbols [a,b), [ed], the letters a, b, ¢, d are symbols denoting
integers and it is understood that b > 0, d # 0. (This understanding
follows from our definition of rational number.) Take a look at the
symbols on the right-hand sides of the fonr equations in the definition
of the fundamental operations. Are they meaningful? 15 each of them 2
symbol for a rational number? Note that each of them is an ordered

puir of infegers, for, since the system of integers is closed with respect

to additica, multiplication, and subtraction, it follows that ad + bc,
ad — be, ac. ad, be, and bd are six composite symbols denoting integers.
One othcr point needs to be checked. In an ordered pair symbol for a
rational number, the second integer in the ordered pair must not be 0.
In the definitiou of addition, subtraction, and multiplication, the second
integer in the ordered pair symbol is dd. As stated above, b # 0, d 5 0.
From our knowledge of the system of integers we know then that bd 5 0.
It follows that addition, subfraction, and multiplication are always
possible in the system of rational numbers. More precisely, the system
of rational numbers is closed with respect to these three operations.
How about’ division? Is the svstem of rational numbers closed with
respect to division? Let us look at the definition again. [a,b] + [c,d] =
[ad, be. Tt is understood that b £ 0, d 5 0. Does this insure that be > 0?
No, it docs not. For if ¢ = 0, then be = 0. And, if bc = 0, then [ad, bc)
is not a rational number. Now, if ¢ = 0, then [¢,d] is a symbol for the
rational number 0. On the other hand, if ¢ # 0, then [¢,d] is not the
rational number 0 and the division [a,b] + [c,d] is defined. For, if ¢ > 0,
then be 5 0 and [ad, be] is-a symbol for a rational number. We conclude

“that ‘in" the system of rational smmbers division is always possible

with one exceeption—division by 0 is impossible. Thus the system of
rational numbers is closed with respect fo all four of the fundamental
operations with the exeeption that division by 0 is impossible.

Let us try our definition of the fundamental operations on several
examples.

s S
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b )+ 23] = (13 442,43 = (11,12] = 1L
173w wl e R Tk
l_g— 4] — 23] = 1.3 — 4.2 4.9} = [— ‘)=:5
; 3 - [1’1] ["13] - “‘ 5 1 ""4 3} - [ 5’1"‘] 12 H

12 14123 = (1-2,4-3) = 2,12] = [1,6] = L
4 3 - ) ~yedy == “~y J M IR Niand ) - G’
l - :.), o ‘[l 4! e [‘) ';] = tl-'s 11-"] = [',; 8] Pl é
4 3 - ) - -1 “dy b ) S’
%—:. 2= [56] + [2,1] = [51, 6-2] = [5,12] = 1—;

Does rational 2 plus rational 2 yield rational 42 Using {2,1] as a symbol
for the rational number 2 and using our definition of addition we have
(2] + [2,1] = [2-1 + 1-2, 1-1] = [4,1}; and [4,1] is a symbol denoting
the rational number 4. How abont a rafional 1? Yes, we have one;
[1,1] is an ordered pair symbol for the rational 1. Note that, according

to our definition of multiplication, [¢,b]-[1,1] = [a-1, b-1] = [a,b]. This

proves that the product of any rational number » and the rational
number 1 is the rational number r. Similarly the zero element in the
rational number system is (0,1}. Thus [¢,b] + [0,1] = [a- L + b-0,b-1] =
[@a + 0, b] = [aph] and [a,b]-[0,1] = [¢-0, b-1] = [0,b] = [0,1}; we add
[a,b] and our zero [0,1] and we get [a,b]; we multiply [a,b] by our zero
[0,1] and we get [0,1]. T.et us prove a theorem.

Theorem. Addition of rational numbers is commautative. (This means
that the result of adding two rational numbers is independent of the
order in which they are added.)

- Proof: Let a, b, ¢, d denote inlegers and the ordered pair symbols
denote rational numbers. Then from our definition of addition of rational
numbers we have:

[(L,b] + [C,(ll = [(ld + bc,bd]
le,d] + [a,b] = [cb + da,db].

But ad -+ be = cb 4 da and bd = db from our knowledge of the system
of integers. Therefore [ud - be,d] = [cb - dadb] and [a,b] + [e,d] =
{C’(Il '}' (a;b]'

We bave had a glimpse of the ralional number system; we have
seen 2 as a rational number, as a class of ordered pairs of integers;
and we have indicated that the fundamental operations as applied
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to rational numbers may be defined and studied in terms of the ordered
pair notation. Al this appears in our portrait of the rational number 2.
And, finally, as we promised at the beginning of our discussion of ra-
tlonal numbers, we note that the portraii. of 2 identifies the rational
number 2 with the integer 2 using the concept of isomorphism. Thus the
mathematician and the engineer clasp hands again.

Here is the isomorphism. Let Sy denote the system of all integers and
S: the system of all rational numbers. Let S: be the system of all ra-
tional nunbers each of which, in the ordered pair of integers notatior

can be denoted by a symbol [a, }. In S5 the fundamental operations are -

as they are in S; . Thus S; has the clements - -, [~3,1], [-2,1], {~1,1],
[0,1], [1,1], [2,1], [3,1], --- . We mate these clements to the clements of
the systein S of all integers. as follows: - -, [—3,1] « -3, 1-21] &
-2, [~1,1] & —1, [01]«.0[11]«»1[21}92[‘31]4-.3 . (We
are using the unsigned symbols 1, 2; 3 to denote integers hero not
natural numbers.) In general, if » is any integer, then we mate n with
[n,1]. This establishes a one-to-one correspondence between the elements
of S;-and the clements of S; . We assert that it is an isomorphism. Let

-tand b be any two integers. Then a e [¢,1), b [bl],a + ber [a + b 1], -

a-b e [a-b,1). In order for our correspondence to be an isomorphism we
should have a + b & [a,1] + [b,1] and a-b &> [a,1]- b [b,1). This we shall
have if [¢,1] + [b,1] = [¢ + b,1] and [a,1]-[b,1] = [a-}b,1]. This we
do have in view of our definitions of addition and multiplication. Let
us take an example. Suppose we wish to add the integers —5 and +3.

- Let us translate to the system of rationals, then add, and then translate

back. We should get —2. Let us sec. — 5 [—5,1], -3 ¢ [3,1], [5,1] +
B,1] = [=5-1 + 13, 1-1] = [=5 - 3,1] = [~2,1], [~2,1] & —2.
As another example suppose we wish to mulliply: [~5,1]-[3,1]. The

result should be [—15,1] according to our rule for nultiplication. Let us

see if we can translate to integers, then multiply, and then translate
back. [=5,1] & =5, [3,1] & 3, —5-3 = —15, —15 & [—15]1].

The portrait of 2 reveals the rational number 2 as something different
from the integer positive 2. The mind of man has ereated the rational
number 2 as a class of ox(lel ed pairs of integers. But the same mind has
produced the isomorphism which reveals in its simplest form the rela-
tionship of the fundamental operations in the two systems. What does
2 -{-‘1 ntean? Are we adding an iutcgcr and a r:ttional number? The

u

casiest explanation is that 2 + 5 means ralional 2 plus r'moual

that the symbol 2 in this context must denote ratonal 2. (If we were to
give a rule for adding an integer and a rational number, it would probably
be: a + [be] = [a,1] -+ [be] = [ac -+ b,e]. Note how a is replaced by
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[a,1] and reeall that a > [a,1] in the isomorphism.) Finally, what does
2 - 2 = 4 mean? Does it indicate an addition of natural numbers? of
positive integers? or of rational number=? It could indicate any one of
these. It means what we want it to mean. And, if we want it to mean a
particular one of these three, then we-shall have to rely on the context
or we shall have to write something more definite, perhaps an added . -
remark or perkaps different notation, )

Our concept of 2 as a number is growing. It started as a natural
number; now jt is a natural number oran integer or a rational number.
The natiral numbers are isomorphic o the positive integers. The
-integers are isomorphic to the rational numbers [q,1], in which a is an

_integer. One way to view -the growth of the number concept is to see:
natural number, positive integer, all integers, rational numbers [q,1]
with @ an integer, then all rational numbers. We have seen 2 in-each
stage of this development; we have scen it in our ever-increasing en-
vironment of other numbers. And we have seen the isomorphisms which
relate the 2's in the different systems. In symbols we have 26 2442 or
2 ¢ +2 & (2,1, meaning {aatural 2) -« (integer 2) ¢ (rational 2).
T'wo more links on this chain of matings will conclude our portrait.
We shall see 2 as an element of the system of real numbers, and finally
we shall see 2 as an element of the system of complex numbers. Before
-proceeding with our discussion of the real number 2, however, we wish to -
ingert at this point some remarks on the approximale or meassurement
number 2.
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When we count a finite set the result is a natural number; when we ’ R
measure something by counting the number of times a standard unit is
coutained in the quantity being measured, we frequently find that the ]
result is not a natural number. Laying off a yard stick along the edge - o
of & room we may find that its length is more than 5 yards and less -
than 6 yards. We need a nnmber between 5 and 6. For mcasuring pnr- - =
poses we need many numbers between 5-and 6; we need the rational .

- mmbers. Now measuiement numbers are not exact numbers. When we SR
suy that the diameter of a piston is 3.564 centimeters, we mean that the o
diameter is between 3.5635 cin. and 3.5645 em.—we mean that 3.564-cm. Lo
is the diameter to the nearest .001 of a centimeter. In contrast to exact -
numbers (the natural numbers or integers which result from the opera-
E . tion of counting) measurement numbers are sometimes called ap- R
3 ) : proximate numbers. As we gaze at-the portrait of 2, then, we sce 2 as S s
’ a measurement number—as az approximate nmumber. We see_such T
measurements as 2 inches, 2 gallons, 2 kilowatts, 2 grams, 2 seconds. R
— But we also see such measurements as 2.0 miles, 2.00 kilograms, and .
2.000 cubic feect, in which the zeios are significant; they iudicate the T
T accuracy of 2 as a measurement number—nearest tenth, nearest hun- :
dredth, or nearest thousandth.

C oy




The Real Number 2

The real number 2, as revealed by its modern portrait, is a creation
of the human mind. You might guess that modern man has created the
real numbers from the rational numbers, that a subset of the real num-

- bers is isomorphic to the set of all rational nunbers, and that in this——— . ——~
isomorphisin, (real 2) « (rational 2). But before we look af the modern
creation, let us consider the nced for real numbers; let us see how real
numbers are used.

~  The-system of rational numbens is closed with respect to addmon,
subtraction, multiplication, and division (except that it is impossible
to divide by 0). As we liave explained before, this means that these
operatlons can_be performed -in- this-system; it means that the sum of -
every pair of: rational numbers is-a rational number; likewise the differ- -
ence, the product, and the quotient of two rational numbers are rational
numbers (except that 0 cannot be the divisor in a quotient). The system
seems to be complete from a ‘mathematical pcint of view. What else

= would we like to do with numbers besides add ‘hem, subtract them,

multiply them, and divide them? Perhaps some of us are thinking:

What about the restriction of not dividing by 0? Well, the modern

mathematician does remove this restriction in sone situations, in some

theories. But that is another story. Division by 0 is impossible in any

of the elementary number systems, the ones which we are discussing

here. Ju the elementary number systems 0-a = 0 for every a in the -

system, and o + b = ¢ means ¢ = be. Multiplication comes first; then o ‘.
_ division is defined as the inverse operation. Note that 10-3 = 30 and :

30 + 3 = 10; thus (10-3) + 3 = 10. Also (10 + 3)- 3 = 10. The one - )

“undoes” the other Now suppose division by 0 were possible. In other - -
.words suppose @ + 0 = b where @ and b are numbers in some system.
We should then have a = 0-b = 0, and thus a = 0; thatis,a - 0 =1

is impossible if a # 0. But suppose -8— = | 'This is all right from the

standpoint that division is the inverse of multiplication provided b is

such a number that 0 =0+b. But this is true regardless of the value of b. -
Hence 0 + 0 could be any number. But the result of adding two rational

numbers is unique; there is just one answer. Similarly there is just one

answer if two numbers are subtracted, or mnultiplied, or divided (with

divisor different from 0). Tor this and other réasons mathematicians

have long agreed that 0 -+ 0 is indeterminate or meaningless. The point

here is that the possibility or impossibility of dividing by 0 has nothing

to do with the need for creating real numbers. This brings us back to the

22
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. - 7 question of what defects, if any, are present in the rational number
system.

1 . B

__Consider the following problem in elementary geometry: find the

length of the diagonal of a square of side length 1 unit. To be definite, let

_ - - us suppose that the length of each side is exactly 1 unit and that each

’ - angle is exactly 90°. If we call the length of the diagonal d and if we reeall

- - a theorem due to Pythagoras, we conclude that ¢° = 2. (The theorem

states that the square of the hypotenuse of a right triangle is the sum of

the squares of the legs.) So what is the value of d? We say that d is the

) square root of 2; we write d = +/2. But suppose the only numbers are

I ) rational numbers. We say d is approximately 1.41; 1.41% is a little less

‘. than 2 and 1.42° is a little greater than 2. But what is d exactly? Is there
a rational number whose square is 22 The answer is no. To show this, -

suppose there were a rational number {a,b], (a and b are integers), such

that [a,0]-[a,] = [2,1]. We may assume that the symbol for "the ra-

tional number [a,b] is such that ¢ and b have no eommon positive

integral (whole number) divisors except 1. (We are assuming that the
- - ) fraetion g
- ) tion in the system of rational numbers, we have [a*,b°] = [2,1] and from
our definition of equality (really from our definition that a rational
number is a elass of symbols related in a certain way) we have a* = 2b%
Now we may transplant ourselves into the system of integers. We note
that 2b® is an even number. Hence o is even. Ilenee a is even (for the
square of an odd integer is odd). Henee there is an integer ¢ such that
a = 2c. ITence (2¢)* = 2. Henee 4¢° = 2b%. TTence 2¢ = . Henee b is
even. Henee b is even. Hence a and b have the common divisor 2. But
we started with a and b having no such common divisor. Hence the as-
sumption that d is rational leads by logieal reasoning to a pair of in-
tegers which do not have 2 as a eommon divisor and which also do have
2 as a common divisor. The only way to avoid this dilemma is to con-
clude that the assumption is false—to conelude that d is not a rational
number. But we need a-number d whose square is 2. The aneient ge-
ometers needed it; they lost a lot of sleep worrying about the fact that
there was no such number; they thought this was a flaw in their other-

is in lowest terms.) Then, from our definition of multipliea-
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wise beautiful theory. The modern mathematician does not worry
about a need for a square root of 2. He knows there is no rational number
whose square is 2. IIe needs this square root, however, so he creates it.
T'he thing created is not a rational number; it is a real number. Later we
shall look at this creation structurally; we shall see how 2 is made from
rational numbers in several modern theories. Right now we recognize
the existence of this number and the symbol commonly used for it,
/2. The important thing about this number right now is that (+/2)* =
2. Now we can solve the equation z* = 2 and get an exact answer;

(v/2)* = 2 exactly!

2 i A n " N e

=4 3 =2 4 0 1 2 3 4

s

A useful mathematical device is the number scale—numbers corre-
sponding to points along a line in a very familiar way. The numder scale
we wish-to think about is one which exists only in the mind. We start
with a straight line (perfect, you know) which we think of as running
from left toright. An arbitrary point on it is labelled 0; a point to the
right of ** i~ labelled 1. Assuming now that we can lay off equal dis-
tances, we . .ae segment from 0 to 1 to mark the successive integers
in both directions. Going to the right from 0 we have 1, 2,3, ---; to
the left we have —1, —2, —3, - - -. In the mind every integer appears as
the label of some point on the line. Next we label all the points which
correspond to rational numbers. Where does the label [47,7] go? Well,
[47,7} as a symbol for a certain rational number has served its purpose.
47
) 7
clemenfary geometry a ruler and compass construction for dividing a

So we shall use the more familiar symbols — or 6?. We may recall from

0 1
segment into 7 equal parts. Having divided the segment from 0 to 1 into

7 equal parts, we lay off . ;gments of length % and label eventually not

7
rational numbers have found their places as labels for points on our

) 6 _—
only 6z but IOOO;I,-, ~ 2., and so on. So now we imagiae that all the
7
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number scale. Lhe big question ds: ITave all the points on the line heen
labelled? It scems logical that the answer might depend upon our notion
of line, of point, of the relationship between points and lines. We did not
say anything that would help us here when we said that a straight line
exists in the mind. We have a fecling that whatever a line is, it ought to
have unlabelled points, even after all the rational numbers have found
their places. For we feel that +/2 ought to be the length of a segment
with the point labelled 0 as its left end point. The right end point ought
to be labelled /2. Can this point be constructed with ryler and com-

i 1 i
-1 0 1v2 2

passes? Yes, casily. Construct a square with the segment from 0 to 1 as
one side. Swing an are with center at 0 and length equal to the diagonal
of the square. This arc will cut the number line in a point to the right
of 1, the point which we label 4/2. :

The foregoing paragraphs may have led you to believe that the need
for 4/2 is the only reason for creating the real numbers. More likely they
have not lead you to believe any such thing. For as you know, there are
infinitely many nceds similar to this nced. We need /3, V10, v/4,
V0517, /=12, v/T —1/3, a number vsually denoted by =, and
many, many others. We do not need these numbers in the factory when
we are recording diameters of pistons; we do not need them in finance
accounts, aid we do not need them in measuring timbers for a bridge.
But in the realm of ideas and theory, in the area of creation and design,
we need them. It is true that in the final computations an engineer may
use rational approximations for numbers which he has determined. But
his initial toc-hold on some important number may well have been
made by solving equations whose solutions depended on some of the
pure mathenatical properties of irrational numbers. Mathematically,
these numbers are indispensable. We need them to make mathematies
simpler; we need them to inake mathematies beautiful; we need them as
labels on our number seale; we need them so that the full foree and power
of our knowledge of numbers can be effectively used in our study of
geometry (analytic geometty).

Let us look at the number scale again. There are two basically dif-
ferent ways of looking at the numbers in this scale. In the one we see the
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evolution of the number concept—from natural nunber to real number.
In the other we see the numbers on the number scale as comprising the
system of real numbers. In the one we see steps: Step 1. We see the
points labelled 1, 2, 3, -- -, and we think of them as natural numbers.
Step 2. We see all the points labelled ---, -3, -2, —-1,0,1,2,3, ---,
and we think of them as integers. Step 3. We see all the points labelled
with rationa. numbers; we see ;1;, 5:-;2-,
—2,0, 4, 73, and so on, this time as symbols for rational numbers. Step
4. We sce all the points which are labelled as real numbers; and when we
see all these points, we are looking at all the points on the line. Of course
this step reveals a point labtHed /2 and many others we have not secn
before. But it also reveals every point we saw in steps 1, 2, 3. We sce

5 Again; we see --2 again; and we see 2'again. This time we see them all as

clements of the real number system. We may look at the number scale
and, if we are not in a hurry, we may see all the steps, we may see all
the number systems which we have discussed and the isomorphisms
which tie them together. On the other hand we may look at the number
scale and see only the real numnbers; we may see a one-to-one correspond-
ence (established through the labelling) between the points on the-line

“and the numbers in the real number system. -

This leads vs to a systemn of notation for real numbers, the symbols in
terms of which most users of.zmathematics -think of real numbers,
decimals. Suppose z is a real number. If-z is also a rational number (you
know, through isomorphisin; or call it a rational real, if you wish), then
the decimal symbol for z can be obtained as follows. Write z = [a,b]
using the ordered integer pair symbol; express ¢ and b in the decimal
system using Arabic numerals; divide ¢ by Y=lising the division rule
learned in the elementary school. It is casy to prove that the division will
either come out even (the quotient being a finite decimal), or the division
will not come out even, in which case the digits in the quotient will

- 4
cventually appear in repeating blocks. For exammple, % = 1.25,~ g =
—0.428571428571, and 592 _ 887 _ 53157575 ... = 537 (In the
165 165

last two examples the superscore indicates the block of digits which
repeats.) If the decimal terminates or if it repeats, it is a symbol for a
rational number; an infinite nonrepeating decimal is a symbol for a real
number which is not a rational real number. Consider the example,
z = L010010001 - - -. We ecannot write all the digits in an infinite
decimal but we can deseribe it so that it can be written in the mind. In
this example there is (from left {o right) a first 1, a second 1, and so on;

—2;15,-, 3.145; but we also see —13,
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and so on means ah nth 1 forn = 1,2, 3, --- (through all the natural
numbers). For n = 1, 2, 3, ---, the ath 1 is followed by a block of
n 0’s (the first 1 is followed by one 0, the seeond 1 is followed by two
0’s, and so on). We have deliberately described a decimal which never
repeats; of course the 0’s and 1’s are repeated over and over, but there is
no block of digits which suceessively repeats itself. So the number z is not
a rational real number; it is an irrational real number. Where is it on the
number scale? It lies between 1 and 2; it iies between 1.01 and 1.02; it
lies between 1.01001 and 1.01002; and so on. The number seale as an
object of thought contains exactly one point which satisfies all the re-
quirements of the last sentence; that point is the one which reecives the
label 1.010010001- - -.

One theory of real numbers is a theory based on real numbers as in-
finite decimals. It is possible to define the fundamental operations of

addition, subtraetion, multiplication, and division, and to develop their

properties, using the infinite deeimal “coneept of real number. If an
engineer thinks about a real number at all, he probably visualizes it as a
deeimal. The portrait of 2 reveals a real number 2; we see it as a point on
the number seale and we see it as an infinite decimal symbol, 2.000 - - -
Later we shall see that each rational real number has two infinite de¢imal
representations. In this connection the portrait of 2 reveals it not only as

- areal number with the representation 2.000 - - - but also with the repre-

sentation 1.999 - - -. This theory of the real number is pretty much down
to earth. The real number is defined as a symbol and the operations are
defined in terms of these symbols. The whole theory rests upon a system
of notation using Arabie numerals; it rests upon an extension of a class
of symbols for rational numbers, -an extension from certain types of
decimals to all infinite decimals. It is not an extension of the rational
number system based upon the intrinsie properties of the rational num-
bers themselves. We propose then to look in upon two modern theories
which create the reals from the rationals using procedures which are
independent of the rational number symbolism.

First, let us consider the theory of Dedekind. In this theory cach real
number is created as a pair of infinite classes of rational numbers. To
deseribe these elasses we return to the number seale and look at it from
Step 3; we see all the rational numbers as labels of points on the number
seale. The relative position of these numbers on the seale establishes an
order, a linear order, in the system of rational numbers. If we look at any
pair of rational numbers, two different rational numbers, we see that one
of them lies to the left of the other one, that one of them is less than the
other. This order relationship, whieh is revealed so elearly on the nmunber
seale, can be deseribed rigorously without the aid of our geometrieal
crutch—the line which is the basis of the number scale. Tt is convenient

»
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for this purpose to use the ordered integer pair notation for rational num- -
bers. We say that [a,b] is a positive rational if @ and b-are both positive
integers or both negative integers; we say that [a,b] is a negative rational

if @ and b are integers of opposite sign. Thus % = [34] = [—-3,—4] is

positive while —% = [—3,4] = [3,—4] is negative. We say that the

positive rational numpers are greater than 0, that the negative rational
numbers are less than 0. We say that [a,0] is greater than [¢,d] and write -
lab) > led] if [ab) = led) = [ad — bebd] is a-pésitive number; we say : - -
that [c,d} is less than [a,b] and write [ed] < lad) if [a,b]) > [ed]. Of course, - = |
if [a,b] — [e,d] = [0,0], then [a,b] = [c,d]. ’ -
Let us now create the real number 2 as it appears in the Dedekind B

theory. Let A denote the elass of all rational numbers which are less than ’

or equal to therational number 2; let B denote the class of all rational

numbers which are greater than 2. Then we define the real number 2 to

be the ordered pair of classes {4,B}; we write 2 = {4,B}, or, for clarity,

(real 2) = {A,B}. On the number scale we see A as the set of all rational

numbers lying to the left of (rational 2) including (rational 2) itself; ) -

B is the set of all rational numbers lying to the right of (rational 2). ’
Intuitively, we sce (real 2) as a partition of the rational numbers into a .

lower segment and an upper segment, the number (rational 2) being the :
Jargest in the lower segment. In general, if r is any rational number, let

A, denote the set of all rational numbers s less than or equal to r; let B,
denote the set of all rational numbers ¢ greater-than r; and define (real

ry = {A,,B,}. These real numbers we might call the rational reals; the
real numbers wlich we have not created yet are the irrational reals. Later

we shall show that the rational reals are isomorphic to the rationals.

" Now for the construction of the irrational reals using the device of the _
Dedekind partition. To construct the number +/2 we take classes A4 and
B as follows: A contains all negative rational numbers, 0, and all positive

__rational numbers » having the property that +* < 2; B contains all

rational numbers which are not in A; {A,B} is the real number ordinarily
denoted by v/2. In general, if A and B are 3 classes of rational numbers-
having the properties (i) every rational nun. < s either in A or in B, (ii)
cery element of a 1s less than every element of B, (iii) there is no smallest
clement in B, then {A,B} s a real number. Note that if (i) and (i) are
satisfied for a given pair of classes 4,B, then it is impossible for 4 to have
a Jargest element and B to have a smallest element. For if r is the largest
rational number in A, and s is the smallest rational number in B, then

ce e r+s. -, A
7 < s by condition (ii) and -=——-;l).— is a rational number which is greater

r4s

than r and less than s: By condition (i) we see that- is cither in 4

2
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or it is in B. It cannot be in A since r is the largest clement in A and it
cannot be in B since s is the smallest clement in B. Therefore if A and
B satisfy conditions (i) and (i), and if B has a smallest element, then 4
has no largest element. But if we moved this smallest element of 3 into
class 4, then A and B would satisfy all three conditions. So if A and 53
satisfy (i), (i), and (ii), that is, if {4,B} is a real number, then cither -

_has a largest clement or it does not. If A has a largest element r, then

§ 4,8} is the number (real 7); if A has no largest clement, then {A.B} is
an irfational real number. Consider again the number /2. As vou will

recall, there is no rational number r such that #* = 2. In view of the linear ——

order of the rationals we haver’ > 2 or#* < 2 for every rational number 7.
Suppose ry is any positive rational number in the lower segiment .4 which
we deseribed when we defined A/2. Then r? < 2. Regardless of what ry
we start with in A, we can find a larger rational number in A. Given an
747'1
7’)2
. 4r
4> 244> @+ rdandr = 0_-{'#’ > 1. On the other hand,
= - 1

5 LT o 4 - 2

wehave 2 — 12> 0, (2 — 12> 0,4 — drd 41" > 0, 4-F 42 -
4 o . 4" - a
e > 8% 22 4 )2 > (Un)3, 2 > (—)% = r*. We have shown that
4 1)

the rational number 2 is larger than ryand, sinee 2 > »?, that = isin 1.

ryin A, let r2 denote the rational nuinber 5 Since 2 > r?, we have

So it is impossible for A to have a largest clement. What is the largest

rational number whose square is less than 22 Answer: There is none.
For if r were the largest one with this property; then the above proof
shows that r; is a larger one with this property. But this contradicts the
assumption that r; is the largest; so there cannot-be a largest. Of course
the cighth-grader learns how fo find larger and larger #'s with the prop-
erty that 72 < 2. He finds 1.4, 1.41,1.414, 14142, - -+, Actually he does
not cany the process very far; none of his problems requires more than
five or six places. But suppose he carried it out to 50 places; or suppose he
hired an elgetronic computer to calculate 1000 places; would he then
have the largest rational nun her with square less than 22 The answer is
no; there is no such largest rational number. Now suppose that this
eighth-grade square root process has been carried out to give an in-
finite number of places. Someone may say that is impossible. Actoally,
yes. But let us imagine that it has been done. In the mind, then, we have
an infinite decimal and we can describe the process of determining each
digit in this decimal. Someonc may guess that this is the largest rational
nmmnber with square less than 2. No, no! The answer is no on two counts.
First, this infinite decimal is not a rational number, it is one symbol for a
real number. Secondly, its square is not less than 2, its-square is exactly
2. Of course, the infinite decimal is another symbol for /2.

i
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We have discussed at some length the creation of the real number as
a Dedekind partition of the rational numbers. We sce (real 2) as an
ordered pair {A,B}, where B is the set of all positive rational numbers,
each of which exceeds 2 and where A is the set of all other rational
numbers. We see 4/2 as an ordered pair {A,B}, where B is the set of all
positive rational numbers cach of whose squares exceed 2, and A is the
set, of all other rationals. In general a real number is a pair {4,B} where
A and B are sets of rational numbers satisfying three conditions, whici
we listed: The real number system is the set of all these numbers and the
fundamental operations for combining real numbers.

It is not our intent o develop this real number theory, but we shall
taste a little of it. How shall we define addition? We are assuming that we
have complete knowledge of the fundamental operations in the rational
number system. Let z-and y be- two real numbers. Then z = {4,B},

-and y = {C,D}; z and y are Dedekind partitions of the rational num-

bers; for z and y the lower segments in these partitions are 4 and C,

respectively; the upper segments are B and- D, respectively. We define -

the sum of z and y to be a real number z = {E,F} where the sets E,77’
arc formed as follows. For every pair of rational numbers r and s, 7 in
A and s in C, put the rational number r -+ s into F. F is the set of all
rational numbers not in L. It ean be shown that {£,F} is a-real number.
Similarly we can define subtraction, multiplication, and division of real
numbers. And we can develop the properties of these operations in the
real number systems using these definitions. For example, it is easy to
prove that addition is commutative in the real number system. When we
defined the sum of x and y above, we formed F as the class of all rational
numbers r -+ s where 7 is in A and s is in C. If we follow this definition

-and add y and z, adding in the other order, we should form I as the class

of all rational numbers s 4- r where s is in C and r is in 4. Since addition
is commutative in the rational number system, it follows that s 4 » =
r - s, that the class ¥ is the same class for y -+ z as for z 4 y, and
hence that z 4- ¥ = y -+ z. Can we establish a linear order for the real

- numbers? Let z and y, z = {4,B},y = {C,D}, be two real numbers.

We say that z = yif A and C are identical sets; that is, if A and C are
symbols denoting the same set of rational numbers. Otherwise we say

that z is different from y; we write z # 3. In the latter case, one of them

ought to be greater than the other one. ITow shall we define this order
relation? Supposc that z = 7. Then A and C are different classes of
rationals. This means that some rational number 7 is in one of these two
sets but not in both of them. To be definite, suppose there is a rational
number rin A and that 7 is not C. Then we define x to be greater than
y; we write £ > y. The order relation thus established in the real number

=

———
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system is the same as wne one which one would naturally define in terms
of infinite decimals. ITow about the number seale? Yes, we can think of
cach point on the number seale being labelled with some symbol for a

31

real number 2. This symbol may be one in ordinary use, as 2, or it ma y be

the ordered pair symbol {A,B} where A,B are classes of rationals forming

a Dedekind partition. And we can pull the rationals and the rational
reals together through an isomorphism as we have suggested previously.

We mate cach rational number r to the real number {A,B}, which we

called (real ) above, where A is the set of all rational numbers not ex-
ceeding 7 and B is the set of all other rational numbers. Let us see if we
can add by “translation,” as required in the definition of isomorphism.
Suppose we wish to add (rational 7) and (rational s). ‘Then (rational 7)
+ (real 7), (rational s) & (real s); (real 7) 4 (real s) = {E,F}, in which
the largest clement in E is the rational number which is the sum of the

numbers 7 and s; and {Z,F} « (rational r - s). This completes our -

glimpse of the Dedekind real numbers,

Rational Real
r — r= {AB]}
s s = {C,D}

{AB} + {CD} = {EF}
—r4s = {EF}

rd4s

The portrait of 2 reveals a real number 2 as envisaged by Dedekind.

It reveals 2 as a Dedckind partition of the rational numbers. It reveals

2 in a system of numbers where each- element is such a partition and
where the operations are defined and developed in terms of these par-
titions. But it also reveals another real number 2; it reveals 2 as an

“element of another number system which we shall now discuss.

In the theory of real numbers due to Georg Cantor, a real number is a
class of sequences of rational numbers, the class having certain prover-
ties which we shall state later. In the meantime we must talk about
sequences, in particular about sequences of rational numbers. An in-
finite sequence of numbers is a correspondence which mates a number
with cach of the natural numbers. A symbol for an infinite scquence

which suggests thie nature of the sequence idea is: ai, az, a;, -

y Qn s

-+« In this composite symbol a; denotes the number in the sequence
which is mated to 1, a. denotes the number in the sequence which is
mated to 2, and so on; a, denotes the number in the sequence which is
mated to n. Briefly we say that a; is the first element in the sequence,
a; is the second element, and so on. Now, of course, it is impossible to
write an infinite sequence of minbers. We can picture it in the mind; we
can communicate our knowledge of an infinite sequence using a finite

x
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number of waords or symbols. Consider the sequence in which a, =

=1

for every natural number n. ‘The same sequence is suggested if we say:

. 1 1
consider the sequence 1, é, 3 -II PR ;I; -+« Other examples of
1 1

g 1
infinite sequencesarc:5,q,-6, SREE TR 1, —-1,1,—1,---, (=D,

ceesand 1,0,1,0,0,1,0,0,0,1, <. - . Note that in the definition of an
infinite sequence, the correspondence is not required to be a one-to-one
correspondence. Each natoral number n appears exactly once as a sub-
senipt in the symbol. a1, a2, a3, <<+ ; but the @, themselves need not be
distinct. In fact 1, 1, 1, - - - is a sequence-in which every a, is the same
number:a; = 1, = 1, a; = 1, and so on.

For our purposes, we are particularly interested in convergent se-
(uences of rational numbers. We shall give two definitions for a con-
vergent sequence and then diseuss the relationship between the two.
The intuitive idea in the first definition is that a, approaches closer and
closer (it may be there or it may get there in some examples) to some

. . 11
fixed number as n gets larger and larger. ‘T'hus the sequence 1, 550
L)
1 . . 1.
SR is convergent since ~is as close to 0 as we please for all n

sufliciently large. In this exumple we say that 0 is the limit of the se-
quence, and we say that the sequence is convergent by the external
ceriterion. 1t is an external eriterion since the convergence depends upon
the relationship of the numbers in the sequence to a number called the
limit; the limit number need not be an clement of the sequence. Other
examples are as follows:

an 0,L0lo0l ok ..,

This sequence is convergent with limit 0.

@) (3579 -1
y 3Ty Ty

This sequence is convergent with limit 2.
(3} . 17”:‘70717"'70717'”'
This sequence is not convergent; we call it divergent. So much for the

intuitive idea behind the definition; here is the definition itself.

Definition. A sequence @y, az, ag, «+- 1s convergent (by the exlernal
criterion) wilh limit « if corresponding lo every positive rational number r




o

VIL. Tur Rean Nusmper 2 33

there is a natural number N with the properly thata — r < a, < a 4 r
Jor every natural number n which excecds or equals N,

In the intuitive idea, wew .mt ¢, closeto a for all large 2. In the formal
definition the how clase comes first; we want a, and the limit @ to differ
by less than ». In the formal (Icﬁmtlon the “for all large n” is made pre-
cise next; there must be a natural number N so that something will be
true for all n Z N, so that a, will liec between ¢ — » and a + 7 for every
57 o"'_l,--e.Let

2 N. Consider again the example, 1, g’f}' A R

" . 1
us sec how the definition works on this example. Suppose that » = 5

! to be between 1.9 and 2.1 for all large n. Since

2n —
then we want

2n — 1
n

< 2 for all n, we need not bie concerned with the2.1. What we

—1 > 19,20 — 1> 195, .1n > 1, n > 10.So corresponding

tor = -l- we take ¥ = 11. Then if n = 11, we have = 2n — 1 =2 - 1
10 n n

<2<21andn>10,.1n> 1,20 — 192> 1,20 — 1 > 1.9, Zn;- 1

l’)
. 2n
need is

> 19. Hence 2n ~ lles between 1.9 and 2.1 for all #» = 11. We have

not proved that the sequence is convergent with limit 2; we have illus-
trated the meaning of the definition with a particular ». I‘o prove con-
vergence we must show that-every positive r works. So let a positive
rational number r be given. We want to describe a procedure for de-
termining the N which will work regardless of the value of r. For all

N\\e\mnt"—r<“n 1<2+rSmL02 1<"<2-§-r

. 2n - 1 . L.
for all n, the reqmrcment nr—-{_— K24r plnccs no restriction on the

2n —

. | .
value of ¥V, So all weneedis 2 — » < . This will be true if 20 —

. . 1
1>2n —arifnr> 1,ifn > = Let. ¥ be the smallesi natural number

2n — 1
n

with N > ~1- Then if n 2 N, we have n > -:-, and2 - r <

2 - r. This proves that 1 85 . n—1
] ¢ 3 )’ 3: y n
limit 2.
The intuitive idea in the second definition is that yllzy o, @y

<

- is convergent to the

3
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is convergent (by the internal criterion) if, given a specified closeness
(a positive number), there is some clement in the sequence heyond
which the two clements of every pair differ by less than the specified®
closeness. In the external criterion the elements of the sequence are re-
quired to be close to some number, which might be “external to,” that
is, which might not be an clement of the sequence. In the internal
criterion the closeness requirement is specified internally—close to each
other. The formal definition is as follows:

Definition. The scquence ay, az, as, --- s convergent by the internal
criterion if, corresponding lo cvery posilive rational number r, there is a
natural number N with the property that —r < a, — an < 1 for every pair
of natural numbers n, m, cach of which exceeds or equals N.

There is a theorem which says that a sequence which is convergent by
the external criterion is also convergent by the internal criterion. In-
deed, if a, and «,, are both close to a, then they are close to each other.
If a1, az, a3, - -+ is convergent to a and if we want a, and a,, to differ

by less than r, then we take N in the first definition so thata — '%r <

1 . . .
., < a + 5" forallm =2 N.Then if n 2 N and m = N, we have

a — %r <a, <a-+ %r anda — ;131' <, < d +%r. So a, and a,, both lie

——T——

{ ., . . 1
on the number seale in the interval with end points @ — 5 and
-

a + -%r. Since this interval is r units long, it follows that a, and a., differ

by less than r.

A good question at this point is: Is there a theorem which says that a
sequence which is convergent by the internal eriterion is also convergent
by the external criterion? If we are talking about sequences of rational
numbers and if the limit a in the external criterion definition is re-
quired to be a rational number, then the answer to the question is no.
If we are working in the system of rational numbers, then there are con-
vergent scquences which do not have limits. A simple example is the
sequence 1, 1.4, 1.41, 1.414, - -- in which the terms are determined by
the elementary-school process for firding a decimal approximation to
/2. Inasmuch as this scquence is convergent in the system of real
numbers to the real number 4/2 and since a sequence can have only
one limit, it follows that the sequence cannot have a “rational real”
limit. Let us look at it another way. If the sequence had a rational limit
L, then the infinite decimal 1.414 - - - would be another symbo} denoting

7
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the same number as L. But this is impossible since the infinite decimal
1.414 -- - is nonrepeating while the decimal representation for a rational

" number is finite or repeating,

Now what has all this business-of sequence to do with creating the
reals from the rationals? One way to look at it is this. There are many
sequences of rational numbers which are convergent by the internal
criterion. Some of them have limits and some of them do not. The
intuitive idea is that we shall create a limit for each of them that does
not have a limit. And, of course, this limit will be a real number. Before
we do this let us recall how we created the rational numbers from the
integers. We looked at the system of integers and <we saw that the system
was not closed wiih respect to division. In the system of integers the
symbol g- is meaningless. So we created the rational numbers and g isa
symbol which denotes one of these new numbers. We have a similar
situation in connection with the internally convergent sequences of

‘rational numbers. Consider again the sequence of decimal approxima-

tions for the 4/2:
1,1.4,1.41,1414, ...,

Let us think of this whole sequence as one symbol, a symbol for a real
number. Just as [8,5) is one representation for a certain rational number,
50 also 1, 1.4, 1.41, --- is one representation for a certain real number.
Just as [8,5], [16,10], [—32,—20] (or g, %, :—g%
tions for the same rational number so a real number has many repre-
sentations as a convergent sequence of rationals. In Cantor’s theory two
convergent sequences of rational numbers,

are different representa-

a,0,03, - 1 qny c* -y
buybe, by, - oc b, e-e,
are representations for the sane real number if the sequence
G —b,a - be, - y On = bpyeee ’

is conv ~yent to the limit 0. In this case we say that the sequences a ,
az,as - - and by, by, bs, -« - areequivalent sequences. Just as a rational
number is defined as the class of all its representations as an ordered pair
of integers, s0 a real number is defined as the elass of all its representa-
tions as a convergent sequence of rational numbers. Thus (real 0) is the
class of all sequenees of rational numbers which converge to (rational 0);
(real 1) is the class of all sequences of rational numbers which converge
to (rational 1); /2 is the class whose clements are the sequence 1,
1.4, 1.41, 1.414, .« - and all other sequences equivalent to this sequence.
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In general, if @, a2, a;, --- is any convergent sequence of rational
numbers, then the class of all sequences of rational numbers which are
equivalent to this sequence is defined to be a real number. Each one of
these sequences is called a Cantor representation of the real number.

Iow do we operate with Cantor’s real numbers? We give here a defi-
nition for the addition of real numbersin Cantor’s theory. Let 2 and y be
two real numbers with Cantor representations as follows:

= {a,q, a5, 0,0,
y = {b,ba, by, -, by}
Define the sum x 4 y to be the real number represented by the sequence
Q -I‘ bAl, a + by, oy @ A+ by, e

Similarly ‘we can define the other fundamental operations and from them
develop a theory of real numbers. As an example of a theorem in this
theory we have: Addition of real numbers is commutative. For with x airl
y as above we have:

r+y= {al+bl;a’-’+b2:"':a"+b""“}’
(+a,betae, oo bn @, e}

Y+

If we subtract these renresentations for x 4 y and for y + z term by
term, we get' the sequence 0, 0, 0, - -+ . And since 0, 0, 0, - - - converges
to 0, the representations for @ -+ y and fory + z are representations for
the same real number. Ience 2 4 y and y 4+ 2 are symbols for the same
real number, This completes the proof of the theorem.

How ean we establish a linear order among the real numbers? Given
x and y with representations as above, define z > y if

(i) the sequence ay — by, a2 = b2, -+, @ — ba, - does not con-
verge to ),
(i) the sequence i — by, a2 = b2, <+, @y — bn, -+ is convergent,
and ]
(ili) there is a natural number N sueh that @, — b, > 0f ralln 2 N.

ITow are the real numbers of Dedekind related to the 1¢al numbers of

Cantor? On the basis of their definitions they are entirely different.

* But intuitively they are quite similar. Actually, it ean be proved that the

two systems of numbers are isomorphic.

Having created the real numbers as Dedekind partitions of rationals
and as classes of equivalent convergent sequences of rationals, one might
be tempted to ereate a new system of numbers by forming Dedekind
partitions of real numbers ¢ by taking classes of (internally) convergent
sequences of real numbers. This can actually be done. But the results are

l‘:




ERIC

PAFullToxt Provided by ERIC

VII. Tne Rean NoMmeer 2 37

not interesting. Lach of *he new systems of numbers which results is
uninteresting since it is it norphic to the system of real numbers.

When we defined the real number as a Dedekind partition of the
rationals, we created, corresponding to each rational number r, a real
number which naturally mated itself with that r. This real number
{A,B} is the ore in which r is the largest element in A. But we created
many real aumbers which did not correspond in that way with the
rationals; there are infinitely many real numbers {A4,B} in wh:.h 4 has
no largest element. In this sense the real number system is much larger
than the rational number system.

When we defined the real number as a class of equivalent sequences of
rational numbers, we created, corresponding te each rational number r,
a real number which naturally mated itself with that ». This real number
is the class of all sequences of rational nunbers which converge to r.
But we also ereated many real numbers which do not correspond in that
way to a rational number; there are infinitely 1nany real numbers with
representations which are internally convergen: sequences of rational
numbers but not externally convergent. In this sense Cantor's system of
real numbers is much larger than the svstem of rational numbers.

If we attempt to enlarge the system of real numbers by forming
Dedekind partitions of reals or classes of convergent sequences of reals
and calling them, say, superreals, we fail since as stated before, the re-
sulting systems are isomorphic with the real number system. The reason
for this is embodied in two theorems, a climax theorem in the Dedekind
theory and a climax theorem in the Cantor theory, which we state with-
out proof,

Theorem. If {A,B} is any Dcdelind partition of real numbers (three
conditions analogous to our three conditions for a Dedekind partition of
rational numbers), then there is a largest real number in A,

Theorem. If ay, a2, -+, Xu, -+ is any sequence of real numbers con-
vergent by the internal crilerion; then there is a real number r such that
a3y, X2, T3, + -+ 18 convergent lo x by the external crilerion.

Before we leave the real number system we must attend to sone un-
finished business. The reader may recall our discussion of real numbers as
decimals. It was stated that the real number 2 has two representations
as an infinite decimal, namely :

(real 2) = 2.000 --- and
(real 2) =2 1.999 ... .
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One explanation of this can be given now. In the reaf number system the
theory of limits of sequences reveals the number /2 as the limit of the
rational real numbers 1, 1.4, 1.41, 1.414, - -- . Similarly (real 2) is the
limit of the sequence 2, 2.0, 2.00, - - - . (lEach symbol in this sequence
denotes the real number 2 and so this assertion is Grivial.) But (real 2) is
also the limit of the sequence of real numbers 1, 1.9, 1.99, 1.999 ... .
Hence we write 2 = 1.999 --- .

Perhaps the following argument might be more appealing to the
1
3
multiply “through” by 3 to get 1 = 0.999 - - - , and add equals to equals
to get 2 = 1.999 --- . Sinilarly every finite decimal is equal {o an in-
finite decimal as illustrated by the examples: 0.25 = 0.24999 --. ,
0.0523 = 0.0522999 ---, and 17.3 = 17.2999 --- .

This concludes our discussion of real numbers. The portrait of 2 re-
veals the real number 2 of Dedekind as a partition of the rational num-
bers, the real number 2 of Cantor as a class of equivalent convergent
sequences of .rational numbers, the real number 2 of the applied mathe-
matician as 2.000 --- or 1.999 - - | and the real 2 of the engineer as
something which for his purpe=e is the same as the natural number 2, the
integer 2, and the rational number 2.

reader. Since 5 has the infinite decimal representation 0.33 -« - | we ean
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The system of real numbers seems quite complete as regards mathe-
matical operations. It is closed with respeet to the fundamental oper-
ations; the lower segments in its Dedekind partitions have a largest
clement; its internally convergent sequences have limits. But there is one
very important defect in the real number system. Some very siniple
cquations cannot be solved in the real number system. In cother words,
there are simple equations whose roots are not real numbers. One such
equation is a? 4~ 1 = 0. If z is a real number, then 22 is positive or zero
and a? 4 1 is positive; hence iv is impossible that 2? -+ 1 = 0. Yes, we can
go through the motions of solving the equation. We can write a2 - 1
= 0,22 = 51, & = = v/—=1. When we write these things we are writing
something Which has form but no substance, something which is mean-
ingless 1o the real number system. To solve #* 4 1 = 0 we need a number
whose square is —1. To solve 22 4+ 2 = 0 we need a number whose
square is —2. To solve 2? ~ 2z 4 2 = 0 we need a number whieh ean be
decreased Hy 1 to leave a remainder whose square is — 1. There are no
siteh reai sumbers. So we ereate them; we call them complex numbers.
And when we create them we have the mathematieal equipment for
solving not only such simple equations as those listed above but every
polynomial cquation whose cocfficients are clements of the complex
number system. This is truly a notable instance of the fact that the
creation of new mumbers simplifies mathematics and makes it a thing of
beauty. Indeed, the modern theory of complex numbers is a high point
in the intellectual achievements of man.

Now that we are convinced of the need for complex numbers and have
paid them such high compliments, we proceed to create them from the
real numbers. We created the integer as a class of ordered pairs of natural
numbers, the rational number as & class of ordered pairs of integers, the
real number as a Dedekind partition of the rationals and as a class of
sequences of rational numbers. We might expeet something more compli-
cated for our last creation. Actually, it is sinfpler. The modern concept of
a complex number is based on the following defmition.

Definition: A complex number is an ordered pair of real numbers.

If @ and b are any real numbers, then ((a,b)) is a symbol denoting a
complex nmmber. This is not the symbol used by the practical man. It is
a convenient symbol to use in the development of the theory f complex
numbers. The traditional symbol will be given later. We noted in our
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dizcussion of the rational numbers that different ordered pairs of in-
tegers might denote the same rational number, as [3,4] = [6,8]. In the
rational number system we defined equality: {a,b] = [¢,d] if and only if
ad = be. The situation in the complex number system is much simpler:
((a,h)) = ((c,d)) if and only if @ = cand b = d. Of course it may happen
that ((a,b)) and ((c,d)) are different symbols even though ((ab)) =
({c.d)). Put in this case, the difference is due to the fact that a and ¢ are
different symbols for the same real number or that b and d are different
ssmbols for the same real number. Thus ((1 + 2,5)) = ((3,5)), and
((r 1) = ((2,3)) implies that x = 2, y = 3.

The fundamental operations are easily defined and studied using the
ordered pair notation. Definition: ((a,b)) + ((¢,d)) = ((@ + ¢,b + o)),
((ab)) — (ed) = (& — ¢b — d)), ((a,b))-((c,d) = ((ac — bd,ad

+ be)), and if ¢ 4 d* #= 0,((a,h)) = ((c,d)) = <<m,m

Using these definitions it can be shown that the complex number system
is indeed an extension of the real number system. For the system of all
complex numbers ((@,0)), where a is a real number (and 0 is the real 0),
is isomorphic to the real number system. As vou would guess, we mate
({a,0)) with a to establish this isomorphism. For example, 0 « ((0,0)),
1 e ((1,0)), and 2 «» ((2,0)).

Yes, we can solve 22 + 1 = 0 in the complex number system. Reeall
the isomorphism and consider the 1 and the 0 in the equation as meaning
((1,0)) and ((0,0)) respectively. Substituting 2; = ((0,1)) and z. =
((0,— 1)) for x we find z* = ((0,1))-((0,1)) = ((0 — 1,0 4 0)) =
(=1,00), =* + ((1L,O) = (-1,0)) + ((1,0)) = ((0,0)); =7,
(0,-1))-((0,—1)) = ((0-1,0 4+ 0)) = ((—1,0)), = + ((1,0)
((=1L,00) + ((1,0)) = ((0,0))-

In traditional symbols, the complex number ((0,1)) is written as 7,
{(0.—1)) is written as —¢, and, in general, ((a,b)) is written as a + bi.
In the special case of ((a,b)) with b = 0 it is customary to write ((a,0)) =
a + 0i = q; it is customary in many situations to consider the complex
numbers ((a,0)) as special complex numbers called real numbers. Con-
fusing? Not really. Perhaps the vocabulary could be improved. But the
idea_is clear in view of the isomorphisin mentioned above.

As a final remark in this brief encounter with the complex numbers we
mention the beautiful situation as regards roots in this system. Every
complex number, except 0, has two square roots, three cube roots, four
fourth roots, and so on. For example, the three cube roots of 1 are 1,

\V/3i /30

—71) + —5,and —;1; — ——.Check them if you ean, using the definitions

of the fundamental operations as we listed them.

ac +bd be — ad)):,.ﬂw
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In this Iast section we have seen 2 as a complex number. We have seen
it as the ordered pair of feal numbers ((2,0)), as a symbol 2 - 07, and
as the symbol 2 again. We have seen 2 in-an environment of complex
numbers, as an element of a system which is one of the most heautiful
achievements of the mind of man.

Perhaps the reader has wearied in this study of the portrait of 2,
Perhaps he feels that 2 is not really as complicated as the author thinks.
Perhaps he feels that the author has strayed from his subject and forced a
lot of modern number theory upon him. But the author is not concerned
about that now. The faet that the reader is reading these words indicates
that the author has achieved his purpose. It has not been his purpose to
present a treatise on any subject. Rather, it has been his purpose to en-
large the reader’s coneept of number, to give him some insight into the
nature of number as a creation of the human intellect. To achieve this
end the author has deseribed the modern portrait of 2 as he sces it.

Ve
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